WorldWideScience

Sample records for anti-bacterial agents

  1. Targeting Bacterial Dsb Proteins for the Development of Anti-Virulence Agents

    Directory of Open Access Journals (Sweden)

    Roxanne P. Smith

    2016-07-01

    Full Text Available Recent years have witnessed a dramatic increase in bacterial antimicrobial resistance and a decline in the development of novel antibiotics. New therapeutic strategies are urgently needed to combat the growing threat posed by multidrug resistant bacterial infections. The Dsb disulfide bond forming pathways are potential targets for the development of antimicrobial agents because they play a central role in bacterial pathogenesis. In particular, the DsbA/DsbB system catalyses disulfide bond formation in a wide array of virulence factors, which are essential for many pathogens to establish infections and cause disease. These redox enzymes are well placed as antimicrobial targets because they are taxonomically widespread, share low sequence identity with human proteins, and many years of basic research have provided a deep molecular understanding of these systems in bacteria. In this review, we discuss disulfide bond catalytic pathways in bacteria and their significance in pathogenesis. We also review the use of different approaches to develop inhibitors against Dsb proteins as potential anti-virulence agents, including fragment-based drug discovery, high-throughput screening and other structure-based drug discovery methods.

  2. Impact of transgenic potatoes expressing anti-bacterial agents on bacterial endophytes is comparable with the effects of plant genotype, soil type and pathogen infection

    NARCIS (Netherlands)

    Rasche, F; Velvis, H; Zachow, C; Berg, G; Van Elsas, JD; Sessitsch, A

    1. Blackleg and soft rot disease of potatoes Solanum tuberosum L., mainly caused by the bacterial pathogen Erwinia carotovora ssp. atrospetica (Eca), lead to enormous yield losses world-wide. Genetically modified (GM) potatoes producing anti-bacterial agents, such as cecropin/attacin and T4

  3. Impact of transgenic potatoes expressing anti-bacterial agents on bacterial endophytes is comparable with the effects of plant genotype, soil type and pathogen infection

    NARCIS (Netherlands)

    Rasche, F.; Velvis, H.; Zachow, C.; Berg, G.; Elsas, van J.D.; Sessitsch, A.

    2006-01-01

    1. Blackleg and soft rot disease of potatoes Solanum tuberosum L., mainly caused by the bacterial pathogen Erwinia carotovora ssp. atrospetica (Eca), lead to enormous yield losses world-wide. Genetically modified (GM) potatoes producing anti-bacterial agents, such as cecropin/attacin and T4

  4. Anti-Infectious Agents against MRSA

    Directory of Open Access Journals (Sweden)

    Nobuhiro Koyama

    2012-12-01

    Full Text Available Clinically useful antibiotics, β-lactams and vancomycin, are known to inhibit bacterial cell wall peptidoglycan synthesis. Methicillin-resistant Staphylococcus aureus (MRSA has a unique cell wall structure consisting of peptidoglycan and wall teichoic acid. In recent years, new anti-infectious agents (spirohexaline, tripropeptin C, DMPI, CDFI, cyslabdan, 1835F03, and BPH-652 targeting MRSA cell wall biosynthesis have been discovered using unique screening methods. These agents were found to inhibit important enzymes involved in cell wall biosynthesis such as undecaprenyl pyrophosphate (UPP synthase, FemA, flippase, or UPP phosphatase. In this review, the discovery, the mechanism of action, and the future of these anti-infectious agents are described.

  5. Synthesis and characterization of anti-bacterial and anti-fungal citrate-based mussel-inspired bioadhesives

    Science.gov (United States)

    Guo, Jinshan; Wang, Wei; Hu, Jianqing; Xie, Denghui; Gerhard, Ethan; Nisic, Merisa; Shan, Dingying; Qian, Guoying; Zheng, Siyang; Yang, Jian

    2016-01-01

    Bacterial and fungal infections in the use of surgical devices and medical implants remain a major concern. Traditional bioadhesives fail to incorporate anti-microbial properties, necessitating additional anti-microbial drug injection. Herein, by the introduction of the clinically used and inexpensive anti-fungal agent, 10-undecylenic acid (UA), into our recently developed injectable citrate-based mussel-inspired bioadhesives (iCMBAs), a new family of anti-bacterial and anti-fungal iCMBAs (AbAf iCs) was developed. AbAf iCs not only showed strong wet tissue adhesion strength, but also exhibited excellent in vitro cyto-compatibility, fast degradation, and strong initial and considerable long-term anti-bacterial and anti-fungal ability. For the first time, the biocompatibility and anti-microbial ability of sodium metaperiodate (PI), an oxidant used as a cross-linking initiator in the AbAf iCs system, was also thoroughly investigated. Our results suggest that the PI-based bioadhesives showed better anti-microbial properties compared to the unstable silver-based bioadhesive materials. In conclusion, AbAf iCs family can serve as excellent anti-bacterial and anti-fungal bioadhesive candidates for tissue/wound closure, wound dressing, and bone regeneration, especially when bacterial or fungal infections are a major concern. PMID:26874283

  6. Bacterial biosynthesis and maturation of the didemnin anti-cancer agents

    KAUST Repository

    Xü , Ying; Kersten, Roland D.; Nam, Sang Jip; Lu, Liang; Al-Suwailem, Abdulaziz M.; Zheng, Huajun; Fenical, William H.; Dorrestein, Pieter C.; Moore, Bradley S.; Qian, Peiyuan

    2012-01-01

    The anti-neoplastic agent didemnin B from the Caribbean tunicate Trididemnum solidum was the first marine drug to be clinically tested in humans. Because of its limited supply and its complex cyclic depsipeptide structure, considerable challenges were encountered during didemnin B's development that continue to limit aplidine (dehydrodidemnin B), which is currently being evaluated in numerous clinical trials. Herein we show that the didemnins are bacterial products produced by the marine α-proteobacteria Tistrella mobilis and Tistrella bauzanensis via a unique post-assembly line maturation process. Complete genome sequence analysis of the 6,513,401 bp T. mobilis strain KA081020-065 with its five circular replicons revealed the putative didemnin biosynthetic gene cluster (did) on the 1,126,962 bp megaplasmid pTM3. The did locus encodes a 13-module hybrid non-ribosomal peptide synthetase-polyketide synthase enzyme complex organized in a collinear arrangement for the synthesis of the fatty acylglutamine ester derivatives didemnins X and Y rather than didemnin B as first anticipated. Imaging mass spectrometry of T. mobilis bacterial colonies captured the time-dependent extracellular conversion of the didemnin X and Y precursors to didemnin B, in support of an unusual post-synthetase activation mechanism. Significantly, the discovery of the didemnin biosynthetic gene cluster may provide a long-term solution to the supply problem that presently hinders this group of marine natural products and pave the way for the genetic engineering of new didemnin congeners. © 2012 American Chemical Society.

  7. Bacterial biosynthesis and maturation of the didemnin anti-cancer agents

    KAUST Repository

    Xü, Ying

    2012-05-23

    The anti-neoplastic agent didemnin B from the Caribbean tunicate Trididemnum solidum was the first marine drug to be clinically tested in humans. Because of its limited supply and its complex cyclic depsipeptide structure, considerable challenges were encountered during didemnin B\\'s development that continue to limit aplidine (dehydrodidemnin B), which is currently being evaluated in numerous clinical trials. Herein we show that the didemnins are bacterial products produced by the marine α-proteobacteria Tistrella mobilis and Tistrella bauzanensis via a unique post-assembly line maturation process. Complete genome sequence analysis of the 6,513,401 bp T. mobilis strain KA081020-065 with its five circular replicons revealed the putative didemnin biosynthetic gene cluster (did) on the 1,126,962 bp megaplasmid pTM3. The did locus encodes a 13-module hybrid non-ribosomal peptide synthetase-polyketide synthase enzyme complex organized in a collinear arrangement for the synthesis of the fatty acylglutamine ester derivatives didemnins X and Y rather than didemnin B as first anticipated. Imaging mass spectrometry of T. mobilis bacterial colonies captured the time-dependent extracellular conversion of the didemnin X and Y precursors to didemnin B, in support of an unusual post-synthetase activation mechanism. Significantly, the discovery of the didemnin biosynthetic gene cluster may provide a long-term solution to the supply problem that presently hinders this group of marine natural products and pave the way for the genetic engineering of new didemnin congeners. © 2012 American Chemical Society.

  8. Analysis of anti-bacterial and anti oxidative activity of Azadirachta indica bark using various solvents extracts

    Directory of Open Access Journals (Sweden)

    Raid Al Akeel

    2017-01-01

    Full Text Available Herbal medications have been used for relief of symptoms of disease. Regardless of the great advances observed in current medicine in recent decades, plants still make a significant contribution to health care. An alarming increase in bacterial strains resistant to a number of antimicrobial agents demands that a renewed effort be made to seek antibacterial agents effective against pathogenic bacteria resistant to or less sensitive to current antibiotics. Anti-bacterial activity of Azadirachta indica stem bark was tested against pathogenic Salmonella paratyphi and Salmonella typhi using various solvent extracts. The in vitro anti-bacterial activity was performed by agar well diffusion method and the results were expressed as the average diameter of zone of inhibition of bacterial growth around the well. The ethanol and methanol extracts showed better anti-bacterial activity with zone of inhibition (20–25 mm when compared with other tested extracts and standard antibiotic Erythromycin (15 mcg with zone of inhibition (13–14 mm. Using Fisher’s exact test of significance difference was found between two Salmonella strains sensitivity patterns against tested extracts (P ⩽ 0.035. Extracts of A. indica stem bark also exhibited significant antioxidant activity, thus establishing the extracts as an antioxidant. The results obtained in this study give some scientific support to the A. indica stem bark for further investigation of compounds and in future could be used as drug.

  9. Anti-Bacterial and Anti-Fungal Activity of Xanthones Obtained via Semi-Synthetic Modification of α-Mangostin from Garcinia mangostana

    Directory of Open Access Journals (Sweden)

    Srinivasan Narasimhan

    2017-02-01

    Full Text Available The microbial contamination in food packaging has been a major concern that has paved the way to search for novel, natural anti-microbial agents, such as modified α-mangostin. In the present study, twelve synthetic analogs were obtained through semi-synthetic modification of α-mangostin by Ritter reaction, reduction by palladium-carbon (Pd-C, alkylation, and acetylation. The evaluation of the anti-microbial potential of the synthetic analogs showed higher bactericidal activity than the parent molecule. The anti-microbial studies proved that I E showed high anti-bacterial activity whereas I I showed the highest anti-fungal activity. Due to their microbicidal potential, modified α-mangostin derivatives could be utilized as active anti-microbial agents in materials for the biomedical and food industry.

  10. Carbon nanotubes as anti-bacterial agents.

    Science.gov (United States)

    Mocan, Teodora; Matea, Cristian T; Pop, Teodora; Mosteanu, Ofelia; Buzoianu, Anca Dana; Suciu, Soimita; Puia, Cosmin; Zdrehus, Claudiu; Iancu, Cornel; Mocan, Lucian

    2017-10-01

    Multidrug-resistant bacterial infections that have evolved via natural selection have increased alarmingly at a global level. Thus, there is a strong need for the development of novel antibiotics for the treatment of these infections. Functionalized carbon nanotubes through their unique properties hold great promise in the fight against multidrug-resistant bacterial infections. This new family of nanovectors for therapeutic delivery proved to be innovative and efficient for the transport and cellular translocation of therapeutic molecules. The current review examines the latest progress in the antibacterial activity of carbon nanotubes and their composites.

  11. Surface activation of graphene oxide nanosheets by ultraviolet irradiation for highly efficient anti-bacterials

    Science.gov (United States)

    Veerapandian, Murugan; Zhang, Linghe; Krishnamoorthy, Karthikeyan; Yun, Kyusik

    2013-10-01

    A comprehensive investigation of anti-bacterial properties of graphene oxide (GO) and ultraviolet (UV) irradiated GO nanosheets was carried out. Microscopic characterization revealed that the GO nanosheet-like structures had wavy features and wrinkles or thin grooves. Fundamental surface chemical states of GO nanosheets (before and after UV irradiation) were investigated using x-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy. Minimum inhibitory concentration (MIC) results revealed that UV irradiated GO nanosheets have more pronounced anti-bacterial behavior than GO nanosheets and standard antibiotic, kanamycin. The MIC of UV irradiated GO nanosheets was 0.125 μg ml-1 for Escherichia coli and Salmonella typhimurium, 0.25 μg ml-1 for Bacillus subtilis and 0.5 μg ml-1 for Enterococcus faecalis, ensuring its potential as an anti-infective agent for controlling the growth of pathogenic bacteria. The minimum bactericidal concentration of normal GO nanosheets was determined to be two-fold higher than its corresponding MIC value, indicating promising bactericidal activity. The mechanism of anti-bacterial action was evaluated by measuring the enzymatic activity of β-d-galactosidase for the hydrolysis of o-nitrophenol-β-d-galactopyranoside.

  12. Surface activation of graphene oxide nanosheets by ultraviolet irradiation for highly efficient anti-bacterials

    International Nuclear Information System (INIS)

    Veerapandian, Murugan; Zhang, Linghe; Yun, Kyusik; Krishnamoorthy, Karthikeyan

    2013-01-01

    A comprehensive investigation of anti-bacterial properties of graphene oxide (GO) and ultraviolet (UV) irradiated GO nanosheets was carried out. Microscopic characterization revealed that the GO nanosheet-like structures had wavy features and wrinkles or thin grooves. Fundamental surface chemical states of GO nanosheets (before and after UV irradiation) were investigated using x-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy. Minimum inhibitory concentration (MIC) results revealed that UV irradiated GO nanosheets have more pronounced anti-bacterial behavior than GO nanosheets and standard antibiotic, kanamycin. The MIC of UV irradiated GO nanosheets was 0.125 μg ml −1 for Escherichia coli and Salmonella typhimurium, 0.25 μg ml −1 for Bacillus subtilis and 0.5 μg ml −1 for Enterococcus faecalis, ensuring its potential as an anti-infective agent for controlling the growth of pathogenic bacteria. The minimum bactericidal concentration of normal GO nanosheets was determined to be two-fold higher than its corresponding MIC value, indicating promising bactericidal activity. The mechanism of anti-bacterial action was evaluated by measuring the enzymatic activity of β-d-galactosidase for the hydrolysis of o-nitrophenol-β-d-galactopyranoside. (paper)

  13. Synthesis, structure analysis, anti-bacterial and in vitro anti-cancer ...

    Indian Academy of Sciences (India)

    DOI 10.1007/s12039-015-0824-z. Synthesis, structure analysis, anti-bacterial and in vitro anti-cancer activity of new Schiff base and its copper complex derived from sulfamethoxazole. I RAMA∗ and R SELVAMEENA. PG and Research Department of Chemistry, Seethalakshmi Ramaswami College,. Tiruchirappalli 620 002 ...

  14. Synthesis of mutual azo prodrugs of anti-inflammatory agents and peptides facilitated by α-aminoisobutyric acid.

    Science.gov (United States)

    Kennedy, David A; Vembu, Nagarajan; Fronczek, Frank R; Devocelle, Marc

    2011-12-02

    Reported is the synthesis of azo mutual prodrugs of the nonsteroidal anti-inflammatory agents (NSAIDs) 4-aminophenylacetic acid (4-APAA) or 5-aminosalicylic acid (5-ASA) with peptides, including an antibiotic peptide temporin analogue modified at the amino terminal by an α-aminoisobutyric acid (Aib) residue. These prodrugs are designed for colonic delivery of two agents to treat infection and inflammation by the bacterial pathogen Clostridium difficile . © 2011 American Chemical Society

  15. Macrolides decrease the minimal inhibitory concentration of anti-pseudomonal agents against Pseudomonas aeruginosa from cystic fibrosis patients in biofilm

    Directory of Open Access Journals (Sweden)

    Lutz Larissa

    2012-09-01

    Full Text Available Abstract Background Biofilm production is an important mechanism for bacterial survival and its association with antimicrobial resistance represents a challenge for the patient treatment. In this study we evaluated the in vitro action of macrolides in combination with anti-pseudomonal agents on biofilm-grown Pseudomonas aeruginosa recovered from cystic fibrosis (CF patients. Results A total of 64 isolates were analysed. The biofilm inhibitory concentration (BIC results were consistently higher than those obtained by the conventional method, minimal inhibitory concentration, (MIC for most anti-pseudomonal agents tested (ceftazidime: P = 0.001, tobramycin: P = 0.001, imipenem: P P = 0.005. When macrolides were associated with the anti-pseudomonal agents, the BIC values were reduced significantly for ceftazidime (P  0.001 and tobramycin (P  0.001, regardless the concentration of macrolides. Strong inhibitory quotient was observed when azithromycin at 8 mg/L was associated with all anti-pseudomonal agents tested in biofilm conditions. Conclusions P. aeruginosa from CF patients within biofilms are highly resistant to antibiotics but macrolides proved to augment the in vitro activity of anti-pseudomonal agents.

  16. Chitosan-propolis nanoparticle formulation demonstrates anti-bacterial activity against Enterococcus faecalis biofilms.

    Directory of Open Access Journals (Sweden)

    Teik Hwa Ong

    Full Text Available Propolis obtained from bee hives is a natural substance with antimicrobial properties. It is limited by its insolubility in aqueous solutions; hence ethanol and ethyl acetate extracts of Malaysian propolis were prepared. Both the extracts displayed antimicrobial and anti-biofilm properties against Enterococcus faecalis, a common bacterium associated with hospital-acquired infections. High performance liquid chromatography (HPLC analysis of propolis revealed the presence of flavonoids like kaempferol and pinocembrin. This study investigated the role of propolis developed into nanoparticles with chitosan for its antimicrobial and anti-biofilm properties against E. faecalis. Bacteria that grow in a slimy layer of biofilm are resistant to penetration by antibacterial agents. The use of nanoparticles in medicine has received attention recently due to better bioavailability, enhanced penetrative capacity and improved efficacy. A chitosan-propolis nanoformulation was chosen based on ideal physicochemical properties such as particle size, zeta potential, polydispersity index, encapsulation efficiency and the rate of release of the active ingredients. This formulation inhibited E. faecalis biofilm formation and reduced the number of bacteria in the biofilm by ~90% at 200 μg/ml concentration. When tested on pre-formed biofilms, the formulation reduced bacterial number in the biofilm by ~40% and ~75% at 200 and 300 μg/ml, respectively. The formulation not only reduced bacterial numbers, but also physically disrupted the biofilm structure as observed by scanning electron microscopy. Treatment of biofilms with chitosan-propolis nanoparticles altered the expression of biofilm-associated genes in E. faecalis. The results of this study revealed that chitosan-propolis nanoformulation can be deemed as a potential anti-biofilm agent in resisting infections involving biofilm formation like chronic wounds and surgical site infections.

  17. Besifloxacin: a novel anti-infective for the treatment of bacterial conjunctivitis

    Directory of Open Access Journals (Sweden)

    Timothy L Comstock

    2010-03-01

    Full Text Available Timothy L Comstock1, Paul M Karpecki2, Timothy W Morris3, Jin-Zhong Zhang41Global Medical Affairs, Pharmaceuticals, Bausch and Lomb, Inc., Rochester, NY, USA; 2Koffler Vision Group, Lexington, KY, USA; 3Research and Development Microbiology and Sterilization Sciences, Bausch and Lomb, Inc., Rochester, NY, USA; 4Global Preclinical Development, Bausch and Lomb, Inc., Rochester, NY, USAAbstract: Bacterial conjunctivitis, commonly known as pink eye, is demographically unbiased in its prevalence and can be caused by a variety of aerobic and anaerobic bacteria. Timely empiric treatment with a broad-spectrum anti-infective, such as a topical fluoroquinolone, is critical in preventing potentially irreversible ocular damage. However, the rise in ocular methicillin-resistant Staphylococcus aureus isolates and the patterns of fluoroquinolone resistance for patients with other ocular bacterial infections mandate the need for new agents targeted for ocular use. Besifloxacin, a novel broad-spectrum fluoroquinolone, is approved for the treatment of bacterial conjunctivitis. It has a uniquely balanced dual-targeting activity that inhibits both DNA gyrase and topoisomerase IV and is associated with a lower incidence of resistance development. Besifloxacin is not marketed in other formulations, ensuring that its exposure is limited to bacterial populations in and around the eye. This specifically precludes any bacterial exposure to besifloxacin resulting from systemic use, which further reduces the likelihood of emergence of bacterial resistance. In vitro, besifloxacin has demonstrated equivalent or superior activity compared with other commonly used topical antibiotics. In clinical trials, besifloxacin has consistently demonstrated efficacy and safety in the treatment of patients with bacterial conjunctivitis. Besifloxacin is considered safe and is well tolerated with no observed contraindications.Keywords: conjunctivitis, fluoroquinolones, besifloxacin

  18. Anti-bacterial Efficacy of Bacteriocin Produced by Marine Bacillus subtilis Against Clinically Important Extended Spectrum Beta-Lactamase Strains and Methicillin-Resistant Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Suresh Mickymaray

    2018-02-01

    Full Text Available Objective: To investigate the anti-bacterial efficacy of bacteriocin produced by Bacillus subtilis SM01 (GenBank accession no: KY612347, a Gram-positive marine bacterium, against Extended Spectrum Beta-Lactamase (ESBL producing Gram-negative pathogens Acinetobacter baumannii, Pseudomonas aeruginosa, and Escherichia coli, and Gram-positive pathogen Methicillin-Resistant Staphylococcus aureus (MRSA. Methods: A marine bacterium was isolated from mangrove sediment from the Red Sea coast of Jeddah, Kingdom of Saudi Arabia, and identified based on its morphological, biochemical, and molecular characteristics. The bacteriocin production using this isolate was carried out in brain heart infusion broth (BHIB medium. The Anti-bacterial activity of bacteriocin was evaluated against selected ESBL strains and MRSA by the well agar method. The effects of incubation time, pH, and temperature on the Anti-bacterial activity were studied. Results: The bacteriocin Bac-SM01 produced by B. subtilis SM01 demonstrated broad-spectrum Anti-bacterial activity against both Gram-negative and -positive bacteria. The present study is the first report that the bacteriocin Bac-SM01 inhibits the growth of ESBL producing Gram-negative strains A. baumannii, P. aeruginosa, and E. coli, and a Gram-positive MRSA strain. The optimum incubation time, pH, and temperature for the Anti-bacterial activity of Bac-SM01 was 24 h, 7, and 37°C respectively. Conclusion: The overall investigation can conclude that the bacteriocin Bac-SM01 from the marine isolate Bacillus subtilis SM01 could be used as an alternative Anti-bacterial agent in pharmaceutical products.

  19. Bacterial agents and sensitivity pattern of neonatal conjuctivitis in ...

    African Journals Online (AJOL)

    Introduction: In Africa alone, between 1000 – 4000 children are blinded annually by conjunctivitis. In view of the changing aetiological agents documented in other parts of the world and evolving resistance of infective agents to therapeutic agents, the present study was designed to define the bacterial agents, their antibiotic ...

  20. Novel agents for anti-platelet therapy

    Directory of Open Access Journals (Sweden)

    Ji Xuebin

    2011-11-01

    Full Text Available Abstract Anti-platelet therapy plays an important role in the treatment of patients with thrombotic diseases. The most commonly used anti-platelet drugs, namely, aspirin, ticlopidine, and clopidogrel, are effective in the prevention and treatment of cardio-cerebrovascular diseases. Glycoprotein IIb/IIIa antagonists (e.g., abciximab, eptifibatide and tirofiban have demonstrated good clinical benefits and safety profiles in decreasing ischemic events in acute coronary syndrome. However, adverse events related to thrombosis or bleeding have been reported in cases of therapy with glycoprotein IIb/IIIa antagonists. Cilostazol is an anti-platelet agent used in the treatment of patients with peripheral ischemia, such as intermittent claudication. Presently, platelet adenosine diphosphate P2Y(12 receptor antagonists (e.g., clopidogrel, prasugrel, cangrelor, and ticagrelor are being used in clinical settings for their pronounced protective effects. The new protease-activated receptor antagonists, vorapaxar and atopaxar, potentially decrease the risk of ischemic events without significantly increasing the rate of bleeding. Some other new anti-platelet drugs undergoing clinical trials have also been introduced. Indeed, the number of new anti-platelet drugs is increasing. Consequently, the efficacy of these anti-platelet agents in actual patients warrants scrutiny, especially in terms of the hemorrhagic risks. Hopefully, new selective platelet inhibitors with high anti-thrombotic efficiencies and low hemorrhagic side effects can be developed.

  1. Effect of Anti-Parasite Chemotherapeutic Agents on Immune Reactions.

    Science.gov (United States)

    1980-08-01

    observations). Similar effects of a number of other alkylating agents have been noticed (9, and personal observa- tions). Similarly, corticosteroids inhibit...Wellham, L. L., and Sigel, M. M. Ef- fect of anti-cancer chemotherapeutic agents on immune reactions of mice. I. Comparison of two nitrosoureas . J...7 D-Ri138 852 EFFECT OF ANTI-PARASITE CHEMOTHERAPEUTIC AGENTS ON i/i IMMUNE REACTIONS(U) SOUTH CAROLINA UNIV COLUMBIA DEPT OF MICROBIOLOGY AND

  2. Anti-Obesity Agents and the US Food and Drug Administration.

    Science.gov (United States)

    Casey, Martin F; Mechanick, Jeffrey I

    2014-09-01

    Despite the growing market for obesity care, the US Food and Drug Administration (FDA) has approved only two new pharmaceutical agents-lorcaserin and combination phentermine/topiramate-for weight reduction since 2000, while removing three agents from the market in the same time period. This article explores the FDA's history and role in the approval of anti-obesity medications within the context of a public health model of obesity. Through the review of obesity literature and FDA approval documents, we identified two major barriers preventing fair evaluation of anti-obesity agents including: (1) methodological pitfalls in clinical trials and (2) misaligned values in the assessment of anti-obesity agents. Specific recommendations include the use of adaptive (Bayesian) design protocols, value-based analyses of risks and benefits, and regulatory guidance based on a comprehensive, multi-platform obesity disease model. Positively addressing barriers in the FDA approval process of anti-obesity agents may have many beneficial effects within an obesity disease model.

  3. Curcumin: An age-old anti-inflammatory and anti-neoplastic agent

    Directory of Open Access Journals (Sweden)

    Matthew C. Fadus

    2017-07-01

    Full Text Available Curcumin is a natural anti-inflammatory agent that has been used for treating medical conditions for many years. Several experimental and pharmacologic trials have demonstrated its efficacy in the role as an anti-inflammatory agent. Curcumin has been shown to be effective in treating chronic conditions like rheumatoid arthritis, inflammatory bowel disease, Alzheimer's and common malignancies like colon, stomach, lung, breast, and skin cancers. As treatments in medicine become more and more complex, the answer may be something simpler. This is a review article written with the objective to systematically analyze the wealth of information regarding the medical use of curcumin, the “curry spice”, and to understand the existent gaps which have prevented its widespread application in the medical community.

  4. Secapin, a bee venom peptide, exhibits anti-fibrinolytic, anti-elastolytic, and anti-microbial activities.

    Science.gov (United States)

    Lee, Kwang Sik; Kim, Bo Yeon; Yoon, Hyung Joo; Choi, Yong Soo; Jin, Byung Rae

    2016-10-01

    Bee venom contains a variety of peptide constituents that have various biological, toxicological, and pharmacological actions. However, the biological actions of secapin, a venom peptide in bee venom, remain largely unknown. Here, we provide the evidence that Asiatic honeybee (Apis cerana) secapin (AcSecapin-1) exhibits anti-fibrinolytic, anti-elastolytic, and anti-microbial activities. The recombinant mature AcSecapin-1 peptide was expressed in baculovirus-infected insect cells. AcSecapin-1 functions as a serine protease inhibitor-like peptide that has inhibitory effects against plasmin, elastases, microbial serine proteases, trypsin, and chymotrypsin. Consistent with these functions, AcSecapin-1 inhibited the plasmin-mediated degradation of fibrin to fibrin degradation products, thus indicating the role of AcSecapin-1 as an anti-fibrinolytic agent. AcSecapin-1 also inhibited both human neutrophil and porcine pancreatic elastases. Furthermore, AcSecapin-1 bound to bacterial and fungal surfaces and exhibited anti-microbial activity against fungi and gram-positive and gram-negative bacteria. Taken together, our data demonstrated that the bee venom peptide secapin has multifunctional roles as an anti-fibrinolytic agent during fibrinolysis and an anti-microbial agent in the innate immune response. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Four anti-protozoal and anti-bacterial compounds from Tapirira guianensis.

    Science.gov (United States)

    Roumy, Vincent; Fabre, Nicolas; Portet, Bénédicte; Bourdy, Geneviève; Acebey, Lucia; Vigor, Claire; Valentin, Alexis; Moulis, Claude

    2009-01-01

    Tapirira guianensis is a common tree used in traditional medicine in French Guiana against several infectious diseases (malaria, leishmaniasis, bacteria, etc.). The bioassay-guided purification of CH(2)Cl(2) bark extract led to the isolation of four cyclic alkyl polyol derivatives: 4,6,2'-trihydroxy-6-[10'(Z)-heptadecenyl]-1-cyclohexen-2-one (1a), 1,4,6-trihydroxy-1,2'-epoxy-6-[10'(Z)-heptadecenyl]-2-cyclohexene (1b), 1,4,5,2'-tetrahydroxy-1-[10'(Z)-heptadecenyl]-2-cyclohexene (2), and 1,3,4,6-tetrahydroxy-1,2'-epoxy-6-[10'(Z)-heptadecenyl]-cyclohexane (3). The structures were established on the basis of 1D and 2D NMR analyses. The anti-leishmanial, anti-plasmodial, anti-bacterial (on Staphylococcus aureus, Staphylococcus epidermidis and Escherichia coli), and anti-fungal (on Candida albicans) activities of the extracts and of these original compounds were evaluated. Two showed medicinal interest supporting the traditional uses of the plant. The structures were established through spectral analyses of the isolates and their derivatives.

  6. Live-Attenuated Bacterial Vectors: Tools for Vaccine and Therapeutic Agent Delivery

    Directory of Open Access Journals (Sweden)

    Ivan Y. C. Lin

    2015-11-01

    Full Text Available Genetically attenuated microorganisms, including pathogenic and commensal bacteria, can be engineered to carry and deliver heterologous antigens to elicit host immunity against both the vector as well as the pathogen from which the donor gene is derived. These live attenuated bacterial vectors have been given much attention due to their capacity to induce a broad range of immune responses including localized mucosal, as well as systemic humoral and/or cell-mediated immunity. In addition, the unique tumor-homing characteristics of these bacterial vectors has also been exploited for alternative anti-tumor vaccines and therapies. In such approach, tumor-associated antigen, immunostimulatory molecules, anti-tumor drugs, or nucleotides (DNA or RNA are delivered. Different potential vectors are appropriate for specific applications, depending on their pathogenic routes. In this review, we survey and summarize the main features of the different types of live bacterial vectors and discussed the clinical applications in the field of vaccinology. In addition, different approaches for using live attenuated bacterial vectors for anti-cancer therapy is discussed, and some promising pre-clinical and clinical studies in this field are outlined.

  7. In vitro anti-bacterial and anti-adherence effects of Lactobacillus delbrueckii subsp bulgaricus on Escherichia coli.

    Science.gov (United States)

    Abedi, D; Feizizadeh, S; Akbari, V; Jafarian-Dehkordi, A

    2013-10-01

    Considering the emergence of antibiotic resistance, scientists are interested in using new antimicrobial agents in the treatment of infectious diseases including infections of the enteric systems. Lactic acid bacteria have the great potential to produce antimicrobial compounds that inhibit and control pathogenic bacteria. The aim of this study was to determine the anti-bacterial and anti-adherence properties of Lactobacillus delbrueckii subsp bulgaricus against Escherichia coli. The antibacterial activity of L. delbrueckii was investigated using disc diffusion and spot on lawn methods. In vitro anti-adhesion effect of L. delbrueckii against E. coli was examined using Caco-2 cells. In anti-adhesion assay, three competition conditions including competitive inhibition, adhesion inhibition, and displacement were examined. In spot on lawn method the zone of growth inhibition of E. coli by L. delbrueckii was 21.1 mm. The cell free supernatant of L. delbrueckii showed a good antibacterial activity against E. coli which was mainly related to lactic acid produced by L. delbrueckii. When two bacteria added simultaneously (competitive inhibition) degree of inhibition of E. coli binding by L. delbrueckii was 77%. In adhesion inhibition assay, L. delbrueckii was able to exclude E. coli adherence by around 43.5%. Displacement assay showed that L. delbrueckii had strong displacement ability toward E. coli and reduction of E. coli attachment by bound L. delbrueckii was 81.3%. The results suggest that L. delbrueckii may be able to inhibit E. coli infection in the gut; however more studies including in vivo studies need to be performed.

  8. Pharmacological interactions of anti-microbial agents in odontology.

    Science.gov (United States)

    Gómez-Moreno, Gerardo; Guardia, Javier; Cutando, Antonio; Calvo-Guirado, José-Luis

    2009-03-01

    In this third article we describe the pharmacological interactions resulting from the use of anti-microbial agents. Although the antimicrobials prescribed in odontology are generally safe they can produce interactions with other medicaments which can give rise to serious adverse reactions which are well documented in clinical studies. Antibiotics with grave and dangerous life threatening consequences are erythromycin, clarithromycin and metronidazol and the anti-fungal agents are ketoconazol and itraconazol. Regarding the capacity of the anti-microbials to reduce the efficacy of oral anti-contraceptives the clinical studies to date are inconclusive, however, it would be prudent for the oral cavity specialist to point out the risk of a possible interaction. Therefore the specialist should be aware of possible interactions as a consequence of administering an antibiotic together with other medicaments the patient may be taking.

  9. Synthesis and Anti-Bacterial Activities of Some Novel Schiff Bases Derived from Aminophenazone

    Directory of Open Access Journals (Sweden)

    Salman A Khan

    2010-10-01

    Full Text Available A series of 1,5-dimethyl-2-phenyl-1,2-dihydro-3H-pyrazol-3-one-containing Schiff bases were synthesized, characterized and screened for their antibacterial activities. The structures of the synthesized compounds were established by spectroscopic (FT-IR, 1H-NMR, 13C-NMR, MS and elemental analyses. The anti-bacterial activities (with MIC values of compounds were evaluated. The anti-bacterial screening results reveal that among the six compounds screened, four compounds showed moderate to good anti-bacterial activity. Among the tested compounds, the most effective compounds against four bacterial strains, viz. Escherichia coli, Staphylococcus aureus, Salmonella typhimurium and Streptococcus pyogenes, are [(2-Chlorobenzylideneamino]-1,5-dimethyl-2-phenyl-1,2-dihydropyrazol-3-one (4 and [(1,5-Dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yliminomethyl]benzonitrile (5 with MIC values of 6.25 μg/mL.

  10. Studies on bacterial flora and biological control agent of Cydia ...

    African Journals Online (AJOL)

    In the present study, in order to find a more effective and safe biological control agent against Cydia pomonella, we investigated the bacterial flora and tested them for insecticidal effects on this insect. According to morphological, physiological and biochemical tests, bacterial flora were identified as Proteus rettgeri (Cp1), ...

  11. Screening of Anti-Obesity Agent from Herbal Mixtures

    Directory of Open Access Journals (Sweden)

    Sung-Kee Jo

    2012-03-01

    Full Text Available Globally, one in three of the World’s adults are overweight and one in 10 is obese. By 2015, World Health Organization (WHO estimates the number of chubby adults will balloon to 2.3 billion—Equal to the combined populations of China, Europe and the United States. The discovery of bioactive compounds from herbs is one possible way to control obesity and to prevent or reduce the risks of developing various obesity-related diseases. In this study, we screened anti-obesity agents such as methyl gallate from the herbal composition known as HemoHIM that actively inhibits lipid formation as evidenced by Oil Red O staining and triglyceride (TG contents in 3T3-L1 adipocytes, suggesting their use as an anti-obesity agent. Furthermore, the amount of glycerol released from cells into the medium had increased by treatment of methyl gallate in a concentration-dependent manner. The present study suggests that a promising anti-obesity agent like methyl gallate might be of therapeutic interest for the treatment of obesity.

  12. Screening of anti-obesity agent from herbal mixtures.

    Science.gov (United States)

    Roh, Changhyun; Jung, Uhee; Jo, Sung-Kee

    2012-03-23

    Globally, one in three of the World's adults are overweight and one in 10 is obese. By 2015, World Health Organization (WHO) estimates the number of chubby adults will balloon to 2.3 billion--Equal to the combined populations of China, Europe and the United States. The discovery of bioactive compounds from herbs is one possible way to control obesity and to prevent or reduce the risks of developing various obesity-related diseases. In this study, we screened anti-obesity agents such as methyl gallate from the herbal composition known as HemoHIM that actively inhibits lipid formation as evidenced by Oil Red O staining and triglyceride (TG) contents in 3T3-L1 adipocytes, suggesting their use as an anti-obesity agent. Furthermore, the amount of glycerol released from cells into the medium had increased by treatment of methyl gallate in a concentration-dependent manner. The present study suggests that a promising anti-obesity agent like methyl gallate might be of therapeutic interest for the treatment of obesity.

  13. Marine Algae as a Potential Source for Anti-Obesity Agents

    Directory of Open Access Journals (Sweden)

    Chu Wan-Loy

    2016-12-01

    Full Text Available Obesity is a major epidemic that poses a worldwide threat to human health, as it is also associated with metabolic syndrome, type 2 diabetes and cardiovascular disease. Therapeutic intervention through weight loss drugs, accompanied by diet and exercise, is one of the options for the treatment and management of obesity. However, the only approved anti-obesity drug currently available in the market is orlistat, a synthetic inhibitor of pancreatic lipase. Other anti-obesity drugs are still being evaluated at different stages of clinical trials, while some have been withdrawn due to their severe adverse effects. Thus, there is a need to look for new anti-obesity agents, especially from biological sources. Marine algae, especially seaweeds are a promising source of anti-obesity agents. Four major bioactive compounds from seaweeds which have the potential as anti-obesity agents are fucoxanthin, alginates, fucoidans and phlorotannins. The anti-obesity effects of such compounds are due to several mechanisms, which include the inhibition of lipid absorption and metabolism (e.g., fucoxanthin and fucoidans, effect on satiety feeling (e.g., alginates, and inhibition of adipocyte differentiation (e.g., fucoxanthin. Further studies, especially testing bioactive compounds in long-term human trials are required before any new anti-obesity drugs based on algal products can be developed.

  14. Antibiotic Sensitivity Patterns of Aerobic Bacterial Agents in Post ...

    African Journals Online (AJOL)

    Antibiotic Sensitivity Patterns of Aerobic Bacterial Agents in Post-Surgical ... those commonly used to treat orofacial infections were tested for sensitivity against the ... were the augmented Penicillins and newer generations Cephalosporins.

  15. The efficacy of different anti-microbial metals at preventing the formation of, and eradicating bacterial biofilms of pathogenic indicator strains.

    Science.gov (United States)

    Gugala, Natalie; Lemire, Joe A; Turner, Raymond J

    2017-06-01

    The emergence of multidrug-resistant pathogens and the prevalence of biofilm-related infections have generated a demand for alternative anti-microbial therapies. Metals have not been explored in adequate detail for their capacity to combat infectious disease. Metal compounds can now be found in textiles, medical devices and disinfectants-yet, we know little about their efficacy against specific pathogens. To help fill this knowledge gap, we report on the anti-microbial and antibiofilm activity of seven metals: silver, copper, titanium, gallium, nickel, aluminum and zinc against three bacterial strains, Pseudomonas aeruginosa, Staphylococcus aureus and Escherichia coli. To evaluate the capacity of metal ions to prevent the growth of, and eradicate biofilms and planktonic cells, bacterial cultures were inoculated in the Calgary Biofilm Device (minimal biofilm eradication concentration) in the presence of the metal salts. Copper, gallium and titanium were capable of preventing planktonic and biofilm growth, and eradicating established biofilms of all tested strains. Further, we observed that the efficacies of the other tested metal salts displayed variable efficacy against the tested strains. Further, contrary to the enhanced resistance anticipated from bacterial biofilms, particular metal salts were observed to be more effective against biofilm communities versus planktonic cells. In this study, we have demonstrated that the identity of the bacterial strain must be considered before treatment with a particular metal ion. Consequent to the use of metal ions as anti-microbial agents to fight multidrug-resistant and biofilm-related infections increases, we must aim for more selective deployment in a given infectious setting.

  16. Carnosol: a promising anti-cancer and anti-inflammatory agent.

    Science.gov (United States)

    Johnson, Jeremy J

    2011-06-01

    The Mediterranean diet and more specifically certain meats, fruits, vegetables, and olive oil found in certain parts of the Mediterranean region have been associated with a decreased cardiovascular and diabetes risk. More recently, several population based studies have observed with these lifestyle choices have reported an overall reduced risk for several cancers. One study in particular observed an inverse relationship between consumption of Mediterranean herbs such as rosemary, sage, parsley, and oregano with lung cancer. In light of these findings there is a need to explore and identify the anti-cancer properties of these medicinal herbs and to identify the phytochemicals therein. One agent in particular, carnosol, has been evaluated for anti-cancer property in prostate, breast, skin, leukemia, and colon cancer with promising results. These studies have provided evidence that carnosol targets multiple deregulated pathways associated with inflammation and cancer that include nuclear factor kappa B (NFκB), apoptotic related proteins, phosphatidylinositol-3-kinase (PI3 K)/Akt, androgen and estrogen receptors, as well as molecular targets. In addition, carnosol appears to be well tolerated in that it has a selective toxicity towards cancer cells versus non-tumorigenic cells and is well tolerated when administered to animals. This mini-review reports on the pre-clinical studies that have been performed to date with carnosol describing mechanistic, efficacy, and safety/tolerability studies as a cancer chemoprevention and anti-cancer agent. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  17. Genotoxicity studies on DNA-interactive telomerase inhibitors with application as anti-cancer agents.

    Science.gov (United States)

    Harrington, Dean J; Cemeli, Eduardo; Carder, Joanna; Fearnley, Jamie; Estdale, Sian; Perry, Philip J; Jenkins, Terence C; Anderson, Diana

    2003-01-01

    Telomerase-targeted strategies have aroused recent interest in anti-cancer chemotherapy, because DNA-binding drugs can interact with high-order tetraplex rather than double-stranded (duplex) DNA targets in tumour cells. However, the protracted cell-drug exposure times necessary for clinical application require that telomerase inhibitory efficacy must be accompanied by both low inherent cytotoxicity and the absence of mutagenicity/genotoxicity. For the first time, the genotoxicity of a number of structurally diverse DNA-interactive telomerase inhibitors is examined in the Ames test using six Salmonella typhimurium bacterial strains (TA1535, TA1537, TA1538, TA98, TA100, and TA102). DNA damage induced by each agent was also assessed using the Comet assay with human lymphocytes. The two assay procedures revealed markedly different genotoxicity profiles that are likely to reflect differences in metabolism and/or DNA repair between bacterial and mammalian cells. The mutational spectrum for a biologically active fluorenone derivative, shown to be mutagenic in the TA100 strain, was characterised using a novel and rapid assay method based upon PCR amplification of a fragment of the hisG46 allele, followed by RFLP analysis. Preliminary analysis indicates that the majority (84%) of mutations induced by this compound are C --> A transversions at position 2 of the missense proline codon of the hisG46 allele. However, despite its genotoxic bacterial profile, this fluorenone agent gave a negative response in the Comet assay, and demonstrates how unwanted systemic effects (e.g., cytotoxicity and genotoxicity) can be prevented or ameliorated through suitable molecular fine-tuning of a candidate drug in targeted human tumour cells. Copyright 2003 Wiley-Liss, Inc.

  18. Novel anti-inflammatory agents in COPD

    DEFF Research Database (Denmark)

    Loukides, Stelios; Bartziokas, Konstantinos; Vestbo, Jørgen

    2013-01-01

    Inflammation plays a central role in chronic obstructive pulmonary disease (COPD). COPD related inflammation is less responsive to inhaled steroids compared to asthma. There are three major novel anti-inflammatory approaches to the management of COPD. The first approach is phosphodiesterase...... on these strategies exist at the moment. A third potential approach involves novel agents whose mechanism of action is closely related to COPD mechanisms and pathophysiology. Such novel treatments are of great interest since they may treat both COPD and co-morbidities. Several novel agents are currently under...

  19. Anti-herpesvirus agents: a patent and literature review (2003 to present).

    Science.gov (United States)

    Skoreński, Marcin; Sieńczyk, Marcin

    2014-08-01

    The standard therapy used to treat herpesvirus infections is based on the application of DNA polymerase inhibitors such as ganciclovir or aciclovir. Unfortunately, all of these compounds exhibit relatively high toxicity and the mutation of herpesviruses results in the appearance of new drug-resistant strains. Consequently, there is a great need for the development of new, effective and safe anti-herpesvirus agents that employ different patterns of therapeutic action at various stages of the virus life cycle. Patents and patent applications concerning the development of anti-herpesvirus agents displaying different mechanisms of action that have been published since 2003 are reviewed. In addition, major discoveries in this field that have been published in academic papers have also been included. Among all the anti-herpesvirus agents described in this article, the inhibitors of viral serine protease seem to present one of the most effective/promising therapeutics. Unfortunately, the practical application of these antiviral agents has not yet been proven in any clinical trials. Nevertheless, the dynamic and extensive work on this subject gives hope that a new class of anti-herpesvirus agents aimed at the enzymatic activity of herpesvirus serine protease may be developed.

  20. Evaluation of anti-bacterial and anti-oxidant potential of andrographolide and echiodinin isolated from callus culture of Andrographis paniculata Nees

    Science.gov (United States)

    Arifullah, Mohmmed; Namsa, Nima Dandu; Mandal, Manabendra; Chiruvella, Kishore Kumar; Vikrama, Paritala; Gopal, Ghanta Rama

    2013-01-01

    Objective To evaluate the anti-bacterial and anti-oxidant activity of andrographolide (AND) and echiodinin (ECH) of Andrographis paniculata. Methods In this study, an attempt has been made to demonstrate the anti-microbial and anti-oxidant activity of isolated AND and ECH by broth micro-dilution method and 2,2-diphenyl-2-picryl-hydrazyl (DPPH) assay, respectively. Structure elucidation was determined by electro-spray ionization-MSD, NMR (1H and 13C) and IR spectra. Results AND was effective against most of the strains tested including Mycobacterium smegmatis, showing broad spectrum of growth inhibition activity with Minimum inhibitory concentration values against Staphylococcus aureus (100 µg/mL), Streptococcus thermophilus (350 µg/mL) Bacillus subtilis (100 µg/mL), Escherichia coli (50 µg/mL), Mycobacterium smegmatis (200 µg/mL), Klebsiella pneumonia (100 µg/mL), and Pseudomonas aeruginosa (200 µg/mL). ECH showed specific anti-bacterial activity against Staphylococcus aureus, Escherichia coli, Bacillus subtilis and Pseudomonas aeruginosa at a concentration higher than 225 µg/mL. Both AND and ECH were not effective against the two yeast strains, Candida albicans and Saccharomyces cerevisiae tested in this study. Conclusion This preliminary study showed promising anti-bacterial activity and moderate free radical scavenging activity of AND and ECH, and it may provide the scientific rationale for its popular folklore medicines. PMID:23905016

  1. Resistance of bacterial biofilms formed on stainless steel surface to disinfecting agent.

    Science.gov (United States)

    Królasik, Joanna; Zakowska, Zofia; Krepska, Milena; Klimek, Leszek

    2010-01-01

    The natural ability of microorganisms for adhesion and biofilm formation on various surfaces is one of the factors causing the inefficiency of a disinfection agent, despite its proven activity in vitro. The aim of the study was to determine the effectiveness of disinfecting substances on bacterial biofilms formed on stainless steel surface. A universally applied disinfecting agent was used in the tests. Bacterial strains: Listeria innocua, Pseudomonas putida, Micrococcus luteus, Staphylococcus hominis strains, were isolated from food contact surfaces, after a cleaning and disinfection process. The disinfecting agent was a commercially available acid specimen based on hydrogen peroxide and peroxyacetic acid, the substance that was designed for food industry usage. Model tests were carried out on biofilm formed on stainless steel (type 304, no 4 finish). Biofilms were recorded by electron scanning microscope. The disinfecting agent in usable concentration, 0.5% and during 10 minutes was ineffective for biofilms. The reduction of cells in biofilms was only 1-2 logarithmic cycles. The use of the agent in higher concentration--1% for 30 minutes caused reduction of cell number by around 5 logarithmic cycles only in the case of one microorganism, M. luteus. For other types: L. innocua, P. putida, S. hominis, the requirements placed on disinfecting agents were not fulfilled. The results of experiments proved that bacterial biofilms are resistant to the disinfectant applied in its operational parameters. Disinfecting effectiveness was achieved after twofold increase of the agent's concentration.

  2. An overview of the current methodologies used for evaluation of anti-fertility agents

    Directory of Open Access Journals (Sweden)

    Manisha Shah

    2016-05-01

    Full Text Available Discoveries in the past two decades have continued to improve our understanding of the mechanism of fertilization and animal models have played a significant role to define the basic mechanism of anti-fertility agents. In vivo models have been developed in the past years to study the anti-fertility agents. Methods that are used in anti-fertility study can be categorized into method including estimation of sex hormones, assessment of sperm motility and count, assessment of sperm viability and morphology, mating trial test body, sex organ weights, abortifacient activity, post-coital anti-fertility activity, effect on estrous cycle, anti-estrogenic activity, anti-gonadotrophic effect and quantification of fructose in seminal vesicle, histopathology, and biochemical methods. This review aims to highlight some of the new and currently, used experimental models that are used for the evaluation of anti-fertility agents.

  3. Detoxification of organophosphate nerve agents by bacterial phosphotriesterase

    International Nuclear Information System (INIS)

    Ghanem, Eman; Raushel, Frank M.

    2005-01-01

    Organophosphates have been widely used as insecticides and chemical warfare agents. The health risks associated with these agents have necessitated the need for better detoxification and bioremediation tools. Bacterial enzymes capable of hydrolyzing the lethal organophosphate nerve agents are of special interest. Phosphotriesterase (PTE) isolated from the soil bacteria Pseudomonas diminuta displays a significant rate enhancement and substrate promiscuity for the hydrolysis of organophosphate triesters. Directed evolution and rational redesign of the active site of PTE have led to the identification of new variants with enhanced catalytic efficiency and stereoselectivity toward the hydrolysis of organophosphate neurotoxins. PTE has been utilized to protect against organophosphate poisoning in vivo. Biotechnological applications of PTE for detection and decontamination of insecticides and chemical warfare agents are developing into useful tools. In this review, the catalytic properties and potential applications of this remarkable enzyme are discussed

  4. Anti-bacterial activities and phytochemical screening of extracts of ...

    African Journals Online (AJOL)

    Anti-bacterial activity tests were carried out using disc diffusion assay and tube dilution technique, and phytochemical screening was carried out through Thin Layer Chromatography. The crude extracts showed antibacterial effects on M. vaccae, P. aeruginosa and B. subtilis. M. vaccae was most sensitive, particularly to the ...

  5. Radiation protective agents possessing anti-oxidative properties

    Energy Technology Data Exchange (ETDEWEB)

    Anzai, Kazunori; Ueno, Emi; Yoshida, Akira; Furuse, Masako; Ikota, Nobuo [National Inst. of Radiological Sciences, Research Center for Radiation Safety, Chiba, Chiba (Japan)

    2005-11-15

    The purpose of studies is to see mechanisms of radiation protection of agents possessing anti-oxidative properties because the initial step resulting in radiation hazard is the formation of radicals by water radiolysis. Agents were commercially available or synthesized proxyl derivatives (spin prove agents), commercially available spin-trapping agents, edaravone and TMG (a tocopherol glycoside). Mice and cultured cells were X-irradiated by Shimadzu Pantak HF-320 or 320S. Survivals of cells were determined by colony assay and of mice, to which the agents were given intraperitoneally before or after X-irradiation, within 30 days post irradiation. Plasma and marrow concentrations of proxyls were estimated by electron spin resonance (ESR) spectrometry. Mechanisms of their radiation protective effects were shown different from agent to agent. TMG was found effective even post irradiation, which suggests a possibility for a new drug development. Some (spin trapping agents and TMG), virtually ineffective at the cell level, were found effective in the whole body, suggesting the necessity of studies on their disposition and metabolism. (S.I.)

  6. Radiation protective agents possessing anti-oxidative properties

    International Nuclear Information System (INIS)

    Anzai, Kazunori; Ueno, Emi; Yoshida, Akira; Furuse, Masako; Ikota, Nobuo

    2005-01-01

    The purpose of studies is to see mechanisms of radiation protection of agents possessing anti-oxidative properties because the initial step resulting in radiation hazard is the formation of radicals by water radiolysis. Agents were commercially available or synthesized proxyl derivatives (spin prove agents), commercially available spin-trapping agents, edaravone and TMG (a tocopherol glycoside). Mice and cultured cells were X-irradiated by Shimadzu Pantak HF-320 or 320S. Survivals of cells were determined by colony assay and of mice, to which the agents were given intraperitoneally before or after X-irradiation, within 30 days post irradiation. Plasma and marrow concentrations of proxyls were estimated by electron spin resonance (ESR) spectrometry. Mechanisms of their radiation protective effects were shown different from agent to agent. TMG was found effective even post irradiation, which suggests a possibility for a new drug development. Some (spin trapping agents and TMG), virtually ineffective at the cell level, were found effective in the whole body, suggesting the necessity of studies on their disposition and metabolism. (S.I.)

  7. Screening for potential anti-infective agents towards Burkholderia pseudomallei infection

    Science.gov (United States)

    Eng, Su Anne; Nathan, Sheila

    2014-09-01

    The established treatment for melioidosis is antibiotic therapy. However, a constant threat to this form of treatment is resistance development of the causative agent, Burkholderia pseudomallei, towards antibiotics. One option to circumvent this threat of antibiotic resistance is to search for new alternative anti-infectives which target the host innate immune system and/or bacterial virulence. In this study, 29 synthetic compounds were evaluated for their potential to increase the lifespan of an infected host. The nematode Caenorhabditis elegans was adopted as the infection model as its innate immune pathways are homologous to humans. Screens were performed in a liquid-based survival assay containing infected worms exposed to individual compounds and survival of untreated and compound-treated worms were compared. A primary screen identified nine synthetic compounds that extended the lifespan of B. pseudomallei-infected worms. Subsequently, a disc diffusion test was performed on these selected compounds to delineate compounds into those that enhanced the survival of worms via antimicrobial activity i.e. reducing the number of infecting bacteria, or into those that did not target pathogen viability. Out of the nine hits selected, two demonstrated antimicrobial effects on B. pseudomallei. Therefore, the findings from this study suggest that the other seven identified compounds are potential anti-infectives which could protect a host against B. pseudomallei infection without developing the risk of drug resistance.

  8. Limited-sampling strategies for anti-infective agents: systematic review.

    Science.gov (United States)

    Sprague, Denise A; Ensom, Mary H H

    2009-09-01

    Area under the concentration-time curve (AUC) is a pharmacokinetic parameter that represents overall exposure to a drug. For selected anti-infective agents, pharmacokinetic-pharmacodynamic parameters, such as AUC/MIC (where MIC is the minimal inhibitory concentration), have been correlated with outcome in a few studies. A limited-sampling strategy may be used to estimate pharmacokinetic parameters such as AUC, without the frequent, costly, and inconvenient blood sampling that would be required to directly calculate the AUC. To discuss, by means of a systematic review, the strengths, limitations, and clinical implications of published studies involving a limited-sampling strategy for anti-infective agents and to propose improvements in methodology for future studies. The PubMed and EMBASE databases were searched using the terms "anti-infective agents", "limited sampling", "optimal sampling", "sparse sampling", "AUC monitoring", "abbreviated AUC", "abbreviated sampling", and "Bayesian". The reference lists of retrieved articles were searched manually. Included studies were classified according to modified criteria from the US Preventive Services Task Force. Twenty studies met the inclusion criteria. Six of the studies (involving didanosine, zidovudine, nevirapine, ciprofloxacin, efavirenz, and nelfinavir) were classified as providing level I evidence, 4 studies (involving vancomycin, didanosine, lamivudine, and lopinavir-ritonavir) provided level II-1 evidence, 2 studies (involving saquinavir and ceftazidime) provided level II-2 evidence, and 8 studies (involving ciprofloxacin, nelfinavir, vancomycin, ceftazidime, ganciclovir, pyrazinamide, meropenem, and alpha interferon) provided level III evidence. All of the studies providing level I evidence used prospectively collected data and proper validation procedures with separate, randomly selected index and validation groups. However, most of the included studies did not provide an adequate description of the methods or

  9. Clinical bacterial isolates from hospital environment as agents of ...

    African Journals Online (AJOL)

    The relationship between bacteria isolated from the hospital environment and those from wounds of operated patients was investigated to determine the causal agents of surgical site nosocomial infections. The study was carried out on bacterial species isolated from the theatre, surgical ward and patients' surgical wounds ...

  10. Anti-protozoal and anti-bacterial antibiotics that inhibit protein synthesis kill cancer subtypes enriched for stem cell-like properties.

    Science.gov (United States)

    Cuyàs, Elisabet; Martin-Castillo, Begoña; Corominas-Faja, Bruna; Massaguer, Anna; Bosch-Barrera, Joaquim; Menendez, Javier A

    2015-01-01

    Key players in translational regulation such as ribosomes might represent powerful, but hitherto largely unexplored, targets to eliminate drug-refractory cancer stem cells (CSCs). A recent study by the Lisanti group has documented how puromycin, an old antibiotic derived from Streptomyces alboniger that inhibits ribosomal protein translation, can efficiently suppress CSC states in tumorspheres and monolayer cultures. We have used a closely related approach based on Biolog Phenotype Microarrays (PM), which contain tens of lyophilized antimicrobial drugs, to assess the chemosensitivity profiles of breast cancer cell lines enriched for stem cell-like properties. Antibiotics directly targeting active sites of the ribosome including emetine, puromycin and cycloheximide, inhibitors of ribosome biogenesis such as dactinomycin, ribotoxic stress agents such as daunorubicin, and indirect inhibitors of protein synthesis such as acriflavine, had the largest cytotoxic impact against claudin-low and basal-like breast cancer cells. Thus, biologically aggressive, treatment-resistant breast cancer subtypes enriched for stem cell-like properties exhibit exacerbated chemosensitivities to anti-protozoal and anti-bacterial antibiotics targeting protein synthesis. These results suggest that old/existing microbicides might be repurposed not only as new cancer therapeutics, but also might provide the tools and molecular understanding needed to develop second-generation inhibitors of ribosomal translation to eradicate CSC traits in tumor tissues.

  11. Menahydroquinone-4 Prodrug: A Promising Candidate Anti-Hepatocellular Carcinoma Agent.

    Science.gov (United States)

    Enjoji, Munechika; Watase, Daisuke; Matsunaga, Kazuhisa; Kusuda, Mariko; Nagata-Akaho, Nami; Karube, Yoshiharu; Takata, Jiro

    2015-07-22

    Recently, new therapeutics have been developed for hepatocellular carcinoma (HCC). However, the overall survival rate of HCC patients is still unsatisfactory; one of the reasons for this is the high frequency of recurrence after radical treatment. Consequently, to improve prognosis, it will be important to develop a novel anti-tumor agent that is especially effective against HCC recurrence. For clinical application, long-term safety, together with high anti-tumor efficacy, is desirable. Recent studies have proposed menahydroquinone-4 1,4-bis- N,N -dimethylglycinate hydrochloride (MKH-DMG), a prodrug of menahydroquinone-4 (MKH), as a promising candidate for HCC treatment including the inhibition of recurrence; MKH-DMG has been shown to achieve good selective accumulation of MKH in tumor cells, resulting in satisfactory inhibition of cell proliferation in des-γ-carboxyl prothrombin (DCP)-positive and DCP-negative HCC cell lines. In a spleen-liver metastasis mouse model, MKH-DMG has been demonstrated to have anti-proliferation and anti-metastatic effects in vivo . The characteristics of MKH-DMG as a novel anti-HCC agent are presented in this review article.

  12. Halophilic and halotolerant actinomycetes from a marine saltern of Goa, India producing anti-bacterial metabolites.

    Science.gov (United States)

    Ballav, Shuvankar; Kerkar, Savita; Thomas, Sabu; Augustine, Nimmy

    2015-03-01

    Marine salterns are estuarine ecosystems in Goa, receiving inputs from riverine and marine waters. The Salinity fluctuates between 0 and 300 psu which makes it a conducive niche for salt tolerant and salt loving Actinomycetales. Halotolerant and halophilic Actinomycetales producing anti-bacterial metabolites were studied from crystallizer pond sediments of Ribandar saltern, Goa. Three media viz. Starch casein, R2A and Inorganic salt starch agar at four different salinities (35, 50, 75 and 100 psu) were used for isolation. R2A agar at 35 psu was the most preferred by hypersaline actinomycetes. The dominant group was halotolerant Streptomyces spp. others being rare actinomycetes viz. Nocardiopsis, Micromonospora and Kocuria spp. More than 50% of the isolates showed anti-bacterial activity against one or more of the fifteen human pathogens tested. Eight strains from 4 genera showed consistent anti-bacterial activity and studied in detail. Most halotolerant isolates grew from 0 to 75 psu, with optimum antibiotic production at 35 psu whereas halophiles grew at 20 to 100 psu with optimum antibiotic production at 35 psu. Four Streptomyces strains showed multiple inhibition against test organisms while four rare actinomycetes were specific in their inhibitory activity. This is the first report of a halophilic Kocuria sp., Nocardiopsis sp., and halotolerant Micromonospora sp. producing anti-bacterial compound(s) against Staphylococcus aureus, Staphylococcus citreus, and Vibrio cholerae, respectively. Sequential extraction with varying polarity of organic solvents showed that the extracts inhibited different test pathogens. These results suggest that halophilic and halotolerant actinomycetes from marine salterns are a potential source of anti-bacterial compounds. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  13. The role indigenous bacterial isolates for bioremediation agent in the uranium contaminated aquatic environment

    International Nuclear Information System (INIS)

    Mochd Yazid

    2014-01-01

    A Research on the role of indigenous bacterial isolates for bio-remediation agent of the uranium contaminated in the aquatic environment has been conducted. The objective of the research is to study the role of Pseudomonas sp and Bacillus sp. have been isolated from low level uranium waste for bioremediation agent in their environment, such as the determination of efficiency of the uranium binding compared by the non indigenous bacterial, location of these binding and the influences of added acethyl acid stimulant. The uranium reduction studied was measured by weighting bacterial biomass and uranium concentration was measured by spectrophotometer. The acethyl acid stimulant addition has been done with the variation of concentration and volume. The efficiency of the uranium reduction by indigenous bacterial isolate such as Pseudomonas sp were 84.99 % and Bacillus sp were 52.70 %, so the reduction efficiency by non indigenous bacterial such as Pseudomonas aerogenes were 78.47 % and Bacillus subtilis were 45.22 % for 54 hours incubation time. The result of this research can be concluded that Pseudomonas sp and Bacillus sp. Indigenous bacterial have been isolates from the liquid uranium waste can contributed in bioremediation agent for uranium radionuclide in the environment for 60 ppm concentration with reduction efficiency 52.70 %-84.99 %, that is higher non indigenous bacterial for 54 hours incubation time, the stimulant addition of acethyl acid, the efficiency can be increased up to 99.8 %. (author)

  14. Anti-bacterial activity of Plumbago zeylanica L. roots on some ...

    African Journals Online (AJOL)

    The anti bacterial activity of polar and non-polar extracts prepared from the roots of Plumbago zeylanica L. (Plumbaginaceae), a plant widely used in Ethiopian traditional medicine for various ailments were investigated using hole plate diffusion method against some pneumonia causing pathogens. The aqueous extract did ...

