WorldWideScience

Sample records for anti-cancer agent combining

  1. Anti-cancer effects of novel flavonoid vicenin-2 as a single agent and in synergistic combination with docetaxel in prostate cancer.

    Science.gov (United States)

    Nagaprashantha, Lokesh Dalasanur; Vatsyayan, Rit; Singhal, Jyotsana; Fast, Spence; Roby, Rhonda; Awasthi, Sanjay; Singhal, Sharad S

    2011-11-01

    The present study was conducted to determine the efficacy of novel flavonoid vicenin-2 (VCN-2), an active constituent of the medicinal herb Ocimum Sanctum Linn or Tulsi, as a single agent and in combination with docetaxel (DTL) in carcinoma of prostate (CaP). VCN-2 effectively induced anti-proliferative, anti-angiogenic and pro-apoptotic effect in CaP cells (PC-3, DU-145 and LNCaP) irrespective of their androgen responsiveness or p53 status. VCN-2 inhibited EGFR/Akt/mTOR/p70S6K pathway along with decreasing c-Myc, cyclin D1, cyclin B1, CDK4, PCNA and hTERT in vitro. VCN-2 reached a level of 2.6±0.3μmol/l in serum after oral administration in mice which reflected that VCN-2 is orally absorbed. The i.v. administration of docetaxel (DTL), current drug of choice in androgen-independent CaP, is associated with dose-limiting toxicities like febrile neutropenia which has lead to characterization of alternate routes of administration and potential combinatorial regimens. In this regard, VCN-2 in combination with DTL synergistically inhibited the growth of prostate tumors in vivo with a greater decrease in the levels of AR, pIGF1R, pAkt, PCNA, cyclin D1, Ki67, CD31, and increase in E-cadherin. VCN-2 has been investigated for radioprotection and anti-inflammatory properties. This is the first study on the anti-cancer effects of VCN-2. In conclusion, our investigations collectively provide strong evidence that VCN-2 is effective against CaP progression along with indicating that VCN-2 and DTL co-administration is more effective than either of the single agents in androgen-independent prostate cancer.

  2. Selective anti-cancer agents as anti-aging drugs.

    Science.gov (United States)

    Blagosklonny, Mikhail V

    2013-12-01

    Recent groundbreaking discoveries have revealed that IGF-1, Ras, MEK, AMPK, TSC1/2, FOXO, PI3K, mTOR, S6K, and NFκB are involved in the aging process. This is remarkable because the same signaling molecules, oncoproteins and tumor suppressors, are well-known targets for cancer therapy. Furthermore, anti-cancer drugs aimed at some of these targets have been already developed. This arsenal could be potentially employed for anti-aging interventions (given that similar signaling molecules are involved in both cancer and aging). In cancer, intrinsic and acquired resistance, tumor heterogeneity, adaptation, and genetic instability of cancer cells all hinder cancer-directed therapy. But for anti-aging applications, these hurdles are irrelevant. For example, since anti-aging interventions should be aimed at normal postmitotic cells, no selection for resistance is expected. At low doses, certain agents may decelerate aging and age-related diseases. Importantly, deceleration of aging can in turn postpone cancer, which is an age-related disease.

  3. Salinomycin: a novel anti-cancer agent with known anti-coccidial activities.

    Science.gov (United States)

    Zhou, Shuang; Wang, Fengfei; Wong, Eric T; Fonkem, Ekokobe; Hsieh, Tze-Chen; Wu, Joseph M; Wu, Erxi

    2013-01-01

    Salinomycin, traditionally used as an anti-coccidial drug, has recently been shown to possess anti-cancer and anti-cancer stem cell (CSC) effects, as well as activities to overcome multi-drug resistance based on studies using human cancer cell lines, xenograft mice, and in case reports involving cancer patients in pilot clinical trials. Therefore, salinomycin may be considered as a promising novel anti-cancer agent despite its largely unknown mechanism of action. This review summarizes the pharmacologic effects of salinomycin and presents possible mechanisms by which salinomycin exerts its anti-tumorigenic activities. Recent advances and potential complications that might limit the utilization of salinomycin as an anti-cancer and anti-CSC agent are also presented and discussed.

  4. Triterpenoids of Marine Origin as Anti-Cancer Agents

    Directory of Open Access Journals (Sweden)

    Yong-Xin Li

    2013-07-01

    Full Text Available Triterpenoids are the most abundant secondary metabolites present in marine organisms, such as marine sponges, sea cucumbers, marine algae and marine-derived fungi. A large number of triterpenoids are known to exhibit cytotoxicity against a variety of tumor cells, as well as anticancer efficacy in preclinical animal models. In this review efforts have been taken to review the structural features and the potential use of triterpenoids of marine origin to be used in the pharmaceutical industry as potential anti-cancer drug leads.

  5. Double layered hydroxides as potential anti-cancer drug delivery agents.

    Science.gov (United States)

    Riaz, Ufana; Ashraf, S M

    2013-04-01

    The emergence of nanotechnology has changed the scenario of the medical world by revolutionizing the diagnosis, monitoring and treatment of cancer. This nanotechnology has been proved miraculous in detecting cancer cells, delivering chemotherapeutic agents and monitoring treatment from non-specific to highly targeted killing of tumor cells. In the past few decades, a number of inorganic materials have been investigated such as calcium phosphate, gold, carbon materials, silicon oxide, iron oxide, and layered double hydroxide (LDH) for examining their efficacy in targeting drug delivery. The reason behind the selection of these inorganic materials was their versatile and unique features efficient in drug delivery, such as wide availability, rich surface functionality, good biocompatibility, potential for target delivery, and controlled release of the drug from these inorganic nanomaterials. Although, the drug-LDH hybrids are found to be quite instrumental because of their application as advanced anti-cancer drug delivery systems, there has not been much research on them. This mini review is set to highlight the advancement made in the use of layered double hydroxides (LDHs) as anti-cancer drug delivery agents. Along with the advantages of LDHs as anti-cancer drug delivery agents, the process of interaction of some of the common anti-cancer drugs with LDH has also been discussed.

  6. Moringa oleifera as an Anti-Cancer Agent against Breast and Colorectal Cancer Cell Lines.

    Directory of Open Access Journals (Sweden)

    Abdulrahman Khazim Al-Asmari

    Full Text Available In this study we investigated the anti-cancer effect of Moringa oleifera leaves, bark and seed extracts. When tested against MDA-MB-231 and HCT-8 cancer cell lines, the extracts of leaves and bark showed remarkable anti-cancer properties while surprisingly, seed extracts exhibited hardly any such properties. Cell survival was significantly low in both cells lines when treated with leaves and bark extracts. Furthermore, a striking reduction (about 70-90% in colony formation as well as cell motility was observed upon treatment with leaves and bark. Additionally, apoptosis assay performed on these treated breast and colorectal cancer lines showed a remarkable increase in the number of apoptotic cells; with a 7 fold increase in MD-MB-231 to an increase of several fold in colorectal cancer cell lines. However, no significant apoptotic cells were detected upon seeds extract treatment. Moreover, the cell cycle distribution showed a G2/M enrichment (about 2-3 fold indicating that these extracts effectively arrest the cell progression at the G2/M phase. The GC-MS analyses of these extracts revealed numerous known anti-cancer compounds, namely eugenol, isopropyl isothiocynate, D-allose, and hexadeconoic acid ethyl ester, all of which possess long chain hydrocarbons, sugar moiety and an aromatic ring. This suggests that the anti-cancer properties of Moringa oleifera could be attributed to the bioactive compounds present in the extracts from this plant. This is a novel study because no report has yet been cited on the effectiveness of Moringa extracts obtained in the locally grown environment as an anti-cancer agent against breast and colorectal cancers. Our study is the first of its kind to evaluate the anti-malignant properties of Moringa not only in leaves but also in bark. These findings suggest that both the leaf and bark extracts of Moringa collected from the Saudi Arabian region possess anti-cancer activity that can be used to develop new drugs for

  7. Moringa oleifera as an Anti-Cancer Agent against Breast and Colorectal Cancer Cell Lines.

    Science.gov (United States)

    Al-Asmari, Abdulrahman Khazim; Albalawi, Sulaiman Mansour; Athar, Md Tanwir; Khan, Abdul Quaiyoom; Al-Shahrani, Hamoud; Islam, Mozaffarul

    2015-01-01

    In this study we investigated the anti-cancer effect of Moringa oleifera leaves, bark and seed extracts. When tested against MDA-MB-231 and HCT-8 cancer cell lines, the extracts of leaves and bark showed remarkable anti-cancer properties while surprisingly, seed extracts exhibited hardly any such properties. Cell survival was significantly low in both cells lines when treated with leaves and bark extracts. Furthermore, a striking reduction (about 70-90%) in colony formation as well as cell motility was observed upon treatment with leaves and bark. Additionally, apoptosis assay performed on these treated breast and colorectal cancer lines showed a remarkable increase in the number of apoptotic cells; with a 7 fold increase in MD-MB-231 to an increase of several fold in colorectal cancer cell lines. However, no significant apoptotic cells were detected upon seeds extract treatment. Moreover, the cell cycle distribution showed a G2/M enrichment (about 2-3 fold) indicating that these extracts effectively arrest the cell progression at the G2/M phase. The GC-MS analyses of these extracts revealed numerous known anti-cancer compounds, namely eugenol, isopropyl isothiocynate, D-allose, and hexadeconoic acid ethyl ester, all of which possess long chain hydrocarbons, sugar moiety and an aromatic ring. This suggests that the anti-cancer properties of Moringa oleifera could be attributed to the bioactive compounds present in the extracts from this plant. This is a novel study because no report has yet been cited on the effectiveness of Moringa extracts obtained in the locally grown environment as an anti-cancer agent against breast and colorectal cancers. Our study is the first of its kind to evaluate the anti-malignant properties of Moringa not only in leaves but also in bark. These findings suggest that both the leaf and bark extracts of Moringa collected from the Saudi Arabian region possess anti-cancer activity that can be used to develop new drugs for treatment of breast

  8. Association Between hTERT rs2736100 Polymorphism and Sensitivity to Anti-cancer Agents

    Directory of Open Access Journals (Sweden)

    Julie eKim

    2013-08-01

    Full Text Available Background: The rs2736100 single nucleotide polymorphism (SNP is located in the intron 2 of human telomerase reverse transcriptase (hTERT gene. Recent genome-wide association studies (GWAS have consistently supported the strong association between this SNP and risk for multiple cancers. Given the important role of the hTERT gene and this SNP in cancer biology, we hypothesize that rs2736100 may also confer susceptibility to anti-cancer drug sensitivity. In this study we aim to investigate the correlation between the rs2736100 genotype and the responsiveness to anti-cancer agents in the NCI-60 cancer cell panel. Methods and Materials: The hTERT rs2736100 was genotyped in the NCI-60 cancer cell lines. The relative telomere length of each cell line was quantified using real-time PCR. The genotype was then correlated with publically available drug sensitivity data of two agents with telomerase-inhibition activity: Geldanamycin (HSP90 inhibitor and RHPS4/BRACO19 (G-quadruplex stabilizer as well as additional 110 commonly used agents with established mechanism of action. The association between rs2736100 and mutation status of TP53 gene was also tested.Results: The C allele of the SNP was significantly correlated with increased sensitivity to RHPS4/BRACO19 with an additive effect (r=-0.35, p=0.009 but not with Geldanamycin. The same allele was also significantly associated with sensitivity to antimitotic agents compared to other agents (p=0.003. The highest correlation was observed between the SNP and paclitaxel (r=-0.36, p=0.005. The telomere length was neither associated with rs2736100 nor with sensitivity to anti-cancer agents. The C allele of rs2736100 was significantly associated with increased mutation rate in TP53 gene (p=0.004.Conclusion: Our data suggested that the cancer risk allele of hTERT rs2736100 polymorphism may also affect the cancer cell response to both TERT inhibitor and anti-mitotic agents, which might be attributed to the elevated

  9. Assessment of antimicrobial (host defense) peptides as anti-cancer agents.

    Science.gov (United States)

    Douglas, Susan; Hoskin, David W; Hilchie, Ashley L

    2014-01-01

    Cationic antimicrobial (host defense) peptides (CAPs) are able to kill microorganisms and cancer cells, leading to their consideration as novel candidate therapeutic agents in human medicine. CAPs can physically associate with anionic membrane structures, such as those found on cancer cells, causing pore formation, intracellular disturbances, and leakage of cell contents. In contrast, normal cells are less negatively-charged and are typically not susceptible to CAP-mediated cell death. Because the interaction of CAPs with cells is based on charge properties rather than cell proliferation, both rapidly dividing and quiescent cancer cells, as well as multidrug-resistant cancer cells, are targeted by CAPs, making CAPS potentially valuable as anti-cancer agents. CAPs often exist as families of peptides with slightly different amino acid sequences. In addition, libraries of synthetic peptide variants based on naturally occurring CAP templates can be generated in order to improve upon their action. High-throughput screens are needed to quickly and efficiently assess the suitability of each CAP variant. Here we present the methods for assessing CAP-mediated cytotoxicity against cancer cells (suspension and adherent) and untransformed cells (measured using the tritiated thymidine-release or MTT assay), and for discriminating between cell death caused by necrosis (measured using lactate dehydrogenase- or (51)Cr-release assays), or apoptosis and necrosis (single-stranded DNA content measured by flow cytometry). In addition the clonogenic assay, which assesses the ability of single transformed cells to multiply and produce colonies, is described.

  10. Perifosine as a potential novel anti-cancer agent inhibits EGFR/MET-AKT axis in malignant pleural mesothelioma.

    Directory of Open Access Journals (Sweden)

    Giulia Pinton

    Full Text Available BACKGROUND: PI3K/AKT signalling pathway is aberrantly active and plays a critical role for cell cycle progression of human malignant pleural mesothelioma (MMe cells. AKT is one of the important cellular targets of perifosine, a novel bio-available alkylphospholipid that has displayed significant anti-proliferative activity in vitro and in vivo in several human tumour model systems and is currently being tested in clinical trials. METHODS: We tested Perifosine activity on human mesothelial cells and different mesothelioma cell lines, in order to provide evidence of its efficacy as single agent and combined therapy. RESULTS: We demonstrate here that perifosine, currently being evaluated as an anti-cancer agent in phase 1 and 2 clinical trials, caused a dose-dependent reduction of AKT activation, at concentrations causing MMe cell growth arrest. In this study we firstly describe that MMe cells express aside from AKT1 also AKT3 and that either the myristoylated, constitutively active, forms of the two proteins, abrogated perifosine-mediated cell growth inhibition. Moreover, we describe here a novel mechanism of perifosine that interferes, upstream of AKT, affecting EGFR and MET phosphorylation. Finally, we demonstrate a significant increase in cell toxicity when MMe cells were treated with perifosine in combination with cisplatin. CONCLUSIONS: This study provides a novel mechanism of action of perifosine, directly inhibiting EGFR/MET-AKT1/3 axis, providing a rationale for a novel translational approach to the treatment of MMe.

  11. Bridging academic science and clinical research in the search for novel targeted anti-cancer agents

    Institute of Scientific and Technical Information of China (English)

    Alex Matter

    2015-01-01

    This review starts with a brief history of drug discovery&development, and the place of Asia in this worldwide effort discussed. hTe conditions and constraints of a successful translational R&D involving academic basic research and clinical research are discussed and the Singapore model for pursuit of open R&D described. hTe importance of well-characterized, validated drug targets for the search for novel targeted anti-cancer agents is emphasized, as well as a structured, high quality translational R&D. Furthermore, the characteristics of an attractive preclinical development drug candidate are discussed laying the foundation of a successful preclinical development. hTe most frequent sources of failures are described and risk management at every stage is highly recommended. Organizational factors are also considered to play an important role. hTe factors to consider before starting a new drug discovery&development project are described, and an example is given of a successful clinical project that has had its roots in local universities and was carried through preclinical development into phase I clinical trials.

  12. Landscape of Targeted Anti-Cancer Drug Synergies in Melanoma Identifies a Novel BRAF-VEGFR/PDGFR Combination Treatment.

    Directory of Open Access Journals (Sweden)

    Adam A Friedman

    Full Text Available A newer generation of anti-cancer drugs targeting underlying somatic genetic driver events have resulted in high single-agent or single-pathway response rates in selected patients, but few patients achieve complete responses and a sizeable fraction of patients relapse within a year. Thus, there is a pressing need for identification of combinations of targeted agents which induce more complete responses and prevent disease progression. We describe the results of a combination screen of an unprecedented scale in mammalian cells performed using a collection of targeted, clinically tractable agents across a large panel of melanoma cell lines. We find that even the most synergistic drug pairs are effective only in a discrete number of cell lines, underlying a strong context dependency for synergy, with strong, widespread synergies often corresponding to non-specific or off-target drug effects such as multidrug resistance protein 1 (MDR1 transporter inhibition. We identified drugs sensitizing cell lines that are BRAFV600E mutant but intrinsically resistant to BRAF inhibitor PLX4720, including the vascular endothelial growth factor receptor/kinase insert domain receptor (VEGFR/KDR and platelet derived growth factor receptor (PDGFR family inhibitor cediranib. The combination of cediranib and PLX4720 induced apoptosis in vitro and tumor regression in animal models. This synergistic interaction is likely due to engagement of multiple receptor tyrosine kinases (RTKs, demonstrating the potential of drug- rather than gene-specific combination discovery approaches. Patients with elevated biopsy KDR expression showed decreased progression free survival in trials of mitogen-activated protein kinase (MAPK kinase pathway inhibitors. Thus, high-throughput unbiased screening of targeted drug combinations, with appropriate library selection and mechanistic follow-up, can yield clinically-actionable drug combinations.

  13. Oxidative metabolism of the anti-cancer agent mitoxantrone by horseradish, lacto-and lignin peroxidase.

    Science.gov (United States)

    Brück, Thomas B; Brück, Dieter W

    2011-02-01

    Mitoxantrone (MH(2)X), an anthraquinone-type anti-cancer agent used clinically in the treatment of human malignancies, is oxidatively activated by the peroxidase/H(2)O(2) enzyme system. In contrast to the enzymatic mechanisms of drug oxidation, the chemical transformations of MH(2)X are not well described. In this study, MH(2)X metabolites, produced by the horseradish, lacto- or lignin peroxidase (respectively HRP, LPO and LIP)/H(2)O(2) system, were investigated by steady-state spectrokinetic and HPLC-MS methods. At an equimolar mitoxantrone/H(2)O(2) ratio, the efficacy of the enzyme-catalyzed oxidation of mitoxantrone decreased in the following order: LPO > HRP > LIP, which accorded with the decreasing size of the substrate access channel in the enzyme panel examined. In all cases, the central drug oxidation product was the redox-active cyclic metabolite, hexahydronaphtho-[2,3-f]-quinoxaline-7,12-dione (MH(2)), previously identified in the urine of mitoxantrone-treated patients. As the reaction progressed, data gathered in this study suggests that further oxidation of the MH(2) side-chains occurred, yielding the mono- and dicarboxylic acid derivatives respectively. Based on the available data a further MH(2) derivative is proposed, in which the amino-alkyl side-chain(s) are cyclised. With increasing H(2)O(2) concentrations, these novel MH(2) derivatives were oxidised to additional metabolites, whose spectral properties and MS data indicated a stepwise destruction of the MH(2) chromophore due to an oxidative cleavage of the 9,10-anthracenedione moiety. The novel metabolites extend the known sequence of peroxidase-induced mitoxantrone metabolism, and may contribute to the cytotoxic effects of the drug in vivo. Based on the structural features of the proposed MH(2) oxidation products we elaborate on various biochemical mechanisms, which extend the understanding of mitoxantrone's pharmaceutical action and its clinical effectiveness with a particular focus on

  14. Logical design of an anti-cancer agent targeting the plant homeodomain in Pygopus2.

    Science.gov (United States)

    Ali, Ferdausi; Yamaguchi, Keiichi; Fukuoka, Mayuko; Elhelaly, Abdelazim Elsayed; Kuwata, Kazuo

    2016-09-01

    Pygopus2 (Pygo2) is a component of the Wnt signaling pathway, which is required for β-catenin mediated transcription. Plant homeodomain (PHD) finger in Pygo2 intercalates the methylated histone 3 (H3K4me) tail and HD1 domain of BCL9 that binds to β-catenin. Thus, PHD finger may be a potential target for the logical design of an anti-cancer drug. Here, we found that Spiro[2H-naphthol[1,2-b]pyran-2,4'-piperidine]-1'ethanol,3,4-dihydro-4-hydroxy-α-(6-methyl-1H-indol-3-yl)) termed JBC117 interacts with D339, A348, R356, V376 and A378 in PHD corresponding to the binding sites with H3K4me and/or HD1, and has strong anti-cancer effects. For colon (HCT116) and lung (A549) cancer cell lines, IC50 values were 2.6 ± 0.16 and 3.3 ± 0.14 μM, respectively, while 33.80 ± 0.15 μM for the normal human fibroblast cells. JBC117 potently antagonized the cellular effects of β-catenin-dependent activity and also inhibited the migration and invasion of cancer cells. In vivo studies showed that the survival time of mice was significantly prolonged by the subcutaneous injection of JBC117 (10 mg/kg/day). In conclusion, JBC117 is a novel anti-cancer lead compound targeting the PHD finger of Pygo2 and has a therapeutic effect against colon and lung cancer.

  15. Genome-wide transcriptional effects of the anti-cancer agent camptothecin.

    Directory of Open Access Journals (Sweden)

    Artur Veloso

    Full Text Available The anti-cancer drug camptothecin inhibits replication and transcription by trapping DNA topoisomerase I (Top1 covalently to DNA in a "cleavable complex". To examine the effects of camptothecin on RNA synthesis genome-wide we used Bru-Seq and show that camptothecin treatment primarily affected transcription elongation. We also observed that camptothecin increased RNA reads past transcription termination sites as well as at enhancer elements. Following removal of camptothecin, transcription spread as a wave from the 5'-end of genes with no recovery of transcription apparent from RNA polymerases stalled in the body of genes. As a result, camptothecin preferentially inhibited the expression of large genes such as proto-oncogenes, and anti-apoptotic genes while smaller ribosomal protein genes, pro-apoptotic genes and p53 target genes showed relative higher expression. Cockayne syndrome group B fibroblasts (CS-B, which are defective in transcription-coupled repair (TCR, showed an RNA synthesis recovery profile similar to normal fibroblasts suggesting that TCR is not involved in the repair of or RNA synthesis recovery from transcription-blocking Top1 lesions. These findings of the effects of camptothecin on transcription have important implications for its anti-cancer activities and may aid in the design of improved combinatorial treatments involving Top1 poisons.

  16. Preclinical Assessment of Vernonia amygdalina Leaf Extracts as DNA Damaging Anti-cancer Agent in the Management of Breast Cancer

    Directory of Open Access Journals (Sweden)

    Ernest Izevbigie

    2008-12-01

    Full Text Available Breast cancer is the leading cause of death among women between 40 and 55 years of age and is the second overall cause of death among women. Fortunately, the mortality rate from breast cancer has decreased in recent years due to an increased emphasis on early detection and more effective treatments. Despite early detection, conventional and chemotherapeutic methods of treatment, about 7% of women still died every year. Hence, the aim of the present study was to assess the therapeutic efficacy of Vernonia amygdalina (VA leaf extracts as anti-cancer agent against human breast cancer in vitro using the MTT [3-(4, 5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide] and alkaline single cell gel electrophoresis (Comet assays, respectively. In this experiment, human breast adenocarcinoma (MCF-7 cells were treated with different doses of VA leaf extracts for 48 hours. Data obtained from the MTT assay showed that VA significantly ((P < 0.05 reduced the viability of MCF-7 cells in a dose-dependent manner upon 48 hours of exposure. Data generated from the comet assay also indicated a slight dose-dependent increase in DNA damage in MCF-7 cells associated with VA treatment. We observed a slight increase in comet tail-length, tail arm and tail moment, as well as in percentages of DNA cleavage at all doses tested, showing an evidence that VA-induced minimal genotoxic damage in MCF-7 cells. Taken together, our findings suggest that VA treatment moderately (P < 0.05 reduces cellular viability and induces minimal DNA damage in MCF-7 cells. These findings provide evidence that VA extracts represent a DNA-damaging anti-cancer agent against breast cancer and its mechanisms of action functions, at least in part, through minimal DNA damage and moderate toxicity in tumors cells.

  17. Synthesis of dihydropyrazole sulphonamide derivatives that act as anti-cancer agents through COX-2 inhibition.

    Science.gov (United States)

    Qiu, Han-Yue; Wang, Peng-Fei; Li, Zhen; Ma, Jun-Ting; Wang, Xiao-Ming; Yang, Yong-Hua; Zhu, Hai-Liang

    2016-02-01

    COX-2 has long been exploited in the treatment of inflammation and relief of pain; however, research increasingly suggests COX-2 inhibitors might possess potential benefits to thwart tumour processes. In the present study, we designed a series of novel COX-2 inhibitors based on analysis of known inhibitors combined with an in silico scaffold modification strategy. A docking simulation combined with a primary screen in vitro were performed to filter for the lead compound, which was then substituted, synthesized and evaluated by a variety of bioassays. Derivative 4d was identified as a potent COX-2 enzyme inhibitor and exerted an anticancer effect through COX-2 inhibition. Further investigation confirmed that 4d could induce A549 cell apoptosis and arrest the cell cycle at the G2/M phase. Moreover, treatment with 4d reduced A549 cell adhesive ability and COX-2 expression. The morphological variation of treated cells was also visualized by confocal microscopy. Overall, the biological profile of 4d suggests that this compound may be developed as a potential anticancer agent.

  18. RasGRPs are targets of the anti-cancer agent ingenol-3-angelate.

    Directory of Open Access Journals (Sweden)

    Xiaohua Song

    Full Text Available Ingenol-3-angelate (I3A is a non-tumor promoting phorbol ester-like compound identified in the sap of Euphoria peplus. Similar to tumor promoting phorbol esters, I3A is a diacylglycerol (DAG analogue that binds with high affinity to the C1 domains of PKCs, recruits PKCs to cellular membranes and promotes enzyme activation. Numerous anti-cancer activities have been attributed to I3A and ascribed to I3A's effects on PKCs. We show here that I3A also binds to and activates members of the RasGRP family of Ras activators leading to robust elevation of Ras-GTP and engagement of the Raf-Mek-Erk kinase cascade. In response to I3A, recombinant proteins consisting of GFP fused separately to full-length RasGRP1 and RasGRP3 were rapidly recruited to cell membranes, consistent with direct binding of the compound to RasGRP's C1 domain. In the case of RasGRP3, IA3 treatment led to positive regulatory phosphorylation on T133 and activation of the candidate regulatory kinase PKCδ. I3A treatment of select B non-Hodgkin's lymphoma cell lines resulted in quantitative and qualitative changes in Bcl-2 family member proteins and induction of apoptosis, as previously demonstrated with the DAG analogue bryostatin 1 and its synthetic analogue pico. Our results offer further insights into the anticancer properties of I3A, support the idea that RasGRPs represent potential cancer therapeutic targets along with PKC, and expand the known range of ligands for RasGRP regulation.

  19. Current developments of coumarin-based anti-cancer agents in medicinal chemistry.

    Science.gov (United States)

    Emami, Saeed; Dadashpour, Sakineh

    2015-09-18

    Cancer is one of the leading health hazards and the prominent cause of death in the world. A number of anticancer agents are currently in clinical practice and used for treatment of various kinds of cancers. There is no doubt that the existing arsenal of anticancer agents is insufficient due to the high incidence of side effects and multidrug resistance. In the efforts to develop suitable anticancer drugs, medicinal chemists have focused on coumarin derivatives. Coumarin is a naturally occurring compound and a versatile synthetic scaffold possessing wide spectrum of biological effects including potential anticancer activity. This review article covers the current developments of coumarin-based anticancer agents and also discusses the structure-activity relationship of the most potent compounds.

  20. Anti-cancer agents based on 6-trifluoromethoxybenzimidazole derivatives and method of making

    Science.gov (United States)

    Gakh, Andrei A; Vovk, Mykhaylo V; Mel& #x27; nychenko, Nina V; Sukach, Volodymyr A

    2012-10-23

    The present disclosure relates to novel compounds having the structural Formulas (1a,1b), stereoisomers, tautomers, racemics, prodrugs, metabolites thereof, or pharmaceutically acceptable salt and/or solvate thereof as chemotherapy agents for treating of cancer, particularly androgen-independent prostate cancer. The disclosure also relates to methods for preparing said compounds, and to pharmaceutical compositions comprising said compounds.

  1. Anti-cancer agents based on 6-trifluoromethoxybenzimidazole derivatives and method of making

    Science.gov (United States)

    Gakh, Andrei A.; Vovk, Mykhaylo V.; Mel'nychenko, Nina V.; Sukach, Volodymyr A.

    2012-08-14

    The present disclosure relates to novel compounds having the structural Formulas (1a,1b), stereoisomers, tautomers, racemics, prodrugs, metabolites thereof, or pharmaceutically acceptable salt and/or solvate thereof as chemotherapy agents for treating of cancer, particularly androgen-independent prostate cancer. The disclosure also relates to methods for preparing said compounds, and to pharmaceutical compositions comprising said compounds.

  2. Prospective observational study to evaluate the pattern of adverse drug events in cancer patients receiving anti-cancer agents in a tertiary care hospital

    OpenAIRE

    Pooja B. Joshi; Neha G. Kadhe

    2016-01-01

    Background: Adverse drug reactions (ADRs) associated with the use of anticancer drugs are a worldwide problem and cannot be overlooked. They range from nausea, vomiting or any other mild reaction to severe myelosuppression. The study was planned to evaluate the pattern of adverse drug events to anti-cancer agents in a tertiary care hospital. Methods: This observational prospective study was carried out in a tertiary care hospital from 1st January 2011 to 31st December 2011. A total of 213 ...

  3. Molecular predictors of therapeutic response to specific anti-cancer agents

    Energy Technology Data Exchange (ETDEWEB)

    Spellman, Paul T.; Gray, Joe W.; Sadanandam, Anguraj; Heiser, Laura M.; Gibb, William J.; Kuo, Wen-lin; Wang, Nicholas J.

    2016-11-29

    Herein is described the use of a collection of 50 breast cancer cell lines to match responses to 77 conventional and experimental therapeutic agents with transcriptional, proteomic and genomic subtypes found in primary tumors. Almost all compounds produced strong differential responses across the cell lines produced responses that were associated with transcriptional and proteomic subtypes and produced responses that were associated with recurrent genome copy number abnormalities. These associations can now be incorporated into clinical trials that test subtype markers and clinical responses simultaneously.

  4. Microencapsulation of lectin anti-cancer agent and controlled release by alginate beads, biosafety approach.

    Science.gov (United States)

    El-Aassar, M R; Hafez, Elsayed E; El-Deeb, Nehal M; Fouda, Moustafa M G

    2014-08-01

    Hepatocellular carcinoma (HCC) is considered as one of the most aggressive cancer worldwide. In Egypt, the prevalence of HCC is increasing during last years. Recently, drug-loaded microparticles were used to improve the efficiency of various medical treatments. This study is designed to evaluate the anticancer potentialities of lectins against HCC while hinting to its safety usage. The aim is also extended to encapsulate lectins in alginate microbeads for oral drug delivery purposes. The extracted lectins showed anti-proliferative effect against HCC with a percentage of 60.76% by using its nontoxic dose with an up-regulation of P53 gene expression. Concerning the handling of lectin alginate microbeads for oral drug delivery, the prepared lectin alginate beads were ∼100μm in diameter. The efficiency of the microcapsules was checked by scanning electron microscopy, the SEM showed the change on the alginate beads surface revealing the successful lectin encapsulation. The release of lectins from the microbeads depended on a variety of factors as the microbeads forming carriers and the amount-encapsulated lectins. The Pisum sativum extracted lectins may be considered as a promising agent in controlling HCC and this solid dosage form could be suitable for oral administration complemented with/or without the standard HCC drugs.

  5. Synthesis and evaluation of multi-wall carbon nanotube–paclitaxel complex as an anti-cancer agent

    Science.gov (United States)

    Ghasemvand, Fariba; Biazar, Esmaeil; Tavakolifard, Sara; Khaledian, Mohammad; Rahmanzadeh, Saeid; Momenzadeh, Daruosh; Afroosheh, Roshanak; Zarkalami, Faezeh; Shabannezhad, Marjan; Hesami Tackallou, Saeed; Massoudi, Nilofar; Heidari Keshel, Saeed

    2016-01-01

    Aim: The aim of this study was to design multi-walled carbon nanotubes (MWCNTs) loaded with paclitaxel (PTX) anti-cancer drug and investigate its anti-cancerous efficacy of human gastric cancer. Background: Carbon nanotubes (CNTs) represent a novel nano-materials applied in various fields such as drug delivery due to their unique chemical properties and high drug loading. Patients and methods: In this study, multi-walled carbon nanotubes (MWCNTs) pre-functionalized covalently with a paclitaxel (PTX) as an anti-cancer drug and evaluated by different analyses including, scanning electron microscope (SEM), particle size analyzer and cellular analyses. Results: A well conjugated of anti-cancer drug on the carbon nanotube surfaces was shown. This study demonstrates that the MWCN-PTX complex is a potentially useful system for delivery of anti-cancer drugs. The flow cytometry, CFU and MTT assay results have disclosed that MWCNT/PTXs might promote apoptosis in MKN-45 gastric adenocarcinoma cell line. Conclusion: According to results, our simple method can be designed a candidate material for chemotherapy. It has presented a few bio-related applications including, their successful use as a nano-carriers for drug transport. PMID:27458512

  6. Bacterial biosynthesis and maturation of the didemnin anti-cancer agents

    KAUST Repository

    Xü, Ying

    2012-05-23

    The anti-neoplastic agent didemnin B from the Caribbean tunicate Trididemnum solidum was the first marine drug to be clinically tested in humans. Because of its limited supply and its complex cyclic depsipeptide structure, considerable challenges were encountered during didemnin B\\'s development that continue to limit aplidine (dehydrodidemnin B), which is currently being evaluated in numerous clinical trials. Herein we show that the didemnins are bacterial products produced by the marine α-proteobacteria Tistrella mobilis and Tistrella bauzanensis via a unique post-assembly line maturation process. Complete genome sequence analysis of the 6,513,401 bp T. mobilis strain KA081020-065 with its five circular replicons revealed the putative didemnin biosynthetic gene cluster (did) on the 1,126,962 bp megaplasmid pTM3. The did locus encodes a 13-module hybrid non-ribosomal peptide synthetase-polyketide synthase enzyme complex organized in a collinear arrangement for the synthesis of the fatty acylglutamine ester derivatives didemnins X and Y rather than didemnin B as first anticipated. Imaging mass spectrometry of T. mobilis bacterial colonies captured the time-dependent extracellular conversion of the didemnin X and Y precursors to didemnin B, in support of an unusual post-synthetase activation mechanism. Significantly, the discovery of the didemnin biosynthetic gene cluster may provide a long-term solution to the supply problem that presently hinders this group of marine natural products and pave the way for the genetic engineering of new didemnin congeners. © 2012 American Chemical Society.

  7. Liquid Chromatography - Triple Quadrupole Mass Spectrometry : The gold standard for quantitative bioanalysis of anti-cancer agents

    NARCIS (Netherlands)

    Vainchtein, L.D.

    2008-01-01

    To understand the pharmacologic mechanisms of action, efficacy and toxicity of any anti-cancer drug it is important to know how the compound is transformed in the body: either into active metabolites or inactive and toxic (degradation) products. This information may lead to the success or failure of

  8. In vitro determination of the efficacy of scorpion venoms as anti-cancer agents against colorectal cancer cells: a nano-liposomal delivery approach.

    Science.gov (United States)

    Al-Asmari, Abdulrahman K; Ullah, Zabih; Al Balowi, Ali; Islam, Mozaffarul

    2017-01-01

    The use of liposomes in biological and medicinal sciences is a relatively new approach. The liposomal strategy greatly depends on the technological advancement in the formation of vesicles of various sizes and properties. In the current study, we encapsulated the venoms obtained from medically important scorpions such as Androctonus bicolor (AB), Androctonus crassicauda (AC), and Leiurus quinquestriatus (LQ). To begin with, our first and foremost aim was to prepare biocompatible and biodegradable nanovesicles. Additionally, we intended to enhance the anti-cancer potential of these encapsulated venoms. The liposomal venoms were prepared by rehydration and dehydration methods. Morphology, particle size, and size distribution of the liposomes were examined by scanning electron microscope (SEM), transmission electron microscope (TEM), and Zetasizer. We found that the prepared liposomes had a smooth surface and a spherical/ovoid shape and existed mainly as single unilamellar vesicles (SUVs). Furthermore, the liposomal formulation of all three venoms exhibited excellent stability and good encapsulation efficiency (EE). Additionally, the anti-cancer potential of the encapsulated venoms was also evaluated on a colorectal cancer cell line (HCT-8). The venom-loaded liposomes showed elevated anti-cancer properties such as low rate of cell survival, higher reactive oxygen species (ROS) generation, and enhancement in the number of apoptotic cells. In addition to this, cell cycle analysis revealed G0/G1 enrichment upon venom treatment. The effect of treatment was more pronounced when venom-liposome was used as compared to free venom on the HCT-8 cell line. Furthermore, we did not observe any interference of liposomal lipids used in these preparations on the progression of cancer cells. Considering these findings, we can conclude that the encapsulated scorpion venoms exhibit better efficacy and act more vigorously as an anti-cancer agent on the colorectal cancer cell line when

  9. Anti-cancer agents based on 4-(hetero)Ary1-1,2,5-oxadiazol-3-yl Amino derivatives and a method of making

    Science.gov (United States)

    Gakh, Andrei A.; Krasavin, Mikhail; Karapetian, Ruben; Rufanov, Konstantin A.; Konstantinov, Igor; Godovykh, Elena; Soldatkina, Olga; Sosnov, Andrey V.

    2013-01-29

    The present disclosure relates to novel compounds that can be used as anti-cancer agents in the prostate cancer therapy. ##STR00001## In particular, the invention relates N-substituted derivatives of 4-(hetero)aryl-1,2,5-oxadiazol-3-yl amines having the structural Formula (I) and (II), stereoisomers, tautomers, racemics, prodrugs, metabolites thereof, or pharmaceutically acceptable salt and/or solvate thereof. Meaning of R1 and R2 in the Formula (I) and (II) are defined in claim 1. The invention also relates to methods for preparing said compounds, and to pharmaceutical compositions comprising said compounds.

  10. Design, Synthesis and Biological Evaluation of Novel Rapamycin Benzothiazole Hybrids as mTOR Targeted Anti-cancer Agents.

    Science.gov (United States)

    Xie, Lijun; Huang, Jie; Chen, Xiaoming; Yu, Hui; Li, Kualiang; Yang, Dan; Chen, Xiaqin; Ying, Jiayin; Pan, Fusheng; Lv, Youbing; Cheng, Yuanrong

    2016-01-01

    The immunosuppressant drug rapamycin, was firstly identified as a mammalian target of rapamycin (mTOR) allosteric inhibitor, and its derivatives have been successfully developed as anti-cancer drugs. Therefore, finding rapamycin derivatives with better anti-cancer activity has been proved to be an effective way to discover new targeted anti-cancer drugs. In this paper, structure modification was performed at the C-43 position of rapamycin using bioisosterism and a hybrid approach: a series of novel rapamycin-benzothiazole hybrids 4a-e, 5a-c, and 9a, b have been designed, synthesized and evaluated for their anti-cancer activity against Caski, CNE-2, SGC-7901, PC-3, SK-NEP-1 and A-375 human cancer cell lines. Some of these compounds (4a-e, 9a, b) displayed good to excellent potency against the Caski and SK-NEP-1 cell line as compared with rapamycin. Compound 9b as the most active compound showed IC50 values of 8.3 (Caski) and 9.6 μM (SK-NEP-1), respectively. In addition, research on the mechanism showed that 9b was able to cause G1 phase arrest and induce apoptosis in the Caski cell line. Most importantly, it significantly decreased the phosphorylation of S6 ribosomal protein, p70S6K1 and 4EBP1, which indicated that 9b inhibited the cancer cell growth by blocking the mTOR pathway and may have the potential to become a new mTOR inhibitor.

  11. [Response of Pharmaceutical Companies to the Crisis of Post-Marketing Clinical Trials of Anti-Cancer Agents -- Results of Questionnaires to Pharmaceutical Companies].

    Science.gov (United States)

    Nakajima, Toshifusa

    2016-04-01

    Investigator-oriented post-marketing clinical trials of anti-cancer agents are faced to financial crisis due to drastic decrease in research-funds from pharmaceutical companies caused by a scandal in 2013. In order to assess the balance of research funds between 2012 and 2014, we made queries to 26 companies manufacturing anti-cancer agents, and only 10 of 26 responded to our queries. Decrease in the fund was observed in 5 of 10, no change in 1, increase in 3 and no answer in 1. Companies showed passive attitude to carry out doctor-oriented clinical trials of off-patent drugs or unapproved drugs according to advanced medical care B program, though some companies answered to proceed approved routines of these drugs if clinical trials showed good results. Most companies declined to make comments on the activity of Japan Agency for Medical Research and Development (AMED), but some insisted to produce good corroboration between AMED and pharmaceutical companies in order to improve the quality of trials. Further corroboration must be necessary for this purpose among researchers, governmental administrative organs, pharmaceutical companies, patients' groups, and mass-media.

  12. The anti-cancer effects of carotenoids and other phytonutrients resides in their combined activity.

    Science.gov (United States)

    Linnewiel-Hermoni, Karin; Khanin, Marina; Danilenko, Michael; Zango, Gabriel; Amosi, Yaara; Levy, Joseph; Sharoni, Yoav

    2015-04-15

    Epidemiological studies have consistently shown that regular consumption of fruits and vegetables is strongly associated with reduced risk of developing chronic diseases, such as cancer. It is now accepted that the actions of any specific phytonutrient alone do not explain the observed health benefits of diets rich in fruits and vegetables as nutrients that were taken alone in clinical trials did not show consistent preventive effects. The considerable cost and complexity of such clinical trials requires prudent selection of combinations of ingredients rather than single compounds. Indeed, synergistic inhibition of prostate and mammary cancer cell growth was evident when using combinations of low concentrations of various carotenoids or carotenoids with retinoic acid and the active metabolite of vitamin-D. In this study we aimed to develop simple and sensitive in vitro methods which provide information on potent combinations suitable for inclusion in clinical studies for cancer prevention. We, thus, used reporter gene assays of the transcriptional activity of the androgen receptor in hormone-dependent prostate cancer cells and of the electrophile/antioxidant response element (EpRE/ARE) transcription system. We found that combinations of several carotenoids (e.g., lycopene, phytoene and phytofluene), or carotenoids and polyphenols (e.g., carnosic acid and curcumin) and/or other compounds (e.g., vitamin E) synergistically inhibit the androgen receptor activity and activate the EpRE/ARE system. The activation of EpRE/ARE was up to four fold higher than the sum of the activities of the single ingredients, a robust hallmark of synergy. Such combinations can further be tested in the more complex in vivo models and human studies.

  13. Combination of axitinib and dasatinib for anti-cancer activities in two prostate cancer cell lines

    Directory of Open Access Journals (Sweden)

    Nai-Xiong Peng

    2016-03-01

    Full Text Available Prostate cancer is major cause of cancer related deaths worldwide in men. There are new treatment methods and drugs are being developed with promising results in two of the prostate cancer cell lines (PPC-1 and TSU-Pr1. These two cells were treated with 20 uM of axitinib combined with dasatinib for 6-72 hours. The cell viability assessed by the cytotoxicity assay. Various regulatory genes such as c-KIT, cell cycle and apoptosis and angiogenic factors were also studied. The enzyme activity of apoptosis efector caspase-3 was colorimetrically determined. Axitinib and dasatinib combination lowered the survival rate of PPC-1 cells but enhanced the survival rate of TSU-Pr1 cells. The protein expression levels in apoptosis and angiogenesis factors were also found to be in contrast between the two cell lines. PPC-1 and TSU-Pr1 cells displayed a different response to axitinib with dasatinib, which explains different expression levels of regulators of cell-cycle, apoptosis and angiogenesis.

  14. Rational design, synthesis, and biological evaluation of third generation α-noscapine analogues as potent tubulin binding anti-cancer agents.

    Science.gov (United States)

    Manchukonda, Naresh Kumar; Naik, Pradeep Kumar; Santoshi, Seneha; Lopus, Manu; Joseph, Silja; Sridhar, Balasubramanian; Kantevari, Srinivas

    2013-01-01

    Systematic screening based on structural similarity of drugs such as colchicine and podophyllotoxin led to identification of noscapine, a microtubule-targeted agent that attenuates the dynamic instability of microtubules without affecting the total polymer mass of microtubules. We report a new generation of noscapine derivatives as potential tubulin binding anti-cancer agents. Molecular modeling experiments of these derivatives 5a, 6a-j yielded better docking score (-7.252 to -5.402 kCal/mol) than the parent compound, noscapine (-5.505 kCal/mol) and its existing derivatives (-5.563 to -6.412 kCal/mol). Free energy (ΔG bind ) calculations based on the linear interaction energy (LIE) empirical equation utilizing Surface Generalized Born (SGB) continuum solvent model predicted the tubulin-binding affinities for the derivatives 5a, 6a-j (ranging from -4.923 to -6.189 kCal/mol). Compound 6f showed highest binding affinity to tubulin (-6.189 kCal/mol). The experimental evaluation of these compounds corroborated with theoretical studies. N-(3-brormobenzyl) noscapine (6f) binds tubulin with highest binding affinity (KD, 38 ± 4.0 µM), which is ~ 4.0 times higher than that of the parent compound, noscapine (KD, 144 ± 1.0 µM) and is also more potent than that of the first generation clinical candidate EM011, 9-bromonoscapine (KD, 54 ± 9.1 µM). All these compounds exhibited substantial cytotoxicity toward cancer cells, with IC50 values ranging from 6.7 µM to 72.9 µM; compound 6f showed prominent anti-cancer efficacy with IC50 values ranging from 6.7 µM to 26.9 µM in cancer cells of different tissues of origin. These compounds perturbed DNA synthesis, delayed the cell cycle progression at G2/M phase, and induced apoptotic cell death in cancer cells. Collectively, the study reported here identified potent, third generation noscapinoids as new anti-cancer agents.

  15. Rational design, synthesis, and biological evaluation of third generation α-noscapine analogues as potent tubulin binding anti-cancer agents.

    Directory of Open Access Journals (Sweden)

    Naresh Kumar Manchukonda

    Full Text Available Systematic screening based on structural similarity of drugs such as colchicine and podophyllotoxin led to identification of noscapine, a microtubule-targeted agent that attenuates the dynamic instability of microtubules without affecting the total polymer mass of microtubules. We report a new generation of noscapine derivatives as potential tubulin binding anti-cancer agents. Molecular modeling experiments of these derivatives 5a, 6a-j yielded better docking score (-7.252 to -5.402 kCal/mol than the parent compound, noscapine (-5.505 kCal/mol and its existing derivatives (-5.563 to -6.412 kCal/mol. Free energy (ΔG bind calculations based on the linear interaction energy (LIE empirical equation utilizing Surface Generalized Born (SGB continuum solvent model predicted the tubulin-binding affinities for the derivatives 5a, 6a-j (ranging from -4.923 to -6.189 kCal/mol. Compound 6f showed highest binding affinity to tubulin (-6.189 kCal/mol. The experimental evaluation of these compounds corroborated with theoretical studies. N-(3-brormobenzyl noscapine (6f binds tubulin with highest binding affinity (KD, 38 ± 4.0 µM, which is ~ 4.0 times higher than that of the parent compound, noscapine (KD, 144 ± 1.0 µM and is also more potent than that of the first generation clinical candidate EM011, 9-bromonoscapine (KD, 54 ± 9.1 µM. All these compounds exhibited substantial cytotoxicity toward cancer cells, with IC50 values ranging from 6.7 µM to 72.9 µM; compound 6f showed prominent anti-cancer efficacy with IC50 values ranging from 6.7 µM to 26.9 µM in cancer cells of different tissues of origin. These compounds perturbed DNA synthesis, delayed the cell cycle progression at G2/M phase, and induced apoptotic cell death in cancer cells. Collectively, the study reported here identified potent, third generation noscapinoids as new anti-cancer agents.

  16. Anti-cancer agents based on N-acyl-2, 3-dihydro-1H-pyrrolo[2,3-b] quinoline derivatives and a method of making

    Science.gov (United States)

    Gakh, Andrei; Krasavin, Mikhail; Karapetian, Ruben; Rufanov, Konstantin A; Konstantinov, Igor; Godovykh, Elena; Soldatkina, Olga; Sosnov, Andrey V

    2013-04-16

    The present disclosure relates to novel compounds that can be used as anti-cancer agents in the prostate cancer therapy. In particular, the invention relates to N-acyl derivatives of 2,3-dihydro-1H-pyrrolo[2,3-b]quinolines having the structural Formula (I), ##STR00001## stereoisomers, tautomers, racemics, prodrugs, metabolites thereof, or pharmaceutically acceptable salt and/or solvate thereof. The meaning of R1 is independently selected from H; C1-C6 Alkyl, cyclo-Alkyl or iso-Alkyl substituents; R2 is selected from C1-C6 Alkyl, cyclo-Alkyl or iso-Alkyl; substituted or non-substituted, fused or non-fused to substituted or non-substituted aromatic ring, aryl or heteroaryl groups. The invention also relates to methods for preparing said compounds, and to pharmaceutical compositions comprising said compounds.

  17. Design, synthesis, and evaluation of asymmetric EF24 analogues as potential anti-cancer agents for lung cancer.

    Science.gov (United States)

    Wu, Jianzhang; Wu, Shoubiao; Shi, Lingyi; Zhang, Shanshan; Ren, Jiye; Yao, Song; Yun, Di; Huang, Lili; Wang, Jiabing; Li, Wulan; Wu, Xiaoping; Qiu, Peihong; Liang, Guang

    2017-01-05

    The nuclear factor-kappa B (NF-κB) signaling pathway has been targeted for the therapy of various cancers, including lung cancer. EF24 was considered as a potent inhibitor of NF-κB signaling pathway. In this study, a series of asymmetric EF24 analogues were synthesized and evaluated for their anti-cancer activity against three lung cancer cell lines (A549, LLC, H1650). Most of the compounds exhibited good anti-tumor activity. Among them, compound 81 showed greater cytotoxicity than EF24. Compound 81 also possessed a potent anti-migration and anti-proliferative ability against A549 cells in a concentration-dependent manner. Moreover, compound 81 induced lung cancer cells death by inhibiting NF-κB signaling pathway, and activated the JNK-mitochondrial apoptotic pathway by increasing reactive oxygen species (ROS) generation resulting in apoptosis. In summary, compound 81 is a valuable candidate for anti-lung cancer therapy.

  18. Synergistic anti-cancer effect of phenformin and oxamate.

    Directory of Open Access Journals (Sweden)

    W Keith Miskimins

    Full Text Available Phenformin (phenethylbiguanide; an anti-diabetic agent plus oxamate [lactate dehydrogenase (LDH inhibitor] was tested as a potential anti-cancer therapeutic combination. In in vitro studies, phenformin was more potent than metformin, another biguanide, recently recognized to have anti-cancer effects, in promoting cancer cell death in the range of 25 times to 15 million times in various cancer cell lines. The anti-cancer effect of phenformin was related to complex I inhibition in the mitochondria and subsequent overproduction of reactive oxygen species (ROS. Addition of oxamate inhibited LDH activity and lactate production by cells, which is a major side effect of biguanides, and induced more rapid cancer cell death by decreasing ATP production and accelerating ROS production. Phenformin plus oxamate was more effective than phenformin combined with LDH knockdown. In a syngeneic mouse model, phenformin with oxamate increased tumor apoptosis, reduced tumor size and (18F-fluorodeoxyglucose (FDG uptake on positron emission tomography/computed tomography compared to control. We conclude that phenformin is more cytotoxic towards cancer cells than metformin. Furthermore, phenformin and oxamate have synergistic anti-cancer effects through simultaneous inhibition of complex I in the mitochondria and LDH in the cytosol, respectively.

  19. Potential therapeutic applications of multifunctional host-defense peptides from frog skin as anti-cancer, anti-viral, immunomodulatory, and anti-diabetic agents.

    Science.gov (United States)

    Conlon, J Michael; Mechkarska, Milena; Lukic, Miodrag L; Flatt, Peter R

    2014-07-01

    Frog skin constitutes a rich source of peptides with a wide range of biological properties. These include host-defense peptides with cytotoxic activities against bacteria, fungi, protozoa, viruses, and mammalian cells. Several hundred such peptides from diverse species have been described. Although attention has been focused mainly on antimicrobial activity, the therapeutic potential of frog skin peptides as anti-infective agents remains to be realized and no compound based upon their structures has yet been adopted in clinical practice. Consequently, alternative applications are being explored. Certain naturally occurring frog skin peptides, and analogs with improved therapeutic properties, show selective cytotoxicity against tumor cells and viruses and so have potential for development into anti-cancer and anti-viral agents. Some peptides display complex cytokine-mediated immunomodulatory properties. Effects on the production of both pro-inflammatory and anti-inflammatory cytokines by peritoneal macrophages and peripheral blood mononuclear cells have been observed so that clinical applications as anti-inflammatory, immunosuppressive, and immunostimulatory agents are possible. Several frog skin peptides, first identified on the basis of antimicrobial activity, have been shown to stimulate insulin release both in vitro and in vivo and so show potential as incretin-based therapies for treatment of patients with Type 2 diabetes mellitus. This review assesses the therapeutic possibilities of peptides from frogs belonging to the Ascaphidae, Alytidae, Pipidae, Dicroglossidae, Leptodactylidae, Hylidae, and Ranidae families that complement their potential role as anti-infectives for use against multidrug-resistant microorganisms.

  20. Fucoidan Extract Enhances the Anti-Cancer Activity of Chemotherapeutic Agents in MDA-MB-231 and MCF-7 Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Zhongyuan Zhang

    2013-01-01

    Full Text Available Fucoidan, a fucose-rich polysaccharide isolated from brown alga, is currently under investigation as a new anti-cancer compound. In the present study, fucoidan extract (FE from Cladosiphon navae-caledoniae Kylin was prepared by enzymatic digestion. We investigated whether a combination of FE with cisplatin, tamoxifen or paclitaxel had the potential to improve the therapeutic efficacy of cancer treatment. These co-treatments significantly induced cell growth inhibition, apoptosis, as well as cell cycle modifications in MDA-MB-231 and MCF-7 cells. FE enhanced apoptosis in cancer cells that responded to treatment with three chemotherapeutic drugs with downregulation of the anti-apoptotic proteins Bcl-xL and Mcl-1. The combination treatments led to an obvious decrease in the phosphorylation of ERK and Akt in MDA-MB-231 cells, but increased the phosphorylation of ERK in MCF-7 cells. In addition, we observed that combination treatments enhanced intracellular ROS levels and reduced glutathione (GSH levels in breast cancer cells, suggesting that induction of oxidative stress was an important event in the cell death induced by the combination treatments.

  1. Phenethyl isothiocyanate: a comprehensive review of anti-cancer mechanisms.

    Science.gov (United States)

    Gupta, Parul; Wright, Stephen E; Kim, Sung-Hoon; Srivastava, Sanjay K

    2014-12-01

    The epidemiological evidence suggests a strong inverse relationship between dietary intake of cruciferous vegetables and the incidence of cancer. Among other constituents of cruciferous vegetables, isothiocyanates (ITC) are the main bioactive chemicals present. Phenethyl isothiocyanate (PEITC) is present as gluconasturtiin in many cruciferous vegetables with remarkable anti-cancer effects. PEITC is known to not only prevent the initiation phase of carcinogenesis process but also to inhibit the progression of tumorigenesis. PEITC targets multiple proteins to suppress various cancer-promoting mechanisms such as cell proliferation, progression and metastasis. Pre-clinical evidence suggests that combination of PEITC with conventional anti-cancer agents is also highly effective in improving overall efficacy. Based on accumulating evidence, PEITC appears to be a promising agent for cancer therapy and is already under clinical trials for leukemia and lung cancer. This is the first review which provides a comprehensive analysis of known targets and mechanisms along with a critical evaluation of PEITC as a future anti-cancer agent.

  2. Screening the yeast genome for energetic metabolism pathways involved in a phenotypic response to the anti-cancer agent 3-bromopyruvate.

    Science.gov (United States)

    Lis, Paweł; Jurkiewicz, Paweł; Cal-Bąkowska, Magdalena; Ko, Young H; Pedersen, Peter L; Goffeau, Andre; Ułaszewski, Stanisław

    2016-03-01

    In this study the detailed characteristic of the anti-cancer agent 3-bromopyruvate (3-BP) activity in the yeast Saccharomyces cerevisiae model is described, with the emphasis on its influence on energetic metabolism of the cell. It shows that 3-BP toxicity in yeast is strain-dependent and influenced by the glucose-repression system. Its toxic effect is mainly due to the rapid depletion of intracellular ATP. Moreover, lack of the Whi2p phosphatase results in strongly increased sensitivity of yeast cells to 3-BP, possibly due to the non-functional system of mitophagy of damaged mitochondria through the Ras-cAMP-PKA pathway. Single deletions of genes encoding glycolytic enzymes, the TCA cycle enzymes and mitochondrial carriers result in multiple effects after 3-BP treatment. However, it can be concluded that activity of the pentose phosphate pathway is necessary to prevent the toxicity of 3-BP, probably due to the fact that large amounts of NADPH are produced by this pathway, ensuring the reducing force needed for glutathione reduction, crucial to cope with the oxidative stress. Moreover, single deletions of genes encoding the TCA cycle enzymes and mitochondrial carriers generally cause sensitivity to 3-BP, while totally inactive mitochondrial respiration in the rho0 mutant resulted in increased resistance to 3-BP.

  3. Potential anti-cancer drugs commonly used for other indications.

    Science.gov (United States)

    Hanusova, Veronika; Skalova, Lenka; Kralova, Vera; Matouskova, Petra

    2015-01-01

    An increasing resistance of mammalian tumor cells to chemotherapy along with the severe side effects of commonly used cytostatics has raised the urgency in the search for new anti-cancer agents. Several drugs originally approved for indications other than cancer treatment have recently been found to have a cytostatic effect on cancer cells. These drugs could be expediently repurposed as anti-cancer agents, since they have already been tested for toxicity in humans and animals. The groups of newly recognized potential cytostatics discussed in this review include benzimidazole anthelmintics (albendazole, mebendazole, flubendazole), anti-hypertensive drugs (doxazosin, propranolol), psychopharmaceuticals (chlorpromazine, clomipramine) and antidiabetic drugs (metformin, pioglitazone). All these drugs have a definite potential to be used especially in combinations with other cytostatics; the chemotherapy targeting of multiple sites now represents a promising approach in cancer treatment. The present review summarizes recent information about the anti-cancer effects of selected drugs commonly used for other medical indications. Our aim is not to collect all the reported results, but to present an overview of various possibilities. Advantages, disadvantages and further perspectives regarding individual drugs are discussed and evaluated.

  4. QSAR Modeling on Benzo[c]phenanthridine Analogues as Topoisomerase I Inhibitors and Anti-cancer Agents

    Directory of Open Access Journals (Sweden)

    Thi-Ngoc-Phuong Huynh

    2012-05-01

    Full Text Available Benzo[c]phenanthridine (BCP derivatives were identified as topoisomerase I (TOP-I targeting agents with pronounced antitumor activity. In this study, hologram-QSAR, 2D-QSAR and 3D-QSAR models were developed for BCPs on topoisomerase I inbibitory activity and cytotoxicity against seven tumor cell lines including RPMI8402, CPT-K5, P388, CPT45, KB3-1, KBV-1and KBH5.0. The hologram, 2D, and 3D-QSAR models were obtained with the square of correlation coefficient R2 = 0.58 − 0.77, the square of the crossvalidation coefficient q2 = 0.41 − 0.60 as well as the external set’s square of predictive correlation coefficient r2 = 0.51 − 0.80. Moreover, the assessment method based on reliability test with confidence level of 95% was used to validate the predictive power of QSAR models and to prevent over-fitting phenomenon of classical QSAR models. Our QSAR model could be applied to design new analogues of BCPs with higher antitumor and topoisomerase I inhibitory activity.

  5. Anti-cancer efficacy of SREBP inhibitor, alone or in combination with docetaxel, in prostate cancer harboring p53 mutations.

    Science.gov (United States)

    Li, Xiangyan; Wu, Jason Boyang; Chung, Leland W K; Huang, Wen-Chin

    2015-12-01

    Mutant p53 proteins (mutant p53s) have oncogenic gain-of-function properties correlated with tumor grade, castration resistance, and prostate cancer (PCa) tumor recurrence. Docetaxel is a standard first-line treatment for metastatic castration-resistant PCa (mCRPC) after the failure of hormone therapy. However, most mCRPC patients who receive docetaxel experience only transient benefits and rapidly develop incurable drug resistance, which is closely correlated with the p53 mutation status. Mutant p53s were recently reported to regulate the metabolic pathways via sterol regulatory element-binding proteins (SREBPs). Therefore, targeting the SREBP metabolic pathways with docetaxel as a combination therapy may offer a potential strategy to improve anti-tumor efficacy and delay cellular drug resistance in mCRPC harboring mutant p53s. Our previous data showed that fatostatin, a new SREBP inhibitor, inhibited cell proliferation and induced apoptosis in androgen receptor (AR)-positive PCa cell lines and xenograft mouse models. In this study, we demonstrated that mutant p53s activate the SREBP-mediated metabolic pathways in metastatic AR-negative PCa cells carrying mutant p53s. By blocking the SREBP pathways, fatostatin inhibited cell growth and induced apoptosis in metastatic AR-negative PCa cells harboring mutant p53s. Furthermore, the combination of fatostatin and docetaxel resulted in greater proliferation inhibition and apoptosis induction compared with single agent treatment in PCa cells in vitro and in vivo, especially those with mutant p53s. These data suggest for the first time that fatostatin alone or in combination with docetaxel could be exploited as a novel and promising therapy for metastatic PCa harboring p53 mutations.

  6. Combining anti-cancer drugs with artificial sweeteners: synthesis and anti-cancer activity of saccharinate (sac) and thiosaccharinate (tsac) complexes cis-[Pt(sac)2(NH3)2] and cis-[Pt(tsac)2(NH3)2].

    Science.gov (United States)

    Al-Jibori, Subhi A; Al-Jibori, Ghassan H; Al-Hayaly, Lamaan J; Wagner, Christoph; Schmidt, Harry; Timur, Suna; Baris Barlas, F; Subasi, Elif; Ghosh, Shishir; Hogarth, Graeme

    2014-12-01

    The new platinum(II) complexes cis-[Pt(sac)2(NH3)2] (sac=saccharinate) and cis-[Pt(tsac)2(NH3)2] (tsac=thiosaccharinate) have been prepared, the X-ray crystal structure of cis-[Pt(sac)2(NH3)2] x H2O reveals that both saccharinate anions are N-bound in a cis-arrangement being inequivalent in both the solid-state and in solution at room temperature. Preliminary anti-cancer activity has been assessed against A549 human alveolar type-II like cell lines with the thiosaccharinate complex showing good activity.

  7. Developing FGFR4 inhibitors as potential anti-cancer agents via in silico design, supported by in vitro and cell-based testing.

    Science.gov (United States)

    Ho, H K; Németh, G; Ng, Y R; Pang, E; Szántai-Kis, C; Zsákai, L; Breza, N; Greff, Z; Horváth, Z; Pató, J; Szabadkai, I; Szokol, B; Baska, F; Őrfî, L; Ullrich, A; Kéri, G; Chua, B T

    2013-01-01

    Fibroblast growth factor receptor-4 (FGFR4) is a tyrosine kinase with a range of important physiological functions. However, it is also frequently mutated in various cancers and is now generating significant interest as a potential therapeutic target. Unfortunately, biochemical characterization of its role in disease, and further evaluation as a drug target is hampered by lack of a specific inhibitor. We aimed to discover new inhibitors for FGFR4 ab initio using a strategy combining in silico, in vitro and cell-based assays. We used the homologous FGFR1 to calculate docking scores of a chemically-diverse library of approximately 2000 potential kinase inhibitors. Nineteen potential inhibitors and ten randomly- selected negative controls were taken forward for in vitro FGFR4 kinase assays. All compounds with good docking scores significantly inhibited FGFR4 kinase activity, some with sub-micromolar (most potent being V4-015 with an IC(50) of 0.04 μM). Four of these compounds also demonstrated substantial activity in cellular assays using the FGFR4- overexpressing breast carcinoma cell line, MDA-MB453. Through immunoblot assays, these compounds were shown to block the phosphorylation of the FGFR4 adaptor protein, FGFR substrate protein-2α (FRS2α). The most potent compound to date, V4-015, suppressed proliferation of MDA-MB453 cells at sub-micromolar concentrations, activated the pro-apoptotic caspases 3/7 and inhibited cellular migration. While achieving complete selectivity of this compound for FGFR4 will require further lead optimization, this study has successfully identified new chemical scaffolds with unprecedented FGFR4 inhibition capacities that will support mechanism of action studies and future anti-cancer drug design.

  8. Upregulating Noxa by ER stress, celastrol exerts synergistic anti-cancer activity in combination with ABT-737 in human hepatocellular carcinoma cells.

    Science.gov (United States)

    Zhu, Hong; Yang, Wei; He, Ling-juan; Ding, Wan-jing; Zheng, Lin; Liao, Si-da; Huang, Ping; Lu, Wei; He, Qiao-jun; Yang, Bo

    2012-01-01

    The human hepatocellular carcinoma (HCC) represents biologically aggressive and chemo-resistant cancers. Owing to the low affinity with the apoptotic factor Mcl-1, the BH3 mimetic drug ABT-737 failed to exert potent cancer-killing activities in variety of cancer models including HCC. The current study demonstrated that combining ABT-737 and Celastrol synergistically suppressed HCC cell proliferation, and induced apoptosis which was accompanied with the activation of caspase cascade and release of cytochrome c from mitochondria. Further study revealed that the enhanced Noxa caused by Celastrol was the key factor for the synergy, since small interfering RNA-mediated knockdown of Noxa expression in HCC cells resulted in decreased apoptosis and attenuated anti-proliferative effects of the combination. In addition, our study unraveled that, upon Celastrol exposure, the activation of endoplasmic reticulum (ER) stress, specifically, the eIF2α-ATF4 pathway played indispensable roles in the activation of Noxa, which was validated by the observation that depletion of ATF4 significantly abrogated the Noxa elevation by Celastrol. Our findings highlight a novel signaling pathway through which Celastrol increase Noxa expression, and suggest the potential use of ATF4-mediated regulation of Noxa as a promising strategy to improve the anti-cancer activities of ABT-737.

  9. Upregulating Noxa by ER stress, celastrol exerts synergistic anti-cancer activity in combination with ABT-737 in human hepatocellular carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Hong Zhu

    Full Text Available The human hepatocellular carcinoma (HCC represents biologically aggressive and chemo-resistant cancers. Owing to the low affinity with the apoptotic factor Mcl-1, the BH3 mimetic drug ABT-737 failed to exert potent cancer-killing activities in variety of cancer models including HCC. The current study demonstrated that combining ABT-737 and Celastrol synergistically suppressed HCC cell proliferation, and induced apoptosis which was accompanied with the activation of caspase cascade and release of cytochrome c from mitochondria. Further study revealed that the enhanced Noxa caused by Celastrol was the key factor for the synergy, since small interfering RNA-mediated knockdown of Noxa expression in HCC cells resulted in decreased apoptosis and attenuated anti-proliferative effects of the combination. In addition, our study unraveled that, upon Celastrol exposure, the activation of endoplasmic reticulum (ER stress, specifically, the eIF2α-ATF4 pathway played indispensable roles in the activation of Noxa, which was validated by the observation that depletion of ATF4 significantly abrogated the Noxa elevation by Celastrol. Our findings highlight a novel signaling pathway through which Celastrol increase Noxa expression, and suggest the potential use of ATF4-mediated regulation of Noxa as a promising strategy to improve the anti-cancer activities of ABT-737.

  10. The anti-cancer activity of noscapine: a review.

    Science.gov (United States)

    Mahmoudian, Massoud; Rahimi-Moghaddam, Parvaneh

    2009-01-01

    Noscapine is an isoqiunoline alkaloid found in opium latex. Unlike most other alkaloids obtained from opium latex, noscapine is not sedative and has been used as antitussive drug in various countries. Recently, it has been introduced as an anti-mitotic agent. This drug can be used orally. When the resistance to other anti-cancer drugs such as paclitaxel manifests, noscapine might be effective. Therefore, noscapine and its analogs have great potential as novel anti-cancer agents.

  11. In silico identification of anti-cancer compounds and plants from traditional Chinese medicine database

    Science.gov (United States)

    Dai, Shao-Xing; Li, Wen-Xing; Han, Fei-Fei; Guo, Yi-Cheng; Zheng, Jun-Juan; Liu, Jia-Qian; Wang, Qian; Gao, Yue-Dong; Li, Gong-Hua; Huang, Jing-Fei

    2016-05-01

    There is a constant demand to develop new, effective, and affordable anti-cancer drugs. The traditional Chinese medicine (TCM) is a valuable and alternative resource for identifying novel anti-cancer agents. In this study, we aim to identify the anti-cancer compounds and plants from the TCM database by using cheminformatics. We first predicted 5278 anti-cancer compounds from TCM database. The top 346 compounds were highly potent active in the 60 cell lines test. Similarity analysis revealed that 75% of the 5278 compounds are highly similar to the approved anti-cancer drugs. Based on the predicted anti-cancer compounds, we identified 57 anti-cancer plants by activity enrichment. The identified plants are widely distributed in 46 genera and 28 families, which broadens the scope of the anti-cancer drug screening. Finally, we constructed a network of predicted anti-cancer plants and approved drugs based on the above results. The network highlighted the supportive role of the predicted plant in the development of anti-cancer drug and suggested different molecular anti-cancer mechanisms of the plants. Our study suggests that the predicted compounds and plants from TCM database offer an attractive starting point and a broader scope to mine for potential anti-cancer agents.

  12. 3-Bromopyruvate (3BP) a fast acting, promising, powerful, specific, and effective "small molecule" anti-cancer agent taken from labside to bedside: introduction to a special issue.

    Science.gov (United States)

    Pedersen, Peter L

    2012-02-01

    . Significantly, in subsequent experiments with rodents (19 animals with advanced cancer) Ko led a project in which 3BP was shown in a short treatment period to eradicate all (100%). Ko's and co-author's findings once published attracted global attention leading world-wide to many other studies and publications related to 3BP and its potent anti-cancer effect. This Issue of the Journal of Bioenergetics and Biomembranes (JOBB 44-1) captures only a sampling of research conducted to date on 3BP as an anticancer agent, and includes also a Case Report on the first human patient known to the author to be treated with specially formulated 3BP. Suffice it to say in this bottom line, "3BP, a small molecule, results in a remarkable therapeutic effect when it comes to treating cancers exhibiting a "Warburg effect". This includes most cancer types.

  13. Combination of gefitinib and DNA methylation inhibitor decitabine exerts synergistic anti-cancer activity in colon cancer cells.

    Directory of Open Access Journals (Sweden)

    Yun-feng Lou

    Full Text Available Despite recent advances in the treatment of human colon cancer, the chemotherapy efficacy against colon cancer is still unsatisfactory. In the present study, effects of concomitant inhibition of the epidermal growth factor receptor (EGFR and DNA methyltransferase were examined in human colon cancer cells. We demonstrated that decitabine (a DNA methyltransferase inhibitor synergized with gefitinib (an EGFR inhibitor to reduce cell viability and colony formation in SW1116 and LOVO cells. However, the combination of the two compounds displayed minimal toxicity to NCM460 cells, a normal human colon mucosal epithelial cell line. The combination was also more effective at inhibiting the AKT/mTOR/S6 kinase pathway. In addition, the combination of decitabine with gefitinib markedly inhibited colon cancer cell migration. Furthermore, gefitinib synergistically enhanced decitabine-induced cytotoxicity was primarily due to apoptosis as shown by Annexin V labeling that was attenuated by z-VAD-fmk, a pan caspase inhibitor. Concomitantly, cell apoptosis resulting from the co-treatment of gefitinib and decitabine was accompanied by induction of BAX, cleaved caspase 3 and cleaved PARP, along with reduction of Bcl-2 compared to treatment with either drug alone. Interestingly, combined treatment with these two drugs increased the expression of XIAP-associated factor 1 (XAF1 which play an important role in cell apoptosis. Moreover, small interfering RNA (siRNA depletion of XAF1 significantly attenuated colon cancer cells apoptosis induced by the combination of the two drugs. Our findings suggested that gefitinib in combination with decitabine exerted enhanced cell apoptosis in colon cancer cells were involved in mitochondrial-mediated pathway and induction of XAF1 expression. In conclusion, based on the observations from our study, we suggested that the combined administration of these two drugs might be considered as a novel therapeutic regimen for treating colon

  14. Exploiting developments in nanotechnology for the preferential delivery of platinum-based anti-cancer agents to tumours: targeting some of the hallmarks of cancer.

    Science.gov (United States)

    Parker, James P; Ude, Ziga; Marmion, Celine J

    2016-01-01

    Platinum drugs as anti-cancer therapeutics are held in extremely high regard. Despite their success, there are drawbacks associated with their use; their dose-limiting toxicity, their limited activity against an array of common cancers and patient resistance to Pt-based therapeutic regimes. Current investigations in medicinal inorganic chemistry strive to offset these shortcomings through selective targeting of Pt drugs and/or the development of Pt drugs with new or multiple modes of action. A comprehensive overview showcasing how liposomes, nanocapsules, polymers, dendrimers, nanoparticles and nanotubes may be employed as vehicles to selectively deliver cytotoxic Pt payloads to tumour cells is provided.

  15. Are isothiocyanates potential anti-cancer drugs?

    Institute of Scientific and Technical Information of China (English)

    Xiang WU; Qing-hua ZHOU; Ke XU

    2009-01-01

    Isothiocyanates are naturally occurring small molecules that are formed from glucosinolate precursors of cruciferous vegetables. Many isothiocyanates, both natural and synthetic, display anticarcinogenic activity because they reduce activation of carcinogens and increase their detoxification. Recent studies show that they exhibit anti-tumor activity by affecting multiple pathways including apoptosis, MAPK signaling, oxidative stress, and cell cycle progression. This review summarizes the current knowledge on isothiocyanates and focuses on their role as potential anti-cancer agents.

  16. Pro-oxidant activity of dietary chemopreventive agents: an under-appreciated anti-cancer property [v1; ref status: indexed, http://f1000r.es/15s

    Directory of Open Access Journals (Sweden)

    Asfar S Azmi

    2013-06-01

    Full Text Available “Let food be thy medicine and medicine be thy food” was quoted by Hippocrates more than two thousand years ago and since ancient times the health benefits of different natural agents have been exploited. In modern research, the disease preventive benefits of many such natural agents, particularly dietary compounds and their derivatives, has been attributed to their well recognized activity as the regulators of redox state of the cell. Nevertheless, most of these studies have focused on their antioxidant activity. A large body of evidence indicates that a major fraction of these agents can elicit pro-oxidant (radical generating behavior which has been linked to their anti-cancer effects. This editorial provides an overview of the under-appreciated pro-oxidant activity of natural products, with a special focus on their ability to generate reactive oxygen species in the presence of transition metal ions, and discusses their possible use as cancer chemotherapeutic agents.

  17. Icariside II, a Broad-Spectrum Anti-cancer Agent, Reverses Beta-Amyloid-Induced Cognitive Impairment through Reducing Inflammation and Apoptosis in Rats

    Science.gov (United States)

    Deng, Yuanyuan; Long, Long; Wang, Keke; Zhou, Jiayin; Zeng, Lingrong; He, Lianzi; Gong, Qihai

    2017-01-01

    Beta-amyloid (Aβ) deposition, associated neuronal apoptosis and neuroinflammation are considered as the important factors which lead to cognitive deficits in Alzheimer’s disease (AD). Icariside II (ICS II), an active flavonoid compound derived from Epimedium brevicornum Maxim, has been extensively used to treat erectile dysfunction, osteoporosis and dementia in traditional Chinese medicine. Recently, ICS II attracts great interest due to its broad-spectrum anti-cancer property. ICS II shows an anti-inflammatory potential both in cancer treatment and cerebral ischemia-reperfusion. It is not yet clear whether the anti-inflammatory effect of ICS II could delay progression of AD. Therefore, the current study aimed to investigate the effects of ICS II on the behavioral deficits, Aβ levels, neuroinflammatory responses and apoptosis in Aβ25-35-treated rats. We found that bilateral hippocampal injection of Aβ25-35 induced cognitive impairment, neuronal damage, along with increase of Aβ, inflammation and apoptosis in hippocampus of rats. However, treatment with ICS II 20 mg/kg could improve the cognitive deficits, ameliorate neuronal death, and reduce the levels of Aβ in the hippocampus. Furthermore, ICS II could suppress microglial and astrocytic activation, inhibit expression of IL-1β, TNF-α, COX-2, and iNOS mRNA and protein, and attenuate the Aβ induced Bax/Bcl-2 ratio elevation and caspase-3 activation. In conclusion, these results showed that ICS II could reverse Aβ-induced cognitive deficits, possibly via the inhibition of neuroinflammation and apoptosis, which suggested a potential protective effect of ICS II on AD. PMID:28210222

  18. Anti-Cancer Effects of Xanthones from Pericarps of Mangosteen

    Directory of Open Access Journals (Sweden)

    Yoshinori Nozawa

    2008-03-01

    Full Text Available Mangosteen, Garcinia mangostana Linn, is a tree found in South East Asia, and its pericarps have been used as traditional medicine. Phytochemical studies have shown that they contain a variety of secondary metabolites, such as oxygenated and prenylated xanthones. Recent studies revealed that these xanthones exhibited a variety of biological activities containing anti-inflammatory, anti-bacterial, and anti-cancer effects. We previously investigated the anti-proliferative effects of four prenylated xanthones from the pericarps; α-mangostin, β-mangostin, γ-mangostin, and methoxy-β-mangostin in various human cancer cells. These xanthones are different in the number of hydroxyl and methoxy groups. Except for methoxy-β-mangostin, the other three xanthones strongly inhibited cell growth at low concentrations from 5 to 20 μM in human colon cancer DLD-1 cells. Our recent study focused on the mechanism of α-mangostin-induced growth inhibition in DLD-1 cells. It was shown that the anti-proliferative effects of the xanthones were associated with cell-cycle arrest by affecting the expression of cyclins, cdc2, and p27; G1 arrest by α- mangostin and β-mangostin, and S arrest by γ-mangostin. α-Mangostin found to induce apoptosis through the activation of intrinsic pathway following the down-regulation of signaling cascades involving MAP kinases and the serine/threonine kinase Akt. Synergistic effects by the combined treatment of α-mangostin and anti-cancer drug 5-FU was to be noted. α-Mangostin was found to have a cancer preventive effect in rat carcinogenesis bioassay and the extract from pericarps, which contains mainly α-mangostin and γ- mangostin, exhibited an enhancement of NK cell activity in a mouse model. These findings could provide a relevant basis for the development of xanthones as an agent for cancer prevention and the combination therapy with

  19. Efficacy of a non-hypercalcemic vitamin-D2 derived anti-cancer agent (MT19c and inhibition of fatty acid synthesis in an ovarian cancer xenograft model.

    Directory of Open Access Journals (Sweden)

    Richard G Moore

    Full Text Available BACKGROUND: Numerous vitamin-D analogs exhibited poor response rates, high systemic toxicities and hypercalcemia in human trials to treat cancer. We identified the first non-hypercalcemic anti-cancer vitamin D analog MT19c by altering the A-ring of ergocalciferol. This study describes the therapeutic efficacy and mechanism of action of MT19c in both in vitro and in vivo models. METHODOLOGY/PRINCIPAL FINDING: Antitumor efficacy of MT19c was evaluated in ovarian cancer cell (SKOV-3 xenografts in nude mice and a syngenic rat ovarian cancer model. Serum calcium levels of MT19c or calcitriol treated animals were measured. In-silico molecular docking simulation and a cell based VDR reporter assay revealed MT19c-VDR interaction. Genomewide mRNA analysis of MT19c treated tumors identified drug targets which were verified by immunoblotting and microscopy. Quantification of cellular malonyl CoA was carried out by HPLC-MS. A binding study with PPAR-Y receptor was performed. MT19c reduced ovarian cancer growth in xenograft and syngeneic animal models without causing hypercalcemia or acute toxicity. MT19c is a weak vitamin-D receptor (VDR antagonist that disrupted the interaction between VDR and coactivator SRC2-3. Genome-wide mRNA analysis and western blot and microscopy of MT19c treated xenograft tumors showed inhibition of fatty acid synthase (FASN activity. MT19c reduced cellular levels of malonyl CoA in SKOV-3 cells and inhibited EGFR/phosphoinositol-3kinase (PI-3K activity independently of PPAR-gamma protein. SIGNIFICANCE: Antitumor effects of non-hypercalcemic agent MT19c provide a new approach to the design of vitamin-D based anticancer molecules and a rationale for developing MT19c as a therapeutic agent for malignant ovarian tumors by targeting oncogenic de novo lipogenesis.

  20. Targeted deletion of the ara operon of Salmonella typhimurium enhances L-arabinose accumulation and drives PBAD-promoted expression of anti-cancer toxins and imaging agents.

    Science.gov (United States)

    Hong, Hyun; Lim, Daejin; Kim, Geun-Joong; Park, Seung-Hwan; Sik Kim, Hyeon; Hong, Yeongjin; Choy, Hyon E; Min, Jung-Joon

    2014-01-01

    Tumor-specific expression of antitumor drugs can be achieved using attenuated Salmonella typhimurium harboring the PBAD promoter, which is induced by L-arabinose. However, L-arabinose does not accumulate because it is metabolized to D-xylulose-5-P by enzymes encoded by the ara operon in Salmonellae. To address this problem, we developed an engineered strain of S. typhimurium in which the ara operon is deleted. Linear DNA transformation was performed using λ red recombinase to exchange the ara operon with linear DNA carrying an antibiotic-resistance gene with homology to regions adjacent to the ara operon. The ara operon-deleted strain and its parental strain were transformed with a plasmid encoding Renilla luciferase variant 8 (RLuc8) or cytolysin A (clyA) under the control of the PBAD promoter. Luciferase assays demonstrated that RLuc8 expression was 49-fold higher in the ara operon-deleted S. typhimurium than in the parental strain after the addition of L-arabinose. In vivo bioluminescence imaging showed that the tumor tissue targeted by the ara operon-deleted Salmonella had a stronger imaging signal (~30-fold) than that targeted by the parental strain. Mice with murine colon cancer (CT26) that had been injected with the ara operon-deleted S. typhimurium expressing clyA showed significant tumor suppression. The present report demonstrates that deletion of the ara operon of S. typhimurium enhances L-arabinose accumulation and thereby drives PBAD-promoted expression of cytotoxic agents and imaging agents. This is a promising approach for tumor therapy and imaging.

