WorldWideScience

Sample records for anti-ganglioside gd2 antibodies

  1. Single Chain Fv Constructs of Anti-Ganglioside GD2 Antibodies for Radioimaging and Radioimmunotherapy

    International Nuclear Information System (INIS)

    Cheung, Nai-Kong

    2003-01-01

    because of its broad and usually homogeneous distribution in human solid tumors, and most importantly, their absence on cell membranes of normal human tissues. In separate experiments, we have shown that T-cells transduced with the herpes simplex viral thymidine kinase (HSV-tk) gene can be radiolabeled with 131 I-FIAU to a safe nuclear radiation dose. Using a dicistronic construct we are inserting chimeric immune receptor plus HSV-tk into T-cells to allow such their trafficking to be radioactively monitored. We plan to study the role of cytokines, chemoreceptors and CD4 helper T-cells in recruiting CD8+ transduced T-cells to the tumor site. These studies should provide us with an adoptive cell therapy approach to target cytotoxicity to human tumors, and a lymphocyte tracking tool to study delivery to the tumor sites, to determine if they proliferate locally and/or recirculate. Such pharmacologic information is crucial for optimizing gene-modified T-cells in future clinical trials. Single chain FV constructs of anti-ganglioside GD2 antibodies for radioimaging

  2. Anti-ganglioside antibodies in amyotrophic lateral sclerosis revisited.

    Directory of Open Access Journals (Sweden)

    Katja Kollewe

    Full Text Available Amyotrophic Lateral Sclerosis (ALS is a devastating neurodegenerative disorder with typical onset in the 5th- 6th decade of life. The hypothesis of an autoimmune origin of ALS receives less attention today, but immunological phenomena still seem to be involved and mechanisms such as protective autoimmunity may be important. Detection of antibodies against a variety of gangliosides has been repeatedly described in ALS-patients by several authors, but widely differing frequencies and titres have been reported. Therefore, we investigated the presence of six common antibodies with a commercially available test panel for GA1, GM1, GM2, GD1a, GD1b and GQ1b in a large group of clinically well-characterized ALS patients and compared them to a collective of 200 healthy blood donors.IgG and IgM antibodies to the six gangliosides asialoGM1 (GA1, GM1, GM2, GD1a, GD1b, GQ1b were determined by GanglioCombi ELISA in sera of 84 ALS patients. Results were expressed as a %-ratio of a highly positive control and categorized as negative (100%. The values obtained from 200 Swiss blood donors served as a reference group.In twenty-two (26.2% ALS-patients elevated anti-ganglioside antibodies could be detected: Taking all subspecific antibodies together, IgG antibodies were found in 9/84 (10.7% and IgM in 15/84 (17.9% patients. There was no correlation between age, gender, site of onset or survival and anti-ganglioside-positive/-negative titres in ALS-patients. No statistically significant difference in the frequency of anti-ganglioside antibodies compared to the group of healthy blood donors was found.Even with this more comprehensive approach, anti-ganglioside antibody frequencies and patterns in our ALS cohort closely resembled the values measured in healthy controls. In accordance with other studies, we did not observe any association of a distinct ALS phenotype with elevated anti-ganglioside antibodies or an impact on survival.

  3. Anti-Ganglioside antibodies in Guillain-Barre Syndrome : Do They indicate Prognosis?

    Directory of Open Access Journals (Sweden)

    Menon Ashok

    2003-01-01

    Full Text Available This study aimed to detect anti-ganglioside antibodies in the sera of patients with Guillain-Barre syndrome and correlate their presence with clinical features, electrophysiological studies and outcome. Twenty patients with GBS were evaluated clinically and electrophysiologically. Serological assays for antibodies against GM1, GD1a and GD1b gangliosides were carried out by ELISA, Twelve patients tested positive; two had antibodies against all three gangliosides, one against both GM1 and GD1a, one against GM1, GD1a or GD1b alone were seen in two, five and one patient respectively. No significant correlation was noted between the presence or type of antibody with clinical features, electrophysiological findings and outcome.

  4. Anti-ganglioside antibodies in patients with systemic lupus erythematosus and neurological manifestations.

    Science.gov (United States)

    Labrador-Horrillo, M; Martinez-Valle, F; Gallardo, E; Rojas-Garcia, R; Ordi-Ros, J; Vilardell, M

    2012-05-01

    Anti-ganglioside antibodies (AGA) have been associated with several peripheral neuropathies, such as Miller-Fisher syndrome, Guillain-Barré syndrome and multifocal motor neuropathy. They have also been studied in patients with systemic lupus erythematosus (SLE), focusing on neuropsychiatric manifestations and peripheral neuropathy, but the results are contradictory. To study the presence of AGA in a large cohort of patients with SLE and neuropsychiatric manifestations. Serum from 65 consecutive patients with SLE and neuropsychiatric manifestations, collected from 1985 to 2009, was tested for the presence of AGA antibodies (GM1, GM2, GM3, asialo-GM1 GD1a, GD1b, GD3, GT1b, GQ1b) using a standard enzyme-linked immunosorbent assay ELISA test (INCAT 1999) and thin layer chromatography (TLC). Positive results for asialo-GM1 (IgM) were found in 10 patients, 6 were positive for asialo-GM1 (IgM and IgG), and 4 were positive for other AGA such as GM1, GM2, GM3, GD1b, GT1b, GD3, (mainly IgM). Clinical and statistical studies showed no correlation between AGA and neuropsychiatric manifestations of SLE. Although some patients showed reactivity to AGA, these antibodies are not a useful marker of neuropsychiatric manifestations in SLE patients.

  5. An animal model of pain produced by systemic administration of an immunotherapeutic anti-ganglioside antibody

    NARCIS (Netherlands)

    Slart, R.; Yu, A L; Yaksh, T L; Sorkin, L S

    For the management of pediatric neuroblastoma, a promising experimental treatment includes slow systemic infusion of a human/mouse chimeric monoclonal antibody against the GD2 ganglioside. Beneficial actions are however, accompanied by severe pain and altered cardiovascular tone. The pain is

  6. Titration of serum anti-ganglioside antibodies in patients with chronic medular injury previous to treatment with GM1 ganglioside

    Directory of Open Access Journals (Sweden)

    Barros Filho Tarcísio Eloy Pessoa

    2003-01-01

    Full Text Available Anti-ganglioside serum titers were evaluated by ELISA in 150 patients with complete spinal cord lesion for 6 to 12 months (IgG monosialo GM1, IgM monosialo GM1, IgG asialo GM1, IgM asialo GM1, IgG disialo GD1b e IgM disialo GD1b prior to treatment with GM1 100 mg/day i.m. Only 4 patients showed positive titers for anti-asialo-GM1 (IgM antibodies . All patients were clinically examined during and after treatment. No important side effects were observed with GM1 therapy. These results suggest that GM1-ganglioside administration in patients with chronic spinal cord injury is safe.

  7. Eculizumab prevents anti-ganglioside antibody-mediated neuropathy in a murine model

    NARCIS (Netherlands)

    S.K. Halstead (Susan); F.M.P. Zitman (Femke); P.D. Humphreys (Peter); K. Greenshields (Kay); J.J. Verschuuren (Jan); B.C. Jacobs (Bart); R.P. Rother (Russell); J.J. Plomp (Jaap); H.J. Willison (Hugh)

    2008-01-01

    textabstractAnti-GQ1b ganglioside antibodies are the serological hallmark of the Miller Fisher syndrome (MFS) variant of the paralytic neuropathy, Guillain- Barré syndrome, and are believed to be the principal pathogenic mediators of the disease. In support of this, we previously showed in an in

  8. Immunotherapy with GD2 specific monoclonal antibodies

    International Nuclear Information System (INIS)

    Cheung, N.K.V.; Medof, E.M.; Munn, D.

    1988-01-01

    Targeted immunotherapy focuses anti-tumor activity of antibodies and effector cells, which are actively developed by the host or adoptively transferred, onto tumor cells and into tumor sites. Such tumor selective therapy can be more specific and efficient. The value of such an approach is evident in the classical interaction of antibodies. This paper reports that the ganglioside G D2 is an ideal antigen for specific tumor targeting because of its relative lack of heterogeneity among human neuroblastoma, its high density on tumor cells, its lack of antigen modulation upon binding to antibody, and its restricted distribution in normal tissues

  9. Bickerstaff’s brainstem encephalitis, Miller Fisher syndrome and Guillain-Barré syndrome overlap in an asthma patient with negative anti-ganglioside antibodies

    Directory of Open Access Journals (Sweden)

    Han Chongyu

    2012-06-01

    Full Text Available Abstract Background Bickerstaff’s brainstem encephalitis (BBE, together with Miller Fisher syndrome (MFS and Guillain-Barré syndrome (GBS were considered to form a continuous clinical spectrum. An anti-GQ1b antibody syndrome has been proposed to underlie the common pathophysiology for the three disorders; however, other studies have found a positive anti-GM1 instead of anti-GQ1b antibody. Case presentation Here we report a 20-year-old male patient with overlapping BBE, MFS and GBS. The patient had a positive family history of bronchial asthma and had suffered from the condition for over 15 years. He developed BBE symptoms nine days after an asthma exacerbation. During the course of illness, he had significantly elevated IgE levels in both serum and cerebrospinal fluid. Serologic analysis of antibodies against ganglioside complexes (anti-GDIa, anti-GDIb, anti-GM1, anti-GM2, anti-GM3, anti-GQIb and anti-GTIb antibodies showed negative results. Conclusions Since asthma has recently been related to autoimmune disease, our case supports an autoimmune mechanism underlying the clinical spectrum composed of BBE, MFS and GBS. However, contrary to a proposed anti-GQ1b antibody syndrome, we would suggest that pathogenesis of this clinical spectrum is not limited to anti-ganglioside antibodies.

  10. Anti-ganglioside antibody induction by swine (A/NJ/1976/H1N1) and other influenza vaccines: insights into vaccine-associated Guillain-Barré syndrome.

    Science.gov (United States)

    Nachamkin, Irving; Shadomy, Sean V; Moran, Anthony P; Cox, Nancy; Fitzgerald, Collette; Ung, Huong; Corcoran, Adrian T; Iskander, John K; Schonberger, Lawrence B; Chen, Robert T

    2008-07-15

    Receipt of an A/NJ/1976/H1N1 "swine flu" vaccine in 1976, unlike receipt of influenza vaccines used in subsequent years, was strongly associated with the development of the neurologic disorder Guillain-Barré syndrome (GBS). Anti-ganglioside antibodies (e.g., anti-GM(1)) are associated with the development of GBS, and we hypothesized that the swine flu vaccine contained contaminating moieties (such as Campylobacter jejuni antigens that mimic human gangliosides or other vaccine components) that elicited an anti-GM(1) antibody response in susceptible recipients. Surviving samples of monovalent and bivalent 1976 vaccine, comprising those from 3 manufacturers and 11 lot numbers, along with several contemporary vaccines were tested for hemagglutinin (HA) activity, the presence of Campylobacter DNA, and the ability to induce anti-Campylobacter and anti-GM(1) antibodies after inoculation into C3H/HeN mice. We found that, although C. jejuni was not detected in 1976 swine flu vaccines, these vaccines induced anti-GM(1) antibodies in mice, as did vaccines from 1991-1992 and 2004-2005. Preliminary studies suggest that the influenza HA induces anti-GM(1) antibodies. Influenza vaccines contain structures that can induce anti-GM(1) antibodies after inoculation into mice. Further research into influenza vaccine components that elicit anti-ganglioside responses and the role played by these antibodies (if any) in vaccine-associated GBS is warranted.

  11. The crucial role of Campylobacter jejuni genes in anti-ganglioside antibody induction in Guillain-Barré syndrome

    NARCIS (Netherlands)

    B.C. Jacobs (Bart); H.P. Endtz (Hubert); A.P. Heikema (Astrid); M. Gilbert (Michel); T. Komagamine (Tomoko); C.W. Ang (Wim); J. Glerum (Jobine); D. Brochu (Denis); J. Li (Jianjun); N. Yuki (Nobuhiro); A.F. van Belkum (Alex); P.C.R. Godschalk (Peggy)

    2004-01-01

    textabstractMolecular mimicry of Campylobacter jejuni lipo-oligosaccharides (LOS) with gangliosides in nervous tissue is considered to induce cross-reactive antibodies that lead to Guillain-Barre syndrome (GBS), an acute polyneuropathy. To determine whether specific bacterial genes

  12. Recombinant AAV-mediated in vivo long-term expression and antitumour activity of an anti-ganglioside GM3(Neu5Gc) antibody.

    Science.gov (United States)

    Piperno, G M; López-Requena, A; Predonzani, A; Dorvignit, D; Labrada, M; Zentilin, L; Burrone, O R; Cesco-Gaspere, M

    2015-12-01

    The ganglioside GM3(Neu5Gc) has gained increasing attention as therapeutic target because of its selective expression in various human tumours, such as melanoma, breast and lung cancer. 14F7 is a mouse IgG1 with specific reactivity to GM3(Neu5Gc)-positive tumours. The therapeutic activity of 14F7 has also been demonstrated in vivo, through its repetitive passive administration in tumour-bearing animals. In this work we used an alternative strategy to deliver recombinant 14F7 in vivo and analysed the therapeutic efficacy of this approach. We engineered a recombinant adeno-associated vector to direct the expression of secretable recombinant 14F7 in BALB/c animals. A single administration of the rAAV induced efficient production and secretion of the antibody in the bloodstream, with an expression level reaching plateau at ∼3 weeks after injection and persisting for almost a year. Strikingly, upon challenge with GM3(Neu5Gc)-positive X63-AG8.653 myeloma cells, tumour development was significantly delayed in animals treated with rAAV-14F7 with respect to animals treated with a control rAAV codifying for an irrelevant antibody. Finally, no significant differences in survival proportion were detected in animals injected with rAAV-14F7 or treated by standard administration of repetitive doses of purified monoclonal antibody 14F7.

  13. Phase I trial of anti-GD2 monoclonal antibody hu3F8 plus GM-CSF: Impact of body weight, immunogenicity and anti-GD2 response on pharmacokinetics and survival.

    Science.gov (United States)

    Cheung, Irene Y; Kushner, Brian H; Modak, Shakeel; Basu, Ellen M; Roberts, Stephen S; Cheung, Nai-Kong V

    2017-01-01

    Fifty-seven stage 4 patients with refractory/relapsed neuroblastoma were enrolled in a phase I trial (Clinicaltrials.gov NCT01757626) using humanized anti-GD2 monoclonal antibody hu3F8 in combination with granulocyte-macrophage colony-stimulating factor. The influence of body weight and human anti-human antibody (HAHA) on the pharmacokinetics (PK) of hu3F8, and the effect of de novo anti-GD2 response on patient outcome were explored. Serum samples before hu3F8 infusion, and serially up to day 12 during treatment cycle #1, and at 5 min after each hu3F8 infusion for all subsequent cycles were collected. PK was analyzed using non-compartmental modeling. Immunogenicity was assayed by HAHA response, and vaccination effect by induced host anti-GD2 response measured periodically until disease progression or last followup. Progression-free and overall survival was estimated by the Kaplan-Meier method. Despite dosing being based on body weight, smaller patients had consistently lower area-under-the-curve and faster clearance over the 15 dose levels (0.9 to 9.6 mg/kg per treatment cycle) in this trial. Positive HAHA, defined by the upper limit of normal, when measured within 10 days from the last hu3F8 dose received, was associated with significantly lower serum hu3F8. Despite prior sensitization to other anti-GD2 antibody, e.g. mouse 3F8 or ch14.18, 75% of the patients never developed HAHA response even after getting more treatment cycles. Hu3F8 induced a de novo anti-GD2 response in patients, which was prognostic of progression-free survival. We conclude that hu3F8 had low immunogenicity. During treatment, positive HAHA and low body weight affected PK adversely, whereas induced anti-GD2 response was an outcome predictor.

  14. Iodine 131 labeled GD2 monoclonal antibody in the diagnosis and therapy of human neuroblastoma

    International Nuclear Information System (INIS)

    Cheung, N.K.V.; Miraldi, F.D.

    1988-01-01

    High dose marrow ablative therapy followed by autologous bone marrow transplantation (ABMT) has prolonged survival in patients with neuroblastoma. Total body and focal irradiation play an integral role in the overall treatment of this disease. The biological basis for radiation is the radiosensitivity and the lack of sublethal repair in neuroblastoma cells. However, radiation therapy has not by itself been adequate because of the usual widespread nature of neuroblastoma and the inability to achieve selective tumor versus normal tissue delivery, especially at multiple tumor sites. Monoclonal antibodies are agents selected for their specificity for human tumors. In vivo they have the ability of targeting selectively to occult metastases. This paper discusses how the availability of radioisotopes and the development of conjugation chemistries have greatly expanded the potentials of these antibodies

  15. An MRI-visible non-viral vector bearing GD2 single chain antibody for targeted gene delivery to human bone marrow mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Pengfei Pang

    Full Text Available The neural ganglioside GD2 has recently been reported to be a novel surface marker that is only expressed on human bone marrow mesenchymal stem cells within normal marrow. In this study, an MRI-visible, targeted, non-viral vector for effective gene delivery to human bone marrow mesenchymal stem cells was first synthesized by attaching a targeting ligand, the GD2 single chain antibody (scAbGD2, to the distal ends of PEG-g-PEI-SPION. The targeted vector was then used to condense plasmid DNA to form nanoparticles showing stable small size, low cytotoxicity, and good biocompatibility. Based on a reporter gene assay, the transfection efficiency of targeting complex reached the highest value at 59.6% ± 4.5% in human bone marrow mesenchymal stem cells, which was higher than those obtained using nontargeting complex and lipofectamine/pDNA (17.7% ± 2.9% and 34.9% ± 3.6%, respectively (P<0.01. Consequently, compared with the nontargeting group, more in vivo gene expression was observed in the fibrotic rat livers of the targeting group. Furthermore, the targeting capacity of scAbGD2-PEG-g-PEI-SPION was successfully verified in vitro by confocal laser scanning microscopy, Prussian blue staining, and magnetic resonance imaging. Our results indicate that scAbGD2-PEG-g-PEI-SPION is a promising MRI-visible non-viral vector for targeted gene delivery to human bone marrow mesenchymal stem cells.

  16. Modulation of interactions of neuroblastoma cell lines with extracellular matrix proteins affects their sensitivity to treatment with the anti-GD2 ganglioside antibody 14G2a.

    Science.gov (United States)

    Horwacik, Irena; Rokita, Hanna

    2017-05-01

    Children diagnosed with high risk neuroblastoma have poor prognosis which stimulates efforts to broaden therapies of the neoplasm. GD2-ganglioside (GD2) marks neuroblastoma cells and is a target for monoclonal antibodies. We have recently shown that some neuroblastoma cell lines are sensitive to direct cytotoxicity of the anti-GD2 mouse monoclonal antibody 14G2a (mAb). For IMR-32 and LA-N-1 cell lines, treatment with the 14G2a mAb induced evident changes in appearance such as cell rounding, aggregation, loose contact with culture plastic, or detachment. Such findings prompted us to investigate whether modulation of attachment of neuroblastoma cells to extracellular matrix (ECM) proteins can affect their sensitivity to the 14G2a mAb treatment. First, using ultra-low attachment plates, we show that survival of the IMR-32, LA-N-1, LA-N-5, CHP-134 and Kelly cells depends on attachment. Next, we compared cellular ATP levels of the cell lines treated with the 14G2a mAb using uncoated, fibronectin-, collagen IV-coated surfaces to show that the ECM proteins slightly modulate sensitivity of the cell lines to the mAb. Then, we characterized presence of selected integrin subunits or their complexes on the cell surface. Finally, we applied small molecule inhibitors of selected integrin complexes: obtustatin (inhibiting α1β1 heterodimer), BIO 1211 (inhibiting active α4β1 heterodimer), cilengitide and SB273005 (inhibitors of αVβ3, αVβ5 heterodimers) to verify their effects on attachment of cell lines, cellular ATP levels, and in some experiments activities of apoptosis-executing caspase-3 and -7, for the compounds used alone or in combination with the 14G2a mAb. We characterized levels of total FAK (focal adhesion kinase), p-FAK (Tyr397) in IMR-32 cells treated with BIO 1211, and in LA-N-5, Kelly and SK-N-SH cells treated with SB273005. Our results extend knowledge on factors influencing cytotoxicity of 14G2a.

  17. A Pilot Trial of Humanized Anti-GD2 Monoclonal Antibody (hu14.18K322A) with Chemotherapy and Natural Killer Cells in Children with Recurrent/Refractory Neuroblastoma.

    Science.gov (United States)

    Federico, Sara M; McCarville, M Beth; Shulkin, Barry L; Sondel, Paul M; Hank, Jacquelyn A; Hutson, Paul; Meagher, Michael; Shafer, Aaron; Ng, Catherine Y; Leung, Wing; Janssen, William E; Wu, Jianrong; Mao, Shenghua; Brennan, Rachel C; Santana, Victor M; Pappo, Alberto S; Furman, Wayne L

    2017-11-01

    Purpose: Anti-GD2 mAbs, acting via antibody-dependent cell-mediated cytotoxicity, may enhance the effects of chemotherapy. This pilot trial investigated a fixed dose of a unique anti-GD2 mAb, hu14.18K322A, combined with chemotherapy, cytokines, and haploidentical natural killer (NK) cells. Experimental Design: Children with recurrent/refractory neuroblastoma received up to six courses of hu14.18K322A (40 mg/m 2 /dose, days 2-5), GM-CSF, and IL2 with chemotherapy: cyclophosphamide/topotecan (courses 1,2), irinotecan/temozolomide (courses 3,4), and ifosfamide/carboplatin/etoposide (courses 5,6). Parentally derived NK cells were administered with courses 2, 4, and 6. Serum for pharmacokinetic studies of hu14.18K322A, soluble IL2 receptor alpha (sIL2Rα) levels, and human antihuman antibodies (HAHA) were obtained. Results: Thirteen heavily pretreated patients (9 with prior anti-GD2 therapy) completed 65 courses. One patient developed an unacceptable toxicity (grade 4 thrombocytopenia >35 days). Four patients discontinued treatment for adverse events (hu14.18K322A allergic reaction, viral infection, surgical death, second malignancy). Common toxicities included grade 3/4 myelosuppression (13/13 patients) and grade 1/2 pain (13/13 patients). Eleven patients received 29 NK-cell infusions. The response rate was 61.5% (4 complete responses, 1 very good partial response, 3 partial responses) and five had stable disease. The median time to progression was 274 days (range, 239-568 days); 10 of 13 patients (77%) survived 1 year. Hu14.18K322A pharmacokinetics was not affected by chemotherapy or HAHA. All patients had increased sIL2Rα levels, indicating immune activation. Conclusions: Chemotherapy plus hu14.18K322A, cytokines, and NK cells is feasible and resulted in clinically meaningful responses in patients with refractory/recurrent neuroblastoma. Further studies of this approach are warranted in patients with relapsed and newly diagnosed neuroblastoma. Clin Cancer Res; 23

  18. Radiation characteristics of GD-2 fuel

    International Nuclear Information System (INIS)

    Chrapciak, V.

    2008-01-01

    The assembly WWER-440 type Gd-2 has radial profile of enrichment and has 6 pins with Gd 2 O 3 . The maximal enrichment is 4.4%. Some analyses are done for assembly with flat enrichment (4.4%) and without Gd 2 O 3 . In this article are compared some characteristics (decay heat, some nuclide concentration, photon and gamma sources) for real Gd-2 assembly and for flat 4.4% assembly. The TRITON module (in SCALE 5.1) was used. (Author)

  19. Anti-ganglioside anti-idiotypic vaccination: more than molecular mimicry.

    Directory of Open Access Journals (Sweden)

    Ana María eHernández

    2012-11-01

    Full Text Available Surgery, chemotherapy, and radiation therapy are standard modalities for cancer treatment, but the effectiveness of these treatments has reached a plateau. Thus, other strategies are being explored to combine with the current treatment paradigms in order to reach better clinical results. One of these approaches is the active immunotherapy based on the induction of anti-tumor responses by anti-idiotypic vaccination. This approach arose from Jerne’s idiotypic network theory, which postulates that B lymphocytes forms a functional network, with a role in the establishment of the immune repertoires, in the regulation of natural antibody production and even in the establishment of natural tolerance. Due to the large potential diversity of the immunoglobulin variable regions, the idiotypes repertoire can mimic the universe of self and foreign epitopes, even those of non-protein nature, like gangliosides. Gangliosides are sialic acid-containing glycolipids that have been considered attractive targets for cancer immunotherapy, based on the qualitative and quantitative changes they suffer during malignant transformation and due to their importance for tumor biology. Although any idiotype could be able to mimic any antigen, only those related to antigens involved in functions relevant for organism homeostasis, and that in consequence has been fixed by evolution, would be able not only to mimic, but also to activate the idiotypic cascades related with the nominal antigen. The present review updates the results, failures and hopes, obtained with ganglioside mimicking anti-idiotypic antibodies and presents evidences of the existence of a natural response against gangliosides, suggesting that these glycolipids could be idiotypically relevant antigens.

  20. Anti-ganglioside anti-idiotypic vaccination: more than molecular mimicry

    International Nuclear Information System (INIS)

    Vázquez, Ana M. H.; Rodrèguez-Zhurbenko, Nely; López, Ana M. V.

    2012-01-01

    Surgery, chemotherapy, and radiation therapy are standard modalities for cancer treatment, but the effectiveness of these treatments has reached a plateau. Thus, other strategies are being explored to combine with the current treatment paradigms in order to reach better clinical results. One of these approaches is the active immunotherapy based on the induction of anti-tumor responses by anti-idiotypic vaccination. This approach arose from Jerne’s idiotypic network theory, which postulates that B lymphocytes forms a functional network, with a role in the establishment of the immune repertoires, in the regulation of natural antibody production and even in the establishment of natural tolerance. Due to the large potential diversity of the immunoglobulin variable regions, the idiotypes repertoire can mimic the universe of self and foreign epitopes, even those of non-protein nature, like gangliosides. Gangliosides are sialic acid-containing glycolipids that have been considered attractive targets for cancer immunotherapy, based on the qualitative and quantitative changes they suffer during malignant transformation and due to their importance for tumor biology. Although any idiotype could be able to mimic any antigen, only those related to antigens involved in functions relevant for organism homeostasis, and that in consequence has been fixed by evolution, would be able not only to mimic, but also to activate the idiotypic cascades related with the nominal antigen. The present review updates the results, failures and hopes, obtained with ganglioside mimicking anti-idiotypic antibodies and presents evidences of the existence of a natural response against gangliosides, suggesting that these glycolipids could be idiotypically relevant antigens.

  1. Generation of human monoclonal antibodies against ganglioside antigens and their applications in the diagnosis and therapy of cancer

    Energy Technology Data Exchange (ETDEWEB)

    Alfonso, M. [Dept. of Tumor Cell Biology, Div. of Cancer Biology, Danish Cancer Society, Copenhagen (Denmark)]|[Dept. of Research and Development, Center of Molecular Immunology, Havana (Cuba); Zeuthen, J. [Dept. of Tumor Cell Biology, Div. of Cancer Biology, Danish Cancer Society, Copenhagen (Denmark)

    1996-10-01

    Different approaches to generating human monoclonal antibodies (MAbs) against tumor-associated ganglioside antigens have been carried out in several laboratories. A specific goal addressed by our laboratory is to produce human MAbs to several ganglioside antigens of relevance as therapeutic targets, such as the GM2, GD2, GD3 and GM3 gangliosides in melanoma. In vitro immunization of human B lymphocytes from normal donors was performed using liposomes containing gangliosides as the immunizing antigen combined with either complete tetanus toxoid or a synthetic peptide corresponding to a T helper epitope to stimulate in vitro immunization. Specific human anti-ganglioside antibodies were obtained, indicating that the antibdoy response found in vitro was antigen-driven. To overcome the widely reported problems concerning stability of immunoglobulin production by the antibody-secreting cell lines, a method of positive selection using GM3-coated magnetic beads has been developed in order to rescue unstable clones. Development of new methods to reproducibly generate ganglioside-specific human MAbs will amplify the possibilities for diagnostic and therapeutic applications. (orig.).

  2. Generation of human monoclonal antibodies against ganglioside antigens and their applications in the diagnosis and therapy of cancer

    International Nuclear Information System (INIS)

    Alfonso, M.; Zeuthen, J.

    1996-01-01

    Different approaches to generating human monoclonal antibodies (MAbs) against tumor-associated ganglioside antigens have been carried out in several laboratories. A specific goal addressed by our laboratory is to produce human MAbs to several ganglioside antigens of relevance as therapeutic targets, such as the GM2, GD2, GD3 and GM3 gangliosides in melanoma. In vitro immunization of human B lymphocytes from normal donors was performed using liposomes containing gangliosides as the immunizing antigen combined with either complete tetanus toxoid or a synthetic peptide corresponding to a T helper epitope to stimulate in vitro immunization. Specific human anti-ganglioside antibodies were obtained, indicating that the antibdoy response found in vitro was antigen-driven. To overcome the widely reported problems concerning stability of immunoglobulin production by the antibody-secreting cell lines, a method of positive selection using GM3-coated magnetic beads has been developed in order to rescue unstable clones. Development of new methods to reproducibly generate ganglioside-specific human MAbs will amplify the possibilities for diagnostic and therapeutic applications. (orig.)

  3. Antecedent infections and anti-ganglioside antibodies in Guillain-Barré syndrome : their role in pathogenesis and heterogeneity

    NARCIS (Netherlands)

    B.C. Jacobs (Bart)

    1997-01-01

    textabstractThe Guillain-Barre syndrome (GBS) is the most common form of acute neuromuscular paralysis in developed countries, but the pathogenesis is still largely unknown. The major clinical features of the syndrome were first united by J-B.O. Landry in 1859 (1). The syndrome was named after G.

  4. Selective Depletion of Neuropathy-Related Antibodies from Human Serum by Monolithic Affinity Columns Containing Ganglioside Mimics

    NARCIS (Netherlands)

    Tetala, Kishore K. R.; Heikema, Astrid P.; Pukin, Aliaksei V.; Weijers, Carel A. G. M.; Tio-Gillen, Anne P.; Gilbert, Michel; Endtz, Hubert P.; van Belkum, Alex; Zuilhof, Han; Visser, Gerben M.; Jacobs, Bart C.; van Beek, Teris A.

    2011-01-01

    Monolithic columns containing ganglioside GM2 and GM3 mimics were prepared for selective removal of serum anti-ganglioside antibodies from patients with acute and chronic immune-mediated neuropathies. ELISA results demonstrated that anti-GM2 IgM antibodies in human sera and a mouse monoclonal

  5. Anti-GD2 mAb and Vorinostat synergize in the treatment of neuroblastoma

    NARCIS (Netherlands)

    Kroesen, M.; Bull, C.; Gielen, P.R.; Brok, I.C.; Armandari, I.; Wassink, M.; Looman, M.W.G.; Boon, L.; Brok, M.H.M.G.M. den; Hoogerbrugge, P.M.; Adema, G.J.

    2016-01-01

    Neuroblastoma (NBL) is a childhood malignancy of the sympathetic nervous system. For high-risk NBL patients, the mortality rate is still over 50%, despite intensive multimodal treatment. Anti-GD2 monoclonal antibody (mAB) in combination with systemic cytokine immunotherapy has shown clinical

  6. An Optimized GD2-Targeting Retroviral Cassette for More Potent and Safer Cellular Therapy of Neuroblastoma and Other Cancers.

    Directory of Open Access Journals (Sweden)

    Simon Thomas

    Full Text Available Neuroblastoma is the commonest extra cranial solid cancer of childhood. Despite escalation of treatment regimens, a significant minority of patients die of their disease. Disialoganglioside (GD2 is consistently expressed at high-levels in neuroblastoma tumors, which have been targeted with some success using therapeutic monoclonal antibodies. GD2 is also expressed in a range of other cancer but with the exception of some peripheral nerves is largely absent from non-transformed tissues. Chimeric Antigen Receptors (CARs are artificial type I proteins which graft the specificity of a monoclonal antibody onto a T-cell. Clinical data with early CAR designs directed against GD2 have shown some promise in Neuroblastoma. Here, we describe a GD2-targeting CAR retroviral cassette, which has been optimized for CAR T-cell persistence, efficacy and safety.

  7. GD2-targeted immunotherapy and potential value of circulating microRNAs in neuroblastoma.

    Science.gov (United States)

    Gholamin, Sharareh; Mirzaei, Hamed; Razavi, Seyed-Mostafa; Hassanian, Seyed Mahdi; Saadatpour, Leila; Masoudifar, Aria; ShahidSales, Soodabeh; Avan, Amir

    2018-02-01

    Neuroblastoma (NB) with various clinical presentation is a known childhood malignancy. Despite significant progress in treatment of NB afflicted patients, high risk disease is usually associated with poor outcome, resulting in long-term survival of less that 50%. Known as a disease most commonly originated form the nerve roots, the variants involved in NB imitation and progression remain to be elucidated. The outcome of low to intermediate risk disease is favorable whereas the high risk NB disease with dismal prognosis, positing the necessity of novel approaches for early detection and prognostication of advanced disease. Tailored immunotherapy approaches have shown significant improvement in high-risk NB patients. It has found a link between Gangliosides and progression of NB. The vast majority of neuroblastoma tumors express elevated levels of GD2, opening new insight into using anti-GD2 drugs as potential treatments for NBs. Implication of anti-GD2 monoclonal antibodies for treatment of high risk NBs triggers further investigation to unearth novel biomarkers as prognostic and response biomarker to guide additional multimodal tailored treatment approaches. A growing body of evidence supports the usefulness of miRNAs to evaluate high risk NBs response to anti-GD2 drugs and further prevent drug-related toxicities in refractory or recurrent NBs. miRNAs and circulating proteins in body fluids (plasma and serum) present as potential biomarkers in early detection of NBs. Here, we summarize various biomarkers involved in diagnosis, prognosis and response to treatment in patients with NB. We further attempted to overview prognostic biomarkers in response to treatment with anti-GD2 drugs. © 2017 Wiley Periodicals, Inc.

  8. Neuroblastoma patients with high-affinity FCGR2A, -3A and stimulatory KIR 2DS2 treated by long-term infusion of anti-GD2antibody ch14.18/CHO show higher ADCC levels and improved event-free survival.

    Science.gov (United States)

    Siebert, Nikolai; Jensen, Christian; Troschke-Meurer, Sascha; Zumpe, Maxi; Jüttner, Madlen; Ehlert, Karoline; Kietz, Silke; Müller, Ina; Lode, Holger N

    2016-01-01

    Polymorphisms in Fc-gamma-receptor (FCGR) genes as well as killer cell immunoglobulin-like receptor (KIR) and KIR ligand (KIRL) repertoires may influence antitumor effects of monoclonal antibodies (mAb). Here, we systematically analyzed high- and low-affinity FCGR2A and -3A genotypes as well as stimulating and inhibitory KIR/KIRL combinations in 53 neuroblastoma (NB) patients treated by long-term infusion (LTI) of anti-GD 2 IgG1 Ab ch14.18/CHO using validated real-time PCR methods. Patients with high-affinity FCGR2A and -3A genotypes showed a higher level of Ab-dependent cell-mediated cytotoxicity (ADCC) on day 8 after the start of ch14.18/CHO and superior event-free survival (EFS) compared to patients with low FCGR genotypes. Similar observations were made for patients with stimulatory KIR/KIRL haplotype B (combination of KIR genes including activating receptor genes) compared to inhibitory haplotype A (a fixed set of genes encoding for inhibitory receptors, except 2DS4) and stronger effects were found in patients when haplotype B and high-affinity FCGRs were combined. Surprisingly, independent analysis of KIRs showed a major role of activating KIR 2DS2 for high ADCC levels and prolongation of EFS. The greatest effect was observed in 2DS2-positive patients that also had high-affinity FCGR2A and -3A genotypes. In summary, the presence of the activating KIR 2DS2 has a major effect on ADCC levels and survival in NB patients treated by LTI of ch14.18/CHO and may therefore be a useful biomarker in combination with FCGR polymorphisms for Ab-based immunotherapies.

  9. Neutronic analysis of Gd2O3 as burnable poison

    International Nuclear Information System (INIS)

    Lecot, C.A.

    1990-01-01

    For the reactors core design, the use of burnable poisons is one of the options for the control of in excess reactivity and the power form factor. As alternative procedures, the absorbing material may be included in pellets of an inert material or in fuel pellets. Besides, a cladding material and the locations of the fuel elements must be chosen for the first case. The CAREM reactor core design foresees the use of gadolinium oxide (Gd 2 O 3 ) as burnable poison. In this work, a comparative study was made, from the neutronic point of view, among the following alternatives for the poisons location: a) Gd 2 O 3 bars supports in alumina (Al 2 O 3 ), sheathed in steel; b) Gd 2 O 3 bars supports in alumina sheathed in Zry-4; c) Gd 2 O 3 in uranium dioxide (UO 2 ) fuel pellets. (Author) [es

  10. Immunological circumvention of multiple organ metastases of multidrug resistant human small cell lung cancer cells by mouse-human chimeric anti-ganglioside GM2 antibody KM966.

    Science.gov (United States)

    Hanibuchi, M; Yano, S; Nishioka, Y; Yanagawa, H; Miki, T; Sone, S

    2000-01-01

    serum against SBC-3/DOX cells to a similar extent compared with parental SBC-3 cells. Pretreatment of human effector cells with various cytokines induced further enhancement of the KM966-dependent ADCC against SBC-3/DOX cells. Intravenous injection of SBC-3 or SBC-3/DOX cells into natural killer (NK) cell-depleted severe combined immunodeficient (SCID) mice developed metastases in multiple organs (liver, kidneys and lymph nodes). Interestingly, SBC-3/DOX cells produced metastases more rapidly than SBC-3 cells, suggesting more aggressive phenotype of SBC-3/DOX cells than their parental cells in vivo. Systemic treatment with KM966, given on days 2 and 7, drastically inhibited the formation of multiple-organ metastases produced by both SBC-3 and SBC-3/DOX cells, indicating that KM966 can eradicate metastasis by SCLC cells irrespective of MDR phenotype. These findings suggest that the mouse-human chimeric KM966 targets the GM2 antigen, and might be useful for the immunological circumvention of multiple-organ metastases of refractory SCLC.

  11. Thermal properties of UO2 - Gd2O3 fuel

    International Nuclear Information System (INIS)

    Kim, G. S.; Yang, J. H.; Kang, K. W.; Kim, Y. M.; Song, G. W.

    2000-01-01

    The thermal properties (thermal conductivity, oxygen potential and thermal expansion) of UO 2 -Gd 2 O 3 fuels were measured by the laser-flash, TGA and dilatometry method. The thermal conductivity decreased with Gd content, but the oxygen potential and thermal expansion increased with Gd content. Substitution of Gd +3 ion in UO 2 structure increases the scattering site for thermal phonon propagation and thereby decreases the thermal conductivity. The oxygen potential of Gd-doped UO 2 increase mainly because the Gd +3 ions, which are inert to oxidation, make it difficult for oxygen interstitials to access just near them

  12. Detection of the GD2+/CD56+/CD45- immunophenotype by flow cytometry in cerebrospinal fluids from a patient with retinoblastoma.

    Science.gov (United States)

    Shen, Hongqiang; Tang, Yongmin; Xu, Xiaojun; Tang, Hongfeng

    2013-02-01

    Triple-color flow cytometry with a panel of antibodies comprising GD2, CD56, and CD45 was performed to analyze cerebrospinal fluids (CSF) from a patient with retinoblastoma who was suspicious of meningeal metastasis based on clinical presentation. Our results showed that the cells in CSF demonstrated the immunophenotype positive for GD2 and CD56 but negative for CD45 antigen, which suggested the presence of CSF metastasis of retinoblastoma. At the end of eight cycles of intrathecal chemotherapy, CSF specimen was analyzed with Flow cytometry immunophenotyping (FCI) again and the result showed no detectable malignant cells with the same immunophenotype. Our conclusion is that FCI can be a quick and reliable method for the diagnosis of CSF metastasis of retinoblastoma and the immunophenotype (GD2+, CD56+, and CD45-) can be used to recognize residual retinoblastoma cells in CSF.

  13. Inhibition of neuroblastoma tumor growth by targeted delivery of microRNA-34a using anti-disialoganglioside GD2 coated nanoparticles.

    Science.gov (United States)

    Tivnan, Amanda; Orr, Wayne Shannon; Gubala, Vladimir; Nooney, Robert; Williams, David E; McDonagh, Colette; Prenter, Suzanne; Harvey, Harry; Domingo-Fernández, Raquel; Bray, Isabella M; Piskareva, Olga; Ng, Catherine Y; Lode, Holger N; Davidoff, Andrew M; Stallings, Raymond L

    2012-01-01

    Neuroblastoma is one of the most challenging malignancies of childhood, being associated with the highest death rate in paediatric oncology, underlining the need for novel therapeutic approaches. Typically, patients with high risk disease undergo an initial remission in response to treatment, followed by disease recurrence that has become refractory to further treatment. Here, we demonstrate the first silica nanoparticle-based targeted delivery of a tumor suppressive, pro-apoptotic microRNA, miR-34a, to neuroblastoma tumors in a murine orthotopic xenograft model. These tumors express high levels of the cell surface antigen disialoganglioside GD2 (GD(2)), providing a target for tumor-specific delivery. Nanoparticles encapsulating miR-34a and conjugated to a GD(2) antibody facilitated tumor-specific delivery following systemic administration into tumor bearing mice, resulted in significantly decreased tumor growth, increased apoptosis and a reduction in vascularisation. We further demonstrate a novel, multi-step molecular mechanism by which miR-34a leads to increased levels of the tissue inhibitor metallopeptidase 2 precursor (TIMP2) protein, accounting for the highly reduced vascularisation noted in miR-34a-treated tumors. These novel findings highlight the potential of anti-GD(2)-nanoparticle-mediated targeted delivery of miR-34a for both the treatment of GD(2)-expressing tumors, and as a basic discovery tool for elucidating biological effects of novel miRNAs on tumor growth.

  14. Inhibition of neuroblastoma tumor growth by targeted delivery of microRNA-34a using anti-disialoganglioside GD2 coated nanoparticles.

    Directory of Open Access Journals (Sweden)

    Amanda Tivnan

    Full Text Available Neuroblastoma is one of the most challenging malignancies of childhood, being associated with the highest death rate in paediatric oncology, underlining the need for novel therapeutic approaches. Typically, patients with high risk disease undergo an initial remission in response to treatment, followed by disease recurrence that has become refractory to further treatment. Here, we demonstrate the first silica nanoparticle-based targeted delivery of a tumor suppressive, pro-apoptotic microRNA, miR-34a, to neuroblastoma tumors in a murine orthotopic xenograft model. These tumors express high levels of the cell surface antigen disialoganglioside GD2 (GD(2, providing a target for tumor-specific delivery.Nanoparticles encapsulating miR-34a and conjugated to a GD(2 antibody facilitated tumor-specific delivery following systemic administration into tumor bearing mice, resulted in significantly decreased tumor growth, increased apoptosis and a reduction in vascularisation. We further demonstrate a novel, multi-step molecular mechanism by which miR-34a leads to increased levels of the tissue inhibitor metallopeptidase 2 precursor (TIMP2 protein, accounting for the highly reduced vascularisation noted in miR-34a-treated tumors.These novel findings highlight the potential of anti-GD(2-nanoparticle-mediated targeted delivery of miR-34a for both the treatment of GD(2-expressing tumors, and as a basic discovery tool for elucidating biological effects of novel miRNAs on tumor growth.

  15. L X-Rays RYIED Oscillations and Proton-NMRD of Gd2O3 Nanoparticles

    Directory of Open Access Journals (Sweden)

    A. Taborda

    2011-01-01

    variations still present different patterns for Gd2O3 pellet and Gd2O3 nanoparticles. Proton NMRD T1(ω data for Gd2O3 nanoparticles and Gd-DOTA water solutions published by Bridot et al. and Toth et al., respectively, were reproduced using a model for paramagnetic substances in water solutions and identical electronic relaxation times. The analysis of both techniques results points collective electron behaviour as the explanation for the different observations on X-ray data of Gd2O3 nanoparticles and bulk material.

  16. Spherical and rod-like Gd2O3: Eu 3 nanophosphors—Structural and ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 35; Issue 4. Spherical and rod-like Gd2O3:Eu3+ nanophosphors—Structural and luminescent properties. N Dhananjaya H ... The strong red emission of cubic Gd2O3:Eu3+ nanophosphors by hydrothermal method are promising for high performance display materials.

  17. Synthesis and Characterization of Gd2O3 Hollow Microspheres Using a Template-Directed Method

    Science.gov (United States)

    Jiang, Xueliang; Yu, Lu; Yao, Chu; Zhang, Fuqing; Zhang, Jiao; Li, Chenjian

    2016-01-01

    Uniform rare-earth gadolinium oxide (Gd2O3) hollow microspheres, as formed through a urea-assisted homogenous precipitation process using carbon spheres as a template and a subsequent heat treatment, were characterized by using X-ray diffraction, Fourier transformed infared spectroscopy, thermogravimetry, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy and Brunauer-Emmett-Tellet surface area measurement. The results indicate that the final products can be indexed to a cubic Gd2O3 phase with high purity and have a uniform morphology at 500 nm in diameter and 20 nm in shell thickness. The as-synthesized Gd2O3 hollow microspheres exhibited a superior photooxidation activity to that of Gd2O3 powder and an effect similar to P25, significantly broadening the potential of Gd2O3 hollow microspheres for many practical applications. PMID:28773446

  18. Synthesis and Characterization of Gd2O3 Hollow Microspheres Using a Template-Directed Method

    Directory of Open Access Journals (Sweden)

    Xueliang Jiang

    2016-04-01

    Full Text Available Uniform rare-earth gadolinium oxide (Gd2O3 hollow microspheres, as formed through a urea-assisted homogenous precipitation process using carbon spheres as a template and a subsequent heat treatment, were characterized by using X-ray diffraction, Fourier transformed infared spectroscopy, thermogravimetry, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy and Brunauer-Emmett-Tellet surface area measurement. The results indicate that the final products can be indexed to a cubic Gd2O3 phase with high purity and have a uniform morphology at 500 nm in diameter and 20 nm in shell thickness. The as-synthesized Gd2O3 hollow microspheres exhibited a superior photooxidation activity to that of Gd2O3 powder and an effect similar to P25, significantly broadening the potential of Gd2O3 hollow microspheres for many practical applications.

  19. Thermal expansion of UO2-Gd2O3 fuel pellets

    International Nuclear Information System (INIS)

    Une, Katsumi

    1986-01-01

    In recent years, more consideration has been given to the application of UO 2 -Gd 2 O 3 burnable poison fuel to LWRs in order to improve the core physics and to extend the burnup. It has been known that UO 2 forms a single phase cubic fluorite type solid solution with Gd 2 O 3 up to 20 - 30 wt.% above 1300 K. The addition of Gd 2 O 3 to UO 2 lattices changes the properties of the fuel pellets. The limited data on the thermal expansion of UO 2 -Gd 2 O 3 fuel exist, but those are inconsistent. UO 2 -Gd 2 O 3 fuel pellets were fabricated, and the linear thermal expansion of UO 2 and UO 2 -(5, 8 and 10 wt.%)Gd 2 O 3 fuel pellets was measured with a differential dilatometer over the temperature range of 298 - 1973 K. A sapphire rod of 6 mm diameter and 15.5 mm length was used as the reference material. After the preheating cycle, the measurement was performed in argon atmosphere. The results for UO 2 pellets showed excellent agreement with the data in literatures. The linear thermal expansion of UO 2 -Gd 2 O 3 fuel pellets showed the increase with increasing the Gd 2 O 3 content. Consideration must be given to this excessive expansion in the fuel design of UO 2 -Gd 2 O 3 pellets. The equations for the linear thermal expansion and density of UO 2 -Gd 2 O 3 fuel pellets were derived by the method of least squares. (Kako, I.)

  20. Fuel densification study about uranium- 7% nanostructured gadolinium (Gd2O3)

    International Nuclear Information System (INIS)

    Serafim, Antonio da Costa

    2016-01-01

    The sintering process of UO 2 -Gd 2 O 3 pellets has been investigated in this work for its importance in the nuclear industry and for its complex behavior during sintering. Sintering blockage occurs from 1300 deg C upwards, when densification is shifted toward higher temperatures and the final density obtained is decreased. This research includes the development of nuclear fuel for power reactors in order to increase its efficiency inside the reactor core by raising the burnup. The use of nanosized Gd 2 O 3 was studied in the range from 10 to 30nm, which was added to UO 2 , trying to verify the occurrence of characteristic sintering blockage due to Kirkendall sintering effect observed in previous research. The samples were produced by dry mechanical mixture of UO 2 powder and 7% Gd 2 O 3 (macro- and nanostructured). The powders were compacted and the pellets were sintered at 1700 deg C under H 2 atmosphere. These results indicate that the characteristic blockage during sintering in macrostructured system UO 2 -Gd 2 O 3 occurred in the temperature range of 1300-1500 deg C, which slows down the densification. It was observed a less intense effect when using the nanostructured Gd 2 O 3 ; it took place at the temperature of 900 deg C, then facilitating to get an additional densification. The dilatometric tests indicated shrinkage of 22, 18 and 20% respectively in UO 2 pellets, macrostructured UO 2 -7% Gd 2 O 3 and nanostructured UO 2 -7%Gd 2 O 3 . We detected 2% higher shrinkage, when nanostructured Gd 2 O 3 was used instead of macrostructured Gd 2 O 3 , which is used commercially. Then, the nanostructured results showed more adequate density for nuclear fuel usage. (author)

  1. Facile Synthesis of Ultrafine Gd2O3 Nanoparticles by Polyol Microwave Method

    Science.gov (United States)

    Trinh, Le Huu; Hoa, Tran Thai; Van Hieu, Nguyen; Cuong, Nguyen Duc

    2017-06-01

    Gd2O3 nanoparticles have been quickly synthesized by a modified polyol method with microwave assistance. Triethylene glycol (TEG) was used as solvent and surfactant stabilizing agent. Systematic characterization of the TEG-coated gadolinium oxide nanoparticles (Gd2O3@TEG) showed that average particle size of 1 nm, 5 nm, and 10 nm could be obtained by changing some synthesis conditions. It was found that, after thermal treatment at 700°C, Gd2O3 nanoparticles showed uniform spherical shape with unchanged average particle size in comparison with the Gd2O3@TEG precursor. This approach is simple and rapid and can be easily scaled up and potentially extended to synthesis of other oxides.

  2. Improved characteristics of Gd 2O 3 nanocrystal memory with substrate high-low junction

    Science.gov (United States)

    Wang, Jer-Chyi; Lin, Chih-Ting; Lai, Chao-Sung; Hsu, Jui-Lin; Ai, Chi-Fong

    2010-12-01

    Characteristics of Gd 2O 3 nanocrystal (Gd 2O 3-NC) memory with p +-p substrate high-low junction were investigated. The hysteresis memory window and program speed were significantly enhanced due to the band-to-band tunneling (BTBT) electrons injection by the high-low junction. Besides, under the same program/erase (P/E) cycling test, the electron and hole potential differences ( qϕBn + qϕBp) will contribute to superior endurance properties of the Gd 2O 3-NC memory with p-type substrate than that with n-type one. Without sacrificing the erase speed and charge retention characteristics, the Gd 2O 3-NC memory with p +-p substrate high-low junction can greatly improve the memory performances and can be applied into future non-volatile memory (NVM).

  3. Antitumor activity and carrier properties of novel hemocyanins coupled to a mimotope of GD2 ganglioside.

    Science.gov (United States)

    Palacios, Miriam; Tampe, Ricardo; Del Campo, Miguel; Zhong, Ta-Ying; López, Mercedes N; Salazar-Onfray, Flavio; Becker, María Inés

    2018-04-25

    Conjugation to carrier proteins is a way to improve the immunogenicity of peptides. Such is the case for peptides mimicking carbohydrate tumor-associated antigens in cancer vaccine development. The most used protein for this purpose is the keyhole limpet hemocyanin (KLH) from Megathura crenulata. Its limited bioavailability has prompted interest in finding new candidates; nevertheless, it is not known whether other hemocyanins might be equally efficient as carrier of carbohydrate peptide mimotopes to promotes anti-tumor responses. Here, we evaluated the carrier and antitumor activity of novel hemocyanins with documented immunogenicity obtained from Concholepas concholepas (CCH) and Fissurella latimarginata (FLH), coupled through sulfo-SMCC to P10, a mimetic peptide of GD2, the major ganglioside constituent of neuroectodermal tumors, and incorporating AddaVax as an adjuvant. The humoral immune responses of mice showed that CCH-P10 and FLH-P10 conjugates elicited specific IgM and IgG antibodies against P10 mimotope, similar to those obtained with KLH-P10, which was used as a positive control. The CCH-P10 and FLH-P10 antisera, exhibited cross-reactivity with murine and human melanoma cells, like anti-CCH and anti-FLH sera suggesting a cross-reaction of CCH and FLH glycosylations with carbohydrate epitopes on the tumor cell surfaces, similar to the KLH antisera. When mice were primed with each hemocyanin-P10 and challenged with melanoma cells, better antitumor effects were observed for FLH-P10 than for CCH-P10 and, as for KLH-P10, irrespective of conjugation. These data demonstrate that CCH and FLH are useful carriers of carbohydrate mimotopes; however, the best antitumor activity of FLH preparations, indicate that is a suitable candidate for further cancer vaccines research. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  4. CF4 plasma treatment on nanostructure band engineered Gd2O3-nanocrystal nonvolatile memory

    Science.gov (United States)

    Wang, Jer-Chyi; Lin, Chih-Ting

    2011-03-01

    The effects of CF4 plasma treatment on Gd2O3 nanocrystal (NC) memory were investigated. For material analysis, secondary ion mass spectrometry and x-ray photoelectron spectroscopy analyses were performed to characterize the fluorine depth profile of the Gd2O3-NC film. In addition, an UV-visible spectrophotometer was used to obtain the Gd2O3 bandgap and analyzed to suggest the modified structure of the energy band. Moreover, the electrical properties, including the memory window, program/erase speed, charge retention, and endurance characteristics were significantly improved depending on the CF4 plasma treatment conditions. This can be explained by the physical model based on the built-in electric field in the Gd2O3 nanostructure. However, it was observed that too much CF4 plasma caused large surface roughness induced by the plasma damage, leading to characteristics degradation. It was concluded that with suitable CF4 plasma treatment, this Gd2O3-NC memory can be applied to future nonvolatile memory applications.

  5. Photocatalytic Water Splitting for Hydrogen Production with Gd2MSbO7 (M = Fe, In, Y Photocatalysts under Visible Light Irradiation

    Directory of Open Access Journals (Sweden)

    Jingfei Luan

    2014-12-01

    Full Text Available Novel photocatalysts Gd2FeSbO7, Gd2InSbO7 and Gd2YSbO7 were synthesized by the solid state reaction method for the first time. A comparative study about the structural and photocatalytic properties of Gd2MSbO7 (M = Fe, In, Y was reported. The results showed that Gd2FeSbO7, Gd2InSbO7 and Gd2YSbO7 crystallized with the pyrochlore-type structure, cubic crystal system and space group Fd3m. The lattice parameter a for Gd2FeSbO7, Gd2InSbO7 or Gd2YSbO7 was 10.276026 Å, 10.449546 Å or 10.653651 Å. The band gap of Gd2FeSbO7, Gd2InSbO7 or Gd2YSbO7 was estimated to be 2.151 eV, 2.897 eV or 2.396 eV. For the photocatalytic water-splitting reaction, H2 or O2 evolution was observed from pure water with Gd2FeSbO7, Gd2InSbO7 or Gd2YSbO7 as catalyst under visible light irradiation (wavelength > 420 nm. Moreover, H2 or O2 also spilt by using Gd2FeSbO7, Gd2InSbO7 or Gd2YSbO7 as catalyst from CH3OH/H2O or AgNO3/H2O solutions under visible light irradiation (λ > 420 nm. Gd2FeSbO7 showed the highest activity compared with Gd2InSbO7 or Gd2YSbO7. At the same time, Gd2InSbO7 showed higher activity compared with Gd2YSbO7. The photocatalytic activities were further improved under visible light irradiation with Gd2FeSbO7, Gd2InSbO7 or Gd2YSbO7 being loaded by Pt, NiO or RuO2. The effect of Pt was better than that of NiO or RuO2 for improving the photocatalytic activity of Gd2FeSbO7, Gd2InSbO7 or Gd2YSbO7.

  6. Neural ganglioside GD2(+) cells define a subpopulation of mesenchymal stem cells in adult murine bone marrow.

    Science.gov (United States)

    Xu, Jie; Fan, WenJun; Tu, Xi Xiang; Zhang, Teng; Hou, Zhi Jie; Guo, Tao; Shu, Xin; Luo, Xi; Liu, Yang; Peng, Fei; Wang, Chang; Xu, LingZhi; Zhou, Han; Liu, Quentin

    2013-01-01

    Due to the lack of specific markers, the isolation of pure mesenchymal stem cells (MSCs) from murine bone marrow remains an unsolved problem. The present study explored whether the neural ganglioside GD2 could serve as a single surface marker to uniquely distinguish murine bone marrow MSCs (mBM-MSCs) from other marrow elements. Immunocytochemistry and flow cytometry, in combination with quantitative RT-PCR, were used to identify the expression of GD2 on culture-expanded mBM-MSCs. GD2(+) and GD2(-) fractions from mBM-MSCs cultures were sorted by immunosorting. Flow cytometry was performed to further analyze the biomarkers of GD2-sorted and unsorted cells. Employing CFU-F assay and CCK-8 assay, we examined the clonogenic and proliferative capabilities of GD2-sorted and unsorted cells. Using oil red O and von Kossa staining assay, we also assessed the multi-lineage potential of GD2-sortedand unsorted cells. We found that mBM-MSCs expressed a novel surface marker the neural ganglioside GD2. Importantly, mBM-MSCs were the only cells within bone marrow that expressed this marker. Further studies demonstrated that a homogenous population of MSCs could be obtained from bone marrow cultures in early passages by GD2 immunosorting. Compared to parental cells, GD2(+)-sorted cells not only possessed much higher clonogenic and proliferative capabilities but also had significantly stronger differentiation potential to adipocytes and osteoblasts. Furthermore, GD2(+)-sorted cells displayed enhanced expression of ES markers SSEA-1 and Nanog. Our observations provide the first demonstration that GD2 may serve as a maker for identification and purification of mBM-MSCs. Meanwhile, our study indicates that the cells selected by GD2 are a subpopulation of MSCs with features of primitive precursor cells. © 2013 S. Karger AG, Basel

  7. Neural Ganglioside GD2+ Cells Define a Subpopulation of Mesenchymal Stem Cells in Adult Murine Bone Marrow

    Directory of Open Access Journals (Sweden)

    Jie Xu

    2013-09-01

    Full Text Available Background/Aims: Due to the lack of specific markers, the isolation of pure mesenchymal stem cells (MSCs from murine bone marrow remains an unsolved problem. The present study explored whether the neural ganglioside GD2 could serve as a single surface marker to uniquely distinguish murine bone marrow MSCs (mBM-MSCs from other marrow elements. Methods: Immunocytochemistry and flow cytometry, in combination with quantitative RT-PCR, were used to identify the expression of GD2 on culture-expanded mBM-MSCs. GD2+ and GD2- fractions from mBM-MSCs cultures were sorted by immunosorting. Flow cytometry was performed to further analyze the biomarkers of GD2-sorted and unsorted cells. Employing CFU-F assay and CCK-8 assay, we examined the clonogenic and proliferative capabilities of GD2-sorted and unsorted cells. Using oil red O and von Kossa staining assay, we also assessed the multi-lineage potential of GD2-sortedand unsorted cells. Results: We found that mBM-MSCs expressed a novel surface marker the neural ganglioside GD2. Importantly, mBM-MSCs were the only cells within bone marrow that expressed this marker. Further studies demonstrated that a homogenous population of MSCs could be obtained from bone marrow cultures in early passages by GD2 immunosorting. Compared to parental cells, GD2+-sorted cells not only possessed much higher clonogenic and proliferative capabilities but also had significantly stronger differentiation potential to adipocytes and osteoblasts. Furthermore, GD2+-sorted cells displayed enhanced expression of ES markers SSEA-1 and Nanog. Conclusion: Our observations provide the first demonstration that GD2 may serve as a maker for identification and purification of mBM-MSCs. Meanwhile, our study indicates that the cells selected by GD2 are a subpopulation of MSCs with features of primitive precursor cells.

  8. Fabrication and Characterization of Micro- and Nano- Gd2O3 Dispersed HDPE/EPM Composites

    International Nuclear Information System (INIS)

    Uhm, Young Rang; Kim, Jae Woo; Jun, Ji Heon; Lee, Sol; Rhee, Chang Kyu

    2010-01-01

    Hydrophobic polymer mixed with Gd 2 O 3 can be used in nuclear industry as a neutron shield because of its neutron attenuating and absorbing property, while it was reported that the smaller particles dispersed polymer composites can enhance radiation shielding efficiency compared to larger particles dispersed ones. However, preparations of such materials are difficult because of the poor dispersion of the fine particles in the polymer matrix. Surface modification of the nanoparticles is therefore required for the homogeneous dispersion of the particles in the polymer matrix. In this study, pulverization of the micro-Gd 2 O 3 particles and simultaneous surface coating of the nanoparticles by polymeric surfactant low density polyethylene (LDPE) were performed by using one-step of high energy wet ball-mill. Dispersion and neutron shielding effect of the nano- and micro-Gd 2 O 3 fillers in mixed polymer of ethylene propylene monomer (EPM) and high density polyethylene (HDPE) were examined

  9. Cooperative upconversion luminescence of Er3 + in Gd2O3 - xSx phosphor

    Science.gov (United States)

    Wang, Fei; Yang, Bin; Yu, Qingchun; Liu, Dachun; Ma, Wenhui

    2018-02-01

    Gd2O3 - xSx:Er crystals were prepared through high-temperature solid-state reaction method in vacuum, with the vacuum synthesis mechanism determined by thermal analysis. The crystal structure and upconversion luminescence properties were investigated respectively by XRD, TEM and spectrophotometer. Well crystallized Gd2O2S:Er phosphors were prepared under 1000 °C in vacuum with a certain excessive amount of sulfur content than stoichiometric. It is confirmed that with the increasing sulfur content the green emission was enhanced and red emission was weakened. The cooperative upconversion luminescence of Er3 + in non-stoichiometric Gd2O3 - xSx crystals was interpreted as a result of two photon absorption and the photon avalanche process.

  10. Epitaxial growth of germanium on silicon using a Gd2O3/Si (111) crystalline template

    International Nuclear Information System (INIS)

    Niu, G.; Largeau, L.; Saint-Girons, G.; Vilquin, B.; Cheng, J.; Mauguin, O.; Hollinger, G.

    2010-01-01

    This work presents a study of the epitaxial growth of Ge on Si (111) using a Gd 2 O 3 crystalline template. A smooth two-dimensional Ge layers is obtained from the coalescence of initially three-dimensional Ge islands grown in the Volmer-Weber mode. Ge takes its bulk lattice parameter at the very early stages of its growth. A detailed x-ray pole figure analysis reveals that the epitaxial relationship between the layers and the Si substrate is [1-10]Ge(111)||-110]Gd 2 O 3 (111)||[1-10]Si(111) and that microtwins are formed in the Ge layer.

  11. Oxygen nonstoichiometry and defects in Mn-doped Gd2Ti2O7+x

    International Nuclear Information System (INIS)

    Porat, O.; Tuller, H.L.

    1996-01-01

    The oxygen nonstoichiometry in Mn-doped Gd 2 Ti 2 O 7 , Gd 2 (Ti 0.975 Mn 0.025 ) 2 O 7+x , was measured electrochemically, as a function of temperature and oxygen partial pressure, with the aid of an oxygen titration cell. The analysis of the data shows that the defect equilibrium can be described by considering the dominant point defects to be neutral oxygen interstitials, doubly charged oxygen vacancies, and trivalent and quadrivalent Mn ions substituted in the Ti sites. The enthalpies for the formation of neutral oxygen interstitials and trivalent Mn are determined

  12. Antiganglioside antibodies in Guillain-Barré syndrome after a recent cytomegalovirus infection.

    Science.gov (United States)

    Khalili-Shirazi, A; Gregson, N; Gray, I; Rees, J; Winer, J; Hughes, R

    1999-03-01

    To study the association between anti-ganglioside antibody responses and Guillan-Barré syndrome (GBS) after a recent cytomegalovirus (CMV) infection. Enzyme linked immunosorbant assay (ELISA) was undertaken on serum samples from 14 patients with GBS with recent cytomegalovirus (CMV) infection (CMV+GBS) and 12 without (CMV-GBS), 17 patients with other neurological diseases (OND), 11 patients with a recent CMV infection but without neurological involvement, 11 patients with recent Epstein-Barr virus (EBV) infection but without neurological involvement, and 20 normal control (NC) subjects. IgM antibodies were found at 1:100 serum dilution to gangliosides GM2 (six of 14 patients), GM1 (four of 14), GD1a (three of 14) and GD1b (two of 14) in the serum samples of the CMV+GBS patients, but not in those of any of the CMV-GBS patients. IgM antibodies were also found to gangliosides GM1, GD1a, and GD1b in one of 11 OND patients, to ganglioside GM1 in one of 11 non- neurological CMV patients, and to ganglioside GD1b in one of 20 NC subjects. Some patients with EBV infection had IgM antibodies to gangliosides GM1 (five of 11), GM2 (three of 11), and GD1a (two of 11). However, the antibodies to ganglioside GM2 had a low titre, none being positive at 1:200 dilution, whereas five of the CMV+GBS serum samples remained positive at this dilution. Antibodies to ganglioside GM2 are often associated with GBS after CMV infection, but their relevance is not known. It is unlikely that CMV infection and anti-ganglioside GM2 antibodies are solely responsible and an additional factor is required to elicit GBS.

  13. Spherical and rod-like Gd2O3:Eu nanophosphors—Structural and ...

    Indian Academy of Sciences (India)

    6Glass Technology Lab, Central Glass and Ceramic Research Institute (CSIR), Kolkata 700 032, India. MS received 8 ... hydrothermal product shows hexagonal Gd(OH)3:Eu3+ phase and it converts to pure cubic phase of Gd2O3:Eu3+ on calcination ... An improved performance of displays and lamps requires high quality of ...

  14. Spherical and rod-like Gd2O3:Eu nanophosphors—Structural and ...

    Indian Academy of Sciences (India)

    5Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India ... hydrothermal product shows hexagonal Gd(OH)3:Eu3+ phase and it converts to pure cubic phase of Gd2O3:Eu3+ on calcination at 600◦C for 3 h. .... peaks using the Scherrer's equation (Klug and Alexander. 1954) d = 0·9 λ.

  15. Interplay of spin-dependent delocalization and magnetic anisotropy in the ground and excited states of [Gd2@C78]- and [Gd2@C80]-

    Science.gov (United States)

    Mansikkamäki, Akseli; Popov, Alexey A.; Deng, Qingming; Iwahara, Naoya; Chibotaru, Liviu F.

    2017-09-01

    The magnetic properties and electronic structure of the ground and excited states of two recently characterized endohedral metallo-fullerenes, [Gd2@C78]- (1) and [Gd2@C80]- (2), have been studied by theoretical methods. The systems can be considered as [Gd2]5+ dimers encapsulated in a fullerene cage with the fifteen unpaired electrons ferromagnetically coupled into an S = 15/2 high-spin configuration in the ground state. The microscopic mechanisms governing the Gd-Gd interactions leading to the ferromagnetic ground state are examined by a combination of density functional and ab initio calculations and the full energy spectrum of the ground and lowest excited states is constructed by means of ab initio model Hamiltonians. The ground state is characterized by strong electron delocalization bordering on a σ type one-electron covalent bond and minor zero-field splitting (ZFS) that is successfully described as a second order spin-orbit coupling effect. We have shown that the observed ferromagnetic interaction originates from Hund's rule coupling and not from the conventional double exchange mechanism. The calculated ZFS parameters of 1 and 2 in their optimized geometries are in qualitative agreement with experimental EPR results. The higher excited states display less electron delocalization, but at the same time they possess unquenched first-order angular momentum. This leads to strong spin-orbit coupling and highly anisotropic energy spectrum. The analysis of the excited states presented here constitutes the first detailed study of the effects of spin-dependent delocalization in the presence of first order orbital angular momentum and the obtained results can be applied to other mixed valence lanthanide systems.