  15. Exploring Anti-Bacterial Compounds against Intracellular Legionella

    Science.gov (United States)

    Harrison, Christopher F.; Kicka, Sébastien; Trofimov, Valentin; Berschl, Kathrin; Ouertatani-Sakouhi, Hajer; Ackermann, Nikolaus; Hedberg, Christian; Cosson, Pierre; Soldati, Thierry; Hilbi, Hubert

    2013-01-01

    Legionella pneumophila is a ubiquitous fresh-water bacterium which reproduces within its erstwhile predators, environmental amoeba, by subverting the normal pathway of phagocytosis and degradation. The molecular mechanisms which confer resistance to amoeba are apparently conserved and also allow replication within macrophages. Thus, L. pneumophila can act as an ‘accidental’ human pathogen and cause a severe pneumonia known as Legionnaires’ disease. The intracellular localisation of L. pneumophila protects it from some antibiotics, and this fact must be taken into account to develop new anti-bacterial compounds. In addition, the intracellular lifestyle of L. pneumophila may render the bacteria susceptible to compounds diminishing bacterial virulence and decreasing intracellular survival and replication of this pathogen. The development of a single infection cycle intracellular replication assay using GFP-producing L. pneumophila and Acanthamoeba castellanii amoeba is reported here. This fluorescence-based assay allows for continuous monitoring of intracellular replication rates, revealing the effect of bacterial gene deletions or drug treatment. To examine how perturbations of the host cell affect L. pneumophila replication, several known host-targeting compounds were tested, including modulators of cytoskeletal dynamics, vesicle scission and Ras GTPase localisation. Our results reveal a hitherto unrealized potential antibiotic property of the β-lactone-based Ras depalmitoylation inhibitor palmostatin M, but not the closely related inhibitor palmostatin B. Further characterisation indicated that this compound caused specific growth inhibition of Legionella and Mycobacterium species, suggesting that it may act on a common bacterial target. PMID:24058631

  16. Exploring anti-bacterial compounds against intracellular Legionella.

    Directory of Open Access Journals (Sweden)

    Christopher F Harrison

    Full Text Available Legionella pneumophila is a ubiquitous fresh-water bacterium which reproduces within its erstwhile predators, environmental amoeba, by subverting the normal pathway of phagocytosis and degradation. The molecular mechanisms which confer resistance to amoeba are apparently conserved and also allow replication within macrophages. Thus, L. pneumophila can act as an 'accidental' human pathogen and cause a severe pneumonia known as Legionnaires' disease. The intracellular localisation of L. pneumophila protects it from some antibiotics, and this fact must be taken into account to develop new anti-bacterial compounds. In addition, the intracellular lifestyle of L. pneumophila may render the bacteria susceptible to compounds diminishing bacterial virulence and decreasing intracellular survival and replication of this pathogen. The development of a single infection cycle intracellular replication assay using GFP-producing L. pneumophila and Acanthamoebacastellanii amoeba is reported here. This fluorescence-based assay allows for continuous monitoring of intracellular replication rates, revealing the effect of bacterial gene deletions or drug treatment. To examine how perturbations of the host cell affect L. pneumophila replication, several known host-targeting compounds were tested, including modulators of cytoskeletal dynamics, vesicle scission and Ras GTPase localisation. Our results reveal a hitherto unrealized potential antibiotic property of the β-lactone-based Ras depalmitoylation inhibitor palmostatin M, but not the closely related inhibitor palmostatin B. Further characterisation indicated that this compound caused specific growth inhibition of Legionella and Mycobacterium species, suggesting that it may act on a common bacterial target.

  17. 191 bacterial agents of otitis media and their sensitivity to some ...

    African Journals Online (AJOL)

    DR. AMINU

    2010-06-01

    Shamsuddeen, U., Usman A. D., Bukar, ... Key Words: Bacterial agents, otitis media, sensitivity, antibiotics, AKTH. INTRODUCTION. Otitis media is an .... Atlas R.M (1998) Microbiology Fundamentals and. Applications. Second edition ...

  18. Chemical composition and anti-bacterial activity of essential oil from ...

    African Journals Online (AJOL)

    This work assesses the chemical compositions and in vitro anti-bacterial activities of seed essential oil from Cedrela sinesis (A. Juss.) Roem. seed. which has abundant mineral elements such as K, Ca, Fe. The fatty acid profiles of seed essential oil are characterized by considerable unsaturated fatty acids (90.39%) ...

  19. Reactions of human dental pulp cells to capping agents in the presence or absence of bacterial exposure.

    Science.gov (United States)

    Cai, Shiwei; Zhang, Wenjian; Tribble, Gena; Chen, Wei

    2017-01-01

    An ideal pulp-capping agent needs to have good biocompatibility and promote reparative dentinogenesis. Although the effects of capping agents on healthy pulp are known, limited data regarding their effects on bacterial contaminated pulp are available. This study aimed to evaluate the reaction of contaminated pulps to various capping agents to assist clinicians in making informed decisions. Human dental pulp (HDP) cell cultures were developed from extracted human molars. The cells were exposed to a bacterial cocktail comprising Porphyromonas gingivalis, Prevotella intermedia, and Streptococcus gordonii before being cocultured with capping agents such as mineral trioxide aggregate (MTA) Portland cement (PC), and Dycal. HDP cell proliferation was assayed by MTS colorimetric cell proliferation assay, and its differentiation was evaluated by real-time PCR for detecting alkaline phosphatase, dentin sialophosphoprotein, and osteocalcin expressions. MTA and PC had no apparent effect, whereas Dycal inhibited HDP cell proliferation. PC stimulated HDP cell differentiation, particularly when they were exposed to bacteria. MTA and Dycal inhibited differentiation, regardless of bacterial infection. In conclusion, PC was the most favorable agent, followed by MTA, and Dycal was the least favorable agent for supporting the functions of bacterial compromised pulp cells.

  20. Design and synthesis of some new 2,3'-bipyridine-5-carbonitriles as potential anti-inflammatory/antimicrobial agents.

    Science.gov (United States)

    Elzahhar, Perihan A; Elkazaz, Salwa; Soliman, Raafat; El-Tombary, Alaa A; Shaltout, Hossam A; El-Ashmawy, Ibrahim M; Abdel Wahab, Abeer E; El-Hawash, Soad A

    2017-08-01

    Inflammation may cause accumulation of fluid in the injured area, which may promote bacterial growth. Other reports disclosed that non-steroidal anti-inflammatory drugs may enhance progression of bacterial infection. This work describes synthesis of new series of 2,3'-bipyridine-5-carbonitriles as structural analogs of etoricoxib, linked at position-6 to variously substituted thio or oxo moieties. Biological screening results revealed that compounds 2b, 4b, 7e and 8 showed significant acute and chronic AI activities and broad spectrum of antimicrobial activity. In addition, similarity ensemble approach was applied to predict potential biological targets of the tested compounds. Then, pharmacophore modeling study was employed to determine the most important structural parameters controlling bioactivity. Moreover, title compounds showed physicochemical properties within those considered adequate for drug candidates. This study explored the potential of such series of compounds as structural leads for further modification to develop a new class of dual AI-antimicrobial agents.

  1. Mur Ligase Inhibitors as Anti-bacterials: A Comprehensive Review.

    Science.gov (United States)

    Sangshetti, Jaiprakash N; Joshi, Suyog S; Patil, Rajendra H; Moloney, Mark G; Shinde, Devanand B

    2017-01-01

    Exploring a new target for antibacterial drug discovery has gained much attention because of the emergence of Multidrug Resistance (MDR) strains of bacteria. To overcome this problem the development of novel antibacterial was considered as highest priority task and was one of the biggest challenge since multiple factors were involved. The bacterial peptidoglycan biosynthetic pathway has been well documented in the last few years and has been found to be imperative source for the development of novel antibacterial agents with high target specificity as they are essential for bacterial survival and have no homologs in humans. We have therefore reviewed the process of peptidoglycan biosynthesis which involves various steps like formation of UDP-Nacetylglucosamine (GlcNAc), UDP-N-acetylmuramic acid (MurNAc) and lipid intermediates (Lipid I and Lipid II) which are controlled by various enzymes like GlmS, GlmM, GlmU enzyme, followed by Mur Ligases (MurAMurF) and finally by MraY and MurG respectively. These four amide ligases MurC-MurF can be used as the source for the development of novel multi-target antibacterial agents as they shared and conserved amino acid regions, catalytic mechanisms and structural features. This review begins with the need for novel antibacterial agents and challenges in their development even after the development of bacterial genomic studies. An overview of the peptidoglycan monomer formation, as a source of disparity in this process is presented, followed by detailed discussion of structural and functional aspects of all Mur enzymes and different chemical classes of their inhibitors along with their SAR studies and inhibitory potential. This review finally emphasizes on different patents and novel Mur inhibitors in the development phase. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Impact of the Number of Anti-Thrombosis Agents in Hemodialysis Patients: BOREAS-HD2 Study

    Directory of Open Access Journals (Sweden)

    Marenao Tanaka

    2017-09-01

    Full Text Available Background/Aims: Relationships between the number of anti-thrombosis agents, clinical benefits and adverse events in hemodialysis (HD patients are unclear. Methods: All patients on HD in 22 institutes (n = 1,071 were enrolled and followed up for 3 years. After exclusion of patients with missing data, kidney transplantation or retraction of consent during the follow-up period (n = 204, mortality rate and ischemic and hemorrhagic events were compared between different regimens of anti-thrombosis agents. Results: The use of dual or triple antiplatelet (AP agents (HR:2.03, 95% CI:1.01-4.13, p = 0.04 and the combination of an AP agent and warfarin (WF (HR:4.84, 95%CI 1.96-11.96, p < 0.001 were associated with an increase in hemorrhagic events compared with no use of anti-thrombosis agents. No anti-thrombosis regimen was associated with a significant change in risk of ischemic stroke. The use of dual or triple AP agents, but not WF, was associated with an increase in cardiovascular mortality (HR:2.48, 95% CI:1.24-4.76, p = 0.01. Conclusion: A significant increase in hemorrhagic events by the use of dual or more AP agents and by co-administration of an AP agent and WF in patients on HD should be considered in planning their anti-thrombosis regimen.

  3. Birth Outcomes in Children Fathered by Men Treated with Anti-TNF-α Agents Before Conception

    DEFF Research Database (Denmark)

    Larsen, Michael Due; Friedman, Sonia; Magnussen, Bjarne

    2016-01-01

    OBJECTIVES: The safety of paternal use of anti-tumor necrosis factor-α (TNF-α) agents immediately prior to conception is practically unknown. On the basis of nationwide data from Danish health registries, we examined the association between paternal use of anti-TNF-α agents within 3 months before...... the safety of paternal preconceptional use of anti-TNF-α agents. The result regarding SGA should, however, be interpreted with caution as we found an increased risk, although not significantly increased....

  4. Phylloseptins: a novel class of anti-bacterial and anti-protozoan peptides from the Phyllomedusa genus.

    Science.gov (United States)

    Leite, José Roberto S A; Silva, Luciano P; Rodrigues, Maria Izabel S; Prates, Maura V; Brand, Guilherme D; Lacava, Bruno M; Azevedo, Ricardo B; Bocca, Anamélia L; Albuquerque, Sergio; Bloch, Carlos

    2005-04-01

    Six novel peptides called phylloseptins (PS-1, -2, -3, -4, -5, and -6) showing anti-bacterial (PS-1) and anti-protozoan (PS-4 and -5) activities were isolated from the skin secretion of the Brazilian tree-frogs, Phyllomedusa hypochondrialis and Phyllomedusa oreades. Phylloseptins have a primary structure consisting of 19-21 amino acid residues (1.7-2.1 kDa). They have common structural features, such as a highly conserved N-terminal region and C-terminal amidation. Phylloseptin-1 (FLSLIPHAINAVSAIAKHN-NH2) demonstrated a strong effect against gram-positive and gram-negative bacteria (MICs ranging from 3 to 7.9 microM), without showing significant hemolytic activity (Trypanosoma cruzi.

  5. Searching for the main anti-bacterial components in artificial Calculus bovis using UPLC and microcalorimetry coupled with multi-linear regression analysis.

    Science.gov (United States)

    Zang, Qing-Ce; Wang, Jia-Bo; Kong, Wei-Jun; Jin, Cheng; Ma, Zhi-Jie; Chen, Jing; Gong, Qian-Feng; Xiao, Xiao-He

    2011-12-01

    The fingerprints of artificial Calculus bovis extracts from different solvents were established by ultra-performance liquid chromatography (UPLC) and the anti-bacterial activities of artificial C. bovis extracts on Staphylococcus aureus (S. aureus) growth were studied by microcalorimetry. The UPLC fingerprints were evaluated using hierarchical clustering analysis. Some quantitative parameters obtained from the thermogenic curves of S. aureus growth affected by artificial C. bovis extracts were analyzed using principal component analysis. The spectrum-effect relationships between UPLC fingerprints and anti-bacterial activities were investigated using multi-linear regression analysis. The results showed that peak 1 (taurocholate sodium), peak 3 (unknown compound), peak 4 (cholic acid), and peak 6 (chenodeoxycholic acid) are more significant than the other peaks with the standard parameter estimate 0.453, -0.166, 0.749, 0.025, respectively. So, compounds cholic acid, taurocholate sodium, and chenodeoxycholic acid might be the major anti-bacterial components in artificial C. bovis. Altogether, this work provides a general model of the combination of UPLC chromatography and anti-bacterial effect to study the spectrum-effect relationships of artificial C. bovis extracts, which can be used to discover the main anti-bacterial components in artificial C. bovis or other Chinese herbal medicines with anti-bacterial effects. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. A novel nitroreductase-enhanced MRI contrast agent and its potential application in bacterial imaging

    Directory of Open Access Journals (Sweden)

    Yun Liu

    2018-05-01

    Full Text Available Nitroreductases (NTRs are known to be able to metabolize nitro-substituted compounds in the presence of reduced nicotinamide adenine dinucleotide (NADH as an electron donor. NTRs are present in a wide range of bacterial genera and, to a lesser extent, in eukaryotes hypoxic tumour cells and tumorous tissues, which makes it an appropriate biomarker for an imaging target to detect the hypoxic status of cancer cells and potential bacterial infections. To evaluate the specific activation level of NTR, great efforts have been devoted to the development of fluorescent probes to detect NTR activities using fluorogenic methods to probe its behaviour in a cellular context; however, NTR-responsive MRI contrast agents are still by far underexplored. In this study, para-nitrobenzyl substituted T1-weighted magnetic resonance imaging (MRI contrast agent Gd-DOTA-PNB (probe 1 has been designed and explored for the possible detection of NTR. Our experimental results show that probe 1 could serve as an MRI-enhanced contrast agent for monitoring NTR activity. The in vitro response and mechanism of the NTR catalysed reduction of probe 1 have been investigated through LC–MS and MRI. Para-nitrobenzyl substituted probe 1 was catalytically reduced by NTR to the intermediate para-aminobenzyl substituted probe which then underwent a rearrangement elimination reaction to Gd-DOTA, generating the enhanced T1-weighted MR imaging. Further, LC–MS and MRI studies of living Escherichia coli have confirmed the NTR activity detection ability of probe 1 at a cellular level. This method may potentially be used for the diagnosis of bacterial infections. KEY WORDS: Nitroreductase, MRI contrast agent, Smart imaging probes, Bacterial imaging, Bacterial infection

  7. Resistance to cytotoxic and anti-angiogenic anticancer agents: similarities and differences.

    NARCIS (Netherlands)

    Broxterman, H.J.; Lankelma, J.; Hoekman, K.

    2003-01-01

    Intrinsic resistance to anticancer drugs, or resistance developed during chemotherapy, remains a major obstacle to successful treatment. This is the case both for resistance to cytotoxic agents, directed at malignant cells, and for resistance to anti-angiogenic agents, directed at non-malignant

  8. Reduction of rainbow trout spleen size by splenectomy does not alter resistance against bacterial cold water disease

    Science.gov (United States)

    In lower vertebrates, the contribution of the spleen to anti-bacterial immunity is poorly understood. Researchers have previously reported a phenotypic and genetic correlation between resistance to Flavobacterium psychrophilum, the causative agent of bacterial cold water disease (BCWD) and spleen so...

  9. Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action

    Science.gov (United States)

    Roy, Ranita; Tiwari, Monalisa; Donelli, Gianfranco; Tiwari, Vishvanath

    2018-01-01

    ABSTRACT Biofilm refers to the complex, sessile communities of microbes found either attached to a surface or buried firmly in an extracellular matrix as aggregates. The biofilm matrix surrounding bacteria makes them tolerant to harsh conditions and resistant to antibacterial treatments. Moreover, the biofilms are responsible for causing a broad range of chronic diseases and due to the emergence of antibiotic resistance in bacteria it has really become difficult to treat them with efficacy. Furthermore, the antibiotics available till date are ineffective for treating these biofilm related infections due to their higher values of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), which may result in in-vivo toxicity. Hence, it is critically important to design or screen anti-biofilm molecules that can effectively minimize and eradicate biofilm related infections. In the present article, we have highlighted the mechanism of biofilm formation with reference to different models and various methods used for biofilm detection. A major focus has been put on various anti-biofilm molecules discovered or tested till date which may include herbal active compounds, chelating agents, peptide antibiotics, lantibiotics and synthetic chemical compounds along with their structures, mechanism of action and their respective MICs, MBCs, minimum biofilm inhibitory concentrations (MBICs) as well as the half maximal inhibitory concentration (IC50) values available in the literature so far. Different mode of action of anti biofilm molecules addressed here are inhibition via interference in the quorum sensing pathways, adhesion mechanism, disruption of extracellular DNA, protein, lipopolysaccharides, exopolysaccharides and secondary messengers involved in various signaling pathways. From this study, we conclude that the molecules considered here might be used to treat biofilm-associated infections after significant structural modifications, thereby

  10. Pathogen- and host-directed anti-inflammatory activities of macrolide antibiotics.

    Science.gov (United States)

    Steel, Helen C; Theron, Annette J; Cockeran, Riana; Anderson, Ronald; Feldman, Charles

    2012-01-01

    Macrolide antibiotics possess several, beneficial, secondary properties which complement their primary antimicrobial activity. In addition to high levels of tissue penetration, which may counteract seemingly macrolide-resistant bacterial pathogens, these agents also possess anti-inflammatory properties, unrelated to their primary antimicrobial activity. Macrolides target cells of both the innate and adaptive immune systems, as well as structural cells, and are beneficial in controlling harmful inflammatory responses during acute and chronic bacterial infection. These secondary anti-inflammatory activities of macrolides appear to be particularly effective in attenuating neutrophil-mediated inflammation. This, in turn, may contribute to the usefulness of these agents in the treatment of acute and chronic inflammatory disorders of both microbial and nonmicrobial origin, predominantly of the airways. This paper is focused on the various mechanisms of macrolide-mediated anti-inflammatory activity which target both microbial pathogens and the cells of the innate and adaptive immune systems, with emphasis on their clinical relevance.

  11. In silico modeling and synthesis of phenyl and thienyl analogs of chalcones for potential leads as anti-bacterial agents

    Science.gov (United States)

    Kar, Swayamsiddha; Mishra, Rohit Kumar; Pathak, Ashutosh; Dikshit, Anupam; Golakoti, Nageswara Rao

    2018-03-01

    In the recent times, the common diseases like food poisoning, pneumonia, diarrhea etc. have been observed to be drug resistant. The present study deals with the synthesis of known chalcone derivatives using the Claisen-Schmidt condensation and further characterization using UV-vis, IR, 1H NMR, 13C NMR and mass spectrometry. These derivatives were first simulated for their anti-bacterial efficacy in silico and consequently confirmed in vitro to confirm the findings. One of the chalcones, 4-NDM-2‧-HC showed excellent in-vitro antibacterial activity with an IC90 0.43 mg/mL against Vibrio cholerae as compared to commercially available antibiotic gentamicin as the standard. Further, all these tested chalcone derivatives fulfill Lipinski's parameters and show tremendous drug likeness score, confirming their potential as antibacterial leads.

  12. Are anti-inflammatory agents effective in treating gingivitis as solo or adjunct therapies? A systematic review.

    Science.gov (United States)

    Polak, David; Martin, Conchita; Sanz-Sánchez, Ignacio; Beyth, Nurit; Shapira, Lior

    2015-04-01

    Systematically review the scientific evidence for efficiency of anti-inflammatory agents against gingivitis, either as solo treatments or adjunctive therapies. A protocol was developed aimed to answer the following focused question: "Are anti-inflammatory agents effective in treating gingivitis as solo or adjunct therapies?" RCTs and cohort studies on anti-inflammatory agents against gingivitis studies were searched electronically. Screening, data extraction and quality assessment were conducted. The primary outcome measures were indices of gingival inflammation. A sub-analysis was performed dividing the active agents into anti-inflammatory and other drugs. The search identified 3188 studies, of which 14 RCTs met the inclusion criteria. The use of anti-inflammatory or other agents, in general showed a higher reduction in the test than in the control in terms of gingival indexes and bleeding scores. Only two RCTs on inflammatory drugs could be meta-analysed, showing a statistically significant reduction in the GI in the experimental group [WMD = -0.090; 95% CI (-0.105; -0.074); p = 0.000]. However, the contribution of both studies to the global result was unbalanced (% weight: 99.88 and 0.12 respectively). Most of the tested material showed beneficial effect as anti-inflammatory agents against gingivitis, either as a single treatment modality or as an adjunctive therapy. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Anti-Infective Activities of Lactobacillus Strains in the Human Intestinal Microbiota: from Probiotics to Gastrointestinal Anti-Infectious Biotherapeutic Agents

    Science.gov (United States)

    Liévin-Le Moal, Vanessa

    2014-01-01

    SUMMARY A vast and diverse array of microbial species displaying great phylogenic, genomic, and metabolic diversity have colonized the gastrointestinal tract. Resident microbes play a beneficial role by regulating the intestinal immune system, stimulating the maturation of host tissues, and playing a variety of roles in nutrition and in host resistance to gastric and enteric bacterial pathogens. The mechanisms by which the resident microbial species combat gastrointestinal pathogens are complex and include competitive metabolic interactions and the production of antimicrobial molecules. The human intestinal microbiota is a source from which Lactobacillus probiotic strains have often been isolated. Only six probiotic Lactobacillus strains isolated from human intestinal microbiota, i.e., L. rhamnosus GG, L. casei Shirota YIT9029, L. casei DN-114 001, L. johnsonii NCC 533, L. acidophilus LB, and L. reuteri DSM 17938, have been well characterized with regard to their potential antimicrobial effects against the major gastric and enteric bacterial pathogens and rotavirus. In this review, we describe the current knowledge concerning the experimental antibacterial activities, including antibiotic-like and cell-regulating activities, and therapeutic effects demonstrated in well-conducted, placebo-controlled, randomized clinical trials of these probiotic Lactobacillus strains. What is known about the antimicrobial activities supported by the molecules secreted by such probiotic Lactobacillus strains suggests that they constitute a promising new source for the development of innovative anti-infectious agents that act luminally and intracellularly in the gastrointestinal tract. PMID:24696432

  14. An update on anti-TNF agents in ulcerative colitis

    NARCIS (Netherlands)

    Samaan, Mark A.; Bagi, Preet; Vande Casteele, Niels; D'Haens, Geert R.; Levesque, Barrett G.

    2014-01-01

    Anti-tumor necrosis factor-α agents are key therapeutic options for the treatment of ulcerative colitis. Their efficacy and safety have been shown in large randomized controlled trials. The key evidence gained from these trials of infliximab, adalimumab, and golimumab is reviewed along with their

  15. Anti-inflammatory agents in the treatment of bipolar depression: a systematic review and meta-analysis.

    Science.gov (United States)

    Rosenblat, Joshua D; Kakar, Ron; Berk, Michael; Kessing, Lars V; Vinberg, Maj; Baune, Bernhard T; Mansur, Rodrigo B; Brietzke, Elisa; Goldstein, Benjamin I; McIntyre, Roger S

    2016-03-01

    Inflammation has been implicated in the risk, pathophysiology, and progression of mood disorders and, as such, has become a target of interest in the treatment of bipolar disorder (BD). Therefore, the objective of the current qualitative and quantitative review was to determine the overall antidepressant effect of adjunctive anti-inflammatory agents in the treatment of bipolar depression. Completed and ongoing clinical trials of anti-inflammatory agents for BD published prior to 15 May 15 2015 were identified through searching the PubMed, Embase, PsychINFO, and Clinicaltrials.gov databases. Data from randomized controlled trials (RCTs) assessing the antidepressant effect of adjunctive mechanistically diverse anti-inflammatory agents were pooled to determine standard mean differences (SMDs) compared with standard therapy alone. Ten RCTs were identified for qualitative review. Eight RCTs (n = 312) assessing adjunctive nonsteroidal anti-inflammatory drugs (n = 53), omega-3 polyunsaturated fatty acids (n = 140), N-acetylcysteine (n = 76), and pioglitazone (n = 44) in the treatment of BD met the inclusion criteria for quantitative analysis. The overall effect size of adjunctive anti-inflammatory agents on depressive symptoms was -0.40 (95% confidence interval -0.14 to -0.65, p = 0.002), indicative of a moderate and statistically significant antidepressant effect. The heterogeneity of the pooled sample was low (I² = 14%, p = 0.32). No manic/hypomanic induction or significant treatment-emergent adverse events were reported. Overall, a moderate antidepressant effect was observed for adjunctive anti-inflammatory agents compared with conventional therapy alone in the treatment of bipolar depression. The small number of studies, diversity of agents, and small sample sizes limited interpretation of the current analysis. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. The Incidence of Co-occurrence of Chlamydial Cervicitis with Bacterial Vaginosis

    Directory of Open Access Journals (Sweden)

    Yusefi S

    2011-03-01

    Full Text Available Background and Objectives: Bacterial vaginosis is caused by an imbalance in normal vaginal bacterial flora mainly caused by the introduction of pathogenic bacteria. Failure to properly treat this condition can not only induce abortion but also increase the chance of acquiring other serious infections such as AIDS, gonorrhea and chlamydiosis. Chlamydia trchomatis is one of the causative agents of cervicitis of which 70% is totally asymptomatic. Untreated cases can lead to salpengititis, pelvic inflammatory diseases, infertility, pelvic area pains and other complications. The purpose of this study was to determine the co-occurrence of these two conditions.Methods: A total of 137 patients were examined for both Chlamydial cervicitis and for bacterial vaginosis. Gram stain was used to detect bacterial vaginosis and anti-chlamydial antibodies were titered by microimmunofluoresence (MIF assay. Results: According to the MIF results, 10 patients(7.3% had elevated anti-chlamydial IgG and 3 patients (2.2% showed high IgM titers. Gardnerella vaginalis was detected in 6 patients(4.7% as the causative agent of vaginosis. There were 3 cases of co-occurrence of chlamydial cervicitis and bacterial vaginosis (30%. Conclusion: Due to the fact that bacterial vaginosis can provide the pre-disposing conditions for cervicitis and its chronicity and the similarity of the cilinical singns of these two conditions, Infections with Chlamydia are often overlooked. It therefore seems necessary to check any patient with bacterial vaginosis for chlamydial co-infection.

  17. Can We Predict the Efficacy of Anti-TNF-α Agents?

    Science.gov (United States)

    Lopetuso, Loris Riccardo; Gerardi, Viviana; Papa, Valerio; Scaldaferri, Franco; Rapaccini, Gian Lodovico; Gasbarrini, Antonio; Papa, Alfredo

    2017-09-14

    The use of biologic agents, particularly anti-tumor necrosis factor (TNF)-α, has revolutionized the treatment of inflammatory bowel diseases (IBD), modifying their natural history. Several data on the efficacy of these agents in inducing and maintaining clinical remission have been accumulated over the past two decades: their use avoid the need for steroids therapy, promote mucosal healing, reduce hospitalizations and surgeries and therefore dramatically improve the quality of life of IBD patients. However, primary non-response to these agents or loss of response over time mainly due to immunogenicity or treatment-related side-effects are a frequent concern in IBD patients. Thus, the identification of predicting factors of efficacy is crucial to allow clinicians to efficiently use these therapies, avoiding them when they are ineffective and eventually shifting towards alternative biological therapies with the end goal of optimizing the cost-effectiveness ratio. In this review, we aim to identify the predictive factors of short- and long-term benefits of anti-TNF-α therapy in IBD patients. In particular, multiple patient-, disease- and treatment-related factors have been evaluated.

  18. The effect of anti-tumor necrosis factor alpha agents on postoperative anastomotic complications in Crohn's disease

    DEFF Research Database (Denmark)

    El-Hussuna, Alaa Abdul-Hussein H; Krag, Aleksander; Olaison, Gunnar

    2013-01-01

    Patients with Crohn's disease treated with anti-tumor necrosis factor alpha agents may have an increased risk of surgical complications.......Patients with Crohn's disease treated with anti-tumor necrosis factor alpha agents may have an increased risk of surgical complications....

  19. An anti-bacterial approach to nanoscale roughening of biomimetic rice-like pattern PP by thermal annealing

    Science.gov (United States)

    Jafari Nodoushan, Emad; Ebrahimi, Nadereh Golshan; Ayazi, Masoumeh

    2017-11-01

    In this paper, we introduced thermal annealing treatment as an effective way of increasing the nanoscale roughness of a semi-crystalline polymer surface. Annealing treatment applied to a biomimetic microscale pattern of rice leaf to achieve a superhydrophobic surface with a hierarchical roughness. Resulted surfaces was characterized by XRD, AFM and FE-SEM instruments and showed an increase of roughness and cristallinity within both time and temperature of treatment. These two parameters also impact on measured static contact angle up to 158°. Bacterial attachment potency has an inverse relationship with the similarity of surface pattern dimensions and bacterial size and due to that, thermal annealing could be an effective way to create anti-bacterial surface beyond its effect on water repellency. Point in case, the anti-bacterial properties of produced water-repellence surfaces of PP were measured and counted colonies of both gram-negative (E. coli) and gram-positive (S. aureus) bacteria reduced with the nature of PP and hierarchical pattern on that. Anti-bacterial characterization of the resulted surface reveals a stunning reduction in adhesion of gram-positive bacteria to the surface. S. aureus reduction rates equaled to 95% and 66% when compared to control blank plate and smooth surface of PP. Moreover, it also could affect the other type of bacteria, gram-negative (E. coli). In the latter case, adhesion reduction rates calculated 66% and 53% when against to the same controls, respectively.

  20. Application of quercetin and its bio-inspired nanoparticles as anti-adhesive agents against Bacillus subtilis attachment to surface

    Energy Technology Data Exchange (ETDEWEB)

    Raie, Diana S., E-mail: raiediana@yahoo.com [Process Design and Development Department, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo (Egypt); Mhatre, Eisha [Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University Jena (FSU), Jena (Germany); Thiele, Matthias [Nanobiophotonic Department, Leibniz Institute of Photonic Technology Jena (IPHT), Jena (Germany); Labena, A. [Process Design and Development Department, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo (Egypt); El-Ghannam, Gamal [National Institute of Laser Enhanced Sciences (NILES), Cairo University, Giza (Egypt); Farahat, Laila A. [Process Design and Development Department, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo (Egypt); Youssef, Tareq [National Institute of Laser Enhanced Sciences (NILES), Cairo University, Giza (Egypt); Fritzsche, Wolfgang [Nanobiophotonic Department, Leibniz Institute of Photonic Technology Jena (IPHT), Jena (Germany); Kovács, Ákos T., E-mail: akos-tibor.kovacs@uni-jena.de [Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University Jena (FSU), Jena (Germany)

    2017-01-01

    The aim of this study was directed to reveal the repulsive effect of coated glass slides by quercetin and its bio-inspired titanium oxide and tungsten oxide nanoparticles on physical surface attachment of Bacillus subtilis as an ab-initio step of biofilm formation. Nanoparticles were successfully synthesized using sol–gel and acid precipitation methods for titanium oxide and tungsten oxide, respectively (in the absence or presence of quercetin). The anti-adhesive impact of the coated-slides was tested through the physical attachment of B. subtilis after 24 h using Confocal Laser Scanning Microscopy (CLSM). Here, quercetin was presented as a bio-route for the synthesis of tungsten mixed oxides nano-plates at room temperature. In addition, quercetin had an impact on zeta potential and adsorption capacity of both bio-inspired amorphous titanium oxide and tungsten oxide nano-plates. Interestingly, our experiments indicated a contrary effect of quercetin as an anti-adhesive agent than previously reported. However, its bio-inspired metal oxide proved their repulsive efficiency. In addition, quercetin-mediated nano-tungsten and quercetin-mediated amorphous titanium showed anti-adhesive activity against B. subtilis biofilm. - Highlights: • Novel quercetin-mediated nanoparticles were tested for anti-adhesion against attachment of cells forming biofilms. • Quercetin showed a low-grade of protection level against bacterial attachment. • Bio-inspired nano-anatase showed a lower efficiency than amorphous titanium. • Thermally treated bio-inspired nano-tungsten gets an improved anti-adhesive activity.

  1. Evaluation of pawpaw leaves extract as anti-corrosion agent for ...

    African Journals Online (AJOL)

    Pawpaw leaves extract was examined as anti-corrosion agent for aluminium in hydrochloric acid medium. The extract and corrosion product were analyzed using Fourier transform infrared spectrophotometer (FTIR). Thermometric, gravimetric, potentiodynamic polarization and scanning electron microscopic methods were ...

  2. Dentists' approach to patients on anti-platelet agents and warfarin: a survey of practice.

    LENUS (Irish Health Repository)

    Murphy, James

    2010-04-23

    In everyday practice, dentists are confronted with the dilemma of patients on anti-platelet agents and warfarin who require invasive dental procedures and, more pertinently, dental extractions. There may be a divergence of opinion among dentists regarding how they manage these patients. AIMS: To assess general dental practitioners\\' approach to the management of patients taking anti-platelet agents and\\/or warfarin who are undergoing invasive dental procedures. METHODS AND DATA: A semi-structured questionnaire was designed to survey general dental practitioners in a large Irish urban area. RESULTS: A response rate of 89% was achieved in a study population of 54 general dental practitioners. A total of 25% of respondents who carry out extractions on warfarinised patients do not check the INR prior to invasive dental procedures. Some 90% of respondents stop anti-platelet agents prior to extractions. CONCLUSIONS: A significant proportion of respondents fail to check warfarinised patients\\' INR prior to invasive dental procedures. Furthermore, a trend of stopping anti-platelet agents was noted, which is in contrast with current recommendations in the dental literature. Certain practices in this small study population proved alarming and highlight the need for improved awareness of current guidelines. A further large-scale study may be justified, as variation in practice may have clinical and medico-legal repercussions.

  3. Antimicrobial peptides: Possible anti-infective agents.

    Science.gov (United States)

    Lakshmaiah Narayana, Jayaram; Chen, Jyh-Yih

    2015-10-01

    Multidrug-resistant bacterial, fungal, viral, and parasitic infections are major health threats. The Infectious Diseases Society of America has expressed concern on the decrease of pharmaceutical companies working on antibiotic research and development. However, small companies, along with academic research institutes, are stepping forward to develop novel therapeutic methods to overcome the present healthcare situation. Among the leading alternatives to current drugs are antimicrobial peptides (AMPs), which are abundantly distributed in nature. AMPs exhibit broad-spectrum activity against a wide variety of bacteria, fungi, viruses, and parasites, and even cancerous cells. They also show potential immunomodulatory properties, and are highly responsive to infectious agents and innate immuno-stimulatory molecules. In recent years, many AMPs have undergone or are undergoing clinical development, and a few are commercially available for topical and other applications. In this review, we outline selected anion and cationic AMPs which are at various stages of development, from preliminary analysis to clinical drug development. Moreover, we also consider current production methods and delivery tools for AMPs, which must be improved for the effective use of these agents. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Depletion of dendritic cells enhances innate anti-bacterial host defense through modulation of phagocyte homeostasis.

    Directory of Open Access Journals (Sweden)

    Stella E Autenrieth

    2012-02-01

    Full Text Available Dendritic cells (DCs as professional antigen-presenting cells play an important role in the initiation and modulation of the adaptive immune response. However, their role in the innate immune response against bacterial infections is not completely defined. Here we have analyzed the role of DCs and their impact on the innate anti-bacterial host defense in an experimental infection model of Yersinia enterocolitica (Ye. We used CD11c-diphtheria toxin (DT mice to deplete DCs prior to severe infection with Ye. DC depletion significantly increased animal survival after Ye infection. The bacterial load in the spleen of DC-depleted mice was significantly lower than that of control mice throughout the infection. DC depletion was accompanied by an increase in the serum levels of CXCL1, G-CSF, IL-1α, and CCL2 and an increase in the numbers of splenic phagocytes. Functionally, splenocytes from DC-depleted mice exhibited an increased bacterial killing capacity compared to splenocytes from control mice. Cellular studies further showed that this was due to an increased production of reactive oxygen species (ROS by neutrophils. Adoptive transfer of neutrophils from DC-depleted mice into control mice prior to Ye infection reduced the bacterial load to the level of Ye-infected DC-depleted mice, suggesting that the increased number of phagocytes with additional ROS production account for the decreased bacterial load. Furthermore, after incubation with serum from DC-depleted mice splenocytes from control mice increased their bacterial killing capacity, most likely due to enhanced ROS production by neutrophils, indicating that serum factors from DC-depleted mice account for this effect. In summary, we could show that DC depletion triggers phagocyte accumulation in the spleen and enhances their anti-bacterial killing capacity upon bacterial infection.

  5. Anti-bacterial susceptibility patterns of blood culture isolates at a ...

    African Journals Online (AJOL)

    Background: Hospital treatment guidelines are often guided by scientific evidence of efficacy of the anti-microbial agents. In developing countries, most of the treatment guidelines are adopted from the World Health Organisation (WHO). However, local data is often needed to confirm or adjust these guidelines to suit a local ...

  6. Dermatomyositis-like syndrome induced by nonsteroidal anti-inflammatory agents.

    Science.gov (United States)

    Grob, J J; Collet, A M; Bonerandi, J J

    1989-01-01

    A dermatomyositis-like syndrome developed in a patient treated with a nonsteroidal anti-inflammatory agent (NSAI), niflumic acid, and regressed after the cessation of treatment. Previously an eruption had occurred under treatment with another NSAI, diclofenac. Our report shows that NSAI can induce not only lupus-like syndromes but also other connective tissue disorders.

  7. Concanavalin A: A potential anti-neoplastic agent targeting apoptosis, autophagy and anti-angiogenesis for cancer therapeutics

    International Nuclear Information System (INIS)

    Li, Wen-wen; Yu, Jia-ying; Xu, Huai-long; Bao, Jin-ku

    2011-01-01

    Highlights: → ConA induces cancer cell death targeting apoptosis and autophagy. → ConA inhibits cancer cell angiogenesis. → ConA is utilized in pre-clinical and clinical trials. -- Abstract: Concanavalin A (ConA), a Ca 2+ /Mn 2+ -dependent and mannose/glucose-binding legume lectin, has drawn a rising attention for its remarkable anti-proliferative and anti-tumor activities to a variety of cancer cells. ConA induces programmed cell death via mitochondria-mediated, P73-Foxo1a-Bim apoptosis and BNIP3-mediated mitochondrial autophagy. Through IKK-NF-κB-COX-2, SHP-2-MEK-1-ERK, and SHP-2-Ras-ERK anti-angiogenic pathways, ConA would inhibit cancer cell survival. In addition, ConA stimulates cell immunity and generates an immune memory, resisting to the same genotypic tumor. These biological findings shed light on new perspectives of ConA as a potential anti-neoplastic agent targeting apoptosis, autophagy and anti-angiogenesis in pre-clinical or clinical trials for cancer therapeutics.

  8. In Vivo, In Vitro, and In Silico Characterization of Peptoids as Antimicrobial Agents

    DEFF Research Database (Denmark)

    Czyzewski, Ann M.; Jenssen, Håvard; Fjell, Christopher D.

    2016-01-01

    report a new QSAR model that we developed based on 27 diverse peptoid sequences, which accurately correlates antimicrobial peptoid structure with antimicrobial activity. We have identified a number of peptoids that have potent, broad-spectrum in vitro activity against multi-drug resistant bacterial......Bacterial resistance to conventional antibiotics is a global threat that has spurred the development of antimicrobial peptides (AMPs) and their mimetics as novel anti-infective agents. While the bioavailability of AMPs is often reduced due to protease activity, the non-natural structure of AMP...... potential of peptoids as antimicrobial agents....

  9. Rational drug design for anti-cancer chemotherapy: multi-target QSAR models for the in silico discovery of anti-colorectal cancer agents.

    Science.gov (United States)

    Speck-Planche, Alejandro; Kleandrova, Valeria V; Luan, Feng; Cordeiro, M Natália D S

    2012-08-01

    The discovery of new and more potent anti-cancer agents constitutes one of the most active fields of research in chemotherapy. Colorectal cancer (CRC) is one of the most studied cancers because of its high prevalence and number of deaths. In the current pharmaceutical design of more efficient anti-CRC drugs, the use of methodologies based on Chemoinformatics has played a decisive role, including Quantitative-Structure-Activity Relationship (QSAR) techniques. However, until now, there is no methodology able to predict anti-CRC activity of compounds against more than one CRC cell line, which should constitute the principal goal. In an attempt to overcome this problem we develop here the first multi-target (mt) approach for the virtual screening and rational in silico discovery of anti-CRC agents against ten cell lines. Here, two mt-QSAR classification models were constructed using a large and heterogeneous database of compounds. The first model was based on linear discriminant analysis (mt-QSAR-LDA) employing fragment-based descriptors while the second model was obtained using artificial neural networks (mt-QSAR-ANN) with global 2D descriptors. Both models correctly classified more than 90% of active and inactive compounds in training and prediction sets. Some fragments were extracted from the molecules and their contributions to anti-CRC activity were calculated using mt-QSAR-LDA model. Several fragments were identified as potential substructural features responsible for the anti-CRC activity and new molecules designed from those fragments with positive contributions were suggested and correctly predicted by the two models as possible potent and versatile anti-CRC agents. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Anti-bacterial activity of intermittent preventive treatment of malaria in pregnancy: comparative in vitro study of sulphadoxine-pyrimethamine, mefloquine, and azithromycin

    Directory of Open Access Journals (Sweden)

    Mombo-Ngoma Ghyslain

    2010-10-01

    Full Text Available Abstract Background Intermittent preventive treatment of malaria with sulphadoxine-pyrimethamine (SP is recommended for the prevention of malaria in pregnancy in sub-Saharan Africa. Increasing drug resistance necessitates the urgent evaluation of alternative drugs. Currently, the most promising candidates in clinical development are mefloquine and azithromycin. Besides the anti-malarial activity, SP is also a potent antibiotic and incurs significant anti-microbial activity when given as IPTp - though systematic clinical evaluation of this action is still lacking. Methods In this study, the intrinsic anti-bacterial activity of mefloquine and azithromycin was assessed in comparison to sulphadoxine-pyrimethamine against bacterial pathogens with clinical importance in pregnancy in a standard microdilution assay. Results SP was highly active against Staphylococcus aureus and Streptococcus pneumoniae. All tested Gram-positive bacteria, except Enterococcus faecalis, were sensitive to azithromycin. Additionally, azithromycin was active against Neisseria gonorrhoeae. Mefloquine showed good activity against pneumococci but lower in vitro action against all other tested pathogens. Conclusion These data indicate important differences in the spectrum of anti-bacterial activity for the evaluated anti-malarial drugs. Given the large scale use of IPTp in Africa, the need for prospective clinical trials evaluating the impact of antibiotic activity of anti-malarials on maternal and foetal health and on the risk of promoting specific drug resistance of bacterial pathogens is discussed.

  11. Vitellogenin from the silkworm, Bombyx mori: an effective anti-bacterial agent.

    Science.gov (United States)

    Singh, Nitin Kumar; Pakkianathan, Britto Cathrin; Kumar, Manish; Prasad, Tulika; Kannan, Mani; König, Simone; Krishnan, Muthukalingan

    2013-01-01

    Silkworm, Bombyx mori, vitellogenin (Vg) was isolated from perivisceral fat body of day 3 of pupa. Both Vg subunits were co-purified as verified by mass spectrometry and immunoblot. Purified Vg responded to specific tests for major posttranslational modifications on native gels indicating its nature as lipo-glyco-phosphoprotein. The Vg fraction had strong antibacterial activity against Gram negative bacterium Escherichia coli and Gram positive bacterium Bacillus subtilis. Microscopic images showed binding of Vg to bacterial cells and their destruction. When infected silkworm larvae were treated with purified Vg they survived the full life cycle in contrast to untreated animals. This result showed that Vg has the ability to inhibit the proliferation of bacteria in the silkworm fluid system without disturbing the regular metabolism of the host.

  12. Decreasing Skin Graft Contraction through Topical Wound Bed Preparation with Anti-Inflammatory Agents

    Science.gov (United States)

    2017-10-01

    Award Number: W81XWH-14-2-0153 TITLE: Decreasing Skin Graft Contraction through Topical Wound Bed Preparation with Anti-Inflammatory Agents...09/14/2017 4. TITLE AND SUBTITLE “Decreasing Skin Graft Contraction through Topical Wound Bed Preparation with Anti-Inflammatory Agents” 5a...of a specific topical anti-inflammatory drug that will reduce and shorten the inflammatory state of the recipient wound bed and thus, skin graft

  13. Anti-bacterial activity of Achatina CRP and its mechanism of action.

    Science.gov (United States)

    Mukherjee, Sandip; Barman, Soma; Mandal, Narayan Chandra; Bhattacharya, Shelley

    2014-07-01

    The physiological role of C-reactive protein (CRP), the classical acute-phase protein, is not well documented, despite many reports on biological effects of CRP in vitro and in model systems in vivo. It has been suggested that CRP protects mice against lethal toxicity of bacterial infections by implementing immunological responses. In Achatina fulica CRP is a constitutive multifunctional protein in haemolymph and considered responsible for their survival in the environment for millions of years. The efficacy of Achatina CRP (ACRP) was tested against both Salmonella typhimurium and Bacillus subtilis infections in mice where endogenous CRP level is negligible even after inflammatory stimulus. Further, growth curves of the bacteria revealed that ACRP (50 microg/mL) is bacteriostatic against gram negative salmonellae and bactericidal against gram positive bacilli. ACRP induced energy crises in bacterial cells, inhibited key carbohydrate metabolic enzymes such as phosphofructokinase in glycolysis, isocitrate dehydrogenase in TCA cycle, isocitrate lyase in glyoxylate cycle and fructose-1,6-bisphosphatase in gluconeogenesis. ACRP disturbed the homeostasis of cellular redox potential as well as reduced glutathione status, which is accompanied by an enhanced rate of lipid peroxidation. Annexin V-Cy3/CFDA dual staining clearly showed ACRP induced apoptosis-like death in bacterial cell population. Moreover, immunoblot analyses also indicated apoptosis-like death in ACRP treated bacterial cells, where activation of poly (ADP-ribose) polymerase-1 (PARP) and caspase-3 was noteworthy. It is concluded that metabolic impairment by ACRP in bacterial cells is primarily due to generation of reactive oxygen species and ACRP induced anti-bacterial effect is mediated by metabolic impairment leading to apoptosis-like death in bacterial cells.

  14. Towards identifying novel anti-Eimeria agents: trace elements, vitamins, and plant-based natural products.

    Science.gov (United States)

    Wunderlich, Frank; Al-Quraishy, Saleh; Steinbrenner, Holger; Sies, Helmut; Dkhil, Mohamed A

    2014-10-01

    Eimeriosis, a widespread infectious disease of livestock, is caused by coccidian protozoans of the genus Eimeria. These obligate intracellular parasites strike the digestive tract of their hosts and give rise to enormous economic losses, particularly in poultry, ruminants including cattle, and rabbit farming. Vaccination, though a rational prophylactic measure, has not yet been as successful as initially thought. Numerous broad-spectrum anti-coccidial drugs are currently in use for treatment and prophylactic control of eimeriosis. However, increasing concerns about parasite resistance, consumer health, and environmental safety of the commercial drugs warrant efforts to search for novel agents with anti-Eimeria activity. This review summarizes current approaches to prevent and treat eimeriosis such as vaccination and commercial drugs, as well as recent attempts to use dietary antioxidants as novel anti-Eimeria agents. In particular, the trace elements selenium and zinc, the vitamins A and E, and natural products extracted from garlic, barberry, pomegranate, sweet wormwood, and other plants are discussed. Several of these novel anti-Eimeria agents exhibit a protective role against oxidative stress that occurs not only in the intestine of Eimeria-infected animals, but also in their non-parasitized tissues, in particular, in the first-pass organ liver. Currently, it appears to be promising to identify safe combinations of low-cost natural products with high anti-Eimeria efficacy for a potential use as feed supplementation in animal farming.

  15. Vitellogenin from the silkworm, Bombyx mori: an effective anti-bacterial agent.

    Directory of Open Access Journals (Sweden)

    Nitin Kumar Singh

    Full Text Available Silkworm, Bombyx mori, vitellogenin (Vg was isolated from perivisceral fat body of day 3 of pupa. Both Vg subunits were co-purified as verified by mass spectrometry and immunoblot. Purified Vg responded to specific tests for major posttranslational modifications on native gels indicating its nature as lipo-glyco-phosphoprotein. The Vg fraction had strong antibacterial activity against Gram negative bacterium Escherichia coli and Gram positive bacterium Bacillus subtilis. Microscopic images showed binding of Vg to bacterial cells and their destruction. When infected silkworm larvae were treated with purified Vg they survived the full life cycle in contrast to untreated animals. This result showed that Vg has the ability to inhibit the proliferation of bacteria in the silkworm fluid system without disturbing the regular metabolism of the host.

  16. Developmental Testing of Liquid and Gaseous/Vaporous Decontamination on Bacterial Spores and Other Biological Warfare Agents on Military Relevant Surfaces

    Science.gov (United States)

    2016-02-11

    Vaporous Decontamination on Bacterial Spores and Other Biological Warfare Agents on Military-Relevant Surfaces 5a. CONTRACT NUMBER 5b. GRANT... DECONTAMINATION ON BACTERIAL SPORES AND OTHER BIOLOGICAL WARFARE AGENTS ON MILITARY-RELEVANT SURFACES Page Paragraph 1. SCOPE...surfaces before and after decontamination . The protocol in this TOP is based on the developed test methodologies from Edgewood Chemical Biological

  17. Radiosynthesis and preclinical studies of 177Lu-labeled sulfadiazine. A possible theranostic agent for deep-seated bacterial infection

    International Nuclear Information System (INIS)

    Syed Ali Raza Naqvi; Rashid Rasheed; Muhammad Tauqeer Ahmed; Ameer Fawad Zahoor

    2017-01-01

    Sulfadiazine acts through inhibition of bacterial dihydropteroate synthetase. The radio-labeling of sulfadiazine with lutetium-177 ( 177 Lu) is expected to serve as a theranostic agent for deep-seated bacterial infections. The radiosynthesis of 177 Lu-sulfadiazine indicated a > 95% yield under optimized reaction conditions, and promising stability was found in blood serum. Biodistribution data in the absence of infection revealed minimal accumulation in key body organs. Kidneys were the main excretory organs, showed an uptake of 1.76 ± 0.09% ID/g organ at 6-h post-injection. Biodistribution, scintigraphic data, glomerular filtration rate, and cytotoxicity results encourage clinical investigation of 177 Lu-sulfadiazine as a novel theranostic agent for deep-seated bacterial infection. (author)

  18. Propolis-Sahara honeys preparation exhibits antibacterial and anti-biofilm activity against bacterial biofims formed on urinary catheters

    Directory of Open Access Journals (Sweden)

    Saad Aissat

    2016-11-01

    Full Text Available Objective: To evaluate the antibacterial effect of Sahara honeys (SHs against bacterial biofilms formed on urinary catheters in combination with propolis-Sahara honeys (P-SHs. Methods: Three clinical isolates were subjected to biofilm detection methods. The antibacterial and anti-biofilm activity for SHs and P-SHs were determined using agar well diffusion and the percentage of biofilm inhibition (PBI methods. Results: The PBI for Gram-positive bacteria [Staphylococcus aureus (S. aureus] was in the range of 0%–20%, while PBI for Gram-negative bacteria [Pseudomonas aeruginosa and Escherichia coli (E. coli] were in range of 17%–57% and 16%–65%, respectively. The highest PBI (65% was produced by SH2 only on E. coli. In agar well diffusion assay, zones of inhibition ranged from 11–20 mm (S. aureus, 9–19 mm (Pseudomonas aeruginosa and 11–19 mm (E. coli. The highest inhibition (20 mm was produced by SH1 only on S. aureus. In addition, the treatment of SHs and P-SHs catheters with a polymicrobial biofilms reduced biofilm formation after 48 h exposure period. Conclussions: SHs and P-SHs applied as a natural agent can be used as a prophylactic agent to prevent the formation of in vitro biofilm.

  19. Non-operative anti-caries agents and dental caries increment among adults at high caries risk: a retrospective cohort study.

    Science.gov (United States)

    Chaffee, Benjamin W; Cheng, Jing; Featherstone, John D B

    2015-09-24

    Consensus guidelines support non-operative preventives for dental caries management; yet, their use in practice is far from universal. The purpose of this study was to evaluate the effectiveness of non-operative anti-caries agents in caries prevention among high caries risk adults at a university clinic where risk-based caries management is emphasized. This retrospective observational study drew data from the electronic patient records of non-edentulous adult patients deemed to be at high risk for dental caries during baseline oral evaluations that were completed between July 1, 2007 and December 31, 2012 at a dental university in the United States. We calculated and compared adjusted mean estimates for the number of new decayed or restored teeth (DFT increment) from baseline to the next completed oral evaluation (N = 2,724 patients with follow-up) across three categories of delivery of non-operative anti-caries agents (e.g., high-concentration fluoride toothpaste, chlorhexidine rinse, xylitol products): never, at a single appointment, or at ≥2 appointments ≥4 weeks apart. Estimates were adjusted for patient and provider characteristics, baseline dental status, losses-to-follow-up, and follow-up time. Approximately half the patients did not receive any form of non-operative anti-caries agent. Most that received anti-caries agents were given more than one type of product in combination. One-time delivery of anti-caries agents was associated with a similar DFT increment as receiving no such therapy (difference in increment: -0.04; 95% CI: -0.28, 0.21). However, repeated, spaced delivery of anti-caries agents was associated with approximately one decayed or restored tooth prevented over 18 months for every three patients treated (difference in increment: -0.35; 95% CI: -0.65, -0.08). These results lend evidence that repeatedly receiving anti-caries agents can reduce tooth decay among high-risk patients engaged in regular dental care.

  20. Comparative Efficacy and Acceptability of Anti-Diabetic Agents for Alzheimer's Disease and Mild Cognitive Impairment: A Systematic Review and Network Meta-analysis.

    Science.gov (United States)

    Cao, Bing; Rosenblat, Joshua D; Brietzke, Elisa; Park, Caroline; Lee, Yena; Musial, Natalie; Pan, Zihang; Mansur, Rodrigo B; McIntyre, Roger S

    2018-05-23

    The current meta-analysis compares the efficacy (i.e., pro-cognitive effects) and acceptability of anti-diabetic agents for Alzheimer's disease (AD) and mild cognitive impairment (MCI). Cochrane Library (CENTRAL), PubMed/MEDLINE, EMBASE and PsycINFO were searched from inception to January 15, 2018 for randomized controlled trials (RCTs) comparing anti-diabetic agents with placebo and/or another active anti-diabetic agent for the treatment of AD or MCI. Nineteen eligible studies (n = 4,855) evaluating the effects of six different anti-diabetic drugs (i.e., intranasal insulin, pioglitazone, rosiglitazone, metformin, sitagliptin and liraglutide) were included. The results of 29 pairwise comparisons indicated that cognition was significantly improved in subjects treated with anti-diabetic agents compared to placebo. Pioglitazone 15-30 mg demonstrated the greatest efficacy compared to placebo in network meta-analysis. No significant differences in acceptability were identified when comparing agents with each other and with placebo. The current findings indicate a pro-cognitive class effect of anti-diabetic agents in AD/MCI. Other anti-diabetic agents should also be investigated in future studies. This study is registered with PROSPERO (CRD42018085967). This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  1. Screening of Anti-Obesity Agent from Herbal Mixtures

    OpenAIRE

    Sung-Kee Jo; Uhee Jung; Changhyun Roh

    2012-01-01

    Globally, one in three of the World’s adults are overweight and one in 10 is obese. By 2015, World Health Organization (WHO) estimates the number of chubby adults will balloon to 2.3 billion—Equal to the combined populations of China, Europe and the United States. The discovery of bioactive compounds from herbs is one possible way to control obesity and to prevent or reduce the risks of developing various obesity-related diseases. In this study, we screened anti-obesity agents such as methyl ...

  2. Mitochondrial complex II, a novel target for anti-cancer agents

    Czech Academy of Sciences Publication Activity Database

    Klučková, Katarína; Bezawork-Geleta, A.; Rohlena, Jakub; Dong, L.; Neužil, Jiří

    2013-01-01

    Roč. 1827, č. 5 (2013), s. 552-564 ISSN 0005-2728 R&D Projects: GA ČR(CZ) GAP301/10/1937; GA ČR GAP301/12/1851 Institutional research plan: CEZ:AV0Z50520701 Keywords : Mitochondrion * Complex II * Anti-cancer agent Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.829, year: 2013

  3. Biofilm-mediated Antibiotic-resistant Oral Bacterial Infections: Mechanism and Combat Strategies.

    Science.gov (United States)

    Kanwar, Indulata; Sah, Abhishek K; Suresh, Preeti K

    2017-01-01

    Oral diseases like dental caries and periodontal disease are directly associated with the capability of bacteria to form biofilm. Periodontal diseases have been associated to anaerobic Gram-negative bacteria forming a subgingival plaque (Porphyromonas gingivalis, Actinobacillus, Prevotella and Fusobacterium). Biofilm is a complex bacterial community that is highly resistant to antibiotics and human immunity. Biofilm communities are the causative agents of biological developments such as dental caries, periodontitis, peri-implantitis and causing periodontal tissue breakdown. The review recapitulates the latest advancements in treatment of clinical biofilm infections and scientific investigations, while these novel anti-biofilm strategies are still in nascent phases of development, efforts dedicated to these technologies could ultimately lead to anti-biofilm therapies that are superior to the current antibiotic treatment. This paper provides a review of the literature focusing on the studies on biofilm in the oral cavity, formation of dental plaque biofilm, drug resistance of bacterial biofilm and the antibiofilm approaches as biofilm preventive agents in dentistry, and their mechanism of biofilm inhibition. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. 21 CFR 178.3130 - Antistatic and/or anti-fogging agents in food-packaging materials.

    Science.gov (United States)

    2010-04-01

    ...-packaging materials. 178.3130 Section 178.3130 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF.../or anti-fogging agents in food-packaging materials. The substances listed in paragraph (b) of this section may be safely used as antistatic and/or antifogging agents in food-packaging materials, subject to...

  5. Current progress and future perspectives in the development of anti-polo-like kinase 1 therapeutic agents [version 1; referees: 4 approved

    Directory of Open Access Journals (Sweden)

    Jung-Eun Park

    2017-06-01

    Full Text Available Although significant levels of side effects are often associated with their use, microtubule-directed agents that primarily target fast-growing mitotic cells have been considered to be some of the most effective anti-cancer therapeutics. With the hope of developing new-generation anti-mitotic agents with reduced side effects and enhanced tumor specificity, researchers have targeted various proteins whose functions are critically required for mitotic progression. As one of the highly attractive mitotic targets, polo-like kinase 1 (Plk1 has been the subject of an extensive effort for anti-cancer drug discovery. To date, a variety of anti-Plk1 agents have been developed, and several of them are presently in clinical trials. Here, we will discuss the current status of generating anti-Plk1 agents as well as future strategies for designing and developing more efficacious anti-Plk1 therapeutics.

  6. Genome Mining of the Marine Actinomycete Streptomyces sp. DUT11 and Discovery of Tunicamycins as Anti-complement Agents

    Directory of Open Access Journals (Sweden)

    Xiao-Na Xu

    2018-06-01

    Full Text Available Marine actinobacteria are potential producers of various secondary metabolites with diverse bioactivities. Among various bioactive compounds, anti-complement agents have received great interest for drug discovery to treat numerous diseases caused by inappropriate activation of the human complement system. However, marine streptomycetes producing anti-complement agents are still poorly explored. In this study, a marine-derived strain Streptomyces sp. DUT11 showing superior anti-complement activity was focused, and its genome sequence was analyzed. Gene clusters showing high similarities to that of tunicamycin and nonactin were identified, and their corresponding metabolites were also detected. Subsequently, tunicamycin I, V, and VII were isolated from Streptomyces sp. DUT11. Anti-complement assay showed that tunicamycin I, V, VII inhibited complement activation through the classic pathway, whereas no anti-complement activity of nonactin was detected. This is the first time that tunicamycins are reported to have such activity. In addition, genome analysis indicates that Streptomyces sp. DUT11 has the potential to produce novel lassopeptides and lantibiotics. These results suggest that marine Streptomyces are rich sources of anti-complement agents for drug discovery.

  7. Porous rod-like MgO complex membrane with good anti-bacterial activity directed by conjugated linolenic acid polymer

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hua-Jie, E-mail: wanghuajie972001@163.com; Chen, Meng [Henan Normal University, College of Chemistry and Chemical Engineering (China); Mi, Li-Wei, E-mail: mlwzzu@163.com [Zhongyuan University of Technology, Center for Advanced Materials Research (China); Shi, Li-Hua [Anyang 101 Education Center (China); Cao, Ying, E-mail: caoying1130@sina.com [Zhongyuan University of Technology, Center for Advanced Materials Research (China)

    2016-02-15

    The problem of infection in the tissue engineering substitutes is driving us to seek new coating materials. We previously found that conjugated linolenic acid (CLnA) has well biocompatibility and excellent membrane-forming property. The objective of this study is to endow the anti-bacterial activity to CLnA membra ne by linking with MgO. The results showed that the CLnA polymer membrane can be loaded with porous rod-like MgO and such complex membrane showed anti-bacterial sensitivity against gram-positive bacteria (Staphylococcus aureus) even at the low concentration (0.15 μg/mm{sup 2}). In the present study, the best zone of inhibition got to 18.2 ± 0.8 mm when the amount of MgO reach 2.42 ± 0.58 μg/mm{sup 2}. It was deduced that the porous rod-like structure of MgO was directed by CLnA in its polymerization process. Such CLnA/MgO complex membrane can be helpful in the tissue engineering, medicine, food engineering, food preservation, etc. on the basis of its good anti-bacterial activity.

  8. Microbiological analysis of common preservatives used in food items and demonstration of their in vitro anti-bacterial activity

    Directory of Open Access Journals (Sweden)

    Tohora Sultana

    2014-12-01

    Full Text Available Objective: To quantify the microorganisms contaminating the common preservatives used in food as well as to detect their in vitro anti-bacterial traits. Methods: A total of 9 preservatives were subjected to conventional cultural and biochemical methods for microbial enumeration. Anti-bacterial activities were demonstrated through the agar well diffusion method. Results: All samples were found to be contaminated with bacteria up to 105 CFU/g and with the fungal flora within a range of 1 01-1 02 CFU/g. Escherichia coli, Pseudomonas spp. and Staphylococcus spp. were demonstrated in most of the samples. Sodium sulfite and citric acid possessed the strongest anti-bacterial trait against all of the test bacteria. Acetic acid exhibited activity against 6 out of 8 test bacteria while vinegar exhibited the activity against 4 bacteria. Activity of salt was demonstrated only against Listeria spp. and Bacillus spp., while activity of sugar and honey was found only against Escherichia coli and Klebsiella spp., respectively. Conclusions: According to the current investigation, sodium sulfite and citric acid samples were found to be satisfactory preservatives both in terms of microbiological criteria and their antibacterial traits.

  9. In ova angiogenesis analgesic and anti inflammatory potency of Aerva monsoniae (Amaranthaceae

    Directory of Open Access Journals (Sweden)

    Sandhya S

    2012-10-01

    Full Text Available Objective: To evaluate the wound healing potency of aqueous extract of Aerva monsoniae (A. monsoniae by in vitro method using fertilized eggs, in vivo analgesic and anti inflammatory activity in rodents and the anti bacterial activity on the bacterial strains that infect the wound. Methods: The whole plant of A. monsoniae was extracted with water and then subjected to preliminary chemical screening. It was then evaluated for in ova angiogenesis on fertilized white leg horn eggs using the concentrations of 200-600 毺 g/mL. The analgesic activity was evaluated in mice using the dose 100 and 250 mg/kg. The anti inflammatory activity was evaluated in rats using the dose 250 mg/kg and 500 mg/kg. In both the parameters water was used as the control and diclofenac was used the standard. The anti bacterial activity on Staphylococcus aureus and Pseudomonas aerugenosa was performed. Results: The phytochemical screening revealed the presence of tannins, flavonoids and saponins. The in ova angiogenesis revealed a dose dependent activity which proves the wound healing claim of the plant as more number of blood capillaries were formed at the site of the drug. The plant proved to be a potent analgesic and anti inflammatory agent at doses 1 00 mg/kg and 250 mg/kg. The anti bacterial activity was present but at higher doses. Conclusions: The parameters studied in the present investigation proved that the plant is a potent wound healer. Further in vivo wound healing studies on animal model is desired. As the extract showed potent analgesic, anti inflammatory and anti bacterial properties, it can be considered that when formulated into suitable formulation, and it can reduce the pain, inflammation and infections related to wound very well.