  1. Synthesis, characterization and biological evaluation of bile acid-aromatic/heteroaromatic amides linked via amino acids as anti-cancer agents.

    Science.gov (United States)

    Agarwal, Devesh S; Anantaraju, Hasitha Shilpa; Sriram, Dharmarajan; Yogeeswari, Perumal; Nanjegowda, Shankara H; Mallu, P; Sakhuja, Rajeev

    2016-03-01

    A series of bile acid (Cholic acid and Deoxycholic acid) aryl/heteroaryl amides linked via α-amino acid were synthesized and tested against 3 human cancer cell-lines (HT29, MDAMB231, U87MG) and 1 human normal cell line (HEK293T). Some of the conjugates showed promising results to be new anticancer agents with good in vitro results. More specifically, Cholic acid derivatives 6a (1.35 μM), 6c (1.41 μM) and 6m (4.52 μM) possessing phenyl, benzothiazole and 4-methylphenyl groups showed fairly good activity against the breast cancer cell line with respect to Cisplatin (7.21 μM) and comparable with respect to Doxorubicin (1 μM), while 6e (2.49μM), 6i (2.46 μM) and 6m (1.62 μM) showed better activity against glioblastoma cancer cell line with respect to both Cisplatin (2.60 μM) and Doxorubicin (3.78 μM) drugs used as standards. Greater than 65% of the compounds were found to be safer on human normal cell line.

  2. The combination of novel targeted molecular agents and radiation in the treatment of pediatric gliomas

    Directory of Open Access Journals (Sweden)

    Tina eDasgupta

    2013-05-01

    Full Text Available Brain tumors are the most common solid pediatric malignancy. For high-grade, recurrent or refractory pediatric brain tumors, radiation therapy (XRT is an integral treatment modality. In the era of personalized cancer therapy, molecularly targeted agents have been designed to inhibit pathways critical to tumorigenesis. Our evolving knowledge of genetic aberrations in low-grade gliomas is being exploited with targeted inhibitors. These agents are also being combined with XRT to increase their efficacy. In this review, we discuss novel agents targeting three different pathways in low-grade gliomas, and their potential combination with XRT. B-Raf is a kinase in the Ras/Raf/MAPK kinase pathway, which is integral to cellular division, survival and metabolism. In low-grade pediatric gliomas, point mutations in BRAF (BRAF V600E or a BRAF fusion mutation (KIAA1549:BRAF causes overactivation of the MEK/MAPK pathway. Pre-clinical data shows cooperation between XRT and tagrgeted inhibitors of BRAF V600E, and MEK and mTOR inhibitors in the gliomas with the BRAF fusion. A second important signaling cascade in pediatric glioma pathogenesis is the PI3 kinase (PI3K/mTOR pathway. Dual PI3K/mTOR inhibitors are poised to enter studies of pediatric tumors. Finally, many brain tumors express potent stimulators of angiogenesis. Several inhibitors of immunomodulators are currently being evaluated in in clinical trials for the treatment of recurrent or refractory pediatric central nervous system (CNS tumors. In summary, combinations of these targeted inhibitors with radiation are currently under investigation in both translational bench research and early clinical trials. We summarize the molecular rationale for, and the pre-clinical data supporting the combinations of these targeted agents with other anti-cancer agents and XRT in pediatric gliomas. Parallels are drawn to adult gliomas, and the molecular mechanisms underlying the efficacy of these agents is discussed

  3. Anti-cancer agents counteracting tumor glycolysis

    OpenAIRE

    Granchi, Carlotta; Minutolo, Filippo

    2012-01-01

    Can we consider cancer as a “metabolic disease”? Tumors are the result of a metabolic selection, forming tissues composed of heterogeneous cells that generally express an overactive metabolism as a common feature. In fact, cancer cells have to deal with increased needs for both energy and biosynthetic intermediates, in order to support their growth and invasiveness. However, their high proliferation rate often generates regions that are not sufficiently oxygenated. Therefore, their carbohydra...

  4. Anti-cancer Lead Molecule

    KAUST Repository

    Sagar, Sunil

    2014-04-17

    Derivatives of plumbagin can be selectively cytotoxic to breast cancer cells. Derivative `A` (Acetyl Plumbagin) has emerged as a lead molecule for testing against estrogen positive breast cancer and has shown low hepatotoxicity as well as overall lower toxicity in nude mice model. The toxicity of derivative `A` was determined to be even lower than vehicle control (ALT and AST markers). The possible mechanism of action identified based on the microarray experiments and pathway mapping shows that derivative `A` could be acting by altering the cholesterol-related mechanisms. The low toxicity profile of derivative `A` highlights its possible role\\'as future anti-cancer drug and/or as an adjuvant drug to reduce the toxicity of highly toxic chemotherapeutic\\'drugs

  5. Recent insights in nanotechnology-based drugs and formulations designed for effective anti-cancer therapy.

    Science.gov (United States)

    Piktel, Ewelina; Niemirowicz, Katarzyna; Wątek, Marzena; Wollny, Tomasz; Deptuła, Piotr; Bucki, Robert

    2016-05-26

    The rapid development of nanotechnology provides alternative approaches to overcome several limitations of conventional anti-cancer therapy. Drug targeting using functionalized nanoparticles to advance their transport to the dedicated site, became a new standard in novel anti-cancer methods. In effect, the employment of nanoparticles during design of antineoplastic drugs helps to improve pharmacokinetic properties, with subsequent development of high specific, non-toxic and biocompatible anti-cancer agents. However, the physicochemical and biological diversity of nanomaterials and a broad spectrum of unique features influencing their biological action requires continuous research to assess their activity. Among numerous nanosystems designed to eradicate cancer cells, only a limited number of them entered the clinical trials. It is anticipated that progress in development of nanotechnology-based anti-cancer materials will provide modern, individualized anti-cancer therapies assuring decrease in morbidity and mortality from cancer diseases. In this review we discussed the implication of nanomaterials in design of new drugs for effective antineoplastic therapy and describe a variety of mechanisms and challenges for selective tumor targeting. We emphasized the recent advantages in the field of nanotechnology-based strategies to fight cancer and discussed their part in effective anti-cancer therapy and successful drug delivery.

  6. Diverging Novobiocin Anti-Cancer Activity from Neuroprotective Activity through Modification of the Amide Tail.

    Science.gov (United States)

    Ghosh, Suman; Liu, Yang; Garg, Gaurav; Anyika, Mercy; McPherson, Nolan T; Ma, Jiacheng; Dobrowsky, Rick T; Blagg, Brian S J

    2016-08-11

    Novobiocin is a natural product that binds the Hsp90 C-terminus and manifests Hsp90 inhibitory activity. Structural investigations on novobiocin led to the development of both anti-cancer and neuroprotective agents. The varied pharmacological activity manifested by these novobiocin analogs prompted the investigation of structure-function studies to identify these contradictory effects, which revealed that modifications to the amide side chain produce either anti-cancer or neuroprotective activity. Compounds that exhibit neuroprotective activity contain a short alkyl or cycloalkyl amide side chain. In contrast, anti-cancer agents contain five or more carbons, disrupt interactions between Hsp90α and Aha1, and induce the degradation of Hsp90-dependent client proteins.

  7. Potential Anti-cancer Activity of Furanodiene

    Institute of Scientific and Technical Information of China (English)

    Zhen-zhen Ba; Yan-ping Zheng; Hui Zhang; Xiu-yan Sun; Dong-hai Lin

    2009-01-01

    Objective: To study the anti-tumor activities of furanodiene (C15H20O), a primary sesquiterpene compound isolated from the essential oil of the rhizome of Curcuma wenyujin YH Chen et C. Ling(Wen Ezhu), in vitro and in vivo.Methods: In vitro MTT assay was used to further study the effects of time and dosage on anti-proliferation of furanodiene against the sensitive Hela, Hep-2,HL-60, U251 cells, based on the cytotoxic effects of furanodiene on 12 human malignant tumor cell lines with the essential oil of Wen Ezhu as control., and the half-inhibitory concentration (IC50) was observed. In vivo uterine cervix (U14) tumor cell was selected and the conventional assay method of anti-tumor activity was employed. Furanodiene liposome was administered intraperitoneally, and tumor-inhibitory rate, thymus and spleen indexes were observed.Results: The inhibitive effects on cell proliferation were shown in all of the twelve cell lines and the cytotoxic effects of furanodiene against Hela, Hep-2, HL-60, U251 cells were observed after 12 h of administration, the effect could last for at least 48 h in a dose dependent manner, and the IC50 values were 0.6, 1.7, 1.8, 7.0 μg/ml, respectively. Furanodiene was also found to show inhibitive effects on the proliferation of uterine cervix (U14) tumor induced in mice. The tumor inhibition rates were 36.09% (40 mg/kg), 41.55% (60 mg/kg), 58.29% (80 mg/kg), respectively.Conclusion: Furanodiene is one of primary anti-cancer active components in the essential oil of Wen Ezhu, and also a very effective agent against uterine cervix cancer, and has protection effect on the immune function.

  8. Cell type-specific anti-cancer properties of valproic acid: independent effects on HDAC activity and Erk1/2 phosphorylation

    DEFF Research Database (Denmark)

    Gotfryd, Kamil; Skladchikova, Galina; Lepekhin, Eugene E

    2010-01-01

    ABSTRACT: BACKGROUND: The anti-epileptic drug valproic acid (VPA) has attracted attention as an anti-cancer agent. Methods: The present study investigated effects of VPA exposure on histone deacetylase (HDAC) inhibition, cell growth, cell speed, and the degree of Erk1/2 phosphorylation in 10 cell....../2 phosphorylation are also important for the anti-cancer properties of VPA....

  9. The combination of novel targeted molecular agents and radiation in the treatment of pediatric gliomas.

    Science.gov (United States)

    Dasgupta, Tina; Haas-Kogan, Daphne A

    2013-01-01

    microenvironment, including IL-2, IFN-γ, TNF-α, and IL-10, and is currently being evaluated in clinical trials for the treatment of recurrent or refractory pediatric central nervous system tumors. In summary, several targeted inhibitors with radiation are currently under investigation in both translational bench research and early clinical trials. This review article summarizes the molecular rationale for, and the pre-clinical data supporting the combinations of these targeted agents with other anti-cancer agents and XRT in pediatric gliomas. In many cases, parallels are drawn to molecular mechanisms and targeted inhibitors of adult gliomas. We additionally discuss the potential mechanisms underlying the efficacy of these agents.

  10. Natural product Celastrol destabilizes tubulin heterodimer and facilitates mitotic cell death triggered by microtubule-targeting anti-cancer drugs.

    Directory of Open Access Journals (Sweden)

    Hakryul Jo

    Full Text Available BACKGROUND: Microtubule drugs are effective anti-cancer agents, primarily due to their ability to induce mitotic arrest and subsequent cell death. However, some cancer cells are intrinsically resistant or acquire a resistance. Lack of apoptosis following mitotic arrest is thought to contribute to drug resistance that limits the efficacy of the microtubule-targeting anti-cancer drugs. Genetic or pharmacological agents that selectively facilitate the apoptosis of mitotic arrested cells present opportunities to strengthen the therapeutic efficacy. METHODOLOGY AND PRINCIPAL FINDINGS: We report a natural product Celastrol targets tubulin and facilitates mitotic cell death caused by microtubule drugs. First, in a small molecule screening effort, we identify Celastrol as an inhibitor of neutrophil chemotaxis. Subsequent time-lapse imaging analyses reveal that inhibition of microtubule-mediated cellular processes, including cell migration and mitotic chromosome alignment, is the earliest events affected by Celastrol. Disorganization, not depolymerization, of mitotic spindles appears responsible for mitotic defects. Celastrol directly affects the biochemical properties of tubulin heterodimer in vitro and reduces its protein level in vivo. At the cellular level, Celastrol induces a synergistic apoptosis when combined with conventional microtubule-targeting drugs and manifests an efficacy toward Taxol-resistant cancer cells. Finally, by time-lapse imaging and tracking of microtubule drug-treated cells, we show that Celastrol preferentially induces apoptosis of mitotic arrested cells in a caspase-dependent manner. This selective effect is not due to inhibition of general cell survival pathways or mitotic kinases that have been shown to enhance microtubule drug-induced cell death. CONCLUSIONS AND SIGNIFICANCE: We provide evidence for new cellular pathways that, when perturbed, selectively induce the apoptosis of mitotic arrested cancer cells, identifying a

  11. Methods for predicting anti-cancer response

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to methods for predicting response of a cancer in a subject to anti-cancer therapies based upon a determination and analysis of a chromosomal aberration score, such as the number of allelic imbalance or the number of telomeric allelic imbalance in the chromosomes...

  12. Anti-Cancer Properties of the Naturally Occurring Aphrodisiacs: Icariin and Its Derivatives

    Science.gov (United States)

    Tan, Hui-Li; Chan, Kok-Gan; Pusparajah, Priyia; Saokaew, Surasak; Duangjai, Acharaporn; Lee, Learn-Han; Goh, Bey-Hing

    2016-01-01

    Epimedium (family Berberidaceae), commonly known as Horny Goat Weed or Yin Yang Huo, is commonly used as a tonic, aphrodisiac, anti-rheumatic and anti-cancer agent in traditional herbal formulations in Asian countries such as China, Japan, and Korea. The major bioactive compounds present within this plant include icariin, icaritin and icariside II. Although it is best known for its aphrodisiac properties, scientific and pharmacological studies suggest it possesses broad therapeutic capabilities, especially for enhancing reproductive function and osteoprotective, neuroprotective, cardioprotective, anti-inflammatory and immunoprotective effects. In recent years, there has been great interest in scientific investigation of the purported anti-cancer properties of icariin and its derivatives. Data from in vitro and in vivo studies suggests these compounds demonstrate anti-cancer activity against a wide range of cancer cells which occurs through various mechanisms such as apoptosis, cell cycle modulation, anti-angiogenesis, anti-metastasis and immunomodulation. Of note, they are efficient at targeting cancer stem cells and drug-resistant cancer cells. These are highly desirable properties to be emulated in the development of novel anti-cancer drugs in combatting the emergence of drug resistance and overcoming the limited efficacy of current standard treatment. This review aims to summarize the anti-cancer mechanisms of icariin and its derivatives with reference to the published literature. The currently utilized applications of icariin and its derivatives in cancer treatment are explored with reference to existing patents. Based on the data compiled, icariin and its derivatives are shown to be compounds with tremendous potential for the development of new anti-cancer drugs. PMID:27445824

  13. Anti-Cancer Properties of the Naturally Occurring Aphrodisiacs: Icariin and Its Derivatives.

    Science.gov (United States)

    Tan, Hui-Li; Chan, Kok-Gan; Pusparajah, Priyia; Saokaew, Surasak; Duangjai, Acharaporn; Lee, Learn-Han; Goh, Bey-Hing

    2016-01-01

    Epimedium (family Berberidaceae), commonly known as Horny Goat Weed or Yin Yang Huo, is commonly used as a tonic, aphrodisiac, anti-rheumatic and anti-cancer agent in traditional herbal formulations in Asian countries such as China, Japan, and Korea. The major bioactive compounds present within this plant include icariin, icaritin and icariside II. Although it is best known for its aphrodisiac properties, scientific and pharmacological studies suggest it possesses broad therapeutic capabilities, especially for enhancing reproductive function and osteoprotective, neuroprotective, cardioprotective, anti-inflammatory and immunoprotective effects. In recent years, there has been great interest in scientific investigation of the purported anti-cancer properties of icariin and its derivatives. Data from in vitro and in vivo studies suggests these compounds demonstrate anti-cancer activity against a wide range of cancer cells which occurs through various mechanisms such as apoptosis, cell cycle modulation, anti-angiogenesis, anti-metastasis and immunomodulation. Of note, they are efficient at targeting cancer stem cells and drug-resistant cancer cells. These are highly desirable properties to be emulated in the development of novel anti-cancer drugs in combatting the emergence of drug resistance and overcoming the limited efficacy of current standard treatment. This review aims to summarize the anti-cancer mechanisms of icariin and its derivatives with reference to the published literature. The currently utilized applications of icariin and its derivatives in cancer treatment are explored with reference to existing patents. Based on the data compiled, icariin and its derivatives are shown to be compounds with tremendous potential for the development of new anti-cancer drugs.

  14. The promising alliance of anti-cancer electrochemotherapy with immunotherapy.

    Science.gov (United States)

    Calvet, Christophe Y; Mir, Lluis M

    2016-06-01

    Anti-tumor electrochemotherapy, which consists in increasing anti-cancer drug uptake by means of electroporation, is now implanted in about 140 cancer treatment centers in Europe. Its use is supported by the English National Institute for Health and Care Excellence for the palliative treatment of skin metastases, and about 13,000 cancer patients were treated by this technology by the end of 2015. Efforts are now focused on turning this local anti-tumor treatment into a systemic one. Electrogenetherapy, that is the electroporation-mediated transfer of therapeutic genes, is currently under clinical evaluation and has brought excitement to enlarge the anti-cancer armamentarium. Among the promising electrogenetherapy strategies, DNA vaccination and cytokine-based immunotherapy aim at stimulating anti-tumor immunity. We review here the interests and state of development of both electrochemotherapy and electrogenetherapy. We then emphasize the potent beneficial outcome of the combination of electrochemotherapy with immunotherapy, such as immune checkpoint inhibitors or strategies based on electrogenetherapy, to simultaneously achieve excellent local debulking anti-tumor responses and systemic anti-metastatic effects.

  15. Geldanamycin and its anti-cancer activities.

    Science.gov (United States)

    Fukuyo, Yayoi; Hunt, Clayton R; Horikoshi, Nobuo

    2010-04-01

    Geldanamycin is a benzoquinone ansamycin antibiotic that manifests anti-cancer activity through the inhibition of HSP90-chaperone function. The HSP90 molecular chaperone is expressed at high levels in a wide variety of human cancers including melanoma, leukemia, and cancers in colon, prostate, lung, and breast. In cancer cells dependent upon mutated and/or over-expressed oncogene proteins, HSP90 is thought to have a critical role in regulating the stability, folding, and activity of HSP90-associated proteins, so-called "client proteins". These client proteins include the growth-stimulating proteins and kinases that support malignant transformation. Recently, oncogenic activating BRAF mutants have been identified in variety of cancers where constitutive activation of the MEK/ERK MAPK signaling pathway is the key for tumorigenesis, and they have been shown to be client proteins for HSP90. Accordingly, HSP90 inhibition can suppress certain cancer-causing client proteins and therefore represents an important therapeutic target. The molecular mechanism underlying the anti-cancer effect of HSP90 inhibition is complicated. Geldanamycin and its derivatives have been shown to induce the depletion of mutationally-activated BRAF through several mechanisms. In this review, we will describe the HSP90-inhibitory mechanism, focusing on recent progress in understanding HSP90 chaperone structure-function relationships, the identification of new HSP90 client proteins and the development of HSP90 inhibitors for clinical applications.

  16. Teratogens as anti-cancer drugs.

    Science.gov (United States)

    Blagosklonny, Mikhail V

    2005-11-01

    Most anticancer drugs are teratogens, merely because they target vital cellular functions. Conversely, some plants produce agents that intentionally target embryonic signaling pathways, precisely to cause birth defects if pregnant animals eat such plants. Cyclopamine, a teratogen produced by a flowering plant, inhibits the Hh/Gli pathway, causing developmental defects such as cyclopia (one eye in the middle of the face). In theory, selective teratogens may suppress cancer cells that reactivate embryonic pathways, while sparing most normal cells. I discuss the potential (and limits) of teratogens in cancer therapy, linking diverse topics from morning sickness of pregnancy, embryonic pathways and poisonous plants to the mechanism of action of anticancer teratogens and their combinations with less selective cytotoxic agents.

  17. Mechanism of the induction of endoplasmic reticulum stress by the anti-cancer agent, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT): Activation of PERK/eIF2α, IRE1α, ATF6 and calmodulin kinase.

    Science.gov (United States)

    Merlot, Angelica M; Shafie, Nurul H; Yu, Yu; Richardson, Vera; Jansson, Patric J; Sahni, Sumit; Lane, Darius J R; Kovacevic, Zaklina; Kalinowski, Danuta S; Richardson, Des R

    2016-06-01

    The endoplasmic reticulum (ER) plays a major role in the synthesis, maturation and folding of proteins and is a critical calcium (Ca(2+)) reservoir. Cellular stresses lead to an overwhelming accumulation of misfolded proteins in the ER, leading to ER stress and the activation of the unfolded protein response (UPR). In the stressful tumor microenvironment, the UPR maintains ER homeostasis and enables tumor survival. Thus, a novel strategy for cancer therapeutics is to overcome chronically activated ER stress by triggering pro-apoptotic pathways of the UPR. Considering this, the mechanisms by which the novel anti-cancer agent, Dp44mT, can target the ER stress response pathways were investigated in multiple cell-types. Our results demonstrate that the cytotoxic chelator, Dp44mT, which forms redox-active metal complexes, significantly: (1) increased ER stress-associated pro-apoptotic signaling molecules (i.e., p-eIF2α, ATF4, CHOP); (2) increased IRE1α phosphorylation (p-IRE1α) and XBP1 mRNA splicing; (3) reduced expression of ER stress-associated cell survival signaling molecules (e.g., XBP1s and p58(IPK)); (4) increased cleavage of the transcription factor, ATF6, which enhances expression of its downstream targets (i.e., CHOP and BiP); and (5) increased phosphorylation of CaMKII that induces apoptosis. In contrast to Dp44mT, the iron chelator, DFO, which forms redox-inactive iron complexes, did not affect BiP, p-IRE1α, XBP1 or p58(IPK) levels. This study highlights the ability of a novel cancer therapeutic (i.e., Dp44mT) to target the pro-apoptotic functions of the UPR via cellular metal sequestration and redox stress. Assessment of ER stress-mediated apoptosis is fundamental to the understanding of the pharmacology of chelation for cancer treatment.

  18. Nanotech revolution for the anti-cancer drug delivery through blood-brain barrier.

    Science.gov (United States)

    Caraglia, M; De Rosa, G; Salzano, G; Santini, D; Lamberti, M; Sperlongano, P; Lombardi, A; Abbruzzese, A; Addeo, R

    2012-03-01

    Nanotechnology-based drug delivery was born as a chance for pharmaceutical weapons to be delivered in the body sites where drug action is required. Specifically, the incorporation of anti-cancer agents in nanodevices of 100-300 nm allows their delivery in tissues that have a fenestrated vasculature and a reduced lymphatic drainage. These two features are typical of neoplastic tissues and, therefore, allow the accumulation of nanostructured devices in tumours. An important issue of anti-cancer pharmacological strategies is the overcoming of anatomical barriers such as the bloodbrain- barrier (BBB) that protects brain from toxicological injuries but, at the same time, makes impossible for most of the pharmacological agents with anti-cancer activity to reach tumour cells placed in the brain and derived from either primary tumours or metastases. In fact, only highly lipophilic molecules can passively diffuse through BBB to reach central nervous system (CNS). Another possibility is to use nanotechnological approaches as powerful tools to across BBB, by both prolonging the plasma half-life of the drugs and crossing fenestrations of BBB damaged by brain metastases. Moreover, modifications of nanocarrier surface with specific endogenous or exogenous ligands can promote the crossing of intact BBB as in the case of primary brain tumours. This aim can be achieved through the binding of the nanodevices to carriers or receptors expressed by the endothelial cells of BBB and that can favour the internalization of the nanostructured devices delivering anti-cancer drugs. This review summarizes the most meaningful advances in the field of nanotechnologies for brain delivery of drugs.

  19. Mono- and combined antimicrobial agents efficiency in experimental wound infection

    Directory of Open Access Journals (Sweden)

    Наталія Ігорівна Філімонова

    2015-10-01

    Full Text Available Modern problems of antibiotic therapy are shown by wide range of side effects, both on organism and microbiological levels: the spread of allergies, toxic for organ systems reactions, dysbiosis development, and resistant pathogens formation and dissemination. Therefore the necessity of search for new effective drugs with significant antimicrobial activity applied for the wounds treatment arises. Development of combined remedies on the background of different origin antimicrobial agents’ derivatives is one of the fight directions against infectious diseases in the skin pathology. Recently among the existing antimicrobial agents one should focus on antiseptic drugs, due to degenerative and dysfunctional effect on microbial cell.Aim of research. The comparison of mono- and combined antimicrobial agents chemotherapeutic efficiency in the treatment of localized purulent infection under experimental conditions.Metods. The study of chemotherapeutic efficiency was carried out on the model of localized purulent Staphylococcus infection on albino mice weighting 14 – 16 g. S.aureus ATCC 25923 strains were used as infectious agents. The contamination was performed subcutaneously to the right side of mice’s skin after depilation. The animals were randomly divided into 4 groups: the 1st group – infected mice without treatment (control; the 2nd group – infected mice treated with a ciprofloxacin; the 3rd group – infected mice treated with a Ciprofloxacin and Decamethoxin combination; the 4th group – infected mice treated with a combined drug on the base of mutual prodrugs (Hexamethylenetetramine and Phenyl salicylate.Results. The efficiency of mono- and combined antimicrobial agents under experimental Staphylococcus wound infection conditions was studied. It was found that localized purulent staph center was formed more slowly in comparison with control and mono preparation use (2nd group of animals. The average index of skin lesions in comparison

  20. Combining Targeted Agents With Modern Radiotherapy in Soft Tissue Sarcomas

    Science.gov (United States)

    Wong, Philip; Houghton, Peter; Kirsch, David G.; Finkelstein, Steven E.; Monjazeb, Arta M.; Xu-Welliver, Meng; Dicker, Adam P.; Ahmed, Mansoor; Vikram, Bhadrasain; Teicher, Beverly A.; Coleman, C. Norman; Machtay, Mitchell; Curran, Walter J.

    2014-01-01

    Improved understanding of soft-tissue sarcoma (STS) biology has led to better distinction and subtyping of these diseases with the hope of exploiting the molecular characteristics of each subtype to develop appropriately targeted treatment regimens. In the care of patients with extremity STS, adjunctive radiation therapy (RT) is used to facilitate limb and function, preserving surgeries while maintaining five-year local control above 85%. In contrast, for STS originating from nonextremity anatomical sites, the rate of local recurrence is much higher (five-year local control is approximately 50%) and a major cause of death and morbidity in these patients. Incorporating novel technological advancements to administer accurate RT in combination with novel radiosensitizing agents could potentially improve local control and overall survival. RT efficacy in STS can be increased by modulating biological pathways such as angiogenesis, cell cycle regulation, cell survival signaling, and cancer-host immune interactions. Previous experiences, advancements, ongoing research, and current clinical trials combining RT with agents modulating one or more of the above pathways are reviewed. The standard clinical management of patients with STS with pretreatment biopsy, neoadjuvant treatment, and primary surgery provides an opportune disease model for interrogating translational hypotheses. The purpose of this review is to outline a strategic vision for clinical translation of preclinical findings and to identify appropriate targeted agents to combine with radiotherapy in the treatment of STS from different sites and/or different histology subtypes. PMID:25326640

  1. Enhanced vesicular stomatitis virus (VSVΔ51 targeting of head and neck cancer in combination with radiation therapy or ZD6126 vascular disrupting agent

    Directory of Open Access Journals (Sweden)

    Alajez Nehad M

    2012-06-01

    Full Text Available Abstract Background Head and neck squamous cell carcinoma (HNSCC is the 5th most common cancer worldwide. Locally advanced HNSCC are treated with either radiation or chemo-radiotherapy, but still associated with high mortality rate, underscoring the need to develop novel therapies. Oncolytic viruses have been garnering increasing interest as anti-cancer agents due to their preferential killing of transformed cells. In this study, we evaluated the therapeutic potential of mutant vesicular stomatitis virus (VSVΔ51 against the human hypopharyngeal FaDu tumour model in vitro and in vivo. Results Our data demonstrated high toxicity of the virus against FaDu cells in vitro, which was associated with induction of apoptosis. In vivo, systemic injection of 1 × 109 pfu had minimal effect on tumour growth; however, when combined with two doses of ionizing radiation (IR; 5 Gy each or a single injection of the vascular disrupting agent (ZD6126, the virus exhibited profound suppression of tumour growth, which translated to a prolonged survival in the treated mice. Concordantly, VSVΔ51 combined with ZD6126 led to a significant increase in viral replication in these tumours. Conclusions Our data suggest that the combinations of VSVΔ51 with either IR or ZD6126 are potentially novel therapeutic opportunities for HNSCC.

  2. Anti-cancer activities of diospyrin, its derivatives and analogues

    KAUST Repository

    Sagar, Sunil

    2010-09-01

    Natural products have played a vital role in drug discovery and development process for cancer. Diospyrin, a plant based bisnaphthoquinonoid, has been used as a lead molecule in an effort to develop anti-cancer drugs. Several derivatives/analogues have been synthesized and screened for their pro-apoptotic/anti-cancer activities so far. Our review is focused on the pro-apoptotic/anti-cancer activities of diospyrin, its derivatives/analogues and the different mechanisms potentially involved in the bioactivity of these compounds. Particular focus has been placed on the different mechanisms (both chemical and molecular) thought to underlie the bioactivity of these compounds. A brief bioinformatics analysis at the end of the article provides novel insights into the new potential mechanisms and pathways by which these compounds might exert their effects and lead to a better realization of the full therapeutic potential of these compounds as anti-cancer drugs. © 2010 Elsevier Masson SAS. All rights reserved.

  3. SWCNT-Polymer Nanocomplexes for Anti-Cancer Drug Delivery

    Science.gov (United States)

    Withey, Paul; Momin, Zoya; Bommoju, Anvesh; Hoang, Trung; Rashid, Bazlur

    2015-03-01

    Utilization of single-walled carbon nanotubes (SWCNTs) as more effective drug-delivery agents are being considered due to their ability to easily cross cell membranes, while their high aspect ratio and large surface area provide multiple attachment sites for biocompatible drug complexes. However, excessive bundling of pristine SWCNTs caused by strong attractive Van der Walls forces between CNT sidewalls is a major obstacle. We have successfully dispersed SWCNTs with both polyvinyl alcohol and Pluronic biocompatible polymers, and attached anti-cancer drugs Camptothecin (CPT) and Doxorubicin to form non-covalent CNT-polymer-drug conjugates in aqueous solution. Polymeric dispersion of SWCNTs by both polymers is confirmed by clearly identifiable near-infrared (NIR) fluorescence emission peaks of individual (7,5) and (7,6) nanotubes, and drug attachment to form complete complexes verified by UV-Vis spectroscopy. These complexes, with varying SWCNT and drug concentrations, were tested for effectiveness by exposing them to a line of human embryonic kidney cancer cells and analyzed for cell viability. Preliminary results indicate significant improvement in drug effectiveness on the cancer cells, with more successful internalization due to unaltered SWCNTs as the drug carriers. Supported by the UHCL Faculty Research Support Fund.

  4. Copper and conquer: copper complexes of di-2-pyridylketone thiosemicarbazones as novel anti-cancer therapeutics.

    Science.gov (United States)

    Park, Kyung Chan; Fouani, Leyla; Jansson, Patric J; Wooi, Danson; Sahni, Sumit; Lane, Darius J R; Palanimuthu, Duraippandi; Lok, Hiu Chuen; Kovačević, Zaklina; Huang, Michael L H; Kalinowski, Danuta S; Richardson, Des R

    2016-09-01

    Copper is an essential trace metal required by organisms to perform a number of important biological processes. Copper readily cycles between its reduced Cu(i) and oxidised Cu(ii) states, which makes it redox active in biological systems. This redox-cycling propensity is vital for copper to act as a catalytic co-factor in enzymes. While copper is essential for normal physiology, enhanced copper levels in tumours leads to cancer progression. In particular, the stimulatory effect of copper on angiogenesis has been established in the last several decades. Additionally, it has been demonstrated that copper affects tumour growth and promotes metastasis. Based on the effects of copper on cancer progression, chelators that bind copper have been developed as anti-cancer agents. In fact, a novel class of thiosemicarbazone compounds, namely the di-2-pyridylketone thiosemicarbazones that bind copper, have shown great promise in terms of their anti-cancer activity. These agents have a unique mechanism of action, in which they form redox-active complexes with copper in the lysosomes of cancer cells. Furthermore, these agents are able to overcome P-glycoprotein (P-gp) mediated multi-drug resistance (MDR) and act as potent anti-oncogenic agents through their ability to up-regulate the metastasis suppressor protein, N-myc downstream regulated gene-1 (NDRG1). This review provides an overview of the metabolism and regulation of copper in normal physiology, followed by a discussion of the dysregulation of copper homeostasis in cancer and the effects of copper on cancer progression. Finally, recent advances in our understanding of the mechanisms of action of anti-cancer agents targeting copper are discussed.

  5. The slow-releasing hydrogen sulfide donor, GYY4137, exhibits novel anti-cancer effects in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Zheng Wei Lee

    Full Text Available The slow-releasing hydrogen sulfide (H₂S donor, GYY4137, caused concentration-dependent killing of seven different human cancer cell lines (HeLa, HCT-116, Hep G2, HL-60, MCF-7, MV4-11 and U2OS but did not affect survival of normal human lung fibroblasts (IMR90, WI-38 as determined by trypan blue exclusion. Sodium hydrosulfide (NaHS was less potent and not active in all cell lines. A structural analogue of GYY4137 (ZYJ1122 lacking sulfur and thence not able to release H₂S was inactive. Similar results were obtained using a clonogenic assay. Incubation of GYY4137 (400 µM in culture medium led to the generation of low (<20 µM concentrations of H₂S sustained over 7 days. In contrast, incubation of NaHS (400 µM in the same way led to much higher (up to 400 µM concentrations of H₂S which persisted for only 1 hour. Mechanistic studies revealed that GYY4137 (400 µM incubated for 5 days with MCF-7 but not IMR90 cells caused the generation of cleaved PARP and cleaved caspase 9, indicative of a pro-apoptotic effect. GYY4137 (but not ZYJ1122 also caused partial G₂/M arrest of these cells. Mice xenograft studies using HL-60 and MV4-11 cells showed that GYY4137 (100-300 mg/kg/day for 14 days significantly reduced tumor growth. We conclude that GYY4137 exhibits anti-cancer activity by releasing H₂S over a period of days. We also propose that a combination of apoptosis and cell cycle arrest contributes to this effect and that H₂S donors should be investigated further as potential anti-cancer agents.

  6. Combination therapy with leflunomide and genetic engineering biological agents

    Directory of Open Access Journals (Sweden)

    Nataliya Vladimirovna Chichasova

    2011-06-01

    Full Text Available The paper gives data on the use of a combination of genetic engineering biological agents (GEBAs and leflunomide in patients with rheumatoid arthritis (RA. In accordance with the international guidelines, the majority of GEBAs should be given in a combination with methotrexate (MTX, which increases the efficacy of a number of GEBAs (tumor necrosis factor-α inhibitors, rituximab and affects tolerability (remikeid, humira. However, MTX cannot be always used in real practice. The data given in the paper on the efficiency and safety of the coadministration of leflunomide and a GEBA in patients with active RA, which are based on the results of randomized studies and national registers, including the Russian one, point to the compatibility of the results of treatment with this and GEBA-MTX combinations.

  7. Hedgehog Signaling Inhibitors as Anti-Cancer Agents in Osteosarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Ram Kumar, Ram Mohan, E-mail: rkumar@research.balgrist.ch; Fuchs, Bruno [Laboratory for Orthopaedic Research, Balgrist University Hospital, Sarcoma Center-UZH University of Zurich, Zurich 8008 (Switzerland)

    2015-05-13

    Osteosarcoma is a rare type of cancer associated with a poor clinical outcome. Even though the pathologic characteristics of OS are well established, much remains to be understood, particularly at the molecular signaling level. The molecular mechanisms of osteosarcoma progression and metastases have not yet been fully elucidated and several evolutionary signaling pathways have been found to be linked with osteosarcoma pathogenesis, especially the hedgehog signaling (Hh) pathway. The present review will outline the importance and targeting the hedgehog signaling (Hh) pathway in osteosarcoma tumor biology. Available data also suggest that aberrant Hh signaling has pro-migratory effects and leads to the development of osteoblastic osteosarcoma. Activation of Hh signaling has been observed in osteosarcoma cell lines and also in primary human osteosarcoma specimens. Emerging data suggests that interference with Hh signal transduction by inhibitors may reduce osteosarcoma cell proliferation and tumor growth thereby preventing osteosarcomagenesis. From this perspective, we outline the current state of Hh pathway inhibitors in osteosarcoma. In summary, targeting Hh signaling by inhibitors promise to increase the efficacy of osteosarcoma treatment and improve patient outcome.

  8. Biological Activities of Fusarochromanone: a Potent Anti-cancer Agent

    Science.gov (United States)

    2014-09-03

    dependent endothelial cell proli- feration at all doses beginning at 10 nM (Figure 10). Discussion FC101 is a small molecule fungal metabolite that has very...purity (>98%) was confirmed by 1H-NMR, 13C-NMR, and UV –vis spectroscopy. Cell lines and culture Seven human tumor cell lines were used in this study... secondary anti- bodies. The following primary antibodies were used: p38, phospho-p38 (Thr180/Tyr182), PARP, Bcl-2, Mcl-1, surviving, (all from Santa

  9. Sea Cucumbers Metabolites as Potent Anti-Cancer Agents.

    Science.gov (United States)

    Janakiram, Naveena B; Mohammed, Altaf; Rao, Chinthalapally V

    2015-05-12

    Sea cucumbers and their extracts have gained immense popularity and interest among researchers and nutritionists due to their nutritive value, potential health benefits, and use in the treatment of chronic inflammatory diseases. Many areas of the world use sea cucumbers in traditional foods and folk medicine. Though the actual components and their specific functions still remain to be investigated, most sea cucumber extracts are being studied for their anti-inflammatory functions, immunostimulatory properties, and for cancer prevention and treatment. There is large scope for the discovery of additional bioactive, valuable compounds from this natural source. Sea cucumber extracts contain unique components, such as modified triterpene glycosides, sulfated polysaccharides, glycosphingolipids, and esterified phospholipids. Frondanol A5, an isopropyl alcohol/water extract of the enzymatically hydrolyzed epithelia of the edible North Atlantic sea cucumber, Cucumaria frondosa, contains monosulfated triterpenoid glycoside Frondoside A, the disulfated glycoside Frondoside B, the trisulfated glycoside Frondoside C, 12-methyltetradecanoic acid, eicosapentaenoic acid, and fucosylated chondroitin sulfate. We have extensively studied the efficacy of this extract in preventing colon cancer in rodent models. In this review, we discuss the anti-inflammatory, immunostimulatory, and anti-tumor properties of sea cucumber extracts.

  10. Sea Cucumbers Metabolites as Potent Anti-Cancer Agents

    OpenAIRE

    Janakiram, Naveena B; Altaf Mohammed; RAO, CHINTHALAPALLY V.

    2015-01-01

    Sea cucumbers and their extracts have gained immense popularity and interest among researchers and nutritionists due to their nutritive value, potential health benefits, and use in the treatment of chronic inflammatory diseases. Many areas of the world use sea cucumbers in traditional foods and folk medicine. Though the actual components and their specific functions still remain to be investigated, most sea cucumber extracts are being studied for their anti-inflammatory functions, immunostimu...

  11. Sea Cucumbers Metabolites as Potent Anti-Cancer Agents

    Directory of Open Access Journals (Sweden)

    Naveena B. Janakiram

    2015-05-01

    Full Text Available Sea cucumbers and their extracts have gained immense popularity and interest among researchers and nutritionists due to their nutritive value, potential health benefits, and use in the treatment of chronic inflammatory diseases. Many areas of the world use sea cucumbers in traditional foods and folk medicine. Though the actual components and their specific functions still remain to be investigated, most sea cucumber extracts are being studied for their anti-inflammatory functions, immunostimulatory properties, and for cancer prevention and treatment. There is large scope for the discovery of additional bioactive, valuable compounds from this natural source. Sea cucumber extracts contain unique components, such as modified triterpene glycosides, sulfated polysaccharides, glycosphingolipids, and esterified phospholipids. Frondanol A5, an isopropyl alcohol/water extract of the enzymatically hydrolyzed epithelia of the edible North Atlantic sea cucumber, Cucumaria frondosa, contains monosulfated triterpenoid glycoside Frondoside A, the disulfated glycoside Frondoside B, the trisulfated glycoside Frondoside C, 12-methyltetradecanoic acid, eicosapentaenoic acid, and fucosylated chondroitin sulfate. We have extensively studied the efficacy of this extract in preventing colon cancer in rodent models. In this review, we discuss the anti-inflammatory, immunostimulatory, and anti-tumor properties of sea cucumber extracts.

  12. Sacubitril/Valsartan: A Novel Cardiovascular Combination Agent.

    Science.gov (United States)

    Sible, Alexandra M; Nawarskas, James J; Alajajian, David; Anderson, Joe R

    2016-01-01

    Sacubitril/valsartan [LCZ696 (Entresto), Novartis Pharmaceuticals Corp.] is the first in a new class of drugs that combines neprilysin inhibition with angiotensin II receptor antagonism, the combination of which acts to increase endogenous natriuretic peptides while inhibiting the renin-angiotensin-aldosterone system. Sacubitril/valsartan has been studied in the treatment of hypertension, heart failure with reduced ejection fraction (HFrEF), and heart failure with preserved ejection fraction (HFpEF) and has demonstrated clinical efficacy in blood pressure reduction in hypertensive patients with and without HFpEF and a reduction in hospitalizations and mortality for patients with HFrEF. Research to evaluate clinical outcomes in HFpEF is ongoing. Sacubitril/valsartan is approved to reduce hospitalization and risk of cardiovascular death for patients with HFrEF in New York Heart Association (NYHA) functional class II-IV. The product is as well tolerated as an angiotensin-converting enzyme inhibitor, with the most common side effect being hypotension. Expectedly, it is much more costly than generic angiotensin-converting enzyme inhibitors or angiotensin receptor antagonists, which will be a factor in determining how widespread the use of this agent will be. In summary, although the number of published studies evaluating its use is limited, sacubitril/valsartan represents a promising new treatment option for patients with HFrEF. Ongoing studies will continue to refine the role of this agent in clinical practice.

  13. Targeting Anti-Cancer Active Compounds: Affinity-Based Chromatographic Assays

    Science.gov (United States)

    de Moraes, Marcela Cristina; Cardoso, Carmen Lucia; Seidl, Claudia; Moaddel, Ruin; Cass, Quezia Bezerra

    2016-01-01

    Affinity-based chromatography assays encompass the use of solid supports containing immobilized biological targets to monitor binding events in the isolation , identification and/or characterization of bioactive compounds. This powerful bioanalytical technique allows the screening of potential binders through fast analyses that can be directly performed using isolated substances or complex matrices. An overview of the recent researches in frontal and zonal affinity-based chromatography screening assays, which has been used as a tool in the identification and characterization of new anti-cancer agents, is discussed. In addition, a critical evaluation of the recently emerged ligands fishing assays in complex mixtures is also discussed. PMID:27306095

  14. Anti-cancer natural products isolated from chinese medicinal herbs

    Directory of Open Access Journals (Sweden)

    Wu Guosheng

    2011-07-01

    Full Text Available Abstract In recent years, a number of natural products isolated from Chinese herbs have been found to inhibit proliferation, induce apoptosis, suppress angiogenesis, retard metastasis and enhance chemotherapy, exhibiting anti-cancer potential both in vitro and in vivo. This article summarizes recent advances in in vitro and in vivo research on the anti-cancer effects and related mechanisms of some promising natural products. These natural products are also reviewed for their therapeutic potentials, including flavonoids (gambogic acid, curcumin, wogonin and silibinin, alkaloids (berberine, terpenes (artemisinin, β-elemene, oridonin, triptolide, and ursolic acid, quinones (shikonin and emodin and saponins (ginsenoside Rg3, which are isolated from Chinese medicinal herbs. In particular, the discovery of the new use of artemisinin derivatives as excellent anti-cancer drugs is also reviewed.

  15. Hydrofocusing Bioreactor Produces Anti-Cancer Alkaloids

    Science.gov (United States)

    Gonda, Steve R.; Valluri, Jagan V.

    2011-01-01

    microgravitation of an HFB do not need to maintain the same surface forces as in normal Earth gravitation, they can divert more energy sources to growth and differentiation and, perhaps, to biosynthesis of greater quantities of desired medicinal compounds. Because one can adjust the HFB to vary effective gravitation, one can also test the effects of intermediate levels of gravitation on biosynthesis of various products. The potential utility of this methodology for producing drugs was demonstrated in experiments in which sandalwood and Madagascar periwinkle cells were grown in an HFB. The conditions in the HFB were chosen to induce the cells to form into aggregate cultures that produced anti-cancer indole alkaloids in amounts greater than do comparable numbers of cells of the same species cultured according to previously known methodologies. The observations made in these experiments were interpreted as suggesting that the aggregation of the cells might be responsible for the enhancement of production of alkaloids.

  16. Anti-cancer action of 4-iodo-3-nitrobenzamide in combination with buthionine sulfoximine: inactivation of poly(ADP-ribose) polymerase and tumor glycolysis and the appearance of a poly(ADP-ribose) polymerase protease.

    Science.gov (United States)

    Bauer, Pal I; Mendeleyeva, Jerome; Kirsten, Eva; Comstock, John A; Hakam, Alaeddin; Buki, Kalman G; Kun, Ernest

    2002-02-01

    E-ras 20 tumorigenic malignant cells and CV-1 non-tumorigenic cells were treated with a drug combination of 4-iodo-3-nitrobenzamide (INO(2)BA) and buthionine sulfoximine (BSO). Growth inhibition of E-ras 20 cells by INO(2)BA was augmented 4-fold when cellular GSH content was diminished by BSO, but the growth rate of CV-1 cells was not affected by the drug combination. Analyses of the intracellular fate of the prodrug INO(2)BA revealed that in E-ras 20 cells about 50% of the intracellular reduced drug was covalently protein-bound, and this binding was dependent upon BSO, whereas in CV-1 cells BSO did not influence protein binding. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was identified as the protein that covalently binds the reduction product of INO(2)BA, which is 4-iodo-3-nitrosobenzamide. Since only the enzymatically reduced drug INOBA bound covalently to GAPDH, the BSO-dependent covalent protein-drug association indicated an apparent nitro-reductase activity present in E-ras 20 cells, but not in CV-1 cells, explaining the selective toxicity. Covalent binding of INOBA to GAPDH inactivated this enzyme in vitro; INO(2)BA+BSO also inactivated cellular glycolysis in E-ras 20 cells because it provided the precursor to the inhibitory species: INOBA. Another event that occurred in INO(2)BA+BSO-treated E-ras 20 cells was the progressive appearance of a poly(ADP-ribose) polymerase protease. This enzyme was partially purified and characterized by the polypeptide degradation product generated from PARP I, which exhibited a 50kDa mass. This pattern of proteolysis of PARP I is consistent with a drug-induced necrotic cell killing pathway.

  17. Furanodiene enhances the anti-cancer effects of doxorubicin on ERα-negative breast cancer cells in vitro.

    Science.gov (United States)

    Zhong, Zhang-Feng; Qiang, Wen-An; Wang, Chun-Ming; Tan, Wen; Wang, Yi-Tao

    2016-03-05

    Furanodiene is a natural product isolated from Rhizoma curcumae, and exhibits broad-spectrum anti-cancer activities in vitro and in vivo. Our previous study proved that furanodiene could increase growth inhibition of steroidal agent in ERα-positive breast cancer cells, but whether furanodiene can influence ER status is not clear. In this study, we confirmed that furanodiene down-regulated the ERα protein expression level and inhibited E2-induced estrogen response element (ERE)-driven reporter plasmid activity in ERα-positive MCF-7 cells. Actually, ERα-knockdown cells were more sensitive than ERα positive cells to furanodiene on the cytotoxicity effect. So the anti-cancer effects of furanodiene and non-steroidal agent in breast cancer cells still requires further investigation. Our results showed that furanodiene exposure could enhance growth inhibitory effects of doxorubicin in ERα-negative MDA-MB-231 cells and ERα-low expression 4T1 cells. However, furanodiene did not increase the cytotoxicity of doxorubicin in ERα-positive breast cancer cells, non-tumorigenic breast epithelial cells, macrophage cells, hepatocytes cells, pheochromocytoma cells and cardiac myoblasts cells. Furanodiene enhances the anti-cancer effects of doxorubicin in ERα-negative breast cancer cells through suppressing cell viability via inducing apoptosis in mitochondria-caspases-dependent and reactive oxygen species-independent manners. These results indicate that furanodiene may be a promising and safety natural agent for cancer adjuvant therapy in the future.

  18. Tanshinones: Sources, Pharmacokinetics and Anti-Cancer Activities

    Directory of Open Access Journals (Sweden)

    Sung-Hoon Kim

    2012-10-01

    Full Text Available Tanshinones are a class of abietane diterpene compound isolated from Salvia miltiorrhiza (Danshen or Tanshen in Chinese, a well-known herb in Traditional Chinese Medicine (TCM. Since they were first identified in the 1930s, more than 40 lipophilic tanshinones and structurally related compounds have been isolated from Danshen. In recent decades, numerous studies have been conducted to investigate the isolation, identification, synthesis and pharmacology of tanshinones. In addition to the well-studied cardiovascular activities, tanshinones have been investigated more recently for their anti-cancer activities in vitro and in vivo. In this review, we update the herbal and alternative sources of tanshinones, and the pharmacokinetics of selected tanshinones. We discuss anti-cancer properties and identify critical issues for future research. Whereas previous studies have suggested anti-cancer potential of tanshinones affecting multiple cellular processes and molecular targets in cell culture models, data from in vivo potency assessment experiments in preclinical models vary greatly due to lack of uniformity of solvent vehicles and routes of administration. Chemical modifications and novel formulations had been made to address the poor oral bioavailability of tanshinones. So far, human clinical trials have been far from ideal in their design and execution for the purpose of supporting an anti-cancer indication of tanshinones.

  19. Personalizing Anti-Cancer Treatment from Genetic and Pharmacokinetic Perspective

    NARCIS (Netherlands)

    S. Bins (Sander)

    2017-01-01

    markdownabstractOnly recently, systemic anti-cancer treatment consisted of little more than chemotherapy, targeting mitosis in rapidly dividing cells such as cancer cells. Increasing biological insight has led to the development of more biology driven treatments, e.g. tyrosine kinase inhibitors and

  20. Mitochondrial chaperones may be targets for anti-cancer drugs

    Science.gov (United States)

    Scientists at NCI have found that a mitochondrial chaperone protein, TRAP1, may act indirectly as a tumor suppressor as well as a novel target for developing anti-cancer drugs. Chaperone proteins, such as TRAP1, help other proteins adapt to stress, but sc

  1. Human-Agent Decision-making: Combining Theory and Practice

    Directory of Open Access Journals (Sweden)

    Sarit Kraus

    2016-06-01

    Full Text Available Extensive work has been conducted both in game theory and logic to model strategic interaction. An important question is whether we can use these theories to design agents for interacting with people? On the one hand, they provide a formal design specification for agent strategies. On the other hand, people do not necessarily adhere to playing in accordance with these strategies, and their behavior is affected by a multitude of social and psychological factors. In this paper we will consider the question of whether strategies implied by theories of strategic behavior can be used by automated agents that interact proficiently with people. We will focus on automated agents that we built that need to interact with people in two negotiation settings: bargaining and deliberation. For bargaining we will study game-theory based equilibrium agents and for argumentation we will discuss logic-based argumentation theory. We will also consider security games and persuasion games and will discuss the benefits of using equilibrium based agents.

  2. PEGylation in anti-cancer therapy: An overview

    Directory of Open Access Journals (Sweden)

    Prajna Mishra

    2016-06-01

    Full Text Available Advanced drug delivery systems using poly(ethylene glycol (PEG is an important development in anti-cancer therapy. PEGylation has the ability to enhance the retention time of the therapeutics like proteins, enzymes small molecular drugs, liposomes and nanoparticles by protecting them against various degrading mechanisms active inside a tissue or cell, which consequently improves their therapeutic potential. PEGylation effectively alters the pharmacokinetics (PK of a variety of drugs and dramatically improves the pharmaceutical values; recent development of which includes fabrication of stimuli-sensitive polymers/smart polymers and polymeric micelles to cope of with the pathophysiological environment of targeted site with less toxic effects and more effectiveness. This overview discusses PEGylation involving proteins, enzymes, low molecular weight drugs, liposomes and nanoparticles that has been developed, clinically tried for anti-cancer therapy during the last decade.

  3. Microfluidics: Emerging prospects for anti-cancer drug screening.

    Science.gov (United States)

    Wlodkowic, Donald; Darzynkiewicz, Zbigniew

    2010-11-10

    Cancer constitutes a heterogenic cellular system with a high level of spatio-temporal complexity. Recent discoveries by systems biologists have provided emerging evidence that cellular responses to anti-cancer modalities are stochastic in nature. To uncover the intricacies of cell-to-cell variability and its relevance to cancer therapy, new analytical screening technologies are needed. The last decade has brought forth spectacular innovations in the field of cytometry and single cell cytomics, opening new avenues for systems oncology and high-throughput real-time drug screening routines. The up-and-coming microfluidic Lab-on-a-Chip (LOC) technology and micro-total analysis systems (μTAS) are arguably the most promising platforms to address the inherent complexity of cellular systems with massive experimental parallelization and 4D analysis on a single cell level. The vast miniaturization of LOC systems and multiplexing enables innovative strategies to reduce drug screening expenditures while increasing throughput and content of information from a given sample. Small cell numbers and operational reagent volumes are sufficient for microfluidic analyzers and, as such, they enable next generation high-throughput and high-content screening of anti-cancer drugs on patient-derived specimens. Herein we highlight the selected advancements in this emerging field of bioengineering, and provide a snapshot of developments with relevance to anti-cancer drug screening routines.

  4. Design, synthesis and evaluation of novel 2-thiophen-5-yl-3H-quinazolin-4-one analogues as inhibitors of transcription factors NF-kappaB and AP-1 mediated transcriptional activation: Their possible utilization as anti-inflammatory and anti-cancer agents.

    Science.gov (United States)

    Giri, Rajan S; Thaker, Hardik M; Giordano, Tony; Williams, Jill; Rogers, Donna; Vasu, Kamala K; Sudarsanam, Vasudevan

    2010-04-01

    In an attempt to discover novel inhibitors of NF-kappaB and AP-1 mediated transcriptional activation utilizing the concept of chemical lead based medicinal chemistry and bioisosterism a series of 2-(2,3-disubstituted-thiophen-5-yl)-3H-quinazolin-4-one analogs was designed. A facile and simple route for the synthesis of the designed molecules was developed. Synthesized molecules were evaluated for their activity as inhibitors towards NF-kappaB and AP-1 mediated transcriptional activation in a cell line report-based assay. This series provides us with a substantial number of compounds inhibiting the activity of NF-kappaB and/or AP-1 mediated transcriptional activation. These compounds also exhibit anti-inflammatory and anti-cancer activity in in vivo models of inflammation and cancer. The 4-pyridyl group is found to be the most important pharmacophore on the third position of thiophene ring for inhibiting NF-kappaB and AP-1 mediated transcriptional activation. The relationships between the activities shown by these compounds in the in vivo and in vitro models have been established by using FVB transgenic mice model. These results suggest the suitability of the designed molecular framework as a potential scaffold for the design of molecules with inhibitory activity towards NF-kappaB and AP-1 mediated transcriptional activation, which may also exhibit anti-inflammatory and anti-cancer activity. This series of molecules warrants further study to explore their potential as therapies for use in chronic inflammatory conditions and cancer. Development of the synthetic protocol for the synthesis of this series of molecules, biological activities and a structure-activity relationship (SAR) have been discussed herein.

  5. Autophagy inhibits cell death induced by the anti-cancer drug morusin

    Science.gov (United States)

    Cho, Sang Woo; Na, Wooju; Choi, Minji; Kang, Shin Jung; Lee, Seok-Geun; Choi, Cheol Yong

    2017-01-01

    Autophagy is a cellular process by which damaged organelles and dysfunctional proteins are degraded. Morusin is an anti-cancer drug isolated from the root bark of Morus alba. Morusin induces apoptosis in human prostate cancer cells by reducing STAT3 activity. In this study, we examined whether morusin induces autophagy and also examined the effects of autophagy on the morusin-induced apoptosis. Morusin induces LC3-II accumulation and ULK1 activation in HeLa cells. In addition, we found that induction of ULK1 Ser317 phosphorylation and reduction of ULK1 Ser757 phosphorylation occurred simultaneously during morusin-induced autophagy. Consistently, morusin induces autophagy by activation of AMPK and inhibition of mTOR activity. Next, we investigated the role of autophagy in morusin-induced apoptosis. Inhibition of autophagy by treating cells with the 3-methyladenine (3-MA) autophagic inhibitor induces high levels of morusin-mediated apoptosis, while treatment of cells with morusin alone induces moderate levels of apoptosis. Cell survival was greatly reduced when cells were treated with morusin and 3-MA. Taken together, morusin induces autophagy, which is an impediment for morusin-induced apoptosis, suggesting combined treatment of morusin with an autophagic inhibitor would increase the efficacy of morusin as an anti-cancer drug.

  6. Toward Repurposing Metformin as a Precision Anti-Cancer Therapy Using Structural Systems Pharmacology

    Science.gov (United States)

    Hart, Thomas; Dider, Shihab; Han, Weiwei; Xu, Hua; Zhao, Zhongming; Xie, Lei

    2016-01-01

    Metformin, a drug prescribed to treat type-2 diabetes, exhibits anti-cancer effects in a portion of patients, but the direct molecular and genetic interactions leading to this pleiotropic effect have not yet been fully explored. To repurpose metformin as a precision anti-cancer therapy, we have developed a novel structural systems pharmacology approach to elucidate metformin’s molecular basis and genetic biomarkers of action. We integrated structural proteome-scale drug target identification with network biology analysis by combining structural genomic, functional genomic, and interactomic data. Through searching the human structural proteome, we identified twenty putative metformin binding targets and their interaction models. We experimentally verified the interactions between metformin and our top-ranked kinase targets. Notably, kinases, particularly SGK1 and EGFR were identified as key molecular targets of metformin. Subsequently, we linked these putative binding targets to genes that do not directly bind to metformin but whose expressions are altered by metformin through protein-protein interactions, and identified network biomarkers of phenotypic response of metformin. The molecular targets and the key nodes in genetic networks are largely consistent with the existing experimental evidence. Their interactions can be affected by the observed cancer mutations. This study will shed new light into repurposing metformin for safe, effective, personalized therapies. PMID:26841718

  7. Extracellular control of intracellular drug release for enhanced safety of anti-cancer chemotherapy

    Science.gov (United States)

    Zhu, Qian; Qi, Haixia; Long, Ziyan; Liu, Shang; Huang, Zhen; Zhang, Junfeng; Wang, Chunming; Dong, Lei

    2016-06-01

    The difficulty of controlling drug release at an intracellular level remains a key challenge for maximising drug safety and efficacy. We demonstrate herein a new, efficient and convenient approach to extracellularly control the intracellular release of doxorubicin (DOX), by designing a delivery system that harnesses the interactions between the system and a particular set of cellular machinery. By simply adding a small-molecule chemical into the cell medium, we could lower the release rate of DOX in the cytosol, and thereby increase its accumulation in the nuclei while decreasing its presence at mitochondria. Delivery of DOX with this system effectively prevented DOX-induced mitochondria damage that is the main mechanism of its toxicity, while exerting the maximum efficacy of this anti-cancer chemotherapeutic agent. The present study sheds light on the design of drug delivery systems for extracellular control of intracellular drug delivery, with immediate therapeutic implications.

  8. Turning tumor-promoting copper into an anti-cancer weapon via high-throughput chemistry.

    Science.gov (United States)

    Wang, F; Jiao, P; Qi, M; Frezza, M; Dou, Q P; Yan, B

    2010-01-01

    Copper is an essential element for multiple biological processes. Its concentration is elevated to a very high level in cancer tissues for promoting cancer development through processes such as angiogenesis. Organic chelators of copper can passively reduce cellular copper and serve the role as inhibitors of angiogenesis. However, they can also actively attack cellular targets such as proteasome, which plays a critical role in cancer development and survival. The discovery of such molecules initially relied on a step by step synthesis followed by biological assays. Today high-throughput chemistry and high-throughput screening have significantly expedited the copper-binding molecules discovery to turn "cancer-promoting" copper into anti-cancer agents.

  9. Antiangiogenic agents combined with chemotherapy in non-small cell lung cancer

    Institute of Scientific and Technical Information of China (English)

    Shanshan Chen; Shun Lu 

    2015-01-01

    As a targeted therapy, antiangiogenic treatment has been increasingly studied for advanced non-smal cel lung cancer (NSCLC) and has proven ef ective for the treatment of advanced NSCLC. Bevacizumab, a monoclonal antibody targeting angiogenesis, is the only antiangiogenic agent approved for use in com-bination with first-line chemotherapy for non-squamous NSCLC. Smal-molecule inhibitors targeting the tyrosine kinase receptor have also shown promise when combined with standard chemotherapeutic agents in patients with advanced NSCLC. However, unlike bevacizumab, not al other antiangiogenic agents show significant benefits when combined with chemotherapy. As for the failures of most other combinations, the combination schedule may be an important reason that has so far been overlooked in clinical trials. This article reviews the combination of angiogenic agents with chemotherapy in the treatment of NSCLC.

  10. Survivin knockdown increased anti-cancer effects of (-)-epigallocatechin-3-gallate in human malignant neuroblastoma SK-N-BE2 and SH-SY5Y cells

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, Md. Motarab [Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC (United States); Banik, Naren L. [Department of Neurosciences, Medical University of South Carolina, Charleston, SC (United States); Ray, Swapan K., E-mail: swapan.ray@uscmed.sc.edu [Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC (United States)

    2012-08-01

    network formation ability of cells was significantly inhibited by survivin silencing and completely by combination of survivin silencing and EGCG treatment. Collectively, survivin silencing potentiated anti-cancer effects of EGCG in human malignant neuroblastoma cells having survivin overexpression. -- Highlights: Black-Right-Pointing-Pointer Survivin shRNA + EGCG controlled growth of human malignant neuroblastoma cells. Black-Right-Pointing-Pointer Survivin knockdown induced neuronal differentiation in neuroblastoma cells. Black-Right-Pointing-Pointer Survivin shRNA + EGCG induced morphological and biochemical features of apoptosis. Black-Right-Pointing-Pointer Combination therapy inhibited invasion, proliferation, and angiogenesis as well. Black-Right-Pointing-Pointer So, combination therapy showed multiple anti-cancer mechanisms in neuroblastoma.

  11. Significance of Cancer Stem Cells in Anti-Cancer Therapies

    Science.gov (United States)

    Botelho, Mónica; Alves, Helena

    2017-01-01

    Stem cells are the focus of cutting edge research interest because of their competence both to self-renew and proliferate, and to differentiate into a variety of tissues, offering enticing prospects of growing replacement organs in vitro, among other possible therapeutic implications. It is conceivable that cancer stem cells share a number of biological hallmarks that are different from their normal-tissue counterparts and that these might be taken advantage of for therapeutic benefits. In this review we discuss the significance of cancer stem cells in diagnosis and prognosis of cancer as well as in the development of new strategies for anti-cancer drug design.

  12. Multifunctional liposomes for enhanced anti-cancer therapy

    Science.gov (United States)

    Falcao, Claudio Borges

    2011-12-01

    with half of the concentration needed for G3139 alone in CL to reduce the cell viability by 40%. Also, it was found greater apoptotic signal in cells treated with CLs containing D-(KLAKLAK)2/G3139 complexes than CLs with G3139 only. In vivo, D-(KLAKLAK) 2/G3139 complexes in CL significantly inhibited tumor growth compared to the saline treated group, through apoptosis induction. However, the mechanism involved in cell death by apoptosis seems to be independent of reduction of bcl-2 protein levels. PEG2000 at 1% mol could significantly reduce activity of PCL formulation towards B16(F10) cells compared to CLs. After pre-incubation at pH 7.4, PCL and pH-PCL had decreased activity compared to CL towards B16(F10) cells. After pre-incubation at pH 5.0, while CL and PCL had the same activity with the cells as in neutral pH, pH-PCL formulation had its PEG cleaved and its cytotoxicity was restored against the melanoma cells. Thus, D-(KLAKLAK)2/G3139 complexes in CL had enhanced anti-cancer therapy, through apoptosis, than G3139 alone in CL in vitro and in vivo. In vitro, PCL and pH-PCL particles obtained can have a prolonged blood residence time, and, once a tumor tissue is reached, pH-PCL can have its cytotoxicity restored because of hydrolysis of cleavable PEG at a lowered pH.

  13. Paraptosis in the anti-cancer arsenal of natural products.

    Science.gov (United States)

    Lee, Dongjoo; Kim, In Young; Saha, Sharmistha; Choi, Kyeong Sook

    2016-06-01

    Given the problems with malignant cancer cells showing innate and acquired resistance to apoptosis, we need alternative means to induce cell death in cancer. Paraptosis is a type of programmed cell death that is characterized by dilation of the endoplasmic reticulum (ER) and/or mitochondria. Although relatively little is known regarding the molecular basis of paraptosis, the underlying mechanism clearly differs from that of apoptosis. Recent studies have shown that various natural products, including curcumin, celastrol, 15d-PGJ2, ophiobolin A, and paclitaxel, demonstrate anti-cancer effects by inducing the paraptosis-associated cell death, which was commonly characterized by vacuolation derived from the ER. Perturbation of cellular proteostasis due to proteasomal inhibition and disruption of sulfhydryl homeostasis, generation of reactive oxygen species, and/or imbalanced homeostasis of ions (e.g., Ca(2+) and K(+)) appear to contribute to the accumulation of misfolded protein and proteotoxicity in this process. Given the pathophysiological importance of paraptosis and the debate regarding the importance of apoptosis in solid tumor, we need to collect the available knowledge regarding paraptosis and suggest future directions in the field. Here, we review the morphological and biochemical features of paraptosis, the natural products that induce paraptosis-associated cell death, their proposed mechanisms, and the significance of paraptosis as a potential anti-cancer strategy. Such work and future clarifications should enable the development of new strategies for preventing cancer and/or combating malignant cancer.

  14. Anti-cancer chalcones: Structural and molecular target perspectives.

    Science.gov (United States)

    Mahapatra, Debarshi Kar; Bharti, Sanjay Kumar; Asati, Vivek

    2015-06-15

    Chalcone or (E)-1,3-diphenyl-2-propene-1-one scaffold remained a fascination among researchers in the 21st century due to its simple chemistry, ease of synthesis and a wide variety of promising biological activities. Several natural and (semi) synthetic chalcones have shown anti-cancer activity due to their inhibitory potential against various targets namely ABCG2/P-gp/BCRP, 5α-reductase, aromatase, 17-β-hydroxysteroid dehydrogenase, HDAC/Situin-1, proteasome, VEGF, VEGFR-2 kinase, MMP-2/9, JAK/STAT signaling pathways, CDC25B, tubulin, cathepsin-K, topoisomerase-II, Wnt, NF-κB, B-Raf and mTOR etc. In this review, a comprehensive study on molecular targets/pathways involved in carcinogenesis, mechanism of actions (MOAs), structure activity relationships (SARs) and patents granted have been highlighted. With the knowledge of molecular targets, structural insights and SARs, this review may be helpful for (medicinal) chemists to design more potent, safe, selective and cost effective anti-cancer chalcones.

  15. Use of biologic agents in combination with other therapies for the treatment of psoriasis.

    Science.gov (United States)

    Cather, Jennifer C; Crowley, Jeffrey J

    2014-12-01

    Psoriasis is a chronic inflammatory skin disorder, which is associated with a significant negative impact on a patient's quality of life. Traditional therapies for psoriasis are often not able to meet desired treatment goals, and high-dose and/or long-term use is associated with toxicities that can result in end-organ damage. An improved understanding of the involvement of cytokines in the etiology of psoriasis has led to the development of biologic agents targeting tumor necrosis factor (TNF)-α and interleukins (ILs)-12/23. While biologic agents have improved treatment outcomes, they are not effective in all individuals with psoriasis. The combination of biologic agents with traditional therapies may provide improved therapeutic options for patients who inadequately respond to a single drug or when efficacy may be increased with supplementation of another treatment. In addition, combination therapy may reduce safety concerns and cumulative toxicity, as lower doses of individual agents may be efficacious when used together. This article reviews the current evidence available on the efficacy and safety of combining biologic agents with systemic therapies (methotrexate, cyclosporine, or retinoids) or with phototherapy, and the combination of biologic agents themselves. Guidance is provided to help physicians identify situations and the characteristics of patients who would benefit from combination therapy with a biologic agent. Finally, the potential clinical impact of biologic therapies in development (e.g., those targeting IL-17A, IL-17RA, or IL-23 alone) is analyzed.

  16. Combining biological agents and chemotherapy in the treatment of cholangiocarcinoma

    DEFF Research Database (Denmark)

    Jensen, Lars Henrik; Jakobsen, Anders

    2011-01-01

    is not always possible. Chemotherapy is effective and the combination of cisplatin and gemcitabine is considered a standard treatment of inoperable cholangiocarcinoma. Biological targeted treatment to date has minor effect when given as monotherapy, but some of the drugs hold promise as an adjunct...... to chemotherapy. It should, however, be noted that most of the trials are based on few patients, and thus far the literature does not allow for a conclusion as to the role of biological treatment on cholangiocarcinoma. This situation calls for well-designed randomized trials, and international cooperation as well...

  17. The combination of sodium perborate and water as intracoronal teeth bleaching agent

    Directory of Open Access Journals (Sweden)

    Ananta Tantri Budi

    2008-12-01

    Full Text Available Background: The color change on post-endodontic treated teeth can be overcome by intracoronal tooth bleaching using walking bleach. Some agents used in walking bleach are combination of sodium peroxide and hydrogen peroxide, and combination of sodium perborate and water. Purpose: The objective of this review is to provide information and consideration of using safe and effective bleaching agents in the field of dentistry. Reviews: On one side, the use of sodium perborate and water combination does not cause the reduction of dentin hardness, enamel decay, and root resorbtion. On the other side, the use of sodium perborate and 30% hydrogen peroxide combination indicates that it takes longer time in yielding the proper color of teeth. Conclusion: The use of sodium perborate and water combination as bleaching agents is effective and safe.

  18. A water-soluble extract from cultured medium of Ganoderma lucidum (Reishi) mycelia attenuates the small intestinal injury induced by anti-cancer drugs.

    Science.gov (United States)

    Kashimoto, Naoki; Ishii, Satomi; Myojin, Yuki; Ushijima, Mitsuyasu; Hayama, Minoru; Watanabe, Hiromitsu

    2010-01-01

    The present study investigated whether a water-soluble extract from the culture medium of Ganoderma lucidum (Reishi) mycelia (MAK) is able to protect the small intestine against damage induced by anti-cancer drugs. Six-week-old male B6C3F1/Crlj mice were fed a basal diet (MF) alone or with various doses of MAK or Agarics blazei Murrill (AGA) beginning one week before treatment with the anti-cancer drugs. Mice were sacrificed 3.5 days after injection of the anti-cancer drug, the small intestine was removed and tissue specimens were examined for the regeneration of small intestinal crypts. In experiment 1, the number of regenerative crypts after the administration of 5-fluorouracil (5FU) intravenously (250 mg/kg) or intraperitoneally (250 or 500 mg/kg) was compared after treatment with MAK or AGA. MAK protected against 5FU-induced small intestinal injury whereas AGA did not. In experiment 2, we investigated the protective effect of MAK against small intestinal injury induced by the anti-cancer drugs: UFT (tegafur with uracil; 1,000 mg/kg, orally), cisplatin (CDDP; 12.5 and 25 mg/kg, intraperitoneally), cyclophosphamide (CPA; 250 mg/kg, orally) and gefitinib (Iressa; 2,000 and 4,000 mg/kg, orally). UFT and CDDP decreased the number of regenerative crypts, but treatment with MAK attenuated the extent of UFT- or CDDP-induced small intestinal injury. CPA or Iressa plus MAK up-regulated crypt regeneration. The present results indicate that MAK ameliorates the small intestinal injury caused by several anti-cancer drugs, suggesting that MAK is a potential preventive agent against this common adverse effect of chemotherapy.

  19. Synergistic anti-cancer effects of galangin and berberine through apoptosis induction and proliferation inhibition in oesophageal carcinoma cells.

    Science.gov (United States)

    Ren, Kewei; Zhang, Wenzhe; Wu, Gang; Ren, Jianzhuang; Lu, Huibin; Li, Zongming; Han, Xinwei

    2016-12-01

    Galangin is an active pharmacological ingredient from propolis and Alpinia officinarum Hance, and has been reported to have anti-cancer and antioxidative properties. Berberine, a major component of Berberis vulgaris extract, exhibits potent anti-cancer activities through distinct molecular mechanisms. However, the anticancer effect of galangin in combination with berberine is still unknown. In the present study, we demonstrated that the combination of galangin with berberine synergistically resulted in cell growth inhibition, apoptosis and cell cycle arrest at G2/M phase with the increased intracellular reactive oxygen species (ROS) levels in oesophageal carcinoma cells. Pretreatment with ROS scavenger promoted the apoptosis dramatically induced by co-treatment with galangin and berberine. Treatment with galangin and berberine alone caused the decreased expressions of Wnt3a and β-catenin. Interestingly, combination of galangin with berberine could further suppress Wnt3a and β-catenin expression and induce apoptosis in cancer cells. Additionally, in nude mice with xenograft tumors, the combinational treatment of galangin and berberine significantly inhibited the tumor growth without obvious toxicity. Overall, galangin in combination with berberine presented outstanding synergistic anticancer role in vitro and in vivo, indicating that the beneficial combination of galangin and berberine might provide a promising treatment for patients with oesophageal carcinoma.

  20. Advancement in research of anti-cancer effects of toad venom (ChanSu) and perspectives

    Institute of Scientific and Technical Information of China (English)

    Miao Liu; Li-Xing Feng; Li-Hong Hu; Xuan Liu; De-An Guo

    2015-01-01

    Toad venom, called as ChanSu in China, is a widely used traditional Chinese medicine (TCM) whose active components are mainly bufadienolides. ChanSu could exhibit cardiotonic, anti-microbial, anti-inflammatory and, most importantly, anti-cancer effects. In the present review, reports about the in vitro, in vivo and clinical anti-cancer effects of ChanSu or its representative component, bufalin, were summarized. And, reported anti-cancer mechanisms of cardenolides, structure analogues of bufadienolides, were also introduced. Based on the results got from research of ChanSu/bufalin and the results from cardenolides, possible signal network related to the anti-cancer effects of ChanSu/bufalin was predicted. Furthermore, future potential use of ChanSu in anti-cancer therapy was discussed.

  1. Use of combination of leflunomide with biological agents in treatment of rheumatoid arthritis.

    NARCIS (Netherlands)

    Kalden, J.R.; Antoni, C.; Alvaro-Gracia, J.M.; Combe, B.; Emery, P.; Kremer, J.M.J.; Strand, C.V.; Riel, P.L.C.M. van; Smolen, J.S.

    2005-01-01

    An Expert Panel Meeting was held in May 2004 to assess experience with combination therapy with leflunomide and biological agents in the treatment of rheumatoid arthritis (RA), to identify both optimal use of such combinations and precautions for use. Eleven published prospective or retrospective st

  2. uPAR as anti-cancer target

    DEFF Research Database (Denmark)

    Lund, Ida K; Illemann, Martin; Thurison, Tine

    2011-01-01

    , and a potential diagnostic and predictive impact of the different uPAR forms has been reported. Hence, pericellular proteolysis seems to be a suitable target for anti-cancer therapy and numerous approaches have been pursued. Targeting of this process may be achieved by preventing the binding of uPA to u......Degradation of proteins in the extracellular matrix is crucial for the multistep process of cancer invasion and metastasis. Compelling evidence has demonstrated the urokinase receptor (uPAR) and its cognate ligand, the urokinase plasminogen activator (uPA), to play critical roles in the concerted...... up-regulated during cancer progression and is primarily confined to the tumor-associated stromal compartment. Furthermore, both uPAR and uPA have proven to be prognostic markers in several types of cancer; high levels indicating poor survival. The cleaved forms of uPAR are also prognostic markers...

  3. In silico attempt for adduct agent(s) against malaria: Combination of chloroquine with alkaloids of Adhatoda vasica.

    Science.gov (United States)

    Swain, Shasank S; Sahu, Mahesh C; Padhy, Rabindra N

    2015-10-01

    With the aim of controlling drug resistant Plasmodium falciparum, a computational attempt of designing novel adduct antimalarial drugs through the molecular docking method of combining chloroquine with five alkaloids, individually is presented. These alkaloids were obtained from the medicinal plant, Adhatoda vasica. From the obtained individual docking values of important derivatives of quinine and chloroquine, as well as, individual alkaloids and adduct agents of chloroquine with Adhatoda alkaloids as ligands, it was discernible that the 'adduct agent-1 with chloroquine and adhatodine' combination had the minimum energy of interaction, as the docking score value of -11.144 kcal/mol against the target protein, triosephosphate isomerase (TIM), the key enzyme of glycolytic pathway. Drug resistance of P. falciparum is due to a mutation in the polypeptide of TIM. Moratorium of mutant TIM would disrupt the metabolism during the control of the drug resistant P. falciparum. This in silico work helped to locate the 'adduct agent-1 with chloroquine and adhatodine', which could be taken up by pharmacology for further development of this compound as a new drug against drug resistant Plasmodium.

  4. Molecular docking based screening of novel designed chalcone series of compounds for their anti-cancer activity targeting EGFR kinase domain

    Science.gov (United States)

    Rao, Chennu Maruthi Malya Prasada; Yejella, Rajendra Prasad; Rehman, Rehman Shaik Abdul; Basha, Syed Hussain

    2015-01-01

    Epidermal growth factor receptors (EGFR) are critical for the growth of many tumors and expressed at high levels in about one third of epithelial cancers. Hence, blockade of the binding sites for EGFR has been hypothesized as an effective anti-cancer therapy. Chalcone derivative compounds have been shown to be highly effective anti-cancer agents, however there are still so many novel derivatives possible, one of which might get us the best targeted EGFR inhibitor. In this effort directed towards the discovery of novel, potent anti-tumor agents for the treatment of cancer, in the present study a library of novel chalcone series of compounds has been designed and evaluated for their anti-cancer activity targeting EGFR kinase domain using various computational approaches. Among the twenty five novel designed chalcone series of compounds, all of them have found to be successfully docking inside the active binding domain of EGFR receptor target with a binding energy in a range of -6.10 to -9.25 Kcal/mol with predicted IC50 value range of 33.50 micor molar to 164.66 nano molar respectively. On the other hand, calculated 2DQSAR molecular descriptor properties of the compounds showed promising ADME parameters and found to be well in compliance with Lipinski׳s rule of five. Among all the twenty five compounds tested, compound 21 ((2E)-3-(anthracen-9-yl)-1-phenylprop-2-2n-1- one) was found to be the best lead like molecule with a binding energy of -9.25 kcal/mol with predicted IC50 value of 164.66 nano molar. Conclusively, novel designed compound 21 of the present study have shown promising anti-cancer potential worth considering for further evaluations. PMID:26339147

  5. Strategic development on generic anti-cancer drugs Bevacizumab and Erlotinib Hydrochloride for Harbin Pharmaceutical Group

    Institute of Scientific and Technical Information of China (English)

    Cheung Fat Ping

    2011-01-01

    @@ With improved economy, changing life styles, aging population and health care reform, China had a very potential anti-cancer drug market.The patents of popular anti-cancer drugs Avastin and Tarceva would expire in few years.Generic versions of Avastin and Tarceva were Bevacizumab and Erlotinib Hydrochloride respectively.Harbin Pharmaceutical Group was proposed to develop strategically both generic medicines to enter the high-end anti-cancer drug market for targeted cancer therapies.The vital to success of developing the generic drugs were discussed.

  6. Facile synthesis of 2-D Cu doped WO3 nanoplates with structural, optical and differential anti cancer characteristics

    Science.gov (United States)

    Mehmood, Faisal; Iqbal, Javed; Gul, Asma; Ahmed, Waqqar; Ismail, M.

    2017-04-01

    Simple chemical co-precipitation method has been employed to synthesize two dimensional copper (Cu) doped tungsten oxide (WO3) nanoplates. A numbers of characterization techniques have been used to investigate their structural, optical and biocompatible anti cancer properties. The XRD results have confirmed the monoclinic crystal structure of WO3 nanoplates, and also successful doping of Cu ions into the WO3 crystal lattice. The presence of functional groups and chemical bonding have been verified through FTIR and Raman spectroscopy. The SEM images demonstrate that both undoped and Cu doped WO3 samples have squares plate like morphology. The EDX spectra confirm the presence of Cu, W and O ions. Diffuse reflectance spectroscopy (DRS) analysis has revealed a substantial red-shift in the absorption edge and a decrease in the band gap energy of nanoplates with Cu doping. Photoluminescence spectroscopy has been used to study the presence of defects like oxygen vacancies. Furthermore, the differential cytotoxic properties of Cu doped WO3 samples have been evaluated against human breast (MCF-7) and liver (Hep-2) cancer cells with ectocervical epithelial (HECE) healthy cells. The present findings confirm that the Cu doped WO3 nanoplates can be used as an efficient biocompatible anti cancer agent.

  7. Enzyme inhibition as a key target for the development of novel metal-based anti-cancer therapeutics.

    Science.gov (United States)

    Griffith, Darren; Parker, James P; Marmion, Celine J

    2010-06-01

    Historically, DNA has been the target for many metal-based anti-cancer drugs, but drawbacks of prevailing therapies have stimulated the search for new molecular targets which may present unique opportunities for therapeutic exploitation. Enzyme inhibition has recently been identified as an alternative and significant target. The pursuit of novel metallodrug candidates that selectively target enzymes is now the subject of intense investigation in medicinal bioinorganic chemistry and chemical biology. In the field of drug design, it is recognised by many that exploiting the structural and chemical diversity of metal ions for the identification of potential hit and lead candidates can dramatically increase the number of possible drug candidates that may be added to the already abundant armoury of chemotherapeutic agents. This review will focus on recent key advancements in enzyme inhibition as a key target for the development of novel metal-based anti-cancer therapeutics. The enormous clinical success of classical platinum drugs, amongst others, coupled with the wealth of knowledge accumulated in recent years on enzyme structure and function, has undoubtedly been the impetus behind the development of new metallodrug candidates with enzyme inhibitory properties. Recent trends in this field will be reviewed with a particular emphasis on metal complexes that inhibit protein and lipid kinases, matrix metalloproteases, telomerases, topoisomerases, glutathione-S-transferases, and histone deacetylases.