  16. Physical characteristics of Gd2O3-UO2 fuel in LWR

    International Nuclear Information System (INIS)

    Matsuura, Shojiro; Kobayashi, Iwao; Furuta, Toshiro; Toba, Masao; Tsuda, Katsuhiro.

    1981-12-01

    A series of critical experiments in light water lattice were carried out on five kinds of Gadolinia-Uranium dioxide (Gd 2 O 3 -UO 2 ) test fuel rods containing 0.0, 0.05, 0.25, 1.50, 3.00 weight % of Gd 2 O 3 in Gd 2 O 3 -UO 2 . Reactivity effect, power distribution, neutron flux distribution, and temperature coefficient were measured for three types of lattices which were in shapes of annular, rectangular parallele-piped, and JPDR mockup core. The theoretical values corresponding to the measured ones were obtained by means of the design method for the FTA which is the test fuel assembly with Gd 2 O 3 -UO 2 rods for JPDR, and the accuracy was checked. In general, the calculated values were in good agreement with the measured ones. Besides, the following characteristics of Gd 2 O 3 -UO 2 rods are recognized both in measurement and calculation, i.e. (1) the effect due to gadolinia on reactivity, power distribution, and thermal neutron flux distribution are steeply saturating; the gadolinia content of only 1.50 weight % is enough to reach the almost saturated condition, (2) the relative power becomes 20% to that of normal fuel under the saturated condition, (3) the relation between the negative reactivity and the power depression effect due to gadolinia is almost linear, and (4) the interference on power depression between the adjacent gadolinia loaded rods is almost negligible, and that on reactivity effect is 15% at most. (author)

  17. Luminescent properties and characterization of Gd2O3:Eu3+@SiO2 and Gd2Ti2O7:Eu3+@SiO2 core shell phosphors prepared by a sol gel process

    Science.gov (United States)

    Lin, Kuo-Min; Lin, Chih-Cheng; Li, Yuan-Yao

    2006-03-01

    Gd2O3:Eu3+ and Gd2Ti2O7:Eu3+ films 10 nm in thickness were individually coated onto silica spheres (particle size of 150-170 nm) using the sol-gel method. The synthesized materials were addressed as Gd2O3:Eu3+@SiO2 and Gd2Ti2O7:Eu3+@SiO2 phosphors. An x-ray powder diffractometer (XRD), field emission scanning electron microscope (FE-SEM), high-resolution transmission electron microscope (HR-TEM), and photoluminescence spectrophotometer (PL) were employed to characterize the core-shell phosphors. Uniform core-shell phosphor particles were observed using FE-SEM. The XRD and HR-TEM results indicated that the coated-shell layer was well crystallized after sintering at 1000 °C. The Gd2O3:Eu3+@SiO2 PL measurement showed a red emission at the main 615 nm wavelength. The Gd2Ti2O7:Eu3+@SiO2 phosphor showed an orange-red emission at the 588 and 615 nm wavelengths. In comparison with the Gd2O3:Eu3+ and Gd2Ti2O7:Eu3+ bulk material results, the core-shell phosphors maintained the same emission ability as the bulk materials and the novel core-shell phosphors possessed great potential in quantum phosphor applications.

  18. Luminescent properties and characterization of Gd2O3:Eu(3+)@SiO2 and Gd2Ti2O7:Eu(3+)@SiO2 core-shell phosphors prepared by a sol-gel process.

    Science.gov (United States)

    Lin, Kuo-Min; Lin, Chih-Cheng; Li, Yuan-Yao

    2006-03-28

    Gd2O3:Eu(3+) and Gd2Ti2O7:Eu(3+) films 10 nm in thickness were individually coated onto silica spheres (particle size of 150-170 nm) using the sol-gel method. The synthesized materials were addressed as Gd2O3:Eu(3+)@SiO2 and Gd2Ti2O7:Eu(3+)@SiO2 phosphors. An x-ray powder diffractometer (XRD), field emission scanning electron microscope (FE-SEM), high-resolution transmission electron microscope (HR-TEM), and photoluminescence spectrophotometer (PL) were employed to characterize the core-shell phosphors. Uniform core-shell phosphor particles were observed using FE-SEM. The XRD and HR-TEM results indicated that the coated-shell layer was well crystallized after sintering at 1000 °C. The Gd2O3:Eu(3+)@SiO2 PL measurement showed a red emission at the main 615 nm wavelength. The Gd2Ti2O7:Eu(3+)@SiO2 phosphor showed an orange-red emission at the 588 and 615 nm wavelengths. In comparison with the Gd2O3:Eu(3+) and Gd2Ti2O7:Eu(3+) bulk material results, the core-shell phosphors maintained the same emission ability as the bulk materials and the novel core-shell phosphors possessed great potential in quantum phosphor applications.

  19. Facile Fabrication and Properties of Gd2O3:Eu3+, Y2O3:Eu3+ Nanophosphors and Gd2O3:Eu3+/Silica, Y2O3:Eu3+/Silica Nanocomposites

    Science.gov (United States)

    Anh, Tran Kim; Chau, Pham Thi Minh; Hai, Nguyen Thi Quy; Ha, Vu Thi Thai; Van Tuyen, Ho; Bounyavong, Sengthong; Thanh, Nguyen Trong; Minh, Le Quoc

    2018-01-01

    Gd2O3:Eu3+ and Y2O3:Eu3+ nanophosphors have been successfully fabricated by a combustion method at low temperature (350°C) in a short time (5 min) using natriethylenediaminetetraacetic acid (EDTA-Na2) as fuel. The structure, morphology and size of Gd2O3:Eu3+ and Y2O3:Eu3+ nanophosphors have been determined by x-ray diffraction and field emission scanning electron microscopy. Photoluminescence spectra indicated that the optimum Eu3+ ion concentrations with the strongest luminescence emission intensities are 5 mol.% for Y2O3:Eu3+ and 7 mol.% for Gd2O3:Eu3+. The nanocomposites of Gd2O3:Eu3+/silica and Y2O3:Eu3+/silica were fabricated by a sol-gel process with tetraethoxysilane (TEOS) as matrix material, and the nanocomposite compositions were analyzed by energy dispersion spectra. The strongest luminescence peaks from the 5D0-7F2 transition of the Eu3+ ion in Gd2O3:Eu3+ and Y2O3:Eu3+ nanophosphors are between 613 nm and 615 nm. The Gd2O3:Eu3+ and Y2O3:Eu3+ nanophosphors and their silica nanocomposites were studied to elucidate the influences of the Eu3+ concentration, host materials, annealing temperature, and weight ratio of TEOS and Gd2O3:Eu3+ or Y2O3:Eu3+.

  20. Magnetization, ESR and large magnetocaloric effect in zigzag chain SrGd2O4

    Science.gov (United States)

    Jiang, X.; Ouyang, Z. W.; Wang, Z. X.; Xia, Z. C.; Rao, G. H.

    2018-01-01

    We performed the magnetization and electron spin resonance (ESR) measurements in the zigzag chain antiferromagnet SrGd2O4. First, the temperature-dependent ESR spectra suggest the presence of spin–spin correlations well above the ordering temperature due to geometric frustration. Second, the ESR data reveal the field-induced magnetic transition from an ordered state to a paramagnetic state, in accordance with the magnetization data. Third, the magnetization process exhibits a large magnetocaloric effect, which is associated with the alignment of paramagnetic spins along the direction of magnetic field. The maximum magnetic entropy change (‑ΔS M) near 3 K and refrigerant capacity (RCP) are 27 J · Kg‑1 · K‑1 and 325 J · Kg‑1, respectively, for a field change of 0–7 T. With negligible thermal and field hysteresis, SrGd2O4 can be considered as a cryogenic refrigerant material.

  1. New fabrication method of UO2-Gd2O3 pellet

    International Nuclear Information System (INIS)

    Yoo, M. J.; Yang, C. M.; Kim, Y. R.; Na, S. H.; Kim, S. Y.; Kim, Y. K.; Lee, S. C.; Lee, Y. W.

    2003-01-01

    UO 2 -8wt%Gd 2 O 3 pellets were fabricated by a new method. Two processes - milling by a continous-type attrition mill and spherodizing- were introduced in the fabrication method. The microstructure of sintered pellet appeared homogenous and showed larger grain size than that of conventional method which generally involves a mechanical mxing. And it appears that both precompacting process and granulating process can be avoided owing to good flow ability of the milled powder with the spherodizing treatment

  2. Synthesis and Characterization of Gd2O3 Hollow Microspheres Using a Template-Directed Method

    OpenAIRE

    Xueliang Jiang; Lu Yu; Chu Yao; Fuqing Zhang; Jiao Zhang; Chenjian Li

    2016-01-01

    Uniform rare-earth gadolinium oxide (Gd2O3) hollow microspheres, as formed through a urea-assisted homogenous precipitation process using carbon spheres as a template and a subsequent heat treatment, were characterized by using X-ray diffraction, Fourier transformed infared spectroscopy, thermogravimetry, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy and Brunauer-Emmett-Tellet surface area measurement. The results indicate that the final prod...

  3. Gd2O3:Eu3+/PPO/POPOP/PS composites for digital imaging radiation detectors

    Science.gov (United States)

    Oliveira, J.; Martins, P. M.; Martins, P.; Correia, V.; Rocha, J. G.; Lanceros-Mendez, S.

    2015-11-01

    Polymer-based scintillator composites have been produced by combining polystyrene (PS) and Gd2O3:Eu3+ scintillator nanoparticles. Polystyrene has been used since it is a flexible and stable binder matrix, resistant to thermal and light deterioration and with suitable optical properties. Gd2O3:Eu3+ has been selected as scintillator material due to its wide band gap, high density and visible light yield. The optical, thermal and electrical characteristics of the composites were studied as a function of filler content, together with their performance as scintillator material. Additionally 1 wt.% of 2,5-diphenyloxazole (PPO) and 0.01 wt.% of 1,4 di[2-(5phenyloxazolyl)]benzene (POPOP) were introduced in the polymer matrix in order to strongly improve light yield, i.e., the measured intensity of the output visible radiation, under X-ray irradiation. Increasing scintillator filler concentration (from 0.25 to 7.5 wt.%) increases scintillator light yield and decreases the optical transparency of the composite. The addition of PPO and POPOP strongly increased the overall transduction performance of the composite due to specific absorption and re-emission processes. It is thus shown that Gd2O3:Eu3+/PPO/POPOP/PS composites with 0.25 wt.% of scintillator content with fluorescence molecules are suitable for the development of innovative large-area X-ray radiation detectors with huge demand from the industries.

  4. Synthesis and different optical properties of Gd2O3 doped sodium zinc tellurite glasses

    Science.gov (United States)

    Samanta, Buddhadev; Dutta, Dibakar; Ghosh, Subhankar

    2017-06-01

    A series of Gd2O3 doped sodium zinc tellurite [xGd2O3-(0.8-x) TeO2-0.1Na2O-0.1ZnO] glasses are prepared by the conventional melt quenching method and their optical properties have been studied. UV-vis spectrophotometric studies within the wavelength range from 230 nm-800 nm are carried out in the integrating sphere mode to study the effect of Gd2O3 doping on the optical band gap (Eg), refractive index (n), dielectric constant (εr) and susceptibility (χ). Other physical properties like molar volume, molar refraction, polarizability, metallization criterion, number density of rare-earth ions (N), polaron radius (rp), inter ionic distance (ri), molar cation polarizability (∑αi), number of oxide ions in chemical composition (NO2-), optical band gap based electronic oxide ion polarizability (αO2-) and optical basicity (Λ) of glass samples have been studied on the basis of UV-vis spectra and density profile of the different glasses.

  5. Gd2O3 nanoparticles in hematopoietic cells for MRI contrast enhancement

    Directory of Open Access Journals (Sweden)

    Hedlund A

    2011-12-01

    Full Text Available Anna Hedlund1,2, Maria Ahrén3, Håkan Gustafsson1,2, Natalia Abrikossova3, Marcel Warntjes2,4, Jan-Ingvar Jönsson5, Kajsa Uvdal3, Maria Engström1,21Division of Radiology, Department of Medical and Health Sciences, 2Center for Medical Image Science and Visualization, 3Division of Molecular Surface Physics and Nanoscience, Department of Physics, Chemistry, and Biology, 4Division of Clinical Physiology, Department of Medicine and Health Sciences, 5Department of Clinical and Experimental Medicine, Experimental Hematology Unit, Linköping University, Linköping, SwedenAbstract: As the utility of magnetic resonance imaging (MRI broadens, the importance of having specific and efficient contrast agents increases and in recent time there has been a huge development in the fields of molecular imaging and intracellular markers. Previous studies have shown that gadolinium oxide (Gd2O3 nanoparticles generate higher relaxivity than currently available Gd chelates: In addition, the Gd2O3 nanoparticles have promising properties for MRI cell tracking. The aim of the present work was to study cell labeling with Gd2O3 nanoparticles in hematopoietic cells and to improve techniques for monitoring hematopoietic stem cell migration by MRI. Particle uptake was studied in two cell lines: the hematopoietic progenitor cell line Ba/F3 and the monocytic cell line THP-1. Cells were incubated with Gd2O3 nanoparticles and it was investigated whether the transfection agent protamine sulfate increased the particle uptake. Treated cells were examined by electron microscopy and MRI, and analyzed for particle content by inductively coupled plasma sector field mass spectrometry. Results showed that particles were intracellular, however, sparsely in Ba/F3. The relaxation times were shortened with increasing particle concentration. Relaxivities, r1 and r2 at 1.5 T and 21°C, for Gd2O3 nanoparticles in different cell samples were 3.6–5.3 s-1 mM-1 and 9.6–17.2 s-1 mM-1

  6. Preparation, characterization and X-ray attenuation property of Gd2O3-based nanocomposites

    Science.gov (United States)

    Jayakumar, Sangeetha; Saravanan, T.; Philip, John

    2017-11-01

    In an attempt to develop an alternate to lead-based X-ray shielding material, we describe the X-ray attenuation property of nanocomposites containing Gd2O3 as nanofiller and silicone resin as matrix, prepared by a simple solution-casting technique. Gd2O3 nanoparticles of size 30 and 56 nm are used at concentrations of 25 and 2.5 wt%. The nanoparticles and the nanocomposites are characterized using X-ray diffraction (XRD) studies, small angle X-ray spectroscopy (SAXS), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and atomic force microscopy (AFM). The X-ray attenuation property of nanocomposites, studied using an industrial X-ray unit, shows that nanocomposites containing nanoparticles of size 56 nm (G2) exhibit better attenuation than nanocomposites containing nanoparticles of size 30 nm (G1), which is attributed to the greater interfacial interaction between the G2 nanofillers and silicone matrix. In the case of nanocomposites containing G1 nanoparticles, the interfacial interaction between the nanofiller and the matrix is so weak that it results in pulling out of nanofillers, causing voids in the matrix, which act as X-ray transparent region, thereby reducing the overall X-ray attenuation property of G1 nanocomposites. This is further corroborated from the AFM images of the nanocomposites. The weight loss and heat flow curves of pure silicone matrix and the nanocomposites containing Gd2O3 nanoparticles of size 30 and 56 nm show the degradation of silicone resin, due to chain scission, between 403 and 622 °C. The same onset temperature (403 °C) of degradation of matrix with and without nanoparticles shows that the addition of nanofillers to the matrix does not deteriorate the thermal stability of the matrix. This confirms the thermal stability of nanocomposites. Therefore, our study shows that nanocomposites containing G2 nanoparticles are potential candidates for the development of X-ray opaque fabric material.

  7. Gd2O3:Eu Nanoparticle-Based Poly(vinylidene fluoride) Composites for Indirect X-ray Detection

    Science.gov (United States)

    Martins, P. M.; Martins, P.; Correia, V.; Rocha, J. G.; Lanceros-Mendez, S.

    2015-01-01

    Polymer-based scintillator composites have been fabricated by combining poly(vinylidene fluoride) (PVDF) and Gd2O3:Eu nanoparticles (50 nm). PVDF has been used since it is a flexible and stable binder matrix and highly resistant to thermal and light deterioration. Gd2O3:Eu has been selected as the scintillator material due to its wide band gap, high density and suitable visible light yield. The structural, mechanical, thermal and electrical characteristics of the composites were studied as a function of filler content, together with their performance as scintillator material. The introduction of Gd2O3:Eu nanoparticles into the PVDF matrix does not influence the morphology of the polymer or the degree of crystallinity. On the other hand, an increase of the Young's modulus when compared to the one of the PVDF matrix is observed for filler contents of 0.1-0.75 wt.%. The introduction of Gd2O3:Eu into the PVDF matrix increases the dielectric constant and DC electrical conductivity as well as the visible light yield in the nanocomposite, being this increase dependent upon Gd2O3:Eu content and x-ray input power. In this way, Gd2O3:Eu/PVDF composites show suitable characteristics to be used as x-ray radiation transducers, in particular for large area applications.

  8. Investigation and modeling of stable phase of crystal in Gd2X(X=Al, Ga, In) IMC

    International Nuclear Information System (INIS)

    Sabouri, F.; Yazdani, A.

    2007-01-01

    The rare earth metals have special importance for their high magnetic moments, various magnetic and crystal structures. The experiments show in constant conditions, such as electro negativity, ionic radii, hybridasion that are important factors that determine the existence of a stable phase of a crystal; there are anomalous behaviors in formation of Rare-earth Compounds. The gadolinium with 7 electron in its 4f shell has spherical symmetry and stability in magnetic and crystal structure but Gd 2 X(X=Ai, Ga,In) compounds show anomalous behavior in ones, Gd 2 Al intermetallic compound crystallize in orthorhombic structure and Gd 2 In in hexagonal, while there is no report about Gd 2 Ga IMCO. The manner of preparing of Gd 2 Ga intermetallic compound that is not in scripted in Gd-Ga phase diagram was probed by Arc melted furnace. X-ray diffraction and scanning electron microscopy data show that its structure is orthorhombic and very sensitive to annealing temperature. Then stability of crystal structures of Gd 2 X (X=Al,Ga,In compounds were researched by calculating of total energy of systems, based on the DFT calculations by use of Wien2k program that their data are in good agreement with the experimental ones

  9. Hot corrosion behavior of YSZ, Gd2Zr2O7 and YSZ/Gd2Zr2O7 thermal barrier coatings exposed to molten sulfate and vanadate salt

    Science.gov (United States)

    Ozgurluk, Yasin; Doleker, Kadir Mert; Karaoglanli, Abdullah Cahit

    2018-04-01

    Thermal barrier coatings (TBCs) are mostly used in critical components of aircraft gas turbine engines. Hot corrosion is among the main deteriorating factors in TBCs which results from the effect of molten salt on the coating-gas interface. This type of corrosion is observed as a result of contamination accumulated during combustion processes. Fuels used in aviation industry generally contain impurities such as vanadium oxide (V2O5) and sodium sulfate (Na2SO4). These impurities damage turbines' inlet at elevated temperatures because of chemical reaction. Yttria stabilized zirconia (YSZ) is a conventional top coating material for TBCs while Gd2Zr2O7 is a new promising top coating material for TBCs. In this study, CoNiCrAlY metallic bond coat was deposited on Inconel 718 nickel based superalloy substrate material with a thickness about 100 μm using cold gas dynamic spray (CGDS) method. Production of TBCs were done with deposition of YSZ, Gd2Zr2O7, YSZ/Gd2Zr2O7 ceramic top coating materials using EB-PVD method, having a total thickness of 300 μm. Hot corrosion behavior of YSZ, Gd2Zr2O7, YSZ/Gd2Zr2O7 TBC systems were exposed to 45 wt.% Na2SO4 and 55 wt.% V2O5 molten salt mixtures at 1000 °C temperature. TBC samples were investigated and compared using scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) analysis and X-ray diffractometer (XRD). The hot corrosion failure mechanisms of YSZ, Gd2Zr2O7 and YSZ/Gd2Zr2O7 TBCs in the molten salts were evaluated.

  10. Endohedral Metallofullerene as Molecular High Spin Qubit: Diverse Rabi Cycles in Gd2@C79N.

    Science.gov (United States)

    Hu, Ziqi; Dong, Bo-Wei; Liu, Zheng; Liu, Jun-Jie; Su, Jie; Yu, Changcheng; Xiong, Jin; Shi, Di-Er; Wang, Yuanyuan; Wang, Bing-Wu; Ardavan, Arzhang; Shi, Zujin; Jiang, Shang-Da; Gao, Song

    2018-01-24

    An anisotropic high-spin qubit with long coherence time could scale the quantum system up. It has been proposed that Grover's algorithm can be implemented in such systems. Dimetallic aza[80]fullerenes M 2 @C 79 N (M = Y or Gd) possess an unpaired electron located between two metal ions, offering an opportunity to manipulate spin(s) protected in the cage for quantum information processing. Herein, we report the crystallographic determination of Gd 2 @C 79 N for the first time. This molecular magnet with a collective high-spin ground state (S = 15/2) generated by strong magnetic coupling (J Gd-Rad = 350 ± 20 cm -1 ) has been unambiguously validated by magnetic susceptibility experiments. Gd 2 @C 79 N has quantum coherence and diverse Rabi cycles, allowing arbitrary superposition state manipulation between each adjacent level. The phase memory time reaches 5 μs at 5 K by dynamic decoupling. This molecule fulfills the requirements of Grover's searching algorithm proposed by Leuenberger and Loss.

  11. Structural, magnetic and Mossbauer studies of TI doped Gd2Fe17-xTix and Gd2Fe16Ga1-xTix (0≤x≤1)

    Science.gov (United States)

    Pokharel, G.; Syed Ali, K. S.; Mishra, S. R.

    2015-05-01

    Magnetic compounds of the type Gd2Fe17-xTix and Gd2Fe16Ga1-xTix (x=0.0-1.0) were prepared by arc melting and their structural and magnetic properties were studied by X-ray diffraction (XRD), magnetometery and Mossbauer spectroscopy. The Rietveld analysis of X-ray data shows that these α-Fe free solid-solutions crystallize with Th2Ni17-type structure as main phase along with GdFe2 and TiFe2 as additional phases at higher, x≥0.5 contents. The unit cell volume expands with Ga and Ti content. The Rietveld analysis indicate that both Ti and Ga atoms prefer 12j and 12k sites in both compounds. The effect of Ti and co-substituted Ga-Ti on the bond length are quite different. The saturation magnetization Ms, at 300 K for Gd2Fe17-xTix and Gd2Fe16Ga1-xTix was found to decrease linearly with increasing Ti content. The Ms in both compounds at x=1 reduced by 9% as compared to their parent compounds at x=0. The Curie temperature, Tc, for Gd2Fe17-xTix increased from 513 K (x=0) to 544 K (x=1) while Tc for Gd2Fe16Ga1-xTix reduced from 560 (x=0) to 544 K (x=1) with increase in Ti content. Thus the observed variation in Tc follows Gd2Fe17effect on the strength of Fe-Fe exchange-interaction. The Mossbauer results indicate decrease in hyperfine fields and increase in the isomer shifts with the increase in Ti content. Overall co-substituted Ga-Ti, Gd2Fe16Ga1-xTix show high Tc with marginal decline in saturation magnetization. Thus α-Fe free Gd2Fe16Ga1-xTix compounds can be potential candidate for high temperature permanent magnet industrial applications.

  12. Mass spectrometric study of thermodynamic properties in the Gd2O3-Y2O3system at high temperatures.

    Science.gov (United States)

    Kablov, Eugene N; Stolyarova, Valentina L; Lopatin, Sergey I; Vorozhtcov, Viktor A; Karachevtsev, Fedor N; Folomeikin, Yuriy I

    2017-03-30

    The Gd 2 O 3 -Y 2 O 3 system possesses a number of practical applications, one of the most important of them being production of casting molds for gas turbine engine blades. The components of this system are often added to zirconia or hafnia to obtain high-temperature ceramics which are used for the development of thermal barrier coatings. However, Gd 2 O 3 and Y 2 O 3 are more volatile than zirconia or hafnia and may vaporize selectively during synthesis or usage of high-temperature materials which may lead to changes in their physicochemical properties. Therefore, information on the vaporization processes and thermodynamic properties of the Gd 2 O 3 -Y 2 O 3 system is of great importance. High-temperature Knudsen effusion mass spectrometry was used to study the vaporization processes and to determine the thermodynamic properties of the Gd 2 O 3 -Y 2 O 3 system. Measurements were performed with a MS-1301 mass spectrometer. Vaporization was carried out using a tungsten twin effusion cell containing the sample under study and pure Gd 2 O 3 as a reference substance. Electron ionization at an energy of 25 eV was employed. At the temperature of 2630 K, GdO, YO and O vapor species were identified over the samples in the Gd 2 O 3 -Y 2 O 3 system. The Gd 2 O 3 and Y 2 O 3 activities and the vaporization rates of samples as functions of composition in the Gd 2 O 3 -Y 2 O 3 system were derived from the partial pressures of the vapor species mentioned. Using these data the Gibbs energy of mixing and excess Gibbs energy of the hexagonal solid solution in this system were calculated at 2630 K. The thermodynamic properties of the Gd 2 O 3 -Y 2 O 3 system, such as the activities of components and the excess Gibbs energy, obtained in the present study using Knudsen mass spectrometry at 2630 K, demonstrated significant negative deviations from ideal behavior. The vaporization rates of the samples were found to decrease as the Y 2 O 3 content increased. Copyright © 2016 John

  13. Combined effects of radiation damage and He accumulation on bubble nucleation in Gd2Ti2O7

    Science.gov (United States)

    Taylor, Caitlin A.; Patel, Maulik K.; Aguiar, Jeffery A.; Zhang, Yanwen; Crespillo, Miguel L.; Wen, Juan; Xue, Haizhou; Wang, Yongqiang; Weber, William J.

    2016-10-01

    Pyrochlores have long been considered as host phases for long-term immobilization of radioactive waste nuclides that would undergo α-decay for hundreds of thousands of years. This work utilizes ion-beam irradiations to examine the combined effects of radiation damage and He accumulation on bubble formation in Gd2Ti2O7 over relevant waste-form timescales. Helium bubbles are not observed in pre-damaged Gd2Ti2O7 implanted with 2 × 1016 He/cm2, even after post-implantation irradiations with 7 MeV Au3+ at 300, 500, and 700 K. However, He bubbles with average diameters of 1.5 nm and 2.1 nm are observed in pre-damaged (amorphous) Gd2Ti2O7 and pristine Gd2Ti2O7, respectively, after implantation of 2 × 1017 He/cm2. The critical He concentration for bubble nucleation in Gd2Ti2O7 is estimated to be 6 at.% He.

  14. In vivo immunotoxicity evaluation of Gd2O3 nanoprobes prepared by laser ablation in liquid for MRI preclinical applications

    Science.gov (United States)

    Tian, Xiumei; Guan, Xiaoying; Luo, Ningqi; Yang, Fanwen; Chen, Dihu; Peng, Ye; Zhu, Jixiang; He, Fupo; Li, Li; Chen, Xiaoming

    2014-09-01

    Gd2O3 nanoprobes prepared by laser ablation in liquid can be used as magnetic resonance imaging contrast agent. However, their immunotoxicity in vivo remains unknown. In this article, the in vitro biocompatibility of the Gd2O3 nanoprobe was evaluated in terms of cell uptake, cell viability, and apoptosis. In vivo immunotoxicity was detected by monitoring the levels of the immunity mediator, cluster of differentiation (CD) markers in Balb/c mice. The results show that no in vitro cytotoxicity was observed, and no significant changes in the expression levels of CD206 and CD69 between the nanoprobe-injected group and the Gd-DTPA group in mice were observed. Importantly, the immunotoxicity data revealed significant differences in the expression levels of CD40, CD80, CD11b, and reactive oxygen species. In addition, transmission electron microscopy images showed that few Gd2O3 nanoprobes were localized in phagosomes by the endocytic pathway. In conclusion, the toxic effects of our Gd2O3 nanoprobe may be due to endocytosis during which the microstructure or ultrastructure of cells is slightly damaged and induces the generation of an oxidative stress reaction that further stimulates the innate immune response. Therefore, it is important to use a sensitive assay for the in vivo immunotoxicity measurements to evaluate the risk assessment of Gd2O3-based biomaterials at the molecular level.

  15. Synthesis and photoluminescence properties of Eu3+-doped silica@coordination polymer core-shell structures and their calcinated silica@Gd2O3:Eu and hollow Gd2O3:Eu microsphere products.

    Science.gov (United States)

    Lee, Hee Jung; Park, Ju-Un; Choi, Sora; Son, Juhee; Oh, Moonhyun

    2013-02-25

    The conjugation of Eu(3+)-doped coordination polymers constructed from Gd(3+) and isophthalic acid (H(2)IPA) with silica particles is investigated for the production of luminescent microspheres. A series of doping ratio-controlled silica@coordination polymer core-shell spheres is easily synthesized by altering the amounts of metal nodes used in the reactions, where the ratios of Gd(3+) and Eu(3+) are 10:0 (1a), 9:1 (1b), 8:2 (1c), 7:3 (1d), 5:5 (1e), and 0:10 (1f). The formation of monodisperse uniform core-shell structures is achieved throughout the entirety of a series. Investigations of the photoluminescence property of the resulting series of silica@coordination polymer core-shell spheres reveal that 20% Eu(3+)-doped product (1c) has the strongest emission intensity. The subsequent calcination process on the silica@coordination polymer core-shell structures (1a-f) results in the formation of a series of doping ratio-controlled silica@Gd(2)O(3):Eu core-shell microspheres (2a-f) with uniform shell thickness. During the calcination step, the coordination polymers within silica@coordination polymer core-shells are transformed into metal oxides, resulting in silica@Gd(2)O(3):Eu core-shell structures. The final etching process on the silica@Gd(2)O(3):Eu core-shell microspheres (2a-f) produces a series of hollow Gd(2)O(3):Eu microspheres (3a-f) as a result of the elimination of silica cores. The luminescence intensities of silica@Gd(2)O(3):Eu core-shell (2a-f) and hollow Gd(2) O(3):Eu microspheres (3a-f) also vary depending upon the doping ratio of Eu(3+) ions. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Spin glass state in Gd 2CoMnO 6 perovskite manganite

    Science.gov (United States)

    Wang, X. L.; Horvat, J.; Liu, H. K.; Li, A. H.; Dou, S. X.

    2001-03-01

    Dc magnetisation and ac susceptibility were measured on Gd 2CoMnO 6 perovskite manganite synthesised by solid state reaction in dc magnetic fields up to 5 T and an ac magnetic field of 1 Oe at frequencies of 21, 217 and 2000 Hz over a wide temperature range from 300 K down to 4.2 K. A spin glass transition with a very sharp transition width of 1 K at temperatures as high as 112 K was observed after the paramagnetic to ferromagnetic transition. An antiferromagnetic transition occurs at 43 K, far below the spin glass state. The spin glass transition temperature is totally suppressed at a field of 5 T.

  17. TEM characterization of UO2-Gd2O3 nuclear fuels synthesized by coprecipitation method

    International Nuclear Information System (INIS)

    Soldati, A.; Gana Watkins, I.; Menghini, J.; Prado, M.

    2013-01-01

    We present a micro and nano structural characterization of 4% weight doped Gd 2 O 3 -UO 2 pellet using Transmission Electron Microscopy (TEM). Agglomerate morphology and crystallite sizes were determined using light/dark field and high resolution (HR-TEM) images. Convergent beam Energy Dispersive Spectroscopy (EDS) and Electron Diffraction (ED) were used to evaluate sample composition and homogeneity, even at the nanometer scale. We obtained an average crystallite size of 90±20 nm. Moreover, from TEM-EDS analyses we determined the presence of Gadolinium in all the analyzed crystallites but with 25% variation among their concentrations. These results show the capability of TEM analysis to characterize a nuclear fuel pellet with burnable poisons nano structure and homogeneity.(author)

  18. Polarized spectroscopic properties of Er3+:Gd2SiO5 crystal and evaluation of Er3+:Yb3+:Gd2SiO5 crystal as a 1.55 μm laser medium

    International Nuclear Information System (INIS)

    Wang, H.; Huang, J.H.; Gong, X.H.; Chen, Y.J.; Lin, Y.F.; Luo, Z.D.; Huang, Y.D.

    2016-01-01

    An Er 3+ -doped Gd 2 SiO 5 single crystal with high optical quality has been grown by the Czochralski method. Polarized absorption and fluorescence spectra and fluorescence lifetime of the crystal were measured at room temperature. Intensity parameters, spontaneous emission probabilities, fluorescence branching ratios, and radiative lifetimes were estimated on the basis of the Judd–Ofelt theory. Besides, potentiality of 1.55 μm laser emission in an Er 3+ –Yb 3+ co-doped Gd 2 SiO 5 crystal was evaluated.

  19. Synthesis, characterization and thermal behavior: Gd(NO3)3.6H2O to Gd2O3

    International Nuclear Information System (INIS)

    Ghonge, Darshana K.; Sheelvantra, Smita S.; Kalekar, Bhupesh B.; Raje, Naina

    2015-01-01

    Gadolinium oxide finds its application in nuclear as well as medical industry. It has been prepared from the thermal decomposition of gadolinium nitrate hexahydrate. Surface area of the synthesized compound was measured as 19 m 2 /g. EDS data shows only the presence of gadolinium and oxygen in the synthesized compound with the Gd to O ratio as calculated for Gd 2 O 3 , suggests the formation of pure Gd 2 O 3 . XRD analysis confirms the formation of pure cubic phase Gd 2 O 3 . In the absence of any report on the thermal behavior of GdNH, present studies have been carried out to understand the decomposition mechanism using simultaneous TG - DTA - EGA measurements

  20. Electrical characteristics of hybrid detector based Gd2O2S:Tb-Selenium for digital radiation imaging

    International Nuclear Information System (INIS)

    Kang, Sang-Sik; Park, Ji-Koon; Choi, Jang-Yong; Cha, Byung-Yul; Cho, Sung-Ho; Nam, Sang-Hee

    2005-01-01

    Fine Gd 2 O 2 S:Tb powders were synthesized by using a solution-combustion method for a high-resolution digital X-ray imaging detector. The PL spectrum showed that the phosphor was fully crystallized and that the Tb 3+ ions substituted well for the Gd 3+ sites. To investigate the X-ray response of the phosphor, a uniform Gd 2 O 2 S:Tb film was grown using a screen-printing method. The X-ray sensitivities of the 100 μm-Gd 2 O 2 S:Tb/30 μm -Se and 200 μm -Se detector were 470 and 420 pC/cm 2 /mR, respectively, at an electric field of 10 V/μm. The results of the study suggest that the hybrid detector has a significant potential in the application of digital radiography and fluoroscopy systems

  1. Inhomogeneous ferrimagnetic-like behavior in Gd2/3Ca1/3MnO3 single crystals

    International Nuclear Information System (INIS)

    Haberkorn, N.; Larregola, S.; Franco, D.; Nieva, G.

    2009-01-01

    We present a study of the magnetic properties of Gd 2/3 Ca 1/3 MnO 3 single crystals at low temperatures, showing that this material behaves as an inhomogeneous ferrimagnet. In addition to small saturation magnetization at 5 K, we have found history dependent effects in the magnetization and the presence of exchange bias. These features are compatible with microscopic phase separation in the clean Gd 2/3 Ca 1/3 MnO 3 system studied

  2. Effect of additives in sintering UO2-7wt%Gd2O3 fuel pellets

    International Nuclear Information System (INIS)

    Santos, L.R.; Riella, H.G.

    2009-01-01

    Gadolinium has been used as burnable poison for reactivity control in modern PWRs. The incorporation of Gd 2 O 3 powder directly into the UO 2 powder enables longer fuel cycles and optimized fuel utilization. Nevertheless, processing by this method leads to difficulties while obtaining sintered pellets with the minimum required density. The process for manufacturing UO 2 - Gd 2 O 3 generates scraps that should be reused. The main scraps are green and sintered pellets, which must be calcined to U 3 O 8 to return to the fabrication process. Also, the incorporation of Gd 2 O 3 in UO 2 requires the use of an additive to improve the sintering process, in order to achieve the physical properties specified for the mixed fuel, mainly density and microstructure. This paper describes the effect of the addition of fabrication scraps on the properties of the UO 2 -Gd 2 O 3 fuel. Aluminum hydroxide Al(OH) 3 was also incorporated to the fuel as a sintering aid. The results shown that the use of 2000 ppm of Al(OH) 3 as additive allow to fabricate good pellets with up to 10 wt% of recycled scraps. (author)

  3. Functionalized multimodal ZnO@Gd2O3 nanosystems to use as perspective contrast agent for MRI

    Science.gov (United States)

    Babayevska, Nataliya; Florczak, Patryk; Woźniak-Budych, Marta; Jarek, Marcin; Nowaczyk, Grzegorz; Zalewski, Tomasz; Jurga, Stefan

    2017-05-01

    The main aim of this research was the synthesis of the multimodal hybrid ZnO@Gd2O3 nanostructures as prospective contrast agent for Magnetic Resonance Imaging (MRI) for bio-medical applications. The nanoparticles surface was functionalized by organosilicon compounds (OSC) then, by folic acid (FA) as targeting agent and doxorubicin (Dox) as chemotherapeutic agent. Doxorubicin and folic acid were attached to the nanoparticles surface by amino groups as well as due to attractive physical interactions. The morphology and crystallography of the nanostructures were studied by HRTEM and SAXS techniques. After ZnO nanoparticles surface modification by Gd3+ and annealing at 900 °C, ZnO@Gd2O3 nanostructures are polydispersed with size 30-100 nm. NMR (Nuclear Magnetic Resonance) studies of ZnO@Gd2O3 were performed on fractionated particles with size up to 50 nm. Fourier transform infrared spectroscopy (FTIR), UV-vis spectroscopy, zeta-potential measurements and energy dispersive X-ray analysis (EDX) showed that functional groups have been effectively bonded onto the nanoparticles surface. The high adsorption capacity of folic acid (up to 20%) and doxorubicin (up to 40%) on nanoparticles was reached upon 15 min of adsorption process in a temperature-dependent manner. The nuclear magnetic resonance (NMR) relaxation measurements confirmed that the obtained ZnO@Gd2O3 nanostructures could be good contrast agents, useful for magnetic resonance imaging.

  4. Heat capacity measurements on Ybx Gd2–x Zr2 O7 (x= 0, 1, 2 ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 32; Issue 6. Heat capacity measurements on YbGd2–Zr2O7 ( = 0, 1, 2) ceramics by differential scanning calorimetry. Zhan-Guo Liu Jia-Hu Ouyang Yu Zhou. Ceramics and Glasses Volume 32 Issue 6 December 2009 pp 603-606 ...

  5. Irradiation response of radio-frequency sputtered Al/Gd2O3/p-Si MOS capacitors

    Science.gov (United States)

    Kahraman, A.; Yilmaz, E.

    2017-10-01

    The usage of the Gadolinium oxide (Gd2O3) as sensitive region in the MOS (Metal-Oxide-Semiconductor)-based dosimeters was investigated in the presented study. The Gd2O3 films grown on p-type Si (100) by RF magnetron sputtering were annealed at 800 °C under N2 ambient. The back and front metal contacts were establishes to produce MOS capacitors. The fabricated Gd2O3 MOS capacitors were irradiated in the dose range 0.5-50 Gy by 60Co gamma source. The performed Capacitance-Voltage (C-V) curves of the Gd2O3 MOS capacitors shifted to right side relative to pre-irradiation one. While continuous increments in the oxide trapped charges with increasing in gamma dose were observed, interface trapped charges fluctuated in the studied dose range. However, the variation of the interface trapped charge densities was found in the order of 1011 cm-2 and no significant variation was observed with applied dose. These results confirm that a significant deterioration does not occur in the capacitance during the irradiation. The higher oxide trapped charges compared to interface trapped charges showed that these traps were more responsible for the shift of the C-V curves. The sensitivity and percentage fading after 105 min of the Gd2O3 MOS capacitor were found as 39.7±1.4 mV/Gy and 14.5%, respectively. The devices sensitivity was found to be higher than that of capacitors composed of Er2O3, Sm2O3, La2O3, Al2O3, and SiO2, but, the high fading values is seen as a major problem for these capacitors. Finally, the barrier height was investigated with gamma exposure and the results showed that its value increased with increasing in radiation dose due to possible presence of the acceptor-like interface states.

  6. Studies on the Sintering Behaviour of UO2-Gd2O3 Nuclear Fuel

    International Nuclear Information System (INIS)

    Durazzo, Michelangelo; Gracher Riella, Humberto

    2008-01-01

    The incorporation of gadolinium directly into nuclear power reactor fuel is important from the point of reactivity compensation and adjustment of power distribution enabling thus longer fuel cycles and optimized fuel utilization. The incorporation of Gd 2 O 3 powder directly into the UO 2 powder by dry mechanical blending is the most attractive process because of its simplicity. Nevertheless, processing by this method leads to difficulties while obtaining sintered pellets with the minimum required density. This is due to blockages during the sintering process. There is little information in published literature about the possible mechanism for this blockage and this is restricted to the hypothesis based on formation of a low diffusivity Gd rich (U,Gd)O 2 phase. Experimental evidences indicated the existence of phases in the (U,Gd)O 2 system with structure different from the fluorite type structure of UO 2 . The apparition of these new phases coincides with the lowering of the density after sintering and with the lowering of the interdiffusion coefficient. However, it has been shown experimentally that the sintering blockage phenomena cannot be explained on the basis of the formation of low diffusivity Gd rich (U,Gd)O 2 phases. The work was continued to investigate other possible blocking mechanism. (authors)

  7. Crystal structure of the ternary silicide Gd2Re3Si5

    Directory of Open Access Journals (Sweden)

    Vitaliia Fedyna

    2014-12-01

    Full Text Available A single crystal of the title compound, the ternary silicide digadolinium trirhenium pentasilicide, Gd2Re3Si5, was isolated from an alloy of nominal composition Gd20Re30Si50 synthesized by arc melting and investigated by X-ray single-crystal diffraction. Its crystal structure belongs to the U2Mn3Si5 structure type. All atoms in the asymmetric lie on special positions. The Gd site has site symmetry m..; the two Mn atoms have site symmetries m.. and 2.22; the three Si atoms have site symmetries m.., ..2 and 4.. . The coordination polyhedra of the Gd atoms have 21 vertices, while those of the Re atoms are cubooctahedra and 13-vertex polyhedra. The Si atoms are arranged as tricapped trigonal prisms, bicapped square antiprisms, or 11-vertex polyhedra. The crystal structure of the title compound is also related to the structure types CaBe2Ge2 and W5Si3. It can be represented as a stacking of Gd-centred polyhedra of composition [GdSi9]. The Re atoms form infinite chains with an Re—Re distance of 2.78163 (5 Å and isolated squares with an Re—Re distance of 2.9683 (6 Å.

  8. Magneto Caloric Properties of Polycrystalline Gd2O2S for an Adiabatic Demagnetization Refrigerator

    Directory of Open Access Journals (Sweden)

    Fukuda H.

    2017-01-01

    Full Text Available Currently, many space missions that use cryogenic equipment are being planned. In particular, high resolution sensors, such as transition edge sensors, require very low operating temperatures, below 100 mK. Adiabatic demagnetization refrigerator (ADR systems are a useful tool for producing ultra-low temperatures in space because these devices can operate independently of gravity. The magnetic material is one of the most important components with respect to effectiveness of the cooling power. Thus, we could increase the cooling power using a magnetic material that has a large entropy change over the operating temperature range. Polycrystalline Gd2O2S (GOS, which was developed by Numazawa et al, can be used as such as a magnetic regenerator material. Furthermore, GOS has a very large specific heat and a magnetic phase transition temperature of about 5.2 K. These features make GOS suitable for use in the high temperature stage of an ADR. In this study, we measured and evaluated the physical properties of GOS for applications to ADRs.

  9. Single-Step Fabrication of Gd2O3@SiO2 Nanoparticles for use as MRI Contrast Agents by Pulsed Laser Ablation in Liquid

    Science.gov (United States)

    Luo, Ning-Qi; Huang, Zhan-Yun; Li, Li; Shao, Yuan-Zhi; Chen, Di-Hu

    2013-03-01

    Gd2O3@SiO2 nanoparticles with a core-shell structure are synthesized by pulsed laser ablation in liquid (PLAL) in single steps. A Gd2O3 target immersed in tetraethyl orthosilicate (TEOS) is ablated by a microsecond Nd:YAG laser, which induces the generation of a Gd2O3 plasma plume and pyrolysis of the TEOS. We propose that the moment Gd2O3 nanoparticles are formed they will be coated immediately by SiO2 and directly synthesized Gd2O3@SiO2 core-shell nanoparticles. These particles obtain high r1 relaxivity of 5.26s-1mM-1 and are used as T1-weighted magnetic resonance imaging contrast agents. It is shown that the PLAL technique is promising for fabricating core-shell structure nanomaterial with potential medical applications.

  10. Physical, mechanical and neutron shielding properties of h-BN/Gd2O3/HDPE ternary nanocomposites

    Science.gov (United States)

    İrim, Ş. Gözde; Wis, Abdulmounem Alchekh; Keskin, M. Aker; Baykara, Oktay; Ozkoc, Guralp; Avcı, Ahmet; Doğru, Mahmut; Karakoç, Mesut

    2018-03-01

    In order to prepare an effective neutron shielding material, not only neutron but also gamma absorption must be taken into account. In this research, a polymer nanocomposite based novel type of multifunctional neutron shielding material is designed and fabricated. For this purpose, high density polyethylene (HDPE) was compounded with different amounts of hexagonal boron nitride (h-BN) and Gd2O3 nanoparticles having average particle size of 100 nm using melt-compounding technique. The mechanical, thermal and morphological properties of nanocomposites were investigated. As filler content increased, the absorption of both neutron and gamma fluxes increased despite fluctuating neutron absorption curves. Adding h-BN and Gd2O3 nano particles had a significant influence on both neutron and gamma attenuation properties (Σ, cm-1 and μ/ρ, cm-2/g) of ternary shields and they show an enhancement of 200-280%, 14-52% for neutron and gamma radiations, respectively, in shielding performance.

  11. Influence of Al substitution on the structure and Co-sublattice magnetocrystalline anisotropy of Gd2Co17 compounds

    International Nuclear Information System (INIS)

    Cheng, Z.; Shen, B.; Zhang, J.; Liang, B.; Guo, H.; Kronmueller, H.

    1997-01-01

    The structure and magnetic properties of Gd 2 Co 17-x Al x compounds were investigated. All samples have a rhombohedral Th 2 Zn 17 -type structure and the replacement of Co by Al results in an approximately linear increase in the unit cell volumes at a rate of 8.2 Angstrom 3 /Al. The Curie temperature decreases monotically with the increase of Al concentration. On the basis of magnetization curves at the compensation temperature, the intersublattice-molecular-field coefficient, n RT , and the RT exchange-coupling constant J RT have been determined. It is noteworthy that the substitution of Al has a significant effect on the magnetocrystalline anisotropy of the Co sublattice, and changes the easy magnetization direction of Gd 2 Co 17-x Al x compounds from the basal plane to the c axis. copyright 1997 American Institute of Physics

  12. Conventional and inverse magnetocaloric effect in Pr2CuSi3 and Gd2CuSi3 compounds

    International Nuclear Information System (INIS)

    Wang, Fang; Yuan, Feng-ying; Wang, Jin-zhi; Feng, Tang-fu; Hu, Guo-qi

    2014-01-01

    Highlights: • Two phase transitions in a narrow temperature range were observed and studied. • Both typical and inverse magnetocaloric effect were observed and discussed. • The inverse magnetocaloric effect was attributed to the spin-glass behavior. - Abstract: Magnetic properties and magnetocaloric effect (MCE) in Pr 2 CuSi 3 and Gd 2 CuSi 3 compounds were investigated systematically. Both Pr 2 CuSi 3 and Gd 2 CuSi 3 compounds experienced two phase transitions in a relatively narrow temperature range: first a paramagnet (PM)–ferromagnet (FM) second-order phase transition at 12 and 26 K and then a FM–spin glass (SG) transition at 6 K and 7.5 K, respectively. The magnetic entropy change (ΔS M ) was calculated based on Maxwell relation using the collected magnetization data. The maximum of ΔS M for Pr 2 CuSi 3 and Gd 2 CuSi 3 compounds was 7.6 and 5 J kg −1 K −1 , respectively, at the applied filed change of 0–5 T. The shape of the temperature dependence of ΔS M (ΔS M –T) curve was obviously different from that of the conventional magnetic materials undergoing only one typical phase transition. In the left half part of ΔS M –T curve, ΔS M is not very sensitive to the applied field and they tend to intersect with the decrease of temperature. Both typical conventional and inverse MCE behavior were observed in Gd 2 CuSi 3 , which would be originated from the two transition features at the low temperatures

  13. Effect of Gd substitution on structure and spectroscopic properties of (Lu,Gd)2O3:Eu ceramic scintillator

    Science.gov (United States)

    Cao, Maoqing; Hu, Zewang; Ivanov, Maxim; Dai, Jiawei; Li, Chaoyu; Kou, Huamin; Shi, Yun; Chen, Haohong; Xu, Jiayue; Pan, Yubai; Li, Jiang

    2018-02-01

    In this paper, (Lu1-xGdx)2O3:Eu (x = 0, 0.1, 0.3, 0.5, 0.7, 0.9) ceramics were consolidated by the solid-state reaction method combined with vacuum sintering without sintering aids. We investigated the effect of the varying contents of Gd2O3 on the structure and spectroscopic properties of (Lu1-xGdx)2O3:Eu ceramics. X-ray diffraction (XRD) patterns indicate that proper amount of Gd2O3 can incorporate well with Lu2O3 and form Lu2O3-Gd2O3 solid solution. However, excessive Gd3+-doping in Lu2O3 will lead to the cubic phase transforming into monoclinic even hexagonal phase. The Gd3+ substitution no more than 50% of Lu2O3 enhances the radioluminescence, and reduces the fluorescence lifetime. Transmittance, photoluminescence, and radiation damage of the (Lu1-xGdx)2O3:Eu scintillation ceramics were also studied.

  14. Oriented monolayer film of Gd2O3:0.05 Eu crystallites: quasi-topotactic transformation of the hydroxide film and drastic enhancement of photoluminescence properties.

    Science.gov (United States)

    Hu, Linfeng; Ma, Renzhi; Ozawa, Tadashi C; Sasaki, Takayoshi

    2009-01-01

    Caught on film: A semitransparent and intensely luminescent monolayer film of oriented Gd(2)O(3):0.05 Eu platelet crystallites is fabricated by annealing the precursor hydroxide film (see scheme). The photoluminescence properties of the as-transformed film are greatly improved over those of the hydroxide film, and are much more pronounced than those of the corresponding Gd(2)O(3):0.05 Eu powder.

  15. Evaluating the radiation detection of the RbGd 2Br 7:Ce scintillator by Monte Carlo methods

    Science.gov (United States)

    Liaparinos, Panagiotis; Kandarakis, Ioannis; Cavouras, Dionisis; Delis, Harry; Panayiotakis, George

    2006-12-01

    The purpose of this study was to investigate the radiation detection efficiency of the recently introduced RbGd 2Br 7:Ce (RGB) scintillator material by a custom developed Monte Carlo simulation code. Considering its fast principal decay constant (45 ns) and its high light yield (56 000 photons/MeV), RbGd 2Br 7:Ce appears to be a quite promising scintillator for applications in nuclear medical imaging systems. In this work, gamma-ray interactions, within the scintillator mass were studied. In addition, the effect of K-characteristic fluorescence radiation emission, re-absorption or escape, as well as the effect of scattering events on the spatial distribution of absorbed energy was examined. Various scintillator crystal thicknesses (5-25 mm), used in positron emission imaging, were considered to be irradiated by 511 keV photons. Similar simulations were performed on the well known Lu 2SiO 5:Ce (LSO) scintillator for comparison purposes. Simulation results allowed the determination of the quantum detection efficiency as well as the fraction of the energy absorbed due to the K-characteristic radiation. Results were obtained as a function of scintillator crystal thickness. The Lu 2SiO 5:Ce scintillator material showed to exhibit better radiation absorption properties in comparison with RbGd 2Br 7:Ce. However, RGB showed to be less affected by the production of K-characteristic radiation. Taking into account its very short decay time and its high light yield, this material could be considered to be employed in positron imaging (PET) detectors.

  16. Impact of Gd2O3 passivation layer on interfacial and electrical properties of atomic-layer-deposited ZrO2 gate dielectric on GaAs

    Science.gov (United States)

    Gong, Youpin; Zhai, Haifa; Liu, Xiaojie; Kong, Jizhou; Wu, Di; Li, Aidong

    2014-02-01

    ZrO2 gate dielectric films were fabricated on n-GaAs substrates by atomic layer deposition (ALD), using metal organic chemical vapor deposition (MOCVD)-derived ultrathin Gd2O3 film as interfacial control layer between ZrO2 and n-GaAs. The interfacial structure, capacitance-voltage and current-voltage properties of ZrO2/n-GaAs and ZrO2/Gd2O3/n-GaAs metal-oxide-semiconductor (MOS) capacitors have been investigated. The introduction of an ultrathin Gd2O3 control layer can effectively suppress the formation of As oxides and high valence Ga oxide at the high k/GaAs interface which evidently improved the electrical properties of GaAs-based MOS capacitors, such as higher accumulation capacitance and lower leakage current density. It was found that the current conduction mechanism of MOS capacitors varied from Poole-Frenkel emission to Schottky-Richardson emission after introducing the thin Gd2O3 layer. The band alignments of interfaces for ZrO2/GaAs and ZrO2/Gd2O3/GaAs were established, which indicates that the conduction band offset (CBO) for ZrO2/GaAs and ZrO2/Gd2O3/GaAs stacks are ˜1.45 and ˜1.62 eV, correspondingly.

  17. Some device implications of voltage controlled magnetic anisotropy in Co/Gd2O3 thin films through REDOX chemistry

    Science.gov (United States)

    Hao, Guanhua; Noviasky, Nicholas; Cao, Shi; Sabirianov, Ildar; Yin, Yuewei; Ilie, Carolina C.; Kirianov, Eugene; Sharma, Nishtha; Sokolov, Andrei; Marshall, Andrew; Xu, Xiaoshan; Dowben, Peter A.

    2018-04-01

    The effect of intermediate interfacial oxidation on the in-plane magnetization of multilayer stack Pt/Co/Gd2O3, on a p-type silicon substrate, has been investigated by magneto-optical Kerr effect (MOKE) measurements, the anomalous Hall effect, and magnetoresistance measurements. While voltage controlled perpendicular magnetic anisotropy of a metal/oxide heterostructure is known, this heterostructure displays an inverse relationship between voltage and coercivity. The anomalous Hall effect demonstrates a significant change in hysteresis, with the applied bias sign. There is a higher perpendicular magnetic anisotropy with positive bias exposure.

  18. Magnetic nanoparticles induced dielectric enhancement in (La, Gd)2O3: SiO2 composite systems

    Science.gov (United States)

    Kao, T. H.; Mukherjee, S.; Yang, H. D.

    2013-11-01

    Magnetic Gd2O3 and non-magnetic La2O3 nanoparticles (NPs) have been synthesized together with different doping concentrations in SiO2 matrix via sol-gel route calcination at 700 °C and above. Properly annealed NP-glass composite systems show enhancement of dielectric constant and magnetodielectric effect (MDE) near room temperature, depending on superparamagnetic NPs concentrations. From application point of view, the enhancement of dielectric constant along with MDE can be achieved by tuning the NPs size through varying calcination temperature and/or increasing the doping concentration of magnetic rare earth oxide.

  19. Solid state reaction synthesis and luminescence properties of Dy3+-doped Gd2Mo3O9 phosphor

    International Nuclear Information System (INIS)

    Zhang Lihui; Zhong Haiyang; Li Xiangping; Cheng Lihong; Yao Li; Sun Jiashi; Zhang Jinsu; Hua Ruinian; Chen Baojiu

    2012-01-01

    Gd 2 Mo 3 O 9 phosphors with various Dy 3+ concentrations were synthesized by a traditional solid-state reaction using Na 2 CO 3 as a flux. The influence of reaction temperature and Dy 3+ -doping concentration on the crystal structure of the phosphors was examined by XRD (X-ray diffraction). The effect of Dy 3+ -doping concentration on the emissions of Mo–O bond and Dy 3+ was experimentally investigated. The energy transfers between host and Dy 3+ ions, and between Dy 3+ ions were analyzed based on both the Van Uitert and I-H models. The chromatic properties of the phosphors were also discussed.

  20. High-temperature mass spectrometric study of the vaporization processes and thermodynamic properties in the Gd2O3-Y2O3-HfO2system.

    Science.gov (United States)

    Kablov, Eugene N; Stolyarova, Valentina L; Lopatin, Sergey I; Vorozhtcov, Viktor A; Karachevtsev, Fedor N; Folomeikin, Yuriy I

    2017-07-15

    The refractory properties of the Gd 2 O 3 -Y 2 O 3 -HfO 2 system are considered promising for the production of many high-temperature materials, e.g., thermal barrier coatings and casting molds for gas turbine engine blades. At high temperatures, components of the Gd 2 O 3 -Y 2 O 3 -HfO 2 system may vaporize selectively and this may significantly change the physicochemical properties of the materials. Therefore, information on vaporization processes and thermodynamic properties of the Gd 2 O 3 -Y 2 O 3 -HfO 2 system is of great importance. The vaporization processes and thermodynamic properties of the Gd 2 O 3 -Y 2 O 3 -HfO 2 system were studied using high-temperature Knudsen effusion mass spectrometry with a MS-1301 mass spectrometer. Vaporization was carried out using a tungsten twin effusion cell containing the samples under study and pure Gd 2 O 3 as a reference substance. Electron ionization at an energy of 25 eV was employed in the present study. It was shown that at a temperature of 2500 K the vapor over the samples in the Gd 2 O 3 -Y 2 O 3 -HfO 2 system consisted of the GdO, YO and O vapor species. The Gd 2 O 3 and Y 2 O 3 activities in the samples in the Gd 2 O 3 -Y 2 O 3 -HfO 2 system as well as their vaporization rates were derived from the partial pressures of the vapor species. Using these data the HfO 2 activities, the Gibbs energy of mixing and the excess Gibbs energy in this system were calculated at 2500 K. The thermodynamic properties of the Gd 2 O 3 -Y 2 O 3 -HfO 2 system, i.e., the component activities in the samples and the excess Gibbs energy, obtained in the present study at 2500 K, exhibited negative deviations from ideal behavior. The concentration dependence of excess Gibbs energy of the Gd 2 O 3 -Y 2 O 3 -HfO 2 system was approximated with an empirical equation. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  1. Initial stages of ion beam-induced phase transformations in Gd2O3 and Lu2O3

    Science.gov (United States)

    Chen, Chien-Hung; Tracy, Cameron L.; Wang, Chenxu; Lang, Maik; Ewing, Rodney C.

    2018-02-01

    The atomic-scale evolution of lanthanide sesquioxides Gd2O3 and Lu2O3 irradiated with 1 MeV Kr ions at room temperature and 120 K, up to fluences of 1 × 1016 ions/cm2 (˜20 dpa), has been characterized by in situ transmission electron microscopy. At room temperature, both oxides exhibited high radiation tolerance. Irradiation did not cause any observable structural change in either material, likely due to the mobility of irradiation-induced point defects, causing efficient defect annihilation. For Gd2O3, having the larger cation ionic radius of the two materials, an irradiation-induced stacking fault structure appeared at low fluences in the low temperature irradiation. As compared with the cubic-to-monoclinic phase transformations known to result from higher energy (˜GeV) ion irradiation, Kr ions of lower energies (˜MeV) yield much lower rates of damage accumulation and thus less extensive structural modification. At a fluence of 2.5 × 1015 ions/cm2, only the initial stages of the cubic-to-monoclinic (C to B) phase transformation process, consisting of the formation and aggregation of defects, have been observed.

  2. Fast crystallization of amorphous Gd2Zr2O7 induced by thermally activated electron-beam irradiation

    Science.gov (United States)

    Huang, Zhangyi; Qi, Jianqi; Zhou, Li; Feng, Zhao; Yu, Xiaohe; Gong, Yichao; Yang, Mao; Shi, Qiwu; Wei, Nian; Lu, Tiecheng

    2015-12-01

    We investigate the ionization and displacement effects of an electron-beam (e-beam) on amorphous Gd2Zr2O7 synthesized by the co-precipitation and calcination methods. The as-received amorphous specimens were irradiated under electron beams at different energies (80 keV, 120 keV, and 2 MeV) and then characterized by X-ray diffraction and transmission electron microscopy. A metastable fluorite phase was observed in nanocrystalline Gd2Zr2O7 and is proposed to arise from the relatively lower surface and interface energy compared with the pyrochlore phase. Fast crystallization could be induced by 120 keV e-beam irradiation (beam current = 0.47 mA/cm2). The crystallization occurred on the nanoscale upon ionization irradiation at 400 °C after a dose of less than 1017 electrons/cm2. Under e-beam irradiation, the activation energy for the grain growth process was approximately 10 kJ/mol, but the activation energy was 135 kJ/mol by calcination in a furnace. The thermally activated ionization process was considered the fast crystallization mechanism.

  3. Scintillation properties and X-ray irradiation hardness of Ce3+-doped Gd2O3-based scintillation glass

    International Nuclear Information System (INIS)

    Liu, Liwan; Shao, Chongyun; Zhang, Yu; Liao, Xili; Yang, Qiuhong; Hu, Lili; Chen, Danping

    2016-01-01

    Ce 3+ -doped Gd 2 O 3 -based scintillation glasses are prepared within an air or CO atmosphere. The effects of fluorine, lutetium, barium, and the melting atmosphere on the optical properties, scintillation properties and irradiation hardness are studied. Absorption spectra, luminescence spectra under UV and X-ray excitation, and the X-ray radiation-induced spectra are presented. The results show that the density can be increased by doping with fluorine, lutetium and barium. The luminescence intensity decreases after X-ray irradiation. Because of charge transfer quenching, fluorine and lutetium enhance the UV-excited and X-ray excited luminescence intensity, but barium decreases. Moreover, fluorine and lutetium are advantageous to irradiation hardness while barium is not. In addition, a non-reducing atmosphere provides a higher irradiation hardness than a reducing atmosphere. Fluorine-doped glass is promising to enhance luminescence intensity, promote irradiation hardness, and increase the density.

  4. Mössbauer spectroscopy study of magnetic fluctuations in superconducting RbGd2Fe4As4O2

    Science.gov (United States)

    Li, Y.; Wang, Z. C.; Cao, G. H.; Zhang, J. M.; Zhang, B.; Wang, T.; Pang, H.; Li, F. S.; Li, Z. W.

    2018-05-01

    57Fe Mössbauer spectra were measured at different temperatures between 5.9 K and 300 K on the recently discovered self-doped superconducting RbGd2Fe4As4O2 with Tc as high as 35 K. Singlet pattern was observed down to the lowest temperature measured in this work, indicating the absence of static magnetic order on the Fe site. The intermediate isomer shift in comparison with that of the samples RbFe2As2 and GdFeAsO confirms the self doping induced local electronic structure change. Surprisingly, we observe two magnetic fluctuation induced spectral broadenings below ∼ 15 K and ∼ 100 K which are believed to be originated from the transferred magnetic fluctuations of the Gd3+ moments and that of the magnetic fluctuations of the Fe atoms, respectively.

  5. Synthesis and electrical properties of the pyrochlore-type Gd2-yLayZr2O7 solid solution

    Directory of Open Access Journals (Sweden)

    León, C.

    2008-06-01

    Full Text Available Different compositions in the pyrochlore-type Gd2-yLayZr2O7 solid solution (0 ≤ y ≤ 1 were prepared at room-temperature by mechanically milling stoichiometric mixtures of the corresponding oxides. Irrespective of their lanthanum content, as-prepared powder samples consist of single-phase anion deficient fluorite materials, although long-range ordering of cations and anion vacancies characteristic of pyrochlores was observed in all cases after firing the samples at 1500°C. Interestingly, activation energy for oxygen migration in the series decreases as La-content increases, from 1.13 eV for Gd2Zr2O7 to 0.81 eV for GdLaZr2O7, whereas ionic conductivity was found to be almost La-content independent, at least for y ≤ 0.8 at T = 500°C and y ≤ 0.4 at T = 800°C. These results are explained in terms of weaker ion-ion interactions in better ordered structures (i.e., as La-content increases and highlight the importance of structural ordering/disordering in determining the dynamics of mobile oxygen ions.Partiendo de mezclas estequiométricas de los óxidos correspondientes, se prepararon por molienda mecánica y a temperatura ambiente diferentes composiciones en la solución sólida Gd2-yLayZr2O7 (0 ≤ y ≤ 1 con estructura de tipo pirocloro y conductora de iones oxígeno. Independientemente del contenido de lantano, los polvos extraídos del molino presentaron difractogramas similares al de una fluorita no estequiométrica aunque en todos los casos, el tratamiento térmico a 1500°C indujo la aparición del ordenamiento de largo alcance de cationes y vacancias aniónicas característico de pirocloros. La energía de activación para el proceso de migración de iones oxígeno en la serie disminuye a medida que se incrementa el contenido de lantano, desde 1.13 eV de Gd2Zr2O7 hasta 0.81 eV de GdLaZr2O7, mientras que la conductividad resultó ser prácticamente independiente del mismo hasta y ≤ 0.8 para T = 500°C e y ≤ 0.4 para T = 800

  6. Synthesis and characterization of Gd 2O 3:Eu 3+ phosphor nanoparticles by a sol-lyophilization technique

    Science.gov (United States)

    Louis, C.; Bazzi, R.; Flores, Marco A.; Zheng, W.; Lebbou, K.; Tillement, O.; Mercier, B.; Dujardin, C.; Perriat, P.

    2003-07-01

    The characterization and luminescence properties of nanostructured Gd 2O 3:Eu 3+ phosphors synthesized by a sol-lyophilization process are presented. After preparation of gadolinium-based sols from gadolinium nitrate and ammonium hydroxide, the so-prepared sols were freeze dried at -10°C and calcinated at different temperatures. For temperatures lower than 1300 K, highly crystalline samples with the cubic structure can be obtained without concomitant grain growth of the particles (<50 nm). The luminescence spectra contain all possible transitions of Eu 3+ with C2 symmetry and present two major features: an increase of the luminescence efficiencies of the phosphors in comparison with that obtained by solid-state reaction and the presence of an additional peak at about 609 nm at the vicinity of the 5D0→ 7F0…4 transition.

  7. Luminescence and light yield of (Gd2Y)(Ga3Al2)O12:Pr3+ single crystal scintillators

    Science.gov (United States)

    Lertloypanyachai, Prapon; Pathumrangsan, Nichakorn; Sreebunpeng, Krittiya; Pattanaboonmee, Nakarin; Chewpraditkul, Weerapong; Yoshikawa, Akira; Kamada, Kei; Nikl, Martin

    2017-06-01

    Praseodymium-doped (Gd2Y)(Ga3Al2)O12 (GYGAG: Pr) single crystals are grown by the micro-pulling down method with different Pr concentrations. The energy transfer process between Pr3+ and Gd3+ is investigated by photoluminescence excitation (PLE) and emission (PL) spectra measurements. Photoelectron yield measurements are carried out using photomultiplier. At 662 keV γ-rays, photoelectron yield of 2520 phe/MeV obtained for the GYGAG: Pr (0.01%) sample is larger than that of 1810 phe/MeV obtained for BGO crystal. Light yield degradation for the GYGAG: Pr scintillators is presumably due to the energy transfer from 5d state of Pr3+ to 4f state of Gd3+ together with the concentration quenching in the Gd3+-sublattice.

  8. Effect of annealing on the structural and electrical properties of Gd2O3/Si interface for MOS capacitors

    Science.gov (United States)

    Pattabi, Manjunatha; Thilipan, G. Arun Kumar

    2017-05-01

    The current investigation deals with the effect of post deposition annealing on the properties of Gadolinium oxide and its interface with silicon substrate. The films were deposited by radio-frequency magnetron sputtering and subsequently annealed in air and nitrogen ambient. Formation of interface layer was confirmed by fourier transform infrared (FTIR) spectroscopy and the variations in grain size were studied by powder X-ray diffraction (XRD). Capacitors with Gd2O3 film as a gate dielectric were fabricated using Al as the top electrode and the effect of interface layer in the flat band shift was examined. From this study, it was revealed that thermal annealing in nitrogen reduces oxide trap density and improves the device functionality by behaving as a barrier for oxygen diffusion.