  10. Oncocalyxone A functions as an anti-glycation agent in vitro.

    Directory of Open Access Journals (Sweden)

    Ingrid Sofia Vieira de Melo

    Full Text Available Advanced glycation endproducts (AGE are the result of post-translational changes to proteins, which ultimately compromise their structure and/or function. The identification of methods to prevent the formation of these compounds holds great promise in the development of alternative therapies for diseases such as diabetes. Plants used in traditional medicine are often rich sources of anti-glycation agents. Therefore, in this study, we investigated the anti-glycation activity of one such compound, Oncocalyxone A (Onco A. Using spectrofluorimetric techniques, we determined that Onco A inhibits AGE formation in a concentration-dependent manner. Its IC50 value (87.88 ± 3.08 μM was almost two times lower than the standard anti-glycation compound aminoguanidine (184.68 ± 4.85 μM. The excellent anti-glycation activity of Onco A makes it an exciting candidate for the treatment of diseases associated with excessive accumulation of AGE. However, additional studies are necessary to identify its mechanism of action, as well as the in vivo response in suitable model organisms.

  11. Calcination of Rod-like Hydroxyapatite Nanocrystals with an Anti-sintering Agent Surrounding the Crystals

    International Nuclear Information System (INIS)

    Okada, M.; Furuzono, T.

    2007-01-01

    Sintering-free nanocrystals of calcined hydroxyapatite (HAp) having a rod-like morphology were fabricated by calcination at 800 deg. C for 1 h with an anti-sintering agent surrounding original HAp particles and the agent was subsequently removed after calcination. The original HAp particles having a rod-like morphology with a size ranging from 30 to 80 nm (short axis) and 300 to 500 nm (long axis) were prepared by wet chemical process, and poly(acrylic acid, calcium salt) (PAA-Ca) was used as the anti-sintering agent. In the case of calcination without additives, the mean size of HAp crystals dispersed in an ethanol medium increased by about 4 times and the specific surface area of the crystals exhibited a 25% decrease compared to those of the original HAp particles because of calcination-induced sintering among the crystals. On the other hand, the HAp crystals calcined with the anti-sintering agent, PAA-Ca, could be dispersed in an ethanol medium at the same size as the original particles, and they preserved the specific surface area after calcination. These results indicate that PAA-Ca and/or its thermally decomposed product, CaO, surrounded the HAp particles and protected them against calcination-induced sintering during calcination. The HAp crystals calcined with PAA-Ca showed high crystallinity, and no other calcium phosphate phases could be detected after washing with water

  12. Drug-induced liver injury due to antimicrobials, central nervous system agents, and nonsteroidal anti-inflammatory drugs.

    Science.gov (United States)

    Devarbhavi, Harshad; Andrade, Raúl J

    2014-05-01

    Antimicrobial agents including antituberculosis (anti-TB) agents are the most common cause of idiosyncratic drug-induced liver injury (DILI) and drug-induced liver failure across the world. Better molecular and genetic biomarkers are acutely needed to help identify those at risk of liver injury particularly for those needing antituberculosis therapy. Some antibiotics such as amoxicillin-clavulanate and isoniazid consistently top the lists of agents in retrospective and prospective DILI databases. Central nervous system agents, particularly antiepileptics, account for the second most common class of agents implicated in DILI registries. Hepatotoxicity from older antiepileptics such as carbamazepine, phenytoin, and phenobarbital are often associated with hypersensitivity features, whereas newer antiepileptic drugs have a more favorable safety profile. Antidepressants and nonsteroidal anti-inflammatory drugs carry very low risk of significant liver injury, but their prolific use make them important causes of DILI. Early diagnosis and withdrawal of the offending agent remain the mainstays of minimizing hepatotoxicity. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  13. Development of Quorum-Based Anti-Virulence Therapeutics Targeting Gram-Negative Bacterial Pathogens

    Directory of Open Access Journals (Sweden)

    Wen Shan Yew

    2013-08-01

    Full Text Available Quorum sensing is a cell density-dependent signaling phenomenon used by bacteria for coordination of population-wide phenotypes, such as expression of virulence genes, antibiotic resistance and biofilm formation. Lately, disruption of bacterial communication has emerged as an anti-virulence strategy with enormous therapeutic potential given the increasing incidences of drug resistance in pathogenic bacteria. The quorum quenching therapeutic approach promises a lower risk of resistance development, since interference with virulence generally does not affect the growth and fitness of the bacteria and, hence, does not exert an associated selection pressure for drug-resistant strains. With better understanding of bacterial communication networks and mechanisms, many quorum quenching methods have been developed against various clinically significant bacterial pathogens. In particular, Gram-negative bacteria are an important group of pathogens, because, collectively, they are responsible for the majority of hospital-acquired infections. Here, we discuss the current understanding of existing quorum sensing mechanisms and present important inhibitory strategies that have been developed against this group of pathogenic bacteria.

  14. Anti-Quorum Sensing Potential of Potato Rhizospheric Bacteria

    Directory of Open Access Journals (Sweden)

    Adeleh Sobhanipour

    2017-01-01

    Full Text Available The occurrence of antibiotic-resistant pathogenic bacteria is becoming a serious problem. The rise of multiresistance strains has forced the pharmaceutical industry to come up with new generation of more effective and potent antibiotics, therefore creating development of antivirulence compounds. Due to extensive usage of cell-to-cell bacterial communication (QS systems to monitor the production of virulence factors, disruption of QS system results in creation of a promising strategy for the control of bacterial infection. Numerous natural quorum quenching (QQ agents have been identified. In addition, many microorganisms are capable of producing smaller molecular QS inhibitors and/or macromolecular QQ enzymes. In present survey, anti QS activity of 1280 rhizosphere bacteria was assessed using the Pectobacterium carotovorum as AHL-donor and Chromobacterium violaceum CV026 as biosensor system. The results showed that 61 strains had highly AHL-degrading activity. Both Lux I and Lux R activity were affected by some isolates, suggesting that the rhizobacteria target both QS signal and receptor. These soil microorganisms with their anti-QS activity have the potential to be novel therapeutic agents for reducing virulence and pathogenicity of antibiotic resistant bacteria.

  15. Sensitive Detection of Thirteen Bacterial Vaginosis-Associated Agents Using Multiplex Polymerase Chain Reaction

    Directory of Open Access Journals (Sweden)

    Natália Malaguti

    2015-01-01

    Full Text Available Bacterial vaginosis (BV is characterized by a polymicrobial proliferation of anaerobic bacteria and depletion of lactobacilli, which are components of natural vaginal microbiota. Currently, there are limited conventional methods for BV diagnosis, and these methods are time-consuming, expensive, and rarely allow for the detection of more than one agent simultaneously. Therefore, we conceived and validated a multiplex polymerase chain reaction (M-PCR assay for the simultaneous screening of thirteen bacterial vaginosis-associated agents (BV-AAs related to symptomatic BV: Gardnerella vaginalis, Mobiluncus curtisii, Mobiluncus mulieris, Bacteroides fragilis, Mycoplasma hominis, Atopobium vaginae, Ureaplasma urealyticum, Megasphaera type I, Clostridia-like bacteria vaginosis-associated bacteria (BVABs 1, 2, and 3, Sneathia sanguinegens, and Mycoplasma genitalium. The overall validation parameters of M-PCR compared to single PCR (sPCR were extremely high, including agreement of 99.1% and sensitivity, specificity, and positive predictive values of 100.0%, negative predictive value of 97.0%, accuracy of 99.3%, and agreement with Nugent results of 100.0%. The prevalence of BV-AAs was very high (72.6%, and simultaneous agents were detected in 53.0%, which demonstrates the effectiveness of the M-PCR assay. Therefore, the M-PCR assay has great potential to impact BV diagnostic methods in vaginal samples and diminish associated complications in the near future.

  16. The impact of aerosolized mucolytic agents on the airflow resistance of bacterial filters used in mechanical ventilation

    Directory of Open Access Journals (Sweden)

    Han-Chung Hu

    2015-08-01

    Conclusion: This study demonstrated the aerosolized mucolytic agents could increase the pressure drop of the bacterial filters during mechanical ventilation. The pressure drop of the bacterial filters was higher with 10% acetylcysteine. It is critical to continuously monitor the expiration resistance, auto-positive end-expiratory pressure, and ventilator output waveform when aerosolized 10% acetylcysteine was used in mechanical ventilation patients.

  17. Anti-Pseudomonas aeruginosa IgY Antibodies Induce Specific Bacterial Aggregation and Internalization in Human Polymorphonuclear Neutrophils

    DEFF Research Database (Denmark)

    Thomsen, K.; Christophersen, L.; Bjarnsholt, T.

    2015-01-01

    with P. aeruginosa by augmenting the phagocytic competence of PMNs may postpone the deteriorating chronic biofilm infection. Anti-P. aeruginosa IgY antibodies significantly increase the PMN-mediated respiratory burst and subsequent bacterial killing of P. aeruginosa in vitro. The mode of action...... is attributed to IgY-facilitated formation of immobilized bacteria in aggregates, as visualized by fluorescence microscopy and the induction of increased bacterial hydrophobicity. Thus, the present study demonstrates that avian egg yolk immunoglobulins (IgY) targeting P. aeruginosa modify bacterial fitness...

  18. Exposure to electronic cigarettes impairs pulmonary anti-bacterial and anti-viral defenses in a mouse model.

    Directory of Open Access Journals (Sweden)

    Thomas E Sussan

    Full Text Available Electronic cigarettes (E-cigs have experienced sharp increases in popularity over the past five years due to many factors, including aggressive marketing, increased restrictions on conventional cigarettes, and a perception that E-cigs are healthy alternatives to cigarettes. Despite this perception, studies on health effects in humans are extremely limited and in vivo animal models have not been generated. Presently, we determined that E-cig vapor contains 7 x 10(11 free radicals per puff. To determine whether E-cig exposure impacts pulmonary responses in mice, we developed an inhalation chamber for E-cig exposure. Mice that were exposed to E-cig vapor contained serum cotinine concentrations that are comparable to human E-cig users. E-cig exposure for 2 weeks produced a significant increase in oxidative stress and moderate macrophage-mediated inflammation. Since, COPD patients are susceptible to bacterial and viral infections, we tested effects of E-cigs on immune response. Mice that were exposed to E-cig vapor showed significantly impaired pulmonary bacterial clearance, compared to air-exposed mice, following an intranasal infection with Streptococcus pneumonia. This defective bacterial clearance was partially due to reduced phagocytosis by alveolar macrophages from E-cig exposed mice. In response to Influenza A virus infection, E-cig exposed mice displayed increased lung viral titers and enhanced virus-induced illness and mortality. In summary, this study reports a murine model of E-cig exposure and demonstrates that E-cig exposure elicits impaired pulmonary anti-microbial defenses. Hence, E-cig exposure as an alternative to cigarette smoking must be rigorously tested in users for their effects on immune response and susceptibility to bacterial and viral infections.

  19. Predictive modelling of a novel anti-adhesion therapy to combat bacterial colonisation of burn wounds.

    Science.gov (United States)

    Roberts, Paul A; Huebinger, Ryan M; Keen, Emma; Krachler, Anne-Marie; Jabbari, Sara

    2018-05-01

    As the development of new classes of antibiotics slows, bacterial resistance to existing antibiotics is becoming an increasing problem. A potential solution is to develop treatment strategies with an alternative mode of action. We consider one such strategy: anti-adhesion therapy. Whereas antibiotics act directly upon bacteria, either killing them or inhibiting their growth, anti-adhesion therapy impedes the binding of bacteria to host cells. This prevents bacteria from deploying their arsenal of virulence mechanisms, while simultaneously rendering them more susceptible to natural and artificial clearance. In this paper, we consider a particular form of anti-adhesion therapy, involving biomimetic multivalent adhesion molecule 7 coupled polystyrene microbeads, which competitively inhibit the binding of bacteria to host cells. We develop a mathematical model, formulated as a system of ordinary differential equations, to describe inhibitor treatment of a Pseudomonas aeruginosa burn wound infection in the rat. Benchmarking our model against in vivo data from an ongoing experimental programme, we use the model to explain bacteria population dynamics and to predict the efficacy of a range of treatment strategies, with the aim of improving treatment outcome. The model consists of two physical compartments: the host cells and the exudate. It is found that, when effective in reducing the bacterial burden, inhibitor treatment operates both by preventing bacteria from binding to the host cells and by reducing the flux of daughter cells from the host cells into the exudate. Our model predicts that inhibitor treatment cannot eliminate the bacterial burden when used in isolation; however, when combined with regular or continuous debridement of the exudate, elimination is theoretically possible. Lastly, we present ways to improve therapeutic efficacy, as predicted by our mathematical model.

  20. Novel histone deacetylase inhibitors in clinical trials as anti-cancer agents

    Directory of Open Access Journals (Sweden)

    Petrillo Richard L

    2010-02-01

    Full Text Available Abstract Histone deacetylases (HDACs can regulate expression of tumor suppressor genes and activities of transcriptional factors involved in both cancer initiation and progression through alteration of either DNA or the structural components of chromatin. Recently, the role of gene repression through modulation such as acetylation in cancer patients has been clinically validated with several inhibitors of HDACs. One of the HDAC inhibitors, vorinostat, has been approved by FDA for treating cutaneous T-cell lymphoma (CTCL for patients with progressive, persistent, or recurrent disease on or following two systemic therapies. Other inhibitors, for example, FK228, PXD101, PCI-24781, ITF2357, MGCD0103, MS-275, valproic acid and LBH589 have also demonstrated therapeutic potential as monotherapy or combination with other anti-tumor drugs in CTCL and other malignancies. At least 80 clinical trials are underway, testing more than eleven different HDAC inhibitory agents including both hematological and solid malignancies. This review focuses on recent development in clinical trials testing HDAC inhibitors as anti-tumor agents.

  1. Biosynthesis of ilamycins featuring unusual building blocks and engineered production of enhanced anti-tuberculosis agents.

    Science.gov (United States)

    Ma, Junying; Huang, Hongbo; Xie, Yunchang; Liu, Zhiyong; Zhao, Jin; Zhang, Chunyan; Jia, Yanxi; Zhang, Yun; Zhang, Hua; Zhang, Tianyu; Ju, Jianhua

    2017-08-30

    Tuberculosis remains one of the world's deadliest communicable diseases, novel anti-tuberculosis agents are urgently needed due to severe drug resistance and the co-epidemic of tuberculosis/human immunodeficiency virus. Here, we show the isolation of six anti-mycobacterial ilamycin congeners (1-6) bearing rare L-3-nitro-tyrosine and L-2-amino-4-hexenoic acid structural units from the deep sea-derived Streptomyces atratus SCSIO ZH16. The biosynthesis of the rare L-3-nitrotyrosine and L-2-amino-4-hexenoic acid units as well as three pre-tailoring and two post-tailoring steps are probed in the ilamycin biosynthetic machinery through a series of gene inactivation, precursor chemical complementation, isotope-labeled precursor feeding experiments, as well as structural elucidation of three intermediates (6-8) from the respective mutants. Most impressively, ilamycins E 1 /E 2 , which are produced in high titers by a genetically engineered mutant strain, show very potent anti-tuberculosis activity with an minimum inhibitory concentration value ≈9.8 nM to Mycobacterium tuberculosis H37Rv constituting extremely potent and exciting anti-tuberculosis drug leads.Tuberculosis (TB) remains one of the world's deadliest communicable diseases, novel anti-TB agents are urgently needed due to severe drug resistance and the co-epidemic of TB/HIV. Here, the authors show that anti-mycobacterial ilamycin congeners bearing unusual structural units possess extremely potent anti-tuberculosis activities.

  2. Antimicrobial peptides as potential anti-biofilm agents against multidrug-resistant bacteria.

    Science.gov (United States)

    Chung, Pooi Yin; Khanum, Ramona

    2017-08-01

    Bacterial resistance to commonly used drugs has become a global health problem, causing increased infection cases and mortality rate. One of the main virulence determinants in many bacterial infections is biofilm formation, which significantly increases bacterial resistance to antibiotics and innate host defence. In the search to address the chronic infections caused by biofilms, antimicrobial peptides (AMP) have been considered as potential alternative agents to conventional antibiotics. Although AMPs are commonly considered as the primitive mechanism of immunity and has been extensively studied in insects and non-vertebrate organisms, there is now increasing evidence that AMPs also play a crucial role in human immunity. AMPs have exhibited broad-spectrum activity against many strains of Gram-positive and Gram-negative bacteria, including drug-resistant strains, and fungi. In addition, AMPs also showed synergy with classical antibiotics, neutralize toxins and are active in animal models. In this review, the important mechanisms of action and potential of AMPs in the eradication of biofilm formation in multidrug-resistant pathogen, with the goal of designing novel antimicrobial therapeutics, are discussed. Copyright © 2017. Published by Elsevier B.V.

  3. Serum anti-Helicobacter pylori immunoglobulin G titer correlates with grade of histological gastritis, mucosal bacterial density, and levels of serum biomarkers.

    Science.gov (United States)

    Tu, Huakang; Sun, Liping; Dong, Xiao; Gong, Yuehua; Xu, Qian; Jing, Jingjing; Yuan, Yuan

    2014-03-01

    OBJECTIVE. Clinical implications of serum anti-Helicobacter pylori immunoglobulin G (IgG) titer were unclear. This study investigated the associations of serum anti-H. pylori IgG titer with grade of histological gastritis, mucosal bacterial density and levels of serum biomarkers, including pepsinogen (PG) I, PGII, PGI/II ratio and gastrin-17. MATERIAL AND METHODS. Study participants were from a screening program in northern China. Serum anti-H. pylori IgG measurements were available for 5922 patients with superficial gastritis. Serum anti-H. pylori IgG titer and serum biomarkers were measured using ELISA, and gastric biopsies were evaluated using standardized criteria. RESULTS. In patients with mild, moderate or severe superficial gastritis, the mean serum anti-H. pylori IgG titers were 17.3, 33.4 and 54.4 EIU (p for trend histological gastritis, mucosal bacterial density and concentrations of serum PGI, PGII and gastrin-17, and negatively with PGI/II ratio.

  4. Treatment of Oral Multispecies Biofilms by an Anti-Biofilm Peptide.

    Directory of Open Access Journals (Sweden)

    Zhejun Wang

    Full Text Available Human oral biofilms are multispecies microbial communities that exhibit high resistance to antimicrobial agents. Dental plaque gives rise to highly prevalent and costly biofilm-related oral infections, which lead to caries or other types of oral infections. We investigated the ability of the recently identified anti-biofilm peptide 1018 to induce killing of bacterial cells present within oral multispecies biofilms. At 10 μg/ml (6.5 μM, peptide 1018 was able to significantly (p50% of the biofilm being killed and >35% being dispersed in only 3 minutes. Peptide 1018 may potentially be used by itself or in combination with CHX as a non-toxic and effective anti-biofilm agent for plaque disinfection in clinical dentistry.

  5. Oleuropein, a non-toxic olive iridoid, is an anti-tumor agent and cytoskeleton disruptor

    International Nuclear Information System (INIS)

    Hamdi, Hamdi K.; Castellon, Raquel

    2005-01-01

    Oleuropein, a non-toxic secoiridoid derived from the olive tree, is a powerful antioxidant and anti-angiogenic agent. Here, we show it to be a potent anti-cancer compound, directly disrupting actin filaments in cells and in a cell-free assay. Oleuropein inhibited the proliferation and migration of advanced-grade tumor cell lines in a dose-responsive manner. In a novel tube-disruption assay, Oleuropein irreversibly rounded cancer cells, preventing their replication, motility, and invasiveness; these effects were reversible in normal cells. When administered orally to mice that developed spontaneous tumors, Oleuropein completely regressed tumors in 9-12 days. When tumors were resected prior to complete regression, they lacked cohesiveness and had a crumbly consistency. No viable cells could be recovered from these tumors. These observations elevate Oleuropein from a non-toxic antioxidant into a potent anti-tumor agent with direct effects against tumor cells. Our data may also explain the cancer-protective effects of the olive-rich Mediterranean diet

  6. Synthesis and exploration of novel curcumin analogues as anti-malarial agents.

    Science.gov (United States)

    Mishra, Satyendra; Karmodiya, Krishanpal; Surolia, Namita; Surolia, Avadhesha

    2008-03-15

    Curcumin, a major yellow pigment and active component of turmeric, has been shown to possess anti-inflammatory and anti-cancer activities. Recent studies have indicated that curcumin inhibits chloroquine-sensitive (CQ-S) and chloroquine-resistant (CQ-R) Plasmodium falciparum growth in culture with an IC(50) of approximately 3.25 microM (MIC=13.2 microM) and IC(50) 4.21 microM (MIC=14.4 microM), respectively. In order to expand their potential as anti-malarials a series of novel curcumin derivatives were synthesized and evaluated for their ability to inhibit P. falciparum growth in culture. Several curcumin analogues examined show more effective inhibition of P. falciparum growth than curcumin. The most potent curcumin compounds 3, 6, and 11 were inhibitory for CQ-S P. falciparum at IC(50) of 0.48, 0.87, 0.92 microM and CQ-R P. falciparum at IC(50) of 0.45 microM, 0.89, 0.75 microM, respectively. Pyrazole analogue of curcumin (3) exhibited sevenfold higher anti-malarial potency against CQ-S and ninefold higher anti-malarial potency against CQ-R. Curcumin analogues described here represent a novel class of highly selective P. falciparum inhibitors and promising candidates for the design of novel anti-malarial agents.

  7. Peripapillary Choroidal Neovascularization Associated with Optic Nerve Head Drusen Treated with Anti-VEGF Agents

    Directory of Open Access Journals (Sweden)

    Norman A. Saffra

    2015-02-01

    Full Text Available Optic nerve head drusen can be associated with peripapillary choroidal neovascularization, in both the pediatric and adult population. These membranes can involve the macula, causing significant visual loss. Herein, we present a case that required treatment with an anti-VEGF agent. The patient failed to respond to the initial agent, but subsequently responded to a change of agent. Adult patients with macular degeneration involving peripapillary choroidal neovascularization associated with optic nerve head drusen may require individualized treatment plans.

  8. Efficacy and safety of combining intra-articular methylprednisolone and anti-TNF agent to achieve prolonged remission in patients with recurrent inflammatory monoarthritis.

    LENUS (Irish Health Repository)

    Haroon, Muhammad

    2012-02-01

    OBJECTIVE: To control local inflammation, the role of intra-articular corticosteroid is well established; similarly, with time there are more reports on the experience of intra-articular anti-TNF agent for localized joint inflammation. The aim of this study was to assess the safety, local tolerability and clinical response after combining intra-articular administration of corticosteroids and anti-TNF agents for recurrent inflammatory monoarthritis. METHODS: Patients with recurrent monoarthritis of the knee were recruited from our inflammatory arthritis clinics. These patients required intra-articular corticosteroids every 8-12 weeks, with good short-term results. Five such consecutive patients were invited to partake in this study. Patients were maintained on their baseline immunosuppressive therapy. After aspiration of knee joint, the involved joint was injected with 80mg of methylprednisolone mixed with 5ml of lignocaine 1%; this was followed by the injection of an anti-TNF agent. RESULTS: In majority of our patients (three out of five), combining anti-TNF agent and methylprednisolone led to prolonged anti-inflammatory response, and these patients remain in remission to date (mean follow-up of 12 months). These responders were noted to be naive to anti-TNF therapy. Conversely, the remaining two patients were found to be on baseline systemic anti-TNF therapy, and both of them failed to respond either partly or completely. CONCLUSION: Combining intra-articular corticosteroid and anti-TNF agent has proved to be safe in our cohort of patients. We conclude that in particular subset of patients who suffer from recurrent inflammatory monoarthritis or oligoarthritis, combination therapy of intra-articular corticosteroids and anti-TNF agents appears attractive and promising.

  9. Surgical choroidal neovascular membrane removal in the era of anti-vascular endothelial growth factor agents

    Directory of Open Access Journals (Sweden)

    Nagpal Manish

    2009-01-01

    Full Text Available Intravitreal anti-vascular endothelial growth factor (VEGF agents have obtained acceptance as the mainstay in the management strategy of subfoveal choroidal neovascular membranes (CNVM due to varying etiologies. Few drawbacks include need for repeated intravitreal injections, with its adjunct risks, and the lack of a predefined treatment end point, which can cause doubts and uncertainty in the mind of the patient. Furthermore, it remains a significant financial burden for the patient. Herein we report our data of three patients who were reluctant for further re-injections of anti-VEGF agents and were therefore offered surgical removal of the CNVM by submacular surgery as an alternative treatment plan.

  10. Biotechnical paving of recombinant enterocin A as the candidate of anti-Listeria agent.

    Science.gov (United States)

    Hu, Xiaoyuan; Mao, Ruoyu; Zhang, Yong; Teng, Da; Wang, Xiumin; Xi, Di; Huang, Jianzhong; Wang, Jianhua

    2014-08-28

    Enterocin A is a classic IIa bacteriocin isolated firstly from Enterococcus faecium CTC492 with selective antimicrobial activity against Listeria strains. However, the application of enterocin A as an anti-Listeria agent has been limited due to its very low native yield. The present work describes high production of enterocin A through codon optimization strategy and its character study. The gene sequence of enterocin A was optimized based on preferential codon usage in Pichia pastoris to increase its expression efficiency. The highest anti-Listeria activity reached 51,200 AU/ml from 180 mg/l of total protein after 24 h of induction in a 5-L fermenter. Recombinant enterocin A (rEntA), purified by gel filtration chromatography, showed very strong activity against Listeria ivanovii ATCC 19119 with a low MIC of 20 ng/ml. In addition, the rEntA killed over 99% of tested L. ivanovii ATCC19119 within 4 h when exposed to 4 × MIC (80 ng/ml). Moreover, it showed high stability under a wide pH range (2-10) and maintained full activity after 1 h of treatment at 80°C within a pH range of 2-8. Its antimicrobial activity was enhanced at 25 and 50 mM NaCl, while 100-400 mM NaCl had little effect on the bactericidal ability of rEntA. The EntA was successfully expressed in P. pastoris, and this feasible system could pave the pre-industrial technological path of rEntA as a competent candidate as an anti-Listeria agent. Furthermore, it showed high stability under wide ranges of conditions, which could be potential as the new candidate of anti-Listeria agent.

  11. A Feasibility Study for Microwave Breast Cancer Detection Using Contrast-Agent-Loaded Bacterial Microbots

    Directory of Open Access Journals (Sweden)

    Yifan Chen

    2013-01-01

    Full Text Available We propose a new approach to microwave breast tumor sensing and diagnosis based on the use of biocompatible flagellated magnetotactic bacteria (MTB adapted to operate in human microvasculature. It has been verified experimentally by Martel et al. that externally generated magnetic gradients could be applied to guide the MTB along preplanned routes inside the human body, and a nanoload could be attached to these bacterial microbots. Motivated by these useful properties, we suggest loading a nanoscale microwave contrast agent such as carbon nanotubes (CNTs or ferroelectric nanoparticles (FNPs onto the MTB in order to modify the dielectric properties of tissues near the agent-loaded bacteria. Subsequently, we propose a novel differential microwave imaging (DMI technique to track simultaneously multiple swarms of MTB microbots injected into the breast. We also present innovative strategies to detect and localize a breast tissue malignancy and estimate its size via this DMI-trackable bacterial microrobotic system. Finally, we use an anatomically realistic numerical breast phantom as a platform to demonstrate the feasibility of this tumor diagnostic method.

  12. Predictive modelling of a novel anti-adhesion therapy to combat bacterial colonisation of burn wounds.

    Directory of Open Access Journals (Sweden)

    Paul A Roberts

    2018-05-01

    Full Text Available As the development of new classes of antibiotics slows, bacterial resistance to existing antibiotics is becoming an increasing problem. A potential solution is to develop treatment strategies with an alternative mode of action. We consider one such strategy: anti-adhesion therapy. Whereas antibiotics act directly upon bacteria, either killing them or inhibiting their growth, anti-adhesion therapy impedes the binding of bacteria to host cells. This prevents bacteria from deploying their arsenal of virulence mechanisms, while simultaneously rendering them more susceptible to natural and artificial clearance. In this paper, we consider a particular form of anti-adhesion therapy, involving biomimetic multivalent adhesion molecule 7 coupled polystyrene microbeads, which competitively inhibit the binding of bacteria to host cells. We develop a mathematical model, formulated as a system of ordinary differential equations, to describe inhibitor treatment of a Pseudomonas aeruginosa burn wound infection in the rat. Benchmarking our model against in vivo data from an ongoing experimental programme, we use the model to explain bacteria population dynamics and to predict the efficacy of a range of treatment strategies, with the aim of improving treatment outcome. The model consists of two physical compartments: the host cells and the exudate. It is found that, when effective in reducing the bacterial burden, inhibitor treatment operates both by preventing bacteria from binding to the host cells and by reducing the flux of daughter cells from the host cells into the exudate. Our model predicts that inhibitor treatment cannot eliminate the bacterial burden when used in isolation; however, when combined with regular or continuous debridement of the exudate, elimination is theoretically possible. Lastly, we present ways to improve therapeutic efficacy, as predicted by our mathematical model.

  13. Benzimidazole derivatives: search for GI-friendly anti-inflammatory analgesic agents

    Directory of Open Access Journals (Sweden)

    Monika Gaba

    2015-07-01

    Full Text Available Non-steroidal anti-inflammatory drugs (NSAIDs have been successfully used for the alleviation of pain and inflammation in the past and continue to be used daily by millions of patients worldwide. However, gastrointestinal (GI toxicity associated with NSAIDs is an important medical and socioeconomic problem. Local generation of various reactive oxygen species plays a significant role in the formation of gastric ulceration associated with NSAIDs therapy. Co-medication of antioxidants along with NSAIDs has been found to be beneficial in the prevention of GI injury. This paper describes the synthesis and biological evaluation of N-1-(phenylsulfonyl-2-methylamino-substituted-1H-benzimidazole derivatives as anti-inflammatory analgesic agents with lower GI toxicity. Studies in vitro and in vivo demonstrated that the antioxidant activity of the test compounds decreased GI toxicity.

  14. Risk of Lymphoma in Patients With Inflammatory Bowel Disease Treated With Anti-Tumor Necrosis Factor Alpha Agents: A Systematic Review and Meta-analysis.

    Science.gov (United States)

    Yang, Chen; Huang, Junlin; Huang, Xiaowen; Huang, Shaozhuo; Cheng, Jiaxin; Liao, Weixin; Chen, Xuewen; Wang, Xueyi; Dai, Shixue

    2018-05-12

    The association between anti-tumor necrosis factor alpha agents and the risk of lymphoma in patients with inflammatory bowel disease has already been sufficiently reported. However, the results of these studies are inconsistent. Hence, this analysis was conducted to investigate whether anti-tumor necrosis factor alpha agents can increase the risk of lymphoma in inflammatory bowel disease patients. MEDLINE, EMBASE and the Cochrane Library were searched to identify relevant studies which evaluated the risk of lymphoma in inflammatory bowel disease patients treated with anti-tumor necrosis factor alpha agents. A random-effects meta-analysis was performed to calculate the pooled incidence rate ratios as well as risk ratios. Twelve studies comprising 285811 participants were included. The result showed that there was no significantly increased risk of lymphoma between anti-tumor necrosis factor alpha agents exposed and anti-tumor necrosis factor alpha agents unexposed groups (random effects: incidence rate ratio [IRR], 1.43 95%CI, 0.91-2.25, p= 0.116; random effects: risk ratio [RR], 0.83 95%CI, 0.47-1.48, p=0.534). However, monotherapy of anti-tumor necrosis factor alpha agents (random effects: IRR=1.65, 95%CI, 1.16-2.35; p=0.006; random effects: RR=1.00, 95%CI, 0.39-2.59; p=0.996) or combination therapy (random effects: IRR=3.36, 95%CI, 2.23-5.05; ptumor necrosis factor alpha agents in patients with inflammatory bowel disease is not associated with a higher risk of lymphoma. Combination therapy and anti-tumor necrosis factor alpha agents monotherapy can significantly increase the risk of lymphoma in patients with inflammatory bowel disease.

  15. Pre-operative use of anti-TNF-α agents and the risk of post-operative complications in patients with ulcerative colitis - a nationwide cohort study

    DEFF Research Database (Denmark)

    Nørgård, B M; Nielsen, J; Qvist, N

    2012-01-01

    It is still controversial whether pre-operative anti-tumour necrosis factor-alpha (anti-TNF-α) agents increase post-operative complications in patients with ulcerative colitis (UC).......It is still controversial whether pre-operative anti-tumour necrosis factor-alpha (anti-TNF-α) agents increase post-operative complications in patients with ulcerative colitis (UC)....

  16. Anti-Pseudomonas aeruginosa IgY antibodies augment bacterial clearance in a murine pneumonia model

    DEFF Research Database (Denmark)

    Thomsen, K.; Christophersen, L.; Bjarnsholt, T.

    2016-01-01

    Background: Oral prophylactic therapy by gargling with pathogen-specific egg yolk immunoglobulins (IgY) may reduce the initial airway colonization with Pseudomonas aeruginosa in cystic fibrosis (CF) patients. IgY antibodies impart passive immunization and we investigated the effects of anti......-P. aeruginosa IgY antibodies on bacterial eradication in a murine pneumonia model. Methods: P. aeruginosa pneumonia was established in Balb/c mice and the effects of prophylactic IgY administration on lung bacteriology, clinical parameters and subsequent inflammation were compared to controls. Results......: Prophylactic administration of IgY antibodies targeting P. aeruginosa significantly reduced the bacterial burden by 2-log 24 h post-infection compared to controls and was accompanied by significantly reduced clinical symptom scores and successive inflammatory cytokine profile indicative of diminished lung...

  17. Pathogen- and Host-Directed Anti-Inflammatory Activities of Macrolide Antibiotics

    OpenAIRE

    Steel, Helen C.; Theron, Annette J.; Cockeran, Riana; Anderson, Ronald; Feldman, Charles

    2012-01-01

    Macrolide antibiotics possess several, beneficial, secondary properties which complement their primary antimicrobial activity. In addition to high levels of tissue penetration, which may counteract seemingly macrolide-resistant bacterial pathogens, these agents also possess anti-inflammatory properties, unrelated to their primary antimicrobial activity. Macrolides target cells of both the innate and adaptive immune systems, as well as structural cells, and are beneficial in controlling harmfu...

  18. Intra-antral application of an anti-fungal agent for recurrent maxillary fungal rhinosinusitis: a case report

    Directory of Open Access Journals (Sweden)

    Dunmade Adekunle D

    2012-08-01

    Full Text Available Abstract Introduction Fungal infection of the paranasal sinuses is an increasingly recognized entity both in immunocompetent and immunocompromised individuals. Treatment has been via use of either surgical or medical modalities, or a combination of the two. Here, we present a case of utilization of intra-antral application of an anti-fungal agent in the management of recurrent fungal sinusitis in an indigent Nigerian patient. Case presentation We present the case of a 30-year-old West African Yoruba man, an indigent Nigerian clergyman, who presented to our facility with a history of recurrent nasal discharge (about one year, recurrent nasal blockage (about five months, and right facial swelling (about one week. After intra-nasal antrostomy for debulking with a systemic anti-fungal agent, our patient had a recurrence after four months. Our patient subsequently had an intra-antral application of flumetasone and clioquinol (Locacorten®-Vioform® weekly for six weeks with improvement of symptoms and no recurrence after six months of follow-up. Conclusions We conclude that topical intra-antral application of anti-fungal agents is effective in patients with recurrent fungal maxillary sinusitis after surgical debulking.

  19. EFFECTS OF PSYCHOTROPIC DRUGS AS BACTERIAL EFFLUX PUMP INHIBITORS ON QUORUM SENSING REGULATED BEHAVIORS

    Directory of Open Access Journals (Sweden)

    Aynur Aybey

    2014-10-01

    Full Text Available Psychotropic drugs are known to have antimicrobial activity against several groups of microorganisms. The antidepressant agents such as duloxetine, paroxetine, hydroxyzine and venlafaxine are shown to act as efflux pump inhibitors in bacterial cells. In order to the investigation of the effects of psychotropic drugs were determined for clinically significant pathogens by using standart broth microdillusion method. The anti-quorum sensing (anti-QS activity of psychotropic drugs was tested against four test pathogens using the agar well diffusion method. All drugs showed strong inhibitory effect on the growth of S. typhimurium. Additionally, quorum sensing-regulated behaviors of Pseudomonas aeruginosa, including swarming, swimming and twitching motility and alkaline protease production were investigated. Most effective drugs on swarming, swimming and twitching motility and alkaline protease production, respectively, were paroxetine and duloxetine; duloxetine; hydroxyzine and venlafaxine; paroxetine and venlafaxine; venlafaxine. Accordingly, psychotropic drugs were shown strongly anti-QS activity by acting as bacterial efflux pump inhibitors and effection on motility and alkaline protease production of P. aeruginosa.

  20. Fabric tensile strength as affected by different anti pilling agents at various concentration and ph levels

    International Nuclear Information System (INIS)

    Tusief, M.Q.; Mahmood, N.; Saleem, M.

    2013-01-01

    Pilling is a phenomenon that has a long cause trouble in textile industry. It is the formation of pills or knops on the surface of woven or knitted fabrics caused by friction and abrasion. If fabric has a pronounced tendency to pilling, their appearances suffer severely after a short period of use. The pilling of fabrics is a serious problem for the apparel industry. The use of anti pilling finishes is one of the best techniques to control the pilling of the fabric. In this method fabric is treated with special anti pilling agents to prevent pilling that promote adhesion of the fibres in the yarn or the fabric. This paper endeavors to optimize the application of different anti pilling agents at different concentration and pH levels on the Tensile Strength of P/C fabric for best results. The results exposed that different anti pilling finishes have significant effects on the Tensile Strength of fabric at different concentration level however different pH levels have no considerable effects. (author)

  1. Cranberry juice-- a well-characterized folk-remedy against bacterial urinary tract infection.

    Science.gov (United States)

    Nowack, Rainer

    2007-01-01

    Cranberry (Vaccinium macrocarpon) is a North-American folk remedy for treating and preventing infection. Research has identified an anti-adhesive mechanism of cranberry-proanthocyanidins that inhibit docking of bacteria on tissues "in vitro". This efficacy mechanism can be traced in the patient's urine following oral intake of cranberry juice. The efficacy of cranberry juice and extracts as a prophylactic agent against recurrent urinary infections is well documented in women. The anti-adhesion effect of cranberry-proanthocyandins can also be applied for treatment of other common diseases of bacterial pathogenesis, e.g. Helicobacter pylori-associated gastritis and dental caries/periodontal disease.

  2. DEVELOPMENT OF RESISTANCE IN BACTERIA AGAINST ANTI - MICROBIAL AGENTS: REASONS, THREATS AND ONGOING ENCOUNTER

    OpenAIRE

    Shibabrata Pattanayak

    2011-01-01

    Development of Multi Druug Resistant bacteria is creating a very severe problem in anti-microbial chemotherapy. Many recently developed antibiotics are found incapable to control resistant organisms.The reasons of development of resistance gene in the bacterial plasmid and their quick spread among various related and unrelated bacteria are analysed in this article along with discussion of world wide ongoing research to combat the problem.

  3. In vitro residual anti-bacterial activity of difloxacin, sarafloxacin and their photoproducts after photolysis in water

    International Nuclear Information System (INIS)

    Kusari, Souvik; Prabhakaran, Deivasigamani; Lamshoeft, Marc; Spiteller, Michael

    2009-01-01

    Fluoroquinolones like difloxacin (DIF) and sarafloxacin (SARA) are adsorbed in soil and enter the aquatic environment wherein they are subjected to photolytic degradation. To evaluate the fate of DIF and SARA, their photolysis was performed in water under stimulated natural sunlight conditions. DIF primarily degrades to SARA. On prolonged photodegradation, seven photoproducts were elucidated by HR-LC-MS/MS, three of which were entirely novel. The residual anti-bacterial activities of DIF, SARA and their photoproducts were studied against a group of pathogenic strains. DIF and SARA revealed potency against both Gram-positive and -negative bacteria. The photoproducts also exhibited varying degrees of efficacies against the tested bacteria. Even without isolating the individual photoproducts, their impact on the aquatic environment could be assessed. Therefore, the present results call for prudence in estimating the fate of these compounds in water and in avoiding emergence of resistance in bacteria caused by the photoproducts of DIF and SARA. - Assessment of the residual anti-bacterial efficacies of difloxacin, sarafloxacin and their photoproducts in water, and estimating their impact on the aquatic environment in inducing resistance to microorganisms.

  4. Harnessing the potential clinical use of medicinal plants as anti-diabetic agents

    Directory of Open Access Journals (Sweden)

    Campbell-Tofte JI

    2012-08-01

    Full Text Available Joan IA Campbell-Tofte,1 Per Mølgaard,2 Kaj Winther11Department of Clinical Biochemistry, Frederiksberg University Hospital, Frederiksberg, Denmark; 2Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, Copenhagen, DenmarkAbstract: Diabetes is a metabolic disorder arising from complex interactions between multiple genetic and/or environmental factors. The characteristic high blood sugar levels result from either lack of the hormone insulin (type 1 diabetes, T1D, or because body tissues do not respond to the hormone (type 2 diabetes, T2D. T1D patients currently need exogenous insulin for life, while for T2D patients who do not respond to diet and exercise regimes, oral anti-diabetic drugs (OADs and sometimes insulin are administered to help keep their blood glucose as normal as possible. As neither the administration of insulin nor OADs is curative, many patients develop tissue degenerative processes that result in life-threatening diabetes comorbidities. Several surveys of medicinal plants used as anti-diabetic agents amongst different peoples have been published. Some of this interest is driven by the ongoing diabetes pandemic coupled with the inadequacies associated with the current state of-the-art care and management of the syndrome. However, there is a huge cleft between traditional medicine and modern (Western medicine, with the latter understandably demanding meaningful and scientific validation of anecdotal evidence for acceptance of the former. The main problems for clinical evaluation of medicinal plants with promising anti-diabetic properties reside both with the complexity of components of the plant materials and with the lack of full understanding of the diabetes disease etiology. This review is therefore focused on why research activities involving an integration of Systems Biology-based technologies of pharmacogenomics, metabolomics, and bioinformatics with standard clinical data

  5. Infections and exposure to anti-infective agents and the risk of severe mental disorders

    DEFF Research Database (Denmark)

    Köhler, Ole; Petersen, Liselotte; Mors, O

    2017-01-01

    OBJECTIVE: Severe infections are associated with increased risks of mental disorders; however, this is the first large-scale study investigating whether infections treated with anti-infective agents in the primary care setting increase the risks of schizophrenia and affective disorders. METHOD: We...

  6. DEVELOPMENT OF RESISTANCE IN BACTERIA AGAINST ANTI - MICROBIAL AGENTS: REASONS, THREATS AND ONGOING ENCOUNTER

    Directory of Open Access Journals (Sweden)

    Shibabrata Pattanayak

    2011-07-01

    Full Text Available Development of Multi Druug Resistant bacteria is creating a very severe problem in anti-microbial chemotherapy. Many recently developed antibiotics are found incapable to control resistant organisms.The reasons of development of resistance gene in the bacterial plasmid and their quick spread among various related and unrelated bacteria are analysed in this article along with discussion of world wide ongoing research to combat the problem.

  7. Intravenous Versus Subcutaneous Anti-TNF-Alpha Agents for Crohn's Disease: A Comparison of Effectiveness and Safety.

    Science.gov (United States)

    Liu, Jinan; Sylwestrzak, Gosia; Ruggieri, Alexander P; DeVries, Andrea

    2015-07-01

    In recent years, there have been a number of pharmacological innovations for Crohn's disease (CD), a difficult-to-treat condition, including new treatment philosophies (e.g., top-down therapy) and new therapeutic options in terms of the agent and the route of administration. Three anti-tumor necrosis factor (anti-TNF-alpha) agents are available for use among CD patients in the United States: infliximab, an intravenous agent, and adalimumab and certolizumab pegol, 2 newer subcutaneous products. Infliximab is considered the "gold standard" because it has the longest clinical experience, and adalimumab and certolizumab pegol have each gained significant market share. To examine differences in effectiveness and safety between currently available intravenous and subcutaneous anti-TNF-alpha agents used to treat patients with CD. Data for this retrospective, administrative claims analysis were obtained from pharmacy and medical claims from major U.S. health plans geographically dispersed across 14 states during 2007-2011. Patients had at least 1 ICD-9-CM diagnosis for CD, 6 months pre-index eligibility, and initiated anti-TNF-alpha therapy on the index date. Patients in each cohort were propensity score matched on pre-index demographics, clinical characteristics, and baseline health care use. During the post-index period, age-sex adjusted incidence rate ratios (IRRs) of CD-related symptoms, infections, cancers, and hepatic-related conditions were compared using Cox (PH) models. The matched cohorts included 515 patients in each group, with an average age of 39 years. Median follow-up was 17.5 months in the intravenous cohort and 17.7 months in the subcutaneous cohort. In terms of effectiveness outcomes, age-sex adjusted IRRs for the subcutaneous group, with the intravenous cohort as a reference, were as follows: 0.61 (95% CI = 0.32-1.18, P = 0.14) for anal fissures; 0.97 (95% CI = 0.72-1.30, P = 0.85) for abscess; 1.08 (95% CI = 0.79-1.04, P = 0

  8. Surveillance study of bacterial contamination of the parent's cell phone in the NICU and the effectiveness of an anti-microbial gel in reducing transmission to the hands.

    Science.gov (United States)

    Beckstrom, A C; Cleman, P E; Cassis-Ghavami, F L; Kamitsuka, M D

    2013-12-01

    To determine the bacterial contamination rate of the parent's cell phone and the effectiveness of anti-microbial gel in reducing transmission of bacteria from cell phone to hands. Cross-sectional study of cultures from the cell phone and hands before and after applying anti-microbial gel (n=50). All cell phones demonstrated bacterial contamination. Ninety percent had the same bacteria on the cell phone and their cleaned hands. Twenty two percent had no growth on their hands after applying anti-microbial gel after they had the same bacteria on the cell phone and hands. Ninety-two percent of parents were aware that cell phones carried bacteria, but only 38% cleaned their cell phones at least weekly. Bacterial contamination of cell phones may serve as vectors for nosocomial infection in the neonatal intensive care unit. Bacteria transmitted from cell phone to hands may not be eliminated using anti-microbial gel. Development of hand hygiene and cell phone cleaning guidelines are needed regarding bedside cell phone use.

  9. Comparison of metals and tetracycline as selective agents for development of tetracycline resistant bacterial communities in agricultural soil

    DEFF Research Database (Denmark)

    Song, Jianxiao; Rensing, Christopher; Holm, Peter Engelund

    2017-01-01

    Environmental selection of antibiotic resistance may be caused by either antibiotic residues or coselecting agents. Using a strictly controlled experimental design, we compared the ability of metals (Cu or Zn) and tetracycline to (co)select for tetracycline resistance in bacterial communities. Soil...... microcosms were established by amending agricultural soil with known levels of Cu, Zn, or tetracycline known to represent commonly used metals and antibiotics for pig farming. Soil bacterial growth dynamics and bacterial community-level tetracycline resistance were determined using the [(3)H......]leucine incorporation technique, whereas soil Cu, Zn, and tetracycline exposure were quantified by a panel of whole-cell bacterial bioreporters. Tetracycline resistance increased significantly in soils containing environmentally relevant levels of Cu (≥365 mg kg(-1)) and Zn (≥264 mg kg(-1)) but not in soil spiked...

  10. BSim: an agent-based tool for modeling bacterial populations in systems and synthetic biology.

    Directory of Open Access Journals (Sweden)

    Thomas E Gorochowski

    Full Text Available Large-scale collective behaviors such as synchronization and coordination spontaneously arise in many bacterial populations. With systems biology attempting to understand these phenomena, and synthetic biology opening up the possibility of engineering them for our own benefit, there is growing interest in how bacterial populations are best modeled. Here we introduce BSim, a highly flexible agent-based computational tool for analyzing the relationships between single-cell dynamics and population level features. BSim includes reference implementations of many bacterial traits to enable the quick development of new models partially built from existing ones. Unlike existing modeling tools, BSim fully considers spatial aspects of a model allowing for the description of intricate micro-scale structures, enabling the modeling of bacterial behavior in more realistic three-dimensional, complex environments. The new opportunities that BSim opens are illustrated through several diverse examples covering: spatial multicellular computing, modeling complex environments, population dynamics of the lac operon, and the synchronization of genetic oscillators. BSim is open source software that is freely available from http://bsim-bccs.sf.net and distributed under the Open Source Initiative (OSI recognized MIT license. Developer documentation and a wide range of example simulations are also available from the website. BSim requires Java version 1.6 or higher.

  11. Selection and Characterization of Endophytic Bacteria as Biocontrol Agents of Tomato Bacterial Wilt Disease

    Directory of Open Access Journals (Sweden)

    ABDJAD ASIH NAWANGSIH

    2011-06-01

    Full Text Available Biological control of bacterial wilt pathogen (Ralstonia solanacearum of tomato using endophytic bacteria is one of the alternative control methods to support sustainable agriculture. This study was conducted to select and characterize endophytic bacteria isolated from healthy tomato stems and to test their ability to promote plant growth and suppress bacterial wilt disease. Among 49 isolates successfully isolated, 41 were non-plant pathogenic. Green house test on six selected isolates based on antagonistic effect on R. solanacearum or ability to suppress R. solanacearum population in dual culture assays obtained BC4 and BL10 isolates as promising biocontrol agents. At six weeks after transplanting, plants treated with BC4 isolate showed significantly lower disease incidence (33% than that of control (83%. Plants height was not significantly affected by endophytic bacterial treatments. Based on 16S rRNA sequence, BC4 isolate had 97% similarity with Staphylococcus epidermidis (accession number EU834240.1, while isolate BL10 had 98% similarity with Bacillus amyloliquefaciens strain JK-SD002 (accession number AB547229.1.

  12. Radiation proctitis in the rat. Sequential changes and effects of anti-inflammatory agents

    Energy Technology Data Exchange (ETDEWEB)

    Northway, M.G.; Scobey, M.W.; Geisinger, K.R.

    1988-11-01

    Female Wistar rats were treated with single exposure irradiation to 2 cm of distal colon to cause radiation proctitis. All animals were evaluated by examination, colonoscopy and histologic evaluation for changes post-irradiation. Exposures of 10, 12.5, 15, 17.5, 20, 22.5, 25, 27.5 and 30 Gy caused dose-related clinical and histologic changes peaking at 7 to 15 days post-exposure. Rats treated with 20 Gy were colonoscoped and biopsied daily and showed sequential post-irradiation endoscopic changes ranging from mucosal edema and mild inflammatory changes to erosion and ulcers. Histologically, crypt abscess and mural wall necrosis similar to changes found in the human rectum after radiotherapy were noted. Treatment with nonsteroidal anti-inflammatory agents, (aspirin, indomethacin, piroxicam), misoprostol (a prostaglandin E1 analogue), or sucralfate (an anti-ulcer agent) did not ameliorate nor exacerbate radiation proctitis in rats exposed to 22.5 Gy. We conclude from these data that the female Wistar rat is a good model for studying radiation proctitis because endoscopic, histologic, and clinical changes seen post-exposure closely resemble those found in man.

  13. Radiation proctitis in the rat. Sequential changes and effects of anti-inflammatory agents

    International Nuclear Information System (INIS)

    Northway, M.G.; Scobey, M.W.; Geisinger, K.R.

    1988-01-01

    Female Wistar rats were treated with single exposure irradiation to 2 cm of distal colon to cause radiation proctitis. All animals were evaluated by examination, colonoscopy and histologic evaluation for changes post-irradiation. Exposures of 10, 12.5, 15, 17.5, 20, 22.5, 25, 27.5 and 30 Gy caused dose-related clinical and histologic changes peaking at 7 to 15 days post-exposure. Rats treated with 20 Gy were colonoscoped and biopsied daily and showed sequential post-irradiation endoscopic changes ranging from mucosal edema and mild inflammatory changes to erosion and ulcers. Histologically, crypt abscess and mural wall necrosis similar to changes found in the human rectum after radiotherapy were noted. Treatment with nonsteroidal anti-inflammatory agents, (aspirin, indomethacin, piroxicam), misoprostol (a prostaglandin E1 analogue), or sucralfate (an anti-ulcer agent) did not ameliorate nor exacerbate radiation proctitis in rats exposed to 22.5 Gy. We conclude from these data that the female Wistar rat is a good model for studying radiation proctitis because endoscopic, histologic, and clinical changes seen post-exposure closely resemble those found in man

  14. Highly Efficient F, Cu doped TiO2 anti-bacterial visible light active photocatalytic coatings to combat hospital-acquired infections

    OpenAIRE

    Nigel S. Leyland; Joanna Podporska-Carroll; John Browne; Steven J. Hinder; Brid Quilty; Suresh C. Pillai

    2016-01-01

    Bacterial infections are a major threat to the health of patients in healthcare facilities including hospitals. One of the major causes of patient morbidity is infection with Staphylococcus aureus. One of the the most dominant nosocomial bacteria, Methicillin Resistant Staphylococcus aureus (MRSA) have been reported to survive on hospital surfaces (e.g. privacy window glasses) for up to 5 months. None of the current anti-bacterial technology is efficient in eliminating Staphylococcus aureus. ...

  15. Visualization of Tumor Angiogenesis Using MR Imaging Contrast Agent Gd-DTPA-anti-VEGF Receptor 2 Antibody Conjugate in a Mouse Tumor Model

    International Nuclear Information System (INIS)

    Jun, Hong Young; Yin, Hong Hua; Kim, Sun Hee; Park, Seong Hoon; Kim, Hun Soo; Yoon Kwon Ha Yoon

    2010-01-01

    To visualize tumor angiogenesis using the MRI contrast agent, Gd- DTPA-anti-VEGF receptor 2 antibody conjugate, with a 4.7-Tesla MRI instrument in a mouse model. We designed a tumor angiogenesis-targeting T1 contrast agent that was prepared by the bioconjugation of gadolinium diethylenetriaminepentaacetic acid (Gd-DTPA) and an anti-vascular endothelial growth factor receptor-2 (VEGFR2) antibody. The specific binding of the agent complex to cells that express VEGFR2 was examined in cultured murine endothelial cells (MS-1 cells) with a 4.7-Tesla magnetic resonance imaging scanner. Angiogenesis-specific T1 enhancement was imaged with the Gd-DTPA-anti-VEGFR2 antibody conjugate using a CT-26 adenocarcinoma tumor model in eight mice. As a control, the use of the Gd-DTPA-anti-rat immunoglobulin G (Gd-DTPA-anti-rat IgG) was imaged with a tumor model in eight mice. Statistical significance was assessed using the Mann-Whitney test. Tumor tissue was examined by immunohistochemical analysis. The Gd-DTPA-anti-VEGFR2 antibody conjugate showed predominant binding to cultured endothelial cells that expressed a high level of VEGFR2. Signal enhancement was approximately three-fold for in vivo T1-weighted MR imaging with the use of the Gd-DTPA-anti-VEGFR2 antibody conjugate as compared with the Gd-DTPA-rat IgG in the mouse tumor model (p < 0.05). VEGFR2 expression in CT-26 tumor vessels was demonstrated using immunohistochemical staining. MR imaging using the Gd-DTPA-anti-VEGFR2 antibody conjugate as a contrast agent is useful in visualizing noninvasively tumor angiogenesis in a murine tumor model

  16. Visualization of Tumor Angiogenesis Using MR Imaging Contrast Agent Gd-DTPA-anti-VEGF Receptor 2 Antibody Conjugate in a Mouse Tumor Model

    Energy Technology Data Exchange (ETDEWEB)

    Jun, Hong Young; Yin, Hong Hua; Kim, Sun Hee; Park, Seong Hoon; Kim, Hun Soo; Yoon Kwon Ha Yoon [Wonkwang University School of Medicine, Iksan (Korea, Republic of)

    2010-08-15

    To visualize tumor angiogenesis using the MRI contrast agent, Gd- DTPA-anti-VEGF receptor 2 antibody conjugate, with a 4.7-Tesla MRI instrument in a mouse model. We designed a tumor angiogenesis-targeting T1 contrast agent that was prepared by the bioconjugation of gadolinium diethylenetriaminepentaacetic acid (Gd-DTPA) and an anti-vascular endothelial growth factor receptor-2 (VEGFR2) antibody. The specific binding of the agent complex to cells that express VEGFR2 was examined in cultured murine endothelial cells (MS-1 cells) with a 4.7-Tesla magnetic resonance imaging scanner. Angiogenesis-specific T1 enhancement was imaged with the Gd-DTPA-anti-VEGFR2 antibody conjugate using a CT-26 adenocarcinoma tumor model in eight mice. As a control, the use of the Gd-DTPA-anti-rat immunoglobulin G (Gd-DTPA-anti-rat IgG) was imaged with a tumor model in eight mice. Statistical significance was assessed using the Mann-Whitney test. Tumor tissue was examined by immunohistochemical analysis. The Gd-DTPA-anti-VEGFR2 antibody conjugate showed predominant binding to cultured endothelial cells that expressed a high level of VEGFR2. Signal enhancement was approximately three-fold for in vivo T1-weighted MR imaging with the use of the Gd-DTPA-anti-VEGFR2 antibody conjugate as compared with the Gd-DTPA-rat IgG in the mouse tumor model (p < 0.05). VEGFR2 expression in CT-26 tumor vessels was demonstrated using immunohistochemical staining. MR imaging using the Gd-DTPA-anti-VEGFR2 antibody conjugate as a contrast agent is useful in visualizing noninvasively tumor angiogenesis in a murine tumor model

  17. Resistencia bacteriana Bacterial resistance to antimicrobial agents

    Directory of Open Access Journals (Sweden)

    Jesualdo Fuentes

    1993-01-01

    Full Text Available

    Se presenta un panorama de la resistencia bacteriana incluyendo su fisiopatogenia y formas de presentación y se establecen algunas consideraciones generales de tipo clínico como auxiliares para racionalizar el uso de los antimicrobianos y evitar o retardar el problema de la resistencia; éste plantea la necesidad de un reordenamiento definitivo en la prescripción de antimicrobianos. No será tanto la creación o descubrimiento de nuevos antibióticos sino la racionalización del manejo de los existentes lo que permitirá alcanzar victorias sobre estos microorganismos. Es Importante mantener educación continua sobre el uso adecuado de los antimicrobianos desde los puntos de vista epidemiológico, farmacocinético y fisiopatogénico.

    An overview on bacterial resistance to antimicrobial agents is presented. It includes the different genetic mechanisms for Its development and the biochemical phenomena that explain It. Some clinical considerations are proposed in order to rationalize the use of these drugs and to avoid or delay the appearance of resistance.

  18. Synthesis, antimicrobial, anti-biofilm evaluation, and molecular modelling study of new chalcone linked amines derivatives.

    Science.gov (United States)

    El-Messery, Shahenda M; Habib, El-Sayed E; Al-Rashood, Sarah T A; Hassan, Ghada S

    2018-12-01

    A series of amide chalcones conjugated with different secondary amines were synthesised and characterised by different spectroscopic techniques 1 H NMR, 13 C NMR, and ESI-MS. They were screened for in vitro antibacterial activity. Compounds 36, 37, 38, 42, and 44 are the most active among the synthesised series exhibiting MIC value of 2.0-10.0 µg/ml against different bacterial strains. Compound 36 was equipotent to the standard drug Ampicillin displaying MBC value of 2.0 µg/ml against the bacterial strain Staphylococcus aureus. The products were screened for anti-biofilm activity. Compounds 36, 37, and 38 exhibited promising anti-biofilm activity with IC 50 value ranges from 2.4 to 8.6 µg. Molecular modelling was performed suggesting parameters of signalling anti-biofilm mechanism. AspB327 HisB340 (arene-arene interaction) and IleB328 amino acid residues seemed of higher importance to inhibit c-di-GMP. Hydrophobicity may be crucial for activity. ADME calculations suggested that compounds 36, 37, and 38 could be used as good orally absorbed anti-biofilm agents.

  19. Genetic Diversity of Bacterial Communities and Gene Transfer Agents in Northern South China Sea

    Science.gov (United States)

    Sun, Fu-Lin; Wang, You-Shao; Wu, Mei-Lin; Jiang, Zhao-Yu; Sun, Cui-Ci; Cheng, Hao

    2014-01-01

    Pyrosequencing of the 16S ribosomal RNA gene (rDNA) amplicons was performed to investigate the unique distribution of bacterial communities in northern South China Sea (nSCS) and evaluate community structure and spatial differences of bacterial diversity. Cyanobacteria, Proteobacteria, Actinobacteria, and Bacteroidetes constitute the majority of bacteria. The taxonomic description of bacterial communities revealed that more Chroococcales, SAR11 clade, Acidimicrobiales, Rhodobacterales, and Flavobacteriales are present in the nSCS waters than other bacterial groups. Rhodobacterales were less abundant in tropical water (nSCS) than in temperate and cold waters. Furthermore, the diversity of Rhodobacterales based on the gene transfer agent (GTA) major capsid gene (g5) was investigated. Four g5 gene clone libraries were constructed from samples representing different regions and yielded diverse sequences. Fourteen g5 clusters could be identified among 197 nSCS clones. These clusters were also related to known g5 sequences derived from genome-sequenced Rhodobacterales. The composition of g5 sequences in surface water varied with the g5 sequences in the sampling sites; this result indicated that the Rhodobacterales population could be highly diverse in nSCS. Phylogenetic tree analysis result indicated distinguishable diversity patterns among tropical (nSCS), temperate, and cold waters, thereby supporting the niche adaptation of specific Rhodobacterales members in unique environments. PMID:25364820

  20. Potential Use of Phenolic Acids as Anti-Candida Agents: A Review

    Science.gov (United States)

    Teodoro, Guilherme R.; Ellepola, Kassapa; Seneviratne, Chaminda J.; Koga-Ito, Cristiane Y.

    2015-01-01

    There has been a sharp rise in the occurrence of Candida infections and associated mortality over the last few years, due to the growing body of immunocompromised population. Limited number of currently available antifungal agents, undesirable side effects and toxicity, as well as emergence of resistant strains pose a considerable clinical challenge for the treatment of candidiasis. Therefore, molecules that derived from natural sources exhibiting considerable antifungal properties are a promising source for the development of novel anti-candidal therapy. Phenolic compounds isolated from natural sources possess antifungal properties of interest. Particularly, phenolic acids have shown promising in vitro and in vivo activity against Candida species. However, studies on their mechanism of action alone or in synergism with known antifungals are still scarce. This review attempts to discuss the potential use, proposed mechanisms of action and limitations of the phenolic acids in anti-candidal therapy. PMID:26733965

  1. Bacterial self-defense antibiotics release from organic-inorganic hybrid multilayer films for long-term anti-adhesion and biofilm inhibition properties.

    Science.gov (United States)

    Xu, Qingwen; Li, Xi; Jin, Yingying; Sun, Lin; Ding, Xiaoxu; Liang, Lin; Wang, Lei; Nan, Kaihui; Ji, Jian; Chen, Hao; Wang, Bailiang

    2017-12-14

    Implant-associated bacterial infections pose serious medical and financial issues due to the colonization and proliferation of pathogens on the surface of the implant. The as-prepared traditional antibacterial surfaces can neither resist bacterial adhesion nor inhibit the development of biofilm over the long term. Herein, novel (montmorillonite/poly-l-lysine-gentamicin sulfate) 8 ((MMT/PLL-GS) 8 ) organic-inorganic hybrid multilayer films were developed to combine enzymatic degradation PLL for on-demand self-defense antibiotics release. Small molecule GS was loaded into the multilayer films during self-assembly and the multilayer films showed pH-dependent and linear growth behavior. The chymotrypsin- (CMS) and bacterial infections-responsive film degradation led to the peeling of the films and GS release. Enzyme-responsive GS release exhibited CMS concentration dependence as measured by the size of the inhibition zone and SEM images. Notably, the obtained antibacterial films showed highly efficient bactericidal activity which killed more than 99.9% of S. aureus in 12 h. Even after 3 d of incubation in S. aureus, E. coli or S. epidermidis solutions, the multilayer films exhibited inhibition zones of more than 1.5 mm in size. Both in vitro and in vivo antibacterial tests indicated good cell compatibility, and anti-inflammatory, and long-term bacterial anti-adhesion and biofilm inhibition properties.

  2. Production and purification of anti-bacterial biometabolite from wild-type Lactobacillus, isolated from fermented bamboo shoot: future suggestions and a proposed system for secondary metabolite onsite recovery during continuous fermentation.