  8. The Clinical Development of Molecularly Targeted Agents in Combination With Radiation Therapy: A Pharmaceutical Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Ataman, Ozlem U., E-mail: ouataman@hotmail.com [Global Medicines Development, AstraZeneca, Alderley Park, Macclesfield, Cheshire (United Kingdom); Sambrook, Sally J. [Global Medicines Development, AstraZeneca, Alderley Park, Macclesfield, Cheshire (United Kingdom); Wilks, Chris [Innovative Medicines, AstraZeneca, Alderley Park, Macclesfield, Cheshire (United Kingdom); Lloyd, Andrew [Global Medicines Development, AstraZeneca, Alderley Park, Macclesfield, Cheshire (United Kingdom); Taylor, Amanda E. [Yellow Delaney Communications Ltd, Wilmslow, Cheshire (United Kingdom); Wedge, Stephen R. [Innovative Medicines, AstraZeneca, Alderley Park, Macclesfield, Cheshire (United Kingdom)

    2012-11-15

    Summary: This paper explores historical and current roles of pharmaceutical industry sponsorship of clinical trials testing radiation therapy combinations with molecularly targeted agents and attempts to identify potential solutions to expediting further combination studies. An analysis of clinical trials involving a combination of radiation therapy and novel cancer therapies was performed. Ongoing and completed trials were identified by searching the (clinicaltrials.gov) Web site, in the first instance, with published trials of drugs of interest identified through American Society of Clinical Oncology, European CanCer Organisation/European Society for Medical Oncology, American Society for Radiation Oncology/European Society for Therapeutic Radiology and Oncology, and PubMed databases and then cross-correlated with (clinicaltrials.gov) protocols. We examined combination trials involving radiation therapy with novel agents and determined their distribution by tumor type, predominant molecular mechanisms examined in combination to date, timing of initiation of trials relative to a novel agent's primary development, and source of sponsorship of such trials. A total of 564 studies of targeted agents in combination with radiation therapy were identified with or without concomitant chemotherapy. Most studies were in phase I/II development, with only 36 trials in phase III. The tumor site most frequently studied was head and neck (26%), followed by non-small cell lung cancer. Pharmaceutical companies were the sponsors of 33% of studies overall and provided support for only 16% of phase III studies. In terms of pharmaceutical sponsorship, Genentech was the most active sponsor of radiation therapy combinations (22%), followed by AstraZeneca (14%). Most radiation therapy combination trials do not appear to be initiated until after drug approval. In phase III studies, the most common (58%) primary endpoint was overall survival. Collectively, this analysis suggests that

  9. Maturation of dendritic cells by pullulan promotes anti-cancer effect

    Science.gov (United States)

    Xu, Li; Zhang, LiJun; Yu, Qing; Jin, Jun-O

    2016-01-01

    Previous studies have demonstrated that pullulan, a polysaccharide purified from Aureobasidium pullulans, has immune-stimulatory effects on T and B cells. Moreover, pullulan has been used as a carrier in the delivery of the antigen (Ag) peptide to lymphoid tissues. However, the in vivo effect of pullulan on dendritic cells (DC) has not been well characterized. In this study, we assessed the effect of pullulan on DC activation and anti-cancer immunity. The results showed that the pullulan treatment up-regulated co-stimulatory molecule expression and enhanced pro-inflammatory cytokine production in bone marrow-derived DCs (BMDC) in vitro and in spleen DCs in vivo. Moreover, the combination of ovalbumin (OVA) and pullulan induced OVA antigen-specific T cell activations in vivo. In tumor-bearing mice, pullulan induced the maturation of DCs in spleen and tumor draining lymph node (drLN), and promoted the OVA-specific T cell activation and migration of the T cells into the tumor. In addition, the combination of OVA and pullulan inhibited B16-OVA tumor growth and liver metastasis. The combination of tyrosinase-related protein 2 (TRP2) peptide and pullulan treatment also suppressed B16 melanoma growth. Thus, the results demonstrated that pullulan enhanced DC maturation and function, and it acted as an adjuvant in promoting Ag-specific immune responses in mice. Thus, pullulan could be a new and useful adjuvant for use in therapeutic cancer vaccines. PMID:27341129

  10. Glycan changes: cancer metastasis and anti-cancer vaccines

    Indian Academy of Sciences (India)

    Min Li; Lujun Song; Xinyu Qin

    2010-12-01

    Complex carbohydrates, which are major components of the cell membrane, perform important functions in cell–cell and cell–extracellular matrix interactions, as well as in signal transduction. They comprise three kinds of biomolecules: glycoproteins, proteoglycans and glycosphingolipids. Recent studies have also shown that glycan changes in malignant cells take a variety of forms and mediate key pathophysiological events during the various stages of tumour progression. Glycosylation changes are universal hallmarks of malignant transformation and tumour progression in human cancer, which take place on the whole cells or some specific molecules. Accordingly, those changes make them prominent candidates for cancer biomarkers in the meantime. This review mainly focuses on the correlation between glycosylation and the metastasis potential of tumour cells from comprehensive aspects to further address the vital roles of glycans in oncogenesising. Moreover, utilizing these glycosylation changes to ward off tumour metastasis by means of anti-adhesion approach or devising anti-cancer vaccine is one of promising targets of future study.

  11. Annotating Cancer Variants and Anti-Cancer Therapeutics in Reactome

    Energy Technology Data Exchange (ETDEWEB)

    Milacic, Marija; Haw, Robin, E-mail: robin.haw@oicr.on.ca; Rothfels, Karen; Wu, Guanming [Informatics and Bio-computing Platform, Ontario Institute for Cancer Research, Toronto, ON, M5G0A3 (Canada); Croft, David; Hermjakob, Henning [European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD (United Kingdom); D’Eustachio, Peter [Department of Biochemistry, NYU School of Medicine, New York, NY 10016 (United States); Stein, Lincoln [Informatics and Bio-computing Platform, Ontario Institute for Cancer Research, Toronto, ON, M5G0A3 (Canada)

    2012-11-08

    Reactome describes biological pathways as chemical reactions that closely mirror the actual physical interactions that occur in the cell. Recent extensions of our data model accommodate the annotation of cancer and other disease processes. First, we have extended our class of protein modifications to accommodate annotation of changes in amino acid sequence and the formation of fusion proteins to describe the proteins involved in disease processes. Second, we have added a disease attribute to reaction, pathway, and physical entity classes that uses disease ontology terms. To support the graphical representation of “cancer” pathways, we have adapted our Pathway Browser to display disease variants and events in a way that allows comparison with the wild type pathway, and shows connections between perturbations in cancer and other biological pathways. The curation of pathways associated with cancer, coupled with our efforts to create other disease-specific pathways, will interoperate with our existing pathway and network analysis tools. Using the Epidermal Growth Factor Receptor (EGFR) signaling pathway as an example, we show how Reactome annotates and presents the altered biological behavior of EGFR variants due to their altered kinase and ligand-binding properties, and the mode of action and specificity of anti-cancer therapeutics.

  12. From T cell "exhaustion" to anti-cancer immunity.

    Science.gov (United States)

    Verdeil, Grégory; Fuertes Marraco, Silvia A; Murray, Timothy; Speiser, Daniel E

    2016-01-01

    The immune system has the potential to protect from malignant diseases for extended periods of time. Unfortunately, spontaneous immune responses are often inefficient. Significant effort is required to develop reliable, broadly applicable immunotherapies for cancer patients. A major innovation was transplantation with hematopoietic stem cells from genetically distinct donors for patients with hematologic malignancies. In this setting, donor T cells induce long-term remission by keeping cancer cells in check through powerful allogeneic graft-versus-leukemia effects. More recently, a long awaited breakthrough for patients with solid tissue cancers was achieved, by means of therapeutic blockade of T cell inhibitory receptors. In untreated cancer patients, T cells are dysfunctional and remain in a state of T cell "exhaustion". Nonetheless, they often retain a high potential for successful defense against cancer, indicating that many T cells are not entirely and irreversibly exhausted but can be mobilized to become highly functional. Novel antibody therapies that block inhibitory receptors can lead to strong activation of anti-tumor T cells, mediating clinically significant anti-cancer immunity for many years. Here we review these new treatments and the current knowledge on tumor antigen-specific T cells.

  13. Combined blood pool and extracellular contrast agents for pediatric and young adult cardiovascular magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Joyce T. [Ann and Robert Lurie Children' s Hospital of Chicago, Division of Pediatric Cardiology, 225 E. Chicago Ave., Box 21, Chicago, IL (United States); Ann and Robert Lurie Children' s Hospital of Chicago, Department of Pediatrics, Chicago, IL (United States); Robinson, Joshua D. [Ann and Robert Lurie Children' s Hospital of Chicago, Division of Pediatric Cardiology, 225 E. Chicago Ave., Box 21, Chicago, IL (United States); Ann and Robert Lurie Children' s Hospital of Chicago, Department of Pediatrics, Chicago, IL (United States); Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); Deng, Jie [Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); Ann and Robert Lurie Children' s Hospital of Chicago, Department of Medical Imaging, Chicago, IL (United States); Rigsby, Cynthia K. [Ann and Robert Lurie Children' s Hospital of Chicago, Department of Pediatrics, Chicago, IL (United States); Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); Ann and Robert Lurie Children' s Hospital of Chicago, Department of Medical Imaging, Chicago, IL (United States)

    2016-12-15

    A comprehensive cardiac magnetic resonance (cardiac MR) study including both late gadolinium enhancement (LGE) and MR angiography may be indicated for patients with a history of acquired or congenital heart disease. To study the novel use of an extracellular agent for assessment of LGE combined with a blood pool contrast agent for detailed MR angiography evaluation to yield a comprehensive cardiac MR study in these patients. We reviewed clinical cardiac MR studies utilizing extracellular and blood pool contrast agents and noted demographics, clinical data and adverse events. We rated LGE image quality and MR angiography image quality for each vascular segment and calculated inter-rater variability. We also quantified contrast-to-noise ratio (CNR). Thirty-three patients (mean age 13.9 ± 3 years) received an extracellular contrast agent (10 gadobenate dimeglumine, 23 gadopentetate dimeglumine) and blood pool contrast agent (33 gadofosveset trisodium). No adverse events were reported. MRI indications included Kawasaki disease (8), cardiomyopathy and coronary anatomy (15), repaired congenital heart disease (8), and other (2). Mean LGE quality was 2.6 ± 0.6 with 97% diagnostic imaging. LGE quality did not vary by type of contrast agent given (P = 0.07). Mean MR angiography quality score was 4.7 ± 0.6, with high inter-rater agreement (k = 0.6-0.8, P < 0.002). MR angiography quality did not vary by type of contrast agent used (P = 0.6). Cardiac MR studies utilizing both extracellular and blood pool contrast agents are feasible and safe and provide excellent-quality LGE and MR angiography images. The use of two contrast agents allows for a comprehensive assessment of both myocardial viability and vascular anatomy during the same exam. (orig.)

  14. Hydroxypropyl-β-cyclodextrin–graphene oxide conjugates: Carriers for anti-cancer drugs

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Jingting; Meng, Na; Fan, Yunting; Su, Yutian; Zhang, Ming [Jiangsu Collaborative Innovation Center for Biological Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023 (China); National and Local Joint Engineering Research Center of Biomedical Functional Materials, Nanjing 210023 (China); Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing 210023 (China); Xiao, Yinghong, E-mail: yhxiao@njnu.edu.cn [Jiangsu Collaborative Innovation Center for Biological Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023 (China); National and Local Joint Engineering Research Center of Biomedical Functional Materials, Nanjing 210023 (China); Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing 210023 (China); Zhou, Ninglin, E-mail: zhouninglin@njnu.edu.cn [Jiangsu Collaborative Innovation Center for Biological Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023 (China); National and Local Joint Engineering Research Center of Biomedical Functional Materials, Nanjing 210023 (China); Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing 210023 (China); Nanjing Zhou Ninglin Advanced Materials Technology Company Limited, Nanjing 211505 (China)

    2016-04-01

    A novel drug carrier based on hydroxypropyl-β-cyclodextrin (HP-β-CD) modified carboxylated graphene oxide (GO-COOH) was designed to incorporate anti-cancer drug paclitaxel (PTX). The formulated nanomedicines were characterized by Fourier transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM). Results showed that PTX can be incorporated into GO-COO-HP-β-CD nanospheres successfully, with an average diameter of about 100 nm. The solubility and stability of PTX-loaded GO-COO-HP-β-CD nanospheres in aqueous media were greatly enhanced compared with the untreated PTX. The results of hemolysis test demonstrated that the drug-loaded nanospheres were qualified with good blood compatibility for intravenous use. In vitro anti-tumor activity was measured and results demonstrated that the incorporation of PTX into the newly developed GO-COO-HP-β-CD carrier could confer significantly improved cytotoxicity to the nanosystem against tumor cells than single application of PTX. GO-COO-HP-β-CD nanospheres may represent a promising formulation platform for a broad range of therapeutic agent, especially those with poor solubility. - Highlights: • Hydroxypropyl-β-cyclodextrin (HP-β-CD) modified carboxylated graphene oxide (GO-COOH) was designed as a drug carrier. • The prepared PTX-loaded nanospheres can be dispersed in aqueous medium stably. • The GO-COO-HP-β-CD nanospheres are safe for blood-contact applications. • This newly developed PTX-delivery system could confer significantly improved cytotoxicity against tumor cells.

  15. Diterpenes from rosemary (Rosmarinus officinalis): Defining their potential for anti-cancer activity.

    Science.gov (United States)

    Petiwala, Sakina M; Johnson, Jeremy J

    2015-10-28

    Recently, rosemary extracts standardized to diterpenes (e.g. carnosic acid and carnosol) have been approved by the European Union (EU) and given a GRAS (Generally Recognized as Safe) status in the United States by the Food and Drug Administration (FDA). Incorporation of rosemary into our food system and through dietary selection (e.g. Mediterranean Diet) has increased the likelihood of exposure to diterpenes in rosemary. In consideration of this, a more thorough understanding of rosemary diterpenes is needed to understand its potential for a positive impact on human health. Three agents in particular have received the most attention that includes carnosic acid, carnosol, and rosmanol with promising results of anti-cancer activity. These studies have provided evidence of diterpenes to modulate deregulated signaling pathways in different solid and blood cancers. Rosemary extracts and the phytochemicals therein appear to be well tolerated in different animal models as evidenced by the extensive studies performed for approval by the EU and the FDA as an antioxidant food preservative. This mini-review reports on the pre-clinical studies performed with carnosic acid, carnosol, and rosmanol describing their mechanism of action in different cancers.

  16. Fucoxanthin: A Marine Carotenoid Exerting Anti-Cancer Effects by Affecting Multiple Mechanisms

    Directory of Open Access Journals (Sweden)

    Sangeetha Ravi Kumar

    2013-12-01

    Full Text Available Fucoxanthin is a marine carotenoid exhibiting several health benefits. The anti-cancer effect of fucoxanthin and its deacetylated metabolite, fucoxanthinol, is well documented. In view of its potent anti-carcinogenic activity, the need to understand the underlying mechanisms has gained prominence. Towards achieving this goal, several researchers have carried out studies in various cell lines and in vivo and have deciphered that fucoxanthin exerts its anti-proliferative and cancer preventing influence via different molecules and pathways including the Bcl-2 proteins, MAPK, NFκB, Caspases, GADD45, and several other molecules that are involved in either cell cycle arrest, apoptosis, or metastasis. Thus, in addition to decreasing the frequency of occurrence and growth of tumours, fucoxanthin has a cytotoxic effect on cancer cells. Some studies show that this effect is selective, i.e., fucoxanthin has the capability to target cancer cells only, leaving normal physiological cells unaffected/less affected. Hence, fucoxanthin and its metabolites show great promise as chemotherapeutic agents in cancer.

  17. The In Vitro Antimicrobial Effects of Lavandula angustifolia Essential Oil in Combination with Conventional Antimicrobial Agents

    Directory of Open Access Journals (Sweden)

    Stephanie de Rapper

    2016-01-01

    Full Text Available The paper focuses on the in vitro antimicrobial activity of Lavandula angustifolia Mill. (lavender essential oil in combination with four commercial antimicrobial agents. Stock solutions of chloramphenicol, ciprofloxacin, nystatin, and fusidic acid were tested in combination with L. angustifolia essential oil. The antimicrobial activities of the combinations were investigated against the Gram-positive bacterial strain Staphylococcus aureus (ATCC 6538 and Gram-negative Pseudomonas aeruginosa (ATCC 27858 and Candida albicans (ATCC 10231 was selected to represent the yeasts. The antimicrobial effect was performed using the minimum inhibitory concentration (MIC microdilution assay. Isobolograms were constructed for varying ratios. The most prominent interaction was noted when L. angustifolia essential oil was combined with chloramphenicol and tested against the pathogen P. aeruginosa (ΣFIC of 0.29. Lavendula angustifolia essential oil was shown in most cases to interact synergistically with conventional antimicrobials when combined in ratios where higher volumes of L. angustifolia essential oil were incorporated into the combination.

  18. In vitro activities of antimicrobial agents, alone and in combination, against Acinetobacter baumannii isolated from blood.

    Science.gov (United States)

    Chang, S C; Chen, Y C; Luh, K T; Hsieh, W C

    1995-11-01

    In vitro activities of 15 antimicrobial agents against 90 strains of Acinetobacter baumannii isolated from blood cultures from hospitalized patients were determined using the agar dilution method. Imipenem, ofloxacin, and ciprofloxacin had the best antimicrobial activity with minimum inhibitory concentrations (MIC50s) of 0.25 mu g/ml and MIC90s of 0.5-1 mu g/ml. beta-lactam antibiotics other than imipenem had poor activity, with MIC50s ranging from 8 to 64 mu g/ml and MIC90s from 32 to > or = 256 mu g/ml. The checkerboard titration method was used to study the effects of combination of two antimicrobial agents. Combinations of ceftazidime, aztreonam, imipenem, or ciprofloxacin with amikacin showed either synergistic effects or partial synergistic effects for 40.9%-86.4% of 22 tested strains. The best in vitro activity was observed with the combination of imipenem and amikacin. No antagonistic effects were observed with the combination of imipenem and amikacin. Synergistic effects were confirmed by time-kill curve studies. In conclusion, imipenem, ofloxacin, and ciprofloxacin were the three most active agents against human blood isolates of A. baumannii. The combination of a beta-lactam or ciprofloxacin with amikacin was synergistic for some of the isolates.

  19. Preclinical Investigations of PM01183 (Lurbinectedin) as a Single Agent or in Combination with Other Anticancer Agents for Clear Cell Carcinoma of the Ovary

    OpenAIRE

    Ryoko Takahashi; Seiji Mabuchi; Mahiru Kawano; Tomoyuki Sasano; Yuri Matsumoto; Hiromasa Kuroda; Katsumi Kozasa; Kae Hashimoto; Kenjiro Sawada; Tadashi Kimura

    2016-01-01

    Objective The objective of this study was to evaluate the antitumor effects of lurbinectedin as a single agent or in combination with existing anticancer agents for clear cell carcinoma (CCC) of the ovary, which is regarded as an aggressive, chemoresistant, histological subtype. Methods Using human ovarian CCC cell lines, the antitumor effects of lurbinectedin, SN-38, doxorubicin, cisplatin, and paclitaxel as single agents were assessed using the MTS assay. Then, the antitumor effects of comb...

  20. Coping with antibiotic resistance: combining nanoparticles with antibiotics and other antimicrobial agents.

    Science.gov (United States)

    Allahverdiyev, Adil M; Kon, Kateryna Volodymyrivna; Abamor, Emrah Sefik; Bagirova, Malahat; Rafailovich, Miriam

    2011-11-01

    The worldwide escalation of bacterial resistance to conventional medical antibiotics is a serious concern for modern medicine. High prevalence of multidrug-resistant bacteria among bacteria-based infections decreases effectiveness of current treatments and causes thousands of deaths. New improvements in present methods and novel strategies are urgently needed to cope with this problem. Owing to their antibacterial activities, metallic nanoparticles represent an effective solution for overcoming bacterial resistance. However, metallic nanoparticles are toxic, which causes restrictions in their use. Recent studies have shown that combining nanoparticles with antibiotics not only reduces the toxicity of both agents towards human cells by decreasing the requirement for high dosages but also enhances their bactericidal properties. Combining antibiotics with nanoparticles also restores their ability to destroy bacteria that have acquired resistance to them. Furthermore, nanoparticles tagged with antibiotics have been shown to increase the concentration of antibiotics at the site of bacterium-antibiotic interaction, and to facilitate binding of antibiotics to bacteria. Likewise, combining nanoparticles with antimicrobial peptides and essential oils generates genuine synergy against bacterial resistance. In this article, we aim to summarize recent studies on interactions between nanoparticles and antibiotics, as well as other antibacterial agents to formulate new prospects for future studies. Based on the promising data that demonstrated the synergistic effects of antimicrobial agents with nanoparticles, we believe that this combination is a potential candidate for more research into treatments for antibiotic-resistant bacteria.

  1. Study of combination treatment effect of the {sup 166}Ho and anticancer agents in-vitro

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, S. M.; Choi, S. J.; Park, K. B. [KAERI, Taejon (Korea, Republic of)

    2003-10-01

    For the development of new controlled drug delivery systems, the application of combination therapy using radioisotopes and tumor static agents has drawn great attention. This study was designed to estimate the treatment effect of the combination therapy with Holmium ({sup 166}Ho) and tumor static agents. Ho-166 was produced at the KAERI using HANARO reactor. The drugs applied were Sunpla, Methotrexate and Doxorubicin. Human glioblastoma (T98G), adenocarcinoma (MKN45), hepatocellular (Hep3B), lung carcinoma (Calu6), ovary adenocarcinoma (NIH:OVCAR- 3) and rat glioma (C6) were used. The cell cytotoxicity on the tumor cell lines determined by MTT assay. In the case where the chemotherapeutic agent was solely applied to the cell lines, the IC{sub 50} values wer e 2.4x10{sup -5}M of the Sunpla for MKN45 and 4.23x10{sup -6}M of the Doxorubicin for Calu6. The radioactivity of Ho-166 occurring 20% apoptosis was 10{mu}Ci. As for Sunpla and Doxorubicin, the value of IC20 was dependent on the cell lines used. The combination treatment of {sup 166}Ho and drug was to improve therapeutic success rate in T98G, MKN45, Hep3B, and Calu6. From this in vitro study it can be concluded that combining 166Ho radionuclide therapy and chemotherapy could enhance the effect of each in eliminating proliferating tumor cells.

  2. In vitro potency and combination testing of antimicrobial agents against Neisseria gonorrhoeae.

    Science.gov (United States)

    Bharat, Amrita; Martin, Irene; Zhanel, George G; Mulvey, Michael R

    2016-03-01

    Antimicrobial resistant Neisseria gonorrhoeae is a major concern to public health due to decreased susceptibility to frontline antimicrobials. To find agents that are active against N. gonorrhoeae, we tested antimicrobials alone or in combination by Etest gradient strips. The potencies (as assessed by minimum inhibitory concentrations) of twenty-five antimicrobials were evaluated against nine reference strains of N. gonorrhoeae (WHO F, G, K, L, M, N, O, P and ATCC 49226). Potency was greatest for netilmicin, quinupristin-dalfopristin, ceftriaxone, ertapenem and piperacillin-tazobactam. Combinations of azithromycin, moxifloxacin, or gentamicin with ceftriaxone, doripenem, or aztreonam were tested against reference isolates and the fractional inhibitory concentration index (FICI) was calculated. All nine combinations resulted in indifference (>0.5 FICI ≤ 4). Combinations with FICI gonorrhoeae. These data on antimicrobials with higher potency and combinations that did not show antagonism can help to guide larger scale susceptibility studies for antimicrobial resistant N. gonorrhoeae.

  3. Listeria monocytogenes as a vector for anti-cancer therapies.

    LENUS (Irish Health Repository)

    Tangney, Mark

    2012-01-31

    The intracellular pathogen Listeria monocytogenes represents a promising therapeutic vector for the delivery of DNA, RNA or protein to cancer cells or to prime immune responses against tumour-specific antigens. A number of biological properties make L. monocytogenes a promising platform for development as a vector for either gene therapy or as an anti-cancer vaccine vector. L. monocytogenes is particularly efficient in mediating internalization into host cells. Once inside cells, the bacterium produces specific virulence factors which lyse the vaculolar membrane and allow escape into the cytoplasm. Once in the cytosol, L. monocytogenes is capable of actin-based motility and cell-to-cell spread without an extracellular phase. The cytoplasmic location of L. monocytogenes is significant as this potentiates entry of antigens into the MHC Class I antigen processing pathway leading to priming of specific CD8(+) T cell responses. The cytoplasmic location is also beneficial for the delivery of DNA (bactofection) by L. monocytogenes whilst cell-to-cell spread may facilitate access of the vector to cells throughout the tumour. Several preclinical studies have demonstrated the ability of L. monocytogenes for intracellular gene or protein delivery in vitro and in vivo, and this vector has also displayed safety and efficacy in clinical trial. Here, we review the features of the L. monocytogenes host-pathogen interaction that make this bacterium such an attractive candidate with which to induce appropriate therapeutic responses. We focus primarily upon work that has led to attenuation of the pathogen, demonstrated DNA, RNA or protein delivery to tumour cells as well as research that shows the efficacy of L. monocytogenes as a vector for tumour-specific vaccine delivery.

  4. Technology whitespaces India should focus: a comparative anti-cancer patent rational analysis of Indian and international public funded universities.

    Science.gov (United States)

    Dara, Ajay; Sangamwar, Abhay T

    2015-01-01

    The article reported an in-depth comparative technology analysis of 1708 Anti-cancer patents from top 20 international universities and leading 10 Indian public funded organization and research institutes. The study segregated pioneer universities vs. technologies used in the field of Anticancer research at a level of drug discovery, development, diagnosis and treatment, which are illustrated in the form of novel substantive patent landscape maps. The reported competitive intelligent maps identified genetics, composition and synthetic compounds as dominating technologies; followed by natural extracts, combination and drug delivery systems as upcoming technologies. The least number of patents were reported by surgical apparatus, targeted therapy and animal models. In addition, the study analysed the key technologies followed by Indian universities in comparison to the international universities, to identify the overlooked technologies by the Indian public funded institutes. In an ever changing competitive world, it is essential for every university to have their own research plan and thrust areas; but at the same time, it is equally important for any organisation to have an idea of their competitor's research plan as well. So, the article suggested Indian institutes to focus on the latest emerging Anti-cancer technology trends, which are in practice by the international universities. Concurrently, this study may be a landmark indication for Indian public funded universities and institutes, calling for a U-turn from their traditional approaches.

  5. 99mTc-HYNIC-Annexin A5 in Oncology: Evaluating Efficacy of Anti-Cancer Therapies

    Directory of Open Access Journals (Sweden)

    Chris P. Reutelingsperger

    2013-05-01

    Full Text Available Evaluation of efficacy of anti-cancer therapy is currently performed by anatomical imaging (e.g., MRI, CT. Structural changes, if present, become apparent 1–2 months after start of therapy. Cancer patients thus bear the risk to receive an ineffective treatment, whilst clinical trials take a long time to prove therapy response. Both patient and pharmaceutical industry could therefore profit from an early assessment of efficacy of therapy. Diagnostic methods providing information on a functional level, rather than a structural, could present the solution. Recent technological advances in molecular imaging enable in vivo imaging of biological processes. Since most anti-cancer therapies combat tumors by inducing apoptosis, imaging of apoptosis could offer an early assessment of efficacy of therapy. This review focuses on principles of and clinical experience with molecular imaging of apoptosis using Annexin A5, a widely accepted marker for apoptosis detection in vitro and in vivo in animal models. 99mTc-HYNIC-Annexin A5 in combination with SPECT has been probed in clinical studies to assess efficacy of chemo- and radiotherapy within 1–4 days after start of therapy. Annexin A5-based functional imaging of apoptosis shows promise to offer a personalized medicine approach, now primarily used in genome-based medicine, applicable to all cancer patients.

  6. Analysis of in vitro chemoprevention of genotoxic damage by phytochemicals, as single agents or as combinations.

    Science.gov (United States)

    Abraham, Suresh K; Eckhardt, Alexander; Oli, Rajaraman G; Stopper, Helga

    2012-05-15

    Cancer chemoprevention with low-dose combinations of bioactive phytochemicals instead of single agents has been suggested to induce less toxicity and improve efficacy. In this study, we selected four plant food-based phytochemicals, viz. chlorogenic acid (CLA), pelargonidin (PEL), resveratrol (RES) and epigallocatechin gallate (EGCG) to evaluate the in vitro chemoprevention of genotoxic damage in HL-60 cells. These agents were tested either individually or as a combination at two concentrations (with a 10-fold difference) against the genotoxins mitomycin C (MMC), diepoxybutane (DEB) and patulin (PAT). Our preliminary ferric reducing antioxidant power (FRAP) assay demonstrated additive effects when PEL, CLA, RES and EGCG were combined. Results of the cytokinesis-block micronucleus test showed significant protection against genotoxic damage induced by PAT, DEB and MMC when CLA, PEL, RES and EGCG were tested individually. This protective effect of the phytochemicals was not concentration-related. Both low- and high-concentration combinations of CLA, PEL, RES and EGCG showed significant reducing effects on the frequencies of micronuclei induced by PAT, DEB and MMC. However, the micronucleus test did not provide indications of additive or synergistic effects with this combination of phytochemicals. In conclusion, the chemo-preventive effects of PEL, CLA, RES and EGCG against genotoxic damage induced by MMC, DEB and PAT are indicative of a 'saturation effect' when higher concentrations and combinations of these phytochemicals are used.

  7. Plant lectins, from ancient sugar-binding proteins to emerging anti-cancer drugs in apoptosis and autophagy.

    Science.gov (United States)

    Jiang, Q-L; Zhang, S; Tian, M; Zhang, S-Y; Xie, T; Chen, D-Y; Chen, Y-J; He, J; Liu, J; Ouyang, L; Jiang, X

    2015-02-01

    Ubiquitously distributed in different plant species, plant lectins are highly diverse carbohydrate-binding proteins of non-immune origin. They have interesting pharmacological activities and currently are of great interest to thousands of people working on biomedical research in cancer-related problems. It has been widely accepted that plant lectins affect both apoptosis and autophagy by modulating representative signalling pathways involved in Bcl-2 family, caspase family, p53, PI3K/Akt, ERK, BNIP3, Ras-Raf and ATG families, in cancer. Plant lectins may have a role as potential new anti-tumour agents in cancer drug discovery. Thus, here we summarize these findings on pathway- involved plant lectins, to provide a comprehensive perspective for further elucidating their potential role as novel anti-cancer drugs, with respect to both apoptosis and autophagy in cancer pathogenesis, and future therapy.

  8. Comparative Proteomic Analysis of Anti-Cancer Mechanism by Periplocin Treatment in Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Zejun Lu

    2014-03-01

    Full Text Available Background: Periplocin is used for treatment of rheumatoid arthritis, reinforcement of bones and tendons, palpitations or shortness of breath and lower extremity edema in traditional medicine. Our previous findings suggested that periplocin could inhibit the growth of lung cancer both in vitro and in vivo. But the biological processes and molecular pathways by which periplocin induces these beneficial effects remain largely undefined. Methods: To explore the molecular mechanisms of periplocin involved in anti-cancer activity, in the present study the protein profile changes of human lung cancer cell lines A549 in response to periplocin treatment were investigated using the proteomics approaches (2-DE combined with MS/MS. Western blot was employed to verify the changed proteins. Interactions between changed proteins were analyzed by STRING. Results: 29 down-regulated protein species named GTP-binding nuclear protein Ran (RAN, Rho GDP-dissociation inhibitor 1 (ARHGDIA, eukaryotic translation initiation factor 5A-1 (EIF5A and Profilin-1(PFN1, and 10 up-regulated protein species named Heat shock cognate 71 kDa protein (HSPA8,10 kDa heat shock protein (HSPE1, and Cofilin-1(CFL-1 were identified. Among them, GTP-binding nuclear protein Ran (RAN and Rho GDP-dissociation inhibitor 1 (ARHGDIA were the most significantly changed (over tenfold. The proteasome subunit beta type-6 (PSMB6, ATP synthase ecto-α-subunit (ATP5A1, Aldehyde dehydrogenase 1 (ALDH1 and EIF5A were verified by immunoblot assays to be dramatically down-regulated. By STRING bioinformatics analysis revealing interactions and signaling networks it became apparent that the proteins changed they are primarily involved in transcription and proteolysis. Conclusion: Periplocin inhibited growth of lung cancer by down-regulating proteins, such as ATP5A1, EIF5A, ALDH1 and PSMB6. These findings may improve our understanding of the molecular mechanisms underlying the anti-cancer effects of

  9. Discovery of wall teichoic acid inhibitors as potential anti-MRSA β-lactam combination agents.

    Science.gov (United States)

    Wang, Hao; Gill, Charles J; Lee, Sang H; Mann, Paul; Zuck, Paul; Meredith, Timothy C; Murgolo, Nicholas; She, Xinwei; Kales, Susan; Liang, Lianzhu; Liu, Jenny; Wu, Jin; Santa Maria, John; Su, Jing; Pan, Jianping; Hailey, Judy; Mcguinness, Debra; Tan, Christopher M; Flattery, Amy; Walker, Suzanne; Black, Todd; Roemer, Terry

    2013-02-21

    Innovative strategies are needed to combat drug resistance associated with methicillin-resistant Staphylococcus aureus (MRSA). Here, we investigate the potential of wall teichoic acid (WTA) biosynthesis inhibitors as combination agents to restore β-lactam efficacy against MRSA. Performing a whole-cell pathway-based screen, we identified a series of WTA inhibitors (WTAIs) targeting the WTA transporter protein, TarG. Whole-genome sequencing of WTAI-resistant isolates across two methicillin-resistant Staphylococci spp. revealed TarG as their common target, as well as a broad assortment of drug-resistant bypass mutants mapping to earlier steps of WTA biosynthesis. Extensive in vitro microbiological analysis and animal infection studies provide strong genetic and pharmacological evidence of the potential effectiveness of WTAIs as anti-MRSA β-lactam combination agents. This work also highlights the emerging role of whole-genome sequencing in antibiotic mode-of-action and resistance studies.

  10. Optical clearing agent perfusion enhancement via combination of microneedle poration, heating and pneumatic pressure

    OpenAIRE

    Damestani, Y; Melakeberhan, B; Rao, MP; Aguilar, G.

    2014-01-01

    Background and Objective Optical clearing agents (OCAs) have shown promise for increasing the penetration depth of biomedical lasers by temporarily decreasing optical scattering within the skin. However, their translation to the clinic has been constrained by lack of practical means for effectively perfusing OCA within target tissues in vivo. The objective of this study was to address this limitation through combination of a variety of techniques to enhance OCA perfusion, including heating of...

  11. Synergistic combinations of antifungals and anti-virulence agents to fight against Candida albicans

    OpenAIRE

    Cui, Jinhui; Ren, Biao; Tong, Yaojun; Dai, Huanqin; Zhang, Lixin

    2015-01-01

    Candida albicans, one of the pathogenic Candida species, causes high mortality rate in immunocompromised and high-risk surgical patients. In the last decade, only one new class of antifungal drug echinocandin was applied. The increased therapy failures, such as the one caused by multi-drug resistance, demand innovative strategies for new effective antifungal drugs. Synergistic combinations of antifungals and anti-virulence agents highlight the pragmatic strategy to reduce the development of d...

  12. Multidrug Delivery Systems Based on Human Serum Albumin for Combination Therapy with Three Anticancer Agents.

    Science.gov (United States)

    Qi, Jinxu; Zhang, Yao; Gou, Yi; Lee, Philbert; Wang, Jun; Chen, Shifang; Zhou, Zuping; Wu, Xiaoyang; Yang, Feng; Liang, Hong

    2016-09-06

    When administering several anticancer drugs within a single carrier, it is important to regulate their spatial distribution so as to avoid possible mutual interference and to thus enhance the drugs' selectivity and efficiency. To achieve this, we proposed to develop human serum albumin (HSA)-based multidrug delivery systems for combination anticancer therapy. We used three anticancer agents (an organic drug [5-fluorouracil, or 5FU], a metallic agent [2-benzoylpyridine thiosemicarbazide copper II, or BpT], and a gene agent [AS1411]) to treat liver cancer and confirm our hypothesis. The structure of the HSA-palmitic acid (PA)-5FU-BpT complex revealed that 5FU and BpT, respectively, bind to the IB and IIA subdomains of HSA. Our MALDI-TOF-MS spectral data show that one AS1411 molecule is conjugated to Cys-34 of the HSA-5FU-BpT complex via a linker. Compared with unregulated three-drug combination therapy, the HSA-5FU-BpT-AS1411 complex enhances cytotoxicity in Bel-7402 cells approximately 7-fold in vitro; however, in normal cells it does not raise cytotoxicity levels. Importantly, our in vivo results demonstrate that the HSA-5FU-BpT-AS1411 complex is superior to the unregulated three-drug combination in enhancing targeting ability, inhibiting liver tumor growth, and causing fewer side effects.

  13. Antibacterial properties of the Vietnamese cajeput oil and ocimum oil in combination with antibacterial agents.

    Science.gov (United States)

    Jedlicková, Z; Mottl, O; Serý, V

    1992-01-01

    Main antibacterially active agents obtained from plants-Cajeput essential oil--1,8 cineol, linalool, alpha-terpineol and terpinen-4-ol, for example from Melalleuce leucadendron (Myrtaceae) as well as essential oil from Ocimum gratissimum (Labiatae) were combined in tests in vitro with selected antibiotics. Above mentioned plant products were found to be effective medicaments for local application in modern medical practice. Combinations with antibiotics potentiated their therapeutical action. On the basis of tests in vitro the synergistic action of these two kinds of medicaments, i.e., preparations traditionally used for a few last decades--antibiotics--might be well applied for therapeutical needs.

  14. Anti cancer effects of curcumin: cycle of life and death

    Directory of Open Access Journals (Sweden)

    Das Tanya

    2008-10-01

    Full Text Available Abstract Increasing knowledge on the cell cycle deregulations in cancers has promoted the introduction of phytochemicals, which can either modulate signaling pathways leading to cell cycle regulation or directly alter cell cycle regulatory molecules, in cancer therapy. Most human malignancies are driven by chromosomal translocations or other genetic alterations that directly affect the function of critical cell cycle proteins such as cyclins as well as tumor suppressors, e.g., p53. In this respect, cell cycle regulation and its modulation by curcumin are gaining widespread attention in recent years. Extensive research has addressed the chemotherapeutic potential of curcumin (diferuloylmethane, a relatively non-toxic plant derived polyphenol. The mechanisms implicated are diverse and appear to involve a combination of cell signaling pathways at multiple levels. In the present review we discuss how alterations in the cell cycle control contribute to the malignant transformation and provide an overview of how curcumin targets cell cycle regulatory molecules to assert anti-proliferative and/or apoptotic effects in cancer cells. The purpose of the current article is to present an appraisal of the current level of knowledge regarding the potential of curcumin as an agent for the chemoprevention of cancer via an understanding of its mechanism of action at the level of cell cycle regulation. Taken together, this review seeks to summarize the unique properties of curcumin that may be exploited for successful clinical cancer prevention.

  15. Photochemical properties of a new kind of anti-cancer drug: N-glycoside compound

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Due to the nontoxicity and efficient anti-cancer activity, more and more attention has been paid to N-glycoside compounds. Laser photolysis of N-(α-D-glucopyranoside) salicyloyl hydrazine (NGSH) has been performed for the first time. The research results show that NGSH has high photosensitivity and is vulnerable to be photo-ionized via a monophotonic process with a quantum yield of 0.02, generating NGSH+· and hydrated electrons. Under the aerobic condition of cells, the hydrated electrons are very easy to combine with oxygen to generate 1O2 and O2-, both of which are powerful oxidants that can kill the cancer cells. In addition, NGSH+· can be changed into neutral radicals by deprotonation with a pKa value of 4.02 and its decay constant was determined to be 2.55×109dm3·mol-1·s-1. NGSH also can be oxidized by SO4-. with a rate constant of 1.76×109 dm3·mol-1.s-1, which further confirms the results of photoionization. All of these results suggest that this new N-glycoside compound might be useful for cancer treatment.

  16. Dosage and Dose Schedule Screening of Drug Combinations in Agent-Based Models Reveals Hidden Synergies.

    Science.gov (United States)

    Barros de Andrade E Sousa, Lisa C; Kühn, Clemens; Tyc, Katarzyna M; Klipp, Edda

    2015-01-01

    The fungus Candida albicans is the most common causative agent of human fungal infections and better drugs or drug combination strategies are urgently needed. Here, we present an agent-based model of the interplay of C. albicans with the host immune system and with the microflora of the host. We took into account the morphological change of C. albicans from the yeast to hyphae form and its dynamics during infection. The model allowed us to follow the dynamics of fungal growth and morphology, of the immune cells and of microflora in different perturbing situations. We specifically focused on the consequences of microflora reduction following antibiotic treatment. Using the agent-based model, different drug types have been tested for their effectiveness, namely drugs that inhibit cell division and drugs that constrain the yeast-to-hyphae transition. Applied individually, the division drug turned out to successfully decrease hyphae while the transition drug leads to a burst in hyphae after the end of the treatment. To evaluate the effect of different drug combinations, doses, and schedules, we introduced a measure for the return to a healthy state, the infection score. Using this measure, we found that the addition of a transition drug to a division drug treatment can improve the treatment reliability while minimizing treatment duration and drug dosage. In this work we present a theoretical study. Although our model has not been calibrated to quantitative experimental data, the technique of computationally identifying synergistic treatment combinations in an agent based model exemplifies the importance of computational techniques in translational research.

  17. Dosage and dose schedule screening of drug combinations in agent-based models reveals hidden synergies

    Directory of Open Access Journals (Sweden)

    Lisa Corina Barros de Andrade e Sousa1

    2016-01-01

    Full Text Available The fungus Candida albicans is the most common causative agent of human fungal infections and better drugs or drug combination strategies are urgently needed. Here, we present an agent-based model of the interplay of C. albicans with the host immune system and with the microflora of the host. We took into account the morphological change of C. albicans from the yeast to hyphae form and its dynamics during infection. The model allowed us to follow the dynamics of fungal growth and morphology, of the immune cells and of microflora in different perturbing situations. We specifically focused on the consequences of microflora reduction following antibiotic treatment. Using the agent-based model, different drug types have been tested for their effectiveness, namely drugs that inhibit cell division and drugs that constrain the yeast-to-hyphae transition. Applied individually, the division drug turned out to successfully decrease hyphae while the transition drug leads to a burst in hyphae after the end of the treatment. To evaluate the effect of different drug combinations, doses, and schedules, we introduced a measure for the return to a healthy state, the infection score. Using this measure, we found that the addition of a transition drug to a division drug treatment can improve the treatment reliability while minimizing treatment duration and drug dosage. In this work we present a theoretical study. Although our model has not been calibrated to quantitative experimental data, the technique of computationally identifying synergistic treatment combinations in an agent based model exemplifies the importance of computational techniques in translational research.

  18. Y2O3:Yb,Er@mSiO2-Cu(x)S double-shelled hollow spheres for enhanced chemo-/photothermal anti-cancer therapy and dual-modal imaging.

    Science.gov (United States)

    Yang, Dan; Yang, Guixin; Wang, Xingmei; Lv, Ruichan; Gai, Shili; He, Fei; Gulzar, Arif; Yang, Piaoping

    2015-07-28

    Multifunctional composites have gained significant interest due to their unique properties which show potential in biological imaging and therapeutics. However, the design of an efficient combination of multiple diagnostic and therapeutic modes is still a challenge. In this contribution, Y2O3:Yb,Er@mSiO2 double-shelled hollow spheres (DSHSs) with up-conversion fluorescence have been successfully prepared through a facile integrated sacrifice template method, followed by a calcination process. It is found that the double-shelled structure with large specific surface area and uniform shape is composed of an inner shell of luminescent Y2O3:Yb,Er and an outer mesoporous silica shell. Ultra small Cu(x)S nanoparticles (about 2.5 nm) served as photothermal agents, and a chemotherapeutic agent (doxorubicin, DOX) was then attached onto the surface of mesoporous silica, forming a DOX-DSHS-Cu(x)S composite. The composite exhibits high anti-cancer efficacy due to the synergistic photothermal therapy (PTT) induced by the attached Cu(x)S nanoparticles and the enhanced chemotherapy promoted by the heat from the Cu(x)S-based PTT when irradiated by 980 nm near-infrared (NIR) light. Moreover, the composite shows excellent in vitro and in vivo X-ray computed tomography (CT) and up-conversion fluorescence (UCL) imaging properties owing to the doped rare earth ions, thus making it possible to achieve the target of imaging-guided synergistic therapy.

  19. Treatment of Aluminium Phosphide Poisoning with a Combination of Intravenous Glucagon, Digoxin and Antioxidant Agents

    Science.gov (United States)

    Oghabian, Zohreh; Mehrpour, Omid

    2016-01-01

    Aluminium phosphide (AlP) is used to protect stored grains from rodents. It produces phosphine gas (PH3), a mitochondrial poison thought to cause toxicity by blocking the cytochrome c oxidase enzyme and inhibiting oxidative phosphorylation, which results in cell death. AlP poisoning has a high mortality rate among humans due to the rapid onset of cardiogenic shock and metabolic acidosis, despite aggressive treatment. We report a 21-year-old male who was referred to the Afzalipour Hospital, Kerman, Iran, in 2015 after having intentionally ingested a 3 g AlP tablet. He was successfully treated with crystalloid fluids, vasopressors, sodium bicarbonate, digoxin, glucagon and antioxidant agents and was discharged from the hospital six days after admission in good clinical condition. For the treatment of AlP poisoning, the combination of glucagon and digoxin with antioxidant agents should be considered. However, evaluation of further cases is necessary to optimise treatment protocols. PMID:27606117

  20. Treatment of Aluminium Phosphide Poisoning with a Combination of Intravenous Glucagon, Digoxin and Antioxidant Agents

    Directory of Open Access Journals (Sweden)

    Zohreh Oghabian

    2016-08-01

    Full Text Available Aluminium phosphide (AlP is used to protect stored grains from rodents. It produces phosphine gas (PH3, a mitochondrial poison thought to cause toxicity by blocking the cytochrome c oxidase enzyme and inhibiting oxidative phosphorylation, which results in cell death. AlP poisoning has a high mortality rate among humans due to the rapid onset of cardiogenic shock and metabolic acidosis, despite aggressive treatment. We report a 21-yearold male who was referred to the Afzalipour Hospital, Kerman, Iran, in 2015 after having intentionally ingested a 3 g AlP tablet. He was successfully treated with crystalloid fluids, vasopressors, sodium bicarbonate, digoxin, glucagon and antioxidant agents and was discharged from the hospital six days after admission in good clinical condition. For the treatment of AlP poisoning, the combination of glucagon and digoxin with antioxidant agents should be considered. However, evaluation of further cases is necessary to optimise treatment protocols.

  1. Preclinical Investigations of PM01183 (Lurbinectedin as a Single Agent or in Combination with Other Anticancer Agents for Clear Cell Carcinoma of the Ovary.

    Directory of Open Access Journals (Sweden)

    Ryoko Takahashi

    Full Text Available The objective of this study was to evaluate the antitumor effects of lurbinectedin as a single agent or in combination with existing anticancer agents for clear cell carcinoma (CCC of the ovary, which is regarded as an aggressive, chemoresistant, histological subtype.Using human ovarian CCC cell lines, the antitumor effects of lurbinectedin, SN-38, doxorubicin, cisplatin, and paclitaxel as single agents were assessed using the MTS assay. Then, the antitumor effects of combination therapies involving lurbinectedin and 1 of the other 4 agents were evaluated using isobologram analysis to examine whether these combinations displayed synergistic effects. The antitumor activity of each treatment was also examined using cisplatin-resistant and paclitaxel-resistant CCC sublines. Finally, we determined the effects of mTORC1 inhibition on the antitumor activity of lurbinectedin-based chemotherapy.Lurbinectedin exhibited significant antitumor activity toward chemosensitive and chemoresistant CCC cells in vitro. An examination of mouse CCC cell xenografts revealed that lurbinectedin significantly inhibits tumor growth. Among the tested combinations, lurbinectedin plus SN-38 resulted in a significant synergistic effect. This combination also had strong synergistic effects on both the cisplatin-resistant and paclitaxel-resistant CCC cell lines. Everolimus significantly enhanced the antitumor activity of lurbinectedin-based chemotherapies.Lurbinectedin, a new agent that targets active transcription, exhibits antitumor activity in CCC when used as a single agent and has synergistic antitumor effects when combined with irinotecan. Our results indicate that lurbinectedin is a promising agent for treating ovarian CCC, both as a first-line treatment and as a salvage treatment for recurrent lesions that develop after platinum-based or paclitaxel treatment.

  2. Interaction of anthraquinone anti-cancer drugs with DNA:Experimental and computational quantum chemical study

    Science.gov (United States)

    Al-Otaibi, Jamelah S.; Teesdale Spittle, Paul; El Gogary, Tarek M.

    2017-01-01

    Anthraquinones form the basis of several anticancer drugs. Anthraquinones anticancer drugs carry out their cytotoxic activities through their interaction with DNA, and inhibition of topoisomerase II activity. Anthraquinones (AQ4 and AQ4H) were synthesized and studied along with 1,4-DAAQ by computational and experimental tools. The purpose of this study is to shade more light on mechanism of interaction between anthraquinone DNA affinic agents and different types of DNA. This study will lead to gain of information useful for drug design and development. Molecular structures were optimized using DFT B3LYP/6-31 + G(d). Depending on intramolecular hydrogen bonding interactions two conformers of AQ4 were detected and computed as 25.667 kcal/mol apart. Molecular reactivity of the anthraquinone compounds was explored using global and condensed descriptors (electrophilicity and Fukui functions). Molecular docking studies for the inhibition of CDK2 and DNA binding were carried out to explore the anti cancer potency of these drugs. NMR and UV-VIS electronic absorption spectra of anthraquinones/DNA were investigated at the physiological pH. The interaction of the three anthraquinones (AQ4, AQ4H and 1,4-DAAQ) were studied with three DNA (calf thymus DNA, (Poly[dA].Poly[dT]) and (Poly[dG].Poly[dC]). NMR study shows a qualitative pattern of drug/DNA interaction in terms of band shift and broadening. UV-VIS electronic absorption spectra were employed to measure the affinity constants of drug/DNA binding using Scatchard analysis.

  3. Renal cell carcinoma: review of novel single-agent therapeutics and combination regimens.

    Science.gov (United States)

    Amato, R J

    2005-01-01

    A search of the Medline database and ASCO 2003 conference proceedings was conducted to identify clinical trials currently underway using single-agent therapy for renal cell carcinoma (RCC). Combination trials were identified using the ASCO 2003 conference proceedings. Fourteen single-agent therapies employing different mechanisms of action were identified in the published literature: imatinib mesylate (Gleevec); bevacizumab (Avastin); thalidomide (Thalomid); gefitinib (ZD1839) (Iressa); cetuximab (IMC-C225) (Erbitux); bortezomib (PS-341) (Velcade); HSPPC-96 (Oncophage); BAY 59-8862; ABT-510; G250; CCI-779; SU5416; PTK/ZK; and ABX-EGF. Six distinct fields of clinical research have emerged: monoclonal antibodies, small molecules, vaccines, second-generation taxanes, nonapeptides and immunomodulators. Five combination regimens, primarily biological response modifiers (interleukin-2 or interferon-alpha), chemotherapy- or thalidomide-based, were identified. All therapies demonstrated acceptable toxicity profiles. Clinical benefit was assessed based on each study's reported criteria: antitumor response (regression or stability) ranged from 5% to 71%. In the past several years, significant advances in the underlying biological mechanisms of RCC, particularly the role of tumor angiogenesis, have permitted the design of molecularly targeted therapeutics. Based on preliminary and limited studies, combination therapies offer the greatest clinical benefit in the management of this malignancy, although additional basic research is still warranted.

  4. Novel pyrimidine-2,4-dione-1,2,3-triazole and furo[2,3-d]pyrimidine-2-one-1,2,3-triazole hybrids as potential anti-cancer agents: Synthesis, computational and X-ray analysis and biological evaluation.

    Science.gov (United States)

    Gregorić, Tomislav; Sedić, Mirela; Grbčić, Petra; Tomljenović Paravić, Andrea; Kraljević Pavelić, Sandra; Cetina, Mario; Vianello, Robert; Raić-Malić, Silvana

    2017-01-05

    Regioselective 1,4-disubstituted 1,2,3-triazole tethered pyrimidine-2,4-dione derivatives (5-23) were successfully prepared by the copper(I)-catalyzed click chemistry. While known palladium/copper-cocatalyzed method based on Sonogashira cross-coupling followed by the intramolecular 5-endo-dig ring closure generated novel 6-alkylfuro[2,3-d]pyrimidine-2-one-1,2,3-triazole hybrids (24b-37b), a small library of their 5-alkylethynyl analogs (24a-37a) was synthesized and described for the first time by tandem terminal alkyne dimerization and subsequent 5-endo-trig cyclization, which was additionally corroborated with computational and X-ray crystal structure analyses. The nature of substituents on alkynes and thereof homocoupled 1,3-diynes predominantly influenced the ratio of the formed products in both pathways. In vitro antiproliferative activity of prepared compounds evaluated on five human cancer cell lines revealed that N,N-1,3-bis-(1,2,3-triazole)-5-bromouracil (5-7) and 5,6-disubstituted furo[2,3-d]pyrimidine-2-one-1,2,3-triazole 34a hybrids exhibited the most pronounced cytostatic acitivities against hepatocellular carcinoma (HepG2) and cervical carcinoma (HeLa) cells with higher potencies than the reference drug 5-fluorouracil. Cytostatic effect of pyrimidine-2,4-dione-1,2,3-triazole hybrid 7 in HepG2 cells could be attributed to the Wee-1 kinase inhibition and abolishment of sphingolipid signaling mediated by acid ceramidase and sphingosine kinase 1. Importantly, this compound proved to be a non-mitochondrial toxicant, which makes it a promising candidate for further lead optimization and development of a new and more efficient agent for the treatment of hepatocellular carcinoma.

  5. Synthesis, spectral and quantum chemical studies and use of (E)-3-[(3,5-bis(trifluoromethyl)phenylimino)methyl]benzene-1,2-diol and its Ni(II) and Cu(II) complexes as an anion sensor, DNA binding, DNA cleavage, anti-microbial, anti-mutagenic and anti-cancer agent

    Science.gov (United States)

    Ünver, Hüseyin; Boyacıoğlu, Bahadır; Zeyrek, Celal Tuğrul; Yıldız, Mustafa; Demir, Neslihan; Yıldırım, Nuray; Karaosmanoğlu, Oğuzhan; Sivas, Hülya; Elmalı, Ayhan

    2016-12-01

    We report the synthesis of a novel Schiff base (E)-3-[(3,5-bis(trifluoromethyl) phenylimino)methyl] benzene-1,2-diol from the reaction of 2,3-dihydroxybenzaldehyde with 3,5-bis(trifluoromethyl)aniline, and its Ni(II) and Cu(II) complexes. The molecular structure of the Schiff base was experimentally determined using X-ray single-crystal data and was compared to the structure predicted by theoretical calculations using density functional theory (DFT), Hartree-Fock (HF) and Möller-Plesset second-order perturbation (MP2). In addition, nonlinear optical (NLO) effects of the compound was predicted using DFT. The antimicrobial activities of the compounds were investigated for their minimum inhibitory concentration. UV-Vis spectroscopy studies of the interactions between the compounds and calf thymus DNA (CT-DNA) showed that the compounds interacts with CT-DNA via intercalative binding. A DNA cleavage study showed that the Cu(II) complex cleaved DNA without any external agents. The compounds inhibited the base pair mutation in the absence of S9 with high inhibition rate. In addition, in vitro cytotoxicity of the Ni(II) complex towards HepG2 cell line was assayed by the MTT method. Also, the colorimetric response of the Schiff base in DMSO to the addition of equivalent amount of anions (F-, Br-, I-, CN-, SCN-, ClO4-, HSO4-, AcO-, H2PO4-, N3- and OH-) was investigated. In this regard, while the addition of F-, CN-, AcO- and OH- anions into the solution containing Schiff base resulted in a significant color change, the addition of Br-, I-, SCN-, ClO4-, HSO4-, H2PO4- and N3- anions resulted in no color change. The most discernable color change in the Schiff base was caused by CN-, which demonstrated that the ligand can be used to selectively detect CN-.

  6. Clinical trial success rates of anti-obesity agents: the importance of combination therapies.

    Science.gov (United States)

    Hussain, H T; Parker, J L; Sharma, A M

    2015-09-01

    The objective of this study was to construct a clinical trial profile assessing the risk of drug failure among anti-obesity agents. Research was conducted by looking at anti-obesity therapies currently on the market or in clinical trials (phases I to III) conducted from 1998 to September 2014, with the exclusion of any drugs whose phase I trial was conducted prior to January 1998. This was completed primarily through a search on http://clinicaltrials.gov where a total of 51 drugs met the search criteria. The transition probabilities were then calculated based on various classifications and compared against industry standards. The transition probability of anti-obesity agents was 8.50% whereas the transition probability of industry standards was 10.40%. Combination therapies had four times the transition probability than monotherapies, 40% and 4.75%, respectively. Therefore, it was determined that 92% of drugs fail during clinical trial testing for this indication and combination therapy appears to improve clinical trial success rates to 10-fold.

  7. Combining Bayesian Networks and Agent Based Modeling to develop a decision-support model in Vietnam

    Science.gov (United States)

    Nong, Bao Anh; Ertsen, Maurits; Schoups, Gerrit

    2016-04-01

    Complexity and uncertainty in natural resources management have been focus themes in recent years. Within these debates, with the aim to define an approach feasible for water management practice, we are developing an integrated conceptual modeling framework for simulating decision-making processes of citizens, in our case in the Day river area, Vietnam. The model combines Bayesian Networks (BNs) and Agent-Based Modeling (ABM). BNs are able to combine both qualitative data from consultants / experts / stakeholders, and quantitative data from observations on different phenomena or outcomes from other models. Further strengths of BNs are that the relationship between variables in the system is presented in a graphical interface, and that components of uncertainty are explicitly related to their probabilistic dependencies. A disadvantage is that BNs cannot easily identify the feedback of agents in the system once changes appear. Hence, ABM was adopted to represent the reaction among stakeholders under changes. The modeling framework is developed as an attempt to gain better understanding about citizen's behavior and factors influencing their decisions in order to reduce uncertainty in the implementation of water management policy.

  8. Treatment of cancer using pulsed electric field in combination with chemotherapeutic agents or genes.

    Science.gov (United States)

    Nishi, T; Dev, S B; Yoshizato, K; Kuratsu, J; Ushio, Y

    1997-03-01

    Electroporation is a standard laboratory technique originally developed for in vitro transfer of molecules into cells. It involves application of electrical pulses ranging from micro- to milliseconds that create transient pores in the cell membrane allowing intracellular access of exogenous molecules. This technique has been successfully applied to regress tumors in animal models by combining electroporation with chemotherapeutic agents--a process known as electrochemotherapy (ECT) which substantially enhance cytotoxicity of some antineoplastic agents. Recently ECT has moved into clinical arena and patients with cutaneous tumors and head and neck cancers have been treated very effectively with ECT. Parallel to ECT, a technique has also been developed which makes it possible to inject plasmid DNA and combine it with in vivo electroporation--electro--genetherapy (EGT)--to deliver in a highly efficient manner both marker and functional genes into target tissue and achieve gene expression. Thus, in vivo electroporation is contributing to the development of a new strategy for cancer treatment with both drugs and genes.

  9. Anti-cancer effects of traditional Korean wild vegetables in complementary and alternative medicine.

    Science.gov (United States)

    Ju, Hyun-Mok; Yu, Kwang-Won; Cho, Sung-Dae; Cheong, Sun Hee; Kwon, Ki Han

    2016-02-01

    This research study explored the anti-cancer effects of natural materials in South Korea. Although South Korea has a long history of traditional medicine, many natural materials of South Korea have not yet been introduced to the rest of the world because of language barriers and inconsistent study conditions. In the past 3 years, 56 papers introducing 56 natural materials, which have anti-cancer effects, have been published by scientists in South Korea. Further, these studies have introduced five kinds of natural materials presented in research papers that were written in Korean and are therefore virtually unknown overseas. The anti-cancer effects were confirmed by 2-3 cancer markers in the majority of the studies, with the most common targets being breast cancer cells and gastric cancer cells. These cancers have the greatest incidence in South Korea. The natural materials studied not only exhibit anti-cancer activity but also display anti-inflammatory, anti-oxidative stress, and anti-diabetic activities. They have not yet been used for the direct treatment of disease but have potential as medicinal materials for alternative and complementary medicine for the treatment of many modern diseases. Many natural materials of South Korea are already known all over the world, and with this study, we hope to further future research to learn more about these natural medicines.

  10. Challenges and strategies in anti-cancer nanomedicine development: An industry perspective

    NARCIS (Netherlands)

    Hare, J.I.; Lammers, T.G.G.M.; Ashford, M.B.; Puri, S.; Storm, G.; Barry, S.T.

    2017-01-01

    Successfully translating anti-cancer nanomedicines from pre-clinical proof of concept to demonstration of therapeutic value in the clinic is challenging. Having made significant advances with drug delivery technologies, we must learn from other areas of oncology drug development, where patient strat

  11. Plant derived substances with anti-cancer activity: from folklore to practice.

    Science.gov (United States)

    Fridlender, Marcelo; Kapulnik, Yoram; Koltai, Hinanit

    2015-01-01

    Plants have had an essential role in the folklore of ancient cultures. In addition to the use as food and spices, plants have also been utilized as medicines for over 5000 years. It is estimated that 70-95% of the population in developing countries continues to use traditional medicines even today. A new trend, that involved the isolation of plant active compounds begun during the early nineteenth century. This trend led to the discovery of different active compounds that are derived from plants. In the last decades, more and more new materials derived from plants have been authorized and subscribed as medicines, including those with anti-cancer activity. Cancer is among the leading causes of morbidity and mortality worldwide. The number of new cases is expected to rise by about 70% over the next two decades. Thus, there is a real need for new efficient anti-cancer drugs with reduced side effects, and plants are a promising source for such entities. Here we focus on some plant-derived substances exhibiting anti-cancer and chemoprevention activity, their mode of action and bioavailability. These include paclitaxel, curcumin, and cannabinoids. In addition, development and use of their synthetic analogs, and those of strigolactones, are discussed. Also discussed are commercial considerations and future prospects for development of plant derived substances with anti-cancer activity.

  12. Abiotic reductive extraction of arsenic from contaminated soils enhanced by complexation: Arsenic extraction by reducing agents and combination of reducing and chelating agents

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun Jung [Department of Bioactive Material Sciences, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeollabukdo 561-675 (Korea, Republic of); Lee, Jae-Cheol [Department of Environmental Engineering, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeollabukdo 561-675 (Korea, Republic of); Baek, Kitae, E-mail: kbaek@jbnu.ac.kr [Department of Bioactive Material Sciences, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeollabukdo 561-675 (Korea, Republic of); Department of Environmental Engineering, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeollabukdo 561-675 (Korea, Republic of)

    2015-02-11

    Highlights: • Abiotic reductive extraction of As from contaminated soils was studied. • Oxalate/ascorbate were effective in extracting As bound to amorphous iron oxides. • Reducing agents were not effective in extracting As bound to crystalline oxides. • Reductive As extraction was greatly enhanced by complexation. • Combination of dithionite and EDTA could extract about 90% of the total As. - Abstract: Abiotic reductive extraction of arsenic from contaminated soils was studied with various reducing agents and combinations of reducing and chelating agents in order to remediate arsenic-contaminated soils. Oxalate and ascorbic acid were effective to extract arsenic from soil in which arsenic was associated with amorphous iron oxides, but they were not effective to extract arsenic from soils in which arsenic was bound to crystalline oxides or those in which arsenic was mainly present as a scorodite phase. An X-ray photoelectron spectroscopy study showed that iron oxides present in soils were transformed to Fe(II,III) or Fe(II) oxide forms such as magnetite (Fe{sub 3}O{sub 4}, Fe{sup II}Fe{sub 2}{sup III}O{sub 4}) by reduction with dithionite. Thus, arsenic extraction by dithionite was not effective due to the re-adsorption of arsenic to the newly formed iron oxide phase. Combination of chelating agents with reducing agents greatly improved arsenic extraction from soil samples. About 90% of the total arsenic could be extracted from all soil samples by using a combination of dithionite and EDTA. Chelating agents form strong complexation with iron, which can prevent precipitation of a new iron oxide phase and also enhance iron oxide dissolution via a non-reductive dissolution pathway.

  13. Combining antihypertensive and antihyperlipidemic agents – optimizing cardiovascular risk factor management

    Directory of Open Access Journals (Sweden)

    Zamorano J

    2011-11-01

    Full Text Available José Zamorano1, Jonathan Edwards21Hospital Clinico San Carlos, Madrid, Spain; 2UBC Scientific Solutions, 5 North Street, Horsham, West Sussex, UKAbstract: Clinical guidelines now recognize the importance of a multifactorial approach to managing cardiovascular (CV risk. This idea was taken a step further with the concept of the Polypill™. There are, however, considerable patent, pharmacokinetic, pharmacodynamic, registration, and cost implications that will need to be overcome before the Polypill™ or other single-pill combinations of CV medications become widely available. However, a medication targeting blood pressure (BP and lipids provides much of the proposed benefits of the Polypill™. A single-pill combination of the antihypertensive amlodipine besylate and the lipid-lowering medication atorvastatin calcium (SPAA is currently available in many parts of the world. This review describes the rationale for this combination therapy and the clinical trials that have demonstrated that these two agents can be combined without the loss of efficacy for either agent or an increase in the incidence of adverse events. The recently completed Cluster Randomized Usual Care vs Caduet Investigation Assessing Long-term-risk (CRUCIAL trial is discussed in detail. CRUCIAL was a 12-month, international, multicenter, prospective, open-label, parallel design, cluster-randomized trial, which demonstrated that a proactive intervention strategy based on SPAA in addition to usual care (UC had substantial benefits on estimated CV risk, BP, and lipids over continued UC alone. Adherence with antihypertensive and lipid-lowering therapies outside of the controlled environment of clinical trials is very low (~30%–40% at 12 months. Observational studies have demonstrated that improving adherence to lipid-lowering and antihypertensive medications may reduce CV events. One means of improving adherence is the use of single-pill combinations. Real-world observational

  14. Anti-cancer efficacy of silybin derivatives -- a structure-activity relationship.

    Directory of Open Access Journals (Sweden)

    Chapla Agarwal

    Full Text Available Silybin or silibinin, a flavonolignan isolated from Milk thistle seeds, is one of the popular dietary supplements and has been extensively studied for its antioxidant, hepatoprotective and anti-cancer properties. We have envisioned that potency of silybin could be further enhanced through suitable modification/s in its chemical structure. Accordingly, here, we synthesized and characterized a series of silybin derivatives namely 2,3-dehydrosilybin (DHS, 7-O-methylsilybin (7OM, 7-O-galloylsilybin (7OG, 7,23-disulphatesilybin (DSS, 7-O-palmitoylsilybin (7OP, and 23-O-palmitoylsilybin (23OP; and compared their anti-cancer efficacy using human bladder cancer HTB9, colon cancer HCT116 and prostate carcinoma PC3 cells. In all the 3 cell lines, DHS, 7OM and 7OG demonstrated better growth inhibitory effects and compared to silybin, while other silybin derivatives showed lesser or no efficacy. Next, we prepared the optical isomers (A and B of silybin, DHS, 7OM and 7OG, and compared their anti-cancer efficacy. Isomers of these three silybin derivatives also showed better efficacy compared with respective silybin isomers, but in each, there was no clear cut silybin A versus B isomer activity preference. Further studies in HTB cells found that DHS, 7OM and 7OG exert better apoptotic activity than silibinin. Clonogenic assays in HTB9 cells further confirmed that both the racemic mixtures as well as pure optical isomers of DHS, 7OM and 7OG were more effective than silybin. Overall, these results clearly suggest that the anti-cancer efficacy of silybin could be significantly enhanced through structural modifications, and identify strong anti-cancer efficacy of silybin derivatives, namely DHS, 7OM, and 7OG, signifying that their efficacy and toxicity should be evaluated in relevant pre-clinical cancer models in rodents.

  15. Screening for Anti-Cancer Compounds in Marine Organisms in Oman

    Directory of Open Access Journals (Sweden)

    Sergey Dobretsov

    2016-05-01

    Full Text Available Objectives: Marine organisms are a rich source of bioactive molecules with potential applications in medicine, biotechnology and industry; however, few bioactive compounds have been isolated from organisms inhabiting the Arabian Gulf and the Gulf of Oman. This study aimed to isolate and screen the anti-cancer activity of compounds and extracts from 40 natural products of marine organisms collected from the Gulf of Oman. Methods: This study was carried out between January 2012 and December 2014 at the Sultan Qaboos University, Muscat, Oman. Fungi, bacteria, sponges, algae, soft corals, tunicates, bryozoans, mangrove tree samples and sea cucumbers were collected from seawater at Marina Bandar Al-Rowdha and Bandar Al-Khayran in Oman. Bacteria and fungi were isolated using a marine broth and organisms were extracted with methanol and ethyl acetate. Compounds were identified from spectroscopic data. The anti-cancer activity of the compounds and extracts was tested in a Michigan Cancer Foundation (MCF-7 cell line breast adenocarcinoma model. Results: Eight pure compounds and 32 extracts were investigated. Of these, 22.5% showed strong or medium anti-cancer activity, with malformin A, kuanoniamine D, hymenialdisine and gallic acid showing the greatest activity, as well as the soft coral Sarcophyton sp. extract. Treatment of MCF-7 cells at different concentrations of Sarcophyton sp. extracts indicated the induction of concentration-dependent cell death. Ultrastructural analysis highlighted the presence of nuclear fragmentation, membrane protrusion, blebbing and chromatic segregation at the nuclear membrane, which are typical characteristics of cell death by apoptosis induction. Conclusion: Some Omani marine organisms showed high anti-cancer potential. The efficacy, specificity and molecular mechanisms of anti-cancer compounds from Omani marine organisms on various cancer models should be investigated in future in vitro and in vivo studies.

  16. The substance P/NK-1 receptor system: NK-1 receptor antagonists as anti-cancer drugs

    Indian Academy of Sciences (India)

    Miguel Muñoz; Rafael Coveñas; Francisco Esteban; Maximino Redondo

    2015-06-01

    The substance P (SP)/neurokinin (NK)-1 receptor system plays an important role in cancer. SP promotes the proliferation of tumour cells, angiogenesis and the migration of tumour cells. We review the involvement of SP, the NK-1 receptor and NK-1 receptor antagonists in cancer. Tumour cells overexpress NK-1 receptors, which are involved in their viability. This overexpression suggests the possibility of specific treatment against tumour cells using NK-1 receptor antagonists, thus promoting a considerable decrease in the side effects of the treatment. This strategy opens up new approaches for cancer treatment, since these antagonists, after binding to their molecular target, induce the death of tumour cells by apoptosis, exert an antiangiogenic action and inhibit the migration of tumour cells. The use of NK-1 receptor antagonists such as aprepitant (used in clinical practice) as antitumour agents could be a promising innovation. The value of aprepitant as an antitumour agent could be determined faster than for less well-known compounds because many studies addressing its safety and characterization have already been completed. The NK-1 receptor may be a promising target in the treatment of cancer; NK-1 receptor antagonists could act as specific drugs against tumour cells; and these antagonists could be new candidate anti-cancer drugs.

  17. Chemical properties and mechanisms determining the anti-cancer action of garlic-derived organic sulfur compounds.

    Science.gov (United States)

    Cerella, Claudia; Dicato, Mario; Jacob, Claus; Diederich, Marc

    2011-03-01

    Organic sulfur compounds (OSCs) derived from plants, fungi or bacteria can serve as chemopreventive and/or chemotherapeutic agents and have been attracting medical and research interest as a promising source for novel anti-cancer agents. Garlic, which has long been used as a medicinal plant in different cultures due to its multiple beneficial effects, contains a consistent number of OSCs, the majority of which are currently under investigation for their biological activities. Experimental animal and laboratory studies have shown strong evidence that garlic OSCs may affect cancer cells by promoting early mitotic arrest followed by apoptotic cell death without affecting healthy cells. The ability of OSCs to hinder cancer cell proliferation and viability tightly correlates with the length of the sulfur chain. Current data support a mechanism of mitotic arrest of cancer cells due to the alteration of the microtubule network, possibly as a consequence of the high reactivity of sulfur atoms against the thiol groups of different cellular macromolecules controlling crucial regulatory functions. Taken together, these findings indicate a promising potential for the use of garlic-derived sulfur compounds in chemoprevention and chemotherapy.

  18. Aptamer-functionalized hydrogel as effective anti-cancer drugs delivery agents.

    Science.gov (United States)

    Wang, Zonghua; Xia, Jianfei; Cai, Feng; Zhang, Feifei; Yang, Min; Bi, Sai; Gui, Rijun; Li, Yanhui; Xia, Yanzhi

    2015-10-01

    An aptamer-functionalized hydrogel has been developed, which can be regulated by the AS1411 aptamer with the sol-gel conversion. Also the hydrogel can be further utilized for the controlled encapsulation and release of the cancer drugs. Specially, the AS1411 initiates the hybridization of acrydite-modified oligonucleotides to form the hydrogels and the presence of the target protein nucleolin leads the gel to dissolve as a result of reducing the cross-linking density by competitive target-aptamer binding. Based on the rheology of hydrogels, it is possible to utilize this material for storing and releasing molecules. In this research, the cancer drug doxorubicin is encapsulated inside the gel during the formation of the hydrogel and then released in the presence of nucleolin. Further experiments are carried out to prove the specific recognition of target matter. In vitro researches confirm that the aptamer-functionalized hydrogels can be used as drug carriers in targeted therapy and other biotechnological applications.

  19. Preclinical and Clinical Assessment of Cannabinoids as Anti-Cancer Agents

    Science.gov (United States)

    Ladin, Daniel A.; Soliman, Eman; Griffin, LaToya; Van Dross, Rukiyah

    2016-01-01

    Cancer is the second leading cause of death in the United States with 1.7 million new cases estimated to be diagnosed in 2016. This disease remains a formidable clinical challenge and represents a substantial financial burden to the US health care system. Therefore, research and development of novel therapeutics for the treatment of cancer is of high priority. Cannabinoids and their derivatives have been utilized for their medicinal and therapeutic properties throughout history. Cannabinoid activity is regulated by the endocannabinoid system (ECS), which is comprised of cannabinoid receptors, transporters, and enzymes involved in cannabinoid synthesis and breakdown. More recently, cannabinoids have gained special attention for their role in cancer cell proliferation and death. However, many studies investigated these effects using in vitro models which may not adequately mimic tumor growth and metastasis. As such, this article aims to review study results which evaluated effects of cannabinoids from plant, synthetic and endogenous origins on cancer development in preclinical animal models and to examine the current standing of cannabinoids that are being tested in human cancer patients.

  20. Discovery of Inhibitors for the Ether Lipid-Generating Enzyme AGPS as Anti-Cancer Agents.

    Science.gov (United States)

    Piano, Valentina; Benjamin, Daniel I; Valente, Sergio; Nenci, Simone; Marrocco, Biagina; Mai, Antonello; Aliverti, Alessandro; Nomura, Daniel K; Mattevi, Andrea

    2015-11-20

    Dysregulated ether lipid metabolism is an important hallmark of cancer cells. Previous studies have reported that lowering ether lipid levels by genetic ablation of the ether lipid-generating enzyme alkyl-glycerone phosphate synthase (AGPS) lowers key structural and oncogenic ether lipid levels and alters fatty acid, glycerophospholipid, and eicosanoid metabolism to impair cancer pathogenicity, indicating that AGPS may be a potential therapeutic target for cancer. In this study, we have performed a small-molecule screen to identify candidate AGPS inhibitors. We have identified several lead AGPS inhibitors and have structurally characterized their interactions with the enzyme and show that these inhibitors bind to distinct portions of the active site. We further show that the lead AGPS inhibitor 1a selectively lowers ether lipid levels in several types of human cancer cells and impairs their cellular survival and migration. We provide here the first report of in situ-active pharmacological tools for inhibiting AGPS, which may provide chemical scaffolds for future AGPS inhibitor development for cancer therapy.

  1. Clinical status of anti-cancer agents derived from marine sources.

    Science.gov (United States)

    Singh, Ram; Sharma, Mukul; Joshi, Penny; Rawat, Diwan S

    2008-08-01

    The chemical, biological and ecological diversity of the marine ecosystem has contributed immensely in the discovery of extremely potent compounds that have shown potent activities in antitumor, analgesia, antiinflammatory, immunomodulation, allergy, anti-viral etc. The compounds of marine origin are diverse in structural class from simple linear peptides to complex macrocyclic polyethers. The recent advances in the sophisticated instruments for the isolation and characterization of marine natural products and development of high-throughput screening, have substantially increased the rate of discovery of various compounds of biomedical application. Didemnin was the first marine peptide that entered in human clinical trials in US for the treatment of cancer and other compounds such as dolastatin-10, soblidotin, didemnin B, ecteinascidin 743, girolline, aplidine, cryptophycins (also arenastatin A), bryostatin 1, ILX 651, kahalalide F, E7389, discodermolide, ES-285 (spisulosine), HTI-286 (hemiasterlin derivative), squalamine, KRN-7000, vitilevuamide, Laulimalide, Curacin A, diazonamide, peloruside A, eleutherobin, sarcodictyin, thiocoraline, salicylihalimides A, ascididemnin, CGX-1160, CGX-1007dictyodendrins, GTS-21 (aka DMBX), manoalide, IPL-576,092 (aka HMR-4011A) have entered in the clinical trials. This article summarize clinical status and synthetic advances of some of these compounds.

  2. A Novel Biomolecule-Mediated Reduction of Graphene Oxide: A Multifunctional Anti-Cancer Agent.

    Science.gov (United States)

    Choi, Yun-Jung; Kim, Eunsu; Han, JaeWoong; Kim, Jin-Hoi; Gurunathan, Sangiliyandi

    2016-03-18

    Graphene oxide (GO) is a monolayer of carbon atoms that form a dense honeycomb structure, consisting of hydroxyl and epoxide functional groups on the two accessible sides and carboxylic groups at the edges. In contrast, graphene is a two-dimensional sheet of sp2-hybridized carbon atoms packed into a honeycomb lattice. Graphene has great potential for use in biomedical applications due to its excellent physical and chemical properties. In this study, we report a facile and environmentally friendly approach for the synthesis of reduced graphene oxide (rGO) using uric acid (UA). The synthesized uric acid-reduced graphene oxide (UA-rGO) was fully characterized by ultraviolet-visible (UV-Vis) absorption spectra, X-ray diffraction (XRD), dynamic light scattering (DLS), Fourier transform infrared (FTIR), scanning electron microscopy (SEM), and Raman spectroscopy. GO and UA-rGO induced a dose-dependent decrease in cell viability and induced cytotoxicity in human ovarian cancer cells. The results from this study suggest that UA-rGO could cause apoptosis in mammalian cells. The toxicity of UA-rGO is significantly higher than GO. Based on our findings, UA-rGO shows cytotoxic effects against human ovarian cancer cells, and its synthesis is environmentally friendly. UA-rGO significantly inhibits cell viability by increasing lactate dehydrogenase (LDH) release, reactive oxygen species (ROS) generation, activation of caspase-3, and DNA fragmentation. This is the first report to describe the comprehensive effects of UA-rGO in ovarian cancer cells. We believe that the functional aspects of newly synthesized UA-rGO will provide advances towards various biomedical applications in the near future.

  3. Recent progress in the identification of BRAF inhibitors as anti-cancer agents.

    Science.gov (United States)

    El-Nassan, Hala Bakr

    2014-01-24

    The "RAS/BRAF/MEK/ERK" pathway has been associated with human cancers due to the frequent oncogenic mutations identified in its members. In particular, BRAF is mutated at high frequency in many cancers especially melanoma. This mutation leads to activation of the MAPK signaling pathway, inducing uncontrolled cell proliferation, and facilitating malignant transformation. All these facts make BRAF an ideal target for antitumor therapeutic development. Many BRAF inhibitors have been discovered during the last decade and most of them exhibit potent antitumor activity especially on tumors that harbor BRAF(V600E) mutations. Some of these compounds have entered clinical trials and displayed encouraged results. The present review highlights the progress in identification and development of BRAF inhibitors especially during the last five years.

  4. Preclinical and Clinical Assessment of Cannabinoids as Anti-Cancer Agents

    Directory of Open Access Journals (Sweden)

    Daniel A. Ladin

    2016-10-01

    Full Text Available Cancer is the second leading cause of death in the United States with 1.7 million new cases estimated to be diagnosed in 2016. This disease remains a formidable clinical challenge and represents a substantial financial burden to the US health care system. Therefore, research and development of novel therapeutics for the treatment of cancer is of high priority. Cannabinoids and their derivatives have been utilized for their medicinal and therapeutic properties throughout history. Cannabinoid activity is regulated through the endocannabinoid system, which is comprised of cannabinoid receptors, transporters, and enzymes involved in cannabinoid synthesis and breakdown. More recently, cannabinoids have gained special attention for their role in cancer development and reduction. However, many studies investigated these roles using in vitro models which may not adequately mimic tumor growth and metastasis. As such, this article aims to review study results which evaluated effects of cannabinoids from plant, synthetic and endogenous origins on cancer development in preclinical models and to examine the current standing of cannabinoids currently being tested in human cancer patients.