  9. On improvement of scintillation characteristics of Gd2SiO5:Ce crystals by thermal treatment

    International Nuclear Information System (INIS)

    Bondar, Valery G.; Grinyov, Boris V.; Katrunov, Konstantin A.; Lisetski, Longin N.; Nagornaya, Lyudmila L.; Ryzhikov, Vladimir D.; Spasov, Vladimir G.; Starzhinskiy, Nikolai; Tamulaitis, Gintautas

    2005-01-01

    Effects of thermal treatment of Gd 2 SiO 5 :Ce crystals at T∼0.7T m under low pressure on their optical and scintillation properties were studied. It is shown that thermal treatment in the atmosphere with the chemical potential of ∼40 J mol -1 decreases the absorption in the UV region and substantially improves the crystal transparency in the region of intrinsic emission peaked at 427 nm.Narrowing of the emission band due to suppression of the long-wave component in the range of 520-560 nm, light output increase by 7-10%, decrease of the emission decay time, and improvement of thermal stability of the luminescence yield were also observed. Transformations of the ensemble of structural defects in cerium-activated gadolinium oxyorthosilicate crystals are under discussion

  10. Radial distribution of UO2 and Gd2O3 in fuel cells of a BWR Reactor

    International Nuclear Information System (INIS)

    Montes, J.L.; Ortiz, J.J.; Perusquia del C, R.; Francois, J.L.; Martin del Campo M, C.

    2008-01-01

    The fuel system that is used at the moment in a power plant based on power reactors BWR, includes as much like the one of its substantial parts to the distribution of the fissile materials like a distribution of burnt poisons within each one of the cells which they constitute the fuel assemblies, used for the energy generation. Reason why at the beginning of a new operation cycle in a reactor of this type, the reactivity of the nucleus should be compensated by the exhaustion of the assemblies that it moves away of the nucleus for their final disposition. This compensation is given by means of the introduction of the recharge fuel, starting from the UO 2 enriched in U 2 35, and of the Gadolinium (Gd 2 O 3 ). The distribution of these materials not only defines the requirements of energy generation, but in certain measures also the form in that the margins will behave to the limit them thermal during the operation of the reactor. These margins must be taken into account for the safe and efficient extraction of the energy of the fuel. In this work typical fuel cells appear that are obtained by means of the use of a emulation model of an ants colony. This model allows generating from a possible inventory of values of enrichment of U 2 35, as well as of concentration of Gadolinium a typical fuel cell, which consists of an arrangement of lOxlO rods, of which 92 contain U 2 35, some of these rods contain a concentration of Gd 2 O 3 and 8 of the total contain only water. The search of each cell finishes when the value of the Local Peak Power Factor (LPPF) in the cell reaches a minimal value, or when a pre established value of iterations is reached. The cell parameters are obtained from the results of the execution of the code HELIOS, which incorporates like a part integral of the search algorithm. (Author)

  11. Highly textured Gd2Zr2O7 films grown on textured Ni-5 at.%W substrates by solution deposition route: Growth, texture evolution, and microstructure dependency

    DEFF Research Database (Denmark)

    Yue, Zhao; Grivel, Jean-Claude; Napari, M.

    2012-01-01

    or crystallization in the thicker films. This work not only demonstrates a route for producing textured Gd2Zr2O7 buffer layers with dense structure directly on technical substrates, but also provides some fundamental understandings related to chemical solution derived films grown on metallic substrates.......Growth, texture evolution and microstructure dependency of solution derived Gd2Zr2O7 films deposited on textured Ni-5 at.%W substrates have been extensively studied. Influence of processing parameters, in particular annealing temperature and dwell time, as well as thickness effect on film texture...... the difference of interfacial energy along two directions in the anisotropic metallic substrate. Growth of Gd2Zr2O7 films displays an ultrafast kinetics under optimized conditions. Independency of sharp epitaxial (004) and polycrystalline (222) orientation is revealed from further synchrotron diffraction studies...

  12. Extracellular biosynthesis of gadolinium oxide (Gd2O3 nanoparticles, their biodistribution and bioconjugation with the chemically modified anticancer drug taxol

    Directory of Open Access Journals (Sweden)

    Shadab Ali Khan

    2014-03-01

    Full Text Available As a part of our programme to develop nanobioconjugates for the treatment of cancer, we first synthesized extracellular, protein-capped, highly stable and well-dispersed gadolinium oxide (Gd2O3 nanoparticles by using thermophilic fungus Humicola sp. The biodistribution of the nanoparticles in rats was checked by radiolabelling with Tc-99m. Finally, these nanoparticles were bioconjugated with the chemically modified anticancer drug taxol with the aim of characterizing the role of this bioconjugate in the treatment of cancer. The biosynthesized Gd2O3 nanoparticles were characterized by UV–vis spectroscopy, transmission electron microscopy (TEM, X-ray diffraction (XRD and X-ray photoemission spectroscopy (XPS. The Gd2O3–taxol bioconjugate was confirmed by UV–vis spectroscopy and fluorescence microscopy and was purified by using high performance liquid chromatography (HPLC.

  13. Production, characterization and application of Gd2O3 and Er2O3 nanoparticles as radiosensitizers in radiotherapy beams

    International Nuclear Information System (INIS)

    Corrêa, Eduardo de Lima

    2017-01-01

    In this study Gd 2 O 3 and Er 2 O 3 nanoparticles were produced for application as radiosensitizers in radiotherapy beams. They were synthesized at the Hyperfine Interactions Laboratory, IPEN, using thermal decomposition method and characterized by X-ray diffraction, to verify crystalline structure, transmission electron microscopy, to obtain information about shape, size and size distribution, neutron activation analysis, whereby it was possible to determine samples purity and gadolinium and erbium concentration. Magnetization and perturbed γ-γ angular correlation (PAC) measurements were performed in order to study particles magnetic behavior and quadrupole interactions, respectively. Characterization results showed a bixbyite structure, 5 nm diameter post-synthesis particles with narrow size distribution. Rare-earth mass determination in each sample was important to perform normalization in magnetic susceptibility measurements, making possible the view of a high magnetization under 30 K for post-synthesis samples, what was not observed in larger particles, together with an effective magnetic moment enhancement for nanoparticles, not seen in bulk samples, and a change in the antiferromagnetic ordering temperature for Er 2 O 3 . PAC spectroscopy results show possible surface effects. The absence of a well-defined frequency in 5 nm samples indicates the amount of 111 In( 111 Cd) at particle surface is bigger than in the core, resulting in a non-evident hyperfine interaction between the probe nuclei and the host. The X-ray diffraction and PAC spectroscopy joint was vital to understand the particles structural damage caused by 60 Co irradiation. About radiosensitizer measurements a dose enhancement factor (DEF) of up to 1,67 and 1,09 for Gd 2 O 3 nanoparticles under 60 Co and 6MV irradiation, respectively, were observed. Under same conditions DEF values of up to 1,37 and 1,06 were found for Er 2 O 3 samples. Results reached in this study provide not only important

  14. The risk assessment of Gd2O3:Yb3+/Er3+ nanocomposites as dual-modal nanoprobes for magnetic and fluorescence imaging

    Science.gov (United States)

    Huang, Long; Tian, Xiumei; Liu, Jun; Zheng, Cunjing; Xie, Fukang; Li, Li

    2017-02-01

    Our group has synthesized Gd2O3:Yb3+/Er3+ nanocomposites as magnetic/fluorescence imaging successfully in the previous study, which exhibit good uniformity and monodispersibility with a mean size of 7.4 nm. However, their systematic risk assessment remains unknown. In this article, the in vitro biocompatibility of the Gd2O3:Yb3+/Er3+ was assessed on the basis of cell viability and apoptosis. In vivo immunotoxicity was evaluated by monitoring the product of reactive oxygen species (ROS), clusters of differentiation (CD) markers, and superoxide dismutase (SOD) in Balb/c mice. No significant differences were found in cell viability, apoptosis, and immunotoxicity between our Gd2O3:Yb3+/Er3+ and gadodiamide which are used commonly in clinical. Few nanoprobes were localized in the phagosomes of the liver, heart, lung, spleen, kidney, brain, and tumor under the transmission electron microscopy (TEM) images. In addition, our products reveal good T1-weighted contrast enhancement of xenografted murine tumor. Therefore, the above results may contribute to the effective application of Gd2O3:Yb3+/Er3+ as molecular imaging contrast agents and dual-modal nanoprobes for cancer detection.

  15. Synthesis of Uniform Rare Earth Doped Gd2O2S Sub-micron Sized Spheres Using Gas-Aided Sulfurization and their Optical Characteristics.

    Science.gov (United States)

    He, Shuqing; Zhao, Xinyu; Tan, Mei Chee

    2017-01-01

    In this work, we report a detailed study of the synthesis of sub-micron sized Gd 2 O 2 S spheres using a two-step process: (1) amorphous precursor synthesis using the solvothermal method where a surfactant was used to control particle morphology, followed by (2) crystallization to form Gd 2 O 2 S polycrystalline spheres in a sulfur-rich environment. The crystallization and sulfurization processes are investigated by monitoring the crystal growth at different temperatures and under different environments using mainly x-ray diffraction and analysis of the precursor's thermal decomposition profile. The optical emissions of the Er and Yb-Er doped Gd 2 O 2 S upon excitation at 975 nm were investigated to identify the optimal dopant concentrations, optimal heat treatment temperature as well as to further elucidate any fine structure changes. Our results also show that the maximum emission intensities were obtained for a heat treatment temperature of 800 °C, where increased dopant diffusion coupled with non-uniform surface segregation at much higher temperatures led to non-uniform dopant distribution and reduced emission intensities. Our findings from these studies would be useful towards the synthesis of brightly-emitting Gd 2 O 2 S based luminescent materials as well as for the controlled gas-aided sulfurization of other metal oxysulfides.

  16. The risk assessment of Gd2O3:Yb3+/Er3+ nanocomposites as dual-modal nanoprobes for magnetic and fluorescence imaging

    International Nuclear Information System (INIS)

    Huang, Long; Tian, Xiumei; Liu, Jun; Zheng, Cunjing; Xie, Fukang; Li, Li

    2017-01-01

    Our group has synthesized Gd 2 O 3 :Yb 3+ /Er 3+ nanocomposites as magnetic/fluorescence imaging successfully in the previous study, which exhibit good uniformity and monodispersibility with a mean size of 7.4 nm. However, their systematic risk assessment remains unknown. In this article, the in vitro biocompatibility of the Gd 2 O 3 :Yb 3+ /Er 3+ was assessed on the basis of cell viability and apoptosis. In vivo immunotoxicity was evaluated by monitoring the product of reactive oxygen species (ROS), clusters of differentiation (CD) markers, and superoxide dismutase (SOD) in Balb/c mice. No significant differences were found in cell viability, apoptosis, and immunotoxicity between our Gd 2 O 3 :Yb 3+ /Er 3+ and gadodiamide which are used commonly in clinical. Few nanoprobes were localized in the phagosomes of the liver, heart, lung, spleen, kidney, brain, and tumor under the transmission electron microscopy (TEM) images. In addition, our products reveal good T 1 -weighted contrast enhancement of xenografted murine tumor. Therefore, the above results may contribute to the effective application of Gd 2 O 3 :Yb 3+ /Er 3+ as molecular imaging contrast agents and dual-modal nanoprobes for cancer detection.

  17. Raman, dielectric and variable range hopping nature of Gd2O3-doped K0.5N0.5NbO3 piezoelectric ceramics

    Directory of Open Access Journals (Sweden)

    Mahesh Peddigari

    2015-10-01

    Full Text Available (K0.5Na0.5NbO3 (KNN + x wt% Gd2O3 (x = 0 -1.5 ceramics have been prepared by conventional solid state reaction method. The effect of Gd2O3 on the structural, microstructural and dielectric properties of KNN ceramics were studied systematically. The effect of Gd2O3 on phase transformation from orthorhombic to psuedocubic structure is explained interms of changes in the internal vibration modes of NbO6 octahedra. The Raman intensity of the stretching mode v1 enhanced and shifted toward higher wavenumber with Gd2O3 concentration, which is attributed to the increase in polarizability and change in the O-Nb-O bond angles. Microstructural analysis revealed that the grain size of the KNN ceramics decreases from 2.26 ± 1.07 μm to 0.35 ± 0.13 μm and becomes homogenous with an increase in Gd2O3 concentration. The frequency dependent dielectric spectra are analyzed by using Havriliak-Negami function. The fitted symmetry parameter and relaxation time (τ are found to be 0.914 and 8.78 × 10−10 ± 5.5 × 10−11 s, respectively for the sample doped with x = 1.0. The addition of Gd2O3 to the KNN shifted the polymorphic phase transition orthorhombic to tetragonal transition temperature (TO-T from 199oC to 85oC with enhanced dielectric permittivity (ε′ = 1139 at 1 MHz. The sample with x = 1.0, shown a high dielectric permittivity (ε′ = 879 and low dielectric loss (<5% in the broad temperature range (-140oC – 150oC with the Curie temperature 307 oC can have the potential for high temperature piezoelectric and tunable RF circuit applications. The temperature dependent AC-conductivity follows the variable range hopping conduction mechanism by obtaining the slope -0.25 from the ln[ln(ρac] versus ln(T graph in the temperature range of 133 K-308 K. The effect of Gd2O3 on the Mott’s parameters such as density of states (N(EF, hopping length (RH, and hopping energy (WH have been discussed.

  18. Growth and characterization of Nd-doped disordered Ca3Gd2(BO3)4 crystal

    Science.gov (United States)

    Pan, Z. B.; Zhang, H. J.; Yu, H. H.; Xu, M.; Zhang, Y. Y.; Sun, S. Q.; Wang, J. Y.; Wang, Q.; Wei, Z. Y.; Zhang, Z. G.

    2012-01-01

    A high-quality disordered Nd3+:Ca3Gd2(BO3)4 (Nd3+:CGB) laser crystal was grown by the Czochralski method. The space group and effective segregation coefficient of Nd3+ were determined to be Pnma and 1.06, respectively. The thermal properties, including the average linear thermal expansion coefficient, thermal diffusivity, specific heat, and thermal conductivity were systematically measured for the first time. It was found that the thermal conductivity increases with increasing temperature, indicating glasslike behavior. The polarized spectral properties of the crystal were investigated, including the polarized absorption spectra, polarized fluorescence spectra, and fluorescence decay. The spectroscopic parameters of Nd3+ ions in Nd3+:CGB crystal have been obtained based on Judd-Ofelt theory. The anisotropy of the spectral properties for different polarized directions was discussed. Additionally, the continuous-wave (CW) laser performance at 1.06 μm was demonstrated for the first time. The maximum output power of 603 mW was achieved with corresponding optical conversion efficiency of 8.33% and slope efficiency of 9.95%.

  19. High temperature X-ray diffraction studies on HfO2-Gd2O3 system

    International Nuclear Information System (INIS)

    Panneerselvam, G.; Antony, M.P.; Ananthasivan, K.; Joseph, M.

    2016-01-01

    High temperature X-ray diffraction (HTXRD) technique is an important experimental tool for measuring thermal expansion of materials of interest. A series of solid solutions containing GdO 1.5 in HfO 2 ,Hf 1-y Gd y )O 2 (y = 0.15, 0.2, 0.3, 0.41 and 0.505) were prepared by solid state method. Structural characterization and computation of lattice parameter was carried out by using room temperature X-ray diffraction measurements. The room temperature lattice parameter estimated for (Hf 1-y Gd y )O 2 (y=0.15, 0.2, 0.3, 0.41 and 0.505) are 0.51714 nm, 0.51929 nm, 0.52359nm, 0.52789nm and 0.53241 nm, respectively. Thermal expansion coefficients and percentage linear thermal expansion of the HfO 2 -Gd 2 O 3 solid solutions containing 20 and 41 mol% GdO 1.5 were determined using HTXRD in the temperature range 298 to 1673K. The mean linear thermal expansion coefficients of the solid solutions containing 20 and 41 mol. %Gd are 11.65 x 10 -6 K -1 and 12.07 x 10 -6 K -1 , respectively. (author)

  20. The sintering blocking mechanism on the UO2-GD2O3 system. Part 1: the hypothesis of diffusion barrier

    International Nuclear Information System (INIS)

    Durazzo, M.; Frajndlich, E.U.C.; Riella, H.G.; Leal Neto, R.M.

    2004-01-01

    The direct incorporation of gadolinium into nuclear power reactor fuel is important to the reactivity compensation and adjustment of power distribution thus enabling longer fuel cycles and optimized fuel utilization. Dry mechanical blending of Gd 2 O 3 and UO 2 powders is commercially the most attractive process route due to its simplicity. Nevertheless, processing by this route leads to difficulties in getting sintered pellets with the minimum required density due to a sintering blocking mechanism. Regarding this, there s little published information and the explanations are focused on the formation of a low diffusivity Gd-rich (U, Gd)O 2 phase during sintering process which decreases pellets density. An attempt to understand the mechanism for this effect was done in this work. Experimental evidences indicated the existence of phases in the (U, Gd)O 2 system with structure different from the fluorite-type UO 2 structure. These new phases were found for Gd molar fractions higher than 0,5, which coincide with the lowering of both the sintered density and the interdiffusion coefficient. However, it has been also shown that these new phases cannot be itself the cause for the density decrease observed. (author)

  1. Association of Anti-GT1a Antibodies with an Outbreak of Guillain-Barré Syndrome and Analysis of Ganglioside Mimicry in an Associated Campylobacter jejuni Strain.

    Directory of Open Access Journals (Sweden)

    Maojun Zhang

    Full Text Available An outbreak of Guillain-Barré syndrome (GBS, subsequent to Campylobacter jejuni enteritis, occurred in China in 2007. Serum anti-ganglioside antibodies were measured in GBS patients and controls. Genome sequencing was used to determine the phylogenetic relationship among three C. jejuni strains from a patient with GBS (ICDCCJ07001, a patient with gastroenteritis (ICDCCJ07002 and a healthy carrier (ICDCCJ07004, which were all associated with the outbreak. The ganglioside-like structures of the lipo-oligosaccharides of these strains were determined by mass spectrometry. Seventeen (53% of the GBS patients had anti-GT1a IgG antibodies. GT1a mimicry was found in the lipo-oligosaccharides of strain ICDCCJ07002 and ICDCCJ07004; but a combination of GM3/GD3 mimics was observed in ICDCCJ07001, although this patient had anti-GT1a IgG antibodies. A single-base deletion in a glycosyltransferase gene caused the absence of GT1a mimicry in ICDCCJ07001. The phylogenetic tree showed that ICDCCJ07002 and ICDCCJ07004 were genetically closer to each other than to ICDCCJ07001. C. jejuni, bearing a GT1a-like lipo-oligosaccharide, might have caused the GBS outbreak and the loss of GT1a mimicry may have helped ICDCCJ07001 to survive in the host.

  2. Surface defects on the Gd2Zr2O7 oxide films grown on textured NiW technical substrates by chemical solution method

    DEFF Research Database (Denmark)

    Zhao, Y.; Opata, Yuri Aparecido; Wu, W.

    2017-01-01

    Epitaxial growth of oxide thin films has attracted much interest because of their broad applications in various fields. In this study, we investigated the microstructure of textured Gd2Zr2O7 films grown on (001)〈100〉 orientated NiW alloy substrates by a chemical solution deposition (CSD) method...... showed that the Gd2Zr2O7 grains present within the regular-shaped regions are polycrystalline, whereas those present in the surrounding are epitaxial. Some polycrystalline regions ranging from several micrometers to several tens of micrometers grew across the NiW grain boundaries underneath...... of chemical reaction path to enhance the stability and homogeneity of the precursors of the CSD route....

  3. High resolution Brillouin scattering studies of β-Gd2(MoO4)3; the bulk and surface phase transitions

    International Nuclear Information System (INIS)

    Mielcarek, S; Trzaskowska, A; Mroz, B; Andrews, T

    2005-01-01

    We present here results of Brillouin scattering from bulk and surface phonons propagating in a well known ferroelectric-ferroelastic crystal β-Gd 2 (MoO 4 ) 3 , in the temperature range covering the phase transition. Temperature dependences of the velocity of Rayleigh surface acoustic waves, propagating in a few planes of this crystal, have been calculated. The surface phonon velocities determined experimentally have been found to show a different character of temperature dependences, especially in the phase transition range

  4. UO2-7%Gd2O3 fuel process development by mechanical blending with reprocessing of waste products and usage of densification additive

    International Nuclear Information System (INIS)

    Santos, Lauro Roberto dos

    2009-01-01

    In the nuclear fuel cycle, reprocessing and storage of 'burned' fuels, either temporary or permanent, demand high investments and, in addition, can potentially generate environmental problems. A strategy to decrease these problems is to adopt measures to reduce the amount of waste generated. The usage of integrated burnable poison based on gadolinium is a measure that contributes to achieve this goal. The reason to use burnable poison is to control the neutron population in the reactor during the early life of the fresh reactor core or the beginning of each recharging fuel cycle, extending its cycle duration. Another advantage of using burnable poison is to be able to operate the reactor with higher burning rate, optimizing the usage of the fuel. The process of manufacturing UO 2 -Gd 2 O 3 integrated burnable fuel poison generates waste that, as much as possible, needs to be recycled. Blending of Gd 2 O 3 in UO 2 powder requires the usage of a special additive to achieve the final fuel pellet specified density. The objective of this work is to develop the process of obtaining UO 2 - 7% Gd 2 O 3 integrated burnable poison using densification additives, aluminum hydroxide (Al(OH)3), and reprocessing manufacturing waste products by mechanical blending. The content of 7%- Gd 2 O 3 is based on commercial PWR reactor fuels - Type Angra 2. The results show that the usage of Al(OH) 3 as an additive is a very effective choice that promotes the densification of fuel pellets with recycle up to 10%. Concentrations of 0,20 % of Al(OH) 3 were found to be the indicated amount on an 7 industrial scale, specially when the recycled products come from U 3 O 8 obtained by calcination of sintered pellets. This is particularly interesting because it is following the steps of sintering and rectifying of the pellets, which is generating the largest amounts of recycled material. (author)

  5. Passivation of the surfaces of single crystal gadolinium molybdate (Gd2(MoO4)3) against attack by hydrofluoric acid by inert ion beam irradiation

    International Nuclear Information System (INIS)

    Bhalla, A.; Cross, L.E.; Tongson, L.

    1978-01-01

    The passivation effect from inert ion beam bombardment has been studied on a ferroelectric surface. The mechanism in these materials may have some additional contributions because of the polarization charges of the domains and the dipole effect (ion beam and surface species) on the surfaces. For these studies Gd 2 (MoO 4 ) 3 (GMO) crystals were selected. Two possible mechanisms of passivation of GMO surfaces when bombarded with ion beams are discussed

  6. Calculation of the expected zero-field muon relaxation rate in the geometrically frustrated rare earth pyrochlore Gd(2)Sn(2)O(7) antiferromagnet.

    Science.gov (United States)

    McClarty, P A; Cosman, J N; Del Maestro, A G; Gingras, M J P

    2011-04-27

    The magnetic insulator Gd(2)Sn(2)O(7) is one of many geometrically frustrated magnetic materials known to exhibit a nonzero muon spin polarization relaxation rate, λ(T), down to the lowest temperature (T) studied. Such behaviour is typically interpreted as signalling the presence of persistent spin dynamics (PSD) of the host material. In the case of Gd(2)Sn(2)O(7), such PSD comes as a surprise since magnetic specific heat measurements suggest conventional gapped magnons, which would naively lead to an exponentially vanishing λ(T) as T → 0. In contrast to most materials that display PSD, the ordered phase of Gd(2)Sn(2)O(7) is well characterized and both the nature and the magnitude of the interactions have been inferred from the magnetic structure and the temperature dependence of the magnetic specific heat. Based on this understanding, the temperature dependence of the muon spin polarization relaxation through the scattering of spin waves (magnons) is calculated. The result explicitly shows that, despite the unusual extensive number of weakly dispersive (gapped) excitations characterizing Gd(2)Sn(2)O(7), a remnant of the zero modes of the parent frustrated pyrochlore Heisenberg antiferromagnet, the temperature dependence of the calculated λ(T) differs dramatically from the experimental one. Indeed, the calculation conforms to the naive expectation of an exponential collapse of λ(T) at temperatures below ∼ 0.7 K. This result, for the first time, illustrates crisply and quantitatively the paradox that presents itself with the pervasive occurrence of PSD in highly frustrated magnetic systems as evinced by muon spin relaxation measurements.

  7. UO2-7%Gd2O3 fuel process development by mechanical blending with reprocessing of waste products and usage of densification additive

    International Nuclear Information System (INIS)

    Santos, Lauro Roberto dos

    2009-01-01

    In the nuclear fuel cycle, reprocessing and storage of 'burned' fuels, either temporary or permanent, demand high investments and, in addition, can potentially generate environmental problems. A strategy to decrease these problems is to adopt measures to reduce the amount of waste generated. The usage of integrated burnable poison based on gadolinium is a measure that contributes to achieve this goal. The reason to use burnable poison is to control the neutron population in the reactor during the early life of the fresh reactor core or the beginning of each recharging fuel cycle, extending its cycle duration. Another advantage of using burnable poison is to be able to operate the reactor with higher burning rate, optimizing the usage of the fuel. The process of manufacturing UO 2 -Gd 2 O 3 integrated burnable fuel poison generates waste that, as much as possible, needs to be recycled. Blending of Gd 2 O 3 in UO 2 powder requires the usage of a special additive to achieve the final fuel pellet specified density. The objective of this work is to develop the process of obtaining UO 2 - 7% Gd 2 O 3 integrated burnable poison using densification additives, aluminum hydroxide (Al(OH) 3 ), and reprocessing manufacturing waste products by mechanical blending. The content of 7%- Gd 2 O 3 is based on commercial PWR reactor fuels - Type Angra 2. The results show that the usage of Al(OH) 3 as an additive is a very effective choice that promotes the densification of fuel pellets with recycle up to 10%. Concentrations of 0,20 % of Al(OH) 3 were found to be the indicated amount on an industrial scale, specially when the recycled products come from U 3 O 8 obtained by calcination of sintered pellets. This is particularly interesting because it is following the steps of sintering and rectifying of the pellets, which is generating the largest amounts of recycled material. (author)

  8. Obtenção de cerâmicas ferroelétricas de Gd2Mo3O12 e o puxamento de fibras monocristalinas

    Directory of Open Access Journals (Sweden)

    Ferrari C. R.

    2001-01-01

    Full Text Available Nesse trabalho abordamos a obtenção do material cerâmico Gd2Mo3O12 na sua fase beta, denominado beta-GMO, utilizando-se do método convencional de mistura de óxidos e reação do estado sólido. MoO3 e o Gd2O3 nas razões molares 3:1 e 3,25:1 foram usados como pós de partida. Cerâmicas sinterizadas foram usadas como pedestais e sementes na produção de fibras monocristalinas pela técnica Laser Heated Pedestal Growth- LHPG. A cerâmica com fase única Gd2Mo3O12 foi melhor obtida usando a razão molar 3:1 entre os pós de partida. Por outro lado, fibras cristalinas obtidas a partir de pedestais cerâmicos com excesso de MoO3 apresentaram melhor qualidade óptica e a estequiometria desejada.

  9. Engineering of Highly Susceptible Paramagnetic Nanostructures of Gd2S3:Eu3+: Potentially an Efficient Material for Room Temperature Gas Sensing Applications

    Directory of Open Access Journals (Sweden)

    Muhammed M. Radhi

    2010-11-01

    Full Text Available This research papers throws light into the compositional, morphological and structural properties of novel nanoparticles of Gd2S3:Eu3+ synthesized by a simple co-precipitation technique. Furthermore, we also prognosticate that this material could be useful for gas sensing applications at room temperature. Nanostructures formulation by this method resulted in the formation of orthorhombic crystal structure with primitive lattice having space group Pnma. The material characterizations are performed using X-ray diffraction (XRD, energy dispersive X-ray analysis (EDX, thermo-gravimetric analysis/differential thermal analysis (TGA/DTA and transmission electron microscope (TEM. The calculated crystallite sizes are ~ 2-5 nm and are in well accordance with the HRTEM results. EDX result confirms the presence and homogeneous distribution of Gd and Eu throughout the nanoparticle. The prepared nanoparticles exhibit strong paramagnetic nature with paramagnetic term, susceptibility c = 8.2 ´ 10-5 emg/g Gauss. TGA/DTA analysis shows 27 % weight loss with rise in temperature. The gas sensing capability of the prepared Gd2S3:Eu3+ magnetic nanoparticles are investigated using the amperometric method. These nanoparticles show good I-V characteristics with ideal semiconducting nature at room temperature with and without ammonia dose. The observed room temperature sensitivity with increasing dose of ammonia indicates applicability of Gd2S3 nanoparticles as room temperature ammonia sensors.

  10. Structural characterization of Er(3+),Yb(3+)-doped Gd2O3 phosphor, synthesized using the solid-state reaction method, and its luminescence behavior.

    Science.gov (United States)

    Tamrakar, Raunak Kumar; Bisen, D P; Brahme, Nameeta

    2016-02-01

    We report the synthesis and structural characterization of Er(3+),Yb(3+)-doped Gd2O3 phosphor. The sample was prepared using the conventional solid-state reaction method, which is the most suitable method for large-scale production. The prepared phosphor sample was characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), thermoluminescence (TL), photoluminescence (PL) and CIE techniques. For PL studies, the excitation and emission spectra of Gd2O3 phosphor doped with Er(3+) and Yb(3+) were recorded. The excitation spectrum was recorded at a wavelength of 551 nm and showed an intense peak at 276 nm. The emission spectrum was recorded at 276 nm excitation and showed peaks in all blue, green and red regions, which indicate that the prepared phosphor may act as a single host for white light-emitting diode (WLED) applications, as verified by International de I'Eclairage (CIE) techniques. From the XRD data, the calculated average crystallite size of Er(3+) and Yb(3+) -doped Gd2O3 phosphor is ~ 38 nm. A TL study was carried out for the phosphor using UV irradiation. The TL glow curve was recorded for UV, beta and gamma irradiations, and the kinetic parameters were also calculated. In addition, the trap parameters of the prepared phosphor were also studied using computerized glow curve deconvolution (CGCD). Copyright © 2015 John Wiley & Sons, Ltd.

  11. Influence of Er(3+) concentration on the photoluminescence characteristics and excitation mechanism of Gd2O3:Er(3+) phosphor synthesized via a solid-state reaction method.

    Science.gov (United States)

    Tamrakar, R K; Bisen, D P; Bramhe, N

    2015-08-01

    An Er(3+) -doped phosphor of Gd2O3(Gd2O3:Er(3+)) was prepared using a conventional solid-state reaction method. The structure and particle size were determined from X-ray powder diffraction measurements. The average particle size of the phosphor was in between 20 and 50 nm. The particle size and structure of the phosphor were further confirmed by transmission electron microscopy (TEM) analysis. Luminescence spectra were recorded under excitation wavelengths of 275, 380, 515 and 980 nm. The visible upconversion and downconversion luminescence spectra of the Gd2O3:Er(3+) phosphor were investigated as a function of Er(3+) ion concentration. The upconverted emission at 980 nm excitation shows enhanced red emission with respect to green emission as the dopant concentration increased. Similar results were observed for downconversion emission under 275 and 380 nm excitation wavelengths. The mechanisms responsible for populating the (4)S3/2 and (4)F9/2 levels, for green and red emissions, respectively, are different for different excitations and for different concentrations of Er(3+). Copyright © 2014 John Wiley & Sons, Ltd.

  12. Effect of Gd2O3 on the microstructure and thermal properties of nanostructured thermal barrier coatings fabricated by air plasma spraying

    Directory of Open Access Journals (Sweden)

    Yixiong Wang

    2016-08-01

    Full Text Available The nanostructured 4–8 mol% Gd2O3−4.5 mol% Y2O3-ZrO2 (4–8 mol% GdYSZ coatings were developed by the atmospheric plasma spraying technique. The microstructure and thermal properties of plasma-sprayed 4–8 mol% GdYSZ coatings were investigated. The experimental results indicate that typical microstructure of the as-sprayed coatings were consisted of melted zones, nano-zones, splats, nano-pores, high-volume spheroidal pores and micro-cracks. The porosity of the 4, 6 and 8 mol% GdYSZ coatings was about 9.3%, 11.7% and 13.3%, respectively. It was observed that the addition of gadolinia to the nano-YSZ could significantly reduce the thermal conductivity of nano-YSZ. The thermal conductivity of GdYSZ decreased with increasing Gd2O3 addition. And the reduction in thermal conductivity is mainly attributed to the addition of Gd2O3, which results in the increase in oxygen vacancies, lattice distortion and porosity.

  13. Radioimmunodetection of human melanoma tumor xenografts with human monoclonal antibodies

    International Nuclear Information System (INIS)

    Gomibuchi, Makoto; Saxton, R.E.; Lake, R.R.; Katano, Mitsuo; Irie, R.F.

    1986-01-01

    A human IgM monoclonal antibody has been established that defines a tumor-associated membrane antigen expressed on human melanoma cells. The antigen has been identified as the ganglioside GD2. In this paper, the authors describe the potential usefulness of the human monoclonal antibody for radioimaging. Nude mice bearing tumors derived from a human melanoma cell line were used as a model. Antibody activity was degradated significantly after labeling with 131 I by the use of a modified chloramine-T method. After testing various concentrations, labeled antibody of a specific activity of 2.8μCi/μg produced the best results. Balb/c nude mice bearing a GD2-positive M14 melanoma cell line were injected with 10-30μg of labeled antibody, and its radiolocalization in different organs and in the whole body were evaluated. The best tumor image was obtained on Day 6. The labeled antibody uptake ratio between tumor and muscle was 9.2:1; the ratio between tumor and liver was 1.4:1. These studies represent the first report of experimental tumor imaging with human monoclonal antibody. Human monoclonals will probably prove to be superior reagents for tumor imaging in melanoma patients if the problem of anti-body radiolysis is resolved. (author)

  14. Self-powdering and nonlinear optical domain structures in ferroelastic β'-Gd2(MoO4)3 crystals formed in glass

    International Nuclear Information System (INIS)

    Tsukada, Y.; Honma, T.; Komatsu, T.

    2009-01-01

    Ferroelastic β'-Gd 2 (MoO 4 ) 3 , (GMO), crystals are formed through the crystallization of 21.25Gd 2 O 3 -63.75MoO 3 -15B 2 O 3 glass (mol%), and two scientific curious phenomena are observed. (1) GMO crystals formed in the crystallization break into small pieces with a triangular prism or pyramid shape having a length of 50-500 μm spontaneously during the crystallizations in the inside of an electric furnace, not during the cooling in air after the crystallization. This phenomenon is called 'self-powdering phenomenon during crystallization' in this paper. (2) Each self-powdered GMO crystal grain shows a periodic domain structure with different refractive indices, and a spatially periodic second harmonic generation (SHG) depending on the domain structure is observed. It is proposed from polarized micro-Raman scattering spectra and the azimuthal dependence of second harmonic intensities that GMO crystals are oriented in each crystal grain and the orientation of (MoO 4 ) 2- tetrahedra in GMO crystals changes periodically due to spontaneous strains in ferroelastic GMO crystals. - Graphical abstract: This figure shows the polarized optical photograph at room temperature for a particle (piece) obtained by a heat treatment of the glass at 590 deg. C for 2 h in an electric furnace in air. This particle was obtained through the self-powdering behavior in the crystallization of glass. The periodic domain structure is observed. Ferroelastic β'-Gd 2 (MoO 4 ) 3 crystals are formed in the particle, and second harmonic generations are detected, depending on the domain structure.

  15. Synthesis and Characterization of Hollow Magnetic Alloy (GdNi2, Co5Gd Nanospheres Coated with Gd2O3

    Directory of Open Access Journals (Sweden)

    Wang Li

    2014-01-01

    Full Text Available Uniform magnetic hollow nanospheres (GdNi2, Co5Gd coated with Gd2O3 have been successfully prepared on a large scale via a urea-based homogeneous precipitation method using silica (SiO2 spheres as sacrificed templates, followed by subsequent heat treatment. Nitrogen sorption measurements and scanning electron microscope reveal that these hollow-structured magnetic nanospheres have the mesoporous shells that are composed of a large amount of uniform nanoparticles. After reduction treatment, these nanoparticles exhibit superparamagnetism that might have potential applications in medicine. Furthermore, the developed synthesis route may provide an important guidance for the preparation of other multifunctional hollow spherical materials.

  16. Response of Gd 2 Ti 2 O 7 and La 2 Ti 2 O 7 to swift-heavy ion irradiation and annealing

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sulgiye; Lang, Maik; Tracy, Cameron L.; Zhang, Jiaming; Zhang, Fuxiang; Trautmann, Christina; Rodriguez, Matias D.; Kluth, Patrick; Ewing, Rodney C.

    2015-07-01

    Swift heavy ion (2 GeV 181Ta) irradiation-induced amorphization and temperature-induced recrystallization of cubic pyrochlore Gd2Ti2O7 (Fd3¯m) are compared with the response of a compositionally-similar material with a monoclinic-layered perovskite-type structure, La2Ti2O7 (P21). The averaged electronic energy loss, dE/dx, was 37 keV/nm and 35 keV/nm in Gd2Ti2O7 and La2Ti2O7, respectively. Systematic analysis of the structural modifications was completed using transmission electron microscopy, synchrotron X-ray diffraction, Raman spectroscopy, and small-angle X-ray scattering. Increasing ion-induced amorphization with increasing ion fluence was evident in the X-ray diffraction patterns of both compositions by a reduction in the intensity of the diffraction maxima concurrent with the growth in intensity of a broad diffuse scattering halo. Transmission electron microscopy analysis showed complete amorphization within ion tracks (diameter: ~10 nm) for the perovskite-type material; whereas a concentric, core–shell morphology was evident in the ion tracks of the pyrochlore, with an outer shell of disordered yet still crystalline material with the fluorite structure surrounding an amorphous track core (diameter: ~9 nm). The radiation response of both titanate oxides with the same stoichiometry can be understood in terms of differences in their structures and compositions. While the radiation damage susceptibility of pyrochlore A2B2O7 materials decreases as a function of the cation radius ratio rA/rB, the current study correlates this behavior with the stability field of monoclinic structures, where rLa/rTi > rGd/rTi. Isochronal annealing experiments of the irradiated materials showed complete recrystallization of La2Ti2O7 at 775 °C and of Gd2Ti2O7 at 850 °C. The annealing behavior is discussed in terms of enhanced damage recovery in La2Ti2O7, compared to the pyrochlore compounds Gd2Ti2O7. The difference in the recrystallization behavior may be related to structural

  17. A simple polyol-free synthesis route to Gd2O3 nanoparticles for MRI applications: an experimental and theoretical study

    International Nuclear Information System (INIS)

    Ahrén, Maria; Selegård, Linnéa; Söderlind, Fredrik; Linares, Mathieu; Kauczor, Joanna; Norman, Patrick; Käll, Per-Olov; Uvdal, Kajsa

    2012-01-01

    Chelated gadolinium ions, e.g., Gd-DTPA, are today used clinically as contrast agents for magnetic resonance imaging (MRI). An attractive alternative contrast agent is composed of gadolinium oxide nanoparticles as they have shown to provide enhanced contrast and, in principle, more straightforward molecular capping possibilities. In this study, we report a new, simple, and polyol-free way of synthesizing 4–5-nm-sized Gd 2 O 3 nanoparticles at room temperature, with high stability and water solubility. The nanoparticles induce high-proton relaxivity compared to Gd-DTPA showing r 1 and r 2 values almost as high as those for free Gd 3+ ions in water. The Gd 2 O 3 nanoparticles are capped with acetate and carbonate groups, as shown with infrared spectroscopy, near-edge X-ray absorption spectroscopy, X-ray photoelectron spectroscopy and combined thermogravimetric and mass spectroscopy analysis. Interpretation of infrared spectroscopy data is corroborated by extensive quantum chemical calculations. This nanomaterial is easily prepared and has promising properties to function as a core in a future contrast agent for MRI.

  18. Hot corrosion behavior of nanostructured Gd2O3 doped YSZ thermal barrier coating in presence of Na2SO4 + V2O5 molten salts

    Directory of Open Access Journals (Sweden)

    Yixiong Wang

    2017-08-01

    Full Text Available Nickel-based superalloy DZ125 was first sprayed with a NiCrAlY bond coat and followed with a nanostructured 2 mol% Gd2O3−4.5 mol% Y2O3-ZrO2 (2GdYSZ topcoat using air plasma spraying (APS. Hot corrosion behavior of the as-sprayed thermal barrier coatings (TBCs were investigated in the presence of 50 wt% Na2SO4 + 50 wt% V2O5 as the corrosive molten salt at 900 °C for 100 h. The analysis results indicate that Gd doped YVO4 and m-ZrO2 crystals were formed as corrosion products due to the reaction of the corrosive salts with stabilizers (Y2O3, Gd2O3 of zirconia. Cross-section morphology shows that a thin layer called TGO was formed at the bond coat/topcoat interface. After hot corrosion test, the proportion of m-ZrO2 phase in nanostructured 2GdYSZ coating is lower than that of nano-YSZ coating. The result reveals that nanostructured 2GdYSZ coating exhibits a better hot corrosion resistance than nano-YSZ coating.

  19. Synthesis and characterization of (3-Aminopropyl)trimethoxy-silane (APTMS) functionalized Gd2O3:Eu3+ red phosphor with enhanced quantum yield

    International Nuclear Information System (INIS)

    Jain, Akhil; Hirata, G A; Farías, M H; Castillón, F F

    2016-01-01

    We report the surface modification of nanocrystalline Gd 2 O 3 :Eu 3+ phosphor by (3-Aminopropyl)trimethoxysilane (APTMS). The nanoparticles were first coated with silica using the Stöber process, and then annealed at 650 °C for 2 h. Afterwards, APTMS was functionalized onto the silica layer to obtain Gd 2 O 3 :Eu 3+ nanoparticles bearing amine groups on the surface. The effect of silica coating, and the subsequent annealing process on the crystallization of the nanophosphor were analyzed by x-ray diffraction (XRD). High-resolution transmission electron microscopy (HR-TEM) confirmed the presence of a silica layer of ∼45 nm thickness. X-ray photoelectron (XPS) and Fourier transform infrared (FTIR) spectroscopy confirmed the presence of silica and the amine groups. Photoluminescence (PL) analysis demonstrated an increased emission after functionalization of nanoparticles. Absolute quantum yield (QY) measurements revealed an 18% enhancement in QY in functionalized nanoparticles compared with unmodified nanoparticles, which is of great importance for their biomedical applications. (paper)

  20. Investigation of temperature dependent threshold voltage variation of Gd2O3/AlGaN/GaN metal-oxide-semiconductor heterostructure

    Directory of Open Access Journals (Sweden)

    Atanu Das

    2012-09-01

    Full Text Available Temperature dependent threshold voltage (Vth variation of GaN/AlGaN/Gd2O3/Ni-Au structure is investigated by capacitance-voltage measurement with temperature varying from 25°C to 150°C. The Vth of the Schottky device without oxide layer is slightly changed with respect to temperature. However, variation of Vth is observed for both as-deposited and annealed device owing to electron capture by the interface traps or bulk traps. The Vth shifts of 0.4V and 3.2V are obtained for as-deposited and annealed device respectively. For annealed device, electron capture process is not only restricted in the interface region but also extended into the crystalline Gd2O3 layer through Frenkel-Poole emission and hooping conduction, resulting in a larger Vth shift. The calculated trap density for as-deposited and annealed device is 3.28×1011∼1.12×1011 eV−1cm−2 and 1.74×1012∼7.33×1011 eV−1cm−2 respectively in measured temperature range. These results indicate that elevated temperature measurement is necessary to characterize GaN/AlGaN heterostructure based devices with oxide as gate dielectric.

  1. Self-powdering and nonlinear optical domain structures in ferroelastic β‧-Gd2(MoO4)3 crystals formed in glass

    Science.gov (United States)

    Tsukada, Y.; Honma, T.; Komatsu, T.

    2009-08-01

    Ferroelastic β'-Gd 2(MoO 4) 3, (GMO), crystals are formed through the crystallization of 21.25Gd 2O 3-63.75MoO 3-15B 2O 3 glass (mol%), and two scientific curious phenomena are observed. (1) GMO crystals formed in the crystallization break into small pieces with a triangular prism or pyramid shape having a length of 50-500 μm spontaneously during the crystallizations in the inside of an electric furnace, not during the cooling in air after the crystallization. This phenomenon is called "self-powdering phenomenon during crystallization" in this paper. (2) Each self-powdered GMO crystal grain shows a periodic domain structure with different refractive indices, and a spatially periodic second harmonic generation (SHG) depending on the domain structure is observed. It is proposed from polarized micro-Raman scattering spectra and the azimuthal dependence of second harmonic intensities that GMO crystals are oriented in each crystal grain and the orientation of (MoO 4) 2- tetrahedra in GMO crystals changes periodically due to spontaneous strains in ferroelastic GMO crystals.

  2. Effects of Nd Addition on the Microstructure and Mechanical Properties of Extruded Mg-6Gd-2.5Y-0.5Zr Alloy

    Science.gov (United States)

    Guan, Liqun; Deng, Yunlai; Shi, Hongji; Yang, Liu; Chen, Mingan

    2018-01-01

    The microstructure, age-hardening behavior, mechanical properties and texture of extruded Mg-6Gd-2.5Y-0.5Zr alloys with various additions of Nd have been investigated through optical microscopy, x-ray diffraction, scanning electron microscopy, transmission electron microscopy, electron back-scattered diffraction, hardness and tensile tests. The results indicate that the number of second-phase particles in the as-extruded alloys increases (especially with the addition of 1.5 wt.% Nd), and the amount of the strengthening β' phase in the peak-aged sample initially increases, and then decreases when the content of Nd increases above 1.0 wt.%. The precipitation of second-phase particles in the extrusion process weakens the age strengthening. The peak-aged Mg-6Gd-2.5Y-1Nd-0.5Zr alloy shows a maximum yield strength of 259 MPa and an ultimate tensile strength of 350 MPa, which can be attributed to the finely dispersed strengthening β' phase. All as-extruded alloys exhibit that (0001) planes are aligned perpendicular to the extrusion direction, and the maximum intensity of the texture increases gradually with Nd addition.

  3. GD2-specific CAR T Cells Undergo Potent Activation and Deletion Following Antigen Encounter but can be Protected From Activation-induced Cell Death by PD-1 Blockade.

    Science.gov (United States)

    Gargett, Tessa; Yu, Wenbo; Dotti, Gianpietro; Yvon, Eric S; Christo, Susan N; Hayball, John D; Lewis, Ian D; Brenner, Malcolm K; Brown, Michael P

    2016-06-01

    Chimeric antigen receptor (CAR) T cells have shown great promise in the treatment of hematologic malignancies but more variable results in the treatment of solid tumors and the persistence and expansion of CAR T cells within patients has been identified as a key correlate of antitumor efficacy. Lack of immunological "space", functional exhaustion, and deletion have all been proposed as mechanisms that hamper CAR T-cell persistence. Here we describe the events following activation of third-generation CAR T cells specific for GD2. CAR T cells had highly potent immediate effector functions without evidence of functional exhaustion in vitro, although reduced cytokine production reversible by PD-1 blockade was observed after longer-term culture. Significant activation-induced cell death (AICD) of CAR T cells was observed after repeated antigen stimulation, and PD-1 blockade enhanced both CAR T-cell survival and promoted killing of PD-L1(+) tumor cell lines. Finally, we assessed CAR T-cell persistence in patients enrolled in the CARPETS phase 1 clinical trial of GD2-specific CAR T cells in the treatment of metastatic melanoma. Together, these data suggest that deletion also occurs in vivo and that PD-1-targeted combination therapy approaches may be useful to augment CAR T-cell efficacy and persistence in patients.

  4. Surface viscoelasticity studies of Gd2O3, SiO2 optical thin films and multilayers using force modulation and force-distance scanning probe microscopy

    International Nuclear Information System (INIS)

    Sahoo, N.K.; Thakur, S.; Senthilkumar, M.; Das, N.C.

    2003-01-01

    The single and multilayer of Gd 2 O 3 and SiO 2 thin films deposited through reactive electron beam evaporation have been studied for their viscoelasticity properties and optical spectral stability using multimode scanning probe microscope and spectrophotometric techniques. A conspicuous changes in viscoelasticity properties and surface topographies have been observed with the Gd 2 O 3 films deposited under various oxygen pressures. The scanning probe measurements on the multilayer filters fabricated using these film materials for laser wavelengths of 248 nm (KrF) and 355 nm (Nd:Yag-III) have shown superior viscoelasticity property, which is not the case with the most conventional multilayers. The results were correlated with the long-term spectral stability that has been studied by recording transmittance spectra of these filters at a time interval of 10 months. Both the multilayer filters have shown excellent temporal spectral stabilities with a relatively better result for the 248 nm reflection filter. Further analysis has shown a very good co-relationship in the spectral stability and viscoelasticity properties in these multilayers

  5. Effect of Al(OH)3 on the sintering of UO2-Gd2O3 fuel pellets with addition of U3O8 from recycle

    Science.gov (United States)

    dos Santos, Lauro Roberto; Durazzo, Michelangelo; Urano de Carvalho, Elita Fontenele; Riella, Humberto Gracher

    2017-09-01

    The incorporation of gadolinium as burnable poison directly into nuclear fuel is important for reactivity compensation, which enables longer fuel cycles. The function of the burnable poison fuel is to control the neutron population in the reactor core during its startup and the beginning of the fuel burning cycle to extend the use of the fuel. The implementation of UO2-Gd2O3 poisoned fuel in Brazil has been proposed according to the future requirements established for the Angra-2 nuclear power plant. The UO2 powder used is produced from the Ammonium Uranyl Carbonate (AUC). The incorporation of Gd2O3 powder directly into the AUC-derived UO2 powder by dry mechanical blending is the most attractive process, because of its simplicity. Nevertheless, processing by this method leads to difficulties while obtaining sintered pellets with the minimum required density. The cause of the low densities is the bad sintering behavior of the UO2-Gd2O3 mixed fuel, which shows a blockage in the sintering process that hinders the densification. This effect has been overcome by microdoping of the fuel with small quantities of aluminum. The process for manufacturing the fuel inevitably generates uranium-rich scraps from various sources. This residue is reincorporated into the production process in the form of U3O8 powder additions. The addition of U3O8 also hinders densification in sintering. This study was carried out to investigate the influence of both aluminum and U3O8 additives on the density of fuel pellets after sintering. As the effects of these additives are counterposed, this work studied the combined effect thereof, seeking to find an applicable composition for the production process. The experimental results demonstrated the effectiveness of aluminum, in the form of Al(OH)3, as an additive to promote increase in the densification of the (U,Gd)O2 pellets during sintering, even with high additions of U3O8 recycled from the manufacturing process.

  6. Effects of Heat Treatment on Corrosion and Wear Behaviors of Mg-6Gd-2Zn-0.4Zr Alloy in Simulated Body Fluid

    Science.gov (United States)

    Zhao, Li; Chen, Wei; Dai, Jianwei; Wang, Zhangzhong; Zhang, Xiaobo

    2017-11-01

    Mg-6Gd-2Zn-0.4Zr (wt.%, GZ62K) alloy was processed by solution treatment under different temperatures. The microstructure, hardness, corrosion and wear behaviors in simulated body fluid (SBF) have been studied. The results indicate that the (Mg, Zn)3Gd phase decreases, the precipitated phases gradually increase, and the long-period stacking ordered structure disappears with the increase of solution temperature. The alloy has better corrosion resistance after solution treatment, and that solution treated at 490 °C for 12 h shows the best corrosion resistance. The friction coefficient of the alloy under dry sliding condition decreases slightly, but the mass loss increases with increasing the solution temperature. The alloy solution treated at 460 °C for 12 h exhibits the lowest friction coefficient and mass loss in SBF, and it also has the best wear resistance under dry sliding condition.

  7. Gd2O3-doped silica @ Au nanoparticles for in vitro imaging cancer biomarkers using surface-enhanced Raman scattering

    Science.gov (United States)

    Xiao, Lifu; Tian, Xiumei; Harihar, Sitaram; Li, Qifei; Li, Li; Welch, Danny R.; Zhou, Anhong

    2017-06-01

    There has been an interest in developing multimodal approaches to combine the advantages of individual imaging modalities, as well as to compensate for respective weaknesses. We previously reported a composite nano-system composed of gadolinium-doped mesoporous silica nanoparticle and gold nanoparticle (Gd-Au NPs) as an efficient MRI contrast agent for in vivo cancer imaging. However, MRI lacks sensitivity and is unsuitable for in vitro cancer detection. Thus, here we performed a study to use the Gd-Au NPs for detection and imaging of a widely recognized human cancer biomarker, epidermal growth factor receptor (EGFR), in individual human cancer cells with surface-enhanced Raman scattering (SERS). The Gd-Au NPs were sequentially conjugated with a monoclonal antibody recognizing EGFR and a Raman reporter molecule, 4-meraptobenzoic acid (MBA), to generate a characteristic SERS signal at 1075 cm- 1. By spatially mapping the SERS intensity at 1075 cm- 1, cellular distribution of EGFR and its relocalization on the plasma membrane were measured in situ. In addition, the EGFR expression levels in three human cancer cell lines (S18, A431 and A549) were measured using this SERS probe, which were consistent with the comparable measurements using immunoblotting and immunofluorescence. Our SERS results show that functionalized Gd-Au NPs successfully targeted EGFR molecules in three human cancer cell lines and monitored changes in single cell EGFR distribution in situ, demonstrating its potential to study cell activity under physiological conditions. This SERS study, combined with our previous MRI study, suggests the Gd-Au nanocomposite is a promising candidate contrast agent for multimodal cancer imaging.

  8. A new ~1 μm laser crystal Nd:Gd2SrAl2O7: growth, thermal, spectral and lasing properties

    Science.gov (United States)

    Yuan, Feifei; Liao, Wenbin; Huang, Yisheng; Zhang, Lizhen; Sun, Shijia; Wang, Yeqing; Lin, Zhoubin; Wang, Guofu; Zhang, Ge

    2018-03-01

    Nd:Gd2SrAl2O7 crystals were grown by the Czochralski technique; thermal, spectral and laser properties were investigated in detail. The average thermal expansion coefficients along a- and c-axis are 12.6  ×  10-6 K-1 and 14.9  ×  10-6 K-1, respectively. At room temperature, the thermal conductivities are 4.98 and 5.24 W (m-1 * K-1) along the a- and c-axis, respectively. The absorption cross sections at ~808 nm are 13.7  ×  10-20 cm2 with a FWHM of 3.3 nm for π-polarization and 11.84  ×  10-20 cm2 with a FWHM of 3.4 nm for σ-polarization. The emission cross sections at ~1080 nm are 15  ×  10-20 cm2 and 12.7  ×  10-20 cm2 with a FWHM of about 5.1 nm and 12.5 nm for π- and σ-polarization, respectively. The fluorescence lifetime for the 4F3/2  →  4I11/2 transition was fitted to be 118 µs. Pumped by a fiber-coupled 808 nm laser diode, the maximum 1.55 W continuous-wave laser output at ~1.08 µm was achieved with a slope efficiency of 30.5%. All the results show that Nd:Gd2SrAl2O7 crystal is a promising laser material.

  9. Single-step synthesis of Er3+ and Yb3+ ions doped molybdate/Gd2O3 core–shell nanoparticles for biomedical imaging

    Science.gov (United States)

    Kamińska, Izabela; Elbaum, Danek; Sikora, Bożena; Kowalik, Przemysław; Mikulski, Jakub; Felcyn, Zofia; Samol, Piotr; Wojciechowski, Tomasz; Minikayev, Roman; Paszkowicz, Wojciech; Zaleszczyk, Wojciech; Szewczyk, Maciej; Konopka, Anna; Gruzeł, Grzegorz; Pawlyta, Mirosława; Donten, Mikołaj; Ciszak, Kamil; Zajdel, Karolina; Frontczak-Baniewicz, Małgorzata; Stępień, Piotr; Łapiński, Mariusz; Wilczyński, Grzegorz; Fronc, Krzysztof

    2018-01-01

    Nanostructures as color-tunable luminescent markers have become major, promising tools for bioimaging and biosensing. In this paper separated molybdate/Gd2O3 doped rare earth ions (erbium, Er3+ and ytterbium, Yb3+) core–shell nanoparticles (NPs), were fabricated by a one-step homogeneous precipitation process. Emission properties were studied by cathodo- and photoluminescence. Scanning electron and transmission electron microscopes were used to visualize and determine the size and shape of the NPs. Spherical NPs were obtained. Their core–shell structures were confirmed by x-ray diffraction and energy-dispersive x-ray spectroscopy measurements. We postulated that the molybdate rich core is formed due to high segregation coefficient of the Mo ion during the precipitation. The calcination process resulted in crystallization of δ/ξ (core/shell) NP doped Er and Yb ions, where δ—gadolinium molybdates and ξ—molybdates or gadolinium oxide. We confirmed two different upconversion mechanisms. In the presence of molybdenum ions, in the core of the NPs, Yb3+–{{{{MoO}}}4}2- (∣2F7/2, 3T2〉) dimers were formed. As a result of a two 980 nm photon absorption by the dimer, we observed enhanced green luminescence in the upconversion process. However, for the shell formed by the Gd2O3:Er, Yb NPs (without the Mo ions), the typical energy transfer upconversion takes place, which results in red luminescence. We demonstrated that the NPs were transported into cytosol of the HeLa and astrocytes cells by endocytosis. The core–shell NPs are sensitive sensors for the environment prevailing inside (shorter luminescence decay) and outside (longer luminescence decay) of the tested cells. The toxicity of the NPs was examined using MTT assay.

  10. Single-step synthesis of Er3+and Yb3+ions doped molybdate/Gd2O3core-shell nanoparticles for biomedical imaging.

    Science.gov (United States)

    Kamińska, Izabela; Elbaum, Danek; Sikora, Bożena; Kowalik, Przemysław; Mikulski, Jakub; Felcyn, Zofia; Samol, Piotr; Wojciechowski, Tomasz; Minikayev, Roman; Paszkowicz, Wojciech; Zaleszczyk, Wojciech; Szewczyk, Maciej; Konopka, Anna; Gruzeł, Grzegorz; Pawlyta, Mirosława; Donten, Mikołaj; Ciszak, Kamil; Zajdel, Karolina; Frontczak-Baniewicz, Małgorzata; Stępień, Piotr; Łapiński, Mariusz; Wilczyński, Grzegorz; Fronc, Krzysztof

    2018-01-12

    Nanostructures as color-tunable luminescent markers have become major, promising tools for bioimaging and biosensing. In this paper separated molybdate/Gd 2 O 3 doped rare earth ions (erbium, Er 3+ and ytterbium, Yb 3+ ) core-shell nanoparticles (NPs), were fabricated by a one-step homogeneous precipitation process. Emission properties were studied by cathodo- and photoluminescence. Scanning electron and transmission electron microscopes were used to visualize and determine the size and shape of the NPs. Spherical NPs were obtained. Their core-shell structures were confirmed by x-ray diffraction and energy-dispersive x-ray spectroscopy measurements. We postulated that the molybdate rich core is formed due to high segregation coefficient of the Mo ion during the precipitation. The calcination process resulted in crystallization of δ/ξ (core/shell) NP doped Er and Yb ions, where δ-gadolinium molybdates and ξ-molybdates or gadolinium oxide. We confirmed two different upconversion mechanisms. In the presence of molybdenum ions, in the core of the NPs, Yb 3+ -[Formula: see text] (∣ 2 F 7/2 , 3 T 2 〉) dimers were formed. As a result of a two 980 nm photon absorption by the dimer, we observed enhanced green luminescence in the upconversion process. However, for the shell formed by the Gd 2 O 3 :Er, Yb NPs (without the Mo ions), the typical energy transfer upconversion takes place, which results in red luminescence. We demonstrated that the NPs were transported into cytosol of the HeLa and astrocytes cells by endocytosis. The core-shell NPs are sensitive sensors for the environment prevailing inside (shorter luminescence decay) and outside (longer luminescence decay) of the tested cells. The toxicity of the NPs was examined using MTT assay.

  11. Phase equilibria and crystal chemistry of the CaO-½Gd2O3-CoOz system at 885 °C in air

    Science.gov (United States)

    Wong-Ng, W.; Laws, W.; Lapidus, S. H.; Ribaud, L.; Kaduk, J. A.

    2017-10-01

    The CaO-½Gd2O3-CoOz system prepared at 885 °C in air consists of two thermoelectric calcium cobaltate compounds, namely, the 2D thermoelectric oxide solid solution, (Ca3-xGdx)Co4O9-z (0 ≤ x ≤ 0.42) which has a misfit layered structure, and the 1D Ca3Co2O6 compound which consists of chains of alternating CoO6 trigonal prisms and CoO6 octahedra. Ca3Co2O6 was found to be a point compound. In the peripheral binary systems, Gd was not present in the Ca site of CaO, while a small solid solution region was identified for (Gd1-xCax)O(3-z)/2 (0 ≤ x ≤ 0.075). A solid solution region of distorted perovskite, (Gd1-xCax)CoO3-z (0 ≤ x ≤ 0.24, space group Pnma) was established. The structure of a member of the solid solution, (Gd0.92Ca0.08)CoO3-z, was determined using high resolution synchrotron radiation. A ternary oxide compound CaGdCoO4-z which has an orthorhombic structure (Bmab) was found to be stable at this temperature. Five solid solution tie-line regions and six three-phase regions were determined in the CaO-½Gd2O3-CoOz system. A comparison of the phase diagrams of the CaO-½R2O3-CoOz (R = La, Sm and Gd) systems is provided.

  12. A Dual-Modality Herpes Simplex Virus 2 Vaccine for Preventing Genital Herpes by Using Glycoprotein C and D Subunit Antigens To Induce Potent Antibody Responses and Adenovirus Vectors Containing Capsid and Tegument Proteins as T Cell Immunogens.

    Science.gov (United States)

    Awasthi, Sita; Mahairas, Gregory G; Shaw, Carolyn E; Huang, Meei-Li; Koelle, David M; Posavad, Christine; Corey, Lawrence; Friedman, Harvey M

    2015-08-01

    We evaluated a genital herpes prophylactic vaccine containing herpes simplex virus 2 (HSV-2) glycoproteins C (gC2) and D (gD2) to stimulate humoral immunity and UL19 (capsid protein VP5) and UL47 (tegument protein VP13/14) as T cell immunogens. The HSV-2 gC2 and gD2 proteins were expressed in baculovirus, while the UL19 and UL47 genes were expressed from replication-defective adenovirus vectors. Adenovirus vectors containing UL19 and UL47 stimulated human and murine CD4(+) and CD8(+) T cell responses. Guinea pigs were either (i) mock immunized; (ii) immunized with gC2/gD2, with CpG and alum as adjuvants; (iii) immunized with the UL19/UL47 adenovirus vectors; or (iv) immunized with the combination of gC2/gD2-CpG/alum and the UL19/UL47 adenovirus vectors. Immunization with gC2/gD2 produced potent neutralizing antibodies, while UL19 and UL47 also stimulated antibody responses. After intravaginal HSV-2 challenge, the mock and UL19/UL47 adenovirus groups developed severe acute disease, while 2/8 animals in the gC2/gD2-only group and none in the combined group developed acute disease. No animals in the gC2/gD2 or combined group developed recurrent disease; however, 5/8 animals in each group had subclinical shedding of HSV-2 DNA, on 15/168 days for the gC2/gD2 group and 13/168 days for the combined group. Lumbosacral dorsal root ganglia were positive for HSV-2 DNA and latency-associated transcripts for 5/8 animals in the gC2/gD2 group and 2/8 animals in the combined group. None of the differences comparing the gC2/gD2-only group and the combined group were statistically significant. Therefore, adding the T cell immunogens UL19 and UL47 to the gC2/gD2 vaccine did not significantly reduce genital disease and vaginal HSV-2 DNA shedding compared with the excellent protection provided by gC2/gD2 in the guinea pig model. HSV-2 infection is a common cause of genital ulcer disease and a significant public health concern. Genital herpes increases the risk of transmission and

  13. Phase equilibria in the mutual system 6NH4Cl+Gd2(SO4)3 ↔ 3(NH4)2SO4+2GdCl3-H2O at 25 deg C

    International Nuclear Information System (INIS)

    Lazorenko, N.M.; Storozhenko, D.A.; Loburets, A.T.

    1987-01-01

    Using the method of isothermal solubility phase ratios in quaternary mutual system in the title are studied. Crystallization fields of gadolinium sulfate octahydrate, gadolinium chloride hexahydrate, ammonium sulfate and chloride, as well as double salt of the composition (NH 4 ) 2 SO 4 xGd 2 (SO 4 ) 3 x8H 2 O, are differentiated

  14. Epitaxial Gd2O3 on GaN and AlGaN: a potential candidate for metal oxide semiconductor based transistors on Si for high power application

    Science.gov (United States)

    Ghosh, Kankat; Das, S.; Khiangte, K. R.; Choudhury, N.; Laha, Apurba

    2017-11-01

    We report structural and electrical properties of hexagonal Gd2O3 grown epitaxially on GaN/Si (1 1 1) and AlGaN/GaN/Si(1 1 1) virtual substrates. GaN and AlGaN/GaN heterostructures were grown on Si(1 1 1) substrates by plasma assisted molecular beam epitaxy (PA-MBE), whereas the Gd2O3 layer was grown by the pulsed laser ablation (PLA) technique. Initial structural characterizations show that Gd2O3 grown on III-nitride layers by PLA, exhibit a hexagonal structure with an epitaxial relationship as {{≤ft[ 0 0 0 1 \\right]}G{{d2}{{O}3}}}||{{≤ft[ 0 0 0 1 \\right]}GaN} and {{≤ft[ 1 \\bar{1} 0 0 \\right]}G{{d2}{{O}3}}}||{{≤ft[ 1 \\bar{1} 0 0 \\right]}GaN} . X-ray photoelectron measurements of the valence bands revealed that Gd2O3 exhibits band offsets of 0.97 eV and 0.4 eV, for GaN and Al0.3Ga0.7N, respectively. Electrical measurements such as capacitance-voltage and leakage current characteristics further confirm that epi-Gd2O3 on III-nitrides could be a potential candidate for future metal-oxide-semiconductor (MOS)-based transistors also for high power applications in radio frequency range.

  15. A facile synthesis of high quality nanostructured CeO2 and Gd2O3-doped CeO2 solid electrolytes for improved electrochemical performance.

    Science.gov (United States)

    Kuo, Yu-Lin; Su, Yu-Ming; Chou, Hung-Lung

    2015-06-07

    This study describes the use of a composite nitrate salt solution as a precursor to synthesize CeO2 and Gd2O3-doped CeO2 (GDC) nanoparticles (NPs) using an atmospheric pressure plasma jet (APPJ). The microstructures of CeO2 and GDC NPs were found to be cubical and spherical shaped nanocrystallites with average particle sizes of 10.5 and 6.7 nm, respectively. Reactive oxygen species, detected by optical emission spectroscopy (OES), are believed to be the major oxidative agents for the formation of oxide materials in the APPJ process. Based on the material characterization and OES observations, the study effectively demonstrated the feasibility of preparing well-crystallized GDC NPs by the APPJ system as well as the gas-to-particle mechanism. Notably, the Bader charge of CeO2 and Ce0.9Gd0.1O2 characterized by density function theory (DFT) simulation and AC impedance measurements shows that Gd helps in increasing the charge on Ce0.9Gd0.1O2 NPs, thus improving their conductivity and making them candidate materials for electrolytes in solid oxide fuel cells.

  16. Orange-red emitting Gd2Zr2O7:Sm3+: Structure-property correlation, optical properties and defect spectroscopy

    Science.gov (United States)

    Gupta, Santosh K.; Reghukumar, C.; Sudarshan, K.; Ghosh, P. S.; Pathak, Nimai; Kadam, R. M.

    2018-05-01

    Local structure analysis of dopant ion, understanding host to dopant energy transfer dynamics and defects characterization in a doped material which plays an important role in the designing a highly efficient opto-electronic material. In this connection a new Sm3+ doped Gd2Zr2O7 pyrochlore material was synthesized using gel-combustion technique and was characterized systematically using X-ray diffraction (XRD), time resolved photoluminescence spectroscopy (TRPLS), positron annihilation lifetime spectroscopy (PALS) and density functional theory (DFT) based ab-initio calculation. Based on DFT site selective energetics calculation and luminescence decay measurement, it was observed that the Sm3+ was distributed at both Gd3+ and Zr4+ site with higher Sm3+ fraction at the Gd3+ site. PALS was used to probe the presence of defects in the phosphor. In this work intense orange-red emission is realized through manipulating the energy transfer from host defect emission (oxygen vacancies) to Sm3+ which allows color emission from green in undoped to orange-red in doped samples. Effect of dopant concentration and annealing temperature was probed using TRPLS and PALS. These all information is highly important for researcher looking to achieve pyrochlore based phosphor materials with high quantum yield.