    Science.gov (United States)

    Badwaik, Laxmikant S; Borah, Pallab Kumar; Deka, Sankar C

    2015-02-01

    Wild-type lactobacillus isolated form Khorisa, a fermented bamboo shoot product of Assam, India were evaluated for production anti-bacterial secondary biometabolites, against Staphylococcus aureus. Submerged fermentation technique was used for the production of secondary anti-microbial biometabolite by a single wild-type lactobacillus strain, which tested positive for the release of anti-bacterial factor(s). Crude cell-free supernatant was obtained, followed by extraction in water-immiscible solvents viz., chloroform, hexane, petroleum ether. Chloroform extract of cell-free crude supernatant showed maximum yield (0.054 g/ml) and inhibited all indicator bacterial strains viz., Escherichia coli, Staphylococcus aureus, and Bacillus cereus. Yields of hexane and petroleum ether extract were 0.052 and 0.026 g/ml, respectively. Minimum lethal dose concentration assay of the chloroform extract showed LDmin values at 27, 1.68, and 1.68 mg/ml for E. coli, S. aureus, and B. cereus, respectively. Kill time for all the indicator bacterial strains were less than 12 h. The efficacy of the anti-bacterial substance seemed to depend on the presence of organic acids, particularly lactic acid. Conceptual-based suggestion for the development of an onsite secondary metabolites recovery system during continuous fermentation has also been attempted.

  3. Synthesis and Biological Evaluation of Novel Furozan-Based Nitric Oxide-Releasing Derivatives of Oridonin as Potential Anti-Tumor Agents

    Directory of Open Access Journals (Sweden)

    Hao Cai

    2012-06-01

    Full Text Available To search for novel nitric oxide (NO releasing anti-tumor agents, a series of novel furoxan/oridonin hybrids were designed and synthesized. Firstly, the nitrate/nitrite levels in the cell lysates were tested by a Griess assay and the results showed that these furoxan-based NO-releasing derivatives could produce high levels of NO in vitro. Then the anti-proliferative activity of these hybrids against four human cancer cell lines was also determined, among which, 9h exhibited the most potential anti-tumor activity with IC50 values of 1.82 µM against K562, 1.81 µM against MGC-803 and 0.86 µM against Bel-7402, respectively. Preliminary structure-activity relationship was concluded based on the experimental data obtained. These results suggested that NO-donor/natural product hybrids may provide a promising approach for the discovery of novel anti-tumor agents.

  4. Pre-operative use of anti-TNF-alpha agents and the risk of post-operative complications in patients with Crohn's disease--a nationwide cohort study

    DEFF Research Database (Denmark)

    Nørgård, Bente Mertz; Nielsen, J.; Qvist, N.

    2013-01-01

    BACKGROUND: A possible negative role of pre-operative use of antitumour necrosis factor-alpha (anti-TNF-alpha) agents on post-operative outcomes in Crohn's disease (CD) patients is still debated. AIM: To examine the impact of pre-operative anti-TNF-alpha agents on post-operative outcomes 30 and 6...

  5. Anti-biofilm activities from marine cold adapted bacteria against staphylococci and Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Rosanna ePapa

    2015-12-01

    Full Text Available Microbial biofilms have great negative impacts on the world’s economy and pose serious problems to industry, public health and medicine. The interest in the development of new approaches for the prevention and treatment of bacterial adhesion and biofilm formation has increased. Since, bacterial pathogens living in biofilm induce persistent chronic infections due to the resistance to antibiotics and host immune system. A viable approach should target adhesive properties without affecting bacterial vitality in order to avoid the appearance of resistant mutants. Many bacteria secrete anti-biofilm molecules that function in regulating biofilm architecture or mediating the release of cells from it during the dispersal stage of biofilm life cycle. Cold-adapted marine bacteria represent an untapped reservoir of biodiversity able to synthesize a broad range of bioactive compounds, including anti-biofilm molecules.The anti-biofilm activity of cell-free supernatants derived from sessile and planktonic cultures of cold-adapted bacteria belonging to Pseudoalteromonas, Psychrobacter and Psychromonas species were tested against Staphylococcus aureus, Staphylococcus epidermidis and Pseudomonas aeruginosa strains. Reported results demonstrate that we have selected supernatants, from cold-adapted marine bacteria, containing non-biocidal agents able to destabilize biofilm matrix of all tested pathogens without killing cells. A preliminary physico-chemical characterization of supernatants was also performed, and these analyses highlighted the presence of molecules of different nature that act by inhibiting biofilm formation. Some of them are also able to impair the initial attachment of the bacterial cells to the surface, thus likely containing molecules acting as anti-biofilm surfactant molecules.The described ability of cold-adapted bacteria to produce effective anti-biofilm molecules paves the way to further characterization of the most promising molecules

  6. Screening of chemical compound libraries identified new anti-Toxoplasma gondii agents.

    Science.gov (United States)

    Adeyemi, Oluyomi Stephen; Sugi, Tatsuki; Han, Yongmei; Kato, Kentaro

    2018-02-01

    Toxoplasma gondii is the etiological agent of toxoplasmosis, a common parasitic disease that affects nearly one-third of the human population. The primary infection can be asymptomatic in healthy individuals but may prove fatal in immunocompromised individuals. Available treatment options for toxoplasmosis patients are limited, underscoring the urgent need to identify and develop new therapies. Non-biased screening of libraries of chemical compounds including the repurposing of well-characterized compounds is emerging as viable approach to achieving this goal. In the present investigation, we screened libraries of natural product and FDA-approved compounds to identify those that inhibited T. gondii growth. We identified 32 new compounds that potently inhibit T. gondii growth. Our findings are new and promising, and further strengthen the prospects of drug repurposing as well as the screening of a wide range of chemical compounds as a viable source of alternative anti-parasitic therapeutic agents.

  7. SYNTHESIS, CHARACTERIZATION AND ANTI-BACTERIAL ACTIVITY OF CERTAIN 2,3,4,5-TETRAHYDROPYRIDAZINONE ANALOGUES

    Directory of Open Access Journals (Sweden)

    Gaurav ALANG

    2011-04-01

    Full Text Available In the present study, six new derivatives of PYridazinone were synthesized and evaluate their anti-bacterial activity. The experimental work involves the synthesis of benzoyl propionic acid (a, then 6-phenyl-2,3,4,5-tetrahydro pyridazin-3-one (b which was then condensed with various, aldehydes to form respective derivatives, AH the synthesized compounds were identified by IR, 1HNMR and antimicrobial activity was performed on the compounds synthesized against Staphylococcus aureus (MTCC 737, Staphylococcus epidermidis (MTCC 3615, Pseudomonas aeruginosa (MTCC 424 and Escherichia coli (MTCC 1687

  8. GTP depletion synergizes the anti-proliferative activity of chemotherapeutic agents in a cell type-dependent manner

    International Nuclear Information System (INIS)

    Lin, Tao; Meng, Lingjun; Tsai, Robert Y.L.

    2011-01-01

    Highlights: → Strong synergy between mycophenolic acid (MPA) and 5-FU in MDA-MB-231 cells. → Cell type-dependent synergy between MPA and anti-proliferative agents. → The synergy of MPA on 5-FU is recapitulated by RNA polymerase-I inhibition. → The synergy of MPA on 5-FU requires the expression of nucleostemin. -- Abstract: Mycophenolic acid (MPA) depletes intracellular GTP by blocking de novo guanine nucleotide synthesis. GTP is used ubiquitously for DNA/RNA synthesis and as a signaling molecule. Here, we made a surprising discovery that the anti-proliferative activity of MPA acts synergistically with specific chemotherapeutic agents in a cell type-dependent manner. In MDA-MB-231 cells, MPA shows an extremely potent synergy with 5-FU but not with doxorubicin or etoposide. The synergy between 5-FU and MPA works most effectively against the highly tumorigenic mammary tumor cells compared to the less tumorigenic ones, and does not work in the non-breast cancer cell types that we tested, with the exception of PC3 cells. On the contrary, MPA shows the highest synergy with paclitaxel but not with 5-FU in SCC-25 cells, derived from oral squamous cell carcinomas. Mechanistically, the synergistic effect of MPA on 5-FU in MDA-MB-231 cells can be recapitulated by inhibiting the RNA polymerase-I activity and requires the expression of nucleostemin. This work reveals that the synergy between MPA and anti-proliferative agents is determined by cell type-dependent factors.

  9. Development and Sequential Analysis of a New Multi-Agent, Anti-Acne Formulation Based on Plant-Derived Antimicrobial and Anti-Inflammatory Compounds

    Directory of Open Access Journals (Sweden)

    Crina Saviuc

    2017-01-01

    Full Text Available The antibacterial and anti-inflammatory potential of natural, plant-derived compounds has been reported in many studies. Emerging evidence indicates that plant-derived essential oils and/or their major compounds may represent a plausible alternative treatment for acne, a prevalent skin disorder in both adolescent and adult populations. Therefore, the purpose of this study was to develop and subsequently analyze the antimicrobial activity of a new multi-agent, synergic formulation based on plant-derived antimicrobial compounds (i.e., eugenol, β-pinene, eucalyptol, and limonene and anti-inflammatory agents for potential use in the topical treatment of acne and other skin infections. The optimal antimicrobial combinations selected in this study were eugenol/β-pinene/salicylic acid and eugenol/β-pinene/2-phenoxyethanol/potassium sorbate. The possible mechanisms of action revealed by flow cytometry were cellular permeabilization and inhibition of efflux pumps activity induced by concentrations corresponding to sub-minimal inhibitory (sub-MIC values. The most active antimicrobial combination represented by salycilic acid/eugenol/β-pinene/2-phenoxyethanol/potassium sorbate was included in a cream base, which demonstrated thermodynamic stability and optimum microbiological characteristics.

  10. Ristocetin induces phosphorylated-HSP27 (HSPB1) release from the platelets of type 2 DM patients: Anti-platelet agent-effect on the release.

    Science.gov (United States)

    Tokuda, Haruhiko; Kuroyanagi, Gen; Onuma, Takashi; Enomoto, Yukiko; Doi, Tomoaki; Iida, Hiroki; Otsuka, Takanobu; Ogura, Shinji; Iwama, Toru; Kojima, Kumi; Kozawa, Osamu

    2018-04-01

    It has been previously reported that HSP27 is released from platelets in type 2 diabetes mellitus (DM) patients according to phosphorylation. In the present study, we investigated the effect of ristocetin, a glycoprotein (GP)Ib/IX/V activator, on the release of HSP27 and the effect of anti-platelet agents, such as acetylsalicylic acid (ASA), on this release. Forty-six patients with type 2 DM were recruited, and classified into two groups depending on administration of anti-platelet agents, resulting in 31 patients without these agents (control group) and 15 patients with them (anti-platelet group). Ristocetin potently induced the aggregation of platelets in the two groups. Ristocetin-induced changes of the area under the curve of light transmittance and the ratio of the size of platelet aggregates in the anti-platelet group were slightly different from those in the control group. On the other hand, the levels of phosphorylated-HSP27 induced by ristocetin in the platelets from a patient of the anti-platelet group taking ASA were significantly lower than those from a patient of the control group. The levels of HSP27 release from the ristocetin-stimulated platelets were significantly correlated with the levels of phosphorylated-HSP27 in the platelets from patients in the two groups. The levels of HSP27 release and those of platelet-derived growth factor-AB (PDGF-AB) secretion stimulated by ristocetin in the anti-platelet group were lower than those in the control group. In addition, the levels of HSP27 release and those of PDGF-AB secretion stimulated by ADP in the anti-platelet group were lower than those in the control group. These results strongly suggest that anti-platelet agents inhibit the HSP27 release from platelets stimulated by ristocetin but not the aggregation in type 2 DM patients.

  11. Increased risk of post-operative complications in patients with Crohn's disease treated with anti-tumour necrosis factor α agents - a systematic review

    DEFF Research Database (Denmark)

    El-Hussuna, Alaa; Theede, Klaus; Olaison, Gunnar

    2014-01-01

    INTRODUCTION: Tumour necrosis factor α (TNF-α) plays a role in the immune defence, angiogenesis and collagen synthesis. Inhibition of these pathways may increase the risk of infections and impair wound healing in patients after surgery. Biologic treatments including anti-TNF-α agents are increasi......INTRODUCTION: Tumour necrosis factor α (TNF-α) plays a role in the immune defence, angiogenesis and collagen synthesis. Inhibition of these pathways may increase the risk of infections and impair wound healing in patients after surgery. Biologic treatments including anti-TNF-α agents...... are increasingly used in the treatment of inflammatory bowel disease. Taking into consideration the biologics' mechanism of action, fears have been expressed that they might increase the rate of post-operative complications. Results from 18 retrospective studies were conflicting, and meta-analyses based...... an increased risk of overall post-operative complications and an increased rate of infectious or anastomosis-related complications in patients receiving anti-TNF-α. CONCLUSION: The use of anti-TNF-α agents in Crohn's disease patients is associated with an increased risk of post-operative complications after...

  12. Polyphenols from Cymbopogon citratus leaves as topical anti-inflammatory agents.

    Science.gov (United States)

    Costa, Gustavo; Ferreira, João Pinto; Vitorino, Carla; Pina, Maria Eugénia; Sousa, João José; Figueiredo, Isabel Vitória; Batista, Maria Teresa

    2016-02-03

    A variety of plant polyphenols have been reported to have anti-inflammatory, frequently associated with erythema, edema, hyperplasia, skin photoaging and photocarcinogenesis. Cymbopogon citratus (DC). Stapf (Poaceae) is a worldwide known medicinal plant, used in traditional medicine in inflammation-related conditions. In this work, the anti-inflammatory potential of C. citratus infusion (CcI) and its polyphenols as topical agents was evaluated in vivo. The plant extract was prepared and its fractioning led two polyphenol-rich fractions: flavonoids fraction (CcF) and tannins fraction (CcT). An oil/water emulsion was developed with each active (CcI, CcF+CcT and diclofenac), pH and texture having been evaluated. Release tests were further performed using static Franz diffusion cells and all collected samples were monitored by HPLC-PDA. In vivo topical anti-inflammatory activity evaluation was performed by the carrageenan-induced rat paw edema model. The texture analysis revealed statistically significant differences for all tested parameters to CcF+CcT, supporting its topical application. Release experiments lead to the detection of the phenolic compounds from each sample in the receptor medium and the six major flavonoids were quantified, by HPLC-PDA: carlinoside, isoorientin, cynaroside, luteolin 7-O-neohesperidoside, kurilesin A and cassiaoccidentalin B. The CcF+CcT formulation prompted to the higher release rate for all these flavonoids. CcI4%, CcI1% and CcF+CcT exhibited an edema reduction of 43.18, 29.55 and 59.09%, respectively. Our findings highlight that CcI, containing luteolin 7-O-neohesperidoside, cassiaoccidentalin B, carlinoside, cynaroside and tannins have a potential anti-inflammatory topical activity, suggesting their promising application in the treatment of skin inflammatory pathologies. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Performance evaluation of nanoclay enriched anti-microbial hydrogels for biomedical applications

    Directory of Open Access Journals (Sweden)

    Sonali Karnik

    2016-02-01

    Full Text Available A major factor contributing to the failure of orthopedic and orthodontic implants is post-surgical infection. Coating metallic implant surfaces with anti-microbial agents has shown promise but does not always prevent the formation of bacterial biofilms. Furthermore, breakdown of these coatings within the human body can cause release of the anti-microbial drugs in an uncontrolled or unpredictable fashion. In this study, we used a calcium alginate and calcium phosphate cement (CPC hydrogel composite as the base material and enriched these hydrogels with the anti-microbial drug, gentamicin sulfate, loaded within a halloysite nanotubes (HNTs. Our results demonstrate a sustained and extended release of gentamicin from hydrogels enriched with the gentamicin-loaded HNTs. When tested against the gram-negative bacteria, the hydrogel/nanoclay composites showed a pronounced zone of inhibition suggesting that anti-microbial doped nanoclay enriched hydrogels can prevent the growth of bacteria. The release of gentamicin sulfate for a period of five days from the nanoclay-enriched hydrogels would supply anti-microbial agents in a sustained and controlled manner and assist in preventing microbial growth and biofilm formation on the titanium implant surface. A pilot study, using mouse osteoblasts, confirmed that the nanoclay enriched surfaces are also cell supportive as osteoblasts readily, proliferated and produced a type I collagen and proteoglycan matrix.

  14. Synthesis and Characterization of Celecoxib Derivatives as Possible Anti-Inflammatory, Analgesic, Antioxidant, Anticancer and Anti-HCV Agents

    Directory of Open Access Journals (Sweden)

    Amartya Basu

    2013-03-01

    Full Text Available A series of novel N-(3-substituted aryl/alkyl-4-oxo-1,3-thiazolidin-2-ylidene-4-[5-(4-methylphenyl-3-(trifluoromethyl-1H-pyrazol-1-yl]benzenesulfonamides 2a–e were synthesized by the addition of ethyl a-bromoacetate and anhydrous sodium acetate in dry ethanol to N-(substituted aryl/alkylcarbamothioyl-4-[5-(4-methylphenyl-3-(trifluoro-methyl-1H-pyrazol-1-yl]benzene sulfonamides 1a–e, which were synthesized by the reaction of alkyl/aryl isothiocyanates with celecoxib. The structures of the isolated products were determined by spectral methods and their anti-inflammatory, analgesic, antioxidant, anticancer and anti-HCV NS5B RNA-dependent RNA polymerase (RdRp activities evaluated. The compounds were also tested for gastric toxicity and selected compound 1a was screened for its anticancer activity against 60 human tumor cell lines. These investigations revealed that compound 1a exhibited anti-inflammatory and analgesic activities and further did not cause tissue damage in liver, kidney, colon and brain compared to untreated controls or celecoxib. Compounds 1c and 1d displayed modest inhibition of HCV NS5B RdRp activity. In conclusion, N-(ethylcarbamothioyl-4-[5-(4-methylphenyl-3-(trifluoromethyl-1H-pyrazol-1-yl]benzenesulfonamide (1a may have the potential to be developed into a therapeutic agent.

  15. Gold Nanoparticles: An Efficient Antimicrobial Agent against Enteric Bacterial Human Pathogen

    Directory of Open Access Journals (Sweden)

    Shahzadi Shamaila

    2016-04-01

    Full Text Available Enteric bacterial human pathogens, i.e., Escherichia coli, Staphylococcus aureus, Bacillus subtilis and Klebsiella pneumoniae, are the major cause of diarrheal infections in children and adults. Their structure badly affects the human immune system. It is important to explore new antibacterial agents instead of antibiotics for treatment. This project is an attempt to explain how gold nanoparticles affect these bacteria. We investigated the important role of the mean particle size, and the inhibition of a bacterium is dose-dependent. Ultra Violet (UV-visible spectroscopy revealed the size of chemically synthesized gold nanoparticle as 6–40 nm. Atomic force microscopy (AFM analysis confirmed the size and X-ray diffractometry (XRD analysis determined the polycrystalline nature of gold nanoparticles. The present findings explained how gold nanoparticles lyse Gram-negative and Gram-positive bacteria.

  16. Treatment of Oral Multispecies Biofilms by an Anti-Biofilm Peptide.

    Science.gov (United States)

    Wang, Zhejun; de la Fuente-Núñez, Cesar; Shen, Ya; Haapasalo, Markus; Hancock, Robert E W

    2015-01-01

    Human oral biofilms are multispecies microbial communities that exhibit high resistance to antimicrobial agents. Dental plaque gives rise to highly prevalent and costly biofilm-related oral infections, which lead to caries or other types of oral infections. We investigated the ability of the recently identified anti-biofilm peptide 1018 to induce killing of bacterial cells present within oral multispecies biofilms. At 10 μg/ml (6.5 μM), peptide 1018 was able to significantly (pbiofilm formation over 3 days. The activity of the peptide on preformed biofilms was found to be concentration-dependent since more than 60% of the total plaque biofilm cell population was killed by 10 μg/ml of peptide 1018 in 3 days, while at 5 μg/ml 50% of cells were dead and at 1 μg/ml the peptide triggered cell death in around 30% of the total bacterial population, as revealed by confocal microscopy. The presence of saliva did not affect peptide activity, since no statistically significant difference was found in the ability of peptide 1018 to kill oral biofilms using either saliva coated and non-saliva coated hydroxyapatite surfaces. Scanning electron microscopy experiments indicated that peptide 1018 induced cell lysis in plaque biofilms. Furthermore, combined treatment using peptide 1018 and chlorhexidine (CHX) increased the anti-biofilm activity of each compound compared to when these were used alone, resulting in >50% of the biofilm being killed and >35% being dispersed in only 3 minutes. Peptide 1018 may potentially be used by itself or in combination with CHX as a non-toxic and effective anti-biofilm agent for plaque disinfection in clinical dentistry.

  17. Anti-photoaging and Photoprotective Compounds Derived from Marine Organisms

    Directory of Open Access Journals (Sweden)

    Ramjee Pallela

    2010-04-01

    Full Text Available Marine organisms form a prominent component of the oceanic population, which significantly contribute in the production of cosmeceutical and pharmaceutical molecules with biologically efficient moieties. In addition to the molecules of various biological activities like anti-bacterial, anti-cancerous, anti-inflammatory and anti-oxidative etc., these organisms also produce potential photoprotective or anti-photoaging agents, which are attracting present day researchers. Continuous exposure to UV irradiation (both UV-A and UV-B leads to the skin cancer and other photoaging complications, which are typically mediated by the reactive oxygen species (ROS, generated in the oxidative pathways. Many of the anti-oxidative and anti-photoaging compounds have been identified previously, which work efficiently against photodamage of the skin. Recently, marine originated photoprotective or anti-photoaging behavior was observed in the methanol extracts of Corallina pilulifera (CPM. These extracts were found to exert potent antioxidant activity and protective effect on UV-A-induced oxidative stress in human dermal fibroblast (HDF cells by protecting DNA and also by inhibiting matrix metalloproteinases (MMPs, a key component in photoaging of the skin due to exposure to UV-A. The present review depicts various other photoprotective compounds from algae and other marine sources for further elaborative research and their probable use in cosmeceutical and pharmaceutical industries.

  18. Anti-SEMA3A Antibody: A Novel Therapeutic Agent to Suppress GBM Tumor Growth.

    Science.gov (United States)

    Lee, Jaehyun; Shin, Yong Jae; Lee, Kyoungmin; Cho, Hee Jin; Sa, Jason K; Lee, Sang-Yun; Kim, Seok-Hyung; Lee, Jeongwu; Yoon, Yeup; Nam, Do-Hyun

    2017-11-10

    Glioblastoma (GBM) is classified as one of the most aggressive and lethal brain tumor. Great strides have been made in understanding the genomic and molecular underpinnings of GBM, which translated into development of new therapeutic approaches to combat such deadly disease. However, there are only few therapeutic agents that can effectively inhibit GBM invasion in a clinical framework. In an effort to address such challenges, we have generated anti-SEMA3A monoclonal antibody as a potential therapeutic antibody against GBM progression. We employed public glioma datasets, Repository of Molecular Brain Neoplasia Data and The Cancer Genome Atlas, to analyze SEMA3A mRNA expression in human GBM specimens. We also evaluated for protein expression level of SEMA3A via tissue microarray (TMA) analysis. Cell migration and proliferation kinetics were assessed in various GBM patient-derived cells (PDCs) and U87-MG cell-line for SEMA3A antibody efficacy. GBM patient-derived xenograft (PDX) models were generated to evaluate tumor inhibitory effect of anti-SEMA3A antibody in vivo. By combining bioinformatics and TMA analysis, we discovered that SEMA3A is highly expressed in human GBM specimens compared to non-neoplastic tissues. We developed three different anti-SEMA3A antibodies, in fully human IgG form, through screening phage-displayed synthetic antibody library using a classical panning method. Neutralization of SEMA3A significantly reduced migration and proliferation capabilities of PDCs and U87-MG cell-line in vitro. In PDX models, treatment with anti-SEMA3A antibody exhibited notable tumor inhibitory effect through down-regulation of cellular proliferative kinetics and tumor-associated macrophages recruitment. In present study, we demonstrated tumor inhibitory effect of SEMA3A antibody in GBM progression and present its potential relevance as a therapeutic agent in a clinical framework.

  19. Quercetin as an Emerging Anti-Melanoma Agent: A four-focus area therapeutic development strategy

    Directory of Open Access Journals (Sweden)

    Zoey Harris

    2016-10-01

    Full Text Available Replacing current refractory treatments for melanoma with new prevention and therapeutic approaches is crucial in order to successfully treat this aggressive cancer form. Melanoma develops from neural crest cells, which express tyrosinase -- a key enzyme in the pigmentation pathway. The tyrosinase enzyme is highly active in melanoma cells and metabolizes polyphenolic compounds; tyrosinase expression thus makes a feasible a target for polyphenol-based therapies. For example, quercetin (3,3′,4′,5,7-pentahydroxyflavone is a highly ubiquitous and well-classified dietary polyphenol found in various fruits, vegetables and other plant products including onions, broccoli, kale, oranges, blueberries, apples, and tea. Quercetin has demonstrated anti-proliferative and pro-apoptotic activity in various cancer cell types. Quercetin is readily metabolized by tyrosinase into various compounds that promote anti-cancer activity; additionally, given that tyrosinase expression increases during tumorigenesis, and its activity is associated with pigmentation changes in both early- and late-stage melanocytic lesions, it suggests that quercetin can be used to target melanoma. In this review we explore the potential of Quercetin as an anti-melanoma agent utilizing and extrapolating on evidence from previous in vitro studies in various human malignant cell lines and propose a four-focus area strategy to develop quercetin as a targeted anti-melanoma compound for use as either a preventative or therapeutic agent. The four areas of focus include utilizing quercetin to i modulate cellular bioreduction potential and associated signaling cascades, ii affect transcription of relevant genes, iii regulate epigenetic processes, and iv develop effective combination therapies and delivery modalities/protocols. In general, quercetin could be used to exploit tyrosinase activity to prevent, and/or treat, melanoma with minimal additional side effects.

  20. Fibrous guided tissue regeneration membrane loaded with anti-inflammatory agent prepared by coaxial electrospinning for the purpose of controlled release

    Energy Technology Data Exchange (ETDEWEB)

    He, Min; Xue, Jiajia [Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029 (China); Geng, Huan; Gu, Hao [State Key Laboratory of Organic–Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Chen, Dafu [Laboratory of Bone Tissue Engineering of Beijing Research Institute of Traumatology and Orthopaedics, Beijing 100035 (China); Shi, Rui, E-mail: sharell@126.com [Laboratory of Bone Tissue Engineering of Beijing Research Institute of Traumatology and Orthopaedics, Beijing 100035 (China); Zhang, Liqun, E-mail: zhanglq@mail.buct.edu.cn [Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029 (China); State Key Laboratory of Organic–Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China)

    2015-04-30

    Graphical abstract: The metronidazole released from PCL/gelatin core/sheath nanofiber membranes can effectively inhibit the colonization of anerobic bacteria. - Highlights: • Core/sheath PCL/gelatin nanofiber membrane loaded with metronidazole in a wide range of drug loading (5–35 wt.%) were successfully fabricated in good quality. • The encapsulation of gelatin can effectively alleviate the initial burst release of drugs. • The membrane can inhibit the growth of bacteria as the drug content reaches 10% (w/w), and the bacterial inhibition ability can effectively last at least 4 weeks. • The encapsulation of gelatin can overcome the disadvantage of PCL's hydrophobicity, which can effectively promote the adhesion and proliferation of cells. - Abstract: Here, with the aim of inhibiting inflammation during guided tissue regeneration membrane (GTRM) implant surgery, coaxial electrospinning was used to fabricate drug-loaded core/sheath nanofiber GTRMs capable of controlled drug release. Various amounts of the anti-inflammatory agent metronidazole (MNA) were encapsulated into the core/sheath nanofibers (where PCL was the core, gelatin the sheath, and the gelatin shell was crosslinked with genipin) in order to establish the minimal drug content necessary to achieve the appropriate anti-inflammatory effect. By using TEM and SEM, the core/sheath structure was confirmed. In vitro drug disolution results showed that the core/sheath nanofibers exhibited sustained release profiles that were superior to those nanofibers produced by blending electrospinning. Additionally, the membrane significantly inhibited the colonization of anaerobic bacteria. Furthermore, with gelatin as a shell, the core/shell nanofiber membranes showed improved hydrophilicity, which resulted in better cell adhesion and proliferation without cytotoxicity. Therefore, in this study, a simple and effective coaxial electrospinning approach was demonstrated for the fabrication of anti

  1. Bacterial agents and antibiotic sensitivity in children with urinary infection in two hospitals of Popayan, Colombia

    Directory of Open Access Journals (Sweden)

    Carolina Álvarez-Czeczotta

    2012-06-01

    Full Text Available Introduction: Urinary Tract Infection (UTI is a common condition in children. Isolation of bacteria and early management is a priority in order to contribute to the reduction of morbidity and avoid bacterial resistance. Objectives: To identify bacterial etiologic agents and antibiotic sensitivity in children (1 month to 5 years of age with UTI in two hospitals of Popayán, Colombia. Materials and methods: We conducted a cross-sectional study in children aged 1 month to 5 years of age who consulted the emergency services of two hospitals with clinical suspicion of UTI. The sample was 123 children. Using an instrument collected demographic variables, signs and symptoms, results of urinalysis, urine culture, sensitivity testing, treatment, and UTI classification. We determined the frequency and proportions of sociodemographic and clinical variables, bacterial agents and antibiotic resistance. Data was analyzed using SPSS 11.5 program. Results: We included 129 children diagnosed with UTI with positive urine culture, bladder catheter taken with 97.7% of cases. 74.8% of patients were female. Escherichia coli was the seed that was isolated more frequently (95.4%, then Sp Proteus (2.4%, and Klebsiella pneumoniae (1.6%. The antibiotics to which the bacteria showed adequate sensitivity were: ceftriaxone, amikacin, gentamicin, ciprofloxacin, nitrofurantoin, cefuroxime and cephalexin. Showed low sensitivity: ampicillin and trimethoprim sulfa. Conclusions: Escherichia coli was the bacteria that cause of UTI in our study population. For initial empiric treatment of hospitalized patients would recommend parenteral drug third generation cephalosporins (ceftriaxone and aminoglycosides (amikacin, gentamicin. For outpatient management, oral antibiotics showed greater sensitivity were nalidixic acid, cefuroxime and cephalexin.

  2. A peptide from human β thymosin as a platform for the development of new anti-biofilm agents for Staphylococcus spp. and Pseudomonas aeruginosa.

    Science.gov (United States)

    Schillaci, Domenico; Spinello, Angelo; Cusimano, Maria Grazia; Cascioferro, Stella; Barone, Giampaolo; Vitale, Maria; Arizza, Vincenzo

    2016-08-01

    Conventional antibiotics might fail in the treatment of biofilm-associated infections causing infection recurrence and chronicity. The search for antimicrobial peptides has been performed with the aim to discover novel anti-infective agents active on pathogens in both planktonic and biofilm associated forms. The fragment 9-19 of human thymosin β4 was studied through 1 μs MD simulation. Two main conformations of the peptide were detected, both constituted by a central hydrophobic core and by the presence of peripheral charged residues suggesting a possible mechanism of interaction with two models of biological membranes, related to eukaryotic or bacterial membrane respectively. In addition, the peptide was chemically synthesized and its antimicrobial activity was tested in vitro against planktonic and biofilm form of a group of reference strains of Staphylococcus spp. and one P. aeruginosa strain. The human thymosin β4 fragment EIEKFDKSKLK showed antibacterial activity against staphylococcal strains and Pseudomonas aeruginosa ATCC 15442 at concentrations from 12.5 to 6.2 mg/ml and inhibited biofilm formation at sub-inhibitory concentrations (3.1-0.75 mg/ml). The activity of the fragment in inhibiting biofilm formation, could be due to the conformations highlighted by the MD simulations, suggesting its interaction with the bacterial membrane. Human thymosin β4 fragment can be considered a promising lead compound to develop novel synthetic or recombinant derivatives with improved pharmaceutical potential.

  3. Insights into the optical and anti-bacterial properties of biogenic PbSe quantum rods

    Directory of Open Access Journals (Sweden)

    Jaya Mary Jacob

    2016-07-01

    Full Text Available The detailed optical properties of lead selenide (PbSe quantum rods biosynthesized in marine Aspergillus terreus were apprehended theoretically using ab initio calculations based on the experimental absorption spectrum. These studies indicate that the absorption coefficient of the biosynthesized PbSe quantum rods increases linearly with incident photon energies. The variation of other optical constants like extinction coefficient, refractive index and reflectance was comparable to that of the chemically synthesized counterparts. Further, the high dielectric constant and remarkable fluorescence of the biogenic PbSe quantum rods pronounce their application in opto-electronic devices in the Near Infra-Red and Ultraviolet spectral regime. The biosynthesized PbSe quantum rods were also found to possess appreciable anti-bacterial activity against various gram positive and gram negative bacterial species thus enhancing the relevance of the same for practical utility. Based on these results it can be concluded that biogenic PbSe quantum rods can be envisaged as potential candidates for bio-imaging, bio-sensing and other photo-voltaic applications.

  4. The status of rheumatoid factor and anti-cyclic citrullinated peptide antibody are not associated with the effect of anti-TNFα agent treatment in patients with rheumatoid arthritis: a meta-analysis.

    Directory of Open Access Journals (Sweden)

    Qianwen Lv

    Full Text Available OBJECTIVES: This meta-analysis was conducted to investigate whether the status of rheumatoid factor (RF and anti-cyclic citrullinated peptide (anti-CCP antibody are associated with the clinical response to anti-tumor necrosis factor (TNF alpha treatment in rheumatoid arthritis (RA. METHODS: A systemic literature review was performed using the MEDLINE, SCOPUS, Cochrane Library, ISI Web of Knowledge, and Clinical Trials Register databases, and Hayden's criteria of quality assessment for prognostic studies were used to evaluate all of the studies. The correlation between the RF and anti-CCP antibody status with the treatment effect of anti-TNFα agents was analyzed separately using the Mantel Haenszel method. A fixed-effects model was used when there was no significant heterogeneity; otherwise, a random-effects model was applied. Publication bias was assessed using Egger's linear regression and a funnel plot. RESULTS: A total of 14 studies involving 5561 RA patients meeting the inclusion criteria were included. The overall analysis showed that the pooled relative risk for the predictive effects of the RF and anti-CCP antibody status on patient response to anti-TNFα agents was 0.98 (95% CI: 0.91-1.05, p=0.54 and 0.88 (95% CI: 0.76-1.03, p=0.11, respectively, with I(2 values of 43% (p=0.05 and 67% (p<0.01, respectively. Subgroup analyses of different anti-TNFα treatments (infliximab vs. etanercept vs. adalimumab vs. golimumab, response criteria (DAS28 vs. ACR20 vs. EULAR response, follow-up period (≥ 6 vs. <6 months, and ethnic group did not reveal a significant association for the status of RF and anti-CCP. CONCLUSIONS: Neither the RF nor anti-CCP antibody status in RA patients is associated with a clinical response to anti-TNFα treatment.

  5. Increased risk of post-operative complications in patients with Crohn’s disease treated with anti-tumour necrosis factor α agents - a systematic review

    DEFF Research Database (Denmark)

    El-Hussuna, Alaa; Theede, Klaus; Olaison, Per Olov Gunnar

    2014-01-01

    INTRODUCTION: Tumour necrosis factor α (TNF-α) plays a role in the immune defence, angiogenesis and collagen synthesis. Inhibition of these pathways may increase the risk of infections and impair wound healing in patients after surgery. Biologic treatments including anti-TNF-α agents are increasi......INTRODUCTION: Tumour necrosis factor α (TNF-α) plays a role in the immune defence, angiogenesis and collagen synthesis. Inhibition of these pathways may increase the risk of infections and impair wound healing in patients after surgery. Biologic treatments including anti-TNF-α agents...... are increasingly used in the treatment of inflammatory bowel disease. Taking into consideration the biologics' mechanism of action, fears have been expressed that they might increase the rate of post-operative complications. Results from 18 retrospective studies were conflicting, and meta-analyses based...... an increased risk of overall post-operative complications and an increased rate of infectious or anastomosis-related complications in patients receiving anti-TNF-α. CONCLUSION: The use of anti-TNF-α agents in Crohn's disease patients is associated with an increased risk of post-operative complications after...

  6. An overview of structure-activity relationship studies of curcumin analogs as antioxidant and anti-inflammatory agents.

    Science.gov (United States)

    Arshad, Laiba; Haque, Md Areeful; Abbas Bukhari, Syed Nasir; Jantan, Ibrahim

    2017-04-01

    Curcumin, extracted mainly from Curcuma longa rhizomes, has been reported to possess potent anti-inflammatory and anti-oxidant activities. Although safe at higher doses and exhibiting multiple biological activities, curcumin still has the problem of poor bioavailability which has been an attractive area of research over the last few years. A number of efforts have been made by modifying structural features of curcumin. This review highlights the structurally modified and more stable newly synthesized curcumin analogs that have been screened against antioxidant and anti-inflammatory activities. Also the structure-activity relationship to gain insight into future guidelines for scheming new compounds has been discussed, and further these analogs being more stable may serve as promising agents for use in different pathological conditions.

  7. Design, synthesis and development of novel indolocarbazole derivatives as potential anti-cancer agents

    OpenAIRE

    Pierce, Laurence Thomas

    2011-01-01

    This thesis describes work carried out on the design of new routes to a range of bisindolylmaleimide and indolo[2,3-a]carbazole analogs, and investigation of their potential as successful anti-cancer agents. Following initial investigation of classical routes to indolo[2,3-a]pyrrolo[3,4-c]carbazole aglycons, a new strategy employing base-mediated condensation of thiourea and guanidine with a bisindolyl β-ketoester intermediate afforded novel 5,6-bisindolylpyrimidin-4(3H)-ones in moderat...

  8. Radiolabelled anti-human fibrin antibody: a new thrombus-detecting agent

    International Nuclear Information System (INIS)

    Bosnjakovic, V.; Jankovic, B.D.; Horvat, J.; Cvoric, J.

    1977-01-01

    Rabbit anti-human fibrin globulin (A.F.G.) was labelled with iodine ( 131 I) and used as a thrombus-detecting agent. 131 I-A.F.G. labelled thrombi were displayed by means of a gamma scintillation camera. Normal subjects and patients with thrombo-phlebitis of legs, acute fibrin depositions other than thrombi, and chronic varicosities were examined. The 131 I-A.F.G. technique detected both formed thrombi and those that were forming and could discriminate between acute thrombosis and chronic varicosities. Thrombo-phlebitis and extravascular fibrin depositions were best demonstrated between 24 and 72 hours after 131 I-A.F.G. injection. Radiolabelled A.F.G. in normal veins and chronic varicosities was best displayed within 6 hours of injection. (author)

  9. Direct bacterial killing in vitro by recombinant Nod2 is compromised by Crohn's disease-associated mutations.

    Directory of Open Access Journals (Sweden)

    Laurent-Herve Perez

    2010-06-01

    Full Text Available A homeostatic relationship with the intestinal microflora is increasingly appreciated as essential for human health and wellbeing. Mutations in the leucine-rich repeat (LRR domain of Nod2, a bacterial recognition protein, are associated with development of the inflammatory bowel disorder, Crohn's disease. We investigated the molecular mechanisms underlying disruption of intestinal symbiosis in patients carrying Nod2 mutations.In this study, using purified recombinant LRR domains, we demonstrate that Nod2 is a direct antimicrobial agent and this activity is generally deficient in proteins carrying Crohn's-associated mutations. Wild-type, but not Crohn's-associated, Nod2 LRR domains directly interacted with bacteria in vitro, altered their metabolism and disrupted the integrity of the plasma membrane. Antibiotic activity was also expressed by the LRR domains of Nod1 and other pattern recognition receptors suggesting that the LRR domain is a conserved anti-microbial motif supporting innate cellular immunity.The lack of anti-bacterial activity demonstrated with Crohn's-associated Nod2 mutations in vitro, supports the hypothesis that a deficiency in direct bacterial killing contributes to the association of Nod2 polymorphisms with the disease.

  10. Antibacterial and Antioxidant Activities of Liquidambar Orientalis Mill. Various Extracts Against Bacterial Pathogens Causing Mastitis

    Directory of Open Access Journals (Sweden)

    Gülten Ökmen

    2017-08-01

    Full Text Available Antibiotic resistance is being constantly developed worldwide. Coagulase Negative Staphylococci (CNS and Staphylococcus aureus are common causes of bovine subclinical mastitis. Bioactive compound of medicinal plants shows anti-microbial, anti-mutagenic and anti-oxidant effects. The anti-bacterial and anti-oxidant activities of Liquidambar orientalis (L. orientalis extracts on subclinical mastitis causing bacteria in cows have not been reported to date. The aim of the present study was to examine anti-bacterial and anti-oxidant effects of L. orientalis leaf extracts on S. aureus and CNS isolated from cows with subclinical mastitis symptoms. In this study, 3.2 mg/mL minimum inhibitory concentration (MIC of ethanol extracts of L. orientalis has shown to be a most potent anti-bacterial and anti-oxidant for all isolated bacterial species from mastitis cows. In this study, it was investigated anti-bacterial and anti-oxidant potentials of acetone, methanol and ethanol extracts of the L. orientalis. The acetone extract showed maximum inhibition zone against S. aureus numbered 17 (12 mm. In addition to anti-bacterial properties, anti-oxidant activity of L. orientalis extract was examined by ABTS [2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid] free radical assay. Trolox was used as a positive control anti-oxidant. Ethanol extract exhibited a strong anti-oxidant activity like Trolox anti-oxidant which was effective at 2.58 mM concentration. Bioactive compounds of sweet gum may be useful to screening mastitis causing bacteria for clinical applications.

  11. Efficacy of intravitreal injection of anti-vascular endothelial growth factor agents for stage 4 retinopathy of prematurity.

    Science.gov (United States)

    Cheng, Hui-Chen; Lee, Shui-Mei; Hsieh, Yi-Ting; Lin, Po-Kang

    2015-04-01

    To investigate the efficacy of intravitreal injection of anti-vascular endothelial growth factor agents for Stage 4 retinopathy of prematurity. Retrospective case series study. The medical records of patients receiving intravitreal injection of anti-vascular endothelial growth factor agents for Stage 4 retinopathy of prematurity from January 2007 to May 2012 in Taipei Veterans General Hospital were reviewed. A total of 13 eyes of 7 patients (3 boys and 4 girls) with Stage 4 retinopathy of prematurity were included. The mean gestational age and birth weight were 27.6 ± 2.6 weeks (range, 24.5-30.5 weeks) and 893.1 ± 293.2 g (range, 550-1422 g), respectively. The mean age at the time of injection was 38.2 ± 1.9 weeks (range, 36.0-41.5 weeks) postmenstrual age, and the mean follow-up period was 37.8 ± 19.5 months (range, 11.0-67.5 months). The active neovascularization regressed rapidly, and the anatomical outcomes were favorable in all patients. One eye developed recurrent retinal hemorrhage with localized retinal detachment 21 weeks after initial treatment, which resolved after a second injection. There were no ocular or systemic complications in these patients. Intravitreal injection of anti-vascular endothelial growth factor agents may be effective as monotherapy or as supplement to failed laser treatment for patients with Stage 4 retinopathy of prematurity without additional surgical intervention. Further randomized controlled trials are necessary to compare the clinical efficacy and safety with other conventional interventions.

  12. Anti-lipolytic activity and phytochemical screening ofChelianthesalbomarginataagainst pathogenic microorganisms

    Directory of Open Access Journals (Sweden)

    Rini Jarial

    2017-12-01

    Full Text Available ABSTRACT:The aim of the present study was to evaluate the therapeutic properties of selected fern, Chelianthusalbomarginataand to identify its functional compounds. The methanolic fern-extract (MFE of these ferns was assessed for anti-bacterial activities by measuring inhibition zones against a panel of pathogenic bacterial strains using agar diffusion method. MFE at a concentration of 25 μg/ml showed marked anti-bacterial activity against all bacterial strains (6-23mm zone of inhibition and was maximum against Enterobacter sp (23 mm. In addition, the MFE of C. albomarginatahad the best MIC values of 2.25µg/ml against S. aureus and Enterobacter sp., respectively. The MFE also possessed good anti-lipolytic activity (66.5% against a porcine pancreatic lipase (PPL and cholesterol oxidase inhibition (79%. This result showed that MFE of C. albomarginataunder optimal concentrationis not only a potent source of natural anti-oxidants and anti-bacterial activity but also possesses efficient cholesterol degradation and anti-lipolytic activities, that is to be beneficial in the body weight management.

  13. Effects of some nonsteroidal anti-inflammatory agents on experimental radiation pneumonitis

    Energy Technology Data Exchange (ETDEWEB)

    Gross, N.J.; Holloway, N.O.; Narine, K.R. (Medical Radiology Service, Hines VA Hospital, Maywood, IL (United States))

    1991-09-01

    Corticosteroids have previously been found to be protective against the mortality of radiation pneumonitis in mice, even when given well after lethal lung irradiation. The authors explored the possibility that this effect was due to their well-known anti-inflammatory actions by giving various nonsteroidal inhibitors of arachidonate metabolism to groups of mice that had received 19 Gy to the thorax (bilaterally). Treatments of four cyclooxygenase inhibitors, one lipoxygenase inhibitor, and one leukotriene receptor antagonist, given by various routes in various doses, were commenced 10 weeks after irradiation or sham irradiation and continued throughout the period when death from radiation pneumonitis occurs, 11-26 weeks after irradiation. Each of the treatments had the appropriate effect on arachidonate metabolism in the lungs as assessed by LTB4 and PGE2 levels in lung lavage fluid. The principal end point was mortality. The 5-lipoxygenase inhibitor diethylcarbamazine and the LTD4/LTE4 receptor antagonist LY 171883 markedly reduced mortality in dose-response fashion. The effects of cyclooxygenase inhibitors were divergent; piroxicam and ibuprofen were marginally protective, indomethacin in all doses accelerated mortality, and aspirin reduced mortality in a dose-response fashion. These results suggest that the protective effect of corticosteroids in radiation pneumonitis can be tentatively attributed to their anti-inflammatory actions, and that nonsteroidal anti-inflammatory agents, particularly those that affect lipoxygenase products, may offer equal or better protection than corticosteroids against mortality due to radiation pneumonitis.

  14. Effects of some nonsteroidal anti-inflammatory agents on experimental radiation pneumonitis

    International Nuclear Information System (INIS)

    Gross, N.J.; Holloway, N.O.; Narine, K.R.

    1991-01-01

    Corticosteroids have previously been found to be protective against the mortality of radiation pneumonitis in mice, even when given well after lethal lung irradiation. The authors explored the possibility that this effect was due to their well-known anti-inflammatory actions by giving various nonsteroidal inhibitors of arachidonate metabolism to groups of mice that had received 19 Gy to the thorax (bilaterally). Treatments of four cyclooxygenase inhibitors, one lipoxygenase inhibitor, and one leukotriene receptor antagonist, given by various routes in various doses, were commenced 10 weeks after irradiation or sham irradiation and continued throughout the period when death from radiation pneumonitis occurs, 11-26 weeks after irradiation. Each of the treatments had the appropriate effect on arachidonate metabolism in the lungs as assessed by LTB4 and PGE2 levels in lung lavage fluid. The principal end point was mortality. The 5-lipoxygenase inhibitor diethylcarbamazine and the LTD4/LTE4 receptor antagonist LY 171883 markedly reduced mortality in dose-response fashion. The effects of cyclooxygenase inhibitors were divergent; piroxicam and ibuprofen were marginally protective, indomethacin in all doses accelerated mortality, and aspirin reduced mortality in a dose-response fashion. These results suggest that the protective effect of corticosteroids in radiation pneumonitis can be tentatively attributed to their anti-inflammatory actions, and that nonsteroidal anti-inflammatory agents, particularly those that affect lipoxygenase products, may offer equal or better protection than corticosteroids against mortality due to radiation pneumonitis

  15. Characterization of Anti-bacterial Compounds from the Seed Coat of Chinese Windmill Palm Tree (Trachycarpus fortunei

    Directory of Open Access Journals (Sweden)

    Shakeel Ahmed

    2017-10-01

    Full Text Available The increasing of multidrug resistance in bacterial associated infections has impaired the current antimicrobial therapy and it forces the search for other alternatives. In this study, we aimed to find the in vitro antibacterial activity of seed coat of Trachycarpus fortunei against a panel of clinically important bacterial species. Ethanolic extracts of target tissues were fractionated through macro porous resin by column chromatography, using ethanol as an organic solvent with a concentration gradient of 0–100%, each along with 20% concentration increment. The minimum inhibitory (MIC concentrations of all fractions were measured. It is found that 20% ethanolic fraction showed the most significant inhibition against tested bacterial species. All fractions were analyzed by Ultra-Performance Liquid Chromatography/mass spectrometry (UPLC/MS and compounds were identified by comparing mass spectra with standard libraries. By pairing the identified compounds from different fractions with the antibacterial activity of each fraction, it was shown that compounds stearamide (7, 1-(4-Fluorophenyl-2-(methylthio-1H-imidazole-5-carboxylic acid (9 and 2,4,5 triacetoxybiphenyl (10 topped in the list for anti-bacterial activity. Further experiment with pure chemicals verified that compounds 9 and 10 have antibacterial activity against Gram-negative bacteria. Whereas, the lowest MIC value (39.06 μg/mL was obtained by compound 10 against Staphylococcus epidermidis. Hence, the seed coat of T. fortunei with its antimicrobial spectrum could be a good candidate for further bactericidal research.

  16. Characterization of Anti-bacterial Compounds from the Seed Coat of Chinese Windmill Palm Tree (Trachycarpus fortunei).

    Science.gov (United States)

    Ahmed, Shakeel; Liu, Huimin; Ahmad, Aqeel; Akram, Waheed; Abdelrahman, Eman K N; Ran, Fengming; Ou, Wuling; Dong, Shuang; Cai, Qian; Zhang, Qiyun; Li, Xiaohua; Hu, Sheng; Hu, Xuebo

    2017-01-01

    The increasing of multidrug resistance in bacterial associated infections has impaired the current antimicrobial therapy and it forces the search for other alternatives. In this study, we aimed to find the in vitro antibacterial activity of seed coat of Trachycarpus fortunei against a panel of clinically important bacterial species. Ethanolic extracts of target tissues were fractionated through macro porous resin by column chromatography, using ethanol as an organic solvent with a concentration gradient of 0-100%, each along with 20% concentration increment. The minimum inhibitory (MIC) concentrations of all fractions were measured. It is found that 20% ethanolic fraction showed the most significant inhibition against tested bacterial species. All fractions were analyzed by Ultra-Performance Liquid Chromatography/mass spectrometry (UPLC/MS) and compounds were identified by comparing mass spectra with standard libraries. By pairing the identified compounds from different fractions with the antibacterial activity of each fraction, it was shown that compounds stearamide (7), 1-(4-Fluorophenyl)-2-(methylthio)-1H-imidazole-5-carboxylic acid (9) and 2,4,5 triacetoxybiphenyl (10) topped in the list for anti-bacterial activity. Further experiment with pure chemicals verified that compounds 9 and 10 have antibacterial activity against Gram-negative bacteria. Whereas, the lowest MIC value (39.06 μg/mL) was obtained by compound 10 against Staphylococcus epidermidis . Hence, the seed coat of T. fortunei with its antimicrobial spectrum could be a good candidate for further bactericidal research.

  17. Limulus amebocyte lysate technique (LAL) for bacterial endotoxin control in radiodiagnosis agents (kits) and radioisotopes

    International Nuclear Information System (INIS)

    Morote, M.; Robles, A.; Ramos, B.; Otero, M.

    1997-01-01

    A procedure based on a fast technique of LAL individual kits has been devised to control bacterial endotoxins in radiodiagnosis agents (RDA): HEMTEC, DEIDA, PPI, AMD, GHCa, RENTEC, DMSA, MAA, TSC, HERTEC, DTPA, BRATEC and EDTMP as well as in radioisotopes I-131 and Tc99m. The procedures begins with the determination of the following values, injection volume (IV), endotoxin limits (EL), maximum valid dilution (MVD), total mass (TM), reconstitution volume (RV), concentration (mg/ml), and final dilution (FD). Subsequently, a procedure is carried out to conduct an 'in vitro' control of the radiodiagnosis agents and radioisotopes with LAL individual kits; the procedures includes: reconstitution of the sample to be controlled, dilution, inoculation of the diluted sample in LAL tubes and incubation at 37 o C for an hour. Finally, results are interpreted through the observation of gel formation or not in LAL tubes

  18. Simultaneous virtual prediction of anti-Escherichia coli activities and ADMET profiles: A chemoinformatic complementary approach for high-throughput screening.

    Science.gov (United States)

    Speck-Planche, Alejandro; Cordeiro, M N D S

    2014-02-10

    Escherichia coli remains one of the principal pathogens that cause nosocomial infections, medical conditions that are increasingly common in healthcare facilities. E. coli is intrinsically resistant to many antibiotics, and multidrug-resistant strains have emerged recently. Chemoinformatics has been a great ally of experimental methodologies such as high-throughput screening, playing an important role in the discovery of effective antibacterial agents. However, there is no approach that can design safer anti-E. coli agents, because of the multifactorial nature and complexity of bacterial diseases and the lack of desirable ADMET (absorption, distribution, metabolism, elimination, and toxicity) profiles as a major cause of disapproval of drugs. In this work, we introduce the first multitasking model based on quantitative-structure biological effect relationships (mtk-QSBER) for simultaneous virtual prediction of anti-E. coli activities and ADMET properties of drugs and/or chemicals under many experimental conditions. The mtk-QSBER model was developed from a large and heterogeneous data set of more than 37800 cases, exhibiting overall accuracies of >95% in both training and prediction (validation) sets. The utility of our mtk-QSBER model was demonstrated by performing virtual prediction of properties for the investigational drug avarofloxacin (AVX) under 260 different experimental conditions. Results converged with the experimental evidence, confirming the remarkable anti-E. coli activities and safety of AVX. Predictions also showed that our mtk-QSBER model can be a promising computational tool for virtual screening of desirable anti-E. coli agents, and this chemoinformatic approach could be extended to the search for safer drugs with defined pharmacological activities.

  19. Marketed nonsteroidal anti-inflammatory agents, antihypertensives, and human immunodeficiency virus protease inhibitors: as-yet-unused weapons of the oncologists’ arsenal

    Directory of Open Access Journals (Sweden)

    Papanagnou P

    2015-05-01

    Full Text Available Panagiota Papanagnou,1 Panagiotis Baltopoulos,2 Maria Tsironi1 1Department of Nursing, Faculty of Human Movement and Quality of Life Sciences, University of Peloponnese, Sparta, 2Department of Sports Medicine and Biology of Physical Activity, Faculty of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece Abstract: Experimental data indicate that several pharmacological agents that have long been used for the management of various diseases unrelated to cancer exhibit profound in vitro and in vivo anticancer activity. This is of major clinical importance, since it would possibly aid in reassessing the therapeutic use of currently used agents for which clinicians already have experience. Further, this would obviate the time-consuming process required for the development and the approval of novel antineoplastic drugs. Herein, both pre-clinical and clinical data concerning the antineoplastic function of distinct commercially available pharmacological agents that are not currently used in the field of oncology, ie, nonsteroidal anti-inflammatory drugs, antihypertensive agents, and anti-human immunodeficiency virus agents inhibiting viral protease, are reviewed. The aim is to provide integrated information regarding not only the molecular basis of the antitumor function of these agents but also the applicability of the reevaluation of their therapeutic range in the clinical setting. Keywords: repositioning, tumorigenesis, pleiotropy, exploitation

  20. Clinical Features and Antimicrobial Resistance of Bacterial Agents of Ventilator-Associated Tracheobronchitis in Hamedan, Iran

    Directory of Open Access Journals (Sweden)

    Seyyed Hamid Hashemi

    2017-09-01

    Full Text Available Objectives: Ventilator-associated tracheobronchitis (VAT is a common cause of mortality and morbidity in patients admitted to intensive care units (ICUs. This study was conducted to evaluate the clinical course, etiology, and antimicrobial resistance of bacterial agents of VAT in ICUs in Hamedan, Iran. Methods: During a 12-month period, all patients with VAT in a medical and a surgical ICU were included. The criteria for the diagnosis of VAT were fever, mucus production, a positive culture of tracheal secretions, and the absence of lung infiltration. Clinical course, including changes in temperature and tracheal secretions, and outcomes were followed. The endotracheal aspirates were cultured on blood agar and chocolate agar, and antimicrobial susceptibility testing of isolates were performed using the disk diffusion method. Results: Of the 1 070 ICU patients, 69 (6.4% were diagnosed with VAT. The mean interval between the patient’s intubation and the onset of symptoms was 4.7±8.5 days. The mean duration of response to treatment was 4.9±4.7 days. A total of 23 patients (33.3% progressed to ventilator-associated pneumonia (VAP, and 38 patients (55.0% died. The most prevalent bacterial isolates included Acinetobacter baumannii (24.6%, Pseudomonas aeruginosa (20.2%, and Enterobacter(13.0%. P. aeruginosa and Enterobacter were the most prevalent bacteria in surgical ICU, and A. baumannii and K. pneumoniae were the most common in the medical ICU. All A. baumannii and Citrobacter species were multidrug-resistant (MDR. MDR pathogens were more prevalent in medical ICU compared to surgical ICU (p < 0.001. Conclusions: VAT increases the rates of progression to VAP, the need for tracheostomy, and the incidence of mortality in ICUs. Most bacterial agents of VAT are MDR. Preventive policies for VAP, including the use of ventilator care bundle, and appropriate empirical antibiotic therapy for VAT may reduce the incidence of VAP.

  1. Activity of antimicrobial peptide mimetics in the oral cavity: II. Activity against periopathogenic biofilms and anti-inflammatory activity

    Science.gov (United States)

    Hua, J; Scott, R.W.; Diamond, G

    2011-01-01

    Whereas periodontal disease is ultimately of bacterial etiology, from multispecies biofilms of gram-negative anaerobic microorganisms, much of the deleterious effects are caused by the resultant epithelial inflammatory response. Hence, development of a treatment that combines anti-biofilm antibiotic activity with anti-inflammatory activity would be of great utility. Antimicrobial peptides (AMPs) such as defensins are naturally occurring peptides that exhibit broad-spectrum activity as well as a variety of immunomodulatory activities. Furthermore, bacteria do not readily develop resistance to these agents. However, clinical studies have suggested that they do not represent optimal candidates for exogenous therapeutic agents. Small-molecule mimetics of these AMPs exhibit similar activities to the parent peptides, in addition to having low toxicity, high stability and low cost. To determine whether AMP mimetics have the potential for treatment of periodontal disease, we examined the activity of one mimetic, mPE, against biofilm cultures of Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis. Metabolic assays as well as culture and biomass measurement assays demonstrated that mPE exhibits potent activity against biofilm cultures of both species. Furthermore, as little as 2 µg ml−1 mPE was sufficient to inhibit interleukin-1β-induced secretion of interleukin-8 in both gingival epithelial cells and THP-1 cells. This anti-inflammatory activity is associated with a reduction in activation of nuclear factor-κB, suggesting that mPE can act both as an anti-biofilm agent in an anaerobic environment and as an anti-inflammatory agent in infected tissues. PMID:21040516

  2. Synthesis and pharmacological evaluation of pyrazolo[4,3-c]cinnoline derivatives as potential anti-inflammatory and antibacterial agents.

    Science.gov (United States)

    Tonk, Rajiv Kumar; Bawa, Sandhya; Chawla, Gita; Deora, Girdhar Singh; Kumar, Suresh; Rathore, Vandana; Mulakayala, Naveen; Rajaram, Azad; Kalle, Arunasree M; Afzal, Obaid

    2012-11-01

    A series of pyrazolo[4,3-c]cinnoline derivatives was synthesized, characterized and evaluated for anti-inflammatory and antibacterial activity. Test compounds that exhibited good anti-inflammatory activity were further screened for their ulcerogenic and lipid peroxidation activity. Compounds 4d and 4l showed promising anti-inflammatory activity with reduced ulcerogenic and lipid peroxidation activity when compared to naproxen. Docking results of these two compounds with COX-2 (PDB ID: 1CX2) also exhibited a strong binding profile. Among the test derivatives, compound 4i displayed significant antibacterial property against gram-negative (Escherichia coli and Pseudomonas aeruginosa) and gram-positive (Staphylococcus aureus) bacteria. However, compound 4b emerged as the best dual anti-inflammatory-antibacterial agent in the present study. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  3. POOLED ESTIMATES OF INCIDENCE OF ENDOPHTHALMITIS AFTER INTRAVITREAL INJECTION OF ANTI-VASCULAR ENDOTHELIAL GROWTH FACTOR AGENTS WITH AND WITHOUT TOPICAL ANTIBIOTIC PROPHYLAXIS.

    Science.gov (United States)

    Reibaldi, Michele; Pulvirenti, Alfredo; Avitabile, Teresio; Bonfiglio, Vincenza; Russo, Andrea; Mariotti, Cesare; Bucolo, Claudio; Mastropasqua, Rodolfo; Parisi, Guglielmo; Longo, Antonio

    2018-01-01

    To assess the effect of topical antibiotic prophylaxis on postoperative endophthalmitis after intravitreal injection of anti-vascular endothelial growth factor agents. A systematic literature search was performed from inception to March 2016 using PubMed, Medline, Web of Science, Embase, and the Cochrane Library, to identify articles that reported cases of endophthalmitis after intravitreal injection of anti-vascular endothelial growth factor agents. We used a pooled analysis to estimate the incidence of cases of endophthalmitis who developed after injections performed with and without topical antibiotic prophylaxis. We used regression analysis to explore the effects of study characteristics on heterogeneity. From our search of electronic databases, we identified and screened 4,561 unique records. We judged 60 articles to have reported findings for cohorts of patients who met our inclusion criteria, (12 arms of randomized clinical trials, 11 prospective cohort studies, and 37 retrospective cohort studies), which included 244 cases of endophthalmitis and 639,391 intravitreal injections of anti-vascular endothelial growth factor agents. The final pooled estimate endophthalmitis proportions were 9/10,000 (95% confidence interval, 7/10,000-12/10,000) in the antibiotic-treated group and 3/10,000 (95% confidence interval, 2/10,000-5/10,000) in the untreated group. The estimated incidence of endophthalmitis with topical antibiotic prophylaxis was approximated three times the incidence without prophylaxis. Random effects regression showed that none of the study characteristics significantly affected the effect size in either group. Topical antibiotic after intravitreal injection of anti-vascular endothelial growth factor agents is associated with a higher risk of endophthalmitis.

  4. Anti-plaque effect of a synergistic combination of green tea and Salvadora persica L. against primary colonizers of dental plaque.

    Science.gov (United States)

    Abdulbaqi, Hayder Raad; Himratul-Aznita, Wan Harun; Baharuddin, Nor Adinar

    2016-10-01

    Green tea (Gt), leafs of Camellia sinensis var. assamica, is widely consumed as healthy beverage since thousands of years in Asian countries. Chewing sticks (miswak) of Salvadora persica L. (Sp) are traditionally used as natural brush to ensure oral health in developing countries. Both Gt and Sp extracts were reported to have anti-bacterial activity against many dental plaque bacteria. However, their combination has never been tested to have anti-bacterial and anti-adherence effect against primary dental plaque colonizers, playing an initial role in the dental plaque development, which was investigated in this study. Two-fold serial micro-dilution method was used to measure minimal inhibitory concentration (MIC) of aqueous extracts of Gt, Sp and their combinations. Adsorption to hexadecane was used to determine the cell surface hydrophobicity (CSH) of bacterial cells. Glass beads were used to mimic the hard tissue surfaces, and were coated with saliva to develop experimental pellicles for the adhesion of the primary colonizing bacteria. Gt aqueous extracts exhibited better anti-plaque effect than Sp aqueous extracts. Their combination, equivalent to 1/4 and 1/2 of MIC values of Gt and Sp extracts respectively, showed synergistic anti-plaque properties with fractional inhibitory concentration (FIC) equal to 0.75. This combination was found to significantly reduce CSH (pplaque activity, and could be used as a useful active agent to produce oral health care products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Sustained release of a novel anti-quorum-sensing agent against oral fungal biofilms.