  5. Synthesis and Bioevaluation of Some Phenolic Diarylpropanes as Anti-Cancer Agents

    Directory of Open Access Journals (Sweden)

    Kshama Kundu

    2014-09-01

    Full Text Available A convenient synthesis of six phenolic diarylpropanes has been formulated. A CuBr 2-catalyzed regioselective reaction was the key step for bromination of the arylpropanes. All the compounds showed good cytotoxicity to the human lung cancer A549 cell line. However, only one of these compounds induced apoptosis and a G1 cell cycle arrest by augmenting cellular ROS status. Introduction of bromo-substitution at the aryl groups increased the cytotoxicity significantly, but that was mainly due to necrosis.

  6. A Novel Biomolecule-Mediated Reduction of Graphene Oxide: A Multifunctional Anti-Cancer Agent

    Directory of Open Access Journals (Sweden)

    Yun-Jung Choi

    2016-03-01

    Full Text Available Graphene oxide (GO is a monolayer of carbon atoms that form a dense honeycomb structure, consisting of hydroxyl and epoxide functional groups on the two accessible sides and carboxylic groups at the edges. In contrast, graphene is a two-dimensional sheet of sp2-hybridized carbon atoms packed into a honeycomb lattice. Graphene has great potential for use in biomedical applications due to its excellent physical and chemical properties. In this study, we report a facile and environmentally friendly approach for the synthesis of reduced graphene oxide (rGO using uric acid (UA. The synthesized uric acid-reduced graphene oxide (UA-rGO was fully characterized by ultraviolet-visible (UV-Vis absorption spectra, X-ray diffraction (XRD, dynamic light scattering (DLS, Fourier transform infrared (FTIR, scanning electron microscopy (SEM, and Raman spectroscopy. GO and UA-rGO induced a dose-dependent decrease in cell viability and induced cytotoxicity in human ovarian cancer cells. The results from this study suggest that UA-rGO could cause apoptosis in mammalian cells. The toxicity of UA-rGO is significantly higher than GO. Based on our findings, UA-rGO shows cytotoxic effects against human ovarian cancer cells, and its synthesis is environmentally friendly. UA-rGO significantly inhibits cell viability by increasing lactate dehydrogenase (LDH release, reactive oxygen species (ROS generation, activation of caspase-3, and DNA fragmentation. This is the first report to describe the comprehensive effects of UA-rGO in ovarian cancer cells. We believe that the functional aspects of newly synthesized UA-rGO will provide advances towards various biomedical applications in the near future.

  7. Love-Wave Sensors Combined with Microfluidics for Fast Detection of Biological Warfare Agents

    Science.gov (United States)

    Matatagui, Daniel; Fontecha, José Luis; Fernández, María Jesús; Gràcia, Isabel; Cané, Carles; Santos, José Pedro; Horrillo, María Carmen

    2014-01-01

    The following paper examines a time-efficient method for detecting biological warfare agents (BWAs). The method is based on a system of a Love-wave immunosensor combined with a microfluidic chip which detects BWA samples in a dynamic mode. In this way a continuous flow-through of the sample is created, promoting the reaction between antigen and antibody and allowing a fast detection of the BWAs. In order to prove this method, static and dynamic modes have been simulated and different concentrations of BWA simulants have been tested with two immunoreactions: phage M13 has been detected using the mouse monoclonal antibody anti-M13 (AM13), and the rabbit immunoglobulin (Rabbit IgG) has been detected using the polyclonal antibody goat anti-rabbit (GAR). Finally, different concentrations of each BWA simulants have been detected with a fast response time and a desirable level of discrimination among them has been achieved. PMID:25029282

  8. Love-Wave Sensors Combined with Microfluidics for Fast Detection of Biological Warfare Agents

    Directory of Open Access Journals (Sweden)

    Daniel Matatagui

    2014-07-01

    Full Text Available The following paper examines a time-efficient method for detecting biological warfare agents (BWAs. The method is based on a system of a Love-wave immunosensor combined with a microfluidic chip which detects BWA samples in a dynamic mode. In this way a continuous flow-through of the sample is created, promoting the reaction between antigen and antibody and allowing a fast detection of the BWAs. In order to prove this method, static and dynamic modes have been simulated and different concentrations of BWA simulants have been tested with two immunoreactions: phage M13 has been detected using the mouse monoclonal antibody anti-M13 (AM13, and the rabbit immunoglobulin (Rabbit IgG has been detected using the polyclonal antibody goat anti-rabbit (GAR. Finally, different concentrations of each BWA simulants have been detected with a fast response time and a desirable level of discrimination among them has been achieved.

  9. Love-wave sensors combined with microfluidics for fast detection of biological warfare agents.

    Science.gov (United States)

    Matatagui, Daniel; Fontecha, José Luis; Fernández, María Jesús; Gràcia, Isabel; Cané, Carles; Santos, José Pedro; Horrillo, María Carmen

    2014-07-15

    The following paper examines a time-efficient method for detecting biological warfare agents (BWAs). The method is based on a system of a Love-wave immunosensor combined with a microfluidic chip which detects BWA samples in a dynamic mode. In this way a continuous flow-through of the sample is created, promoting the reaction between antigen and antibody and allowing a fast detection of the BWAs. In order to prove this method, static and dynamic modes have been simulated and different concentrations of BWA simulants have been tested with two immunoreactions: phage M13 has been detected using the mouse monoclonal antibody anti-M13 (AM13), and the rabbit immunoglobulin (Rabbit IgG) has been detected using the polyclonal antibody goat anti-rabbit (GAR). Finally, different concentrations of each BWA simulants have been detected with a fast response time and a desirable level of discrimination among them has been achieved.

  10. Combination HIV prevention among MSM in South Africa: results from agent-based modeling.

    Directory of Open Access Journals (Sweden)

    Ron Brookmeyer

    Full Text Available HIV prevention trials have demonstrated the effectiveness of a number of behavioral and biomedical interventions. HIV prevention packages are combinations of interventions and offer potential to significantly increase the effectiveness of any single intervention. Estimates of the effectiveness of prevention packages are important for guiding the development of prevention strategies and for characterizing effect sizes before embarking on large scale trials. Unfortunately, most research to date has focused on testing single interventions rather than HIV prevention packages. Here we report the results from agent-based modeling of the effectiveness of HIV prevention packages for men who have sex with men (MSM in South Africa. We consider packages consisting of four components: antiretroviral therapy for HIV infected persons with CD4 count <350; PrEP for high risk uninfected persons; behavioral interventions to reduce rates of unprotected anal intercourse (UAI; and campaigns to increase HIV testing. We considered 163 HIV prevention packages corresponding to different intensity levels of the four components. We performed 2252 simulation runs of our agent-based model to evaluate those packages. We found that a four component package consisting of a 15% reduction in the rate of UAI, 50% PrEP coverage of high risk uninfected persons, 50% reduction in persons who never test for HIV, and 50% ART coverage over and above persons already receiving ART at baseline, could prevent 33.9% of infections over 5 years (95% confidence interval, 31.5, 36.3. The package components with the largest incremental prevention effects were UAI reduction and PrEP coverage. The impact of increased HIV testing was magnified in the presence of PrEP. We find that HIV prevention packages that include both behavioral and biomedical components can in combination prevent significant numbers of infections with levels of coverage, acceptance and adherence that are potentially achievable

  11. Multiple Mechanisms of Anti-Cancer Effects Exerted by Astaxanthin

    Directory of Open Access Journals (Sweden)

    Li Zhang

    2015-07-01

    Full Text Available Astaxanthin (ATX is a xanthophyll carotenoid which has been approved by the United States Food and Drug Administration (USFDA as food colorant in animal and fish feed. It is widely found in algae and aquatic animals and has powerful anti-oxidative activity. Previous studies have revealed that ATX, with its anti-oxidative property, is beneficial as a therapeutic agent for various diseases without any side effects or toxicity. In addition, ATX also shows preclinical anti-tumor efficacy both in vivo and in vitro in various cancer models. Several researches have deciphered that ATX exerts its anti-proliferative, anti-apoptosis and anti-invasion influence via different molecules and pathways including signal transducer and activator of transcription 3 (STAT3, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB and peroxisome proliferator-activated receptor gamma (PPARγ. Hence, ATX shows great promise as chemotherapeutic agents in cancer. Here, we review the rapidly advancing field of ATX in cancer therapy as well as some molecular targets of ATX.

  12. Synergistic Anticancer Effect of Tocotrienol Combined with Chemotherapeutic Agents or Dietary Components: A Review

    Directory of Open Access Journals (Sweden)

    Takahiro Eitsuka

    2016-09-01

    Full Text Available Tocotrienol (T3, unsaturated vitamin E, is gaining a lot of attention owing to its potent anticancer effect, since its efficacy is much greater than that of tocopherol (Toc. Various factors are known to be involved in such antitumor action, including cell cycle arrest, apoptosis induction, antiangiogenesis, anti-metastasis, nuclear factor-κB suppression, and telomerase inhibition. Owing to a difference in the affinity of T3 and Toc for the α-tocopherol transfer protein, the bioavailability of orally ingested T3 is lower than that of Toc. Furthermore, cellular uptake of T3 is interrupted by coadministration of α-Toc in vitro and in vivo. Based on this, several studies are in progress to screen for molecules that can synergize with T3 in order to augment its potency. Combinations of T3 with chemotherapeutic drugs (e.g., statins, celecoxib, and gefitinib or dietary components (e.g., polyphenols, sesamin, and ferulic acid exhibit synergistic actions on cancer cell growth and signaling pathways. In this review, we summarize the current status of synergistic effects of T3 and an array of agents on cancer cells, and discuss their molecular mechanisms of action. These combination strategies would encourage further investigation and application in cancer prevention and therapy.

  13. Synergistic Anticancer Effect of Tocotrienol Combined with Chemotherapeutic Agents or Dietary Components: A Review

    Science.gov (United States)

    Eitsuka, Takahiro; Tatewaki, Naoto; Nishida, Hiroshi; Nakagawa, Kiyotaka; Miyazawa, Teruo

    2016-01-01

    Tocotrienol (T3), unsaturated vitamin E, is gaining a lot of attention owing to its potent anticancer effect, since its efficacy is much greater than that of tocopherol (Toc). Various factors are known to be involved in such antitumor action, including cell cycle arrest, apoptosis induction, antiangiogenesis, anti-metastasis, nuclear factor-κB suppression, and telomerase inhibition. Owing to a difference in the affinity of T3 and Toc for the α-tocopherol transfer protein, the bioavailability of orally ingested T3 is lower than that of Toc. Furthermore, cellular uptake of T3 is interrupted by coadministration of α-Toc in vitro and in vivo. Based on this, several studies are in progress to screen for molecules that can synergize with T3 in order to augment its potency. Combinations of T3 with chemotherapeutic drugs (e.g., statins, celecoxib, and gefitinib) or dietary components (e.g., polyphenols, sesamin, and ferulic acid) exhibit synergistic actions on cancer cell growth and signaling pathways. In this review, we summarize the current status of synergistic effects of T3 and an array of agents on cancer cells, and discuss their molecular mechanisms of action. These combination strategies would encourage further investigation and application in cancer prevention and therapy. PMID:27669218

  14. Assessing the Risk of Birth Defects Associated with Exposure to Fixed-Dose Combined Antituberculous Agents during Pregnancy in Rats

    Directory of Open Access Journals (Sweden)

    O. Awodele

    2012-01-01

    Full Text Available Due to the risks of disease progression and transmission to the newborn, treatment of tuberculosis is often pursued during pregnancy and fixed-dose combined antituberculous agents have been found to be beneficial. Unfortunately, there is paucity of data on the safety of the fixed-dose combined antituberculous drugs during pregnancy. This study intends to assess the teratogenic effect of fixed-dose combined antituberculous drugs on the organogenesis stage of fetal development and also investigate the possible roles of vitamin C in modulating the teratogenic effects of these agents on the fetus using animal model. Pregnant rats were divided into 3 groups with 12 animals per group: group 1 received distilled water (10 mL/kg orally; group 2 received 51.4 mg/kg/day of fixed-dose combined antituberculous agents orally; group 3 received 51.4 mg/kg/day of fixed-dose combined antituberculous agents plus vitamin C (10 mg/kg/day orally. Six rats in each group were randomly selected and sacrificed on day 20 by cervical dislocation prior to day 21 of gestation, and the foetuses were harvested through abdominal incision for physical examination. Blood samples were collected from the 1st filial rats of the remaining six animals for biochemical and hematological examination. The liver, kidney, heart, and brain of all the sacrificed animals were used for histopathological examination. There were significant (≤0.05 low birth weights of the foetuses of the animals that were treated with fixed-dose combined antituberculous agents. The haematological parameters also revealed a reduction in the platelets counts and neutrophiles at the first filial generation. Significant (≤0.05 elevations in the levels of aspartate aminotransferase (AST and alkaline phosphatase (ALP in the foetuses of the animals treated with fixed-dose combined antituberculous agents were also observed. However, the combination of vitamin C with fixed-dose combined antituberculous agents

  15. Assessing the risk of birth defects associated with exposure to fixed-dose combined antituberculous agents during pregnancy in rats.

    Science.gov (United States)

    Awodele, O; Patrick, E B; Oluwatoyin Agbaje, Esther; Oremosu, A A; Gbotolorun, S C

    2012-01-01

    Due to the risks of disease progression and transmission to the newborn, treatment of tuberculosis is often pursued during pregnancy and fixed-dose combined antituberculous agents have been found to be beneficial. Unfortunately, there is paucity of data on the safety of the fixed-dose combined antituberculous drugs during pregnancy. This study intends to assess the teratogenic effect of fixed-dose combined antituberculous drugs on the organogenesis stage of fetal development and also investigate the possible roles of vitamin C in modulating the teratogenic effects of these agents on the fetus using animal model. Pregnant rats were divided into 3 groups with 12 animals per group: group 1 received distilled water (10 mL/kg) orally; group 2 received 51.4 mg/kg/day of fixed-dose combined antituberculous agents orally; group 3 received 51.4 mg/kg/day of fixed-dose combined antituberculous agents plus vitamin C (10 mg/kg/day) orally. Six rats in each group were randomly selected and sacrificed on day 20 by cervical dislocation prior to day 21 of gestation, and the foetuses were harvested through abdominal incision for physical examination. Blood samples were collected from the 1st filial rats of the remaining six animals for biochemical and hematological examination. The liver, kidney, heart, and brain of all the sacrificed animals were used for histopathological examination. There were significant (P ≤ 0.05) low birth weights of the foetuses of the animals that were treated with fixed-dose combined antituberculous agents. The haematological parameters also revealed a reduction in the platelets counts and neutrophiles at the first filial generation. Significant (P ≤ 0.05) elevations in the levels of aspartate aminotransferase (AST) and alkaline phosphatase (ALP) in the foetuses of the animals treated with fixed-dose combined antituberculous agents were also observed. However, the combination of vitamin C with fixed-dose combined antituberculous agents significantly

  16. Combined chemotherapy or biotherapy with jasmonates: targeting energy metabolism for cancer treatment.

    Science.gov (United States)

    Elia, Uri; Flescher, Eliezer

    2013-01-01

    Mitochondria are known to play a key role in various cellular processes essential to both the life and death of cells, including calcium homeostasis, programmed cell death, and energy metabolism. Over 80 years ago, Otto Warburg discovered that in contrast to normal cells which produce most of their ATP via mitochondrial oxidative phosphorylation, cancer cells preferentially utilize glycolysis for production of ATP, a phenomenon known today as the "Warburg effect", and one which has been of great importance in the emergence of novel drugs and chemotherapeutic agents specifically targeting cancer cells. Several groups have reported in recent years that members of the plant stress hormones family of jasmonates, and some of their synthetic derivatives, exhibit anti-cancer activity in vitro and in vivo. Jasmonates have been shown to act directly on mitochondria of cancer cells, leading to mitochondrial swelling, membrane depolarization and cytochrome c release. Throughout the last few years, different groups have demonstrated that combination of jasmonates and various cytotoxic and chemotherapeutic agents yielded a synergistic cytotoxic effect. These results have been demonstrated in a variety of different cancer cell lines and may provide a strong basis for future clinical treatments which involve combination of MJ and different anti-cancerous agents. The potential synergistic effect may allow reduction of the administered dose, decrease of unwanted side effects, and reduction of the likelihood that the tumor will display resistance to the combined therapy.

  17. Preclinical changes in weight of scrapie-infected mice as a function of scrapie agent-mouse strain combination.

    Science.gov (United States)

    Carp, R I; Callahan, S M; Sersen, E A; Moretz, R C

    1984-01-01

    Several inbred strains of mice were injected with different scrapie agents and their total body weight was monitored throughout the incubation period. As a control, mice were injected with normal mouse brain homogenate. For most combinations of scrapie agent and mouse strain, weights during the preclinical phase were similar to or lower than the average weight of controls. For some combinations there was a significant increase in weight (compared to controls) during the latter part of the preclinical phase of disease. The effect was dependent on both agent and mouse strain, i.e., in some cases a mouse strain showed the increase with one scrapie agent but not another and some scrapie agents caused the increase in one inbred strain of mouse but not in another strain. The increase in weight was due to accumulations of fat rather than a generalized increase in weight of various organs. With one mouse strain (SJL), there was increased vacuolation seen in the hypothalamus of mice injected with scrapie agents that showed the increase in weight compared to the lesion intensity with an agent which did not cause the weight increase.

  18. Controlled release of an anti-cancer drug from DNA structured nano-films

    Science.gov (United States)

    Cho, Younghyun; Lee, Jong Bum; Hong, Jinkee

    2014-02-01

    We demonstrate the generation of systemically releasable anti-cancer drugs from multilayer nanofilms. Nanofilms designed to drug release profiles in programmable fashion are promising new and alternative way for drug delivery. For the nanofilm structure, we synthesized various unique 3-dimensional anti cancer drug incorporated DNA origami structures (hairpin, Y, and X shaped) and assembled with peptide via layer-by-layer (LbL) deposition method. The key to the successful application of these nanofilms requires a novel approach of the influence of DNA architecture for the drug release from functional nano-sized surface. Herein, we have taken first steps in building and controlling the drug incorporated DNA origami based multilayered nanostructure. Our finding highlights the novel and unique drug release character of LbL systems in serum condition taken full advantages of DNA origami structure. This multilayer thin film dramatically affects not only the release profiles but also the structure stability in protein rich serum condition.

  19. A Journey Under the Sea: The Quest for Marine Anti-Cancer Alkaloids

    Directory of Open Access Journals (Sweden)

    Nadine Darwiche

    2011-11-01

    Full Text Available The alarming increase in the global cancer death toll has fueled the quest for new effective anti-tumor drugs thorough biological screening of both terrestrial and marine organisms. Several plant-derived alkaloids are leading drugs in the treatment of different types of cancer and many are now being tested in various phases of clinical trials. Recently, marine-derived alkaloids, isolated from aquatic fungi, cyanobacteria, sponges, algae, and tunicates, have been found to also exhibit various anti-cancer activities including anti-angiogenic, anti-proliferative, inhibition of topoisomerase activities and tubulin polymerization, and induction of apoptosis and cytotoxicity. Two tunicate-derived alkaloids, aplidin and trabectedin, offer promising drug profiles, and are currently in phase II clinical trials against several solid and hematologic tumors. This review sheds light on the rich array of anti-cancer alkaloids in the marine ecosystem and introduces the most investigated compounds and their mechanisms of action.

  20. Folate receptor targeted liposomes encapsulating anti-cancer drugs.

    Science.gov (United States)

    Chaudhury, Anumita; Das, Surajit

    2015-01-01

    Among all available lipid based nanoparticulate systems, the success of liposomal drug delivery system is evident by the number of liposomal products available in the market or under advanced stages of preclinical and clinical trials. Liposome has the ability to deliver chemotherapeutic agents to the targeted tissues or even inside the cancerous cells by enhanced intracellular penetration or improved tumour targeting. In the last decade, folate receptor mediated tumour targeting has emerged as an attractive alternative method of active targeting of cancer cells through liposomes due to its numerous advantages over other targeting methods. Folate receptors, also known as folate binding proteins, allow the binding and internalization of folate or folic acid into the cells by a method called folate receptor mediated endocytosis. They have restricted presence in normal cells and are mostly expressed during malignant transformation. In this review article, folate receptor targeting capability of liposomes has been described. This review article has focussed on the different cancer drugs which have been encapsulated in folate receptor targeted liposomes and their in vitro as well as in vivo efficacies in several tumour models.

  1. Curcumin AntiCancer Studies in Pancreatic Cancer

    Science.gov (United States)

    Bimonte, Sabrina; Barbieri, Antonio; Leongito, Maddalena; Piccirillo, Mauro; Giudice, Aldo; Pivonello, Claudia; de Angelis, Cristina; Granata, Vincenza; Palaia, Raffaele; Izzo, Francesco

    2016-01-01

    Pancreatic cancer (PC) is one of the deadliest cancers worldwide. Surgical resection remains the only curative therapeutic treatment for this disease, although only the minority of patients can be resected due to late diagnosis. Systemic gemcitabine-based chemotherapy plus nab-paclitaxel are used as the gold-standard therapy for patients with advanced PC; although this treatment is associated with a better overall survival compared to the old treatment, many side effects and poor results are still present. Therefore, new alternative therapies have been considered for treatment of advanced PC. Several preclinical studies have demonstrated that curcumin, a naturally occurring polyphenolic compound, has anticancer effects against different types of cancer, including PC, by modulating many molecular targets. Regarding PC, in vitro studies have shown potent cytotoxic effects of curcumin on different PC cell lines including MiaPaCa-2, Panc-1, AsPC-1, and BxPC-3. In addition, in vivo studies on PC models have shown that the anti-proliferative effects of curcumin are caused by the inhibition of oxidative stress and angiogenesis and are due to the induction of apoptosis. On the basis of these results, several researchers tested the anticancer effects of curcumin in clinical trials, trying to overcome the poor bioavailability of this agent by developing new bioavailable forms of curcumin. In this article, we review the results of pre-clinical and clinical studies on the effects of curcumin in the treatment of PC. PMID:27438851

  2. Curcumin AntiCancer Studies in Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Sabrina Bimonte

    2016-07-01

    Full Text Available Pancreatic cancer (PC is one of the deadliest cancers worldwide. Surgical resection remains the only curative therapeutic treatment for this disease, although only the minority of patients can be resected due to late diagnosis. Systemic gemcitabine-based chemotherapy plus nab-paclitaxel are used as the gold-standard therapy for patients with advanced PC; although this treatment is associated with a better overall survival compared to the old treatment, many side effects and poor results are still present. Therefore, new alternative therapies have been considered for treatment of advanced PC. Several preclinical studies have demonstrated that curcumin, a naturally occurring polyphenolic compound, has anticancer effects against different types of cancer, including PC, by modulating many molecular targets. Regarding PC, in vitro studies have shown potent cytotoxic effects of curcumin on different PC cell lines including MiaPaCa-2, Panc-1, AsPC-1, and BxPC-3. In addition, in vivo studies on PC models have shown that the anti-proliferative effects of curcumin are caused by the inhibition of oxidative stress and angiogenesis and are due to the induction of apoptosis. On the basis of these results, several researchers tested the anticancer effects of curcumin in clinical trials, trying to overcome the poor bioavailability of this agent by developing new bioavailable forms of curcumin. In this article, we review the results of pre-clinical and clinical studies on the effects of curcumin in the treatment of PC.

  3. Translational approaches targeting the p53 pathway for anti-cancer therapy

    OpenAIRE

    2012-01-01

    The p53 tumour suppressor blocks cancer development by triggering apoptosis or cellular senescence in response to oncogenic stress or DNA damage. Consequently, the p53 signalling pathway is virtually always inactivated in human cancer cells. This unifying feature has commenced tremendous efforts to develop p53-based anti-cancer therapies. Different strategies exist that are adapted to the mechanisms of p53 inactivation. In p53-mutated tumours, delivery of wild-type p53 by adenovirus-based gen...

  4. Screening for Anti-Cancer Compounds in Marine Organisms in Oman

    OpenAIRE

    Sergey Dobretsov; Yahya Tamimi; Al-Kindi, Mohamed A.; Ikram Burney

    2016-01-01

    Objectives: Marine organisms are a rich source of bioactive molecules with potential applications in medicine, biotechnology and industry; however, few bioactive compounds have been isolated from organisms inhabiting the Arabian Gulf and the Gulf of Oman. This study aimed to isolate and screen the anti-cancer activity of compounds and extracts from 40 natural products of marine organisms collected from the Gulf of Oman. Methods: This study was carried out between January 2012 and December ...

  5. Advances in identification and application of tumor antigen inducing anti-cancer responses

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    @@ Tumor antigen is one of the important bases of tumor immunotherapy[1]. With the discovery of novel tumor antigens, interest in specific immunotherapy for treatment of malignancies has increased substantially. Nowadays more and more scientists paid close attention to various tumor antigens with their roles or/and applications in anti-cancer immune responses, immune tolerance, tumor markers, tumor immunotherapy and so on. Here we discussed the classification of tumor antigens and summarized the technologies of identification and application of tumor antigens.

  6. Quantification of cell viability and rapid screening anti-cancer drug utilizing nanomechanical fluctuation.

    Science.gov (United States)

    Wu, Shangquan; Liu, Xiaoli; Zhou, Xiarong; Liang, Xin M; Gao, Dayong; Liu, Hong; Zhao, Gang; Zhang, Qingchuan; Wu, Xiaoping

    2016-03-15

    Cancer is a serious threat to human health. Although numerous anti-cancer drugs are available clinically, many have shown toxic side effects due to poor tumor-selectivity, and reduced effectiveness due to cancers rapid development of resistance to treatment. The development of new highly efficient and practical methods to quantify cell viability and its change under drug treatment is thus of significant importance in both understanding of anti-cancer mechanism and anti-cancer drug screening. Here, we present an approach of utilizing a nanomechanical fluctuation based highly sensitive microcantilever sensor, which is capable of characterizing the viability of cells and quantitatively screening (within tens of minutes) their responses to a drug with the obvious advantages of a rapid, label-free, quantitative, noninvasive, real-time and in-situ assay. The microcantilever sensor operated in fluctuation mode was used in evaluating the paclitaxel effectiveness on breast cancer cell line MCF-7. This study demonstrated that the nanomechanical fluctuations of the microcantilever sensor are sensitive enough to detect the dynamic variation in cellular force which is provided by the cytoskeleton, using cell metabolism as its energy source, and the dynamic instability of microtubules plays an important role in the generation of the force. We propose that cell viability consists of two parts: biological viability and mechanical viability. Our experimental results suggest that paclitaxel has little effect on biological viability, but has a significant effect on mechanical viability. This new method provides a new concept and strategy for the evaluation of cell viability and the screening of anti-cancer drugs.

  7. Synthesis and characterization of smart N-isopropylacrylamide-based magnetic nanocomposites containing doxorubicin anti-cancer drug.

    Science.gov (United States)

    Motaali, Soheila; Pashaeiasl, Maryam; Akbarzadeh, Abolfazl; Davaran, Soodabeh

    2017-05-01

    In the present study, magnetic and thermo/pH-sensitive (multiresponsive) nanocomposites based on N-isopropylacrylamide (NIPAAM) were synthesized and characterized. Nanocomposites were synthesized by free radical emulsion polymerization of NIPAAM as thermosensitive monomer and N,N-dimethyl-aminoethyl methacrylate (DMAEMA) as pH-sensitive monomer in the presence of methylene-bis-acrylamide as cross-linking agent. Doxorubicin, an anti-cancer drug, was loaded into these nanocomposites via equilibrium swelling method. Thermo/pH-sensitive cross-linked poly (NIPAAM-DMAEMA)-Fe3O4 nanocomposites were characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and vibrating sample magnetometer (VSM). The volume of the loaded drug and drug release amount was determined by UV measurements. The results showed that this thermo/pH-sensitive magnetic nanocomposite has a high drug-loading efficiency. Doxorubicin was released at 40 °C and pH 5.8 more than the 37 °C and pH 7.4.

  8. Computer-aided discovery of biological activity spectra for anti-aging and anti-cancer olive oil oleuropeins.

    Science.gov (United States)

    Corominas-Faja, Bruna; Santangelo, Elvira; Cuyàs, Elisabet; Micol, Vicente; Joven, Jorge; Ariza, Xavier; Segura-Carretero, Antonio; García, Jordi; Menendez, Javier A

    2014-09-01

    Aging is associated with common conditions, including cancer, diabetes, cardiovascular disease, and Alzheimer's disease. The type of multi-targeted pharmacological approach necessary to address a complex multifaceted disease such as aging might take advantage of pleiotropic natural polyphenols affecting a wide variety of biological processes. We have recently postulated that the secoiridoids oleuropein aglycone (OA) and decarboxymethyl oleuropein aglycone (DOA), two complex polyphenols present in health-promoting extra virgin olive oil (EVOO), might constitute a new family of plant-produced gerosuppressant agents. This paper describes an analysis of the biological activity spectra (BAS) of OA and DOA using PASS (Prediction of Activity Spectra for Substances) software. PASS can predict thousands of biological activities, as the BAS of a compound is an intrinsic property that is largely dependent on the compound's structure and reflects pharmacological effects, physiological and biochemical mechanisms of action, and specific toxicities. Using Pharmaexpert, a tool that analyzes the PASS-predicted BAS of substances based on thousands of "mechanism-effect" and "effect-mechanism" relationships, we illuminate hypothesis-generating pharmacological effects, mechanisms of action, and targets that might underlie the anti-aging/anti-cancer activities of the gerosuppressant EVOO oleuropeins.

  9. A novel green one-step synthesis of gold nanoparticles using crocin and their anti-cancer activities.

    Science.gov (United States)

    Hoshyar, Reyhane; Khayati, Gholam Reza; Poorgholami, Maliheh; Kaykhaii, Massoud

    2016-06-01

    Functionalized nanoparticles are specifically designed to deliver drugs at tumor cells and can potentially enhance anticancer activity of drugs such as crocin. In the present study, we have applied antioxidant crocin as a reducing agent for one pot green synthesis of controlled size gold nanoparticles (AuNPs). Spherical, stable and uniform AuNPs were synthesized using crocin. These AuNPs are characterized by UV-Vis, TEM and XRD techniques. The prepared AuNPs showed surface plasm on resonance centered at 520nm with the average particle size of about 4-10nm. The anti-cancer effect of AuNPs was determined using MTT and LDH tests. The cellular data showed that these AuNPs significantly decreased cancerous cells' growth after 24 and 48hours in a time- and dose-dependent manner (P<0.05). The results suggest that such AuNPs can be synthesized simply and quickly with invaluable clinical as well as pharmaceutical activities which can help to treat human breast cancer.

  10. Computer-aided discovery of biological activity spectra for anti-aging and anti-cancer olive oil oleuropeins

    Science.gov (United States)

    Corominas-Faja, Bruna; Santangelo, Elvira; Cuyàs, Elisabet; Micol, Vicente; Joven, Jorge; Ariza, Xavier; Segura-Carretero, Antonio; García, Jordi; Menendez, Javier A.

    2014-01-01

    Aging is associated with common conditions, including cancer, diabetes, cardiovascular disease, and Alzheimer's disease. The type of multi-targeted pharmacological approach necessary to address a complex multifaceteddisease such as aging might take advantage of pleiotropic natural polyphenols affecting a wide variety of biological processes. We have recently postulated that the secoiridoids oleuropein aglycone (OA) and decarboxymethyl oleuropein aglycone (DOA), two complex polyphenols present in health-promoting extra virgin olive oil (EVOO), might constitute anew family of plant-produced gerosuppressant agents. This paper describes an analysis of the biological activity spectra (BAS) of OA and DOA using PASS (Prediction of Activity Spectra for Substances) software. PASS can predict thousands of biological activities, as the BAS of a compound is an intrinsic property that is largely dependent on the compound's structure and reflects pharmacological effects, physiological and biochemical mechanisms of action, and specific toxicities. Using Pharmaexpert, a tool that analyzes the PASS-predicted BAS of substances based on thousands of “mechanism-effect” and “effect-mechanism” relationships, we illuminate hypothesis-generating pharmacological effects, mechanisms of action, and targets that might underlie the anti-aging/anti-cancer activities of the gerosuppressant EVOO oleuropeins. PMID:25324469

  11. Gold nanoparticles combined with highly expressed amber suppressor tRNA: a future antibacterial agent

    Directory of Open Access Journals (Sweden)

    Xiaoda Song

    2010-10-01

    Full Text Available "nAmber suppressor tRNA is a mutant allele coding for a tRNA, whose anticodon is altered in such a way that the suppressor tRNA inserts an amino acid at an amber codon in translation which leads to suppressing (preventing termination. And some Amber suppressor tRNA strains were found. We propose that gold nanoparticles combined with highly expressed amber suppressor tRNA which can be uptake by cells and recognized by AARS (aminoacyl tRNA synthetase will lead to the formation of C-terminally extended proteins. These proteins probably will not work properly, leading bacteria's death. Because of the difference of tRNA between prokaryotic and eukaryotic cells, even between different bacteria species, this amber suppressor tRNA is orthogonal for other species and cannot be recognized by AARS, therefore has no toxicity to other species. May it be an excellent antibacterial agent in the future? In this article we provide a screening method for the highly expressed amber suppressor tRNA using randomly bases mutation, radioactive selection, activity test in vivo, and finally linkage of the amber suppressor tRNA to gold nanoparticles.

  12. Anti-cancer vaccination by transdermal delivery of antigen peptide-loaded nanogels via iontophoresis.

    Science.gov (United States)

    Toyoda, Mao; Hama, Susumu; Ikeda, Yutaka; Nagasaki, Yukio; Kogure, Kentaro

    2015-04-10

    Transdermal vaccination with cancer antigens is expected to become a useful anti-cancer therapy. However, it is difficult to accumulate enough antigen in the epidermis for effective exposure to Langerhans cells because of diffusion into the skin and muscle. Carriers, such as liposomes and nanoparticles, may be useful for the prevention of antigen diffusion. Iontophoresis, via application of a small electric current, is a noninvasive and efficient technology for transdermal drug delivery. Previously, we succeeded in the iontophoretic transdermal delivery of liposomes encapsulating insulin, and accumulation of polymer-based nanoparticle nanogels in the stratum corneum of the skin. Therefore, in the present study, we examined the use of iontophoresis with cancer antigen gp-100 peptide KVPRNQDWL-loaded nanogels for anti-cancer vaccination. Iontophoresis resulted in the accumulation of gp-100 peptide and nanogels in the epidermis, and subsequent increase in the number of Langerhans cells in the epidermis. Moreover, tumor growth was significantly suppressed by iontophoresis of the antigen peptide-loaded nanogels. Thus, iontophoresis of the antigen peptide-loaded nanogels may serve as an effective transdermal delivery system for anti-cancer vaccination.

  13. Nanosuspension for the delivery of a poorly soluble anti-cancer kinase inhibitor.

    Science.gov (United States)

    Danhier, Fabienne; Ucakar, Bernard; Vanderhaegen, Marie-Lyse; Brewster, Marcus E; Arien, Tina; Préat, Véronique

    2014-09-01

    We hypothesized that nanosuspensions could be promising for the delivery of the poorly water soluble anti-cancer multi-targeted kinase inhibitor, MTKi-327. Hence, the aims of this work were (i) to evaluate the MTKi-327 nanosuspension for parenteral and oral administrations and (ii) to compare this nanosuspension with other nanocarriers in terms of anti-cancer efficacy and pharmacokinetics. Therefore, four formulations of MTKi-327 were studied: (i) PEGylated PLGA-based nanoparticles, (ii) self-assembling PEG₇₅₀-p-(CL-co-TMC) polymeric micelles, (iii) nanosuspensions of MTKi-327; and (iv) Captisol solution (pH=3.5). All the nano-formulations presented a size below 200 nm. Injections of the highest possible dose of the three nano-formulations did not induce any side effects in mice. In contrast, the maximum tolerated dose of the control Captisol solution was 20-fold lower than its highest possible dose. The highest regrowth delay of A-431-tumor-bearing nude mice was obtained with MTKi-327 nanosuspension, administered intravenously, at a dose of 650 mg/kg. After intravenous and oral administration, the AUC₀₋∞ of MTKi-327 nanosuspension was 2.4-fold greater than that of the Captisol solution. Nanosuspension may be considered as an effective anti-cancer MTKi-327 delivery method due to (i) the higher MTKi-327 maximum tolerated dose, (ii) the possible intravenous injection of MTKi-327, (iii) its ability to enhance the administered dose and (iv) its higher efficacy.

  14. Anti-cancer Activities of Ginseng Extract Fermented with Phellinus linteus.

    Science.gov (United States)

    Lee, Jong-Jin; Kwon, Ho-Kyun; Jung, In-Ho; Cho, Yong-Baik; Kim, Kyu-Joong; Kim, Jong-Lae

    2009-03-01

    In the present study, the anti-cancer effects of ginseng fermented with Phellinus linteus (GFPL) extract were examined through in vitro and in vivo assays. GFPL was produced by co-cultivating ginseng and Phellinus linteus together. Ginsenoside Rg3, Rh1 and Rh2 are important mediators of anti-angiogenesis and their levels in GFPL were enriched 24, 19 and 16 times, respectively, more than that of ginseng itself through the fermentation. GFPL exhibited distinct anti-cancer effects, including growth inhibition of the human lung carcinoma cell line A549, and promotion of immune activation by stimulating nitric oxide (NO) production in Raw 264.7 cells. Further evidence supporting anti-cancer effects of GFPL was its significant prolongment of the survival of B16F10 cancer cell-implanted mice. These results suggest that the GFPL may be a candidate for cancer prevention and treatment through immune activation and anti-angiogenic effects by enriching Rg3, Rh1 and Rh2.

  15. Readability Comparison of Pro- and Anti-Cancer Screening Online Messages in Japan

    Science.gov (United States)

    Okuhara, Tsuyoshi; Ishikawa, Hirono; Okada, Masahumi; Kato, Mio; Kiuchi, Takahiro

    2016-12-01

    Background: Cancer screening rates are lower in Japan than those in western countries. Health professionals publish procancer screening messages on the internet to encourage audiences to undergo cancer screening. However, the information provided is often difficult to read for lay persons. Further, anti-cancer screening activists warn against cancer screening with messages on the Internet. We aimed to assess and compare the readability of pro- and anti-cancer screening online messages in Japan using a measure of readability. Methods: We conducted web searches at the beginning of September 2016 using two major Japanese search engines (Google.jp and Yahoo!.jp). The included websites were classified as “anti”, “pro”, or “neutral” depending on the claims, and “health professional” or “non-health professional” depending on the writers. Readability was determined using a validated measure of Japanese readability. Statistical analysis was conducted using two-way ANOVA. Results: In the total 159 websites analyzed, anti-cancer screening online messages were generally easier to read than pro-cancer screening online messages, Messages written by health professionals were more difficult to read than those written by non-health professionals. Claim × writer interaction was not significant. Conclusion: When health professionals prepare pro-cancer screening materials for publication online, we recommend they check for readability using readability assessment tools and improve text for easy comprehension when necessary.

  16. Molecular mechanisms of anti-cancer action of garlic compounds in neuroblastoma.

    Science.gov (United States)

    Karmakar, Surajit; Choudhury, Subhasree Roy; Banik, Naren L; Ray, Swapan K

    2011-05-01

    The medicinal properties of garlic (Allium sativum) have been well known and widely used since historical times. Garlic compounds have received increasing attention during the last few years due to their cancer chemopreventive properties. The anti-cancer activity of garlic-derived organosulfur compounds (OSCs) are extensively reported in many cancers but only a few in the pediatric tumor neuroblastoma, which warrants exploration of new therapy for its management. There are some recent reports suggesting that garlic-derived OSCs cause cell cycle arrest, generate reactive oxygen species (ROS), activate stress kinases, and also stimulate the mitochondrial pathway for apoptosis in malignant neuroblastoma. The comprehensive mechanisms of anti-cancer action of OSCs still remain unclear and require more studies in neuroblastoma. This review is designed to highlight the molecular mechanisms of anti-cancer actions of garlic-derived OSCs in neuroblastoma and as well as in several other cancers. Further studies should be conducted to establish the clinical expediency of garlic-derived OSCs for treatment of malignant neuroblastoma in humans.

  17. The anti-cancer activities of Vernonia amygdalina extract in human breast cancer cell lines are mediated through caspase-dependent and p53-independent pathways.

    Directory of Open Access Journals (Sweden)

    Fang Cheng Wong

    Full Text Available Breast cancer is currently the leading cause of cancer-related deaths among women globally. Notably, medicinal plant extracts may be a potential source for treatments of breast cancer. Vernonia amygdalina (VA is a woody shrub reported to have not only diverse therapeutic effects but also anti-cancer properties. However, current research about the mechanisms of the anti-cancer potential of VA has been limited. This study aimed to investigate the mechanisms of action of VA that underlie its anti-cancer effects in human breast cancer cell lines (MCF-7 and MDA-MB-231 cells. Results from MTT assay revealed that VA inhibits the proliferation of MCF-7 and MDA-MB-231, in a time- and dose-dependent manner. The underlying mechanism of this growth inhibition involved the stimulation of cell-type specific G1/S phase cell cycle arrest in only MCF-7 cells, and not in MDA-MB-231 cells. While the growth arrest was associated with increased levels of p53 and p21, and a concomitant decrease in the levels of cyclin D1 and cyclin E, it was shown that VA causes cell cycle arrest through a p53-independent pathway as tested by the wild type p53 inhibitor, pifithrin-α. Furthermore, this study revealed that VA induces apoptosis in the two cell lines, as indicated by the increase in Annexin V-positive cells and sub-G1 population, and that this VA-induced apoptosis occurred through both extrinsic and intrinsic apoptotic pathways. The apoptosis in MCF-7 cells was also likely to be caspase-dependent and not p53 transcriptional-dependent. Given that approximately 70% of diagnosed breast cancers express ER-α, a crucial finding was that VA inhibits the expression of ER-α and its downstream player, Akt, highlighting the potential clinical significance of VA. Moreover, VA exhibits synergism when combined with doxorubicin, suggesting that it can complement current chemotherapy. Overall, this study demonstrates the potential applications of VA as an anti-cancer drug for breast

  18. The combinational effect of vincristine and berberine on growth inhibition and apoptosis induction in hepatoma cells.

    Science.gov (United States)

    Wang, Ling; Wei, Dandan; Han, Xiaojuan; Zhang, Wei; Fan, Chengzhong; Zhang, Jie; Mo, Chunfen; Yang, Ming; Li, Junhong; Wang, Zhe; Zhou, Qin; Xiao, Hengyi

    2014-04-01

    The use of vincristine, a known antitumor agent, in hepatoma therapy is limited particularly because of its toxic effect. Meanwhile, berberine has drawn increasing attention to its antineoplastic effect in recent years. In view of the advantages of combinational drug treatment reported in anti-cancer chemotherapy, we evaluated the effects of co-treatment of vincristine and berberine on hepatic carcinoma cell lines in this study. We find that combinational usage of these two drugs can significantly induce cell growth inhibition and apoptosis even under a concentration of vincristine barely showing cytotoxicity in the same cells when used alone. The underlying mechanism about this combinational effect was addressed in this study by monitoring the signals related to mitochondrial function, apoptotic pathway and endoplasmic reticulum stress. Our results suggest a new value of berberine as a potential adjuvant agent in cancer chemotherapy and provide a hopeful approach for developing hepatoma therapy by utilizing the combinational effect of vincristine and berberine.

  19. In vitro synergistic combinations of pentamidine, polymyxin B, tigecycline and tobramycin with antifungal agents against Fusarium spp.

    Science.gov (United States)

    Pozzebon Venturini, Tarcieli; Rossato, Luana; Chassot, Francieli; Tairine Keller, Jéssica; Baldissera Piasentin, Fernanda; Morais Santurio, Janio; Hartz Alves, Sydney

    2016-08-01

    The genus Fusarium is characterized by hyaline filamentous fungi that cause infections predominantly in immunocompromised patients. The remarkable primary resistance to antifungal agents of this genus requires a search for new therapeutic possibilities. This study assessed the in vitro susceptibility of 25 clinical isolates of Fusarium against antifungal agents (amphotericin B, caspofungin, itraconazole and voriconazole) and antimicrobials (pentamidine, polymyxin B, tigecycline and tobramycin) according to the broth microdilution method (M38-A2). The interactions between antifungal and antimicrobial agents were evaluated by the microdilution checkerboard method. Pentamidine and polymyxin B showed MIC values ≥4 µg ml-1 against Fusarium spp. The highest rates of synergism were observed when amphotericin B or voriconazole was combined with tobramycin (80 % and 76 %, respectively), polymyxin B (76 % and 64 %) and pentamidine (72 % and 68 %). The most significant combinations deserve in vivo evaluations in order to verify their potential in the treatment of fusariosis.

  20. Surface functionalization of liposomes with proteins and carbohydrates for use in anti-cancer applications

    Science.gov (United States)

    Platt, Virginia M.

    Liposomes can be used to exploit the altered biology of cancer thereby increasing delivery of liposome-associated anti-cancer drugs. In this dissertation, I explore methods that utilize the unique cancer expression of the polymeric glycosaminoglycan hyaluronan (HA) and the HA receptor CD44 to target liposomes to tumors, using liposomes functionalized with proteins or oligosaccharides on their surface. To make it easier to prepare protein-functionalized liposomes, a non-covalent protein/liposome association method based upon metal chelation/his 6 interaction was devised and characterized. I evaluated non-covalent attachment of the prodrug converting enzyme yeast cytosine deaminase, the far-red fluorescent protein mKate, two antigens ovalbumin and the membrane proximal region of an HIV GAG and hyaluronidase, a HA-degrading enzyme. In Chapter 2, I describe the synthesis of hyaluronan-oligosaccharide (HA-O) lipid conjugates and their incorporation into liposomes to target CD44-overexpressing cancer cells. HA-O ligands of defined-length, up to 10 monosaccharides, were attached to lipids via various linkers by reductive amination. The HA-lipids were easily incorporated into liposomes but did not mediate binding of liposomes to CD44 overexpressing cells. In Chapter 3, I evaluate the capacity of tris-NTA-Ni-lipids incorporated within a liposome bilayer to associate with his6-tagged proteins. Tris-NTA-lipids of differing structures and avidities were used to associate yeast cytosine deaminase and mKate to the surface of liposomes. Two tris-NTA-lipids and a mono-NTA lipid associated his-tagged proteins to a 1:1 molar ratio in solution. The proteins remained active while associated with the liposome surface. When challenged in vitro with fetal calf serum, tris-NTA-containing liposomes retained his-tagged proteins longer than mono-NTA. However, the tris-NTA/his6 interaction was found to be in a dynamic state; free yeast cytosine deaminase rapidly competed with pre-bound m

  1. Human recombinant RNASET2: A potential anti-cancer drug

    Science.gov (United States)

    Roiz, Levava; Smirnoff, Patricia; Lewin, Iris; Shoseyov, Oded; Schwartz, Betty

    2016-01-01

    The roles of cell motility and angiogenetic processes in metastatic spread and tumor aggressiveness are well established and must be simultaneously targeted to maximize antitumor drug potency. This work evaluated the antitumorigenic capacities of human recombinant RNASET2 (hrRNASET2), a homologue of the Aspergillus niger T2RNase ACTIBIND, which has been shown to display both antitumorigenic and antiangiogenic activities. hrRNASET2 disrupted intracellular actin filament and actin-rich extracellular extrusion organization in both CT29 colon cancer and A375SM melanoma cells and induced a significant dose-dependent inhibition of A375SM cell migration. hrRNASET2 also induced full arrest of angiogenin-induced tube formation and brought to a three-fold lower relative HT29 colorectal and A375SM melanoma tumor volume, when compared to Avastin-treated animals. In parallel, mean blood vessel counts were 36.9% lower in hrRNASET2-vs. Avastin-treated mice and survival rates of hrRNASET2-treated mice were 50% at 73 days post-treatment, while the median survival time for untreated animals was 22 days. Moreover, a 60-day hrRNASET2 treatment period reduced mean A375SM lung metastasis foci counts by three-fold when compared to untreated animals. Taken together, the combined antiangiogenic and antitumorigenic capacities of hrRNASET2, seemingly arising from its direct interaction with intercellular and extracellular matrices, render it an attractive anticancer therapy candidate. PMID:27014725

  2. Human recombinant RNASET2: A potential anti-cancer drug.

    Science.gov (United States)

    Roiz, Levava; Smirnoff, Patricia; Lewin, Iris; Shoseyov, Oded; Schwartz, Betty

    2016-01-01

    The roles of cell motility and angiogenetic processes in metastatic spread and tumor aggressiveness are well established and must be simultaneously targeted to maximize antitumor drug potency. This work evaluated the antitumorigenic capacities of human recombinant RNASET2 (hrRNASET2), a homologue of the Aspergillus niger T2RNase ACTIBIND, which has been shown to display both antitumorigenic and antiangiogenic activities. hrRNASET2 disrupted intracellular actin filament and actin-rich extracellular extrusion organization in both CT29 colon cancer and A375SM melanoma cells and induced a significant dose-dependent inhibition of A375SM cell migration. hrRNASET2 also induced full arrest of angiogenin-induced tube formation and brought to a three-fold lower relative HT29 colorectal and A375SM melanoma tumor volume, when compared to Avastin-treated animals. In parallel, mean blood vessel counts were 36.9% lower in hrRNASET2-vs. Avastin-treated mice and survival rates of hrRNASET2-treated mice were 50% at 73 days post-treatment, while the median survival time for untreated animals was 22 days. Moreover, a 60-day hrRNASET2 treatment period reduced mean A375SM lung metastasis foci counts by three-fold when compared to untreated animals. Taken together, the combined antiangiogenic and antitumorigenic capacities of hrRNASET2, seemingly arising from its direct interaction with intercellular and extracellular matrices, render it an attractive anticancer therapy candidate.

  3. Cancer immunology - development of novel anti-cancer therapies.

    Science.gov (United States)

    Rothschild, Sacha I; Thommen, Daniela S; Moersig, Wolfgang; Müller, Philipp; Zippelius, Alfred

    2015-01-01

    The vast majority of tumours are characterised by high frequencies of genetic and epigenetic alterations resulting in tumour-specific antigens, which may, in principle, be recognised by cytotoxic T cells. Though early clinical immunotherapy trials have yielded mixed results with ambiguous clinical benefit, cancer immunotherapy is now attracting increasing attention as a viable therapeutic option, mainly in melanoma and lung cancer, but increasingly also in other malignancies. In particular, recent therapeutic efforts targeting inhibitory receptors on T cells to overcome tumour-induced immune dysfunction have the potential to reshape current treatment standards in oncology. The clinical development has been pioneered by the antibody ipilimumab, which blocks cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) and has demonstrated survival benefit in two randomised landmark trials in melanoma. Capitalising on this success, the research on the clinical implication of T cell checkpoint inhibition has been boosted. Early clinical trials have demonstrated meaningful response rates, sustained clinical benefits with encouraging survival rates and good tolerability of next-generation checkpoint inhibitors, including programmed death-1 (PD-1) and programmed death ligand 1 (PD-L1) inhibitors, across multiple cancer types. Attractive perspectives include the concurrent blockade of immunological (non-redundant) checkpoints, which has recently been demonstrated using combinations of immune checkpoint modulators themselves or with other therapies, such as chemotherapy, targeted therapy or radiotherapy. This article summarises the mechanism of action and subsequent clinical studies of immune checkpoint antibodies in oncology with a particular focus on melanoma and lung cancer.

  4. HDAC Inhibitors as Novel Anti-Cancer Therapeutics.

    Science.gov (United States)

    De Souza, Cristabelle; Chatterji, Biswa Prasun

    2015-01-01

    Malignant growth of cells is a condition characterized by unchecked cellular proliferation, genetic instability and epigenetic dysregulation. Up-regulated HDAC (Histone Deacetylase) enzyme activity is associated with a closed chromatin assembly and subsequent gene repression, forming a characteristic feature of malignantly transformed cells. Novel therapeutics are now targeting the zinc containing HDAC enzymes for treating various types of cancers. Recently, a spate of drugs acting via HDAC inhibition have been undergoing clinical trials and several patents present exciting molecules like PCI-24781 (Abexinostat), ITF- 2357 (Givinostat); MS-275 (Entinostat), MGCD 0103 (Mocetinostat), LBH-589 (Panobinostat), FK228 (Romidepsin), PXD-101 (Belinostat) and Valproic Acid to be used as alternatives or adjuvants to traditional chemotherapeutics. However, only three HDAC inhibitors have acquired FDA approval till date. Recently, PXD-101 obtained FDA approval for the treatment of Refractory or Relapsed Peripheral T cell lymphoma. The current article reviews patents that have introduced novel molecules that are HDAC isoform specific, superior to first generation HDAC inhibitors like SAHA (Suberoylanilide Hydroxamic Acid) and TSA (Trichostatin A) and can be modified structurally to reduce toxic side effects and increase specificity. These molecules can combine the best characteristics of an ideal HDAC inhibiting drug either as monotherapy or in combinatorial therapy for cancer treatment thus, indicating promise to be included in the next generation of target specific HDAC inhibiting drugs.

  5. Characterization of a novel anti-cancer compound for astrocytomas.

    Directory of Open Access Journals (Sweden)

    Sang Y Lee

    Full Text Available The standard chemotherapy for brain tumors is temozolomide (TMZ, however, as many as 50% of brain tumors are reportedly TMZ resistant leaving patients without a chemotherapeutic option. We performed serial screening of TMZ resistant astrocytoma cell lines, and identified compounds that are cytotoxic to these cells. The most cytotoxic compound was an analog of thiobarbituric acid that we refer to as CC-I. There is a dose-dependent cytotoxic effect of CC-I in TMZ resistant astrocytoma cells. Cell death appears to occur via apoptosis. Following CC-I exposure, there was an increase in astrocytoma cells in the S and G2/M phases. In in vivo athymic (nu/nu nude mice subcutaneous and intracranial tumor models, CC-I completely inhibited tumor growth without liver or kidney toxicity. Molecular modeling and enzyme activity assays indicate that CC-I selectively inhibits topoisomerase IIα similar to other drugs in its class, but its cytotoxic effects on astrocytoma cells are stronger than these compounds. The cytotoxic effect of CC-I is stronger in cells expressing unmethylated O6-methylguanine methyltransferase (MGMT but is still toxic to cells with methylated MGMT. CC-I can also enhance the toxic effect of TMZ on astrocytoma when the two compounds are combined. In conclusion, we have identified a compound that is effective against astrocytomas including TMZ resistant astrocytomas in both cell culture and in vivo brain tumor models. The enhanced cytotoxicity of CC-I and the safety profile of this family of drugs could provide an interesting tool for broader evaluation against brain tumors.

  6. Microleakage of Class II Combined Amalgam-Composite Restorations Using Different Composites and Bonding Agents

    Directory of Open Access Journals (Sweden)

    F. Sharafeddin

    2008-09-01

    Full Text Available Objective: The purpose of the present study was to assess the microleakage of composite restorations with and without a cervical amalgam base and to compare the results of dif-ferent composites and bonding agents.Materials and Methods: One hundred and twenty mesio-occlusal (MO and disto-occlusal (DO Class II cavities were prepared on sixty extracted permanent premolar teeth. The teeth were randomly divided into four groups of 30 and restored as follows:In group A, the mesio-occlusal cavity (MO, Scotchbond multi purpose plus + Z250 and in the disto-occlusal (DO cavity, Prompt-L-Pop + Z250 were applied. As for group B, in the MO and DO cavities, Clearfil SE Bond + Clearfil APX, and varnish + amalgam (In box + Clearfil SE Bond + Clearfil APX were used respectivelywhile in group C; the teeth were restored with amalgam and varnish mesio-occlusally and with amalgam only disto-occlusally. As for group D, varnish + amalgam (in box + Scotchbond multi purpose plus + Z250 were applied mesio-occlusally and Varnish + Amalgam (in box + Prompt–L–Pop + Z250 disto-occlusally.Marginal leakage was assessed by the degree of dye penetration into various sections of the restored teeth. Chi-square and Fisher's exact tests were used for data analysis.Results: Microleakage in gingival margin was more than that in occlusal margin (P<0.05 and microleakage of combined amalgam-composite restorations was significantly lower than that of conventional composite and amalgam restorations.Conclusion: Marginal microleakage decreased by using amalgam at the base of the box in Class II composite restorations.

  7. Gelam honey and ginger potentiate the anti cancer effect of 5-FU against HCT 116 colorectal cancer cells.

    Science.gov (United States)

    Hakim, Luqman; Alias, Ekram; Makpol, Suzana; Ngah, Wan Zurinah Wan; Morad, Nor Azian; Yusof, Yasmin Anum Mohd

    2014-01-01

    The development of chemopreventive approaches using a concoction of phytochemicals is potentially viable for combating many types of cancer including colon carcinogenesis. This study evaluated the anti-proliferative effects of ginger and Gelam honey and its efficacy in enhancing the anti-cancer effects of 5-FU (5-fluorouracil) against a colorectal cancer cell line, HCT 116. Cell viability was measured via MTS (3-(4,5-dimethylthiazol-2- yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulphenyl)-2H-tetrazolium) assay showing ginger inhibiting the growth of HCT 116 cells more potently (IC50 of 3mg/mL) in comparison to Gelam honey (IC50 of 75 mg/mL). Combined treatment of the two compounds (3mg/mL ginger+75 mg/mL Gelam honey) synergistically lowered the IC50 of Gelam honey to 22 mg/mL. Combination with 35 mg/mL Gelam honey markedly enhanced 5-FU inhibiting effects on the growth of HCT 116 cells. Subsequent analysis on the induction of cellular apoptosis suggested that individual treatment of ginger and Gelam honey produced higher apoptosis than 5-FU alone. In addition, treatment with the combination of two natural compounds increased the apoptotic rate of HCT 116 cells dose- dependently while treatment of either ginger or Gelam honey combined with 5-FU only showed modest changes. Combination index analysis showed the combination effect of both natural compounds to be synergistic in their inhibitory action against HCT 116 colon cancer cells (CI 0.96 5-FU against colorectal cancer.

  8. Glycyrrhetinic Acid and Its Derivatives: Anti-Cancer and Cancer Chemopreventive Properties, Mechanisms of Action and Structure- Cytotoxic Activity Relationship.

    Science.gov (United States)

    Roohbakhsh, Ali; Iranshahy, Milad; Iranshahi, Mehrdad

    2016-01-01

    The anti-cancer properties of liquorice have been attributed, at least in part, to glycyrrhizin (GL). However, GL is not directly absorbed through the gastrointestinal tract. It is hydrolyzed to 18-β-glycyrrhetinic acid (GA), the pharmacologically active metabolite, by human intestinal microflora. GA exhibits remarkable cytotoxic and anti-tumor properties. The pro-apoptotic targets and mechanisms of action of GA have been extensively studied over the past decade. In addition, GA is an inexpensive and available triterpene with functional groups (COOH and OH) in its structure, which make it an attractive lead compound for medicinal chemists to prepare a large number of analogues. To date, more than 400 cytotoxic derivatives have been prepared on the basis of GA scaffold, including 128 cytotoxic derivatives with IC50 values less than 30 µM. Researchers have also succeeded in synthesizing very potent cytotoxic derivatives with IC50s ≤ 1 µM. Studies have shown that the introduction of a double bound at the C1-C2 position combined with an electronegative functional group, such as CN, CF3 or iodine at C2 position, and the oxidation of the hydroxyl group of C3 to the carbonyl group, significantly increased cytotoxicity. This review describes the cytotoxic and anti-tumor properties of GA and its derivatives, targets and mechanisms of action and provides insight into the structure-activity relationship of GA derivatives.

  9. In vitro and in vivo analysis of antimicrobial agents alone and in combination against multi-drug resistant Acinetobacter baumannii

    Directory of Open Access Journals (Sweden)

    Songzhe eHE

    2015-05-01

    Full Text Available Objective To investigate the in vitro and in vivo antibacterial activities of tigecycline and other 13 common antimicrobial agents, alone or in combination, against multi-drug resistant Acinetobacter baumannii.MethodsAn in vitro susceptibility test of 101 Acinetobacter baumannii was used to detect minimal inhibitory concentrations (MICs. A mouse lung infection model of multi-drug resistant Acinetobacter baumannii,established by the ultrasonic atomization method, was used to define in vivo antimicrobial activities.Results Multi-drug resistant Acinetobacter baumannii showed high sensitivity to tigecycline (98% inhibition, polymyxin B (78.2% inhibition, and minocycline (74.2% inhibition. However, the use of these antimicrobial agents in combination with other antimicrobial agents produced synergistic or additive effects. In vivo data showed that white blood cell (WBC counts in drug combination groups C (minocycline + amikacin and D (minocycline + rifampicin were significantly higher than in groups A (tigecycline and B (polymyxin B (P < 0.05, after administration of the drugs 24h post-infection. Lung tissue inflammation gradually increased in the model group during the first 24h after ultrasonic atomization infection; vasodilation, congestion with hemorrhage were observed 48h post infection. After three days of anti-infective therapy in groups A, B, C and D, lung tissue inflammation in each group gradually recovered with clear structures. The mortality rates in drug combination groups (groups C and D were much lower than in groups A and B.ConclusionThe combination of minocycline with either rifampicin or amikacin is more effective against multidrug-resistant Acinetobacter baumannii than single-agent tigecycline or polymyxin B. In addition, the mouse lung infection by ultrasonic atomization is a suitable model for drug screening and analysis of infection mechanism.

  10. Evaluation of anti-oxidant and anti-cancer properties of Dendropanax morbifera Léveille.

    Science.gov (United States)

    Hyun, Tae Kyung; Kim, Myeong-ok; Lee, Hyunkyoung; Kim, Younjoo; Kim, Euikyung; Kim, Ju-Sung

    2013-12-01

    Dendropanax morbifera Léveille, an endemic species in Korea, is best known as a tree that produces a resinous sap. Although D. morbifera is used in folk medicine, its biological activities are poorly understood. In this study, the methanolic extracts of D. morbifera branches, debarked stems, bark, and two different stages of leaves were evaluated for anti-oxidant activity and anti-cancer potential. The debarked stem extract exhibited strong 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging activity and reducing power compared with other samples. In addition, the cytotoxic activities of these extracts were investigated in human tumour cell lines. The results suggested that the extracts of debarked stems, green leaves, and yellow leaves were the potent source of anti-cancer compounds, particularly in Huh-7 cells. Furthermore, treatment with the extracts of debarked stems, green leaves, and yellow leaves caused an increase of apoptotic or senescent cells in Huh-7 cells. Twenty-four hour treatment with debarked stems extract resulted in the strong induction of p53 and p16, whereas both leaf extracts inhibited the activation of ERK. The debarked stems and green leaf extracts reduced Akt levels in Huh-7 cells, indicating that D. morbifera extracts caused the activation of p16 and p53 pathways. This, together with the inhibition of Akt or ERK signalling, resulted in suppression of Huh-7 cell proliferation. These results suggest that methanolic leaf and debarked stems extracts are a source of anti-oxidant and anti-cancer compounds, and could be developed as a botanical drug.

  11. Study of Malformin C, a Fungal Source Cyclic Pentapeptide, as an Anti-Cancer Drug.

    Directory of Open Access Journals (Sweden)

    Jing Wang

    Full Text Available Malformin C, a fungal cyclic pentapeptide, has been claimed to have anti-cancer potential, but no in vivo study was available to substantiate this property. Therefore, we conducted in vitro and in vivo experiments to investigate its anti-cancer effects and toxicity. Our studies showed Malformin C inhibited Colon 38 and HCT 116 cell growth dose-dependently with an IC50 of 0.27±0.07μM and 0.18±0.023μM respectively. This inhibition was explicated by Malformin C's effect on G2/M arrest. Moreover, we observed up-regulated expression of phospho-histone H2A.X, p53, cleaved CASPASE 3 and LC3 after Malformin C treatment, while the apoptosis assay indicated an increased population of necrotic and late apoptotic cells. In vivo, the pathological study exhibited the acute toxicity of Malformin C at lethal dosage in BDF1 mice might be caused by an acute yet subtle inflammatory response, consistent with elevated IL-6 in the plasma cytokine assay. Further anti-tumor and toxicity experiments proved that 0.3mg/kg injected weekly was the best therapeutic dosage of Malformin C in Colon 38 xenografted BDF1 mice, whereas 0.1mg/kg every other day showed no effect with higher resistance, and 0.9mg/kg per week either led to fatal toxicity in seven-week old mice or displayed no advantage over 0.3mg/kg group in nine-week old mice. Overall, we conclude that Malformin C arrests Colon 38 cells in G2/M phase and induces multiple forms of cell death through necrosis, apoptosis and autophagy. Malformin C has potent cell growth inhibition activity, but the therapeutic index is too low to be an anti-cancer drug.

  12. Restricted mobility of specific functional groups reduces anti-cancer drug activity in healthy cells

    DEFF Research Database (Denmark)

    Longo Martins, Murillo; Ignazzi, Rosanna; Eckert, Juergen

    2016-01-01

    The most common cancer treatments currently available are radio- and chemo-therapy. These therapies have, however, drawbacks, such as, the reduction in quality of life and the low efficiency of radiotherapy in cases of multiple metastases. To lessen these effects, we have encapsulated an anti-cancer...... drug into a biocompatible matrix. In-vitro assays indicate that this bio-nanocomposite is able to interact and cause morphological changes in cancer cells. Meanwhile, no alterations were observed in monocytes and fibroblasts, indicating that this system might carry the drug in living organisms...

  13. Telomere and telomerase as targets for anti-cancer and regeneration therapies

    Institute of Scientific and Technical Information of China (English)

    Yi-hsin HSU; Jing-jer LIN

    2005-01-01

    Telomerase is a ribonucleoprotein that directs the synthesis of telomeric sequence.It is detected in majority of malignant tumors, but not in most normal somatic cells.Because telomerase plays a critical role in cell immortality and tumor formation, it has been one of the targets for anti-cancer and regeneration drug development. In this review, we will discuss therapeutic approaches based mainly on small molecules that have been developed to inhibit telomerase activity, modulate telomerase expression, and telomerase directed gene therapy.

  14. Curcumin–Piperine/Curcumin–Quercetin/Curcumin–Silibinin dual Drug-loaded Nanoparticulate Combination Therapy: A Novel Approach to Target and Treat Multidrug-resistant Cancers

    Directory of Open Access Journals (Sweden)

    C. Moorthi

    2013-01-01

    Full Text Available Curcumin is a functional food, which provides a wide range of health benefits including anti-cancer activity and considered as a suitable alternative for chemotherapeutic agents. However, cancer cells exhibit resistance to most chemotherapeutic agents including curcumin due to overexpression of adenosine triphosphate (ATP-binding cassette transporter proteins in the cancer cell membrane, which decrease the intracellular concentration of chemotherapeutic agents. Similarly, most chemotherapeutic agents including curcumin experience lack of cancer cell targeting, lack of aqueous solubility, rapid systemic clearance, intestinal metabolism and hepatic metabolism. These limitations hinder the clinical usefulness of curcumin in the treatment of multidrug-resistant cancers. In this article, we propose curcumin–piperine, or curcumin–quercetin or curcumin–silibinin dual drug-loaded nanoparticulate combination therapy to target and treat multidrug-resistant cancers. The proposed dual drug-loaded nanoparticulate combination is expected to reverse the multidrug resistance, prevent the rapid systemic clearance, prevent the intestinal and the hepatic metabolism, increase the aqueous solubility, enhance the bioavailability, target the cancer cells, produce a synergistic anti-cancer effect and enhance the efficacy of curcumin in the treatment of multidrug-resistant cancers.

  15. Percutaneous exposure to the nerve agent VX: Efficacy of combined atropine, obidoxime and diazepam treatment

    NARCIS (Netherlands)

    Joosen, M.J.A.; Schans, M.J. van der; Helden, H.P.M. van

    2010-01-01

    The nerve agent VX is most likely to enter the body via liquid contamination of the skin. After percutaneous exposure, the slow uptake into the blood, and its slow elimination result in toxic levels in plasma for a period of several hours. Consequently, this has implications for the development of t

  16. An agent strategy for automated stock market trading combining price and order book information

    NARCIS (Netherlands)

    Silaghi, G.; Robu, V.

    2005-01-01

    This paper proposes a novel automated agent strategy for stock market trading, developed in the context of the Penn-Lehman automated trading (PLAT) simulation platform by Kearns, M., and Ortiz, L., (2003). We provide a comprehensive experimental validation of our strategy using historic order book d

  17. Stable polymer micelle systems as anti-cancer drug delivery carriers

    Science.gov (United States)

    Zeng, Yi

    2005-07-01

    Several temporarily stable polymer micelle systems that might be used as ultrasonic-activated drug delivery carriers were synthesized and investigated. These polymeric micelle systems were PlurogelRTM, Tetronic RTM, poly(ethylene oxide)-b-poly(N-isopropylacrylamide) and poly(ethylene oxide)-b-poly(N-isopropylacrylamide-co-2-hydroxyethyl methacrylate-lactate n). In previous work in our lab, Pruitt et al. developed a stabilized drug carrier named PlurogelRTM [5, 6]. Unfortunately, the rate of the successful PlurogelRTM synthesis was only about 30% by simply following Pruitt's process. In this work, this rate was improved to 60% by combining the process of adding 0.15 M NaCl and/or 10 mul/ml n-butanol and by preheating the solution before polymerization. TetronicsRTM were proved not to be good candidates to form temporarily stable polymeric micelle system by polymerizing interpenetrating networks inside their micelle cores. Tetronic micelle systems treated by this process still were not stable at concentrations below their critical micelle concentration (CMC). Poly(ethylene oxide)-b-poly(N-isopropylacrylamide)-N,N-bis(acryloyl)cystamine micelle-like nanoparticles were developed and characterized. When the N,N-bis(acryloyl)cystamine (BAC) was from 0.2 wt% to 0.75 wt% of the mass of poly(N-isopropylacrylamide), diameters of the nanoparticles at 40°C were less than 150 nm. The cores of the nanoparticles were hydrophobic enough to sequester 1,6-diphenylhexatriene (DPH) and the anti-cancer drug doxorubicin (DOX). Nanoparticles with 0.5 wt% BAC stored at room temperature in 0.002 mg/ml solutions were stable for up to two weeks. Poly(ethylene oxide)-b-poly(N-isopropylacrylamide-co-2-hydroxyethyl methacrylate-lactate n) micelle systems were synthesized and characterized. The degree of polymerization of lactate side group, n, was 3 or 5. The copolymers with N-isopropylacrylamide:2-hydroxyethyl methacrylate-lactate3: poly(ethylene oxide) (NIPAAm:HEMA-lactate 3:PEO) ratios of

  18. Anti-cancer activity and mutagenic potential of novel copper(II) quinolinone Schiff base complexes in hepatocarcinoma cells.

    Science.gov (United States)

    Duff, Brian; Thangella, Venkat Reddy; Creaven, Bernadette S; Walsh, Maureen; Egan, Denise A

    2012-08-15

    This study determined the cytotoxic, cyto-selective and mutagenic potential of novel quinolinone Schiff base ligands and their corresponding copper(II) complexes in human-derived hepatic carcinoma cells (Hep-G2) and non-malignant human-derived hepatic cells (Chang). Results indicated that complexation of quinolinone Schiff bases with copper served to significantly enhance cytotoxicity. Here, the complex of (7E)-7-(3-ethoxy-2-hydroxybenzylideamino)-4-methylquinolin-2(1H)-one (TV117-FM) exhibited the lowest IC(50) value (17.9 μM) following 96 h continuous exposure, which was comparable to cisplatin (15.0 μM). However, results revealed that TV117-FM lacked cytoselectivity over non-malignant cells. Additionally, the complex was minimally effluxed from cells via Pglycoprotein (P-gp) and was shown to be non-mutagenic in the Standard Ames test. Furthermore, BrdU incorporation assays showed that it was capable of inhibiting DNA synthesis in a concentrationand time-dependent manner. However, inhibition was not as a consequence of DNA intercalation, as illustrated in electrophoretic mobility shift assays. Interestingly, it was shown that the ligand was capable of inhibiting the action of topoisomerase II, but this was lost following complexation. This indicated that the mechanism of action of the novel copper(II) complex was different from that of the parent ligand and suggests that TV117-FM may have a therapeutic role to play in the treatment of hepatocellular carcinoma. Studies are currently underway to elucidate the exact in vitro mechanism of action of this novel, metal-based anti-cancer agent.

  19. Curcumin: A review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Wang Marilene B

    2011-02-01

    Full Text Available Abstract Curcumin (diferuloylmethane is a polyphenol derived from the Curcuma longa plant, commonly known as turmeric. Curcumin has been used extensively in Ayurvedic medicine for centuries, as it is nontoxic and has a variety of therapeutic properties including anti-oxidant, analgesic, anti-inflammatory and antiseptic activity. More recently curcumin has been found to possess anti-cancer activities via its effect on a variety of biological pathways involved in mutagenesis, oncogene expression, cell cycle regulation, apoptosis, tumorigenesis and metastasis. Curcumin has shown anti-proliferative effect in multiple cancers, and is an inhibitor of the transcription factor NF-κB and downstream gene products (including c-myc, Bcl-2, COX-2, NOS, Cyclin D1, TNF-α, interleukins and MMP-9. In addition, curcumin affects a variety of growth factor receptors and cell adhesion molecules involved in tumor growth, angiogenesis and metastasis. Head and neck squamous cell carcinoma (HNSCC is the sixth most common cancer worldwide and treatment protocols include disfiguring surgery, platinum-based chemotherapy and radiation, all of which may result in tremendous patient morbidity. As a result, there is significant interest in developing adjuvant chemotherapies to augment currently available treatment protocols, which may allow decreased side effects and toxicity without compromising therapeutic efficacy. Curcumin is one such potential candidate, and this review presents an overview of the current in vitro and in vivo data supporting its therapeutic activity in head and neck cancer as well as some of the challenges concerning its development as an adjuvant chemotherapeutic agent.

  20. Ginger extract (Zingiber officinale has anti-cancer and anti-inflammatory effects on ethionine-induced hepatoma rats

    Directory of Open Access Journals (Sweden)

    Shafina Hanim Mohd Habib

    2008-01-01

    Full Text Available OBJECTIVE: To evaluate the effect of ginger extract on the expression of NFκB and TNF-α in liver cancer-induced rats. METHODS: Male Wistar rats were randomly divided into 5 groups based on diet: i control (given normal rat chow, ii olive oil, iii ginger extract (100mg/kg body weight, iv choline-deficient diet + 0.1% ethionine to induce liver cancer and v choline-deficient diet + ginger extract (100mg/kg body weight. Tissue samples obtained at eight weeks were fixed with formalin and embedded in paraffin wax, followed by immunohistochemistry staining for NFκB and TNF-α. RESULTS: The expression of NFκB was detected in the choline-deficient diet group, with 88.3 ± 1.83% of samples showing positive staining, while in the choline-deficient diet supplemented with ginger group, the expression of NFκB was significantly reduced, to 32.35 ± 1.34% (p<0.05. In the choline-deficient diet group, 83.3 ± 4.52% of samples showed positive staining of TNF-α, which was significantly reduced to 7.94 ± 1.32% (p<0.05 when treated with ginger. There was a significant correlation demonstrated between NFκB and TNF-α in the choline-deficient diet group but not in the choline-deficient diet treated with ginger extract group. CONCLUSION: In conclusion, ginger extract significantly reduced the elevated expression of NFκB and TNF-α in rats with liver cancer. Ginger may act as an anti-cancer and anti-inflammatory agent by inactivating NFκB through the suppression of the pro-inflammatory TNF-α.

  1. In vitro anti-cancer activity of chamaejasmenin B and neochamaejasmin C isolated from the root of Stellera chamaejasme L

    Institute of Scientific and Technical Information of China (English)

    Chong ZHANG; Shuang-shuang ZHOU; Lin-yi FENG; Da-yong ZHANG; Neng-ming LIN; Li-huang ZHANG; Jian-ping PAN; Jun-bo WANG; Jie LI

    2013-01-01

    Aim: To examine the anti-cancer effects of chamaejasmenin B and neochamaejasmin C,two biflavonones isolated from the root of Stellera chamaejasme L (known as the traditional Chinese herb Rui Xiang Lang Du) in vitro.Methods: Human liver carcinoma cell lines (HepG2 and SMMC-7721),a human non-small cell lung cancer cell line (A549),human osteosarcoma cell lines (MG63,U2OS,and KHOS),a human colon cancer cell line (HCT-116) and a human cervical cancer cell line (HeLa) were used.The anti-proliferative effects of the compounds were measured using SRB cytotoxicity assay.DNA damage was detected by immunofluorescence and Western blotting.Apoptosis and cell cycle distribution were assessed using flow cytometry analysis.The expression of the related proteins was examined with Western blotting analysis.Results: Both chamaejasmenin B and neochamaejasmin C exerted potent anti-proliferative effects in the 8 human solid tumor cell lines.Chamaejasmenin B (the IC50 values ranged from 1.08 to 10.8 μmol/L) was slightly more potent than neochamaejasmin C (the IC50 values ranged from 3.07 to 15.97 μmol/L).In the most sensitive A549 and KHOS cells,the mechanisms underlyingthe anti-proliferative effects were characterized.The two compounds induced prominent expression of the DNA damage marker γ-H2AX as well as apoptosis.Furthermore,treatment of the cells with the two compounds caused prominent G0/G1 phase arrest.Conclusion: Chamaejasmenin B and neochamaejasmin C are potential anti-proliferative agents in 8 human solid tumor cell lines in vitro via inducing cell cycle arrest,apoptosis and DNA damage.

  2. Use of albendazole sulfoxide, albendazole sulfone, and combined solutions as scolicidal agents on hydatid cysts ( in vitro study)

    Institute of Scientific and Technical Information of China (English)

    Gokhan Adas; Soykan Arikan; Ozgur Kemik; Ali Oner; Nilgun Sahip; Oguzhan Karatepe

    2009-01-01

    AIM: To establish which scolicidal agents are superior and more suitable for regular use.METHODS: Echinococcus granulosus protoscoleces were obtained from 25 patients with liver hydatid cysts. Various concentrations of albendazole sulfone,albendazole sulfoxide, and albendazole sulfone and albendazole sulfoxide mixed together in concentrations of 50 μg/mL, and H2O2 in a concentration of 4%, NaCl 20%, and 1.5% cetrimide-0.15% chlorhexidine (10% Savlon-Turkey) were used to determine the scolicidal effects. Albendazole (ABZ) derivatives and other scolicidal agents were applied to a minimum of 100 scoleces for 5 and 10 min. The degree of viability was calculated according to the number of living scolices per field from a total of 100 scolices observed under the microscope.RESULTS: After 5 min, ABZ sulfone was 97.3% effective, ABZ sulfoxide was 98.4% effective, and the combined solution was 98.6% effective. When sulfone, sulfoxide and the combined solutions were compared,the combined solution seemed more effective than sulfone. However, there was no difference when the combined solution was compared with sulfoxide. After 10 min, hypertonic salt water, sulfone, sulfoxide, and the combined solution compared to other solutions looked more effective and this was statistically significant on an advanced level. When sulfone,sulfoxide, and the combined solutions were compared with each other, the combined solution appeared more effective than sulfone. When the combined solution was compared with sulfoxide, there was no difference.CONCLUSION: Despite being active, ABZ metabolites did not provide a marked advantage over 20% hypertonic saline. According to these results, we think creating a newly improved and more active preparation is necessary for hydatid cyst treatment.

  3. Imidazoles and benzimidazoles as tubulin-modulators for anti-cancer therapy.

    Science.gov (United States)

    Torres, Fernando C; García-Rubiño, M Eugenia; Lozano-López, César; Kawano, Daniel F; Eifler-Lima, Vera L; von Poser, Gilsane L; Campos, Joaquín M

    2015-01-01

    Imidazoles and benzimidazoles are privileged heterocyclic bioactive compounds used with success in the clinical practice of innumerous diseases. Although there are many advancements in cancer therapy, microtubules remain as one of the few macromolecular targets validated for planning active anti-cancer compounds, and the design of drugs that modulate microtubule dynamics in unknown sites of tubulin is one of the goals of the medicinal chemistry. The discussion of the role of new and commercially available imidazole and benzimidazole derivatives as tubulin modulators is scattered throughout scientific literature, and indicates that these compounds have a tubulin modulation mechanism different from that of tubulin modulators clinically available, such as paclitaxel, docetaxel, vincristine and vinblastine. In fact, recent literature indicates that these derivatives inhibit microtubule formation binding to the colchicine site, present good pharmacokinetic properties and are capable of overcoming multidrug resistance in many cell lines. The understanding of the mechanisms involved in the imidazoles/benzimidazoles modulation of microtubule dynamics is very important to develop new strategies to overcome the resistance to anti-cancer drugs and to discover new biomarkers and targets for cancer chemotherapy.

  4. Anti-cancer effects of Kochia scoparia fruit in human breast cancer cells

    Directory of Open Access Journals (Sweden)

    Hye-Yeon Han

    2014-01-01

    Full Text Available Background: The fruit of Kochia scoparia Scharder is widely used as a medicinal ingredient for the treatment of dysuria and skin diseases in China, Japan and Korea. Especially, K. scoparia had been used for breast masses and chest and flank pain. Objective: To investigate the anti-cancer effect of K. scoparia on breast cancer. Materials and Methods: We investigated the anti-cancer effects of K. scoparia, methanol extract (MEKS in vitro. We examined the effects of MEKS on the proliferation rate, cell cycle arrest, reactive oxygen species (ROS generation and activation of apoptosis-associated proteins in MDA-MB-231, human breast cancer cells. Results: MTT assay results demonstrated that MEKS decreased the proliferation rates of MDA-MB-231 cells in a dose-dependent manner with an IC 50 value of 36.2 μg/ml. MEKS at 25 μg/ml significantly increased the sub-G1 DNA contents of MDA-MB-231 cells to 44.7%, versus untreated cells. In addition, MEKS induced apoptosis by increasing the levels of apoptosis-associated proteins such as cleaved caspase 3, cleaved caspase 8, cleaved caspase 9 and cleaved Poly (ADP-ribose polymerase (PARP. Conclusion: These results suggest that MEKS inhibits cell proliferation and induces apoptosis in breast cancer cells and that MEKS may have potential chemotherapeutic value for the treatment of human breast cancer.

  5. Glucagon-like peptide-2 (GLP-2) response to enteral intake in children during anti-cancer treatment

    DEFF Research Database (Denmark)

    Andreassen, B U; Paerregaard, A; Schmiegelow, K

    2005-01-01

    BACKGROUND: Intestinal dysfunction is frequent in cancer and during anti-cancer treatment. Glucagon-like peptide-2 (GLP-2) is secreted in a nutrition-dependent manner from the intestinal enteroendocrine L-cells. It accelerates crypt cell proliferation and nutrient absorption, inhibits enterocyte...... apoptosis and decreases mucosal permeability. Lack of GLP-2 may increase the risk of malabsorption and intestinal bacterial translocation. The aim of this study is to evaluate meal stimulated secretion of GLP-2 in children with cancer undergoing anti-cancer treatment. METHODS: Plasma-GLP-2 analysis after...... an overnight fast and 1 hour after intake of a mixed test meal. Data on gastrointestinal toxicity, blood neutrophile counts and food records were included in the analysis. RESULTS: Forty-four meal stimulation tests were performed in 25 children (median age, 6.0 years; range, 2.5-19) during anti-cancer...