  17. Effect of densification additive (Al (OH)3) and U3O8 recycle in sintering UO2-7wt% Gd2O3 fuel pellets

    International Nuclear Information System (INIS)

    Santos, L.R.; Riella, H.G.

    2009-01-01

    The nuclear fuels are the consumable parts of nuclear reactors, and this has several consequences. From an economic point of view, it is important to keep the fuel into reactor for long time. In this context the use of burnable poison, as advanced fuel based in gadolinium oxide dispersed in a uranium oxide matrix, is a technological solution adopted worldwide. The function of the burnable poison fuels is to control the neutrons population in the nuclear reactors cores during its start up and the beginning of the fuel burning cycle to extending their use. In consequence of the use of this advanced fuel, the nuclear reactors can operate with higher rate of power, optimizing the use of the nuclear fuels. The objective of the present work is to show the development of UO 2 -7wt% Gd 2 O 3 burnable absorber containing pellets by using mechanical blending of (Al(OH) 3 ) densification additive and U 3 O 8 of the recycling of nuclear fuel scrap. In the procedures, the gadolinium content of 7 wt% was established as a consequence of the P and D Cooperation Programmer firmed by the CTMSP and the INB, looking for the nationalization of this type of nuclear fuel used in the Nuclear Facility of Angra 2. The experimental results permit to observe the effectiveness action of the compound Al(OH) 3 as a additive to promote the increasing in the densification of the (U-Gd)O 2 pellets during its sintering, when amounts of recycle are recycled to the production processing up to 10 wt%, and when 0,20 wt% of Al(OH) 3 is used as additive. (author)

  18. Optical emission, vibrational feature, and shear-thinning aspect of Tb3+-doped Gd2O3 nanoparticle-based novel ferrofluids irradiated by gamma photons

    Science.gov (United States)

    Paul, Nibedita; Hazarika, Samiran; Saha, Abhijit; Mohanta, Dambarudhar

    2013-10-01

    The present work reports on the spectroscopic and rheological properties of un-exposed and gamma (γ-) irradiated rare earth (RE) oxide nanoparticle-based ferrofluids (FFs). The FFs were produced by dispersing surfactant coated terbium (Tb3+)-doped gadolinium oxide (Gd2O3) nanoparticles in the ethanol medium and later on they were subjected to energetic γ-irradiation (1.25 MeV) at select doses (97 Gy and 2.635 kGy). The synthesized RE oxide nanoparticles were of ˜7 nm size and having a cubic crystal structure, as predicted from transmission electron microscopy and x-ray diffraction studies. Fourier transformed infra-red (FT-IR) spectra showed an adequate blue shift of the Gd-O vibrational stretching mode from a wavenumber value of ˜558 cm-1, for the un-irradiated sample to a value of ˜540 cm-1 corresponding to the irradiated sample (2.635 kGy). In contrast, photoluminescence spectra have revealed modification of defect states along with Tb3+ assisted radiative transitions. The rheology measurements have illustrated unusual shear thinning behavior of the FFs, with an apparently improved power index (s) value from 0.34 to 0.50, obtained for increasing γ-dose cases. The variation of the decay parameter with irradiation dose, as predicted from the nature of apparent viscosity curves, is attributed to the defect formation, role of impurity ions (Tb3+), and weakening of inter nanoparticle bonding. The unusual properties of the novel RE oxide based FFs may find scope in sealing and shielding elements in the radiation environment including accelerator and other related zones.

  19. White-emission in single-phase Ba2Gd2Si4O13:Ce3 +,Eu2 +,Sm3 + phosphor for white-LEDs

    Science.gov (United States)

    Jiang, Xiumin; Zhang, Yuqian; Zhang, Jia

    2018-03-01

    To develop new white-light-emitting phosphor, a series of Ce3 +-Eu2 +-Sm3 + doped Ba2Gd2Si4O13 (BGS) phosphors were prepared by the solid-state reaction method, and their photoluminescence properties were studied. The Ce3 + and Eu2 + single-doped BGS show broad emission bands around in the region of 350-550 and 420-650 nm, respectively. By co-doping Ce3 +-Eu2 + into BGS, the energy transfer (ET) from Ce3 + to Eu2 + is inefficient, which could be due to the competitive absorption between the two activator ions. The Sm3 +-activated BGS exhibits an orangey-red emission in the region of 550-750 nm. To achieve white emission, the BGS:0.06Ce3 +,0.04Eu2 +,ySm3 + (0 ≤ y ≤ 0.18) phosphors were designed, in which the ET from Ce3 +/Eu2 + to Sm3 + was observed. The emission color can be tuned by controlling the Sm3 + concentration, and white emission was obtained in the BGS:0.06Ce3 +,0.04Eu2 +,0.06Sm3 + sample. The investigation of thermal luminescence stability for the typical BGS:0.06Ce3 +,0.04Eu2 +,0.06Sm3 + sample reveals that the emission intensities of both Eu2 + and Sm3 + demonstrate continuous decrease but the Ce3 + emission is enhanced gradually with increasing temperature. The corresponding reason has been discussed.

  20. Toxicity evaluation of Gd2O3@SiO2 nanoparticles prepared by laser ablation in liquid as MRI contrast agents in vivo

    Directory of Open Access Journals (Sweden)

    Tian XM

    2014-08-01

    Full Text Available Xiumei Tian,1,* Fanwen Yang,1,* Chuan Yang,2 Ye Peng,1 Dihu Chen,3 Jixiang Zhu,1 Fupo He,1 Li Li,2 Xiaoming Chen11Department of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong Province, People’s Republic of China; 2State Key Laboratory of Oncology in South China, Imaging Diagnosis and Interventional Center, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People’s Republic of China; 3State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou, Guangdong Province, People’s Republic of China*These authors contributed equally to this workAbstract: Poor toxicity characterization is one obstacle to the clinical deployment of Gd2O3@SiO2 core-shell nanoparticles (Gd-NPs for use as magnetic resonance (MR imaging contrast agents. To date, there is no systematic toxicity data available for Gd-NPs prepared by laser ablation in liquid. In this article, we systematically studied the Gd-NPs’ cytotoxicity, apoptosis in vitro, immunotoxicity, blood circulation half-life, biodistribution and excretion in vivo, as well as pharmacodynamics. The results show the toxicity, and in vivo MR data show that these NPs are a good contrast agent for preclinical applications. No significant differences were found in cell viability, apoptosis, and immunotoxicity between our Gd-NPs and Gd in a DTPA (diethylenetriaminepentaacetic acid chelator. Biodistribution data reveal a greater accumulation of the Gd-NPs in the liver, spleen, lung, and tumor than in the kidney, heart, and brain. Approximately 50% of the Gd is excreted via the hepatobiliary system within 4 weeks. Furthermore, dynamic contrast-enhanced T1-weighted MR images of xenografted murine tumors were obtained after intravenous administration of the Gd-NPs. Collectively, the single step preparation of Gd-NPs by laser ablation in liquid produces particles with satisfactory cytotoxicity

  1. Sequential evolution of different phases in metastable Gd(2-x)Ce(x)Zr(2-x)Al(x)O7 (0.0 ≤ x ≤ 2.0) system: crucial role of reaction conditions.

    Science.gov (United States)

    Shukla, Rakesh; Sayed, Farheen N; Phapale, Suhas; Mishra, Ratikant; Tyagi, Avesh K

    2013-07-15

    The Gd(2-x)Ce(x)Zr(2-x)Al(x)O7 (0.0 ≤ x ≤ 2.0) series was synthesized by the gel combustion method. This system exhibited the presence of a fluorite-type phase, along with a narrow biphasic region, depending upon the Ce/Gd content in the sample. Thermal stability of these new compounds under oxidizing and reducing conditions has been investigated. The products obtained on decomposition of Gd(2-x)Ce(x)Zr(2-x)Al(x)O7 in oxidizing and reducing conditions were found to be entirely different. It was observed that in air the fluorite-type solid solutions of Gd(2-x)Ce(x)Zr(2-x)Al(x)O7 composition undergo phase separation into perovskite GdAlO3 and fluorite-type solid solutions of Gd-Ce-Zr-O or Ce-Zr-Al-O depending upon the extent of Ce and Al substitution. On the other hand, Gd(2-x)Ce(x)Zr(2-x)Al(x)O7 samples on heating under reducing conditions show a phase separation to CeAlO3 perovskite and a defect-fluorite of Gd2Zr2O7. The extent of metastability for a typical composition of Gd(1.2)Ce(0.8)Zr(1.2)Al(0.8)O7 (nano), Gd(1.2)Ce(0.8)Zr(1.2)Al(0.8)O(6.6) (heated under reduced conditions), Gd(1.2)Ce(0.8)Zr(1.2)Al(0.8)O7 (heated in air at 1200 °C) has been experimentally determined employing a high temperature Calvet calorimeter. On the basis of thermodynamic stability data, it could be inferred that the formation of a more stable compound in the presence of two competing cations (i.e., Gd(3+) and Ce(3+)) is guided by the crystallographic stability.

  2. Antiprothrombin Antibodies

    Directory of Open Access Journals (Sweden)

    Polona Žigon

    2015-05-01

    Full Text Available In patients with the antiphospholipid syndrome (APS, the presence of a group of pathogenic autoantibodies called antiphospholipid antibodies causes thrombosis and pregnancy complications. The most frequent antigenic target of antiphospholipid antibodies are phospholipid bound β2-glycoprotein 1 (β2GPI and prothrombin. The international classification criteria for APS connect the occurrence of thrombosis and/or obstetric complications together with the persistence of lupus anticoagulant, anti-cardiolipin antibodies (aCL and antibodies against β2GPI (anti-β2GPI into APS. Current trends for the diagnostic evaluation of APS patients propose determination of multiple antiphospholipid antibodies, among them also anti-prothrombin antibodies, to gain a common score which estimates the risk for thrombosis in APS patients. Antiprothrombin antibodies are common in APS patients and are sometimes the only antiphospholipid antibodies being elevated. Methods for their determination differ and have not yet been standardized. Many novel studies confirmed method using phosphatidylserine/prothrombin (aPS/PT ELISA as an antigen on solid phase encompass higher diagnostic accuracy compared to method using prothrombin alone (aPT ELISA. Our research group developed an in-house aPS/PT ELISA with increased analytical sensitivity which enables the determination of all clinically relevant antiprothrombin antibodies. aPS/PT exhibited the highest percentage of lupus anticoagulant activity compared to aCL and anti-β2GPI. aPS/PT antibodies measured with the in-house method associated with venous thrombosis and presented the strongest independent risk factor for the presence of obstetric complications among all tested antiphospholipid antibodies

  3. Photoluminescence study in Ho3+/Tm3+/Yb3+/Li+:Gd2(MoO4)3 nanophosphors for near white light emitting diode and security ink applications

    Science.gov (United States)

    Kumari, Anita; Mondal, Manisha; Rai, Vineet Kumar; Narayan Singh, Satyendra

    2018-01-01

    Ho3+/Yb3+/Tm3+/Li+:Gd2(MoO4)3 nanophosphors successfully synthesised via solid state reaction method have been structurally and optically characterised. Under 980 nm diode laser excitation the nanophosphors emit intense blue, green, red and NIR emissions peaking at ∼476 nm, ∼543 nm, ∼646 nm and ∼798 nm corresponding to the 1G4 → 3H6 (Tm3+), 5F4, 5S2 → 5I8 (Ho3+), 5F 5 → 5I8 (Ho3+) and 3H4 → 3H6 (Tm3+) transitions respectively. The upconversion emission intensity enhancement in the Ho3+–Yb3+–Tm3+–Li+:Gd2(MoO4)3 nanophosphors for the green band is found to be ∼367, ∼50 and ∼9 times compared to the singly Ho3+ doped, Ho3+–Yb3+ co-doped and Ho3+–Yb3+–Tm3+ tri-doped Gd2(MoO4)3 nanophosphors. The enhancement observed has been explained on the basis of energy transfer process and local field modifications around the rare earth ions. The energy transfer efficiency ∼5% is determined in the tridoped nanophosphors. The interaction involved between rare earth ions for energy transfer process is found to be dipole–dipole type. On changing the Tm3+ ions concentration the colour emitted from the tridoped nanophosphors is tuned from near white to blue region. In the tridoped nanophosphors, on varying the pump power the colour tunability has been observed.

  4. Crystallization of 21.25Gd 2O 3-63.75MoO 3-15B 2O 3 glass induced by femtosecond laser at the repetition rate of 250 kHz

    Science.gov (United States)

    Zhong, M. J.; Han, Y. M.; Liu, L. P.; Zhou, P.; Du, Y. Y.; Guo, Q. T.; Ma, H. L.; Dai, Y.

    2010-12-01

    We report the formation of β'-Gd 2(MoO 4) 3 (GMO) crystal on the surface of the 21.25Gd 2O 3-63.75MoO 3-15B 2O 3 glass, induced by 250 kHz, 800 nm femtosecond laser irradiation. The morphology of the modified region in the glass was clearly examined by scanning electron microscopy (SEM). By micro-Raman spectra, the laser-induced crystals were confirmed to be GMO phases and it is found that these crystals have a strong dependence on the number and power of the femtosecond laser pulses. When the irradiation laser power was 900 mW, not only the Raman peaks of GMO crystals but also some new peaks at 214 cm -1, 240 cm -1, 466 cm -1, 664 cm -1 and 994 cm -1which belong to the MoO 3 crystals were observed. The possible mechanisms are proposed to explain these phenomena.

  5. Crystallization of 21.25Gd2O3-63.75MoO3-15B2O3 glass induced by femtosecond laser at the repetition rate of 250 kHz

    International Nuclear Information System (INIS)

    Zhong, M.J.; Han, Y.M.; Liu, L.P.; Zhou, P.; Du, Y.Y.; Guo, Q.T.; Ma, H.L.; Dai, Y.

    2010-01-01

    We report the formation of β'-Gd 2 (MoO 4 ) 3 (GMO) crystal on the surface of the 21.25Gd 2 O 3 -63.75MoO 3 -15B 2 O 3 glass, induced by 250 kHz, 800 nm femtosecond laser irradiation. The morphology of the modified region in the glass was clearly examined by scanning electron microscopy (SEM). By micro-Raman spectra, the laser-induced crystals were confirmed to be GMO phases and it is found that these crystals have a strong dependence on the number and power of the femtosecond laser pulses. When the irradiation laser power was 900 mW, not only the Raman peaks of GMO crystals but also some new peaks at 214 cm -1 , 240 cm -1 , 466 cm -1 , 664 cm -1 and 994 cm -1 which belong to the MoO 3 crystals were observed. The possible mechanisms are proposed to explain these phenomena.

  6. Thermometry properties of Er, Yb–Gd2O2S microparticles: dependence on the excitation mode (cw versus pulsed excitation) and excitation wavelength (980 nm versus 1500 nm)

    Science.gov (United States)

    Avram, Daniel; Tiseanu, Carmen

    2018-04-01

    Herein, we present a first report on the luminescence thermometry properties of Er, Yb doped Gd2O2S microparticles under near infrared up-conversion excitation at 980 and 1500 nm measured in the 280–800 K interval. The thermometry properties are assessed using both cw and ns pulsed excitation as well as tuning the excitation wavelength across Yb and Er absorption profiles. For low cw (300 mW cm‑1) and pulsed ns (400 ÷ 550 mW cm‑1) excitation modes, no thermal load is observed. At room-temperature (280 K), the maximum relative sensitivity values are comparable under pulsed excitation at 980 and 1500 nm, around ∼0.01 and ∼0.008% K‑1, respectively. In addition, a relative intense up-conversion emission at 980 nm under excitation at 1500 nm is measured. Our findings evidence attractive up-conversion and thermometry properties Er, Yb doped Gd2O2S under near-infrared excitation and highlight the need to explore further these properties in the nanoparticulate regime.

  7. Impact of firing temperature on multi-wavelength selective Stokes and anti-Stokes luminescent behavior by Gd2O2S:Er,Yb phosphor and its application in solar energy harvesting

    Science.gov (United States)

    Kataria, V.; Mehta, D. S.

    2018-04-01

    Erbium (Er3+)-ytterbium (Yb3+) doped gadolinium oxysulphide (Gd2O2S) phosphor has been developed via a facile method of solid-state flux fusion, and offers two-fold spectrum modification with highly intense Stokes and anti-Stokes shift. The effect of the firing cycle on the photoluminescent response and morphology of Gd2O2S:Er,Yb is scrutinized, wherein the firing temperature was varied (1000 °C-1250 °C), keeping firing time and all other parameters constant. Interestingly, the nanostructures fired below 1150 °C showed nanorods of diameter ~200 nm and length ~1-2 µm, whereas firing at 1150 °C and above rendered nanospheres with small diameter, ~350 nm. Highly bright upconversion (UC) emission was achieved even under an extremely low excitation power density of 800 µW cm-2 from a 980 nm laser, and was comfortably visible to the naked eye. The incident power dependent studies disclosed increase in UC-emission intensity with increasing excitation power and a quasi-linear dependence on excitation power density. Intense characteristic UC-emission of Er3+ excited states at 525 nm, 556 nm and 668 nm were observed, and the green emission band was found to be dominant over the red band in intensity. Concurrently, downconversion (DC) emission at 556 nm and 669 nm was also exhibited under ultraviolet excitation (285 nm and 380 nm), with the red band being more powerful than the green, unlike UC-emission. Firing temperature dependent studies divulged the dependence of luminescence intensity on the firing cycle of the luminophore and formation of the respective luminescent phase. The UC-emission intensity was found to be maximum for samples fired at 1150 °C, whereas samples fired at 1000 °C showed the highest DC-emission intensity. The excitation and emission profile of single Gd2O2S:Er,Yb phosphor lying in the desired spectral region and as a dual spectral converter marks its possible application for enhanced harvesting of sunlight.

  8. Antibody biotechnology

    African Journals Online (AJOL)

    STORAGESEVER

    2009-07-06

    Jul 6, 2009 ... and automated, the hybrid cells can be stored for many years in liquid nitrogen and antibodies production is homogeneous. The hybridoma method .... they may be modified to vehicle active molecules such as radio-isotopes, toxins, cytokines, enzyme etc. In these cases, the therapeutic effect is due to ...

  9. Catalytic Antibodies

    Indian Academy of Sciences (India)

    The ability of the highly evolved machinery of immune system to produce structurally and functionally complex ... to Pauling, if the structure of the antigen binding site of antibodies were to be produced in a random ..... where the immune system of the body is destructive, as in autoimmune disorders or after organ transplant.

  10. Catalytic Antibodies

    Indian Academy of Sciences (India)

    While chemistry provides the framework for understanding the structure and function of biomolecules, the immune sys- tem provides a highly evolved natural process to generate one class of complex biomolecules – the antibodies. A combination of the two could be exploited to generate new classes of molecules with novel ...

  11. MBE-grown Si and Si(1-x)Ge(x) quantum dots embedded within epitaxial Gd2O3 on Si(111) substrate for floating gate memory device.

    Science.gov (United States)

    Manna, S; Aluguri, R; Katiyar, A; Das, S; Laha, A; Osten, H J; Ray, S K

    2013-12-20

    Si and Si(1-x)Ge(x) quantum dots embedded within epitaxial Gd2O3 grown by molecular beam epitaxy have been studied for application in floating gate memory devices. The effect of interface traps and the role of quantum dots on the memory properties have been studied using frequency-dependent capacitance-voltage and conductance-voltage measurements. Multilayer quantum dot memory comprising four and five layers of Si quantum dots exhibits a superior memory window to that of single-layer quantum dot memory devices. It has also been observed that single-layer Si(1-x)Ge(x) quantum dots show better memory characteristics than single-layer Si quantum dots.

  12. Structural Characterization and Absolute Luminescence Efficiency Evaluation of Gd2O2S High Packing Density Ceramic Screens Doped with Tb3+ and Eu3+ for further Applications in Radiology

    Science.gov (United States)

    Dezi, Anna; Monachesi, Elenasophie; D'Ignazio, Michela; Scalise, Lorenzo; Montalto, Luigi; Paone, Nicola; Rinaldi, Daniele; Mengucci, Paolo; Loudos, George; Bakas, Athanasios; Michail, Christos; Valais, Ioannis; Fountzoula, Christine; Fountos, George; David, Stratos

    2017-11-01

    Rare earth activators are impurities added in the phosphor material to enhance probability of visible photon emission during the luminescence process. The main activators employed are rare earth trivalent ions such as Ce+3, Tb+3, Pr3+ and Eu+3. In this work, four terbium-activated Gd2O2S (GOS) powder screens with different thicknesses (1049 mg/cm2, 425.41 mg/cm2, 313 mg/cm2 and 187.36 mg/cm2) and one europium-activated GOS powder screen (232.18 mg/cm2) were studied to investigate possible applications for general radiology detectors. Results presented relevant differences in crystallinity between the GOS:Tb doped screens and GOS:Eu screens in respect to the dopant agent present. The AE (Absolute efficiency) was found to rise (i) with the increase of the X-ray tube voltage with the highest peaking at 110kVp and (ii) with the decrease of the thickness among the four GOS:Tb. Comparing similar thickness values, the europium-activated powder screen showed lower AE than the corresponding terbium-activated.

  13. Formation of silver nanoparticles in Li2B4O7-Ag2O and Li2B4O7-Gd2O3-Ag2O borate glasses.

    Science.gov (United States)

    Adamiv, Volodymyr; Gamernyk, Roman; Teslyuk, Ihor

    2017-06-10

    Results of investigations of 98.0Li 2 B 4 O 7 -2.0Ag 2 O and 97.0Li 2 B 4 O 7 -2.0Ag 2 O-1.0Gd 2 O 3 glasses with Ag nanoparticles (Ag NPs), formed by thermal treatment in vacuum and in air, are presented. Intensive plasmon absorption bands, connected with Ag NPs, were observed in their optical transmission spectra. It is ascertained that in volumes of both glasses there is formed a small number of Ag NPs, whereas their main mass is concentrated near the surface of samples. The mechanism of Ag NPs formation is proposed. A conclusion is drawn that annealing in vacuum does not necessarily require the presence of reducing ions, whereas formation of nanoparticles at annealing in air is impossible without reducing agents. Structural defects play a decisive role in the Ag NPs nucleation process. Radii of formed Ag NPs are estimated by the half-width of plasmon bands, and by means of small-angle x-ray scattering.

  14. Effect of temperature and pH on polygalacturonase production by pectinolytic bacteria Bacillus licheniformis strain GD2a in submerged medium from Raja Nangka (Musa paradisiaca var. formatypica) banana peel waste

    Science.gov (United States)

    Widowati, E.; Utami, R.; Mahadjoeno, E.; Saputro, G. P.

    2017-04-01

    The aim of this research were to determine the effect of temperature (45°C, 55°C, 65°C) and pH (5.0; 6.0; 7.0) on the increase of total cell count and polygalacturonase enzyme activity produced from raja nangka banana (Musa paradisiaca var. formatypica) peel waste by pectinolytic bacterial Bacillus licheniformis strain GD2a. This research applied two sample repetition and one analysis repetition. The result showed temperature and pH affect total cell count. The total cell count on 45°C and pH 7 recorded the highest number at 9.469 log cell/ml. Temperature and pH also affected pectin concentration at the end of fermentation. The lowest pectin concentration recorded at 45°C and pH 7 was 0.425 %. The highest enzyme activity recorded at 65°C and pH 7 was 0.204 U/ml. The highest enzyme protein concentration was recorded at 65°C and resulted as 0.310 mg/ml on pH 6. The highest specific activity was 19.527 U/mg at 65°C and pH 7. By this result, could be concluded that optimum condition process on polygalacturonase production was at 65°C and pH 7 because it gave highest enzyme activity result (0,204 U/ml).

  15. Spontaneous polarization and pyroelectric effect in improper ferroelectrics-ferroelastics Gd2(MoO4)3 and Tb2(MoO4)3 at low temperature

    International Nuclear Information System (INIS)

    Matyjasik, S; Shaldin, Yu.V.

    2013-01-01

    Experimental dependencies for spontaneous polarization ΔP s (T) and pyroelectric coefficient γ s (T)for Gd 2 (MoO 4 ) 3 (GMO) and Tb 2 (MoO 4 ) 3 (TMO) reported here differs from those for intrinsic ferroelectrics. We found fundamental distinction in GMO and TMO samples behavior at their repolarization at the fixed temperatures 300 and 4.2 K. In TMO monodomainization temperature does not affect experimental data, while in GMO monodomainization at 4.2 K results in increase of ΔP s (T) by order of magnitude at 85 K and γ s (T) dependence shows well-defined anomalies, reaching a record magnitude of 3 centre dot 10 -4 C/(m 2 centre dot K) at T = 25 K. At T = 200 K the pyroelectric coefficients values are -1.45 centre dot 10 -6 C/(m 2 centre dot K) and-1.8 centre dot 10 -6 C/(m 2 centre dot K). Taking into account our data, results related to transformation of structure in (001) plane and symmetry reasons we suggested crystallographic model of GMO type improper ferroelectric. It is formed by four meso-tetrahedrons constructed of three coordination tetrahedrons MO 4 (a, b and c types). In the framework of this model we discuss the physical meaning of pseudodeviator Q 12 *, coefficient, that initiate the phase transition at T > 433 K from noncentrosymmetric phase (mm2) to another one (4-bar2m).

  16. Synthesis and Characterization of Yttria-Stabilized Zirconia Nanoparticles Doped with Ytterbium and Gadolinium: ZrO2 9.5Y2O3 5.6Yb2O3 5.2Gd2O3

    Science.gov (United States)

    Bahamirian, M.; Hadavi, S. M. M.; Rahimipour, M. R.; Farvizi, M.; Keyvani, A.

    2018-03-01

    Defect cluster thermal barrier coatings (TBCs) are attractive alternatives to Yttria-stabilized zirconia (YSZ) in advanced applications. In this study, YSZ nanoparticles doped with ytterbium and gadolinium (ZrO2 9.5Y2O3 5.6Yb2O3 5.2Gd2O3 (ZGYbY)) were synthesized through a chemical co-precipitation and calcination method, and characterized by in situ high-temperature X-ray diffraction analysis in the temperature range of 25 °C to 1000 °C (HTK-XRD), thermogravimetric analysis, differential thermal analysis, Fourier transform infrared spectroscopy, Raman spectroscopy, and field emission scanning electron microscopy (FE-SEM). Precise cell parameters of t-prime phase and the best zirconia phase for TBC applications were calculated by Cohen's and Rietveld refinement methods. Optimum crystallization temperature of the precursor powder was found to be 1000 °C. Furthermore, FE-SEM results for the calcined ZGYbY powders indicated orderly particles of uniform shape and size with a small tendency toward agglomeration. Average lattice thermal expansion coefficient in the temperature range of 25 °C to 1000 °C was determined to be 31.71 × 10-6 K-1.

  17. Spontaneous polarization and pyroelectric effect in the improper ferroelectrics-ferroelastics Gd2(MoO4)3 and Tb2(MoO4)3 at low temperatures

    Science.gov (United States)

    Matyjasik, S.; Shaldin, Yu. V.

    2013-11-01

    The experimental variations in the spontaneous polarization ΔPs(T) and pyroelectric coefficient γs(T) for Gd2(MoO4)3 (GMO) and Tb2(MoO4)3 (TMO) at low temperatures reported here differ from those for intrinsic ferroelectrics. A fundamental difference is found in the repolarization behavior of samples of GMO and TMO at fixed temperatures of 300 and 4.2 K. While the single domain formation temperature essentially has no effect on the measurements for TMO, a fundamental difference is observed in the case of GMO: single domain formation in the latter at 4.2 K leads to an order of magnitude increase in ΔPs at T > 85 K and distinct anomalies are observed in γs(T), at one of which the pyroelectric coefficient reaches a record peak of 3 × 10-4 C/(m2.K) at T = 25 K. At T = 200 K the pyroelectric coefficients equal -1.45 and -1.8 in units of 10-6 C/(m2.K). Based on these results and taking published data on the rotational structural transformation in the (001) plane and symmetry considerations into account, we propose a crystal physical model for GMO-type improper ferroelectrics consisting of four mesotetrahedra, each of which is made up of three different types (a, b, c) of MoO4 coordination tetrahedra. The physical significance of the pseudodeviator coefficient Q12*, which initiates the phase transition at T > 433 K from one non-centrally symmetric phase (mm2) into another (4¯2m), is discussed in terms of this model.

  18. Local Bi-O bonds correlated with infrared emission properties in triply doped Gd2.95Yb0.02Bi0.02Er0.01Ga5O12 via temperature-dependent Raman spectra and x-ray absorption fine structure analysis.

    Science.gov (United States)

    Tong, Liping; Saito, Katsuhiko; Guo, Qixin; Zhou, Han; Guo, Xingmei; Fan, Tongxiang; Zhang, Di

    2018-03-28

    A correlation function between the Raman intensities and the nearest-neighbor mean-square relative displacement (MSRD) [Formula: see text] of local Bi-O bonds is successfully established based on x-ray absorption fine structure (XAFS) and temperature-dependent Raman spectra in the temperature range 77-300 K in amorphous and crystalline Gd 2.95 Yb 0.02 Bi 0.02 Er 0.01 Ga 5 O 12 . The structural symmetries of Gd 2.95 Yb 0.02 Bi 0.02 Er 0.01 Ga 5 O 12 are described by using [Formula: see text] of local Bi-O bonds. More importantly, Gd 2.95 Yb 0.02 Bi 0.02 Er 0.01 Ga 5 O 12 is found to show excellent infrared (IR) emission properties due to changes in Bi-O bonds, and the IR emission intensities are found to depend on [Formula: see text], by using temperature-dependent photoluminescence spectroscopy. The maximum emission intensity at 1533 nm is obtained when [Formula: see text] [Formula: see text] at the lowest symmetry. This work shows that temperature-dependent Raman intensities can be used effectively to analyze the local covalent bonds around absorbing atoms as well as to study the emission properties of this visible-light-activated IR luminophor.

  19. Local Bi–O bonds correlated with infrared emission properties in triply doped Gd2.95Yb0.02Bi0.02Er0.01Ga5O12 via temperature-dependent Raman spectra and x-ray absorption fine structure analysis

    Science.gov (United States)

    Tong, Liping; Saito, Katsuhiko; Guo, Qixin; Zhou, Han; Guo, Xingmei; Fan, Tongxiang; Zhang, Di

    2018-03-01

    A correlation function between the Raman intensities and the nearest-neighbor mean-square relative displacement (MSRD) σ2 of local Bi–O bonds is successfully established based on x-ray absorption fine structure (XAFS) and temperature-dependent Raman spectra in the temperature range 77–300 K in amorphous and crystalline Gd2.95Yb0.02Bi0.02Er0.01Ga5O12. The structural symmetries of Gd2.95Yb0.02Bi0.02Er0.01Ga5O12 are described by using σ2 of local Bi–O bonds. More importantly, Gd2.95Yb0.02Bi0.02Er0.01Ga5O12 is found to show excellent infrared (IR) emission properties due to changes in Bi–O bonds, and the IR emission intensities are found to depend on σ2 , by using temperature-dependent photoluminescence spectroscopy. The maximum emission intensity at 1533 nm is obtained when σ^2∼0.003 {\\mathringA} at the lowest symmetry. This work shows that temperature-dependent Raman intensities can be used effectively to analyze the local covalent bonds around absorbing atoms as well as to study the emission properties of this visible-light-activated IR luminophor.

  20. Increasing the clinical efficacy of NK and antibody-mediated cancer immunotherapy: potential predictors of successful clinical outcome observed in high-risk neuroblastoma

    Directory of Open Access Journals (Sweden)

    Tony A. Koehn

    2012-05-01

    Full Text Available Disease recurrence is frequent in high-risk neuroblastoma (NBL patients even after multimodality aggressive treatment [a combination of chemotherapy, surgical resection, local radiation therapy, autologous stem cell transplantation (ASCT and cis-retinoic acid (CRA]. Recent clinical studies have explored the use of monoclonal antibodies (mAbs that bind to disialoganglioside (GD2, highly expressed in NBL, as a means to enable immune effector cells to destroy NBL cells via antibody-dependent cell-mediated cytotoxicity (ADCC. Preclinical data indicate that ADCC can be more effective when appropriate effector cells are activated by cytokines. Clinical studies have pursued this by administering anti-GD2 mAb in combination with ADCC-enhancing cytokines (IL2 and GM-CSF, a regimen that has demonstrated improved cancer-free survival. More recently, early clinical studies have used a fusion protein that consists of the anti-GD2 mAb directly linked to IL2, and antitumor responses were seen in the Phase II setting. Analyses of genes that code for receptors that influence ADCC activity and Natural Killer (NK cell function [Fc Receptor (FcR, Killer Immunoglublin-like Receptor (KIR, and KIR-ligand (KIR-L] suggest patients with antitumor activity are more likely to have certain genotype profiles. Further analyses will need to be conducted to determine whether these genotypes can be used as predictive markers for favorable therapeutic outcome, thus potentially increasing the efficacy of mAb-mediated NK cell-based cancer immunotherapy.

  1. Acetylcholine receptor antibody

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003576.htm Acetylcholine receptor antibody To use the sharing features on this page, please enable JavaScript. Acetylcholine receptor antibody is a protein found in the blood ...

  2. Platelet antibodies blood test

    Science.gov (United States)

    This blood test shows if you have antibodies against platelets in your blood. Platelets are a part of the blood ... Chernecky CC, Berger BJ. Platelet antibody - blood. In: Chernecky ... caused by platelet destruction, hypersplenism, or hemodilution. ...

  3. Monoclonal antibodies and cancer

    International Nuclear Information System (INIS)

    Haisma, H.J.

    1987-01-01

    The usefulness of radiolabeled monoclonal antibodies for imaging and treatment of human (ovarian) cancer was investigated. A review of tumor imaging with monoclonal antibodies is presented. Special attention is given to factors that influence the localization of the antibodies in tumors, isotope choice and methods of radiolabeling of the monoclonal antibodies. Two monoclonal antibodies, OC125 and OV-TL3, with high specificity for human epithelial ovarian cancer are characterized. A simple radio-iodination technique was developed for clinical application of the monoclonal antibodies. The behavior of monoclonal antibodies in human tumor xenograft systems and in man are described. Imaging of tumors is complicated because of high background levels of radioactivity in other sites than the tumor, especially in the bloodpool. A technique was developed to improve imaging of human tumor xenographs in nude mice, using subtraction of a specific and a non-specific antibody, radiolabeled with 111 In, 67 Ga and 131 I. To investigate the capability of the two monoclonal antibodies, to specifically localize in human ovarian carcinomas, distribution studies in mice bearing human ovarian carcinoma xenografts were performed. One of the antibodies, OC125, was used for distribution studies in ovarian cancer patients. OC125 was used because of availability and approval to use this antibody in patients. The same antibody was used to investigate the usefulness of radioimmunoimaging in ovarian cancer patients. The interaction of injected radiolabeled antibody OC125 with circulating antigen and an assay to measure the antibody response in ovarian cancer patients after injection of the antibody is described. 265 refs.; 30 figs.; 19 tabs

  4. Radiolabeled antibody imaging

    International Nuclear Information System (INIS)

    Wahl, R.L.

    1987-01-01

    Radiolabeled antibodies, in particular monoclonal antibodies, offer the potential for the specific nuclear imaging of malignant and benign diseases in man. If this imaging potential is realized, they may also have a large role in cancer treatment. This paper reviews: (1) what monoclonal antibodies are and how they differ from polyclonal antibodies, (2) how they are produced and radiolabeled, (3) the results of preclinical and clinical trials in cancer imaging, including the utility of SPECT and antibody fragments, (4) the role of antibodies in the diagnosis of benign diseases, (5) alternate routes of antibody delivery, (6) the role of these agents in therapy, and (7) whether this technology ''revolutionizes'' the practice of nuclear radiology, or has a more limited complementary role in the imaging department

  5. Síntesis y Evaluación de las Propiedades de Nanopartículas de Gd2O3 Dopadas con Centros Luminiscentes de Eu mediante Spray Pirolisis

    Directory of Open Access Journals (Sweden)

    Milosevic, O.

    2006-04-01

    Full Text Available Influence of the Eu3+ luminescence center concentration on the structural, morphological and spectroscopic properties of the powders obtained in accordance to the aerosol method was studied in this work. The processing route includes aerosol formation ultrasonically (resonant frequency 1.7MHz from common gadolinium and europium nitrate solutions and control over the aerosol decomposition in a high-temperature (up to 1473K tubular flow reactor. During decomposition, the aerosol droplets undergo evaporation/drying, precipitation and thermolysis in a dispersed phase and in a single-step process. Consequently, spherical, solid, agglomerate-free, submicron-sized particles with the crystallite sizes below 20nm were obtained. In order to control the particles crystal structure and to establish the conditions for the stabilization of the lowtemperature gadolinia cubic phase, the process parameters like synthesis temperature, droplet/particle residence time and annealing temperatures were adopted. The particle morphology, phase and chemical structure were revealed in accordance to various analysis methods (XRD, SEM and EDS. Structural changes (crystallite size and microstrains after powders thermal treatment were carried out using Koalariet-XFit program as the profile-matching tools. The results obtained and the mechanisms of ultrafine phosphor particles generation were discussed in terms of precursor chemistry, process parameters and luminescence properties.En este trabajo se presentan los resultados de la influencia de la concentración de centros luminiscentes de Eu3+ en cuanto a los cambios estructurales, morfológicos y propiedades ópticas de nanopartículas de Gd2O3 obtenidas mediante técnicas de aerosol. Se ha estudiado la influencia de parámetros experimentales durante el proceso de síntesis (temperatura, caudal del gas portador, tiempo de residencia de las gotas de aerosol en el interior del horno, temperatura del horno y temperaturas isot

  6. Antibodies Against Melanin

    African Journals Online (AJOL)

    1973-01-06

    Jan 6, 1973 ... Departments of Internal Medicine and Anatomical Pathology, University of Stellenbosch and MRC. Pigment Metabolism Research Unit, ... at the production of antibodies against natural melanoprotein. and a consideration of our negative .... the random polymerization of several monomers, antibody formed ...

  7. Recombinant renewable polyclonal antibodies.

    Science.gov (United States)

    Ferrara, Fortunato; D'Angelo, Sara; Gaiotto, Tiziano; Naranjo, Leslie; Tian, Hongzhao; Gräslund, Susanne; Dobrovetsky, Elena; Hraber, Peter; Lund-Johansen, Fridtjof; Saragozza, Silvia; Sblattero, Daniele; Kiss, Csaba; Bradbury, Andrew R M

    2015-01-01

    Only a small fraction of the antibodies in a traditional polyclonal antibody mixture recognize the target of interest, frequently resulting in undesirable polyreactivity. Here, we show that high-quality recombinant polyclonals, in which hundreds of different antibodies are all directed toward a target of interest, can be easily generated in vitro by combining phage and yeast display. We show that, unlike traditional polyclonals, which are limited resources, recombinant polyclonal antibodies can be amplified over one hundred million-fold without losing representation or functionality. Our protocol was tested on 9 different targets to demonstrate how the strategy allows the selective amplification of antibodies directed toward desirable target specific epitopes, such as those found in one protein but not a closely related one, and the elimination of antibodies recognizing common epitopes, without significant loss of diversity. These recombinant renewable polyclonal antibodies are usable in different assays, and can be generated in high throughput. This approach could potentially be used to develop highly specific recombinant renewable antibodies against all human gene products.

  8. Effect of Gd2O3 doping on structure and boron volatility of borosilicate glass sealants in solid oxide fuel cells-A study on the La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) cathode

    Science.gov (United States)

    Zhang, Qi; Tan, Shengwei; Ren, Mengyuan; Yang, Hsiwen; Tang, Dian; Chen, Kongfa; Zhang, Teng; Jiang, San Ping

    2018-04-01

    Boron volatility is one of the most important properties of borosilicate-based glass sealants in solid oxide fuel cells (SOFCs), as boron contaminants react with lanthanum-containing cathodes, forming LaBO3 and degrading the activity of SOFCs. Here, we report that the reaction between the volatile boron and a La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) cathode during polarization can be significantly reduced by doping aluminoborosilicate glass with Gd2O3. Specifically, the Gd cations in glass with 2 mol.% Gd2O3 dissolve preferentially in the borate-rich environment to form more Gd-metaborate structures and promote the formation of calcium metaborate (CaB2O4); they also condense the B-O network after heat treatment, which suppresses poisoning by boron contaminants on the LSCF cathode. The results provide insights into design and development of a reliable sealing glass for SOFC applications.

  9. Development of all chemical solution derived Ce0.9La0.1O2−y/Gd2Zr2O7 buffer layer stack for coated conductors: influence of the post-annealing process on surface crystallinity

    International Nuclear Information System (INIS)

    Zhao, Y; Li, X-F; He, D; Andersen, N H; Grivel, J-C; Khoryushin, A; Hansen, J B

    2012-01-01

    Preparation and characterization of a biaxially textured Gd 2 Zr 2 O 7 and Ce 0.9 La 0.1 O 2−y (CLO, cap)/Gd 2 Zr 2 O 7 (GZO, barrier) buffer layer stack by the metal–organic deposition route are reported. YBa 2 Cu 3 O 7−d (YBCO) superconductor films were deposited by the pulsed-laser deposition (PLD) technique to assess the efficiency of such a novel buffer layer stack. Biaxial texture quality and morphology of the buffer layers and the YBCO superconductor films were fully characterized. The surface crystallinity of the buffer layers is studied by the electron backscatter diffraction technique. It is revealed that post-annealing GZO films in 2% H 2 in Ar is an effective way to improve the surface crystallinity. As a result, a highly textured CLO film can grow directly on the GZO film at a lower crystallization temperature. The critical current density of a YBCO PLD film is higher than 1 MA cm −2 (77 K, in self-field), demonstrating that the novel CLO/GZO stack is very promising for further development of low cost buffer layer architectures for coated conductors.

  10. Antibody engineering: methods and protocols

    National Research Council Canada - National Science Library

    Chames, Patrick

    2012-01-01

    "Antibody Engineering: Methods and Protocols, Second Edition was compiled to give complete and easy access to a variety of antibody engineering techniques, starting from the creation of antibody repertoires and efficient...

  11. Anti-insulin antibody test

    Science.gov (United States)

    Insulin antibodies - serum; Insulin Ab test; Insulin resistance - insulin antibodies; Diabetes - insulin antibodies ... You appear to have an allergic response to insulin Insulin no longer seems to control your diabetes

  12. Monoclonal antibody "gold rush".

    Science.gov (United States)

    Maggon, Krishan

    2007-01-01

    The market, sales and regulatory approval of new human medicines, during the past few years, indicates increasing number and share of new biologics and emergence of new multibillion dollar molecules. The global sale of monoclonal antibodies in 2006 were $20.6 billion. Remicade had annual sales gain of $1 billion during the past 3 years and five brands had similar increase in 2006. Rituxan with 2006 sales of $4.7 billion was the best selling monoclonal antibody and biological product and the 6th among the top selling medicinal brand. It may be the first biologic and monoclonal antibody to reach $10 billion annual sales in the near future. The strong demand from cancer and arthritis patients has surpassed almost all commercial market research reports and sales forecast. Seven monoclonal antibody brands in 2006 had sales exceeding $1 billion. Humanized or fully human monoclonal antibodies with low immunogenicity, enhanced antigen binding and reduced cellular toxicity provide better clinical efficacy. The higher technical and clinical success rate, overcoming of technical hurdles in large scale manufacturing, low cost of market entry and IND filing, use of fully human and humanized monoclonal antibodies has attracted funds and resources towards R&D. Review of industry research pipeline and sales data during the past 3 years indicate a real paradigm shift in industrial R&D from pharmaceutical to biologics and monoclonal antibodies. The antibody bandwagon has been joined by 200 companies with hundreds of new projects and targets and has attracted billions of dollars in R&D investment, acquisitions and licensing deals leading to the current Monoclonal Antibody Gold Rush.

  13. Antibody affinity maturation

    DEFF Research Database (Denmark)

    Skjødt, Mette Louise

    surface expression of various antibody formats in the generated knockout strain. Functional scFv and scFab fragments were efficiently displayed on yeast whereas impaired chain assembly and heavy chain degradation was observed for display of full-length IgG molecules. To identify the optimal polypeptide......-antibody interface and the antibody intraface.the microenvironment and ecology of Acaryochloris and Prochloron, and in this thesis we attempted to further describe the distribution, growth characteristics and adaptive/regulatory mechanisms of these two cyanobacteria, both in their natural habitat and under defined...

  14. Serum herpes simplex antibodies

    Science.gov (United States)

    ... causes cold sores (oral herpes). HSV-2 causes genital herpes. How the Test is Performed A blood sample ... person has ever been infected with oral or genital herpes . It looks for antibodies to herpes simplex virus ...

  15. Anti-sulfotyrosine antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Bertozzi, Carolyn R [Berkeley, CA; Kehoe, John [Saint Davids, PA; Bradbury, Andrew M [Santa Fe, NM

    2009-09-15

    The invention provides anti-sulfotyrosine specific antibodies capable of detecting and isolating polypeptides that are tyrosine-sulfated. The sulfotyrosine antibodies and antibody fragments of the invention may be used to discriminate between the non-sulfated and sulfated forms of such proteins, using any number of immunological assays, such ELISAs, immunoblots, Western Blots, immunoprecipitations, and the like. Using a phage-display system, single chain antibodies (scFvs) were generated and screened against tyrosine-sulfated synthetic peptide antigens, resulting in the isolation of scFvs that specifically recognize sulfotyrosine-containing peptides and/or demonstrate sulfotyrosine-specific binding in tyrosine sulfated proteins. The VH and VL genes from one such sulfotyrosine-specific scFv were employed to generate a full length, sulfotyrosine-specific immunoglobulin.

  16. Bifunctional antibodies for radioimmunotherapy.

    Science.gov (United States)

    Chatal, J F; Faivre-Chauvet, A; Bardies, M; Peltier, P; Gautherot, E; Barbet, J

    1995-04-01

    In two-step targeting technique using bifunctional antibodies, a nonradiolabeled immunoconjugate with slow uptake kinetics (several days) is initially injected, followed by a small radiolabeled hapten with fast kinetics (several hours) that binds to the bispecific immunoconjugate already taken up by the tumor target. In patients with colorectal or medullary thyroid cancer, clinical studies performed with an anti-CEA/anti-DTPA-indium bifunctional antibody and an indium-111-labeled di-DTPA-TL bivalent hapten showed that tumor uptake was not modified compared to results for F(ab')2 fragments of the same anti-CEA antibody directly labeled with indium-111, whereas the radioactivity of normal tissues was significantly reduced (3- to 6-fold). The fast tumor uptake kinetics (several hours) and high or very high tumor-to-normal tissue ratios obtained with the bifunctional antibody technique are favorable parameters for efficient radioimmunotherapy.

  17. Antibody Blood Tests

    Science.gov (United States)

    Antibody Blood Tests Researchers have discovered that people with celiac disease who eat gluten have higher than normal levels of ... do I do if I have a negative blood test (or panel) but I’m still having symptoms? ...

  18. Molecular structure, FT IR, NMR, UV, NBO and HOMO-LUMO of 1-(3-(dimethylamino)propyl)-1-(4-fluorophenyl)-1,3-dihydroisobenzofuran-5-carbonitrile by DFT/B3LYP and PBEPBE methods with LanL2DZ and 6-311++G(d,2p) basis sets.

    Science.gov (United States)

    Khajehzadeh, Mostafa; Moghadam, Majid

    2017-06-05

    Structural and molecular properties of antidepressants 1-(3-(dimethylamino)propyl)-1-(4-fluorophenyl)-1,3-dihydroisobenzofuran-5-carbonitrile were examined using quantum mechanics of Density Functional Theory (DFT)/B3LYP and PBEPBE methods with 6-311++G(d,2p) and LanL2DZ basis sets to study the therapeutic properties of the drug. For this, the structure of desired material was optimized by the computer calculation method and with the use of powerful Gaussian 09 software. Then the lowest energy value and the bond length, bond angle and dihedral angle between its constituent atoms in the crystal structure of the desired material were measured from the optimized values. Then the amount of positive and negative charges, polarizability and dipole moment of its atoms using Mulliken charge and Natural atomic charges, DFT/B3LYP and PBEPBE methods with 6-311++G(d,2p) and LanL2DZ basis sets were determined and the results were compared with each other for individual atoms and by mentioned methods. Also the type of stretching vibrations and bending vibrations between the constituent atoms of the molecule were specified using mentioned computational methods and FT IR vibrational spectra. The experimental spectrum of this material was taken to determine the functional groups and the computational and experimental values were compared to each other and Nuclear Magnetic Resonance (NMR) was used to specify the isomer shift between the carbons and protons in the presence of polar and nonpolar solvents. Also Natural Bond Orbital (NBO) was used to determine the type of electron transfers in σ→σ∗ and π→π∗ and LP(1)→σ∗ and LP(2)→σ∗ and the amount of hardness and softness in molecule was determined using the difference between ionization energy and electron affinity energy in constituent atoms of that molecule in the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) and in the presence of solvents H 2 O, CH 3 CN and C 6 H 12 . UV-Vis spectrum of the drug was taken using DFT/B3LYP and PBEPBE methods with 6-311++G(d,2p) and LanL2DZ basis sets as well as solvents H 2 O, CH 3 CN and C 6 H 12 and the associated transmissions were examined. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Natural and Man-made Antibody Repertories for Antibody Discovery

    Directory of Open Access Journals (Sweden)

    Juan C eAlmagro

    2012-11-01

    Full Text Available Antibodies are the fastest-growing segment of the biologics market. The success of antibody-based drugs resides in their exquisite specificity, high potency, stability, solubility, safety and relatively inexpensive manufacturing process in comparison with other biologics. We outline here the structural studies and fundamental principles that define how antibodies interact with diverse targets. We also describe the antibody repertoires and affinity maturation mechanisms of human, mice and chickens, plus the use of novel single-domain antibodies in camelids and sharks. These species all utilize diverse evolutionary solutions to generate specific and high affinity antibodies and illustrate the plasticity of natural antibody repertoires. In addition, we discuss the multiple variations of man-made antibody repertoires designed and validated in the last two decades, which have served as tools to explore how the size, diversity and composition of a repertoire impact the antibody discovery process.

  20. Antibody informatics for drug discovery

    DEFF Research Database (Denmark)

    Shirai, Hiroki; Prades, Catherine; Vita, Randi

    2014-01-01

    to the antibody science in every project in antibody drug discovery. Recent experimental technologies allow for the rapid generation of large-scale data on antibody sequences, affinity, potency, structures, and biological functions; this should accelerate drug discovery research. Therefore, a robust bioinformatic...... infrastructure for these large data sets has become necessary. In this article, we first identify and discuss the typical obstacles faced during the antibody drug discovery process. We then summarize the current status of three sub-fields of antibody informatics as follows: (i) recent progress in technologies...... for antibody rational design using computational approaches to affinity and stability improvement, as well as ab-initio and homology-based antibody modeling; (ii) resources for antibody sequences, structures, and immune epitopes and open drug discovery resources for development of antibody drugs; and (iii...

  1. Antithyroglobulin Antibodies and Antimicrosomal Antibodies in Various Thyroid Diseases

    International Nuclear Information System (INIS)

    Lee, Gwon Jun; Hong, Key Sak; Choi, Kang Won; Lee, Kyu; Koh, Chang Soon; Lee, Mun Ho; Park, Sung Hoe; Chi, Je Geun; Lee, Sang Kook

    1979-01-01

    The authors investigated the incidence of antithyroglobulin antibodies and antibodies and antimicrosomal antibodies measured by tanned red cell hemagglutination method in subjects suffering from various thyroid disorders. 1) In 15 normal patients, neither suffering from any thyroid diseases nor from any other autoimmune disorders, the antithyroglobulin antibodies were all negative, but the antimicrosomal antibody was positive only in one patient (6.7%). 2) The antithyroglobulin antibodies were positive in 31.5% (34 patients) of 108 patients with various thyroid diseases, and the antimicrosomal antibodies were positive in 37.0% (40 patients). 3) of the 25 patients with Graves' diseases, 7 patients (28.0%) showed positive for the antithyroglobulin antibodies, and 9 (36.0%) for the antimicrosomal antibodies. There was no definite differences in clinical and thyroid functions between the groups with positive and negative results. 4) Both antibodies were positive in 16 (88.9%) and 17 (94.4%) patients respectively among 18 patients with Hashimoto's thyroiditis, all of them were diagnosed histologically. 5) Three out of 33 patients with thyroid adenoma showed positive antibodies, and 3 of 16 patients with thyroid carcinoma revealed positive antibodies. 6) TRCH antibodies demonstrated negative results in 2 patients with subacute thyroiditis, but positive in one patient with idiopathic primary myxedema. 7) The number of patients with high titers(>l:802) was 16 for antithyroglobulin antibody, and 62.5% (10 patients) of which was Hashimoto's thyroiditis. Thirteen (65.0) of 20 patients with high titers (>l:802) for antimicrosomal antibody was Hashimoto's thyroiditis. TRCH test is a simple, sensitive method, and has high reliability and reproducibility. The incidences and titers of antithyroglobulin antibody and antimicrosomal antibody are especially high in Hashimoto's thyroiditis.

  2. Compositions, antibodies, asthma diagnosis methods, and methods for preparing antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hongjun; Zangar, Richard C.

    2017-01-17

    Methods for preparing an antibody are provided with the method including incorporating 3-bromo-4-hydroxy-benzoic acid into a protein to form an antigen, immunizing a mammalian host with the antigen, and recovering an antibody having an affinity for the antigen from the host. Antibodies having a binding affinity for a monohalotyrosine are provided as well as composition comprising an antibody bound with monohalotyrosine. Compositions comprising a protein having a 3-bromo-4-hydroxy-benzoic acid moiety are also provided. Methods for evaluating the severity of asthma are provide with the methods including analyzing sputum of a patient using an antibody having a binding affinity for monohalotyrosine, and measuring the amount of antibody bound to protein. Methods for determining eosinophil activity in bodily fluid are also provided with the methods including exposing bodily fluid to an antibody having a binding affinity for monohalotyrosine, and measuring the amount of bound antibody to determine the eosinophil activity.

  3. Antithyroid microsomal antibody

    Science.gov (United States)

    ... that you have a higher chance of developing thyroid disease in the future. Antithyroid microsomal antibodies may be ... PA: Elsevier; 2016:chap 11. Weiss RE, Refetoff S. Thyroid function testing. In: Jameson JL, De Groot LJ, eds. Endocrinology: Adult and ... Lupus Read more ...

  4. Antibodies Targeting EMT

    Science.gov (United States)

    2017-10-01

    determine their targets on the cell. The newly discovered antibodies will then be engineered for utility as new highly specific drugs and diagnostics in...are from the aldo-keto reductase family (AKRs). Remarkably, 3 of the top 10 genes with induction in the mesenchymal TES2b cells Figure 1. Amino

  5. Monoclonal antibodies in haematopathology

    Energy Technology Data Exchange (ETDEWEB)

    Grignani, F.; Martelli, M.F.; Mason, D.Y.

    1985-01-01

    This book contains over 40 selections. Some of the titles are: Oncogene (c-myc, c-myb) amplification in acute myelogenous leukaemia; Ultrastructural characterization of leukaemic cells with monoloclonal antibodies; Origin of B-cell malignancies; Immunohistology of gut lymphomas; and Spurious evidence of lineage infidelity in monocytic leukaemia.

  6. Monoclonal antibodies in myeloma

    DEFF Research Database (Denmark)

    Sondergeld, P.; van de Donk, N. W. C. J.; Richardson, P. G.

    2015-01-01

    The development of monoclonal antibodies (mAbs) for the treatment of disease goes back to the vision of Paul Ehrlich in the late 19th century; however, the first successful treatment with a mAb was not until 1982, in a lymphoma patient. In multiple myeloma, mAbs are a very recent and exciting add...

  7. Humanized Antibodies for Antiviral Therapy

    Science.gov (United States)

    Co, Man Sung; Deschamps, Marguerite; Whitley, Richard J.; Queen, Cary

    1991-04-01

    Antibody therapy holds great promise for the treatment of cancer, autoimmune disorders, and viral infections. Murine monoclonal antibodies are relatively easy to produce but are severely restricted for therapeutic use by their immunogenicity in humans. Production of human monoclonal antibodies has been problematic. Humanized antibodies can be generated by introducing the six hypervariable regions from the heavy and light chains of a murine antibody into a human framework sequence and combining it with human constant regions. We humanized, with the aid of computer modeling, two murine monoclonal antibodies against herpes simplex virus gB and gD glycoproteins. The binding, virus neutralization, and cell protection results all indicate that both humanized antibodies have retained the binding activities and the biological properties of the murine monoclonal antibodies.

  8. Structural Characterization of Peptide Antibodies

    DEFF Research Database (Denmark)

    Chailyan, Anna; Marcatili, Paolo

    2015-01-01

    The role of proteins as very effective immunogens for the generation of antibodies is indisputable. Nevertheless, cases in which protein usage for antibody production is not feasible or convenient compelled the creation of a powerful alternative consisting of synthetic peptides. Synthetic peptides...... can be modified to obtain desired properties or conformation, tagged for purification, isotopically labeled for protein quantitation or conjugated to immunogens for antibody production. The antibodies that bind to these peptides represent an invaluable tool for biological research and discovery...

  9. Synthetic peptides for antibody production

    NARCIS (Netherlands)

    N.D. Zegers (Netty)

    1995-01-01

    textabstractSynthetic peptides are useful tools for the generation of antibodies. The use of antibodies as specific reagents in inununochemical assays is widely applied. In this chapter, the application of synthetic peptides for the generation of antibodies is described. The different steps

  10. Synthetic peptides for antibody production

    NARCIS (Netherlands)

    Zegers, N.D.

    1995-01-01

    Synthetic peptides are useful tools for the generation of antibodies. The use of antibodies as specific reagents in inununochemical assays is widely applied. In this chapter, the application of synthetic peptides for the generation of antibodies is described. The different steps that lead to the

  11. Magnetic Purification of Antibodies

    Science.gov (United States)

    Dhadge, Vijaykumar Laxman

    This work aimed at the development of magnetic nanoparticles for antibody purification and at the evaluation of their performance in Magnetic fishing and in a newly developed hybrid technology Magnetic Aqueous Two Phase Systems. Magnetic materials were produced by coprecipitation and solvothermal approaches. Natural polymers such as dextran, extracellular polysaccharide and gum Arabic were employed for coating of iron oxide magnetic supports. Polymer coated magnetic supports were then modified with synthetic antibody specific ligands,namely boronic acid, a triazine ligand (named 22/8) and an Ugi ligand (named A2C7I1). To optimize the efficacy of magnetic nanoparticles for antibody magnetic fishing, various solutions of pure and crude antibody solutions along with BSA as a non-specific binding protein were tested. The selectivity of magnetic nanoparticle for antibody, IgG, was found effective with boronic acid and ligand 22/8. Magnetic supports were then studied for their performance in high gradient magnetic separator for effective separation capability as well as higher volume handling capability. The magnetic materials were also supplemented to aqueous two phase systems, devising a new purification technology. For this purpose, magnetic particles modified with boronic acid were more effective. This alternative strategy reduced the time of operation,maximized separation capability (yield and purity), while reducing the amount of salt required. Boronic acid coated magnetic particles bound 170 +/- 10 mg hIgG/g MP and eluted 160 +/- 5 mg hIgG/g MP, while binding only 15 +/- 5 mg BSA/g MP. The affinity constant for the interaction between hIgG and APBA_MP was estimated as 4.9 x 105 M-1 (Ka) with a theoretical maximum capacity of 492 mg hIgG adsorbed/g MP (Qmax). APBA_MPs were also tested for antibody purification directly from CHO cell supernatants. The particles were able to bind 98% of IgG loaded and to recover 95% of pure IgG (purity greater than 98%) at extremely

  12. Clinical use of antibodies

    International Nuclear Information System (INIS)

    Baum, R.P.; Hoer, Gustav; Cox, P.H.; Buraggi, G.L.

    1991-01-01

    Use of monoclonal antibodies as tumour specific carrier molecules for therapeutic agents or as in vivo diagnostic reagents when labelled with radionuclides or NMR signal enhancers is attracting more and more attention. The potential is enormous but the technical problems are also considerable requiring the concerted action of many different scientific disciplines. This volume is based upon a symposium organised in Frankfurt in 1990 under the auspices of the European Association of Nuclear Medicines' Specialist Task Groups on Cardiology and the Utility of Labelled Antibodies. It gives a multidisciplinary review of the state of the art and of problems to be solved as well as recording the not inconsiderable successes which have been booked to date. The book will be of value as a reference to both clinicians and research scientists. refs.; figs.; tabs

  13. Antibody Production with Synthetic Peptides.

    Science.gov (United States)

    Lee, Bao-Shiang; Huang, Jin-Sheng; Jayathilaka, Lasanthi P; Lee, Jenny; Gupta, Shalini

    2016-01-01

    Peptides (usually 10-20 amino acid residues in length) can be used as effectively as proteins in raising antibodies producing both polyclonal and monoclonal antibodies routinely with titers higher than 20,000. Peptide antigens do not function as immunogens unless they are conjugated to proteins. Production of high quality antipeptide antibodies is dependent upon peptide sequence selection, the success of peptide synthesis, peptide-carrier protein conjugation, the humoral immune response in the host animal, the adjuvant used, the peptide dose administered, the injection method, and the purification of the antibody. Peptide sequence selection is probably the most critical step in the production of antipeptide antibodies. Although the process for designing peptide antigens is not exact, several guidelines and computational B-cell epitope prediction methods can help maximize the likelihood of producing antipeptide antibodies that recognize the protein. Antibodies raised by peptides have become essential tools in life science research. Virtually all phospho-specific antibodies are now produced using phosphopeptides as antigens. Typically, 5-20 mg of peptide is enough for antipeptide antibody production. It takes 3 months to produce a polyclonal antipeptide antibody in rabbits that yields ~100 mL of serum which corresponds to ~8-10 mg of the specific antibody after affinity purification using a peptide column.

  14. [Study of anti-idiotype antibodies to human monoclonal antibody].

    Science.gov (United States)

    Harada, R; Takahashi, N; Owaki, I; Kannagi, R; Endo, N; Morita, N; Inoue, M

    1992-02-01

    A human monoclonal antibody, ll-50 (IgM, lambda), was generated, which reacted specifically with a major of glycolipid present in LS174T colon cancer cells. The glycolipid antigen which reacted with the ll-50 antibody was expected to four sugar residues from its TLC mobility, and it was ascertained that the glycolipid antigen which reacted with ll-50 antibody might be Lc4 antigen [Gal beta 1----3 GLcNAc beta 1----3 Gal beta 1----4 Glc beta 1----1 Cer] judging from TLC immunostaining and ELISA when the reactivity of ll-50 antibody was tested using various pure glycolipids in 3-5 sugar residues as an antigen. Sera in patients with malignant disorders and healthy individuals were analyzed by Sandwich assay of immobilized and biotinylated ll-50 antibody. The serum of the Lc4 antigen recognized by ll-50 antibody was significantly higher in patients with malignant disorders than that in healthy individuals (p less than 0.05). Three mouse monoclonal anti-idiotype antibodies, G3, B3 and C5 (all IgG1), were generated by the immunization of BALB/c mice with ll-50 antibody. These anti-idiotype antibodies specifically bound to to human monoclonal antibody, ll-50 and had a significant inhibitory activity towards the binding of ll-50 antibody to the Lc4 antigen. This indicated that these anti-idiotype antibodies, G3, B3, and C5, were paratope-related anti-idiotype antibodies. G3, B3, and C5 were expected to define the nearest idiotope because they could mutually inhibit ll-50 antibody. Sera in patients with malignant disorders and healthy individuals were analyzed by Sandwich assay of immobilized and biotinylated anti-idiotype antibodies, G3, B3, and C5. As to the ll-50 like antibodies defined by C5 (Id-C5+), the mean serum level in patients with malignant disorders was significantly higher than that in healthy individuals (p less than 0.05). As to the ll-50 like antibodies defined by B3 (Id-B3+), the mean serum level in patients with malignant disorders was significantly higher

  15. The antibody Hijikata Tatsumi

    Directory of Open Access Journals (Sweden)

    Éden Peretta

    2012-11-01

    Full Text Available Considered one of the most influential modern dance representatives in Japan, Tatsumi Hijikata’s work was a milestone in the Japanese post-war experimental artistic scene. Heretic son of his time, he staged a fertile mix of artistic and cultural influences, overlapping subversive elements of European arts and philosophy with radical references from pre-modern Japanese culture. In this way he built the foundations of its unstable antibody, its political-artistic project of dissolution of a organism, both physical and social.

  16. The future of monoclonal antibody technology

    OpenAIRE

    Zider, Alexander; Drakeman, Donald L

    2010-01-01

    With the rapid growth of monoclonal antibody-based products, new technologies have emerged for creating modified forms of antibodies, including fragments, conjugates and multi-specific antibodies. We created a database of 450 therapeutic antibodies in development to determine which technologies and indications will constitute the “next generation” of antibody products. We conclude that the antibodies of the future will closely resemble the antibodies that have already been approved for commer...

  17. Monoclonal antibodies for treating cancer

    International Nuclear Information System (INIS)

    Dillman, R.O.

    1989-01-01

    The purpose of this study is to assess the current status of in-vivo use of monoclonal antibodies for treating cancer. Publications appearing between 1980 and 1988 were identified by computer searches using MEDLINE and CANCERLIT, by reviewing the table of contents of recently published journals, and by searching bibliographies of identified books and articles. More than 700 articles, including peer-reviewed articles and book chapters, were identified and selected for analysis. The literature was reviewed and 235 articles were selected as relevant and representative of the current issues and future applications for in-vivo monoclonal antibodies for cancer therapy and of the toxicity and efficacy which has been associated with clinical trials. Approaches include using antibody alone (interacting with complement or effector cells or binding directly with certain cell receptors) and immunoconjugates (antibody coupled to radioisotopes, drugs, toxins, or other biologicals). Most experience has been with murine antibodies. Trials of antibody alone and radiolabeled antibodies have confirmed the feasibility of this approach and the in-vivo trafficking of antibodies to tumor cells. However, tumor cell heterogeneity, lack of cytotoxicity, and the development of human antimouse antibodies have limited clinical efficacy. Although the immunoconjugates are very promising, heterogeneity and the antimouse immune response have hampered this approach as has the additional challenge of chemically or genetically coupling antibody to cytotoxic agents. As a therapeutic modality, monoclonal antibodies are still promising but their general use will be delayed for several years. New approaches using human antibodies and reducing the human antiglobulin response should facilitate treatment. 235 references

  18. Tabhu: tools for antibody humanization

    DEFF Research Database (Denmark)

    Olimpieri, Pier Paolo; Marcatili, Paolo; Tramontano, Anna

    2015-01-01

    and time-consuming experiments. Here we present tools for antibody humanization (Tabhu) a web server for antibody humanization. Tabhu includes tools for human template selection, grafting, back-mutation evaluation, antibody modelling and structural analysis, helping the user in all the critical steps...... elicit unwanted and dangerous immunogenic responses. Antibody humanization methods are designed to produce molecules with a better safety profile still maintaining their ability to bind the antigen. This can be accomplished by grafting the non-human regions determining the antigen specificity...... of the humanization experiment protocol....

  19. Theranostics Using Antibodies and Antibody-Related Therapeutics

    NARCIS (Netherlands)

    Moek, Kirsten L; Giesen, Danique; Kok, Iris C; de Groot, Derk Jan A; Jalving, Mathilde; Fehrmann, Rudolf S N; Lub-de Hooge, Marjolijn N; Brouwers, Adrienne H; de Vries, Elisabeth G E

    In theranostics, radiolabeled compounds are used to determine a treatment strategy by combining therapeutics and diagnostics in the same agent. Monoclonal antibodies (mAbs) and antibody-related therapeutics represent a rapidly expanding group of cancer medicines. Theranostic approaches using these

  20. Antibodies and Plasmodium falciparum merozoites

    NARCIS (Netherlands)

    Ramasamy, R; Ramasamy, M; Yasawardena, S

    There is considerable interest in using merozoite proteins in a vaccine against falciparum malaria. Observations that antibodies to merozoite surface proteins block invasion are a basis for optimism. This article draws attention to important and varied aspects of how antibodies to Plasmodium

  1. Catalytic Antibodies: Concept and Promise

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 11. Catalytic Antibodies: Concept and Promise. Desirazu N Rao Bharath Wootla. General Article Volume 12 Issue ... Keywords. Catalytic antibodies; abzymes; hybridome technology; Diels– Alder reaction; Michaelis– Menten kinetics; Factor VIII.