    Science.gov (United States)

    Feldman, Mark; Shenderovich, Julia; Al-Quntar, Abed Al Aziz; Friedman, Michael; Steinberg, Doron

    2015-04-01

    Thiazolidinedione-8 (S-8) has recently been identified as a potential anti-quorum-sensing/antibiofilm agent against bacteria and fungi. Based on these results, we investigated the possibility of incorporating S-8 in a sustained-release membrane (SRM) to increase its pharmaceutical potential against Candida albicans biofilm. We demonstrated that SRM containing S-8 inhibits fungal biofilm formation in a time-dependent manner for 72 h, due to prolonged release of S-8. Moreover, the SRM effectively delivered the agent in its active form to locations outside the membrane reservoir. In addition, eradication of mature biofilm by the SRM containing S-8 was also significant. Of note, S-8-containing SRM affected the characteristics of mature C. albicans biofilm, such as thickness, exopolysaccharide (EPS) production, and morphogenesis of fungal cells. The concept of using an antibiofilm agent with no antifungal activity incorporated into a sustained-release delivery system is new in medicine and dentistry. This concept of an SRM containing a quorum-sensing quencher with an antibiofilm effect could pave the way for combating oral fungal infectious diseases. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  6. Misoprostol, an anti-ulcer agent and PGE2 receptor agonist, protects against cerebral ischemia

    OpenAIRE

    Li, Jun; Liang, Xibin; Wang, Qian; Breyer, Richard M.; McCullough, Louise; Andreasson, Katrin

    2008-01-01

    Induction of COX-2 activity in cerebral ischemia results in increased neuronal injury and infarct size. Recent studies investigating neurotoxic mechanisms of COX-2 demonstrate both toxic and paradoxically protective effects of downstream prostaglandin receptor signaling pathways. We tested whether misoprostol, a PGE2 receptor agonist that is utilized clinically as an anti-ulcer agent and signals through the protective PGE2 EP2, EP3, and EP4 receptors, would reduce brain injury in the murine m...

  7. How should immunomodulators be optimized when used as combination therapy with anti-tumor necrosis factor agents in the management of inflammatory bowel disease?

    Science.gov (United States)

    Ward, Mark G; Irving, Peter M; Sparrow, Miles P

    2015-10-28

    In the last 15 years the management of inflammatory bowel disease has evolved greatly, largely through the increased use of immunomodulators and, especially, anti-tumor necrosis factor (anti-TNF) biologic agents. Within this time period, confidence in the use of anti-TNFs has increased, whilst, especially in recent years, the efficacy and safety of thiopurines has been questioned. Yet despite recent concerns regarding the risk: benefit profile of thiopurines, combination therapy with an immunomodulator and an anti-TNF has emerged as the recommended treatment strategy for the majority of patients with moderate-severe disease, especially those who are recently diagnosed. Concurrently, therapeutic drug monitoring has emerged as a means of optimizing the dosage of both immunomodulators and anti-TNFs. However the recommended therapeutic target levels for both drug classes were largely derived from studies of monotherapy with either agent, or studies underpowered to analyze outcomes in combination therapy patients. It has been assumed that these target levels are applicable to patients on combination therapy also, however there are few data to support this. Similarly, the timing and duration of treatment with immunomodulators when used in combination therapy remains unknown. Recent attention, including post hoc analyses of the pivotal registration trials, has focused on the optimization of anti-TNF agents, when used as either monotherapy or combination therapy. This review will instead focus on how best to optimize immunomodulators when used in combination therapy, including an evaluation of recent data addressing unanswered questions regarding the optimal timing, dosage and duration of immunomodulator therapy in combination therapy patients.

  8. Reproductive studies with the anti-inflammatory agent, piroxicam: modification of classical protocols.

    Science.gov (United States)

    Perraud, J; Stadler, J; Kessedjian, M J; Monro, A M

    1984-02-14

    Reproductive toxicology studies were conducted in rabbits and rats given piroxicam, a non-steroidal anti-inflammatory agent (NSAI), orally at 2, 5 and 10 mg/kg/day. In teratology studies there was neither drug-related embryotoxicity nor teratogenicity. As piroxicam, like other NSAI, affects parturition in rats and leads to a progressive toxicity in lactating females, standard protocols were modified: dams of the female fertility study were treated from 2 weeks prior to mating until day 6 of gestation and females of the post-natal toxicity study were treated from parturition until day 12 of lactation. No other adverse effects on reproduction, fertility and postnatal development were observed.

  9. Comparative effectiveness of fourth-line anti-hypertensive agents in resistant hypertension: A systematic review and meta-analysis.

    Science.gov (United States)

    Sinnott, Sarah-Jo; Tomlinson, Laurie A; Root, Adrian A; Mathur, Rohini; Mansfield, Kathryn E; Smeeth, Liam; Douglas, Ian J

    2017-02-01

    Aim We assessed the effectiveness of fourth-line mineralocorticoid receptor antagonists in comparison with other fourth-line anti-hypertensive agents in resistant hypertension. Methods and results We systematically searched Medline, EMBASE and the Cochrane library from database inception until January 2016. We included randomised and non-randomised studies that compared mineralocorticoid receptor antagonists with other fourth-line anti-hypertensive agents in patients with resistant hypertension. The outcome was change in systolic blood pressure, measured in the office, at home or by ambulatory blood pressure monitoring. Secondary outcomes were changes in serum potassium and occurrence of hyperkalaemia. We used random effects models and assessed statistical heterogeneity using the I 2 test and corresponding 95% confidence intervals. From 2,506 records, 5 studies met our inclusion criteria with 755 included patients. Two studies were randomised and three were non-randomised. Comparative fourth-line agents included bisoprolol, doxazosin, furosemide and additional blockade of the renin angiotensin-aldosterone system. Using data from randomised studies, mineralocorticoid receptor antagonists reduced blood pressure by 7.4 mmHg (95%CI 3.2 - 11.6) more than the active comparator. When limited to non-randomised studies, mineralocorticoid receptor antagonists reduced blood pressure by 11.9 mmHg (95% CI 9.3 - 14.4) more than the active comparator. Conclusion On the basis of this meta-analysis, mineralocorticoid receptor antagonists reduce blood pressure more effectively than other fourth-line agents in resistant hypertension. Effectiveness stratified by ethnicity and comorbidities, in addition to information on clinical outcomes such as myocardial infarction and stroke, now needs to be determined.

  10. Atividade in vitro do extrato de própolis contra agentes bacterianos da mastite bovina In vitro activity of propolis extract against bovine mastitis bacterial agents

    Directory of Open Access Journals (Sweden)

    Andrea Pinto Loguercio

    2006-02-01

    Full Text Available Este trabalho foi desenvolvido com o objetivo de avaliar a atividade in vitro do extrato alcoólico de própolis, contra agentes da mastite bovina, comparando-o aos principais antimicrobianos utilizados no tratamento convencional. Foram utilizados 36 isolados coagulase-positivos de Staphylococcus sp. e 27 isolados de Streptococcus sp.; 94,4% dos Staphylococcus sp. e 85,2% dos Streptococcus sp. foram susceptíveis ao extrato de própolis.The present study aimed to determine the in vitro activity of propolis extract, comparing it to the most common antibacterial drugs against bovine mastitis bacterial agents. Thirty-six isolates of coagulase-positive Staphylococcus sp. and twenty-seven of Streptococcus sp. were analyzed. Coagulase-positive Staphylococcus (94.4% and Streptococcus sp. (85.2% showed susceptibility to propolis extract.

  11. Enhanced anti-proliferative efficacy of epothilone B loaded with Escherichia coli Nissle 1917 bacterial ghosts on the HeLa cells by mitochondrial pathway of apoptosis.

    Science.gov (United States)

    Zhu, Wenxing; Hao, Lujiang; Liu, Xinli; Orlando, Borrás-Hidalgo; Zhang, Yuyu

    2018-03-20

    Epothilones constitute a new class of microtubule-stabilizing anti-cancer agents with promising preclinical and clinical activity. However, its systemic application still causes some toxic side effects. To reduce these undesired effects, advanced drug delivery systems based on cell targeting carriers are needed currently. In this study, the high quality bacterial ghosts of the probiotic Escherichia coli Nissle 1917 (EcN) were prepared in a large scale and retained fully intact surface structures for specific attachment to mammalian cells. The EcN ghosts could be efficiently loaded with the low hydrophilic drug Epothilone B (Epo B) and the maximal load efficiency was approximately 2.5% (w/w). Cytotoxicity assays revealed that Epo B-ghosts exhibited enhanced anti-proliferative properties on the HeLa cells. The Epo B associated with EcN ghosts was more cytotoxic at least 10 times than the free Epo B at the same concentrations. Apoptosis assays showed that both Epo B-ghosts and free Epo B induced time course-dependent apoptosis and necrosis in HeLa cells, respectively. While the former induced more apoptosis and necrosis than the latter. Furthermore, the cytochrome C release and the activation of caspase-3 were more remarkable after treatment with the Epo B-ghosts compared to the free Epo B, which implied that Epo B-ghosts might more effectively induce the apoptosis mediated by mitochondrial pathway in HeLa cells. Therefore, the higher anti-proliferative effects of the Epo B-ghosts on the HeLa cells were mediated by mitochondrial pathway of apoptosis. The EcN ghosts may provide a useful drug delivery carrier for drug candidates in cancer therapy.

  12. Risk of venous and arterial thromboembolic events associated with anti-VEGF agents in advanced non-small-cell lung cancer: a meta-analysis and systematic review

    Directory of Open Access Journals (Sweden)

    Zhang D

    2016-06-01

    Full Text Available Dianbao Zhang,1,* Xianfen Zhang,2,* Chunling Zhao1 1Department of Medical Oncology, 2Department of Cardiac Surgery, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan Province, People’s Republic of China *These authors contributed equally to this work Aims: To assess the incidence and risk of arterial and venous thromboembolic events (ATEs and VTEs associated with antivascular endothelial growth factor (VEGF agents, including VEGF receptor-tyrosine kinase inhibitors and VEGF monoclonal antibodies, in advanced non-small-cell lung cancer (NSCLC patients. Methods: We performed a broad search of PubMed for relevant trials. Prospective randomized trials evaluating therapy with or without anti-VEGF agents in patients with advanced NSCLC were included for analysis. Data on VTEs and ATEs were extracted. The overall incidence, Peto odds ratio (Peto OR, and 95% confidence intervals (CIs were pooled according to the heterogeneity of included trials. Results: A total of 13,436 patients from 23 trials were included for analysis. Our results showed that anti-VEGF agents significantly increased the risk of developing high-grade ATEs (Peto OR: 1.44, 95% CI: 1.00–2.07, P=0.048, but not for all-grade ATEs (Peto OR: 0.94, 95% CI: 0.56–1.59, P=0.82 compared with controls. Additionally, no increased risk of all-grade and high-grade VTEs (Peto OR: 0.94, 95% CI: 0.67–1.31, P=0.71 and Peto OR: 0.95, 95% CI: 0.73–1.22, P=0.67, respectively was observed in advanced NSCLC patients receiving anti-VEGF agents. Conclusion: The use of anti-VEGF agents in advanced NSCLC patients significantly increased the risk of high-grade ATEs, but not for VTEs. Clinicians should be aware of the risk of severe ATEs with administration of these drugs in advanced NSCLC patients. Keywords: anti-VEGF agents, toxicity, arterial thromboembolic events, venous thromboembolic events, meta-analysis

  13. Bacterial Protein-Tyrosine Kinases

    DEFF Research Database (Denmark)

    Shi, Lei; Kobir, Ahasanul; Jers, Carsten

    2010-01-01

    in exopolysaccharide production, virulence, DNA metabolism, stress response and other key functions of the bacterial cell. BY-kinases act through autophosphorylation (mainly in exopolysaccharide production) and phosphorylation of other proteins, which have in most cases been shown to be activated by tyrosine......Bacteria and Eukarya share essentially the same family of protein-serine/threonine kinases, also known as the Hanks-type kinases. However, when it comes to protein-tyrosine phosphorylation, bacteria seem to have gone their own way. Bacterial protein-tyrosine kinases (BY-kinases) are bacterial...... and highlighted their importance in bacterial physiology. Having no orthologues in Eukarya, BY-kinases are receiving a growing attention from the biomedical field, since they represent a particularly promising target for anti-bacterial drug design....

  14. Anti-Pseudomonas aeruginosa compound, 1,2,3,4-tetrahydro-1,3,5-triazine derivative, exerts its action by primarily targeting MreB.

    Science.gov (United States)

    Yamachika, Shinichiro; Sugihara, Chika; Tsuji, Hayato; Muramatsu, Yasunori; Kamai, Yasuki; Yamashita, Makoto

    2012-01-01

    In order to find new anti-Pseudomonas agents, we carried out whole-cell based P. aeruginosa growth assay, and identified 1,2,3,4-tetrahydro-1,3,5-triazine (Compound A). This compound showed anti-Pseudomonas activity against wild as well as pumpless strain equally at a same concentration. Also, this compound was structurally very similar to A22, which is known to inhibit the bacterial actin-like protein MreB. By the analysis of resistant strains, the primary target of this compound in P. aeruginosa was definitely confirmed to be MreB. In addition, these compounds showed a bacteriostatic effect, and induced the morphology changes in P. aeruginosa from rod shape to sphere shape, which leads to be clinically favorable in terms of susceptibility to phagocytosis and release of endotoxin. These results display that Compound A is a very attractive compound which shows anti-P. aeruginosa activity based on inhibition of MreB without being affected by efflux pumps, and could provide a new step toward development of new promising anti-Pseudomonas agents, MreB inhibitors.

  15. Mechanisms of bacterial resistance to antimicrobial agents.

    NARCIS (Netherlands)

    van Duijkeren, Engeline; Schink, Anne-Kathrin; Roberts, Marilyn C; Wang, Yang; Schwarz, Stefan

    During the past decades resistance to virtually all antimicrobial agents has been observed in bacteria of animal origin. This chapter describes in detail the mechanisms so far encountered for the various classes of antimicrobial agents. The main mechanisms include enzymatic inactivation by either

  16. Miracle Fruit (Synsepalum dulcificum Exhibits as a Novel Anti-Hyperuricaemia Agent

    Directory of Open Access Journals (Sweden)

    Yeu-Ching Shi

    2016-01-01

    Full Text Available Miracle fruit (Synsepalum dulcificum belongs to the Sapotaceae family. It can change flavors on taste buds, transforming acidic tastes to sweet. We evaluated various miracle fruit extracts, including water, butanol, ethyl acetate (EA, and hexane fractions, to determine its antioxidant effects. These extracts isolated from miracle fruit exerted potential for reduction of uric acid and inhibited xanthine oxidase activity in vitro and in monosodiumurate (MSU-treated RAW264.7 macrophages. Moreover, we also found that the butanol extracts of miracle fruit attenuated oxonic acid potassium salt-induced hyperuricaemia in ICR mice by lowering serum uric acid levels and activating hepatic xanthine oxidase. These effects were equal to those of allopurinol, suggesting that the butanol extract of miracle fruit could be developed as a novel anti-hyperuricaemia agent or health food.

  17. Moringa oleifera as an Anti-Cancer Agent against Breast and Colorectal Cancer Cell Lines.

    Science.gov (United States)

    Al-Asmari, Abdulrahman Khazim; Albalawi, Sulaiman Mansour; Athar, Md Tanwir; Khan, Abdul Quaiyoom; Al-Shahrani, Hamoud; Islam, Mozaffarul

    2015-01-01

    In this study we investigated the anti-cancer effect of Moringa oleifera leaves, bark and seed extracts. When tested against MDA-MB-231 and HCT-8 cancer cell lines, the extracts of leaves and bark showed remarkable anti-cancer properties while surprisingly, seed extracts exhibited hardly any such properties. Cell survival was significantly low in both cells lines when treated with leaves and bark extracts. Furthermore, a striking reduction (about 70-90%) in colony formation as well as cell motility was observed upon treatment with leaves and bark. Additionally, apoptosis assay performed on these treated breast and colorectal cancer lines showed a remarkable increase in the number of apoptotic cells; with a 7 fold increase in MD-MB-231 to an increase of several fold in colorectal cancer cell lines. However, no significant apoptotic cells were detected upon seeds extract treatment. Moreover, the cell cycle distribution showed a G2/M enrichment (about 2-3 fold) indicating that these extracts effectively arrest the cell progression at the G2/M phase. The GC-MS analyses of these extracts revealed numerous known anti-cancer compounds, namely eugenol, isopropyl isothiocynate, D-allose, and hexadeconoic acid ethyl ester, all of which possess long chain hydrocarbons, sugar moiety and an aromatic ring. This suggests that the anti-cancer properties of Moringa oleifera could be attributed to the bioactive compounds present in the extracts from this plant. This is a novel study because no report has yet been cited on the effectiveness of Moringa extracts obtained in the locally grown environment as an anti-cancer agent against breast and colorectal cancers. Our study is the first of its kind to evaluate the anti-malignant properties of Moringa not only in leaves but also in bark. These findings suggest that both the leaf and bark extracts of Moringa collected from the Saudi Arabian region possess anti-cancer activity that can be used to develop new drugs for treatment of breast

  18. Characterization and bacterial anti-adherent effect on modified PMMA denture acrylic resin containing platinum nanoparticles.

    Science.gov (United States)

    Nam, Ki-Young

    2014-06-01

    This study characterized the synthesis of a modified PMMA (Polymethyl methacrylate) denture acrylic loading platinum nanoparticles (PtN) and assessed its bacterial inhibitory efficacy to produce novel antimicrobial denture base material. Polymerized PMMA denture acrylic disc (20 mm × 2 mm) specimens containing 0 (control), 10, 50, 100 and 200 mg/L of PtN were fabricated respectively. The obtained platinum-PMMA nanocomposite (PtNC) was characterized by TEM (transmission electron microscopy), SEM/EDX (scanning electron microscope/energy dispersive X-ray spectroscopy), thermogravimetric and atomic absorption spectrophotometer analysis. In antimicrobial assay, specimens were placed on the cell culture plate, and 100 µL of microbial suspensions of S. mutans (Streptococcus mutans) and S. sobrinus (Streptococcus sobrinus) were inoculated then incubated at 37℃ for 24 hours. The bacterial attachment was tested by FACS (fluorescence-activated cell sorting) analysis after staining with fluorescent probe. PtN were successfully loaded and uniformly immobilized into PMMA denture acrylic with a proper thermal stability and similar surface morphology as compared to control. PtNC expressed significant bacterial anti-adherent effect rather than bactericidal effect above 50 mg/L PtN loaded when compared to pristine PMMA (P=.01) with no or extremely small amounts of Pt ion eluted. This is the first report on the synthesis and its antibacterial activity of Pt-PMMA nanocomposite. PMMA denture acrylic loading PtN could be a possible intrinsic antimicrobial denture material with proper mechanical characteristics, meeting those specified for denture bases. For clinical application, future studies including biocompatibility, color stability and warranting the long-term effect were still required.

  19. Anti-Enterovirus 71 Agents of Natural Products.

    Science.gov (United States)

    Wang, Liyan; Wang, Junfeng; Wang, Lishu; Ma, Shurong; Liu, Yonghong

    2015-09-09

    This review, with 42 references, presents the fascinating area of anti-enterovirus 71 natural products over the last three decades for the first time. It covers literature published from 2005-2015 and refers to compounds isolated from biogenic sources. In total, 58 naturally-occurring anti-EV71 compounds are recorded.

  20. Anti-Bacterial Activity of Recombinant Human β-Defensin-3 Secreted in the Milk of Transgenic Goats Produced by Somatic Cell Nuclear Transfer

    Science.gov (United States)

    Han, Chengquan; Zhang, Hui; Wang, Yongsheng; Su, Jianmin; Quan, Fusheng; Gao, Mingqing; Zhang, Yong

    2013-01-01

    The present study was conducted to determine whether recombinant human β-defensin-3 (rHBD3) in the milk of transgenic goats has an anti-bacterial activity against Escherichia coli (E. coli), Staphylococcus aureus (S. aureus) and Streptococcus agalactiae (S. agalactiae) that could cause mastitis. A HBD3 mammary-specific expression vector was transfected by electroporation into goat fetal fibroblasts which were used to produce fourteen healthy transgenic goats by somatic cell nuclear transfer. The expression level of rHBD3 in the milk of the six transgenic goats ranged from 98 to 121 µg/ml at 15 days of lactation, and was maintained at 90–111 µg/ml during the following 2 months. Milk samples from transgenic goats showed an obvious inhibitory activity against E. coli, S. aureus and S. agalactiae in vitro. The minimal inhibitory concentrations of rHBD3 in milk against E. coli, S. aureus and S. agalactiae were 9.5–10.5, 21.8–23.0 and 17.3–18.5 µg/mL, respectively, which was similar to those of the HBD3 standard (P>0.05). The in vivo anti-bacterial activities of rHBD3 in milk were examined by intramammary infusion of viable bacterial inoculums. We observed that 9/10 and 8/10 glands of non-transgenic goats infused with S. aureus and E. coli became infected. The mean numbers of viable bacteria went up to 2.9×103 and 95.4×103 CFU/ml at 48 h after infusion, respectively; the mean somatic cell counts (SCC) in infected glands reached up to 260.4×105 and 622.2×105 cells/ml, which were significantly higher than the SCC in uninfected goat glands. In contrast, no bacteria was presented in glands of transgenic goats and PBS-infused controls, and the SSC did not significantly change throughout the period. Moreover, the compositions and protein profiles of milk from transgenic and non-transgenic goats were identical. The present study demonstrated that HBD3 were an effective anti-bacterial protein to enhance the mastitis resistance of dairy animals. PMID:23799010

  1. Molecular Survey of Bacterial Zoonotic Agents in Bats from the Country of Georgia (Caucasus.

    Directory of Open Access Journals (Sweden)

    Ying Bai

    Full Text Available Bats are important reservoirs for many zoonotic pathogens. However, no surveys of bacterial pathogens in bats have been performed in the Caucasus region. To understand the occurrence and distribution of bacterial infections in these mammals, 218 bats belonging to eight species collected from four regions of Georgia were examined for Bartonella, Brucella, Leptospira, and Yersinia using molecular approaches. Bartonella DNA was detected in 77 (35% bats from all eight species and was distributed in all four regions. The prevalence ranged 6-50% per bat species. The Bartonella DNA represented 25 unique genetic variants that clustered into 21 lineages. Brucella DNA was detected in two Miniopterus schreibersii bats and in two Myotis blythii bats, all of which were from Imereti (west-central region. Leptospira DNA was detected in 25 (13% bats that included four M. schreibersii bats and 21 M. blythii bats collected from two regions. The Leptospira sequences represented five genetic variants with one of them being closely related to the zoonotic pathogen L. interrogans (98.6% genetic identity. No Yersinia DNA was detected in the bats. Mixed infections were observed in several cases. One M. blythii bat and one M. schreibersii bat were co-infected with Bartonella, Brucella, and Leptospira; one M. blythii bat and one M. schreibersii bat were co-infected with Bartonella and Brucella; 15 M. blythii bats and three M. schreibersii bats were co-infected with Bartonella and Leptospira. Our results suggest that bats in Georgia are exposed to multiple bacterial infections. Further studies are needed to evaluate pathogenicity of these agents to bats and their zoonotic potential.

  2. Berberine as a promising safe anti-cancer agent - is there a role for mitochondria?

    Science.gov (United States)

    Diogo, Catia V; Machado, Nuno G; Barbosa, Inês A; Serafim, Teresa L; Burgeiro, Ana; Oliveira, Paulo J

    2011-06-01

    Metabolic regulation is largely dependent on mitochondria, which play an important role in energy homeostasis. Imbalance between energy intake and expenditure leads to mitochondrial dysfunction, characterized by a reduced ratio of energy production (ATP production) to respiration. Due to the role of mitochondrial factors/events in several apoptotic pathways, the possibility of targeting that organelle in the tumor cell, leading to its elimination is very attractive, although the safety issue is problematic. Berberine, a benzyl-tetra isoquinoline alkaloid extracted from plants of the Berberidaceae family, has been extensively used for many centuries, especially in the traditional Chinese and Native American medicine. Several evidences suggest that berberine possesses several therapeutic uses, including anti-tumoral activity. The present review supplies evidence that berberine is a safe anti-cancer agent, exerting several effects on mitochondria, including inhibition of mitochondrial Complex I and interaction with the adenine nucleotide translocator which can explain several of the described effects on tumor cells.

  3. Complicações Imediatas de 3.555 aplicações de agentes anti-TNFα Immediate complications of 3,555 injections of anti-TNFα

    Directory of Open Access Journals (Sweden)

    Júlio César Bertacini de Moraes

    2010-04-01

    Full Text Available OBJETIVO: Avaliar as complicações imediatas da aplicação de agentes anti-TNFα no Centro de Dispensação de Medicação deAlto Custo do HC-FMUSP. PACIENTES E MÉTODOS: Foram incluídos todos os pacientes que receberam agentes anti-TNFα entre agosto/2007 e março/2009.As complicações imediatas (até 1 hora após o término da aplicação foram classificadas em leves (cefaleia, rash, tontura, prurido, náuseas, moderadas (febre, urticária, palpitação, dor torácica, dispneia, variação da pressão arterial de 20 a 40 mmHg ou graves (febre com calafrios, dispneia com sibilância, variação da pressão arterial > 40 mmHg. RESULTADOS: Foram avaliados 242 pacientes: 94 (39% com artrite reumatoide, 64 (26% com espondilite anquilosante, 32 (13% com artrite psoriásica, 26 (11% com artrite idiopática juvenil e 27 (11% com outros diagnósticos. O número total de aplicações foi de 3.555, sendo 992 (28% de adalimumabe, 1.546 (43% de etanercepte e 1.017 (29% de infliximabe. Complicações imediatas foram observadas em 39/242 (16% pacientes. As complicações ocorreram em 45/3.555 (1,2% aplicações. Estas foram mais frequentes com infliximabe comparado com adalimumabe (3,7% vs. 0,5%, P OBJECTIVE: To evaluate the immediate complications of anti-TNFα drugs at the "Center for Dispensation of High Cost Medications" of HC-FMUSP. PATIENTS AND METHODS: All patients who received anti-TNFα agents between August 2007 and March 2009 were included in this study. Immediate complications (up to 1 hour after the injection were classified as mild (headache, rash, dizziness, itching, nausea, moderate (fever, urticaria, palpitation, chest pain, dyspnea, blood pressure variations between 20 and 40 mmHg, or severe (fever with chills, dyspnea with wheezing, variations in blood pressure > 40 mmHg. RESULTS: Two hundred and forty-two patients were evaluated: 94 (39% with rheumatoid arthritis, 64 (26% with ankylosing spondylitis, 32 (13% with psoriatic arthritis

  4. Anti-Enterovirus 71 Agents of Natural Products

    Directory of Open Access Journals (Sweden)

    Liyan Wang

    2015-09-01

    Full Text Available This review, with 42 references, presents the fascinating area of anti-enterovirus 71 natural products over the last three decades for the first time. It covers literature published from 2005–2015 and refers to compounds isolated from biogenic sources. In total, 58 naturally-occurring anti-EV71 compounds are recorded.

  5. Peptoid-Substituted Hybrid Antimicrobial Peptide Derived from Papiliocin and Magainin 2 with Enhanced Bacterial Selectivity and Anti-inflammatory Activity.

    Science.gov (United States)

    Shin, Areum; Lee, Eunjung; Jeon, Dasom; Park, Young-Guen; Bang, Jeong Kyu; Park, Yong-Sun; Shin, Song Yub; Kim, Yangmee

    2015-06-30

    Antimicrobial peptides (AMPs) are important components of the host innate immune system. Papiliocin is a 37-residue AMP purified from larvae of the swallowtail butterfly Papilio xuthus. Magainin 2 is a 23-residue AMP purified from the skin of the African clawed frog Xenopus laevis. We designed an 18-residue hybrid peptide (PapMA) incorporating N-terminal residues 1-8 of papiliocin and N-terminal residues 4-12 of magainin 2, joined by a proline (Pro) hinge. PapMA showed high antimicrobial activity but was cytotoxic to mammalian cells. To decrease PapMA cytotoxicity, we designed a lysine (Lys) peptoid analogue, PapMA-k, which retained high antimicrobial activity but displayed cytotoxicity lower than that of PapMA. Fluorescent dye leakage experiments and confocal microscopy showed that PapMA targeted bacterial cell membranes whereas PapMA-k penetrated bacterial cell membranes. Nuclear magnetic resonance experiments revealed that PapMA contained an N-terminal α-helix from Lys(3) to Lys(7) and a C-terminal α-helix from Lys(10) to Lys(17), with a Pro(9) hinge between them. PapMA-k also had two α-helical structures in the same region connected with a flexible hinge residue at Nlys(9), which existed in a dynamic equilibrium of cis and trans conformers. Using lipopolysaccharide-stimulated RAW264.7 macrophages, the anti-inflammatory activity of PapMA and PapMA-k was confirmed by inhibition of nitric oxide and inflammatory cytokine production. In addition, treatment with PapMA and PapMA-k decreased the level of ultraviolet irradiation-induced expression of genes encoding matrix metalloproteinase-1 (MMP-1), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) in human keratinocyte HaCaT cells. Thus, PapMA and PapMA-k are potent peptide antibiotics with antimicrobial and anti-inflammatory activity, with PapMA-k displaying enhanced bacterial selectivity.

  6. Sources of information on lymphoma associated with anti-tumour necrosis factor agents: comparison of published case reports and cases reported to the French pharmacovigilance system.

    Science.gov (United States)

    Théophile, Hélène; Schaeverbeke, Thierry; Miremont-Salamé, Ghada; Abouelfath, Abdelilah; Kahn, Valentine; Haramburu, Françoise; Bégaud, Bernard

    2011-07-01

    Anti-tumour necrosis factor (TNF) agents, through their intense immunoregulatory effect, have been suspected to increase the risk of malignant lymphoma. However, the classical epidemiological approaches conducted over about the last 10 years have not totally succeeded in addressing the question of a causal or artifactual association. Therefore, the analysis of a substantial set of case reports, although usually considered as poorly generalizable to the general population, could be particularly informative. Two main sources of case reports in postmarketing settings are available; publications in medical journals and reports to pharmacovigilance systems. The aim of the study was to compare the characteristics of case reports from both these sources in order to understand whether they provided the same information for the investigation of the causal link between lymphoma and anti-TNF agents. All case reports of malignant lymphoma in patients treated with an anti-TNF agent published in MEDLINE and all reports to the French pharmacovigilance system up to 1 February 2010 were identified. Cases of malignant lymphoma identified in postmarketing surveillance from both sources were compared regarding the following variables: age, sex, anti-TNF agent involved, indication for use, type of lymphoma, prior or concomitant immunosuppressive drugs and time to onset of lymphoma. A total of 81 published case reports and 61 cases reported to the French pharmacovigilance system were compared. In published reports, patients were younger (p = 0.03) and more frequently receiving a first anti-TNF treatment (p = 0.03), particularly infliximab (p = 0.03). Conversely, in the pharmacovigilance system reports, a succession of different anti-TNFs (p = 0.03) and adalimumab (p French pharmacovigilance system differed markedly for all characteristics tested, except sex and the use of prior or concomitant immunosuppressive drugs. Published case reports favoured convincing arguments

  7. The effect of anti-tumor necrosis factor alpha agents on the outcome in pediatric uveitis of diverse etiologies.

    Science.gov (United States)

    Deitch, Iris; Amer, Radgonde; Tomkins-Netzer, Oren; Habot-Wilner, Zohar; Friling, Ronit; Neumann, Ron; Kramer, Michal

    2018-04-01

    This study aimed to report the clinical outcome of children with uveitis treated with anti-tumor necrosis factor alpha (TNF-α) agents. This included a retrospective cohort study. Children with uveitis treated with infliximab or adalimumab in 2008-2014 at five dedicated uveitis clinics were identified by database search. Their medical records were reviewed for demographic data, clinical presentation, ocular complications, and visual outcome. Systemic side effects and the steroid-sparing effect of treatment were documented. The cohort included 24 patients (43 eyes) of whom 14 received infliximab and 10 received adalimumab after failing conventional immunosuppression therapy. Mean age was 9.3 ± 4.0 years. The most common diagnosis was juvenile idiopathic arthritis-related uveitis (n = 10), followed by Behçet's disease (n = 4), sarcoidosis (n = 1), and ankylosing spondylitis (n = 1); eight had idiopathic uveitis. Ocular manifestations included panuveitis in 20 eyes (46.5%), chronic anterior uveitis in 19 (44.2%), and intermediate uveitis in 4 (9.3%). The duration of biologic treatment ranged from 6 to 72 months. During the 12 months prior to biologic treatment, while on conventional immunosuppressive therapy, mean visual acuity deteriorated from 0.22 to 0.45 logMAR, with a trend of recovery to 0.25 at 3 months after initiation of biologic treatment, remaining stable thereafter. A full corticosteroid-sparing effect was demonstrated in 16 of the 19 patients (84.2%) for whom data were available. Treatment was well tolerated. Treatment of pediatric uveitis with anti-TNF-α agents may improve outcome while providing steroid-sparing effect, when conventional immunosuppression fails. The role of anti-TNF-α agents as first-line treatment should be further investigated in controlled prospective clinical trials.

  8. Highly Efficient F, Cu doped TiO2 anti-bacterial visible light active photocatalytic coatings to combat hospital-acquired infections

    Science.gov (United States)

    Leyland, Nigel S.; Podporska-Carroll, Joanna; Browne, John; Hinder, Steven J.; Quilty, Brid; Pillai, Suresh C.

    2016-04-01

    Bacterial infections are a major threat to the health of patients in healthcare facilities including hospitals. One of the major causes of patient morbidity is infection with Staphylococcus aureus. One of the the most dominant nosocomial bacteria, Methicillin Resistant Staphylococcus aureus (MRSA) have been reported to survive on hospital surfaces (e.g. privacy window glasses) for up to 5 months. None of the current anti-bacterial technology is efficient in eliminating Staphylococcus aureus. A novel transparent, immobilised and superhydrophilic coating of titanium dioxide, co-doped with fluorine and copper has been prepared on float glass substrates. Antibacterial activity has demonstrated (by using Staphylococcus aureus), resulting from a combination of visible light activated (VLA) photocatalysis and copper ion toxicity. Co-doping with copper and fluorine has been shown to improve the performance of the coating, relative to a purely fluorine-doped VLA photocatalyst. Reductions in bacterial population of log10 = 4.2 under visible light irradiation and log10 = 1.8 in darkness have been achieved, compared with log10 = 1.8 under visible light irradiation and no activity, for a purely fluorine-doped titania. Generation of reactive oxygen species from the photocatalytic coatings is the major factor that significantly reduces the bacterial growth on the glass surfaces.

  9. Detection of Crohn's disease: Comparison of CT and MR enterography without anti-peristaltic agents performed on the same day

    International Nuclear Information System (INIS)

    Grand, David J.; Beland, Michael D.; Machan, Jason T.; Mayo-Smith, William W.

    2012-01-01

    Objective: To directly compare CT enterography (CTE) and MR enterography (MRE) without antiperistaltic agents. Materials/methods: 26 patients referred for CTE underwent CTE immediately followed by MRE without use of an anti-peristaltic agent. Each study was evaluated on a 10 point scale for exam quality, level of diagnostic confidence, and presence of Crohn's disease. Kappa analysis was performed to determine the degree of agreement between the CTE and MRE of each patient. Results: 25 patients completed the MRE. The quality of the CTEs was judged as excellent by both readers (reader 1 = average 9.5/10, reader 2 = average 9.1/10). The quality of the MREs was ranked lower than the CTEs by both readers (reader 1 = average 8.9/10, reader 2 = average 7.2/10), which was statistically significant (p < 0.05). The level of confidence in interpretation was not significantly different between CTE and MRE for reader 1 or 2 (p = 0.3). There was substantial agreement between readers for the presence or absence of Crohn's disease on both CTE (kappa = 0.75) and MRE (kappa = 0.67). Conclusion: MR enterography without anti-peristaltic agents results in high diagnostic confidence and excellent agreement for the presence of Crohn's disease.

  10. Identification and reconstitution of the polyketide synthases responsible for biosynthesis of the anti-malarial agent, cladosporin

    OpenAIRE

    Cochrane, Rachel V. K.; Sanichar, Randy; Lambkin, Gareth R.; Reiz, Béla; Xu, Wei; Tang, Yi; Vederas, John C.

    2015-01-01

    The anti-malarial agent cladosporin is a nanomolar inhibitor of Plasmodium falciparum lysyl-tRNA synthetase, and exhibits activity against both blood and liver stage infection. Cladosporin can be isolated from the fungus Cladosporium cladosporioides, where it was believed to be biosynthesized by a highly reducing (HR) and non-reducing (NR) iterative type I polyketide synthase (PKS) pair. Genome sequencing of the host organism, and subsequent heterologous expression of these enzymes in Sacchar...

  11. Studies on the Synthesis of Etodolac Derivatives as Potential Anti-inflammatory Agents

    Energy Technology Data Exchange (ETDEWEB)

    Cho, H.; Chung, Y.S. [Department of Chemistry, Chungbuk Natiojal University (Korea); Jang, H.D. [Department of Chemical Engineering, Seoul National Polytechnic University (Korea); Ryu, S.R. [Department of Chemical Engineering, Dae Bul University (Korea)

    1999-02-01

    For the synthesis of new anti-inflammatory agents as indol derivatives, we have synthesized a-benzoyl-1-ethyl-1,3,4,9-tetrahydro-8-ethyl-9-(N-benzoyl)pyrano[3,4-b]indole-= 1-acetic acid methyl ester. It was a new method for a-substituted etodolac carboxylic acid. The synthetic process was composed of four steps, and 7-ethylindole and oxalyl chloride were used as starting materials. The third step, cyclization was carried out by addition of borontrifluoride diethyl etherate in 66% yield. The step of reduction and cyclization were simplified successfully. The final product, a-benzoyl-1-ethyl-1,3,4,9-tetrahydropyrano[3,4-b]indole-1-acetate (etodollic acid methyl ester) and benzoyl chloride. 14 refs., 3 figs.

  12. Current evidence on the use of anti-RAAS agents in congenital or acquired solitary kidney.

    Science.gov (United States)

    Simeoni, Mariadelina; Armeni, Annarita; Summaria, Chiara; Cerantonio, Annamaria; Fuiano, Giorgio

    2017-11-01

    The inhibition of renin-angiotensin-aldosterone system (RAAS) is a major strategy for slowing the progression of chronic kidney disease (CKD). The utility of anti-RAAS agents in patients with congenital or acquired solitary kidney is still controversial. A systematic literature review was conducted. The conclusions of the few available studies on the topic are homogeneously in agreement with a long-term reno-protective activity of anti-RAAS drugs in patients with solitary kidney, especially if patients are hypertensive or proteinuric. However, angiotensin 2 (ANG2) levels permit a functional adaptation to a reduced renal mass in adults and is crucial for sustaining complete kidney development and maturation in children. A hormonal interference on ANG2 levels has been supposed in women. Consequently, at least in children and women, the use of ARBs appears more appropriate. Principle conclusions: Available data on this topic are limited; however, by their overall assessment, it would appear that anti-RAAS drugs might also be reno-protective in patients with solitary kidney. The use of ARBs, especially in children and in women, seems to be more appropriate. However, more experimental data would be strictly necessary to confirm this hypothesis.

  13. Targeting cancer chemotherapeutic agents by use of lipiodol contrast medium

    International Nuclear Information System (INIS)

    Konno, T.

    1990-01-01

    Arterially administered Lipiodol Ultrafluid contrast medium selectively remained in various malignant solid tumors because of the difference in time required for the removal of Lipiodol contrast medium from normal capillaries and tumor neovasculature. Although blood flow was maintained in the tumor, even immediately after injection Lipiodol contrast medium remained in the neovasculature of the tumor. To target anti-cancer agents to tumors by using Lipiodol contrast medium as a carrier, the characteristics of the agents were examined. Anti-cancer agents had to be soluble in Lipiodol, be stable in it, and separate gradually from it so that the anti-cancer agents would selectively remain in the tumor. These conditions were found to be necessary on the basis of the measurement of radioactivity in VX2 tumors implanted in the liver of 16 rabbits that received arterial injections of 14C-labeled doxorubicin. Antitumor activities and side effects of arterial injections of two types of anti-cancer agents were compared in 76 rabbits with VX2 tumors. Oily anti-cancer agents that had characteristics essential for targeting were compared with simple mixtures of anti-cancer agents with Lipiodol contrast medium that did not have these essential characteristics. Groups of rabbits that received oily anti-cancer agents responded significantly better than groups that received simple mixtures, and side effects were observed more frequently in the groups that received the simple mixtures. These results suggest that targeting of the anti-cancer agent to the tumor is important for treatment of solid malignant tumors

  14. An update on the use of C. elegans for preclinical drug discovery: screening and identifying anti-infective drugs.

    Science.gov (United States)

    Kim, Wooseong; Hendricks, Gabriel Lambert; Lee, Kiho; Mylonakis, Eleftherios

    2017-06-01

    The emergence of antibiotic-resistant and -tolerant bacteria is a major threat to human health. Although efforts for drug discovery are ongoing, conventional bacteria-centered screening strategies have thus far failed to yield new classes of effective antibiotics. Therefore, new paradigms for discovering novel antibiotics are of critical importance. Caenorhabditis elegans, a model organism used for in vivo, offers a promising solution for identification of anti-infective compounds. Areas covered: This review examines the advantages of C. elegans-based high-throughput screening over conventional, bacteria-centered in vitro screens. It discusses major anti-infective compounds identified from large-scale C. elegans-based screens and presents the first clinically-approved drugs, then known bioactive compounds, and finally novel small molecules. Expert opinion: There are clear advantages of using a C. elegans-infection based screening method. A C. elegans-based screen produces an enriched pool of non-toxic, efficacious, potential anti-infectives, covering: conventional antimicrobial agents, immunomodulators, and anti-virulence agents. Although C. elegans-based screens do not denote the mode of action of hit compounds, this can be elucidated in secondary studies by comparing the results to target-based screens, or conducting subsequent target-based screens, including the genetic knock-down of host or bacterial genes.

  15. Anti-microbial and anti-biofilm compounds from Indonesian medicinal plants

    NARCIS (Netherlands)

    Pratiwi, Sylvia U.T.

    2015-01-01

    Microbial biofilms causing elevated resistance to both most anti-microbial drugs and the host defense systems, which often results in persistent and difficult-to-treat infections. The discovery of anti-infective agents which are active against planktonic and biofilm microorganisms are therefore

  16. Nanofiber mats composed of a chitosan-poly(d,l-lactic-co-glycolic acid)-poly(ethylene oxide) blend as a postoperative anti-adhesion agent.

    Science.gov (United States)

    Ko, Jae Eok; Ko, Young-Gwang; Kim, Won Il; Kwon, Oh Kyoung; Kwon, Oh Hyeong

    2017-10-01

    Postoperative tissue adhesion causes serious complications and suffering in 90% of patients after peritoneum surgery, while commercial anti-adhesion agents cannot completely prevent postoperative peritoneal adhesions. This study demonstrates electrospining of a blended solution of chitosan, poly(d,l-lactic-co-glycolic acid) (PLGA), and poly(ethylene oxide) (PEO) to fabricate a chitosan-based nanofibrous mat as a postoperative anti-adhesion agent. Rheological studies combined with scanning electron microscopy reveal that the spinnability of the chitosan-PLGA solution could be controlled by adjusting the blend ratio and concentration with average fiber diameter from 634 to 913 nm. Biodegradation of the nanofiber specimens showed accelerated hydrolysis by chitosan. Proliferation of fibroblasts and antimicrobial activity of nanofibers containing chitosan was analyzed. Abdominal defects with cecum adhesion in rats demonstrated that the blend nanofiber mats were effective in preventing tissue adhesion as a barrier (4 weeks after abdominal surgery) by coverage of exfoliated peritoneum and insufficient wound sites at the beginning of the wound healing process. Chitosan-PLGA-PEO blend nanofiber mats will provide a promising key as a postoperative anti-adhesion agent. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1906-1915, 2017. © 2016 Wiley Periodicals, Inc.

  17. RNA preservation agents and nucleic acid extraction method bias perceived bacterial community composition.

    Directory of Open Access Journals (Sweden)

    Ann McCarthy

    Full Text Available Bias is a pervasive problem when characterizing microbial communities. An important source is the difference in lysis efficiencies of different populations, which vary depending on the extraction protocol used. To avoid such biases impacting comparisons between gene and transcript abundances in the environment, the use of one protocol that simultaneously extracts both types of nucleic acids from microbial community samples has gained popularity. However, knowledge regarding tradeoffs to combined nucleic acid extraction protocols is limited, particularly regarding yield and biases in the observed community composition. Here, we evaluated a commercially available protocol for simultaneous extraction of DNA and RNA, which we adapted for freshwater microbial community samples that were collected on filters. DNA and RNA yields were comparable to other commonly used, but independent DNA and RNA extraction protocols. RNA protection agents benefited RNA quality, but decreased DNA yields significantly. Choice of extraction protocol influenced the perceived bacterial community composition, with strong method-dependent biases observed for specific phyla such as the Verrucomicrobia. The combined DNA/RNA extraction protocol detected significantly higher levels of Verrucomicrobia than the other protocols, and those higher numbers were confirmed by microscopic analysis. Use of RNA protection agents as well as independent sequencing runs caused a significant shift in community composition as well, albeit smaller than the shift caused by using different extraction protocols. Despite methodological biases, sample origin was the strongest determinant of community composition. However, when the abundance of specific phylogenetic groups is of interest, researchers need to be aware of the biases their methods introduce. This is particularly relevant if different methods are used for DNA and RNA extraction, in addition to using RNA protection agents only for RNA

  18. Radiological aspects of bacterial lung abscess

    International Nuclear Information System (INIS)

    Groskin, S.A.; Panicek, D.; Ewing, D.; Rivera, F.; Math, K.; Teixeira, J.; Heitzman, E.R.

    1987-01-01

    Clinical, radiological, and pathological data derived from an analysis of over 70 cases of bacterial lung abscess are presented. Etiologic agents and risk factors are presented. Key radiographic findings are discussed, and those that are most useful in differentiating bacterial lung abscess from cavitated carcinoma, infected cyst, and emphysema are emphasized. Radiographic aspects of the complications of bacterial lung abscess are illustrated, and radiological approaches to their therapy are discussed

  19. Bacterial, Fungal, Parasitic, and Viral Myositis

    OpenAIRE

    Crum-Cianflone, Nancy F.

    2008-01-01

    Infectious myositis may be caused by a broad range of bacterial, fungal, parasitic, and viral agents. Infectious myositis is overall uncommon given the relative resistance of the musculature to infection. For example, inciting events, including trauma, surgery, or the presence of foreign bodies or devitalized tissue, are often present in cases of bacterial myositis. Bacterial causes are categorized by clinical presentation, anatomic location, and causative organisms into the categories of pyo...

  20. MASS TRANSFER COEFFICIENTS FOR A NON-NEWTONIAN FLUID AND WATER WITH AND WITHOUT ANTI-FOAM AGENTS

    Energy Technology Data Exchange (ETDEWEB)

    Leishear, R.

    2009-09-09

    Mass transfer rates were measured in a large scale system, which consisted of an 8.4 meter tall by 0.76 meter diameter column containing one of three fluids: water with an anti-foam agent, water without an anti-foam agent, and AZ101 simulant, which simulated a non-Newtonian nuclear waste. The testing contributed to the evaluation of large scale mass transfer of hydrogen in nuclear waste tanks. Due to its radioactivity, the waste was chemically simulated, and due to flammability concerns oxygen was used in lieu of hydrogen. Different liquids were used to better understand the mass transfer processes, where each of the fluids was saturated with oxygen, and the oxygen was then removed from solution as air bubbled up, or sparged, through the solution from the bottom of the column. Air sparging was supplied by a single tube which was co-axial to the column, the decrease in oxygen concentration was recorded, and oxygen measurements were then used to determine the mass transfer coefficients to describe the rate of oxygen transfer from solution. Superficial, average, sparging velocities of 2, 5, and 10 mm/second were applied to each of the liquids at three different column fill levels, and mass transfer coefficient test results are presented here for combinations of superficial velocities and fluid levels.

  1. MASS TRANSFER COEFFICIENTS FOR A NON-NEWTONIAN FLUID AND WATER WITH AND WITHOUT ANTI-FOAM AGENTS

    International Nuclear Information System (INIS)

    Leishear, R.

    2009-01-01

    Mass transfer rates were measured in a large scale system, which consisted of an 8.4 meter tall by 0.76 meter diameter column containing one of three fluids: water with an anti-foam agent, water without an anti-foam agent, and AZ101 simulant, which simulated a non-Newtonian nuclear waste. The testing contributed to the evaluation of large scale mass transfer of hydrogen in nuclear waste tanks. Due to its radioactivity, the waste was chemically simulated, and due to flammability concerns oxygen was used in lieu of hydrogen. Different liquids were used to better understand the mass transfer processes, where each of the fluids was saturated with oxygen, and the oxygen was then removed from solution as air bubbled up, or sparged, through the solution from the bottom of the column. Air sparging was supplied by a single tube which was co-axial to the column, the decrease in oxygen concentration was recorded, and oxygen measurements were then used to determine the mass transfer coefficients to describe the rate of oxygen transfer from solution. Superficial, average, sparging velocities of 2, 5, and 10 mm/second were applied to each of the liquids at three different column fill levels, and mass transfer coefficient test results are presented here for combinations of superficial velocities and fluid levels

  2. The Novelty in Fabrication of Poly Vinyl Alcohol/κ-Carrageenan Hydrogel with Lactobacillus bulgaricus Extract as Anti-inflammatory Wound Dressing Agent.

    Science.gov (United States)

    El-Fawal, Gomaa F; Yassin, Abdelrahman M; El-Deeb, Nehal M

    2017-07-01

    Material barrier properties to microbes are an important issue in many pharmaceutical applications like wound dressings. A wide range of biomaterials has been used to manage the chronic inflamed wounds. Eight hydrogel membranes of poly vinyl alcohol (PVA) with κ-carrageenan (KC) and Lactobacillus bulgaricus extract (LAB) have been prepared by using freeze-thawing technique. To evaluate the membranes efficiency as wound dressing agents, various tests have been done like gel fraction, swelling behavior, mechanical properties, etc. The antibacterial activities of the prepared membranes were tested against the antibiotic-resistant bacterial isolates. In addition, the safety usage of the prepared hydrogel was checked on human dermal fibroblast cells. The anti-inflammatory properties of the prepared hydrogel on LPS-PBMC cell inflammatory model were quantified using enzyme-linked immunosorbent assay (ELISA) and real-time polymerase chain reaction (RT-qPCR). The analysis data of TGA, SEM, gel fraction, and swelling behavior showed changes in properties of prepared PVA\\KC\\LAB hydrogel membrane than pure PVA hydrogel membrane. The antibacterial activities of the prepared membranes augmented in LAB extract-prepared membranes. Out of the eight used hydrogel membranes, the PVAKC4 hydrogel membrane is the safest one on fibroblast cellular proliferation with a maximum proliferation percentage 97.3%. Also, all the used hydrogel membrane showed abilities to reduce the concentration of IL-2 and IL-8 compared with both negative and positive control. In addition, almost all the prepared hydrogel membrane showed variable abilities to downregulate the expression of TNF-α gene with superior effect of hydrogel membrane KC1. PVA/KC/LAB extract hydrogel membrane may be a promising material for wound dressing application and could accelerate the healing process of the chronic wound because of its antimicrobial and anti-inflammatory properties.

  3. Inhibition of biofilm development of uropathogens by curcumin - an anti-quorum sensing agent from Curcuma longa.

    Science.gov (United States)

    Packiavathy, Issac Abraham Sybiya Vasantha; Priya, Selvam; Pandian, Shunmugiah Karutha; Ravi, Arumugam Veera

    2014-04-01

    Urinary tract infection is caused primarily by the quorum sensing (QS)-dependent biofilm forming ability of uropathogens. In the present investigation, an anti-quorum sensing (anti-QS) agent curcumin from Curcuma longa (turmeric) was shown to inhibit the biofilm formation of uropathogens, such as Escherichia coli, Pseudomonas aeruginosa PAO1, Proteus mirabilis and Serratia marcescens, possibly by interfering with their QS systems. The antibiofilm potential of curcumin on uropathogens as well as its efficacy in disturbing the mature biofilms was examined under light microscope and confocal laser scanning microscope. The treatment with curcumin was also found to attenuate the QS-dependent factors, such as exopolysaccharide production, alginate production, swimming and swarming motility of uropathogens. Furthermore, it was documented that curcumin enhanced the susceptibility of a marker strain and uropathogens to conventional antibiotics. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. In vitro, in silico and in vivo studies of ursolic acid as an anti-filarial agent.

    Directory of Open Access Journals (Sweden)

    Komal Kalani

    Full Text Available As part of our drug discovery program for anti-filarial agents from Indian medicinal plants, leaves of Eucalyptus tereticornis were chemically investigated, which resulted in the isolation and characterization of an anti-filarial agent, ursolic acid (UA as a major constituent. Antifilarial activity of UA against the human lymphatic filarial parasite Brugia malayi using in vitro and in vivo assays, and in silico docking search on glutathione-s-transferase (GST parasitic enzyme were carried out. The UA was lethal to microfilariae (mf; LC100: 50; IC50: 8.84 µM and female adult worms (LC100: 100; IC50: 35.36 µM as observed by motility assay; it exerted 86% inhibition in MTT reduction potential of the adult parasites. The selectivity index (SI of UA for the parasites was found safe. This was supported by the molecular docking studies, which showed adequate docking (LibDock scores for UA (-8.6 with respect to the standard antifilarial drugs, ivermectin (IVM -8.4 and diethylcarbamazine (DEC-C -4.6 on glutathione-s-transferase enzyme. Further, in silico pharmacokinetic and drug-likeness studies showed that UA possesses drug-like properties. Furthermore, UA was evaluated in vivo in B. malayi-M. coucha model (natural infection, which showed 54% macrofilaricidal activity, 56% female worm sterility and almost unchanged microfilaraemia maintained throughout observation period with no adverse effect on the host. Thus, in conclusion in vitro, in silico and in vivo results indicate that UA is a promising, inexpensive, widely available natural lead, which can be designed and developed into a macrofilaricidal drug. To the best of our knowledge this is the first ever report on the anti-filarial potential of UA from E. tereticornis, which is in full agreement with the Thomson Reuter's 'Metadrug' tool screening predictions.

  5. High-throughput identification of chemical inhibitors of E. coli Group 2 capsule biogenesis as anti-virulence agents.

    Directory of Open Access Journals (Sweden)

    Carlos C Goller

    Full Text Available Rising antibiotic resistance among Escherichia coli, the leading cause of urinary tract infections (UTIs, has placed a new focus on molecular pathogenesis studies, aiming to identify new therapeutic targets. Anti-virulence agents are attractive as chemotherapeutics to attenuate an organism during disease but not necessarily during benign commensalism, thus decreasing the stress on beneficial microbial communities and lessening the emergence of resistance. We and others have demonstrated that the K antigen capsule of E. coli is a preeminent virulence determinant during UTI and more invasive diseases. Components of assembly and export are highly conserved among the major K antigen capsular types associated with UTI-causing E. coli and are distinct from the capsule biogenesis machinery of many commensal E. coli, making these attractive therapeutic targets. We conducted a screen for anti-capsular small molecules and identified an agent designated "C7" that blocks the production of K1 and K5 capsules, unrelated polysaccharide types among the Group 2-3 capsules. Herein lies proof-of-concept that this screen may be implemented with larger chemical libraries to identify second-generation small-molecule inhibitors of capsule biogenesis. These inhibitors will lead to a better understanding of capsule biogenesis and may represent a new class of therapeutics.

  6. Xanthomonas oryzae pv oryzae the Causal Agent of Bacterial Leaf Blight of rice: Isolation, Characterization, and Study of Transposon Mutagenesis

    Directory of Open Access Journals (Sweden)

    Abdjad Asih Nawangsih

    2011-04-01

    Full Text Available Xanthomonas oryzae pv oryzae the Causal Agent of Bacterial Leaf Blight of rice: Isolation, Characterization, and Study of Transposon Mutagenesis. X. oryzae pv. oryzae (Xoo causes bacterial leaf blight (BLB of rice (Oryza sativa L., a major disease that constrains production of the staple crop in many countries of the world. Identification of X. oryzae pv. oryzae (Xoo was conducted based on the disease symptoms, pathogenicity, morphological, physiological, and genetic characteristics of bacterial cultures isolated from the infected plants. Fifty bacterial isolates predicted as Xoo have been successfully isolated. They are aerobic, rod shaped, and Gram negative bacteria. The isolates were evaluated for their hypersensitivity in tobacco and pathogenicity in rice plant. Fifty isolates induced hypersensitive reaction in tobacco and showed pathogenicity symptom in rice in different length. Based on physiological test, hypersensitivity and pathogenicity reactions, three bacterial isolates strongly predicted as Xoo, i.e. STG21, STG42, and STG46, were non indole formation, non pigment fluorescent, hydrolyzed casein, catalase activity positive, but negative oxidase. Partial sequencing of 16S rRNA genes of STG21 and STG42 showed 80% and 82% homology with X. oryzae, respectively, while STG46 showed 84% homology with X. campestris. Mini-Tn5 transposon mutagenesis of STG21 generated one of the mutants (M5 lossed it’s ability to induce hypersensitive reaction in tobacco plant and deficient in pathogenicity on rice. The lesion length of rice leaf caused by the mutant M5 decreased up to 80%.

  7. Agent-based model of fecal microbial transplant effect on bile acid metabolism on suppressing Clostridium difficile infection: an example of agent-based modeling of intestinal bacterial infection.

    Science.gov (United States)

    Peer, Xavier; An, Gary

    2014-10-01

    Agent-based modeling is a computational modeling method that represents system-level behavior as arising from multiple interactions between the multiple components that make up a system. Biological systems are thus readily described using agent-based models (ABMs), as multi-cellular organisms can be viewed as populations of interacting cells, and microbial systems manifest as colonies of individual microbes. Intersections between these two domains underlie an increasing number of pathophysiological processes, and the intestinal tract represents one of the most significant locations for these inter-domain interactions, so much so that it can be considered an internal ecology of varying robustness and function. Intestinal infections represent significant disturbances of this internal ecology, and one of the most clinically relevant intestinal infections is Clostridium difficile infection (CDI). CDI is precipitated by the use of broad-spectrum antibiotics, involves the depletion of commensal microbiota, and alterations in bile acid composition in the intestinal lumen. We present an example ABM of CDI (the C. difficile Infection ABM, or CDIABM) to examine fundamental dynamics of the pathogenesis of CDI and its response to treatment with anti-CDI antibiotics and a newer treatment therapy, fecal microbial transplant. The CDIABM focuses on one specific mechanism of potential CDI suppression: commensal modulation of bile acid composition. Even given its abstraction, the CDIABM reproduces essential dynamics of CDI and its response to therapy, and identifies a paradoxical zone of behavior that provides insight into the role of intestinal nutritional status and the efficacy of anti-CDI therapies. It is hoped that this use case example of the CDIABM can demonstrate the usefulness of both agent-based modeling and the application of abstract functional representation as the biomedical community seeks to address the challenges of increasingly complex diseases with the goal of

  8. Alternative Agents to Prevent Fogging in Head and Neck Endoscopy

    Directory of Open Access Journals (Sweden)

    Patorn Piromchai

    2011-01-01

    Full Text Available Background The essential factor for diagnosis and treatment of diseases in head and neck endoscopy is the visibility of the image. An anti-fogging agent can reduce this problem by minimizing surface tension to prevent the condensation of water in the form of small droplets on a surface. There is no report on the use of hibiscrub ® or baby shampoo to reduce fogging in the literature. The objective of this study was to compare the efficacy between commercial anti-fogging agent, hibiscrub ® and baby shampoo to reduce fogging for the use in head and neck endoscopy. Methods The study was conducted at the Department of Otorhinolaryngology, Faculty of Medicine, Khon Kaen University in August 2010. Commercial anti-fogging agent, baby shampoo and hibiscrub ® were applied on rigid endoscope lens before putting them into a mist generator. The images were taken at baseline, 15 seconds, 30 seconds and 1 minute. The images' identifiers were removed before they were sent to two evaluators. A visual analogue scale (VAS was used to rate the image quality from 0 to 10. Results The difference in mean VAS score between anti-fogging agent, baby shampoo and hibiscrub ® versus no agent were 5.46, 4.45 and 2.1 respectively. The commercial anti-fogging agent and baby shampoo had most protective benefit and performed significantly better than no agent ( P < 0.05. Conclusions Baby shampoo is an effective agent to prevent fogging during head and neck endoscopy and compares favourably with commercial anti-fogging agent.

  9. Ganoderma lucidum Polysaccharides as An Anti-cancer Agent.

    Science.gov (United States)

    Sohretoglu, Didem; Huang, Shile

    2017-11-13

    The mushroom Ganoderma lucidum (G. lucidum) has been used for centuries in Asian countries to treat various diseases and to promote health and longevity. Clinical studies have shown beneficial effects of G. lucidum as an alternative adjuvant therapy in cancer patients without obvious toxicity. G. lucidum polysaccharides (GLP) is the main bioactive component in the water soluble extracts of this mushroom. Evidence from in vitro and in vivo studies has demonstrated that GLP possesses potential anticancer activity through immunomodulatory, anti-proliferative, pro-apoptotic, anti-metastatic and anti-angiogenic effects. Here, we briefly summarize these anticancer effects of GLP and the underlying mechanisms. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Study of phytochemical, anti-microbial, anti-oxidant, and anti-cancer properties of Allium wallichii.

    Science.gov (United States)

    Bhandari, Jaya; Muhammad, BushraTaj; Thapa, Pratiksha; Shrestha, Bhupal Govinda

    2017-02-08

    There is growing interest in the use of plants for the treatment and prevention of cancer. Medicinal plants are currently being evaluated as source of promising anticancer agents. In this paper, we have investigated the anticancer potential of plant Allium wallichii, a plant native to Nepal and growing at elevations of 2300-4800 m. This is the first study of its kind for the plant mentioned. The dried plant was extracted in aqueous ethanol. Phytochemical screening, anti-microbial assay, anti-oxidant assay, cytotoxicity assay and the flow-cytometric analysis were done for analyzing different phytochemicals present, anti-microbial activity, anti-oxidant activity and anti-cancer properties of Allium wallichii. We observed the presence of steroids, terpenoids, flavonoids, reducing sugars and glycosides in the plant extract and the plant showed moderate anti-microbial and anti-oxidant activity. The IC 50 values of Allium wallichii in different cancer cell lines are 69.69 μg/ml for Prostate cancer (PC3) cell line, 55.29 μg/ml for Breast Cancer (MCF-7) cell line and 46.51 μg/ml for cervical cancer (HeLa) cell line as compared to Doxorubicin (0.85 μg/ml). The cell viability assay using FACS showed that the IC 50 value of Allium wallichii for Burkitt's lymphoma (B-Lymphoma) cell line was 3.817 ± 1.99 mg/ml. Allium wallichii can be an important candidate to be used as an anticancer agent. Separation of pure compounds with bioassay guided extraction, spectrometric analysis and subsequent cytotoxicity assay of the pure bioactive compounds from Allium wallichii is highly recommended as the crude extract itself showed promising cytotoxicity.

  11. Identification of novel anti-inflammatory agents from Ayurvedic medicine for prevention of chronic diseases: "reverse pharmacology" and "bedside to bench" approach.

    Science.gov (United States)

    Aggarwal, Bharat B; Prasad, Sahdeo; Reuter, Simone; Kannappan, Ramaswamy; Yadev, Vivek R; Park, Byoungduck; Kim, Ji Hye; Gupta, Subash C; Phromnoi, Kanokkarn; Sundaram, Chitra; Prasad, Seema; Chaturvedi, Madan M; Sung, Bokyung

    2011-10-01

    Inflammation, although first characterized by Cornelius Celsus, a physician in first Century Rome, it was Rudolf Virchow, a German physician in nineteenth century who suggested a link between inflammation and cancer, cardiovascular diseases, diabetes, pulmonary diseases, neurological diseases and other chronic diseases. Extensive research within last three decades has confirmed these observations and identified the molecular basis for most chronic diseases and for the associated inflammation. The transcription factor, Nuclear Factor-kappaB (NF-kappaB) that controls over 500 different gene products, has emerged as major mediator of inflammation. Thus agents that can inhibit NF-kappaB and diminish chronic inflammation have potential to prevent or delay the onset of the chronic diseases and further even treat them. In an attempt to identify novel anti-inflammatory agents which are safe and effective, in contrast to high throughput screen, we have turned to "reverse pharmacology" or "bed to benchside" approach. We found that Ayurveda, a science of long life, almost 6,000 years old, can serve as a "goldmine" for novel anti-inflammatory agents used for centuries to treat chronic diseases. The current review is an attempt to provide description of various Ayurvedic plants currently used for treatment, their active chemical components, and the inflammatory pathways that they inhibit.