  6. Development of a Novel Anti-HIF-1α Screening System Coupled with Biochemical and Biological Validation for Rapidly Selecting Potent Anti-Cancer Compounds.

    Science.gov (United States)

    Lu, Yi; Madu, Chikezie; Masters, Jordan; Lu, Andrew; Li, Liyuan

    2014-01-01

    Breast cancer (BCa) is the most diagnosed cancer and the second leading cause of cancer death in the American women. Adaptation to the hypoxic environment seen in solid tumors is critical for tumor cell survival and growth. The activation of hypoxia inducible factor-1 alpha (HIF-1α), an important master transcriptional factor that is induced and stabilized by intratumoral hypoxia, stimulates a group of HIF-1α-regulated genes including vascular endothelial growth factor (VEGF), leading tumor cells towards malignant progression. Therefore, a promising therapeutic approach to cancer treatment is to target HIF-1α. The goal of this project was to develop and validate a screening system coupled with secondary screen/validation process that has the capability to screen large numbers of potential anti-cancer small-molecule compounds based on their anti-HIF-1α activities. Breast cancer MDA-231 cells were used as the model to select potent anti-HIF-1α compounds by their abilities to inhibit transactivation of a VEGF promoter fused to a luciferase reporter gene under hypoxia. Positive compounds were then validated by a series of assays that confirm compounds' anti-HIF-1α activities including measurement of HIF-1α downstream VEGF gene expression and angiogenic ability of BCa cells. Results of our pilot screening demonstrate that this prototype screening coupled with validation system can effectively select highly potent anti-HIF-1α agents from the compound library, suggesting that this prototype screen system has the potential to be developed into a high-throughput screen (HTS) coupled with automated validation process for the screening and identification of novel and effective anti-cancer drugs based on anti-HIF-1α mechanism.

  7. Event-triggered nonlinear consensus in directed multi-agent systems with combinational state measurements

    Science.gov (United States)

    Li, Huaqing; Chen, Guo; Xiao, Li

    2016-10-01

    Event-triggered sampling control is motivated by the applications of embedded microprocessors equipped in the agents with limited computation and storage resources. This paper studied global consensus in multi-agent systems with inherent nonlinear dynamics on general directed networks using decentralised event-triggered strategy. For each agent, the controller updates are event-based and only triggered at its own event times by only utilising the locally current sampling data. A high-performance sampling event that only needs local neighbours' states at their own discrete time instants is presented. Furthermore, we introduce two kinds of general algebraic connectivity for strongly connected networks and strongly connected components of the directed network containing a spanning tree so as to describe the system's ability for reaching consensus. A detailed theoretical analysis on consensus is performed and two criteria are derived by virtue of algebraic graph theory, matrix theory and Lyapunov control approach. It is shown that the Zeno behaviour of triggering time sequence is excluded during the system's whole working process. A numerical simulation is given to show the effectiveness of the theoretical results.

  8. A numerical study of combined use of two biocontrol agents with different biocontrol mechanisms in controlling foliar pathogens.

    Science.gov (United States)

    Xu, X-M; Jeffries, P; Pautasso, M; Jeger, M J

    2011-09-01

    Effective use of biocontrol agents is an important component of sustainable agriculture. A previous numerical study of a generic model showed that biocontrol efficacy was greatest for a single biocontrol agent (BCA) combining competition with mycoparasitism or antibiosis. This study uses the same mathematical model to investigate whether the biocontrol efficacy of combined use of two BCAs with different biocontrol mechanisms is greater than that of a single BCA with either or both of the two mechanisms, assuming that two BCAs occupy the same host tissue as the pathogen. Within the parameter values considered, a BCA with two biocontrol mechanisms always outperformed the combined use of two BCAs with a single but different biocontrol mechanism. Similarly, combined use of two BCAs with a single but different biocontrol mechanism is shown to be far less effective than that of a single BCA with both mechanisms. Disease suppression from combined use of two BCAs was very similar to that achieved by the more efficacious one. As expected, a higher BCA introduction rate led to increased disease suppression. Incorporation of interactions between two BCAs did not greatly affect the disease dynamics except when a mycoparasitic and, to a lesser extent, an antibiotic-producing BCA was involved. Increasing the competitiveness of a mycoparasitic BCA over a BCA whose biocontrol mechanism is either competition or antibiosis may lead to improved biocontrol initially and reduced fluctuations in disease dynamics. The present study suggests that, under the model assumptions, combined use of two BCAs with different biocontrol mechanisms in most cases only results in control efficacies similar to using the more efficacious one alone. These predictions are consistent with published experimental results, suggesting that combined use of BCAs should not be recommended without clear understanding of their main biocontrol mechanisms and relative competitiveness, and experimental evaluation.

  9. Dr. Josef Steiner Cancer Research Prize Lecture: the role of physiological cell death in neoplastic transformation and in anti-cancer therapy.

    Science.gov (United States)

    Strasser, A

    1999-05-17

    Cell death is a physiological process which is required for normal development and existence of multi-cellular organisms. Physiological cell death, or apoptosis, is controlled by an evolutionarily conserved mechanism. Abnormalities in this process are implicated as a cause or contributing factor in a variety of diseases. Inhibition of apoptosis can promote neoplastic transformation, particularly in combination with dysregulated cell-cycle control, and can influence the response of tumour cells to anti-cancer therapy. Molecular biological and biochemical approaches are used to find missing cell-death regulators and to define signalling cascades, while experiments in genetically modified mice will identify the essential function of these molecules. Discoveries from cell death research should provide clues for designing therapies for a variety of diseases, including degenerative disorders, auto-immunity and cancer.

  10. Ultrasonograpy of VX-2 Liver Tumor in Rabbit Treated by High Intensity Focused Ultrasound Combined with Microbubble Contrast Agent

    Science.gov (United States)

    Xiaojuan, Ji; Jinqing, Li; Zhibiao, Wang; Jianzhong, Zou; Wenzhi, Chen; Jin, Bai

    2007-05-01

    Objective: To assess the value of sonographic appearance and to investigate the sonographic character of VX-2 liver tumor in rabbit treated by high intensity focused ultrasound (HIFU) combined with microbubble contrast agent. Methods: Forty-five rabbits bearing VX-2 tumors were randomly averagely assigned into three groups. In group A irradiation was sustained until the target region became hyperechoic. In group B therapy was stopped as soon as hyperecho occurred, and in group C irradiation time was prolonged to ensure the occurrence of coagulation necrosis. Results: Exposure duration for tumors treated purely with HIFU was the longest, whilst the use of microbubble contrast agent combined with HIFU shortened the exposure duration significantly. The gross examination and ultrasonogram coagulation necrosis area measurements correlated strongly (r=0.986,P<0.05) in the microbubble-enhanced HIFU group. Conclusion: It was feasible to enhance HIFU therapy with microbubble contrast agent. The characteristic change in the ultrasound images made it possible to assess the enhanced HIFU therapeutic efficacy in order to adjust the treatment program.

  11. Distributed Optimal Economic Dispatch Based on Multi-Agent System Framework in Combined Heat and Power Systems

    Directory of Open Access Journals (Sweden)

    Yu-Shuai Li

    2016-10-01

    Full Text Available In this paper, a novel distributed method is presented to solve combined heat and power economic dispatch problem, which is formulated as a distributed coupled optimization problem. The optimization goal is achieved by establishing two modified consensus protocols with two corresponding feedback parts while satisfying the electrical and heat supply–demand balance. Moreover, an alternating iterative method is proposed to handle the heat-electrical coupling problem existed in the objective function and the feasible operating regions. In addition, the proposed distributed method is implemented by a multi-agent system framework, which only requires local information exchange among neighboring agents. Simulation results obtained on a 16-bus test system are provided to illustrate the effectiveness of the proposed distributed method.

  12. Enteric-coated tablet of risedronate sodium in combination with phytic acid, a natural chelating agent, for improved oral bioavailability.

    Science.gov (United States)

    Kim, Jeong S; Jang, Sun W; Son, Miwon; Kim, Byoung M; Kang, Myung J

    2016-01-20

    The oral bioavailability (BA) of risedronate sodium (RS), an antiresorptive agent, is less than 1% due to its low membrane permeability as well as the formation of non-absorbable complexes with multivalent cations such as calcium ion (Ca(2+)) in the gastrointestinal tract. In the present study, to increase oral BA of the bisphosphonate, a novel enteric-coated tablet (ECT) dosage form of RS in combination with phytic acid (IP6), a natural chelating agent recognized as safe, was formulated. The chelating behavior of IP6 against Ca(2+), including a stability constant for complex formulation was characterized using the continuous variation method. Subsequently, in vitro dissolution profile and in vivo pharmacokinetic profile of the novel ECT were evaluated comparatively with that of the marketed product (Altevia, Sanofi, US), an ECT containing ethylenediaminetetraacetic acid (EDTA) as a chelating agent, in beagle dogs. The logarithm of stability constant for Ca(2+)-IP6 complex, an equilibrium constant approximating the strength of the interaction between two chemicals to form complex, was 19.05, which was 3.9-fold (p<0.05) and 1.7-fold (p<0.05) higher than those of Ca(2+)-RS and Ca(2+)-EDTA complexes. The release profile of RS from both enteric-coated dosage forms was equivalent, regardless of the type of chelating agent. An in vivo absorption study in beagle dogs revealed that the maximum plasma concentration and area under the curve of RS after oral administration of IP6-containing ECT were approximately 7.9- (p<0.05) and 5.0-fold (p<0.05) higher than those of the marketed product at the same dose (35mg as RS). Therefore, our study demonstrates the potential usefulness of the ECT system in combination with IP6 for an oral therapy with the bisphosphonate for improved BA.

  13. Structure Identification and Anti-Cancer Pharmacological Prediction of Triterpenes from Ganoderma lucidum

    Directory of Open Access Journals (Sweden)

    Yanyan Shao

    2016-05-01

    Full Text Available Ganoderma triterpenes (GTs are the major secondary metabolites of Ganoderma lucidum, which is a popularly used traditional Chinese medicine for complementary cancer therapy. In the present study, systematic isolation, and in silico pharmacological prediction are implemented to discover potential anti-cancer active GTs from G. lucidum. Nineteen GTs, three steroids, one cerebroside, and one thymidine were isolated from G. lucidum. Six GTs were first isolated from the fruiting bodies of G. lucidum, including 3β,7β,15β-trihydroxy-11,23-dioxo-lanost-8,16-dien-26-oic acid methyl ester (1, 3β,7β,15β-trihydroxy-11,23-dioxo-lanost-8,16-dien-26-oic acid (2, 3β,7β,15α,28-tetrahydroxy-11,23-dioxo-lanost-8,16-dien-26-oic acid (3, ganotropic acid (4, 26-nor-11,23-dioxo-5α-lanost-8-en-3β,7β,15α,25-tetrol (5 and (3β,7α-dihydroxy-lanosta-8,24-dien- 11-one (6. (4E,8E-N-d-2′-hydroxypalmitoyl-l-O-β-d-glucopyranosyl-9-methyl-4,8-spingodienine (7, and stigmasta-7,22-dien-3β,5α,6α-triol (8 were first reported from the genus Ganodema. By using reverse pharmacophoric profiling of the six GTs, thirty potential anti-cancer therapeutic targets were identified and utilized to construct their ingredient-target interaction network. Then nineteen high frequency targets of GTs were selected from thirty potential targets to construct a protein interaction network (PIN. In order to cluster the pharmacological activity of GTs, twelve function modules were identified by molecular complex detection (MCODE and gene ontology (GO enrichment analysis. The results indicated that anti-cancer effect of GTs might be related to histone acetylation and interphase of mitotic cell cycle by regulating general control non-derepressible 5 (GCN5 and cyclin-dependent kinase-2 (CDK2, respectively. This research mode of extraction, isolation, pharmacological prediction, and PIN analysis might be beneficial to rapidly predict and discover pharmacological activities of novel

  14. Anti-Cancer Effect of Angelica Sinensis on Women’s Reproductive Cancer

    Directory of Open Access Journals (Sweden)

    Hong-Hong Zhu

    2012-06-01

    Full Text Available Objective: Danggui, the root of Angelica Sinensis, has traditionally been used for the treatment of women’s reproductive disorders in China for thousands of years. This study was to determine whether Danggui have potential anti-cancer effect on women’s cancer and its potential mechanism. Methods: Danggui was extracted by ethanol. The Cell Titer 96® Aqueous Non-Radioactive Cell Proliferation Assay was used to compare the effects of Danggui on human breast (MCF-7 and 7368 and cervical (CaSki and SiHa cancer cells with its effects on normal fibroblasts (HTB-125. A revised Ames test was used to test for antimutagenicity. The standard strains of Salmonella typhimarium (TA 100 and 102 were used in the test. Methyl methane sulfonate (MMS and UV light were used as positive mutagen controls and ethanol and double distilled water (DDW as controls. The SAS statistical software was used to analyze the data. Results: Danggui was found to be much more toxic to all cancer cell lines tested than to normal fibroblasts. There was a significant negative dose-effect relationship between Danggui and cancer cell viability. Average viability of MCF-7 was 69.5%, 18.4%, 5.7%, 5.7%, and 5.0% of control for Danggui doses 0.07, 0.14, 0.21, 0.32, and 0.64 ug/ul, respectively, with a Ptrend < 0.0001. Half maximal inhibitory dose (ID50 of Danggui for cancer cell lines MCF-7, CaSki, SiHa and CRL-7368 was 0.10, 0.09, 0.10 and 0.07 ug/ul, Functional Foods in Health and Disease 2012, 2(6:242-250respectively. For the normal fibroblasts, ID50 was 0.58 ug/ul. At a dose of 0.32 ug/ul, Danggui killed over 90% of the cells in each cancer cell line, but at the same dose, only 12.3 % of the normal HTB-125 cells were killed. Revertants per plate of TA 100 decreased with the introduction of increasing doses of Danggui extracts with a Ptrend < 0.0001 when UV light was used as a mutagen. There was no difference in revertants per plate between ethanol and DDW control groups. Conclusions

  15. An in vivo C. elegans model system for screening EGFR-inhibiting anti-cancer drugs.

    Directory of Open Access Journals (Sweden)

    Young-Ki Bae

    Full Text Available The epidermal growth factor receptor (EGFR is a well-established target for cancer treatment. EGFR tyrosine kinase (TK inhibitors, such as gefinitib and erlotinib, have been developed as anti-cancer drugs. Although non-small cell lung carcinoma with an activating EGFR mutation, L858R, responds well to gefinitib and erlotinib, tumors with a doubly mutated EGFR, T790M-L858R, acquire resistance to these drugs. The C. elegans EGFR homolog LET-23 and its downstream signaling pathway have been studied extensively to provide insight into regulatory mechanisms conserved from C. elegans to humans. To develop an in vivo screening system for potential cancer drugs targeting specific EGFR mutants, we expressed three LET-23 chimeras in which the TK domain was replaced with either the human wild-type TK domain (LET-23::hEGFR-TK, a TK domain with the L858R mutation (LET-23::hEGFR-TK[L858R], or a TK domain with the T790M-L858R mutations (LET-23::hEGFR-TK[T790M-L858R] in C. elegans vulval cells using the let-23 promoter. The wild-type hEGFR-TK chimeric protein rescued the let-23 mutant phenotype, and the activating mutant hEGFR-TK chimeras induced a multivulva (Muv phenotype in a wild-type C. elegans background. The anti-cancer drugs gefitinib and erlotinib suppressed the Muv phenotype in LET-23::hEGFR-TK[L858R]-expressing transgenic animals, but not in LET-23::hEGFR-TK[T790M-L858R] transgenic animals. As a pilot screen, 8,960 small chemicals were tested for Muv suppression, and AG1478 (an EGFR-TK inhibitor and U0126 (a MEK inhibitor were identified as potential inhibitors of EGFR-mediated biological function. In conclusion, transgenic C. elegans expressing chimeric LET-23::hEGFR-TK proteins are a model system that can be used in mutation-specific screens for new anti-cancer drugs.

  16. Structure Identification and Anti-Cancer Pharmacological Prediction of Triterpenes from Ganoderma lucidum.

    Science.gov (United States)

    Shao, Yanyan; Qiao, Liansheng; Wu, Lingfang; Sun, Xuefei; Zhu, Dan; Yang, Guanghui; Zhang, Xiaoxue; Mao, Xin; Chen, Wenjing; Liang, Wenyi; Zhang, Yanling; Zhang, Lanzhen

    2016-05-21

    Ganoderma triterpenes (GTs) are the major secondary metabolites of Ganoderma lucidum, which is a popularly used traditional Chinese medicine for complementary cancer therapy. In the present study, systematic isolation, and in silico pharmacological prediction are implemented to discover potential anti-cancer active GTs from G. lucidum. Nineteen GTs, three steroids, one cerebroside, and one thymidine were isolated from G. lucidum. Six GTs were first isolated from the fruiting bodies of G. lucidum, including 3β,7β,15β-trihydroxy-11,23-dioxo-lanost-8,16-dien-26-oic acid methyl ester (1), 3β,7β,15β-trihydroxy-11,23-dioxo-lanost-8,16-dien-26-oic acid (2), 3β,7β,15α,28-tetrahydroxy-11,23-dioxo-lanost-8,16-dien-26-oic acid (3), ganotropic acid (4), 26-nor-11,23-dioxo-5α-lanost-8-en-3β,7β,15α,25-tetrol (5) and (3β,7α)-dihydroxy-lanosta-8,24-dien- 11-one (6). (4E,8E)-N-d-2'-hydroxypalmitoyl-l-O-β-d-glucopyranosyl-9-methyl-4,8-spingodienine (7), and stigmasta-7,22-dien-3β,5α,6α-triol (8) were first reported from the genus Ganodema. By using reverse pharmacophoric profiling of the six GTs, thirty potential anti-cancer therapeutic targets were identified and utilized to construct their ingredient-target interaction network. Then nineteen high frequency targets of GTs were selected from thirty potential targets to construct a protein interaction network (PIN). In order to cluster the pharmacological activity of GTs, twelve function modules were identified by molecular complex detection (MCODE) and gene ontology (GO) enrichment analysis. The results indicated that anti-cancer effect of GTs might be related to histone acetylation and interphase of mitotic cell cycle by regulating general control non-derepressible 5 (GCN5) and cyclin-dependent kinase-2 (CDK2), respectively. This research mode of extraction, isolation, pharmacological prediction, and PIN analysis might be beneficial to rapidly predict and discover pharmacological activities of novel compounds.

  17. Assessments of low emission asphalt mixtures produced using combinations of foaming agents

    Science.gov (United States)

    Mohd Hasan, Mohd Rosli

    The asphalt foaming techniques have been used over the last couple of decades as an alternative to the traditional method of preparing asphalt mixtures. Based on positive feedback from the industry, this study was initiated to explore and evaluate the performance of the Warm Mix Asphalt (WMA) mixture produced through a foaming process using physical and chemical foaming agents, which are ethanol and sodium bicarbonate (NaHCO3), respectively. The success of this project may lead to new theories and provide an environmentally friendly technique to produce asphalt mixtures. This may advance the understanding of the foaming process and improve the performance of WMA to support sustainable development. Theoretically, ethanol can function in the same manner as water but requires less energy to foam due to its lower boiling point, 78°C. During the asphalt foaming process, numerous bubbles were generated by the vaporized ethanol, which significantly increased the volume of the asphalt binder, hence the coating potential of aggregates improves. The sodium bicarbonate was incorporated to enhance the quantity of bubbles and its stability. Therefore, understanding foaming agents, their solubility, chemical reactions, chemical function groups and rheological properties of the foamed binder are essential to help control the foam structure and final properties of the foamed WMA mixture. In order to understand the overall performance of newly developed foaming WMA, this material was evaluated for moisture susceptibility, rutting potential, and resistance to fracture and thermal cracking. The coatability, workability and compactability of foamed asphalt mixtures during production were also evaluated. Based on the results, it was found that the newly proposed foaming WMA has high potential to promote sustainable development by lowering the energy consumption and impacts on the environment. The ethanol is efficient in lowering the viscosity of asphalt binders, enhancing the

  18. Profiling the anti-protozoal activity of anti-cancer HDAC inhibitors against Plasmodium and Trypanosoma parasites

    Directory of Open Access Journals (Sweden)

    Jessica A. Engel

    2015-12-01

    Full Text Available Histone deacetylase (HDAC enzymes work together with histone acetyltransferases (HATs to reversibly acetylate both histone and non-histone proteins. As a result, these enzymes are involved in regulating chromatin structure and gene expression as well as other important cellular processes. HDACs are validated drug targets for some types of cancer, with four HDAC inhibitors clinically approved. However, they are also showing promise as novel drug targets for other indications, including malaria and other parasitic diseases. In this study the in vitro activity of four anti-cancer HDAC inhibitors was examined against parasites that cause malaria and trypanosomiasis. Three of these inhibitors, suberoylanilide hydroxamic acid (SAHA; vorinostat®, romidepsin (Istodax® and belinostat (Beleodaq®, are clinically approved for the treatment of T-cell lymphoma, while the fourth, panobinostat, has recently been approved for combination therapy use in certain patients with multiple myeloma. All HDAC inhibitors were found to inhibit the growth of asexual-stage Plasmodium falciparum malaria parasites in the nanomolar range (IC50 10–200 nM, while only romidepsin was active at sub-μM concentrations against bloodstream form Trypanosoma brucei brucei parasites (IC50 35 nM. The compounds were found to have some selectivity for malaria parasites compared with mammalian cells, but were not selective for trypanosome parasites versus mammalian cells. All compounds caused hyperacetylation of histone and non-histone proteins in P. falciparum asexual stage parasites and inhibited deacetylase activity in P. falciparum nuclear extracts in addition to recombinant PfHDAC1 activity. P. falciparum histone hyperacetylation data indicate that HDAC inhibitors may differentially affect the acetylation profiles of histone H3 and H4.

  19. Profiling the anti-protozoal activity of anti-cancer HDAC inhibitors against Plasmodium and Trypanosoma parasites.

    Science.gov (United States)

    Engel, Jessica A; Jones, Amy J; Avery, Vicky M; Sumanadasa, Subathdrage D M; Ng, Susanna S; Fairlie, David P; Adams, Tina S; Andrews, Katherine T

    2015-12-01

    Histone deacetylase (HDAC) enzymes work together with histone acetyltransferases (HATs) to reversibly acetylate both histone and non-histone proteins. As a result, these enzymes are involved in regulating chromatin structure and gene expression as well as other important cellular processes. HDACs are validated drug targets for some types of cancer, with four HDAC inhibitors clinically approved. However, they are also showing promise as novel drug targets for other indications, including malaria and other parasitic diseases. In this study the in vitro activity of four anti-cancer HDAC inhibitors was examined against parasites that cause malaria and trypanosomiasis. Three of these inhibitors, suberoylanilide hydroxamic acid (SAHA; vorinostat(®)), romidepsin (Istodax(®)) and belinostat (Beleodaq(®)), are clinically approved for the treatment of T-cell lymphoma, while the fourth, panobinostat, has recently been approved for combination therapy use in certain patients with multiple myeloma. All HDAC inhibitors were found to inhibit the growth of asexual-stage Plasmodium falciparum malaria parasites in the nanomolar range (IC50 10-200 nM), while only romidepsin was active at sub-μM concentrations against bloodstream form Trypanosoma brucei brucei parasites (IC50 35 nM). The compounds were found to have some selectivity for malaria parasites compared with mammalian cells, but were not selective for trypanosome parasites versus mammalian cells. All compounds caused hyperacetylation of histone and non-histone proteins in P. falciparum asexual stage parasites and inhibited deacetylase activity in P. falciparum nuclear extracts in addition to recombinant PfHDAC1 activity. P. falciparum histone hyperacetylation data indicate that HDAC inhibitors may differentially affect the acetylation profiles of histone H3 and H4.

  20. Synthetic Small Molecule Inhibitors of Hh Signaling As Anti-Cancer Chemotherapeutics

    Science.gov (United States)

    Maschinot, C.A.; Pace, J.R.; Hadden, M.K.

    2016-01-01

    The hedgehog (Hh) pathway is a developmental signaling pathway that is essential to the proper embryonic development of many vertebrate systems. Dysregulation of Hh signaling has been implicated as a causative factor in the development and progression of several forms of human cancer. As such, the development of small molecule inhibitors of Hh signaling as potential anti-cancer chemotherapeutics has been a major area of research interest in both academics and industry over the past ten years. Through these efforts, synthetic small molecules that target multiple components of the Hh pathway have been identified and advanced to preclinical or clinical development. The goal of this review is to provide an update on the current status of several synthetic small molecule Hh pathway inhibitors and explore the potential of several recently disclosed inhibitory scaffolds. PMID:26310919

  1. Trypanocidal activity of the proteasome inhibitor and anti-cancer drug bortezomib

    Directory of Open Access Journals (Sweden)

    Wang Xia

    2009-07-01

    Full Text Available Abstract The proteasome inhibitor and anti-cancer drug bortezomib was tested for in vitro activity against bloodstream forms of Trypanosoma brucei. The concentrations of bortezomib required to reduce the growth rate by 50% and to kill all trypanosomes were 3.3 nM and 10 nM, respectively. In addition, bortezomib was 10 times more toxic to trypanosomes than to human HL-60 cells. Moreover, exposure of trypanosomes to 10 nM bortezomib for 16 h was enough to kill 90% of the parasites following incubation in fresh medium. However, proteasomal peptidase activities of trypanosomes exposed to bortezomib were only inhibited by 10% and 30% indicating that the proteasome is not the main target of the drug. The results suggest that bortezomib may be useful as drug for the treatment of human African trypanosomiasis.

  2. Gaojushen:a novel anti-cancer drug prepared from SEC superantigen

    Institute of Scientific and Technical Information of China (English)

    陈廷祚

    2005-01-01

    @@ 1 Clinical observations Gaojushen is a novel anti-cancer drug developed by Xiehe Bio-pharmaceutical Company,Shenyang, China. It is prepared and processed from the filtrate of Staphylococcus aureus culture. The active component contained in it has been shown to be a SEC superantigen that is a metabolite of the culture.This superantigen is marked by its ability to stimulate T cells at a high frequency, thereby giving rise to potent cell-mediated immunological responses and producing a large variety of cytokines with the final rsult of apoptosis of tumor cells. The drug was approved for trial prodoction in 1994 by the Center of the State Evaluation and Review of New Drugs,China,and was licenced for marketing by 1996 after finishing the phase III clinical trial.

  3. Anti-cancer potential of banana flower extract: An in vitro study

    Directory of Open Access Journals (Sweden)

    Varalakshmi Kilingar Nadumane

    2014-12-01

    Full Text Available Banana (Musa paradisiaca flower is rich in phytochemicals (vitamins, flavonoids, proteins and has antioxidant properties. The anti-cancer activity of banana flower extract has been evaluated on the cervical cancer cell line HeLa. The antiproliferative effects were evaluated by MTT assay. The extract was further purified by TLC and characterized by LC-MS method. The ethanol extract had significant cytotoxicity to HeLa cells with an IC50 of 20 µg/mL. By thin layer chromatography we could isolate three fractions out of which fraction 2 had exhibited maximum anti-proliferative effects with an IC50 value of <10 µg/mL. By LC-MS analysis, bioactive fraction was found to have an m/z value of 224.2 indicating it as a novel one.

  4. NOVEL HYDROXAMIC ACIDS HAVING HISTONE DEACETYLASE INHIBITING ACTIVITY AND ANTI-CANCER COMPOSITION COMPRISING THE SAME AS AN ACTIVE INGREDIENT

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to a pharmaceutical composition for anticancer including novel hydroxamic acid with histone deacetylase inhibiting activity as an active ingredient. Hydroxamic acid compound of the present invention has inhibitory activity of histone deacetylase (HDAC) and shows cyto...... cytotoxicity to a variety of cancer cells, being useful in strong anti-cancer drug....

  5. The anti-cancerous drug doxorubicin decreases the c-di-GMP content in Pseudomonas aeruginosa but promotes biofilm formation

    DEFF Research Database (Denmark)

    Groizeleau, Julie; Rybtke, Morten; Andersen, Jens Bo

    2016-01-01

    for their potential c-di-GMP-lowering effect using a recently developed c-di-GMP biosensor strain. Our screen identified the anti-cancerous drug doxorubicin as a potent c-di-GMP inhibitor. In addition, the drug decreased the transcription of many biofilm-related genes. However, despite its effect on the c...

  6. Anti-tumor effect of a novel soluble recombinant human endostatin: administered as a single agent or in combination with chemotherapy agents in mouse tumor models.

    Directory of Open Access Journals (Sweden)

    Zhihua Ren

    Full Text Available Angiogenesis has become an attractive target in cancer treatment. Endostatin is one of the potent anti-angiogenesis agents. Its recombinant form expressed in the yeast system is currently under clinical trials. Endostatin suppresses tumor formation through the inhibition of blood vessel growth. It is anticipated that combined therapy using endostatin and cytotoxic compounds may exert an additive effect. In the present study, we expressed and purified recombinant human endostatin (rhEndostatin that contained 3 additional amino acid residues (arginine, glycine, and serine at the amino-terminus and 6 histidine residues in its carboxyl terminus. The recombinant protein was expressed in E. Coli and refolded into a soluble form in a large scale purification process. The protein exhibited a potent anti-tumor activity in bioassays. Furthermore, rhEndostatin showed an additive effect with chemotherapy agents including cyclophosphamide (CTX and cisplatin (DDP.rhEndostatin cDNA was cloned into PQE vector and expressed in E. Coli. The protein was refolded through dialysis with an optimized protocol. To establish tumor models, nude mice were subcutaneously injected with human cancer cells (lung carcinoma A549, hepatocellular carcinoma QGY-7703, or breast cancer Bcap37. rhEndostatin and/or DDP was administered peritumorally to evaluate the rate of growth inhibition of A549 tumors. For the tumor metastasis model, mice were injected intravenously with mouse melanoma B16 cells. One day after tumor cell injection, a single dose of rhEndostatin, or in combination with CTX, was administered intravenously or at a site close to the tumor.rhEndostatin reduced the growth of A549, QGY-7703, and Bcap37 xenograft tumors in a dose dependent manner. When it was administered peritumorally, rhEndostatin exhibited a more potent inhibitory activity. Furthermore, rhEndostatin displayed an additive effect with CTX or DDP on the inhibition of metastasis of B16 tumors or growth of

  7. Optimization of anti-cancer drugs and a targeting molecule on multifunctional gold nanoparticles

    Science.gov (United States)

    Rizk, Nahla; Christoforou, Nicolas; Lee, Sungmun

    2016-05-01

    Breast cancer is the most common and deadly cancer among women worldwide. Currently, nanotechnology-based drug delivery systems are useful for cancer treatment; however, strategic planning is critical in order to enhance the anti-cancer properties and reduce the side effects of cancer therapy. Here, we designed multifunctional gold nanoparticles (AuNPs) conjugated with two anti-cancer drugs, TGF-β1 antibody and methotrexate, and a cancer-targeting molecule, folic acid. First, optimum size and shape of AuNPs was selected by the highest uptake of AuNPs by MDA-MB-231, a metastatic human breast cancer cell line. It was 100 nm spherical AuNPs (S-AuNPs) that were used for further studies. A fixed amount (900 μl) of S-AuNP (3.8 × 108 particles/ml) was conjugated with folic acid-BSA or methotrexate-BSA. Methotrexate on S-AuNP induced cellular toxicity and the optimum amount of methotrexate-BSA (2.83 mM) was 500 μl. Uptake of S-AuNPs was enhanced by folate conjugation that binds to folate receptors overexpressed by MDA-MB-231 and the optimum uptake was at 500 μl of folic acid-BSA (2.83 mM). TGF-β1 antibody on S-AuNP reduced extracellular TGF-β1 of cancer cells by 30%. Due to their efficacy and tunable properties, we anticipate numerous clinical applications of multifunctional gold nanospheres in treating breast cancer.

  8. AKTIVITAS ANTI KANKER SENYAWA-SENYAWA KITOOLIGOMER [Anti Cancer Activity of Chitooligomers

    Directory of Open Access Journals (Sweden)

    Dahrul Syah2

    2006-04-01

    Full Text Available The chitin obtained from the crab industries can be used as a source for production of chitooligomers which has an important biological activity. The aims of this research was to evaluate anti cancer activity of the chitooligomers obtained from enzymatic hydrolysis using chitosanase from thermophilic bacterium Bacillus licheniformis MB2 isolated from Tompaso Manado. Media for producing the enzyme contained colloidal chitosan 1% and the enzyme was harvested after seven days of incubation at 550C. The heat stable protein enzyme was coagulated with 80% saturated ammonium sulphate and purificated using hydrophobic interaction chromatography with butyl sepharose gel. Enzyme of 0.005, 0.0085, 0.10 dan 0,17 IU/mg chitosan on soluble chitosan 1% substrate with 85% degree of deacylation were used to produce chitooligomers through incubation for one and three hours. The reaction products were analyzed (and fractionated using HPLC. The effect of this samples on cancer cells was evaluated using K562 cells (chronic myelogenous leukemia and investigated after being treated with MTT (3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide. In general, hydrolysates and fractionated chitooligomers showed better anti cancer activity than the 2- Bromo deoxy uridine used as positive control at similiar concentration (17 ?g/ml. Both of hydrolysates and fractionated chitooligomers (trimer to hexamer inhibited proliferation of human K562 cancer cells line in vitro about 20.57% and 15.68% respectively.The apoptosis phenomena was found on K562 cells treated with chitooligomer hydrolysate which can be examined by Hoechts staining fluorescent method. Chitooligomers hydrolysate showed anti metastatic potential, the chitooligomers were found also as potent protease inhibitor.

  9. Combination therapy with biologic agents in rheumatic diseases: current and future prospects

    Science.gov (United States)

    Inui, Kentaro; Koike, Tatsuya

    2016-01-01

    Strategies in rheumatoid arthritis (RA) based on ‘treat to target’ aim to control disease activity, minimize structural damage, and promote longer life. Several disease-modifying antirheumatic drugs (DMARDs) have been shown to be effective including biological DMARDs (bDMARDs). Treatment guidelines and recommendations for RA have also been published. According to those guidelines, conventional synthetic DMARDs (csDMARDs), as monotherapy or combination therapy, should be used in DMARD-naïve patients, irrespective of the addition of glucocorticoids (GCs). Combination therapies with bDMARDs are also essential for conducting treatment strategies for RA, because in every recommendation or guideline for the management of RA, combination therapies of csDMARDs with bDMARDs are recommended for RA patients with moderate or high disease activity after failure of csDMARD treatment. bDMARDs are more efficacious if used concomitantly with methotrexate (MTX) than with MTX monotherapy or bDMARD monotherapy. Thus, retention has been reported to be longer when combined with MTX. The superior efficacy of combination therapy compared with MTX monotherapy or bDMARD monotherapy could be because: (1) it could help to minimize MTX toxicity by reducing the dose of MTX, thus retention rate of the same therapeutic regimen would become high; (2) anti-bDMARD antibodies are observed at lower concentrations when using MTX concomitantly, so less clearance of bDMARDs via less formation of bDMARD and an anti-bDMARD immune complex; (3) of the additive effects of MTX to bDMARD, especially the combination of tumor necrosis factor inhibitors (TNFis) with MTX. Hence, evidence suggests that combination therapy with bDMARDs is more efficacious than monotherapy using a csDMARD or bDMARD, and that MTX is the best drug for this purpose (if MTX is not contraindicated). Finding the most effective drug regimen at the lowest cost will be the aim of RA treatment in the future. PMID:27721905

  10. Bimodal Imaging Probes for Combined PET and OI: Recent Developments and Future Directions for Hybrid Agent Development

    Directory of Open Access Journals (Sweden)

    Uwe Seibold

    2014-01-01

    Full Text Available Molecular imaging—and especially positron emission tomography (PET—has gained increasing importance for diagnosis of various diseases and thus experiences an increasing dissemination. Therefore, there is also a growing demand for highly affine PET tracers specifically accumulating and visualizing target structures in the human body. Beyond the development of agents suitable for PET alone, recent tendencies aim at the synthesis of bimodal imaging probes applicable in PET as well as optical imaging (OI, as this combination of modalities can provide clinical advantages. PET, due to the high tissue penetration of the γ-radiation emitted by PET nuclides, allows a quantitative imaging able to identify and visualize tumors and metastases in the whole body. OI on the contrary visualizes photons exhibiting only a limited tissue penetration but enables the identification of tumor margins and infected lymph nodes during surgery without bearing a radiation burden for the surgeon. Thus, there is an emerging interest in bimodal agents for PET and OI in order to exploit the potential of both imaging techniques for the imaging and treatment of tumor diseases. This short review summarizes the available hybrid probes developed for dual PET and OI and discusses future directions for hybrid agent development.

  11. Canagliflozin: Efficacy and Safety in Combination with Metformin Alone or with Other Antihyperglycemic Agents in Type 2 Diabetes.

    Science.gov (United States)

    Qiu, Rong; Balis, Dainius; Capuano, George; Xie, John; Meininger, Gary

    2016-12-01

    Metformin is typically the first pharmacologic treatment recommended for type 2 diabetes mellitus (T2DM), but many patients do not achieve glycemic control with metformin alone and eventually require combination therapy with other agents. Canagliflozin, a sodium glucose co-transporter 2 (SGLT2) inhibitor, was assessed in a comprehensive Phase 3 clinical development program consisting of ~10,000 participants, of which ~80% were on background therapy that consisted of metformin alone or in combination with other antihyperglycemic agents (AHAs; e.g., pioglitazone, sulfonylurea, and insulin). In addition, the efficacy and safety of canagliflozin and metformin as the initial combination therapy and canagliflozin monotherapy were assessed versus metformin in treatment-naïve patients with T2DM. Across studies in patients with T2DM who were on metformin alone or in combination with other AHAs, canagliflozin 100 and 300 mg provided improvements in glycated hemoglobin for up to 104 weeks. Canagliflozin was also associated with reductions in body weight and systolic blood pressure when added to background therapy consisting of metformin alone or with other AHAs. Canagliflozin was generally well tolerated, with increased incidence of adverse events (AEs) related to the mechanism of SGLT2 inhibition (i.e., genital mycotic infections, urinary tract infections, and osmotic diuresis-related AEs). Consistent with its insulin-independent mechanism of action, canagliflozin was associated with low rates of hypoglycemia when background therapy did not include sulfonylurea or insulin. Due to its favorable efficacy and safety profile, these results suggest that adding canagliflozin to a background regimen consisting of metformin or implementing treatment with a fixed-dose regimen of canagliflozin and metformin would provide an effective and safe treatment regimen for T2DM management.

  12. Percutaneous exposure to the nerve agent VX: Efficacy of combined atropine, obidoxime and diazepam treatment.

    Science.gov (United States)

    Joosen, Marloes J A; van der Schans, Marcel J; van Helden, Herman P M

    2010-10-06

    The nerve agent VX is most likely to enter the body via liquid contamination of the skin. After percutaneous exposure, the slow uptake into the blood, and its slow elimination result in toxic levels in plasma for a period of several hours. Consequently, this has implications for the development of toxic signs and for treatment onset. In the present study, clinical signs, toxicokinetics and effects on respiration, electroencephalogram and heart rate were investigated in hairless guinea pigs after percutaneous exposure to 500 microg/kg VX. We found that full inhibition of AChE and partial inhibition of BuChE in blood were accompanied by the onset of clinical signs, reflected by a decline in respiratory minute volume, bronchoconstriction and a decrease in heart rate. Furthermore, we investigated the therapeutic efficacy of a single dose of atropine, obidoxime and diazepam, administered at appearance of first clinical signs, versus that of repetitive dosing of these drugs on the reappearance of signs. A single shot treatment extended the period to detrimental physiological decline and death for several hours, whereas repetitive administration remained effective as long as treatment was continued. In conclusion, percutaneous VX poisoning showed to be effectively treatable when diagnosed on time and when continued over the entire period of time during which VX, in case of ineffective decontamination, penetrates the skin.

  13. In vitro interaction of certain antimicrobial agents in combination with plant extracts against some pathogenic bacterial strains

    Institute of Scientific and Technical Information of China (English)

    Kalpna Rakholiya; Sumitra Chanda

    2012-01-01

    Objective: To evaluate the in vitro interaction between methanolic extracts of Terminalia catappa (Combretaceae) (T. catappa) and Carica papaya (caricaceae) (C. papaya) leaves and certain known antimicrobial drugs like penicillin G (P), ampicillin (AMP), amoxyclav (AMC), cephalothin (CEP), polymyxin B (PB), rifampicin (RIF), amikacin (AK), nilidixic acid (NA), gentamicin (GEN), chloramphenicol (C), ofloxacin (OF) against five Gram positive and five Gram negative bacteria.Methods:Evaluation of synergy interaction between plant extracts and antimicrobial agents was carried out using disc diffusion method. Results: The results of this study showed that there is an increased activity in case of combination of methanolic plant extracts and test antimicrobial agents. The more potent result was that the synergism between methanolic extract of C. papaya and antibiotics showed highest and strong synergistic effect against tested bacterial strains;though methanolic extract of C. papaya alone was not showing any antibacterial activity.Conclusions:These results indicate that combination between plant extract and the antibiotics could be useful in fighting emerging drug-resistance microorganisms.

  14. In vitro interaction of certain antimicrobial agents in combination with plant extracts against some pathogenic bacterial strains

    Institute of Scientific and Technical Information of China (English)

    Kalpna Rakholiya; Sumitra Chanda

    2012-01-01

    Objective: To evaluate the in vitro interaction between methanolic extracts of Terminalia catappa (T. catappa) (Combretaceae) and Carica papaya (C. papaya) (caricaceae) leaves and certain known antimicrobial drugs like penicillin G (P), ampicillin (AMP), amoxyclav (AMC), cephalothin (CEP), polymyxin B (PB), rifampicin (RIF), amikacin (AK), nilidixic acid (NA), gentamicin (GEN), chloramphenicol (C), ofloxacin (OF) against five Gram positive and five Gram negative bacteria. Methods: Evaluation of synergy interaction between plant extracts and antimicrobial agents was carried out using disc diffusion method. Results: The results of this study showed that there is an increased activity in case of combination of methanolic plant extracts and test antimicrobial agents. The more potent result was that the synergism between methanolic extract of C. papaya and antibiotics showed highest and strong synergistic effect against tested bacterial strains;though methanolic extract of C. papaya alone was not showing any antibacterial activity. Conclusions: These results indicate that combination between plant extract and the antibiotics could be useful in fighting emerging drug-resistance microorganisms.

  15. Sporothrix schenckii COMPLEX:SUSCEPTIBILITIES TO COMBINED ANTIFUNGAL AGENTS AND CHARACTERIZATION OF ENZYMATIC PROFILES.

    Science.gov (United States)

    Oliveira, Daniele Carvalho; de Loreto, Érico Silva; Mario, Débora Alves Nunes; Lopes, Paulo G Markus; Neves, Louise Vignolles; da Rocha, Marta Pires; Santurio, Janio Morais; Alves, Sydney Hartz

    2015-01-01

    Sporothrix schenckii was reclassified as a complex encompassing six cryptic species, which calls for the reassessment of clinical and epidemiological data of these new species. We evaluated the susceptibility of Sporothrix albicans(n = 1) , S. brasiliensis(n = 6) , S. globosa(n = 1), S. mexicana(n = 1) and S. schenckii(n = 36) to terbinafine (TRB) alone and in combination with itraconazole (ITZ), ketoconazole (KTZ), and voriconazole (VRZ) by a checkerboard microdilution method and determined the enzymatic profile of these species with the API-ZYM kit. Most interactions were additive (27.5%, 32.5% and 5%) or indifferent (70%, 50% and 52.5%) for TRB+KTZ, TRB+ITZ and TRB+VRZ, respectively. Antagonisms were observed in 42.5% of isolates for the TRB+VRZ combination. Based on enzymatic profiling, the Sporothrix schenckii strains were categorized into 14 biotypes. Leucine arylamidase (LA) activity was observed only for S. albicans and S. mexicana. The species S. globosa and S. Mexicana were the only species without β-glucosidase (GS) activity. Our results may contribute to a better understanding of virulence and resistance among species of the genus Sporothrix in further studies.

  16. Sporothrix schenckii COMPLEX: SUSCEPTIBILITIES TO COMBINED ANTIFUNGAL AGENTS AND CHARACTERIZATION OF ENZYMATIC PROFILES

    Directory of Open Access Journals (Sweden)

    Daniele Carvalho OLIVEIRA

    2015-08-01

    Full Text Available SUMMARY Sporothrix schenckiiwas reclassified as a complex encompassing six cryptic species, which calls for the reassessment of clinical and epidemiological data of these new species. We evaluated the susceptibility of Sporothrix albicans (n = 1 , S. brasiliensis (n = 6 , S. globosa (n = 1, S. mexicana(n = 1 and S. schenckii(n = 36 to terbinafine (TRB alone and in combination with itraconazole (ITZ, ketoconazole (KTZ, and voriconazole (VRZ by a checkerboard microdilution method and determined the enzymatic profile of these species with the API-ZYM kit. Most interactions were additive (27.5%, 32.5% and 5% or indifferent (70%, 50% and 52.5% for TRB+KTZ, TRB+ITZ and TRB+VRZ, respectively. Antagonisms were observed in 42.5% of isolates for the TRB+VRZ combination. Based on enzymatic profiling, the Sporothrix schenckii strains were categorized into 14 biotypes. Leucine arylamidase (LA activity was observed only for S. albicans and S. mexicana. The species S. globosaand S. mexicanawere the only species without β-glucosidase (GS activity. Our results may contribute to a better understanding of virulence and resistance among species of the genus Sporothrixin further studies.

  17. Sporothrix schenckii COMPLEX: SUSCEPTIBILITIES TO COMBINED ANTIFUNGAL AGENTS AND CHARACTERIZATION OF ENZYMATIC PROFILES

    Science.gov (United States)

    OLIVEIRA, Daniele Carvalho; de LORETO, Érico Silva; MARIO, Débora Alves Nunes; LOPES, Paulo G. Markus; NEVES, Louise Vignolles; da ROCHA, Marta Pires; SANTURIO, Janio Morais; ALVES, Sydney Hartz

    2015-01-01

    SUMMARY Sporothrix schenckiiwas reclassified as a complex encompassing six cryptic species, which calls for the reassessment of clinical and epidemiological data of these new species. We evaluated the susceptibility of Sporothrix albicans (n = 1) , S. brasiliensis (n = 6) , S. globosa (n = 1), S. mexicana(n = 1) and S. schenckii(n = 36) to terbinafine (TRB) alone and in combination with itraconazole (ITZ), ketoconazole (KTZ), and voriconazole (VRZ) by a checkerboard microdilution method and determined the enzymatic profile of these species with the API-ZYM kit. Most interactions were additive (27.5%, 32.5% and 5%) or indifferent (70%, 50% and 52.5%) for TRB+KTZ, TRB+ITZ and TRB+VRZ, respectively. Antagonisms were observed in 42.5% of isolates for the TRB+VRZ combination. Based on enzymatic profiling, the Sporothrix schenckii strains were categorized into 14 biotypes. Leucine arylamidase (LA) activity was observed only for S. albicans and S. mexicana. The species S. globosaand S. mexicanawere the only species without β-glucosidase (GS) activity. Our results may contribute to a better understanding of virulence and resistance among species of the genus Sporothrixin further studies. PMID:26422151

  18. Anti-cancer precision theranostics: a focus on multifunctional gold nanoparticles.

    Science.gov (United States)

    Cabral, Rita M; Baptista, Pedro V

    2014-11-01

    Gold nanoparticles have been appointed as cutting-edge platforms for combined diagnostic and therapeutic approaches due to their exquisite physicochemical and optical properties. In particular, their potential benefits in cancer settings are enormous, as they can serve as targeted vehicles for controlled drug release, photothermal therapy and gene therapy, as well as contrast imaging agents to allow for real-time monitoring of both disease and therapeutic progression. These theranostic platforms represent powerful image-guided therapeutics, tailored to maximize individual patient benefit and with the ability to significantly minimize toxic side effects. Here the authors review some of the recent advances on the development of gold nanoparticle conjugates for combined diagnostics and therapy, while reflecting on the obstacles toward translational research.

  19. Phase I trial evaluating the antiviral agent Cidofovir in combination with chemoradiation in cervical cancer patients

    Science.gov (United States)

    Deutsch, Eric; Haie-Meder, Christine; Bayar, Mohamed Amine; Mondini, Michele; Laporte, Mélanie; Mazeron, Renaud; Adam, Julien; Varga, Andrea; Vassal, Gilles; Magné, Nicolas; Chargari, Cyrus; Lanoy, Emilie; Pautier, Patricia; Levy, Antonin; Soria, Jean-Charles

    2016-01-01

    Purpose This phase I trial aimed to assess the safety and determine the recommended Phase II dose (RP2D) of Cidofovir combined with chemoradiotherapy in patients with stage IB2-IVA cervical cancer. Experimental design Incremental doses (1, 2.5, 5 and 6.5 mg/kg) of IV Cidofovir were administered weekly for two weeks, and then every 2 weeks from the start of chemoradiotherapy to the initiation of utero-vaginal brachytherapy. Biological expression of HPV was analyzed during treatment and tumor response was assessed according to RECIST v1.0 criteria. Results A total of 15 patients were treated with Cidofovir. Dose-limiting toxicities occurred in 2/6 patients at the 6.5 mg/kg dose level (G3 proteinuria, and G3 acute pyelonephritis with G3 febrile neutropenia). No toxicity occurred at the 5 mg/kg dose level, but only 3 patients received this dose due to trial interruption because of low accrual. The most frequent G3-4 adverse effects observed during the trial were: abdominal pain (n=3), infection (n=2), leuckoneutropenia (n=2), and others (n=6). No toxic death or major renal side effect occurred. The best response was that 8/9 evaluable patients achieved a complete response (89%). In the intention to treat population, the 2-year overall and progression-free survival rates were 93% and 76%, respectively. Biological monitoring of HPV-related markers (decreased p16 expression, and increased p53 and pRb levels) was possible on sequential tumor biopsy samples. The genomic alterations identified were PIK3CA (n=5; one also had a KRAS mutation), and HRAS (n=1) mutations. Conclusion Cidofovir at a dose of 5mg/kg combined with chemoradiotherapy appeared tolerable and yielded tumor regressions. Due to early trial interruption, the RP2D was not confirmed. PMID:27016411

  20. Combined intra-arterial thrombolysis and neuprotectant agents reduce cerebral infarction in rabbits with experimental acute cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Pei Shi

    2006-01-01

    BACKGROUND:The intra-arterial thrombolytic therapy is one of main methods for more patients to obtain bene-fits.The percentage of arterial recanalization treated with intre-arterial therapy is higher than with intra-venous therapy.next,the dose of thrombolytic medicines is lower and the therapeutic time window may be possibly longer.Related researches are focus on intra-artedal thrombolysis combining with neuprotectant agents to treat acute ischemic stroke.The results show that combination of them can further prolong the therapeutic time window.improve the percentage of arterial recanalization and reduce cerebral infarction volume.OBJECTIVE:To observe the effect of single thmmbolitic therapy combined with neuroprotectant agents in the treatment of acute ischemic stroke.DESIGN:Randomized block design.SETTING:Xinhua Hospital of Xixiang City.Henan Province.MATERIALS:Thirty-six adult male white rabbits.weighing 1.5-2.0 kg.dean grade.were provided by Expedmental Animal Center of Xinxiang Medical College.All rabbits were randomly divided into three groups:intra-arterial thrombolysis control group.corenalin control group and combination group with 12 in each group.Urekinase was provided by Beijing Saisheng Pharmaceutical Co.,Ltd.(batch number:020923);corenalin by Sanjing Pharmaceutical Co.,Ltd.of Harbin Pharmacautical Group(batch number:021106):nimodipine by Shandong Xihua Pharmaceutical Co.,Ltd.(batch number:020611):contrast medium IOPAMlR0300 by Bracco s.P.a.Milano italian (batch number:0584);2,3,5-triphenyltetrazolium chloride(TTC)by Beijing Mashi Fine ChemicaL Product Co.,Ltd.(batch number:020926).METHODS: The experiment was camed out in the Department of Intervention. Second People's Hospital of Xinxiang from September 2002 to May 2003.①According to techniques of Benes et al and Zhu et al,animal models with acute ischemia were established.Two hours later.the therapy began.Intra-artedal thrombolysis control group:5 000 U/kg urokinase was dripped in Ieft common

  1. Breakthrough cancer medicine and its impact on novel drug development in China:report of the US Chinese Anti-Cancer Association (USCACA) and Chinese Society of Clinical Oncology (CSCO) Joint Session at the 17th CSCO Annual Meeting

    Institute of Scientific and Technical Information of China (English)

    Feng Roger Luo; Ge Zhang; Li Xu; Pascal Qian; Li Yan; Jian Ding; Helen X. Chen; Hao Liu; Man-Cheong Fung; Maria Koehler; Jean Pierre Armand; Lei Jiang; Xiao Xu

    2014-01-01

    The US Chinese Anti-Cancer Association (USCACA) teamed up with Chinese Society of Clinical Oncology (CSCO) to host a joint session at the17th CSCO Annual Meeting on September 20th, 2014 in Xiamen, China. With a focus on breakthrough cancer medicines, the session featured innovative approaches to evaluate breakthrough agents and established a platform to interactively share successful experiences from case studies of 6 novel agents from both the United States and China. The goal of the session is to inspire scientific and practical considerations for clinical trial design and strategy to expedite cancer drug development in China. A panel discussion further provided in-depth advice on advancing both early and ful development of novel cancer medicines in China.

  2. Combined treatment with vitamin C and sulindac synergistically induces p53- and ROS-dependent apoptosis in human colon cancer cells.

    Science.gov (United States)

    Gong, Eun-Yeung; Shin, Yu Jin; Hwang, Ih-Yeon; Kim, Jeong Hee; Kim, Seung-Mi; Moon, Jai-Hee; Shin, Jae-Sik; Lee, Dae-Hee; Hur, Dae Young; Jin, Dong-Hoon; Hong, Seung-Woo; Lee, Won Keun; Lee, Wang-Jae

    2016-09-06

    Sulindac has anti-neoplastic properties against colorectal cancers; however, its use as a chemopreventive agent has been limited due to toxicity and efficacy concerns. Combinatorial treatment of colorectal cancers has been attempted to maximize anti-cancer efficacy with minimal side effects by administrating NSAIDs in combination with other inhibitory compounds or drugs such as l-ascorbic acid (vitamin C), which is known to exhibit cytotoxicity towards various cancer cells at high concentrations. In this study, we evaluated a combinatorial strategy utilizing sulindac and vitamin C. The death of HCT116 cells upon combination therapy occurred via a p53-mediated mechanism. The combination therapeutic resistance developed in isogenic p53 null HCT116 cells and siRNA-mediated p53 knockdown HCT116 cells, but the exogenous expression of p53 in p53 null isogenic cells resulted in the induction of cell death. In addition, we investigated an increased level of intracellular ROS (reactive oxygen species), which was preceded by p53 activation. The expression level of PUMA (p53-upregulated modulator of apoptosis), but not Bim, was significantly increased in HCT116 cells in response to the combination treatment. Taken together, our results demonstrate that combination therapy with sulindac and vitamin C could be a novel anti-cancer therapeutic strategy for p53 wild type colon cancers.

  3. The neurobiology of bipolar disorder: identifying targets for specific agents and synergies for combination treatment.

    Science.gov (United States)

    Andreazza, Ana C; Young, L Trevor

    2014-07-01

    Bipolar disorder (BD) is a chronic psychiatric illness described by severe changes in mood. Extensive research has been carried out to understand the aetiology and pathophysiology of BD. Several hypotheses have been postulated, including alteration in genetic factors, protein expression, calcium signalling, neuropathological alteration, mitochondrial dysfunction and oxidative stress in BD. In the following paper, we will attempt to integrate these data in a manner which is to understand targets of treatment and how they may be, in particular, relevant to combination treatment. In summary, the data suggested that BD might be associated with neuronal and glial cellular impairment in specific brain areas, including the prefrontal cortex. From molecular and genetics: (1) alterations in dopaminergic system, through catechol-O-aminotransferase; (2) decreased expression and polymorphism on brain-derived neurotrophic factor; (3) alterations cyclic-AMP responsive element binding; (4) dysregulation of calcium signalling, including genome-wide finding for voltage-dependent calcium channel α-1 subunit are relevant findings in BD. Future studies are now necessary to understand how these molecular pathways interact and their connection to the complex clinical manifestations observed in BD.

  4. Combined perfusion and doppler imaging using plane-wave nonlinear detection and microbubble contrast agents.

    Science.gov (United States)

    Tremblay-Darveau, Charles; Williams, Ross; Milot, Laurent; Bruce, Matthew; Burns, Peter N

    2014-12-01

    Plane-wave imaging offers image acquisition rates at the pulse repetition frequency, effectively increasing the imaging frame rates by up to two orders of magnitude over conventional line-by-line imaging. This form of acquisition can be used to achieve very long ensemble lengths in nonlinear modes such as pulse inversion Doppler, which enables new imaging trade-offs that were previously unattainable. We first demonstrate in this paper that the coherence of microbubble signals under repeated exposure to acoustic pulses of low mechanical index can be as high as 204 ± 5 pulses, which is long enough to allow an accurate power Doppler measurement. We then show that external factors, such as tissue acceleration, restrict the detection of perfusion at the capillary level with linear Doppler, even if long Doppler ensembles are considered. Hence, perfusion at the capillary level can only be detected with ultrasound through combined microbubbles and Doppler imaging. Finally, plane-wave contrast-enhanced power and color Doppler are performed on a rabbit kidney in vivo as a proof of principle. We establish that long pulse-inversion Doppler sequences and conventional wall-filters can create an image that simultaneously resolves both the vascular morphology of veins and arteries, and perfusion at the capillary level with frame rates above 100 Hz.

  5. Combined Effect of Some Bio-Agents on the Grasshopper, Hetiracris littoralis Under Semi-Field Condition

    Directory of Open Access Journals (Sweden)

    Aziza Sharaby

    2013-06-01

    Full Text Available LC50 of the alchoholic-80% extract of Euphorbia pulchrrima (0.714%, essential oil of Garlic plant Allium sativum (0.067% and nematodes of Steinernima sp. and Heterorhabditis sp. (500 IJs/ml, were tested for their solely and/or combined toxic effects and for their effects on some biological aspects against the grasshopper, Heteracris littoralis 1st instar nymphs under semi-field condition. The joint action of the mixture of the most effective extract (E. pulchrrima and oil (Garlic oil exhibit an antagonistic effect with co-toxicity index of (–24, despite the increase the proportion of death in the mixture for all the tested groups the type of interaction were antagonism, all the tested materials had variable mode of action which resulted in significantly antagonistic effects. Euphorbia 80% methanol extract and Garlic oil may use separately or in combination as alternatives safe tools against H. littoralis grasshopper. Semi-field experiments cleared that nematodes in combination with the oil or extract increased the mortality percentage. The combination mixture of extract, oil and nematode significantly affected development, reproduction and life cycle of H. littoralis. Lethal effect varied with regard to the nematode species. Semi-field experiment of the plant extract, plant oil and their mixture revealed some changes on the biological aspects, an increase in the nymphal period, pre-oviposition, oviposition and post-oviposition periods. There is vigorous decrease in the female fecundity and fertility. The control of the insect by nematode and sub-lethal dose of plant extract or plant volatile oil as biological control may enhance their lethal effect on insect pest when applied simultaneously. Combination mixture of the tested bio-agent could be considered as possible means for use in programs of integrated pest management of H. littoralis grasshopper.

  6. Combining insulins with oral antidiabetic agents: effect on hyperglycemic control, markers of cardiovascular risk and disease

    Directory of Open Access Journals (Sweden)

    Kjeld Hermansen

    2008-06-01

    Full Text Available Kjeld Hermansen, Lene Sundahl Mortensen, Marie-Louise HermansenDepartment of Endocrinology and Metabolism C, Aarhus University Hospital, DK-8000 Aarhus, DenmarkAbstract: Patients with type 2 diabetes mellitus (T2DM have an increased risk of cardiovascular disease (CVD. Unfortunately, several potential barriers exist for CVD risk management in diabetes, including the need for significant lifestyle changes, potential problems with hypoglycemia, weight gain, injection tolerability, treatment complexity with current diabetes therapies and other, unmodifiable factors. Improving glycemic control may impact CVD risk. Treatment of T2DM usually starts with lifestyle changes such as diet and exercise. When these become insufficient, pharmacotherapy is required. Various oral antidiabetic drugs (OADs are available that reduce hyperglycemia. The first line of therapy is usually metformin, since it does not increase weight and seems to have a beneficial effect on CVD mortality and risk factors. As T2DM progresses, insulin treatment becomes necessary for the majority of patients. The last few years have seen the development of long-acting, rapid-acting, and premixed insulin analog formulations. The treat-to-target algorithms of recent studies combining OADs plus insulin analogs have demonstrated that patients can reach glycemic treatment targets with low risk of hypoglycemia, greater convenience, and – with some analogs – limited weight gain vs conventional insulins. These factors may possibly have a positive influence on CVD risk. Future studies will hopefully elucidate the benefits of this approach.Keywords: diabetes mellitus, type 2 diabetes, cardiovascular disease, hyperglycemia, insulin, oral antidiabetic drugs

  7. Solubilization of proteins in aqueous two-phase extraction through combinations of phase-formers and displacement agents.

    Science.gov (United States)

    Kress, Christian; Sadowski, Gabriele; Brandenbusch, Christoph

    2017-03-01

    The aqueous two-phase extraction (ATPE) of therapeutic proteins is a promising separation alternative to cost-intensive chromatography, still being the workhorse of nowadays downstream processing. As shown in many publications, using NaCl as displacement agent in salt-polymer ATPE allows for a selective purification of the target protein immunoglobulin G (IgG) from human serum albumin (HSA, represents the impurity). However a high yield of the target protein is only achievable as long as the protein is stabilized in solution and not precipitated. In this work the combined influence of NaCl and polyethylene glycol (Mw=2000g/mol) on the IgG-IgG interactions was determined using composition gradient multi-angle light scattering (CG-MALS) demonstrating that NaCl induces a solubilization of IgG in polyethylene glycol 2000 solution. Moreover it is shown that the displacement agent NaCl has a significant and beneficial influence on the IgG solubility in polyethyleneglycol2000-citrate aqueous two-phase system (ATPS) which can also be accessed by these advanced B22 measurements. By simultaneous consideration of IgG solubility data with results of the ATPS phase behavior (especially volume fraction of the respective phases) allows for the selection of process tailored ATPS including identification of the maximum protein feed concentration. Through this approach an ATPS optimization is accessible providing high yields and selectivity of the target protein (IgG).

  8. The Impact of Nonpolymerizable Swelling Agents On The Synthesis of Particles With Combined Geometric, Interfacial, and Compositional Anisotropy.

    Science.gov (United States)

    Wang, Sijia; Wu, Ning

    2015-07-28

    Seeded emulsion polymerization is by far the most successful synthetic method for making anisotropic particles with precise control and high throughput. However, this synthesis involves multiple steps and the types of anisotropic properties that have been made on particles are limited. Here, we demonstrate, by using two different types of nonpolymerizable swelling agents, that we can simplify this method while still producing colloidal dimers with combined anisotropic properties in geometry, interface, and composition. When we swell cross-linked polystyrene seed particles with a simple solvent toluene, without additional polymerization steps we can make dimers with asymmetric distribution of surface charges and roughness on two lobes by fast extraction of toluene. We further show that this toluene-swelling-extraction method can promote the surface modification of the second lobe selectively especially for hydrophilic and stimuli-responsive polymers, which was a significant challenge in dimer synthesis. When we change the swelling agent to a sol-gel precursor, that is, tetraethyl orthosilicate, we can make polystyrene-silica hybrid particles with different morphologies. Our method provides a facile synthetic platform for making colloidal particles with different types of anisotropic properties, which are expected to find important applications for colloidal surfactant, self-assembly, and artificial motors.

  9. Functional characterization and anti-cancer action of the clinical phase II cardiac Na+/K+ ATPase inhibitor istaroxime: in vitro and in vivo properties and cross talk with the membrane androgen receptor

    Science.gov (United States)

    Alevizopoulos, Konstantinos; Dimas, Konstantinos; Papadopoulou, Natalia; Schmidt, Eva-Maria; Tsapara, Anna; Alkahtani, Saad; Honisch, Sabina; Prousis, Kyriakos C.; Alarifi, Saud; Calogeropoulou, Theodora

    2016-01-01

    Sodium potassium pump (Na+/K+ ATPase) is a validated pharmacological target for the treatment of various cardiac conditions. Recent published data with Na+/K+ ATPase inhibitors suggest a potent anti-cancer action of these agents in multiple indications. In the present study, we focus on istaroxime, a Na+/K+ ATPase inhibitor that has shown favorable safety and efficacy properties in cardiac phase II clinical trials. Our experiments in 22 cancer cell lines and in prostate tumors in vivo proved the strong anti-cancer action of this compound. Istaroxime induced apoptosis, affected the key proliferative and apoptotic mediators c-Myc and caspase-3 and modified actin cystoskeleton dynamics and RhoA activity in prostate cancer cells. Interestingly, istaroxime was capable of binding to mAR, a membrane receptor mediating rapid, non-genomic actions of steroids in prostate and other cells. These results support a multi-level action of Na+/K+ ATPase inhibitors in cancer cells and collectively validate istaroxime as a strong re-purposing candidate for further cancer drug development. PMID:27027435

  10. Ferulic acid-carbazole hybrid compounds: Combination of cholinesterase inhibition, antioxidant and neuroprotection as multifunctional anti-Alzheimer agents.

    Science.gov (United States)

    Fang, Lei; Chen, Mohao; Liu, Zhikun; Fang, Xubin; Gou, Shaohua; Chen, Li

    2016-02-15

    In order to search for novel multifunctional anti-Alzheimer agents, a series of ferulic acid-carbazole hybrid compounds were designed and synthesized. Ellman's assay revealed that the hybrid compounds showed moderate to potent inhibitory activity against the cholinesterases. Particularly, the AChE inhibition potency of compound 5k (IC50 1.9μM) was even 5-fold higher than that of galantamine. In addition, the target compounds showed pronounced antioxidant ability and neuroprotective property, especially against the ROS-induced toxicity. Notably, the neuroprotective effect of 5k was obviously superior to that of the mixture of ferulic acid and carbazole, indicating the therapeutic effect of the hybrid compound is better than the combination administration of the corresponding mixture.

  11. In vitro activity of lauric acid or myristylamine in combination with six antimicrobial agents against methicillin-resistant Staphylococcus aureus (MRSA).

    Science.gov (United States)

    Kitahara, Takashi; Aoyama, Yuko; Hirakata, Yoichi; Kamihira, Shimeru; Kohno, Shigeru; Ichikawa, Nobuhiro; Nakashima, Mikiro; Sasaki, Hitoshi; Higuchi, Shun

    2006-01-01

    The objective of this study was to investigate the in vitro activities of lauric acid and myristylamine in combination with six antimicrobial agents against methicillin-resistant Staphylococcus aureus (MRSA). The combination effect of lipids and antimicrobial agents was evaluated by the checkerboard method to obtain a fractional inhibitory concentration (FIC) index. The effects of lauric acid + gentamicin (GM) and lauric acid + imipenem (IPM) combinations were synergistic against the clinical isolates in 12 combinations. An antagonistic FIC index was observed only with the myristylamine + GM combination. We investigated in detail the antimicrobial activity for two combinations that showed a synergistic effect. The cytotoxicity of lauric acid was not enhanced by the addition of GM and IPM. In time-kill studies, lauric acid + GM and lauric acid + IPM combinations at one-eighth of the minimum inhibitory concentration produced a bacteriostatic effect.

  12. In Vivo Anti-Cancer Mechanism of Low-Molecular-Weight Fucosylated Chondroitin Sulfate (LFCS from Sea Cucumber Cucumaria frondosa

    Directory of Open Access Journals (Sweden)

    Xiaoxiao Liu

    2016-05-01

    Full Text Available The low-molecular-weight fucosylated chondroitin sulfate (LFCS was prepared from native fucosylated chondroitin sulfate (FCS, which was extracted and isolated from sea cucumber Cucumaria frondosa, and the anti-cancer mechanism of LFCS on mouse Lewis lung carcinoma (LLC was investigated. The results showed that LFCS remarkably inhibited LLC growth and metastasis in a dose-dependent manner. LFCS induced cell cycle arrest by increasing p53/p21 expression and apoptosis through activation of caspase-3 activity in LLC cells. Meanwhile, LFCS suppressed the expression of vascular endothelial growth factor (VEGF, increased the expression of tissue inhibitor of metalloproteinase-1 (TIMP-1 and downregulated the matrix metalloproteinases (MMPs level. Furthermore, LFCS significantly suppressed the activation of ERK1/2/p38 MAPK/NF-κB pathway, which played a prime role in expression of MMPs. All of these data indicate LFCS may be used as anti-cancer drug candidates and deserve further study.

  13. Anti-cancer activity of novel dibenzo[b,f]azepine tethered isoxazoline derivatives

    Directory of Open Access Journals (Sweden)

    Sadashiva Maralinganadoddi

    2012-10-01

    Full Text Available Background Dibenzoazepine (DB derivatives are important and valuable compounds in medicinal chemistry. The synthesis and chemotherapeutic properties of naturally occurring DBs and different heterocyclic moiety tethered DBs are reported. Herein, we report the DB-fused hybrid structure that containing isoxazolines (DBIs and their anti-cancer activity, which could throw light on the structural and functional features of new molecules. Results and Conclusion The synthesis and characterization of novel ring DB tethered isoxazoline derivatives (DBIs were carried out. After the detailed structural characterization using 2D-NMR experiments, the compounds were identified as 5-substituted isoxazolines. The effect of newly synthesized DBIs against the invasion of murine osteosarcoma (LM8G7 cells was studied. Among the tested molecules, compound 4g (5-[−3-(4-chlorophenyl-4,5-dihydroisoxazol-5-yl-methyl]-5 H-dibenzo[b,f]azepine, was found to inhibit the invasion of LM8G7 cells strongly, when compared to other structurally related compounds. Cumulatively, the compound 4g inhibited the invasion MDA-MB-231 cells completely at 10 μM. In addition to anti-invasion property the compound 4g also inhibited the migration of LM8G7 and human ovarian cancer cells (OVSAHO dose-dependently. Compound 4g inhibited the proliferation of LM8G7, OVSAHO, human breast cancer cells (MCF-7 and human melphalan-resistant multiple myeloma (RPMI8226-LR5 cells that are comparable to cisplatin and suramin.

  14. Reverse screening approach to identify potential anti-cancer targets of dipyridamole

    Science.gov (United States)

    Ge, Shu-Min; Zhan, Dong-Ling; Zhang, Shu-Hua; Song, Li-Qiang; Han, Wei-Wei

    2016-01-01

    Dipyridamole (DIP) inhibits thrombus formation when given chronically, and causes vasodilation over a short time. To date, DIP can increase the anticancer drugs (5-fluorouracil, methotrexate, piperidine, vincristine) concentration in cancer cells and hence enhance the efficacy of treatment cancer. The inhibition of DIP may result in increased 5-fluorouracil efficacy and diminish the drug side effects. But the actual molecular targets remain unknown. In this study, reverse protein-ligands docking, and quantum mechanics were used to search for the potential molecular targets of DIP. The quantum mechanics calculation was performed by using Gaussian 03 program package. Reverse pharmacophore mapping was used to search for potential molecular target candidates for a given small molecule. The docking study was used for exploring the potential anti-cancer targets of dipyridamole. The two predicted binders with the statistically significant prediction are dihydropyrimidine dehydrogenase (DPD) (PDB Id: 1GTE) and human spindle checkpoint kinase Bub1 (PDB Id: 3E7E). Structure analysis suggests that electrostatic interaction and hydrogen bonding play an important role in their binding process. The strong functional linkage of DIP and 5FU supports our prediction. In conclusion, these results generate a tractable set of anticancer proteins. The exploration of polypharmacology will provide us new opportunities in treating systematic diseases, such as the cancers. The results would generate a tractable set of anticancer target proteins for future experimental validations. PMID:28077994

  15. Targeting NK cells for anti-cancer immunotherapy: clinical and pre-clinical approaches

    Directory of Open Access Journals (Sweden)

    Sebastian eCarotta

    2016-04-01

    Full Text Available The recent success of checkpoint blockade has highlighted the potential of immunotherapy approaches for cancer treatment. While the majority of approved immunotherapy drugs target T cell subsets, it is appreciated that other components of the immune system have important roles in tumor immune-surveillance as well and thus represent promising additional targets for immunotherapy. Natural killer cells are the body’s first line of defense against infected or transformed cells as they kill target cells in an antigen-independent manner. Although several studies have clearly demonstrated the active role of NK cells in cancer-immune surveillance, only few clinically approved therapies currently exist that harness their potential. Our increased understanding of NK cell biology over the past few years has renewed the interest in NK cell based anti-cancer therapies, which has lead to a steady increase of NK cell based clinical and pre-clinical trials. Here, the role of NK cells in cancer immunesurveillance is summarized and several novel approaches to enhance NK cell cytotoxicity against cancer are discussed.

  16. Cardio-protective and anti-cancer therapeutic potential of Nigella sativa.

    Science.gov (United States)

    Shafiq, Hammad; Ahmad, Asif; Masud, Tariq; Kaleem, Muhammad

    2014-12-01

    Nigella sativa is the miraculous plant having a lot of nutritional and medicinal benefits, and attracts large number of nutrition and pharmacological researchers. N. sativa seed composition shows that it is the blessing of nature and it contains and many bioactive compounds like thymoquinone, α-hederin, alkaloids, flavonoids, antioxidants, fatty acids many other compounds that have positive effects on curing of different diseases. Several medicinal properties of N. sativa like its anti-cancer, anti-inflammatory, anti-diabetic, antioxidant activities and many others are well acknowledged. However, this article focuses on activity of N. sativa against cardiovascular diseases and cancer. For gathering required data the authors went through vast number of articles using search engines like Science direct, ELSEVIER, Pub Med, Willey on Line Library and Google scholar and the findings were classified on the basis of relevance of the topic and were reviewed in the article. N. sativa is rich source of different biologically active compounds and is found effective in controlling number of cardiovascular diseases and various cancers both in vivo and in vitro studies.

  17. Phytochemical characterization, anti-cancer and antimicrobial activity of isolated fractions of Alysicarpus vaginalis

    Directory of Open Access Journals (Sweden)

    Ganesh Tapadiya

    2017-03-01

    Full Text Available The methanolic extract of Alysicarpus vaginalis was selected for fractionation due to its known reported biological activity. The four fractions were separated and subjected for in vitro antimitotic and anti-proliferative assays along with anti-cancer activity on two human cancers cell lines (SK-MEL-2 and Hep-G2. The antimicrobial potential of fractions had been evaluated against bacteria and fungi. From all fractions, acetone and n-butanol fractions were effective against the cell lines. They show strong inhibitory action with mitotic index 6.2 and 8.4 mg/mL and IC50 values of anti-proliferative assay in between 19.7 to 14.2 mg/mL respectively, which was found to be comparable to the standard methothrexate 5.9 mg/mL and 13.2 mg/mL respectively. In antimicrobial activity, the zone of inhibition had been observed in the range of 12-27 mm and MIC value was found in the range of 0.2-0.1 mg/mL. The acetone fraction was found to be most active against fungi, and E. coli whereas chloroform and n-butanol fractions were more effective against S. aureus and B. subtilis. The phytochemical characterization by HPLC analysis indicated the presence of important polyphenolic and steroidal compounds.

  18. Advances in individual markers of interferon in anti-cancer therapy

    Institute of Scientific and Technical Information of China (English)

    Chi Pan; Chenjing Zhang; Jianjin Huang

    2013-01-01

    Interferon (IFN) is a cytokine with various biological functions, including antivirus, immunoregulation and anti-tumor. It has been wildly used in many anti-cancer therapies, including malignant melanoma, hepatocellular carcinoma, ad-vanced renal-cell carcinoma, non-Hodgkin's lymphoma, chronic myelogenous leukemia and AIDS-related Kaposi's sarcoma. However, its effective dose is always very high, which may bring some serious side effects, nevertheless, not all patients can benefit from the IFN therapy. So a problem we have faced is that how to improve the efficiency and sensitivity of IFN? To solve this problem, many studies have been launched to find the effective prognostic factors and individual biomarkers for guiding the treatment better. In addition, further clarifying the anti-tumor mechanisms of IFN is benefit for explaining how the biomark-ers predict prognosis of patients. In recent studies, many IFN associated genes and proteins predicting sensitivity of IFN therapy have been found, which may associate with the progression of cancer, such as IFN regulatory factor (IRF), IFNAR2 mRNA, microRNA, IFITM-1. Some factors in peripheral blood are easier to detect and have the potential to been popularized in clinical practice, such as CD8high CD57+ lymphocyte levels in malignant melanoma, serum IFNAR2 mRNA in mCRC. This review briefly summarized the advances of antitumorally individual markers of IFN.

  19. Mesua beccariana (Clusiaceae, A Source of Potential Anti-cancer Lead Compounds in Drug Discovery

    Directory of Open Access Journals (Sweden)

    Soek Sin Teh

    2012-09-01

    Full Text Available An investigation on biologically active secondary metabolites from the stem bark of Mesua beccariana was carried out. A new cyclodione, mesuadione (1, along with several known constituents which are beccamarin (2, 2,5-dihydroxy-1,3,4-trimethoxy anthraquinone (3, 4-methoxy-1,3,5-trihydroxyanthraquinone (4, betulinic acid (5 and stigmasterol (6 were obtained from this ongoing research. Structures of these compounds were elucidated by extensive spectroscopic methods, including 1D and 2D-NMR, GC-MS, IR and UV techniques. Preliminary tests of the in vitro cytotoxic activities of all the isolated metabolites against a panel of human cancer cell lines Raji (lymphoma, SNU-1 (gastric carcinoma, K562 (erythroleukemia cells, LS-174T (colorectal adenocarcinoma, HeLa (cervical cells, SK-MEL-28 (malignant melanoma cells, NCI-H23 (lung adenocarcinoma, IMR-32 (neuroblastoma and Hep-G2 (hepatocellular liver carcinoma were carried out using an MTT assay. Mesuadione (1, beccamarin (2, betulinic acid (5 and stigmasterol (6 displayed strong inhibition of Raji cell proliferation, while the proliferation rate of SK-MEL-28 and HeLa were strongly inhibited by stigmasterol (6 and beccamarin (2, indicating these secondary metabolites could be anti-cancer lead compounds in drug discovery.

  20. Perspectives in Engineered Mesenchymal Stem/Stromal Cells Based Anti- Cancer Drug Delivery Systems.

    Science.gov (United States)

    Ackova, Darinka Gjorgieva; Kanjevac, Tatjana; Rimondini, Lia; Bosnakovski, Darko

    2016-01-01

    Understanding and apprehension of the characteristics and circumstances in which mesenchymal stem cells (MSCs) affect and make alterations (enhance or reduce) to the growth of tumors and metastasis spread is pivotal, not only for reaching the possibility to employ MSCs as drug delivery systems, but also for making forward movement in the existing knowledge of involvement of major factors (tumor microenvironment, soluble signaling molecules, etc.) in the process of carcinogenesis. This capability is reliable because MSCs present a great basis for engineering and constructions of new systems to target cancers, intended to secrete therapeutic proteins in the tumor region, or for delivering of oncolytic viruses' directly at the tumor site (targeted chemotherapy with enzyme prodrug conversion or induction of tumor cell apoptosis). MSCs as a crucial segment of the tumor surroundings and their confirmed tumor tropism, are assumed to be an open gateway for the design of promising drug delivery systems. The presented paper reviews current publications in this fieldwork, searches out the most recent patents that were published after 2012 (WO2014066122, US20140017787, WO2015100268, US20150086515), and tries to present the current progress and future prospective on the design and development in anti-cancer drug delivery systems based on MSCs.

  1. Anti-cancer evaluation of quercetin embedded PLA nanoparticles synthesized by emulsified nanoprecipitation.

    Science.gov (United States)

    Pandey, Sanjeev K; Patel, Dinesh K; Thakur, Ravi; Mishra, Durga P; Maiti, Pralay; Haldar, Chandana

    2015-04-01

    This study was carried out to synthesize quercetin (Qt) embedded poly(lactic acid) (PLA) nanoparticles (PLA-Qt) and to evaluate anti-cancer efficacy of PLA-Qt by using human breast cancer cells. PLA-Qt were synthesized by using novel emulsified nanoprecipitation technique with varying dimension of 32 ± 8 to 152 ± 9 nm of PLA-Qt with 62 ± 3% (w/w) entrapment efficiency by varying the concentration of polymer, emulsifier, drug and preparation temperature. The dimension of PLA-Qt was measured through transmission electron microscopy indicating larger particle size at higher concentration of PLA. The release rate of Qt from PLA-Qt was found to be more sustained for larger particle dimension (152 ± 9 nm) as compared to smaller particle dimension (32 ± 8 nm). Interaction between Qt and PLA was verified through spectroscopic and calorimetric methods. Delayed diffusion and stronger interaction in PLA-Qt caused the sustained delivery of Qt from the polymer matrix. In vitro cytotoxicity study indicate the killing of ∼ 50% breast cancer cells in two days at 100 μg/ml of drug concentration while the ∼ 40% destruction of cells require 5 days for PLA-Qt (46 ± 6 nm; 20mg/ml of PLA). Thus our results propose anticancer efficacy of PLA-Qt nanoparticles in terms of its sustained release kinetics revealing novel vehicle for the treatment of cancer.