  2. Antiphospholipid antibodies: standardization and testing.

    Science.gov (United States)

    Riley, R S; Friedline, J; Rogers, J S

    1997-09-01

    A phenomenon originally scorned as a laboratory nuisance has turned out to be an important cause of thromboembolism, fetal death, and other forms of human disease. Investigations of this inaptly named "lupus anticoagulant" has led to the discovery of at least two distinct types of autoimmune antibodies. In spite of recent discoveries regarding the pathophysiology of these antibodies, their clinical significance is still controversial.

  3. Educational paper: Primary antibody deficiencies

    NARCIS (Netherlands)

    G.J.A. Driessen (Gertjan); M. van der Burg (Mirjam)

    2011-01-01

    textabstractPrimary antibody deficiencies (PADs) are the most common primary immunodeficiencies and are characterized by a defect in the production of normal amounts of antigen-specific antibodies. PADs represent a heterogeneous spectrum of conditions, ranging from often asymptomatic selective IgA

  4. [Antibody induction after intrauterine interventions].

    Science.gov (United States)

    Hoch, J; Giers, G; Bald, R; Hansmann, M; Hanfland, P

    1993-06-01

    Immunohematologic and clinical data, i.e., antibody profile, location of the placenta, mode of cordocentesis, obtained from 48 pregnant patients with irregular erythrocyte antibodies during the last 2 years have been retrospectively evaluated. All fetuses of the patients received intrauterine transfusions for the treatment of fetal erythroblastosis. In 16 (33%) patients (group I) a secondarily induced antibody was detected after the onset of intrauterine transfusion therapy. 32 (67%) patients (group II) did not further develop new antibody specificities. Group I exhibited a significantly different distribution in the location of the placenta (p pregnant women. In group I a 5-fold higher rate of anterior than posterior placenta location was found. The mode of cordocentesis differed significantly (p antibodies by invasive intrauterine interventions in our patients depended indirectly on the location of the placenta and directly on the mode of the puncture (trans- vs. paraplacental access).

  5. Dissecting Immunogenicity of Monoclonal Antibodies

    National Research Council Canada - National Science Library

    Snyder, Christopher

    2002-01-01

    The potential of monoclonal antibodies, (mAbs), for use in therapeutic and diagnostic applications has not been fully realized in part due to counter-immune responses that often arise in patient recipients of mAb...

  6. Dissecting Immunogenicity of Monoclonal Antibodies

    National Research Council Canada - National Science Library

    Snyder, Christopher

    2003-01-01

    The potential of monoclonal antibodies, (mAbs), for use in therapeutic and diagnostic applications has not been fully realized in part due to counter-immune responses that often arise in patient recipients of mAb...

  7. Antisperm antibodies and fertility association.

    Science.gov (United States)

    Restrepo, B; Cardona-Maya, W

    2013-10-01

    To evaluate the relation between antisperm antibodies (ASA) and human fertility by reviewing the scientific literature of the last 45 years. We carried out a review of scientific literature about antisperm antibodies and infertility published in spanish or english in databases as Pubmed, Medline, Scielo, some books and another gray literature include information related to this review and that is published in the last 45 years. Infertile couples suffer infertility by immunological mechanisms mainly by the presence of antisperm antibodies ASA in blood, semen or cervicovaginal secretions; the formation of ASA in men and women may be associated with disturbance in immunomodulatory mechanisms that result in functional impairment of sperm and thus its inability to fertilize the oocyte. Immunological infertility caused by ASA is the result of interference of these antibodies in various stages of fertilization process, inhibiting the ability of interaction between sperm and oocyte. Copyright © 2012 AEU. Published by Elsevier Espana. All rights reserved.

  8. Antibody Drug Conjugates: Preclinical Considerations.

    Science.gov (United States)

    Bornstein, Gadi G

    2015-05-01

    The development path for antibody drug conjugates (ADCs) is more complex and challenging than for unmodified antibodies. While many of the preclinical considerations for both unmodified and antibody drug conjugates are shared, special considerations must be taken into account when developing an ADC. Unlike unmodified antibodies, an ADC must preferentially bind to tumor cells, internalize, and traffic to the appropriate intracellular compartment to release the payload. Parameters that can impact the pharmacological properties of this class of therapeutics include the selection of the payload, the type of linker, and the methodology for payload drug conjugation. Despite a plethora of in vitro assays and in vivo models to screen and evaluate ADCs, the challenge remains to develop improved preclinical tools that will be more predictive of clinical outcome. This review will focus on preclinical considerations for clinically validated small molecule ADCs. In addition, the lessons learned from Mylotarg®, the first in class FDA-approved ADC, are highlighted.

  9. Monoclonal antibodies technology. Protocols

    International Nuclear Information System (INIS)

    Acevado Castro, B.E.

    1997-01-01

    Full text: Immunization. The first step in preparing useful monoclonal antibodies (MAbs) is to immunize an animal (Balb/c for example) with an appropriate antigen. Methods (only for soluble antigen): Solubilize selected antigen in Phosphate buffer solution (PBS) at pH 7.2-7.4, ideally at a final concentration per animal between 10 to 50 μg/ml. It is recommended that the antigen under consideration be incorporated into the emulsion adjuvants in 1:1 volumetric relation. We commonly use Frend's adjuvant (FA) to prepared immunized solution. The first immunization should be prepared with complete FA, and the another could be prepared with incomplete FA. It is recommended to inject mice with 0.2 ml intraperitoneal (ip) or subcutaneous (sc). Our experience suggests the sc route is the preferred route. A minimum protocol for immunizing mice to generate cells for preparing hybridomas is s follows: immunize sc on day 0, boost sc on day 21, take a trial bleeding on day 26; if antibody titters are satisfactory, boost ip on day 35 with antigen only, and remove the spleen to obtain cells for fusion on day 38. Fusion protocol. The myeloma cell line we are using is X63 Ag8.653. At the moment of fusion myeloma cells need a good viability (at least a 95%). 1. Remove the spleen cells from immunized mice using sterile conditions. An immune spleen should yield between 7 a 10x10 7 nucleated cells. 2. Place the spleen in 20 ml of serum-free RPMI 1640 in a Petri dish. Using a needle and syringe, inject the spleen with medium to distend and disrupt the spleen stroma and free the nucleated cells. 3. Flush the cell suspension with a Pasteur pipet to disperse clumps of cells. 4. Centrifuge the spleen cell suspension at 250g for 10 min. Resuspend the pellet in serum-free RPMI 1640. Determine cell concentration using Neuhabuer chamber. 5. Mix the myeloma cells and spleen cells in a conical 50-ml tube in serum-free RPMI 1640, 1 x10 7 spleen cells to 1x10 6 myeloma cells (ratio 10:1). Centrifuge

  10. Radiolabeled monoclonal antibodies: a review

    International Nuclear Information System (INIS)

    Toledo e Souza, I.T. de; Okada, H.

    1990-05-01

    Since the description by Kohler and Milstein 1975 of their technique for producing monoclonal antibodies of predefined specificity, it has become a mainstay in most laboratories that utilize immunochemical techniques to study problems in basic, applied or clinical research. Paradoxically, the very success of monoclonal antibodies has generated a literature which is now so vast and scattered that it has become difficult to obtain a perspective. This brief review represents the distillation of many publications relating to the production and use of monoclonaal antibodies as radiopharmaceuticals. Significant advances were made possible in the last few years by combined developments in the fields of tumor-associated antigens and of monoclonal antibodies. In fact monoclonal antibodies against some well defined tumor-associated antigens, has led to significantly greater practical possibilities for producing highly specific radiolabeled antibodies as radiopharmaceuticals for diagnosis and therapy of human tumors. One of the main requirements of this methodology is the availability of stable radiopharmaceutical reagents which after labeling in vivo injection retain the capacity of specific interaction with the defined antigen and their molecular integrity. Since injection into human is the objetive of this kind of study all the specifications of radiopharmaceutical have to be fulfilled e.g. sterility, apirogenicity and absence of toxicity. (author) [pt

  11. Avian Diagnostic and Therapeutic Antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, David Sherman [UND SMHS

    2012-12-31

    A number of infectious agents have the potential of causing significant clinical symptomology and even death, but dispite this, the number of incidence remain below the level that supports producing a vaccine. Therapeutic antibodies provide a viable treatment option for many of these diseases. We proposed that antibodies derived from West Nile Virus (WNV) immunized geese would be able to treat WNV infection in mammals and potential humans. We demonstrated that WNV specific goose antibodies are indeed successful in treating WNV infection both prophylactically and therapeutically in a golden hamster model. We demonstrated that the goose derived antibodies are non-reactogenic, i.e. do not cause an inflammatory response with multiple exposures in mammals. We also developed both a specific pathogen free facility to house the geese during the antibody production phase and a patent-pending purification process to purify the antibodies to greater than 99% purity. Therefore, the success of these study will allow a cost effective rapidly producible therapeutic toward clinical testing with the necessary infrastructure and processes developed and in place.

  12. Tabhu: tools for antibody humanization.

    KAUST Repository

    Olimpieri, Pier Paolo

    2014-10-09

    SUMMARY: Antibodies are rapidly becoming essential tools in the clinical practice, given their ability to recognize their cognate antigens with high specificity and affinity, and a high yield at reasonable costs in model animals. Unfortunately, when administered to human patients, xenogeneic antibodies can elicit unwanted and dangerous immunogenic responses. Antibody humanization methods are designed to produce molecules with a better safety profile still maintaining their ability to bind the antigen. This can be accomplished by grafting the non-human regions determining the antigen specificity into a suitable human template. Unfortunately, this procedure may results in a partial or complete loss of affinity of the grafted molecule that can be restored by back-mutating some of the residues of human origin to the corresponding murine ones. This trial-and-error procedure is hard and involves expensive and time-consuming experiments. Here we present tools for antibody humanization (Tabhu) a web server for antibody humanization. Tabhu includes tools for human template selection, grafting, back-mutation evaluation, antibody modelling and structural analysis, helping the user in all the critical steps of the humanization experiment protocol. AVAILABILITY: http://www.biocomputing.it/tabhu CONTACT: anna.tramontano@uniroma1.it, pierpaolo.olimpieri@uniroma1.it SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

  13. Replacing reprogramming factors with antibodies selected from combinatorial antibody libraries.

    Science.gov (United States)

    Blanchard, Joel W; Xie, Jia; El-Mecharrafie, Nadja; Gross, Simon; Lee, Sohyon; Lerner, Richard A; Baldwin, Kristin K

    2017-10-01

    The reprogramming of differentiated cells into induced pluripotent stem cells (iPSCs) is usually achieved by exogenous induction of transcription by factors acting in the nucleus. In contrast, during development, signaling pathways initiated at the membrane induce differentiation. The central idea of this study is to identify antibodies that can catalyze cellular de-differentiation and nuclear reprogramming by acting at the cell surface. We screen a lentiviral library encoding ∼100 million secreted and membrane-bound single-chain antibodies and identify antibodies that can replace either Sox2 and Myc (c-Myc) or Oct4 during reprogramming of mouse embryonic fibroblasts into iPSCs. We show that one Sox2-replacing antibody antagonizes the membrane-associated protein Basp1, thereby de-repressing nuclear factors WT1, Esrrb and Lin28a (Lin28) independent of Sox2. By manipulating this pathway, we identify three methods to generate iPSCs. Our results establish unbiased selection from autocrine combinatorial antibody libraries as a robust method to discover new biologics and uncover membrane-to-nucleus signaling pathways that regulate pluripotency and cell fate.

  14. Radioiodination of antibodies for tumor imaging

    International Nuclear Information System (INIS)

    Saha, G.B.

    1983-01-01

    In view of the great potential of radioiodinated antibody for the detection and treatment of cancer, the present article deals with the various techniques of radioiodination of antibody and their uses. Topics include methods of iodination of antibody, advantages and disadvantages of different methods, and effects of radioiodination on the antibody molecules with respect to their physiochemical and immunologic reactivity. In addition, the clinical usefulness of radioiodinated antibodies is discussed. (Auth.)

  15. Antibodies from plants for bionanomaterials.

    Science.gov (United States)

    Edgue, Gueven; Twyman, Richard M; Beiss, Veronique; Fischer, Rainer; Sack, Markus

    2017-11-01

    Antibodies are produced as part of the vertebrate adaptive immune response and are not naturally made by plants. However, antibody DNA sequences can be introduced into plants, and together with laboratory technologies that allow the design of antibodies recognizing any conceivable molecular structure, plants can be used as 'green factories' to produce any antibody at all. The advent of plant-based transient expression systems in particular allows the rapid, convenient, and safe production of antibodies, ranging from laboratory-scale expression to industrial-scale manufacturing. The key features of plant-based production include safety, speed, low cost, and convenience, allowing newcomers to rapidly master the technology and use it to its full advantage. Manufacturing in plants has recently achieved significant milestones and offers more than just an alternative to established microbial and mammalian cell platforms. The use of plants for product development in particular offers the power and flexibility to easily coexpress many different genes, allowing the plug-and-play construction of novel bionanomaterials, perfectly complementing existing approaches based on plant virus-like particles. As well as producing single antibodies for applications in medicine, agriculture, and industry, plants can be used to produce antibody-based supramolecular structures and scaffolds as a new generation of green bionanomaterials that promise a bright future based on clean and renewable nanotechnology applications. WIREs Nanomed Nanobiotechnol 2017, 9:e1462. doi: 10.1002/wnan.1462 For further resources related to this article, please visit the WIREs website. © 2017 The Authors. WIREs Nanomedicine and Nanobiotechnology published by Wiley Periodicals, Inc.

  16. Antibody-Directed Phototherapy (ADP

    Directory of Open Access Journals (Sweden)

    M. Adil Butt

    2013-04-01

    Full Text Available Photodynamic therapy (PDT is a clinically-approved but rather under-exploited treatment modality for cancer and pre-cancerous superficial lesions. It utilises a cold laser or LED to activate a photochemical reaction between a light activated drug (photosensitiser-drug and oxygen to generate cytotoxic oxygen species. These free radical species damage cellular components leading to cell death. Despite its benefits, the complexity, limited potency and side effects of PDT have led to poor general usage. However, the research area is very active with an increasing understanding of PDT-related cell biology, photophysics and significant progress in molecular targeting of disease. Monoclonal antibody therapy is maturing and the next wave of antibody therapies includes antibody-drug conjugates (ADCs, which promise to be more potent and curable. These developments could lift antibody-directed phototherapy (ADP to success. ADP promises to increase specificity and potency and improve drug pharmacokinetics, thus delivering better PDT drugs whilst retaining its other benefits. Whole antibody conjugates with first generation ADP-drugs displayed problems with aggregation, poor pharmacokinetics and loss of immuno-reactivity. However, these early ADP-drugs still showed improved selectivity and potency. Improved PS-drug chemistry and a variety of conjugation strategies have led to improved ADP-drugs with retained antibody and PS-drug function. More recently, recombinant antibody fragments have been used to deliver ADP-drugs with superior drug loading, more favourable pharmacokinetics, enhanced potency and target cell selectivity. These improvements offer a promise of better quality PDT drugs.

  17. Antibody Validation by Western Blotting.

    Science.gov (United States)

    Signore, Michele; Manganelli, Valeria; Hodge, Alex

    2017-01-01

    Validation of antibodies is an integral part of translational research, particularly for biomarker discovery. Assaying the specificity of the reagent (antibody) and confirming the identity of the protein biomarker is of critical importance prior to implementing any biomarker in clinical studies, and the lack of such quality control tests may result in unexpected and/or misleading results.Antibody validation is the procedure in which a single antibody is thoroughly assayed for sensitivity and specificity. Although a plethora of commercial antibodies exist, antibody specificity must be extensively demonstrated using diverse complex biological samples, rather than purified recombinant proteins, prior to use in clinical translational research. In the simplest iteration, antibody specificity is determined by the presence of a single band in a complex biological sample, at the expected molecular weight, on a Western blot.To date, numerous Western blotting procedures are available, based on either manual or automated systems and spanning the spectrum of single blots to multiplex blots. X-ray film is still employed in many research laboratories, but digital imaging has become a gold standard in immunoblotting. The basic principles of Western blotting are (a) separation of protein mixtures by gel electrophoresis, (b) transfer of the proteins to a blot, (c) probing the blot for a protein or proteins of interest, and (d) subsequent detection of the protein by chemiluminescent, fluorescent, or colorimetric methods. This chapter focuses on the chemiluminescent detection of proteins using a manual Western blotting system and a vacuum-enhanced detection system (SNAP i.d.™, Millipore).

  18. Antibodies: an alternative for antibiotics?

    Science.gov (United States)

    Berghman, L R; Abi-Ghanem, D; Waghela, S D; Ricke, S C

    2005-04-01

    In 1967, the success of vaccination programs, combined with the seemingly unstoppable triumph of antibiotics, prompted the US Surgeon General to declare that "it was time to close the books on infectious diseases." We now know that the prediction was overly optimistic and that the fight against infectious diseases is here to stay. During the last 20 yr, infectious diseases have indeed made a staggering comeback for a variety of reasons, including resistance against existing antibiotics. As a consequence, several alternatives to antibiotics are currently being considered or reconsidered. Passive immunization (i.e., the administration of more or less pathogen-specific antibodies to the patient) prior to or after exposure to the disease-causing agent is one of those alternative strategies that was almost entirely abandoned with the introduction of chemical antibiotics but that is now gaining interest again. This review will discuss the early successes and limitations of passive immunization, formerly referred to as "serum therapy," the current use of antibody administration for prophylaxis or treatment of infectious diseases in agriculture, and, finally, recent developments in the field of antibody engineering and "molecular farming" of antibodies in various expression systems. Especially the potential of producing therapeutic antibodies in crops that are routine dietary components of farm animals, such as corn and soy beans, seems to hold promise for future application in the fight against infectious diseases.

  19. Antibody profiling sensitivity through increased reporter antibody layering

    Energy Technology Data Exchange (ETDEWEB)

    Apel, William A; Thompson, Vicki S

    2013-02-26

    A method for analyzing a biological sample by antibody profiling for identifying forensic samples or for detecting the presence of an analyte. In an embodiment of the invention, the analyte is a drug, such as marijuana, Cocaine (crystalline tropane alkaloid), methamphetamine, methyltestosterone, or mesterolone. The method comprises attaching antigens to a surface of a solid support in a preselected pattern to form an array wherein locations of the antigens are known; contacting the array with the biological sample such that a portion of antibodies in the sample reacts with and binds to the antigens in the array to form immune complexes; washing away antibodies that do form immune complexes; and detecting the immune complexes, to form an antibody profile. Forensic samples are identified by comparing a sample from an unknown source with a sample from a known source. Further, an assay, such as a test for illegal drug use, can be coupled to a test for identity such that the results of the assay can be positively correlated to the subject's identity.

  20. Antibody profiling sensitivity through increased reporter antibody layering

    International Nuclear Information System (INIS)

    Apel, William A.; Thompson, Vickie S.

    2013-01-01

    A method for analyzing a biological sample by antibody profiling for identifying forensic samples or for detecting the presence of an analyte. In an embodiment of the invention, the analyte is a drug, such as marijuana, Cocaine (crystalline tropane alkaloid), methamphetamine, methyltestosterone, or mesterolone. The method comprises attaching antigens to a surface of a solid support in a preselected pattern to form an array wherein locations of the antigens are known; contacting the array with the biological sample such that a portion of antibodies in the sample reacts with and binds to the antigens in the array to form immune complexes; washing away antibodies that do form immune complexes; and detecting the immune complexes, to form an antibody profile. Forensic samples are identified by comparing a sample from an unknown source with a sample from a known source. Further, an assay, such as a test for illegal drug use, can be coupled to a test for identity such that the results of the assay can be positively correlated to the subject's identity.

  1. Antibody profiling sensitivity through increased reporter antibody layering

    Energy Technology Data Exchange (ETDEWEB)

    Apel, William A.; Thompson, Vicki S.

    2013-02-26

    A method for analyzing a biological sample by antibody profiling for identifying forensic samples or for detecting the presence of an analyte. In an embodiment of the invention, the analyte is a drug, such as marijuana, Cocaine (crystalline tropane alkaloid), methamphetamine, methyltestosterone, or mesterolone. The method comprises attaching antigens to a surface of a solid support in a preselected pattern to form an array wherein locations of the antigens are known; contacting the array with the biological sample such that a portion of antibodies in the sample reacts with and binds to the antigens in the array to form immune complexes; washing away antibodies that do form immune complexes; and detecting the immune complexes, to form an antibody profile. Forensic samples are identified by comparing a sample from an unknown source with a sample from a known source. Further, an assay, such as a test for illegal drug use, can be coupled to a test for identity such that the results of the assay can be positively correlated to the subject's identity.

  2. Antibody profiling sensitivity through increased reporter antibody layering

    Energy Technology Data Exchange (ETDEWEB)

    Apel, William A.; Thompson, Vicki S

    2010-04-13

    A method for analyzing a biological sample by antibody profiling for identifying forensic samples or for detecting the presence of an analyte. In an embodiment of the invention, the analyte is a drug, such as marijuana, Cocaine (crystalline tropane alkaloid), methamphetamine, methyltestosterone, or mesterolone. The method comprises attaching antigens to a surface of a solid support in a preselected pattern to form an array wherein locations of the antigens are known; contacting the array with the biological sample such that a portion of antibodies in the sample reacts with and binds to the antigens in the array to form immune complexes; washing away antibodies that do form immune complexes; and detecting the immune complexes, to form an antibody profile. Forensic samples are identified by comparing a sample from an unknown source with a sample from a known source. Further, an assay, such as a test for illegal drug use, can be coupled to a test for identity such that the results of the assay can be positively correlated to the subject's identity.

  3. Antibody profiling sensitivity through increased reporter antibody layering

    Energy Technology Data Exchange (ETDEWEB)

    Apel, William A.; Thompson, Vicki S.

    2017-03-28

    A method for analyzing a biological sample by antibody profiling for identifying forensic samples or for detecting the presence of an analyte. In an embodiment of the invention, the analyte is a drug, such as marijuana, Cocaine (crystalline tropane alkaloid), methamphetamine, methyltestosterone, or mesterolone. The method comprises attaching antigens to a surface of a solid support in a preselected pattern to form an array wherein locations of the antigens are known; contacting the array with the biological sample such that a portion of antibodies in the sample reacts with and binds to the antigens in the array to form immune complexes; washing away antibodies that do form immune complexes; and detecting the immune complexes, to form an antibody profile. Forensic samples are identified by comparing a sample from an unknown source with a sample from a known source. Further, an assay, such as a test for illegal drug use, can be coupled to a test for identity such that the results of the assay can be positively correlated to the subject's identity.

  4. Hu and Yo antibodies have heterogeneous avidity.

    Science.gov (United States)

    Totland, Cecilie; Aarseth, Jan; Vedeler, Christian

    2007-04-01

    Onconeural antibodies such as anti-Hu and anti-Yo may be important in the pathogenesis of paraneoplastic neurological syndromes. The avidity of these antibodies is not known. In this study, we compared the avidity of Hu and Yo antibodies both at single time points and over a time range of 2 months to 6 years. The avidity of Yo and Hu antibodies differed among the patients, but anti-Yo generally had higher avidity than anti-Hu. Whether Yo antibodies are more pathogenic than Hu antibodies are presently unknown.

  5. 9 CFR 113.452 - Erysipelothrix Rhusiopathiae Antibody.

    Science.gov (United States)

    2010-01-01

    ..., DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS STANDARD... Antibody is a specific antibody product containing antibodies directed against one or more somatic antigens...

  6. Monoclonal antibodies to Treponema Pallidum.

    NARCIS (Netherlands)

    H.J.M. van de Donk; J.D.A. van Embden; M.F. van Olderen; A.D.M.E. Osterhaus (Albert); J.C. de Jong (Jan)

    1984-01-01

    textabstractThree successive fusions of mouse myeloma cells and spleen lymphocytes of a mouse immunized with Treponema Pallidum resulted in one hybridoma producing anti T. pallidum antibodies for each fusion. The mice were immunized with live pallidum cells respectively 1, 3 and 5 months before

  7. Radioimmunological determination of growth hormone antibodies

    International Nuclear Information System (INIS)

    Kracmar, P.; Hnikova, O.

    1979-01-01

    The method is based on the assumption of the presence of antibodies in the serum of the patient and the formation of the complex antibody-tracer ( 125 I-STH). For separation the principle is used of two antibodies and subsequent ultrafiltration with membrane ultrafilters. Clinical experience, reproducibility and the procedure recommended for simple monitoring and the determination of the amount of antibodies in the serum of patients are presented. (author)

  8. Antibody therapeutics - the evolving patent landscape.

    Science.gov (United States)

    Petering, Jenny; McManamny, Patrick; Honeyman, Jane

    2011-09-01

    The antibody patent landscape has evolved dramatically over the past 30 years, particularly in areas of technology relating to antibody modification to reduce immunogenicity in humans or improve antibody function. In some cases antibody techniques that were developed in the 1980s are still the subject of patent protection in the United States or Canada. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Antibodies against chromosomal beta-lactamase

    DEFF Research Database (Denmark)

    Giwercman, B; Rasmussen, J W; Ciofu, Oana

    1994-01-01

    A murine monoclonal anti-chromosomal beta-lactamase antibody was developed and an immunoblotting technique was used to study the presence of serum and sputum antibodies against Pseudomonas aeruginosa chromosomal group 1 beta-lactamase in patients with cystic fibrosis (CF). The serum antibody resp...... against the infection. On the other hand, immune complexes between the beta-lactamase and corresponding antibodies could play a role in the pathogenesis of bronchopulmonary injury in CF by mediating hyperimmune reactions....

  10. Radioimmunoassay method for detection of gonorrhea antibodies

    International Nuclear Information System (INIS)

    1975-01-01

    A novel radioimmunoassay for the detection of gonorrhea antibodies in serum is described. A radionuclide is bound to gonorrhea antigens produced by a growth culture. In the presence of gonorrhea antibodies in the serum, an antigen-antibody conjugate is formed, the concentration of which can be measured with conventional radiometric methods. The radioimmunoassay is highly specific

  11. Antibodies Against Melanin | Wassermann | South African Medical ...

    African Journals Online (AJOL)

    This study reports on unsuccessful attempts to produce antibodies against melanoprotein in rabbits. Available evidence suggests antibodies against melanocytes in the aetiology of vitiligo, but there is no convincing evidence for antibodies against melanin per se. It is suggested that the demonstration of antibodif's against ...

  12. Detection of antibodies to co-trimoxazole (preservative drug interfering with routine red cell antibody screening

    Directory of Open Access Journals (Sweden)

    Deepti Sachan

    2018-01-01

    Full Text Available Drug-dependent antibodies can rarely cause interference in pretransfusion antibody screening. The diluents for commercial reagent red blood cells contain different antibiotics, such as chloramphenicol, neomycin sulfate, and gentamycin as a preservative. The presence of antibodies to a given drug in patient may lead to positive results when performing antibody identification. We present a rare case of detection of anti-co-trimoxazole antibody during routine antibody screening in a female patient undergoing neurosurgery. These antibodies mimicked as antibody against high-frequency red cell antigens reacting in both saline phase as well as antiglobulin phase. Anti-co-trimoxazole antibody was confirmed by repeating antibody screen using reagent red cells of different manufacturers with and without co-trimoxazole drug as preservative as well as using washed red cell panels. There were no associated clinical or laboratory evidence of hemolysis.

  13. Solid phase double-antibody radioimmunoassay procedure

    International Nuclear Information System (INIS)

    Niswender, G.D.

    1977-01-01

    The present invention is concerned with the radioimmunoassay (RIA) procedure for assaying body fluid content of an antigenic substance which may either be an antigen itself or a hapten capable of being converted, such as by means of reaction with a protein, to an antigenic material. The present invention is concerned with a novel and improved modification of a double-antibody RIA technique in which there is a first antibody that is specific to the antigenic substance suspected to be present in a body fluid from which the assay is intended. The second antibody, however, is not specific to the antigenic substance or analyte, but is an antibody against the first antibody

  14. Production of Monoclonal Antibody against Human Nestin

    OpenAIRE

    Hadavi, Reza; Zarnani, Amir Hassan; Ahmadvand, Negah; Mahmoudi, Ahmad Reza; Bayat, Ali Ahmad; Mahmoudian, Jafar; Sadeghi, Mohammad-Reza; Soltanghoraee, Haleh; Akhondi, Mohammad Mehdi; Tarahomi, Majid; Jeddi-Tehrani, Mahmood; Rabbani, Hodjattallah

    2010-01-01

    We have employed a peptide-based antibody generation protocol for producing antibody against human nestin. Using a 12-mer synthetic peptide from repetitive region of human nestin protein devoid of any N- or O-glyco-sylation sequences, we generated a mouse monoclonal antibody capable of recognizing human, mouse, bovine, and rat nestin. A wide variety of nestin proteins ranging from 140?250 kDa was detected by this antibody. This antibody is highly specific and functional in applications such a...

  15. Antibody pretargeting advances cancer radioimmunodetection and radioimmunotherapy.

    Science.gov (United States)

    Goldenberg, David M; Sharkey, Robert M; Paganelli, Giovanni; Barbet, Jacques; Chatal, Jean-François

    2006-02-10

    This article reviews the methods of pretargeting, which involve separating the targeting antibody from the subsequent delivery of an imaging or therapeutic agent that binds to the tumor-localized antibody. This provides enhanced tumor:background ratios and the delivery of a higher therapeutic dose than when antibodies are directly conjugated with radionuclides, as currently practiced in cancer radioimmunotherapy. We describe initial promising clinical results using streptavidin-antibody constructs with biotin-radionuclide conjugates in the treatment of patients with malignant gliomas, and of bispecific antibodies with hapten-radionuclides in the therapy of tumors expressing carcinoembryonic antigen, such as medullary thyroid and small-cell lung cancers.

  16. Serum Antibody Biomarkers for ASD

    Science.gov (United States)

    2015-10-01

    45-56. Singh VK. (2009) Phenotypic expression of autoimmune autistic disorder (AAD): A major subset of autism. Ann Clin Psychiat. 21:148-160. 5...spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impairments in communication (verbal and nonverbal), social interactions, and... autoimmunity ; in particular, the generation of antibodies reactive against brain and CNS proteins. The goal of this grant is to identify serum

  17. Antibody Repertoire Development in Swine

    Czech Academy of Sciences Publication Activity Database

    Butler, J. E.; Wertz, N.; Šinkora, Marek

    2017-01-01

    Roč. 5, FEB 17 (2017), s. 255-279 ISSN 2165-8102 R&D Projects: GA ČR GA15-02274S; GA ČR(CZ) GA16-09296S Institutional support: RVO:61388971 Keywords : swine * pre-immune antibody repertoire * ileal Peyer's patches Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 4.708, year: 2016

  18. Donor-derived HLA antibody production in patients undergoing SCT from HLA antibody-positive donors.

    Science.gov (United States)

    Taniguchi, K; Yoshihara, S; Maruya, E; Ikegame, K; Kaida, K; Hayashi, K; Kato, R; Inoue, T; Fujioka, T; Tamaki, H; Okada, M; Onuma, T; Fujii, N; Kusunoki, Y; Soma, T; Saji, H; Ogawa, H

    2012-10-01

    Pre-existing donor-specific HLA antibodies in patients undergoing HLA-mismatched SCT have increasingly been recognized as a risk factor for primary graft failure. However, the clinical implications of the presence of HLA antibodies in donors remain unknown. We prospectively examined 123 related donors for the presence of HLA antibodies by using a Luminex-based single antigen assay. Of these, 1/57 (1.8%) male, 6/27 (22%) parous female and 0/39 (0%) nonparous female donors were HLA antibody-positive. Then, we determined the presence of HLA antibodies in seven patients who received SCT from antibody-positive donors. Of these, four became HLA antibody-positive after SCT. The specificities of the antibodies that emerged in the patients closely resembled those of the antibodies found in the donors, indicating their production by donor-derived plasma cells. Moreover, the kinetics of the HLA antibody levels were similar in all four patients: levels started increasing within 1 week after SCT and peaked at days 10-21, followed by a gradual decrease. These results suggest that donor-derived HLA antibody production frequently occurs in patients undergoing SCT from antibody-positive donors. Further studies are warranted for clarifying the clinical significance of donor-derived HLA antibodies, including the role of these antibodies in post transplant platelet transfusion refractoriness.

  19. Construction of Rabbit Immune Antibody Libraries.

    Science.gov (United States)

    Nguyen, Thi Thu Ha; Lee, Jong Seo; Shim, Hyunbo

    2018-01-01

    Rabbits have distinct advantages over mice as a source of target-specific antibodies. They produce higher affinity antibodies than mice, and may elicit strong immune response against antigens or epitopes that are poorly immunogenic or tolerated in mice. However, a great majority of currently available monoclonal antibodies are of murine origin because of the wider availability of murine fusion partner cell lines and well-established tools and protocols for fusion and cloning of mouse hybridoma. Phage-display selection of antibody libraries is an alternative method to hybridoma technology for the generation of target-specific monoclonal antibodies. High-affinity monoclonal antibodies from nonmurine species can readily be obtained by constructing immune antibody libraries from B cells of the immunized animal and screening the library by phage display. In this article, we describe the construction of a rabbit immune Fab library for the facile isolation of rabbit monoclonal antibodies. After immunization, B-cell cDNA is obtained from the spleen of the animal, from which antibody variable domain repertoires are amplified and assembled into a Fab repertoire by PCR. The Fab genes are then cloned into a phagemid vector and transformed to E. coli, from which a phage-displayed immune Fab library is rescued. Such a library can be biopanned against the immunization antigen for rapid identification of high-affinity, target-specific rabbit monoclonal antibodies.

  20. Update on antiphospholipid antibody syndrome.

    Science.gov (United States)

    Lopes, Michelle Remião Ugolini; Danowski, Adriana; Funke, Andreas; Rêgo, Jozelia; Levy, Roger; Andrade, Danieli Castro Oliveira de

    2017-11-01

    Antiphospholipid syndrome (APS) is an autoimmune disease characterized by antiphospholipid antibodies (aPL) associated with thrombosis and/or pregnancy morbidity. Most APS events are directly related to thrombotic events, which may affect small, medium or large vessels. Other clinical features like thrombocytopenia, nephropathy, cardiac valve disease, cognitive dysfunction and skin ulcers (called non-criteria manifestations) add significant morbidity to this syndrome and represent clinical situations that are challenging. APS was initially described in patients with systemic lupus erythematosus (SLE) but it can occur in patients without any other autoimmune disease. Despite the autoimmune nature of this syndrome, APS treatment is still based on anticoagulation and antiplatelet therapy.

  1. Phase Separation in Solutions of Monoclonal Antibodies

    Science.gov (United States)

    Benedek, George; Wang, Ying; Lomakin, Aleksey; Latypov, Ramil

    2012-02-01

    We report the observation of liquid-liquid phase separation (LLPS) in a solution of humanized monoclonal antibodies, IgG2, and the effects of human serum albumin, a major blood protein, on this phase separation. We find a significant reduction of phase separation temperature in the presence of albumin, and a preferential partitioning of the albumin into the antibody-rich phase. We provide a general thermodynamic analysis of the antibody-albumin mixture phase diagram and relate its features to the magnitude of the effective inter-protein interactions. Our analysis suggests that additives (HSA in this report), which have moderate attraction with antibody molecules, may be used to forestall undesirable protein condensation in antibody solutions. Our findings are relevant to understanding the stability of pharmaceutical solutions of antibodies and the mechanisms of cryoglobulinemia.

  2. The future of antibodies as cancer drugs.

    Science.gov (United States)

    Reichert, Janice M; Dhimolea, Eugen

    2012-09-01

    Targeted therapeutics such as monoclonal antibodies (mAbs) have proven successful as cancer drugs. To profile products that could be marketed in the future, we examined the current commercial clinical pipeline of mAb candidates for cancer. Our analysis revealed trends toward development of a variety of noncanonical mAbs, including antibody-drug conjugates (ADCs), bispecific antibodies, engineered antibodies and antibody fragments and/or domains. We found substantial diversity in the antibody sequence source, isotype, carbohydrate residues, targets and mechanisms of action (MOA). Although well-validated targets, such as epidermal growth factor receptor (EGFR) and CD20, continue to provide opportunities for companies, we found notable trends toward targeting less-well-validated antigens and exploration of innovative MOA such as the generation of anticancer immune responses or recruitment of cytotoxic T cells. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Warm antibody autoimmune hemolytic anemia.

    Science.gov (United States)

    Kalfa, Theodosia A

    2016-12-02

    Autoimmune hemolytic anemia (AIHA) is a rare and heterogeneous disease that affects 1 to 3/100 000 patients per year. AIHA caused by warm autoantibodies (w-AIHA), ie, antibodies that react with their antigens on the red blood cell optimally at 37°C, is the most common type, comprising ∼70% to 80% of all adult cases and ∼50% of pediatric cases. About half of the w-AIHA cases are called primary because no specific etiology can be found, whereas the rest are secondary to other recognizable underlying disorders. This review will focus on the postulated immunopathogenetic mechanisms in idiopathic and secondary w-AIHA and report on the rare cases of direct antiglobulin test-negative AIHA, which are even more likely to be fatal because of inherent characteristics of the causative antibodies, as well as because of delays in diagnosis and initiation of appropriate treatment. Then, the characteristics of w-AIHA associated with genetically defined immune dysregulation disorders and special considerations on its management will be discussed. Finally, the standard treatment options and newer therapeutic approaches for this chronic autoimmune blood disorder will be reviewed. © 2016 by The American Society of Hematology. All rights reserved.

  4. An anti vimentin antibody promotes tube formation

    DEFF Research Database (Denmark)

    Jørgensen, Mathias Lindh; Møller, Carina Kjeldahl; Rasmussen, Lasse

    2017-01-01

    antibody technology, promotes tube formation of endothelial cells in a 2D matrigel assay. By binding vimentin, the antibody increases the tube formation by 21% after 5 hours of incubation. Addition of the antibody directly to cultured endothelial cells does not influence endothelial cell migration...... or proliferation. The enhanced tube formation can be seen for up to 10 hours where after the effect decreases. It is shown that the antibody-binding site is located on the coil 2 domain of vimentin. To our knowledge this is the first study that demonstrates an enhanced tube formation by binding vimentin in a 2D...

  5. Uses of monoclonal antibody 8H9

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, Nai-Kong V.

    2018-04-10

    This invention provides a composition comprising an effective amount of monoclonal antibody 8H9 or a derivative thereof and a suitable carrier. This invention provides a pharmaceutical composition comprising an effective amount of monoclonal antibody 8H9 or a derivative thereof and a pharmaceutically acceptable carrier. This invention also provides an antibody other than the monoclonal antibody 8H9 comprising the complementary determining regions of monoclonal antibody 8H9 or a derivative thereof, capable of binding to the same antigen as the monoclonal antibody 8H9. This invention provides a substance capable of competitively inhibiting the binding of monoclonal antibody 8H9. This invention also provides an isolated scFv of monoclonal antibody 8H9 or a derivative thereof. This invention also provides the 8H9 antigen. This invention also provides a method of inhibiting the growth of tumor cells comprising contacting said tumor cells with an appropriate amount of monoclonal antibody 8H9 or a derivative thereof.

  6. Exceptional Antibodies Produced by Successive Immunizations.

    Directory of Open Access Journals (Sweden)

    Patricia J Gearhart

    2015-12-01

    Full Text Available Antibodies stand between us and pathogens. Viruses mutate quickly to avoid detection, and antibodies mutate at similar rates to hunt them down. This death spiral is fueled by specialized proteins and error-prone polymerases that change DNA sequences. Here, we explore how B lymphocytes stay in the race by expressing activation-induced deaminase, which unleashes a tsunami of mutations in the immunoglobulin loci. This produces random DNA substitutions, followed by selection for the highest affinity antibodies. We may be able to manipulate the process to produce better antibodies by expanding the repertoire of specific B cells through successive vaccinations.

  7. High throughput discovery of influenza virus neutralizing antibodies from phage-displayed synthetic antibody libraries.

    Science.gov (United States)

    Chen, Ing-Chien; Chiu, Yi-Kai; Yu, Chung-Ming; Lee, Cheng-Chung; Tung, Chao-Ping; Tsou, Yueh-Liang; Huang, Yi-Jen; Lin, Chia-Lung; Chen, Hong-Sen; Wang, Andrew H-J; Yang, An-Suei

    2017-10-31

    Pandemic and epidemic outbreaks of influenza A virus (IAV) infection pose severe challenges to human society. Passive immunotherapy with recombinant neutralizing antibodies can potentially mitigate the threats of IAV infection. With a high throughput neutralizing antibody discovery platform, we produced artificial anti-hemagglutinin (HA) IAV-neutralizing IgGs from phage-displayed synthetic scFv libraries without necessitating prior memory of antibody-antigen interactions or relying on affinity maturation essential for in vivo immune systems to generate highly specific neutralizing antibodies. At least two thirds of the epitope groups of the artificial anti-HA antibodies resemble those of natural protective anti-HA antibodies, providing alternatives to neutralizing antibodies from natural antibody repertoires. With continuing advancement in designing and constructing synthetic scFv libraries, this technological platform is useful in mitigating not only the threats of IAV pandemics but also those from other newly emerging viral infections.

  8. Not All Antibodies Are Created Equal: Factors That Influence Antibody Mediated Rejection

    Directory of Open Access Journals (Sweden)

    Carrie L. Butler

    2017-01-01

    Full Text Available Consistent with Dr. Paul Terasaki’s “humoral theory of rejection” numerous studies have shown that HLA antibodies can cause acute and chronic antibody mediated rejection (AMR and decreased graft survival. New evidence also supports a role for antibodies to non-HLA antigens in AMR and allograft injury. Despite the remarkable efforts by leaders in the field who pioneered single antigen bead technology for detection of donor specific antibodies, a considerable amount of work is still needed to better define the antibody attributes that are associated with AMR pathology. This review highlights what is currently known about the clinical context of pre and posttransplant antibodies, antibody characteristics that influence AMR, and the paths after donor specific antibody production (no rejection, subclinical rejection, and clinical dysfunction with AMR.

  9. Human anti-Dectin-1 antibody, hybridoma producing said antibody and applications thereof

    OpenAIRE

    Kremer, Leonor; Llorente Gómez, María de las Mercedes; Casasnovas, José María; Fernández Ruíz, Elena; Galán Díez, Marta

    2008-01-01

    [EN] The invention relates to hybridoma MGD3 and the monoclonal antibody produced thereby (also called MGD3), which specifically recognises the human Dectin-1 membrane receptor. Antibody MGD3 is capable of inhibiting the binding of Dectin-1 to the natural ligand thereof, the ss-glucans that are components of the fungal wall. In addition, the aforementioned antibody specifically blocks binding to Candida albicans and the secretion of cytokines induced thereby. The MGD3 antibody obtained enable...

  10. Stratification of Antibody-Positive Subjects by Antibody Level Reveals an Impact of Immunogenicity on Pharmacokinetics

    OpenAIRE

    Zhou, Lei; Hoofring, Sarah A.; Wu, Yu; Vu, Thuy; Ma, Peiming; Swanson, Steven J.; Chirmule, Narendra; Starcevic, Marta

    2012-01-01

    The availability of highly sensitive immunoassays enables the detection of antidrug antibody (ADA) responses of various concentrations and affinities. The analysis of the impact of antibody status on drug pharmacokinetics (PK) is confounded by the presence of low-affinity or low-concentration antibody responses within the dataset. In a phase 2 clinical trial, a large proportion of subjects (45%) developed ADA following weekly dosing with AMG 317, a fully human monoclonal antibody therapeutic....

  11. Anti-idiotypic antibodies to poliovirus antibodies in commercial immunoglubulin preparations, human serum and milk.

    NARCIS (Netherlands)

    M. Hahn-Zoric; B. Carlsson; S. Jeansson; H.P. Ekre; A.D.M.E. Osterhaus (Albert); D. Roberton; L.A. Hanson

    1993-01-01

    textabstractOur previous studies have suggested that fetal antibody production can be induced by maternal antiidiotypic antibodies transferred to the fetus via the placenta. We tested commercial Ig, sera, and milk for the presence of anti-idiotypic antibodies to poliovirus type 1, using affinity

  12. Monoclonal antibodies in pediatric allergy

    Directory of Open Access Journals (Sweden)

    Amelia Licari

    2015-10-01

    Full Text Available Production of monoclonal antibodies (mAbs involving human-mouse hybrid cells was first described in 1970s, but these biologics are now used for a variety of diseases including cancers, autoimmune disorders and allergic diseases. The aim of this article is to review current and future applications of mAbs, in particular focusing on anti-IgE therapy, in the field of pediatric allergy. Proceedings of the 11th International Workshop on Neonatology and Satellite Meetings · Cagliari (Italy · October 26th-31st, 2015 · From the womb to the adultGuest Editors: Vassilios Fanos (Cagliari, Italy, Michele Mussap (Genoa, Italy, Antonio Del Vecchio (Bari, Italy, Bo Sun (Shanghai, China, Dorret I. Boomsma (Amsterdam, the Netherlands, Gavino Faa (Cagliari, Italy, Antonio Giordano (Philadelphia, USA

  13. Update on antiphospholipid antibody syndrome

    Directory of Open Access Journals (Sweden)

    Michelle Remião Ugolini Lopes

    Full Text Available Summary Antiphospholipid syndrome (APS is an autoimmune disease characterized by antiphospholipid antibodies (aPL associated with thrombosis and/or pregnancy morbidity. Most APS events are directly related to thrombotic events, which may affect small, medium or large vessels. Other clinical features like thrombocytopenia, nephropathy, cardiac valve disease, cognitive dysfunction and skin ulcers (called non-criteria manifestations add significant morbidity to this syndrome and represent clinical situations that are challenging. APS was initially described in patients with systemic lupus erythematosus (SLE but it can occur in patients without any other autoimmune disease. Despite the autoimmune nature of this syndrome, APS treatment is still based on anticoagulation and antiplatelet therapy.

  14. Nano antibody therapy for cancer

    International Nuclear Information System (INIS)

    Venkatachallam, M.; Sivakumar, T.; Nazeema; Venkateswari, P.

    2011-01-01

    Nanomedicine, an offshoot of nanotechnology, refers to highly specific medical intervention at the molecular scale for curing disease or repairing damaged tissues, such as bone, muscle, or nerve. Nanotechnology can have an early, paradigm-changing impact on how clinicians will detect cancer in its earliest stages. Exquisitely sensitive devices constructed of nanoscale components-such as nanocantilevers, nanowires and nanochannels-offer the potential for detecting even the rarest molecular signals associated with malignancy. One of the most pressing needs in clinical oncology is for imaging agents that can identify tumors that are far smaller than is possible with today's technology, at a scale of 100,000 cells rather than 1,000,000,000 cells. A new approach in nanotechnology for treating cancer incorporates nano iron particles and attaches them to an antibody that has targets only cancer cells and not healthy cells. The treatment works in two steps. This treatment is an ingenious way to make localized tumor ablation a systemic treatment. The advantages are incredible. There are absolutely no side effects from this treatment. It is not painful or even uncomfortable. The iron particles get flushed harmlessly from the body. It is not a drug and so the cancer cannot build up a resistance to the treatment. It is a systematic treatment; even cancer cells and tumors that are not known about get heated up and ablated. This treatment can even be used to enhance imaging of the cancer because once the cancer cells are coated with the iron particles, they are easy to identify. Everything depends on how reliably the antibodies target cancer cells and not healthy cells. When used in conjunction with other systemic treatments, such as vaccine treatments, we could be looking at a time when even advanced cancers can be brought under control. (author)

  15. [Radiolabeled antibodies for cancer treatment].

    Science.gov (United States)

    Barbet, Jacques; Chatal, Jean-François; Kraeber-Bodéré, Françoise

    2009-12-01

    The first treatment ever by radio-immunotherapy (RIT) was performed by William H. Beierwaltes in 1951 and was a success. Fifty years later, the main question is to find ways of extending the success of radiolabelled anti-CD20 antibodies in indolent non-Hodgkin's lymphoma to other forms of cancer. Solid tumours are much more radioresistant than lymphomas, but they respond to RIT if the lesions are small. Clinical situations of residual or minimal disease are thus the most likely to benefit from RIT in the adjuvant or consolidation settings. For disseminated disease, like leukemias or myelomas, the problem is different: beta- particles emitted by the radioactive atoms classically used for cancer treatment (iodine-131 or yttrium-90) disperse their energy in large volumes (ranges 1 mm to 1 cm) and are not very effective against isolated cells. Advances in RIT progress in two directions. One is the development of pretargeting strategies in which the antibody is not labelled but used to provide binding sites to small molecular weight radioactivity vectors (biotin, haptens). These techniques have been shown to increase tumour to non-target uptake ratios and anti-tumour efficacy has been demonstrated in the clinic. The other approach is the use of radionuclides adapted to the various clinical situations. Lutetium-177 or copper-67, because of the lower energy of their emission, their relatively long half-life and good gamma emission, may significantly improve RIT efficacy and acceptability. Beyond that, radionuclides emitting particles such as alpha particles or Auger electrons, much more efficient to kill isolated tumour cells, are being tested for RIT in the clinic. Finally, RIT should be integrated with other cancer treatment approaches in multimodality protocols. Thus RIT, now a mature technology, should enter a phase of well designed and focused clinical developments that may be expected to afford significant therapeutic advances.

  16. Applications of recombinant antibodies in plant pathology.

    Science.gov (United States)

    Ziegler, Angelika; Torrance, Lesley

    2002-09-01

    Summary Advances in molecular biology have made it possible to produce antibody fragments comprising the binding domains of antibody molecules in diverse heterologous systems, such as Escherichia coli, insect cells, or plants. Antibody fragments specific for a wide range of antigens, including plant pathogens, have been obtained by cloning V-genes from lymphoid tissue, or by selection from large naive phage display libraries, thus avoiding the need for immunization. The antibody fragments have been expressed as fusion proteins to create different functional molecules, and fully recombinant assays have been devised to detect plant viruses. The defined binding properties and unlimited cheap supply of antibody fusion proteins make them useful components of standardized immunoassays. The expression of antibody fragments in plants was shown to confer resistance to several plant pathogens. However, the antibodies usually only slowed the progress of infection and durable 'plantibody' resistance has yet to be demonstrated. In future, it is anticipated that antibody fragments from large libraries will be essential tools in high-throughput approaches to post-genomics research, such as the assignment of gene function, characterization of spatio-temporal patterns of protein expression, and elucidation of protein-protein interactions.

  17. Monoclonal antibodies against rat leukocyte surface antigens

    NARCIS (Netherlands)

    van den Berg, T. K.; Puklavec, M. J.; Barclay, A. N.; Dijkstra, C. D.

    2001-01-01

    Monoclonal antibodies have proven to be powerful tools for studying the properties of leukocyte surface antigens and the cells that express them. In the past decades many monoclonal antibodies (mAb) for identifying the different rat leukocyte surface antigens have been described. A list of mAb is

  18. Quantitative Changes In Antibodies Against Onchocercal Native ...

    African Journals Online (AJOL)

    Quantitative Changes In Antibodies Against Onchocercal Native Antigens Two Months Postivermectin Treatment Of Onchocerciasis Patients. ... Those without onchocercal skin disease, OSD (n=18) had a significant increase of 20.5±29.6%, with pre- and posttreatment values of 0.59±0.15 versus 0.68±0.13 for IgG antibody ...

  19. Anti-influenza M2e antibody

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, Andrew M.

    2013-04-16

    Humanized recombinant and monoclonal antibodies specific for the ectodomain of the influenza virus M2 ion channel protein are disclosed. The antibodies of the invention have anti-viral activity and may be useful as anti-viral therapeutics and/or prophylactic/vaccine agents for inhibiting influenza virus replication and for treating individuals infected with influenza.

  20. Anti-influenza M2e antibody

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, Andrew M [Santa Fe, NM

    2011-12-20

    Humanized recombinant and monoclonal antibodies specific for the ectodomain of the influenza virus M2 ion channel protein are disclosed. The antibodies of the invention have anti-viral activity and may be useful as anti-viral therapeutics and/or prophylactic/vaccine agents for inhibiting influenza virus replication and for treating individuals infected with influenza.

  1. Monoclonal Antibody Therapy for Advanced Neuroblastoma

    Science.gov (United States)

    NCI is sponsoring two clinical trials of a monoclonal antibody called ch14.18, in combination with other drugs, to see if the antibody may be helpful for children or young adults (up to age 21) with relapsed or refractory neuroblastoma.

  2. Serum Antiphospholipid Antibodies Among Healthy Adults In ...

    African Journals Online (AJOL)

    Background: Antiphospholipid antibodies have been associated with variety of conditions. There is no standard health associated reference values required for the interpretation of antiphospholipid antibodies result available among adults in North- eastern Nigeria and Nigeria in general. The aim of this study is to determine ...

  3. Radiolabeled antibodies for cancer imaging and therapy.

    Science.gov (United States)

    Barbet, Jacques; Bardiès, Manuel; Bourgeois, Mickael; Chatal, Jean-François; Chérel, Michel; Davodeau, François; Faivre-Chauvet, Alain; Gestin, Jean-François; Kraeber-Bodéré, Françoise

    2012-01-01

    Radiolabeled antibodies were studied first for tumor detection by single-photon imaging, but FDG PET stopped these developments. In the meantime, radiolabeled antibodies were shown to be effective in the treatment of lymphoma. Radiolabeling techniques are well established and radiolabeled antibodies are a clinical and commercial reality that deserves further studies to advance their application in earlier phase of the diseases and to test combination and adjuvant therapies including radiolabeled antibodies in hematological diseases. In solid tumors, more resistant to radiations and less accessible to large molecules such as antibodies, clinical efficacy remains limited. However, radiolabeled antibodies used in minimal or small-size metastatic disease have shown promising clinical efficacy. In the adjuvant setting, ongoing clinical trials show impressive increase in survival in otherwise unmanageable tumors. New technologies are being developed over the years: recombinant antibodies and pretargeting approaches have shown potential in increasing the therapeutic index of radiolabeled antibodies. In several cases, clinical trials have confirmed preclinical studies. Finally, new radionuclides, such as lutetium-177, with better physical properties will further improve the safety of radioimmunotherapy. Alpha particle and Auger electron emitters offer the theoretical possibility to kill isolated tumor cells and microscopic clusters of tumor cells, opening the perspective of killing the last tumor cell, which is the ultimate challenge in cancer therapy. Preliminary preclinical and preliminary clinical results confirm the feasibility of this approach.

  4. Determination of antiphospholipid antibodies and Thrombophilia in ...

    African Journals Online (AJOL)

    Background: Recurrent miscarriage is a critical problem in which many factors play a crucial role such as antiphospholipid antibodies (APA) and anticardiolipin antibodies (ACA). Recent studies pointed to a potential role of thrombophilias as a possible cause of recurrent miscarriage (RM). Objectives: This study was ...

  5. A novel polyclonal antibody against human cytomegalovirus ...

    African Journals Online (AJOL)

    Future research should be directed to epitope screening of synthetic HMCV peptides, which could help to understand HCMV infection and virus-neutralising antibodies more fully and to prepare HCMV vaccines and antiviral drugs. Key words: Human cytomegalovirus, AD169 strain, Towne strains, polyclonal antibody.

  6. Monoclonal antibodies reactive with hairy cell leukemia

    NARCIS (Netherlands)

    Visser, L; Shaw, A; Slupsky, J; Vos, H; Poppema, S

    Monoclonal antibodies reactive with hairy cell leukemia were developed to aid in the diagnosis of this subtype of B cell chronic lymphocytic leukemia and to gain better insight into the origin of hairy cells. Three antibodies were found to be of value in the diagnosis of hairy cell leukemia.

  7. Production and characterization of peptide antibodies

    DEFF Research Database (Denmark)

    Trier, Nicole Hartwig; Hansen, Paul Robert; Houen, Gunnar

    2012-01-01

    Proteins are effective immunogens for generation of antibodies. However, occasionally the native protein is known but not available for antibody production. In such cases synthetic peptides derived from the native protein are good alternatives for antibody production. These peptide antibodies...... are powerful tools in experimental biology and are easily produced to any peptide of choice. A widely used approach for production of peptide antibodies is to immunize animals with a synthetic peptide coupled to a carrier protein. Very important is the selection of the synthetic peptide, where factors...... such as structure, accessibility and amino acid composition are crucial. Since small peptides tend not to be immunogenic, it may be necessary to conjugate them to carrier proteins in order to enhance immune presentation. Several strategies for conjugation of peptide-carriers applied for immunization exist...

  8. Antiphospholipid antibody: laboratory, pathogenesis and clinical manifestations

    Directory of Open Access Journals (Sweden)

    T. Ziglioli

    2011-06-01

    Full Text Available Antiphospholipid antibodies (aPL represent a heterogeneous group of antibodies that recognize various antigenic targets including beta2 glycoprotein I (β2GPI, prothrombin (PT, activated protein C, tissue plasminogen activator, plasmin and annexin A2. The most commonly used tests to detect aPL are: lupus anticoagulant (LAC, a functional coagulation assay, anticardiolipin antibody (aCL and anti-β2GPI antibody (anti-β2GPI, which are enzyme-linked immunoassay (ELISA. Clinically aPL are associated with thrombosis and/or with pregnancy morbidity. Apparently aPL alone are unable to induce thrombotic manifestations, but they increase the risk of vascular events that can occur in the presence of another thrombophilic condition; on the other hand obstetrical manifestations were shown to be associated not only to thrombosis but mainly to a direct antibody effect on the trophoblast.

  9. Antibodies against chromosomal beta-lactamase

    DEFF Research Database (Denmark)

    Giwercman, B; Rasmussen, J W; Ciofu, Oana

    1994-01-01

    A murine monoclonal anti-chromosomal beta-lactamase antibody was developed and an immunoblotting technique was used to study the presence of serum and sputum antibodies against Pseudomonas aeruginosa chromosomal group 1 beta-lactamase in patients with cystic fibrosis (CF). The serum antibody...... response was studied with serum samples collected in 1992 from 56 CF patients in a cross-sectional study and with serum samples from 18 CF patients in a longitudinal study. Anti-beta-lactamase immunoglobulin G antibodies were present in all of the serum samples from the patients with chronic...... bronchopulmonary P. aeruginosa infection (CF + P) but in none of the CF patients with no or intermittent P. aeruginosa infection. Anti-beta-lactamase antibodies were present in serum from CF + P patients after six antipseudomonal courses (median) and correlated with infection with a beta-lactam-resistant strain...

  10. Onconeural antibodies: improved detection and clinical correlations.

    Science.gov (United States)

    Storstein, Anette; Monstad, Sissel Evy; Haugen, Mette; Mazengia, Kibret; Veltman, Dana; Lohndal, Emilia; Aarseth, Jan; Vedeler, Christian

    2011-03-01

    Onconeural antibodies are found in many patients with paraneoplastic neurological syndromes (PNS) and define the disease as paraneoplastic. The study describes the presence of onconeural antibodies and PNS in 555 patients with neurological symptoms and confirmed cancer within five years, and compares the diagnostic accuracy of different antibody assays (immunoprecipitation, immunofluorescence and immunoblot). Onconeural antibodies were found in 11.9% of the patients by immunoprecipitation, in 7.0% by immunofluorescence and in 6.3% by immunoblot. PNS were present in 81.8% of the cancer patients that were seropositive by immunoprecipitation. Immunofluorescence and immunoblot failed to detect onconeural antibodies in almost one third of the PNS cases. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Radiohalogenated half-antibodies and maleimide intermediate therefor

    Science.gov (United States)

    Kassis, Amin I.; Khawli, Leslie A.

    1991-01-01

    N-(m-radiohalophenyl) maleimide can be conjugated with a reduced antibody having a mercapto group to provide a radiolabelled half-antibody having immunological specific binding characteristics of whole antibody.

  12. Docking of Antibodies into Cavities in DNA Origami

    DEFF Research Database (Denmark)

    Quyang, X; Stefano, Mattia De; Krissanaprasit, Abhichart

    2017-01-01

    microscopy (AFM) and transmission electron microscopy (TEM) validated efficient antibody immobilization in the origami structures. The increased ability to control the orientation of antibodies in nanostructures and at surfaces has potential for directing the interactions of antibodies with targets...

  13. Antiphospholipid Antibodies in Lupus Nephritis.

    Directory of Open Access Journals (Sweden)

    Ioannis Parodis

    Full Text Available Lupus nephritis (LN is a major manifestation of systemic lupus erythematosus (SLE. It remains unclear whether antiphospholipid antibodies (aPL alter the course of LN. We thus investigated the impact of aPL on short-term and long-term renal outcomes in patients with LN. We assessed levels of aPL cross-sectionally in SLE patients diagnosed with (n = 204 or without (n = 294 LN, and prospectively in 64 patients with active biopsy-proven LN (52 proliferative, 12 membranous, before and after induction treatment (short-term outcomes. Long-term renal outcome in the prospective LN cohort was determined by the estimated glomerular filtration rate (eGFR and the Chronic Kidney Disease (CKD stage, after a median follow-up of 11.3 years (range: 3.3-18.8. Cross-sectional analysis revealed no association between LN and IgG/IgM anticardiolipin or anti-β2-glycoprotein I antibodies, or lupus anticoagulant. Both aPL positivity and levels were similar in patients with active LN and non-renal SLE. Following induction treatment for LN, serum IgG/IgM aPL levels decreased in responders (p<0.005 for all, but not in non-responders. Both at active LN and post-treatment, patients with IgG, but not IgM, aPL had higher creatinine levels compared with patients without IgG aPL. Neither aPL positivity nor levels were associated with changes in eGFR from either baseline or post-treatment through long-term follow-up. Moreover, aPL positivity and levels both at baseline and post-treatment were similar in patients with a CKD stage ≥3 versus 1-2 at the last follow-up. In conclusion, neither aPL positivity nor levels were found to be associated with the occurrence of LN in SLE patients. However, IgG aPL positivity in LN patients was associated with a short-term impairment of the renal function while no effect on long-term renal outcome was observed. Furthermore, IgG and IgM aPL levels decreased following induction treatment only in responders, indicating that aPL levels are

  14. Structure Based Antibody-Like Peptidomimetics

    Directory of Open Access Journals (Sweden)

    Mark I. Greene

    2012-02-01

    Full Text Available Biologics such as monoclonal antibodies (mAb and soluble receptors represent new classes of therapeutic agents for treatment of several diseases. High affinity and high specificity biologics can be utilized for variety of clinical purposes. Monoclonal antibodies have been used as diagnostic agents when coupled with radionuclide, immune modulatory agents or in the treatment of cancers. Among other limitations of using large molecules for therapy the actual cost of biologics has become an issue. There is an effort among chemists and biologists to reduce the size of biologics which includes monoclonal antibodies and receptors without a reduction of biological efficacy. Single chain antibody, camel antibodies, Fv fragments are examples of this type of deconstructive process. Small high-affinity peptides have been identified using phage screening. Our laboratory used a structure-based approach to develop small-size peptidomimetics from the three-dimensional structure of proteins with immunoglobulin folds as exemplified by CD4 and antibodies. Peptides derived either from the receptor or their cognate ligand mimics the functions of the parental macromolecule. These constrained peptides not only provide a platform for developing small molecule drugs, but also provide insight into the atomic features of protein-protein interactions. A general overview of the reduction of monoclonal antibodies to small exocyclic peptide and its prospects as a useful diagnostic and as a drug in the treatment of cancer are discussed.

  15. Antibody proteases: induction of catalytic response.

    Science.gov (United States)

    Gabibov, A G; Friboulet, A; Thomas, D; Demin, A V; Ponomarenko, N A; Vorobiev, I I; Pillet, D; Paon, M; Alexandrova, E S; Telegin, G B; Reshetnyak, A V; Grigorieva, O V; Gnuchev, N V; Malishkin, K A; Genkin, D D

    2002-10-01

    Most of the data accumulated throughout the years on investigation of catalytic antibodies indicate that their production increases on the background of autoimmune abnormalities. The different approaches to induction of catalytic response toward recombinant gp120 HIV-1 surface protein in mice with various autoimmune pathologies are described. The peptidylphosphonate conjugate containing structural part of gp120 molecule is used for reactive immunization of NZB/NZW F1, MRL, and SJL mice. The specific modification of heavy and light chains of mouse autoantibodies with Val-Ala-Glu-Glu-Glu-Val-PO(OPh)2 reactive peptide was demonstrated. Increased proteolytic activity of polyclonal antibodies in SJL mice encouraged us to investigate the production of antigen-specific catalytic antibodies on the background of induced experimental autoimmune encephalomyelitis (EAE). The immunization of autoimmune-prone mice with the engineered fusions containing the fragments of gp120 and encephalitogenic epitope of myelin basic protein (MBP(89-104)) was made. The proteolytic activity of polyclonal antibodies isolated from the sera of autoimmune mice immunized by the described antigen was shown. Specific immune response of SJL mice to these antigens was characterized. Polyclonal antibodies purified from sera of the immunized animals revealed proteolytic activity. The antiidiotypic approach to raise the specific proteolytic antibody as an "internal image" of protease is described. The "second order" monoclonal antibodies toward subtilisin Carlsberg revealed pronounced proteolytic activity.

  16. Glycosylation profiles of therapeutic antibody pharmaceuticals.

    Science.gov (United States)

    Wacker, Christoph; Berger, Christoph N; Girard, Philippe; Meier, Roger

    2011-11-01

    Recombinant antibodies specific for human targets are often used as therapeutics and represent a major class of drug products. Their therapeutic efficacy depends on the formation of antibody complexes resulting in the elimination of a target molecule or the modulation of specific signalling pathways. The physiological effects of antibody therapeutics are known to depend on the structural characteristics of the antibody molecule, specifically on the glycosylation which is the result of posttranslational modifications. Hence, production of therapeutic antibodies with a defined and consistent glycoform profile is needed which still remains a considerable challenge to the biopharmaceutical industry. To provide an insight into the industries capability to control their manufacturing process and to provide antibodies of highest quality, we conducted a market surveillance study and compared major oligosaccharide profiles of a number of monoclonal antibody pharmaceuticals sampled on the Swiss market. Product lot-to-lot variability was found to be generally low, suggesting that a majority of manufacturers have implemented high quality standards in their production processes. However, proportions of G0, G1 and G2 core-fucosylated chains derived from different products varied considerably and showed a bias towards the immature agalactosidated G0 form. Interestingly, differences in glycosylation caused by the production cell type seem to be of less importance compared with process related parameters such as cell growth. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. HIV antibodies for treatment of HIV infection.

    Science.gov (United States)

    Margolis, David M; Koup, Richard A; Ferrari, Guido

    2017-01-01

    The bar is high to improve on current combination antiretroviral therapy (ART), now highly effective, safe, and simple. However, antibodies that bind the HIV envelope are able to uniquely target the virus as it seeks to enter new target cells, or as it is expressed from previously infected cells. Furthermore, the use of antibodies against HIV as a therapeutic may offer advantages. Antibodies can have long half-lives, and are being considered as partners for long-acting antiretrovirals for use in therapy or prevention of HIV infection. Early studies in animal models and in clinical trials suggest that such antibodies can have antiviral activity but, as with small-molecule antiretrovirals, the issues of viral escape and resistance will have to be addressed. Most promising, however, are the unique properties of anti-HIV antibodies: the potential ability to opsonize viral particles, to direct antibody-dependent cellular cytotoxicity (ADCC) against actively infected cells, and ultimately the ability to direct the clearance of HIV-infected cells by effector cells of the immune system. These distinctive activities suggest that HIV antibodies and their derivatives may play an important role in the next frontier of HIV therapeutics, the effort to develop treatments that could lead to an HIV cure. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  18. HIV antibodies for treatment of HIV infection

    Science.gov (United States)

    Margolis, David M.; Koup, Richard A.; Ferrari, Guido

    2016-01-01

    Summary The bar is high to improve on current combination antiretroviral therapy (ART), now highly effective, safe, and simple. However antibodies that bind the HIV envelope are able to uniquely target the virus as it seeks to enter new target cells, or as it is expressed from previously infected cells. Further, the use of antibodies against HIV as a therapeutic may offer advantages. Antibodies can have long half-lives, and are being considered as partners for long-acting antiretrovirals for use in therapy or prevention of HIV infection. Early studies in animal models and in clinical trials suggest that such antibodies can have antiviral activity but, as with small molecule antiretrovirals, the issues of viral escape and resistance will have to be addressed. Most promising, however, are the unique properties of anti-HIV antibodies: the potential ability to opsonize viral particles, to direct antibody-dependent cellular cytotoxicity (ADCC) against actively infected cells, and ultimately the ability to direct the clearance of HIV-infected cells by effector cells of the immune system. These distinctive activities suggest that HIV antibodies and their derivatives may play an important role in the next frontier of HIV therapeutics, the effort to develop treatments that could lead to an HIV cure. PMID:28133794

  19. Stratification of antibody-positive subjects by antibody level reveals an impact of immunogenicity on pharmacokinetics.