  12. Development of anti-infectives using phage display: biological agents against bacteria, viruses, and parasites.

    Science.gov (United States)

    Huang, Johnny X; Bishop-Hurley, Sharon L; Cooper, Matthew A

    2012-09-01

    The vast majority of anti-infective therapeutics on the market or in development are small molecules; however, there is now a nascent pipeline of biological agents in development. Until recently, phage display technologies were used mainly to produce monoclonal antibodies (MAbs) targeted against cancer or inflammatory disease targets. Patent disputes impeded broad use of these methods and contributed to the dearth of candidates in the clinic during the 1990s. Today, however, phage display is recognized as a powerful tool for selecting novel peptides and antibodies that can bind to a wide range of antigens, ranging from whole cells to proteins and lipid targets. In this review, we highlight research that exploits phage display technology as a means of discovering novel therapeutics against infectious diseases, with a focus on antimicrobial peptides and antibodies in clinical or preclinical development. We discuss the different strategies and methods used to derive, select, and develop anti-infectives from phage display libraries and then highlight case studies of drug candidates in the process of development and commercialization. Advances in screening, manufacturing, and humanization technologies now mean that phage display can make a significant contribution in the fight against clinically important pathogens.

  13. Bacterial Multidrug Efflux Pumps of the Major Facilitator Superfamily as Targets for Modulation.

    Science.gov (United States)

    Kumar, Sanath; He, Guixin; Kakarla, Prathusha; Shrestha, Ugina; Ranjana, K C; Ranaweera, Indrika; Willmon, T Mark; Barr, Sharla R; Hernandez, Alberto J; Varela, Manuel F

    2016-01-01

    Causative agents of infectious disease that are multidrug resistant bacterial pathogens represent a serious public health concern due to the increasingly difficult nature of achieving efficacious clinical treatments. Of the various acquired and intrinsic antimicrobial agent resistance determinants, integral-membrane multidrug efflux pumps of the major facilitator superfamily constitute a major mechanism of bacterial resistance. The major facilitator superfamily (MFS) encompasses thousands of known related secondary active and passive solute transporters, including multidrug efflux pumps, from bacteria to humans. This review article addresses recent developments involving the targeting by various modulators of bacterial multidrug efflux pumps from the major facilitator superfamily. It is currently of tremendous interest to modulate bacterial multidrug efflux pumps in order to eventually restore the clinical efficacy of therapeutic agents against recalcitrant bacterial infections. Such MFS multidrug efflux pumps are good targets for modulation.

  14. The Usage of Oral Anti Hyperglycemic Agent in Gestational Diabetes: Pros and Cons

    Directory of Open Access Journals (Sweden)

    Bram Pradipta

    2014-06-01

    Full Text Available The prevalence of gestational diabetes mellitus (GDM  is increasing as the pregnant population becomes older and more obese. Fifteen percent of GDM patients require medical intervention. Insulin is still the drug of choice because it has not been implicated as a teratogen in human pregnancies.Insulin has its disadvantages such as the need for injections, the risk of hypoglycaemia, excessive weight gain and the costs. The use of oral anti hyperglicemic agent (OAHA, traditionally contraindicated, now can be considered as an alternative for insulin which can be beneficial in developing countries. From four groups of OAHA, sulfonylurea and biguanides can be used during pregnancy. Studies and randomized controlled trial (RCT have been done and most summarized that it does not increase any maternal and perinatal morbidity. Most data also show that thereare also no differences in glycemic control or pregnancy outcomes compared with insulin. There are conflicting data shows metformin increase prevalence of preeclampsia patient and perinatal morbidity. OAHA usage, although not yet recommended internationally, can be considered in GDMpatients with uncontrolled blood sugar levels that require medical intervention but can not use insulin. Wellconducted, prospective, controlled studies regarding itsfeasibility in pregnant women with diabetes are still needed.Keywords:oral antihyperglycemic agent, gestational, diabetes

  15. Multidrug Efflux Pumps from Enterobacteriaceae, Vibrio cholerae and Staphylococcus aureus Bacterial Food Pathogens

    Directory of Open Access Journals (Sweden)

    Jody L. Andersen

    2015-01-01

    Full Text Available Foodborne illnesses caused by bacterial microorganisms are common worldwide and constitute a serious public health concern. In particular, microorganisms belonging to the Enterobacteriaceae and Vibrionaceae families of Gram-negative bacteria, and to the Staphylococcus genus of Gram-positive bacteria are important causative agents of food poisoning and infection in the gastrointestinal tract of humans. Recently, variants of these bacteria have developed resistance to medically important chemotherapeutic agents. Multidrug resistant Escherichia coli, Salmonella enterica, Vibrio cholerae, Enterobacter spp., and Staphylococcus aureus are becoming increasingly recalcitrant to clinical treatment in human patients. Of the various bacterial resistance mechanisms against antimicrobial agents, multidrug efflux pumps comprise a major cause of multiple drug resistance. These multidrug efflux pump systems reside in the biological membrane of the bacteria and actively extrude antimicrobial agents from bacterial cells. This review article summarizes the evolution of these bacterial drug efflux pump systems from a molecular biological standpoint and provides a framework for future work aimed at reducing the conditions that foster dissemination of these multidrug resistant causative agents through human populations.

  16. Multidrug Efflux Pumps from Enterobacteriaceae, Vibrio cholerae and Staphylococcus aureus Bacterial Food Pathogens

    Science.gov (United States)

    Andersen, Jody L.; He, Gui-Xin; Kakarla, Prathusha; KC, Ranjana; Kumar, Sanath; Lakra, Wazir Singh; Mukherjee, Mun Mun; Ranaweera, Indrika; Shrestha, Ugina; Tran, Thuy; Varela, Manuel F.

    2015-01-01

    Foodborne illnesses caused by bacterial microorganisms are common worldwide and constitute a serious public health concern. In particular, microorganisms belonging to the Enterobacteriaceae and Vibrionaceae families of Gram-negative bacteria, and to the Staphylococcus genus of Gram-positive bacteria are important causative agents of food poisoning and infection in the gastrointestinal tract of humans. Recently, variants of these bacteria have developed resistance to medically important chemotherapeutic agents. Multidrug resistant Escherichia coli, Salmonella enterica, Vibrio cholerae, Enterobacter spp., and Staphylococcus aureus are becoming increasingly recalcitrant to clinical treatment in human patients. Of the various bacterial resistance mechanisms against antimicrobial agents, multidrug efflux pumps comprise a major cause of multiple drug resistance. These multidrug efflux pump systems reside in the biological membrane of the bacteria and actively extrude antimicrobial agents from bacterial cells. This review article summarizes the evolution of these bacterial drug efflux pump systems from a molecular biological standpoint and provides a framework for future work aimed at reducing the conditions that foster dissemination of these multidrug resistant causative agents through human populations. PMID:25635914

  17. Contribution of Helicobacter pylori infection to the risk of peptic ulcer bleeding in patients on nonsteroidal anti-inflammatory drugs, antiplatelet agents, anticoagulants, corticosteroids and selective serotonin reuptake inhibitors.

    Science.gov (United States)

    Venerito, M; Schneider, C; Costanzo, R; Breja, R; Röhl, F-W; Malfertheiner, P

    2018-06-01

    Nonsteroidal anti-inflammatory drugs, low-dose aspirin, non-aspirin antiplatelet agents, anticoagulants, selective serotonin reuptake inhibitors and corticosteroids increase the risk of gastroduodenal bleeding. To determine in a retrospective cohort study the contribution of Helicobacter pylori infection to the risk of peptic ulcer bleeding in patients taking these drugs. Among patients with peptic ulcer disease diagnosed by endoscopy from 01/2004 to 12/2014 (N = 1719, 60% males, age 65.8 ± 14.5), 56.9% had peptic ulcer bleeding (cases) and 43.1% uncomplicated peptic ulcer disease (controls). Demographics, intake of nonsteroidal anti-inflammatory drugs, aspirin, non-aspirin antiplatelet agents, anticoagulants, selective serotonin reuptake inhibitors, proton pump inhibitors and corticosteroids were documented. H. pylori status was determined by histology, rapid urease test or serology. Adjusted odds ratios (OR) were estimated by logistic regression analysis. Helicobacter pylori infection increased the risk of peptic ulcer bleeding in nonsteroidal anti-inflammatory drug and aspirin users (OR = 2.91, 95% CI = 1.71-4.98 and OR = 2.23, 95% CI = 1.52-3.28, respectively), but not in patients on anticoagulants, selective serotonin reuptake inhibitor or corticosteroid therapy. H. pylori-positive status substantially increased the risk of peptic ulcer bleeding in patients on non-aspirin antiplatelet agents (OR = 4.37, 95% CI = 1.28-14.99), concomitant aspirin/nonsteroidal anti-inflammatory drug intake (OR = 5.85, 95% CI = 1.68-20.36) and combined antiplatelet therapy (OR = 8.43, 95% CI = 1.09-65.17). After further adjustment for proton pump inhibitor intake, H. pylori infection was still a risk factor for peptic ulcer bleeding in nonsteroidal anti-inflammatory drug and aspirin users. Helicobacter pylori infection increases the risk of peptic ulcer bleeding in peptic ulcer disease patients on nonsteroidal anti-inflammatory drugs, aspirin and non

  18. FOXP3+ T Regulatory Cell Modifications in Inflammatory Bowel Disease Patients Treated with Anti-TNFα Agents

    Directory of Open Access Journals (Sweden)

    Luisa Guidi

    2013-01-01

    Full Text Available Treg modulation has been hypothesized as one of the mechanisms by which antitumor necrosis factor α (TNFα agents exert their action in rheumatoid arthritis (RA and inflammatory bowel disease (IBD. However, data in IBD are still conflicting. We evaluated CD4+CD25+FOXP3+ (Tregs by flow cytometry in peripheral blood from 32 adult IBD patient before (T0 and after the induction of anti-TNFα therapy (T1. Eight healthy controls (HCs were included. We also evaluated the number of FOXP3+ cells in the lamina propria (LP in biopsies taken in a subset of patients and controls. Treg frequencies were significantly increased in peripheral blood from our patients after anti-TNFα therapy compared to T0. T1 but not T0 levels were higher than HC. The increase was detectable only in clinical responders to the treatment. A negative correlation was found among delta Treg levels and the age of patients or disease duration and with the activity score of Crohn’s disease (CD. No significant differences were found in LP FOXP3+ cells. Our data suggest the possibility that in IBD patients the treatment with anti-TNFα may affect Treg percentages and that Treg modifications may correlate with clinical response, but differently in early versus late disease.

  19. Rational design, synthesis, and biological evaluation of third generation α-noscapine analogues as potent tubulin binding anti-cancer agents.

    Directory of Open Access Journals (Sweden)

    Naresh Kumar Manchukonda

    Full Text Available Systematic screening based on structural similarity of drugs such as colchicine and podophyllotoxin led to identification of noscapine, a microtubule-targeted agent that attenuates the dynamic instability of microtubules without affecting the total polymer mass of microtubules. We report a new generation of noscapine derivatives as potential tubulin binding anti-cancer agents. Molecular modeling experiments of these derivatives 5a, 6a-j yielded better docking score (-7.252 to -5.402 kCal/mol than the parent compound, noscapine (-5.505 kCal/mol and its existing derivatives (-5.563 to -6.412 kCal/mol. Free energy (ΔG bind calculations based on the linear interaction energy (LIE empirical equation utilizing Surface Generalized Born (SGB continuum solvent model predicted the tubulin-binding affinities for the derivatives 5a, 6a-j (ranging from -4.923 to -6.189 kCal/mol. Compound 6f showed highest binding affinity to tubulin (-6.189 kCal/mol. The experimental evaluation of these compounds corroborated with theoretical studies. N-(3-brormobenzyl noscapine (6f binds tubulin with highest binding affinity (KD, 38 ± 4.0 µM, which is ~ 4.0 times higher than that of the parent compound, noscapine (KD, 144 ± 1.0 µM and is also more potent than that of the first generation clinical candidate EM011, 9-bromonoscapine (KD, 54 ± 9.1 µM. All these compounds exhibited substantial cytotoxicity toward cancer cells, with IC50 values ranging from 6.7 µM to 72.9 µM; compound 6f showed prominent anti-cancer efficacy with IC50 values ranging from 6.7 µM to 26.9 µM in cancer cells of different tissues of origin. These compounds perturbed DNA synthesis, delayed the cell cycle progression at G2/M phase, and induced apoptotic cell death in cancer cells. Collectively, the study reported here identified potent, third generation noscapinoids as new anti-cancer agents.

  20. In vitro characterization of the anti-bacterial activity of SQ109 against Helicobacter pylori.

    Directory of Open Access Journals (Sweden)

    Morris O Makobongo

    Full Text Available The most evident challenge to treatment of Helicobacter pylori, a bacterium responsible for gastritis, peptic ulcers and gastric cancer, is the increasing rate of resistance to all currently used therapeutic antibiotics. Thus, the development of novel therapies is urgently required. N-geranyl-N'-(2-adamantyl ethane-1, 2-diamine (SQ109 is an ethylene diamine-based antitubercular drug that is currently in clinical trials for the treatment of tuberculosis (TB. Previous pharmacokinetic studies of SQ109 revealed that persistently high concentrations of SQ109 remain in the stomach 4 hours post oral administration in rats. This finding, combined with the need for new anti-Helicobacter therapies, prompted us to define the in vitro efficacy of SQ109 against H. pylori. Liquid broth micro-dilution was used for susceptibility studies to determine the antimicrobial activity of SQ109 against a total of 6 laboratory strains and 20 clinical isolates of H. pylori; the clinical isolates included a multi-drug resistant strain. All strains tested were susceptible to SQ109 with MIC and MBC ranges of 6-10 µM and 50-60 µM, respectively. SQ109 killing kinetics were concentration- and time-dependent. SQ109 killed H. pylori in 8-10 h at 140 µM (2MBCs or 4-6 h at 200 µM (~3MBCs. Importantly, though the kinetics of killing were altered, SQ109 retained potent bactericidal activity against H. pylori at low pH. Additionally, SQ109 demonstrated robust thermal stability and was effective at killing slow growing or static bacteria. In fact, pretreatment of cultures with a bacteriostatic concentration of chloramphenicol (Cm synergized the effects of typically bacteriostatic concentrations of SQ109 to the level of five-logs of bacterial killing. A molar-to-molar comparison of the efficacy of SQ109 as compared to metronidazole (MTZ, amoxicillin (AMX, rifampicin (RIF and clarithromycin (CLR, revealed that SQ109 was superior to MTZ, AMX and RIF but not to CLR. Finally, the

  1. Novel 3-Nitro-1H-1,2,4-triazole-based Amides and Sulfonamides as Potential anti-Trypanosomal Agents

    Science.gov (United States)

    Papadopoulou, Maria V.; Bloomer, William D.; Rosenzweig, Howard S.; Chatelain, Eric; Kaiser, Marcel; Wilkinson, Shane R.; McKenzie, Caroline; Ioset, Jean-Robert

    2012-01-01

    A series of novel 3-nitro-1H-1,2,4-triazole-(and in some cases 2-nitro-1H-imidazole)-based amides and sulfonamides were characterized for their in vitro anti-trypanosomal and antileishmanial activities as well as mammalian toxicity. Out of 36 compounds tested, 29 (mostly 3-nitro-1H-1,2,4-triazoles) displayed significant activity against T. cruzi intracellular amastigotes (IC50 ranging from 28 nM to 3.72 μM) without concomitant toxicity to L6 host cells (selectivity 66 to 2782). Twenty three of these active compounds were more potent (up to 58 fold) than the reference drug benznidazole, tested in parallel. In addition, 9 nitrotriazoles which were moderately active (0.5 μM ≤ IC50 amides and sulfonamides are potent anti-trypanosomal agents. PMID:22550999

  2. Inhibition of human polimorfonuclear leucocyte migration by clofazimine: a new pro-oxidative anti-inflammatory agent

    International Nuclear Information System (INIS)

    Jansen van Rensburg, C.E.

    1986-10-01

    Preliminary studies on the in vitro and in vivo effects of clofazimine on the function of polymorphonuclear leucocytes (PMNL) from normal individuals and patients with lepromatous leprosy showed that clofazimine caused a progressive dose-dependent inhibition of both random mortality of PMNL as well as migration of PMNL induced by the leucoattractant endotoxin-activated serum (EAS). The drug also increased chemiluminescence as well as hexose monophosphate shunt (HMS). These studies on clofazimine include the use of radiolabelling with 14 C, 125 I and 3 H. Clofazimine-mediated inhibition of PMNL migration is dependent on intact membrane-associated oxidative metabolism. Clofazimine is therefore a pro-oxidative anti-inflammatory agent

  3. Modeling physiological resistance in bacterial biofilms.

    Science.gov (United States)

    Cogan, N G; Cortez, Ricardo; Fauci, Lisa

    2005-07-01

    A mathematical model of the action of antimicrobial agents on bacterial biofilms is presented. The model includes the fluid dynamics in and around the biofilm, advective and diffusive transport of two chemical constituents and the mechanism of physiological resistance. Although the mathematical model applies in three dimensions, we present two-dimensional simulations for arbitrary biofilm domains and various dosing strategies. The model allows the prediction of the spatial evolution of bacterial population and chemical constituents as well as different dosing strategies based on the fluid motion. We find that the interaction between the nutrient and the antimicrobial agent can reproduce survival curves which are comparable to other model predictions as well as experimental results. The model predicts that exposing the biofilm to low concentration doses of antimicrobial agent for longer time is more effective than short time dosing with high antimicrobial agent concentration. The effects of flow reversal and the roughness of the fluid/biofilm are also investigated. We find that reversing the flow increases the effectiveness of dosing. In addition, we show that overall survival decreases with increasing surface roughness.

  4. Evaluation of combinations of putative anti-biofilm agents and antibiotics to eradicate biofilms of Staphylococcus aureus and Pseudomonas aeruginosa.

    Science.gov (United States)

    Belfield, Katherine; Bayston, Roger; Hajduk, Nadzieja; Levell, Georgia; Birchall, John P; Daniel, Matija

    2017-09-01

    To evaluate potential anti-biofilm agents for their ability to enhance the activity of antibiotics for local treatment of localized biofilm infections. Staphylococcus aureus and Pseudomonas aeruginosa in vitro biofilm models were developed. The putative antibiotic enhancers N-acetylcysteine, acetylsalicylic acid, sodium salicylate, recombinant human deoxyribonuclease I, dispersin B, hydrogen peroxide and Johnson's Baby Shampoo (JBS) were tested for their anti-biofilm activity alone and their ability to enhance the activity of antibiotics for 7 or 14 days, against 5 day old biofilms. The antibiotic enhancers were paired with rifampicin and clindamycin against S. aureus and gentamicin and ciprofloxacin against P. aeruginosa. Isolates from biofilms that were not eradicated were tested for antibiotic resistance. Antibiotic levels 10× MIC and 100× MIC significantly reduced biofilm, but did not consistently eradicate it. Antibiotics at 100× MIC with 10% JBS for 14 days was the only treatment to eradicate both staphylococcal and pseudomonal biofilms. Recombinant human deoxyribonuclease I significantly reduced staphylococcal biofilm. Emergence of resistance of surviving isolates was minimal and was often associated with the small colony variant phenotype. JBS enhanced the activity of antibiotics and several other promising anti-biofilm agents were identified. Antibiotics with 10% JBS eradicated biofilms produced by both organisms. Such combinations might be useful in local treatment of localized biofilm infections. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Gastroduodenal mucosal defence mechanisms and the action of non-steroidal anti-inflammatory agents.

    Science.gov (United States)

    Garner, A; Allen, A; Rowe, P H

    1987-01-01

    This review summarises gastroduodenal protective mechanisms, the actions of non-steroidal anti-inflammatory (NSAI) agents on mucus and HCO3 secretions, and the basis of gastric mucosal injury induced by acetylsalicylic and salicylic acids (ASA and SA). Resistance to autodigestion by acid and pepsin present in gastric juice is multifactorial involving pre-epithelial (mucus-bicarbonate barrier) and post-epithelial (blood flow, acid-base balance) factors in addition to properties of the surface cell layer per se. The latter includes mucosal re-epithelialisation, a property which appears particularly important with respect to recovery from acute injury. A range of NSAI agents (ASA, fenclofenac, ibuprofen and indomethacin) inhibit gastric HCO3 transport in isolated mucosal preparations. Inhibition of duodenal HCO3 transport has been demonstrated in response to indomethacin in vitro and in vivo. These effects on secretion can be antagonised by exogenous prostaglandins of the E series. The layer of secreted mucus gel overlying the epithelial surface is not affected by NSAI drugs in the short term. However a number of these agents have been shown to inhibit glycoprotein biosynthesis by the epithelial cells. Thus loss of this protective coat could be anticipated during chronic drug exposure since erosion of adherent mucus by luminal shear and proteolysis would not be compensated by continued secretion. Detailed analysis of the gastric mucosal injury induced by salicylates both in vitro and in vivo reveals that much of the damage previously attributed to ASA is in fact due to the metabolic product SA. In this respect it is concluded that mucosal injury caused by ASA is due to a combination of two factors.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Study on anti-bacterial activities of white tea produced in different years%不同年份白茶抑菌效果研究

    Institute of Scientific and Technical Information of China (English)

    何水平; 李晓静; 罗婵玉; 郭春芳; 孙云

    2016-01-01

    采用牛津杯法和倍比稀释法,对不同年份生产的白茶抑制两种肠道致病菌——金黄色葡萄球菌和福氏志贺氏菌的活性进行测定,探讨其主要生化成分与其抑菌活性的相关性.结果表明:白茶生产年份和其抑菌活性的相关性达到显著性水平(p<0.05),当年生产的白茶抑菌效果最佳,随着贮藏时间的延长,抑菌效果呈减弱趋势;通过通径分析,获得主要生化成分与金黄色葡萄球菌抑菌圈直径的线性回归方程为Y1=30.121+ 0.818X3(茶多酚)-6.798X4(咖啡碱)+0.753X5(黄酮)+0.296X6(有机酸),主要生化成分与福氏志贺氏菌抑菌圈直径的线性回归方程为Y2=1.996-0.173X1(水浸出物)+ 0.384X5(黄酮)+0.831X7(色度L*值),表明白茶中主要生化成分在抑菌效果中发挥着重要作用.%Oxford cup and double dilution methods were used to study the anti-bacterial activities of old white tea on Staphylococcus aureus and Shigella.To discuss the correlation between biochemical components and antibacterial circle diameter.Results showed that the correlation between year and anti-bacterial activities reached significant level,the anti-bacterial effect of white tea produced lately was the best.The antibacterial ability showed a trend of decrease with the extension of storage time,through path analysis,the linear regression equation of main biochemical components and Staphylococcus aureus antibacterial circle the diameter was got,Y1 =30.121 +0.818 X3 (tea polyphenols)-6.798 X4 (caffeine) + 0.753 X5 (flavones) + 0.296 X6 (organic acids).The linear regression equation of main biochemical components and Shigella antibacterial circle the diameter was got,Y2 =1.996-0.173 X1 (water extract) + 0.384 X5 (flavones) + 0.831 X7 (color L*).The equations show that main biochemical components play important roles in anti-bacterial activities of white tea.

  7. Anti-vascular agent Combretastatin A-4-P modulates Hypoxia Inducible Factor-1 and gene expression

    Directory of Open Access Journals (Sweden)

    Currie Margaret J

    2006-12-01

    Full Text Available Abstract Background A functional vascular network is essential for the survival, growth and spread of solid tumours, making blood vessels a key target for therapeutic strategies. Combretastatin A-4 phosphate (CA-4-P is a tubulin-depolymerising agent in Phase II clinical trials as a vascular disrupting agent. Not much is known of the molecular effect of CA-4-P under tumour conditions. The tumour microenvironment differs markedly from that in normal tissue, specifically with respect to oxygenation (hypoxia. Gene regulation under tumour conditions is governed by hypoxia inducible factor 1 (HIF-1, controlling angiogenic and metastatic pathways. Methods We investigated the effect of CA-4-P on factors of the upstream and downstream signalling pathway of HIF-1 in vitro. Results CA-4-P treatment under hypoxia tended to reduce HIF-1 accumulation in a concentration-dependent manner, an effect which was more prominent in endothelial cells than in cancer cell lines. Conversely, CA-4-P increased HIF-1 accumulation under aerobic conditions in vitro. At these concentrations of CA-4-P under aerobic conditions, nuclear factor κB was activated via the small GTPase RhoA, and expression of the HIF-1 downstream angiogenic effector gene, vascular endothelial growth factor (VEGF-A, was increased. Conclusion Our findings advance the understanding of signal transduction pathways involved in the actions of the anti-vascular agent CA-4-P.

  8. Evaluation of Anti-adherent Activity of Excretions of Irradiated Lucilia sericata Maggot and Certain Essential Oils against Some Pathogenic Bacterial Strains

    International Nuclear Information System (INIS)

    Eltablawy, S.Y.; Amin, M.M.

    2011-01-01

    Essential Oils are widely used for their medicinal properties. They block adhesion and colonization of pathogenic microbes to epithelial cells which associated with bacterial resistance to antibiotics. So, this study investigates the effect of Lu cilia sacarato (flesh fly-an ectoparasitic) excretions of non-irradiated and irradiated maggot and some essential oils on biofilm formation by tube method, antimicrobial susceptibility by agar disc diffusion method as well as on their anti-adherent activity by spectrophotometric method. The results showed that excretions and secretions (E/S) of non-irradiated and irradiated maggots (at 20 Gy), as well as (clove and cinnamon oils) did not have antibacterial activity against the tested bacterial strains Pseudomonas aeruginosa (P. aeruginosa), Staphylococcus aureus (St. aureus) and Staphylococcus epidermidis (St. epidermidis) except marjoram oil which has low antimicrobial activity against all the tested strains. The results also showed that the most potent oil was clove which decrease biofilm of P. aeruginosa by 83%, followed by marjoram (69%), then E/S of non-irradiated maggots (66%). Whiles, biofilm was less affected by cinnamon oil and E/S of irradiated maggots by 50 % and 36%, respectively. In addition, clove oil and E/S of non-irradiated maggots affect the pre-adhered biofilm of P. aeruginosa by 57 and 45 %, respectively. Conclusion: Clove oil flowed by marjoram had anti-adherent effect on P. aeruginosa. Greater inhibition of adhesion was observed by excretions of non-irradiated lucilia sericata.

  9. Energy spectrum scaling in an agent-based model for bacterial turbulence

    Science.gov (United States)

    Mikel-Stites, Maxwell; Staples, Anne

    2017-11-01

    Numerous models have been developed to examine the behavior of dense bacterial swarms and to explore the visually striking phenomena of bacterial turbulence. Most models directly impose fluid dynamics physics, either by modeling the active matter as a fluid or by including interactions between the bacteria and a fluid. In this work, however, the `turbulence' is solely an emergent property of the collective behavior of the bacterial population, rather than a consequence of imposed fluid dynamics physical modeling. The system is simulated using a two dimensional Vicsek-style model, with the addition of individual repulsion to simulate bacterial collisions and physical interactions, and without the common flocking or sensing behaviors. Initial results indicate the presence of k-1 scaling in a portion of the kinetic energy spectrum that can be considered analogous to the inertial subrange in turbulent energy spectra. This result suggests that the interaction of large numbers of individual active bacteria may also be a contributing factor in the emergence of fluid dynamics phenomena, in addition to the physical interactions between bacteria and their fluid environment.

  10. Targeting Phosphatidylinositol 4-Kinase IIIα for Radiosensitization: A Potential Model of Drug Repositioning Using an Anti-Hepatitis C Viral Agent

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Jeanny [Department of Radiation Oncology, Graduate School of Medicine, Seoul National University, Seoul (Korea, Republic of); Kim, Dan Hyo; Park, Ji Min [Medical Science Research Institute, Seoul National University Bundang Hospital, Seongnam (Korea, Republic of); Park, Young Hee [Department of Radiation Oncology, Graduate School of Medicine, Seoul National University, Seoul (Korea, Republic of); Hwang, Yeo Hyun [Medical Science Research Institute, Seoul National University Bundang Hospital, Seongnam (Korea, Republic of); Wu, Hong-Gyun [Department of Radiation Oncology, Graduate School of Medicine, Seoul National University, Seoul (Korea, Republic of); Institute of Radiation Medicine, Seoul National University, Seoul (Korea, Republic of); Shin, Kyung Hwan [Department of Radiation Oncology, Graduate School of Medicine, Seoul National University, Seoul (Korea, Republic of); Kim, In Ah, E-mail: inah228@snu.ac.kr [Department of Radiation Oncology, Graduate School of Medicine, Seoul National University, Seoul (Korea, Republic of); Medical Science Research Institute, Seoul National University Bundang Hospital, Seongnam (Korea, Republic of); Institute of Radiation Medicine, Seoul National University, Seoul (Korea, Republic of); Cancer Research Institute, Seoul National University, Seoul (Korea, Republic of)

    2016-11-15

    Purpose: To investigate which isotype of phosphatidylinositol 4-kinase (PI4K) may affect radiosensitivity and examine whether anti–hepatitis C viral (HCV) agents, some of which have been shown to inhibit PI4K IIIα activity, could be repositioned as a radiosensitizer in human cancer cells. Methods and Materials: U251, BT474, and HepG2 cell lines and normal human astrocyte were used. Ribonucleic acid interference, clonogenic assays, Western blotting, immunofluorescence, annexin V assay, lysotracker staining, and β-galactosidase assay were performed. Results: Of the 4 PI4K isotypes, specific inhibition of IIIα increased radiosensitivity. For pharmacologic inhibition of PI4K IIIα, we screened 9 anti-HCV agents by half-maximal inhibitory concentration assay. Simeprevir was selected, and its inhibition of PI4K IIIα activity was confirmed. Combination of simeprevir treatment and radiation significantly attenuated expression of phospho-phospho-PKC and phospho-Akt and increased radiation-induced cell death in tested cell lines. Pretreatment with simeprevir prolonged γH2AX foci formation and down-regulation of phospho-DNA-PKcs, indicating impairment of nonhomologous end-joining repair. Cells pretreated with simeprevir exhibited mixed modes of cell death, including apoptosis and autophagy. Conclusion: These data demonstrate that targeting PI4K IIIα using an anti-HCV agent is a viable approach to enhance the therapeutic efficacy of radiation therapy in various human cancers, such as glioma, breast, and hepatocellular carcinoma.

  11. High affinity anti-TIM-3 and anti-KIR monoclonal antibodies cloned from healthy human individuals.

    Directory of Open Access Journals (Sweden)

    Stefan Ryser

    Full Text Available We report here the cloning of native high affinity anti-TIM-3 and anti-KIR IgG monoclonal antibodies (mAbs from peripheral blood mononuclear cells (PBMC of healthy human donors. The cells that express these mAbs are rare, present at a frequency of less than one per 105 memory B-cells. Using our proprietary multiplexed screening and cloning technology CellSpot™ we assessed the presence of memory B-cells reactive to foreign and endogenous disease-associated antigens within the same individual. When comparing the frequencies of antigen-specific memory B-cells analyzed in over 20 screening campaigns, we found a strong correlation of the presence of anti-TIM-3 memory B-cells with memory B-cells expressing mAbs against three disease-associated antigens: (i bacterial DNABII proteins that are a marker for Gram negative and Gram positive bacterial infections, (ii hemagglutinin (HA of influenza virus and (iii the extracellular domain of anaplastic lymphoma kinase (ALK. One of the native anti-KIR mAbs has similar characteristics as lirilumab, an anti-KIR mAb derived from immunization of humanized transgenic mice that is in ongoing clinical trials. It is interesting to speculate that these native anti-TIM-3 and anti-KIR antibodies may function as natural regulatory antibodies, analogous to the pharmacological use in cancer treatment of engineered antibodies against the same targets. Further characterization studies are needed to define the mechanisms through which these native antibodies may function in healthy and disease conditions.

  12. Embolization biomaterial reinforced with nanotechnology for an in-situ release of anti-angiogenic agent in the treatment of hyper-vascularized tumors and arteriovenous malformations.

    Science.gov (United States)

    Jubeli, E; Yagoubi, N; Pascale, F; Bédouet, L; Slimani, K; Labarre, D; Saint-Maurice, J P; Laurent, A; Moine, L

    2015-10-01

    A polymer based material was developed to act as an embolic agent and drug reservoir for the treatment of arteriovenous malformations (AVM) and hyper vascularized solid tumors. The aim was to combine the blocking of blood supply to the target region and the inhibition of the embolization-stimulated angiogenesis. The material is composed of an ethanolic solution of a linear acrylate based copolymer and acrylate calibrated microparticles containing nanospheres loaded with sunitinib, an anti-angiogenic agent. The precipitation of the linear copolymer in aqueous environment after injection through microcatheter results in the formation of an in-situ embolization gel whereas the microparticles serve to increase the cohesive properties of the embolization agent and to form a reservoir from which the sunitinib-loaded nanospheres are released post-embolization. The swollen state of the microparticles in contact with aqueous medium results in the release of the nanospheres out of microparticles macromolecular structure. After the synthesis, the formulation and the characterization of the different components of the material, anti-angiogenic activity was evaluated in vitro using endothelial cells and in vivo using corneal neovascularization model in rabbit. The efficiency of the arterial embolization was tested in vivo in a sheep model. Results proved the feasibility of this new system for vascular embolization in association with an in situ delivery of anti-angiogenic drug. This combination is a promising strategy for the management of arteriovenous malformations and solid tumors. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. [Bacterial efflux pumps - their role in antibiotic resistance and potential inhibitors].

    Science.gov (United States)

    Hricová, Kristýna; Kolář, Milan

    2014-12-01

    Efflux pumps capable of actively draining antibiotic agents from bacterial cells may be considered one of potential mechanisms of the development of antimicrobial resistance. The most important group of efflux pumps capable of removing several types of antibiotics include RND (resistance - nodulation - division) pumps. These are three proteins that cross the bacterial cell wall, allowing direct expulsion of the agent out from the bacterial cell. The most investigated efflux pumps are the AcrAB-TolC system in Escherichia coli and the MexAB-OprM system in Pseudomonas aeruginosa. Moreover, efflux pumps are able to export other than antibacterial agents such as disinfectants, thus decreasing their effectiveness. One potential approach to inactivation of an efflux pump is to use the so-called efflux pump inhibitors (EPIs). Potential inhibitors tested in vitro involve, for example, phenylalanyl-arginyl-b-naphthylamide (PAbN), carbonyl cyanide m-chlorophenylhydrazone (CCCP) or agents of the phenothiazine class.

  14. Healing agent for self-healing cementious material

    NARCIS (Netherlands)

    Jonkers, H.M.

    2011-01-01

    The invention provides a process for the production of a cementious material. The process comprises mixing cement starting materials and a particulate healing agent to provide the cementious material. The healing agent comprises coated particles, wherein the coated particles comprise bacterial

  15. Panamanian frog species host unique skin bacterial communities

    Directory of Open Access Journals (Sweden)

    Lisa K. Belden

    2015-10-01

    Full Text Available Vertebrates, including amphibians, host diverse symbiotic microbes that contribute to host disease resistance. Globally, and especially in montane tropical systems, many amphibian species are threatened by a chytrid fungus, Batrachochytrium dendrobatidis (Bd, that causes a lethal skin disease. Bd therefore may be a strong selective agent on the diversity and function of the microbial communities inhabiting amphibian skin. In Panamá, amphibian population declines and the spread of Bd have been tracked. In 2012, we completed a field survey in Panamá to examine frog skin microbiota in the context of Bd infection. We focused on three frog species and collected two skin swabs per frog from a total of 136 frogs across four sites that varied from west to east in the time since Bd arrival. One swab was used to assess bacterial community structure using 16S rRNA amplicon sequencing and to determine Bd infection status, and one was used to assess metabolite diversity, as the bacterial production of anti-fungal metabolites is an important disease resistance function. The skin microbiota of the three Panamanian frog species differed in OTU (operational taxonomic unit, ~bacterial species community composition and metabolite profiles, although the pattern was less strong for the metabolites. Comparisons between frog skin bacterial communities from Panamá and the US suggest broad similarities at the phylum level, but key differences at lower taxonomic levels. In our field survey in Panamá, across all four sites, only 35 individuals (~26% were Bd infected. There was no clustering of OTUs or metabolite profiles based on Bd infection status and no clear pattern of west-east changes in OTUs or metabolite profiles across the four sites. Overall, our field survey data suggest that different bacterial communities might be producing broadly similar sets of metabolites across frog hosts and sites. Community structure and function may not be as tightly coupled in

  16. Xanthone and Flavone Derivatives as Dual Agents with Acetylcholinesterase Inhibition and Antioxidant Activity as Potential Anti-Alzheimer Agents

    Directory of Open Access Journals (Sweden)

    Inês Cruz

    2017-01-01

    Full Text Available Alzheimer’s disease (AD is a multifactorial neurodegenerative disorder that is associated with the elderly. The current therapy that is used to treat AD is based mainly on the administration of acetylcholinesterase (AChE inhibitors. Due to their low efficacy there is a considerable need for other therapeutic strategies. Considering that the malfunctions of different, but interconnected, biochemical complex pathways play an important role in the pathogenesis of this disease, a promising therapy may consist in administration of drugs that act on more than a target on biochemical scenery of AD. In this work, the synthesis and evaluation of xanthone and flavone derivatives as antioxidants with AChE inhibitory activity were accomplished. Among the obtained compounds, Mannich bases 3 and 14 showed capacity to inhibit AChE and antioxidant property, exerting dual activity. Moreover, for the most promising AChE inhibitors, docking studies on the target have been performed aiming to predict the binding mechanism. The results presented here may help to identify new xanthone and flavone derivatives as dual anti-Alzheimer agents with AChE inhibitory and antioxidant activities.

  17. New Tacrines as Anti-Alzheimer's Disease Agents. The (Benzo)Chromeno- PyranoTacrines.

    Science.gov (United States)

    Oset-Gasque, Maria Jesus; Marco-Contelles, Jose

    2017-01-01

    Tacrine was the first drug approved by FDA (US) for the treatment of Alzheimer's disease suffering patients. Nowadays, this agent has been withdrawn from the clinics due to secondary effects, which, most importantly, include hepatotoxicity. However, the research on new tacrine analogues devoid of these therapeutically undesirable effects, but benefiting of their high and well known positive cholinergic power, has produced a number of new non-hepatotoxic tacrines. In this context, our laboratory has recently prepared a new set of heterocyclic tacrines by changing the benzene ring present in tacrine by appropriate heterocyclic motifs. Based on this approach, in this review we summarize the results that we have found in the ChromenoPyranoTacrines, one of the families of tacrine analogues. This highlights their pharmacological profile, such as their cholinesterase inhibition power, calcium channel blockade, antioxidant capacity, Aβ-anti-aggregating, and neuroprotective properties. As a result of this work we have identified permeable, neuroprotective MTD tacrines racemic hit-tacrines 11-amino-12-(3,4,5-trimethoxyphenyl)-7,9,10,12-tetrahydro-8H-chromeno[2,3- b]quinolin-3-ol (6g) and 14-(3,4-dimethoxyphenyl)-9,11,12,14-tetrahydro-10H-benzo[5,6] chromeno [2,3-b] quinolin-13-amine (7i),devoid of toxic effects and showing potent anti-cholinesterasic properties, that deserve attention and further development in order to find new, and more efficient drugs, for AD therapy. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Bacterial infection identification by an anti-peptidoglycan aptamer labeled with Technetium-99m

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Antero Silva Ribeiro; Ferreira, Iêda Mendes [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Barros, Andre Luis Branco de; Cardoso, Valbert Nascimento [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)

    2017-07-01

    Full text: Introduction: A variety of radiopharmaceuticals is used to detect infection, but long-term clinical use has shown that the majority of them cannot distinguish between inflammation and infection. Nuclear medicine clinics are still awaiting the optimal scintigraphic imaging agents capable of discriminating between infection and inflammation, and between fungal and bacterial infections. Aptamers are oligonucleotides that display high affinity and specificity for their molecular targets and are emerging as promising molecules for radiopharmaceuticals development. Material and Methods: An aptamer for the peptidoglycan (main constituent of bacterial cell walls) termed Antibac1 was selected in a previous work. In the present study, this aptamer were labeled with {sup 99m}Tc and evaluated for bacterial infections identification by scintigraphy. All protocols were approved by the local Ethics Committee for Animal Experimentation of the Federal University of Minas Gerais (CETEA / UFMG), Protocol number 108/2014. Labeling with {sup 99m}Tc was performed by the direct method and the complex stability was evaluated in saline, plasma and presence of cysteine. The biodistribution and scintigraphic imaging studies with the {sup 99m}Tc-Antibac1 were carried out in two distinct experimental infection models: Swiss mice infected in the right thigh with Staphylococcus aureus or Candida albicans. {sup 99m}Tc radiolabeled library, consisting of oligonucleotides with random sequences, was used as a control in both experimental models. The direct radiolabeling allowed radiolabel yields above 90%. Results: A high complex stability was obtained in saline solution and plasma, but 51% of transchelation was verified after 24 h in the presence of cysteine. Scintigraphic images of S. aureus infected mice that received the {sup 99m}Tc-Antibac1 showed target to non-target ratios of 4.7 ± 0.90 and 4.6 ± 0.10 at 1.5 and 3.0 h, respectively. These values were statistically higher than

  19. Bacterial infection identification by an anti-peptidoglycan aptamer labeled with Technetium-99m

    International Nuclear Information System (INIS)

    Andrade, Antero Silva Ribeiro; Ferreira, Iêda Mendes; Barros, Andre Luis Branco de; Cardoso, Valbert Nascimento

    2017-01-01

    Full text: Introduction: A variety of radiopharmaceuticals is used to detect infection, but long-term clinical use has shown that the majority of them cannot distinguish between inflammation and infection. Nuclear medicine clinics are still awaiting the optimal scintigraphic imaging agents capable of discriminating between infection and inflammation, and between fungal and bacterial infections. Aptamers are oligonucleotides that display high affinity and specificity for their molecular targets and are emerging as promising molecules for radiopharmaceuticals development. Material and Methods: An aptamer for the peptidoglycan (main constituent of bacterial cell walls) termed Antibac1 was selected in a previous work. In the present study, this aptamer were labeled with 99m Tc and evaluated for bacterial infections identification by scintigraphy. All protocols were approved by the local Ethics Committee for Animal Experimentation of the Federal University of Minas Gerais (CETEA / UFMG), Protocol number 108/2014. Labeling with 99m Tc was performed by the direct method and the complex stability was evaluated in saline, plasma and presence of cysteine. The biodistribution and scintigraphic imaging studies with the 99m Tc-Antibac1 were carried out in two distinct experimental infection models: Swiss mice infected in the right thigh with Staphylococcus aureus or Candida albicans. 99m Tc radiolabeled library, consisting of oligonucleotides with random sequences, was used as a control in both experimental models. The direct radiolabeling allowed radiolabel yields above 90%. Results: A high complex stability was obtained in saline solution and plasma, but 51% of transchelation was verified after 24 h in the presence of cysteine. Scintigraphic images of S. aureus infected mice that received the 99m Tc-Antibac1 showed target to non-target ratios of 4.7 ± 0.90 and 4.6 ± 0.10 at 1.5 and 3.0 h, respectively. These values were statistically higher than found for the 99m Tc

  20. Bacterial communities of two ubiquitous Great Barrier Reef corals reveals both site- and species-specificity of common bacterial associates.

    Directory of Open Access Journals (Sweden)

    E Charlotte E Kvennefors

    Full Text Available BACKGROUND: Coral-associated bacteria are increasingly considered to be important in coral health, and altered bacterial community structures have been linked to both coral disease and bleaching. Despite this, assessments of bacterial communities on corals rarely apply sufficient replication to adequately describe the natural variability. Replicated data such as these are crucial in determining potential roles of bacteria on coral. METHODOLOGY/PRINCIPAL FINDINGS: Denaturing Gradient Gel Electrophoresis (DGGE of the V3 region of the 16S ribosomal DNA was used in a highly replicated approach to analyse bacterial communities on both healthy and diseased corals. Although site-specific variations in the bacterial communities of healthy corals were present, host species-specific bacterial associates within a distinct cluster of gamma-proteobacteria could be identified, which are potentially linked to coral health. Corals affected by "White Syndrome" (WS underwent pronounced changes in their bacterial communities in comparison to healthy colonies. However, the community structure and bacterial ribotypes identified in diseased corals did not support the previously suggested theory of a bacterial pathogen as the causative agent of the syndrome. CONCLUSIONS/SIGNIFICANCE: This is the first study to employ large numbers of replicated samples to assess the bacterial communities of healthy and diseased corals, and the first culture-independent assessment of bacterial communities on WS affected Acroporid corals on the GBR. Results indicate that a minimum of 6 replicate samples are required in order to draw inferences on species, spatial or health-related changes in community composition, as a set of clearly distinct bacterial community profiles exist in healthy corals. Coral bacterial communities may be both site and species specific. Furthermore, a cluster of gamma-proteobacterial ribotypes may represent a group of specific common coral and marine

  1. A New Pharmacological Agent (AKB-4924) Stabilizes Hypoxia Inducible Factor (HIF) and Increases Skin Innate Defenses Against Bacterial Infection

    Science.gov (United States)

    Okumura, Cheryl Y.M.; Hollands, Andrew; Tran, Dan N.; Olson, Joshua; Dahesh, Samira; von Köckritz-Blickwede, Maren; Thienphrapa, Wdee; Corle, Courtney; Jeung, Seung Nam; Kotsakis, Anna; Shalwitz, Robert A.; Johnson, Randall S.; Nizet, Victor

    2013-01-01

    Hypoxia inducible factor-1 (HIF-1) is a transcription factor that is a major regulator of energy homeostasis and cellular adaptation to low oxygen stress. HIF-1 is also activated in response to bacterial pathogens and supports the innate immune response of both phagocytes and keratinocytes. In this work, we show that a new pharmacological compound AKB-4924 (Akebia Therapeutics) increases HIF-1α levels and enhances the antibacterial activity of phagocytes and keratinocytes against both methicillin-sensitive and -resistant strains of Staphylococcus aureus in vitro. AKB-4924 is also effective in stimulating the killing capacity of keratinocytes against the important opportunistic skin pathogens Pseudomonas aeruginosa and Acinitobacter baumanii. The effect of AKB-4924 is mediated through the activity of host cells, as the compound exerts no direct antimicrobial activity. Administered locally as a single agent, AKB-4924 limits S. aureus proliferation and lesion formation in a mouse skin abscess model. This approach to pharmacologically boost the innate immune response via HIF-1 stabilization may serve as a useful adjunctive treatment for antibiotic-resistant bacterial infections. PMID:22371073

  2. Synthesis and Biological Evaluation of 2H-Indazole Derivatives: Towards Antimicrobial and Anti-Inflammatory Dual Agents

    Directory of Open Access Journals (Sweden)

    Jaime Pérez-Villanueva

    2017-10-01

    Full Text Available Indazole is considered a very important scaffold in medicinal chemistry. It is commonly found in compounds with diverse biological activities, e.g., antimicrobial and anti-inflammatory agents. Considering that infectious diseases are associated to an inflammatory response, we designed a set of 2H-indazole derivatives by hybridization of cyclic systems commonly found in antimicrobial and anti-inflammatory compounds. The derivatives were synthesized and tested against selected intestinal and vaginal pathogens, including the protozoa Giardia intestinalis, Entamoeba histolytica, and Trichomonas vaginalis; the bacteria Escherichia coli and Salmonella enterica serovar Typhi; and the yeasts Candida albicans and Candida glabrata. Biological evaluations revealed that synthesized compounds have antiprotozoal activity and, in most cases, are more potent than the reference drug metronidazole, e.g., compound 18 is 12.8 times more active than metronidazole against G. intestinalis. Furthermore, two 2,3-diphenyl-2H-indazole derivatives (18 and 23 showed in vitro growth inhibition against Candida albicans and Candida glabrata. In addition to their antimicrobial activity, the anti-inflammatory potential for selected compounds was evaluated in silico and in vitro against human cyclooxygenase-2 (COX-2. The results showed that compounds 18, 21, 23, and 26 display in vitro inhibitory activity against COX-2, whereas docking calculations suggest a similar binding mode as compared to rofecoxib, the crystallographic reference.

  3. Non-operative anti-caries agents and dental caries increment among adults at high caries risk: a retrospective cohort study

    OpenAIRE

    Chaffee, Benjamin W.; Cheng, Jing; Featherstone, John DB

    2015-01-01

    Background Consensus guidelines support non-operative preventives for dental caries management; yet, their use in practice is far from universal. The purpose of this study was to evaluate the effectiveness of non-operative anti-caries agents in caries prevention among high caries risk adults at a university clinic where risk-based caries management is emphasized. Methods This retrospective observational study drew data from the electronic patient records of non-edentulous adult patients deeme...

  4. Anti-bacterial effect of essential oil from Xanthium strumarium against shiga toxin-producing Escherichia coli.

    Science.gov (United States)

    Sharifi-Rad, J; Soufi, L; Ayatollahi, S A M; Iriti, M; Sharifi-Rad, M; Varoni, E M; Shahri, F; Esposito, S; Kuhestani, K; Sharifi-Rad, M

    2016-09-19

    Shiga toxin-producing Escherichia coli (STEC) serotype O157:H7 is one of the most important human pathogenic microorganisms, which can cause life-threatening infections. Xanthium strumarium L. is a plant with anti-bacterial activity against gram-negative and gram-positive bacteria. This study aims to demonstrate in vitro efficacy of the essential oil (EO) extracted from Xanthium strumarium L. against E. coli O157:H7. Using the agar test diffusion, the effect of Xanthium strumarium L. EO (5, 10, 15, 30, 60, and 120 mg/mL) was verified at each of the four different growth phases of E. coli O157:H7. Cell counts of viable cells and colony forming unit (CFU) were determined at regular time points using Breed's method and colony counting method, respectively. No viable cell was detectable after the 1 hour-exposure to X. strumarium EO at 30, 60, and 120 mg/mL concentrations. No bacterial colony was formed after 1 h until the end of the incubation period at 24 h. At lower concentrations, the number of bacteria cells decreased and colonies could be observed only after incubation. At the exponential phase, the EO at 15 mg/mL was only bacteriostatic, while from 30 mg/mL started to be bactericidal. X. strumarium EO antibacterial activity against Shiga toxin-producing E. coli O157:H7 is dependent on EO concentration and physiological state of the microorganisms tested. The best inhibitory activity was achieved during the late exponential and the stationary phases.

  5. Discovery and Evaluation of Thiazinoquinones as Anti-Protozoal Agents

    Directory of Open Access Journals (Sweden)

    Marcel Kaiser

    2013-09-01

    Full Text Available Pure compound screening has identified the dioxothiazino-quinoline-quinone ascidian metabolite ascidiathiazone A (2 to be a moderate growth inhibitor of Trypanosoma brucei rhodesiense (IC50 3.1 μM and Plasmodium falciparum (K1 dual drug resistant strain (IC50 3.3 μM while exhibiting low levels of cytotoxicity (L6, IC50 167 μM. A series of C-7 amide and Δ2(3 analogues were prepared that explored the influence of lipophilicity and oxidation state on observed anti-protozoal activity and selectivity. Little variation in anti-malarial potency was observed (IC50 0.62–6.5 μM, and no correlation was apparent between anti-malarial and anti-T. brucei activity. Phenethylamide 7e and Δ2(3-glycine analogue 8k exhibited similar anti-Pf activity to 2 but with slightly enhanced selectivity (SI 72 and 93, respectively, while Δ2(3-phenethylamide 8e (IC50 0.67 μM, SI 78 exhibited improved potency and selectivity towards T. brucei rhodesiense compared to the natural product hit. A second series of analogues were prepared that replaced the quinoline ring of 2 with benzofuran or benzothiophene moieties. While esters 10a/10b and 15 were once again found to exhibit cytotoxicity, carboxylic acid analogues exhibited potent anti-Pf activity (IC50 0.34–0.035 μM combined with excellent selectivity (SI 560–4000. In vivo evaluation of a furan carboxylic acid analogue against P. berghei was undertaken, demonstrating 85.7% and 47% reductions in parasitaemia with ip or oral dosing respectively.

  6. Plant-Derived Natural Products as Sources of Anti-Quorum Sensing Compounds

    Directory of Open Access Journals (Sweden)

    Kok-Gan Chan

    2013-05-01

    Full Text Available Quorum sensing is a system of stimuli and responses in relation to bacterial cell population density that regulates gene expression, including virulence determinants. Consequently, quorum sensing has been an attractive target for the development of novel anti-infective measures that do not rely on the use of antibiotics. Anti-quorum sensing has been a promising strategy to combat bacterial infections as it is unlikely to develop multidrug resistant pathogens since it does not impose any selection pressure. A number of anti-quorum sensing approaches have been documented and plant-based natural products have been extensively studied in this context. Plant matter is one of the major sources of chemicals in use today in various industries, ranging from the pharmaceutical, cosmetic, and food biotechnology to the textile industries. Just like animals and humans, plants are constantly exposed to bacterial infections, it is therefore logical to expect that plants have developed sophisticated of chemical mechanisms to combat pathogens. In this review, we have surveyed the various types of plant-based natural products that exhibit anti-quorum sensing properties and their anti-quorum sensing mechanisms.

  7. Misoprostol, an anti-ulcer agent and PGE2 receptor agonist, protects against cerebral ischemia.

    Science.gov (United States)

    Li, Jun; Liang, Xibin; Wang, Qian; Breyer, Richard M; McCullough, Louise; Andreasson, Katrin

    2008-06-20

    Induction of COX-2 activity in cerebral ischemia results in increased neuronal injury and infarct size. Recent studies investigating neurotoxic mechanisms of COX-2 demonstrate both toxic and paradoxically protective effects of downstream prostaglandin receptor signaling pathways. We tested whether misoprostol, a PGE(2) receptor agonist that is utilized clinically as an anti-ulcer agent and signals through the protective PGE(2) EP2, EP3, and EP4 receptors, would reduce brain injury in the murine middle cerebral artery occlusion-reperfusion (MCAO-RP) model. Administration of misoprostol, at the time of MCAO or 2h after MCAO, resulted in significant rescue of infarct volume at 24 and 72h. Immunocytochemistry demonstrated dynamic regulation of the EP2 and EP4 receptors during reperfusion in neurons and endothelial cells of cerebral cortex and striatum, with limited expression of EP3 receptor. EP3-/- mice had no significant changes in infarct volume compared to control littermates. Moreover, administration of misoprostol to EP3+/+ and EP3-/- mice showed similar levels of infarct rescue, indicating that misoprostol protection was not mediated through the EP3 receptor. Taken together, these findings suggest a novel function for misoprostol as a protective agent in cerebral ischemia acting via the PGE(2) EP2 and/or EP4 receptors.

  8. Tumor vascular-targeted co-delivery of anti-angiogenesis and chemotherapeutic agents by mesoporous silica nanoparticle-based drug delivery system for synergetic therapy of tumor

    Directory of Open Access Journals (Sweden)

    Li X

    2015-12-01

    Full Text Available Xiaoyu Li, Meiying Wu, Limin Pan, Jianlin Shi State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, People’s Republic of China Abstract: To overcome the drawback of drug non-selectivity in traditional chemotherapy, the construction of multifunctional targeting drug delivery systems is one of the most effective and prevailing approaches. The intratumoral anti-angiogenesis and the tumor cell-killing are two basic approaches in fighting tumors. Herein we report a novel tumor vascular-targeting multidrug delivery system using mesoporous silica nanoparticles as carrier to co-load an antiangiogenic agent (combretastatin A4 and a chemotherapeutic drug (doxorubicin and conjugate with targeting molecules (iRGD peptide for combined anti-angiogenesis and chemotherapy. Such a dual-loaded drug delivery system is capable of delivering the two agents at tumor vasculature and then within tumors through a differentiated drug release strategy, which consequently results in greatly improved antitumor efficacy at a very low doxorubicin dose of 1.5 mg/kg. The fast release of the antiangiogenic agent at tumor vasculatures led to the disruption of vascular structure and had a synergetic effect with the chemotherapeutic drug slowly released in the following delivery of chemotherapeutic drug into tumors. Keywords: mesoporous silica nanoparticles, drug delivery, tumor vasculatures targeting, antiangiogenic agent

  9. Identification of Bioactive Agents and Immunomodulatory Factors from Seashells of the Persian Gulf

    Directory of Open Access Journals (Sweden)

    Arezoo Najafi

    2010-09-01

    Full Text Available Background: Research in marine pharmacology will promise new bioactive agents. The marine bioenvironment is the unique resource for bioactive agents that could not be found in terrestrial organisms. Methods: A total of known 611 seashells species in the Persian Gulf were investigated for synonymy in OBIS database. Then, all the species, including their synonymy were searched in PubMed database to find their isolated bioactive agents. Results: From 611 known seashells in the Persian Gulf, 172 genera/species had bioactive compounds. Bioactive agents were isolated and purified for 16 genera/ species. The crude or purified extracts from these seashells had immunomodulatory effects (6 seashells, anti-toxicologic effects (4 seashells, analgesic (1 seashell, cardiotonic and vasoactive agents (2 seashells, hypolipidemic agents (4 seashells, anti-osteoporotic and osteoblastic agents (2 seashells and anti-dermatitis effect (1 seashell. Conclusion: The known seashells from the Persian Gulf have bioactive and immunomodulatory compounds and increase in the efforts to isolate these agents will promise a treasure for novel anti-infective agents.

  10. Anti-inflammatory and anti-oxidative effects of herbal preparation EM 1201 in adjuvant arthritic rats

    Directory of Open Access Journals (Sweden)

    Laimis Akramas

    2015-01-01

    Conclusions: The present study suggests that EM 1201 has protective activity against arthritis and demonstrated its potential beneficiary effect analogical to diclofenac. Anti-inflammatory and anti-oxidative effect of EM 1201 in rats with AA support the need of further investigations by using it as supplementary agent alone or together with other anti-arthritic drugs in the treatment of rheumatoid arthritis.

  11. Anti-microbial principles of selected remedial plants from Southern India.

    Science.gov (United States)

    Tirupathi, Rao G; Suresh, Babu K; Ujwal, Kumar J; Sujana, P; Raoa, A Veerabhadr; Sreedhar, A S

    2011-08-01

    To examine the anti-bacterial activity of leaf extracts of Morus alba L. (Moraceae) and Piper betel L. (Piperaceae), and seed extracts of Bombax ceiba L. (Borabacaceae). We have partially purified plant extracts by solvent extraction method, and evaluated the effect of individual fractions on bacterial growth using Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus) bacterial strains. Compared with Morus and Bombax fractions, Piper fractions showed significant growth inhibition on all the three types of bacteria studied. The EtOAc-hexane fractions of Piper leaves exhibited significant anti-bacterial activity with minimum inhibitory concentrations (MIC) of 50 µg/mL culture against both gram-positive and gram-negative bacteria. The EtOAc-fractions I, II, and IV inhibited bacterial colony formation on soft agar in addition to growth inhibition. A combination treatment of piper fractions with ampicillin resulted in significant growth inhibition in E. coli and P. aeruginosa, and combination with anticancer drug geldanamycin (2µg/mL) showed selective growth inhibition against P. aeruginosa and S. aureus. Three major compounds, i.e., eugenol, 3-hexene-ol and stigmasterol, were primarily identified from Piper betel leaf extractions. Among the individual compounds, eugenol treatment showed improved growth inhibition compared with stigmasterol and 3-hexene-ol. We are reporting potential anti-bacterial compounds from Piper betel against both gram-positive and gram-negative bacteria either alone or in combination with drug treatment.

  12. Electron beam processed transdermal delivery system for administration of an anti-anginal agent

    Science.gov (United States)

    Kotiyan, P. N.; Vavia, P. R.; Bharadwaj, Y. K.; Sabarwal, S.; Majali, A. B.

    2002-12-01

    Electron beam irradiation was used to synthesize a matrix type transdermal system of isosorbide dinitrate, an effective anti-anginal agent. The drug was dissolved in two monomeric systems, 2-ethylhexyl acrylate (EHA) and 2-ethylhexyl acrylate : methyl methacrylate (9 : 1). The solutions were then directly irradiated on a backing membrane (Scotchpak ®1006) at different doses to get transdermal patches. The developed systems were evaluated for residual monomer content, equilibrium weight swelling ratio, weight uniformity, thickness uniformity, drug content, peel strength, in vitro release and skin permeation kinetics. They possessed excellent tack and adhesive properties. In the case of isosorbide dinitrate-EHA systems, an increase in the peel strength values with respect to the skin was observed with increasing radiation doses. The systems exhibited promising skin permeation kinetics favorable for transdermal drug delivery. The radiation stability of the drug in the pure solid state form was also assessed.

  13. Electron beam processed transdermal delivery system for administration of an anti-anginal agent

    Energy Technology Data Exchange (ETDEWEB)

    Kotiyan, P.N. E-mail: pramila-kotiyan@uiowa.edu; Vavia, P.R.; Bharadwaj, Y.K.; Sabarwal, S.; Majali, A.B

    2002-12-01

    Electron beam irradiation was used to synthesize a matrix type transdermal system of isosorbide dinitrate, an effective anti-anginal agent. The drug was dissolved in two monomeric systems, 2-ethylhexyl acrylate (EHA) and 2-ethylhexyl acrylate : methyl methacrylate (9 : 1). The solutions were then directly irradiated on a backing membrane (Scotchpak[reg]1006) at different doses to get transdermal patches. The developed systems were evaluated for residual monomer content, equilibrium weight swelling ratio, weight uniformity, thickness uniformity, drug content, peel strength, in vitro release and skin permeation kinetics. They possessed excellent tack and adhesive properties. In the case of isosorbide dinitrate-EHA systems, an increase in the peel strength values with respect to the skin was observed with increasing radiation doses. The systems exhibited promising skin permeation kinetics favorable for transdermal drug delivery. The radiation stability of the drug in the pure solid state form was also assessed.

  14. A screen to identify drug resistant variants to target-directed anti-cancer agents

    Directory of Open Access Journals (Sweden)

    Azam Mohammad

    2003-01-01

    Full Text Available The discovery of oncogenes and signal transduction pathways important for mitogenesis has triggered the development of target-specific small molecule anti-cancer compounds. As exemplified by imatinib (Gleevec, a specific inhibitor of the Chronic Myeloid Leukemia (CML-associated Bcr-Abl kinase, these agents promise impressive activity in clinical trials, with low levels of clinical toxicity. However, such therapy is susceptible to the emergence of drug resistance due to amino acid substitutions in the target protein. Defining the spectrum of such mutations is important for patient monitoring and the design of next-generation inhibitors. Using imatinib and BCR/ABL as a paradigm for a drug-target pair, we recently reported a retroviral vector-based screening strategy to identify the spectrum of resistance-conferring mutations. Here we provide a detailed methodology for the screen, which can be generally applied to any drug-target pair.

  15. Electron beam processed transdermal delivery system for administration of an anti-anginal agent

    International Nuclear Information System (INIS)

    Kotiyan, P.N.; Vavia, P.R.; Bharadwaj, Y.K.; Sabarwal, S.; Majali, A.B.

    2002-01-01

    Electron beam irradiation was used to synthesize a matrix type transdermal system of isosorbide dinitrate, an effective anti-anginal agent. The drug was dissolved in two monomeric systems, 2-ethylhexyl acrylate (EHA) and 2-ethylhexyl acrylate : methyl methacrylate (9 : 1). The solutions were then directly irradiated on a backing membrane (Scotchpak[reg]1006) at different doses to get transdermal patches. The developed systems were evaluated for residual monomer content, equilibrium weight swelling ratio, weight uniformity, thickness uniformity, drug content, peel strength, in vitro release and skin permeation kinetics. They possessed excellent tack and adhesive properties. In the case of isosorbide dinitrate-EHA systems, an increase in the peel strength values with respect to the skin was observed with increasing radiation doses. The systems exhibited promising skin permeation kinetics favorable for transdermal drug delivery. The radiation stability of the drug in the pure solid state form was also assessed

  16. The challenge of treating hepatitis C virus-associated cryoglobulinemic vasculitis in the era of anti-CD20 monoclonal antibodies and direct antiviral agents.

    Science.gov (United States)

    Roccatello, Dario; Sciascia, Savino; Rossi, Daniela; Solfietti, Laura; Fenoglio, Roberta; Menegatti, Elisa; Baldovino, Simone

    2017-06-20

    Mixed cryoglobulinemia syndrome (MC) is a systemic vasculitis involving kidneys, joints, skin, and peripheral nerves. While many autoimmune, lymphoproliferative, and neoplastic disorders have been associated with this disorder, hepatitis C virus (HCV) is known to be the etiologic agent in the majority of patients. Therefore, clinical research has focused on anti-viral drugs and, more recently, on the new, highly potent Direct-acting Antiviral Agents (DAAs). These drugs assure sustained virologic response (SVR) rates >90%. Nevertheless, data on their efficacy in patients with HCV-associated cryoglobulinemic vasculitis are disappointing, possibly due to the inability of the drugs to suppress the immune-mediated process once it has been triggered.Despite the potential risk of exacerbation of the infection, immunosuppression has traditionally been regarded as the first-line intervention in cryoglobulinemic vasculitis, especially if renal involvement is severe. Biologic agents have raised hopes for more manageable therapeutic approaches, and Rituximab (RTX), an anti CD20 monoclonal antibody, is the most widely used biologic drug. It has proved to be safer than conventional immunosuppressants, thus substantially changing the natural history of HCV-associated cryoglobulinemic vasculitis by providing long-term remission, especially with intensive regimens.The present review focuses on the new therapeutic opportunities offered by the combination of biological drugs, mainly Rituximab, with DAAs.