  2. Anti-Cancer Effects of Protein Extracts from Calvatia lilacina, Pleurotus ostreatus and Volvariella volvacea

    Directory of Open Access Journals (Sweden)

    Jin-Yi Wu

    2011-01-01

    Full Text Available Calvatia lilacina (CL, Pleurotus ostreatus (PO and Volvariella volvacea (VV are widely distributed worldwide and commonly eaten as mushrooms. In this study, cell viabilities were evaluated for a human colorectal adenocarcinoma cell line (SW480 cells and a human monocytic leukemia cell line (THP-1 cells. Apoptotic mechanisms induced by the protein extracts of PO and VV were evaluated for SW480 cells. The viabilities of THP-1 and SW480 cells decreased in a concentration-dependent manner after 24 h of treatment with the protein extracts of CL, PO or VV. Apoptosis analysis revealed that the percentage of SW480 cells in the SubG1 phase (a marker of apoptosis was increased upon PO and VV protein-extract treatments, indicating that oligonucleosomal DNA fragmentation existed concomitantly with cellular death. The PO and VV protein extracts induced reactive oxygen species (ROS production, glutathione (GSH depletion and mitochondrial transmembrane potential (ΔΨm loss in SW480 cells. Pretreatment with N-acetylcysteine, GSH or cyclosporine A partially prevented the apoptosis induced by PO protein extracts, but not that induced by VV extracts, in SW480 cells. The protein extracts of CL, PO and VV exhibited therapeutic efficacy against human colorectal adenocarcinoma cells and human monocytic leukemia cells. The PO protein extracts induced apoptosis in SW480 cells partially through ROS production, GSH depletion and mitochondrial dysfunction. Therefore, the protein extracts of these mushrooms could be considered an important source of new anti-cancer drugs.

  3. Cardio-protective and anti-cancer therapeutic potential of Nigella sativa

    Directory of Open Access Journals (Sweden)

    Hammad Shafiq

    2015-12-01

    Full Text Available Nigella sativa is the miraculous plant having a lot of nutritional and medicinal benefits, and attracts large number of nutrition and pharmacological researchers. N. sativa seed composition shows that it is the blessing of nature and it contains and many bioactive compounds like thymoquinone, α-hederin, alkaloids, flavonoids, antioxidants, fatty acids many other compounds that have positive effects on curing of different diseases. Several medicinal properties of N. sativa like its anti-cancer, anti-inflammatory, anti-diabetic, antioxidant activities and many others are well acknowledged. However, this article focuses on activity of N. sativa against cardiovascular diseases and cancer. For gathering required data the authors went through vast number of articles using search engines like Science direct, ELSEVIER, Pub Med, Willey on Line Library and Google scholar and the findings were classified on the basis of relevance of the topic and were reviewed in the article. N. sativa is rich source of different biologically active compounds and is found effective in controlling number of cardiovascular diseases and various cancers both in vivo and in vitro studies.

  4. Synthesis, Characterization and Anti-Cancer Activity of Hydrazide Derivatives Incorporating a Quinoline Moiety

    Directory of Open Access Journals (Sweden)

    Murat Bingul

    2016-07-01

    Full Text Available Identification of the novel (E-N′-((2-chloro-7-methoxyquinolin-3-ylmethylene-3-(phenylthiopropanehydrazide scaffold 18 has led to the development of a new series of biologically active hydrazide compounds. The parent compound 18 and new quinoline derivatives 19–26 were prepared from the corresponding quinoline hydrazones and substituted carboxylic acids using EDC-mediated peptide coupling reactions. Further modification of the parent compound 18 was achieved by replacement of the quinoline moiety with other aromatic systems. All the newly synthesized compounds were evaluated for their anti-cancer activity against the SH-SY5Y and Kelly neuroblastoma cell lines, as well as the MDA-MB-231 and MCF-7 breast adenocarcinoma cell lines. Analogues 19 and 22 significantly reduced the cell viability of neuroblastoma cancer cells with micromolar potency and significant selectivity over normal cells. The quinoline hydrazide 22 also induced G1 cell cycle arrest, as well as upregulation of the p27kip1 cell cycle regulating protein.

  5. Structural characterization of a broccoli polysaccharide and evaluation of anti-cancer cell proliferation effects.

    Science.gov (United States)

    Xu, Lishan; Cao, Jingjing; Chen, Wenrong

    2015-08-01

    Broccoli is a widely consumed vegetable with abundant amount of nutrients, which bring numerous beneficial effects on human health. The structural information of water-soluble polysaccharides in broccoli was eludicated for the first time in this work. A purified polysaccharide fraction (BPCa) was obtained by column chromatography. It comprised of arabinose (Ara), galactose (Gal), rhamnose (Rha) with a molar ratio of 5.3:0.8:1.0. Nuclear magnetic resonnance spectra data revealed that α-L-1,5-Araf and α-L-1,3,5-Araf are present in the backbone, while α-L-Araf terminal was attended in side chain. α-L-1,2-Rhap was found to be linked to α-L-1,5-Araf in heteronuclear multiple bond correlation spectra. The presences of β-D-1,4-Galp and α-D-1,4-GalpA were also detected. Furthermore, BPCa showed significant anti-cancer cell proliferation activities against HepG2, Siha and MDA-MB-231 carcinoma cell lines. The results indicated that BPCa had a good potential to be applied as functional food additives.

  6. Current advances in mathematical modeling of anti-cancer drug penetration into tumor tissues

    Directory of Open Access Journals (Sweden)

    MunJu eKim

    2013-11-01

    Full Text Available Delivery of anti-cancer drugs to tumor tissues, including their interstitial transport and cellular uptake, is a complex process involving various biochemical, mechanical, and biophysical factors. Mathematical modeling provides a means through which to understand this complexity better, as well as to examine interactions between contributing components in a systematic way via computational simulations and quantitative analyses. In this review, we present the current state of mathematical modeling approaches that address phenomena related to drug delivery. We describe how various types of models were used to predict spatio-temporal distributions of drugs within the tumor tissue, to simulate different ways to overcome barriers to drug transport, or to optimize treatment schedules. Finally, we discuss how integration of mathematical modeling with experimental or clinical data can provide better tools to understand the drug delivery process, in particular to examine the specific tissue- or compound-related factors that limit drug penetration through tumors. Such tools will be important in designing new chemotherapy targets and optimal treatment strategies, as well as in developing non-invasive diagnosis to monitor treatment response and detect tumor recurrence.

  7. Pectenotoxin-2 from Marine Sponges: A Potential Anti-Cancer Agent—A Review

    Directory of Open Access Journals (Sweden)

    Wun-Jae Kim

    2011-11-01

    Full Text Available Pectenotoxin-2 (PTX-2, which was first identified as a cytotoxic entity in marine sponges, has been reported to display significant cytotoxicity to human cancer cells where it inhibits mitotic separation and cytokinesis through the depolymerization of actin filaments. In the late stage of endoreduplication, the effects of PTX-2 on different cancer cells involves: (i down-regulation of anti-apoptotic Bcl-2 members and IAP family proteins; (ii up-regulation of pro-apoptotic Bax protein and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL-receptor 1/receptor 2 (DR4/DR5; and (iii mitochondrial dysfunction. In addition, PTX-2 induces apoptotic effects through suppression of the nuclear factor κB (NF-κB signaling pathway in several cancer cells. Analysis of cell cycle regulatory proteins showed that PTX-2 increases phosphorylation of Cdc25c and decreases protein levels of Cdc2 and cyclin B1. Cyclin-dependent kinase (Cdk inhibitor p21 and Cdk2, which are associated with the induction of endoreduplication, were upregulated. Furthermore, it was found that PTX-2 suppressed telomerase activity through the transcriptional and post-translational suppression of hTERT. The purpose of this review was to provide an update regarding the anti-cancer mechanism of PTX-2, with a special focus on its effects on different cellular signaling cascades.

  8. Anti-cancer effect of Cordyceps militaris in human colorectal carcinoma RKO cells via cell cycle arrest and mitochondrial apoptosis

    OpenAIRE

    Lee, Hwan Hee; Lee, Seulki; Lee, Kanghyo; Shin, Yu Su; Kang, Hyojeung; Cho, Hyosun

    2015-01-01

    Background Cordyceps militaris has been used as a traditional medicine in Asian countries for a long time. Different types of Cordyceps extract were reported to have various pharmacological activities including an anti-cancer effect. We investigated the inhibitory effect of Cordyceps militaris ethanol extract on a human colorectal cancer-derived cell line, RKO. Methods RKO cells were treated with various concentrations of nucleosides-enriched ethanol extract of Cordyceps militaris for 48 h an...

  9. The anti-cancer drug-induced pica in rats is related to their clinical emetogenic potential.

    Science.gov (United States)

    Yamamoto, Kouichi; Nakai, Miho; Nohara, Kyoko; Yamatodani, Atsushi

    2007-01-05

    Cancer chemotherapy is frequently accompanied by severe emesis. The anti-cancer drugs are classified according to their clinical emetogenic potential. We have already found that kaolin ingestion behavior "pica" is analogous to emesis in rats. The aim of this study was to examine the effects of the clinical emetogenic potential of anti-cancer drugs on the induction of the pica in rats. Rats were housed in individual cages with free access to food and kaolin pellets and the daily food and kaolin intakes were measured for 3 days after the intraperitoneal administration of anti-cancer drugs (cisplatin, cyclophosphamide, actinomycin D, 5-fluorouracil and vincristine). The drugs with high potential for inducing emesis, such as cisplatin and cyclophosphamide, induced pica in all animals on the day of administration and the behavior lasted during the observation period. The drugs with moderate emetogenic potential, i.e. actinomycin D and 5-fluorouracil, also induced pica on the first and second day after the drug administration but the kaolin intake was less than that of the drugs with high potential. Vincristine, a drug with low emetogenic potential, slightly increased the kaolin intake in rats on the only first day of the administration. Cyclophosphamide, actinomycin D and vincristine induced anorexia and decreased their body weight during the observation period. These results suggested that the both amounts of kaolin intake and duration of behavior in the anti-cancer drug-induced pica are related to the clinical emetogenic potential of the drugs and the incidence of the anorexia is not related to their emetogenic potential.

  10. In vitro investigation of the potential immunomodulatory and anti-cancer activities of black pepper (Piper nigrum) and cardamom (Elettaria cardamomum).

    Science.gov (United States)

    Majdalawieh, Amin F; Carr, Ronald I

    2010-04-01

    Although the immunomodulatory effects of many herbs have been extensively studied, research related to possible immunomodulatory effects of various spices is relatively scarce. Here, the potential immunomodulatory effects of black pepper and cardamom are investigated. Our data show that black pepper and cardamom aqueous extracts significantly enhance splenocyte proliferation in a dose-dependent, synergistic fashion. Enzyme-linked immunosorbent assay experiments reveal that black pepper and cardamom significantly enhance and suppress, respectively, T helper (Th)1 cytokine release by splenocytes. Conversely, Th2 cytokine release by splenocytes is significantly suppressed and enhanced by black pepper and cardamom, respectively. Experimental evidence suggests that black pepper and cardamom extracts exert pro-inflammatory and anti-inflammatory roles, respectively. Consistently, nitric oxide production by macrophages is significantly augmented and reduced by black pepper and cardamom, respectively. Remarkably, it is evident that black pepper and cardamom extracts significantly enhance the cytotoxic activity of natural killer cells, indicating their potential anti-cancer effects. Our findings strongly suggest that black pepper and cardamom exert immunomodulatory roles and antitumor activities, and hence they manifest themselves as natural agents that can promote the maintenance of a healthy immune system. We anticipate that black pepper and cardamom constituents can be used as potential therapeutic tools to regulate inflammatory responses and prevent/attenuate carcinogenesis.

  11. Dual activities of the anti-cancer drug candidate PBI-05204 provide neuroprotection in brain slice models for neurodegenerative diseases and stroke.

    Science.gov (United States)

    Van Kanegan, Michael J; Dunn, Denise E; Kaltenbach, Linda S; Shah, Bijal; He, Dong Ning; McCoy, Daniel D; Yang, Peiying; Peng, Jiangnan; Shen, Li; Du, Lin; Cichewicz, Robert H; Newman, Robert A; Lo, Donald C

    2016-05-12

    We previously reported neuroprotective activity of the botanical anti-cancer drug candidate PBI-05204, a supercritical CO2 extract of Nerium oleander, in brain slice and in vivo models of ischemic stroke. We showed that one component of this neuroprotective activity is mediated through its principal cardiac glycoside constituent, oleandrin, via induction of the potent neurotrophic factor brain-derived neurotrophic factor (BDNF). However, we also noted that the concentration-relation for PBI-05204 in the brain slice oxygen-glucose deprivation (OGD) model is considerably broader than that for oleandrin as a single agent. We thus surmised that PBI-05204 contains an additional neuroprotective component(s), distinct from oleandrin. We report here that neuroprotective activity is also provided by the triterpenoid constituents of PBI-05204, notably oleanolic acid. We demonstrate that a sub-fraction of PBI-05204 (Fraction 0-4) containing oleanolic and other triterpenoids, but without cardiac glycosides, induces the expression of cellular antioxidant gene transcription programs regulated through antioxidant transcriptional response elements (AREs). Finally, we show that Fraction 0-4 provides broad neuroprotection in organotypic brain slice models for neurodegeneration driven by amyloid precursor protein (APP) and tau implicated in Alzheimer's disease and frontotemporal dementias, respectively, in addition to ischemic injury modeled by OGD.

  12. Gentio-oligosaccharides from Leuconostoc mesenteroides NRRL B-1426 dextransucrase as prebiotics and as a supplement for functional foods with anti-cancer properties.

    Science.gov (United States)

    Kothari, Damini; Goyal, Arun

    2015-02-01

    Gentio-oligosaccharides (GnOS) were synthesized by the acceptor reaction of dextransucrase from Leuconostoc mesenteroides NRRL B-1426 with gentiobiose and sucrose. GnOS were purified by gel permeation chromatography using a Bio-Gel P-2 column and identified by mass spectrometry. The purified GnOS (degree of polymerization ≥3) were investigated for their in vitro prebiotic and cytotoxic activity. GnOS exhibited a significantly lower degree of digestibility of 18.1% by simulated human gastric juice (pH 1.0) and 7.1% by human α-amylase (pH 7.0) after 6 h, whereas inulin, a standard prebiotic, showed 39.7% and 12.8% of digestibility, respectively. The prebiotic score showed that GnOS significantly supported the growth of probiotics such as Bifidobacterium infantis and Lactobacillus acidophilus and was comparable to that of inulin. The selective inhibitory effect of GnOS on human colon carcinoma (HT-29) cells revealed its potential as an anti-cancer agent that can serve as a functional food additive for the benefit of human health.

  13. Revitalization of pioglitazone: the optimum agent to be combined with a sodium-glucose co-transporter-2 inhibitor.

    Science.gov (United States)

    DeFronzo, R A; Chilton, R; Norton, L; Clarke, G; Ryder, R E J; Abdul-Ghani, M

    2016-05-01

    The recently completed EMPA-REG study showed that empagliflozin significantly decreased the major adverse cardiac events (MACE) endpoint, which comprised cardiovascular death, non-fatal myocardial infarction (MI) and stroke, in patients with high-risk type 2 diabetes (T2DM), primarily through a reduction in cardiovascular death, without a significant decrease in either MI or stroke. In the PROactive study, pioglitazone decreased the MACE endpoint by a similar degree to that observed in the EMPA-REG study, through a marked reduction in both recurrent MI and stroke and a modest reduction in cardiovascular death. These observations suggest that pioglitazone might be an ideal agent to combine with empagliflozin to further reduce cardiovascular events in patients with high-risk diabetes as empagliflozin also promotes salt/water loss and would be expected to offset any fluid retention associated with pioglitazone therapy. In the present paper, we provide an overview of the potential benefits of combined pioglitazone/empagliflozin therapy to prevent cardiovascular events in patients with T2DM.

  14. Effect of Combination of Steel Fiber and MgO-type Expansive Agent on Properties of Concrete

    Institute of Scientific and Technical Information of China (English)

    WANG Aiguo; DENG Min; SUN Daosheng; MO Liwu; WANG Jun; TANG Mingshu

    2011-01-01

    The effect of combination of steel fiber and MgO-type expansive agent(MEA)on strength,air-permeability and porosity of concrete was investigated.The porosity and air-permeability of concrete were determined by method of evaporated water and Torrent permeability tester,respectively.Pore structures of mortars in concrete were analyzed using mercury intrusion porosimetry(MIP).Interfacial structures between steel fibers and matrix were examined by use of optical microscope.The experimental results show that improvement of pore structures of mortar and fiber-matrix interfacial structure in concrete by combination of steel fiber and MEA may remarkably increase properties of concrete.In comparison with plain concrete,compressive strength and splitting tensile strength of steel fiber reinforced expansive concrete increased by 15.3% and 38.1%,permeability coefficient K(t),penetration depth L and porosity of concrete decreased by 41.1%,21.3% and 13.1% at 28 days,respectively.

  15. Combination of Estrogen and Immunosuppressive Agents to Establish a Mouse Model of Candidiasis with Concurrent Oral and Vaginal Mucosal Infection.

    Science.gov (United States)

    Wang, Le; Wang, Chong; Mei, Huan; Shen, Yongnian; Lv, Guixia; Zeng, Rong; Zhan, Ping; Li, Dongmei; Liu, Weida

    2016-02-01

    Mouse model is an appropriate tool for pathogenic determination and study of host defenses during the fungal infection. Here, we established a mouse model of candidiasis with concurrent oral and vaginal mucosal infection. Two C. albicans strains sourced from clinical candidemia (SC5314) and mucosal infection (ATCC62342) were tested in ICR mice. The different combinational panels covering estrogen and immunosuppressive agents, cortisone, prednisolone and cyclophosphamide were used for concurrent oral and vaginal candidiasis establishment. Prednisolone in combination with estrogen proved an optimal mode for concurrent mucosal infection establishment. The model maintained for 1 week with fungal burden reached at least 10(5) cfu/g of tissue. This mouse model was evaluated by in vivo pharmacodynamics of fluconazole and host mucosal immunity of IL-17 and IL-23. Mice infected by SC5314 were cured by fluconazole. An increase in IL-23 in both oral and vaginal homogenates was observed after infection, while IL-17 only had a prominent elevation in oral tissue. This model could properly mimic complicated clinical conditions and provides a valuable means for antifungal assay in vivo and may also provide a useful method for the evaluation of host-fungal interactions.

  16. [Development of anti-cancer drugs under new renewed GCP--from the viewpoint of drug development company developer].

    Science.gov (United States)

    Ueno, T; Kobayashi, T; Inoue, K; Yanagi, Y; Yamada, Y

    1998-04-01

    During the past 7 years since the enforcement of Japan's first GCP in October 1990, various standards and guidelines have been introduced in Japan. On the other hand, the harmonization of GCP has been the subject of major discussion at ICH in order to allow the mutual acceptance of clinical data from different countries. In order to further improve the reliability and consistency of clinical data and the ethics of clinical trials in Japan, the new GCP was enforced in April 1997. A clinical study is conducted by the sponsor, but will only be successful with the collaboration of trial subjects, medical institutions, heads of medical institutions, investigators, subinvestigators, pharmacists, nurses, laboratory technicians, and other assisting staff. Before the full enforcement of the new GCP, we, as sponsors of clinical trials, carried out a survey of the current status of clinical trials centering on the reactions of medical institutions to the new GCP, future of clinical trials on anti-cancer drugs in Japan, and differences in time from clinical trials to registration in Japan, the United State and Europe. We sent a questionnaire by facsimile to 21 pharmaceutical companies which have developed or are developing anti-cancer drugs and obtained replies from 20 companies (95%) from August 25 to 30, 1997. This paper reports issues concerning clinical trials on anti-cancer drugs based on the results of our survey.

  17. Love life, scientific anti-cancer, better life%关爱生命,科学防癌,让生活更美好

    Institute of Scientific and Technical Information of China (English)

    Yi Cheng

    2010-01-01

    @@ The Chinese Anti-cancer Association launched the16th National Tumor Prophylaxis and Treatment Week in April, 2010. In order to highlight the week's spirit of "Love life, scientific anti-cancer, better life", the Tongji Cancer Center and Thoracic Surgery Department held lectures and advisory services in the outpatient lobby of Cancer Center on April 20th, 2010. The content of lec-tures involves the prophylaxis, diagnosis and treatment of lung cancer.

  18. Terpinen-4-ol: A Novel and Promising Therapeutic Agent for Human Gastrointestinal Cancers.

    Directory of Open Access Journals (Sweden)

    Shiran Shapira

    Full Text Available Terpinen-4-ol, a naturally occurring monoterpene is the main bioactive component of tea-tree oil and has been shown to have many biological activities.To study the antitumor effects of terpinen-4-ol and its mechanism of action in prostate and GI malignancies, alone and in combination with chemotherapeutic and biological agents.Terpinen-4-ol was administrated alone or combined with standard chemotherapy (Oxaliplatin, Fluorouracil, Gemcitabine, Tarceva and biological agent (Cetuximab. It was also combined with humanized anti-CD24 mAbs (was developed by us. Killing effects were measured qualitatively by light microscopy and quantitatively using the MTT and FACS analysis, following treatment of colorectal, pancreatic, gastric and prostate cancer cells. Terpinen-4-ol effect on tumor development was evaluated in xenograft model.Terpinen-4-ol induces a significant growth inhibition of colorectal, pancreatic, prostate and gastric cancer cells in a dose-dependent manner (10-90% in 0.005-0.1%. Terpinen-4-ol and various anti-cancer agents (0.2μM oxaliplatin and 0.5μM fluorouracil demonstrated a synergistic inhibitory effect (83% and 91%, respectively on cancer cell proliferation. In KRAS mutated colorectal cancer cells, which are resistant to anti-EGFR therapy, combining of terpinen-4-ol with cetuximab (1 μM resulted in impressive efficacy of 80-90% growth inhibition. Sub-toxic concentrations of terpinen-4-ol potentiate anti-CD24 mAb (150μg/ml-induced growth inhibition (90%. Considerable reduction in tumor volume was seen following terpinen-4-ol (0.2% treatment alone and with cetuximab (10mg/kg (40% and 63%, respectively as compare to the control group.Terpinen-4-ol significantly enhances the effect of several chemotherapeutic and biological agents. The possible molecular mechanism for its activity involves induction of cell-death rendering this compound as a potential anti-cancer drug alone and in combination in the treatment of numerous malignancies

  19. Comparison of reversal and adverse effects of sugammadex and combination of -Anticholinergic-Anticholinesterase agents in pediatric patients

    Directory of Open Access Journals (Sweden)

    Çiğdem Özgün

    2014-01-01

    Full Text Available Background: We aimed to compare clinical effects of sugammadex versus combination of anticholinergic-anticholinesterase agents for reversing of nondepolarizing neuromuscular block in pediatric patients. Materials and Methods: A total of 60 pediatric patients whom should be performed general anesthesia in the supine position were enrolled to this randomized double-blinded clinical trial. Fentanyl 1 μg/kg, propofol 2 mg/kg, rocuronium 0.6 mg/kg were used in induction and sevofluran, 50% O 2 -50% N 2 O in maintenance of anesthesia. Neuromuscular conductions were assessed by train of four (TOF-Watch SX (Organon, Schering-Plough, Ireland acceleromyograph. Patients were intubated at the moment of TOF 0. At the end of the operation emergence of T2 point was replied by 2 mg/kg sugammadex administration in group 1 and 0.06 mg/kg neostigmine +0.02 mg/kg atropine in group 2. At the moment of T0.9 inhalation, gases were ceased, and patients were extubated. Hemodynamic alterations, access to T0.9, extubation time, recovery parameters, drug consumptions and adverse effects were recorded. Results: Train of four scores showed a lesser increase in group 2 than group 1 from 15 th s to 30 th min during post reverse period (from 6.9 ± 6.4 to 91.7 ± 7.2 in group 2 vs. from 35.4 ± 21.4 to 99.5 ± 1.0 in group 1 (p < 0.0004. Group 1 patients exhibited much more complete muscle strength rates than group 2 (P < 0.001. T0.9 and extubation times were significantly longer in group 2 than group 1 (P < 0.001. Comparison of adverse effects yielded no difference. Conclusion: Sugammadex can be considered as a safe agent in order to reverse neuromuscular block in pediatric patients.

  20. Analogs of the Allosteric Heat Shock Protein 70 (Hsp70) Inhibitor, MKT-077, as Anti-Cancer Agents.

    Science.gov (United States)

    Li, Xiaokai; Srinivasan, Sharan R; Connarn, Jamie; Ahmad, Atta; Young, Zapporah T; Kabza, Adam M; Zuiderweg, Erik R P; Sun, Duxin; Gestwicki, Jason E

    2013-11-14

    The rhodacyanine, MKT-077, has anti-proliferative activity against cancer cell lines through its ability to inhibit members of the heat shock protein 70 (Hsp70) family of molecular chaperones. However, MKT-077 is rapidly metabolized, which limits its use as either a chemical probe or potential therapeutic. We report the synthesis and characterization of MKT-077 analogs designed for greater stability. The most potent molecules, such as 30 (JG-98), were at least 3-fold more active than MKT-077 against the breast cancer cell lines MDA-MB-231 and MCF-7 (EC50 values of 0.4 ± 0.03 μM and 0.7 ± 0.2 μM, respectively). The analogs modestly destabilized the chaperone "clients", Akt1 and Raf1, and induced apoptosis in these cells. Further, the microsomal half-life of JG-98 was improved at least 7-fold (t1/2 = 37 min) compared to MKT-077 (t1/2 MKT-077. These studies advance MKT-077 analogs as chemical probes for studying Hsp70's roles in cancer.

  1. Genotoxic Anti-Cancer Agents and Their Relationship to DNA Damage, Mitosis, and Checkpoint Adaptation in Proliferating Cancer Cells

    Directory of Open Access Journals (Sweden)

    Lucy H. Swift

    2014-02-01

    Full Text Available When a human cell detects damaged DNA, it initiates the DNA damage response (DDR that permits it to repair the damage and avoid transmitting it to daughter cells. Despite this response, changes to the genome occur and some cells, such as proliferating cancer cells, are prone to genome instability. The cellular processes that lead to genomic changes after a genotoxic event are not well understood. Our research focuses on the relationship between genotoxic cancer drugs and checkpoint adaptation, which is the process of mitosis with damaged DNA. We examine the types of DNA damage induced by widely used cancer drugs and describe their effects upon proliferating cancer cells. There is evidence that cell death caused by genotoxic cancer drugs in some cases includes exiting a DNA damage cell cycle arrest and entry into mitosis. Furthermore, some cells are able to survive this process at a time when the genome is most susceptible to change or rearrangement. Checkpoint adaptation is poorly characterised in human cells; we predict that increasing our understanding of this pathway may help to understand genomic instability in cancer cells and provide insight into methods to improve the efficacy of current cancer therapies.

  2. The anti-cancer effects of poi (Colocasia esculenta) on colonic adenocarcinoma cells In vitro.

    Science.gov (United States)

    Brown, Amy C; Reitzenstein, Jonathan E; Liu, Jessie; Jadus, Martin R

    2005-09-01

    Hawaiians tend to have lower incidence rates of colorectal cancer and it was hypothesized that this may be due to ethnic differences in diet, specifically, their consumption of poi, a starchy paste made from the taro (Colocasia esulenta L.) plant corm. Soluble extracts of poi were incubated at 100 mg/mL in vitro for antiproliferative activity against the rat YYT colon cancer cell line. (3)H-thymidine incorporation studies were conducted to demonstrate that the poi inhibited the proliferation of these cancer cells in a dose-dependent manner. The greatest suppression of YYT colon cancer growth occurred when 25% concentration was used. When poi was incubated with the YYT cells after 2 days, the YYT cells underwent apoptotic changes as evidenced by a positive terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) stain. Poi enhanced the proliferation of normal mouse splenocyte control cells, suggesting that poi is not simply toxic to all cells but even has a positive immunostimulatory role. By flow cytometry, T cells (CD4+ and CD8+) were predominantly activated by the poi. Although numerous factors can contribute to the risk of colon cancer, perhaps poi consumption may contribute to the lower colon cancer rates among Hawaiians by two distinct mechanisms. First, by inducing apoptosis within colon cancer cells; second, by non-specifically activating lymphocytes, which in turn can lyse cancerous cells. Our results suggest for the first time that poi may have novel tumor specific anti-cancer activities and future research is suggested with animal studies and human clinical trials.

  3. Evidence to Support the Anti-Cancer Effect of Olive Leaf Extract and Future Directions

    Directory of Open Access Journals (Sweden)

    Anna Boss

    2016-08-01

    Full Text Available The traditional Mediterranean diet (MD is associated with long life and lower prevalence of cardiovascular disease and cancers. The main components of this diet include high intake of fruit, vegetables, red wine, extra virgin olive oil (EVOO and fish, low intake of dairy and red meat. Olive oil has gained support as a key effector of health benefits and there is evidence that this relates to the polyphenol content. Olive leaf extract (OLE contains a higher quantity and variety of polyphenols than those found in EVOO. There are also important structural differences between polyphenols from olive leaf and those from olive fruit that may improve the capacity of OLE to enhance health outcomes. Olive polyphenols have been claimed to play an important protective role in cancer and other inflammation-related diseases. Both inflammatory and cancer cell models have shown that olive leaf polyphenols are anti-inflammatory and protect against DNA damage initiated by free radicals. The various bioactive properties of olive leaf polyphenols are a plausible explanation for the inhibition of progression and development of cancers. The pathways and signaling cascades manipulated include the NF-κB inflammatory response and the oxidative stress response, but the effects of these bioactive components may also result from their action as a phytoestrogen. Due to the similar structure of the olive polyphenols to oestrogens, these have been hypothesized to interact with oestrogen receptors, thereby reducing the prevalence and progression of hormone related cancers. Evidence for the protective effect of olive polyphenols for cancer in humans remains anecdotal and clinical trials are required to substantiate these claims idea. This review aims to amalgamate the current literature regarding bioavailability and mechanisms involved in the potential anti-cancer action of olive leaf polyphenols.

  4. Inhibition of autophagic flux by salinomycin results in anti-cancer effect in hepatocellular carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Johannes Klose

    Full Text Available Salinomycin raised hope to be effective in anti-cancer therapies due to its capability to overcome apoptosis-resistance in several types of cancer cells. Recently, its effectiveness against human hepatocellular carcinoma (HCC cells both in vitro and in vivo was demonstrated. However, the mechanism of action remained unclear. Latest studies implicated interference with the degradation pathway of autophagy. This study aimed to determine the impact of Salinomycin on HCC-autophagy and whether primary human hepatocytes (PHH likewise are affected. Following exposure of HCC cell lines HepG2 and Huh7 to varying concentrations of Salinomycin (0-10 µM, comprehensive analysis of autophagic activity using western-blotting and flow-cytometry was performed. Drug effects were analyzed in the settings of autophagy stimulation by starvation or PP242-treatment and correlated with cell viability, proliferation, apoptosis induction, mitochondrial mass accumulation and reactive oxygen species (ROS formation. Impact on apoptosis induction and cell function of PHH was analyzed. Constitutive and stimulated autophagic activities both were effectively suppressed in HCC by Salinomycin. This inhibition was associated with dysfunctional mitochondria accumulation, increased apoptosis and decreased proliferation and cell viability. Effects of Salinomycin were dose and time dependent and could readily be replicated by pharmacological and genetic inhibition of HCC-autophagy alone. Salinomycin exposure to PHH resulted in transient impairment of synthesis function and cell viability without apoptosis induction. In conclusion, our data suggest that Salinomycin suppresses late stages of HCC-autophagy, leading to impaired recycling and accumulation of dysfunctional mitochondria with increased ROS-production all of which are associated with induction of apoptosis.

  5. Inhibition of autophagic flux by salinomycin results in anti-cancer effect in hepatocellular carcinoma cells.

    Science.gov (United States)

    Klose, Johannes; Stankov, Metodi V; Kleine, Moritz; Ramackers, Wolf; Panayotova-Dimitrova, Diana; Jäger, Mark D; Klempnauer, Jürgen; Winkler, Michael; Bektas, Hüseyin; Behrens, Georg M N; Vondran, Florian W R

    2014-01-01

    Salinomycin raised hope to be effective in anti-cancer therapies due to its capability to overcome apoptosis-resistance in several types of cancer cells. Recently, its effectiveness against human hepatocellular carcinoma (HCC) cells both in vitro and in vivo was demonstrated. However, the mechanism of action remained unclear. Latest studies implicated interference with the degradation pathway of autophagy. This study aimed to determine the impact of Salinomycin on HCC-autophagy and whether primary human hepatocytes (PHH) likewise are affected. Following exposure of HCC cell lines HepG2 and Huh7 to varying concentrations of Salinomycin (0-10 µM), comprehensive analysis of autophagic activity using western-blotting and flow-cytometry was performed. Drug effects were analyzed in the settings of autophagy stimulation by starvation or PP242-treatment and correlated with cell viability, proliferation, apoptosis induction, mitochondrial mass accumulation and reactive oxygen species (ROS) formation. Impact on apoptosis induction and cell function of PHH was analyzed. Constitutive and stimulated autophagic activities both were effectively suppressed in HCC by Salinomycin. This inhibition was associated with dysfunctional mitochondria accumulation, increased apoptosis and decreased proliferation and cell viability. Effects of Salinomycin were dose and time dependent and could readily be replicated by pharmacological and genetic inhibition of HCC-autophagy alone. Salinomycin exposure to PHH resulted in transient impairment of synthesis function and cell viability without apoptosis induction. In conclusion, our data suggest that Salinomycin suppresses late stages of HCC-autophagy, leading to impaired recycling and accumulation of dysfunctional mitochondria with increased ROS-production all of which are associated with induction of apoptosis.

  6. Enhanced osteoblast adhesion on nanostructured selenium compacts for anti-cancer orthopedic applications

    Directory of Open Access Journals (Sweden)

    Phong Tran

    2008-10-01

    Full Text Available Phong Tran1, Thomas J Webster21Physics Department; 2Division of Engineering and Department of Orthopedics, Brown University, Providence, USAAbstract: Metallic bone implants possess numerous problems limiting their long-term efficacy, such as poor prolonged osseointegration, stress shielding, and corrosion under in vivo environments. Such problems are compounded for bone cancer patients since numerous patients receive orthopedic implants after cancerous bone resection. Unfortunately, current orthopedic materials were not originally developed to simultaneously increase healthy bone growth (as in traditional orthopedic implant applications while inhibiting cancerous bone growth. The long-term objective of the present research is to investigate the use of nano-rough selenium to prevent bone cancer from re-occurring while promoting healthy bone growth for this select group of cancer patients. Selenium is a well known anti-cancer chemical. However, what is not known is how healthy bone cells interact with selenium. To determine this, selenium, spherical or semispherical shots, were pressed into cylindrical compacts and these compacts were then etched using 1N NaOH to obtain various surface structures ranging from the micron, submicron to nano scales. Changes in surface chemistry were also analyzed. Through these etching techniques, results of this study showed that biologically inspired surface roughness values were created on selenium compacts to match that of natural bone roughness. Moreover, results showed that healthy bone cell adhesion increased with greater nanometer selenium roughness (more closely matching that of titanium. In this manner, this study suggests that nano-rough selenium should be further tested for orthopedic applications involving bone cancer treatment.Keywords: selenium, nano-rough, osteoblast, cancer, chemopreventive

  7. Annular phased array transducer for preclinical testing of anti-cancer drug efficacy on small animals.

    Science.gov (United States)

    Kujawska, Tamara; Secomski, Wojciech; Byra, Michał; Postema, Michiel; Nowicki, Andrzej

    2017-04-01

    A technique using pulsed High Intensity Focused Ultrasound (HIFU) to destroy deep-seated solid tumors is a promising noninvasive therapeutic approach. A main purpose of this study was to design and test a HIFU transducer suitable for preclinical studies of efficacy of tested, anti-cancer drugs, activated by HIFU beams, in the treatment of a variety of solid tumors implanted to various organs of small animals at the depth of the order of 1-2cm under the skin. To allow focusing of the beam, generated by such transducer, within treated tissue at different depths, a spherical, 2-MHz, 29-mm diameter annular phased array transducer was designed and built. To prove its potential for preclinical studies on small animals, multiple thermal lesions were induced in a pork loin ex vivo by heating beams of the same: 6W, or 12W, or 18W acoustic power and 25mm, 30mm, and 35mm focal lengths. Time delay for each annulus was controlled electronically to provide beam focusing within tissue at the depths of 10mm, 15mm, and 20mm. The exposure time required to induce local necrosis was determined at different depths using thermocouples. Location and extent of thermal lesions determined from numerical simulations were compared with those measured using ultrasound and magnetic resonance imaging techniques and verified by a digital caliper after cutting the tested tissue samples. Quantitative analysis of the results showed that the location and extent of necrotic lesions on the magnetic resonance images are consistent with those predicted numerically and measured by caliper. The edges of lesions were clearly outlined although on ultrasound images they were fuzzy. This allows to conclude that the use of the transducer designed offers an effective noninvasive tool not only to induce local necrotic lesions within treated tissue without damaging the surrounding tissue structures but also to test various chemotherapeutics activated by the HIFU beams in preclinical studies on small animals.

  8. Evidence to Support the Anti-Cancer Effect of Olive Leaf Extract and Future Directions.

    Science.gov (United States)

    Boss, Anna; Bishop, Karen S; Marlow, Gareth; Barnett, Matthew P G; Ferguson, Lynnette R

    2016-08-19

    The traditional Mediterranean diet (MD) is associated with long life and lower prevalence of cardiovascular disease and cancers. The main components of this diet include high intake of fruit, vegetables, red wine, extra virgin olive oil (EVOO) and fish, low intake of dairy and red meat. Olive oil has gained support as a key effector of health benefits and there is evidence that this relates to the polyphenol content. Olive leaf extract (OLE) contains a higher quantity and variety of polyphenols than those found in EVOO. There are also important structural differences between polyphenols from olive leaf and those from olive fruit that may improve the capacity of OLE to enhance health outcomes. Olive polyphenols have been claimed to play an important protective role in cancer and other inflammation-related diseases. Both inflammatory and cancer cell models have shown that olive leaf polyphenols are anti-inflammatory and protect against DNA damage initiated by free radicals. The various bioactive properties of olive leaf polyphenols are a plausible explanation for the inhibition of progression and development of cancers. The pathways and signaling cascades manipulated include the NF-κB inflammatory response and the oxidative stress response, but the effects of these bioactive components may also result from their action as a phytoestrogen. Due to the similar structure of the olive polyphenols to oestrogens, these have been hypothesized to interact with oestrogen receptors, thereby reducing the prevalence and progression of hormone related cancers. Evidence for the protective effect of olive polyphenols for cancer in humans remains anecdotal and clinical trials are required to substantiate these claims idea. This review aims to amalgamate the current literature regarding bioavailability and mechanisms involved in the potential anti-cancer action of olive leaf polyphenols.

  9. Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents

    Directory of Open Access Journals (Sweden)

    Ghosh S

    2012-02-01

    -positive bacteria. Beta-lactam (piperacillin and macrolide (erythromycin antibiotics showed a 3.6-fold and 3-fold increase, respectively, in combination with silver nanoparticles selectively against multidrug-resistant Acinetobacter baumannii. Notable synergy was seen between silver nanoparticles and chloramphenicol or vancomycin against Pseudomonas aeruginosa, and was supported by a 4.9-fold and 4.2-fold increase in zone diameter, respectively. Similarly, we found a maximum 11.8-fold increase in zone diameter of streptomycin when combined with silver nanoparticles against E. coli, providing strong evidence for the synergistic action of a combination of antibiotics and silver nanoparticles.Conclusion: This is the first report on the synthesis of silver nanoparticles using D. bulbifera tuber extract followed by an estimation of its synergistic potential for enhancement of the antibacterial activity of broad spectrum antimicrobial agents.Keywords: Dioscorea bulbifera tuber extract, silver nanoparticles, antimicrobial synergy

  10. The comparison of removing plug by ultrasonic wave, chemical deplugging agent and ultrasound-chemical combination deplugging for near-well ultrasonic processing technology.

    Science.gov (United States)

    Wang, Zhenjun; Xu, Yuanming; Bajracharya, Suman

    2015-11-01

    Near-well ultrasonic processing technology is characterized by high adaptability, simple operation, low cost and zero pollution. The main plugs of oil production include paraffin deposition plug, polymer plug, and drilling fluid plug etc. Although some good results have been obtained through laboratory experiments and field tests, systematic and intensive studies are absent for certain major aspects, such as: effects of ultrasonic treatment for different kinds of plugs and whether effect of ultrasound-chemicals combination deplugging is better than that of ultrasonic deplugging. In this paper, the experiments of removing drilling fluid plug, paraffin deposition plug and polymer plug by ultrasonic wave, chemical deplugging agent and ultrasound-chemical combination deplugging respectively are carried out. Results show that the effect of ultrasound-chemical combination deplugging is clearly better than that of using ultrasonic wave and chemical deplugging agent separately, which indicates that ultrasonic deplugging and chemical deplugging can produce synergetic effects. On the one hand, ultrasonic treatment can boost the activity of chemical deplugging agent and turn chemical deplugging into dynamic chemical process, promoting chemical agent reaction speed and enhancing deplugging effect; on the other hand, chemical agent can reduce the adhesion strength of plugs so that ultrasonic deplugging effect can be improved significantly. Experimental results provide important reference for near-well ultrasonic processing technology.

  11. IGF-1R as an anti-cancer target-trials and tribulations

    Institute of Scientific and Technical Information of China (English)

    Helen X.Chen; Elad Sharon

    2013-01-01

    Type Ⅰ insulin-like growth factor receptor (IGF-1R) has long been recognized for its role in tumorigenesis and growth,but only recently have the tools for targeting the IGF pathway become available.More than 10 IGF/IGF-1R inhibitors have entered clinical trials,and these belong to three main classes:(1)monoclonal antibodies against IGF-1R,(2) monoclonal antibodies against IGF-1R ligands (IGF-1 and IGF-2),and (3) IGF-1R tyrosine kinase inhibitors.These IGF-1R-targeting agents share common effects on IGF-1R signaling but differ in mechanisms of action,spectrum of target inhibition,and pharmacological features.Clinical activity of IGF-1R inhibitors has been demonstrated with sustained responses in a small number of patients with select tumor types,such as Ewing sarcoma and thymoma.However,many large clinical trials involving patients with adult tumors,including non-small cell lung cancer,breast cancer,and pancreatic cancer,failed to show clinical benefit in the overall patient population.Possible reasons for failure include the complexity of the IGF-1R/insulin receptor system and parallel growth and survival pathways,as well as a lack of patient selection markers.While IGF-1R remains a valid target for selected tumor types,identification of predictive markers and rational combinations will be critical to success in future development.

  12. Ceftolozane/tazobactam and ceftazidime/avibactam: two novel β-lactam/β-lactamase inhibitor combination agents for the treatment of resistant Gram-negative bacterial infections.

    Science.gov (United States)

    Liscio, Jordan L; Mahoney, Monica V; Hirsch, Elizabeth B

    2015-09-01

    The rise in resistant Gram-negative bacteria is a major concern and has led to difficulty in treating multidrug-resistant (MDR) infections. Two recently approved combination antibiotics, ceftolozane/tazobactam and ceftazidime/avibactam, may be effective in treating these resistant infections. Ceftolozane is a novel cephalosporin that has been developed in combination with tazobactam, a recognised β-lactamase inhibitor (BLI). Avibactam is a novel BLI combined with ceftazidime, a cephalosporin with an established history. Both of these β-lactam/BLI combination agents have been shown to retain in vitro activity against selected resistant Gram-negative pathogens, including Enterobacteriaceae and Pseudomonas aeruginosa; notably, ceftazidime/avibactam has demonstrated consistent activity against Klebsiella pneumoniae carbapenemase (KPC)-producing organisms. Both agents have been approved for the indications of complicated intra-abdominal infection (with metronidazole) and complicated urinary tract infection, and have ongoing phase 3 trials for the treatment of ventilator-associated and nosocomial pneumonia. This manuscript will review current data available regarding the spectrum of activity and clinical trials that led to the US Food and Drug Administration (FDA) approval of these agents. Both agents appear to be well tolerated and show promise in the treatment of MDR Gram-negative infections.

  13. Efficacy and safety of combining intra-articular methylprednisolone and anti-TNF agent to achieve prolonged remission in patients with recurrent inflammatory monoarthritis.

    LENUS (Irish Health Repository)

    Haroon, Muhammad

    2012-02-01

    OBJECTIVE: To control local inflammation, the role of intra-articular corticosteroid is well established; similarly, with time there are more reports on the experience of intra-articular anti-TNF agent for localized joint inflammation. The aim of this study was to assess the safety, local tolerability and clinical response after combining intra-articular administration of corticosteroids and anti-TNF agents for recurrent inflammatory monoarthritis. METHODS: Patients with recurrent monoarthritis of the knee were recruited from our inflammatory arthritis clinics. These patients required intra-articular corticosteroids every 8-12 weeks, with good short-term results. Five such consecutive patients were invited to partake in this study. Patients were maintained on their baseline immunosuppressive therapy. After aspiration of knee joint, the involved joint was injected with 80mg of methylprednisolone mixed with 5ml of lignocaine 1%; this was followed by the injection of an anti-TNF agent. RESULTS: In majority of our patients (three out of five), combining anti-TNF agent and methylprednisolone led to prolonged anti-inflammatory response, and these patients remain in remission to date (mean follow-up of 12 months). These responders were noted to be naive to anti-TNF therapy. Conversely, the remaining two patients were found to be on baseline systemic anti-TNF therapy, and both of them failed to respond either partly or completely. CONCLUSION: Combining intra-articular corticosteroid and anti-TNF agent has proved to be safe in our cohort of patients. We conclude that in particular subset of patients who suffer from recurrent inflammatory monoarthritis or oligoarthritis, combination therapy of intra-articular corticosteroids and anti-TNF agents appears attractive and promising.

  14. Opioid receptor activation triggering downregulation of cAMP improves effectiveness of anti-cancer drugs in treatment of glioblastoma

    Science.gov (United States)

    Friesen, Claudia; Hormann, Inis; Roscher, Mareike; Fichtner, Iduna; Alt, Andreas; Hilger, Ralf; Debatin, Klaus-Michael; Miltner, Erich

    2014-01-01

    Glioblastoma are the most frequent and malignant human brain tumors, having a very poor prognosis. The enhanced radio- and chemoresistance of glioblastoma and the glioblastoma stem cells might be the main reason why conventional therapies fail. The second messenger cyclic AMP (cAMP) controls cell proliferation, differentiation, and apoptosis. Downregulation of cAMP sensitizes tumor cells for anti-cancer treatment. Opioid receptor agonists triggering opioid receptors can activate inhibitory Gi proteins, which, in turn, block adenylyl cyclase activity reducing cAMP. In this study, we show that downregulation of cAMP by opioid receptor activation improves the effectiveness of anti-cancer drugs in treatment of glioblastoma. The µ-opioid receptor agonist D,L-methadone sensitizes glioblastoma as well as the untreatable glioblastoma stem cells for doxorubicin-induced apoptosis and activation of apoptosis pathways by reversing deficient caspase activation and deficient downregulation of XIAP and Bcl-xL, playing critical roles in glioblastomas’ resistance. Blocking opioid receptors using the opioid receptor antagonist naloxone or increasing intracellular cAMP by 3-isobutyl-1-methylxanthine (IBMX) strongly reduced opioid receptor agonist-induced sensitization for doxorubicin. In addition, the opioid receptor agonist D,L-methadone increased doxorubicin uptake and decreased doxorubicin efflux, whereas doxorubicin increased opioid receptor expression in glioblastomas. Furthermore, opioid receptor activation using D,L-methadone inhibited tumor growth significantly in vivo. Our findings suggest that opioid receptor activation triggering downregulation of cAMP is a promising strategy to inhibit tumor growth and to improve the effectiveness of anti-cancer drugs in treatment of glioblastoma and in killing glioblastoma stem cells. PMID:24626197

  15. Structure and Potential Cellular Targets of HAMLET-like Anti-Cancer Compounds made from Milk Components.

    Science.gov (United States)

    Rath, Emma M; Duff, Anthony P; Håkansson, Anders P; Vacher, Catherine S; Liu, Guo Jun; Knott, Robert B; Church, William Bret

    2015-01-01

    The HAMLET family of compounds (Human Alpha-lactalbumin Made Lethal to Tumours) was discovered during studies on the properties of human milk, and is a class of protein-lipid complexes having broad spectrum anti-cancer, and some specific anti-bacterial properties. The structure of HAMLET-like compounds consists of an aggregation of partially unfolded protein making up the majority of the compound's mass, with fatty acid molecules bound in the hydrophobic core. This is a novel protein-lipid structure and has only recently been derived by small-angle X-ray scattering analysis. The structure is the basis of a novel cytotoxicity mechanism responsible for anti-cancer activity to all of the around 50 different cancer cell types for which the HAMLET family has been trialled. Multiple cytotoxic mechanisms have been hypothesised for the HAMLET-like compounds, but it is not yet clear which of those are the initiating cytotoxic mechanism(s) and which are subsequent activities triggered by the initiating mechanism(s). In addition to the studies into the structure of these compounds, this review presents the state of knowledge of the anti-cancer aspects of HAMLET-like compounds, the HAMLET-induced cytotoxic activities to cancer and non-cancer cells, and the several prospective cell membrane and intracellular targets of the HAMLET family. The emerging picture is that HAMLET-like compounds initiate their cytotoxic effects on what may be a cancer-specific target in the cell membrane that has yet to be identified. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.

  16. LGR5 expressing cells of hair follicle as potential targets for antibody mediated anti-cancer laser therapy

    Science.gov (United States)

    Popov, Boris V.

    2013-02-01

    Near infrared laser immunotherapy becomes now a new promising research field to cure the patients with cancers. One of the critical limitation in medical application of this treatment is availability of the specific markers for delivery of laser-sensitive nanoparticles. When coupled to antibodies to the cancer stem cells markers these nanoparticles may be delivered to the cancer tissue and mediate the laser induced thermolysis of the cancer stem cells that initiate and drive growth of cancer. This paper addresses the Lgr5 cell surface marker mediating the Wnt/β-catenin signal transduction as a potential target for anti-cancer laser immunotherapy of skin cancers.

  17. Bacteriocins as potential anticancer agents

    Directory of Open Access Journals (Sweden)

    Sukhraj eKaur

    2015-11-01

    Full Text Available Cancer remains one of the leading causes of deaths worldwide, despite advances in its treatment and detection. The conventional chemotherapeutic agents used for the treatment of cancer have nonspecific toxicity towards normal body cells that cause various side effects. Secondly, cancer cells are known to develop chemotherapy resistance in due course of treatment. Thus, the demand for novel anti-cancer agents is increasing day by day. Some of the experimental studies have reported the therapeutic potential of bacteriocins against various types of cancer cell lines. Bacteriocins are ribosomally-synthesized cationic peptides secreted by almost all groups of bacteria. Some bacteriocins have shown selective cytotoxicity towards cancer cells as compared to normal cells. This makes them promising candidates for further investigation and clinical trials. In this review article, we present the overview of the various cancer cell-specific cytotoxic bacteriocins, their mode of action and efficacies.

  18. The anti-cancer IgM monoclonal antibody PAT-SM6 binds with high avidity to the unfolded protein response regulator GRP78.

    Directory of Open Access Journals (Sweden)

    Zachary Rosenes

    Full Text Available The monoclonal IgM antibody PAT-SM6 derived from human tumours induces apoptosis in tumour cells and is considered a potential anti-cancer agent. A primary target for PAT-SM6 is the unfolded protein response regulator GRP78, over-expressed externally on the cell surface of tumour cells. Small angle X-ray scattering (SAXS studies of human GRP78 showed a two-domain dumbbell-shaped monomer, while SAXS analysis of PAT-SM6 revealed a saucer-shaped structure accommodating five-fold symmetry, consistent with previous studies of related proteins. Sedimentation velocity analysis of GRP78 and PAT-SM6 mixtures indicated weak complex formation characterized by dissociation constants in the high micromolar concentration range. In contrast, enzyme-linked immunosorbant assays (ELISAs showed strong and specific interactions between PAT-SM6 and immobilized GRP78. The apparent binding constant estimated from a PAT-SM6 saturation curve correlated strongly with the concentration of GRP78 used to coat the microtiter tray. Experiments using polyclonal antiGRP78 IgG antibodies or a monoclonal IgG derivative of PAT-SM6 did not show a similar dependence. Competition experiments with soluble GRP78 indicated more effective inhibition of PAT-SM6 binding at low GRP78 coating concentrations. These observations suggest an avidity-based binding mechanism that depends on the multi-point attachment of PAT-SM6 to GRP78 clustered on the surface of the tray. Analysis of ELISA data at high GRP78 coating concentrations yielded an apparent dissociation constant of approximately 4 nM. We propose that the biological action of PAT-SM6 in tumour cell apoptosis may depend on the multivalent nature of PAT-SM6 and the high avidity of its interaction with multiple GRP78 molecules clustered on the tumour cell surface.

  19. Anti-cancer drug loaded iron-gold core-shell nanoparticles (Fe@Au) for magnetic drug targeting.

    Science.gov (United States)

    Kayal, Sibnath; Ramanujan, Raju Vijayaraghavan

    2010-09-01

    Magnetic drug targeting, using core-shell magnetic carrier particles loaded with anti-cancer drugs, is an emerging and significant method of cancer treatment. Gold shell-iron core nanoparticles (Fe@Au) were synthesized by the reverse micelle method with aqueous reactants, surfactant, co-surfactant and oil phase. XRD, XPS, TEM and magnetic property measurements were utilized to characterize these core-shell nanoparticles. Magnetic measurements showed that the particles were superparamagnetic at room temperature and that the saturation magnetization decreased with increasing gold concentration. The anti-cancer drug doxorubicin (DOX) was loaded onto these Fe@Au nanoparticle carriers and the drug release profiles showed that upto 25% of adsorbed drug was released in 80 h. It was found that the amine (-NH2) group of DOX binds to the gold shell. An in vitro apparatus simulating the human circulatory system was used to determine the retention of these nanoparticle carriers when exposed to an external magnetic field. A high percentage of magnetic carriers could be retained for physiologically relevant flow speeds of fluid. The present findings show that DOX loaded gold coated iron nanoparticles are promising for magnetically targeted drug delivery.

  20. Targeted anti-cancer prodrug based on carbon nanotube with photodynamic therapeutic effect and pH-triggered drug release

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Jianquan; Zeng, Fang, E-mail: mcfzeng@scut.edu.cn; Xu, Jiangsheng; Wu, Shuizhu, E-mail: shzhwu@scut.edu.cn [South China University of Technology, College of Materials Science and Engineering, State Key Laboratory of Luminescent Materials and Devices (China)

    2013-09-15

    Herein, we describe a multifunctional anti-cancer prodrug system based on water-dispersible carbon nanotube (CNT); this prodrug system features active targeting, pH-triggered drug release, and photodynamic therapeutic properties. For this prodrug system (with the size of {approx}100-300 nm), an anti-cancer drug, doxorubicin (DOX), was incorporated onto CNT via a cleavable hydrazone bond; and a targeting ligand (folic acid) was also coupled onto CNT. This prodrug can preferably enter folate receptor (FR)-positive cancer cells and undergo intracellular release of the drug triggered by the reduced pH. The targeted CNT-based prodrug system can cause lower cell viability toward FR-positive cells compared to the non-targeted ones. Moreover, the CNT carrier exhibits photodynamic therapeutic (PDT) action; and the cell viability of FR-positive cancer cells can be further reduced upon light irradiation. The dual effects of pH-triggered drug release and PDT increase the therapeutic efficacy of the DOX-CNT prodrug. This study may offer some useful insights on designing and improving the applicability of CNT for other drug delivery systems.

  1. Content determination of benzyl glucosinolate and anti-cancer activity of its hydrolysis product inCarica papaya L.

    Institute of Scientific and Technical Information of China (English)

    Ze-You Li; Yong Wang; Wen-Tao Shen; Peng Zhou

    2012-01-01

    Objective:To determine the content of benzyl glucosinolate(BG)in the pulp and the seed and investigate the anti-cancer activity of its hydrolysis product inCarica papaya L.Methods:Determination ofBG was performed on an HypersilBDS C18 column at the wavelength of214 nm with0.1% trifluoroacetic acid (TFA)aqueous solution (A) and 0.1%TFA acetonitrile (B)as the mobile phase. In vitro activity test was adopted with cultured human lung cancerH69 cellin vitro to investigate the inhibition rate of cell proliferation of benzyl isothiocyanate(BITC)againstH69 cell.Results: The pulp has more BG before the maturation of papaya and it nearly disappeared after papaya matured, while the seed containsBG at every stage. Activity test demonstrated that the a higher concentration ofBITC would have better inhibition rate of cell proliferation onH69 cell, and the IC50 was6.5 μmol/L.Conclusions:BG also can be produced in the pulp of papaya and it will be stored in the seed after the fruit has been matured. The hydrolysis product ofBG has certain cancer-prevention anti-cancer activities for human.

  2. Nano-mechanical Phenotype as a Promising Biomarker to Evaluate Cancer Development, Progression, and Anti-cancer Drug Efficacy.

    Science.gov (United States)

    Park, Soyeun

    2016-06-01

    Since various bio-mechanical assays have been introduced for studying mechanical properties of biological samples, much progress has been made in cancer biology. It has been noted that enhanced mechanical deformability can be used as a marker for cancer diagnosis. The relation between mechanical compliances and the metastatic potential of cancer cells has been suggested to be a promising prognostic marker. Although it is yet to be conclusive about its clinical application due to the complexity in the tissue integrity, the nano-mechanical compliance of human cell samples has been evaluated by several groups as a promising marker in diagnosing cancer development and anticipating its progression. In this review, we address the mechanical properties of diverse cancer cells obtained by atomic force microscopy-based indentation experiments and reiterate prognostic relations between the nano-mechanical compliance and cancer progression. We also review the nano-mechanical responses of cancer cells to the anti-cancer drug treatment in order to interrogate a possible use of nano-mechanical compliance as a means to evaluate the effectiveness of anti-cancer drugs.

  3. How should immunomodulators be optimized when used as combination therapy with anti-tumor necrosis factor agents in the management of inflammatory bowel disease?

    Science.gov (United States)

    Ward, Mark G; Irving, Peter M; Sparrow, Miles P

    2015-10-28

    In the last 15 years the management of inflammatory bowel disease has evolved greatly, largely through the increased use of immunomodulators and, especially, anti-tumor necrosis factor (anti-TNF) biologic agents. Within this time period, confidence in the use of anti-TNFs has increased, whilst, especially in recent years, the efficacy and safety of thiopurines has been questioned. Yet despite recent concerns regarding the risk: benefit profile of thiopurines, combination therapy with an immunomodulator and an anti-TNF has emerged as the recommended treatment strategy for the majority of patients with moderate-severe disease, especially those who are recently diagnosed. Concurrently, therapeutic drug monitoring has emerged as a means of optimizing the dosage of both immunomodulators and anti-TNFs. However the recommended therapeutic target levels for both drug classes were largely derived from studies of monotherapy with either agent, or studies underpowered to analyze outcomes in combination therapy patients. It has been assumed that these target levels are applicable to patients on combination therapy also, however there are few data to support this. Similarly, the timing and duration of treatment with immunomodulators when used in combination therapy remains unknown. Recent attention, including post hoc analyses of the pivotal registration trials, has focused on the optimization of anti-TNF agents, when used as either monotherapy or combination therapy. This review will instead focus on how best to optimize immunomodulators when used in combination therapy, including an evaluation of recent data addressing unanswered questions regarding the optimal timing, dosage and duration of immunomodulator therapy in combination therapy patients.

  4. The Researching Progress of Anti-cancer Mechanism of Polysaccharides from fungi%菌多糖抗癌机理的研究概况

    Institute of Scientific and Technical Information of China (English)

    倪士峰; 罗启超; 仝瑛; 侯恩太; 田苗; 赵婷

    2009-01-01

    The retrieval of the existing literature on the types of fungi polysaccharides, chemical structure and anti-canceractivity, anti-cancer mechanism was outlined, providing scientific information for further study on anti-cancer action of polysaccharides of fungi.%通过对现有检索文献,对真菌多糖种类、化学结构、抗癌活性与机理进行了概述,为进一步研究菌多糖抗癌提供资料.

  5. T-oligo as an anticancer agent in colorectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Wojdyla, Luke; Stone, Amanda L. [Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL (United States); Sethakorn, Nan [Department of Medicine, University of Chicago, Chicago, IL (United States); Uppada, Srijayaprakash B.; Devito, Joseph T. [Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL (United States); Bissonnette, Marc [Department of Medicine, University of Chicago, Chicago, IL (United States); Puri, Neelu, E-mail: neelupur@uic.edu [Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL (United States)

    2014-04-04

    Highlights: • T-oligo induces cell cycle arrest, senescence, apoptosis, and differentiation in CRC. • Treatment with T-oligo downregulates telomere-associated proteins. • T-oligo combined with an EGFR-TKI additively inhibits cellular proliferation. • T-oligo has potential as an effective therapeutic agent for CRC. - Abstract: In the United States, there will be an estimated 96,830 new cases of colorectal cancer (CRC) and 50,310 deaths in 2014. CRC is often detected at late stages of the disease, at which point there is no effective chemotherapy. Thus, there is an urgent need for effective novel therapies that have minimal effects on normal cells. T-oligo, an oligonucleotide homologous to the 3′-telomere overhang, induces potent DNA damage responses in multiple malignant cell types, however, its efficacy in CRC has not been studied. This is the first investigation demonstrating T-oligo-induced anticancer effects in two CRC cell lines, HT-29 and LoVo, which are highly resistant to conventional chemotherapies. In this investigation, we show that T-oligo may mediate its DNA damage responses through the p53/p73 pathway, thereby inhibiting cellular proliferation and inducing apoptosis or senescence. Additionally, upregulation of downstream DNA damage response proteins, including E2F1, p53 or p73, was observed. In LoVo cells, T-oligo induced senescence, decreased clonogenicity, and increased expression of senescence associated proteins p21, p27, and p53. In addition, downregulation of POT1 and TRF2, two components of the shelterin protein complex which protects telomeric ends, was observed. Moreover, we studied the antiproliferative effects of T-oligo in combination with an EGFR tyrosine kinase inhibitor, Gefitinib, which resulted in an additive inhibitory effect on cellular proliferation. Collectively, these data provide evidence that T-oligo alone, or in combination with other molecularly targeted therapies, has potential as an anti-cancer agent in CRC.

  6. Competing intermolecular interactions of artemisinin-type agents and aspirin with membrane phospholipids: Combined model mass spectrometry and quantum-chemical study

    Energy Technology Data Exchange (ETDEWEB)

    Pashynska, Vlada, E-mail: vlada@vl.kharkov.ua [B.Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine, Lenin Ave., 47, 61103 Kharkov (Ukraine); Stepanian, Stepan [B.Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine, Lenin Ave., 47, 61103 Kharkov (Ukraine); Gömöry, Agnes; Vekey, Karoly [Institute of Organic Chemistry of Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Magyar tudosok korutja, 2, Budapest H-1117 (Hungary); Adamowicz, Ludwik [University of Arizona, Department of Chemistry and Biochemistry, Tucson, AZ 85721 (United States)

    2015-07-09

    Highlights: • Competitive binding of artemisinin agents and aspirin with phospholipids is shown. • Complexation between the antimalarial drugs and aspirin molecules is also found. • Energetically favorable structures of the model complexes are identified by DFT. • Membranotropic activity of the studied drugs can be modified under joint usage. - Abstract: Study of intermolecular interactions of antimalarial artemisinin-type drugs and aspirin with membrane phospholipids is important in term of elucidation of the drugs activity modification under their joint usage. Combined experimental and computational study of the interaction of dihydroartemisinin, α-artemether, and artesunate with aspirin (ASP) and dipalmitoylphosphatidylcholine (DPPC) is performed by electrospray ionization (ESI) mass spectrometry and by DFT B3LYP/aug-cc-pVDZ methods. The results of the ESI investigation of systems containing artemisinin-type agent, ASP and DPPC, reveal a competition between the antimalarial agents and ASP for binding with DPPC molecules. The complexation between the antimalarial drugs and ASP is also found. Observed phenomena suggest that membranotropic activity of artemisin-type agents and aspirin is modified under their combined usage. To elucidate structure-energy characteristics of the non-covalent complexes studied the model DFT calculations are performed for dihydroartemisinin · ASP complex and complexes of the each drug with phosphatidylcholine head of DPPC in neutral and cationized forms.

  7. Novel Agent Based-approach for Industrial Diagnosis: A Combined use Between Case-based Reasoning and Similarity Measure

    Directory of Open Access Journals (Sweden)

    Fatima Zohra Benkaddour

    2016-12-01

    Full Text Available In spunlace nonwovens industry, the maintenance task is very complex, it requires experts and operators collaboration. In this paper, we propose a new approach integrating an agent- based modelling with case-based reasoning that utilizes similarity measures and preferences module. The main purpose of our study is to compare and evaluate the most suitable similarity measure for our case. Furthermore, operators that are usually geographically dispersed, have to collaborate and negotiate to achieve mutual agreements, especially when their proposals (diagnosis lead to a conflicting situation. The experimentation shows that the suggested agent-based approach is very interesting and efficient for operators and experts who collaborate in INOTIS enterprise.

  8. 辐射防护药物的优化组合研究%Screen of Combination of Radioprotective Agents

    Institute of Scientific and Technical Information of China (English)

    邵帅; 谭洪玲; 肖成荣; 洪倩; 霍超; 王宇光; 梁乾德; 马增春; 高月

    2012-01-01

    目的 选择目前已有的辐射防护药物(包括化学药物、中药复方及细胞因子),研究联合用药的辐射防护活性,筛选最佳药物组合,为新的急性放射损伤治疗方案提供实验依据.方法 试验分为模型对照组,E0703+ rhG-CSF+新型四物合用组(组合Ⅰ),E0703+ rhIL-11+刺白胶囊合用组(组合Ⅱ),E0703+ rhG-CSF+新型四物合用组(组合Ⅲ),E0703+rhIL-11+刺白胶囊合用组(组合Ⅳ),523 +rhG-CSF+新型四物合用组(组合Ⅴ),523 +rhIL-11+刺白胶囊合用组(组合Ⅵ),523 +rhG-CSF+刺白胶囊合用组(组合Ⅶ),523+ rhIL-11+刺白胶囊合用组(组合Ⅷ),共9组药物组合.60Coγ射线7.5 Gy照射造模,照射前24 h按组分别给予化学药物预防,照后皮下注射细胞因子,并灌胃给予中药.照射前,照射后1、4、7、10、13、16、22 d检测小鼠外周血象.照射后第7天进行祖细胞集落培养实验.结果 与模型对照组比较,除组合Ⅶ外,其余各组合对外周血液成分在不同时间点呈现不同程度的促进恢复作用;而对各造血祖细胞集落的生长,组合Ⅰ、Ⅲ的作用最为显著;其中,组合Ⅲ尚有促外周血白细胞、红细胞、血红蛋白值恢复的作用;组合Ⅴ也有加速外周血液成分恢复和促进粒系生长的作用.结论 综合比较,组合Ⅲ对促进外周血液各成分恢复和造血祖细胞生长均有较好效果.%Objective To screen the best combination of radioprotectors by pretreating and curing cobalt-60 gamma irradiated mice with combined. Methods Synthetic compounds (E0703, 523) were used as preventive a-gents, cytokine ( rhG-CSF, rhIL-11) was used to cure early acute radiation damage, and tradiational Chinese medicine formulas (new si-wu capsules, ci-bai capsules) were used to reverse late radiation damage. Ninety mice were irradiated at a dose of 7. 5 Gy using cobalt-60 gamma resources. Blood samples were collected from the tail end and the number of peripheral blood cells was counted

  9. Effects of combination of melatonin and laser irradiation on ovarian cancer cells and endothelial lineage viability.

    Science.gov (United States)

    Akbarzadeh, Maryam; Nouri, Mohammad; Banekohal, Maryam Vahidi; Cheraghi, Omid; Tajalli, Habib; Movassaghpour, Aliakbar; Soltani, Sina; Cheraghi, Hadi; Feizy, Navid; Montazersaheb, Soheila; Rahbarghazi, Reza; Samadi, Nasser

    2016-11-01

    The main goal of anti-cancer therapeutic approaches is to induce apoptosis in tumor masses but not in the normal tissues. Nevertheless, the combination of photodynamic irradiation with complementary oncostatic agents contributes to better therapeutic performance. Here, we applied two different cell lines; SKOV3 ovarian carcinoma cells and HUVECs umbilical cord cells as in vitro models to pinpoint whether pharmacological concentration of melatonin in combination with photodynamic therapy induces cell cytotoxicity. The cells were separately treated with various concentrations of melatonin (0 to 10 mM) and photodynamic irradiation alone or in combination. Cells were preliminary exposed to increasing concentrations of melatonin for 24 h and subsequently underwent laser irradiation for 60 s with an output power of 80 mW in continuous mode at 675 nm wavelength and a total light dose of 13.22 J/cm(2). Cell viability, apoptosis/necrosis rates, and reactive oxygen species levels as well as heat shock protein 70 expression were monitored after single and combined treatments. A statistical analysis was performed by applying one-way analysis of variance (ANOVA) and post hoc Tukey's test. Combination treatment of both cell lines caused a marked increase in apoptosis/necrosis rate, reactive oxygen species generation, and heat shock protein 70 expression compared to incubation of the cells with each agent alone (p melatonin as a potent stimulus for enhancing the efficacy of laser on induction of apoptosis in tumor cells.

  10. Anti cancer activity on Graviola, an exciting medicinal plant extract vs various cancer cell lines and a detailed computational study on its potent anti-cancerous leads.

    Science.gov (United States)

    Paul, Jeno; Gnanam, R; Jayadeepa, R M; Arul, L

    2013-01-01

    Nature is the world's best chemist: Many naturally occurring compounds have very complicated structures that present great challenges to chemists wishing to determine their structures or replicate them. The plant derived herbal compounds have a long history of clinical use, better patient tolerance and acceptance. Their high ligand binding affinity to the target introduce the prospect of their use in chemo preventive applications; in addition they are freely available natural compounds that can be safely used to prevent various ailments. Plants became the basis of traditional medicine system throughout the world for thousands of years and continue to provide mankind with new remedies. Here, we present a research study on a medicinal plant, Graviola, a native of North America but rarely grown in India. It has a wide potent anticancerous agents coined as Acetogenins which play a key role towards many varieties of cancer, Acetogenins are potent inhibitors of NADH oxidase of the plasma membranes of cancer cells. Potent leads were taken for the study through literature survey, major types of cancer targets were identified, the natureceuticals and the cancer protein were subjected to docking analysis, further with the help of the dock score and other descriptor properties top ranked molecules were collected, commercial drug was also selected and identified as a Test compound for the study. Later, the phytochemicals were subjected to toxicity analysis. Those screened compounds were then considered for active site analysis and to find the best binding site for the study. R Programming library was used to find the best leads. Phytochemicals such as Anonaine, Friedelin, Isolaureline, Annonamine, Anomurine, Kaempferol, Asimilobine, Quercetin, Xylopine were clustered and the highly clustered compounds such as Annonamine , Kaempferol termed to be a potential lead for the study. Further study on experimental analysis may prove the potentiality of these compounds. In the

  11. The Toxicity and Anti-cancer Activity of the Hexane Layer of Melia azedarach L. var. japonica Makino's Bark Extract.

    Science.gov (United States)

    Kim, Hyun Woo; Kang, Se Chan

    2012-03-01

    In this study, the 4-week oral toxicity and anti-cancer activity of the hexane layer of Melia azedarach L. var. japonica Makino's bark extract were investigated. We carried out a hollow fiber (HF) assay and 28- day repeated toxicity study to confirm the anti-cancer effect and safety of the hexane layer. The HF assay was carried out using an A549 human adenocarcinoma cell via intraperitoneal (IP) site with or without cisplatin. In the result, the 200 mg/kg b.w of hexane layer with 4 mg/kg b.w of cisplatin treated group, showed the highest cytotoxicity aginst A549 carcinoma cells. For the 28-day repeated toxicity study, 6 groups of 10 male and female mice were given by gavage 200, 100, or 50 mg/kg b.w hexane layer with or without 4 mg/kg b.w of cisplatin against body weight, and were then sacrificed for blood and tissue sampling. The subacute oral toxicity study in mice with doses of 200, 100, and 50 mg/kg b.w hexane layer showed no significant changes in body weight gain and general behavior. The cisplatin-treated group significantly decreased in body weight compared to the control group but regained weight with 100 and 200 mg/kg b.w of hexane layer. The biochemical analysis showed significant increase in several parameters (ALT, total billirubin, AST, creatinine, and BUN) in cisplatin-treated groups. However, in the group given a co-treatment of hexane layer (200 mg/kg b.w), levels of these parameters decreased. In hematological analysis, cisplatin induced the reduction of WBCs and neutrophils but co-treatment with hexane layer (100 and 200 mg/kg b.w) improved these toxicities caused by cisplatin. The histological profile of the livers showed eosinophilic cell foci in central vein and portal triad in cisplatin treated mice. These results show that hexane layer might have an anti-cancer activity and could improve the toxicity of cisplatin.

  12. Structure-based design, discovery and development of checkpoint kinase inhibitors as potential anti-cancer therapies

    Science.gov (United States)

    Matthews, Thomas P; Jones, Alan M; Collins, Ian

    2014-01-01

    Introduction Checkpoint kinase inhibitors offer the promise of enhancing the effectiveness of widely prescribed cancer chemotherapies and radiotherapy by inhibiting the DNA damage response, as well as the potential for single agent efficacy. Areas covered This article surveys structural insights into the checkpoint kinases CHK1 and CHK2 that have been exploited to enhance the selectivity and potency of small molecule inhibitors. The use of mechanistic cellular assays to guide the optimisation of inhibitors is reviewed. The status of the current clinical candidates and emerging new clinical contexts for CHK1 and CHK2 inhibitors are discussed, including the prospects for single agent efficacy. Expert opinion Protein bound water molecules play key roles in structural features that can be targeted to gain high selectivity for either enzyme. The results of early phase clinical trials of checkpoint inhibitors have been mixed, but significant progress has been made in testing the combination of CHK1 inhibitors with genotoxic chemotherapy. Second generation CHK1 inhibitors are likely to benefit from increased selectivity and oral bioavailability. While the optimum therapeutic context for CHK2 inhibition remains unclear, the emergence of single agent preclinical efficacy for CHK1 inhibitors in specific tumour types exhibiting constitutive replication stress represents exciting progress in exploring the therapeutic potential of these agents. PMID:23594139

  13. Monotherapy and combined therapy of new potential antitumor compounds: antiproliferative activities and biological targets

    OpenAIRE

    Marques, Mara Lisa Miranda

    2014-01-01

    Review article Martins, P., Marques, M., Coito, L., Pombeiro, A.J.L., Baptista, P.V., Fernandes, A.R. 2014. Organometallic Compounds in Cancer Therapy: Past Lessons and Future Directions. Anti-cancer Agents in Medicinal Chemistry 14. PMID: 25173559

  14. Phytochemical Analysis and Anti-cancer Investigation of Boswellia serrata Bioactive Constituents In Vitro.

    Science.gov (United States)

    Ahmed, Hanaa H; Abd-Rabou, Ahmed A; Hassan, Amal Z; Kotob, Soheir E

    2015-01-01

    presence of pent-2-ene-1,4-dione, 2-methyl- levulinic acid methyl ester, 3,5- dimethyl- 1- hexane, methyl-1-methylpentadecanoate, 1,1- dimethoxy cyclohexane, 1-methoxy-4-(1-propenyl)benzene and 17a-hydroxy-17a-cyano, preg-4-en-3-one. GC/MS analysis of volatile oils of B. Serrata oleo gum resin revealed the presence of sabinene (19.11%), terpinen-4-ol (14.64%) and terpinyl acetate (13.01%) as major constituents. The anti-cancer effect of two extracts (1 and 2) and four fractions (I, II, III and IV) as well as volatile oils of B. Serrata oleo gum resin on HepG2 and HCT 116 cell lines was investigated using SRB assay. Regarding HepG2 cell line, extracts 1 and 2 elicited the most pronounced cytotoxic activity with IC50 values equal 1.58 and 5.82 μg/mL at 48 h, respectively which were comparable to doxorubicin with an IC50 equal 4.68 μg/mL at 48 h. With respect to HCT 116 cells, extracts 1 and 2 exhibited the most obvious cytotoxic effect; with IC50 values equal 0.12 and 6.59 μg/mL at 48 h, respectively which were comparable to 5-fluorouracil with an IC50 equal 3.43 μg/ mL at 48 h. In conclusion, total extracts, fractions and volatile oils of B. Serrata oleo gum resin proved their usefulness as cytotoxic mediators against HepG2 and HCT 116 cell lines with different potentiality (extracts > fractions > volatile oil). In the two studied cell lines the cytotoxic acivity of each of extract 1 and 2 was comparable to doxorubicin and 5-fluorouracil, respectively. Extensive in vivo research is warranted to explore the precise molecular mechanisms of these bioactive natural products in cytotoxicity against HCC and CRC cells.

  15. uPAR as anti-cancer target: evaluation of biomarker potential, histological localization, and antibody-based therapy

    DEFF Research Database (Denmark)

    Lund, Ida K; Illemann, Martin; Sørensen, Tine Thurison

    2011-01-01

    , and a potential diagnostic and predictive impact of the different uPAR forms has been reported. Hence, pericellular proteolysis seems to be a suitable target for anti-cancer therapy and numerous approaches have been pursued. Targeting of this process may be achieved by preventing the binding of uPA to u......Degradation of proteins in the extracellular matrix is crucial for the multistep process of cancer invasion and metastasis. Compelling evidence has demonstrated the urokinase receptor (uPAR) and its cognate ligand, the urokinase plasminogen activator (uPA), to play critical roles in the concerted...... up-regulated during cancer progression and is primarily confined to the tumor-associated stromal compartment. Furthermore, both uPAR and uPA have proven to be prognostic markers in several types of cancer; high levels indicating poor survival. The cleaved forms of uPAR are also prognostic markers...

  16. Molecular biology of cancer-associated fibroblasts: can these cells be targeted in anti-cancer therapy?

    Science.gov (United States)

    Gonda, Tamas A; Varro, Andrea; Wang, Timothy C; Tycko, Benjamin

    2010-02-01

    It is increasingly recognized that the non-neoplastic stromal compartment in most solid cancers plays an active role in tumor proliferation, invasion and metastasis. Cancer-associated fibroblasts (CAFs) are one of the most abundant cell types in the tumor stroma, and these cells are pro-tumorigenic. Evidence that CAFs are epigenetically and possibly also genetically distinct from normal fibroblasts is beginning to define these cells as potential targets of anti-cancer therapy. Here, we review the cell-of-origin and molecular biology of CAFs, arguing that such knowledge provides a rational basis for designing therapeutic strategies to coordinately and synergistically target both the stromal and malignant epithelial component of human cancers.

  17. Identification of the non-ribosomal peptide synthetase responsible for biosynthesis of the potential anti-cancer drug sansalvamide in Fusarium solani

    DEFF Research Database (Denmark)

    Romans-Fuertes, Patricia; Sondergaard, Teis Esben; Sandmann, Manuela Ilse Helga

    2016-01-01

    Sansalvamide is a cyclic pentadepsipeptide produced by Fusarium solani and has shown promising results as potential anti-cancer drug. The biosynthetic pathway has until now remained unidentified, but here we used an Agrobacterium tumefaciens-mediated transformation (ATMT) approach to generate...

  18. Variation of Protein's Expression Correlated to the Drug Resistance after Sequential Anti-cancer Treatment in Human Lung Cancer Cell Line

    Institute of Scientific and Technical Information of China (English)

    Zhi-hong Chi; Ji-ren Zhang; Peng Li; Duan-qi Liu

    2005-01-01

    @@ Multi-drug resistance is one of the leading causes for fai lure to treat patients with cancer. This study is to explore the expression of the proteins correlated with chemoresistance in a human lung cancer cell line (LPET-a-1) repeatedly treated by anti-cancer drugs.

  19. In silico inspired design and synthesis of a novel tubulin-binding anti-cancer drug: folate conjugated noscapine (Targetin)

    Science.gov (United States)

    Naik, Pradeep K.; Lopus, Manu; Aneja, Ritu; Vangapandu, Surya N.; Joshi, Harish C.

    2012-02-01

    Our screen for tubulin-binding small molecules that do not depolymerize bulk cellular microtubules, but based upon structural features of well known microtubule-depolymerizing colchicine and podophyllotoxin, revealed tubulin binding anti-cancer property of noscapine (Ye et al. in Proc Natl Acad Sci USA 95:2280-2286, 1998). Guided by molecular modelling calculations and structure-activity relationships we conjugated at C9 of noscapine, a folate group—a ligand for cellular folate receptor alpha (FRα). FRα is over-expressed on some solid tumours such as ovarian epithelial cancers. Molecular docking experiments predicted that a folate conjugated noscapine (Targetin) accommodated well inside the binding cavity (docking score -11.295 kcal/mol) at the interface between α- and β-tubulin. The bulky folate moiety of Targetin is extended toward lumen of microtubules. The binding free energy (Δ G bind) computed based on molecular mechanics energy minimization was -221.01 kcal/mol that revealed favourable interaction of Targetin with the receptor. Chemical synthesis, tubulin-binding experiments, and anti-cancer activity in vitro corroborate fully well with the molecular modelling experiments. Targetin binds tubulin with a dissociation constant ( K d value) of 149 ± 3.0 μM and decreases the transition frequencies between growth and shortening phases of microtubule assembly dynamics at concentrations that do not alter the total polymer mass. Cancer cells in general were more sensitive to Targetin compared with the founding compound noscapine (IC50 in the range of 15-40 μM). Quite strikingly, ovarian cancer cells (SKOV3 and A2780), known to overexpress FRα, were much more sensitive to targetin (IC50 in the range of 0.3-1.5 μM).

  20. Characterization of the apoptotic response induced by the cyanine dye D112: a potentially selective anti-cancer compound.

    Directory of Open Access Journals (Sweden)

    Ning Yang

    Full Text Available Chemotherapeutic drugs that are used in anti-cancer treatments often cause the death of both cancerous and noncancerous cells. This non-selective toxicity is the root cause of untoward side effects that limits the effectiveness of therapy. In order to improve chemotherapeutic options for cancer patients, there is a need to identify novel compounds with higher discrimination for cancer cells. In the past, methine dyes that increase the sensitivity of photographic emulsions have been investigated for anti-cancer properties. In the 1970's, Kodak Laboratories initiated a screen of approximately 7000 dye structural variants for selective toxicity. Among these, D112 was identified as a promising compound with elevated toxicity against a colon cancer cell line in comparison to a non-transformed cell line. Despite these results changing industry priorities led to a halt in further studies on D112. We decided to revive investigations on D112 and have further characterized D112-induced cellular toxicity. We identified that in response to D112 treatment, the T-cell leukemia cell line Jurkat showed caspase activation, mitochondrial depolarization, and phosphatidylserine externalization, all of which are hallmarks of apoptosis. Chemical inhibition of caspase enzymatic activity and blockade of the mitochondrial pathway through Bcl-2 expression inhibited D112-induced apoptosis. At lower concentrations, D112 induced growth arrest. To gain insight into the molecular mechanism of D112 induced mitochondrial dysfunction, we analyzed the intracellular localization of D112, and found that D112 associated with mitochondria. Interestingly, in the cell lines that we tested, D112 showed increased toxicity toward transformed versus non-transformed cells. Results from this work identify D112 as a potentially interesting molecule warranting further investigation.