    Science.gov (United States)

    Zhou, Lei; Hoofring, Sarah A; Wu, Yu; Vu, Thuy; Ma, Peiming; Swanson, Steven J; Chirmule, Narendra; Starcevic, Marta

    2013-01-01

    The availability of highly sensitive immunoassays enables the detection of antidrug antibody (ADA) responses of various concentrations and affinities. The analysis of the impact of antibody status on drug pharmacokinetics (PK) is confounded by the presence of low-affinity or low-concentration antibody responses within the dataset. In a phase 2 clinical trial, a large proportion of subjects (45%) developed ADA following weekly dosing with AMG 317, a fully human monoclonal antibody therapeutic. The antibody responses displayed a wide range of relative concentrations (30 ng/mL to >13 μg/mL) and peaked at various times during the study. To evaluate the impact of immunogenicity on PK, AMG 317 concentration data were analyzed following stratification by dose group, time point, antibody status (positive or negative), and antibody level (relative concentration). With dose group as a stratifying variable, a moderate reduction in AMG 317 levels (AMG 317 levels was revealed when antibody data was stratified by both time point and antibody level. In general, high ADA concentrations (>500 ng/mL) and later time points (week 12) were associated with significantly (up to 97%) lower trough AMG 317 concentrations. The use of quasi-quantitative antibody data and appropriate statistical methods was critical for the most comprehensive evaluation of the impact of immunogenicity on PK.

  20. Engineering bispecific antibodies with defined chain pairing.

    Science.gov (United States)

    Krah, Simon; Sellmann, Carolin; Rhiel, Laura; Schröter, Christian; Dickgiesser, Stephan; Beck, Jan; Zielonka, Stefan; Toleikis, Lars; Hock, Björn; Kolmar, Harald; Becker, Stefan

    2017-10-25

    Bispecific IgG-like antibodies can simultaneously interact with two epitopes on the same or on different antigens. Therefore, these molecules facilitate novel modes of action, which cannot be addressed by conventional monospecific IgGs. However, the generation of such antibodies still appears to be demanding due to their specific architecture comprising four different polypeptide chains that need to assemble correctly. This review focusses on different strategies to circumvent this issue or to enforce a correct chain association with a focus on common-chain bispecific antibodies. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. The antibody approach of labeling blood cells

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, S.C.

    1991-12-31

    Although the science of blood cell labeling using monoclonal antibodies directed against specific cellular antigens is still in its early stages, considerable progress has recently been accomplished in this area. The monoclonal antibody approach offers the promise of greater selectivity and enhanced convenience since specific cell types can be labeled in vivo, thus eliminating the need for complex and damaging cell separation procedures. This article focuses on these developments with primary emphasis on antibody labeling of platelets and leukocytes. The advantages and the shortcomings of the recently reported techniques are criticality assessed and evaluated.

  2. The antibody approach of labeling blood cells

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, S.C.

    1991-01-01

    Although the science of blood cell labeling using monoclonal antibodies directed against specific cellular antigens is still in its early stages, considerable progress has recently been accomplished in this area. The monoclonal antibody approach offers the promise of greater selectivity and enhanced convenience since specific cell types can be labeled in vivo, thus eliminating the need for complex and damaging cell separation procedures. This article focuses on these developments with primary emphasis on antibody labeling of platelets and leukocytes. The advantages and the shortcomings of the recently reported techniques are criticality assessed and evaluated.

  3. The antibody approach of labeling blood cells

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, S.C.

    1992-12-31

    Although the science of blood cell labeling using monoclonal antibodies directed against specific cellular antigens is still in its early stages, considerable progress has recently been accomplished in this area. The monoclonal antibody approach offers the promise of greater selectivity and enhanced convenience since specific cell types can be labeled in vivo, thus eliminating the need for complex and damaging cell separation procedures. This article focuses on these developments with primary emphasis on antibody labeling of platelets and leukocytes. The advantages and the shortcomings of the recently reported techniques are critically assessed and evaluated.

  4. The antibody approach of labeling blood cells

    International Nuclear Information System (INIS)

    Srivastava, S.C.

    1991-01-01

    Although the science of blood cell labeling using monoclonal antibodies directed against specific cellular antigens is still in its early stages, considerable progress has recently been accomplished in this area. The monoclonal antibody approach offers the promise of greater selectivity and enhanced convenience since specific cell types can be labeled in vivo, thus eliminating the need for complex and damaging cell separation procedures. This article focuses on these developments with primary emphasis on antibody labeling of platelets and leukocytes. The advantages and the shortcomings of the recently reported techniques are criticality assessed and evaluated

  5. The antibody approach of labeling blood cells

    International Nuclear Information System (INIS)

    Srivastava, S.C.

    1992-01-01

    Although the science of blood cell labeling using monoclonal antibodies directed against specific cellular antigens is still in its early stages, considerable progress has recently been accomplished in this area. The monoclonal antibody approach offers the promise of greater selectivity and enhanced convenience since specific cell types can be labeled in vivo, thus eliminating the need for complex and damaging cell separation procedures. This article focuses on these developments with primary emphasis on antibody labeling of platelets and leukocytes. The advantages and the shortcomings of the recently reported techniques are critically assessed and evaluated

  6. New haptens and antibodies for ractopamine.

    Science.gov (United States)

    Wang, Zhanhui; Liu, Meixuan; Shi, Weimin; Li, Chenglong; Zhang, Suxia; Shen, Jianzhong

    2015-09-15

    In this work, three unreported immunizing haptens of ractopamine (RAC) were synthesized and used to produce highly sensitive and specific polyclonal antibody. The spacer arms of haptens for coupling to protein carrier were located on different position of RAC with different length. High affinity polyclonal antibodies were obtained and characterized in terms of titer and sensitivity by using enzyme-linked immunosorbent assay (ELISA). The best antibody employed in a heterologous competitive ELISA exhibited an IC50 value as low as 0.12ngmL(-1) and could not recognize other 10 β-agonists including clenbuterol and salbutamol. The heterologous competitive ELISA was preliminary applied to swine urine and the results showed the new antibody was sufficiently sensitive and specific, and potentially used for the detection of RAC at trace level in real samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Antiphospholipids antibodies and migraine | Nyandaiti | Sahel ...

    African Journals Online (AJOL)

    thrombotic neurological conditions such as migraine. We set out to estimate the concentration of antiphospholipids antibody among patients with migraine and normal population. Methods: This is prospective case-control study of 158 subjects ...

  8. Characterization of methylsulfinylalkyl glucosinolate specific polyclonal antibodies

    DEFF Research Database (Denmark)

    Mirza, Nadia Muhammad Akram; Schulz, Alexander; Halkier, Barbara Ann

    2016-01-01

    that it was highly selective for methionine-derived aliphatic glucosinolates with a methyl-sulfinyl group in the side chain. Use of crude plant extracts from Arabidopsis mutants with different glucosinolate profiles showed that the antibodies recognized aliphatic glucosinolates in a plant extract and did not cross......Antibodies towards small molecules, like plant specialized metabolites, are valuable tools for developing quantitative and qualitative analytical techniques. Glucosinolates are the specialized metabolites characteristic of the Brassicales order. Here we describe the characterization of polyclonal...... rabbit antibodies raised against the 4-methylsulfinylbutyl glucosinolate, glucoraphanin that is one of the major glucosinolates in the model plant Arabidopsis thaliana (hereafter Arabidopsis). Analysis of the cross-reactivity of the antibodies against a number of glucosinolates demonstrated...

  9. Radionuclide therapy of cancer with radiolabeled antibodies.

    NARCIS (Netherlands)

    Boerman, O.C.; Koppe, M.J.; Postema, E.J.; Corstens, F.H.M.; Oyen, W.J.G.

    2007-01-01

    Radioimmunotherapy (RIT) using radiolabeled monoclonal antibodies (MAbs) directed against tumor-associated antigens has evolved from an appealing concept to one of the standard treatment options for patients with non-Hodgkin's lymphoma (NHL). Inefficient localization of radiolabeled MAbs to

  10. Dissecting the Immunogenicity of Monoclonal Antibodies

    National Research Council Canada - National Science Library

    Snyder, Christopher

    2001-01-01

    The potential of mononclonal antibodies, (mAbs), for use in therapeutic and diagnostic applications has not been fully realized in part due to counter-immune responses that often arise in patient recipients of mAb...

  11. Immunoglobulin Classification Using the Colored Antibody Graph.

    Science.gov (United States)

    Bonissone, Stefano R; Pevzner, Pavel A

    2016-06-01

    The somatic recombination of V, D, and J gene segments in B-cells introduces a great deal of diversity, and divergence from reference segments. Many recent studies of antibodies focus on the population of antibody transcripts that show which V, D, and J gene segments have been favored for a particular antigen, a repertoire. To properly describe the antibody repertoire, each antibody must be labeled by its constituting V, D, and J gene segment, a task made difficult by somatic recombination and hypermutation events. While previous approaches to repertoire analysis were based on sequential alignments, we describe a new de Bruijn graph-based algorithm to perform VDJ labeling and benchmark its performance.

  12. Opposites attract in bispecific antibody engineering

    NARCIS (Netherlands)

    van Gils, Marit J.; Sanders, Rogier W.

    2017-01-01

    Bispecific antibodies show great promise as intrinsic combination therapies, but often suffer from poor physiochemical properties, many times related to poor heterodimerization. De Nardis et al. identify specific electrostatic interactions that facilitate efficient heterodimerization, resulting in

  13. Antibody conjugate radioimmunotherapy of superficial bladder cancer

    International Nuclear Information System (INIS)

    Perkins, Alan; Hopper, Melanie; Murray, Andrea; Frier, Malcolm; Bishop, Mike

    2002-01-01

    The administration of antibody conjugates for cancer therapy is now proving to be of clinical value. We are currently undertaking a programme of clinical studies using the monoclonal antibody C 595 (gG3) which reacts with the MUC1 glycoprotein antigen that is aberrantly expressed in a high proportion of bladder tumours. Radio immuno conjugates of the C 595 antibody have been produced with high radiolabelling efficiency and immuno reactivity using Tc-99 m and In-111 for diagnostic imaging, and disease staging and the cytotoxic radionuclides Cu-67 and Re-188 for therapy of superficial bladder cancer. A Phase I/II therapeutic trail involving the intravesical administration of antibody directly into the bladder has now begun. (author)

  14. Polynucleotides encoding anti-sulfotyrosine antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Bertozzi, Carolyn R [Berkeley, CA; Kehoe, John [Saint Davids, PA; Bradbury, Andrew M [Santa Fe, NM

    2011-01-11

    The invention provides anti-sulfotyrosine specific antibodies capable of detecting and isolating polypeptides that are tyrosine-sulfated. The sulfotyrosine antibodies and antibody fragments of the invention may be used to discriminate between the non-sulfated and sulfated forms of such proteins, using any number of immunological assays, such ELISAs, immunoblots, Western Blots, immunoprecipitations, and the like. Using a phage-display system, single chain antibodies (scFvs) were generated and screened against tyrosine-sulfated synthetic peptide antigens, resulting in the isolation of scFvs that specifically recognize sulfotyrosine-containing peptides and/or demonstrate sulfotyrosine-specific binding in tyrosine sulfated proteins. The VH and VL genes from one such sulfotyrosine-specific scFv were employed to generate a full length, sulfotyrosine-specific immunoglobulin.

  15. Patient-Derived Antibody Targets Tumor Cells

    Science.gov (United States)

    An NCI Cancer Currents blog on an antibody derived from patients that killed tumor cells in cell lines of several cancer types and slowed tumor growth in mouse models of brain and lung cancer without evidence of side effects.

  16. Targeting Malignant Brain Tumors with Antibodies

    Directory of Open Access Journals (Sweden)

    Rok Razpotnik

    2017-09-01

    Full Text Available Antibodies have been shown to be a potent therapeutic tool. However, their use for targeting brain diseases, including neurodegenerative diseases and brain cancers, has been limited, particularly because the blood–brain barrier (BBB makes brain tissue hard to access by conventional antibody-targeting strategies. In this review, we summarize new antibody therapeutic approaches to target brain tumors, especially malignant gliomas, as well as their potential drawbacks. Many different brain delivery platforms for antibodies have been studied such as liposomes, nanoparticle-based systems, cell-penetrating peptides (CPPs, and cell-based approaches. We have already shown the successful delivery of single-chain fragment variable (scFv with CPP as a linker between two variable domains in the brain. Antibodies normally face poor penetration through the BBB, with some variants sufficiently passing the barrier on their own. A “Trojan horse” method allows passage of biomolecules, such as antibodies, through the BBB by receptor-mediated transcytosis (RMT. Such examples of therapeutic antibodies are the bispecific antibodies where one binding specificity recognizes and binds a BBB receptor, enabling RMT and where a second binding specificity recognizes an antigen as a therapeutic target. On the other hand, cell-based systems such as stem cells (SCs are a promising delivery system because of their tumor tropism and ability to cross the BBB. Genetically engineered SCs can be used in gene therapy, where they express anti-tumor drugs, including antibodies. Different types and sources of SCs have been studied for the delivery of therapeutics to the brain; both mesenchymal stem cells (MSCs and neural stem cells (NSCs show great potential. Following the success in treatment of leukemias and lymphomas, the adoptive T-cell therapies, especially the chimeric antigen receptor-T cells (CAR-Ts, are making their way into glioma treatment as another type of cell

  17. Generalized Platform for Antibody Detection using the Antibody Catalyzed Water Oxidation Pathway

    OpenAIRE

    Welch, M. Elizabeth; Ritzert, Nicole L.; Chen, Hongjun; Smith, Norah L.; Tague, Michele E.; Xu, Youyong; Baird, Barbara A.; Abru?a, H?ctor D.; Ober, Christopher K.

    2014-01-01

    Infectious diseases, such as influenza, present a prominent global problem including the constant threat of pandemics that initiate in avian or other species and then pass to humans. We report a new sensor that can be specifically functionalized to detect antibodies associated with a wide range of infectious diseases in multiple species. This biosensor is based on electrochemical detection of hydrogen peroxide generated through the intrinsic catalytic activity of all antibodies: the antibody ...

  18. Radioimmunoassay of measles virus antibodies in SSPE

    International Nuclear Information System (INIS)

    Jankowski, M.A.; Gut, W.; Kantoch, M.

    1982-01-01

    A sensitive radioimmunoassay (RIA) was introduced for detecting measles virus IgG and IgM antibodies. The hyperimmune response to the measles virus could be demonstrated more accurately by RIA than by haemagglutination inhibition (HI). The ratio between RIA and HI antibody titres was decidedly higher in sera and cerebrospinal fluids of patients with subacute sclerosing panencephalitis than in those of other groups tested. (author)

  19. Therapeutic Antibodies against Intracellular Tumor Antigens

    Directory of Open Access Journals (Sweden)

    Iva Trenevska

    2017-08-01

    Full Text Available Monoclonal antibodies are among the most clinically effective drugs used to treat cancer. However, their target repertoire is limited as there are relatively few tumor-specific or tumor-associated cell surface or soluble antigens. Intracellular molecules represent nearly half of the human proteome and provide an untapped reservoir of potential therapeutic targets. Antibodies have been developed to target externalized antigens, have also been engineered to enter into cells or may be expressed intracellularly with the aim of binding intracellular antigens. Furthermore, intracellular proteins can be degraded by the proteasome into short, commonly 8–10 amino acid long, peptides that are presented on the cell surface in the context of major histocompatibility complex class I (MHC-I molecules. These tumor-associated peptide–MHC-I complexes can then be targeted by antibodies known as T-cell receptor mimic (TCRm or T-cell receptor (TCR-like antibodies, which recognize epitopes comprising both the peptide and the MHC-I molecule, similar to the recognition of such complexes by the TCR on T cells. Advances in the production of TCRm antibodies have enabled the generation of multiple TCRm antibodies, which have been tested in vitro and in vivo, expanding our understanding of their mechanisms of action and the importance of target epitope selection and expression. This review will summarize multiple approaches to targeting intracellular antigens with therapeutic antibodies, in particular describing the production and characterization of TCRm antibodies, the factors influencing their target identification, their advantages and disadvantages in the context of TCR therapies, and the potential to advance TCRm-based therapies into the clinic.

  20. IMPORTANCE OF RESEARCH HLA ANTIBODIES CLASS I AND II, AND MICA ANTIBODIES IN KIDNEY TRANSPLANTATION

    Directory of Open Access Journals (Sweden)

    M. Sh. Khubutia

    2011-01-01

    Full Text Available The purpose of this study was to investigate the occurrence of HLA and MICA antibodies in patients from the waiting list for kidney transplantation and their influence on the course of post-transplant period. Determination of HLA antibodies class I and II, and MICA antibodies was performed on a platform of Luminex (xMAP-tech- nology using sets LABScreen ONE LAMBDA (U.S.. A total of 156 patients from the waiting list for kidney transplantation. Revealed the presence of HLA and MICA antibodies in the serum of 31.4% of patients. Regraf- ted patients increased the content of antibodies to the antigens of HLA system was noted in 88.2% of cases, 47% met the combination of antibodies to the I, II classes and MICA. In patients awaiting first kidney transplantation, HLA and MICA antibodies were determined in 23.7% of cases. The presence of pretransplant HLA and MICA antibodies had a significant influence on the course of post-transplant period. Patients with the presence of HLA and MICA in 50% of cases delayed graft function. Sessions of plasmapheresis can reduce the concentration of HLA and MICA antibodies on average by 61.1%. 

  1. Microangiopathic antiphospholipid antibody syndrome due to anti-phosphatidylserine/prothrombin complex IgM antibody.

    Science.gov (United States)

    Senda, Yumi; Ohta, Kazuhide; Yokoyama, Tadafumi; Shimizu, Masaki; Furuichi, Kengo; Wada, Takashi; Yachie, Akihiro

    2017-03-01

    Herein we describe a case of microangiopathic antiphospholipid syndrome (MAPS) due to anti-phosphatidylserine/prothrombin complex (aPS/PT) IgM antibody successfully treated with rituximab. A significant correlation was observed between the clinical course and the aPS/PT IgM antibody titer, which can rise earlier before the appearance of clinical symptoms. Rituximab can be safely and effectively used for MAPS. Although detection of only aPS/PT IgM antibody is rare, aPS/PT IgM antibody might be associated with the pathogenesis of MAPS and might be a useful marker of disease activity. © 2017 Japan Pediatric Society.

  2. Antibody or Antibody Fragments: Implications for Molecular Imaging and Targeted Therapy of Solid Tumors

    Directory of Open Access Journals (Sweden)

    Katerina T. Xenaki

    2017-10-01

    Full Text Available The use of antibody-based therapeutics has proven very promising for clinical applications in cancer patients, with multiple examples of antibodies and antibody–drug conjugates successfully applied for the treatment of solid tumors and lymphomas. Given reported recurrence rates, improvements are clearly still necessary. A major factor limiting the efficacy of antibody-targeted cancer therapies may be the incomplete penetration of the antibody or antibody–drug conjugate into the tumor. Incomplete tumor penetration also affects the outcome of molecular imaging, when using such targeting agents. From the injection site until they arrive inside the tumor, targeting molecules are faced with several barriers that impact intratumoral distribution. The primary means of antibody transport inside tumors is based on diffusion. The diffusive penetration inside the tumor is influenced by both antibody properties, such as size and binding affinity, as well as tumor properties, such as microenvironment, vascularization, and targeted antigen availability. Engineering smaller antibody fragments has shown to improve the rate of tumor uptake and intratumoral distribution. However, it is often accompanied by more rapid clearance from the body and in several cases also by inherent destabilization and reduction of the binding affinity of the antibody. In this perspective, we discuss different cancer targeting approaches based on antibodies or their fragments. We carefully consider how their size and binding properties influence their intratumoral uptake and distribution, and how this may affect cancer imaging and therapy of solid tumors.

  3. Principles for computational design of binding antibodies.

    Science.gov (United States)

    Baran, Dror; Pszolla, M Gabriele; Lapidoth, Gideon D; Norn, Christoffer; Dym, Orly; Unger, Tamar; Albeck, Shira; Tyka, Michael D; Fleishman, Sarel J

    2017-10-10

    Natural proteins must both fold into a stable conformation and exert their molecular function. To date, computational design has successfully produced stable and atomically accurate proteins by using so-called "ideal" folds rich in regular secondary structures and almost devoid of loops and destabilizing elements, such as cavities. Molecular function, such as binding and catalysis, however, often demands nonideal features, including large and irregular loops and buried polar interaction networks, which have remained challenging for fold design. Through five design/experiment cycles, we learned principles for designing stable and functional antibody variable fragments (Fvs). Specifically, we ( i ) used sequence-design constraints derived from antibody multiple-sequence alignments, and ( ii ) during backbone design, maintained stabilizing interactions observed in natural antibodies between the framework and loops of complementarity-determining regions (CDRs) 1 and 2. Designed Fvs bound their ligands with midnanomolar affinities and were as stable as natural antibodies, despite having >30 mutations from mammalian antibody germlines. Furthermore, crystallographic analysis demonstrated atomic accuracy throughout the framework and in four of six CDRs in one design and atomic accuracy in the entire Fv in another. The principles we learned are general, and can be implemented to design other nonideal folds, generating stable, specific, and precise antibodies and enzymes.

  4. Antibody-Conjugated Nanoparticles for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Manuel Arruebo

    2009-01-01

    Full Text Available Nanoscience and Nanotechnology have found their way into the fields of Biotechnology and Medicine. Nanoparticles by themselves offer specific physicochemical properties that they do not exhibit in bulk form, where materials show constant physical properties regardless of size. Antibodies are nanosize biological products that are part of the specific immune system. In addition to their own properties as pathogens or toxin neutralizers, as well as in the recruitment of immune elements (complement, improving phagocytosis, cytotoxicity antibody dependent by natural killer cells, etc., they could carry several elements (toxins, drugs, fluorochroms, or even nanoparticles, etc. and be used in several diagnostic procedures, or even in therapy to destroy a specific target. The conjugation of antibodies to nanoparticles can generate a product that combines the properties of both. For example, they can combine the small size of nanoparticles and their special thermal, imaging, drug carrier, or magnetic characteristics with the abilities of antibodies, such as specific and selective recognition. The hybrid product will show versatility and specificity. In this review, we analyse both antibodies and nanoparticles, focusing especially on the recent developments for antibody-conjugated nanoparticles, offering the researcher an overview of the different applications and possibilities of these hybrid carriers.

  5. Decay of maternal antibodies in broiler chickens.

    Science.gov (United States)

    Gharaibeh, Saad; Mahmoud, Kamel

    2013-09-01

    The objective of this study was to determine the decay rate of maternal antibodies against major broiler chicken pathogens. A total of 30 one-day-old broiler chicks were obtained from a commercial hatchery and reared in isolation. These chicks were retrieved from a parent flock that received a routine vaccination program. Chicks were bled at hatch and sequentially thereafter every 5 d through 30 d of age. Maternal antibody titers were measured by ELISA for avian encephalomyelitis (AEV), avian influenza virus (AIV), chicken anemia virus (CAV), infectious bursal disease virus (IBDV), infectious bronchitis virus (IBV), infectious laryngotracheitis virus (ILTV), Mycoplasma gallisepticum (MG), Mycoplasma synoviae (MS), and reovirus (Reo). Maternal antibody titers for Newcastle disease virus (NDV) were measured using a hemagglutination inhibition test. Half-life estimates of maternal antibody titers were 5.3, 4.2, 7, 5.1, 3.9, 3.8, 4.9, 4.1, 6.3, and 4.7 d for AEV, AIV, CAV, IBDV, IBV, ILTV, MG, MS, NDV, and Reo, respectively. The statistical analysis revealed significant differences among half-lives of maternal antibody titers against certain pathogens. Furthermore, all maternal antibody titers were depleted by 10 d of age except for IBDV.

  6. Avian Diagnostic and Therapeutic Antibodies to Viral Emerging Pathogens

    Energy Technology Data Exchange (ETDEWEB)

    David Bradley

    2011-03-31

    During the current period the following key objectives were achieved: demonstration of high titer antibody production by geese following immunization with inactived H1N1 virus; completion of the epitope mapping of West Nile Virus-specific goose antibodies and initiation of epitope mapping of H1N1 flu-specific goose antibodies; advancement in scalable purification of goose antibodies.

  7. Antibody Fragments and Their Purification by Protein L Affinity Chromatography

    Directory of Open Access Journals (Sweden)

    Gustav Rodrigo

    2015-09-01

    Full Text Available Antibodies and related proteins comprise one of the largest and fastest-growing classes of protein pharmaceuticals. A majority of such molecules are monoclonal antibodies; however, many new entities are antibody fragments. Due to their structural, physiological, and pharmacological properties, antibody fragments offer new biopharmaceutical opportunities. In the case of recombinant full-length antibodies with suitable Fc regions, two or three column purification processes centered around Protein A affinity chromatography have proven to be fast, efficient, robust, cost-effective, and scalable. Most antibody fragments lack Fc and suitable affinity for Protein A. Adapting proven antibody purification processes to antibody fragments demands different affinity chromatography. Such technology must offer the unit operation advantages noted above, and be suitable for most of the many different types of antibody fragments. Protein L affinity chromatography appears to fulfill these criteria—suggesting its consideration as a key unit operation in antibody fragment processing.

  8. Avidity of onconeural antibodies is of clinical relevance.

    Science.gov (United States)

    Totland, Cecilie; Ying, Ming; Haugen, Mette; Mazengia, Kibret; Storstein, Anette; Aarseth, Jan; Martinez, Aurora; Vedeler, Christian

    2013-08-01

    Onconeural antibodies are important in the detection of paraneoplastic neurological syndromes (PNS). The avidity of Hu, Yo, and CRMP5 antibodies from 100 patients was determined by immunoprecipitation (IP), and 13 of the Yo positive sera were also tested by surface plasmon resonance (SPR). There was a significant association between the results from IP and SPR. Yo antibodies had higher avidity than Hu and CRMP5 antibodies, and both high- and low-avidity antibodies were associated with tumors and PNS. High-avidity Yo antibodies were mainly associated with ovarian cancer, whereas high-avidity Hu and CRMP5 antibodies were mainly associated with small-cell lung cancer. Low-avidity CRMP5 and Yo antibodies were less often detected by a commercial line blot than high-avidity antibodies. The failure to detect low-avidity onconeural antibodies may result in under diagnosis of PNS.

  9. Tethered-variable CL bispecific IgG: an antibody platform for rapid bispecific antibody screening.

    Science.gov (United States)

    Kim, Hok Seon; Dunshee, Diana Ronai; Yee, Angie; Tong, Raymond K; Kim, Ingrid; Farahi, Farzam; Hongo, Jo-Anne; Ernst, James A; Sonoda, Junichiro; Spiess, Christoph

    2017-09-01

    Bispecific antibodies offer a clinically validated platform for drug discovery. In generating functionally active bispecific antibodies, it is necessary to identify a unique parental antibody pair to merge into a single molecule. However, technologies that allow high-throughput production of bispecific immunoglobulin Gs (BsIgGs) for screening purposes are limited. Here, we describe a novel bispecific antibody format termed tethered-variable CLBsIgG (tcBsIgG) that allows robust production of intact BsIgG in a single cell line, concurrently ensuring cognate light chain pairing and preserving key antibody structural and functional properties. This technology is broadly applicable in the generation of BsIgG from a variety of antibody isotypes, including human BsIgG1, BsIgG2 and BsIgG4. The practicality of the tcBsIgG platform is demonstrated by screening BsIgGs generated from FGF21-mimetic anti-Klotho-β agonistic antibodies in a combinatorial manner. This screen identified multiple biepitopic combinations with enhanced agonistic activity relative to the parental monoclonal antibodies, thereby demonstrating that biepitopic antibodies can acquire enhanced functionality compared to monospecific parental antibodies. By design, the tcBsIgG format is amenable to high-throughput production of large panels of bispecific antibodies and thus can facilitate the identification of rare BsIgG combinations to enable the discovery of molecules with improved biological function. © The Author 2017. Published by Oxford University Press.

  10. Antibody Modeling and Structure Analysis. Application to biomedical problems.

    OpenAIRE

    Chailyan, Anna

    2013-01-01

    Background The usefulness of antibodies and antibody derived artificial constructs in various medical and biochemical applications has made them a prime target for protein engineering, modelling, and structure analysis. The huge number of known antibody sequences, that far outpaces the number of solved structures, raises the need for reliable automatic methods of antibody structure prediction. Antibodies have a very characteristic molecular structure that is reflected in their modelli...

  11. Immunogenicity of anti-tumor necrosis factor antibodies - toward improved methods of anti-antibody measurement

    NARCIS (Netherlands)

    Aarden, Lucien; Ruuls, Sigrid R.; Wolbink, Gertjan

    2008-01-01

    To date, millions of people have been treated with therapeutic monoclonal antibodies (TmAbs) for various indications. It is becoming increasingly clear that TmAbs can be immunogenic, which may reduce efficacy or induce adverse effects. Over the years, the importance of antibody formation has been

  12. Immunogenicity of Therapeutic Antibodies: Monitoring Antidrug Antibodies in a Clinical Context

    NARCIS (Netherlands)

    Bloem, Karien; Hernández-Breijo, Borja; Martínez-Feito, Ana; Rispens, Theo

    2017-01-01

    One of the factors that may impact drug levels of therapeutic antibodies in patients is immunogenicity, with potential loss of efficacy. Nowadays, many immunogenicity assays are available for testing antidrug antibodies (ADA). In this article, we discuss different types of immunogenicity assays and

  13. Presence of non-maternal antibodies in newborns of mothers with antibody deficiencies.

    NARCIS (Netherlands)

    M. Hahn-Zoric; B. Carlsson; J. Bjö rkander; A.D.M.E. Osterhaus (Albert); L. Mellander; L.A. Hanson

    1992-01-01

    textabstractTo explain the mechanism for induction and production of specific antibodies found in the newborn already at birth, without previous known exposure to the antigen, we chose a model that presumably excluded the possibility of specific antibodies being transferred from the mother to the

  14. An efficient method for isolating antibody fragments against small peptides by antibody phage display

    DEFF Research Database (Denmark)

    Duan, Zhi; Siegumfeldt, Henrik

    2010-01-01

    We generated monoclonal scFv (single chain variable fragment) antibodies from an antibody phage display library towards three small synthetic peptides derived from the sequence of s1-casein. Key difficulties for selection of scFv-phages against small peptides were addressed. Small peptides do...

  15. Thermodynamics of antibody-antigen interaction revealed by mutation analysis of antibody variable regions.

    Science.gov (United States)

    Akiba, Hiroki; Tsumoto, Kouhei

    2015-07-01

    Antibodies (immunoglobulins) bind specific molecules (i.e. antigens) with high affinity and specificity. In order to understand their mechanisms of recognition, interaction analysis based on thermodynamic and kinetic parameters, as well as structure determination is crucial. In this review, we focus on mutational analysis which gives information about the role of each amino acid residue in antibody-antigen interaction. Taking anti-hen egg lysozyme antibodies and several anti-small molecule antibodies, the energetic contribution of hot-spot and non-hot-spot residues is discussed in terms of thermodynamics. Here, thermodynamics of the contribution from aromatic, charged and hydrogen bond-forming amino acids are discussed, and their different characteristics have been elucidated. The information gives fundamental understanding of the antibody-antigen interaction. Furthermore, the consequences of antibody engineering are analysed from thermodynamic viewpoints: humanization to reduce immunogenicity and rational design to improve affinity. Amino acid residues outside hot-spots in the interface play important roles in these cases, and thus thermodynamic and kinetic parameters give much information about the antigen recognition. Thermodynamic analysis of mutant antibodies thus should lead to advanced strategies to design and select antibodies with high affinity. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  16. Antibody-Mediated Internalization of Infectious HIV-1 Virions Differs among Antibody Isotypes and Subclasses.

    Science.gov (United States)

    Tay, Matthew Zirui; Liu, Pinghuang; Williams, LaTonya D; McRaven, Michael D; Sawant, Sheetal; Gurley, Thaddeus C; Xu, Thomas T; Dennison, S Moses; Liao, Hua-Xin; Chenine, Agnès-Laurence; Alam, S Munir; Moody, M Anthony; Hope, Thomas J; Haynes, Barton F; Tomaras, Georgia D

    2016-08-01

    Emerging data support a role for antibody Fc-mediated antiviral activity in vaccine efficacy and in the control of HIV-1 replication by broadly neutralizing antibodies. Antibody-mediated virus internalization is an Fc-mediated function that may act at the portal of entry whereby effector cells may be triggered by pre-existing antibodies to prevent HIV-1 acquisition. Understanding the capacity of HIV-1 antibodies in mediating internalization of HIV-1 virions by primary monocytes is critical to understanding their full antiviral potency. Antibody isotypes/subclasses differ in functional profile, with consequences for their antiviral activity. For instance, in the RV144 vaccine trial that achieved partial efficacy, Env IgA correlated with increased risk of HIV-1 infection (i.e. decreased vaccine efficacy), whereas V1-V2 IgG3 correlated with decreased risk of HIV-1 infection (i.e. increased vaccine efficacy). Thus, understanding the different functional attributes of HIV-1 specific IgG1, IgG3 and IgA antibodies will help define the mechanisms of immune protection. Here, we utilized an in vitro flow cytometric method utilizing primary monocytes as phagocytes and infectious HIV-1 virions as targets to determine the capacity of Env IgA (IgA1, IgA2), IgG1 and IgG3 antibodies to mediate HIV-1 infectious virion internalization. Importantly, both broadly neutralizing antibodies (i.e. PG9, 2G12, CH31, VRC01 IgG) and non-broadly neutralizing antibodies (i.e. 7B2 mAb, mucosal HIV-1+ IgG) mediated internalization of HIV-1 virions. Furthermore, we found that Env IgG3 of multiple specificities (i.e. CD4bs, V1-V2 and gp41) mediated increased infectious virion internalization over Env IgG1 of the same specificity, while Env IgA mediated decreased infectious virion internalization compared to IgG1. These data demonstrate that antibody-mediated internalization of HIV-1 virions depends on antibody specificity and isotype. Evaluation of the phagocytic potency of vaccine

  17. Antibody engineering using phage display with a coiled-coil heterodimeric Fv antibody fragment.

    Directory of Open Access Journals (Sweden)

    Xinwei Wang

    Full Text Available A Fab-like antibody binding unit, ccFv, in which a pair of heterodimeric coiled-coil domains was fused to V(H and V(L for Fv stabilization, was constructed for an anti-VEGF antibody. The anti-VEGF ccFv showed the same binding affinity as scFv but significantly improved stability and phage display level. Furthermore, phage display libraries in the ccFv format were constructed for humanization and affinity maturation of the anti-VEGF antibody. A panel of V(H frameworks and V(H-CDR3 variants, with a significant improvement in affinity and expressibility in both E. coli and yeast systems, was isolated from the ccFv phage libraries. These results demonstrate the potential application of the ccFv antibody format in antibody engineering.

  18. Antibody Fragments as Probe in Biosensor Development

    Directory of Open Access Journals (Sweden)

    Serge Muyldermans

    2008-08-01

    Full Text Available Today’s proteomic analyses are generating increasing numbers of biomarkers, making it essential to possess highly specific probes able to recognize those targets. Antibodies are considered to be the first choice as molecular recognition units due to their target specificity and affinity, which make them excellent probes in biosensor development. However several problems such as difficult directional immobilization, unstable behavior, loss of specificity and steric hindrance, may arise from using these large molecules. Luckily, protein engineering techniques offer designed antibody formats suitable for biomarker analysis. Minimization strategies of antibodies into Fab fragments, scFv or even single-domain antibody fragments like VH, VL or VHHs are reviewed. Not only the size of the probe but also other issues like choice of immobilization tag, type of solid support and probe stability are of critical importance in assay development for biosensing. In this respect, multiple approaches to specifically orient and couple antibody fragments in a generic one-step procedure directly on a biosensor substrate are discussed.

  19. Identification of antibody glycosylation structures that predict monoclonal antibody Fc-effector function.

    Science.gov (United States)

    Chung, Amy W; Crispin, Max; Pritchard, Laura; Robinson, Hannah; Gorny, Miroslaw K; Yu, Xiaojie; Bailey-Kellogg, Chris; Ackerman, Margaret E; Scanlan, Chris; Zolla-Pazner, Susan; Alter, Galit

    2014-11-13

    To determine monoclonal antibody (mAb) features that predict fragment crystalizable (Fc)-mediated effector functions against HIV. Monoclonal antibodies, derived from Chinese hamster ovary cells or Epstein-Barr virus-immortalized mouse heteromyelomas, with specificity to key regions of the HIV envelope including gp120-V2, gp120-V3 loop, gp120-CD4(+) binding site, and gp41-specific antibodies, were functionally profiled to determine the relative contribution of the variable and constant domain features of the antibodies in driving robust Fc-effector functions. Each mAb was assayed for antibody-binding affinity to gp140(SR162), antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP) and for the ability to bind to FcγRIIa, FcγRIIb and FcγRIIIa receptors. Antibody glycan profiles were determined by HPLC. Neither the specificity nor the affinity of the mAbs determined the potency of Fc-effector function. FcγRIIIa binding strongly predicted ADCC and decreased galactose content inversely correlated with ADCP, whereas N-glycolylneuraminic acid-containing structures exhibited enhanced ADCP. Additionally, the bi-antenary glycan arm onto which galactose was added predicted enhanced binding to FcγRIIIa and ADCC activity, independent of the specificity of the mAb. Our studies point to the specific Fc-glycan structures that can selectively promote Fc-effector functions independently of the antibody specificity. Furthermore, we demonstrated antibody glycan structures associated with enhanced ADCP activity, an emerging Fc-effector function that may aid in the control and clearance of HIV infection.

  20. Pan-HSV-2 IgG Antibody in Vaccinated Mice and Guinea Pigs Correlates with Protection against Herpes Simplex Virus 2

    Science.gov (United States)

    Halford, William P.; Geltz, Joshua; Gershburg, Edward

    2013-01-01

    We lack a correlate of immunity to herpes simplex virus 2 (HSV-2) that may be used to differentiate whether a HSV-2 vaccine elicits robust or anemic protection against genital herpes. This gap in knowledge is often attributed to a failure to measure the correct component of the adaptive immune response to HSV-2. However, efforts to identify a correlate of immunity have focused on subunit vaccines that contain less than 3% of HSV-2's 40,000-amino-acid proteome. We were interested to determine if a correlate of immunity might be more readily identified if 1. animals were immunized with a polyvalent immunogen such as a live virus and/or 2. the magnitude of the vaccine-induced immune response was gauged in terms of the IgG antibody response to all of HSV-2's antigens (pan-HSV-2 IgG). Pre-challenge pan-HSV-2 IgG levels and protection against HSV-2 were compared in mice and/or guinea pigs immunized with a gD-2 subunit vaccine, wild-type HSV-2, or one of several attenuated HSV-2 ICP0 − viruses (0Δ254, 0Δ810, 0ΔRING, or 0ΔNLS). These six HSV-2 immunogens elicited a wide range of pan-HSV-2 IgG levels spanning an ∼500-fold range. For 5 of the 6 immunogens tested, pre-challenge levels of pan-HSV-2 IgG quantitatively correlated with reductions in HSV-2 challenge virus shedding and increased survival frequency following HSV-2 challenge. Collectively, the results suggest that pan-HSV-2 IgG levels may provide a simple and useful screening tool for evaluating the potential of a HSV-2 vaccine candidate to elicit protection against HSV-2 genital herpes. PMID:23755244

  1. Is antenatal antibody screening worthwhile in Chinese?

    Science.gov (United States)

    Wong, K F; Tse, K T; Lee, A W; Mak, C S; So, C C

    1997-06-01

    A total of 1997 pregnant women were screened during their first antenatal visit for irregular antibodies for the prevention of haemolytic disease of the newborn. Patient sera were tested against a panel of group O screen cells including one with the expression of Miltenberger determinants GP.Mur. 17 women (0.85%) had irregular antibodies of which four were of potential clinical significance, including one with anti-D, two with anti-E and one with anti-D, anti-E and anti-G. Although antenatal antibody screening is mandatory in Western populations, our results suggest that this may not be necessary in the Chinese population except for those who are Rh D-negative or who have a history of haemolytic disease of the newborn.

  2. Antinuclear antibodies in autoimmune and allergic diseases.

    Science.gov (United States)

    Grygiel-Górniak, Bogna; Rogacka, Natalia; Rogacki, Michał; Puszczewicz, Mariusz

    2017-01-01

    Antinuclear antibodies (ANA) are primarily significant in the diagnosis of systemic connective tissue diseases. The relationship between their occurrence in allergic diseases is poorly documented. However, the mechanism of allergic and autoimmune diseases has a common thread. In both cases, an increased production of IgE antibodies and presence of ANA in selected disease entities is observed. Equally important is the activation of basophils secreting proinflammatory factors and affecting the differentiation of TH17 lymphocytes. Both autoimmune and allergic diseases have complex multi-pathogenesis and often occur in genetically predisposed individuals. The presence of antinuclear antibodies was confirmed in many systemic connective tissue diseases and some allergic diseases. Examples include atopic dermatitis, non-allergic asthma, and pollen allergy. Co-occurring allergic and autoimmune disorders induce further search for mechanisms involved in the aetiopathogenesis of both groups of diseases.

  3. Origin and pathogenesis of antiphospholipid antibodies

    Directory of Open Access Journals (Sweden)

    C.M. Celli

    1998-06-01

    Full Text Available Antiphospholipid antibodies (aPL are a heterogeneous group of antibodies that are detected in the serum of patients with a variety of conditions, including autoimmune (systemic lupus erythematosus, infectious (syphilis, AIDS and lymphoproliferative disorders (paraproteinemia, myeloma, lymphocytic leukemias. Thrombosis, thrombocytopenia, recurrent fetal loss and other clinical complications are currently associated with a subgroup of aPL designating the antiphospholipid syndrome. In contrast, aPL from patients with infectious disorders are not associated with any clinical manifestation. These findings led to increased interest in the origin and pathogenesis of aPL. Here we present the clinical features of the antiphospholipid syndrome and review the origin of aPL, the characteristics of experimentally induced aPL and their historical background. Within this context, we discuss the most probable pathogenic mechanisms induced by these antibodies.

  4. Imaging spectrum of primary antiphospholipid antibody syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Kwon Ha; Won, Jong Jin [Wonkwang University Hospital, Iksan (Korea, Republic of); Ha, Hyun Kwon; Kim, Jung Hoon; Kim, Jeong Gon; Ki, Won Woo; Kim, Pyo Nyun; Lee, Moon Gyu; Auh, Yong Ho [Asan Medical Center, Seoul (Korea, Republic of)

    1998-04-01

    Antiphospholipid antibody syndrome is recognized as one of the most important causes of hypercoagulability. It can be clinically diagnosed if patients have experienced unexplained recurrent venous or arterial thrombosis, recurrent fetal loss, or thrombocytopenia in the presence of circulating autoantibodies to phospholipids, such as anticardiolipin antibody or lupus anticoagulant. Approximately half of all patients with this syndrome do not have associated systemic disease, and their condition is described as primary antiphospholipid antibody syndrome (PAPS). In the remainder, the syndrome is accompanied by systemic lupus erythematosus or other connective tissue diseases, and is known as secondary antiphospholipid syndrome (1). The purpose of this paper is to illustrate the systemic manifestation of PAPS, focusing on the radiological findings of CT, MR and angiography in clinically proven patients. (author). 8 refs., 10 figs.

  5. Imaging spectrum of primary antiphospholipid antibody syndrome

    International Nuclear Information System (INIS)

    Yoon, Kwon Ha; Won, Jong Jin; Ha, Hyun Kwon; Kim, Jung Hoon; Kim, Jeong Gon; Ki, Won Woo; Kim, Pyo Nyun; Lee, Moon Gyu; Auh, Yong Ho

    1998-01-01

    Antiphospholipid antibody syndrome is recognized as one of the most important causes of hypercoagulability. It can be clinically diagnosed if patients have experienced unexplained recurrent venous or arterial thrombosis, recurrent fetal loss, or thrombocytopenia in the presence of circulating autoantibodies to phospholipids, such as anticardiolipin antibody or lupus anticoagulant. Approximately half of all patients with this syndrome do not have associated systemic disease, and their condition is described as primary antiphospholipid antibody syndrome (PAPS). In the remainder, the syndrome is accompanied by systemic lupus erythematosus or other connective tissue diseases, and is known as secondary antiphospholipid syndrome (1). The purpose of this paper is to illustrate the systemic manifestation of PAPS, focusing on the radiological findings of CT, MR and angiography in clinically proven patients. (author). 8 refs., 10 figs

  6. Prenatal toxoplasmosis antibody and childhood autism.

    Science.gov (United States)

    Spann, Marisa N; Sourander, Andre; Surcel, Heljä-Marja; Hinkka-Yli-Salomäki, Susanna; Brown, Alan S

    2017-05-01

    There is evidence that some maternal infections during the prenatal period are associated with neurodevelopmental disorders, such as childhood autism. However, the association between autism and Toxoplasma gondii (T. gondii), an intracellular parasite, remains unclear. The authors examined whether serologically confirmed maternal antibodies to T. gondii are associated with odds of childhood autism in offspring. The study is based on a nested case-control design of a large national birth cohort (N = 1.2 million) and the national psychiatric registries in Finland. There were 874 cases of childhood autism and controls matched 1:1 on date of birth, sex, birthplace and residence in Finland. Maternal sera were prospectively assayed from a national biobank for T. gondii IgM and IgG antibodies; IgG avidity analyses were also performed. High maternal T. gondii IgM antibody was associated with a significantly decreased odds of childhood autism. Low maternal T. gondii IgG antibody was associated with increased offspring odds of autism. In women with high T. gondii IgM antibodies, the IgG avidity was high for both cases and controls, with the exception of three controls. The findings suggest that the relationship between maternal T. gondii antibodies and odds of childhood autism may be related to the immune response to this pathogen or the overall activation of the immune system. Autism Res 2017, 10: 769-777. © 2016 International Society for Autism Research, Wiley Periodicals, Inc. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.

  7. Human antibody production in transgenic animals.

    Science.gov (United States)

    Brüggemann, Marianne; Osborn, Michael J; Ma, Biao; Hayre, Jasvinder; Avis, Suzanne; Lundstrom, Brian; Buelow, Roland

    2015-04-01

    Fully human antibodies from transgenic animals account for an increasing number of new therapeutics. After immunization, diverse human monoclonal antibodies of high affinity can be obtained from transgenic rodents, while large animals, such as transchromosomic cattle, have produced respectable amounts of specific human immunoglobulin (Ig) in serum. Several strategies to derive animals expressing human antibody repertoires have been successful. In rodents, gene loci on bacterial artificial chromosomes or yeast artificial chromosomes were integrated by oocyte microinjection or transfection of embryonic stem (ES) cells, while ruminants were derived from manipulated fibroblasts with integrated human chromosome fragments or human artificial chromosomes. In all strains, the endogenous Ig loci have been silenced by gene targeting, either in ES or fibroblast cells, or by zinc finger technology via DNA microinjection; this was essential for optimal production. However, comparisons showed that fully human antibodies were not as efficiently produced as wild-type Ig. This suboptimal performance, with respect to immune response and antibody yield, was attributed to imperfect interaction of the human constant region with endogenous signaling components such as the Igα/β in mouse, rat or cattle. Significant improvements were obtained when the human V-region genes were linked to the endogenous CH-region, either on large constructs or, separately, by site-specific integration, which could also silence the endogenous Ig locus by gene replacement or inversion. In animals with knocked-out endogenous Ig loci and integrated large IgH loci, containing many human Vs, all D and all J segments linked to endogenous C genes, highly diverse human antibody production similar to normal animals was obtained.

  8. Prevalence of coronavirus antibodies in Iowa swine.

    OpenAIRE

    Wesley, R D; Woods, R D; McKean, J D; Senn, M K; Elazhary, Y

    1997-01-01

    Three hundred and forty-seven serum samples from 22 Iowa swine herds were screened for TGEV/PRCV neutralizing antibody. Ninety-one percent of the sera and all 22 herds were positive. These sera were then tested by the blocking ELISA test to distinguish TGEV and PRCV antibody. The ELISA test confirmed the high percentage of TGEV/PRCV positive sera. By the blocking ELISA test, 12 herds were PRCV positive, 6 herds were TGEV positive and 4 herds were mixed with sera either positive for TGEV or PR...

  9. Do monoclonal antibodies recognize linear sequential determinants?

    Science.gov (United States)

    Camera, M; Muratti, E; Trinca, M L; Chersi, A

    1988-01-01

    A group of 19 anti-class II monoclonal antibodies produced in different laboratories were tested in ELISA for their ability to bind to a panel of synthetic peptides selected from HLA-DQ alpha and beta chains. No one of the antibodies tested was found to react with the synthetic fragments, thus confirming the common finding that MoAbs generally fail to recognize fragments of the native antigen. The possibility that this result might be partly due to the procedure used for screening hybridoma supernatants is discussed.

  10. Behaviour of non-donor specific antibodies during rapid re-synthesis of donor specific HLA antibodies after antibody incompatible renal transplantation.

    Directory of Open Access Journals (Sweden)

    Nithya S Krishnan

    Full Text Available HLA directed antibodies play an important role in acute and chronic allograft rejection. During viral infection of a patient with HLA antibodies, the HLA antibody levels may rise even though there is no new immunization with antigen. However it is not known whether the converse occurs, and whether changes on non-donor specific antibodies are associated with any outcomes following HLA antibody incompatible renal transplantation.55 patients, 31 women and 24 men, who underwent HLAi renal transplant in our center from September 2005 to September 2010 were included in the studies. We analysed the data using two different approaches, based on; i DSA levels and ii rejection episode post transplant. HLA antibody levels were measured during the early post transplant period and corresponding CMV, VZV and Anti-HBs IgG antibody levels and blood group IgG, IgM and IgA antibodies were quantified.Despite a significant DSA antibody rise no significant non-donor specific HLA antibody, viral or blood group antibody rise was found. In rejection episode analyses, multiple logistic regression modelling showed that change in the DSA was significantly associated with rejection (p = 0.002, even when adjusted for other antibody levels. No other antibody levels were predictive of rejection. Increase in DSA from pre treatment to a post transplant peak of 1000 was equivalent to an increased chance of rejection with an odds ratio of 1.47 (1.08, 2.00.In spite of increases or decreases in the DSA levels, there were no changes in the viral or the blood group antibodies in these patients. Thus the DSA rise is specific in contrast to the viral, blood group or third party antibodies post transplantation. Increases in the DSA post transplant in comparison to pre-treatment are strongly associated with occurrence of rejection.

  11. Therapeutic assessment of SEED: a new engineered antibody platform designed to generate mono- and bispecific antibodies.

    Science.gov (United States)

    Muda, Marco; Gross, Alec W; Dawson, Jessica P; He, Chaomei; Kurosawa, Emmi; Schweickhardt, Rene; Dugas, Melanie; Soloviev, Maria; Bernhardt, Anna; Fischer, David; Wesolowski, John S; Kelton, Christie; Neuteboom, Berend; Hock, Bjoern

    2011-05-01

    The strand-exchange engineered domain (SEED) platform was designed to generate asymmetric and bispecific antibody-like molecules, a capability that expands therapeutic applications of natural antibodies. This new protein engineered platform is based on exchanging structurally related sequences of immunoglobulin within the conserved CH3 domains. Alternating sequences from human IgA and IgG in the SEED CH3 domains generate two asymmetric but complementary domains, designated AG and GA. The SEED design allows efficient generation of AG/GA heterodimers, while disfavoring homodimerization of AG and GA SEED CH3 domains. Using a clinically validated antibody (C225), we tested whether Fab derivatives constructed on the SEED platform retain desirable therapeutic antibody features such as in vitro and in vivo stability, favorable pharmacokinetics, ligand binding and effector functions including antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity. In addition, we tested SEED with combinations of binder domains (scFv, VHH, Fab). Mono- and bivalent Fab-SEED fusions retain full binding affinity, have excellent biochemical and biophysical stability, and retain desirable antibody-like characteristics conferred by Fc domains. Furthermore, SEED is compatible with different combinations of Fab, scFv and VHH domains. Our assessment shows that the new SEED platform expands therapeutic applications of natural antibodies by generating heterodimeric Fc-analog proteins.

  12. Anti-transferrin receptor antibody and antibody-drug conjugates cross the blood-brain barrier

    International Nuclear Information System (INIS)

    Friden, P.M.; Walus, L.R.; Musso, G.F.; Taylor, M.A.; Malfroy, B.; Starzyk, R.M.

    1991-01-01

    Delivery of nonlipophilic drugs to the brain is hindered by the tightly apposed capillary endothelial cells that make up the blood-brain barrier. The authors have examined the ability of a monoclonal antibody (OX-26), which recognizes the rat transferrin receptor, to function as a carrier for the delivery of drugs across the blood-brain barrier. This antibody, which was previously shown to bind preferentially to capillary endothelial cells in the brain after intravenous administration, labels the entire cerebrovascular bed in a dose-dependent manner. The initially uniform labeling of brain capillaries becomes extremely punctate ∼ 4 hr after injection, suggesting a time-dependent sequestering of the antibody. Capillary-depletion experiments, in which the brain is separated into capillary and parenchymal fractions, show a time-dependent migration of radiolabeled antibody from the capillaries into the brain parenchyma, which is consistent with the transcytosis of compounds across the blood-brain barrier. Antibody-methotrexate conjugates were tested in vivo to assess the carrier ability of this antibody. Immunohistochemical staining for either component of an OX-26-methotrexate conjugate revealed patterns of cerebrovascular labeling identical to those observed with the unaltered antibody. Accumulation of radiolabeled methotrexate in the brain parenchyma is greatly enhanced when the drug is conjugated to OX-26

  13. VHH Antibodies: Reagents for Mycotoxin Detection in Food Products

    Directory of Open Access Journals (Sweden)

    Jia Wang

    2018-02-01

    Full Text Available Mycotoxins are the toxic secondary metabolites produced by fungi and they are a worldwide public health concern. A VHH antibody (or nanobody is the smallest antigen binding entity and is produced by heavy chain only antibodies. Compared with conventional antibodies, VHH antibodies overcome many pitfalls typically encountered in clinical therapeutics and immunodiagnostics. Likewise, VHH antibodies are particularly useful for monitoring mycotoxins in food and feedstuffs, as they are easily genetic engineered and have superior stability. In this review, we summarize the efforts to produce anti-mycotoxins VHH antibodies and associated assays, presenting VHH as a potential tool in mycotoxin analysis.

  14. Impact of Uniform Methods on Interlaboratory Antibody Titration Variability: Antibody Titration and Uniform Methods.

    Science.gov (United States)

    Bachegowda, Lohith S; Cheng, Yan H; Long, Thomas; Shaz, Beth H

    2017-01-01

    -Substantial variability between different antibody titration methods prompted development and introduction of uniform methods in 2008. -To determine whether uniform methods consistently decrease interlaboratory variation in proficiency testing. -Proficiency testing data for antibody titration between 2009 and 2013 were obtained from the College of American Pathologists. Each laboratory was supplied plasma and red cells to determine anti-A and anti-D antibody titers by their standard method: gel or tube by uniform or other methods at different testing phases (immediate spin and/or room temperature [anti-A], and/or anti-human globulin [AHG: anti-A and anti-D]) with different additives. Interlaboratory variations were compared by analyzing the distribution of titer results by method and phase. -A median of 574 and 1100 responses were reported for anti-A and anti-D antibody titers, respectively, during a 5-year period. The 3 most frequent (median) methods performed for anti-A antibody were uniform tube room temperature (147.5; range, 119-159), uniform tube AHG (143.5; range, 134-150), and other tube AHG (97; range, 82-116); for anti-D antibody, the methods were other tube (451; range, 431-465), uniform tube (404; range, 382-462), and uniform gel (137; range, 121-153). Of the larger reported methods, uniform gel AHG phase for anti-A and anti-D antibodies had the most participants with the same result (mode). For anti-A antibody, 0 of 8 (uniform versus other tube room temperature) and 1 of 8 (uniform versus other tube AHG), and for anti-D antibody, 0 of 8 (uniform versus other tube) and 0 of 8 (uniform versus other gel) proficiency tests showed significant titer variability reduction. -Uniform methods harmonize laboratory techniques but rarely reduce interlaboratory titer variance in comparison with other methods.

  15. Top-100 cited articles on Guillain-Barré syndrome: a bibliometric analysis.

    Science.gov (United States)

    Kim, Jee-Eun; Kim, Jong Kuk; Park, Kang Min; Kim, Yerim; Yoon, Dae Young; Bae, Jong Seok

    2016-12-01

    Since the first description of Guillain-Barré syndrome (GBS) 100 years ago, the concept of this syndrome has changed remarkably. The purpose of our study was to identify and characterize the most-cited articles that have contributed to advancing the understanding of GBS. Based on the database of Journal Citation Reports, we selected 554 journals that were considered as potential sources of reports on studies related to clinical neurology and general medicine. The Web of Science search tools were used to identify the most-cited articles relevant to GBS or other variants in the selected journals. Of the selected articles, 18 were review articles and the remainder were original articles or included only a few case series. Among the original articles, 13 described basic research associated with immunological pathogenesis involving anti-ganglioside antibodies. Most of the original studies (42/64, 66%) published after 1990 evaluated anti-ganglioside antibodies that mediated axonal GBS or Miller Fisher syndrome, with only a small number of the papers involving electrodiagnostic medicine (n = 4). Our bibliometric analysis has yielded a detailed list of the top-100 cited articles in the field of GBS. © 2016 Peripheral Nerve Society.

  16. Antimitochondrial antibodies and other antibodies in primary biliary cirrhosis: diagnostic and prognostic value.

    Science.gov (United States)

    Muratori, Luigi; Granito, Alessandro; Muratori, Paolo; Pappas, Georgios; Bianchi, Francesco B

    2008-05-01

    Antimitochondrial antibodies (AMA) are the serologic cornerstone in the diagnosis of primary biliary cirrhosis (PBC), even if they are not detectable in a proportion of patients, notwithstanding the most sensitive and sophisticated technologies used. To fill in the serologic gap in AMA-negative PBC, there is sound evidence to consider antinuclear antibody (ANA) patterns, such as anti-multiple nuclear dots and anti-membranous/rim-like, as PBC-specific surrogate hallmarks of the disease, and their detection can be considered virtually diagnostic. Furthermore, particular ANA specificities, such as anti-gp210, anti-p62, anticentromere antibodies, and anti-dsDNA, may provide additional diagnostic and prognostic information.

  17. Antiphospholipids antibodies and migraine | Nyandaiti | Sahel ...

    African Journals Online (AJOL)

    Similarly, antiphospholipid antibodies was significantly elevated in migraine patients with aura compared to those without aura, ( 2=0.037; p<0.05). The frequency of migraine attacks correlated positively with the concentration of lgG anti β2GP1; ( p<0.05). Conclusion: We demonstrated increased serum level of lgG anti ...

  18. The prevalence ofantiphospholipid antibodies in women with ...

    African Journals Online (AJOL)

    patients. PTT, APTT, kaolin clotting time (KCT),. Russell viper venom time CRvvn were measured in all the subjects, who were also assessed for the presence of anticardiolipin antibodies. Blood was taken by venepuncture into a 0,1 volume of 3,8% trisodium citrate. Platelet-rich plasma (PRP) was prepared by centrifuging of ...

  19. Research Paper Polyclonal antibodies production against ...

    African Journals Online (AJOL)

    The main aim of this project is to produce polyclonal antibodies directed against the Staphylococcus aureus protein A and their use to appreciate bacteriological analysis of milk quality. In this context, an immunization produce was set up to test and detect in a batch of animals the convenient responder to the injected ...

  20. Antiphospholipid Antibody Syndrome Presenting with Hemichorea

    Directory of Open Access Journals (Sweden)

    Yezenash Ayalew

    2012-01-01

    Full Text Available A 25-year-old Bangladeshi lady presented to neurology with a three-month history of involuntary movements of her right arm, associated with loss of power. There was progression to the right leg, and she subsequently developed episodes of slurred speech and blurred vision. At the time of presentation, she was 12 weeks pregnant and the symptoms were reported to have started at conception. Past medical history was unremarkable apart from one first trimester miscarriage and there was no significant family history suggestive of a hereditary neurological condition. MRI of the head revealed no abnormalities but serology showed positive antinuclear antibodies (ANAs at a titre of 1/400. Further investigations revealed strongly positive anticardiolipin antibodies (>120 and positive lupus anticoagulant antibodies. The patient had a second miscarriage at 19 weeks gestation strengthening the possibility that the chorea was related to antiphospholipid antibody syndrome and she was started on a reducing dose of Prednisolone 40 mg daily and aspirin 300 mg daily. Six months later, she had complete resolution of neurological symptoms. There are several reports of chorea as a feature of antiphospholipid syndrome, but no clear consensus on underlying pathophysiology.

  1. The emergence of antibody therapies for Ebola.

    Science.gov (United States)

    Hiatt, Andrew; Pauly, Michael; Whaley, Kevin; Qiu, Xiangguo; Kobinger, Gary; Zeitlin, Larry

    2015-12-23

    This review describes the history of Ebola monoclonal antibody (mAb) development leading up to the recent severe Ebola outbreak in West Africa. The Ebola virus has presented numerous perplexing challenges in the long effort to develop therapeutic antibody strategies. Since the first report of a neutralizing human anti-Ebola mAb in 1999, the straightforward progression from in vitro neutralization resulting in in vivo protection and therapy has not occurred. A number of mAbs, including the first reported, failed to protect non-human primates (NHPs) in spite of protection in rodents. An appreciation of the role of effector functions to antibody efficacy has contributed significantly to understanding mechanisms of in vivo protection. However a crucial contribution, as measured by post-exposure therapy of NHPs, involved the comprehensive testing of mAb cocktails. This effort was aided by the use of plant production technology where various combinations of mAbs could be rapidly produced and tested. Introduction of appropriate modifications, such as specific glycan profiles, also improved therapeutic efficacy. The resulting cocktail, ZMapp™, consists of three mAbs that were identified from numerous mAb candidates. ZMapp™ \\ is now being evaluated in human clinical trials but has already played a role in bringing awareness to the potential of antibody therapy for Ebola.

  2. Developing recombinant antibodies for biomarker detection

    Energy Technology Data Exchange (ETDEWEB)

    Baird, Cheryl L.; Fischer, Christopher J.; Pefaur, Noah B.; Miller, Keith D.; Kagen, Jacob; Srivastava, Sudhir; Rodland, Karin D.

    2010-10-01

    Monoclonal antibodies (mAbs) have an essential role in biomarker validation and diagnostic assays. A barrier to pursuing these applications is the reliance on immunization and hybridomas to produce mAbs, which is time-consuming and may not yield the desired mAb. We recommend a process flow for affinity reagent production that utilizes combinatorial protein display systems (eg, yeast surface display or phage display) rather than hybridomas. These systems link a selectable phenotype-binding conferred by an antibody fragment-with a means for recovering the encoding gene. Recombinant libraries obtained from immunizations can produce high-affinity antibodies (<10 nM) more quickly than other methods. Non-immune libraries provide an alternate route when immunizations are not possible, or when suitable mAbs are not recovered from an immune library. Directed molecular evolution (DME) is an integral part of optimizing mAbs obtained from combinatorial protein display, but can also be used on hybridoma-derived mAbs. Variants can easily be obtained and screened to increase the affinity of the parent mAb (affinity maturation). We discuss examples where DME has been used to tailor affinity reagents to specific applications. Combinatorial protein display also provides an accessible method for identifying antibody pairs, which are necessary for sandwich-type diagnostic assays.

  3. Platelet antibody: review of detection methods

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, K.A.

    1988-10-01

    The driving force behind development of in vitro methods for platelet antibodies is identification of plasma factors causing platelet destruction. Early methods relied on measurement of platelet activation. Current methods are more specific and use a purified antibody against immunoglobulin or complement, which is usually labeled with /sup 125/I or tagged with an enzyme or fluorescein. Comparisons of quantitation of platelet-associated IgG show wide variability between different methods. The disparate results can be related both to differences in binding of secondary antibodies to immunoglobulin in solution compared to immunoglobulins attached to platelets and to the improper assumption that the binding ratio between the secondary detecting and primary antiplatelet antibody is one. Most assays can 1) identify neonatal isoimmune thrombocytopenia and posttransfusion purpura, 2) help to differentiate between immune and nonimmune thrombocytopenias, 3) help to sort out the offending drug when drug-induced thrombocytopenia is suspected, and 4) identify platelet alloantibodies and potential platelet donors via a cross match assay for refractory patients. However, the advantages of quantitative assays over qualitative methods with respect to predictions of patients clinical course and response to different treatments remain to be investigated. 61 references.

  4. Rubella antibodies in Australian immunoglobulin products.

    Science.gov (United States)

    Young, Megan K; Bertolini, Joseph; Kotharu, Pushpa; Maher, Darryl; Cripps, Allan W

    2017-08-03

    Rubella antibodies are not routinely measured in immunoglobulin products and there is a lack of information on the titer in Australian products. To facilitate future studies of the effectiveness of passive immunisation for preventing rubella and congenital rubella syndrome, this study measured the concentration of rubella-specific antibodies in Australian intramuscular (IM) and intravenous (IV) human immunoglobulin products suitable for post-exposure prophylaxis using a chemiluminescent immunoassay. The GMT ± GSD for the IM product was 19 ± 1.2 IU/mg (2980 ± 1.2 IU/mL). The GMT ± GSD for the IV product was 12 ± 1.5 IU/mg (729 ± 1.5 IU/mL). At present, Australian guidelines recommend offering non-immune pregnant women exposed to rubella 20 mL of intramuscular immunoglobulin within 72 hours of exposure. This equates to 42,160 IU of rubella antibodies if the lowest titer obtained for the Australian IM product is considered. The same dose would be delivered by 176 mL of the Australian IV product at the lowest measured rubella-specific antibody titer.

  5. Karakterisasi Antibodi Poliklonal terhadap Aflatoksin M1

    Directory of Open Access Journals (Sweden)

    Angriani Fusvita

    2017-02-01

    antigen AFM1-BSA with AFM1-BSA antibody to rabbit serum in the form of brown dots after addition of DAB substrate. The results of spectrophotometric against rabbit serum fractionation showed the type of IgG heavy chain.

  6. Preparation and identification of monoclonal antibodies against ...

    African Journals Online (AJOL)

    Yomi

    HN), BALB/c mice were immunized with the purified pet-44a-HN in adjuvant and their splenic lymphocytes were fused with myeloma SP2/0 cells. The hybridoma cell lines were screened for HN-specific antibodies by indirect enzyme-linked ...

  7. Human immunodeficiency virus (HIV) specific antibodies among ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-03-20

    Mar 20, 2009 ... Key words: HIV-1/2 antibody prevalence, pregnant women, commercial sex workers, risk factors, Nigeria. INTRODUCTION. There are two .... Africa. However, among Japanese and Chilean female. SWs, Miyazaki et al. .... STIs (P = 0.0001, OR = 6.0), level of education (P = 0.0001, OR = 40.7) and age (P ...

  8. Evaluation of an Antigen-Antibody

    African Journals Online (AJOL)

    GB

    1. ABSTRACT. BACKGROUND: Development of “combination” assays detecting in parallel, within a single test,. Hepatitis C Virus (HCV) antigens and antibodies, not ... considered above threshold of detection for antigen proteins suggested a lack of sensitivity by this assay ..... Hepatic veno-occlusive disease (sinusoidal.