  17. Detection of Acute Gastroenteritis Agents By Molecular Methods

    Directory of Open Access Journals (Sweden)

    Şafak Göktaş

    2018-03-01

    Full Text Available Objective: Gastroenteritis is the most important cause of morbidity and mortality in all age groups all over the world. Multiplex PCR tests give sensitive and specific results in the investigation of bacterial, viral, parasitic agents. In this study, it was aimed to determine the agents of the stool specimens of patients with acute diarrhea by multiplex PCR. Materials and Methods: Stool sample taken from 471 patients sent to Istanbul Gelişim Laboratories between January 1, 2015 and September 30, 2016 was included in the study. All stool samples were processed according to manufacturer’s instructions with GastroFinder SMART 18 FAST multiplex PCR test (Pathofinder, Holland. 18 different gastrointestinal pathogens were diagnosed in one study. Results: Of the 471 patients stool sample included in the study. The agent was negative in 241 (51.2%, while the agent was isolated in 230 (48.8%. 190 (82% had a single pathogen, 40 had two or more pathogens. Of the 190 samples detected with single agent, 149 (31.6% were bacterial, 26 (5.5% were parasitic and 15 (3.1% were viral agents. Of the 149 bacterial agents, 108 (23% was detected as Salmonella spp, 14 (6% as EHEC, 8 (3.5% as Clostridium difficile toxin A / B, 8 (3.5% as Campylobacter spp., 7 (3% Aeromonas spp., 2 (0.8% Yersinia enterocolitica, 2 (0.8% Enterotoxigenic E. coli (ETEC. Of 26 parasitic agents, 18 (7.8% was detected as Giardia lamblia, 6 (2.6% as Dientamoeba fragilis and 2 (0.8% as Cryptosporidium spp. Conclusion: Identification of enteric pathogens by multiplex PCR will avoids the use of unnecessary antibiotic treatments

  18. Anti-vascular endothelial growth factor for neovascular glaucoma.

    Science.gov (United States)

    Simha, Arathi; Braganza, Andrew; Abraham, Lekha; Samuel, Prasanna; Lindsley, Kristina

    2013-10-02

    Neovascular glaucoma (NVG) is a potentially blinding secondary glaucoma. It is caused by the formation of abnormal new blood vessels which prevent normal drainage of aqueous from the anterior segment of the eye. Anti-vascular endothelial growth factor (anti-VEGF) agents are specific inhibitors of the primary mediators of neovascularization. Studies have reported the effectiveness of anti-VEGFs for the control of intraocular pressure (IOP) in NVG. To compare the IOP lowering effects of intraocular anti-VEGF agents to no anti-VEGF treatment, as an adjunct to existing modalities for the treatment of NVG. We searched CENTRAL (which contains the Cochrane Eyes and Vision Group Trials Register) (The Cochrane Library 2012, Issue 12), Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE, (January 1950 to January 2013), EMBASE (January 1980 to January 2013), Latin American and Caribbean Literature on Health Sciences (LILACS) (January 1982 to January 2013), the metaRegister of Controlled Trials (mRCT) (www.controlled-trials.com), ClinicalTrials.gov (www.clinicaltrials.gov/) and the WHO International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We did not use any date or language restrictions in the electronic searches for trials. We last searched the electronic databases on 11 January 2013. We included randomized controlled trials (RCTs) and quasi-RCTs of people treated with anti-VEGF agents for NVG. Two authors independently assessed the search results for trials to be included in the review. Discrepancies were resolved by discussion with a third author. Since no trial met our inclusion criteria, no assessment of risk of bias or meta-analysis was undertaken. No RCTs were found that met the inclusion criteria for this review. Two RCTs of anti-VEGF agents for treating NVG were not included in the review due to the heterogeneity and uncontrolled assignment of adjunct treatments received by the

  19. Utilization of chitinolytic bacterial isolates to control anthracnose of ...

    African Journals Online (AJOL)

    Colletotrichum spp. are causal agents of anthracnose in many plant species. Biological control of Colletotrichum spp. utilizing bacterial isolates and fungi has been reported. However, chitinolytic bacterial isolate utilization to control anthracnose of cocoa leaf has not seemingly been studied yet. In this study, we used ...

  20. [Bacterial biofilms and infection].

    Science.gov (United States)

    Lasa, I; Del Pozo, J L; Penadés, J R; Leiva, J

    2005-01-01

    In developed countries we tend to think of heart disease and the numerous forms of cancer as the main causes of mortality, but on a global scale infectious diseases come close, or may even be ahead: 14.9 million deaths in 2002 compared to cardiovascular diseases (16.9 million deaths) and cancer (7.1 million deaths) (WHO report 2004). The infectious agents responsible for human mortality have evolved as medical techniques and hygienic measures have changed. Modern-day acute infectious diseases caused by specialized bacterial pathogens such as diphtheria, tetanus, cholera, plague, which represented the main causes of death at the beginning of XX century, have been effectively controlled with antibiotics and vaccines. In their place, more than half of the infectious diseases that affect mildly immunocompromised patients involve bacterial species that are commensal with the human body; these can produce chronic infections, are resistant to antimicrobial agents and there is no effective vaccine against them. Examples of these infections are the otitis media, native valve endocarditis, chronic urinary infections, bacterial prostatitis, osteomyelitis and all the infections related to medical devices. Direct analysis of the surface of medical devices or of tissues that have been foci of chronic infections shows the presence of large numbers of bacteria surrounded by an exopolysaccharide matrix, which has been named the "biofilm". Inside the biofilm, bacteria grow protected from the action of the antibodies, phagocytic cells and antimicrobial treatments. In this article, we describe the role of bacterial biofilms in human persistent infections.

  1. Inhibition of Pseudogymnoascus destructans growth from conidia and mycelial extension by bacterially produced volatile organic compounds.

    Science.gov (United States)

    Cornelison, Christopher T; Gabriel, Kyle T; Barlament, Courtney; Crow, Sidney A

    2014-02-01

    The recently identified causative agent of white-nose syndrome (WNS), Pseudogymnoascus destructans, has been implicated in the mortality of an estimated 5.5 million North American bats since its initial documentation in 2006 (Frick et al. in Science 329:679-682, 2010). In an effort to identify potential biological and chemical control options for WNS, 6 previously described bacterially produced volatile organic compounds (VOCs) were screened for anti-P. destructans activity. The compounds include decanal; 2-ethyl-1-hexanol; nonanal; benzothiazole; benzaldehyde; andN,N-dimethyloctylamine. P. destructans conidia and mycelial plugs were exposed to the VOCs in a closed air space at 15 and 4 °C and then evaluated for growth inhibition. All VOCs inhibited growth from conidia as well as inhibiting radial mycelial extension, with the greatest effect at 4 °C. Studies of the ecology of fungistatic soils and the natural abundance of the fungistatic VOCs present in these environments suggest a synergistic activity of select VOCs may occur. The evaluation of formulations of two or three VOCs at equivalent concentrations was supportive of synergistic activity in several cases. The identification of bacterially produced VOCs with anti-P. destructans activity indicates disease-suppressive and fungistatic soils as a potentially significant reservoir of biological and chemical control options for WNS and provides wildlife management personnel with tools to combat this devastating disease.

  2. Therapeutic potential of a non-steroidal bifunctional anti-inflammatory and anti-cholinergic agent against skin injury induced by sulfur mustard

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yoke-Chen; Wang, James D.; Hahn, Rita A.; Gordon, Marion K.; Joseph, Laurie B. [Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ (United States); Heck, Diane E. [Department of Environmental Science, New York Medical College, Valhalla, NY (United States); Heindel, Ned D. [Department of Chemistry, Lehigh University, Bethlehem, PA (United States); Young, Sherri C. [Department of Chemistry, Muhlenberg College, Allentown, PA (United States); Sinko, Patrick J. [Department of Pharmaceutics, Rutgers University, Piscataway, NJ (United States); Casillas, Robert P. [MRIGlobal, Kansas City, MO (United States); Laskin, Jeffrey D. [Environmental and Occupational Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ (United States); Laskin, Debra L. [Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ (United States); Gerecke, Donald R., E-mail: gerecke@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ (United States)

    2014-10-15

    Sulfur mustard (bis(2-chloroethyl) sulfide, SM) is a highly reactive bifunctional alkylating agent inducing edema, inflammation, and the formation of fluid-filled blisters in the skin. Medical countermeasures against SM-induced cutaneous injury have yet to be established. In the present studies, we tested a novel, bifunctional anti-inflammatory prodrug (NDH 4338) designed to target cyclooxygenase 2 (COX2), an enzyme that generates inflammatory eicosanoids, and acetylcholinesterase, an enzyme mediating activation of cholinergic inflammatory pathways in a model of SM-induced skin injury. Adult SKH-1 hairless male mice were exposed to SM using a dorsal skin vapor cup model. NDH 4338 was applied topically to the skin 24, 48, and 72 h post-SM exposure. After 96 h, SM was found to induce skin injury characterized by edema, epidermal hyperplasia, loss of the differentiation marker, keratin 10 (K10), upregulation of the skin wound marker keratin 6 (K6), disruption of the basement membrane anchoring protein laminin 322, and increased expression of epidermal COX2. NDH 4338 post-treatment reduced SM-induced dermal edema and enhanced skin re-epithelialization. This was associated with a reduction in COX2 expression, increased K10 expression in the suprabasal epidermis, and reduced expression of K6. NDH 4338 also restored basement membrane integrity, as evidenced by continuous expression of laminin 332 at the dermal–epidermal junction. Taken together, these data indicate that a bifunctional anti-inflammatory prodrug stimulates repair of SM induced skin injury and may be useful as a medical countermeasure. - Highlights: • Bifunctional anti-inflammatory prodrug (NDH4338) tested on SM exposed mouse skin • The prodrug NDH4338 was designed to target COX2 and acetylcholinesterase. • The application of NDH4338 improved cutaneous wound repair after SM induced injury. • NDH4338 treatment demonstrated a reduction in COX2 expression on SM injured skin. • Changes of skin repair

  3. Anti-cancer activities of Ganoderma lucidum: active ingredients and pathways

    Directory of Open Access Journals (Sweden)

    Chi H.J. Kao

    2013-02-01

    Full Text Available ABSTRACTGanoderma lucidum, commonly referred to as Lingzhi, has been used in Asia for health promotion for centuries. The anti-cancer effects of G. lucidum have been demonstrated in both in vitro and in vivo studies. In addition, the observed anti-cancer activities of Ganoderma have prompted its usage by cancer patients alongside chemotherapy.The main two bioactive components of G. lucidum can be broadly grouped into triterpenes and polysaccharides. Despite triterpenes and polysaccharides being widely known as the major active ingredients, the different biological pathways by which they exert their anti-cancer effect remain poorly defined. Therefore, understanding the mechanisms of action may lead to more widespread use of Ganoderma as an anti-cancer agent.The aim of this paper is to summarise the various bioactive mechanisms that have been proposed for the anti-cancer properties of triterpenes and polysaccharides extracted from G. lucidum. A literature search of published papers on NCBI with keywords “Ganoderma” and “cancer” was performed. Among those, studies which specifically examined the anti-cancer activities of Ganoderma triterpenes and polysaccharides were selected to be included in this paper.We have found five potential mechanisms which are associated with the anti-cancer activities of Ganoderma triterpenes and three potential mechanisms for Ganoderma polysaccharides. In addition, G. lucidum has been used in combination with known anti-cancer agents to improve the anti-cancer efficacies. This suggests Ganoderma’s bioactive pathways may compliment that of anti-cancer agents. In this paper we present several potential anti-cancer mechanisms of Ganoderma triterpenes and polysaccharides which can be used for the development of Ganoderma as an anti-cancer agent.

  4. Anti-Inflammatory and Antinociceptive Effects of Ethyl Acetate Fraction of an Edible Red Macroalgae Sarcodia ceylanica

    Directory of Open Access Journals (Sweden)

    Chieh-Chih Shih

    2017-11-01

    Full Text Available Research so far has only shown that edible red macroalgae, Sarcodia ceylanica has the ability to eliminate free radicals and anti-diabetic, anti-bacterial properties. This study was conducted both in vitro and in vivo on the ethyl acetate extract (PD1 of farmed red macroalgae in order to explore its anti-inflammatory properties. In order to study the in vitro anti-inflammatory effects of PD1, we used lipopolysaccharide (LPS to induce inflammatory responses in murine macrophages. For evaluating the potential in vivo anti-inflammatory and antinociceptive effects of PD1, we used carrageenan-induced rat paw edema to produce inflammatory pain. The in vitro results indicated that PD1 inhibited the LPS-induced pro-inflammatory protein, inducible nitric oxide synthase (iNOS in macrophages. Oral PD1 can reduce carrageenan-induced paw edema and inflammatory nociception. PD1 can significantly inhibit carrageenan-induced leukocyte infiltration, as well as the protein expression of inflammatory mediators (iNOS, interleukin-1β, and myeloperoxidase in inflammatory tissue. The above results indicated that PD1 has great potential to be turned into a functional food or used in the development of new anti-inflammatory and antinociceptive agents. The results from this study are expected to help scientists in the continued development of Sarcodia ceylanica for other biomedical applications.

  5. Diameter of titanium nanotubes influences anti-bacterial efficacy

    International Nuclear Information System (INIS)

    Ercan, Batur; Taylor, Erik; Webster, Thomas J; Alpaslan, Ece

    2011-01-01

    Bacterial infection of in-dwelling medical devices is a growing problem that cannot be treated by traditional antibiotics due to the increasing prevalence of antimicrobial resistance and biofilm formation. Here, due to changes in surface parameters, it is proposed that bacterial adhesion can be prevented through nanosurface modifications of the medical device alone. Toward this goal, titanium was created to possess nanotubular surface topographies of highly controlled diameters of 20, 40, 60, or 80 nm, sometimes followed by heat treatment to control chemistry and crystallinity, through a novel anodization process. For the first time it was found that through the control of Ti surface parameters including chemistry, crystallinity, nanotube size, and hydrophilicity, significantly changed responses of both Staphylococcus epidermidis and Staphylococcus aureus (pathogens relevant for orthopaedic and other medical device related infections) were measured. Specifically, heat treatment of 80 nm diameter titanium tubes produced the most robust antimicrobial effect of all surface treatment parameters tested. This study provides the first step toward understanding the surface properties of nano-structured titanium that improve tissue growth (as has been previously observed with nanotubular titanium), while simultaneously reducing infection without the use of pharmaceutical drugs.

  6. Diameter of titanium nanotubes influences anti-bacterial efficacy

    Energy Technology Data Exchange (ETDEWEB)

    Ercan, Batur; Taylor, Erik; Webster, Thomas J [School of Engineering, Brown University, Providence, RI 02917 (United States); Alpaslan, Ece, E-mail: thomas_webster@brown.edu [Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul (Turkey)

    2011-07-22

    Bacterial infection of in-dwelling medical devices is a growing problem that cannot be treated by traditional antibiotics due to the increasing prevalence of antimicrobial resistance and biofilm formation. Here, due to changes in surface parameters, it is proposed that bacterial adhesion can be prevented through nanosurface modifications of the medical device alone. Toward this goal, titanium was created to possess nanotubular surface topographies of highly controlled diameters of 20, 40, 60, or 80 nm, sometimes followed by heat treatment to control chemistry and crystallinity, through a novel anodization process. For the first time it was found that through the control of Ti surface parameters including chemistry, crystallinity, nanotube size, and hydrophilicity, significantly changed responses of both Staphylococcus epidermidis and Staphylococcus aureus (pathogens relevant for orthopaedic and other medical device related infections) were measured. Specifically, heat treatment of 80 nm diameter titanium tubes produced the most robust antimicrobial effect of all surface treatment parameters tested. This study provides the first step toward understanding the surface properties of nano-structured titanium that improve tissue growth (as has been previously observed with nanotubular titanium), while simultaneously reducing infection without the use of pharmaceutical drugs.

  7. Diameter of titanium nanotubes influences anti-bacterial efficacy

    Science.gov (United States)

    Ercan, Batur; Taylor, Erik; Alpaslan, Ece; Webster, Thomas J.

    2011-07-01

    Bacterial infection of in-dwelling medical devices is a growing problem that cannot be treated by traditional antibiotics due to the increasing prevalence of antimicrobial resistance and biofilm formation. Here, due to changes in surface parameters, it is proposed that bacterial adhesion can be prevented through nanosurface modifications of the medical device alone. Toward this goal, titanium was created to possess nanotubular surface topographies of highly controlled diameters of 20, 40, 60, or 80 nm, sometimes followed by heat treatment to control chemistry and crystallinity, through a novel anodization process. For the first time it was found that through the control of Ti surface parameters including chemistry, crystallinity, nanotube size, and hydrophilicity, significantly changed responses of both Staphylococcus epidermidis and Staphylococcus aureus (pathogens relevant for orthopaedic and other medical device related infections) were measured. Specifically, heat treatment of 80 nm diameter titanium tubes produced the most robust antimicrobial effect of all surface treatment parameters tested. This study provides the first step toward understanding the surface properties of nano-structured titanium that improve tissue growth (as has been previously observed with nanotubular titanium), while simultaneously reducing infection without the use of pharmaceutical drugs.

  8. Microbial biofilms: biosurfactants as antibiofilm agents.

    Science.gov (United States)

    Banat, Ibrahim M; De Rienzo, Mayri A Díaz; Quinn, Gerry A

    2014-12-01

    Current microbial inhibition strategies based on planktonic bacterial physiology have been known to have limited efficacy on the growth of biofilm communities. This problem can be exacerbated by the emergence of increasingly resistant clinical strains. All aspects of biofilm measurement, monitoring, dispersal, control, and inhibition are becoming issues of increasing importance. Biosurfactants have merited renewed interest in both clinical and hygienic sectors due to their potential to disperse microbial biofilms in addition to many other advantages. The dispersal properties of biosurfactants have been shown to rival those of conventional inhibitory agents against bacterial and yeast biofilms. This makes them suitable candidates for use in new generations of microbial dispersal agents and for use as adjuvants for existing microbial suppression or eradication strategies. In this review, we explore aspects of biofilm characteristics and examine the contribution of biologically derived surface-active agents (biosurfactants) to the disruption or inhibition of microbial biofilms.

  9. Protective effects of antioxidants and anti-inflammatory agents against manganese-induced oxidative damage and neuronal injury

    International Nuclear Information System (INIS)

    Milatovic, Dejan; Gupta, Ramesh C.; Yu, Yingchun; Zaja-Milatovic, Snjezana; Aschner, Michael

    2011-01-01

    Exposure to excessive manganese (Mn) levels leads to neurotoxicity, referred to as manganism, which resembles Parkinson's disease (PD). Manganism is caused by neuronal injury in both cortical and subcortical regions, particularly in the basal ganglia. The basis for the selective neurotoxicity of Mn is not yet fully understood. However, several studies suggest that oxidative damage and inflammatory processes play prominent roles in the degeneration of dopamine-containing neurons. In the present study, we assessed the effects of Mn on reactive oxygen species (ROS) formation, changes in high-energy phosphates and associated neuronal dysfunctions both in vitro and in vivo. Results from our in vitro study showed a significant (p 2 -isoprostanes (F 2 -IsoPs), as well as the depletion of ATP in primary rat cortical neurons following exposure to Mn (500 μM) for 2 h. These effects were protected when neurons were pretreated for 30 min with 100 of an antioxidant, the hydrophilic vitamin E analog, trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid), or an anti-inflammatory agent, indomethacin. Results from our in vivo study confirmed a significant increase in F 2 -IsoPs levels in conjunction with the progressive spine degeneration and dendritic damage of the striatal medium spiny neurons (MSNs) of mice exposed to Mn (100 mg/kg, s.c.) 24 h. Additionally, pretreatment with vitamin E (100 mg/kg, i.p.) or ibuprofen (140 μg/ml in the drinking water for two weeks) attenuated the Mn-induced increase in cerebral F 2 -IsoPs? and protected the MSNs from dendritic atrophy and dendritic spine loss. Our findings suggest that the mediation of oxidative stress/mitochondrial dysfunction and the control of alterations in biomarkers of oxidative injury, neuroinflammation and synaptodendritic degeneration may provide an effective, multi-pronged therapeutic strategy for protecting dysfunctional dopaminergic transmission and slowing of the progression of Mn-induced neurodegenerative

  10. Bacterial endocarditis due to eikenella corrodens: A case report

    Directory of Open Access Journals (Sweden)

    Mahapatra A

    2003-01-01

    Full Text Available Of all the causes of bacterial endocarditis, HACEK group consisting of Haemophilus, Actinobacillus actinomycetemcomitans, Cardiobacterium hominis, Eikenella corrodens, and Kingella Kingae are rare causative agents. We report a case of bacterial endocarditis by E. corrodens, which is one of the members of the HACEK group.

  11. Application of Mesenchymal Stem Cells for Therapeutic Agent Delivery in Anti-tumor Treatment

    Directory of Open Access Journals (Sweden)

    Daria S. Chulpanova

    2018-03-01

    Full Text Available Mesenchymal stem cells (MSCs are non-hematopoietic progenitor cells, which can be isolated from different types of tissues including bone marrow, adipose tissue, tooth pulp, and placenta/umbilical cord blood. There isolation from adult tissues circumvents the ethical concerns of working with embryonic or fetal stem cells, whilst still providing cells capable of differentiating into various cell lineages, such as adipocytes, osteocytes and chondrocytes. An important feature of MSCs is the low immunogenicity due to the lack of co-stimulatory molecules expression, meaning there is no need for immunosuppression during allogenic transplantation. The tropism of MSCs to damaged tissues and tumor sites makes them a promising vector for therapeutic agent delivery to tumors and metastatic niches. MSCs can be genetically modified by virus vectors to encode tumor suppressor genes, immunomodulating cytokines and their combinations, other therapeutic approaches include MSCs priming/loading with chemotherapeutic drugs or nanoparticles. MSCs derived membrane microvesicles (MVs, which play an important role in intercellular communication, are also considered as a new therapeutic agent and drug delivery vector. Recruited by the tumor, MSCs can exhibit both pro- and anti-oncogenic properties. In this regard, for the development of new methods for cancer therapy using MSCs, a deeper understanding of the molecular and cellular interactions between MSCs and the tumor microenvironment is necessary. In this review, we discuss MSC and tumor interaction mechanisms and review the new therapeutic strategies using MSCs and MSCs derived MVs for cancer treatment.

  12. A Hamster Model of Diet-Induced Obesity for Preclinical Evaluation of Anti-Obesity, Anti-Diabetic and Lipid Modulating Agents.

    Directory of Open Access Journals (Sweden)

    Louise S Dalbøge

    Full Text Available Unlike rats and mice, hamsters develop hypercholesterolemia, and hypertriglyceridemia when fed a cholesterol-rich diet. Because hyperlipidemia is a hallmark of human obesity, we aimed to develop and characterize a novel diet-induced obesity (DIO and hypercholesterolemia Golden Syrian hamster model.Hamsters fed a highly palatable fat- and sugar-rich diet (HPFS for 12 weeks showed significant body weight gain, body fat accumulation and impaired glucose tolerance. Cholesterol supplementation to the diet evoked additional hypercholesterolemia. Chronic treatment with the GLP-1 analogue, liraglutide (0.2 mg/kg, SC, BID, 27 days, normalized body weight and glucose tolerance, and lowered blood lipids in the DIO-hamster. The dipeptidyl peptidase-4 (DPP-4 inhibitor, linagliptin (3.0 mg/kg, PO, QD also improved glucose tolerance. Treatment with peptide YY3-36 (PYY3-36, 1.0 mg/kg/day or neuromedin U (NMU, 1.5 mg/kg/day, continuously infused via a subcutaneous osmotic minipump for 14 days, reduced body weight and energy intake and changed food preference from HPFS diet towards chow. Co-treatment with liraglutide and PYY3-36 evoked a pronounced synergistic decrease in body weight and food intake with no lower plateau established. Treatment with the cholesterol uptake inhibitor ezetimibe (10 mg/kg, PO, QD for 14 days lowered plasma total cholesterol with a more marked reduction of LDL levels, as compared to HDL, indicating additional sensitivity to cholesterol modulating drugs in the hyperlipidemic DIO-hamster. In conclusion, the features of combined obesity, impaired glucose tolerance and hypercholesterolemia in the DIO-hamster make this animal model useful for preclinical evaluation of novel anti-obesity, anti-diabetic and lipid modulating agents.

  13. Plant-Derived Natural Products as Sources of Anti-Quorum Sensing Compounds

    OpenAIRE

    Koh, Chong-Lek; Sam, Choon-Kook; Yin, Wai-Fong; Tan, Li Ying; Krishnan, Thiba; Chong, Yee Meng; Chan, Kok-Gan

    2013-01-01

    Quorum sensing is a system of stimuli and responses in relation to bacterial cell population density that regulates gene expression, including virulence determinants. Consequently, quorum sensing has been an attractive target for the development of novel anti-infective measures that do not rely on the use of antibiotics. Anti-quorum sensing has been a promising strategy to combat bacterial infections as it is unlikely to develop multidrug resistant pathogens since it does not impose any selec...

  14. Diastereoisomers of 2-benzyl-2, 3-dihydro-2-(1H-inden-2-yl)-1H-inden-1-ol: potential anti-inflammatory agents.

    Science.gov (United States)

    Sheridan, Helen; Walsh, John J; Cogan, Carina; Jordan, Michael; McCabe, Tom; Passante, Egle; Frankish, Neil H

    2009-10-15

    The synthesis and biological activity of the novel diastereoisomers of 2-benzyl-2,3-dihydro-2-(1H-inden-2-yl)-1H-inden-1-ol is reported. The 2,2-coupled indane dimers were synthesised by coupling of the silyl enol ether of 1-indanone with the dimethyl ketal of 2-indanone. The coupled product was directly alkylated to give the racemic ketone which was reduced to the diastereoisomeric alcohols. The alcohols were separated and their relative stereochemistry was established by X-ray crystallography. These molecules demonstrate significant anti-inflammatory activity in vivo and in vitro and may represent a new class of anti-inflammatory agent.

  15. De novo design and synthesis of ultra-short peptidomimetic antibiotics having dual antimicrobial and anti-inflammatory activities.

    Science.gov (United States)

    Murugan, Ravichandran N; Jacob, Binu; Ahn, Mija; Hwang, Eunha; Sohn, Hoik; Park, Hyo-Nam; Lee, Eunjung; Seo, Ji-Hyung; Cheong, Chaejoon; Nam, Ky-Youb; Hyun, Jae-Kyung; Jeong, Ki-Woong; Kim, Yangmee; Shin, Song Yub; Bang, Jeong Kyu

    2013-01-01

    Much attention has been focused on the design and synthesis of potent, cationic antimicrobial peptides (AMPs) that possess both antimicrobial and anti-inflammatory activities. However, their development into therapeutic agents has been limited mainly due to their large size (12 to 50 residues in length) and poor protease stability. In an attempt to overcome the issues described above, a set of ultra-short, His-derived antimicrobial peptides (HDAMPs) has been developed for the first time. Through systematic tuning of pendant hydrophobic alkyl tails at the N(π)- and N(τ)-positions on His, and the positive charge of Arg, much higher prokaryotic selectivity was achieved, compared to human AMP LL-37. Additionally, the most potent HDAMPs showed promising dual antimicrobial and anti-inflammatory activities, as well as anti-methicillin-resistant Staphylococcus aureus (MRSA) activity and proteolytic resistance. Our results from transmission electron microscopy, membrane depolarization, confocal laser-scanning microscopy, and calcein-dye leakage experiments propose that HDAMP-1 kills microbial cells via dissipation of the membrane potential by forming pore/ion channels on bacterial cell membranes. The combination of the ultra-short size, high-prokaryotic selectivity, potent anti-MRSA activity, anti-inflammatory activity, and proteolytic resistance of the designed HDAMP-1, -3, -5, and -6 makes these molecules promising candidates for future antimicrobial therapeutics.

  16. Incidence and complications of interstitial lung disease in users of tocilizumab, rituximab, abatacept and anti-tumor necrosis factor α agents, a retrospective cohort study.

    Science.gov (United States)

    Curtis, Jeffrey R; Sarsour, Khaled; Napalkov, Pavel; Costa, Laurie A; Schulman, Kathy L

    2015-11-11

    Interstitial lung disease (ILD) is a common extra-articular condition in rheumatoid arthritis (RA), but few studies have systematically investigated its incidence and risk factors in patients receiving anti-tumor necrosis factor-alpha (anti-TNFα) agents or alternate mechanisms of action (MOAs) (e.g., T-cell, B-cell, and interleukin-6 inhibitors). RA patients at least 18 years old were selected from the MarketScan databases (2010-2012) if they had at least one prescription/administration of abatacept, rituximab, tocilizumab, or anti-TNF after having discontinued a different biologic agent and meeting enrollment criteria. Cox models estimated the risk of incident ILD and ILD-related hospitalization. Sensitivity analyses used an alternate ILD case definition. We identified 13,795 episodes of biologic exposure in 11,219 patients. Mean (standard deviation) follow-up was 0.7 (0.5) years. Patients receiving alternate MOA agents were more likely to have had recent exposure to steroids, prior exposure to a greater number of biologics, and history of ILD, anemia, chronic obstructive pulmonary disease, and other pulmonary conditions. When the sensitive definition was used, unadjusted ILD incidence rates (95% confidence interval, or CI) ranged from 4.0 (1.6-8.2, abatacept) to 12.2 (5.6-23.2, infliximab) per 1000 person-years. Being older (hazard ratio (HR) 3.5; 95% CI 2.1-6.0), being male (HR 3.1; 95% CI 1.2-8.4), and having another pulmonary condition (HR 4.8; 95% CI 1.7-13.7) were associated with increased ILD incidence in either sensitive and/or specific models. There were no significant differences by biologic class. Hospitalization rates (95% CI) when the sensitive definition was used ranged from 55.6 (6.7-200.7, tocilizumab) to 262.5 (71.5-672.2, infliximab). In Cox models, recent methotrexate exposure was associated with reduced ILD hospitalization (HR 0.16; 95% CI 0.06-0.46), whereas being male (HR 2.5; 95% CI 1.3-4.8) and having had a hospitalization for asthma (HR 3

  17. Sea Cucumbers Metabolites as Potent Anti-Cancer Agents

    Directory of Open Access Journals (Sweden)

    Naveena B. Janakiram

    2015-05-01

    Full Text Available Sea cucumbers and their extracts have gained immense popularity and interest among researchers and nutritionists due to their nutritive value, potential health benefits, and use in the treatment of chronic inflammatory diseases. Many areas of the world use sea cucumbers in traditional foods and folk medicine. Though the actual components and their specific functions still remain to be investigated, most sea cucumber extracts are being studied for their anti-inflammatory functions, immunostimulatory properties, and for cancer prevention and treatment. There is large scope for the discovery of additional bioactive, valuable compounds from this natural source. Sea cucumber extracts contain unique components, such as modified triterpene glycosides, sulfated polysaccharides, glycosphingolipids, and esterified phospholipids. Frondanol A5, an isopropyl alcohol/water extract of the enzymatically hydrolyzed epithelia of the edible North Atlantic sea cucumber, Cucumaria frondosa, contains monosulfated triterpenoid glycoside Frondoside A, the disulfated glycoside Frondoside B, the trisulfated glycoside Frondoside C, 12-methyltetradecanoic acid, eicosapentaenoic acid, and fucosylated chondroitin sulfate. We have extensively studied the efficacy of this extract in preventing colon cancer in rodent models. In this review, we discuss the anti-inflammatory, immunostimulatory, and anti-tumor properties of sea cucumber extracts.

  18. Synthesis of coumarin-theophylline hybrids as a new class of anti-tubercular and anti-microbial agents.

    Science.gov (United States)

    Mangasuli, Sumitra N; Hosamani, Kallappa M; Devarajegowda, Hirihalli C; Kurjogi, Mahantesh M; Joshi, Shrinivas D

    2018-02-25

    A series of novel coumarin-theophylline hybrids were synthesized and examined for their anti-tubercular activity in vitro against Mycobacterium tuberculosis H 37 Rv, anti-microbial activity in vitro against gram-positive bacteria (Staphylococcus aureus) and gram-negative bacterias (Escherichia coli, Salmonella typhi) as well as fungi (Candida albicans). The compound (3a) has shown excellent anti-tubercular activity with MIC of 0.12 μg/mL. Electron donating compounds (3a, 3f) have displayed significant anti-microbial activity. The compounds have also been precisely elucidated using single crystal X-ray diffraction techniques. Molecular docking study has been performed against 4DQU enzyme of Mycobacterium tuberculosis showed good binding interactions and is in agreement with the in vitro results. Copyright © 2018. Published by Elsevier Masson SAS.

  19. Current and Emerging Topical Antibacterials and Antiseptics: Agents, Action, and Resistance Patterns.

    Science.gov (United States)

    Williamson, Deborah A; Carter, Glen P; Howden, Benjamin P

    2017-07-01

    Bacterial skin infections represent some of the most common infectious diseases globally. Prevention and treatment of skin infections can involve application of a topical antimicrobial, which may be an antibiotic (such as mupirocin or fusidic acid) or an antiseptic (such as chlorhexidine or alcohol). However, there is limited evidence to support the widespread prophylactic or therapeutic use of topical agents. Challenges involved in the use of topical antimicrobials include increasing rates of bacterial resistance, local hypersensitivity reactions (particularly to older agents, such as bacitracin), and concerns about the indiscriminate use of antiseptics potentially coselecting for antibiotic resistance. We review the evidence for the major clinical uses of topical antibiotics and antiseptics. In addition, we review the mechanisms of action of common topical agents and define the clinical and molecular epidemiology of antimicrobial resistance in these agents. Moreover, we review the potential use of newer and emerging agents, such as retapamulin and ebselen, and discuss the role of antiseptic agents in preventing bacterial skin infections. A comprehensive understanding of the clinical efficacy and drivers of resistance to topical agents will inform the optimal use of these agents to preserve their activity in the future. Copyright © 2017 American Society for Microbiology.

  20. Growth of MCF-7 breast cancer cells and efficacy of anti-angiogenic agents in a hydroxyethyl chitosan/glycidyl methacrylate hydrogel.

    Science.gov (United States)

    Wang, Hejing; Qian, Junmin; Zhang, Yaping; Xu, Weijun; Xiao, Juxiang; Suo, Aili

    2017-01-01

    Breast cancer negatively affects women's health worldwide. The tumour microenvironment plays a critical role in tumour initiation, proliferation, and metastasis. Cancer cells are traditionally grown in two-dimensional (2D) cultures as monolayers on a flat solid surface lacking cell-cell and cell-matrix interactions. These experimental conditions deviate from the clinical situation. Improved experimental systems that can mimic the in vivo situation are required to discover new therapies, particularly for anti-angiogenic agents that mainly target intercellular factors and play an essential role in treating some cancers. Chitosan can be modified to construct three-dimensional (3D) tumour models. Here, we report an in vitro 3D tumour model using a hydroxyethyl chitosan/glycidyl methacrylate (HECS-GMA) hydrogel produced by a series of chitosan modifications. Parameters relating to cell morphology, viability, proliferation, and migration were analysed using breast cancer MCF-7 cells. In a xenograft model, secretion of angiogenesis-related growth factors and the anti-angiogenic efficacy of Endostar and Bevacizumab in cells grown in HECS-GMA hydrogels were assessed by immunohistochemistry. Hydroxyethyl chitosan/glycidyl methacrylate hydrogels had a highly porous microstructure, mechanical properties, swelling ratio, and morphology consistent with a 3D tumour model. Compared with a 2D monolayer culture, breast cancer MCF-7 cells residing in the HECS-GMA hydrogels grew as tumour-like clusters in a 3D formation. In a xenograft model, MCF-7 cells cultured in the HECS-GMA hydrogels had increased secretion of angiogenesis-related growth factors. Recombinant human endostatin (Endostar), but not Bevacizumab (Avastin), was an effective anti-angiogenic agent in HECS-GMA hydrogels. The HECS-GMA hydrogel provided a 3D tumour model that mimicked the in vivo cancer microenvironment and supported the growth of MCF7 cells better than traditional tissue culture plates. The HECS

  1. Enhancement of the photo-electric effect with pharmacological agents in synchrotron radiation based anti-cancer radiotherapy: a methodological study

    International Nuclear Information System (INIS)

    Corde, Stephanie

    2002-01-01

    Anti-cancer therapy rests on three main principles: 1) anatomic confinement of irradiation; 2) temporal fractioning of treatment; 3) treatment of tissues that are more sensitive to radiation than surrounding healthy tissue. Under those principles hides the goal of radiotherapy: to deposit more of the X-ray energy in the tumor while preserving the surrounding healthy tissues. This goal is hard to reach since one of the causes of the failures in radiotherapy is the continuing evolution of the tumor. Could synchrotron radiation be more effective as an X-ray source for radiotherapy? The variation of the radiation-matter interaction cross-sections as a function of X-ray energy and atomic number of the medium show that certain energies and certain elements are more suitable to obtain the largest number of interactions and the largest amount of deposited energy. Synchrotron radiation allows to select precisely those energies because of its high spectral intensity. Its spectral characteristics (energy of the photons between 10 and 100 keV) allow to trigger the photoelectric effect with a maximum of probability on heavy elements introduced close to cancerous cells. It has been shown that: 1) synchrotron radiation based tomodensitometry is a quantitative imaging technique, potentially powerful for radiotherapy since it insures in-vivo the measurement of intra-tumoral concentration of contrast agent (I or Gd); 2) in the presence of iodinated contrast agent the lethal effect of X-rays on cell survival is increased and the gain in radio sensitivity depends on X-ray energy; 3) at the cellular scale the lethality of irradiation can be optimised again by transporting heavy atoms (I, Pt) inside the DNA, which is the biological target of the irradiation. This reinforcement of the killing efficiency of low energy X-rays using a physical mechanism aimed at a pharmacological agent is an original concept in anti-cancer radiotherapy. (author) [fr

  2. The role and regulation of catalase in respiratory tract opportunistic bacterial pathogens.

    Science.gov (United States)

    Eason, Mia M; Fan, Xin

    2014-09-01

    Respiratory tract bacterial pathogens are the etiologic agents of a variety of illnesses. The ability of these bacteria to cause disease is imparted through survival within the host and avoidance of pathogen clearance by the immune system. Respiratory tract pathogens are continually bombarded by reactive oxygen species (ROS), which may be produced by competing bacteria, normal metabolic function, or host immunological responses. In order to survive and proliferate, bacteria have adapted defense mechanisms to circumvent the effects of ROS. Bacteria employ the use of anti-oxidant enzymes, catalases and catalase-peroxidases, to relieve the effects of the oxidative stressors to which they are continually exposed. The decomposition of ROS has been shown to provide favorable conditions in which respiratory tract opportunistic bacterial pathogens such as Haemophilus influenzae, Mycobacterium tuberculosis, Legionella pneumophila, and Neisseria meningitidis are able to withstand exposure to highly reactive molecules and yet survive. Bacteria possessing mutations in the catalase gene have a decreased survival rate, yet may be able to compensate for the lack of catalatic activity if peroxidatic activity is present. An incomplete knowledge of the mechanisms by which catalase and catalase-peroxidases are regulated still persists, however, in some bacterial species, a regulatory factor known as OxyR has been shown to either up-regulate or down-regulate catalase gene expression. Yet, more research is still needed to increase the knowledge base in relation to this enzyme class. As with this review, we focus on major respiratory tract opportunistic bacterial pathogens in order to elucidate the function and regulation of catalases. The importance of the research could lead to the development of novel treatments against respiratory bacterial infections. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. M13 virus based detection of bacterial infections in living hosts.

    Science.gov (United States)

    Bardhan, Neelkanth M; Ghosh, Debadyuti; Belcher, Angela M

    2014-08-01

    We report a first method for using M13 bacteriophage as a multifunctional scaffold for optically imaging bacterial infections in vivo. We demonstrate that M13 virus conjugated with hundreds of dye molecules (M13-Dye) can target and distinguish pathogenic infections of F-pili expressing and F-negative strains of E. coli. Further, in order to tune this M13-Dye complex suitable for targeting other strains of bacteria, we have used a 1-step reaction for creating an anti-bacterial antibody-M13-Dye probe. As an example, we show anti-S. aureus-M13-Dye able to target and image infections of S. aureus in living hosts, with a 3.7× increase in fluorescence over background. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Evaluation of antigen detection and polymerase chain reaction for diagnosis of amoebic liver abscess in patients on anti-amoebic treatment

    Directory of Open Access Journals (Sweden)

    Jaiswal Virendra

    2012-08-01

    Full Text Available Abstract Background Diagnosis of amoebic liver abscess (ALA in patients on anti-amoebic drugs is difficult. There is scanty data on this issue using Entamoeba histolytica (E. histolytica lectin antigen and polymerase chain reaction (PCR. We studied utility of lectin antigen, PCR, and IgG antibody in diagnosis of liver abscess in patients on anti-amoebic treatment. Liver aspirate of 200 patients, of which 170 had anti-amoebic drug prior to drainage, was tested for E. histolytica lectin antigen by (ELISA, PCR, bacterial culture, and serum IgG antibody by (ELISA. Classification of abscesses was based on result of anti-amoebic IgG antibody and bacterial culture, E. histolytica PCR and bacterial culture, and E. histolytica lectin antigen and bacterial culture. Findings Using anti-amoebic IgG antibody and bacterial culture, 136/200 (68.0% were classified as ALA, 12/200 (6.0% as pyogenic liver abscess (PLA, 29/200 (14.5% as mixed infection, and 23/200 (11.5% remained unclassified. Using amoebic PCR and bacterial culture 151/200 (75.5% were classified as ALA, 25/200 (12.5% as PLA, 16/200 (8.0% as mixed infection, and 8/200 (4.0% remained unclassified. With E. histolytica lectin antigen and bacterial culture, 22/200 (11.0% patients were classified as ALA, 39/200 (19.5% as PLA, 2/200 (1.0% as mixed infection, and 137/200 (68.5% remained unclassified. Conclusions E. histolytica lectin antigen was not suitable for classification of ALA patients who had prior anti-amoebic treatment. However, PCR may be used as alternative test to anti-amoebic antibody in diagnosis of ALA.

  5. Antiadhesion agents against Gram-positive pathogens.

    Science.gov (United States)

    Cascioferro, Stella; Cusimano, Maria Grazia; Schillaci, Domenico

    2014-01-01

    A fundamental step of Gram-positive pathogenesis is the bacterial adhesion to the host tissue involving interaction between bacterial surface molecules and host ligands. This review is focused on antivirulence compounds that target Gram-positive adhesins and on their potential development as therapeutic agents alternative or complementary to conventional antibiotics in the contrast of pathogens. In particular, compounds that target the sortase A, wall theicoic acid inhibitors, carbohydrates able to bind bacterial proteins and proteins capable of influencing the bacterial adhesion, were described. We further discuss the advantages and disadvantages of this strategy in the development of novel antimicrobials and the future perspective of this research field still at its first steps.

  6. Evidence of vanillin binding to CAMKIV explains the anti-cancer mechanism in human hepatic carcinoma and neuroblastoma cells.

    Science.gov (United States)

    Naz, Huma; Tarique, Mohd; Khan, Parvez; Luqman, Suaib; Ahamad, Shahzaib; Islam, Asimul; Ahmad, Faizan; Hassan, Md Imtaiyaz

    2018-01-01

    Human calcium/calmodulin-dependent protein kinase IV (CAMKIV) is a member of Ser/Thr kinase family, and is associated with different types of cancer and neurodegenerative diseases. Vanillin is a natural compound, a primary component of the extract of the vanilla bean which possesses varieties of pharmacological features including anti-oxidant, anti-inflammatory, anti-bacterial and anti-tumor. Here, we have investigated the binding mechanism and affinity of vanillin to the CAMKIV which is being considered as a potential drug target for cancer and neurodegenerative diseases. We found that vanillin binds strongly to the active site cavity of CAMKIV and stabilized by a large number of non-covalent interactions. We explored the utility of vanillin as anti-cancer agent and found that it inhibits the proliferation of human hepatocyte carcinoma (HepG2) and neuroblastoma (SH-SY5Y) cells in a dose-dependent manner. Furthermore, vanillin treatment resulted into the significant reduction in the mitochondrial membrane depolarization and ROS production that eventually leads to apoptosis in HepG2 and SH-SY5Y cancer cells. These findings may offer a novel therapeutic approach by targeting the CAMKIV using natural product and its derivative with a minimal side effect.

  7. [Response of Pharmaceutical Companies to the Crisis of Post-Marketing Clinical Trials of Anti-Cancer Agents -- Results of Questionnaires to Pharmaceutical Companies].

    Science.gov (United States)

    Nakajima, Toshifusa

    2016-04-01

    Investigator-oriented post-marketing clinical trials of anti-cancer agents are faced to financial crisis due to drastic decrease in research-funds from pharmaceutical companies caused by a scandal in 2013. In order to assess the balance of research funds between 2012 and 2014, we made queries to 26 companies manufacturing anti-cancer agents, and only 10 of 26 responded to our queries. Decrease in the fund was observed in 5 of 10, no change in 1, increase in 3 and no answer in 1. Companies showed passive attitude to carry out doctor-oriented clinical trials of off-patent drugs or unapproved drugs according to advanced medical care B program, though some companies answered to proceed approved routines of these drugs if clinical trials showed good results. Most companies declined to make comments on the activity of Japan Agency for Medical Research and Development (AMED), but some insisted to produce good corroboration between AMED and pharmaceutical companies in order to improve the quality of trials. Further corroboration must be necessary for this purpose among researchers, governmental administrative organs, pharmaceutical companies, patients' groups, and mass-media.

  8. A desirability-based multi objective approach for the virtual screening discovery of broad-spectrum anti-gastric cancer agents.

    Directory of Open Access Journals (Sweden)

    Yunierkis Perez-Castillo

    Full Text Available Gastric cancer is the third leading cause of cancer-related mortality worldwide and despite advances in prevention, diagnosis and therapy, it is still regarded as a global health concern. The efficacy of the therapies for gastric cancer is limited by a poor response to currently available therapeutic regimens. One of the reasons that may explain these poor clinical outcomes is the highly heterogeneous nature of this disease. In this sense, it is essential to discover new molecular agents capable of targeting various gastric cancer subtypes simultaneously. Here, we present a multi-objective approach for the ligand-based virtual screening discovery of chemical compounds simultaneously active against the gastric cancer cell lines AGS, NCI-N87 and SNU-1. The proposed approach relays in a novel methodology based on the development of ensemble models for the bioactivity prediction against each individual gastric cancer cell line. The methodology includes the aggregation of one ensemble per cell line using a desirability-based algorithm into virtual screening protocols. Our research leads to the proposal of a multi-targeted virtual screening protocol able to achieve high enrichment of known chemicals with anti-gastric cancer activity. Specifically, our results indicate that, using the proposed protocol, it is possible to retrieve almost 20 more times multi-targeted compounds in the first 1% of the ranked list than what is expected from a uniform distribution of the active ones in the virtual screening database. More importantly, the proposed protocol attains an outstanding initial enrichment of known multi-targeted anti-gastric cancer agents.

  9. Plants of Zimbabwe used as anti-fertility agents. | Sewani-Rusike ...

    African Journals Online (AJOL)

    Ethnomedicine has gained a lot of recognition in post-independence Zimbabwe and yet little research on anti-fertility medicines has been done. Information on plants used as anti-fertility medicines was obtained by interviewing women, men, traditional healers and traditional midwives in urban Harare and surrounding rural ...

  10. A new pharmacological agent (AKB-4924) stabilizes hypoxia inducible factor-1 (HIF-1) and increases skin innate defenses against bacterial infection.

    Science.gov (United States)

    Okumura, Cheryl Y M; Hollands, Andrew; Tran, Dan N; Olson, Joshua; Dahesh, Samira; von Köckritz-Blickwede, Maren; Thienphrapa, Wdee; Corle, Courtney; Jeung, Seung Nam; Kotsakis, Anna; Shalwitz, Robert A; Johnson, Randall S; Nizet, Victor

    2012-09-01

    Hypoxia inducible factor-1 (HIF-1) is a transcription factor that is a major regulator of energy homeostasis and cellular adaptation to low oxygen stress. HIF-1 is also activated in response to bacterial pathogens and supports the innate immune response of both phagocytes and keratinocytes. In this work, we show that a new pharmacological compound AKB-4924 increases HIF-1 levels and enhances the antibacterial activity of phagocytes and keratinocytes against both methicillin-sensitive and methicillin-resistant strains of Staphylococcus aureus in vitro. AKB-4924 is also effective in stimulating the killing capacity of keratinocytes against the important opportunistic skin pathogens Pseudomonas aeruginosa and Acinetobacter baumanii. The effect of AKB-4924 is mediated through the activity of host cells, as the compound exerts no direct antimicrobial activity. Administered locally as a single agent, AKB-4924 limits S. aureus proliferation and lesion formation in a mouse skin abscess model. This approach to pharmacologically boost the innate immune response via HIF-1 stabilization may serve as a useful adjunctive treatment for antibiotic-resistant bacterial infections.

  11. Role of innate T cells in anti-bacterial immunity

    Directory of Open Access Journals (Sweden)

    Yifang eGao

    2015-06-01

    Full Text Available Innate T cells are a heterogeneous group of αβ and γδ T cells that respond rapidly (<2 hours upon activation. These innate T cells also share a non MHC class I or II restriction requirement for antigen recognition. Three major populations within the innate T cell group are recognized, namely Invariant NKT cells (iNKT; Mucosal associated invariant T cells (MAIT and gamma delta T cells. These cells recognize foreign/self-lipid presented by non-classical MHC molecules, such as CD1d, MR1 and CD1a.They are activated during the early stages of bacterial infection and act as a bridge between the innate and adaptive immune systems. In this review we focus on the functional properties of these 3 innate T cell populations and how they are purposed for antimicrobial defense. Furthermore we address the mechanisms through which their effector functions are targeted for bacterial control and compare this in human and murine systems. Lastly we speculate on future roles of these cell types in therapeutic settings such as vaccination.

  12. The Phytochemical Constituents, Analgesic and Anti-inflammatory ...

    African Journals Online (AJOL)

    This effect was comparable to the observed effect with Piroxicam (0.5mg/kg) which was used as a standard. The effect was also dose- dependent. Furthermore, Jatropha ... This also supports its use traditionally as an anti-snake bite, rheumatism and anti- cancer or anti-tumor agent. Further study is on the way to find out the ...

  13. Assessment of topical non-steroidal anti-inflammatory drugs in animal models.

    Science.gov (United States)

    Hiramatsu, Y; Akita, S; Salamin, P A; Maier, R

    1990-10-01

    Four commercial gel preparations of topical anti-inflammatory agents have been assessed in six animal models commonly used to determine the biological activity of non-steroidal anti-inflammatory agents for systemic administration. Only UV-induced erythema of the skin, adjuvant induced arthritis and the measurement of vascular permeability proved suitable for differentiation of the potency of the four topical agents. Carrageenin-induced paw oedema, the cotton pellet test and the assessment of the pain threshold according to Randall and Selitto were of little value. The effects of the gel preparation of diclofenac (CAS 15307-86-5) diethylammonium (Voltaren Emulgel) were comparable to two preparations containing 1% and 5% active ingredient, respectively. Gel 4 showed low overall activity. The experiments demonstrated that some of the models used for the assessment of anti-inflammatory agent for systemic administration proved suitable for the testing of topical preparations and that percutaneous absorption was insufficient to elicit anti-inflammatory effect in the animals at sites remote from the site of application.

  14. Protective effects of antioxidants and anti-inflammatory agents against manganese-induced oxidative damage and neuronal injury

    Energy Technology Data Exchange (ETDEWEB)

    Milatovic, Dejan, E-mail: dejan.milatovic@vanderbilt.edu [Vanderbilt University School of Medicine, Department of Pediatrics, Nashville, TN (United States); Gupta, Ramesh C. [Murray State University, Breathitt Veterinary Center, Hopkinsville, KY (United States); Yu, Yingchun; Zaja-Milatovic, Snjezana [Vanderbilt University School of Medicine, Department of Pediatrics, Nashville, TN (United States); Aschner, Michael [Vanderbilt University School of Medicine, Department of Pediatrics, Nashville, TN (United States); Pharmacology and the Kennedy Center for Research on Human Development, Nashville, TN (United States)

    2011-11-15

    Exposure to excessive manganese (Mn) levels leads to neurotoxicity, referred to as manganism, which resembles Parkinson's disease (PD). Manganism is caused by neuronal injury in both cortical and subcortical regions, particularly in the basal ganglia. The basis for the selective neurotoxicity of Mn is not yet fully understood. However, several studies suggest that oxidative damage and inflammatory processes play prominent roles in the degeneration of dopamine-containing neurons. In the present study, we assessed the effects of Mn on reactive oxygen species (ROS) formation, changes in high-energy phosphates and associated neuronal dysfunctions both in vitro and in vivo. Results from our in vitro study showed a significant (p < 0.01) increase in biomarkers of oxidative damage, F{sub 2}-isoprostanes (F{sub 2}-IsoPs), as well as the depletion of ATP in primary rat cortical neurons following exposure to Mn (500 {mu}M) for 2 h. These effects were protected when neurons were pretreated for 30 min with 100 of an antioxidant, the hydrophilic vitamin E analog, trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid), or an anti-inflammatory agent, indomethacin. Results from our in vivo study confirmed a significant increase in F{sub 2}-IsoPs levels in conjunction with the progressive spine degeneration and dendritic damage of the striatal medium spiny neurons (MSNs) of mice exposed to Mn (100 mg/kg, s.c.) 24 h. Additionally, pretreatment with vitamin E (100 mg/kg, i.p.) or ibuprofen (140 {mu}g/ml in the drinking water for two weeks) attenuated the Mn-induced increase in cerebral F{sub 2}-IsoPs? and protected the MSNs from dendritic atrophy and dendritic spine loss. Our findings suggest that the mediation of oxidative stress/mitochondrial dysfunction and the control of alterations in biomarkers of oxidative injury, neuroinflammation and synaptodendritic degeneration may provide an effective, multi-pronged therapeutic strategy for protecting dysfunctional

  15. [THE NATIONAL NUTRIENT MEDIUM FOR DIAGNOSTIC OF PURULENT BACTERIAL MENINGITIS].

    Science.gov (United States)

    Podkopaev, Ya V; Domotenko, L V; Morozova, T P; Khramov, M K; Shepelin, A P

    2015-05-01

    The national growth mediums were developed for isolating and cultivating of main agents of purulent bacterial meningitis--haemophilus agar, chocolate agar, PBM-agar. The growing and selective characteristics of developed growth mediums are examined. The haemophilus agar ensures growth of Haemophilus influenzae. The chocolate agar, PBM-agar ensure growth of Neisseria meningitidis, Streptococcus pneumoniae and Haemophilus influenzae. By growing characteristics, the national growth mediums match foreign analogues. Under application of growth mediums with selective additions it is possible to achieve selective isolation of main agents of purulent bacterial meningitis with inhibition of growth of microbes-associates.

  16. Screening of proteins based on macro-algae from West Java coast in Indonesian marine as a potential anti-aging agent

    Science.gov (United States)

    Putri, Arlina Prima; Dewi, Rizna Triana; Handayani, Aniek Sri; Harjanto, Sri; Chalid, Mochamad

    2018-02-01

    Algae has been known as one of the potential marine bio-resources that have been used in many fields such as bio-energy, food, pharmaceutical and medical applications. Study of macro-algae or seaweed for medicine application, in particular, highlights to empower their ingredients as a promising antioxidant like anti-aging agent due to their diversity in biological activity. The tropical climate of Indonesia with the highest marine biodiversity puts this country an auspicious source of numerous alga species as a novel antioxidant source. A Sample of 29 species of macroalgae has been collected from Coast of Pari Island as a part of Seribu Islands, Indonesia. Screening and extracting of aqueous tropical marine alga protein as a potential source for an antioxidant agent has been done by using 2,2-diphenyl-1-picrylhydrazyl scavenging method, and protein contents have been determined by Lowry method. Sample number 26 of the phylum Rhodophyta have 9.00±0.03 % protein content, which is potential for nutritional food in form of nutraceutical. That sample demonstrated the maximum DPPH scavenging activity 79.27±1.81 %. Moreover, crude extract from another species from phylum Rhodophyta had the very lower IC50 (3.4333±0.29 mg/ml) followed by Chlorophyta species (7.1069±1.78 mg/ml). In general, this study found that algae from phylum Rhodophyta possess a high content of protein, high activity towards free radical. Nevertheless, algae acquire the lowest IC50 value not only dominated by Rhodophyta but also from phylum Chlorophyta. The conclusion of this study leads to empowering high antioxidant activity algae as an anti-aging agent, which can be used in pharmaceutical applications. Therefore, the next study should be concerned on the properties of the algae which has been known to be suitable for pharmaceutical fields.

  17. Pharmacological and spectral studies of synthetic biomimetic copper complexes derived from 3-hydroxyflavone derivatives as anti-inflammatory agents

    Directory of Open Access Journals (Sweden)

    K. Nagashri

    2016-09-01

    Full Text Available Novel biomimetic ligands were synthesized by the condensation of 3-hydroxyflavone, 2-aminophenol(L1/2-aminobenzoic acid (L2 and-aminothiazole (L3. Their Cu(II complexes have also been synthesized and characterized on the basis of 1H NMR, IR, UV–Vis spectra, elemental analyses, molar conductivity, ESR, electrochemical behaviour and thermal analyses. The antimicrobial activities (MIC values of the ligands, copper complexes and standard drugs have been evaluated using the serial dilution technique against the bacterial species Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Proteus vulgaris and Pseudomonas aeruginosa and fungal species Aspergillus niger, Rhizopus stolonifer, Aspergillus flavus, Rhizoctonia bataicola and Candida albicans. The anti-inflammatory and SOD activities of the investigated compounds are also promising and allow the selection of a lead compound for further biological studies.

  18. Efficacy of zinc as an antibacterial agent against enteric bacterial pathogens

    International Nuclear Information System (INIS)

    Faiz, U.; Butt, T.; Hussain, W.; Hanif, F.

    2011-01-01

    Background: Diarrhoea is a serious threat all over the world with great economic implications especially evident in the developing world. This study was aimed at determining in vitro efficacy of Zinc (Zn) against common enteric bacterial pathogens. Method: A total of 100 bacterial enteric pathogens: Salmonellae (n=16), enteropathogenic Escherichia coli (EPEC) (n=26), Shigellae (n=28) and Vibrio cholerae (n=30) were isolated from diarrhoeal stool specimens at Department of Microbiology, Armed Forces Institute of Pathology Rawalpindi during April 2009 to Jan 2010. These isolates were tested against various concentrations of Zn supplemented in Mueller Hinton (MH) agar using a multipoint inoculator. A minimum inhibitory concentration of active Zn in ZnSO/sub 4/.7H/sub 2/O ranging from 0.03 mg/ml to 1 mg/ml was used. Results: Zn completely inhibited the growth of all the tested pathogens and most of them were inhibited at a concentration of 0.06 mg/ml to 0.5 mg/ml of Zn. Conclusions: Zinc has an excellent antibacterial activity against enteric bacterial pathogens common in our setup which may provide basis for treatment of diarrhoea. Clinical study based on these findings is recommended. (author)

  19. Differentiation of bacterial and non-bacterial community-acquired pneumonia by thin-section computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Isao [Department of Respiratory Medicine, Kurashiki Central Hospital, 1-1-1 Miwa, Kurashiki 710-8602 (Japan); Department of Respiratory Medicine, Kyoto University, 54 Shogoin-kawaharacho, Sakyo-ku, Kyoto 606-8507 (Japan)], E-mail: isaoito@kuhp.kyoto-u.ac.jp; Ishida, Tadashi [Department of Respiratory Medicine, Kurashiki Central Hospital, 1-1-1 Miwa, Kurashiki 710-8602 (Japan)], E-mail: ishidat@kchnet.or.jp; Togashi, Kaori [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University, 54 Shogoin-kawaharacho, Sakyo-ku, Kyoto 606-8507 (Japan)], E-mail: ktogashi@kuhp.kyoto-u.ac.jp; Niimi, Akio [Department of Respiratory Medicine, Kyoto University, 54 Shogoin-kawaharacho, Sakyo-ku, Kyoto 606-8507 (Japan)], E-mail: niimi@kuhp.kyoto-u.ac.jp; Koyama, Hiroshi [General Internal Medicine, National Hospital Organization Kyoto Medical Center, 1-1 Fukakusa-Mukohatacho, Fushimi-ku, Kyoto 612-8555 (Japan)], E-mail: hkoyama-kyt@umin.ac.jp; Ishimori, Takayoshi [Department of Radiology, Kurashiki Central Hospital, 1-1-1 Miwa, Kurashiki 710-8602 (Japan)], E-mail: ti10794@kchnet.or.jp; Kobayashi, Hisataka [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University, 54 Shogoin-kawaharacho, Sakyo-ku, Kyoto 606-8507 (Japan); Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10, Room 1B40, MSC1088, 10 Center Drive, Bethesda, MD 20892-1088 (United States)], E-mail: kobayash@mail.nih.gov; Mishima, Michiaki [Department of Respiratory Medicine, Kyoto University, 54 Shogoin-kawaharacho, Sakyo-ku, Kyoto 606-8507 (Japan)], E-mail: mishima@kuhp.kyoto-u.ac.jp

    2009-12-15

    Background and objective: The management of community-acquired pneumonia (CAP) depends, in part, on the identification of the causative agents. The objective of this study was to determine the potential of thin-section computed tomography (CT) in differentiating bacterial and non-bacterial pneumonia. Patients and methods: Thin-section CT studies were prospectively examined in hospitalized CAP patients within 2 days of admission, followed by retrospective assessment by two pulmonary radiologists. Thin-section CT findings on the pneumonias caused by each pathogen were examined, and two types of pneumonias were compared. Using multivariate logistic regression analyses, receiver operating characteristic (ROC) curves were produced. Results: Among 183 CAP episodes (181 patients, 125 men and 56 women, mean age {+-} S.D.: 61.1 {+-} 19.7) examined by thin-section CT, the etiologies of 125 were confirmed (94 bacterial pneumonia and 31 non-bacterial pneumonia). Centrilobular nodules were specific for non-bacterial pneumonia and airspace nodules were specific for bacterial pneumonia (specificities of 89% and 94%, respectively) when located in the outer lung areas. When centrilobular nodules were the principal finding, they were specific but lacked sensitivity for non-bacterial pneumonia (specificity 98% and sensitivity 23%). To distinguish the two types of pneumonias, centrilobular nodules, airspace nodules and lobular shadows were found to be important by multivariate analyses. ROC curve analysis discriminated bacterial pneumonia from non-bacterial pneumonia among patients without underlying lung diseases, yielding an optimal point with sensitivity and specificity of 86% and 79%, respectively, but was less effective when all patients were analyzed together (70% and 84%, respectively). Conclusion: Thin-section CT examination was applied for the differentiation of bacterial and non-bacterial pneumonias. Though showing some potential, this examination at the present time would

  20. Differentiation of bacterial and non-bacterial community-acquired pneumonia by thin-section computed tomography

    International Nuclear Information System (INIS)

    Ito, Isao; Ishida, Tadashi; Togashi, Kaori; Niimi, Akio; Koyama, Hiroshi; Ishimori, Takayoshi; Kobayashi, Hisataka; Mishima, Michiaki

    2009-01-01

    Background and objective: The management of community-acquired pneumonia (CAP) depends, in part, on the identification of the causative agents. The objective of this study was to determine the potential of thin-section computed tomography (CT) in differentiating bacterial and non-bacterial pneumonia. Patients and methods: Thin-section CT studies were prospectively examined in hospitalized CAP patients within 2 days of admission, followed by retrospective assessment by two pulmonary radiologists. Thin-section CT findings on the pneumonias caused by each pathogen were examined, and two types of pneumonias were compared. Using multivariate logistic regression analyses, receiver operating characteristic (ROC) curves were produced. Results: Among 183 CAP episodes (181 patients, 125 men and 56 women, mean age ± S.D.: 61.1 ± 19.7) examined by thin-section CT, the etiologies of 125 were confirmed (94 bacterial pneumonia and 31 non-bacterial pneumonia). Centrilobular nodules were specific for non-bacterial pneumonia and airspace nodules were specific for bacterial pneumonia (specificities of 89% and 94%, respectively) when located in the outer lung areas. When centrilobular nodules were the principal finding, they were specific but lacked sensitivity for non-bacterial pneumonia (specificity 98% and sensitivity 23%). To distinguish the two types of pneumonias, centrilobular nodules, airspace nodules and lobular shadows were found to be important by multivariate analyses. ROC curve analysis discriminated bacterial pneumonia from non-bacterial pneumonia among patients without underlying lung diseases, yielding an optimal point with sensitivity and specificity of 86% and 79%, respectively, but was less effective when all patients were analyzed together (70% and 84%, respectively). Conclusion: Thin-section CT examination was applied for the differentiation of bacterial and non-bacterial pneumonias. Though showing some potential, this examination at the present time would not

  1. Russian olive (Elaeagnus angustifolia L.: From a variety of traditional medicinal applications to its novel roles as active antioxidant, anti-inflammatory, anti-mutagenic and analgesic agent

    Directory of Open Access Journals (Sweden)

    Rafie Hamidpour

    2017-01-01

    Full Text Available Elaeagnus angustifolia L., which is commonly known as oleaster or Russian olive, is a deciduous plant from Elaeagnacea family. This plant can tolerate and survive a wide variety of environmental conditions. Different parts of E. angustifolia plant, especially the fruits and flowers, have been used traditionally in treating a variety of common illnesses such as nausea, cough, asthma, fever, jaundice, and diarrhea. The use of fruit powder and extract of E. angustifolia L. have shown to be effective in alleviating pain in patients with rheumatoid arthritis and also in reducing the healing time of wounds in injured person. In addition, some recent reports have indicated the anti-oxidant, anti-inflammatory, antimicrobial, anticancer and some other properties of oleaster plant. The other important property of this plant would be its role in bio-monitoring the environment for some toxic elements and also its action as a bio-fertilizer agent in distressed lands. It seems that with more advanced studies on E. angustifolia L. and its bioactive components, this plant might be potentially effective and can be used as a natural alternative resource in pharmaceutical industries for treating chronic and serious problems, Fig. 1.