  1. Colon-available raspberry polyphenols exhibit anti-cancer effects on in vitro models of colon cancer

    Directory of Open Access Journals (Sweden)

    McDougall Gordon

    2007-01-01

    Full Text Available Abstract Background There is a probable association between consumption of fruit and vegetables and reduced risk of cancer, particularly cancer of the digestive tract. This anti-cancer activity has been attributed in part to anti-oxidants present in these foods. Raspberries in particular are a rich source of the anti-oxidant compounds, such as polyphenols, anthocyanins and ellagitannins. Methods A "colon-available" raspberry extract (CARE was prepared that contained phytochemicals surviving a digestion procedure that mimicked the physiochemical conditions of the upper gastrointestinal tract. The polyphenolic-rich extract was assessed for anti-cancer properties in a series of in vitro systems that model important stages of colon carcinogenesis, initiation, promotion and invasion. Results The phytochemical composition of CARE was monitored using liquid chromatography mass spectrometry. The colon-available raspberry extract was reduced in anthocyanins and ellagitannins compared to the original raspberry juice but enriched in other polyphenols and polyphenol breakdown products that were more stable to gastrointestinal digestion. Initiation – CARE caused significant protective effects against DNA damage induced by hydrogen peroxide in HT29 colon cancer cells measured using single cell microgelelectrophoresis. Promotion – CARE significantly decreased the population of HT29 cells in the G1 phase of the cell cycle, effectively reducing the number of cells entering the cell cycle. However, CARE had no effect on epithelial integrity (barrier function assessed by recording the trans-epithelial resistance (TER of CACO-2 cell monolayers. Invasion – CARE caused significant inhibition of HT115 colon cancer cell invasion using the matrigel invasion assay. Conclusion The results indicate that raspberry phytochemicals likely to reach the colon are capable of inhibiting several important stages in colon carcinogenesis in vitro.

  2. Engineering zinc finger protein transcription factors to downregulate the epithelial glycoprotein-2 promoter as a novel anti-cancer treatment.

    Science.gov (United States)

    Gommans, Willemijn M; McLaughlin, Pamela M J; Lindhout, Beatrice I; Segal, David J; Wiegman, D J; Haisma, Hidde J; van der Zaal, Bert J; Rots, Marianne G

    2007-05-01

    Zinc finger protein transcription factors (ZFP-TFs) are emerging as powerful novel tools for the treatment of many different diseases. ZFPs are DNA-binding motifs and consist of modular zinc finger domains. Each domain can be engineered to recognize a specific DNA triplet, and stitching six domains together results in the recognition of a gene-specific sequence. Inhibition of gene expression can be achieved by fusing a repressor domain to these DNA-binding motifs. In this study, we engineered ZFP-TFs to downregulate the activity of the epithelial glycoprotein-2 (EGP-2) promoter. The protein EGP-2 is overexpressed in a wide variety of cancer types and EGP-2 downregulation has been shown to result in a decreased oncogenic potential of tumor cells. Therefore, downregulation of EGP-2 expression by ZFP-TFs provides a novel anti-cancer therapeutic. Using a straightforward strategy, we engineered a 3-ZFP that could bind a 9 bp sequence within the EGP-2 promoter. After the addition of a repressor domain, this 3-ZFP-TF could efficiently downregulate EGP-2 promoter activity by 60%. To demonstrate the flexibility of this technology, we coupled an activation domain to the engineered ZFP, resulting in a nearly 200% increase in EGP-2 promoter activity. To inhibit the endogenous EGP-2 promoter, we engineered 6-ZFP-TFs. Although none of the constructed ZFP-TFs could convincingly modulate the endogenous promoter, efficient and specific inhibition of the exogenous promoter was observed. Overall, ZFP-TFs are versatile bi-directional modulators of gene expression and downregulation of EGP-2 promoter activity using ZFP-TFs can ultimately result in a novel anti-cancer treatment.

  3. The Study on Acute and Subacute Toxicity and Anti-Cancer Effects of cultivated wild ginseng Herbal acupuncture

    Directory of Open Access Journals (Sweden)

    Ki-Rok, Kwon

    2003-06-01

    Full Text Available Objectives : The purpose of this study was to investigate acute and subacute toxicity and sarcoma-180 anti-cancer effects of herbal acupuncture with cultivated wild ginseng (distilled in mice and rats. Methods : Balb/c mice were injected intravenous with cultivated wild ginseng herbal acupuncture for LD50 and acute toxicity test. Sprague-Dawley rats were injected intravenous with cultivated wild ginseng herbal acupuncture for subacute toxicity test. The cultivated wild ginseng herbal-acupuncture was injected at the tail vein of mice. Results : 1. In acute LD50 toxicity test, there was no mortality thus unable to attain the value. 2. Examining the toxic response in the acute toxicity test, there was no sign of toxication. 3. In acute toxic test, running biochemical serum test couldn't yield any differences between the control and experiment groups. 4. In subacute toxicity test, there was no sign of toxication in the experimental groups and didn't show any changes in weight compared to the normal group. 5. In subacute toxicity test, biochemical serum test showed significant increase of Total albumin, Albumin, and Glucose in the experimental group I compared with the control group. Significant decrease of GOT, ALP, GPT, and Triglyceride were shown. In experiment group II, only Glucose showed significant increase compared with the control group. 6. Measuring survival rate for anti-cancer effects of Sarcoma-180 cancer cell line, all the experimental groups showed significant increase in survival rate. 7. Measuring NK cell activity rate, no significant difference was shown throughout the groups. 8. Measuring Interleukin-2 productivity rate, all the experimental groups didn't show significant difference. 9. For manifestation of cytokine mRNA, significant decrease of interleukin-10 was witnessed in the experimental group compared to the control group. Conclusion : According to the results, we can conclude cultivated wild ginseng herbal acupuncture

  4. Anti-cancer and other bioactivities of Korean Angelica gigas Nakai (AGN) and its major pyranocoumarin compounds.

    Science.gov (United States)

    Zhang, Jinhui; Li, Li; Jiang, Cheng; Xing, Chengguo; Kim, Sung-Hoon; Lü, Junxuan

    2012-12-01

    Korean Angelica gigas Nakai (AGN) is a major medicinal herb used in Asian countries such as Korea and China. Traditionally, its dried root has been used to treat anemia, pain, infection and articular rheumatism in Korea, most often through boiling in water to prepare the dosage forms. The pyranocoumarin compound decursin and its isomer decursinol angelate (DA) are the major chemical components in the alcoholic extracts of the root of AGN. The in vitro anti-tumor activities of decursin and/or DA against prostate cancer, lung cancer, breast cancer, colon cancer, bladder cancer, sarcoma, myeloma and leukemia have been increasingly reported in the past decade whereas the in vivo efficacy in mouse models was established only for a few organ sites. Preliminary pharmacokinetic studies by us and others in rodent models indicated that decursinol (DOH), which has much less in vitro direct anticancer activities by itself, is the major and rapid in vivo hydrolysis metabolite of both decursin and DA. Besides decursin, DA and DOH, other chemical components in AGN such as polysaccharides and polyacetylenes have been reported to exert anti-cancer and anti-inflammation activities as well. We systematically reviewed the published literature on the anti-cancer and other bio-activities effects of AGN extract and decursin, DA and DOH, as well as other chemicals identified from AGN. Although a number of areas are identified that merit further investigation, one critical need is first-in-human studies of the pharmacokinetics of decursin/DA to determine whether humans differ from rodents in absorption and metabolism of these compounds.

  5. In silico inspired design and synthesis of a novel tubulin-binding anti-cancer drug: folate conjugated noscapine (Targetin).

    Science.gov (United States)

    Naik, Pradeep K; Lopus, Manu; Aneja, Ritu; Vangapandu, Surya N; Joshi, Harish C

    2012-02-01

    Our screen for tubulin-binding small molecules that do not depolymerize bulk cellular microtubules, but based upon structural features of well known microtubule-depolymerizing colchicine and podophyllotoxin, revealed tubulin binding anti-cancer property of noscapine (Ye et al. in Proc Natl Acad Sci USA 95:2280-2286, 1998). Guided by molecular modelling calculations and structure-activity relationships we conjugated at C9 of noscapine, a folate group-a ligand for cellular folate receptor alpha (FRα). FRα is over-expressed on some solid tumours such as ovarian epithelial cancers. Molecular docking experiments predicted that a folate conjugated noscapine (Targetin) accommodated well inside the binding cavity (docking score -11.295 kcal/mol) at the interface between α- and β-tubulin. The bulky folate moiety of Targetin is extended toward lumen of microtubules. The binding free energy (ΔG (bind)) computed based on molecular mechanics energy minimization was -221.01 kcal/mol that revealed favourable interaction of Targetin with the receptor. Chemical synthesis, tubulin-binding experiments, and anti-cancer activity in vitro corroborate fully well with the molecular modelling experiments. Targetin binds tubulin with a dissociation constant (K (d) value) of 149 ± 3.0 μM and decreases the transition frequencies between growth and shortening phases of microtubule assembly dynamics at concentrations that do not alter the total polymer mass. Cancer cells in general were more sensitive to Targetin compared with the founding compound noscapine (IC(50) in the range of 15-40 μM). Quite strikingly, ovarian cancer cells (SKOV3 and A2780), known to overexpress FRα, were much more sensitive to targetin (IC(50) in the range of 0.3-1.5 μM).

  6. Therapeutic potential and critical analysis of trastuzumab and bevacizumab in combination with different chemotherapeutic agents against metastatic breast/colorectal cancer affecting various endpoints.

    Science.gov (United States)

    Wahid, Mohd; Mandal, Raju K; Dar, Sajad A; Jawed, Arshad; Lohani, Mohtashim; Areeshi, Mohammad Y; Akhter, Naseem; Haque, Shafiul

    2016-08-01

    Researchers are working day and night across the globe to eradicate or at least lessen the menace of cancer faced by the mankind. The two very frequently occurring cancers faced by the human beings are metastatic breast cancer and metastatic colorectal cancer. The various chemotherapeutic agents like anthracycline, cyclophosphamide, paclitaxel, irinotecan, fluorouracil and leucovorin etc., have been used impressively for long. But the obstinate character of metastatic breast cancer and metastatic colorectal cancer needs more to tackle the threat. So, the scientists found the use of monoclonal antibodies trastuzumab (Herceptin(®)) and bevacizumab (Avastin(®)) for the same. The current study critically investigates the therapeutic potential of trastuzumab and bevacizumab in combination with various chemotherapeutic agents against metastatic breast cancer and metastatic colorectal cancer. To the best of our knowledge, this is the very first critical analysis showing percent wise increase in various positive endpoints like median time to disease progression, median survival, and progression free survival etc. for the treatment of metastatic breast/colorectal cancer using trastuzumab and bevacizumab in combination with different chemotherapeutic agents and provides the rational for the success and failure of the selected monoclonal antibodies.

  7. Theoretical modeling suggests that synergy may result from combined use of two biocontrol agents for controlling foliar pathogens under spatial heterogeneous conditions.

    Science.gov (United States)

    Xu, X-M; Jeger, M J

    2013-08-01

    There has been a trend for combined use of several biocontrol agents (BCAs) with an expectation of synergistic interactions among BCAs. However, previous modeling studies suggested that, under homogeneous and temporal-fluctuating conditions, combined use of two BCAs, in most cases, only results in efficacies similar to the more efficacious one used alone; a result consistent with published experimental data. The present modeling study investigated whether combined use of two mycoparasitic BCAs, two competitive BCAs, or a mycoparasitic and a competitive BCA leads to synergistic interactions under spatially heterogeneous conditions. In the model, there were two patches with varying relative sizes and two BCAs differentially adapted to the two patches. Within the range of model parameter values considered, combined use of two BCAs is more effective than the more efficacious BCA used alone in 72% of the simulated cases. There was also a considerable proportion (≈21%) of model simulations in which combined use of two BCAs led to synergy (i.e., efficacy was greater than expected under the assumption of Bliss independence, especially when each of the two BCAs can only survive in one [different] patch). Combined use of a mycoparasitic BCA with a competitive one is more likely to result in synergy than the other two BCA combinations. When biocontrol activities of individual BCAs are low or moderate, biocontrol efficacy arising from combined use of two BCAs does not depend greatly on biocontrol mechanisms. However, for high BCA activities, combined use with at least one competitive BCA resulted in better control than combined use of two mycoparasitic BCAs. The present modeling study emphasized the need for understanding the degree of spatial patchiness and quantitative relationships between biocontrol activities and external conditions in order to apply commercial BCAs effectively.

  8. A meta-analysis of combination therapy versus single-agent therapy in anthracycline- and taxane-pretreated metastatic breast cancer: results from nine randomized Phase III trials

    Directory of Open Access Journals (Sweden)

    Xu L

    2016-07-01

    Full Text Available Liang Xu,1,2,* Xiaobo Wu,3,* Chun Hu,1,2 Zhiying Zhang,4 Le Zhang,1,2 Shujing Liang,1,2 Yingchun Xu,5 Fengchun Zhang1,2 1Department of Oncology, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, 2Department of Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 3Prevention and Cure Center of Breast Disease, Third Hospital of Nanchang, Nanchang, 4Graduate School, Xuzhou Medical College, Xuzhou, 5Department of Oncology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China *These authors contributed equally to this work Abstract: Nowadays, the philosophy of treating metastatic breast cancer (MBC is slowly evolving. Especially for the anthracycline- and taxane-pretreated MBC patients, no standard therapy exists in this setting. Whether to choose doublet agents or single agent as salvage treatment remains fiercely debated. Thus, we conducted a meta-analysis to resolve this problem. Databases including PubMed, EMBASE, and Cochrane library were searched for Phase III randomized clinical trials (published before August 2015 comparing the efficacy and adverse effects between the combination therapy and single-agent therapy in anthracycline- and taxane-pretreated MBC patients. The primary end point was the overall survival (OS, and the secondary end points were the progression-free survival (PFS, overall response rate (ORR, and grade 3 or 4 toxicities. The pooled hazard ratio (HR and pooled risk ratio (RR were used to evaluate the efficacy. Analyses were also performed to estimate the side effects and safety of both groups. In all, nine eligible randomized clinical trials were included in this meta-analysis. Improvements were proven in the doublet agents group on OS (HR 0.90, 95% confidence interval [CI] 0.84–0.96, P=0.002, PFS (HR 0.81, 95% CI 0.76–0.88, P<0.001, and ORR (RR 1.72, 95% CI 1.34–2.21, P<0.001. Notably, subgroup analysis

  9. Jaeumganghwa-Tang Induces Apoptosis via the Mitochondrial Pathway and Lactobacillus Fermentation Enhances Its Anti-Cancer Activity in HT1080 Human Fibrosarcoma Cells.

    Directory of Open Access Journals (Sweden)

    Aeyung Kim

    Full Text Available Jaeumganghwa-tang (JGT, Zi-yin-jiang-huo-tang in Chinese and Jiin-koka-to in Japanese is an oriental herbal formula that has long been used as a traditional medicine to treat respiratory and kidney diseases. Recent studies revealed that JGT exhibited potent inhibitory effects on allergies, inflammation, pain, convulsions, and prostate hyperplasia. Several constituent herbs in JGT induce apoptotic cancer cell death. However, the anti-cancer activity of JGT has not been examined. In this study, we investigated the anti-cancer effects of JGT using highly tumorigenic HT1080 human fibrosarcoma cells and elucidated the underlying mechanisms. In addition, we examined whether the Lactobacillus fermentation of JGT enhanced its anti-cancer activity using an in vivo xenograft model because fermentation of herbal extracts is thought to strengthen their therapeutic effects. Data revealed that JGT suppressed the growth of cancer cells efficiently by stimulating G1 cell cycle arrest and then inducing apoptotic cell death by causing mitochondrial damage and activating caspases. The phosphorylation of p38 and ERK also played a role in JGT-induced cell death. In vitro experiments demonstrated that JGT fermented with Lactobacillus acidophilus, designated fJGT162, elicited similar patterns of cell death as did non-fermented JGT. Meanwhile, the daily oral administration of 120 mg/kg fJGT162 to HT1080-bearing BALB/c nude mice suppressed tumor growth dramatically (up to 90% compared with saline treatment, whereas the administration of non-fermented JGT suppressed tumor growth by ~70%. Collectively, these results suggest that JGT and fJGT162 are safe and useful complementary and alternative anti-cancer herbal therapies, and that Lactobacillus fermentation improves the in vivo anti-cancer efficacy of JGT significantly.

  10. Jaeumganghwa-Tang Induces Apoptosis via the Mitochondrial Pathway and Lactobacillus Fermentation Enhances Its Anti-Cancer Activity in HT1080 Human Fibrosarcoma Cells.

    Science.gov (United States)

    Kim, Aeyung; Im, Minju; Hwang, Youn-Hwan; Yang, Hye Jin; Ma, Jin Yeul

    2015-01-01

    Jaeumganghwa-tang (JGT, Zi-yin-jiang-huo-tang in Chinese and Jiin-koka-to in Japanese) is an oriental herbal formula that has long been used as a traditional medicine to treat respiratory and kidney diseases. Recent studies revealed that JGT exhibited potent inhibitory effects on allergies, inflammation, pain, convulsions, and prostate hyperplasia. Several constituent herbs in JGT induce apoptotic cancer cell death. However, the anti-cancer activity of JGT has not been examined. In this study, we investigated the anti-cancer effects of JGT using highly tumorigenic HT1080 human fibrosarcoma cells and elucidated the underlying mechanisms. In addition, we examined whether the Lactobacillus fermentation of JGT enhanced its anti-cancer activity using an in vivo xenograft model because fermentation of herbal extracts is thought to strengthen their therapeutic effects. Data revealed that JGT suppressed the growth of cancer cells efficiently by stimulating G1 cell cycle arrest and then inducing apoptotic cell death by causing mitochondrial damage and activating caspases. The phosphorylation of p38 and ERK also played a role in JGT-induced cell death. In vitro experiments demonstrated that JGT fermented with Lactobacillus acidophilus, designated fJGT162, elicited similar patterns of cell death as did non-fermented JGT. Meanwhile, the daily oral administration of 120 mg/kg fJGT162 to HT1080-bearing BALB/c nude mice suppressed tumor growth dramatically (up to 90%) compared with saline treatment, whereas the administration of non-fermented JGT suppressed tumor growth by ~70%. Collectively, these results suggest that JGT and fJGT162 are safe and useful complementary and alternative anti-cancer herbal therapies, and that Lactobacillus fermentation improves the in vivo anti-cancer efficacy of JGT significantly.

  11. Lupeol, a novel anti-inflammatory and anti-cancer dietary triterpene.

    Science.gov (United States)

    Saleem, Mohammad

    2009-11-28

    In the Western world, an average of 250 mg per day of triterpenes (member of phytosterol family), largely derived from vegetable oils, cereals, fruits and vegetables is consumed by humans. During the last decade, there has been an unprecedented escalation of interest in triterpenes due to their cholesterol-lowering properties and evidence of this phenomenon include at least 25 clinical studies, 20 patents and at least 10 major commercially triterpene-based products currently being sold all around the world. Lupeol a triterpene (also known as Fagarsterol) found in white cabbage, green pepper, strawberry, olive, mangoes and grapes was reported to possess beneficial effects as a therapeutic and preventive agent for a range of disorders. Last 15 years have seen tremendous efforts by researchers worldwide to develop this wonderful molecule for its clinical use for the treatment of variety of disorders. These studies also provide insight into the mechanism of action of Lupeol and suggest that it is a multi-target agent with immense anti-inflammatory potential targeting key molecular pathways which involve nuclear factor kappa B (NFkappaB), cFLIP, Fas, Kras, phosphatidylinositol-3-kinase (PI3K)/Akt and Wnt/beta-catenin in a variety of cells. It is noteworthy that Lupeol at its effective therapeutic doses exhibit no toxicity to normal cells and tissues. This mini review provides detailed account of preclinical studies conducted to determine the utility of Lupeol as a therapeutic and chemopreventive agent for the treatment of inflammation and cancer.

  12. Enhanced bioavailability of a poorly water-soluble weakly basic compound using a combination approach of solubilization agents and precipitation inhibitors: a case study.

    Science.gov (United States)

    Li, Shu; Pollock-Dove, Crystal; Dong, Liang C; Chen, Jing; Creasey, Abla A; Dai, Wei-Guo

    2012-05-07

    Poorly water-soluble weakly basic compounds which are solubilized in gastric fluid are likely to precipitate after the solution empties from the stomach into the small intestine, leading to a low oral bioavailability. In this study, we reported an approach of combining solubilization agents and precipitation inhibitors to produce a supersaturated drug concentration and to prolong such a drug concentration for an extended period of time for an optimal absorption, thereby improving oral bioavailability of poorly water-soluble drugs. A weakly basic compound from Johnson and Johnson Pharmaceutical Research and Development was used as a model compound. A parallel microscreening precipitation method using 96-well plates and a TECAN robot was used to assess the precipitation of the tested compound in the simulated gastric fluid (SGF) and the simulated intestinal fluid (SIF), respectively, for lead solubilizing agents and precipitation inhibitors. The precipitation screening results showed vitamin E TPGS was an effective solubilizing agent and Pluronic F127 was a potent precipitation inhibitor for the tested compound. Interestingly, the combination of Pluronic F127 with vitamin E TPGS resulted in a synergistic effect in prolonging compound concentration upon dilution in SIF. In addition, HPMC E5 and Eudragit L100-55 were found to be effective precipitation inhibitors for the tested compounds in SGF. Furthermore, optimization DOE study results suggested a formulation sweet spot comprising HPMC, Eudragit L 100-55, vitamin E TPGS, and Pluronic F127. The lead formulation maintained the tested compound concentration at 300 μg/mL upon dilution in SIF, and more than 70% of the compound remained solubilized compared with the compound alone at <1 μg/mL of its concentration. Dosing of the solid dosage form predissolved in SGF in dogs resulted in 52% of oral bioavailability compared to 26% for the suspension control, a statistically significant increase (p = 0.002). The enhanced

  13. Comparative biorelease study of fluticasone in combination with antibacterial (Neomycin and or antifungal (coltrimazol, miconazole agents by histamine percutaneous reaction method in healthy volunteers

    Directory of Open Access Journals (Sweden)

    Shahani S

    1997-01-01

    Full Text Available Fluticasone propionate is a novel, potent and topically active synthetic corticosteroid preparation with a much reduced potential, in relation to its anti-inflammatory potency, for unwanted systemic side effects. It is indicated for the treatment of eczema, dermatitis etc. The objective of the present study was to evaluate and compare the biorelease of fluticassone with placebo (base formulation; its combination with antifungal (miconazole, clotrimazole and / or antibacterial agents based on the attenuation of histamine induced wheal and flare reaction and flare intensity (on visual analouge scale by McNemar test. In the present study, fluticasone alone and in combination with clotrimazole, miconazole and neomycin significantly reduced the wheal and flare response of histamine prick test. The flare intensity response was also significantly inhibited by these treatments. Furthermore, there was no difference in the anti-inflammatory activity of various treatment groups. It may, therefore, be concluded that antibacterial (neomycin and / or antifungal (miconazole, clotrimazole agents in combination with steroid (fluticasone do not alter the pharmacodynamic response of the latter.

  14. Induction of apoptosis in osteogenic sarcoma cells by combination of tumor necrosis factor-related apoptosis inducing ligand and chemotherapeutic agents

    Institute of Scientific and Technical Information of China (English)

    SUN Jie; FU Zhi-min; FANG Chang-qing; LI Jian-hua

    2007-01-01

    Background Osteosarcoma is one of the most common primary malignant tumors of bone with poor prognosis.TNF-related apoptosis inducing ligand (TRAIL) is a member of the tumor necrosis factor (TNF) cytokine family. TRAIL induces apoptosis in various tumor cell lines but is not found to be cytotoxic to many normal cell types in vitro. We investigated the cytotoxic activity of TRAIL and chemotherapeutic agents, including methotrexate (MTX), doxorubicin(DOX) and cisplatin (CDDP), on established osteosarcoma cell line-OS-732.Methods OS-732 cells were incubated with chemotherapeutic agents MTX,DOX and CDDP at various peak plasma concentrations(PPC), 0.1PPC,1PPC and 10PPC, alone or with 100 ng/ml of TRAIL for 24 hours or 48 hours. MTT was used to evaluate the cytotoxic activity of different agents on OS-732. The apoptosis proportion was assayed by flow cytometry. Cellular morphologic changes were observed by phase contrast microscope, scan electron microscope, and transmission electron microscope.Results The inhibitory rate was (24.438±3.414)% with TRAIL of 100 ng/ml for 24 hours. The cells were responsive to DOX and CDDP with a dose-effect relationship (P<0.05). In OS-732 cells, DOX and CDDP cooperated synergistically with TRAIL when incubated the cells with them for 24 hours (the combined inhibitory rate is (58.360±2.146)% and (54.101 ±2.721)%, respectively). TRAIL alone or drugs alone induced the apoptosis rate was less than 25% (P<0.05).However, the combination of TRAIL and MTX did not present synergistic effects on OS-732 cells (P>0.05, compared with TRAIL alone).Conclusions Osteosarcoma OS-732 cells were not responsive to TRAIL-induced apoptosis. DOX and CDDP sensitize osteosarcoma OS-732 cells to TRAIL-induced apoptosis. The combination of TRAIL and MTX presented no synergistic effects on killing OS-732 cells.

  15. NOSH-sulindac (AVT-18A) is a novel nitric oxide- and hydrogen sulfide-releasing hybrid that is gastrointestinal safe and has potent anti-inflammatory, analgesic, antipyretic, anti-platelet, and anti-cancer properties.

    Science.gov (United States)

    Kashfi, Khosrow; Chattopadhyay, Mitali; Kodela, Ravinder

    2015-12-01

    Sulindac is chemopreventive and has utility in patients with familial adenomatous polyposis; however, side effects preclude its long-term use. NOSH-sulindac (AVT-18A) releases nitric oxide and hydrogen sulfide, was designed to be a safer alternative. Here we compare the gastrointestinal safety, anti-inflammatory, analgesic, anti-pyretic, anti-platelet, and anti-cancer properties of sulindac and NOSH-sulindac administered orally to rats at equimolar doses. Gastrointestinal safety: 6h post-administration, number/size of hemorrhagic lesions in stomachs were counted. Tissue samples were frozen for PGE2, SOD, and MDA determination. Anti-inflammatory: 1h after drug administration, the volume of carrageenan-induced rat paw edemas was measured for 5h. Anti-pyretic: fever was induced by LPS (ip) an hour before administration of the test drugs, core body temperature was measured hourly for 5h. Analgesic: time-dependent analgesic effects were evaluated by carrageenan-induced hyperalgesia. Antiplatelet: anti-aggregatory effects were studied on collagen-induced platelet aggregation of human platelet-rich plasma. Anti-cancer: We examined the effects of NOSH-sulindac on the growth properties of 12 human cancer cell lines of six different tissue origins. Both agents reduced PGE2 levels in stomach tissue; however, NOSH-sulindac did not cause any stomach ulcers, whereas sulindac caused significant bleeding. Lipid peroxidation induced by sulindac was higher than that from NOSH-sulindac. SOD activity was significantly lowered by sulindac but increased by NOSH-sulindac. Both agents showed similar anti-inflammatory, analgesic, anti-pyretic, and anti-platelet activities. Sulindac increased plasma TNFα whereas this rise was lower in the NOSH-sulindac-treated animals. NOSH-sulindac inhibited the growth of all cancer cell lines studied, with potencies of 1000- to 9000-fold greater than that of sulindac. NOSH-sulindac inhibited cell proliferation, induced apoptosis, and caused G2/M cell

  16. Synthesis and anti-cancer activity of naturally occurring 2,5-diketopiperazines.

    Science.gov (United States)

    Mollica, Adriano; Costante, Roberto; Fiorito, Serena; Genovese, Salvatore; Stefanucci, Azzurra; Mathieu, Veronique; Kiss, Robert; Epifano, Francesco

    2014-10-01

    Three naturally occurring oxyprenylated diketopiperazines were synthesized and preliminarily tested as growth inhibitory agents in vitro against various cancer cell lines. The compounds were tested on six human cancer cell lines with different sensitivity to proapoptotic stimuli using the MTT colorimetric assay. The data revealed that of the chemicals under study only deoxymicelianamide (11) displayed the highest activity, recording mean IC50 growth inhibitory values ranging from 2 to 23 μM. A comparative study with the non-geranylated saturated derivative of (11) revealed the importance of the presence of the geranyloxy side chain and the exocyclic 2,5-DPK double bond moiety for the observed activity.

  17. Combination use of medicines from two classes of renin–angiotensin system blocking agents: risk of hyperkalemia, hypotension, and impaired renal function

    Science.gov (United States)

    Esteras, Raquel; Perez-Gomez, Maria Vanessa; Rodriguez-Osorio, Laura; Ortiz, Alberto

    2015-01-01

    European and United States regulatory agencies recently issued warnings against the use of dual renin–angiotensin system (RAS) blockade therapy through the combined use of angiotensin-converting enzyme inhibitors (ACEIs), angiotensin II receptor blockers (ARBs) or aliskiren in any patient, based on absence of benefit for most patients and increased risk of hyperkalemia, hypotension, and renal failure. Special emphasis was made not to use these combinations in patients with diabetic nephropathy. The door was left open to therapy individualization, especially for patients with heart failure, when the combined use of an ARB and ACEI is considered absolutely essential, although renal function, electrolytes and blood pressure should be closely monitored. Mineralocorticoid receptor antagonists were not affected by this warning despite increased risk of hyperkalemia. We now critically review the risks associated with dual RAS blockade and answer the following questions: What safety issues are associated with dual RAS blockade? Can the safety record of dual RAS blockade be improved? Is it worth trying to improve the safety record of dual RAS blockade based on the potential benefits of the combination? Is dual RAS blockade dead? What is the role of mineralocorticoid antagonists in combination with other RAS blocking agents: RAAS blockade? PMID:26301070

  18. Combination use of medicines from two classes of renin-angiotensin system blocking agents: risk of hyperkalemia, hypotension, and impaired renal function.

    Science.gov (United States)

    Esteras, Raquel; Perez-Gomez, Maria Vanessa; Rodriguez-Osorio, Laura; Ortiz, Alberto; Fernandez-Fernandez, Beatriz

    2015-08-01

    European and United States regulatory agencies recently issued warnings against the use of dual renin-angiotensin system (RAS) blockade therapy through the combined use of angiotensin-converting enzyme inhibitors (ACEIs), angiotensin II receptor blockers (ARBs) or aliskiren in any patient, based on absence of benefit for most patients and increased risk of hyperkalemia, hypotension, and renal failure. Special emphasis was made not to use these combinations in patients with diabetic nephropathy. The door was left open to therapy individualization, especially for patients with heart failure, when the combined use of an ARB and ACEI is considered absolutely essential, although renal function, electrolytes and blood pressure should be closely monitored. Mineralocorticoid receptor antagonists were not affected by this warning despite increased risk of hyperkalemia. We now critically review the risks associated with dual RAS blockade and answer the following questions: What safety issues are associated with dual RAS blockade? Can the safety record of dual RAS blockade be improved? Is it worth trying to improve the safety record of dual RAS blockade based on the potential benefits of the combination? Is dual RAS blockade dead? What is the role of mineralocorticoid antagonists in combination with other RAS blocking agents: RAAS blockade?

  19. Clinical progression of lobaplatin in combination chemotherapy for patients with recurrence or metastatic cancer

    Institute of Scientific and Technical Information of China (English)

    Yu Peng; Jiangkui Liu; Qiang Lin

    2014-01-01

    The-platinum-based-combination-chemotherapy-has-become-one-of-the-major-modalities-in-anti-cancer-treatment.-After-the-first-line-chemotherapy,-many-patients-need-further-chemotherapy-because-of-recurrence-or-metastasis.-Lobaplatin-is-one-of-the-third-generation-platinum-drugs,and-this-article-briefly-reviews-the-clinical-progression-of-lobaplatin-in-combination-chemotherapy-for-patients-with-recurrence-or-metastatic-cancer.

  20. Effect of MR contrast agents on quantitative accuracy of PET in combined whole-body PET/MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lois, Cristina [University of Santiago de Compostela, Department of Particle Physics, Santiago de Compostela (Spain); Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela (Spain); Imaging Science Institute, Tuebingen (Germany); Bezrukov, Ilja [Eberhard Karls University, Laboratory for Preclinical Imaging and Imaging Technology of the Werner Siemens Foundation, Department of Preclinical Imaging and Radiopharmacy, Tuebingen (Germany); Max Plank Institute for Intelligent Systems, Department of Empirical Inference, Tuebingen (Germany); Schmidt, Holger [Eberhard Karls University, Laboratory for Preclinical Imaging and Imaging Technology of the Werner Siemens Foundation, Department of Preclinical Imaging and Radiopharmacy, Tuebingen (Germany); Eberhard Karls University, Diagnostic and Interventional Radiology, Department of Radiology, Tuebingen (Germany); Schwenzer, Nina; Werner, Matthias K. [Eberhard Karls University, Diagnostic and Interventional Radiology, Department of Radiology, Tuebingen (Germany); Kupferschlaeger, Juergen [Eberhard Karls University, Nuclear Medicine, Department of Radiology, Tuebingen (Germany); Beyer, Thomas [Imaging Science Institute, Tuebingen (Germany); cmi-experts GmbH, Zuerich (Switzerland)

    2012-11-15

    Clinical PET/MR acquisition protocols entail the use of MR contrast agents (MRCA) that could potentially affect PET quantification following MR-based attenuation correction (AC). We assessed the effect of oral and intravenous (IV) MRCA on PET quantification in PET/MR imaging. We employed two MRCA: Lumirem {sup registered} (oral) and Gadovist {sup registered} (IV). First, we determined their reference PET attenuation values using a PET transmission scan (ECAT-EXACT HR+, Siemens) and a CT scan (PET/CT Biograph 16 HI-REZ, Siemens). Second, we evaluated the attenuation of PET signals in the presence of MRCA. Phantoms were filled with clinically relevant concentrations of MRCA in a background of water and {sup 18}F-fluoride, and imaged using a PET/CT scanner (Biograph 16 HI-REZ, Siemens) and a PET/MR scanner (Biograph mMR, Siemens). Third, we investigated the effect of clinically relevant volumes of MRCA on MR-based AC using human pilot data: a patient study employing Gadovist {sup registered} (IV) and a volunteer study employing two different oral MRCA (Lumirem {sup registered} and pineapple juice). MR-based attenuation maps were calculated following Dixon-based fat-water segmentation and an external atlas-based and pattern recognition (AT and PR) algorithm. IV and oral MRCA in clinically relevant concentrations were found to have PET attenuation values similar to those of water. The phantom experiments showed that under clinical conditions IV and oral MRCA did not yield additional attenuation of PET emission signals. Patient scans showed that PET attenuation maps are not biased after the administration of IV MRCA but may be biased, however, after ingestion of iron oxide-based oral MRCA when segmentation-based AC algorithms are used. Alternative AC algorithms, such as AT and PR, or alternative oral contrast agents, such as pineapple juice, can yield unbiased attenuation maps. In clinical PET/MR scenarios MRCA are not expected to lead to markedly increased attenuation

  1. DEPTOR-related mTOR suppression is involved in metformin's anti-cancer action in human liver cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Obara, Akio; Fujita, Yoshihito; Abudukadier, Abulizi; Fukushima, Toru; Oguri, Yasuo; Ogura, Masahito; Harashima, Shin-ichi; Hosokawa, Masaya; Inagaki, Nobuya, E-mail: inagaki@metab.kuhp.kyoto-u.ac.jp

    2015-05-15

    Metformin, one of the most commonly used drugs for patients with type 2 diabetes, recently has received much attention regarding its anti-cancer action. It is thought that the suppression of mTOR signaling is involved in metformin's anti-cancer action. Although liver cancer is one of the most responsive types of cancer for reduction of incidence by metformin, the molecular mechanism of the suppression of mTOR in liver remains unknown. In this study, we investigated the mechanism of the suppressing effect of metformin on mTOR signaling and cell proliferation using human liver cancer cells. Metformin suppressed phosphorylation of p70-S6 kinase, and ribosome protein S6, downstream targets of mTOR, and suppressed cell proliferation. We found that DEPTOR, an endogenous substrate of mTOR suppression, is involved in the suppressing effect of metformin on mTOR signaling and cell proliferation in human liver cancer cells. Metformin increases the protein levels of DEPTOR, intensifies binding to mTOR, and exerts a suppressing effect on mTOR signaling. This increasing effect of DEPTOR by metformin is regulated by the proteasome degradation system; the suppressing effect of metformin on mTOR signaling and cell proliferation is in a DEPTOR-dependent manner. Furthermore, metformin exerts a suppressing effect on proteasome activity, DEPTOR-related mTOR signaling, and cell proliferation in an AMPK-dependent manner. We conclude that DEPTOR-related mTOR suppression is involved in metformin's anti-cancer action in liver, and could be a novel target for anti-cancer therapy. - Highlights: • We elucidated a novel pathway of metformin's anti-cancer action in HCC cells. • DEPTOR is involved in the suppressing effect of metformin on mTOR signaling. • Metformin increases DEPTOR protein levels via suppression of proteasome activity. • DEPTOR-related mTOR suppression is involved in metformin's anti-cancer action.

  2. The relevance of the pharmacologic properties of a progestational agent to its clinical effects as a combination oral contraceptive.

    OpenAIRE

    Upton, G. V.; Corbin, A

    1989-01-01

    Levonorgestrel (LNg) is known for its marked progestational/contraceptive activity. As shown in animal experiments, however, high doses of LNg are required to elicit an androgenic response; in contrast, considerably lower doses of LNg are required for antiovulatory (contraceptive) action. Thus, a large dose separation exists between androgenic and contraceptive activity. When LNg is combined with an estrogen, as in the contraceptive formulations, the androgenic response is attenuated or negat...

  3. Combination chemotherapy versus single-agent therapy as first- and second-line treatment in metastatic breast cancer

    DEFF Research Database (Denmark)

    Joensuu, H; Holli, K; Heikkinen, M;

    1998-01-01

    (n = 153) received weekly epirubicin (E) 20 mg/m2 until progression or until the cumulative dose of 1,000 mg/m2, followed by mitomycin (M) 8 mg/m2 every 4 weeks, and those in the combination chemotherapy arm (n = 150) were first given cyclophosphamide 500 mg/m2, E 60 mg/m2, and fluorouracil 500 mg/m2...

  4. Efficacy and safety of travoprost alone or in combination with other agents for glaucoma and ocular hypertension: patient considerations

    Directory of Open Access Journals (Sweden)

    Emilio Rintaro Suzuki Jr

    2010-10-01

    Full Text Available Emilio Rintaro Suzuki Jr, Cibele Lima Belico SuzukiInstituto de Olhos Pampulha, Belo, Horizonte, Minas Gerais, BrazilAbstract: Travoprost is a prostaglandin analog used in the management of glaucoma and ocular hypertension for reducing intraocular pressure (IOP. The IOP-lowering efficacy of travoprost has been shown to be similar to that of other prostaglandins, including latanoprost and bimatoprost. When compared with fixed combinations of timolol and either latanoprost or dorzolamide, travoprost alone can reduce mean IOP in a similar or superior manner. Concomitant therapy of travoprost and timolol can reach even greater IOP reductions than fixed combinations at some time points, but with no difference in the early morning, when IOP is usually higher. In addition, the long duration of action of travoprost can also provide better control of IOP fluctuation, probably due to its stronger prostaglandin F receptor mechanism. The side effects of travoprost do not represent a risk to the vision or health of the patient. The proven efficacy and safety combined with convenient once-daily dosing for travoprost increases patient compliance with treatment for glaucoma.Keywords: travoprost, prostaglandin, glaucoma

  5. Degradation of sunscreen agent p-aminobenzoic acid using a combination system of UV irradiation, persulphate and iron(II).

    Science.gov (United States)

    Xue, Yicen; Dong, Wenbo; Wang, Xiaoning; Bi, Wenlong; Zhai, Pingping; Li, Hongjing; Nie, Minghua

    2016-03-01

    Increased usage and discharge of sunscreens have led to ecological safety crisis, and people are developing the advanced oxidation processes (AOPs) to treat them. The present study aimed to determine the degradation efficiency and mechanism of the sunscreen agent p-aminobenzoic acid (PABA) using the UV/Fe(2+)/persulphate (PS) method. A series of irradiation experiments were conducted to optimise the system conditions and to study the impacts of the natural anion. Free radicals and degradation products were identified in order to clarify the degradation mechanism. Initial PS and Fe(2+) concentrations showed significant impacts on PABA degradation. Natural anions, such as Cl(-), NO3 (-), H2PO4 (-) and HCO3 (-), impeded PABA degradation because of ion (Fe(2+)) capture, radical scavenging or pH effects. Hydroxyl (HO·) and sulphate (SO4 (·-)) radicals were two main radicals observed in the UV/Fe(2+)/PS system; of these, SO4 (·-) showed greater effects on PABA degradation. Over 99 % of the available PABA was completely degraded into carbon dioxide (CO2) and water (H2O) by the UV/Fe(2+)/PS system, and the remaining PABA participated in complex radical reactions. By-products were identified by total ion chromatography and mass spectrometry. Our research provides a treatment process for PABA with high degradation efficiency and environmental safety and introduces a new strategy for sunscreen degradation.

  6. Contrast agent and radiation dose reduction in abdominal CT by a combination of low tube voltage and advanced image reconstruction algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Buls, Nico; Gompel, Gert van; Nieboer, Koenraad; Willekens, Inneke; Mey, Johan de [Universitair Ziekenhuis Brussel (UZ Brussel), Department of Radiology, Brussels (Belgium); Vrije Universiteit Brussel (VUB), Research group LABO, Brussel (Belgium); Cauteren, Toon van [Vrije Universiteit Brussel (VUB), Research group LABO, Brussel (Belgium); Verfaillie, Guy [Universitair Ziekenhuis Brussel (UZ Brussel), Department of Radiology, Brussels (Belgium); Evans, Paul; Macholl, Sven; Newton, Ben [GE Healthcare, Department of Medical Diagnostics, Amersham, Buckinghamshire (United Kingdom)

    2015-04-01

    To assess image quality in abdominal CT at low tube voltage combined with two types of iterative reconstruction (IR) at four reduced contrast agent dose levels. Minipigs were scanned with standard 320 mg I/mL contrast concentration at 120 kVp, and with reduced formulations of 120, 170, 220 and 270 mg I/mL at 80 kVp with IR. Image quality was assessed by CT value, dose normalized contrast and signal to noise ratio (CNRD and SNRD) in the arterial and venous phases. Qualitative analysis was included by expert reading. Protocols with 170 mg I/mL or higher showed equal or superior CT values: aorta (278-468 HU versus 314 HU); portal vein (205-273 HU versus 208 HU); liver parenchyma (122-146 HU versus 115 HU). In the aorta, all 170 mg I/mL protocols or higher yielded equal or superior CNRD (15.0-28.0 versus 13.7). In liver parenchyma, all study protocols resulted in higher SNRDs. Radiation dose could be reduced from standard CTDI{sub vol} = 7.8 mGy (6.2 mSv) to 7.6 mGy (5.2 mSv) with 170 mg I/mL. Combining 80 kVp with IR allows at least a 47 % contrast agent dose reduction and 16 % radiation dose reduction for images of comparable quality. (orig.)

  7. The combination of BH3-mimetic ABT-737 with the alkylating agent temozolomide induces strong synergistic killing of melanoma cells independent of p53.

    Directory of Open Access Journals (Sweden)

    Steven N Reuland

    Full Text Available Metastatic melanoma has poor prognosis and is refractory to most conventional chemotherapies. The alkylating agent temozolomide (TMZ is commonly used in treating melanoma but has a disappointing response rate. Agents that can act cooperatively with TMZ and improve its efficacy are thus highly sought after. The BH3 mimetic ABT-737, which can induce apoptosis by targeting pro-survival Bcl-2 family members, has been found to enhance the efficacy of many conventional chemotherapeutic agents in multiple cancers. We found that combining TMZ and ABT-737 induced strong synergistic apoptosis in multiple human melanoma cell lines. When the drugs were used in combination in a mouse xenograft model, they drastically reduced tumor growth at concentrations where each individual drug had no significant effect. We found that TMZ treatment elevated p53 levels, and that the pro-apoptotic protein Noxa was elevated in TMZ/ABT-737 treated cells. Experiments with shRNA demonstrated that the synergistic effect of TMZ and ABT-737 was largely dependent on Noxa. Experiments with nutlin-3, a p53 inducer, demonstrated that p53 induction was sufficient for synergistic cell death with ABT-737 in a Noxa-dependent fashion. However, p53 was not necessary for TMZ/ABT-737 synergy as demonstrated by a p53-null line, indicating that TMZ and ABT-737 together induce Noxa in a p53-independent fashion. These results demonstrate that targeting anti-apoptotic Bcl-2 members is a promising method for treating metastatic melanoma, and that clinical trials with TMZ and Bcl-2 inhibitors are warranted.

  8. The gender of cell lines matters when screening for novel anti-cancer drugs.

    Science.gov (United States)

    Nunes, Larissa M; Robles-Escajeda, Elisa; Santiago-Vazquez, Yahaira; Ortega, Nora M; Lema, Carolina; Muro, Almendra; Almodovar, Gladys; Das, Umashankar; Das, Swagatika; Dimmock, Johnatan R; Aguilera, Renato J; Varela-Ramirez, Armando

    2014-07-01

    Current reports indicated that the gender origin of cells is important in all facets of experimental biology. To explore this matter using an anticancer high throughput screening platform, seven male- and seven female-derived human cell lines, six from cancer patients in each group, were exposed to 81 novel cytotoxins. In this screen, the findings revealed that 79 out of 81 of the compounds consistently inflicted higher levels of toxicity towards male derived cells, emphasizing that there is indeed a gender-related difference in cell sensitivity to these anti-neoplastic agents. This gender-related drug sensitivity and toxicity explored at the molecular and cellular level emerged from a drug discovery enterprise.

  9. Anti-Cancer Effect of Lambertianic Acid by Inhibiting the AR in LNCaP Cells

    Directory of Open Access Journals (Sweden)

    Myoung-Sun Lee

    2016-07-01

    Full Text Available Lambertianic acid (LA is known to have anti-allergic and antibacterial effects. However, the anticancer activities and mechanism of action of LA have not been investigated. Therefore, the anticancer effects and mechanism of LA are investigated in this study. LA decreased not only AR protein levels, but also cellular and secretory levels of PSA. Furthermore, LA inhibited nuclear translocation of the AR induced by mibolerone. LA suppressed cell proliferation by inducing G1 arrest, downregulating CDK4/6 and cyclin D1 and activating p53 and its downstream molecules, p21 and p27. LA induced apoptosis and the expression of related proteins, including cleaved caspase-9 and -3, c-PARP and BAX, and inhibited BCl-2. The role of AR in LA-induced apoptosis was assessed by using siRNA. Collectively, these findings suggest that LA exerts the anticancer effect by inhibiting AR and is a valuable therapeutic agent in prostate cancer treatment.

  10. A quinoxaline derivative as a potent chemotherapeutic agent, alone or in combination with benznidazole, against Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    Jean Henrique da Silva Rodrigues

    Full Text Available BACKGROUND: Chagas' disease is a condition caused by the protozoan Trypanosoma cruzi that affects millions of people, mainly in Latin America where it is considered endemic. The chemotherapy for Chagas disease remains a problem; the standard treatment currently relies on a single drug, benznidazole, which unfortunately induces several side effects and it is not successful in the cure of most of the chronic patients. In order to improve the drug armamentarium against Chagas' disease, in the present study we describe the synthesis of the compound 3-chloro-7-methoxy-2-(methylsulfonyl quinoxaline (quinoxaline 4 and its activity, alone or in combination with benznidazole, against Trypanosoma cruzi in vitro. METHODOLOGY/PRINCIPAL FINDINGS: Quinoxaline 4 was found to be strongly active against Trypanosoma cruzi Y strain and more effective against the proliferative forms. The cytotoxicity against LLCMK2 cells provided selective indices above one for all of the parasite forms. The drug induced very low hemolysis, but its anti-protozoan activity was partially inhibited when mouse blood was added in the experiment against trypomastigotes, an effect that was specifically related to blood cells. A synergistic effect between quinoxaline 4 and benznidazole was observed against epimastigotes and trypomastigotes, accompanied by an antagonistic interaction against LLCMK2 cells. Quinoxaline 4 induced several ultrastructural alterations, including formations of vesicular bodies, profiles of reticulum endoplasmic surrounding organelles and disorganization of Golgi complex. These alterations were also companied by cell volume reduction and maintenance of cell membrane integrity of treated-parasites. CONCLUSION/SIGNIFICANCE: Our results demonstrated that quinoxaline 4, alone or in combination with benznidazole, has promising effects against all the main forms of T. cruzi. The compound at low concentrations induced several ultrastructural alterations and led the

  11. The anti-cancer effect of Huaier aqueous extract with rh-Endostatin and DDP

    Institute of Scientific and Technical Information of China (English)

    Yuxuan Che; Meixiang Zhou; Peng Zhan; Tiantian Zou; Xiuhua Sun

    2014-01-01

    The-aim-of-our-study-was-to-explore-the-inhibition-and-apoptosis-inducing-ef-ect-of-the-combination-of-Huaier-aqueous-extract-with-recombinant-human-Endostatin-and-DDP-in-human-lung-adenocarcinoma-A549-cel-s.-We-also-investigated-the-reversal-ef-ect-of-Huaier-aqueous-extract-in-reversing-cisplatin-resistance-in-human-lung-adenocarcinoma-A549/DDP-cel-s.-Methods:We-treated-A549-cel-s-with-Huaier-aqueous-extract-and-the-combination-of-Huaier-aqueous-ex-tract-and-DDP-or-rh-Endostatin-for-24-h,-36-h-and-48-h.-And-then-we-calculated-the-inhibition-rate-through-MTT-approach-and-detected-the-apoptosis-rate-by-flow-cytometry.-We-also-treated-A549-and-A549/DDP-cel-s-with-DDP,-Huaier-aqueous-extract,-DDP-and-Huaier-aqueous-extract-for-72-h,-respectively.-Results:Huaier-aqueous-extract-can-inhibit-the-growth-of-A549-cel-s-and-the-inhibition-rate-improved-with-the-increase-of-the-concentration.-The-inhibition-rate-of-the-combination-of-rh-Endostatin-and-4-mg/mL-of-Huaier-aqueous-extract-in-three-time-points-and-the-combination-of-rh-Endostatin-and-2-mg/mL-of-Huaier-aqueous-extract-in-the-time-point-of-48-h-on-the-growth-of-A549-cel-s-al-improved-(P<0.005).-The-inhibition-rate-of-the-com-bination-of-DDP-and-Huaier-aqueous-extract-with-the-concentration-of-2-mg/mL-or-4-mg/mL-on-the-growth-of-A549-cel-s-al-improved-(P<0.005).-The-combination-of-Huaier-aqueous-extract-and-DDP-and-the-combination-of-Huaier-aqueous-extract-with-rh-Endostatin-and-DDP-can-improve-the-inhibition-on-the-growth-of-A549-cel-s-(P<0.005).-Conclusion:Huaier-aqueous-extract-has-the-inhibition-and-apoptosis-inducing-ef-ects-on-the-A549-cel-s.-And-the-combination-of-Huaier-aqueous-extract-and-rh-Endostatin-or-DDP-has-the-synergistic-ef-ects-on-the-inhibition-of-A549-cel-s.-The-combination-of-Huaier-aqueous-extract-with-rh-Endostatin-and-DDP-has-the-synergistic-ef-ects-on-the-inhibition-of-A549-cel-s.-Huaier-aqueous-extract-can-reverse-the-cisplatin-resistance-in-human-lung-adenocarcinoma-A549/DDP-cel-s.

  12. Efficacy of dietary antioxidants combined with a chemotherapeutic agent on human colon cancer progression in a fluorescent orthotopic mouse model.

    Science.gov (United States)

    Ma, Huaiyu; Das, Tapas; Pereira, Suzette; Yang, Zhijian; Zhao, Ming; Mukerji, Pradip; Hoffman, Robert M

    2009-07-01

    We report here the efficacy of dietary antioxidants in combination with chemotherapy on tumor growth in the orthotopic COLO-205-green fluorescent protein (GFP) human colon cancer mouse model. The orthotopically-transplanted nude mice used for the study were randomly divided into 5 groups (A-E) after surgical orthotopic implantation (SOI) of tumor tissue. The following diets were given: Diet A, modified AIN-93M mature rodent diet with 4% fish oil; Diet B, modified AIN-93M which contains added antioxidants vitamin A, vitamin E, and selenium at levels present in the standard AIN-93M diet; Diet C, Diet A without added antioxidants vitamin A, vitamin E, or selenium; Diet D, Diet A with 5 times the amount of added antioxidants vitamin A, vitamin E, and selenium present in Diet B. Cisplatin, 7 mg/kg, was administered intraperitoneally on day 16 after SOI. Throughout the course of treatment, noninvasive whole-body imaging, based on the GFP expression of the tumor, permitted visualization of tumor progression. At sacrifice, the mean tumor weights showed significant statistical differences in all of the treated groups compared to the negative control (no cisplatin treatment) (p cisplatin efficacy by high-dose antioxidants in combination with fish oil for colon cancer progression and suggests the design of clinical trials for this regimen.

  13. Effect of insulin-sensitizing agents in combination with ezetimibe, and valsartan in rats with non-alcoholic fatty liver disease

    Institute of Scientific and Technical Information of China (English)

    Nimer Assy; Masha Grozovski; Ilana Bersudsky; Sergio Szvalb; Osamah Hussein

    2006-01-01

    AIM: To assess whether treatment with insulinsensitizing agents (ISAs) in combination with ezetimibe and valsartan have greater effect on hepatic fat content and lipid peroxidation compared to monotherapy in the methionine choline-deficient diet (MCDD) rat model of non-alcoholic fatty liver disease (NAFLD).METHODS: Rats (n = 6 per group) were treated with different drugs, including MCDD only, MCDD diet with either metformin (200 mg/kg), rosiglitazone (3 mg/kg),metformin plus rosiglitazone (M+R), ezetimibe (2 mg/kg), valsartan (2 mg/kg), or combination of all drugs for a total of 15 wk. Liver histology, lipids, parameters of oxidative stress and TNF-alpha were measured.RESULTS: Fatty liver (FL) rats demonstrated severe hepatic fatty infiltration (> 91% fat), with an increase in hepatic TG (+1263%, P < 0.001), hepatic cholesterol (+245%, P < 0.03), hepatic MDA levels (+225%, P <0.001), serum TNF-alpha (17.8 ± 10 vs 7.8 ± 0.0, P < 0.001), but a decrease in hepatic alpha tocopherol (-74%, P < 0.001) as compared to the control rats.Combination therapy with all drugs produced a significant decrease in liver steatosis (-54%), hepatic TG (-64%), hepatic cholesterol (-31%) and hepatic MDA (-70%), but increased hepatic alpha tocopherol (+443%)as compared to FL rats. Combination therapy with ISA alone produced a smaller decrease in liver steatosis (-32% vs -54%, P < 0.001) and in hepatic MDA levels (-55% vs -70%, P < 0.01), but a similar decrease in hepatic lipids when compared with the all drugs combination.TNF-alpha levels decreased significantly in all treatment groups except in ISA group.CONCLUSION: Combination therapies have a greater effect on liver fat content as compared to monotherapy.Rosiglitazone appears to improve hepatic steatosis to a greater extent than metformin.

  14. Enhanced antitumor efficacy of a vascular disrupting agent combined with an antiangiogenic in a rat liver tumor model evaluated by multiparametric MRI.

    Directory of Open Access Journals (Sweden)

    Feng Chen

    Full Text Available A key problem in solid tumor therapy is tumor regrowth from a residual viable rim after treatment with a vascular disrupting agent (VDA. As a potential solution, we studied a combined treatment of a VDA and antiangiogenic. This study was approved by the institutional ethical committee for the use and care of laboratory animals. Rats with implanted liver tumors were randomized into four treatment groups: 1 Zd6126 (Zd; 2 Thalidomide (Tha; 3 Zd in combination with Tha (ZdTha; and 4 controls. Multiparametric MRIs were performed and quantified before and after treatment. Circulating endothelial progenitor cells (EPCs and plasma stromal cell-derived factor-1α (SDF-1α were monitored. Tumor apoptosis, necrosis, and microvessels were verified by histopathology. A single use of Zd or Tha did not significantly delay tumor growth. The combined ZdTha showed enhanced antitumor efficacy due to synergistic effects; it induced a cumulative tumor apoptosis or necrosis, which resulted in significant delay in tumor growth and reduction in the viable tumor rim; it also reduced tumor vessel permeability; and it improved tumor hemodynamic indexes, most likely via a transient normalization of tumor vasculature induced by Tha. A stepwise linear regression analysis showed that the apparent diffusion coefficient was an independent predictor of tumor growth. We found no significant increases in Zd-induced circulating EPCs or plasma SDF-1α. ZdTha showed improved therapeutic efficacy in solid tumors compared to either agent alone. The therapeutic effects were successfully tracked in vivo with multiparametric MRI.

  15. Quantitative EEG and Current Source Density Analysis of Combined Antiepileptic Drugs and Dopaminergic Agents in Genetic Epilepsy: Two Case Studies.

    Science.gov (United States)

    Emory, Hamlin; Wells, Christopher; Mizrahi, Neptune

    2015-07-01

    Two adolescent females with absence epilepsy were classified, one as attention deficit and the other as bipolar disorder. Physical and cognitive exams identified hypotension, bradycardia, and cognitive dysfunction. Their initial electroencephalograms (EEGs) were considered slightly slow, but within normal limits. Quantitative EEG (QEEG) data included relative theta excess and low alpha mean frequencies. A combined treatment of antiepileptic drugs with a catecholamine agonist/reuptake inhibitor was sequentially used. Both patients' physical and cognitive functions improved and they have remained seizure free. The clinical outcomes were correlated with statistically significant changes in QEEG measures toward normal Z-scores in both anterior and posterior regions. In addition, low resolution electromagnetic tomography (LORETA) Z-scored source correlation analyses of the initial and treated QEEG data showed normalized patterns, supporting a neuroanatomic resolution. This study presents preliminary evidence for a neurophysiologic approach to patients with absence epilepsy and comorbid disorders and may provide a method for further research.

  16. Synergistic Enhancement of Cancer Therapy Using a Combination of Ceramide and Docetaxel

    Directory of Open Access Journals (Sweden)

    Li-Xia Feng

    2014-03-01

    Full Text Available Ceramide (CE-based combination therapy (CE combination as a novel therapeutic strategy has attracted great attention in the field of anti-cancer therapy. The principal purposes of this study were to investigate the synergistic effect of CE in combination with docetaxel (DTX (CE + DTX and to explore the synergy mechanisms of CE + DTX. The 3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT and combination index (CI assay showed that simultaneous administration of CE and DTX with a molar ratio of 0.5:1 could generate the optimal synergistic effect on murine malignant melanoma cell (B16, CI = 0.31 and human breast carcinoma cell (MCF-7, CI = 0.48. The apoptosis, cell cycle, and cytoskeleton destruction study demonstrated that CE could target and destruct the microfilament actin, subsequently activate Caspase-3 and induce apoptosis. Meanwhile, DTX could target and disrupt the microtubules cytoskeleton, leading to a high proportion of cancer cells in G2/M-phase arrest. Moreover, CE plus DTX could cause a synergistic destruction of cytoskeleton, which resulted in a significantly higher apoptosis and a significantly higher arrest in G2/M arrest comparing with either agent alone (p < 0.01. The in vivo antitumor study evaluated in B16 tumor-bearing mice also validated the synergistic effects. All these results suggested that CE could enhance the antitumor activity of DTX in a synergistic manner, which suggest promising application prospects of CE + DTX combination treatment.

  17. Double edge Sword Behavior of Carbendazim: A Potent Fungicide With Anti-Cancer Therapeutic Properties.

    Science.gov (United States)

    Goyal, Karan; Sharma, Ajay; Arya, Ridhima; Sharma, Rohit; Gupta, Girish K; Sharma, Anil K

    2016-12-21

    A number of benzimidazole derivatives such as benomyl and carbendazim have been known for their potential role as agricultural fungicides. Simultaneously carbendazim has also been found to inhibit proliferation of mammalian tumor cells specifically drug and multidrug resistant cell lines. Studies carried out with fungal and mammalian cells have highlighted the potential role of carbendazim in inhibiting proliferation of cells, thereby exhibiting therapeutic implications against cancer. Because of its promising preclinical antitumor activity, Carbendazim had undergone phase I clinical trials and is under further clinical investigations for treatment of cancer. A number of theoretical interactions have been pinpointed. There are many anticancer drugs in the market, but their usefulness is limited because of drug resistance in a significant proportion of patients. The hunger for newer drugs drives anticancer drug discovery research on a global platform and requires innovations to ensure a sustainable pipeline of lead compounds. Current review highlights the dual role of carbendazim as a fungicide and an anticancer agent. We also discuss about the harmful effects of carbendazim and emphasize upon the need for more pharmacokinetic studies and pharmacovigilance data to ascertain its clinical significance.

  18. Network modelling reveals the mechanism underlying colitis-associated colon cancer and identifies novel combinatorial anti-cancer targets.

    Science.gov (United States)

    Lu, Junyan; Zeng, Hanlin; Liang, Zhongjie; Chen, Limin; Zhang, Liyi; Zhang, Hao; Liu, Hong; Jiang, Hualiang; Shen, Bairong; Huang, Ming; Geng, Meiyu; Spiegel, Sarah; Luo, Cheng

    2015-10-08

    The connection between inflammation and tumourigenesis has been well established. However, the detailed molecular mechanism underlying inflammation-associated tumourigenesis remains unknown because this process involves a complex interplay between immune microenvironments and epithelial cells. To obtain a more systematic understanding of inflammation-associated tumourigenesis as well as to identify novel therapeutic approaches, we constructed a knowledge-based network describing the development of colitis-associated colon cancer (CAC) by integrating the extracellular microenvironment and intracellular signalling pathways. Dynamic simulations of the CAC network revealed a core network module, including P53, MDM2, and AKT, that may govern the malignant transformation of colon epithelial cells in a pro-tumor inflammatory microenvironment. Furthermore, in silico mutation studies and experimental validations led to a novel finding that concurrently targeting ceramide and PI3K/AKT pathway by chemical probes or marketed drugs achieves synergistic anti-cancer effects. Overall, our network model can guide further mechanistic studies on CAC and provide new insights into the design of combinatorial cancer therapies in a rational manner.

  19. Protocatechualdehyde possesses anti-cancer activity through downregulating cyclin D1 and HDAC2 in human colorectal cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jin Boo [Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742 (United States); Lee, Seong-Ho, E-mail: slee2000@umd.edu [Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742 (United States)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Protocatechualdehyde (PCA) suppressed cell proliferation and induced apoptosis in human colorectal cancer cells. Black-Right-Pointing-Pointer PCA enhanced transcriptional downregulation of cyclin D1 gene. Black-Right-Pointing-Pointer PCA suppressed HDAC2 expression and activity. Black-Right-Pointing-Pointer These findings suggest that anti-cancer activity of PCA may be mediated by reducing HDAC2-derived cyclin D1 expression. -- Abstract: Protocatechualdehyde (PCA) is a naturally occurring polyphenol found in barley, green cavendish bananas, and grapevine leaves. Although a few studies reported growth-inhibitory activity of PCA in breast and leukemia cancer cells, the underlying mechanisms are still poorly understood. Thus, we performed in vitro study to investigate if treatment of PCA affects cell proliferation and apoptosis in human colorectal cancer cells and define potential mechanisms by which PCA mediates growth arrest and apoptosis of cancer cells. Exposure of PCA to human colorectal cancer cells (HCT116 and SW480 cells) suppressed cell growth and induced apoptosis in dose-dependent manner. PCA decreased cyclin D1 expression in protein and mRNA level and suppressed luciferase activity of cyclin D1 promoter, indicating transcriptional downregulation of cyclin D1 gene by PCA. We also observed that PCA treatment attenuated enzyme activity of histone deacetylase (HDAC) and reduced expression of HDAC2, but not HDAC1. These findings suggest that cell growth inhibition and apoptosis by PCA may be a result of HDAC2-mediated cyclin D1 suppression.

  20. Commercialization strategy of the herbal composition HemoHIM as a complementary drug for anti-cancer therapies

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Sungkee; Jung, Uhee; Park, Haeran

    2013-01-15

    Ο Purpose - Establishment of strategy for the development of HemoHIM as a complementary drug for cancer therapies including non-clinical data preparation, obtainment of a research project grant, base of manufacturing process and raw material standardization Ο Research Results - Examination and confirmation of the essential requirements to develop the complementary drug for anticancer therapies by consulting with Korea FDA, and clinical CRO, and medical experts (animal efficacy study, toxicological safety test, standard analytical method, raw material standardization) - Obtainment of a governmental research project for 3 years from Ministry of Health and Welfare to develop HemoHIM as an complementary herbal drug for anti-cancer therapies - Acquisition of fundamental data on the manufacturing process and the raw material standardization for the optimal efficacy of HemoHIM Ο Expected benefit - Planning to get the approval of IND from Korea FDA by 2015 after completing the non-clinical study through the on-going project from Ministry of Health and Welfare - Planning to commercialize the product by 2017.

  1. Chinese Anti-Cancer Association as a non-governmental organization undertakes systematic cancer prevention work in China.

    Science.gov (United States)

    Xu, Tingting

    2015-08-01

    Cancer has become the first leading cause of death in the world, particularly in low- and middle-income countries. Facing the increasing trend of cancer incidence and mortality, China issued and implemented "three-early (early prevention, early diagnosis and early treatment)" national cancer prevention plan. As the main body and dependence of social governance, non-governmental organizations (NGOs) take over the role of government in the field of cancer prevention and treatment. American Cancer Society (ACS) made a research on cancer NGOs and civil society in cancer control and found that cancer NGOs in developing countries mobilize civil society to work together and advocate governments in their countries to develop policies to address the growing cancer burden. Union for International Cancer Control (UICC), Cancer Council Australia (CCA), and Malaysian cancer NGOs are the representatives of cancer NGOs in promoting cancer control. Selecting Chinese Anti-Cancer Association (CACA) as an example in China, this article is to investigate how NGOs undertake systematic cancer prevention work in China. By conducting real case study, we found that, as a NGO, CACA plays a significant role in intensifying the leading role of government in cancer control, optimizing cancer outcomes, decreasing cancer incidence and mortality rates and improving public health.

  2. Isolation, characterization and anti-cancer activity of SK84, a novel glycine-rich antimicrobial peptide from Drosophila virilis.

    Science.gov (United States)

    Lu, Jie; Chen, Zheng-wang

    2010-01-01

    We report herein the isolation and characterization of a novel glycine-rich antimicrobial peptide purified from the larvae of Drosophila virilis. A range of chromatographic methods was used for isolation and its antibacterial activity against Bacillus subtilis was employed to screen for the most active fractions. The peptide, termed SK84 due to its N-terminal serine, C-terminal lysine and a total of 84 residues, was completed sequenced using RT-PCR cDNA cloning. SK84 contains a high level of glycine (15.5%) and a hexaglycine cluster motif in the N-terminal part. SK84 displayed antibacterial activity against the tested Gram-positive bacteria (B. subtilis, Bacillus thuringiensis and Staphylococcus aureus), but had no effect on Gram-negative bacteria (Pseudomonas aeruginosa, Escherichia coli) and fungi (Saccharomyces cerevisiae, Candida albicans). SK84 had specific inhibitory effects on the proliferation of several cancer cell lines (Human leukemia THP-1, liver cancer HepG2, and breast cancer MCF-7 cells), but no hemolytic activity. The results from scanning electron microscopy observations revealed that SK84 killed THP-1 cells by destroying the cell membranes. Alignment results show that SK84 is a mature protein processed from the pseudoprotein GJ19999 from D. virilis, and is very similar to several pseudoproteins from different Drosophila species. Our results show that SK84 represents a novel glycine-rich peptide family in Drosophila species with antimicrobial and anti-cancer cell activities.

  3. Tanshinones and diethyl blechnics with anti-inflammatory and anti-cancer activities from Salvia miltiorrhiza Bunge (Danshen)

    Science.gov (United States)

    Gao, Hongwei; Sun, Wen; Zhao, Jianping; Wu, Xiaxia; Lu, Jin-Jian; Chen, Xiuping; Xu, Qiong-Ming; Khan, Ikhlas A.; Yang, Shilin

    2016-09-01

    Four novel compounds (1–4) as well as fourteen reported compounds (5–18) were isolated and purified from Salvia miltiorrhiza Bunge (Danshen). The structures of novel compounds were determined by 1D and 2D NMR, HRESIMS data, etc. The anti-inflammatory properties of all the compounds on RAW264.7 macrophages and their cytotoxicity on H1299 and Bel-7402 cell lines coupled with a structure-activity relationship (SAR) were investigated. Compound 4 demonstrated the best anti-inflammatory activity and was chosen for further research. Compound 4 greatly suppressed secretion of nitric oxide (NO), tumor necrosis factor (TNF)-α and interleukin-6 (IL-6) in the RAW264.7 macrophages stimulated by LPS. Additionally, the protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) was decreased and the nuclear translocation of NF-κB was attenuated after treatment with compound 4 in vitro. Compound 4 was able to dramatically inhibit LPS-induced activation of JNK1/2 and ERK1/2 and remarkably disrupted the TLR4 dimerization in LPS-induced RAW264.7 macrophages. Thus, the new compound 4 suppressed LPS-induced inflammation partially is due to the blocking TLR4 dimerization. In addition, the anti-cancer activity investigation indicated that most of isolated compounds exhibited cytotoxicity and the SAR analysis showed that the intact D ring was indispensable and unsaturated D ring played vital role.

  4. Purification of a dimeric arginine deiminase from Enterococcus faecium GR7 and study of its anti-cancerous activity.

    Science.gov (United States)

    Kaur, Baljinder; Kaur, Rajinder

    2016-09-01

    The arginine deiminase (ADI, E.C 3.5.3.6) - a key enzyme of ADI pathway of Enterococcus faecium GR7 was purified to homogeneity. A sequential purification strategy involving ammonium sulfate fractionation, molecular sieve followed by Sephadex G-100 gel filtration was applied to the crude culture filtrate to obtain a pure enzyme preparation. The enzyme was purified with a fold of 16.92 and showed a final specific activity of 76.65IU/mg with a 49.17% yield. The dimeric ADI has a molecular mass of about 94,364.929Da, and comprises of hetrodimers of 49.1kDa and 46.5kDa as determined by MALDI-TOF and PAGE analysis. To assess anti-cancerous activity of ADI by MTT assay was carried out against cancer cell lines (MCF-7, Sp2/0-Ag14 and Hep-G2). Purified ADI exhibited the most profound antiproliferative activity against Hep-G2 cells; with half-maximal inhibitory concentration (IC50) of 1.95μg/ml. Purified ADI from E. faecium GR7 was observed to induce apoptosis in the Hep-G2 cells by DNA fragmentation assay. Our findings suggest the possibility of a future use of ADI from E. faecium GR7 as a potential anticancer drug.

  5. Anti-cancer and anti-oxidant efficacies of wild ginseng and cultivated wild ginseng of Korea and China

    Directory of Open Access Journals (Sweden)

    Young-Min,Ahn

    2007-02-01

    Full Text Available Objectives : The aim of this study was to verify anti-cancer and anti-oxidant efficacies of Korean wild ginseng and cultivated wild ginseng of Korea and China. Methods : For the measurement of anti-oxidation, SOD-like activity was evaluated using xanthine oxidase reduction method under in vitro environment. Subcutaneous and abdominal cancer were induced using CT-26 human colon cancer cells for the measurement of growth inhibition of cancer cells and differences in survival rate. Results : 1. Measurement of anti-oxidant activity of ginseng, Chinese and Korean cultivated wild ginseng, and natural wild ginseng samples showed concentration dependent anti-oxidant activity in HX/XOD system. Anti-oxidant activity showed drastic increase at 1mg/ml in all samples. 2. For the evaluation of growth inhibition of cancer cells after hypodermic implantation of CT-26 cancer cells in the peritoneal cavity of mice, Chinese and Korean cultivated wild ginseng and natural wild ginseng groups showed significant inhibition of tumor growth from the 12th day compared to the control group. Similar inhibitory effects were also shown on the 15th and 18th days. But there was no significant difference between the experiment groups. 3. For the observation of increase in survival rate of the natural wild ginseng group, CT-26 cancer cells were implanted in the peritoneal cavity of mice.

  6. Bridging the US and China together to conquer cancer: report of the 4th annual meeting of the US Chinese Anti-Cancer Association (USCACA)

    Institute of Scientific and Technical Information of China (English)

    Wancai Yang; Lingjie Guan

    2012-01-01

    A global collaborative effort is pivotal to conquer cancer.Themed "Emerging role of China in global clinical development of novel anti-cancer drugs",the US Chinese Anti-Cancer Association (USCACA) held its 4th annual meeting in Chicago on June 2,2012,in conjunction with the American Society of Clinical Oncology (ASCO) annual meeting to further bridge the US and China together to outsmart cancer.Although a young organization,USCACA has made significant contributions to this goal in the 3 years since its inception through extensive collaboration with academic organizations,the pharmaceutical industry,and governmental agencies.USCACA has engaged various stakeholders in developing translational and personalized medical strategies to facilitate new anti-cancer drug development and clinical trials in China.USCACA has initiated and implemented the USCACA-National Foundation for Cancer Research (NFCR) scholarship to encourage overseas returnees to continue cancer research in China.USCACA announced the Hengrui-USCACA scholarship to fund clinical trial staff from China to conduct the observation of early oncologic clinical trials in the US.During the annual meeting,distinguished panelists and the audience discussed the following critical topics:(1) oncologic translational research and early development capabilities in China; (2) novel chemical entity development and partnership with Chinese companies; and (3) Chinese participation in global anti-cancer drug development.USCACA will continue to promote collaborations among cancer researchers and clinicians in the US and China by engaging in more frequent communications and joint efforts across fields,disciplines,and countries,diligently working together toward curing and eliminating cancers.

  7. Jaeumganghwa-Tang Induces Apoptosis via the Mitochondrial Pathway and Lactobacillus Fermentation Enhances Its Anti-Cancer Activity in HT1080 Human Fibrosarcoma Cells

    OpenAIRE

    2015-01-01

    Jaeumganghwa-tang (JGT, Zi-yin-jiang-huo-tang in Chinese and Jiin-koka-to in Japanese) is an oriental herbal formula that has long been used as a traditional medicine to treat respiratory and kidney diseases. Recent studies revealed that JGT exhibited potent inhibitory effects on allergies, inflammation, pain, convulsions, and prostate hyperplasia. Several constituent herbs in JGT induce apoptotic cancer cell death. However, the anti-cancer activity of JGT has not been examined. In this study...

  8. A PRELIMINARY STUDY OF THE ANTI-CANCER EFFECT OF TANSHINONE ON HEPATIC CANCER AND ITS MECHANISM OF ACTION IN MICE

    Institute of Scientific and Technical Information of China (English)

    Wang Xiujie; Yuan Shulan; Wang Chaojun; Huang Renmin; Li Yuqiong

    1998-01-01

    Objective: There were some experimental researches in vitro, which showed that tanshinonoe (Tan)had cytotoxic activities against some cancer cell lines. But there was no report of anti-cancer activity of Tan in vivo.This experimental study was performed to confirm the anti-cancer activity of Tan in vivo. Methods: Hepatic carcinoma H22 bearing mice were treated with DMSO, 5-Fu, and Tan, at the end of experiment, the mice were sacrificed, tumor tissues were separated and weighed, and the tumor inhibitory rate was calculated, 3 times of the same experiments were performed. The proliferating kinetics of hepatic carcinoma H22 cells in mice was measured by bromodeoxyuridine labeling in vivo and immunohistochemical staining of the proliferating cell nuclear antigen (PCNA) in tumor tissues. Results: The tumor inhibitory rates of Tan were 50.0%, 38.5%, and 40.6% in 3 experiments, respectively, compared with those of the DMSO-treated control groups, the differences were significant statistically (P<0.01). The Brdu labeling and PCNA positive cells were 51.8± 7.9 and 451.1± 26.1, respectively, which were significantly lower than those of controls (84.4± 24.3, 694.8±117.1) (P<0.01). Conclusion:Tan had anti-cancer effect on hepatic carcinoma in vivo;The mechanisms of action might be associated with inhibition of DNA synthesis, PCNA expression and DNA polymerase δ activity of tumor cells.

  9. Anti-cancer drug discovery: update and comparisons in yeast, Drosophila, and zebrafish.

    Science.gov (United States)

    Gao, Guangxun; Chen, Liang; Huang, Chuanshu

    2014-01-01

    Discovery of novel cancer chemotherapeutics focuses on screening and identifying compounds that can target 'cancer-specific' biological processes while causing minimal toxicity to non-tumor cells. Alternatively, model organisms with highly conserved cancer-related cellular processes relative to human cells may offer new opportunities for anticancer drug discovery when combined with chemical screening. Some organisms used for chemotherapeutic discovery include yeast, Drosophila, and zebrafish which are similar in important ways relevant to cancer study but offer distinct advantages as well. Here, we describe these model attributes and the rationale for using them in cancer drug screening research.

  10. Combined effects of radiation and other agents on the stomach cancer incidence among Mayak Atomic Plant workers

    Energy Technology Data Exchange (ETDEWEB)

    Zhuntova, G.V.; Tokarskaya, Z.B.; Belyaeva, Z.D. [Branch No 1 of State Research Center of Public Health Ministry of the Russian Federation, Ozyorsk (Russian Federation). Biophysics Inst.; Rovny, S.I.; Sirchikov, V.A.

    2000-05-01

    The gravity of a problem of the combined action of radiation and other factors again was confirmed sessions UNSCEAR in May, 1998. It especially is important at study of cancer diseases in connection with the polyetiology and multistage of them development. The estimation of radiation, medico-biological factors and condition of life in occurrence of a stomach cancer among Mayak personnel was specified by case-cohort research. For a quota 503 men (157 cases of a stomach cancer, 346 men of the healthy personnel) attributive risk of the radiation factors was 8.8%, medico-biological - 57,2% (from them by greatest was influence chronic gastritis with secreting insufficiency - 35.4%), tobacco consumption - 31,6%. At an estimation of risk of a stomach cancer depending on external {gamma}-irradiation best fitting was received at use of square-law model. The excess relative risk was 0,27 Gr{sup -2} (F=44,5; P=0,007). For {sup 239}Pu incorporation was not revealed of distinct connection with stomach cancer incidences. Interaction of the radiation and non-radiation factors also was appreciated. The interaction of gastritis with external {gamma}-irradiation or {sup 239}Pu was multiplicate. The interaction of smoking with {gamma}-irradiation or {sup 239}Pu incorporation was multiplicate also. The distribution histological types of a stomach cancer among the workers of Mayak plant differed in comparison with not working. Among the workers the increase poorly differentiated adenocarcinoma was observed. (author)

  11. The dataset from administration of single or combined immunomodulation agents to modulate anti-FVIII antibody responses in FVIII plasmid or protein primed hemophilia A mice

    Directory of Open Access Journals (Sweden)

    Chao Lien Liu

    2016-06-01

    Full Text Available Hemophilia A mice with pre-existing inhibitory antibodies against factor VIII (FVIII were treated with single agents, AMD3100 and GCS-F, respectively. Inhibitor titers in treated mice and control HemA inhibitors mice were followed over time. Total B cells and plasma cells (PCs were characterized by flow cytometry. HemA inhibitor mice were then treated with a combination regimen of IL-2/IL-2mAb complexes plus rapamycin and AMD3100. Finally, HemA inhibitor mice were treated with a new combination therapy using include IL-2/IL-2mAb complexes + Anti-CD20+AMD3100+G-CSF. The timeline of combination therapy was illustrated. Inhibitor titers following treatment in FVIII plasmid or protein induced inhibitor mice were evaluated overtime. A representative figure and gating strategies to characterize the subsets of Treg cells and B cells are presented. Please see http://dx.doi.org/10.1016/j.cellimm.2016.01.005 [1] for interpretation and discussion of these data and results.

  12. What role do combinations of interferon and targeted agents play in the first-line therapy of metastatic renal cell carcinoma?

    Science.gov (United States)

    Bukowski, Ronald M

    2008-12-01

    Interferons (IFNs) are a class of cytokines with pleotropic actions that regulate a variety of cellular activities. Clinical trials with recombinant IFNs (IFN-alpha2a and IFN-alpha2b) have demonstrated clinical activity in patients with advanced renal cell carcinoma (RCC). Their efficacy is characterized by a low overall tumor regression rate of < 15%, progression-free survival of 4-5 months, and overall median survival of 10-18 months. This cytokine became the standard of care for patients with metastatic RCC and was then used as the comparator arm in a series of phase II and III clinical trials that have defined a new treatment paradigm for patients with advanced RCC. This paradigm uses the tyrosine kinase inhibitors (TKIs) sorafenib and sunitinib, the mammalian target of rapamycin (mTOR) inhibitor temsirolimus, and the vascular endothelial growth factor monoclonal antibody bevacizumab. These 3 categories of agents were then investigated in combination with IFN-alpha in a series of preclinical and clinical studies. The collective data from these reports suggest the combination of IFN-alpha and bevacizumab is active and has a role in RCC therapy, whereas combinations with the TKIs or mTOR inhibitors have limited efficacy and/or excessive toxicity. The clinical and preclinical studies leading to these conclusions are reviewed herein.