  9. Development and evaluation of Indirect Hemagglutination Antibody ...

    African Journals Online (AJOL)

    The study was conducted to develop and evaluate an Indirect Hemagglutination Antibody Test (IHAT) for the serological diagnosis of Cysticercus bovis in live animals. IHAT was set-up in-house and used to test serum samples of cattle against sheep red blood cell (SRBC) coated with crude extracts of C. bovis cyst. Serum ...

  10. Inhibition of HIV protease by monoclonal antibodies

    Czech Academy of Sciences Publication Activity Database

    Řezáčová, Pavlína; Brynda, Jiří; Fábry, Milan; Hořejší, Magdalena; Štouračová, Renata; Lescar, J.; Riottot, M. M.; Sedláček, Juraj; Bentley, G. A.

    15(5), č. 15 (2002), s. 272-276 ISSN 0952-3499 R&D Projects: GA AV ČR IAA5052502; GA ČR GV203/98/K023 Institutional research plan: CEZ:AV0Z5052915 Keywords : monoclonal antibodies * HIV protease * crystal structure Subject RIV: CE - Biochemistry Impact factor: 2.838, year: 2002

  11. Strain differentiation of polioviruses with monoclonal antibodies.

    NARCIS (Netherlands)

    A.D.M.E. Osterhaus (Albert); A.L. van Wezel; A.J.H. Stegmann; J.A.A.M. van Asten (Jack)

    1984-01-01

    textabstractPanels of monoclonal antibodies raised against different poliovirus type 1, 2 and 3 strains, were tested in a micro-neutralization test and in a micro-enzyme linked immunosorbent assay against a large number of poliovirus strains. The results were compared with those obtained with the

  12. Epitope focused immunogens and recombinant antibody ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Combining cutting-edge immunology and protein engineering methods, this collaborative research project aims to develop affordable antibody-based therapies for dengue patients and improved vaccines for the control of dengue fever and East Coast fever in both humans and animals. The core technologies that will be ...

  13. Polyclonal antibodies of Ganoderma boninense isolated from ...

    African Journals Online (AJOL)

    Polyclonal antibodies of Ganoderma boninense isolated from Malaysian oil palm for detection of basal stem rot disease. ... ELISA-PAb shows better detection as compared to cultural-based method, Ganoderma selective medium (GSM) with an improvement of 18% at nursery trial. The present study also demonstrates ...

  14. IgA Antibodies in Rett Syndrome

    Science.gov (United States)

    Reichelt, K. L.; Skjeldal, O.

    2006-01-01

    The level of IgA antibodies to gluten and gliadin proteins found in grains and to casein found in milk, as well as the level of IgG to gluten and gliadin, have been examined in 23 girls with Rett syndrome and 53 controls. Highly statistically significant increases were found for the Rett population compared to the controls. The reason for this…

  15. Comparisons of the effect of naturally acquired maternal pertussis antibodies and antenatal vaccination induced maternal tetanus antibodies on infant's antibody secreting lymphocyte responses and circulating plasma antibody

    Science.gov (United States)

    The goal of this study was to explore the effects of trans-placental tetanus toxoid (TT) and pertussis (PT) antibodies on an infant's response to vaccination in the context of antenatal immunization with tetanus but not with pertussis. 38 mothers received a single dose of TT vaccine during pregnancy...

  16. Radioimmunoimaging of tumors with a pantumor antibody

    International Nuclear Information System (INIS)

    Chen, D.C.P.; Siegel, M.E.; Chen, F.; Taylor, O.R.; Epstein, A.L.

    1988-01-01

    The TNT-1 antibody was developed to bind intracellular nuclear antigens that are accessible only in degenerative or necrotic cells. Since about 50% of tumor cells are in various stages of cell degeneration or death, this antibody could serve as a pantumor antibody for tumor detection. After intravenous injection of 10 μg of TNT-1F(ab')2 fragments labeled with 20 μCi of I-131, serial images were obtained at 1 and 4 hours and daily for 6 days in mice bearing various human tumors. Accumulation of TNT-1 was imaged in a necrotic tumor as early as 4 hours after injection and because more intense at 48 hours. The tumor-muscle ratio was as high as 29:1. Intense accumulation was noted in the necrotic tumor, about nine times that of healthy tumor. In conclusion, TNT-1, a pantumor antibody, can detect necrotic tumors in animal models. It may be an ideal imaging agent for cancer detection

  17. Enhanced Phagocytosis and Antibody Production by Tinospora ...

    African Journals Online (AJOL)

    Tinospora cordifolia (guduchi) is a widely used shrub in ayurvedic systems of medicine known to possess immunomodulatory properties. In the present study the aqueous extract of T. cordifolia was found to enhance phagocytosis in vitro. The aqueous and ethanolic extracts also induced an increase in antibody production ...

  18. Seroprevalence of hepatitis C antibody in Peru.

    Science.gov (United States)

    Hyams, K C; Phillips, I A; Moran, A Y; Tejada, A; Wignall, F S; Escamilla, J

    1992-06-01

    The prevalence in Peru of antibody to hepatitis C virus (anti-HCV) was determined in a survey of populations living in the northern jungle region and in groups at high risk of parenterally and sexually transmitted diseases. All sera were initially screened for anti-HCV using commercial first and second generation ELISAs; repeatedly reactive sera were further verified with a second generation immunoblot assay. Serum samples were also tested by ELISA for HBsAg, anti-HBs, and anti-HBc. None of 2,111 sera obtained in the survey of jungle residents was positive for anti-HCV by immunoblot assay. Twelve of 16 HIV-1 antibody positive hemophiliacs, one of 103 HIV-1 antibody positive homosexuals, and three of 602 HIV-1 negative registered female prostitutes were positive for anti-HCV. A high prevalence of total markers of hepatitis B infection was found in all subjects, especially in older subjects and groups at high risk of parenterally and sexually transmitted diseases. The findings of this study indicate that seropositivity for hepatitis C virus antibody is uncommon in Peru except in high risk groups and suggest that the epidemiology of hepatitis C differs substantially from hepatitis B.

  19. Single Domain Antibodies as New Biomarker Detectors

    Science.gov (United States)

    Fischer, Katja; Leow, Chiuan Yee; Chuah, Candy; McCarthy, James

    2017-01-01

    Biomarkers are defined as indicators of biological processes, pathogenic processes, or pharmacological responses to a therapeutic intervention. Biomarkers have been widely used for early detection, prediction of response after treatment, and for monitoring the progression of diseases. Antibodies represent promising tools for recognition of biomarkers, and are widely deployed as analytical tools in clinical settings. For immunodiagnostics, antibodies are now exploited as binders for antigens of interest across a range of platforms. More recently, the discovery of antibody surface display and combinatorial chemistry techniques has allowed the exploration of new binders from a range of animals, for instance variable domains of new antigen receptors (VNAR) from shark and variable heavy chain domains (VHH) or nanobodies from camelids. These single domain antibodies (sdAbs) have some advantages over conventional murine immunoglobulin owing to the lack of a light chain, making them the smallest natural biomarker binders thus far identified. In this review, we will discuss several biomarkers used as a means to validate diseases progress. The potential functionality of modern singe domain antigen binders derived from phylogenetically early animals as new biomarker detectors for current diagnostic and research platforms development will be described. PMID:29039819

  20. Single Domain Antibodies as New Biomarker Detectors

    Directory of Open Access Journals (Sweden)

    Chiuan Herng Leow

    2017-10-01

    Full Text Available Biomarkers are defined as indicators of biological processes, pathogenic processes, or pharmacological responses to a therapeutic intervention. Biomarkers have been widely used for early detection, prediction of response after treatment, and for monitoring the progression of diseases. Antibodies represent promising tools for recognition of biomarkers, and are widely deployed as analytical tools in clinical settings. For immunodiagnostics, antibodies are now exploited as binders for antigens of interest across a range of platforms. More recently, the discovery of antibody surface display and combinatorial chemistry techniques has allowed the exploration of new binders from a range of animals, for instance variable domains of new antigen receptors (VNAR from shark and variable heavy chain domains (VHH or nanobodies from camelids. These single domain antibodies (sdAbs have some advantages over conventional murine immunoglobulin owing to the lack of a light chain, making them the smallest natural biomarker binders thus far identified. In this review, we will discuss several biomarkers used as a means to validate diseases progress. The potential functionality of modern singe domain antigen binders derived from phylogenetically early animals as new biomarker detectors for current diagnostic and research platforms development will be described.

  1. Antibodies to actin in autoimmune haemolytic anaemia

    Directory of Open Access Journals (Sweden)

    Ritzmann Mathias

    2010-03-01

    Full Text Available Abstract Background In autoimmune haemolytic anaemia (AIHA, autoreactive antibodies directed against red blood cells are up-regulated, leading to erythrocyte death. Mycoplasma suis infections in pigs induce AIHA of both the warm and cold types. The aim of this study was to identify the target autoantigens of warm autoreactive IgG antibodies. Sera from experimentally M. suis-infected pigs were screened for autoreactivity. Results Actin-reactive antibodies were found in the sera of 95% of all animals tested. The reactivity was species-specific, i.e. reactivity with porcine actin was significantly higher than with rabbit actin. Sera of animals previously immunised with the M. suis adhesion protein MSG1 showed reactivity with actin prior to infection with M. suis indicating that molecular mimicry is involved in the specific autoreactive mechanism. A potentially cross-reactive epitope was detected. Conclusions This is the first report of autoreactive anti-actin antibodies involved in the pathogenesis of autoimmune haemolytic anaemia.

  2. Bone marrow dosimetry for monoclonal antibody therapy

    International Nuclear Information System (INIS)

    Bigler, R.E.; Zanzonico, P.B.; Leonard, R.

    1986-01-01

    Immunoglobulins must permeate through the basement membrane of capillaries in order to enter the extracellular space (ECS) of tissue. Since the process is quite slow, the blood plasma activity in various organs contributes considerably to the radiation dose of the dose-limiting tissues. In bone marrow the basement membrane is absent and the blood circulation is functionally open. Therefore, blood plasma and marrow ECS maintain equal concentrations of labeled immunoglobulins. A combination of factors including intravenous administration, slow absorption into most tissues, slow breakdown and elimination of labeled immunoglobulin, and rapid entry into bone marrow ECS as well as known radiosensitivity of marrow led the authors to expect this tissue would prove to be the primary tissue at risk for systemic monoclonal antibody therapy. They have developed and applied in a Phase I clinical study of 131 I labeled CEA antibody a procedure for estimation of radiation dose to red bone marrow. Serieal measurements of blood plasma and total body retention are carried out. Binding of labeled antibody to the cellular components of blood is verified to be very low. They have observed bone marrow depression at doses greater than 400 rad. If no special procedures are used to reconstitute marrow after radiation treatment, this level represents a much greater than generally recognized limitation to radiolabeled monoclonal antibody therapy. 25 references, 4 tables

  3. The Relationship between Antisperm Antibodies Prevalence and ...

    African Journals Online (AJOL)

    Erah

    mucus and/or through binding to the receptor by which spermatozoa attach to the ovum, thereby blocking sperm–ovuminteraction 10, 11. Women don't generally ..... 18. Bohring C and Krause W (2005): The role of antisperm antibodies during fertilization and for immunological infertility Chem Immunol Allergy.;. 88: 15-26.

  4. Burkholderia pseudomallei Antibodies in Children, Cambodia

    Science.gov (United States)

    Pheaktra, Ngoun; Putchhat, Hor; Sin, Lina; Sen, Bun; Kumar, Varun; Langla, Sayan; Peacock, Sharon J.; Day, Nicholas P.

    2008-01-01

    Antibodies to Burkholderia pseudomallei were detected in 16% of children in Siem Reap, Cambodia. This organism was isolated from 30% of rice paddies in the surrounding vicinity. Despite the lack of reported indigenous cases, melioidosis is likely to occur in Cambodia. PMID:18258125

  5. Sperm antibody production in female sterility.

    Science.gov (United States)

    Mettler, L; Scheidel, P; Shirwani, D

    1974-01-01

    A review of the immunological implications in reproductive physiology is presented. Although attempts have been made to ascribe the antigenicity of semen to individual components, it has not been possible to isolate the human semen antigen responsible for infertility. In monkeys total ejaculates and seminal plasma have shown higher antigenicity than washed spermatozoa. In bulls some evidence of such antigens have been found in the seminal plasma. They are iron-binding proteins resembling lactoferrin. Most investigators have found no evidence for any participation of the ABO blood group antigens in cases of sterility. On the surface of human spermatozoa histo-incompatibility antigens have been detected. Transplantation antigens may be related to sterility. However, an immulogic tolerance of the maternal organism exists against the genetically foreign fetal tissue. Autoimmune spermagglutinating antibodies have been detected in the sera and in the seminal plasma of males with sterility. An obstruction of the seminal pathways may facilitate the production of such antibodies against retained sperm. Isoimmunity in females against seminal components has been shown in cases of sterility; however, fertile women have also been shown to have such conditions. In a group of infertile women spermagglutination activity was detected in 7.5% of cases. In another series of 46 cases with primary unexplained infertility agglutinating antibodies were found in 17.4%. Other investigators have also reported higher rates than the authors. The sperm immobilization test seems to be more sensitive than the agglutination test. No sera were found positive with both tests. With immunofluorescent techniques humoral sperm antibodies have been found to be the IgM and IgG fractions. Each acts on a different part of the spermatozoa. The only promising therapy against humoral sperm antibodies is avoidance of sperm contact over a long period of time. Reported results have been conflicting. Cortisone

  6. Antibodies to poliovirus detected by immunoradiometric assay with a monoclonal antibody

    International Nuclear Information System (INIS)

    Spitz, M.; Fossati, C.A.; Schild, G.C.; Spitz, L.; Brasher, M.

    1982-01-01

    An immunoradiometric assay (IRMA) for the assay of antibodies to poliovirus antigens is described. Dilutions of the test sera or whole (finger prick) blood samples were incubated with the poliovirus antigen bound to a solid phase and the specific antibody was detected by the addition of a mouse anti-human IgG monoclonal antibody (McAb), which was itself revealed by iodinated sheep IgG antimouse F(ab). The authors have shown that this technique is suitable for the estimation of IgG anti-poliovirus antibodies induced in children following polio vaccine. The present study shows that SPRIA provides a simple and inexpensive method for serological studies with poliovirus particularly for use in large-scale surveys. (Auth.)

  7. Antibodies to poliovirus detected by immunoradiometric assay with a monoclonal antibody

    Energy Technology Data Exchange (ETDEWEB)

    Spitz, M.; Fossati, C.A.; Schild, G.C.; Spitz, L.; Brasher, M. (National Inst. for Biological Standards and Control, London (UK))

    1982-10-01

    An immunoradiometric assay (IRMA) for the assay of antibodies to poliovirus antigens is described. Dilutions of the test sera or whole (finger prick) blood samples were incubated with the poliovirus antigen bound to a solid phase and the specific antibody was detected by the addition of a mouse anti-human IgG monoclonal antibody (McAb), which was itself revealed by iodinated sheep IgG antimouse F(ab). The authors have shown that this technique is suitable for the estimation of IgG anti-poliovirus antibodies induced in children following polio vaccine. The present study shows that SPRIA provides a simple and inexpensive method for serological studies with poliovirus particularly for use in large-scale surveys.

  8. Detection of Fasciola gigantica antibodies using Pourquier ELISA kit ...

    African Journals Online (AJOL)

    ELISA) screening kit for Fasciola antibodies was conducted in breeding herds in two Local Government Areas of Adamawa state. The objectives were to determine the presence of Fasciola gigantica antibodies as a way of demonstrating the use ...

  9. Antibody-IL2 Fusion Protein Delivery by Gene Transfer

    National Research Council Canada - National Science Library

    Nicolet, Charles

    1997-01-01

    The purpose of the work described is to assess the feasibility of a gene therapy approach to deliver a specific antibody cytokine fusion protein called CC49-1L2 to a tumor expressing antigen reactive with the antibody...

  10. Biophysical characterization of antibodies with isothermal titration calorimetry

    Directory of Open Access Journals (Sweden)

    Verna Frasca

    2016-07-01

    Full Text Available Antibodies play a key role in the immune response. Since antibodies bind antigens with high specificity and tight affinity, antibodies are an important reagent in experimental biology, assay development, biomedical research and diagnostics. Monoclonal antibodies are therapeutic drugs and used for vaccine development. Antibody engineering, biophysical characterization, and structural data have provided a deeper understanding of how antibodies function, and how to make better drugs. Isothermal titration calorimetry (ITC is a label-free binding assay, which measures affinity, stoichiometry, and binding thermodynamics for biomolecular interactions. When thermodynamic data are used together with structural and kinetic data from other assays, a complete structure-activity-thermodynamics profile can be constructed. This review article describes ITC, and discusses several applications on how data from ITC provides insights into how antibodies function, guide antibody engineering, and aid design of new therapeutic drugs.

  11. Identification of Novel Breast Cancer Antigens Using Phage Antibody Libraries

    National Research Council Canada - National Science Library

    Marks, James

    2002-01-01

    The purpose of this project is to use phage antibody libraries to identify novel breast tumor antigens The antibodies could be used for breast cancer immunotherapy and the antigens could be used as cancer vaccines...

  12. Identification of Novel Breast Cancer Antigens Using Phage Antibody Libraries

    National Research Council Canada - National Science Library

    Marks, James

    2002-01-01

    .... Multivalent display of phage antibodies led to more efficient selection of cell binding antibodies, as did recovery of phage from within the cell after binding to an internalizing cell surface receptor...

  13. Identification of Novel Breast Cancer Antigens Using Phage Antibody Libraries

    National Research Council Canada - National Science Library

    Marks, James

    2001-01-01

    .... Multivalent display of phage antibodies led to more efficient selection of cell binding antibodies, as did recovery of phage from within the cell after binding to an internalizing cell surface receptor...

  14. Bglbrick strategy for the construction of single domain antibody fusions

    Directory of Open Access Journals (Sweden)

    Ellen R. Goldman

    2017-12-01

    Full Text Available Single domain antibodies, recombinantly expressed variable domains derived from camelid heavy chain antibodies, are often expressed as multimers for detection and therapeutic applications. Constructs in which several single domain antibodies are genetically fused serially, as well as those in which single domain antibodies are genetically linked with domains that naturally form multimers, yield improvement in apparent binding affinity due to avidity. Here, using a single domain antibody that binds envelope protein from the Dengue virus, we demonstrated the construction of single domain antibody dimers using the Bglbrick cloning strategy. Constructing single domain antibodies and multimerization domains as Bglbrick parts enables the easy mixing and matching of parts. The dimeric constructs provided enhanced fluorescent signal in assays for detection of Dengue virus like particles over the monomeric single domain antibody.

  15. Significance of prenatal joint detection of ABO antibody titers and irregular antibodies in pregnant women with type O blood.

    Science.gov (United States)

    Zhu, W Y; Li, H X; Liang, Y

    2014-01-01

    To investigate the effects of blood transfusion and number of pregnancies on ABO antibody titers and irregular antibodies in pregnant women with type O blood. The study included 4,200 pregnant women with type O blood (their husbands were with non-O type blood) that were divided into transfusion group and non-transfusion group, according to whether they had a history of blood transfusion. The both groups were respectively divided into three subgroups (the number of pregnancies was one, two, and > or = three). The ABO antibody titers and irregular antibodies were detected at the same time. The effects ofABO antibody titers and irregular antibodies on hemolytic disease of the newborn (HDN) were discussed. There was no consistency of ABO antibody titers and existence of irregular antibody. The positive rates of irregular antibody of transfusion group and of the subgroup (number of pregnancies > or = three) were far higher than that of non-transfusion group and of the subgroups (number of pregnancies pregnant women with positive irregular antibody in non-transfusion group were with HDN. For pregnant women with number of pregnancies > or = three or with history of blood transfusion, the prenatal joint detection of ABO antibody titers and irregular antibodies is helpful for accurately reflecting the in vivo antibody type and level.

  16. Tetanus Neurotoxin Neutralizing Antibodies Screened from a Human Immune scFv Antibody Phage Display Library

    Directory of Open Access Journals (Sweden)

    Han Wang

    2016-09-01

    Full Text Available Tetanus neurotoxin (TeNT produced by Clostridium tetani is one of the most poisonous protein substances. Neutralizing antibodies against TeNT can effectively prevent and cure toxicosis. Using purified Hc fragments of TeNT (TeNT-Hc as an antigen, three specific neutralizing antibody clones recognizing different epitopes were selected from a human immune scFv antibody phage display library. The three antibodies (2-7G, 2-2D, and S-4-7H can effectively inhibit the binding between TeNT-Hc and differentiated PC-12 cells in vitro. Moreover, 2-7G inhibited TeNT-Hc binding to the receptor via carbohydrate-binding sites of the W pocket while 2-2D and S-4-7H inhibited binding of the R pocket. Although no single mAb completely protected mice from the toxin, they could both prolong survival when challenged with 20 LD50s (50% of the lethal dose of TeNT. When used together, the mAbs completely neutralized 1000 LD50s/mg Ab, indicating their high neutralizing potency in vivo. Antibodies recognizing different carbohydrate-binding pockets could have higher synergistic toxin neutralization activities than those that recognize the same pockets. These results could lead to further production of neutralizing antibody drugs against TeNT and indicate that using TeNT-Hc as an antigen for screening human antibodies for TeNT intoxication therapy from human immune antibody library was convenient and effective.

  17. Clinical outcome of patients with coexistent antineutrophil cytoplasmic antibodies and antibodies against glomerular basement membrane.

    Science.gov (United States)

    Lindic, Jelka; Vizjak, Alenka; Ferluga, Dusan; Kovac, Damjan; Ales, Andreja; Kveder, Radoslav; Ponikvar, Rafael; Bren, Andrej

    2009-08-01

    Antineutrophil cytoplasmic antibodies (ANCA) and antibodies against glomerular basement membrane (anti-GBM) rarely coexist. Both antibodies may be associated with rapidly progressive glomerulonephritis and pulmonary hemorrhage. We describe the clinical, serological and histological features of our patients with dual antibodies. From 1977 to 2008, 48 patients with anti-GBM antibody-associated renal disease were observed. Eight out of the 30 tested patients (26.7%), all females, had positive myeloperoxidase (MPO)-ANCA coexistent with anti-GBM antibodies. The patients' mean age was 63.4 +/- 7.8 years. Five presented with pulmonary-renal syndrome, all but one were dialysis-dependent on admission. They had constitutional symptoms and different organ involvement. The kidney biopsies revealed intense linear staining for immunoglobulin G and C3 along the glomerular and distal tubular basement membrane associated with irregular diffuse or focal extracapillary crescentic glomerulonephritis with necrosis of varying extent. Lesions of varying ages were characteristically expressed. Seven patients were treated with methylprednisolone and plasma exchange, four with cyclophosphamide, and one with intravenous immunoglobulin. After 28-74 months, there were three dialysis-dependent survivors and one patient with stable chronic renal disease. Two clinical relapses with pulmonary involvement and MPO-ANCA positivity without anti-GBM antibodies occurred in two dialysis-dependent patients. In summary, screening for ANCA and anti-GBM antibodies should be undertaken in patients with clinical signs of systemic vasculitis. In dialysis-dependent patients, the goal of treatment is to limit the damage of other involved organs and not to preserve renal function. Careful follow-up is necessary due to the relapsing nature of the ANCA component of the disease.

  18. Antibody-dependent cellular cytotoxicity in antimyelin antibody-induced oligodendrocyte damage in vitro.

    Science.gov (United States)

    Griot-Wenk, M; Griot, C; Pfister, H; Vandevelde, M

    1991-08-01

    Treatment of dissociated murine brain cell cultures with an antibody recognizing galactocerebroside (GalC) led to degeneration of oligodendrocytes with loss of their cell processes. F(ab')2 fragments prepared from this antibody showed no effect. The anti-GalC antibody--but not its F(ab')2 fragments b2 was able to stimulate macrophages in these cultures as seen in a chemiluminescence assay. Therefore, antibodies bound to oligodendrocytes stimulated nearby macrophages by interacting with their Fc receptors. The oligodendroglial damage coincided with the release of toxic compounds by the stimulated macrophages, since treatment of the cultures with the anti-GalC antibody and a variety of other macrophage stimulating agents led to secretion of reactive oxygen species and--in some experiments--tumor necrosis factor, both known to be toxic for oligodendrocytes. These in vitro experiments show evidence that antibody-dependent cellular cytotoxicity may be an important mechanism of tissue destruction in inflammatory demyelinating diseases.

  19. A comparative study of tissue transglutaminase antibodies and endomysium antibody immunofluorescence in routine clinical laboratory practice.

    Science.gov (United States)

    Sinclair, David; Pearce, Callum B; Saas, Michael S L; Poller, David

    2003-07-01

    The demand for screening for coeliac disease has grown rapidly over the last few years. Laboratories depending on immunofluorescence assays are faced with an increasing workload using a labour-intensive test, and an alternative to this test has been sought. This study compares tissue transglutaminase (TTG) and endomysium antibodies (EMA) in a routine clinical laboratory situation. An immunofluorescence IgA EMA test was compared with a guinea pig TTG antibody ELISA for 816 unselected requests for gut antibody screening. Discrepant results were investigated more fully using a variety of human source TTG antigen kits. Guinea pig TTG ELISA and EMA assays showed agreement for 93.6% of samples. Four samples were misclassified and 48 samples gave false positive TTG results. Study of 46 EMA samples (this group included 39 of the 'discrepant' negative EMA/positive guinea pig TTG group) using three different human purified and/or recombinant TTG sources showed that 42 patients had no TTG antibodies using human sources, three were misclassified and one patient had negative EMA and positive TTG results that could not be readily explained. Further study of 32 EMA positive samples showed almost complete agreement between the human source TTG kits. We can recommend the replacement of EMA with ELISA for TTG antibodies for the routine screening for coeliac disease, but all positive TTG antibodies should still be followed up with IgA EMA and samples should be screened for IgA deficiency.

  20. Antibodies to some enteropathogenic bacteria in serum of ...

    African Journals Online (AJOL)

    Antigens were prepared from bacteria isolates and were used for tile/passive haemagglutination. Results showed that 74, 66, 60 and 50% of the study subjects had antibodies to E. coli, Proteus, Ktebsiella and Shigella spp. respectively. Antibody to E. coli was highest. The highest antibody titre recorded was 1 in 8 for E. coli.

  1. Production and characterization of monoclonal antibodies against mink leukocytes

    DEFF Research Database (Denmark)

    Chen, W.S.; Pedersen, Mikael; Gram-Nielsen, S.

    1997-01-01

    Three monoclonal antibodies (mAbs) were generated against mink leukocytes. One antibody reacted with all T lymphocytes, one with all monocytes and one had platelet reactivity. Under reducing conditions, the T lymphocyte reactive antibody immunoprecipitated 18 kDa, 23 kDa, 25 kDa and 32-40 kDa pol...

  2. Immunobiology of Primary Antibody Deficiencies: Towards a new classification

    NARCIS (Netherlands)

    G.J.A. Driessen (Gertjan)

    2013-01-01

    textabstractPrimary antibody deficiencies (PADs) are the most common primary immunodeficiencies. The hallmark of PADs is a defect in the production of normal amounts of antigen specific antibodies. These antibodies or immunoglobulins are indispensible for the adaptive immune response against a wide

  3. Immunity to rhabdoviruses in rainbow trout: the antibody response

    DEFF Research Database (Denmark)

    Lorenzen, Niels; Lapatra, S.E.

    1999-01-01

    in detail so far. Analysis of the specificity of anti-virus trout antibodies has been complicated by a generally insufficient ability of the antibodies to bind the viral proteins in assays such as immunoblotting. However, other assays, specifically designed for detection of fish anti IHNV/VHSV antibodies...

  4. Detection of avian influenza antibodies and antigens in poultry and ...

    African Journals Online (AJOL)

    Using HI test, the wild birds were negative for AI (H5) antibodies but ELISA detected AI (NP) antibodies in Black Stork (Ciconia nigra) with an overall seroprevalence of 4.5% and mean titre of 24.50±2.400 EU. Cloacal swabs from the same species of wild birds that were tested for antibodies and 710 oropharyngeal swabs ...

  5. Association of ribosomal anti-P antibodies with different parameters ...

    African Journals Online (AJOL)

    antibodies with neuropsychiatric lupus manifestations and to find out the relationship of ribosomal anti-P antibodies with other autoimmune parameters of lupus. Ribosomal anti-P antibodies were evaluated in the serum of 41 systemic lupus erythematosus (SLE) patients as well as ANA, dsDNA, anti- Sm, anti-SSA, anti-SSB, ...

  6. Stability of llama heavy chain antibody fragments under extreme conditions

    NARCIS (Netherlands)

    Dolk, E.

    2004-01-01

    Camelids have next to their normal antibodies, a unique subset of antibodies lacking light chains. The resulting single binding domain, VHH, of these heavy chain antibodies consequently have unique properties. A high stability is one of these properties, which was investigated in this thesis. The

  7. Pathogenesis and mechanisms of antibody-mediated hemolysis.

    Science.gov (United States)

    Flegel, Willy A

    2015-07-01

    The clinical consequences of antibodies to red blood cells (RBCs) have been studied for a century. Most clinically relevant antibodies can be detected by sensitive in vitro assays. Several mechanisms of antibody-mediated hemolysis are well understood. Such hemolysis after transfusion is reliably avoided in a donor-recipient pair, if one individual is negative for the cognate antigen to which the other has the antibody. Mechanisms of antibody-mediated hemolysis were reviewed based on a presentation at the Strategies to Address Hemolytic Complications of Immune Globulin Infusions Workshop addressing intravenous immunoglobulin (IVIG) and ABO antibodies. The presented topics included the rates of intravascular and extravascular hemolysis; immunoglobulin (Ig)M and IgG isoagglutinins; auto- and alloantibodies; antibody specificity; A, B, A,B, and A1 antigens; A1 versus A2 phenotypes; monocytes-macrophages, other immune cells, and complement; monocyte monolayer assay; antibody-dependent cell-mediated cytotoxicity; and transfusion reactions due to ABO and other antibodies. Several clinically relevant questions remained unresolved, and diagnostic tools were lacking to routinely and reliably predict the clinical consequences of RBC antibodies. Most hemolytic transfusion reactions associated with IVIG were due to ABO antibodies. Reducing the titers of such antibodies in IVIG may lower the frequency of this kind of adverse event. The only way to stop these events is to have no anti-A or anti-B in the IVIG products. © 2015 AABB.

  8. Comparisons of the effect of naturally acquired maternal pertussis antibodies and antenatal vaccination induced maternal tetanus antibodies on infant's antibody secreting lymphocyte responses and circulating plasma antibody levels.

    Science.gov (United States)

    Ahmad, Shaikh Meshbahuddin; Alam, Jahangir; Afsar, Nure Alam; Huda, Nazmul; Kabir, Yearul; Qadri, Firdausi; Raqib, Rubhana; Stephensen, Charles B

    2016-04-02

    The goal of this study was to explore the effects of trans-placental tetanus toxoid (TT) and pertussis (PT) antibodies on an infant's response to vaccination in the context of antenatal immunization with tetanus but not with pertussis. 38 mothers received a single dose of TT vaccine during pregnancy. Infants received tetanus and pertussis vaccines at 6, 10 and 14 wk of age. TT and PT anti-IgG secretion by infant lymphocytes was measured at 15 wk. Plasma antibodies were measured at 6 wk (pre-vaccination), 15 wk and 1 y of age. Prior to vaccination, TT and PT antibody were detected in 94.6% and 15.2% of infants. At 15 wk anti-TT-IgG and anti-PT-IgG in plasma was increased by 7-9 fold over pre-vaccination levels, while at 1 y plasma anti-TT-IgG was decreased by approximately 5-fold from the peak and had returned to near the pre-vaccination level. At 1 y plasma anti-PT-IgG was decreased by 2-fold 1 yfrom the 15 wk level. However, 89.5% and 82.3% of infants at 1 y had protective levels of anti-TT and anti-PT IgG, respectively. Pre-vaccination plasma IgG levels were associated with lower vaccine-specific IgG secretion by infant lymphocytes at 15 wk (p < 0.10). This apparent inhibition was seen for anti-TT-IgG at both 15 wk (p < 0.05) and t 1 y (p < 0.10) of age. In summary, we report an apparent inhibitory effect of passively derived maternal antibody on an infants' own antibody response to the same vaccine. However, since the cut-off values for protective titers are low, infants had protective antibody levels throughout infancy.

  9. Clearance of 131I-labeled murine monoclonal antibody from patients' blood by intravenous human anti-murine immunoglobulin antibody

    International Nuclear Information System (INIS)

    Stewart, J.S.; Sivolapenko, G.B.; Hird, V.; Davies, K.A.; Walport, M.; Ritter, M.A.; Epenetos, A.A.

    1990-01-01

    Five patients treated with intraperitoneal 131I-labeled mouse monoclonal antibody for ovarian cancer also received i.v. exogenous polyclonal human anti-murine immunoglobulin antibody. The pharmacokinetics of 131I-labeled monoclonal antibody in these patients were compared with those of 28 other patients receiving i.p.-radiolabeled monoclonal antibody for the first time without exogenous human anti-murine immunoglobulin, and who had no preexisting endogenous human anti-murine immunoglobulin antibody. Patients receiving i.v. human anti-murine immunoglobulin antibody demonstrated a rapid clearance of 131I-labeled monoclonal antibody from their circulation. The (mean) maximum 131I blood content was 11.4% of the injected activity in patients receiving human anti-murine immunoglobulin antibody compared to 23.3% in patients not given human anti-murine immunoglobulin antibody. Intravenous human anti-murine immunoglobulin antibody decreased the radiation dose to bone marrow (from 131I-labeled monoclonal antibody in the vascular compartment) 4-fold. Following the injection of human anti-murine immunoglobulin antibody, 131I-monoclonal/human anti-murine immunoglobulin antibody immune complexes were rapidly transported to the liver. Antibody dehalogenation in the liver was rapid, with 87% of the injected 131I excreted in 5 days. Despite the efficient hepatic uptake of immune complexes, dehalogenation of monoclonal antibody was so rapid that the radiation dose to liver parenchyma from circulating 131I was decreased 4-fold rather than increased. All patients developed endogenous human anti-murine immunoglobulin antibody 2 to 3 weeks after treatment

  10. [Detection and analysis of anti-Rh blood group antibodies].

    Science.gov (United States)

    Wu, Yuan-jun; Wu, Yong; Chen, Bao-chan; Liu, Yan

    2008-06-01

    To study the prevalence and distribution of anti-Rh blood group antibodies in Chinese population and its clinical significance. Irregular antibodies were screened and identified by Microcolum Gel Coomb's test. For those identified as positive anti-Rh samples, monoclonal antibodies (anti-D, -C, -c, -E and -e) were used to identify the specific antigen and confirm the accuracy of the irregular antibody tests. The titers, Ig-types and 37 Degrees Celsius-reactivity were tested to confirm its clinical significance. For evaluation of the origin of irregular antibodies, histories of pregnancy and transfusion were reviewed. For the newborns who had positive antibodies, their mothers were tested simultaneously to confirm the origin of the antibodies. 47 out of 54 000 (0.087%) patients were identified as positive with Rh blood group antibodies.Of them, 27 cases had history of pregnancy, 13 had transfusion and 1 had the histories of both. 6 newborns had antibodies derived form their mothers. The specificity of the antibody was as follows: 29 with anti-E (61.70%), 8 with anti-D (17.02%), anti-cE 5(10.64%), 4 with anti-c (8.51%) and 1 with anti-C (2.13%). All the 47 Rh blood group antibodies were IgG or IgG+IgM, and were reactive to red blood cells with corresponding antigens at 37 Degrees Celsius, with a highest titer of 1:4 096. The prevalence of Rh antibodies is lower in Chinese population as compared with that in White population.Of all the antibodies, anti-E is most frequently identified and anti-D was declining. Alloimmunization by pregnancy and transfusion is the major cause of Rh antibody production. Rh blood group antibodies derived from mothers are the major cause of Non-ABO-HDN.

  11. Development of Tetravalent, Bispecific CCR5 Antibodies with Antiviral Activity against CCR5 Monoclonal Antibody-Resistant HIV-1 Strains▿

    Science.gov (United States)

    Schanzer, Jürgen; Jekle, Andreas; Nezu, Junichi; Lochner, Adriane; Croasdale, Rebecca; Dioszegi, Marianna; Zhang, Jun; Hoffmann, Eike; Dormeyer, Wilma; Stracke, Jan; Schäfer, Wolfgang; Ji, Changhua; Heilek, Gabrielle; Cammack, Nick; Brandt, Michael; Umana, Pablo; Brinkmann, Ulrich

    2011-01-01

    In this study, we describe novel tetravalent, bispecific antibody derivatives that bind two different epitopes on the HIV coreceptor CCR5. The basic protein formats that we applied were derived from Morrison-type bispecific antibodies: whole IgGs to which we connected single-chain antibodies (scFvs) via (Gly4Ser)n sequences at either the C or N terminus of the light chain or heavy chain. By design optimization, including disulfide stabilization of scFvs or introduction of 30-amino-acid linkers, stable molecules could be obtained in amounts that were within the same range as or no less than 4-fold lower than those observed with monoclonal antibodies in transient expression assays. In contrast to monospecific CCR5 antibodies, bispecific antibody derivatives block two alternative docking sites of CCR5-tropic HIV strains on the CCR5 coreceptor. Consequently, these molecules showed 18- to 57-fold increased antiviral activities compared to the parent antibodies. Most importantly, one prototypic tetravalent CCR5 antibody had antiviral activity against virus strains resistant to the single parental antibodies. In summary, physical linkage of two CCR5 antibodies targeting different epitopes on the HIV coreceptor CCR5 resulted in tetravalent, bispecific antibodies with enhanced antiviral potency against wild-type and CCR5 antibody-resistant HIV-1 strains. PMID:21300827

  12. Antiphospholipid antibody syndrome presenting as transverse myelitis

    Directory of Open Access Journals (Sweden)

    Javvid M Dandroo

    2015-01-01

    Full Text Available The antiphospholipid syndrome (APS is characterized by arterial and/or venous thrombosis and pregnancy morbidity in the presence of anticardiolipin antibodies and/or lupus anticoagulant. APS can occur either as a primary disorder or secondary to a connective tissue disease, most frequently systemic lupus erythematosus. Central nervous system involvement is one of the most prominent clinical manifestations of APS, and includes arterial and venous thrombotic events, psychiatric features, and a variety of other nonthrombotic neurological syndromes. Although the mechanism of neurological involvement in patients with APS is thought to be thrombotic in origin and endothelial dysfunction associated with antiphospholipid antibodies. APS presenting as acute transverse myelitis is very rarely seen with a prevalence rate of 1%. We are describing a foreigner female presenting as acute transverse myelitis which on evaluation proved to be APS induced. So far, very few cases have been reported in literature with APS as etiology.

  13. Optimal Synthetic Glycosylation of a Therapeutic Antibody.

    Science.gov (United States)

    Parsons, Thomas B; Struwe, Weston B; Gault, Joseph; Yamamoto, Keisuke; Taylor, Thomas A; Raj, Ritu; Wals, Kim; Mohammed, Shabaz; Robinson, Carol V; Benesch, Justin L P; Davis, Benjamin G

    2016-02-12

    Glycosylation patterns in antibodies critically determine biological and physical properties but their precise control is a significant challenge in biology and biotechnology. We describe herein the optimization of an endoglycosidase-catalyzed glycosylation of the best-selling biotherapeutic Herceptin, an anti-HER2 antibody. Precise MS analysis of the intact four-chain Ab heteromultimer reveals nonspecific, non-enzymatic reactions (glycation), which are not detected under standard denaturing conditions. This competing reaction, which has hitherto been underestimated as a source of side products, can now be minimized. Optimization allowed access to the purest natural form of Herceptin to date (≥90 %). Moreover, through the use of a small library of sugars containing non-natural functional groups, Ab variants containing defined numbers of selectively addressable chemical tags (reaction handles at Sia C1) in specific positions (for attachment of cargo molecules or "glycorandomization") were readily generated.

  14. Recent developments in monoclonal antibody radiolabeling techniques

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, S.C.; Mease, R.C.

    1989-01-01

    Monoclonal antibodies (MAbs) have shown the potential to serve as selective carriers of radionuclides to specific in vivo antigens. Accordingly, there has been an intense surge of research activity in an effort to develop and evaluate MAb-based radiopharmaceuticals for tumor imaging (radioimmunoscintigraphy) and therapy (radioimmunotherapy), as well as for diagnosing nonmalignant diseases. A number of problems have recently been identified, related to the MAbs themselves and to radiolabeling techniques, that comprise both the selectivity and the specificity of the in vivo distribution of radiolabeled MAbs. This paper will address some of these issues and primarily discuss recent developments in the techniques for radiolabeling monoclonal antibodies that may help resolve problems related to the poor in vivo stability of the radiolabel and may thus produce improved biodistribution. Even though many issues are identical with therapeutic radionuclides, the discussion will focus mainly on radioimmunoscintigraphic labels. 78 refs., 6 tabs.

  15. Recent developments in monoclonal antibody radiolabeling techniques

    International Nuclear Information System (INIS)

    Srivastava, S.C.; Mease, R.C.

    1989-01-01

    Monoclonal antibodies (MAbs) have shown the potential to serve as selective carriers of radionuclides to specific in vivo antigens. Accordingly, there has been an intense surge of research activity in an effort to develop and evaluate MAb-based radiopharmaceuticals for tumor imaging (radioimmunoscintigraphy) and therapy (radioimmunotherapy), as well as for diagnosing nonmalignant diseases. A number of problems have recently been identified, related to the MAbs themselves and to radiolabeling techniques, that comprise both the selectivity and the specificity of the in vivo distribution of radiolabeled MAbs. This paper will address some of these issues and primarily discuss recent developments in the techniques for radiolabeling monoclonal antibodies that may help resolve problems related to the poor in vivo stability of the radiolabel and may thus produce improved biodistribution. Even though many issues are identical with therapeutic radionuclides, the discussion will focus mainly on radioimmunoscintigraphic labels. 78 refs., 6 tabs

  16. Production of antibodies which recognize opiate receptors on murine leukocytes

    Energy Technology Data Exchange (ETDEWEB)

    Carr, D.J.J.; Bost, K.L.; Blalock, J.E.

    1988-01-01

    An antibody has been developed which recognizes opiate receptors on cells of the immune system. This antibody blocks specific binding of the radiolabeled opiate receptor ligand, /sup 3/H-dihydromorphine, to receptors on murine splenocytes. Additionally, the anti-receptor antibody competes with ..beta..-endorphin, meta-enkephalin, and naloxone for the same binding site on the leukocytes. Moreover, the anti-receptor antibody possesses agonist activity similar to ..beta..-endorphin in suppressing cAMP production by lymphocytes. These results suggest the development of an antibody which recognizes classical opiate receptors on cells of the immune system.

  17. ON THE NOTION OF SYNERGY OF MONOCLONAL ANTIBODIES AS DRUGS

    Directory of Open Access Journals (Sweden)

    Michael Sela

    2013-08-01

    Full Text Available History of developing synergy between monoclonal antibodies, anti-tumor activity of monoclonal antibodies against tyrosine-kinases receptors EGFR/ErbB-1 and HER2/ErbB-2 as well as growth factor VEGF in various combinations are considered in the article. There were proposed hypotheses about potential molecular mechanisms underlay synergy between monoclonal antibodies (for homo- and hetero combinations of antibodies appropriately specific for antigenic determinants on the same or different receptors. Future trends in researches necessary to deeper understanding causes of this phenomenon and perspectives for practical application of monoclonal antibodies acted synergistically as immunotherapeutic drugs for human tumors treatment are reviewed.

  18. Development and Characterization of Canine Distemper Virus Monoclonal Antibodies.

    Science.gov (United States)

    Liu, Yuxiu; Hao, Liying; Li, Xiangdong; Wang, Linxiao; Zhang, Jianpo; Deng, Junhua; Tian, Kegong

    2017-06-01

    Five canine distemper virus monoclonal antibodies were developed by immunizing BALB/c mice with a traditional vaccine strain Snyder Hill. Among these monoclonal antibodies, four antibodies recognized both field and vaccine strains of canine distemper virus without neutralizing ability. One monoclonal antibody, 1A4, against hemagglutinin protein of canine distemper virus was found to react only with vaccine strain virus but not field isolates, and showed neutralizing activity to vaccine strain virus. These monoclonal antibodies could be very useful tools in the study of the pathogenesis of canine distemper virus and the development of diagnostic reagents.

  19. Antissaliva Antibodies of Lutzomyia Longipalpis in area of Visceral Leishmaniasis.

    Science.gov (United States)

    Fraga, Thiago Leite; Fernandes, Magda Freitas; Pontes, Elenir Rose Jardim Cury; Levay, Ana Paula Silva; Almeida da Cunha, Elenice Brandão; França, Adriana de Oliveira; Dorval, Maria Elizabeth Cavalheiros

    2016-07-01

    The aim of the present study was to assess the presence of antissaliva antibodies of Lutzomyia longipalpis in human hosts living in area of visceral leishmaniasis, located in the Center-West region of Brazil. The presence of antissaliva antibodies of L. longipalpis exhibited a strong correlation with the protection and development of antibodies against Leishmania sp. Of the 492 children studied, elevated antissaliva antibodies of L. longipalpis were detected in 38.4% of the participants. There was a higher percentage of positivity (64.7%) among children who exhibited anti-Leishmania sp. antibodies and among those who were positive in the delayed hypersensitivity test (34.8%).

  20. Docking of Antibodies into Cavities in DNA Origami

    DEFF Research Database (Denmark)

    Quyang, X; Stefano, Mattia De; Krissanaprasit, Abhichart

    2017-01-01

    -selective immobilization of antibodies in designed cavities in 2D and 3D DNA origami structures. Two tris(NTA) modified strands are inserted into the cavity to form NTA-metal complexes with histidine clusters on the Fc domain. Subsequent covalent linkage to the antibody was achieved by coupling to lysines. Atomic force...... microscopy (AFM) and transmission electron microscopy (TEM) validated efficient antibody immobilization in the origami structures. The increased ability to control the orientation of antibodies in nanostructures and at surfaces has potential for directing the interactions of antibodies with targets...

  1. [Rare blood donors with irregular antibodies].

    Science.gov (United States)

    Milanović, Mirjana Krga; Bujandrić, Nevenka; Knezević, Natasa Milosavljević

    2013-01-01

    Blood groups are inherited biological characteristics that do not change throughout life in healthy people. Blood groups represent antigens found on the surface of red blood cells. Kell blood group system consists of 31 antigens. Kell antigen (K) is present in 0.2% of the population (the rare blood group). Cellano antigen is present in more than 99% (the high-frequency antigen). These antigens have a distinct ability to cause an immune response in the people after blood transfusion or pregnancy who, otherwise, did not have them before. This paper presents a blood donor with a rare blood group, who was found to have an irregular antibody against red blood cells by indirect antiglobulin test. Further testing determined the specificity of antibody to be anti-Cellano. The detected antibody was found in high titers (1024) with erythrocyte phenotype Kell-Cellano+. The blood donor was found to have a rare blood group KellKell. This donor was excluded from further blood donation. It is difficult to find compatible blood for a person who has developed an antibody to the high-frequency antigen. The donor's family members were tested and Cellano antigen was detected in her husband and child. A potential blood donor was not found among the family members. There was only one blood donor in the Register of blood donors who was compatible in the ABO and Kell blood group system. For the successful management of blood transfusion it is necessary to establish a unified national register of donors of rare blood groups and cooperate with the International Blood Group Reference Laboratory in Bristol with the database that registers donors of rare blood groups from around the world.

  2. Seroprevalence Survey of Rubella Antibodies among Pregnant ...

    African Journals Online (AJOL)

    Key words: Rubella virus, teratogen, antibodies, Maiduguri. La rubéole est une infection virale évitable par la vaccination. Son agent étiologique, virus de la rubéole a été identifié comme un tératogène humain capable de provoquer le spectre de malformation congénitale décrite comme le syndrome de rubéole congénitale ...

  3. Antibody induction therapy for lung transplant recipients

    DEFF Research Database (Denmark)

    Penninga, Luit; Møller, Christian H; Penninga, Ida Elisabeth Irene

    2013-01-01

    Lung transplantation has become a valuable and well-accepted treatment option for most end-stage lung diseases. Lung transplant recipients are at risk of transplanted organ rejection, and life-long immunosuppression is necessary. Clear evidence is essential to identify an optimal, safe...... and effective immunosuppressive treatment strategy for lung transplant recipients. Consensus has not yet been achieved concerning use of immunosuppressive antibodies against T-cells for induction following lung transplantation....

  4. Non-antibody protein-based biosensors

    OpenAIRE

    Ferrigno, Paul?Ko

    2016-01-01

    Biosensors that depend on a physical or chemical measurement can be adversely affected by non-specific interactions. For example, a biosensor designed to measure specifically the levels of a rare analyte can give false positive results if there is even a small amount of interaction with a highly abundant but irrelevant molecule. To overcome this limitation, the biosensor community has frequently turned to antibody molecules as recognition elements because they are renowned for their exquisite...

  5. Dengue virus antibodies enhance Zika virus infection.

    Science.gov (United States)

    Paul, Lauren M; Carlin, Eric R; Jenkins, Meagan M; Tan, Amanda L; Barcellona, Carolyn M; Nicholson, Cindo O; Michael, Scott F; Isern, Sharon

    2016-12-01

    For decades, human infections with Zika virus (ZIKV), a mosquito-transmitted flavivirus, were sporadic, associated with mild disease, and went underreported since symptoms were similar to other acute febrile diseases. Recent reports of severe disease associated with ZIKV have greatly heightened awareness. It is anticipated that ZIKV will continue to spread in the Americas and globally where competent Aedes mosquito vectors are found. Dengue virus (DENV), the most common mosquito-transmitted human flavivirus, is both well-established and the source of outbreaks in areas of recent ZIKV introduction. DENV and ZIKV are closely related, resulting in substantial antigenic overlap. Through antibody-dependent enhancement (ADE), anti-DENV antibodies can enhance the infectivity of DENV for certain classes of immune cells, causing increased viral production that correlates with severe disease outcomes. Similarly, ZIKV has been shown to undergo ADE in response to antibodies generated by other flaviviruses. We tested the neutralizing and enhancing potential of well-characterized broadly neutralizing human anti-DENV monoclonal antibodies (HMAbs) and human DENV immune sera against ZIKV using neutralization and ADE assays. We show that anti-DENV HMAbs, cross-react, do not neutralize, and greatly enhance ZIKV infection in vitro . DENV immune sera had varying degrees of neutralization against ZIKV and similarly enhanced ZIKV infection. Our results suggest that pre-existing DENV immunity may enhance ZIKV infection in vivo and may lead to increased disease severity. Understanding the interplay between ZIKV and DENV will be critical in informing public health responses and will be particularly valuable for ZIKV and DENV vaccine design and implementation strategies.

  6. Antineutrophil Cytoplasmic Antibodies, Autoimmune Neutropenia, and Vasculitis

    Science.gov (United States)

    Grayson, Peter C.; Sloan, J. Mark; Niles, John L.; Monach, Paul A.; Merkel, Peter A.

    2011-01-01

    Objectives Reports of an association between antineutrophil cytoplasmic antibodies (ANCA) and autoimmune neutropenia have rarely included cases of proven vasculitis. A case of ANCA-associated vasculitis (AAV) with recurrent neutropenia is described and relevant literature on the association between ANCA, neutropenia, and vasculitis is reviewed. Methods Longitudinal clinical assessments and laboratory findings are described in a patient with AAV and recurrent episodes of profound neutropenia from December 2008 – October 2010. A PubMed database search of the medical literature was performed for papers published from 1960 through October 2010 to identify all reported cases of ANCA and neutropenia. Results A 49 year-old man developed recurrent neutropenia, periodic fevers, arthritis, biopsy-proven cutaneous vasculitis, sensorineural hearing loss, epididymitis, and positive tests for ANCA with specificity for antibodies to both proteinase 3 and myeloperoxidase. Antineutrophil membrane antibodies were detected during an acute neutropenic phase and were not detectable in a post-recovery sample, whereas ANCA titers did not seem to correlate with neutropenia. An association between ANCA and neutropenia has been reported in 74 cases from 24 studies in the context of drug/toxin exposure, underlying autoimmune disease, or chronic neutropenia without underlying autoimmune disease. In these cases, the presence of atypical ANCA patterns and other antibodies were common; however, vasculitis was uncommon and when it occurred was usually limited to the skin and in cases of underlying toxin exposure. Conclusions ANCA is associated with autoimmune neutropenia, but systemic vasculitis rarely occurs in association with ANCA and neutropenia. The interaction between neutrophils and ANCA may provide insight into understanding both autoimmune neutropenia and AAV. PMID:21507463

  7. Mathematical analysis of dengue virus antibody dynamics

    Science.gov (United States)

    Perera, Sulanie; Perera, SSN

    2018-03-01

    Dengue is a mosquito borne viral disease causing over 390 million infections worldwide per annum. Even though information on how infection is controlled and eradicated from the body is lacking, antibodies are thought to play a major role in clearing the virus. In this paper, a non-linear conceptual dynamical model with humoral immune response and absorption effect has been proposed for primary dengue infection. We have included the absorption of pathogens into uninfected cells since this effect causes the virus density in the blood to decrease. The time delay that arises in the production of antibodies was accounted and is introduced through a continuous function. The basic reproduction number R0 is computed and a detailed stability analysis is done. Three equilibrium states, namely the infection free equilibrium, no immune equilibrium and the endemic equilibrium were identified and the existence and the stability conditions of these steady states were obtained. Numerical simulations proved the results that were obtained. By establishing the characteristic equation of the model at infection free equilibrium, it was observed that the infection free equilibrium is locally asymptotically stable if R0 1. Stability regions are identified for infection free equilibrium state with respect to the external variables and it is observed as the virus burst rate increases, the stability regions would decrease. These results implied that for higher virus burst rates, other conditions in the body must be strong enough to eliminate the disease completely from the host. The effect of time delay of antibody production on virus dynamics is discussed. It was seen that as the time delay in production of antibodies increases, the time for viral decline also increased. Also it was observed that the virus count goes to negligible levels within 7 - 14 days after the onset of symptoms as seen in dengue infections.

  8. Antiphospholipid antibody syndrome presenting as transverse myelitis

    OpenAIRE

    Javvid M Dandroo; Naveed Mohsin; Firdousa Nabi

    2015-01-01

    The antiphospholipid syndrome (APS) is characterized by arterial and/or venous thrombosis and pregnancy morbidity in the presence of anticardiolipin antibodies and/or lupus anticoagulant. APS can occur either as a primary disorder or secondary to a connective tissue disease, most frequently systemic lupus erythematosus. Central nervous system involvement is one of the most prominent clinical manifestations of APS, and includes arterial and venous thrombotic events, psychiatric features, and a...

  9. Human immunodeficiency virus (HIV) specific antibodies among ...

    African Journals Online (AJOL)

    obtained from each sample was tested using parallel testing algorithm with DETERMINE® HIV-1/2 and HIV-1/2 STAT-PAK® test was used for statistical analysis of the data. The overall prevalence of HIV-1/2 antibodies was 29.1% (n = 199). Seroprevalence of 39.4 and 19.0% were observed for the CSWs and the PW, ...

  10. Antibody conjugate radioimmunotherapy of superficial bladder cancer

    Directory of Open Access Journals (Sweden)

    Alan Perkins

    2002-09-01

    Full Text Available The administration of antibody conjugates for cancer therapy is now proving to be of clinical value. We are currently undertaking a programme of clinical studies using the monoclonal antibody C595 (IgG3 which reacts with the MUC1 glycoprotein antigen that is aberrantly expressed in a high proportion of bladder tumours. Radioimmunoconjugates of the C595 antibody have been produced with high radiolabelling efficiency and immunoreactivity using Tc-99m and In-111 for diagnostic imaging, and disease staging and the cytotoxic radionuclides Cu-67 and Re-188 for therapy of superficial bladder cancer. A Phase I/II therapeutic trail involving the intravesical administration of antibody directly into the bladder has now begun.A administração de anticorpos conjugados para o tratamento do câncer está agora provando ser de valor clínico. Nós estamos atualmente realizando um programa de estudos clínicos usando o anticorpo monoclonal C595 (IgG3 que reage com a glicoproteína MUC1 que está aberrantemente expressa numa alta proporção de tumores de bexiga. Tem sido produzidos radioimunoconjugados do anticorpo C595, com alta eficiência de radiomarcação e a imunoreatividade, usando-se o Tc-99m e In-111, para o diagnóstico por imagem e estagiamento de doenças. Tem sido produzidos, também, radionuclídeos citotóxicos (Cu-67 e Re-188 para o tratamento de cânceres superficiais de bexiga. A fase terapêutica I/II já se iniciou, envolvendo a administração intravesical do anticorpo diretamente na bexiga.

  11. Biomarkers in Multiple Sclerosis: Role of Antibodies

    OpenAIRE

    Berger, Thomas; Reindl, Markus

    2006-01-01

    The first international workshop on “Biomarkers in Multiple Sclerosis” was organized by B. Bielekova, R. Hohlfeld, R. Martin and U. Utz from April 14–16, 2004, in Washington, DC. The workshop intended to discuss the current status and potential applicability of biological markers for the understanding of the pathogenesis, diagnosis, and therapy of multiple sclerosis. The present review summarizes the presentation on the potential role of antibodies as biomarkers for diagnosis, disease activit...

  12. Monoclonal antibodies to human seminal plasma proteins

    Czech Academy of Sciences Publication Activity Database

    Čapková, Jana; Margaryan, Hasmik; Elzeinová, Fatima; Koubek, Pavel; Pěknicová, Jana

    2009-01-01

    Roč. 30, Supplement (2009), s. 60 ISSN 0196-3635. [9th International Congress of And rology. 07.03.2009-10.03.2009, Barcelona] R&D Projects: GA MŠk(CZ) 1M06011 Institutional research plan: CEZ:AV0Z50520701 Keywords : monoclonal antibodies * human seminal plasma proteins * clusterin * semenogelin I * SABP * enolase I Subject RIV: EC - Immunology

  13. Facile synthesis of catalytically active CeO 2-Gd 2 O 3 solid ...

    Indian Academy of Sciences (India)

    Raman studies further confirmed the presence of oxygen vacancies and lattice defects in the CG sample. TPR measurements indicated a facile reduction of ceria after Gd3+ addition. Activity studies revealed that incorporation of Gd3+ into the ceria matrix favoured the creation of more structural defects, which accelerates the ...

  14. Characteristic features of optical absorption for Gd2O3 and NiO nanoparticles

    Science.gov (United States)

    Zatsepin, A. F.; Kuznetsova, Yu. A.; Rychkov, V. N.; Sokolov, V. I.

    2017-03-01

    The technical approach to determination of the structural and optical parameters of oxides with reduced dimensionality based on optical absorption measurements is described by example of gadolinium and nickel oxides. It was established that the temperature behavior of fundamental absorption edge for oxide nanoparticles is similar with the bulk materials with crystal structure. At the same time, the energy characteristics (band gap and effective phonon energies) for low-dimensional oxides are found to be significantly different from their bulk counterparts. The presented methodological method to obtain of qualitative and quantitative correlations of structural and optical characteristics provides novel reliable knowledge of nanoscaled 3d and 4f-metal oxide materials that is useful for development of their practical applications.

  15. Characteristic features of optical absorption for Gd2O3 and NiO nanoparticles

    International Nuclear Information System (INIS)

    Zatsepin, A. F.; Kuznetsova, Yu. A.; Rychkov, V. N.; Sokolov, V. I.

    2017-01-01

    The technical approach to determination of the structural and optical parameters of oxides with reduced dimensionality based on optical absorption measurements is described by example of gadolinium and nickel oxides. It was established that the temperature behavior of fundamental absorption edge for oxide nanoparticles is similar with the bulk materials with crystal structure. At the same time, the energy characteristics (band gap and effective phonon energies) for low-dimensional oxides are found to be significantly different from their bulk counterparts. The presented methodological method to obtain of qualitative and quantitative correlations of structural and optical characteristics provides novel reliable knowledge of nanoscaled 3d and 4f–metal oxide materials that is useful for development of their practical applications.

  16. Polyclonal Antibody Therapies for Clostridium difficile Infection

    Directory of Open Access Journals (Sweden)

    Michael R. Simon

    2014-10-01

    Full Text Available Clostridium difficile infection has emerged as a growing worldwide health problem. The colitis of Clostridium difficile infection results from the synergistic action of C. difficile secreted toxins A and B upon the colon mucosa. A human monoclonal IgG anti-toxin has demonstrated the ability in combination therapy to reduce mortality in C. difficile challenged hamsters. This antibody is currently in a clinical trial for the treatment of human Clostridium difficile infection. More than one group of investigators has considered using polyclonal bovine colostral antibodies to toxins A and B as an oral passive immunization. A significant proportion of the healthy human population possesses polyclonal antibodies to the Clostridium difficile toxins. We have demonstrated that polyclonal IgA derived from the pooled plasma of healthy donors possesses specificity to toxins A and B and can neutralize these toxins in a cell-based assay. This suggests that secretory IgA prepared from such pooled plasma IgA may be able to be used as an oral treatment for Clostridium difficile infection.

  17. Antibodies to Orientia tsutsugamushi in Thai soldiers.

    Science.gov (United States)

    Eamsila, C; Singsawat, P; Duangvaraporn, A; Strickman, D

    1996-11-01

    Thai soldiers who were conscripted, Royal Thai Army forces, professional Border Patrol Police, or local militia (Thai Rangers) located in any of seven provinces of Thailand were bled in April and again, four months later, in July 1989. In 1991, soldiers from five different locations in southern Thailand were bled once, in July. Serum samples were tested by indirect fluorescent antibody assay for antibody to Orientia (formerly Rickettsia) tsutsugamushi, etiologic agent of scrub typhus, with any titer > or = 1:50 considered positive. Prior to field exercises, prevalence of antibody varied significantly between different types of units, ranging between 18.6% for Thai Rangers and 6.8% for the Royal Thai Army. The April prevalence, July prevalence, and incidence varied significantly by province in 1989, with highest incidence being 14.5% in Kanchanaburi and the lowest 0% in Utraladit. The prevalence in southern Thailand in 1991 varied between 1.6% and 6.8%. The data demonstrate that O. tsutsugamushi is widely distributed in Thailand and that military activity consisting of field exercises that simulate combat conditions significantly expose soldiers to infection.

  18. Universal influenza virus vaccines and therapeutic antibodies.

    Science.gov (United States)

    Nachbagauer, R; Krammer, F

    2017-04-01

    Current influenza virus vaccines are effective when well matched to the circulating strains. Unfortunately, antigenic drift and the high diversity of potential emerging zoonotic and pandemic viruses make it difficult to select the right strains for vaccine production. This problem causes vaccine mismatches, which lead to sharp drops in vaccine effectiveness and long response times to manufacture matched vaccines in case of novel pandemic viruses. To provide an overview of universal influenza virus vaccines and therapeutic antibodies in preclinical and clinical development. PubMed and clinicaltrials.gov were used as sources for this review. Universal influenza virus vaccines that target conserved regions of the influenza virus including the haemagglutinin stalk domain, the ectodomain of the M2 ion channel or the internal matrix and nucleoproteins are in late preclinical and clinical development. These vaccines could confer broad protection against all influenza A and B viruses including drift variants and thereby abolish the need for annual re-formulation and re-administration of influenza virus vaccines. In addition, these novel vaccines would enhance preparedness against emerging influenza virus pandemics. Finally, novel therapeutic antibodies against the same conserved targets are in clinical development and could become valuable tools in the fight against influenza virus infection. Both universal influenza virus vaccines and therapeutic antibodies are potential future options for the control of human influenza infections. Copyright © 2017 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  19. Antibody-Based Therapies in Multiple Myeloma

    Directory of Open Access Journals (Sweden)

    Yu-Tzu Tai

    2011-01-01

    Full Text Available The unmet need for improved multiple myeloma (MM therapy has stimulated clinical development of monoclonal antibodies (mAbs targeting either MM cells or cells of the bone marrow (BM microenvironment. In contrast to small-molecule inhibitors, therapeutic mAbs present the potential to specifically target tumor cells and directly induce an immune response to lyse tumor cells. Unique immune-effector mechanisms are only triggered by therapeutic mAbs but not by small molecule targeting agents. Although therapeutic murine mAbs or chimeric mAbs can cause immunogenicity, the advancement of genetic recombination for humanizing rodent mAbs has allowed large-scale production and designation of mAbs with better affinities, efficient selection, decreasing immunogenicity, and improved effector functions. These advancements of antibody engineering technologies have largely overcome the critical obstacle of antibody immunogenicity and enabled the development and subsequent Food and Drug Administration (FDA approval of therapeutic Abs for cancer and other diseases.

  20. Monoclonal antibodies to carcino-embryonic antigen

    International Nuclear Information System (INIS)

    Teh, Jinghee; McKenzie, I.F.C.

    1990-01-01

    With the aim of producing new MoAb to colorectal carcinoma, immunization with cell suspensions of a fresh colonic tumour was performed and MoAb 17C4 was obtained. To produce other MoAb to colon cancer, an immunization protocol using fresh tumour, colonic cell lines and sera from patients with colonic tumours was employed and resulted in MoAb JGT-13, LK-4 and XPX-13. MoAb I-1 and O-1 were raised against sera from patients with colon cancer to produce MoAb directed against circulating tumour associated antigens. The six antibodies gave a range of reactions with normal and malignant tissues, indicating that they most likely reacted with different epitopes. Thus, apart from the reactions of 17C4, LK-4 and XPX-13 with fresh and formalin-fixed granulocytes, none of the antibodies reacted with formalin-fixed normal tissues. Despite the apparent specificity of these MoAb for colon cancer, serum testing using MoAb gave similar results to carcino-embryonic antigen polyclonal antibodies, that is the MoAb gave no obvious advantage. 9 refs., 1 tab., 3 figs

  1. IgE antibodies in toxoplasmosis

    Directory of Open Access Journals (Sweden)

    Joanna Matowicka-Karna

    2014-05-01

    Full Text Available Toxoplasmosis is a worldwide infection caused by the intracellular parasite Toxoplasma gondii. At least a third of the world human population is infected with the parasite, making it one of the most successful parasitic infections. Primary maternal infection may cause health-threatening sequelae for the fetus, or even cause death of the uterus. Reactivation of a latent infection in immune deficiency conditions such as AIDS and organ transplantation can cause fatal toxoplasmic encephalitis. Toxoplasmosis is a major cause of chorioretinitis, especially in individuals with impaired immune systems. In the acute phase, directly after invading the body, T. gondii begins to multiply rapidly. In the majority of cases acquired toxoplasmosis is asymptomatic. In the second week of infection, specific IgM antibodies are present in the blood. IgE antibodies appear at the same time, slightly preceding specific IgA antibodies. The concentration of IgE can be one of the parameters used for diagnosing an infection with T. gondii. Laboratory diagnosis, i.e. IgE and serologic assays, plays the main role in the diagnosis of congenital infection and assists in the confirmatory diagnosis of toxoplasmic encephalitis and ocular toxoplasmosis. This article is a review of IgE in toxoplasmosis.

  2. IgE antibodies in toxoplasmosis.

    Science.gov (United States)

    Matowicka-Karna, Joanna; Kemona, Halina

    2014-05-15

    Toxoplasmosis is a worldwide infection caused by the intracellular parasite Toxoplasma gondii. At least a third of the world human population is infected with the parasite, making it one of the most successful parasitic infections. Primary maternal infection may cause health-threatening sequelae for the fetus, or even cause death of the uterus. Reactivation of a latent infection in immune deficiency conditions such as AIDS and organ transplantation can cause fatal toxoplasmic encephalitis. Toxoplasmosis is a major cause of chorioretinitis, especially in individuals with impaired immune systems. In the acute phase, directly after invading the body, T. gondii begins to multiply rapidly. In the majority of cases acquired toxoplasmosis is asymptomatic. In the second week of infection, specific IgM antibodies are present in the blood. IgE antibodies appear at the same time, slightly preceding specific IgA antibodies. The concentration of IgE can be one of the parameters used for diagnosing an infection with T. gondii. Laboratory diagnosis, i.e. IgE and serologic assays, plays the main role in the diagnosis of congenital infection and assists in the confirmatory diagnosis of toxoplasmic encephalitis and ocular toxoplasmosis. This article is a review of IgE in toxoplasmosis.