  13. Prevention of enzymatic browning of yacon flour by the combined use of anti-browning agents and the study of its chemical composition

    Directory of Open Access Journals (Sweden)

    Oscar Romero Lopes Rodrigues

    2014-06-01

    Full Text Available Yacon roots present functional properties because of the high levels of fructooligosaccharides (FOS, which are considered as prebiotic fibers. In addition, yacon roots are rich in phenolic compounds. During the processing of yacon, the freshly cut surface undergoes rapid enzymatic browning. Control of enzymatic browning during processing is very important to preserve the appearance of yacon flour. In this study, it was evaluated the combined effect of anti-browning agents (ascorbic acid, citric acid and L-cysteine on the inhibition of enzymatic browning of yacon, using Response Surface Methodology. The yacon pre-treated with anti-browning agents in concentrations of 15.0 mM for ascorbic acid, 7.5 mM for citric acid and 10.0 mM for L-cysteine was used for the processing of flour. Yacon flour presented an attractive color and good sensory properties, without residual aroma. The contents of FOS and phenolic compounds obtained in yacon flour were 28.60 g.100 g- 1 and 1.35 g.100 g- 1. Yacon flour can be considered as a potential functional food, especially due to high levels of FOS, which allows for its use in formulation of various foods.

  14. Anti-cancer activities of pH- or heat-modified pectin

    Directory of Open Access Journals (Sweden)

    Lionel eLeclere

    2013-10-01

    Full Text Available Despite enormous efforts that have been made in the search for novel drugs and treatments, cancer continues to be a major public health problem. Moreover, the emergence of resistance to cancer chemotherapy often prevents complete remission. Researchers have thus turned to natural products mainly from plant origin to circumvent resistance. Pectin and pH- or heat-modified pectin have demonstrated chemopreventive and antitumoral activities against some aggressive and recurrent cancers. The focus of this review is to describe how pectin and modified pectin display these activities and what are the possible underlying mechanisms. The failure of conventional chemotherapy to reduce mortality as well as serious side effects makes natural products, such as pectin-derived products, ideal candidates for exerting synergism in combination with conventional anticancer drugs.

  15. Growth-inhibitory effects of the chemopreventive agent indole-3-carbinol are increased in combination with the polyamine putrescine in the SW480 colon tumour cell line

    Directory of Open Access Journals (Sweden)

    Gescher Andreas

    2003-01-01

    Full Text Available Abstract Background Many tumours undergo disregulation of polyamine homeostasis and upregulation of ornithine decarboxylase (ODC activity, which can promote carcinogenesis. In animal models of colon carcinogenesis, inhibition of ODC activity by difluoromethylornithine (DFMO has been shown to reduce the number and size of colon adenomas and carcinomas. Indole-3-carbinol (I3C has shown promising chemopreventive activity against a range of human tumour cell types, but little is known about the effect of this agent on colon cell lines. Here, we investigated whether inhibition of ODC by I3C could contribute to a chemopreventive effect in colon cell lines. Methods Cell cycle progression and induction of apoptosis were assessed by flow cytometry. Ornithine decarboxylase activity was determined by liberation of CO2 from 14C-labelled substrate, and polyamine levels were measured by HPLC. Results I3C inhibited proliferation of the human colon tumour cell lines HT29 and SW480, and of the normal tissue-derived HCEC line, and at higher concentrations induced apoptosis in SW480 cells. The agent also caused a decrease in ODC activity in a dose-dependent manner. While administration of exogenous putrescine reversed the growth-inhibitory effect of DFMO, it did not reverse the growth-inhibition following an I3C treatment, and in the case of the SW480 cell line, the effect was actually enhanced. In this cell line, combination treatment caused a slight increase in the proportion of cells in the G2/M phase of the cell cycle, and increased the proportion of cells undergoing necrosis, but did not predispose cells to apoptosis. Indole-3-carbinol also caused an increase in intracellular spermine levels, which was not modulated by putrescine co-administration. Conclusion While indole-3-carbinol decreased ornithine decarboxylase activity in the colon cell lines, it appears unlikely that this constitutes a major mechanism by which the agent exerts its antiproliferative

  16. Preparation of RGD-modified Long Circulating Liposome Loading Matrine, and its in vitro Anti-cancer Effects

    Directory of Open Access Journals (Sweden)

    Xiao-yan Liu, Li-ming Ruan, Wei-wei Mao, Jin-Qiang Wang, You-qing Shen, Mei-hua Sui

    2010-01-01

    Full Text Available Aim: To prepare RGD-modified long circulating liposome (LCL loading matrine (RGD-M-LCL to improve the tumor-targeting and efficacy of matrine. Methods: LCL which was prepared with HSPC, cholesterol, DSPE-PEG2000 and DSPE-PEG-MAL was modified with an RGD motif confirmed by high performance liquid chromatography (HPLC. The encapsulation efficiency of RGD-M-LCL was also detected by HPLC. MTT assay was used to examine the effects of RGD-M-LCL on the proliferation of Bcap-37, HT-29 and A375 cells. The percentage of apoptotic cells and morphological changes in Bcap-37 cells treated with RGD-M-LCL were detected by Annexin-V-FITC/PI affinity assay and observed under light microscope, respectively. Results: Spherical or oval single-chamber particles of uniform sizes with little agglutination or adhesion were observed under transmission electronic microscope. The RGD motif was successfully coupled to the DSPE-PEG-MAL on liposomes, as confirmed by HPLC. An encapsulation efficiency of 83.13% was obtained when the drug-lipid molar ratio was 0.1, and the encapsulation efficiency was negatively related to the drug-lipid ratio in the range of 0.1~0.4, and to the duration of storage. We found that, compared with free matrine, RGD-M-LCL had much stronger in vitro activity, leading to anti-proliferative and pro-apoptotic effects against cancer cells (P<0.01. Conclusion: RGD-M-LCL, a novel delivery system for anti-cancer drugs, was successfully prepared, and we demonstrated that the use of this material could augment the effects of matrine on cancer cells in vitro.

  17. Investigation of the anti-cancer effect of quercetin on HepG2 cells in vivo

    Science.gov (United States)

    Li, Lin; Yao, Wenxiu; Xiong, Zhujuan; Zhou, Xiang

    2017-01-01

    Quercetin, a natural polyphenolic flavonoid compound, can inhibit the growth of several malignant cancers. However, the mechanism still remains unclear. Our previous findings have suggested that quercetin can significantly inhibit HepG2 cell proliferation and induce cell apoptosis in vitro. It can also affect cell cycle distribution and significantly decrease cyclin D1 expression. In this study, we investigated the anti-cancer effect of quercetin on HepG2 tumor-bearing nude mice and its effect on cyclin D1 expression in the tumor tissue. First, the nude murine tumor model was established by subcutaneous inoculation of HepG2 cells, then quercetin was administered intraperitoneally, and the mice injected with saline solution were used as controls. The daily behavior of the tumor-bearing mice was observed and differences in tumor growth and survival rate were monitored. The expression of cyclin D1 in isolated tumor sections was evaluated by immunohistochemistry. We found that HepG2 tumor became palpable in the mice one-week post-inoculation. Tumors in the control group grew rapidly and the daily behavior of the mice changed significantly, including listlessness, poor feeding and ataxia. The mice in quercetin-treated group showed delayed tumor growth, no significant changes in daily behavior, and the survival rate was significantly improved. Finally, we observed increased tumor necrosis and a lighter cyclin D1 staining with reduced staining areas. Our findings thus suggest that quercetin can significantly inhibit HepG2 cell proliferation, and this effect may be achieved through the regulation of cyclin D1 expression. PMID:28264020

  18. Anti-cancer and anti-angiogenic effects of curcumin and tetrahydrocurcumin on implanted hepatocellular carcinoma in nude mice

    Institute of Scientific and Technical Information of China (English)

    Pornprom Yoysungnoen; Ponthip Wirachwong; Chatchawan Changtam; Apichart Suksamrarn; Suthiluk Patumraj

    2008-01-01

    AIM: To determine the effect of tetrahydrocurcumin (THC) on tumor angiogenesis compared with curcumin (CUR) by using both in vitro and in vivo models of human hepatocellular carcinoma cell line (HepG2).METHODS: The 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyl-tetrazolium bromide (MTT) assay was used for testing the anti-proliferating activities of CUR and THC. In male BALB/c nude mice, 2 x 106 human HepG2 cells were inoculated onto a dorsal skin-fold chamber. One day after HepG2 inoculation, the experimental groups were fed oral daily with CUR or THC (300 mg/kg or 3000 mg/kg). On d 7, 14 and 21, the tumor microvasculature was observed using fluorescence videomicroscopy and capillary vascularity (CV) was measured.RESULTS: Pathological angiogenic features including microvascular dilatation, tortuosity, and hyper-permeability were observed. CUR and THC could attenuate these pathologic features. In HepG2-groups, the CV were significantly increased on d 7 (52.43%), 14 (69.17%), and 21 (74.08%), as compared to controls (33.04%,P < 0.001). Treatment with CUR and THC resulted in significant decrease in the CV (P < 0.005 and P < 0.001, respectively). In particular, the anti-angiogenic effects of CUR and THC were dose-dependent manner. However, the beneficial effect of THC treatment than CUR was observed, in particular, from the 21 d CV (44.96% and 52.86%, P < 0.05).CONCLUSION: THC expressed its anti-angiogenesis without any cytotoxic activities to HepG2 cells even at the highest doses. It is suggested that anti-angiogenic properties of CUR and THC represent a common potential mechanism for their anti-cancer actions.

  19. Cyclooxygenase/lipoxygenase shunting lowers the anti-cancer effect of cyclooxygenase-2 inhibition in colorectal cancer cells

    Directory of Open Access Journals (Sweden)

    Ganesh Radhakrishnan

    2012-09-01

    Full Text Available Abstract Background Arachidonic acid metabolite, generated by cyclooxygenase (COX, is implicated in the colorectal cancer (CRC pathogenesis. Inhibiting COX may therefore have anti-carcinogenic effects. Results from use of non-steroidal anti-inflammatory drugs inhibiting only COX have been conflicting. It has been postulated that this might result from the shunting of arachidonic acid metabolism to the 5-lipoxygenase (5-LOX pathway. Cancer cell viability is promoted by 5-LOX through several mechanisms that are similar to those of cyclooxygenase-2 (COX-2. Expression of 5-LOX is upregulated in colorectal adenoma and cancer. The aim of this study was to investigate the shunting of arachidonic acid metabolism to the 5-LOX pathway by cyclooxygenase inhibition and to determine if this process antagonizes the anti-cancer effect in colorectal cancer cells. Methods Three colorectal cancer cell lines (HCA7, HT-29 & LoVo expressing 5-LOX and different levels of COX-2 expression were used. The effects of aspirin (a non-selective COX inhibitor and rofecoxib (COX-2 selective on prostaglandin E2 (PGE2 and leukotriene B4 (LTB4 secretion were quantified by ELISA. Proliferation and viability were studied by quantifying double-stranded DNA (dsDNA content and metabolic activity. Apoptosis was determined by annexin V and propidium iodide staining using confocal microscopy, and caspase-3/7 activity by fluorescent substrate assay. Results COX inhibitors suppressed PGE2 production but enhanced LTB4 secretion in COX-2 expressing cell lines (P  Conclusions This study provides evidence of shunting between COX and 5-LOX pathways in the presence of unilateral inhibition, and may explain the conflicting anti-carcinogenic effects reported with use of COX inhibitors.

  20. Production of anti-cancer triterpene (betulinic acid) from callus cultures of different Ocimum species and its elicitation.

    Science.gov (United States)

    Pandey, Harshita; Pandey, Pallavi; Singh, Sailendra; Gupta, Ruby; Banerjee, Suchitra

    2015-03-01

    Betulinic acid (BA), a pentacyclic triterpenoid, is gaining unmatched attention owing to its unique anti-cancer activity with selective melanoma growth inhibition without damaging normal cells. It is also well-known for its multifaceted pharmacokinetics, entailing antibacterial, antimalarial, anti-HIV and antioxidant merits. Considering the escalating demand with diminishing bioresource of this molecule, the present study was undertaken that revealed the untapped potentials of Ocimum calli, contrasting to that in the in vitro derived leaves, as effective production alternative of BA in three out of four tested species (i.e. Ocimum basilicum, Ocimum kilimandscharicum, Ocimum sanctum excluding Ocimum grattisimum). Callus inductions were obtained in all the four species with different 2,4-dichlorophenoxyacetic acid (2,4-D)/α-naphthaleneacetic acid (NAA) concentrations with kinetin. Notably, 2,4-D favoured maximum callus growth in all whereas NAA proved beneficial for the highest metabolite yield in the calli of each BA-producing species. The O. basilicum calli demonstrated the maximum growth (growth index (GI) 678.7 ± 24.47) and BA yield (2.59 ± 0.55 % dry weight [DW]), whereas those in O. kilimandscharicum (GI 533.33 ± 15.87; BA 1.87 ± 0.6 % DW) and O. sanctum (GI 448 ± 16.07; BA 0.39 ± 0.12 % DW) followed a descending order. The O. gratissimum calli revealed minimum growth (GI 159 ± 13.25) with no BA accumulation. Elicitation with methyl jasmonate at 200-μM concentration after 48-h exposure doubled the BA yield (5.10 ± 0.18 % DW) in NAA-grown O. basilicum calli compared to that in the untreated counterpart (2.61 ± 0.19 % DW), which further enthused its future application.

  1. The efficacy and tolerability of the slow-acting combined agent glucosamine and chondroitin sulfate in gonarthrosis patients tacking no nonsteroidal anti-inflammatory drugs

    Directory of Open Access Journals (Sweden)

    A. P. Rebrov

    2015-01-01

    Full Text Available Objective: to evaluate the efficacy and tolerability of the combined symptomatic slow-acting combined agent Theraflex in gonarthrosis patients untreated with nonsteroidal antiinflammatory drugs (NSAIDs.Patients and methods. The investigation enrolled 84 patients (78 women and 6 men aged 55.23±7.36 years with knee arthritis lasting 6.2±0.98 years who were blindly randomized into 2 groups. A study group took Theraflex (chondroitin sulfate 400 mg and glucosamine sulfate 500 mg with or without acetaminophen. A comparison group received acetaminophen only. At baseline and 3 and 6 months after treatment, the investigators assessed changes in the magnitude of osteoarthritis (OA using WOMAC and Lequen's indices, evaluated the therapeutic efficiency rated by a patient and a physician according to the visual analogue scale, and took into account adverse reactions (AR.Results. All the patients taking Theraflex for 6 months showed a positive effect in substantially lowering WOMAC and Lequen's indices and reducing pain and needs for analgesics as compared to both the values at baseline and those obtained in the patients receiving acetaminophen only.Conclusion. In osteoarthritis patients untreated with NSAIDs, Theraflex treatment was associated with a reduction in pain syndrome and stiffness and with better function and lower needs for analgesics. Six-month Theraflex therapy did not cause serious ARs, as well as in patients having controlled gastrointestinal and renal diseases and hypertension

  2. Evolution of systemic treatment for hormone-sensitive breast cancer: from sequential use of single agents to the upfront administration of drug combinations

    Directory of Open Access Journals (Sweden)

    E. N. Imyanitov

    2016-01-01

    Full Text Available Current standards of treatment of endocrine-dependent cancers (breast cancer (BC, prostate cancer imply sequential use of endocrine therapy and cytotoxic agents: it is believed, that steroid hormone antagonists cease the division of transformed cells and therefore make them resistant to other therapeutic modalities. It is important to recognize that conceptual investigations in this field were carried out dozens of years ago, and often involved relatively non-efficient drugs, imperfect laboratory tests, etc. There are several recent examples of combined use of endocrine therapy and other compounds. The addition of docetaxel (6 cycles to androgen deprivation resulted in significant improvement of overall survival in men with metastatic prostate cancer. Clinical trial involving the combined use of exemestane and everolimus demonstrated promising results. There are ongoing studies on inhibitors of cycline-dependent kinases. Use of these drugs in the beginning of endocrine therapy may significantly delay resistance to the antagonists of estrogen signaling.

  3. Effect of high pressure, in combination with antilisterial agents, on the growth of Listeria monocytogenes during extended storage of cooked chicken.

    Science.gov (United States)

    Patterson, M F; Mackle, A; Linton, M

    2011-12-01

    A cocktail of Listeria monocytogenes strains was inoculated into cooked chicken (∼2.2 × 10³ CFU g⁻¹) which was then pressure-treated (600 MPa/2 min/20 °C) and stored for up to 105 days at 8 °C. In addition, sodium lactate (2% w/w) or a pressure-resistant Weissella viridescens strain, known to have antilisterial activity, were added to the meat prior to inoculation with the pathogen and pressure treatment, to investigate the effect on Listeria survival. Pressure treatment alone was not sufficient to eliminate all of the Listeria. Numbers of survivors were initially below the level of detection (50 CFU g⁻¹) but increased during storage to reach >10⁸ CFU g⁻¹ by day 21. The presence of W. viridescens significantly extended the lag phase of any Listeria that survived the initial pressure treatment by ∼35 days, but numbers then increased to reach ∼10⁷ CFU g⁻¹ by day 105. The addition of 2% sodium lactate in combination with pressure treatment was most effective at inhibiting the growth of L. monocytogenes and numbers remained below the limit of detection throughout the 105 day storage. The addition of antimicrobial agents, in combination with pressure, could be used to give additional food safety assurance without increasing pressure hold time.

  4. The effect of the combination of two biological control agents, Mirabilis jalapa and Bacillus thuringiensis, to Spodoptera litura's immune response and their mortality

    Science.gov (United States)

    Maulina, Dina; Anggraeni, Tjandra

    2014-03-01

    Biological control provides a safer alternative to reduce the population of agricultural pest. Mirabilis jalapa is one of many promising biopesticides which contains chemical substances that have a feeding deterrent property against insects. This biopesticide may not kill insect directly but will weaken their overall physiological condition. In this study, we investigated the immune response of common pestSpodoptera litura after exposure of M. jalapa extract. We also used Bacillus thuringiensis (Bt) delta endotoxin (LC50) on 3 hours after exposure of M. jalapa extract to see the synergism properties of both biopesticide agents. Microscopic observation revealed that at least 5 types of haemocyte were found in S. litura. In control group, plasmatocyte were found at 59.98%, prohaemocyte 20.73%, granullar cell 12.74%, oenocytoid 3.33% and spherule cell 3.20%. These proportion was differ significantly in the treatment group. Exposure to 0.1% and 0.2%(w/v) of M. jalapa extract increased the total number of haemocytes as much as 38.08% and 64.15% respectively. In contrast, exposure to 0.4% and 0.8%(w/v) reduced the number of haemocytes to 37.02% and 51.04% respectively. In term of phagocytic activity, the proportion of phagocytosing cells were 47.62% in control group, and in 0.1% and 0.2% (w/v) M. jalapa treatment group the proportion decreased to 28% and 26.88% respectively. In the concentration of 0.4% and 0.8%, phagocytic activity did not occur. Addition of biological agents Bt (LC50 concentration) to see mortality 3 hours after M. jalapa application did not show significant differences. S. litura mortality rate were found only 50%; this suggests that the combination of M. jalapa and Bt biopesticides in 3-hour intervals within 24 hours showed no increase in mortality.

  5. A new method of inhibiting pollutant release from source water reservoir sediment by adding chemical stabilization agents combined with water-lifting aerator

    Institute of Scientific and Technical Information of China (English)

    Beibei Chai; Tinglin Huang; Weihuang Zhu; Fengying Yang

    2011-01-01

    Source water reservoirs easily become thermally and dynamically stratified.Internal pollution released from reservoir sediments is the main cause of water quality problems.To mitigate the internal pollution more effectively,a new method,which combined chemical stabilization with water lifting aerator (WLA) technology,was proposed and its efficiency in inhibiting pollutant release was studied by controlled sediment-water interface experiments.The results showed that this new method can inhibit pollutant release from sediment effectively.The values of mean efficiency (E) in different reactors 2#-5# (1# with no agent,2# 10 mg/L polymeric aluminum chloride (PAC) was added,3# 20 mg/L PAC was added,4# 30 mg/L PAC was added,5# 20 mg/L PAC and 0.2 mg/L palyacrylamide (PAM)were added) for PO43- were 35.0%,43.9%,50.4% and 63.6%,respectively.This showed that the higher the PAC concentration was,the better the inhibiting efficiency was,and PAM addition strengthened the inhibiting efficiency significantly.For Fe2+,the corresponding values of E for the reactors 2#-5# were 22.9%,47.2%,34.3% and 46.2%,respectively.The inhibiting effect of PAC and PAM on Mn release remained positive for a relatively short time,about 10 days,and was not so effective as for PO43- and Fe2+.The average efliciencies in inhibiting the release of UV254 were 35.3%,25.9%,35.5%,38.9% and 39.5% for reactors 2#-5#,respectively.The inhibiting mechanisms of the agents for different pollutants varied among the conditions and should be studied further.

  6. Progress in Research on the Anti-cancer Effect of Salinomycin%盐霉素抗肿瘤作用研究进展

    Institute of Scientific and Technical Information of China (English)

    张鹰; 王毅

    2013-01-01

    盐霉素(salinomycin)特异性杀伤肿瘤干细胞(cancer stem cell,CSC)作用的发现,引起了国内外学者的广泛关注.最近的研究表明,盐霉素能高选择性杀死小鼠身上的人乳腺癌CSC并且其效力比紫杉醇高100倍.盐霉素这种靶向作用于CSC的能力及较好的成药性,使其具有研发为一种新型的抗癌药物的潜能.通过手术及术后化疗抗癌的传统方法已经难以对抗肿瘤的复发或转移.然而,利用离子型载体抗生素即盐霉素杀伤肿瘤干细胞这一特性,消除肿瘤复发与转移的”根源”,从而达到治愈”癌症”这一顽疾的目的在理论上是可行的.多项研究已证实盐霉素能对抗多种肿瘤干细胞,因此我们认为盐霉素是一种广谱抗肿瘤药物,这些结论将推动临床抗肿瘤研究进入一个崭新的阶段,为防癌治癌工作提供实验依据和新的思路.本文将系统阐述盐霉素抗肿瘤药效学及其作用机制的研究进展,以期为后续临床研发抗癌新化合物提供参考.%The anti-cancer activity of salinomycin has evoked excitement at home and abroad,due to its recent identification as a selective inhibitor of cancer stem cells (CSCs) from tumorsphere.In view of recent findings,salinomycin could deplete the proportion of CSCs by > l00-fold relative to paclitaxel.The ability of salinomycin preferentially targets CSCs makes it possible to become a novel and effective anticancer agent.The traditional methods of surgery and postoperative chemotherapy have proved to be difficult to prevent recurrence of metastasis of tumor.However,it is possible in theory to kill cancer stem cells by using ionic carrier of antibiotic named salinomycin,the “trigger” of tumor relapse and metastasis,human-bing could achieve the goal of curing “cancer” eventually.Many studies have confirmed that salinomycin can fight against a variety of cancer stem cells,so we think salinomycin is a broad-spectrum antitumor drug

  7. Antitumor effect of combined NAMPT and CD73 inhibition in an ovarian cancer model.

    Science.gov (United States)

    Sociali, Giovanna; Raffaghello, Lizzia; Magnone, Mirko; Zamporlini, Federica; Emionite, Laura; Sturla, Laura; Bianchi, Giovanna; Vigliarolo, Tiziana; Nahimana, Aimable; Nencioni, Alessio; Raffaelli, Nadia; Bruzzone, Santina

    2016-01-19

    Nicotinamide phosphoribosyltransferase (NAMPT) is a crucial enzyme in the biosynthesis of intracellular NAD+. NAMPT inhibitors have potent anticancer activity in several preclinical models by depleting NAD+ and ATP levels. Recently, we demonstrated that CD73 enables the utilization of extracellular NAD+/nicotinamide mononucleotide (NMN) by converting them to Nicotinamide riboside (NR), which can cross the plasmamembrane and fuel intracellular NAD+ biosynthesis in human cells. These processes are herein confirmed to also occur in a human ovarian carcinoma cell line (OVCAR-3), by means of CD73 or NRK1 specific silencing. Next, we investigated the anti-tumor activity of the simultaneous inhibition of NAMPT (with FK866) and CD73 (with α, β-methylene adenosine 5'-diphosphate, APCP), in an in vivo human ovarian carcinoma model. Interestingly, the combined therapy was found to significantly decrease intratumor NAD+, NMN and ATP levels, compared with single treatments. In addition, the concentration of these nucleotides in ascitic exudates was more remarkably reduced in animals treated with both FK866 and APCP compared with single treatments. Importantly, tumors treated with FK866 in combination with APCP contained a statistically significant lower proportion of Ki67 positive proliferating cells and a higher percentage of necrotic area. Finally, a slight but significant increase in animal survival in response to the combined therapy, compared to the single agents, could be demonstrated. Our results indicate that the pharmacological inhibition of CD73 enzymatic activity could be considered as a means to potentiate the anti-cancer effects of NAMPT inhibitors.

  8. Combined chemo- and photo-thermal therapy delivered by multifunctional theranostic gold nanorod-loaded microcapsules

    Science.gov (United States)

    Chen, Haiyan; di, Yingfeng; Chen, Dan; Madrid, Kyle; Zhang, Min; Tian, Caiping; Tang, Liping; Gu, Yueqing

    2015-05-01

    A polyelectrolyte microcapsule-based, cancer-targeting, and controlled drug delivery system has been developed as a multifunctional theranostic agent for synergistic cancer treatment. This new system, called FA-MC@GNR, is composed of folic acid (FA)-modified, multi-layered, hollow microcapsules loaded with gold nanorods (GNRs), and undergoes thermal degradation under near infrared (NIR) light. Either an NIR dye (MPA) or anti-cancer drug (doxorubicin, DOX) was loaded into the microcapsules via physical adsorption, yielding FA-MC@GNRs/MPA or FA-MC@GNRs/DOX, both of which exhibit no obvious toxicity, high stability, and remarkably improved tumor-targeting capabilities in vivo. Utilizing the strong NIR absorption of FA-MC@GNRs/DOX, we demonstrate the system's ability to simultaneously elicit photothermal therapy and controlled chemotherapy, achieving synergistic cancer treatment both in vitro cellular and in vivo animal experiments. Our study presents a new type of multifunctional micro-carrier for the delivery of chemotherapeutic drugs and photothermal agents, which has been shown to be an effective therapeutic approach for combined cancer treatment.

  9. Synergistic enhancement of breast cancer cell death using ultrasound-microbubbles in combination with cisplatin

    Science.gov (United States)

    Jetha, Sheliza; Karshafian, Raffi

    2017-03-01

    Cisplatin (CDDP), an anti-cancer agent, can effectively treat several cancerous tumourstumors such as testicular, bladder, and ovarian cancers. CDDP binds to specific DNA bases causing 1,2-intrastrand cross-links, single strand and double strand breaks inducing apoptosis. However, the effectiveness of CDDP is limited in tumourtumors such as breast cancer due to drug resistance. In this study, the application of ultrasound-microbubble (USMB) in improving the therapeutic effect of CDDP in breast cancer cell line is investigated. Human breast cancer (MDA-MB-231) cells in suspension (2×106 cells/mL concentration and 0.6 mL volume) were treated with CDDP (3 µM, 30 µM and 300 µM) and USMB at 0.5 MHz pulse centered frequency, 60 s insonation time, 16 µs pulse duration, 1 kHz pulse repetition frequency, and 1.7% v/v (volume concentration) of Definity microbubble agent. Following USMB treatment, cells were plated in 96-well plates for 24 and 48-hour incubation, after which cell viability was measured using MTT assay (VMTT). Cell viability decreased significantly with the combined treatment of CDDP and USMB compared to CDDP alone (pcancer cells. However, this enhanced effectiveness, in breast cancer cells (MDA-MB-231), is dependent on incubation time and cisplatin (CDDP) concentration.

  10. Comparison of the protective effects of various antiulcer agents alone or in combination on indomethacin-induced gastric ulcers in rats.

    Science.gov (United States)

    Izzettin, Fikret Vehbi; Sancar, Mesut; Okuyan, Betul; Apikoglu-Rabus, Sule; Cevikbas, Ugur

    2012-05-01

    The aim of this study which was structured with the objective of determination of the optimum protective therapy against the long term NSAID therapy-induced ulcers was to compare the gastro-protective effects of various antiulcer drugs (ranitidine, omeprazole, bismuth and misoprostol) alone or in combination with each other in different doses on indomethacin-induced gastric ulcers in rats. In this experimental study the protective effect of misoprostol (100 μg/kg/day and 10 μg/kg/day i.g.), omeprazole (5 mg/kg/day and 1.5 mg/kg/day i.p.), ranitidine (40 mg/kg/day and 10 mg/kg/day i.p.), bismuth (70 mg/kg/day and 15 mg/kg/day i.g.), combinations of misoprostol (10 μg/kg/day i.g.) plus omeprazole (1.5mg/kg/day i.p.) and misoprostol (10 μg/kg/day i.g.) plus ranitidine (10 mg/kg/day i.p.) are investigated on indomethacin (50 mg/kg/day s.c.) induced gastric ulcers. Half an hour before indomethacin administration, each group received the above treatment regimens for 5 days. After 5-day treatment, the rats were sacrificed and histopathological and hematological examinations were performed. The following regimens were found to be effective in the prevention of indomethacin-induced gastric lesions: 100 μg/kg misoprostol, 10 μg/kg misoprostol, 5mg/kg omeprazole, combination of 10 μg/kg misoprostol plus 1.5 mg/kg omeprazole and 10 μg/kg misoprostol plus 10 mg/kg ranitidine. The prevention rates achieved by these treatments were 71.4%, 50%, 47.6%, 52.4% and 50%, respectively. As a result of this study, misoprostol and omeprazol were found to be effective in protection against NSAID-induced gastric problems; while, ranitidine and bismuth were not. Also, the combinations of these agents were not found to have additive or synergistic effects.

  11. Long-term cultivation of colorectal carcinoma cells with anti-cancer drugs induces drug resistance and telomere elongation: an in vitro study

    Directory of Open Access Journals (Sweden)

    Mochizuki Hidetaka

    2001-08-01

    Full Text Available Abstract Background The role of telomerase activation in the expression and/or maintenance of drug resistance is not clearly understood. Therefore, we investigated the relationships, among the telomerase activity, telomere length and the expression of multidrug resistance genes in colorectal cancer cell lines cultivated with anti-cancer drugs. Methods LoVo and DLD-1 cells were continuously grown in the presence of both CDDP and 5-FU for up to 100 days. Cell proliferation, telomerase activity, telomere length and the expression of multidrug resistance genes were serially monitored as the PDL increased. Results The expression of multidrug resistance genes tended to increase as the PDL increased. However, an abnormal aneuploid clone was not detected as far as the cells were monitored by a DNA histogram analysis. Tumor cells showing resistance to anti-cancer drugs revealed a higher cell proliferation rate. The telomere length gradually increased with a progressive PDL. The telomerase activity reached a maximum level at 15 PDL in LoVo cells and at 27 PDL in DLD-1 cells. An increase in the mRNA expression of the telomerase components, especially in hTERT and in hTR, was observed at the same PDLs. Conclusions These results suggest that a high telomerase activity and an elongation of telomeres both appear to help maintain and/or increase drug resistance in colorectal cancer cells. Cancer cells with long telomeres and a high proliferative activity may thus be able to better survive exposure to anti-cancer drugs. This is presumably due to an increased chromosome stability and a strong expression of both mdr-1 and MRP genes.

  12. In vitro and in vivo efficacy of afatinib as a single agent or in combination with gemcitabine for the treatment of nasopharyngeal carcinoma

    Directory of Open Access Journals (Sweden)

    Xue C

    2016-03-01

    Full Text Available Cong Xue,1 Ying Tian,2 Jing Zhang,3 Yuanyuan Zhao,1 Jianhua Zhan,2 Wenfeng Fang,1 Li Zhang1 1Department of Medical Oncology, 2Department of Research, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, 3Department of Medical Oncology, The First Affiliated Hospital of Guangzhou Traditional Chinese Medicine University, Guangzhou, Guangdong, People’s Republic of China Purpose: Epidermal growth factor receptor (EGFR is usually overexpressed in nasopharyngeal carcinoma (NPC. We tested the antitumor effects of irreversible ErbB family inhibitor afatinib on human NPC using in vitro and in vivo models.Materials and methods: The effect of afatinib on NPC cells was evaluated using the Cell Counting Kit 8 (CCK8 assay, flow cytometry, and Western blot analyses. The effect of afatinib, as either a single agent or in combination with gemcitabine (GEM, on tumor growth was determined using NPC tumor xenografts in mice.Results: Afatinib inhibited cell growth in all three NPC cell lines tested in a dose-dependent manner. Afatinib promoted cell cycle arrest at the S and G2/M phases, and it significantly inhibited epidermal growth factor (EGF-induced activation of EGFR and its downstream signaling factors. Co-treatment with afatinib and GEM more effectively inhibited tumor growth than either drug alone but was associated with increased toxicity.Conclusion: Afatinib induced cell cycle arrest and inhibited the proliferation of NPC cell lines. Afatinib in combination with GEM demonstrated significant antitumor effect in an NPC xenograft model. The administration of afatinib with GEM in NPC needs to be modified in order to be effective and tolerable. Keywords: nasopharyngeal carcinoma, EGFR, afatinib, gemcitabine, preclinical

  13. In vitro anti-cancer activity of ethanolic extract of Momordica charantia on cervical and breast cancer cell lines

    Directory of Open Access Journals (Sweden)

    C R Shobha

    2015-01-01

    Full Text Available Objectives: To estimate the total phenol content (TPC of the ethanolic extract of Momordica charantia (EEMC whole fruit and to study the cytotoxic activity of this extract against cell lines representing carcinomas of cervix and breast. Materials and Methods: Cervical and breast carcinoma cell lines (HeLa and MCF-7 were procured from National Center for Cell Sciences, Pune, and cultured in Dulbecco's modified eagle medium (DMEM supplemented with 10% fetal bovine serum (FBS and 1 mM L-glutamine. EEMC was prepared by graded ethanol fractionation method and the TPC determined using Folin–Ciocalteu assay. For cytotoxicity studies, 5000 cells/well in 100 μl DMEM-10% FBS medium were seeded in a 96 well plate; and treated with increasing concentration of EEMC. Efficacy of EEMC was determined by measuring the cell number using sulforhodamine B assay. Percentage inhibition was calculated using dimethyl sulfoxide vehicle control. The IC (50 value was calculated from the plot of inhibition (% in dose- and time-dependent manner using GraphPad PRISM software. Results: The total phenolic content of EEMC decreased with increasing ethanol concentration from 50% to 100%. Cytotoxicity studies identified 50% ethanolic extract as the most active fraction. A time- and dose-dependent increase in the efficacy of 50% ethanolic extract for inhibiting cervical and breast carcinoma cell growth was noticed. The IC (50 dose was 12.31 μg/ml and 0.769 μg/ml for 50% EEMC at 48 h incubation for HeLa and MCF-7 cell lines, respectively. Conclusion: The presence of high total phenolic acid content in 50% ethanolic extract indicates that the anti-cancer activity of Momordica charantia could be due to the secondary metabolites. Based on the IC (50 value we conclude that the 50% EEMC is more potent against breast cancer cell lines. Further studies are required to know the exact cause for the increase in cell inhibition at 48 h incubation than in 72 h.

  14. Macro-management of microRNAs in cell cycle progression of tumor cells and its implications in anti-cancer therapy

    Institute of Scientific and Technical Information of China (English)

    Lin-hui LIANG; Xiang-huo HE

    2011-01-01

    The cell cycle,which is precisely controlled by a number of regulators,including cyclins and cyclin-dependent kinases (CDKs),is crucial for the life cycle of mammals.Cell cycle dysregulation is implicated in many diseases,including cancer.Recently,compelling evidence has been found that microRNAs play important roles in the regulation of cell cycle progression by modulating the expression of cyclins,CDKs and other cell cycle regulators.Herein,the recent findings on the regulation of the cell cycle by microRNAs are summarized,and the potential implications of miRNAs in anti-cancer therapies are discussed.

  15. The combined bacterial Lux-Fluoro test for the detection and quantification of genotoxic and cytotoxic agents in surface water: results from the "Technical Workshop on Genotoxicity Biosensing".

    Science.gov (United States)

    Baumstark-Khan, Christa; Rabbow, Elke; Rettberg, Petra; Horneck, Gerda

    2007-12-15

    The bioassay Lux-Fluoro test was developed for the rapid detection and quantification of environmental pollutants with genotoxic and/or cytotoxic potential. This bacterial test system uses two different reporter genes whose gene products and their reactions, respectively, can be measured easily and simultaneously by optical methods. Genotoxicity is measured by the increase of bioluminescence in genetically modified bacteria which carry a plasmid with a complete lux operon for the enzyme luciferase from the marine photobacterium P. leiognathi under the control of a DNA-damage dependent so-called SOS promoter. If the deoxyribonucleic acid in these bacteria is damaged by a genotoxic chemical, the SOS promoter is turned on and the lux operon is expressed. The newly synthesized luciferase reacts immediately with its substrate thereby producing bioluminescence in a damage-proportional manner. In the second part of the system, genetically modified bacteria carry the gene for the green fluorescent protein (gfp) from the jellyfish Aequora victoria downstream from a constitutively expressed promoter. These bacteria are fluorescent under common growth conditions. If their cellular metabolism is disturbed by the action of cytotoxic chemicals, the fluorescence decreases in a dose-proportional manner. The combined Lux-Fluoro test is shown to be well suited for the biological assessment of the geno- and cytotoxicity of a series of model agents and environmental samples at the Technical Workshop on Genotoxicity Biosensing (TECHNOTOX).

  16. Combined magnetic resonance imaging of deep venous thrombosis and pulmonary arteries after a single injection of a blood pool contrast agent

    Energy Technology Data Exchange (ETDEWEB)

    Hansch, Andreas; Neumann, Steffi; Baltzer, Pascal; Waginger, Matthias; Kaiser, Werner A.; Mentzel, Hans-Joachim [Friedrich-Schiller-University Jena, Institute of Diagnostic and Interventional Radiology, Jena (Germany); Betge, Stefan; Poehlmann, Gunther [Friedrich-Schiller-University Jena, Department of Internal Medicine I, Jena (Germany); Pfeil, Alexander; Wolf, Gunter [Friedrich-Schiller-University Jena, Department of Internal Medicine III, Jena (Germany); Boettcher, Joachim [SRH Klinikum Gera, Institute of Diagnostic and Interventional Radiology, Gera (Germany)

    2011-02-15

    Agreement rate between magnetic resonance imaging (MRI) and Doppler ultrasound (DUS) for the detection of deep vein thrombosis (DVT) in the lower extremities was attempted by using the intravascular MRI contrast agent gadofosveset trisodium. The potential of this method to detect pulmonary embolism (PE) was also evaluated. Forty-three consecutive inpatients with ultrasound-confirmed DVT but no clinical signs of PE were prospectively enrolled in this feasibility study. MRI was performed after a single injection of gadofosveset trisodium. The pulmonary arteries were imaged using a 3D Fast Low Angle Shot (FLASH) gradient recalled echo sequence. Additionally, pulmonary arteries, abdominal veins, pelvic and leg veins were imaged using a fat-suppressed 3D gradient echo Volume Interpolated Breath-hold Examination (VIBE FS). Gadofosveset trisodium-enhanced MRI detected more thrombi in the pelvic region, upper leg and lower leg than the initial DUS. In addition, PE was detected in 16 of the 43 DVT patients (37%). This study shows the feasibility of a combined protocol for the MRI diagnosis of DVT and PE using gadofosveset trisodium. This procedure is not only more sensitive in detecting DVT compared to standard DUS, but is also able to detect PE in asymptomatic patients. (orig.)

  17. Novel Role of Rural Official Organization in the Biomass-Based Power Supply Chain in China: A Combined Game Theory and Agent-Based Simulation Approach

    Directory of Open Access Journals (Sweden)

    Kaiyan Luo

    2016-08-01

    Full Text Available Developing biomass-based power generation is helpful for China to reduce the dependence on fossil fuels and to release the targets of carbon emission peak. The decentralized farming method leads to Chinese farmers’ weak willingness to collect and sell crop residues to biomass-based power plants. The purpose of this paper is to solve the issue by proposing a novel biomass feedstock supply model with China’s rural official organization—villagers’ committee, which has great influence on villagers’ decision making. Introducing it into the biomass-based power supply chain is beneficial to motivating farmers’ supplying enthusiasm. A combined game theory and agent-based simulation approach is applied to study the effectiveness of this new supply model. Multiple simulation scenarios are built to study impacts of different simulation parameters, and results show that farmers tend to supply more biomass material for electricity production in the proposed villagers’ committee model, compared with the two conventional supply models, direct-deal and broker models. The supply model incorporating the rural official organization can ensure the feedstock sufficiency for plants. A proper model design depends on the feed-in tariff subsidy for biomass-based electricity, feedstock shipping distance, performance appraisal system of the villagers’ committee, as well as farmers’ utility weights on net income and public service improvement.

  18. A Theranostic Agent Combining a Two-Photon-Absorbing Photosensitizer for Photodynamic Therapy and a Gadolinium(III) Complex for MRI Detection.

    Science.gov (United States)

    Schmitt, Julie; Heitz, Valérie; Sour, Angélique; Bolze, Frédéric; Kessler, Pascal; Flamigni, Lucia; Ventura, Barbara; Bonnet, Célia S; Tóth, Éva

    2016-02-18

    The convergent synthesis and characterization of a potential theranostic agent, [DPP-ZnP-GdDOTA](-), which combines a diketopyrrolopyrrole-porphyrin component DPP-ZnP as a two-photon photosensitizer for photodynamic therapy (PDT) with a gadolinium(III) DOTA complex as a magnetic resonance imaging probe, is presented. [DPP-ZnP-GdDOTA](-) has a remarkably high longitudinal water proton relaxivity (19.94 mm(-1)  s(-1) at 20 MHz and 25 °C) for a monohydrated molecular system of this size. The Nuclear Magnetic Relaxation Dispersion (NMRD) profile is characteristic of slow rotation, related to the extended and rigid aromatic units integrated in the molecule and to self-aggregation occurring in aqueous solution. The two-photon properties were examined and large two-photon absorption cross-sections around 1000 GM were determined between 910 and 940 nm in DCM with 1 % pyridine and in DMSO. Furthermore, the new conjugate was able to generate singlet oxygen, with quantum yield of 0.42 and 0.68 in DCM with 1 % pyridine and DMSO, respectively. Cellular studies were also performed. The [DPP-ZnP-GdDOTA](-) conjugate demonstrated low dark toxicity and was able to induce high one-photon and moderate two-photon phototoxicity on cancer cells.

  19. Combined resection and multi-agent adjuvant chemotherapy for desmoplastic small round cell tumor arising in the abdominal cavity: Report of a case

    Institute of Scientific and Technical Information of China (English)

    Chang-Cheng Chang; Jun-Te Hsu; Jeng-Hwei Tseng; Tsann-Long Hwang; Han-Ming Chen; Yi-Yin Jan

    2006-01-01

    Desmoplastic small round cell tumor (DSRCT) is a rare,highly aggressive malignancy with distinctive histological features: a nesting pattern of cellular growth within dense desmoplastic stroma, occurring in young population with male predominance. The mean survival period is only about 1.5-2.5 years. The tumor has co-expressed epithelial, muscle, and neural markers in immunohistochemical studies. This work reports a 27-year-old man presenting with hematemesis and chronic constipation.Serial studies including endoscopy, upper gastrointestinal series, abdominal computed tomography and barium enema study showed disseminated involvement of visceral organs. The patient underwent aggressive surgery and received postoperative adjuvant chemotherapy consisting of 5-fluorouracil, cyclophosphamide,etoposide, doxorubicin, and cisplatin. He survived without any disease for 20 mo after the surgery. No standard treatment protocol has been established. Aggressive surgery combined with postoperative multi-agent adjuvant chemotherapy is justified not only to relieve symptoms but also to try to improve the outcome in this advanced DSRCT young patient.

  20. Poly (γ-glutamic acid) based combination of water-insoluble paclitaxel and TLR7 agonist for chemo-immunotherapy.

    Science.gov (United States)

    Seth, Anushree; Heo, Min Beom; Lim, Yong Taik

    2014-09-01

    Advanced anti-cancer regimens are being introduced for more effective cancer treatment with improved life expectancy. In this research, immuno-stimulating agent toll-like receptor-7 (TLR-7) agonist-imiquimod and low dose chemotherapeutic agent-paclitaxel were synergized to demonstrate tumor therapy along with anti-tumor memory effect. Both therapeutic agents being water insoluble were dispersed in water with the help of water soluble polymer: poly (γ-glutamic acid) (γ-PGA) using a co-solvent systems leading to formation of micro-dispersions of drugs. Paclitaxel and imiquimod formed crystalline microstructures in the size range of 2-3 μm and were stably dispersed in γ-PGA matrix for more than 6 months. Paclitaxel and combination of paclitaxel and imiquimod had significant tumor killing effect in-vitro on various tumor cell lines, while antigen presenting cells (dendritic cells-DCs) treated with the same concentration of imiquimod along with the combination led to enhanced proliferation (250%). In DCs, enhanced secretion of pro-inflammatory and Th1 cytokines was observed in cells co-treated with paclitaxel and imiquimod dispersed in γ-PGA. When administered by intra-tumoral injection in mouse melanoma tumor model, the treatment with combination exemplified drastic inhibition of tumor growth leading to 70% survival as compared to individual components with 0% survival at day 41. The anti-tumor response generated was also found to have systemic memory response since the vaccinated mice significantly deferred secondary tumor development at distant site 6 weeks after treatment. The relative number and activation status of DCs in-vivo was found to be dramatically increased in case of mice treated with combination. The dramatic inhibition of tumor treated with combination is expected to be mediated by both chemotherapeutic killing of tumor cells followed by uptake of released antigen by the DCs and due to enhanced proliferation and activation of the DCs.

  1. Evaluating Dual Activity LPA Receptor Pan-Antagonist/Autotaxin Inhibitors as Anti-Cancer Agents in vivo using Engineered Human Tumors

    OpenAIRE

    Xu, Xiaoyu; Yang, Guanghui; Zhang, Honglu; Glenn D Prestwich

    2009-01-01

    Using an in situ crosslinkable hydrogel that mimics the extracellular matrix (ECM), cancer cells were encapsulated and injected in vivo following a “tumor engineering” strategy for orthotopic xenografts. Specifically, we created several three-dimensional (3-D) human tumor xenografts and evaluated the tumor response to BrP-LPA, a novel dual function LPA antagonist/ATX inhibitor (LPAa/ATXi). First, we describe the model system and the optimization of semi-synthetic ECM (sECM) compositions and i...

  2. Highly Selective Anti-Cancer Activity of Cholesterol-Interacting Agents Methyl-β-Cyclodextrin and Ostreolysin A/Pleurotolysin B Protein Complex on Urothelial Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Nataša Resnik

    Full Text Available Cholesterol content can vary distinctly between normal and cancer cells, with elevated levels in cancer cells. Here, we investigated cholesterol sequestration with methyl-β-cyclodextrin (MCD, and pore-formation with the ostreolysin A/pleurotolysin B (OlyA/PlyB protein complex that binds to cholesterol/sphingomyelin-rich membrane domains. We evaluated the effects on viability of T24 invasive and RT4 noninvasive human urothelial cancer cells and normal porcine urothelial (NPU cells. Cholesterol content strongly correlated with cancerous transformation, as highest in the T24 high-grade invasive urothelial cancer cells, and lowest in NPU cells. MCD treatment induced prominent cell death of T24 cells, whereas OlyA/PlyB treatment resulted in greatly decreased viability of the RT4 low-grade noninvasive carcinoma cells. Biochemical and transmission electron microscopy analyses revealed that MCD and OlyA/PlyB induce necrotic cell death in these cancer cells, while viability of NPU cells was not significantly affected by either treatment. We conclude that MCD is more toxic for T24 high-grade invasive urothelial cancer cells, and OlyA/PlyB for RT4 low-grade noninvasive urothelial cancer cells, and neither is toxic for NPU cells. The cholesterol and cholesterol/sphingomyelin-rich membrane domains in urothelial cancer cells thus constitute a selective therapeutic target for elimination of urothelial cancer cells.

  3. Zebrafish: a new model for anti-cancer agents%抗肿瘤新药研究的新型模式生物斑马鱼

    Institute of Scientific and Technical Information of China (English)

    牛荣丽; 阎松; 杜长青; 林秀坤

    2006-01-01

    斑马鱼(Danio rerio),是一种用于研究脊椎动物胚胎学和发育遗传学的模式生物.近年来,利用斑马鱼来建立人类疾病研究模型已成为新的研究亮点.笔者就斑马鱼作为一种抗肿瘤新药研究模式生物所具有的优势、应用研究及其前景做一综述.

  4. 靶向血管内皮生长因子及其受体的抗肿瘤药物研究进展%Anti-cancer drugs targeting vascular endothelial growth factors and receptors: research advances

    Institute of Scientific and Technical Information of China (English)

    张娜; 姚文兵; 徐晨

    2012-01-01

    Angiogenesis plays a critical rede in the process of tumor growth and metastasis, and vascular endothelial growth factor and its' receptor (VEGF/VEGFR) signaling pathway is an important mechanism of neovascularization, At present, drug inhibition of angiogenesis has become a significant research topic and a variety of anti-angiogenesis agents aimed at blocking VECF or its receptor-signaling system have been marketed or issued to the clinical trials. The main purpose of this review is to summarize the available information regarding the importance of VEGF/VEGFR in cancer therapy, with a focus on the latest development, clinical use and challenges of the anti-cancer drugs targeting VEGF/VEGFR.%血管生成对肿瘤的生长和转移起着关键作用,血管内皮生长因子(VEGF)及其受体信号通路是调节肿瘤新生血管生成的重要途径,因此,近年来以VEGF及其受体为作用靶标的抗肿瘤血管生成治疗已经成为研究热点,目前已有多种药物上市或处于临床试验阶段.本文主要综述了VEGF及其受体在肿瘤血管生成调节机制中的作用,同时着重介绍靶向VEGF及其受体的抗肿瘤药物的新近研究进展、临床应用及存在的问题.

  5. Detecting the effect of targeted anti-cancer medicines on single cancer cells using a poly-silicon wire ion sensor integrated with a confined sensitive window.

    Science.gov (United States)

    Wu, You-Lin; Hsu, Po-Yen; Hsu, Chung-Ping; Lin, Jing-Jenn

    2012-10-01

    A mold-cast polydimethylsiloxane (PDMS) confined window was integrated with a poly-silicon wire (PSW) ion sensor. The PSW sensor surface inside the confined window was coated with a 3-aminopropyltriethoxysilane (γ-APTES) sensitive layer which allowed a single living cell to be cultivated. The change in the microenvironment due to the extracellular acidification of the single cell could then be determined by measuring the current flowing through the PSW channel. Based on this, the PSW sensor integrated with a confined sensitive window was used to detect the apoptosis as well as the effect of anti-cancer medicines on the single living non-small-lung-cancer (NSLC) cells including lung adenocarcinoma cancer cells A549 and H1299, and lung squamous-cell carcinoma CH27 cultivated inside the confined window. Single human normal cells including lung fibroblast cells WI38, lung fibroblast cells MRC5, and bronchial epithelium cell Beas-2B were tested for comparison. Two targeted anti-NSCLC cancer medicines, Iressa and Staurosporine, were used in the present study. It was found that the PSW sensor can be used to accurately detect the apoptosis of single cancer cells after the anti-cancer medicines were added. It was also found that Staurosporine is more effective than Iressa in activating the apoptosis of cancer cells.

  6. 常用抗肿瘤药物基因组学研究进展%Research progress on pharmacogenomics of anti-cancer drugs

    Institute of Scientific and Technical Information of China (English)

    郝志英; 李云娥

    2013-01-01

    药物基因组学的研究进展在指导临床个体化用药、阐明个体差异方面具有重要作用。常用抗肿瘤药物在肿瘤治疗中使用频率最高,是一线方案的首选药物。通过对常用抗肿瘤药物基因组学的分析研究,找到不同患者在基因层面的个体差异,达到预测化疗疗效、选定最佳剂量、减少不良反应的目的,从而实现真正意义上的个体化用药。%Research progress on pharmacogenomics plays an important role in aspects such as guiding individualized medication in clinical setting and illustrating difference between individuals. Commonly anti-cancer drugs in the treatment of tumor in the highest frequency of use, is the preferred first-line drugs regimen.Through analysis and research on pharmacogenomics of commonly anti-cancer drugs, differences of the genetic level between patients are identified with the aim of predicting effects of chemotherapy, determining optimal dosage and reducing adverse reaction. As a result, true individualized medication can be realized.

  7. Feasibility Study of EndoTAG-1, a Tumor Endothelial Targeting Agent, in Combination with Paclitaxel followed by FEC as Induction Therapy in HER2-Negative Breast Cancer.

    Directory of Open Access Journals (Sweden)

    Michail Ignatiadis

    Full Text Available EndoTAG-1, a tumor endothelial targeting agent has shown activity in metastatic triple-negative breast cancer (BC in combination with paclitaxel.HER2-negative BC patients candidates for neoadjuvant chemotherapy were scheduled to receive 12 cycles of weekly EndoTAG-1 22mg/m2 plus paclitaxel 70mg/m2 followed by 3 cycles of FEC (Fluorouracil 500mg/m2, Epirubicin 100mg/m2, Cyclophosphamide 500mg/m2 every 3 weeks followed by surgery. Primary endpoint was percent (% reduction in Magnetic Resonance Imaging (MRI estimated Gadolinium (Gd enhancing tumor volume at the end of EndoTAG-1 plus paclitaxel administration as compared to baseline. Safety, pathological complete response (pCR defined as no residual tumor in breast and axillary nodes at surgery and correlation between % reduction in MRI estimated tumor volume and pCR were also evaluated.Fifteen out of 20 scheduled patients were included: Six patients with estrogen receptor (ER-negative/HER2-negative and 9 with ER-positive/HER2-negative BC. Nine patients completed treatment as per protocol. Despite premedication and slow infusion rates, grade 3 hypersensitivity reactions to EndoTAG-1 were observed during the 1st, 2nd, 3rd and 6th weekly infusion in 4 patients, respectively, and required permanent discontinuation of the EndoTAG-1. Moreover, two additional patients stopped EndoTAG-1 plus paclitaxel after 8 and 9 weeks due to clinical disease progression. Two patients had grade 3 increases in transaminases and 1 patient grade 4 neutropenia. pCR was achieved in 5 of the 6 ER-/HER2- and in none of the 9 ER+/HER2- BC patients. The mean % reduction in MRI estimated tumor volume at the end of EndoTAG-1 plus paclitaxel treatment was 81% (95% CI, 66% to 96%, p<0.001 for the 15 patients that underwent surgery; 96% for patients with pCR and 73% for patients with no pCR (p = 0.04.The EndoTAG-1 and paclitaxel combination showed promising preliminary activity as preoperative treatment, especially in ER-/HER2

  8. Isolation and Characterisation of a Proanthocyanidin With Antioxidative, Antibacterial and Anti-Cancer Properties from Fern Blechnum orientale

    Science.gov (United States)

    Lai, How-Yee; Lim, Yau-Yan; Kim, Kah-Hwi

    2017-01-01

    Background: Blechnum orientale Linn. (Blechnaceae), a fern, is traditionally used in the treatment of various ailments, such as skin diseases, stomach pain, urinary bladder complaints, and also as a female contraceptive. Previously, we reported a strong radical scavenging activity, antibacterial activity and cytotoxicity against HT29 colon cancer cells by aqueous extract of B. orientale. Objective: In this study, we attempted to isolate and identify the active compound from the aqueous extract of B. orientale. Materials and Methods: Aqueous extract of B. orientale was subjected to repeated MCI gel chromatography, Sephadex-LH-20, Chromatorex C18 and semi-preparative high performance liquid chromatography and was characterized using nuclear magnetic resonance and electrospray ionization mass-spectrometry spectroscopic methods. Antioxidant activity was determined using 2, 2-diphenyl-1-picrylhydrazyl radical scavenging assay. Antibacterial assays were conducted using disc diffusion whereas the minimum inhibitory concentration (MIC) and minimum bactericidal concentration were determined using the broth microdilution assay. Cytotoxicity was assessed using thiazolylblue tetrazoliumbromide. Results: A polymeric proanthocyanidin consisting of 2-12 epicatechin extension units and epigallocathecin terminal units linked at C4-C8 was elucidated. Bioactivity studies showed strong radical scavenging activity (IC50 = 5.6 ± 0.1 µg/mL), antibacterial activity (MIC = 31.3-62.5 µg/mL) against five gram-positive bacteria and selective cytotoxicity against HT29 colon cancer cells (IC50 = 7.0 ± 0.3 µg/mL). Conclusion: According to our results, the proanthocyanidin of B. orientale demonstrated its potential as a natural source of antioxidant with antibacterial and anti-cancer properties. SUMMARY A bioactive proanthocyanidin was isolated from the aqueous extract of medicinal fern Blechnum orientale Linn and the structure was elucidated using NMR and ESI-MS spectral studies

  9. Evolutionary relationships of Aurora kinases: Implications for model organism studies and the development of anti-cancer drugs

    Directory of Open Access Journals (Sweden)

    Patrick Denis R

    2004-10-01

    Full Text Available Abstract Background As key regulators of mitotic chromosome segregation, the Aurora family of serine/threonine kinases play an important role in cell division. Abnormalities in Aurora kinases have been strongly linked with cancer, which has lead to the recent development of new classes of anti-cancer drugs that specifically target the ATP-binding domain of these kinases. From an evolutionary perspective, the species distribution of the Aurora kinase family is complex. Mammals uniquely have three Aurora kinases, Aurora-A, Aurora-B, and Aurora-C, while for other metazoans, including the frog, fruitfly and nematode, only Aurora-A and Aurora-B kinases are known. The fungi have a single Aurora-like homolog. Based on the tacit assumption of orthology to human counterparts, model organism studies have been central to the functional characterization of Aurora kinases. However, the ortholog and paralog relationships of these kinases across various species have not been rigorously examined. Here, we present comprehensive evolutionary analyses of the Aurora kinase family. Results Phylogenetic trees suggest that all three vertebrate Auroras evolved from a single urochordate ancestor. Specifically, Aurora-A is an orthologous lineage in cold-blooded vertebrates and mammals, while structurally similar Aurora-B and Aurora-C evolved more recently in mammals from a duplication of an ancestral Aurora-B/C gene found in cold-blooded vertebrates. All so-called Aurora-A and Aurora-B kinases of non-chordates are ancestral to the clade of chordate Auroras and, therefore, are not strictly orthologous to vertebrate counterparts. Comparisons of human Aurora-B and Aurora-C sequences to the resolved 3D structure of human Aurora-A lends further support to the evolutionary scenario that vertebrate Aurora-B and Aurora-C are closely related paralogs. Of the 26 residues lining the ATP-binding active site, only three were variant and all were specific to Aurora-A. Conclusions In

  10. Efficacy, safety, quality control, marketing and regulatory guidelines for herbal medicines (phytotherapeutic agents

    Directory of Open Access Journals (Sweden)

    J.B. Calixto

    2000-02-01

    Full Text Available This review highlights the current advances in knowledge about the safety, efficacy, quality control, marketing and regulatory aspects of botanical medicines. Phytotherapeutic agents are standardized herbal preparations consisting of complex mixtures of one or more plants which contain as active ingredients plant parts or plant material in the crude or processed state. A marked growth in the worldwide phytotherapeutic market has occurred over the last 15 years. For the European and USA markets alone, this will reach about $7 billion and $5 billion per annum, respectively, in 1999, and has thus attracted the interest of most large pharmaceutical companies. Insufficient data exist for most plants to guarantee their quality, efficacy and safety. The idea that herbal drugs are safe and free from side effects is false. Plants contain hundreds of constituents and some of them are very toxic, such as the most cytotoxic anti-cancer plant-derived drugs, digitalis and the pyrrolizidine alkaloids, etc. However, the adverse effects of phytotherapeutic agents are less frequent compared with synthetic drugs, but well-controlled clinical trials have now confirmed that such effects really exist. Several regulatory models for herbal medicines are currently available including prescription drugs, over-the-counter substances, traditional medicines and dietary supplements. Harmonization and improvement in the processes of regulation is needed, and the general tendency is to perpetuate the German Commission E experience, which combines scientific studies and traditional knowledge (monographs. Finally, the trend in the domestication, production and biotechnological studies and genetic improvement of medicinal plants, instead of the use of plants harvested in the wild, will offer great advantages, since it will be possible to obtain uniform and high quality raw materials which are fundamental to the efficacy and safety of herbal drugs.

  11. Combination of low doses of enzastaurin and lenalidomide has synergistic activity in B-non-Hodgkin lymphoma cell lines.

    Science.gov (United States)

    Cosenza, Maria; Civallero, Monica; Grisendi, Giulia; Marcheselli, Luigi; Roat, Erika; Bari, Alessia; Sacchi, Stefano

    2012-10-01

    Less toxic and more active treatments are needed for indolent lymphomas as there is no curative treatment, and patients eventually die due to complications related to their disease. The purpose of the present study was to assess the antitumour activity of the combination of low doses of Enzastaurin and Lenalidomide (Revlimid) on B-lymphoma cell lines. The combination of Enzastaurin and Lenalidomide, at doses as low as 1 μM, showed strong synergism against indolent lymphomas by reducing cell growth, producing an increase in G0-G1 phase followed by significant decrease in S phase, increasing apoptosis, and inhibiting PI3K/AKT, PKC and MAPK/ERK pathways. These preclinical findings, together with promising results obtained with Lenalidomide for the treatment of non-Hodgkin lymphoma, suggest that further evaluation of the combination of Enzastaurin and Lenalidomide for the treatment of indolent lymphomas is warranted. These compounds, with a favourable toxicity profile, are not classic chemotherapeutic agents, causing severe side effects, and could be considered an example of a new innovative attempt of an anti-cancer 'soft treatment'.

  12. The influence of p53 mutation status on the anti-cancer effect of cisplatin in oral squamous cell carcinoma cell lines

    Science.gov (United States)

    2016-01-01

    Objectives The purpose of this study was to evaluate the anti-cancer activity of cisplatin by studying its effects on cell viability and identifying the mechanisms underlying the induction of cell cycle arrest and apoptosis on oral squamous cell carcinoma (OSCC) cell lines with varying p53 mutation status. Materials and Methods Three OSCC cell lines, YD-8 (p53 point mutation), YD-9 (p53 wild type), and YD-38 (p53 deletion) were used. To determine the cytotoxic effect of cisplatin, MTS assay was performed. The cell cycle alteration and apoptosis were analyzed using flow cytometry. Western blot analysis was used to detect the expression of cell cycle alteration- or apoptosis-related proteins as well as p53. Results Cisplatin showed a time- and dose-dependent anti-proliferative effect in all cell lines. Cisplatin induced G2/M cell accumulation in the three cell lines after treatment with 0.5 and 1.0 µg/mL of cisplatin for 48 hours. The proportion of annexin V-FITC-stained cells increased following treatment with cisplatin. The apoptotic proportion was lower in the YD-38 cell line than in the YD-9 or YD-8 cell lines. Also, immunoblotting analysis indicated that p53 and p21 were detected only in YD-8 and YD-9 cell lines after cisplatin treatment. Conclusion In this study, cisplatin showed anti-cancer effects via G2/M phase arrest and apoptosis, with some difference among OSCC cell lines. The mutation status of p53 might have influenced the difference observed among cell lines. Further studies on p53 mutation status are needed to understand the biological behavior and characteristics of OSCCs and to establish appropriate treatment. PMID:28053903

  13. Dynamic impacts of the inhibition of the molecular chaperone Hsp90 on the T-cell proteome have implications for anti-cancer therapy.

    Directory of Open Access Journals (Sweden)

    Ivo Fierro-Monti

    Full Text Available The molecular chaperone Hsp90-dependent proteome represents a complex protein network of critical biological and medical relevance. Known to associate with proteins with a broad variety of functions termed clients, Hsp90 maintains key essential and oncogenic signalling pathways. Consequently, Hsp90 inhibitors are being tested as anti-cancer drugs. Using an integrated systematic approach to analyse the effects of Hsp90 inhibition in T-cells, we quantified differential changes in the Hsp90-dependent proteome, Hsp90 interactome, and a selection of the transcriptome. Kinetic behaviours in the Hsp90-dependent proteome were assessed using a novel pulse-chase strategy (Fierro-Monti et al., accompanying article, detecting effects on both protein stability and synthesis. Global and specific dynamic impacts, including proteostatic responses, are due to direct inhibition of Hsp90 as well as indirect effects. As a result, a decrease was detected in most proteins that changed their levels, including known Hsp90 clients. Most likely, consequences of the role of Hsp90 in gene expression determined a global reduction in net de novo protein synthesis. This decrease appeared to be greater in magnitude than a concomitantly observed global increase in protein decay rates. Several novel putative Hsp90 clients were validated, and interestingly, protein families with critical functions, particularly the Hsp90 family and cofactors themselves as well as protein kinases, displayed strongly increased decay rates due to Hsp90 inhibitor treatment. Remarkably, an upsurge in survival pathways, involving molecular chaperones and several oncoproteins, and decreased levels of some tumour suppressors, have implications for anti-cancer therapy with Hsp90 inhibitors. The diversity of global effects may represent a paradigm of mechanisms that are operating to shield cells from proteotoxic stress, by promoting pro-survival and anti-proliferative functions. Data are available via

  14. 低氧富氮结合脱氧剂储粮技术探索%Exploration of Grain Storage Technology Using Deoxidizing Agent Combined with Low Oxygen Nitrogen-rich

    Institute of Scientific and Technical Information of China (English)

    常亚飞; 孙俊; 陈彩根

    2014-01-01

    通过对不同粮堆分别进行低氧富氮、脱氧剂结合低氧富氮、脱氧剂等储藏效果的对比,脱氧剂结合低氧富氮技术相对于单独使用脱氧剂和低氧富氮更加经济有效。%For different grain piles, we use the different storage methods such as using low oxygen nitrogen-rich, deoxidizing agent combined with low oxygen nitrogen-rich and deoxidizer, the results show, deoxidizing agent combined with low oxygen nitrogen-rich storage technology is more effectively and economically than the storage technology using deoxidizers and low oxygen nitrogen-rich.

  15. In Vitro and in Vivo Antitumoral Effects of Combinations of Polyphenols, or Polyphenols and Anticancer Drugs: Perspectives on Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Massimo Fantini

    2015-04-01

    Full Text Available Carcinogenesis is a multistep process triggered by genetic alterations that activate different signal transduction pathways and cause the progressive transformation of a normal cell into a cancer cell. Polyphenols, compounds ubiquitously expressed in plants, have anti-inflammatory, antimicrobial, antiviral, anticancer, and immunomodulatory properties, all of which are beneficial to human health. Due to their ability to modulate the activity of multiple targets involved in carcinogenesis through direct interaction or modulation of gene expression, polyphenols can be employed to inhibit the growth of cancer cells. However, the main problem related to the use of polyphenols as anticancer agents is their poor bioavailability, which might hinder the in vivo effects of the single compound. In fact, polyphenols have a poor absorption and biodistribution, but also a fast metabolism and excretion in the human body. The poor bioavailability of a polyphenol will affect the effective dose delivered to cancer cells. One way to counteract this drawback could be combination treatment with different polyphenols or with polyphenols and other anti-cancer drugs, which can lead to more effective antitumor effects than treatment using only one of the compounds. This report reviews current knowledge on the anticancer effects of combinations of polyphenols or polyphenols and anticancer drugs, with a focus on their ability to modulate multiple signaling transduction pathways involved in cancer.

  16. In vitro and in vivo antitumoral effects of combinations of polyphenols, or polyphenols and anticancer drugs: perspectives on cancer treatment.

    Science.gov (United States)

    Fantini, Massimo; Benvenuto, Monica; Masuelli, Laura; Frajese, Giovanni Vanni; Tresoldi, Ilaria; Modesti, Andrea; Bei, Roberto

    2015-04-24

    Carcinogenesis is a multistep process triggered by genetic alterations that activate different signal transduction pathways and cause the progressive transformation of a normal cell into a cancer cell. Polyphenols, compounds ubiquitously expressed in plants, have anti-inflammatory, antimicrobial, antiviral, anticancer, and immunomodulatory properties, all of which are beneficial to human health. Due to their ability to modulate the activity of multiple targets involved in carcinogenesis through direct interaction or modulation of gene expression, polyphenols can be employed to inhibit the growth of cancer cells. However, the main problem related to the use of polyphenols as anticancer agents is their poor bioavailability, which might hinder the in vivo effects of the single compound. In fact, polyphenols have a poor absorption and biodistribution, but also a fast metabolism and excretion in the human body. The poor bioavailability of a polyphenol will affect the effective dose delivered to cancer cells. One way to counteract this drawback could be combination treatment with different polyphenols or with polyphenols and other anti-cancer drugs, which can lead to more effective antitumor effects than treatment using only one of the compounds. This report reviews current knowledge on the anticancer effects of combinations of polyphenols or polyphenols and anticancer drugs, with a focus on their ability to modulate multiple signaling transduction pathways involved in cancer.

  17. Antimycobacterial agents differ with respect to their bacteriostatic versus bactericidal activities in relation to time of exposure, mycobacterial growth phase, and their use in combination.

    NARCIS (Netherlands)

    I.A.J.M. Bakker-Woudenberg (Irma); W. van Vianen (Wim); D. van Soolingen (Dick); H.A. Verbrugh (Henri); M.A. Agtmael (Michiel)

    2005-01-01

    textabstractA number of antimycobacterial agents were evaluated with respect to their bacteriostatic activity (growth inhibition) versus the bactericidal activity against a clinical isolate of Mycobacterium avium (Mycobacterium avium complex [MAC] strain 101) in relation to the time of exposure and

  18. Synergetic anticancer effect of combined quercetin and recombinant adenoviral vector expressing human wild-type p53, GM-CSF and B7-1 genes on hepatocellular carcinoma cells in vitro

    Institute of Scientific and Technical Information of China (English)

    Ming Shi; Fu-Sheng Wang; Zu-Ze Wu

    2003-01-01

    AIM: This study investigated the anti-cancer effect ofcombined quercetin and a recombinant adenovirus vectorexpressing the human p53, GM-CSF and B7-1 genes(designated BB-102) on human hepatocellular carcinoma(HCC) cell lines in vitro.METHODS: The sensitivity of HCC cells to anticancer agentswas evaluated by 3-(4,5- dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The viability of cells infectedwith BB-102 was determined by trypan blue exclusion. Theexpression levels of human wild-type p53, GM-CSF and B7-1genes were determined by Western blot, enzyme-linkedimmunosorbent assay (ELISA) and flow cytometric analysis,respectively. The apoptosis of BB-102-infected or quercetin-treated HCC cells was detected by terminal deoxynucleotidyltransferase (TdT) assay or DNA ladder electrophoresis.RESULTS: Quercetin was found to suppress proliferation ofhuman HCC cell lines BEL-7402, HUH-7 and HLE, with peaksuppression at 50 μmol/L quercetin. BB-102 infection wasalso found to significantly suppress proliferation of HCC celllines. The apoptosis of BB-102-infected HCC cells was greaterin HLE and HUH-7 cells than in BEL-7402 cells. Quercetin didnot affect the expression of the three exogenous genes inBB-102-infected HCC cells (P>0.05), but it was found to furtherdecrease proliferation and promote apoptosis of BB-102-infected HCC cells.CONCLUSION: BB-102 and quercetin synergeticallysuppress HCC cell proliferation and induce HCC cell apoptosis,suggesting a possible use as a combined anti-cancer agent.

  19. 植物鞣剂与非铬金属鞣剂结合鞣制的研究%Vegetable and Non-chromium Metal Tanning Agent Combination Tannage

    Institute of Scientific and Technical Information of China (English)

    李闻欣; 王勇

    2013-01-01

    用栲胶、铝鞣剂、钛鞣剂对浸酸猪皮进行结合鞣制,在最佳工艺的基础上,选取与铝鞣剂和钛鞣剂搭配最佳的栲胶,考察栲胶用量和改变结合鞣不同鞣制阶段pH值对Ts的影响.结果表明:使用水解类栲胶的效果一般情况下比用缩合类栲胶好,且用栗木栲胶的效果更好.在植铝钛结合鞣中,栗木栲胶用量15%,当植鞣pH值为4.8、铝鞣pH值为3.0、钛鞣pH值为1.5时,结合鞣制革的Ts达到93℃.%The pickling pigskins were tanned with vegetable tannin, aluminium tanning agent and titanium tanning agent ( self - made). On the basis of the optimum, the best collocation of tannin extracts was selected with aluminium tanning agent and titanium tanning agent. The effect of tannin extract dosage and different pH value in combination tanning process on Ts were investigated. The results show the tanning properties of the pelts by hydrolysable tannin are better than that by the condensed tannin on general circumstances, and chestnut extract tannin has a better tanning effect than other tannins. In the vegetable - alumium - titanium combination tanning process, the amount of chestnut extract is 15% , when the pH value of vegetable tannage is 4. 8, the pH value of the aluminum tannage is 3. 0, the pH value of the titanium tannage is 1. 5, the maximum Ts value of the combination tanned leather can be up to 931.

  20. Combining exploratory scenarios and participatory backcasting: using an agent-based model in participatory policy design for a multi-functional landscape.

    Science.gov (United States)

    Van Berkel, Derek B; Verburg, Peter H

    While the merits of local participatory policy design are widely recognised, limited use is made of model-based scenario results to inform such stakeholder involvement. In this paper we present the findings of a study using an agent based model to help stakeholders consider, discuss and incorporate spatial and temporal processes in a backcasting exercise for rural development. The study is carried out in the Dutch region called the Achterhoek. Region-specific scenarios were constructed based on interviews with local experts. The scenarios are simulated in an agent based model incorporating rural residents and farmer characteristics, the environment and different policy interventions for realistic projection of landscape evolution. Results of the model simulations were presented to stakeholders representing different rural sectors at a workshop. The results indicate that illustration of the spatial configuration of landscape changes is appreciated by stakeholders. Testing stakeholders' solutions by way of model simulations revealed that the effectiveness of local interventions is strongly related to exogenous processes such as market competition and endogenous processes like local willingness to engage in multifunctional activities. The integration of multi-agent modelling and participatory backcasting is effective as it offers a possibility to initiate discussion between experts and stakeholders bringing together different expertise.

  1. Applying theoretical premises of binary toxicity mathematical modeling to combined impacts of chemical plus physical agents (A case study of moderate subchronic exposures to fluoride and static magnetic field).

    Science.gov (United States)

    Katsnelson, B A; Tsepilov, N A; Panov, V G; Sutunkova, M P; Varaksin, A N; Gurvich, V B; Minigalieva, I A; Valamina, I E; Makeyev, O H; Meshtcheryakova, E Y

    2016-09-01

    Sodium fluoride solution was injected i.p. to rats at a dose equivalent to 0.1 LD50 three times a week up to 18 injections. Two thirds of these rats and of the sham-injected ones were exposed to the whole body impact of a 25 mT static magnetic field for 2 or 4 h a day, 5 times a week. For mathematical analysis of the effects they produced in combination, we used a response surface model. This analysis demonstrated that (like in combined toxicity) the combined adverse action of a chemical plus a physical agent was characterized by a diversity of types depending not only on particular effects these types were assessed for but on their level as well. From this point of view, the indices for which at least one statistically significant effect was observed could be classified as identifying (1) single-factor action; (2) additivity; (3) synergism; (4) antagonism (both subadditive unidirectional action and all variants of contradirectional action). Although the classes (2) and (3) taken together encompass a smaller part of the indices, the biological importance of some of them renders the combination of agents studied as posing a higher health risk than that associated with each them acting alone.

  2. Multifunctional Poly(L-lactide)-Polyethylene Glycol-Grafted Graphene Quantum Dots for Intracellular MicroRNA Imaging and Combined Specific-Gene-Targeting Agents Delivery for Improved Therapeutics.

    Science.gov (United States)

    Dong, Haifeng; Dai, Wenhao; Ju, Huangxian; Lu, Huiting; Wang, Shiyan; Xu, Liping; Zhou, Shu-Feng; Zhang, Yue; Zhang, Xueji

    2015-05-27

    Photoluminescent (PL) graphene quantum dots (GQDs) with large surface area and superior mechanical flexibility exhibit fascinating optical and electronic properties and possess great promising applications in biomedical engineering. Here, a multifunctional nanocomposite of poly(l-lactide) (PLA) and polyethylene glycol (PEG)-grafted GQDs (f-GQDs) was proposed for simultaneous intracellular microRNAs (miRNAs) imaging analysis and combined gene delivery for enhanced therapeutic efficiency. The functionalization of GQDs with PEG and PLA imparts the nanocomposite with super physiological stability and stable photoluminescence over a broad pH range, which is vital for cell imaging. Cell experiments demonstrate the f-GQDs excellent biocompatibility, lower cytotoxicity, and protective properties. Using the HeLa cell as a model, we found the f-GQDs effectively delivered a miRNA probe for intracellular miRNA imaging analysis and regulation. Notably, the large surface of GQDs was capable of simultaneous adsorption of agents targeting miRNA-21 and survivin, respectively. The combined conjugation of miRNA-21-targeting and survivin-targeting agents induced better inhibition of cancer cell growth and more apoptosis of cancer cells, compared with conjugation of agents targeting miRNA-21 or survivin alone. These findings highlight the promise of the highly versatile multifunctional nanocomposite in biomedical application of intracellular molecules analysis and clinical gene therapeutics.

  3. Multi-agent chemotherapy overcomes glucocorticoid resistance conferred by a BIM deletion polymorphism in pediatric acute lymphoblastic leukemia.

    Science.gov (United States)

    Soh, Sheila Xinxuan; Lim, Joshua Yew Suang; Huang, John W J; Jiang, Nan; Yeoh, Allen Eng Juh; Ong, S Tiong

    2014-01-01

    A broad range of anti-cancer agents, including glucocorticoids (GCs) and tyrosine kinase inhibitors (TKIs), kill cells by upregulating the pro-apoptotic BCL2 family member, BIM. A common germline deletion in the BIM gene was recently shown to favor the production of non-apoptotic BIM isoforms, and to predict inferior responses in TKI-treated chronic myeloid leukemia (CML) and EGFR-driven lung cancer patients. Given that both in vitro and in vivo GC resistance are predictive of adverse outcomes in acute lymphoblastic leukemia (ALL), we hypothesized that this polymorphism would mediate GC resistance, and serve as a biomarker of poor response in ALL. Accordingly, we used zinc finger nucleases to generate ALL cell lines with the BIM deletion, and confirmed the ability of the deletion to mediate GC resistance in vitro. In contrast to CML and lung cancer, the BIM deletion did not predict for poorer clinical outcome in a retrospective analysis of 411 pediatric ALL patients who were uniformly treated with GCs and chemotherapy. Underlying the lack of prognostic significance, we found that the chemotherapy agents used in our cohort (vincristine, L-asparaginase, and methotrexate) were each able to induce ALL cell death in a BIM-independent fashion, and resensitize BIM deletion-containing cells to GCs. Together, our work demonstrates how effective therapy can overcome intrinsic resistance in ALL patients, and suggests the potential of using combinations of drugs that work via divergent mechanisms of cell killing to surmount BIM deletion-mediated drug resistance in other cancers.

  4. Mapping Novel Metabolic Nodes Targeted by Anti-Cancer Drugs that Impair Triple-Negative Breast Cancer Pathogenicity.

    Science.gov (United States)

    Roberts, Lindsay S; Yan, Peter; Bateman, Leslie A; Nomura, Daniel K

    2017-03-08

    Triple-negative breast cancers (TNBCs) are estrogen receptor, progesterone receptor, and HER2 receptor-negative subtypes of breast cancers that show the worst prognoses and lack targeted therapies. Here, we have coupled the screening of ∼400 anticancer agents that are under development or in the clinic with chemoproteomic and metabolomic profiling to identify novel metabolic mechanisms for agents that impair TNBC pathogenicity. We identify 20 anticancer compounds that significantly impaired cell survival across multiple types of TNBC cells. Among these 20 leads, the phytoestrogenic natural product licochalcone A was of interest, since TNBCs are unresponsive to estrogenic therapies, indicating that licochalcone A was likely acting through another target. Using chemoproteomic profiling approaches, we reveal that licochalcone A impairs TNBC pathogenicity, not through modulating estrogen receptor activity but rather through inhibiting prostaglandin reductase 1, a metabolic enzyme involved in leukotriene B4 inactivation. We also more broadly performed metabolomic profiling to map additional metabolic mechanisms of compounds that impair TNBC pathogenicity. Overlaying lipidomic profiling with drug responses, we find that deubiquitinase inhibitors cause dramatic elevations in acyl carnitine levels, which impair mitochondrial respiration and contribute to TNBC pathogenic impairments. We thus put forth two unique metabolic nodes that are targeted by drugs or drug candidates that impair TNBC pathogenicity. Our results also showcase the utility of coupling drug screens with chemoproteomic and metabolomic profiling to uncover unique metabolic drivers of TNBC pathogenicity.

  5. The anti-cancer components of Ganoderma lucidum possesses cardiovascular protective effect by regulating circular RNA expression

    Science.gov (United States)

    Tan, Weijiang; Li, Xiangmin; Jiao, Chunwei; Huang, Ren; Yang, Burton B.

    2016-01-01

    To examine the role of oral Ganoderma spore oil in cardiovascular disease, we used transverse aortic constriction (TAC) in mice to model pressure overload-induced cardiomyopathy. Our preliminary results demonstrated a potential cardioprotective role for spore oil extracted from Ganoderma. We found that Ganoderma treatment normalized ejection fraction and corrected the fractional shortening generated by TAC. We also found evidence of reduced left ventricular hypertrophy as assessed by left ventricular end diastolic diameter. Analysis of total RNA expression using cardiac tissue samples from these mice corroborated our findings. We found reduced expression of genes associated with heart failure, including a novel circular RNA circ-Foxo3. Thus our data provides evidence for Ganoderma lucidum as a potential cardioprotective agent, warranting further preclinical exploration. PMID:27713910

  6. Inorganic phosphate-triggered release of anti-cancer arsenic trioxide from a self-delivery system: an in vitro and in vivo study

    Science.gov (United States)

    Chen, Fei-Yan; Yi, Jing-Wei; Gu, Zhe-Jia; Tang, Bin-Bing; Li, Jian-Qi; Li, Li; Kulkarni, Padmakar; Liu, Li; Mason, Ralph P.; Tang, Qun

    2016-03-01

    On-demand drug delivery is becoming feasible via the design of either exogenous or endogenous stimulus-responsive drug delivery systems. Herein we report the development of gadolinium arsenite nanoparticles as a self-delivery platform to store, deliver and release arsenic trioxide (ATO, Trisenox), a clinical anti-cancer drug. Specifically, unloading of the small molecule drug is trig