  3. The geoepidemiology of the antiphospholipid antibody syndrome.

    Science.gov (United States)

    Biggioggero, Martina; Meroni, Pier Luigi

    2010-03-01

    Antiphospholipid antibodies (aPL) can be detected by functional (lupus anticoagulant) and/or by solid phase assays (anti-cardiolipin and anti-beta2 glycoprotein I). Although detectable in 1-5% of asymptomatic apparently healthy subjects, persistent aPL are significantly associated with recurrent arterial/venous thrombosis and with pregnancy morbidity. Such an association is the formal classification tool for the antiphospholipid syndrome (APS). The prevalence of the syndrome with no associated systemic connective tissue diseases (primary APS) in the general population is still a matter of debate since there are no sound epidemiological studies in the literature so far. aPL display higher prevalence in systemic lupus erythematosus and rheumatoid arthritis than in other systemic autoimmune diseases. However not all the aPL positive lupus patients display the clinical manifestations. Comparable findings may be found in the paediatric population, although anti-beta2 glycoprotein I antibodies are detected in healthy children more frequently than in adults. High prevalence of aPL has been also reported in clinical manifestations that are not formal APS classification criteria: heart valve disease, livedo reticular, nephropathy, neurological manifestations, and thrombocytopenia. Antiphospholipid antibodies can be associated with infectious processes, active vaccination, drug administration and malignancies. Their prevalence and titres are lower and the relationship with the APS clinical manifestations are less strong than in the previously mentioned conditions. Ethnicity was also reported to influence the prevalence of aPL. 2009. Published by Elsevier B.V.

  4. Antineutrophil cytoplasm antibody: positivity and clinical correlation.

    Science.gov (United States)

    Martínez Téllez, Goitybell; Torres Rives, Bárbara; Rangel Velázquez, Suchiquil; Sánchez Rodríguez, Vicky; Ramos Ríos, María Antonia; Fuentes Smith, Lisset Evelyn

    2015-01-01

    To determine positivity and clinical correlation of anti-neutrophil cytoplasmic antibodies (ANCA), taking into account the interference of antinuclear antibodies (ANA). A prospective study was conducted in the Laboratory of Immunology of the National Cuban Center of Medical Genetic during one year. Two hounded sixty-seven patients with indication for ANCA determination were included. ANCA and ANA determinations with different cut off points and assays were determined by indirect immunofluorescense. Anti proteinase 3 and antimyeloperoxidase antibodies were determined by ELISA. Most positivity for ANCA was seen in patients with ANCA associated, primary small-vessel vasculitides, rheumatoid arthritis and systemic lupus erythematosus. Presence of ANCA without positivity for proteinase 3 and myeloperoxidase was higher in patients with ANA and little relation was observed between the perinuclear pattern confirmed in formalin and specificity by myeloperoxidase. Highest sensibility and specificity values for vasculitides diagnostic were achieved by ANCA determination using indirect immunofluorescense with a cut off 1/80 and confirming antigenic specificities with ELISA. ANCA can be present in a great number of chronic inflammatory or autoimmune disorders in the population studied. This determination using indirect immunofluorescence and following by ELISA had a great value for vasculitis diagnosis. Anti mieloperoxidasa assay has a higher utility than the formalin assay when ANA is present. Copyright © 2013 Elsevier España, S.L.U. All rights reserved.

  5. Antibody neutralization of retargeted measles viruses

    Science.gov (United States)

    Lech, Patrycja J.; Pappoe, Roland; Nakamura, Takafumi; Tobin, Gregory J.; Nara, Peter L.; Russell, Stephen J.

    2014-01-01

    The measles virus (MV) vaccine lineage is a promising oncolytic but prior exposure to the measles vaccine or wild-type MV strains limits treatment utility due to the presence of anti-measles antibodies. MV entry can be redirected by displaying a polypeptide ligand on the Hemagglutinin (H) C-terminus. We hypothesized that retargeted MV would escape neutralization by monoclonal antibodies (mAbs) recognizing the H receptor-binding surface and be less susceptible to neutralization by human antisera. Using chimeric H proteins, with and without mutations that ablate MV receptor binding, we show that retargeted MVs escape mAbs that target the H receptor-binding surface by virtue of mutations that ablate infection via SLAM and CD46. However, C-terminally displayed domains do not mediate virus entry in the presence of human antibodies that bind to the underlying H domain. In conclusion, utility of retargeted oncolytic measles viruses does not extend to evasion of human serum neutralization. PMID:24725950

  6. Monoclonal antibodies based on hybridoma technology.

    Science.gov (United States)

    Yagami, Hisanori; Kato, Hiroshi; Tsumoto, Kanta; Tomita, Masahiro

    2013-03-01

    Based on the size and scope of the present global market for medicine, monoclonal antibodies (mAbs) have a very promising future, with applications for cancers through autoimmune ailments to infectious disease. Since mAbs recognize only their target antigens and not other unrelated proteins, pinpoint medical treatment is possible. Global demand is dramatically expanding. Hybridoma technology, which allows production of mAbs directed against antigens of interest is therefore privileged. However, there are some pivotal points for further development to generate therapeutic antibodies. One is selective generation of human mAbs. Employment of transgenic mice producing human antibodies would overcome this problem. Another focus is recognition sites and conformational epitopes in antigens may be just as important as linear epitopes, especially when membrane proteins such as receptors are targeted. Recognition of intact structures is of critical importance for medical purposes. In this review, we describe patent related information for therapeutic mAbs based on hybridoma technology and also discuss new advances in hybridoma technology that facilitate selective production of stereospecific mAbs.

  7. IBC's 23rd Antibody Engineering and 10th Antibody Therapeutics Conferences and the Annual Meeting of The Antibody Society: December 2-6, 2012, San Diego, CA.

    Science.gov (United States)

    Marquardt, John; Begent, Richard H J; Chester, Kerry; Huston, James S; Bradbury, Andrew; Scott, Jamie K; Thorpe, Philip E; Veldman, Trudi; Reichert, Janice M; Weiner, Louis M

    2012-01-01

    Now in its 23rd and 10th years, respectively, the Antibody Engineering and Antibody Therapeutics conferences are the Annual Meeting of The Antibody Society. The scientific program covers the full spectrum of challenges in antibody research and development from basic science through clinical development. In this preview of the conferences, the chairs provide their thoughts on sessions that will allow participants to track emerging trends in (1) the development of next-generation immunomodulatory antibodies; (2) the complexity of the environment in which antibodies must function; (3) antibody-targeted central nervous system (CNS) therapies that cross the blood brain barrier; (4) the extension of antibody half-life for improved efficacy and pharmacokinetics (PK)/pharmacodynamics (PD); and (5) the application of next generation DNA sequencing to accelerate antibody research. A pre-conference workshop on Sunday, December 2, 2012 will update participants on recent intellectual property (IP) law changes that affect antibody research, including biosimilar legislation, the America Invents Act and recent court cases. Keynote presentations will be given by Andreas Plückthun (University of Zürich), who will speak on engineering receptor ligands with powerful cellular responses; Gregory Friberg (Amgen Inc.), who will provide clinical updates of bispecific antibodies; James D. Marks (University of California, San Francisco), who will discuss a systems approach to generating tumor targeting antibodies; Dario Neri (Swiss Federal Institute of Technology Zürich), who will speak about delivering immune modulators at the sites of disease; William M. Pardridge (University of California, Los Angeles), who will discuss delivery across the blood-brain barrier; and Peter Senter (Seattle Genetics, Inc.), who will present his vision for the future of antibody-drug conjugates. For more information on these meetings or to register to attend, please visit www.IBCLifeSciences.com/Antibody

  8. Anticardiolipin antibodies in proliferative diabetic retinopathy: An additional risk factor

    International Nuclear Information System (INIS)

    Shahin, Maha; ElDiasty, Amany M; Mabed, Mohamed

    2009-01-01

    To report the prevalence of anticardiolipin antibodies in patients with proliferative diabetic retinopathy (PDR) having high-risk criteria (HRC). Diabetic patients having PDR with HRC and diabetics free of retinopathy were compared for the presence of anticardiolipin antibodies. Among the 34 patients, 6 (17.7%) of diabetics having PDR with HRC were positive for anticardiolipin antibodies. There was no significant association of aCL antibodies with sex or type of diabetes. Using Pearson's correlation test, no significant associations of aCL antibodies with duration of diabetes or age of patients were found. All patients who were positive for anticardiolipin antibodies had PDR with HRC. The difference was statistically significant. Presence of anticardiolipin antibodies may represent an additional risk factor for PDR. (author)

  9. Cambridge Healthtech Institute's 4th Annual Recombinant Antibodies Conference.

    Science.gov (United States)

    Casey, Joanne L; Coley, Andrew M

    2003-08-01

    The 4th Annual Recombinant Antibodies Conference was immediately following the 5th Annual 'Molecular Display: The Chemistry Set for Proteins and Small Molecules' conference, both held in Cambridge, MA and organised by Cambridge Healthtech Institute. The former conference focused on development of new approaches for recombinant antibody development, with particular emphasis on improved methods for selection and optimisation allowing rapid validation and development of human antibodies for the clinic. There were many impressive presentations describing emerging technologies such as new antibody-like scaffolds, covalent P2 antibody display, de-immunisation of antibodies and measuring affinities of as many as 400 clones simultaneously using proteomic microarray platforms. The conference also highlighted the latest applications of library technologies for proteomics and target discovery, and the generation of therapeutic molecules as antibodies alone or as drug, toxin or radionuclide conjugates.

  10. Quantitative assessment of antibody internalization with novel monoclonal antibodies against Alexa fluorophores.

    Directory of Open Access Journals (Sweden)

    Sindy Liao-Chan

    Full Text Available Antibodies against cell surface antigens may be internalized through their specific interactions with these proteins and in some cases may induce or perturb antigen internalization. The anti-cancer efficacy of antibody-drug conjugates is thought to rely on their uptake by cancer cells expressing the surface antigen. Numerous techniques, including microscopy and flow cytometry, have been used to identify antibodies with desired cellular uptake rates. To enable quantitative measurements of internalization of labeled antibodies, an assay based on internalized and quenched fluorescence was developed. For this approach, we generated novel anti-Alexa Fluor monoclonal antibodies (mAbs that effectively and specifically quench cell surface-bound Alexa Fluor 488 or Alexa Fluor 594 fluorescence. Utilizing Alexa Fluor-labeled mAbs against the EphA2 receptor tyrosine kinase, we showed that the anti-Alexa Fluor reagents could be used to monitor internalization quantitatively over time. The anti-Alexa Fluor mAbs were also validated in a proof of concept dual-label internalization assay with simultaneous exposure of cells to two different mAbs. Importantly, the unique anti-Alexa Fluor mAbs described here may also enable other single- and dual-label experiments, including label detection and signal enhancement in macromolecules, trafficking of proteins and microorganisms, and cell migration and morphology.

  11. Human antibody and antigen response to IncA antibody of Chlamydia trachomatis.

    Science.gov (United States)

    Tsai, P Y; Hsu, M C; Huang, C T; Li, S Y

    2007-01-01

    The high prevalence of C. trachomatis worldwide has underscored the importance of identifying specific immunogenic antigens in facilitating diagnosis as well as vaccine development. The aim of this study is to evaluate IncA antibody and antigen production in natural human infections. Our temporal expression study showed that IncA transcription and protein expression could be detected as early as 4 hours after the start of infection. Antibody responses could be detected in urine and genital swab samples from C. trachomatis-positive patients. It is especially interesting to note that the IncA antigen could be detected in urine. In conclusion, we have identified IncA as an important antigen in human. The potential applicability of the IncA antibody or antigen in the diagnosis as well as to vaccine development for C. trachomatis is also discussed.

  12. Anticardiolipin antibody and anti-beta 2 glycoprotein I antibody assays.

    Science.gov (United States)

    Raby, Anne; Moffat, Karen; Crowther, Mark

    2013-01-01

    Antiphospholipid syndrome (APS) is an autoimmune disease and is a risk factor for a number of clinical manifestations; the classic presentations include fetal death or thrombosis (arterial or venous thromboembolism), in the presence of persistently increased titers of antiphospholipid (aPL) antibodies. The actual cause of APS is unknown but thought to be multifactorial. The disease is characterized by the presence of a heterogenous population of autoantibodies against phospholipid-binding proteins. APS presents either in isolation with no evidence of an underlying disease or in concert with an autoimmune disease such as systemic lupus erythematosus or rheumatoid arthritis. The wide diversity in clinical presentation often causes difficulty in identifying and treating patients and therefore a concise laboratory report containing interpretative comments is required to provide needed guidance to the clinician. For a diagnosis of APS to be made both clinical and laboratory classification criteria must be met. Laboratory testing to identify aPL antibodies includes lupus anticoagulant (liquid-based clotting assays) and immunological solid-phase assays (usually enzyme-linked immunosorbent assay formats) for IgG and/or IgM anticardiolipin (aCL) antibodies and anti-beta 2 glycoprotein I (β2-GPI) antibodies. Other autoantibodies, such as those directed against anionic phospholipids, can also be assayed; however they are not of clinical significance. Participation in a quality assurance program and an in-depth technical and clinical understanding of testing for aPL antibodies are required, as methods are limited by poor robustness, reproducibility, specificity, and standardization. Testing is further complicated by the lack of a "gold standard" laboratory test to diagnose or classify a patient as having APS. This chapter discusses the clinical and laboratory theoretical and technical aspects of aCL and anti-β2GPI antibody assays.

  13. Paraneoplastic cerebellar syndromes associated with antibodies against Purkinje cells.

    Science.gov (United States)

    Schwenkenbecher, Philipp; Chacko, Lisa; Pul, Refik; Sühs, Kurt-Wolfram; Wegner, Florian; Wurster, Ulrich; Stangel, Martin; Skripuletz, Thomas

    2017-12-18

    The paraneoplastic cerebellar syndrome presents as severe neuroimmunological disease associated with malignancies. Antibodies against antigens expressed by tumor cells cross-react with proteins of cerebellar Purkinje cells leading to neuroinflammation and neuronal loss. These antineuronal antibodies are preferentially investigated by serological analyses while examination of the cerebrospinal fluid is only performed infrequently. We retrospectively investigated 12 patients with antineuronal antibodies against Purkinje cells with a special focus on cerebrospinal fluid. Our results confirm a subacute disease with a severe cerebellar syndrome in 10 female patients due to anti-Yo antibodies associated mostly with gynecological malignancies. While standard cerebrospinal fluid parameters infrequently revealed pathological results, all patients presented oligoclonal bands indicating intrathecal IgG synthesis. Analyses of anti-Yo antibodies in cerebrospinal fluid by calculating the antibody specific index revealed intrathecal synthesis of anti-Yo antibodies in these patients. In analogy to anti-Yo syndrome, an intrathecal production of anti-Tr antibodies in one patient who presented with a paraneoplastic cerebellar syndrome was detected. In an additional patient, anti-Purkinje cell antibodies of unknown origin in the cerebrospinal fluid but not in serum were determined suggesting an isolated immune reaction within the central nervous system (CNS) and underlining the importance of investigating the cerebrospinal fluid. In conclusion, patients with a cerebellar syndrome display a distinct immune reaction within the cerebrospinal fluid including intrathecal synthesis of disease-specific antibodies. We emphasize the importance of a thorough immunological work up including investigations of both serum and cerebrospinal fluid.

  14. Survivors Remorse: antibody-mediated protection against HIV-1.

    Science.gov (United States)

    Lewis, George K; Pazgier, Marzena; DeVico, Anthony L

    2017-01-01

    It is clear that antibodies can play a pivotal role in preventing the transmission of HIV-1 and large efforts to identify an effective antibody-based vaccine to quell the epidemic. Shortly after HIV-1 was discovered as the cause of AIDS, the search for epitopes recognized by neutralizing antibodies became the driving strategy for an antibody-based vaccine. Neutralization escape variants were discovered shortly thereafter, and, after almost three decades of investigation, it is now known that autologous neutralizing antibody responses and their selection of neutralization resistant HIV-1 variants can lead to broadly neutralizing antibodies in some infected individuals. This observation drives an intensive effort to identify a vaccine to elicit broadly neutralizing antibodies. In contrast, there has been less systematic study of antibody specificities that must rely mainly or exclusively on other protective mechanisms, although non-human primate (NHP) studies as well as the RV144 vaccine trial indicate that non-neutralizing antibodies can contribute to protection. Here we propose a novel strategy to identify new epitope targets recognized by these antibodies for which viral escape is unlikely or impossible. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Recent Progress towards Engineering HIV-1-specific Neutralizing Monoclonal Antibodies

    Directory of Open Access Journals (Sweden)

    Ming Sun

    2016-09-01

    Full Text Available The recent discoveries of broadly potent neutralizing human monoclonal antibodies (bNAbs represent a new generation of antiretrovirals for the treatment and prophylaxis. Antibodies are generally considered more effective and safer, and have been proved to provide passive protection against mucosal challenge in humanized mice and macaques. Several neutralizing Abs could protect animals against HIV-1 but are not effective when used in an established infected model for therapy. In order to overcome the limitation of antiviral activities, multiple antibody engineering technologies have been explored to generate the better neutralizing antibodies against HIV-1 since bNAbs attack viral entry by various mechanisms. Thus, a promising direction of research is to discover and exploit rational antibody combination or engineered antibodies (eAbs as potential candidate therapeutics against HIV-1. It has been reported that inclusion of fusion-neutralizing antibodies in a set of bNAbs could improve their overall activities and neutralizing spectrum. Here we review several routes for engineering bNAbs, such as design and generation of bispecific antibodies, specific glycosylation of antibodies to enhance antiviral activity, and variable region specific modification guided by structure and computer, as well as reviewing antibody-delivery technologies by non-viral vector, viral vector and human HSPCs transduced with a lentiviral construct. We also discuss the optimized antiviral activities and benefits of these strategy and potential mechanisms.

  16. Human anti-animal antibody interferences in immunological assays.

    Science.gov (United States)

    Kricka, L J

    1999-07-01

    The scope and significance of human anti-animal antibody interference in immunological assays is reviewed with an emphasis on human anti-animal immunoglobulins, particularly human anti-mouse antibodies (HAMAs). Anti-animal antibodies (IgG, IgA, IgM, IgE class, anti-isotype, and anti-idiotype specificity) arise as a result of iatrogenic and noniatrogenic causes and include human anti-mouse, -rabbit, -goat, -sheep, -cow, -pig, -rat, and -horse antibodies and antibodies with mixed specificity. Circulating antibodies can reach gram per liter concentrations and may persist for years. Prevalence estimates for anti-animal antibodies in the general population vary widely and range from HAMA, which causes both positive and negative interferences in two-site mouse monoclonal antibody-based assays. Strategies to prevent the development of human anti-animal antibody responses include immunosuppressant therapy and the use of humanized, polyethylene glycolylated, or Fab fragments of antibody agents. Sample pretreatment or assay redesign can eliminate immunoassay interferences caused by anti-animal antibodies. Enzyme immunoassays, immunoradiometric assays, immunofluorescence, and HPLC assays have been designed to detect HAMA and other anti-animal antibodies, but intermethod comparability is complicated by differences in assay specificity and lack of standardization. Human anti-animal antibodies often go unnoticed, to the detriment of patient care. A heightened awareness on the part of laboratory staff and clinicians of the problems caused by this type of interference in routine immunoassay tests is desirable. Efforts should be directed at improving methods for identifying and eliminating this type of analytical interference.

  17. Relationship between natural and heme-mediated antibody polyreactivity

    Energy Technology Data Exchange (ETDEWEB)

    Hadzhieva, Maya; Vassilev, Tchavdar [Stephan Angelov Institute of Microbiology, Bulgarian Academy of Sciences, Sofia 1113 (Bulgaria); Bayry, Jagadeesh; Kaveri, Srinivas; Lacroix-Desmazes, Sébastien [Sorbonne Universités, UPMC Univ Paris 06, UMR-S 1138, Centre de Recherche des Cordeliers, F-75006 Paris (France); INSERM, UMR-S 1138, F-75006 Paris (France); Université Paris Descartes, Sorbonne Paris Cité, UMR-S 1138, F-75006 Paris (France); Dimitrov, Jordan D., E-mail: jordan.dimitrov@crc.jussieu.fr [Sorbonne Universités, UPMC Univ Paris 06, UMR-S 1138, Centre de Recherche des Cordeliers, F-75006 Paris (France); INSERM, UMR-S 1138, F-75006 Paris (France); Université Paris Descartes, Sorbonne Paris Cité, UMR-S 1138, F-75006 Paris (France)

    2016-03-25

    Polyreactive antibodies represent a considerable fraction of the immune repertoires. Some antibodies acquire polyreactivity post-translationally after interaction with various redox-active substances, including heme. Recently we have demonstrated that heme binding to a naturally polyreactive antibody (SPE7) results in a considerable broadening of the repertoire of recognized antigens. A question remains whether the presence of certain level of natural polyreactivity of antibodies is a prerequisite for heme-induced further extension of antigen binding potential. Here we used a second monoclonal antibody (Hg32) with unknown specificity and absence of intrinsic polyreactivity as a model to study the potential of heme to induce polyreactivity of antibodies. We demonstrated that exposure to heme greatly extends the antigen binding potential of Hg32, suggesting that the intrinsic binding promiscuity is not a prerequisite for the induction of polyreactivity by heme. In addition we compared the kinetics and thermodynamics of the interaction of heme-exposed antibodies with a panel of unrelated antigens. These analyses revealed that the two heme-sensitive antibodies adopt different mechanisms of binding to the same set of antigens. This study contributes to understanding the phenomenon of induced antibody polyreactivity. The data may also be of importance for understanding of physiological and pathological roles of polyreactive antibodies. - Highlights: • Exposure of certain monoclonal IgE antibodies to heme results in gain of antigen binding polyreactivity. • Natural polyreactivity of antibodies is dispensable for acquisition of polyreactivity through interaction with heme. • Heme-induced monoclonal IgE antibodies differ in their thermodynamic mechanisms of antigen recognition.

  18. Biomarkers in Multiple Sclerosis: Role of Antibodies

    Directory of Open Access Journals (Sweden)

    Thomas Berger

    2006-01-01

    Full Text Available The first international workshop on “Biomarkers in Multiple Sclerosis” was organized by B. Bielekova, R. Hohlfeld, R. Martin and U. Utz from April 14–16, 2004, in Washington, DC. The workshop intended to discuss the current status and potential applicability of biological markers for the understanding of the pathogenesis, diagnosis, and therapy of multiple sclerosis. The present review summarizes the presentation on the potential role of antibodies as biomarkers for diagnosis, disease activity, classification and prediction of clinical courses in multiple sclerosis.

  19. Presence of Autoimmune Antibody in Chikungunya Infection

    Directory of Open Access Journals (Sweden)

    Wirach Maek-a-nantawat

    2009-01-01

    Full Text Available Chikungunya infection has recently re-emerged as an important arthropod-borne disease in Thailand. Recently, Southern Thailand was identified as a potentially endemic area for the chikungunya virus. Here, we report a case of severe musculoskeletal complication, presenting with muscle weakness and swelling of the limbs. During the investigation to exclude autoimmune muscular inflammation, high titers of antinuclear antibody were detected. This is the report of autoimmunity detection associated with an arbovirus infection. The symptoms can mimic autoimmune polymyositis disease, and the condition requires close monitoring before deciding to embark upon prolonged specific treatment with immunomodulators.

  20. Polyclonal Antibody Production for Membrane Proteins via Genetic Immunization.

    Science.gov (United States)

    Hansen, Debra T; Robida, Mark D; Craciunescu, Felicia M; Loskutov, Andrey V; Dörner, Katerina; Rodenberry, John-Charles; Wang, Xiao; Olson, Tien L; Patel, Hetal; Fromme, Petra; Sykes, Kathryn F

    2016-02-24

    Antibodies are essential for structural determinations and functional studies of membrane proteins, but antibody generation is limited by the availability of properly-folded and purified antigen. We describe the first application of genetic immunization to a structurally diverse set of membrane proteins to show that immunization of mice with DNA alone produced antibodies against 71% (n = 17) of the bacterial and viral targets. Antibody production correlated with prior reports of target immunogenicity in host organisms, underscoring the efficiency of this DNA-gold micronanoplex approach. To generate each antigen for antibody characterization, we also developed a simple in vitro membrane protein expression and capture method. Antibody specificity was demonstrated upon identifying, for the first time, membrane-directed heterologous expression of the native sequences of the FopA and FTT1525 virulence determinants from the select agent Francisella tularensis SCHU S4. These approaches will accelerate future structural and functional investigations of therapeutically-relevant membrane proteins.

  1. Anti-phospholipid antibodies in patients with Plasmodium falciparum malaria

    DEFF Research Database (Denmark)

    Jakobsen, P H; Morris-Jones, S D; Hviid, L

    1993-01-01

    Plasma levels of antibodies against phosphatidylinositol (PI), phosphatidylcholine (PC) and cardiolipin (CL) were measured by enzyme-linked immunosorbent assay (ELISA) in patients from malaria endemic area of Sudan and The Gambia. Some Sudanese adults produced IgM antibodies against all three types...... of phospholipids (PL) during an acute Plasmodium falciparum infection. The anti-PL antibody titre returned to preinfection levels in most of the donors 30 days after the disease episode. IgG titres against PI, PC and CL were low. In Gambian children with malaria, IgM antibody titres against PI and PC were...... significantly higher in those with severe malaria than in those with mild malaria. These results show that a proportion of malaria patients produce anti-PL antibodies during infection and that titres of these antibodies are associated with the severity of disease....

  2. Antibody purification using affinity chromatography: a case study with a monoclonal antibody to ractopamine.

    Science.gov (United States)

    Wang, Zhanhui; Liang, Qi; Wen, Kai; Zhang, Suxia; Shen, Jianzhong

    2014-11-15

    The application of antibodies to small molecules in the field of bioanalytics requires antibodies with stable biological activity and high purity; thus, there is a growing interest in developing rapid, inexpensive and effective procedures to obtain such antibodies. In this work, a ractopamine (RAC) derivative, N-4-aminobutyl ractopamine (ABR), was synthesized for preparing new specific affinity chromatography to purify a murine monoclonal antibody (mAb) against RAC from ascites. The performance of the new specific chromatography was compared with four other purification methods in terms of recovery, purity and biological activity of mAb. These four purification methods were prepared by using specific ligands (RAC and RAC-ovalbumin) and commercial ligands (protein G and protein A), respectively. The results showed that the highest recovery (88.1%) was achieved using the new chromatography; in comparison, the recoveries from the other methods were all below 70%. The purity of the mAbs from the new chromatography was 88.3%, while, the highest purity of 97.6% was from protein G chromatography and the lowest purity of 84.7% was from protein A chromatography. The biological activity of the purified mAb from all of the chromatography methods was comparable in enzyme-linked immunosorbent immunoassay (ELISA). Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Different levels of natural antibodies in chickens divergently selected for specific antibody responses

    NARCIS (Netherlands)

    Parmentier, H.K.; Lammers, A.; Hoekman, J.J.; Vries Reilingh, de G.; Zaanen, I.T.A.; Savelkoul, H.F.J.

    2004-01-01

    We studied the presence of Natural antibodies in plasma samples from individual birds from selected chicken lines at young and old age. Binding, specificity, and relative affinity to various antigens were determined in plasma from non-immunized female chickens at 5 weeks of age, and in plasma

  4. An Insertion Mutation That Distorts Antibody Binding Site Architecture Enhances Function of a Human Antibody

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Jens C.; Ekiert, Damian C.; Tumpey, Terrence M.; Smith, Patricia B.; Wilson, Ian A.; Crowe, Jr., James E. (Vanderbilt); (Scripps); (CDC)

    2011-09-02

    The structural and functional significance of somatic insertions and deletions in antibody chains is unclear. Here, we demonstrate that a naturally occurring three-amino-acid insertion within the influenza virus-specific human monoclonal antibody 2D1 heavy-chain variable region reconfigures the antibody-combining site and contributes to its high potency against the 1918 and 2009 pandemic H1N1 influenza viruses. The insertion arose through a series of events, including a somatic point mutation in a predicted hot-spot motif, introduction of a new hot-spot motif, a molecular duplication due to polymerase slippage, a deletion due to misalignment, and additional somatic point mutations. Atomic resolution structures of the wild-type antibody and a variant in which the insertion was removed revealed that the three-amino-acid insertion near the base of heavy-chain complementarity-determining region (CDR) H2 resulted in a bulge in that loop. This enlarged CDR H2 loop impinges on adjacent regions, causing distortion of the CDR H1 architecture and its displacement away from the antigen-combining site. Removal of the insertion restores the canonical structure of CDR H1 and CDR H2, but binding, neutralization activity, and in vivo activity were reduced markedly because of steric conflict of CDR H1 with the hemagglutinin antigen.

  5. Glypican-3 antibodies: a new therapeutic target for liver cancer

    OpenAIRE

    Ho, Mingqian Feng, Mitchell

    2013-01-01

    Glypican-3 (GPC3) is an emerging therapeutic target in hepatocellular carcinoma (HCC), even though the biological function of GPC3 remains elusive. Currently human (MDX-1414 and HN3) and humanized mouse (GC33 and YP7) antibodies that target GPC3 for HCC treatment are under different stages of preclinical or clinical development. Humanized mouse antibody GC33 is being evaluated in a phase II clinical trial. Human antibodies MDX-1414 and HN3 are under different stages of preclinical evaluation....

  6. Functional Role for Humoral Antibodies in Leishmaniasis in Laboratory Animals.

    Science.gov (United States)

    1980-01-01

    increases in phagocytosis by immune serum, as in rodent malaria (22, 23), have been shown. In Trypanosoma cruzi infection in mice, enhanced protection...Protective effects of specific antibodies in Trypanosoma cruzi infections. J. Immunol. 116:755-760. 26. Kierszenbaum, F., and J.G. Howard. 1976...Mechanisms of resistance against experimental Trypanosoma cruzi infection: the importance of antibodies and antibody-forming capacity in the Biozzi high

  7. Maternal Brain-Reactive Antibodies and Autism Spectrum Disorder

    Science.gov (United States)

    2015-10-01

    AWARD NUMBER: W81XWH-14-1-0369 TITLE: Maternal Brain-Reactive Antibodies and Autism Spectrum Disorder PRINCIPAL INVESTIGATOR: Betty Diamond...Sep 2015 4. TITLE AND SUBTITLE Maternal Brain-Reactive Antibodies and Autism Spectrum 5a. CONTRACT NUMBER Disorder 5b. GRANT NUMBER W81XWH-14-1...to approximately 5% of cases of ASD. 15. SUBJECT TERMS Fetal brain; Autism spectrum disorder ; antibody; B cells; Caspr2 16. SECURITY CLASSIFICATION

  8. Pre-existing Antibody: Biotherapeutic Modality-Based Review

    OpenAIRE

    Gorovits, Boris; Clements-Egan, Adrienne; Birchler, Mary; Liang, Meina; Myler, Heather; Peng, Kun; Purushothama, Shobha; Rajadhyaksha, Manoj; Salazar-Fontana, Laura; Sung, Crystal; Xue, Li

    2016-01-01

    Pre-existing antibodies to biotherapeutic drugs have been detected in drug-naïve subjects for a variety of biotherapeutic modalities. Pre-existing antibodies are immunoglobulins that are either specific or cross-reacting with a protein or glycan epitopes on a biotherapeutic compound. Although the exact cause for pre-existing antibodies is often unknown, environmental exposures to non-human proteins, glycans, and structurally similar products are frequently proposed as factors. Clinical conseq...

  9. HIV-1 infection and antibodies to Plasmodium falciparum in adults.

    Science.gov (United States)

    Hasang, Wina; Dembo, Edson G; Wijesinghe, Rushika; Molyneux, Malcolm E; Kublin, James G; Rogerson, Stephen

    2014-11-01

    Coinfection with human immunodeficiency virus (HIV) may increase susceptibility to malaria by compromising naturally acquired immunity. In 339 adults (64% HIV infected), we measured antibodies to Plasmodium falciparum variant surface antigens (VSA) and antibodies that opsonise infected erythrocytes using parasite lines FCR3, E8B, and R29, and antibodies to merozoite antigens AMA-1 and MSP2. We determined the relationship between malaria antibodies, HIV infection, markers of immune compromise, and risk of incident parasitemia. HIV-infected adults had significantly lower mean levels of opsonizing antibody to all parasite lines (P < .0001), and lower levels of antibody to AMA-1 (P = .01) and MSP2 (P < .0001). Levels of immunoglobulin G (IgG) to VSA were not affected by HIV status. Opsonising antibody titres against some isolates were positively correlated with CD4 count. There were negative associations between human immunodeficiency virus type 1 (HIV-1) viral load and opsonizing antibodies to FCR3 (P = .04), and levels of IgG to AMA-1 (P ≤ .03) and MSP2-3D7 (P = .05). Lower opsonizing antibody levels on enrollment were seen in those who became parasitemic during follow-up, independent of HIV infection (P ≤ .04 for each line). HIV-1 infection decreases opsonizing antibodies to VSA, and antibody to merozoite antigens. Opsonizing antibodies were associated with lack of parasitemia during follow up, suggesting a role in protection. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. A solid-phase radioimmunoassay for detection of tetanus antibodies

    International Nuclear Information System (INIS)

    Dow, B.C.; Barr, A.; Crawford, R.J.; Mitchell, R.

    1983-01-01

    A solid-phase radioimmunoassay has been developed as a screening technique for tetanus antibodies in blood plasma. It is based on the principle of a commercial test for Hepatitis B antibody. Compared to previous screening techniques, the radioimmunoassay showed better stability with no apparent loss of sensitivity over a 2 month period. This technique has proved useful in determining tetanus immunity and in monitoring free antibody level in treated cases of clinical tetanus. (U.K.)

  11. Anti-B cell antibody therapies for inflammatory rheumatic diseases

    DEFF Research Database (Denmark)

    Faurschou, Mikkel; Jayne, David R W

    2014-01-01

    Several monoclonal antibodies targeting B cells have been tested as therapeutics for inflammatory rheumatic diseases. We review important observations from randomized clinical trials regarding the efficacy and safety of anti-B cell antibody-based therapies for rheumatoid arthritis, systemic lupus...... and functions in rheumatic disorders. Future studies should also evaluate how to maintain disease control by means of conventional and/or biologic immunosuppressants after remission-induction with anti-B cell antibodies....

  12. Development of Antibody Therapeutics against Flaviviruses

    Science.gov (United States)

    Sun, Haiyan; Chen, Qiang; Lai, Huafang

    2017-01-01

    Recent outbreaks of Zika virus (ZIKV) highlight the urgent need to develop efficacious interventions against flaviviruses, many of which cause devastating epidemics around the world. Monoclonal antibodies (mAb) have been at the forefront of treatment for cancer and a wide array of other diseases due to their specificity and potency. While mammalian cell-produced mAbs have shown promise as therapeutic candidates against several flaviviruses, their eventual approval for human application still faces several challenges including their potential risk of predisposing treated patients to more severe secondary infection by a heterologous flavivirus through antibody-dependent enhancement (ADE). The high cost associated with mAb production in mammalian cell cultures also poses a challenge for the feasible application of these drugs to the developing world where the majority of flavivirus infection occurs. Here, we review the current therapeutic mAb candidates against various flaviviruses including West Nile (WNV), Dengue virus (DENV), and ZIKV. The progress of using plants for developing safer and more economical mAb therapeutics against flaviviruses is discussed within the context of their expression, characterization, downstream processing, neutralization, and in vivo efficacy. The progress of using plant glycoengineering to address ADE, the major impediment of flavivirus therapeutic development, is highlighted. These advancements suggest that plant-based systems are excellent alternatives for addressing the remaining challenges of mAb therapeutic development against flavivirus and may facilitate the eventual commercialization of these drug candidates. PMID:29295568

  13. Kinetics of intralymphatically delivered monoclonal antibodies

    International Nuclear Information System (INIS)

    Wahl, R.L.; Geatti, O.; Liebert, M.; Beers, B.; Jackson, G.; Laino, L.; Kronberg, S.; Wilson, B.S.; Beierwaltes, W.H.

    1985-01-01

    Radiolabeled monoclonal antibody (MoAb) administration subcutaneously (sq), so that preferential uptake is to the lymphatics, holds significant promise for the detection of lymph node metastases. Only limited information is available about clearance rates of intralymphatically administered MoAbs. I-131 labeled intact IgG (225.28S), F(ab's)2 (225.28S) or IgM (FT162) were administered sq to anesthetized Balb/C mice. Eight mice were studied with each MoAb, 4 with a foot-pad injection, 4 with an anterior abdominal injection. Gamma camera images were collected into a computer, over the first 6 hrs after injection with the animals anesthetized and immobile. Animals were then allowed to move about freely. Additional images were then acquired out to 48 hrs. Regions of interest wre selected over the injection site and the kinetics of antibody egress determined. Clearance rates from local sq injection sites are influenced by motion and somewhat by location. The class and fragment status of the MoAb appear relatively less important in determining clearance rates from sq injections than they are in determining whole-body clearance after iv injections. Additional studies using Fab fragments and additional monoclonals will be useful in extending these observations

  14. Modulating antibody pharmacokinetics using hydrophilic polymers.

    Science.gov (United States)

    Chen, Chen; Constantinou, Antony; Deonarain, Mahendra

    2011-09-01

    The use of hydrophilic polymers as a substitute for the Fc-domain in immuno- or non-immuno-based binding proteins is accelerating. Chemical PEGylation has led the way and is still the most advanced and clinically-approved approach. Hydrophilic polymers act by maintaining a flexible conformation and hydrogen bonding to a network of water molecules to acquire a larger hydrodynamic volume and apparent mass than their actual molecular mass suggest. The benefits are increased blood half-life and bioavailability, stability and reduced immunogenicity. In the case of PEG, there is also evidence of enhanced targeting and reduced side effects, but drawbacks include the fact that PEG is non-biodegradable. This report reviews the state of the art for antibody PEGylation in terms of approaches and effects. Additionally, non-biological (such as N-(2-hydroxypropyl)methacrylamide) and potentially superior biological alternatives (such as polysialylation) are described, ending with recombinant approaches (such as hydrophilic peptides and glyco-engineering), which promise to circumvent the need for chemical modification altogether. The emergence of many small, antibody fragment-like mimics will drive the need for such technologies, and PEGylation is still the choice polymer due to its established use and track record. However, there will be a place for many alternative technologies if they can match the pharmacokinetics of PEG-conjugates and bring addition beneficial features such as easier production.

  15. Hepatitis E Virus Antibodies in Finnish Veterinarians.

    Science.gov (United States)

    Kantala, T; Kinnunen, P M; Oristo, S; Jokelainen, P; Vapalahti, O; Maunula, L

    2017-05-01

    We investigated hepatitis E virus (HEV) infections in Finnish veterinarians engaged in different practice specialties and evaluated the effect of different background factors on HEV exposure by examining total HEV antibodies in samples collected from the participants of the 2009 National Veterinary Congress in Helsinki, Finland. Finnish veterinarians commonly have total HEV antibodies with seroprevalence of 10.2%. Of the non-veterinarians, 5.8% were seropositive. Increasing age was associated with HEV seropositivity, and, surprisingly, the highest HEV seroprevalence (17.8%) among veterinarians was detected among small animal practitioners. Although no positive correlation between swine contacts and HEV seropositivity was found, 22.7% of veterinarians who had had needle stick by a needle that had previously been injected into a pig versus 9.0% of those who had not were seropositive, even though the finding was statistically non-significant (P = 0.07). Our results suggest that, although contact with swine is a known risk factor for HEV infection, the sources of HEV infections are probably numerous, including travelling abroad and possibly also other reservoirs of HEV than pigs. © 2016 Blackwell Verlag GmbH.

  16. Development of Broadly Neutralizing Antibody Mimitopes for Characterization of CRF01_AE HIV-1 Antibody Responses

    Directory of Open Access Journals (Sweden)

    Jesse V. Schoen

    2017-10-01

    Full Text Available Mapping humoral immune responses to HIV-1 over the course of natural infection is important in understanding epitope exposure in relation to elicitation of broadly neutralizing antibodies (bNAbs, which is considered imperative for effective vaccine design. When analyzing HIV-specific immune responses, the antibody binding profiles may be a correlate for functional antibody activity. In this study, we utilized phage display technology to identify novel mimitopes that may represent Env epitope structures bound by bNAbs directed at V1V2 and V3 domains, CD4 binding site (CD4bs and the membrane proximal external region (MPER of Env. Mimitope sequence motifs were determined for each bNAb epitope. Given the ongoing vaccine development efforts in Thailand, these mimitopes that represent CD4bs and MPER epitopes were used to map immune responses of HIV-1 CRF01_AE-infected individuals with known neutralizing responses from two distinct time periods, 1996-98 and 2012-15. The more contemporary cohort showed an increase in binding breadth with binding observed for all MPER and CD4bs mimitopes, while the older cohort showed only 75% recognition of the CD4bs mimitopes and no MPER mimotope binding. Furthermore, mimitope binding profiles correlated significantly with magnitude (p=0.0036 and breadth (p=0.0358 of neutralization of a multi-subtype Tier 1 panel of pseudoviruses. These results highlight the utility of this mimitope mapping approach for detecting human plasma IgG-specificities that target known neutralizing antibody epitopes, and may also provide an indication of the plasticity of antibody binding within HIV-1 Env neutralization determinants.

  17. Irregular antibodies: an assessment of routine prenatal screening.

    Science.gov (United States)

    Solola, A; Sibai, B; Mason, J M

    1983-01-01

    In a review of the antenatal-postnatal records of 6062 patients attending the prenatal clinic at a large university perinatal center during 1980, 8.3% of the pregnant patients seen were Rho(D) negative and 91.7% were Rho(D) positive. Through routine antibody screening of all patients, 115 were found to have irregular antibodies which would otherwise not have been detected. Fifteen of these patients were Rho(D) negative, but they would have been included for antibody screening due to their Rho(D) negative status. Of the remaining 100 Rho(D) positive patients, clinically significant antibodies were observed in six patients; however, no maternal morbidity or hemolytic disease of the newborn was reported. Antecedent maternal risk factors for development of irregular antibodies were not sufficiently selective for predicting outcomes of such pregnancies. Furthermore, the only four patients with irregular antibodies requiring blood transfusion were cross-matched without difficulties. Findings suggest that screening all patients for irregular antibodies cannot be justified due to the prohibitive costs involved. However, because of the racially homogeneous population studied, variations in the frequency of red blood cell genotypes between racial groups, and the irregular pattern of occurrence of irregular antibodies, the authors believe that further studies on the clinical impact and cost-effectiveness of screening all antenatal patients for presence of irregular antibodies are necessary.

  18. Immunoprophylaxis in fish by injection of mouse antibody genes

    DEFF Research Database (Denmark)

    Lorenzen, Niels; Cupit, P.M.; Einer-Jensen, Katja

    2000-01-01

    Antibodies are a crucial part of the body's specific defense against infectious diseases and have considerable potential as therapeutic and prophylactic agents in humans and animals, The development of recombinant single-chain antibodies allows a genetic application strategy for prevention...... of infectious diseases. To test this in a fish model, a gene construct encoding a neutralizing single-chain antibody to the fish-pathogenic rhabdovirus VHSV (viral hemorrhagic septicemia virus) was administered to rainbow trout by intramuscular injection of plasmid DNA, Circulating recombinant antibodies could...

  19. Pharmacokinetics and biodistribution of genetically-engineered antibodies

    International Nuclear Information System (INIS)

    Colcher, D.; Pavlinkova, G.; Beresford, G.; Booth, B.J.M.; Choudhury, A.; Batra, S.K.; Omaha, Univ. of Nebraska Medical Center, NE

    1998-01-01

    Genetic manipulations of the immunoglobulin molecules are effective means of altering stability, functional affinity, pharmacokinetics, and biodistribution of the antibodies required for the generation of the 'magic bullet'

  20. Methods to Design and Synthesize Antibody-Drug Conjugates (ADCs

    Directory of Open Access Journals (Sweden)

    Houzong Yao

    2016-02-01

    Full Text Available Antibody-drug conjugates (ADCs have become a promising targeted therapy strategy that combines the specificity, favorable pharmacokinetics and biodistributions of antibodies with the destructive potential of highly potent drugs. One of the biggest challenges in the development of ADCs is the application of suitable linkers for conjugating drugs to antibodies. Recently, the design and synthesis of linkers are making great progress. In this review, we present the methods that are currently used to synthesize antibody-drug conjugates by using thiols, amines, alcohols, aldehydes and azides.

  1. Pre-existing Antibody: Biotherapeutic Modality-Based Review.

    Science.gov (United States)

    Gorovits, Boris; Clements-Egan, Adrienne; Birchler, Mary; Liang, Meina; Myler, Heather; Peng, Kun; Purushothama, Shobha; Rajadhyaksha, Manoj; Salazar-Fontana, Laura; Sung, Crystal; Xue, Li

    2016-03-01

    Pre-existing antibodies to biotherapeutic drugs have been detected in drug-naïve subjects for a variety of biotherapeutic modalities. Pre-existing antibodies are immunoglobulins that are either specific or cross-reacting with a protein or glycan epitopes on a biotherapeutic compound. Although the exact cause for pre-existing antibodies is often unknown, environmental exposures to non-human proteins, glycans, and structurally similar products are frequently proposed as factors. Clinical consequences of the pre-existing antibodies vary from an adverse effect on patient safety to no impact at all and remain highly dependent on the biotherapeutic drug modality and therapeutic indication. As such, pre-existing antibodies are viewed as an immunogenicity risk factor requiring a careful evaluation. Herein, the relationships between biotherapeutic modalities to the nature, prevalence, and clinical consequences of pre-existing antibodies are reviewed. Initial evidence for pre-existing antibody is often identified during anti-drug antibody (ADA) assay development. Other interfering factors known to cause false ADA positive signal, including circulating multimeric drug target, rheumatoid factors, and heterophilic antibodies, are discussed.

  2. The antibody horror show: an introductory guide for the perplexed.

    Science.gov (United States)

    Goodman, Simon L

    2018-02-02

    The biological literature reverberates with the inadequacies of commercial research-tool antibodies. The scientific community spends some $2 billion per year on such reagents. Excellent accessible scientific platforms exist for reliably making, validating and using antibodies, yet the laboratory end-user reality is somehow depressing - because they often "don't work". This experience is due to a bizarre and variegated spectrum of causes including: inadequately identified antibodies; inappropriate user and supplier validation; poor user training; and overloaded publishers. Colourful as this may appear, the outcomes for the community are uniformly grim, including badly damaged scientific careers, wasted public funding, and contaminated literature. As antibodies are amongst the most important of everyday reagents in cell biology and biochemistry, I have tried here to gently suggest a few possible solutions, including: a move towards using recombinant antibodies; obligatory unique identification of antibodies, their immunogens, and their producers; centralized international banking of standard antibodies and their ligands; routine, accessible open-source documentation of user experience with antibodies; and antibody-user certification. Copyright © 2018. Published by Elsevier B.V.

  3. Antibodies against interferon-beta in neuromyelitis optica patients

    DEFF Research Database (Denmark)

    Asgari, Nasrin; Kyvik, Kirsten Ohm; Steenstrup, Troels

    2014-01-01

    -negative patients were anti-AQP4 antibody-positive. Eleven patients (three NAbs-positive, eight NAbs-negative) developed cerebral lesions and 12 patients (four NAbs-positive, eight NAbs-negative) spinal cord lesions on magnetic resonance imaging as gadolinium positive lesions or T2-weighted lesions...... of IFN-neutralizing antibodies (NAbs) in 15 IFN-ß treated NMO-patients from a population-based retrospective case series cohort. NMO patients not treated with IFN-ß acted as a reference group. IFN-ß antibody determinations included binding antibodies (BAbs) measured by immunoassay and NAbs measured...

  4. Antibodies against HLA-DP recognize broadly expressed epitopes.

    Science.gov (United States)

    Simmons, Daimon P; Kafetzi, Maria L; Wood, Isabelle; Macaskill, Peter C; Milford, Edgar L; Guleria, Indira

    2016-12-01

    HLA matching and avoidance of pre-transplant donor-specific antibodies are important in selection of donors for solid organ transplant. Solid phase testing with single antigen beads allows resolution of antibody reactivity to the level of the allele. Single antigen bead testing results at a large transplant center were reviewed to identify selective reactivity patterns of anti-HLA antibodies. Many HLA-DP antibodies were identified in the context of other HLA antibodies, but some sera had antibodies against only HLA-DP. B cell flow crossmatch testing was positive for 2 out of 9 sera with HLA-DP antibodies. Many patterns of reactivity corresponded to epitopes in hypervariable regions C and F of DPB1, but some matched epitopes in other regions or DPA1. Through analysis of single antigen bead testing from a large number of patients, we report that anti-HLA-DP antibodies predominantly recognize broadly cross-reactive epitopes. The United Network for Organ Sharing has mandated HLA-DP typing on all deceased kidney donors, and HLA-DP epitopes should be considered as the major antigens for avoidance of pre-transplant donor-specific antibodies. Published by Elsevier Inc.

  5. The Human Antibody Response to Dengue Virus Infection

    Directory of Open Access Journals (Sweden)

    Aravinda M. de Silva

    2011-11-01

    Full Text Available Dengue viruses (DENV are the causative agents of dengue fever (DF and dengue hemorrhagic fever (DHF. Here we review the current state of knowledge about the human antibody response to dengue and identify important knowledge gaps. A large body of work has demonstrated that antibodies can neutralize or enhance DENV infection. Investigators have mainly used mouse monoclonal antibodies (MAbs to study interactions between DENV and antibodies. These studies indicate that antibody neutralization of DENVs is a “multi-hit” phenomenon that requires the binding of multiple antibodies to neutralize a virion. The most potently neutralizing mouse MAbs bind to surface exposed epitopes on domain III of the dengue envelope (E protein. One challenge facing the dengue field now is to extend these studies with mouse MAbs to better understand the human antibody response. The human antibody response is complex as it involves a polyclonal response to primary and secondary infections with 4 different DENV serotypes. Here we review studies conducted with immune sera and MAbs isolated from people exposed to dengue infections. Most dengue-specific antibodies in human immune sera are weakly neutralizing and bind to multiple DENV serotypes. The human antibodies that potently and type specifically neutralize DENV represent a small fraction of the total DENV-specific antibody response. Moreover, these neutralizing antibodies appear to bind to novel epitopes including complex, quaternary epitopes that are only preserved on the intact virion. These studies establish that human and mouse antibodies recognize distinct epitopes on the dengue virion. The leading theory proposed to explain the increased risk of severe disease in secondary cases is antibody dependent enhancement (ADE, which postulates that weakly neutralizing antibodies from the first infection bind to the second serotype and enhance infection of FcγR bearing myeloid cells such as monocytes and macrophages. Here

  6. The Role of Monoclonal Antibodies in the Management of Leukemia

    Directory of Open Access Journals (Sweden)

    Mohamad Cherry

    2010-10-01

    Full Text Available This article will review the monoclonal antibodies more commonly used in leukemias. In the last three decades, scientists have made considerable progress understanding the structure and the functions of various surface antigens, such as CD20, CD33. The introduction of rituximab, an anti CD20 monoclonal antibody, had a great impact in the treatment of lymphoproliferative disorders. Gemtuzumab, an anti CD 33 conjugated monoclonal antibody has activity in acute mylegenous leukemia (AML. As this field is undergoing a rapid growth, the years will see an increasing use of monoclonal antibodies in hematological malignancies.

  7. Macrophages are critical effectors of antibody therapies for cancer.

    Science.gov (United States)

    Weiskopf, Kipp; Weissman, Irving L

    2015-01-01

    Macrophages are innate immune cells that derive from circulating monocytes, reside in all tissues, and participate in many states of pathology. Macrophages play a dichotomous role in cancer, where they promote tumor growth but also serve as critical immune effectors of therapeutic antibodies. Macrophages express all classes of Fcγ receptors, and they have immense potential to destroy tumors via the process of antibody-dependent phagocytosis. A number of studies have demonstrated that macrophage phagocytosis is a major mechanism of action of many antibodies approved to treat cancer. Consequently, a number of approaches to augment macrophage responses to therapeutic antibodies are under investigation, including the exploration of new targets and development of antibodies with enhanced functions. For example, the interaction of CD47 with signal-regulatory protein α (SIRPα) serves as a myeloid-specific immune checkpoint that limits the response of macrophages to antibody therapies, and CD47-blocking agents overcome this barrier to augment phagocytosis. The response of macrophages to antibody therapies can also be enhanced with engineered Fc variants, bispecific antibodies, or antibody-drug conjugates. Macrophages have demonstrated success as effectors of cancer immunotherapy, and further investigation will unlock their full potential for the benefit of patients.

  8. Development of Polyclonal Antibody against Clenbuterol for Immunoassay Application

    Directory of Open Access Journals (Sweden)

    Nurul Ain A. Talib

    2018-03-01

    Full Text Available Development of an immunoassay for clenbuterol (CLB detection required an anti-CLB antibody as an important bioreceptor. In this study, we report our work on production and purification of a rabbit-derived polyclonal anti-CLB antibody. The antibody was then purified by nProtein A Sepharose affinity column and the antibody purity was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE analysis. The activities of purified antibody were evaluated based on high antibody titer determined from enzyme-linked immunosorbent assay (ELISA. The sensitivity and selectivity of this antibody was evaluated and exhibits negligible cross-reactivity to antibiotics other than β-agonist families. Evaluation of the antibody as bioreceptor in immunoassay was performed using direct competitive ELISA and exhibited linear calibration plot (R2 = 0.9484. The antibody was used to detect the content of CLB in spiked milk samples and the recovery of more than 92% indicating significant performance as bioreceptor for the development of a rapid and simple immunoassay.

  9. Antibody-Mediated Catalysis in Infection and Immunity.

    Science.gov (United States)

    Bowen, Anthony; Wear, Maggie; Casadevall, Arturo

    2017-09-01

    The existence of catalytic antibodies has been known for decades. Natural antibodies capable of cleaving nucleic acid, protein, and polysaccharide substrates have been described. Although the discovery of catalytic antibodies initially aroused great interest because of their promise for the development of new catalysts, their enzymatic performance has been disappointing due to low reaction rates. However, in the areas of infection and immunity, where processes often occur over much longer times and involve high antibody concentrations, even low catalytic rates have the potential to influence biological outcomes. In this regard, the presence of catalytic antibodies recognizing host antigens has been associated with several autoimmune diseases. Furthermore, naturally occurring catalytic antibodies to microbial determinants have been correlated with resistance to infection. Recently, there has been substantial interest in harnessing the power of antibody-mediated catalysis against microbial antigens for host defense. Additional work is needed, however, to better understand the prevalence, function, and structural basis of catalytic activity in antibodies. Here we review the available information and suggest that antibody-mediated catalysis is a fertile area for study with broad applications in infection and immunity. Copyright © 2017 American Society for Microbiology.

  10. Monoclonal antibodies directed to E1 glycoprotein of rubella virus

    International Nuclear Information System (INIS)

    Umino, Y.; Sato, A.; Katow, S.; Matsuno, T.; Sugiura, A.

    1985-01-01

    We have prepared four monoclonal antibodies to rubella virus E1 glycoprotein. Three nonoverlapping antigenic sites were delineated on E1 protein by competitive binding assays. Antibodies binding to one site were characterized by high hemagglutination inhibition (HI) titer but poor neutralizing activity. The addition of antiglobulin conferred neutralizing activity. Antibodies directed to two other antigenic sites had modest hemolysis inhibition but little or no HI and neutralizing activities. The addition of antiglobulin markedly augmented HI activity but had little effect on neutralizing activity. Epitopes defined by three antibodies were conserved among four rubella virus strains examined. (Author)

  11. Antibody-Based Strategies to Prevent and Treat Influenza

    Directory of Open Access Journals (Sweden)

    Ram eSasisekharan

    2015-07-01

    Full Text Available Passive immunization using antibodies has been suggested to offer several benefits in comparison to other antiviral treatment options. The potential for seasonal protection arising from a single injection of antibodies is appealing and has been pursued for a number of infectious agents. However, until recently, antibody-based strategies to combat infectious agents has been hampered due to the fact that typical antibodies have been found to be strain-specific, with the virus evolving resistance in many cases. The discovery of broadly neutralizing antibodies (bNAbs in, for example, influenza, dengue virus, and HIV, which bind to multiple, structurally-diverse strains has provided renewed interest in this area. This review will focus on new technologies that enable the discovery of bNAbs, the challenges and opportunities of immunotherapies as an important addition to existing antiviral therapy, and the role of antibody discovery in informing rational vaccine discovery – with agents targeting influenza specifically addressed. Multiple agents have entered the clinic and raise the possibility that a single antibody or small combination of antibodies can effectively neutralize a wide variety of strains. However, challenges remain - including combating escape variants, pharmacodynamics of antibody distribution, and development of efficacy biomarkers beyond virologic endpoints.

  12. Immunogenicity of anti-tumor necrosis factor antibodies-toward improved methods of anti-antibody measurement.

    Science.gov (United States)

    Aarden, Lucien; Ruuls, Sigrid R; Wolbink, Gertjan

    2008-08-01

    To date, millions of people have been treated with therapeutic monoclonal antibodies (TmAbs) for various indications. It is becoming increasingly clear that TmAbs can be immunogenic, which may reduce efficacy or induce adverse effects. Over the years, the importance of antibody formation has been questioned and sometimes minimized, as few antibody responses to TmAbs (HACA or HAHA) were reported. However, the methods to detect and quantify such antibodies used in the past have been problematic. Only recently, methods have been developed that have adequate sensitivity and are not seriously disturbed by false-positive reactions caused by rheumatoid factors, natural antibodies to Fab or F(ab')2 fragments, or Fc interactions of IgG4. The large number of treated patients, in combination with these new assays, presents a unique opportunity to study the anti-antibody immune response in man, possibly allowing us to manipulate immunogenicity in the future.

  13. Detection and identification of platelet antibodies using a sensitive multiplex assay system-platelet antibody bead array.

    Science.gov (United States)

    Metzner, Krista; Bauer, Julie; Ponzi, Heather; Ujcich, Allison; Curtis, Brian R

    2017-07-01

    Tests for platelet-specific antibodies are important in the diagnosis of immune platelet disorders. Monoclonal antibody glycoprotein capture assays have been the gold standards in platelet antibody detection for almost 30 years. However, such assays are complex and cumbersome to perform, which limits their routine use. We report the performance of a newly developed, easy to perform platelet antibody bead array (PABA) for the detection of platelet-specific antibodies. PABA is the equivalent of the monoclonal antigen capture enzyme-linked immunosorbent assay (ELISA) (MACE) on a bead and instead with fluorescent detection of immunoglobulin (Ig)G platelet antibodies by Luminex. Antibodies against platelet glycoproteins (GP) GPIIb/IIIa, GPIb/IX, GPIa/IIa, GPIV, and class I human leukocyte antigen (HLA) could be detected in a patient's serum simultaneously in a single well of a microplate. Results from 80 patient samples and 20 normal donor samples were compared using PABA, MACE, and a commercial ELISA kit. PABA detected all antibodies, with specificity for human platelet antigens (HPAs) HPA-1a, HPA-1b, HPA-2a, HPA-2b, HPA-3a, HPA-3b, HPA-4a, HPA-4b, HPA-5a, HPA-5b, HPA-15b, and HLA. Overall, compared with MACE, the sensitivity and specificity of PABA were 99% and 97%, respectively, and both were significantly better than those of the commercial ELISA. PABA had greater analytic sensitivity than MACE for HPA-1a, HPA-3a, and HPA-5b antibodies. In addition, PABA detected HPA-5b and HPA-3b antibodies that were missed by MACE. The overall false-positive rate of PABA compared with MACE was 2.7%. The PABA is a rapid, highly sensitive and specific, multiplex bead-based assay for detecting human platelet antibodies. Such a simple yet high-throughput platform will facilitate practical, routine testing for the identification of platelet-specific antibodies. © 2017 AABB.

  14. A stable reagent system for screening and identifying red blood cell irregular antibodies: application to commercial antibodies.

    Science.gov (United States)

    Million, L; Pellerin, C; Marchand-Arvier, M; Vigneron, C

    1998-01-01

    Development of a new solid-phase system for screening and identifying irregular red cell antibodies. Red blood cell membranes were prepared by a semi-automated procedure in which the hemolysate solution was passed through a hollow-fiber system. The membranes were fixed to the solid phase (microtiter plates) by centrifugation and incubated with 8% fat-free milk. Antibodies added to the microtiter plate were detected by anti-human antibodies adsorbed onto yellow latex particles. The system had good sensitivity (titer antibodies that are important in transfusion.

  15. Covalent and Oriented Surface Immobilization of Antibody Using Photoactivatable Antibody Fc-Binding Protein Expressed in Escherichia coli.

    Science.gov (United States)

    Lee, Yeolin; Jeong, Jiyun; Lee, Gabi; Moon, Jeong Hee; Lee, Myung Kyu

    2016-10-04

    Fc-specific antibody binding proteins (FcBPs) with the minimal domain of protein G are widely used for immobilization of well-oriented antibodies onto solid surfaces, but the noncovalently bound antibodies to FcBPs are unstable in sera containing large amounts of antibodies. Here we report novel photoactivatable FcBPs with photomethionine (pMet) expressed in E. coli, which induce Fc-specific photo-cross-linking with antibodies upon UV irradiation. Unfortunately, pMet did not support protein expression in the native E. coli system, and therefore we also developed an engineered methionyl tRNA synthetase (MRS5m). Coexpression of MRS5m proteins successfully induced photoactivatable FcBP overexpression in methionine-auxotroph E. coli cells. The photoactivatable FcBPs could be easily immobilized on beads and slides via their N-terminal cysteine residues and 6xHis tag. The antibodies photo-cross-linked onto the photoactivatable FcBP-beads were resistant from serum-antibody mediated dissociation and efficiently captured antigens in human sera. Furthermore, photo-cross-linked antibody arrays prepared using this system allowed sensitive detection of antigens in human sera by sandwich immunoassay. The photoactivatable FcBPs will be widely applicable for well-oriented antibody immobilization on various surfaces of microfluidic chips, glass slides, and nanobeads, which are required for development of sensitive immunosensors.

  16. Effect of maternal antibodies and pig age on the antibody response after vaccination against Glässers disease.

    Science.gov (United States)

    Pomorska-Mól, Małgorzata; Markowska-Daniel, Iwona; Rachubik, Jarosław; Pejsak, Zygmunt

    2011-08-01

    The influence of age and maternal antibodies on the development and duration of postvaccinal antibody response against Glässer's disease were investigated. Pigs born to immune (MDA-positive) and non-immune (MDA-negative) sows were vaccinated with inactivated vaccine. Vaccination was done according to three different protocols: at 1 and 4, at 2 and 5 or at 4 and 7 weeks of age. There were also two control groups for MDA-negative and MDA-positive pigs. The level of Haemophilus parasuis (Hps) specific antibodies were determined using commercial ELISA test. No serological responses were seen in any of the groups after the first vaccination. Maternally derived antibodies (MDA) against Hps were above the positive level until approximately 3 weeks of life in MDA-positive pigs. In those pigs the strongest postvaccinal humoral response was observed in piglets vaccinated at 4 and 7 weeks of age. In the remaining MDA-positive piglets only slight seroconversion was noted but levels of antibodies never exceeded values considered as positive. All MDA-negative pigs produced Hps-specific antibodies after the second vaccination. The results of the present study indicated that MDA may alter the development and duration of active postvaccinal antibody response. Age of pigs at the moment of vaccination was not associated with the significant differences in the magnitude of antibody response, however influenced the kinetics of decline of Hps-specific antibodies.

  17. Novel monoclonal antibodies to study tissue regeneration in planarians.

    Science.gov (United States)

    Ross, Kelly G; Omuro, Kerilyn C; Taylor, Matthew R; Munday, Roma K; Hubert, Amy; King, Ryan S; Zayas, Ricardo M

    2015-01-21

    Planarians are an attractive model organism for studying stem cell-based regeneration due to their ability to replace all of their tissues from a population of adult stem cells. The molecular toolkit for planarian studies currently includes the ability to study gene function using RNA interference (RNAi) and observe gene expression via in situ hybridizations. However, there are few antibodies available to visualize protein expression, which would greatly enhance analysis of RNAi experiments as well as allow further characterization of planarian cell populations using immunocytochemistry and other immunological techniques. Thus, additional, easy-to-use, and widely available monoclonal antibodies would be advantageous to study regeneration in planarians. We have created seven monoclonal antibodies by inoculating mice with formaldehyde-fixed cells isolated from dissociated 3-day regeneration blastemas. These monoclonal antibodies can be used to label muscle fibers, axonal projections in the central and peripheral nervous systems, two populations of intestinal cells, ciliated cells, a subset of neoblast progeny, and discrete cells within the central nervous system as well as the regeneration blastema. We have tested these antibodies using eight variations of a formaldehyde-based fixation protocol and determined reliable protocols for immunolabeling whole planarians with each antibody. We found that labeling efficiency for each antibody varies greatly depending on the addition or removal of tissue processing steps that are used for in situ hybridization or immunolabeling techniques. Our experiments show that a subset of the antibodies can be used alongside markers commonly used in planarian research, including anti-SYNAPSIN and anti-SMEDWI, or following whole-mount in situ hybridization experiments. The monoclonal antibodies described in this paper will be a valuable resource for planarian research. These antibodies have the potential to be used to better understand

  18. New Strategies Using Antibody Combinations to Increase Cancer Treatment Effectiveness

    Directory of Open Access Journals (Sweden)

    Isabel Corraliza-Gorjón

    2017-12-01

    Full Text Available Antibodies have proven their high value in antitumor therapy over the last two decades. They are currently being used as the first-choice to treat some of the most frequent metastatic cancers, like HER2+ breast cancers or colorectal cancers, currently treated with trastuzumab (Herceptin and bevacizumab (Avastin, respectively. The impressive therapeutic success of antibodies inhibiting immune checkpoints has extended the use of therapeutic antibodies to previously unanticipated tumor types. These anti-immune checkpoint antibodies allowed the cure of patients devoid of other therapeutic options, through the recovery of the patient’s own immune response against the tumor. In this review, we describe how the antibody-based therapies will evolve, including the use of antibodies in combinations, their main characteristics, advantages, and how they could contribute to significantly increase the chances of success in cancer therapy. Indeed, novel combinations will consist of mixtures of antibodies against either different epitopes of the same molecule or different targets on the same tumor cell; bispecific or multispecific antibodies able of simultaneously binding tumor cells, immune cells or extracellular molecules; immunomodulatory antibodies; antibody-based molecules, including fusion proteins between a ligand or a receptor domain and the IgG Fab or Fc fragments; autologous or heterologous cells; and different formats of vaccines. Through complementary mechanisms of action, these combinations could contribute to elude the current limitations of a single antibody which recognizes only one particular epitope. These combinations may allow the simultaneous attack of the cancer cells by using the help of the own immune cells and exerting wider therapeutic effects, based on a more specific, fast, and robust response, trying to mimic the action of the immune system.

  19. DARPins: a true alternative to antibodies.

    Science.gov (United States)

    Stumpp, Michael T; Amstutz, Patrick

    2007-03-01

    Designed ankyrin repeat proteins (DARPins) are a promising class of non-immunoglobulin proteins that can offer advantages over antibodies for target binding in drug discovery and drug development. DARPins have been successfully used, for example, for the inhibition of kinases, proteases and drug-exporting membrane proteins. DARPins specifically targeting the cancer marker HER2 have also been generated and were shown to function in both in vitro diagnostics and in vivo tumor targeting. DARPins are ideally suited for in vivo imaging or delivery of toxins or other therapeutic payloads because of their favorable molecular properties, including small size and high stability. The low-cost production in bacteria and the rapid generation of many target-specific DARPins make the DARPin approach useful for drug discovery. Additionally, DARPins can be easily generated in multispecific formats, offering the potential to target an effector DARPin to a specific organ or to target multiple receptors with one molecule composed of several DARPins.

  20. Antibody orientation on biosensor surfaces: a minireview.

    Science.gov (United States)

    Trilling, Anke K; Beekwilder, Jules; Zuilhof, Han

    2013-03-21

    Detection elements play a key role in analyte recognition in biosensors. Therefore, detection elements with high analyte specificity and binding strength are required. While antibodies (Abs) have been increasingly used as detection elements in biosensors, a key challenge remains - the immobilization on the biosensor surface. This minireview highlights recent approaches to immobilize and study Abs on surfaces. We first introduce Ab species used as detection elements, and discuss techniques recently used to elucidate Ab orientation by determination of layer thickness or surface topology. Then, several immobilization methods will be presented: non-covalent and covalent surface attachment, yielding oriented or random coupled Abs. Finally, protein modification methods applicable for oriented Ab immobilization are reviewed with an eye to future application.