  2. Macrophage origin limits functional plasticity in helminth-bacterial co-infection.

    Directory of Open Access Journals (Sweden)

    Dominik Rückerl

    2017-03-01

    Full Text Available Rapid reprogramming of the macrophage activation phenotype is considered important in the defense against consecutive infection with diverse infectious agents. However, in the setting of persistent, chronic infection the functional importance of macrophage-intrinsic adaptation to changing environments vs. recruitment of new macrophages remains unclear. Here we show that resident peritoneal macrophages expanded by infection with the nematode Heligmosomoides polygyrus bakeri altered their activation phenotype in response to infection with Salmonella enterica ser. Typhimurium in vitro and in vivo. The nematode-expanded resident F4/80high macrophages efficiently upregulated bacterial induced effector molecules (e.g. MHC-II, NOS2 similarly to newly recruited monocyte-derived macrophages. Nonetheless, recruitment of blood monocyte-derived macrophages to Salmonella infection occurred with equal magnitude in co-infected animals and caused displacement of the nematode-expanded, tissue resident-derived macrophages from the peritoneal cavity. Global gene expression analysis revealed that although nematode-expanded resident F4/80high macrophages made an anti-bacterial response, this was muted as compared to newly recruited F4/80low macrophages. However, the F4/80high macrophages adopted unique functional characteristics that included enhanced neutrophil-stimulating chemokine production. Thus, our data provide important evidence that plastic adaptation of MΦ activation does occur in vivo, but that cellular plasticity is outweighed by functional capabilities specific to the tissue origin of the cell.

  3. Biomarker-based classification of bacterial and fungal whole-blood infections in a genome-wide expression study

    Directory of Open Access Journals (Sweden)

    Andreas eDix

    2015-03-01

    Full Text Available Sepsis is a clinical syndrome that can be caused by bacteria or fungi. Early knowledge on the nature of the causative agent is a prerequisite for targeted anti-microbial therapy. Besides currently used detection methods like blood culture and PCR-based assays, the analysis of the transcriptional response of the host to infecting organisms holds great promise. In this study, we aim to examine the transcriptional footprint of infections caused by the bacterial pathogens Staphylococcus aureus and Escherichia coli and the fungal pathogens Candida albicans and Aspergillus fumigatus in a human whole-blood model. Moreover, we use the expression information to build a random forest classifier to classify if a sample contains a bacterial, fungal, or mock-infection. After normalizing the transcription intensities using stably expressed reference genes, we filtered the gene set for biomarkers of bacterial or fungal blood infections. This selection is based on differential expression and an additional gene relevance measure. In this way, we identified 38 biomarker genes, including IL6, SOCS3, and IRG1 which were already associated to sepsis by other studies. Using these genes, we trained the classifier and assessed its performance. It yielded a 96% accuracy (sensitivities >93%, specificities >97% for a 10-fold stratified cross-validation and a 92% accuracy (sensitivities and specificities >83% for an additional test dataset comprising Cryptococcus neoformans infections. Furthermore, the classifier is robust to Gaussian noise, indicating correct class predictions on datasets of new species. In conclusion, this genome-wide approach demonstrates an effective feature selection process in combination with the construction of a well-performing classification model. Further analyses of genes with pathogen-dependent expression patterns can provide insights into the systemic host responses, which may lead to new anti-microbial therapeutic advances.

  4. Occurrence of anti-Neospora caninum and anti-Toxoplasma gondii IgG antibodies in goats and sheep in western Maranhão, Brazil Ocorrência de anticorpos IgG anti-Neospora caninum e anti-Toxoplasma gondii em caprinos e ovinos do oeste do Maranhão, Brasil

    Directory of Open Access Journals (Sweden)

    Larissa Martins de Brito Moraes

    2011-12-01

    Full Text Available Neosporosis and toxoplasmosis are parasitic diseases which can cause reproductive problems in goats and sheep. The current study aimed to determine the occurrence of anti-Neospora caninum and anti-Toxoplasma gondii IgG antibodies in goats and sheep from the districts of Amarante do Maranhão and Buritirana, Imperatriz microregion, western area of Maranhão State, northeastern Brazil, and to assess factors associated to infection by these etiologic agents. Blood samples from 110 animals (46 goats and 64 sheep from five herds were collected, and indirect immunofluorescence assay was used for serological testing. Of 46 goat samples, 17.39% (n = 8 showed anti-N. caninum antibodies and 4.35% (n = 2 anti-T. gondii, while of 64 sheep samples 4.69% (n = 3 and 18.75% (n = 12 showed anti-N. caninum and anti-T. gondii antibodies, respectively. No significant difference regarding the presence of domestic cats and/or dogs on the property and veterinary care was seen for both etiologic agents studied. However, food supplementation and animal reproductive failure were significantly (p A neosporose e a toxoplasmose são doenças parasitárias que podem causar problemas reprodutivos em caprinos e ovinos. O objetivo deste estudo foi determinar a ocorrência de anticorpos IgG anti-Neospora caninum e anti-Toxoplasma gondii em caprinos e ovinos dos municípios de Amarante do Maranhão e Buritirana, microrregião de Imperatriz, Oeste maranhense, Nordeste do Brasil, bem como avaliar fatores associados à infecção por esses agentes etiológicos. Amostras de sangue de 110 animais (46 caprinos e 64 ovinos, provenientes de cinco propriedades, foram coletadas, e a reação de imunofluorescência indireta utilizada para o diagnóstico sorológico. Das 46 amostras de caprinos, 17,39% (n = 8 apresentaram anticorpos anti-N. caninum e 4,35% (n = 2 anti-T. gondii, enquanto das 64 amostras de ovinos, 4,69% (n = 3 e 18,75% (n = 12 apresentaram anticorpos anti-N. caninum e anti

  5. Use of In Situ-Generated Dimethyldioxirane for Inactivation of Biological Agents

    National Research Council Canada - National Science Library

    Wallace, William H; Bushway, Karen E; Miller, Susan D; Delcomyn, Carrie A; Renard, Jean J; Henley, Michael V

    2005-01-01

    ...) at neutral pH, was investigated for inactivation of biological warfare agent simulants. The DMDO solution inactivated bacterial spores, fungal spores, vegetative bacterial cells, viruses, and protein by 7 orders of magnitude in less than 10 min...

  6. Preliminary screening of some traditional zulu medicinal plants for anti-inflammatory and anti-microbial activities.

    Science.gov (United States)

    Lin, J; Opoku, A R; Geheeb-Keller, M; Hutchings, A D; Terblanche, S E; Jäger, A K; van Staden, J

    1999-12-15

    Aqueous and methanolic extracts from different parts of nine traditional Zulu medicinal plants, of the Vitaceae from KwaZulu-Natal, South Africa were evaluated for therapeutic potential as anti-inflammatory and anti-microbial agents. Of the twenty-nine crude extracts assayed for prostaglandin synthesis inhibitors, only five methanolic extracts of Cyphostemma natalitium-root, Rhoicissus digitata-leaf, R. rhomboidea-root, R. tomentosa-leaf/stem and R. tridentata-root showed significant inhibition of cyclo-oxygenase (COX-1). The extracts of R. digitata-leaf and of R. rhomboidea-root exhibited the highest inhibition of prostaglandin synthesis with 53 and 56%, respectively. The results suggest that Rhoicissus digitata leaves and of Rhoicissus rhomboidea roots may have the potential to be used as anti-inflammatory agents. All the screened plant extracts showed some degrees of anti-microbial activity against gram-positive and gram-negative microorganisms. The methanolic extracts of C. natalitium-stem and root, R. rhomboidea-root, and R. tomentosa-leaf/stem, showed different anti-microbial activities against almost all micro-organisms tested. Generally, these plant extracts inhibited the gram-positive micro-organisms more than the gram-negative ones. Several plant extracts inhibited the growth of Candida albicans while only one plant extract showed inhibitory activity against Saccharomyces cerevisiae. All the plant extracts which demonstrated good anti-inflammatory activities also showed better inhibitory activity against Candida albicans.

  7. Tamsulosin Monotherapy versus Combination Therapy with Antibiotics or Anti-Inflammatory Agents in the Treatment of Chronic Pelvic Pain Syndrome

    Directory of Open Access Journals (Sweden)

    Tae Hyo Kim

    2011-06-01

    Full Text Available Purpose Chronic pelvic pain syndrome (CPPS is treated by use of various protocols. We compared tamsulosin monotherapy with tamsulosin in combination with antibiotics or anti-inflammatory agents and evaluated the efficacy of these treatments in patients with CPPS. Methods Patients (n=107 who were younger than 55 years and diagnosed with CPPS were randomly assigned to treatment with tamsulosin at 0.2 mg (group A, tamsulosin at 0.2 mg plus anti-inflammatory drugs (group B or tamsulosin at 0.2 mg plus antibiotics (group C daily. We applied the National Institutes of Health-Chronic Prostatitis Symptom Index (NIH-CPSI and the International Prostate Symptom Score (IPSS to evaluate 100 patients who were treated for 12 weeks (7 withdrew. Scores of the three groups were compared by analysis of variance and we also evaluated subscores, which included pain, voiding and quality of life (QoL. Results All three groups showed statistically significant decreases in NIH-CPSI score, IPSS and subscore scores (P<0.05. There were no statistically significant differences between the groups except for the QoL domain of the IPSS (group A vs. C; P<0.01. Conclusions Tamsulosin monotherapy for 12 weeks was effective for treating patients with CPPS, compared with combination therapy with antibiotics or anti-inflammatory drugs.

  8. Exploration of the medical periodic table: towards new targets.

    Science.gov (United States)

    Barry, Nicolas P E; Sadler, Peter J

    2013-06-07

    Metallodrugs offer potential for unique mechanisms of drug action based on the choice of the metal, its oxidation state, the types and number of coordinated ligands and the coordination geometry. We discuss recent progress in identifying new target sites and elucidating the mechanisms of action of anti-cancer, anti-bacterial, anti-viral, anti-parasitic, anti-inflammatory, and anti-neurodegenerative agents, as well as in the design of metal-based diagnostic agents. Progress in identifying and defining target sites has been accelerated recently by advances in proteomics, genomics and metal speciation analysis. Examples of metal compounds and chelating agents (enzyme inhibitors) currently in clinical use, clinical trials or preclinical development are highlighted.

  9. Direct anti-HCV agents

    Directory of Open Access Journals (Sweden)

    Xingquan Zhang

    2016-01-01

    Full Text Available Unlike human immunodeficiency virus (HIV and hepatitis B virus (HBV, hepatitis C virus (HCV infection is a curable disease. Current direct antiviral agent (DAA targets are focused on HCV NS3/4A protein (protease, NS5B protein (polymerase and NS5A protein. The first generation of DAAs includes boceprevir and telaprevir, which are protease inhibitors and were approved for clinical use in 2011. The cure rate for genotype 1 patients increased from 45% to 70% when boceprevir or telaprevir was added to standard PEG-IFN/ribavirin. More effective and less toxic second generation DAAs supplanted these drugs by 2013. The second generation of DAAs includes sofosbuvir (Sovaldi, simeprevir (Olysio, and fixed combination medicines Harvoni and Viekira Pak. These drugs increase cure rates to over 90% without the need for interferon and effectively treat all HCV genotypes. With these drugs the “cure HCV” goal has become a reality. Concerns remain about drug resistance mutations and the high cost of these drugs. The investigation of new HCV drugs is progressing rapidly; fixed dose combination medicines in phase III clinical trials include Viekirax, asunaprevir+daclatasvir+beclabuvir, grazoprevir+elbasvir and others.

  10. Farmer to Pharmacist: Curcumin as an Anti-invasive and Antimetastatic Agent for the Treatment of Cancer

    Science.gov (United States)

    Bandyopadhyay, Debasish

    2014-12-01

    A huge number of compounds are widely distributed in nature and many of these possess medicinal/biological/pharmacological activity. Curcumin, a polyphenol derived from the rhizomes (underground stems) of Curcuma longa Linn (a member of the ginger family, commonly known as turmeric) is a culinary spice and therapeutic used in India for thousands of years to induce color and flavor in food as well as to treat a wide array of diseases. The origin of turmeric as spice and folklore medicine is so old that it is lost in legend. Curcumin has many beneficial pharmacological effects which includes, but are not limited with, antimicrobial, anti-inflammatory, antioxidant, antiviral, antiangiogenic, and antidiabetic activities. Most importantly curcumin possesses immense antitumorigenic effect. It prevents tumor invasion and metastasis in a number of animal models, including models of lung, liver, stomach, colon, breast, esophageal cancer etc. Invasion and metastasis are considered as one of the hallmarks in cancer biology. The pertinent recent applications of curcumin as anti-invasive and antimetastatic agent in in vitro and in vivo and ex vivo studies as well as associated molecular mechanisms have been discussed in this review. Curcumin has also demonstrated the ability to improve patient outcomes in clinical trials.

  11. Farmer to Pharmacist: Curcumin as an Anti-invasive and Antimetastatic Agent for the Treatment of Cancer

    Directory of Open Access Journals (Sweden)

    Debasish eBandyopadhyay

    2014-12-01

    Full Text Available A huge number of compounds are widely distributed in nature and many of these possess medicinal/biological/pharmacological activity. Curcumin, a polyphenol derived from the rhizomes (underground stems of Curcuma longa Linn (a member of the ginger family, commonly known as turmeric is a culinary spice and therapeutic used in India for thousands of years to induce color and flavor in food as well as to treat a wide array of diseases. The origin of turmeric as spice and folklore medicine is so old that it is lost in legend. Curcumin has many beneficial pharmacological effects which includes, but are not limited with, antimicrobial, anti-inflammatory, antioxidant, antiviral, antiangiogenic, and antidiabetic activities. Most importantly curcumin possesses immense antitumorigenic effect. It prevents tumor invasion and metastasis in a number of animal models, including models of lung, liver, stomach, colon, breast, esophageal cancer etc. Invasion and metastasis are considered as one of the hallmarks in cancer biology. The pertinent recent applications of curcumin as anti-invasive and antimetastatic agent in in vitro and in vivo and ex vivo studies as well as associated molecular mechanisms have been discussed in this review. Curcumin has also demonstrated the ability to improve patient outcomes in clinical trials.

  12. Immune mediators of sea-cucumber Holothuria tubulosa (Echinodermata) as source of novel antimicrobial and anti-staphylococcal biofilm agents.

    Science.gov (United States)

    Schillaci, Domenico; Cusimano, Maria Grazia; Cunsolo, Vincenzo; Saletti, Rosaria; Russo, Debora; Vazzana, Mirella; Vitale, Maria; Arizza, Vincenzo

    2013-06-24

    The present study aims to investigate coelomocytes, immune mediators cells in the echinoderm Holothuria tubulosa, as an unusual source of antimicrobial and antibiofilm agents. The activity of the 5kDa peptide fraction of the cytosol from H. tubulosa coelomocytes (5-HCC) was tested against a reference group of Gram-negative and Gram-positive human pathogens. Minimal inhibitory concentrations (MICs) ranging from 125 to 500 mg/ml were determined against tested strains. The observed biological activity of 5-HCC could be due to two novel peptides, identified by capillary RP-HPLC/nESI-MS/MS, which present the common chemical-physical characteristics of antimicrobial peptides. Such peptides were chemically synthesized and their antimicrobial activity was tested. The synthetic peptides showed broad-spectrum activity at 12.5 mg/ml against the majority of the tested Gram-positive and Gram-negative strains, and they were also able to inhibit biofilm formation in a significant percentage at a concentration of 3.1 mg/ml against staphylococcal and Pseudomonas aeruginosa strains.The immune mediators in H. tubulosa are a source of novel antimicrobial peptides for the development of new agents against biofilm bacterial communities that are often intrinsically resistant to conventional antibiotics.

  13. Characterization of a Newly Isolated Marine Fungus Aspergillus dimorphicus for Optimized Production of the Anti-Tumor Agent Wentilactones

    Directory of Open Access Journals (Sweden)

    Rui Xu

    2015-11-01

    Full Text Available The potential anti-tumor agent wentilactones were produced by a newly isolated marine fungus Aspergillus dimorphicus. This fungus was derived from deep-sea sediment and identified by polyphasic approach, combining phenotypic, molecular, and extrolite profiles. However, wentilactone production was detected only under static cultures with very low yields. In order to improve wentilactone production, culture conditions were optimized using the response surface methodology. Under the optimal static fermentation conditions, the experimental values were closely consistent with the prediction model. The yields of wentilactone A and B were increased about 11-fold to 13.4 and 6.5 mg/L, respectively. The result was further verified by fermentation scale-up for wentilactone production. Moreover, some small-molecule elicitors were found to have capacity of stimulating wentilactone production. To our knowledge, this is first report of optimized production of tetranorlabdane diterpenoids by a deep-sea derived marine fungus. The present study might be valuable for efficient production of wentilactones and fundamental investigation of the anti-tumor mechanism of norditerpenoids.

  14. BACTERIAL FLORA OF HATCHERY ENVIRONMENT AND THEIR IN-VITRO SUSCEPTIBILITY TO ANTIMICROBIAL AGENTS

    Directory of Open Access Journals (Sweden)

    F. M. Khan, H. Afzal and F. Deeba

    2003-04-01

    Full Text Available Four hatcheries, located in and around Faisalabad, were sampled a day before hatch out in six batches for environmental bacterial flora. Hatchery air, egg-shell surface, surfaces of selected locations and water supply samples were taken for this purpose. The percent (relative occurrence of various bacterial species recovered from hatchery environment revealed that Bacillus subtilis was the predominant isolate (26.93%. followed by Escherichia coli (24.08%, Staphylococcus epidermidis (16.32%, Staphylococcus aureus (8.16%, Paratyphoid salmonellae (6.93%, Pseudomonas aeruginosa (4.48%, Citrobacter jreundii (4.08%, Enterococcus faecalis (3.26%, Klebsiella pneumoniae (3.26%, Bordetella avium (1.63% and Proteus vulgaris (0.81%. In second part of the study, bacterial isolates were subjected to in-vitro antibiotic sensitivity to 8 antibiotics of common poultry use. It was found that 98.92, 79.56. 65.59, 61.29, 61.29, 61.29, 53.76 and 38.70 percent of bacterial isolates were sensitive to Norfloxacin, Gentamicin, Neomycin, Chloramphenicol, Doxycycline, Flumequine, Erythromycin, and Ampicillin, respectively. In the final part of the study, bacterial isolates were tested for resistance to 3 commerical hatchery disinfectants (TH4®, Aldekol Des® 0.2, and Bromosept 10% soln. ®. Only 3.22% of the isolates showed resistance at manufacturer's recommended dilution (MRD levels while 11.82% of the isolates showed resistance at concentrations below the MRD levels.

  15. Present and future etiological treatment of bacterial pneumonia 3. The antibacterial drugs under development

    Directory of Open Access Journals (Sweden)

    A.A. Abaturov

    2017-08-01

    Full Text Available The rapid spread of antibiotic-resistant bacterial strains necessitates the development of new antibacterial agents and a review of the guidelines for etiological treatment of bacterial infections, including pneumonia. Currently, new antibacterial agents are being developed that disrupt the biosynthesis of peptidoglycan, teichoic and lipoteichoic acids, and also block the attachment of virulent factors to the bacterial wall. New molecules of old classes of antibiotics and representatives of new classes of antibiotics with their targets (lipid II and III, teichoic and lipoteichoic acids, alanine racemase, and sortase A will become practical tools in clinical practice in the very near future. The goals and mechanisms of action of new antibacterial compounds predetermine their clinical prospects in future strategies for the treatment of infectious bacterial diseases.

  16. Isolation, screening, and characterization of surface-active agent-producing, oil-degrading marine bacteria of Mumbai Harbor.

    Science.gov (United States)

    Mohanram, Rajamani; Jagtap, Chandrakant; Kumar, Pradeep

    2016-04-15

    Diverse marine bacterial species predominantly found in oil-polluted seawater produce diverse surface-active agents. Surface-active agents produced by bacteria are classified into two groups based on their molecular weights, namely biosurfactants and bioemulsifiers. In this study, surface-active agent-producing, oil-degrading marine bacteria were isolated using a modified Bushnell-Haas medium with high-speed diesel as a carbon source from three oil-polluted sites of Mumbai Harbor. Surface-active agent-producing bacterial strains were screened using nine widely used methods. The nineteen bacterial strains showed positive results for more than four surface-active agent screening methods; further, these strains were characterized using biochemical and nucleic acid sequencing methods. Based on the results, the organisms belonged to the genera Acinetobacter, Alcanivorax, Bacillus, Comamonas, Chryseomicrobium, Halomonas, Marinobacter, Nesterenkonia, Pseudomonas, and Serratia. The present study confirmed the prevalence of surface-active agent-producing bacteria in the oil-polluted waters of Mumbai Harbor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Surface zwitterionization: Effective method for preventing oral bacterial biofilm formation on hydroxyapatite surfaces

    Science.gov (United States)

    Lee, Myoungjin; Kim, Heejin; Seo, Jiae; Kang, Minji; Kang, Sunah; Jang, Joomyung; Lee, Yan; Seo, Ji-Hun

    2018-01-01

    In this study, we conducted surface zwitterionization of hydroxyapatite (HA) surfaces by immersing them in the zwitterionic polymer solutions to provide anti-bacterial properties to the HA surface. Three different monomers containing various zwitterionic groups, i.e., phosphorylcholine (PC), sulfobetaine (SB), and carboxybetaine (CB), were copolymerized with the methacrylic monomer containing a Ca2+-binding moiety, using the free radical polymerization method. As a control, functionalization of the copolymer containing the Ca2+-binding moiety was synthesized using a hydroxy group. The stable immobilization of the zwitterionic functional groups was confirmed by water contact angle analysis and X-ray photoelectron spectroscopy (XPS) measurement conducted after the sonication process. The zwitterionized HA surface showed significantly decreased protein adsorption, whereas the hydroxyl group-coated HA surface showed limited efficacy. The anti-bacterial adhesion property was confirmed by conducting Streptococcus mutans (S. mutans) adhesion tests for 6 h and 24 h. When furanone C-30, a representative anti-quorum sensing molecule for S. mutans, was used, only a small amount of bacteria adhered after 6 h and the population did not increase after 24 h. In contrast, zwitterionized HA surfaces showed almost no bacterial adhesion after 6 h and the effect was retained for 24 h, resulting in the lowest level of oral bacterial adhesion. These results confirm that surface zwitterionization is a promising method to effectively prevent oral bacterial adhesion on HA-based materials.

  18. Anti-Bacterial Activity of Phenolic Compounds against Streptococcus pyogenes

    DEFF Research Database (Denmark)

    Macé, Sabrina; Hansen, Lisbeth Truelstrup; P. Vasantha Rupasinghe, H.

    2017-01-01

    Background: Worldwide, Streptococcus pyogenes is the leading cause of bacterial pharyngitis. To reduce the use of antibiotics, antimicrobial phytochemical-containing remedies, which have long been in use in traditional medicine, may provide new approaches for management of streptococcal pharyngitis......,2-naphthoquinone and 5-hydroxy-1,4-naphthoquinone inhibit S. pyogenes and should be further investigated as candidates for the management of streptococcal pharyngitis....

  19. An agent-based model of signal transduction in bacterial chemotaxis.

    Directory of Open Access Journals (Sweden)

    Jameson Miller

    2010-05-01

    Full Text Available We report the application of agent-based modeling to examine the signal transduction network and receptor arrays for chemotaxis in Escherichia coli, which are responsible for regulating swimming behavior in response to environmental stimuli. Agent-based modeling is a stochastic and bottom-up approach, where individual components of the modeled system are explicitly represented, and bulk properties emerge from their movement and interactions. We present the Chemoscape model: a collection of agents representing both fixed membrane-embedded and mobile cytoplasmic proteins, each governed by a set of rules representing knowledge or hypotheses about their function. When the agents were placed in a simulated cellular space and then allowed to move and interact stochastically, the model exhibited many properties similar to the biological system including adaptation, high signal gain, and wide dynamic range. We found the agent based modeling approach to be both powerful and intuitive for testing hypotheses about biological properties such as self-assembly, the non-linear dynamics that occur through cooperative protein interactions, and non-uniform distributions of proteins in the cell. We applied the model to explore the role of receptor type, geometry and cooperativity in the signal gain and dynamic range of the chemotactic response to environmental stimuli. The model provided substantial qualitative evidence that the dynamic range of chemotactic response can be traced to both the heterogeneity of receptor types present, and the modulation of their cooperativity by their methylation state.

  20. An agent-based model of signal transduction in bacterial chemotaxis.

    Science.gov (United States)

    Miller, Jameson; Parker, Miles; Bourret, Robert B; Giddings, Morgan C

    2010-05-13

    We report the application of agent-based modeling to examine the signal transduction network and receptor arrays for chemotaxis in Escherichia coli, which are responsible for regulating swimming behavior in response to environmental stimuli. Agent-based modeling is a stochastic and bottom-up approach, where individual components of the modeled system are explicitly represented, and bulk properties emerge from their movement and interactions. We present the Chemoscape model: a collection of agents representing both fixed membrane-embedded and mobile cytoplasmic proteins, each governed by a set of rules representing knowledge or hypotheses about their function. When the agents were placed in a simulated cellular space and then allowed to move and interact stochastically, the model exhibited many properties similar to the biological system including adaptation, high signal gain, and wide dynamic range. We found the agent based modeling approach to be both powerful and intuitive for testing hypotheses about biological properties such as self-assembly, the non-linear dynamics that occur through cooperative protein interactions, and non-uniform distributions of proteins in the cell. We applied the model to explore the role of receptor type, geometry and cooperativity in the signal gain and dynamic range of the chemotactic response to environmental stimuli. The model provided substantial qualitative evidence that the dynamic range of chemotactic response can be traced to both the heterogeneity of receptor types present, and the modulation of their cooperativity by their methylation state.

  1. Anti-bacterial effects of the essential oil of Teucrium polium L. on human pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    Mohammad Mohammad

    2013-09-01

    Results: The total oil content of Teucrium polium plant was 0.75%. Twenty eight compounds were identified in the essential oil that included 99.75% of the total oil. The major components were α-pinene (12.52%, Linalool (10.63% and Caryophyllene oxide (9.69%. For study of antimicrobial activity of the oil sample, the essential oil was tested against 9 bacteria by disc diffusion method. The antimicrobial effects of this essential oil was determined against three Gram positive bacteria Staphylococcus areous (PTCC 1431, Staphylococcus epidermidis (PTCC 1436, Streptococcus faecalis (PTCC 1237; as well as six Gram negative bacteria Pseudomonas aeroginosa (PTCC 11430, Shigella flexneri (PTCC 1716, Kellebsiella pneuomonae(PTCC=1053, Salmonella typhi (PTCC=1609, Serratia marcescens (PTCC 1187 and Escherichia coli (PTCC 1533. The antimicrobial effects of this essential oil on the Gram positive bacteria ( Staphylococcus aureus and Staphylococcus epidermidis and on all the Gram negative bacteria tested was much higher than those observed by tetracycline. Conclusions: The results showed the essential oil of Teucrium polium had strong anti-bacterial effects. The relatively high contents of α-pinene and Linalool in the essential oil may be the cause of its potential medicinal effects

  2. Anti-Bacterial Properties of Herbs against Helicobacter Pylori Infection: A Review

    Directory of Open Access Journals (Sweden)

    Hedieh Yousef-Nezhad

    2017-09-01

    Full Text Available Helicobacter pylori is a gram-negative bacterium that lives in human stomach. This bacterium is the most important cause of chronic gastritis, peptic and duodenal ulcers and gastric cancer. The therapies include the use of antibiotics and a proton pump inhibitor, but unfortunately, these therapeutic methods are not always responsive due to resistance to antibiotics. In recent years, use of alternative treatment, including medicinal herbs was shown to have anti-H. Pylori properties. So, in this review, anti-H. Pylori features of herbals were investigated including ginger, garlic, cranberry, curcumin, green tea and broccoli sprouts derived through the search in Google Scholar search engine, and PubMed scientific database using English keywords such as Helicobacter pylori, anti-H. pylori, ginger, garlic, cranberry, curcumin, broccoli and green tea, between 1984 -2016. Results showed that ginger, garlic, cranberry, curcumin, broccoli and green tea have antibacterial, antioxidant and anti-inflammatory potential properties, and because of their role in protecting the stomach against H. pylori infection, it seems, they can be an appropriate treatment option for patients with this infection.

  3. Soft-tissue wound healing by anti-advanced glycation end-products agents.

    Science.gov (United States)

    Chang, P-C; Tsai, S-C; Jheng, Y-H; Lin, Y-F; Chen, C-C

    2014-04-01

    The blocking of advanced glycation end-products (AGE) has been shown to reduce diabetic complications and control periodontitis. This study investigated the pattern of palatal wound-healing after graft harvesting under the administration of aminoguanidine (AG), an AGE inhibitor, or N-phenacylthiazolium bromide (PTB), a glycated cross-link breaker. Full-thickness palatal excisional wounds (5.0 x 1.5 mm(2)) were created in 72 Sprague-Dawley rats. The rats received daily intraperitoneal injections of normal saline (control), AG, or PTB and were euthanized after 4 to 28 days. The wound-healing pattern was assessed by histology, histochemistry for collagen matrix deposition, immunohistochemistry for AGE and the AGE receptor (RAGE), and the expression of RAGE, as well as inflammation- and recovery-associated genes. In the first 14 days following AG or PTB treatments, wound closure, re-epithelialization, and collagen matrix deposition were accelerated, whereas AGE deposition, RAGE-positive cells, and inflammation were reduced. RAGE and tumor necrosis factor-alpha were significantly down-regulated at day 7, and heme oxygenase-1 was persistently down-regulated until day 14. The levels of vascular endothelial growth factor, periostin, type I collagen, and fibronectin were all increased at day 14. In conclusion, anti-AGE agents appeared to facilitate palatal wound-healing by reducing AGE-associated inflammation and promoting the recovery process.

  4. Anti-biofilm and anti-adherence activities of sub fraction 18 of Melastoma malabathricum towards Streptococcus mutans

    Science.gov (United States)

    Rohazila M., H.; Nazlina, I.; Yaacob W., A.

    2014-09-01

    A study was carried out to isolate and identify the active compounds from Melastoma malabathricum stem bark that exhibit anti-biofilm and anti-adherence activities against Streptococcus mutans. Purification of the active compounds from the stem bark extract was performed via silica gel chromatography to produce 12 fractions. Further fractionation of fraction 9 by high performance liquid chromatography (HPLC) produced 21 sub fractions. All the sub fractions were subjected to thin layer chromatography (TLC) bioautography as preliminary screening to determine anti bacterial activity. TLC-bioautography showed that sub fraction 18 (SF18) demonstrated large inhibited zone against S. mutans. Gas chromatography mass spectrometry (GCMS) was used to identify the active compounds in SF18. Fraction SF18 revealed 27 compounds such as hexanoic acid, 8-methyl-1-undecene, propanenitrile, and 1-decene. Anti-biofilm and anti-adherence activities were determined using crystal violet and glass surface assays respectively. The concentrations that produced 50% reduction in anti-biofilm and anti-adherence activities were 1.88 mg/ml and 3.75 mg/ml respectively.

  5. Anti-Inflammatory Agent Indomethacin Reduces Invasion and Alters Metabolism in a Human Breast Cancer Cell Line

    Directory of Open Access Journals (Sweden)

    Ellen Ackerstaff

    2007-03-01

    Full Text Available Hostile physiological environments such as hypoxia and acidic extracellular pH, which exist in solid tumors, may promote invasion and metastasis through inflammatory responses and formation of eicosanoids. Here, we have investigated the effects of the antiinflammatory agent indomethacin on the invasion and metabolism of the human breast cancer cell line MDAMB-435 in Dulbecco's Modified Eagles (DME-based or Roswell Park Memorial Institute (RPMI-based cell medium, using a magnetic resonance-compatible invasion assay. Indomethacin treatment significantly reduced the invasion of MDA-MB-435 cells independent of the culture and perfusion conditions examined. Significant changes were detected in levels of intracellular choline phospholipid metabolites and in triglyceride (TG concentrations of these cells, depending on indomethacin treatment and basal cell medium used. Additionally, genetic profiling of breast cancer cells, grown and treated with low-dose indomethacin in cell culture using an RPMI-based medium, revealed the upregulation of several genes implicating cyclooxygenaseindependent targets of indomethacin. These data confirm the ability of an anti-inflammatory agent to reduce breast cancer invasion and demonstrate, depending on cell culture and perfusion conditions, that the indomethacin-induced decrease in invasion is associated with changes in choline phospholipid metabolism, TG metabolism, and gene expression.

  6. A Diverse Family of Host-Defense Peptides (Piscidins Exhibit Specialized Anti-Bacterial and Anti-Protozoal Activities in Fishes.

    Directory of Open Access Journals (Sweden)

    Scott A Salger

    Full Text Available Conventional antibiotics and other chemical-based drugs are currently one of the most common methods used to control disease-related mortality in animal agriculture. Use of the innate immune system to decrease disease related mortalities is a novel alternative to conventional drugs. One component of the innate immune system is the host-defense peptides, also known as antimicrobial peptides. Host-defense peptides are typically small, amphipathic, α-helical peptides with a broad-spectrum of action against viral, bacterial, fungal, and/or protozoal pathogens. Piscidins are host-defense peptides first discovered in the hybrid striped bass (white bass, Morone chrysops, x striped bass, M. saxatilis. In this paper we identify four new piscidin isoforms in the hybrid striped bass and describe their tissue distributions. We also determine the progenitor species of origin of each piscidin (orthology and propose a revised nomenclature for this newly described piscidin family based on a three class system. The Class I piscidins (22 amino acids in length; striped bass and white bass piscidin 1 and piscidin 3 show broad-spectrum activity against bacteria and ciliated protozoans, while the Class III piscidins (55 amino acids in length; striped bass and white bass piscidin 6 and striped bass piscidin 7 primarily show anti-protozoal activity. The Class II piscidins (44-46 amino acids in length; striped bass and white bass piscidin 4 and white bass piscidin 5 have a level of activity against bacteria and protozoans intermediate to Classes I and III. Knowledge of piscidin function and activity may help in the future development of disease-resistant lines of striped bass and white bass that could be used to produce superior hybrids for aquaculture.

  7. A Diverse Family of Host-Defense Peptides (Piscidins) Exhibit Specialized Anti-Bacterial and Anti-Protozoal Activities in Fishes.

    Science.gov (United States)

    Salger, Scott A; Cassady, Katherine R; Reading, Benjamin J; Noga, Edward J

    2016-01-01

    Conventional antibiotics and other chemical-based drugs are currently one of the most common methods used to control disease-related mortality in animal agriculture. Use of the innate immune system to decrease disease related mortalities is a novel alternative to conventional drugs. One component of the innate immune system is the host-defense peptides, also known as antimicrobial peptides. Host-defense peptides are typically small, amphipathic, α-helical peptides with a broad-spectrum of action against viral, bacterial, fungal, and/or protozoal pathogens. Piscidins are host-defense peptides first discovered in the hybrid striped bass (white bass, Morone chrysops, x striped bass, M. saxatilis). In this paper we identify four new piscidin isoforms in the hybrid striped bass and describe their tissue distributions. We also determine the progenitor species of origin of each piscidin (orthology) and propose a revised nomenclature for this newly described piscidin family based on a three class system. The Class I piscidins (22 amino acids in length; striped bass and white bass piscidin 1 and piscidin 3) show broad-spectrum activity against bacteria and ciliated protozoans, while the Class III piscidins (55 amino acids in length; striped bass and white bass piscidin 6 and striped bass piscidin 7) primarily show anti-protozoal activity. The Class II piscidins (44-46 amino acids in length; striped bass and white bass piscidin 4 and white bass piscidin 5) have a level of activity against bacteria and protozoans intermediate to Classes I and III. Knowledge of piscidin function and activity may help in the future development of disease-resistant lines of striped bass and white bass that could be used to produce superior hybrids for aquaculture.

  8. Restoration of dietary-fat induced blood–brain barrier dysfunction by anti-inflammatory lipid-modulating agents

    Directory of Open Access Journals (Sweden)

    Pallebage-Gamarallage Menuka

    2012-09-01

    Full Text Available Abstract Background Several studies have identified use of non-steroidal-anti-inflammatory drugs and statins for prevention of dementia, but their efficacy in slowing progression is not well understood. Cerebrovascular disturbances are common pathological feature of Alzheimer’s disease. We previously reported chronic ingestion of saturated fatty acids (SFA compromises blood–brain barrier (BBB integrity resulting in cerebral extravasation of plasma proteins and inflammation. However, the SFA-induced parenchymal accumulation of plasma proteins could be prevented by co-administration of some cholesterol lowering agents. Restoration of BBB dysfunction is clinically relevant, so the purpose of this study was to explore lipid-lowering agents could reverse BBB disturbances induced by chronic ingestion of SFA’s. Methods Wild-type mice were fed an SFA diet for 12 weeks to induce BBB dysfunction, and then randomised to receive atorvastatin, pravastatin or ibuprofen in combination with the SFA-rich diet for 2 or 8 weeks. Abundance of plasma-derived immunoglobulin-G (IgG and amyloid-β enriched apolipoprotein (apo-B lipoproteins within brain parenchyme were quantified utilising immunofluorescence microscopy. Results Atorvastatin treatment for 2 and 8 weeks restored BBB integrity, indicated by a substantial reduction of IgG and apo B, particularly within the hippocampus. Pravastatin, a water-soluble statin was less effective than atorvastatin (lipid-soluble. Statin effects were independent of changes in plasma lipid homeostasis. Ibuprofen, a lipid-soluble cyclooxygenase inhibitor attenuated cerebral accumulation of IgG and apo B as effectively as atorvastatin. Our findings are consistent with the drug effects being independent of plasma lipid homeostasis. Conclusion Our findings suggest that BBB dysfunction induced by chronic ingestion of SFA is reversible with timely introduction and sustained treatment with agents that suppress inflammation.

  9. Potential Therapeutic Effects of Curcumin, the Anti-inflammatory Agent, Against Neurodegenerative, Cardiovascular, Pulmonary, Metabolic, Autoimmune and Neoplastic Diseases

    Science.gov (United States)

    Aggarwal, Bharat B.; Harikumar, Kuzhuvelil B.

    2009-01-01

    Although safe in most cases, ancient treatments are ignored because neither their active component nor their molecular targets are well defined. This is not the case, however, with curcumin, a yellow-pigment substance and component of turmeric (Curcuma longa), which was identified more than a century ago. For centuries it has been known that turmeric exhibits anti-inflammatory activity, but extensive research performed within the past two decades has shown that the this activity of turmeric is due to curcumin, a diferuloylmethane. This agent has been shown to regulate numerous transcription factors, cytokines, protein kinases, adhesion molecules, redox status and enzymes that have been linked to inflammation. The process of inflammation has been shown to play a major role in most chronic illnesses, including neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. In the current review, we provide evidence for the potential role of curcumin in the prevention and treatment of various pro-inflammatory chronic diseases. These features, combined with the pharmacological safety and negligible cost, render curcumin an attractive agent to explore further. PMID:18662800

  10. Changing paradigms of anti-VEGF in the Indian scenario

    Directory of Open Access Journals (Sweden)

    P Mahesh Shanmugam

    2014-01-01

    Full Text Available Anti-vascular endothelial growth factors (VEGF agents have revolutionized the treatment of retinal diseases. Use of anti-VEGF agents in the Indian Scenario present some unique challenges considering the absence of compounding pharmacies, poor penetrance of health insurance and limited affordability of the citizens of a developing economy. To study the changing paradigms of anti-VEGF use in the Indian scenario, all articles published by Indian authors, data from web-based surveys amongst Indian vitreo-retinal specialists were reviewed. In the paucity of compounding pharmacies in India, fractionation and injection techniques differ from those of developed countries. Frequent anti-VEGF monotherapy offers the best anatomical and visual results, but economics of scale do not allow the same in the Indian scenario, resulting in PRN dosing and combination of anti-VEGF with laser photocoagulation, being the commonly employed treatment protocols.

  11. Bacterial Agents Andantibiogram of Most Common Isolated Organisms from Hands of Surgical Team Members after Scrubbing

    Directory of Open Access Journals (Sweden)

    PS Mohseni- Meybodi

    2008-04-01

    Full Text Available Introduction: Many post-surgical wound infections in hospitals cause morbidity and morality of patients and these are usually transmitted via hands of surgical personnel. The aim of the present study was to detect and antibiogram the bacterial agents following scrubbing of hands of surgical personnel before operation. Methods: Hands of 134 personnels of operation room were swabbed following scrubbing with antiseptic Betadine solution. Swab samples were inoculated on selective and differential media such as blood ager, McConky and manitol salt agar(MSA. Following incubation of media at 37c° for 24hr, bacterial species were identified using differential related tests. The isolated species were than antibiogramed and the results together with other data was analysed by SPSS software program. Results: Of the total of 134 cases, 81(60.4% were male and 53(39.6% female. The mean scrub time for each person was (206.1+/-103.2 seconds; 6 to 60 seconds base change. Increasing time of scrub was significantly correlated with decreasing rate of bacteria (P=0.003, (R=-0.254. Contamination was present in 129(96.3% cases following scrubbing. Maximum contamination was observed in nails (92.5%. Average number of bacteria for each individual was between 0 and 159. 62.6% of isolated bacteria were non- staphylococci and 7.7% were S. aureus. Vancomycin and ceftizoxim were the most sensitive, while penicillin was the least sensitive antibiotic. Conclusion: Results revealed that hand contamination was more than the expected standard level. Therefore, regarding the critical task of surgical personnel, training of all operation room staff is highly recommended to minimize the rate of contamination.

  12. External influences and priority-setting for anti-cancer agents: a case study of media coverage in adjuvant trastuzumab for breast cancer

    Directory of Open Access Journals (Sweden)

    Fralick John

    2007-06-01

    Full Text Available Abstract Background Setting priorities for the funding of new anti-cancer agents is becoming increasingly complex. The funding of adjuvant trastuzumab for breast cancer has brought this dilemma to the fore. In this paper we review external factors that may influence decision-making bodies and present a case study of media response in Ontario, Canada to adjuvant trastuzumab for breast cancer. Methods A comprehensive search of the databases of Canadian national and local newspapers and television was performed. Articles pertaining to trastuzumab in adjuvant breast cancer as well as 17 other anti-cancer drugs and indications were retrieved. The search period was from the date when individual trial results were announced to the date funding was made available in Ontario. Results During the 2.6 months between the release of the trastuzumab results to funding approval in Ontario, we identified 51 episodes of media coverage. For the 17 other drugs/indications (7 breast and 10 non-breast, the median time to funding approval was 31 months (range 14–46. Other recent major advances in oncology such as adjuvant vinorelbine/cisplatin for resected NSCLC and docetaxel for advanced prostate cancer received considerably less media attention (17 media reports for each than trastuzumab. The median number of media reports for breast cancer drugs was 4.5 compared to 2.5 for non-breast cancer drugs (p = 0.56. Conclusion Priority-setting for novel anti-cancer agents is a complex process that tries to ensure fair use of constrained resources to fund therapies with the best evidence of clinical benefit. However, this process is subject to external factors including the influence of media, patient advocates, politicians, and industry. The data in this case study serve to illustrate the significant involvement one (or all of these external factors may play in the debate over priority-setting.

  13. A new General Purpose Decontamination System for Chemical and Biological Warfare and Terrorism Agents

    National Research Council Canada - National Science Library

    Khetan, Sushil; Banerjee, xdDeboshri; Chanda, Arani; Collins, Terry

    2003-01-01

    Partial contents: Fe-TAML Activator of Peroxide,Activators of Hydrogen peroxide,Biological Warfare Agents,Bacterial Endospore,Bacterial Spore Deactivation,Modeling Studies,Deactivation Studies with Bacillus spores...

  14. Bacterial cellulose–kaolin nanocomposites for application as biomedical wound healing materials

    International Nuclear Information System (INIS)

    Wanna, Dwi; Alam, Parvez; Alam, Catharina; Toivola, Diana M

    2013-01-01

    This short communication provides preliminary experimental details on the structure–property relationships of novel biomedical kaolin–bacterial cellulose nanocomposites. Bacterial cellulose is an effective binding agent for kaolin particles forming reticulated structures at kaolin–cellulose interfaces and entanglements when the cellulose fraction is sufficiently high. The mechanical performance of these materials hence improves with an increased fraction of bacterial cellulose, though this also causes the rate of blood clotting to decrease. These composites have combined potential as both short-term (kaolin) and long-term (bacterial cellulose) wound healing materials. (paper)

  15. Enantioselective Total Synthesis of Antibiotic CJ-16,264, Synthesis and Biological Evaluation of Designed Analogues, and Discovery of Highly Potent and Simpler Antibacterial Agents.

    Science.gov (United States)

    Nicolaou, K C; Pulukuri, Kiran Kumar; Rigol, Stephan; Buchman, Marek; Shah, Akshay A; Cen, Nicholas; McCurry, Megan D; Beabout, Kathryn; Shamoo, Yousif

    2017-11-08

    An improved and enantioselective total synthesis of antibiotic CJ-16,264 through a practical kinetic resolution and an iodolactonization reaction to form the iodo pyrrolizidinone fragment of the molecule is described. A series of racemic and enantiopure analogues of CJ-16,264 was designed and synthesized through the developed synthetic technologies and tested against drug-resistant bacterial strains. These studies led to interesting structure-activity relationships and the identification of a number of simpler, and yet equipotent, or even more potent, antibacterial agents than the natural product, thereby setting the foundation for further investigations in the quest for new anti-infective drugs.

  16. Anti-influenza M2e antibody

    Science.gov (United States)

    Bradbury, Andrew M [Santa Fe, NM

    2011-12-20

    Humanized recombinant and monoclonal antibodies specific for the ectodomain of the influenza virus M2 ion channel protein are disclosed. The antibodies of the invention have anti-viral activity and may be useful as anti-viral therapeutics and/or prophylactic/vaccine agents for inhibiting influenza virus replication and for treating individuals infected with influenza.

  17. Invitro antimicrobial susceptibility pattern of bacterial isolates from ...

    African Journals Online (AJOL)

    ... of bacterial isolates from wound infections in university of Ilorin Teaching Hospital. ... The Fluoroquino lones are the favoured antimicrobial agents nowadays, ... In our environment however, a combination of Cloxacillin and Gentamicin is an ...

  18. ANTI-MICROBIAL AND ANTI-AMOEBIC ACTIVITY SOME AZOMETHINES - POTENTIAL TEXTILE DYESTUFFS

    Directory of Open Access Journals (Sweden)

    DJORDJEVIC Dragan

    2016-05-01

    Full Text Available In this paper, new synthesized three azomethine derivatives applied in dyeing textiles checking the anti-microbial properties of active components, at the same time [1-3]. The emphasis is thrown on the verification of anti-microbial properties that are important for obtaining textile with significantly improved performance. All compounds were characterized and evaluated for their anti-microbial activity against 7 pathogenic bacteria, 1 parasitic protozoan and 1 fungus. It estimated anti-bacterial activity in vitro against the following microorganisms Staphylococcus aureus, Bacillus anthracis, Streptococcus faecalis, Enterobacter sp., Escherichia coli, Pseudomonas aeruginosa, Proteus mirabilis, and Candida albicans. The anti-amoebic activity in vitro was evaluated against the HM1: IMSS strain of Entamoeba histolytica and the results were compared with the standard drug, metronidazole. The synthesized azomethines, showed very good substantivity for wool fibers, gave fine coloring, with good degree of exhaustion after dyeing. The combination of extended synthetic analogues of natural molecules leads to discovery of chemical entities which might be excellent anti-microbial and anti-amoebic compounds as depicted in our results. Being highly the effects this compound can be explored in future as an option for decreasing pathogenic potential of infecting from different sources. Azomethines containing hydrazone (dyestuff 1 and phenylhydrazone (dyestuff 2 as moiety show average yield and moderate inhibition activity while azomethines containing thiosemicarbazone (dyestuff 3 as moiety show higher yield and greater inhibition activity towards gram-negative and gram-positive bacteria as well as a fungus.

  19. First Isolation and Molecular Characterization of Bacteriophages Infecting Acidovorax citrulli, the Causal Agent of Bacterial Fruit Blotch

    Directory of Open Access Journals (Sweden)

    Aryan Rahimi-Midani

    2018-02-01

    Full Text Available Bacteriophages of Acidovorax citrulli, the causal agent of bacterial fruit blotch, were isolated from 39 watermelon, pumpkin, and cucumber leaf samples collected from various regions of Korea and tested against 18 A. citrulli strains. Among the six phages isolated, ACP17 forms the largest plaque, and exhibits the morphology of phages in the Myoviridae family with a head diameter of 100 ± 5 nm and tail length of 150 ± 5 nm. ACP17 has eclipse and latent periods of 25 ± 5 min and 50 ± 5 min, respectively, and a burst size of 120. The genome of ACP17 is 156,281 base pairs with a G + C content of 58.7%, 263 open reading frames, and 4 transfer RNA genes. Blast search and phylogenetic analysis of the major capsid protein showed that ACP17 has limited homology to two Stentrophomonas phages, suggesting that ACP17 is a new type of Myoviridae isolated from A. citrulli.

  20. Rational Design and Synthesis of Biologically Active Disubstituted 2(3H) Furanones and Pyrrolone Derivatives as Potent and Safer Non Steroidal Anti-inflammatory Agents.

    Science.gov (United States)

    Khokra, S L; Khan, S A; Choudhary, D; Hasan, S M; Ahmad, A; Husain, Asif

    2016-01-01

    Furanone and pyrrolone heterocyclic ring system represent important and interesting classes of bioactive compounds. Medicinal chemists use these heterocycyclic moieties as scaffolds in drug design and discovery. A series of 3-arylidene-5-(naphthalene-2-yl)-furan-2(3H)-ones (2a-j) were synthesized by incorporating pharmacophore of COX-2 inhibitor rofecoxib and naphthyl ring of naproxen as potential non steroidal anti-inflammatory agents. These furanone derivatives were subsequently reacted with dry ammonia gas and benzylamine to furnish corresponding 3-arylidene-5-(naphthlen-2-yl)-1H-pyrrol-2(3H)-ones (3a-e) and 3-arylidene-1-benzyl-5- (naphthalene-2-yl)-1H-pyrrol-2(3H)-ones (4a-e), respectively. The newly prepared heterocyclics were screened for their expected in-vivo biological activities including anti-inflammatory, analgesic and ulcerogenic actions in rodents. The COX-2 inhibitory behavior of synthesized compounds was also assessed via automated docking studies. The chemical structure of the synthesized compounds was characterized by using modern spectroscopic techniques. Result of in-vivo pharmacological studies demonstrated that almost all N-Benzyl-pyrrol-2(3H)-ones (4a-e) showed better anti-inflammatory and analgesic activities in comparison with the other two series of furan-2(3H)-ones and pyrrol- 2(3H)-ones. The moldock score value of the tested compounds was found in the range of -116.66 to -170.328 and was better than the standard drug. Among all the synthesized compounds, only nine compounds (2d, 2g, 2h, 3d, 4a, 4b, 4c, 4d and 4e) exhibited potent anti-inflammatory and analgesic activities with significantly reduced gastrointestinal toxicity in various animal models in comparison to standard drug, diclofenac. Therefore, it is recommended to explore the potential of the synthesized compounds as lead candidates for the development of new therapeutic agents.

  1. Anti-bacterial, free radical scavenging activity and cytotoxicity of ...

    African Journals Online (AJOL)

    2017-09-03

    Sep 3, 2017 ... Stella Makgabo Lamola1, Jean Paul Dzoyem1,2, Francien Botha1, Candice van Wyk3 ... Conclusion: Acetone extract of leaves and roots of Grewia flava contain anti-microbial ..... Sekirov I, Russels SL, Antunes CA, Finlay BB.

  2. A study on bacterial endotoxins test of radiopharmaceuticals with limulus agent

    Energy Technology Data Exchange (ETDEWEB)

    Suozhen, Bai; Kai, Luyu; Cheng, Luo [Academia Sinica, Beijing, BJ (China). Inst. of Atomic Energy; Ruiting, Zhang; Zhenmin, Xia [National Inst. for the Control of Pharmaceutical and Biological Products (China)

    1989-08-01

    The feasibility of endotoxins test of radiopharmaceuticals with limulus agent and the approach to take off the inhibition/enhancement effect of radiopharmaceuticals on limulus agent have been studied. Results of the test for 8 radiopharmaceuticals have been given.

  3. Advancements in anti-inflammatory therapy for dry eye syndrome.

    Science.gov (United States)

    McCabe, Erin; Narayanan, Srihari

    2009-10-01

    The goal of this literature review is to discuss recent discoveries in the pathophysiology of dry eye and the subsequent evolution of diagnostic and management techniques. The mechanisms of various anti-inflammatory treatments are reviewed, and the efficacy of common pharmacologic agents is assessed. Anti-inflammatory therapy is evaluated in terms of its primary indications, target population, and utility within a clinical setting. The Medline PubMed database and the World Wide Web were searched for current information regarding dry eye prevalence, pathogenesis, diagnosis, and management. After an analysis of the literature, major concepts were integrated to generate an updated portrayal of the status of dry eye syndrome. Inflammation appears to play a key role in perpetuating and sustaining dry eye. Discoveries of inflammatory markers found within the corneal and conjunctival epithelium of dry eye patients have triggered recent advancements in therapy. Pharmacologic anti-inflammatory therapy for dry eye includes 2 major categories: corticosteroids and immunomodulatory agents. Fatty acid and androgen supplementation and oral antibiotics have also shown promise in dry eye therapy because of their anti-inflammatory effects. Anti-inflammatory pharmacologic agents have shown great success in patients with moderate to severe dry eye when compared with alternative treatment modalities. A deeper understanding of the link between inflammation and dry eye validates the utilization of anti-inflammatory therapy in everyday optometric practice.

  4. Comparison of the cytotoxic effect of polystyrene latex nanoparticles on planktonic cells and bacterial biofilms

    International Nuclear Information System (INIS)

    Nomura, Toshiyuki; Fujisawa, Eri; Itoh, Shikibu; Konishi, Yasuhiro

    2016-01-01

    The cytotoxic effect of positively charged polystyrene latex nanoparticles (PSL NPs) was compared between planktonic bacterial cells and bacterial biofilms using confocal laser scanning microscopy, atomic force microscopy, and a colony counting method. Pseudomonas fluorescens, which is commonly used in biofilm studies, was employed as the model bacteria. We found that the negatively charged bacterial surface of the planktonic cells was almost completely covered with positively charged PSL NPs, leading to cell death, as indicated by the NP concentration being greater than that required to achieve single layer coverage. In addition, the relationship between surface coverage and cell viability of P. fluorescens cells correlated well with the findings in other bacterial cells (Escherichia coli and Lactococcuslactis). However, most of the bacterial cells that formed the biofilm were viable despite the positively charged PSL NPs being highly toxic to planktonic bacterial cells. This indicated that bacterial cells embedded in the biofilm were protected by self-produced extracellular polymeric substances (EPS) that provide resistance to antibacterial agents. In conclusion, mature biofilms covered with EPS exhibit resistance to NP toxicity as well as antibacterial agents.

  5. Comparison of the cytotoxic effect of polystyrene latex nanoparticles on planktonic cells and bacterial biofilms

    Energy Technology Data Exchange (ETDEWEB)

    Nomura, Toshiyuki, E-mail: nomura@chemeng.osakafu-u.ac.jp; Fujisawa, Eri; Itoh, Shikibu; Konishi, Yasuhiro [Osaka Prefecture University, Department of Chemical Engineering (Japan)

    2016-06-15

    The cytotoxic effect of positively charged polystyrene latex nanoparticles (PSL NPs) was compared between planktonic bacterial cells and bacterial biofilms using confocal laser scanning microscopy, atomic force microscopy, and a colony counting method. Pseudomonas fluorescens, which is commonly used in biofilm studies, was employed as the model bacteria. We found that the negatively charged bacterial surface of the planktonic cells was almost completely covered with positively charged PSL NPs, leading to cell death, as indicated by the NP concentration being greater than that required to achieve single layer coverage. In addition, the relationship between surface coverage and cell viability of P. fluorescens cells correlated well with the findings in other bacterial cells (Escherichia coli and Lactococcuslactis). However, most of the bacterial cells that formed the biofilm were viable despite the positively charged PSL NPs being highly toxic to planktonic bacterial cells. This indicated that bacterial cells embedded in the biofilm were protected by self-produced extracellular polymeric substances (EPS) that provide resistance to antibacterial agents. In conclusion, mature biofilms covered with EPS exhibit resistance to NP toxicity as well as antibacterial agents.

  6. Comparison of the cytotoxic effect of polystyrene latex nanoparticles on planktonic cells and bacterial biofilms

    Science.gov (United States)

    Nomura, Toshiyuki; Fujisawa, Eri; Itoh, Shikibu; Konishi, Yasuhiro

    2016-06-01

    The cytotoxic effect of positively charged polystyrene latex nanoparticles (PSL NPs) was compared between planktonic bacterial cells and bacterial biofilms using confocal laser scanning microscopy, atomic force microscopy, and a colony counting method. Pseudomonas fluorescens, which is commonly used in biofilm studies, was employed as the model bacteria. We found that the negatively charged bacterial surface of the planktonic cells was almost completely covered with positively charged PSL NPs, leading to cell death, as indicated by the NP concentration being greater than that required to achieve single layer coverage. In addition, the relationship between surface coverage and cell viability of P. fluorescens cells correlated well with the findings in other bacterial cells ( Escherichia coli and Lactococcus lactis). However, most of the bacterial cells that formed the biofilm were viable despite the positively charged PSL NPs being highly toxic to planktonic bacterial cells. This indicated that bacterial cells embedded in the biofilm were protected by self-produced extracellular polymeric substances (EPS) that provide resistance to antibacterial agents. In conclusion, mature biofilms covered with EPS exhibit resistance to NP toxicity as well as antibacterial agents.

  7. Anti-adhesive properties of fish tropomyosins

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk; Bernbom, Nete; Gram, Lone

    2008-01-01

    Aims: We have recently found that preconditioning of stainless steel surfaces with an aqueous fish muscle extract can significantly impede bacterial adhesion. The purpose of this study was to identify and characterize the primary components associated with this bacteria-repelling effect. Methods...... to the formation of a proteinaceous conditioning film composed primarily of fish tropomyosins. These fibrous proteins formed a considerable anti-adhesive conditioning layer on and reduced bacterial adhesion to several different materials including polystyrene, vinyl plastic, stainless steel and glass. The protein...... the importance of substratum's physiochemical properties and exposure time with regards to protein adsorption/elution efficiency and subsequent bacterial adhesion. Significance and Impact of the Study: Fish tropomyosin-coatings could potentially offer a nontoxic and relatively inexpensive measure of reducing...

  8. General study of pyridazine compounds against cyclooxygenase enzyme and their relation with analgesic, anti-inflammatory and anti-arthritic activities

    Directory of Open Access Journals (Sweden)

    Mohammad Asif

    2010-01-01

    Full Text Available There is increased focus on developed non-steroidal anti-inflammatory drugs (NSAIDs containing a pyridazine nucleus. The NSAIDs are one of the most commonly used medications worldwide to inhibit cyclooxygenase (COX-1 and COX-2 enzyme in varying extent by inhibiting prostaglandin (PGEs synthesis for the treatment of pain, inflammation, arthritis and edema. Their routine and long-term use causes gastrointestinal (GIT and renal toxicities. In order to minimize these side-effects, selective COX-2 inhibitors are prepared with an improved GIT and renal safety profile relative to other NSAIDs. The recent development toward the effective NSAIDs agents causes dual COX and lipooxygenase inhibitory effects because COX-2 inhibitors cause cardiovascular problems. The literature stimulated these above findings. Our attention has been focused on the series of pyridazine or other derivatives that were reported or will be reported in the future as anti-inflammatory, analgesic, anti-arthritic as well as anti-edemic agent.

  9. Pro-oxidant activity of dietary chemopreventive agents: an under-appreciated anti-cancer property [v1; ref status: indexed, http://f1000r.es/15s

    Directory of Open Access Journals (Sweden)

    Asfar S Azmi

    2013-06-01

    Full Text Available “Let food be thy medicine and medicine be thy food” was quoted by Hippocrates more than two thousand years ago and since ancient times the health benefits of different natural agents have been exploited. In modern research, the disease preventive benefits of many such natural agents, particularly dietary compounds and their derivatives, has been attributed to their well recognized activity as the regulators of redox state of the cell. Nevertheless, most of these studies have focused on their antioxidant activity. A large body of evidence indicates that a major fraction of these agents can elicit pro-oxidant (radical generating behavior which has been linked to their anti-cancer effects. This editorial provides an overview of the under-appreciated pro-oxidant activity of natural products, with a special focus on their ability to generate reactive oxygen species in the presence of transition metal ions, and discusses their possible use as cancer chemotherapeutic agents.

  10. Bacterial cellulose of Gluconoacetobacter hansenii as a potential bioadsorption agent for its green environment applications.

    Science.gov (United States)

    Mohite, Bhavna V; Patil, Satish V

    2014-01-01

    Bacterial cellulose (BC) is an interesting biopolymer produced by bacteria having superior properties. BC produced by Gluconoacetobacter hansenii (strain NCIM 2529) under shaking condition and explored for its applications in dye removal and bioadsorption of protein and heavy metals. Purity of BC was confirmed by Fourier transform infrared spectroscopy and scanning electron microscopy (SEM) analysis. BC removed azo dye and Aniline blue (400 mg/L) with 80% efficiency within 60 min. The adsorption and elution of Bovine serum albumin (BSA) and heavy metals like lead, cadmium and nickel (Pb(2+), Cd(2+) and Ni(2+)) was achieved with BC which confirms the exclusion ability with reusability. The BSA adsorption quantity was increased with increase in protein concentration with more than 90% adsorption and elution ratio. The effect of pH and temperature on BSA adsorption has been investigated. Bioadsorption (82%) and elution ratio (92%) of BC for Pb(2+) was more when compared with Cd(2+) (41 and 67%) and Ni(2+) (33 and 85%), respectively. BC was also explored as soil conditioner to increase the water-holding capacity and porosity of soil. The results elucidated the significance of BC as renewable effective ecofriendly bioadsorption agent.

  11. Anti-mycobacterial peptides: made to order with delivery included.

    Science.gov (United States)

    Carroll, James; O' Mahony, Jim

    2011-01-01

    "TB is too often a death sentence. It does not have to be this way,"- Nelson Mandela. Despite the success of anti-mycobacterial drugs over the past 70 years, mycobacterial disease, particularly tuberculosis is still responsible for millions of annual deaths worldwide. Additionally, the emergence of Multidrug Resistant (MDR-TB) and Extensively Drug Resistant (XDR-TB) Tuberculosis has motivated calls by the World Health Organization (WHO) for novel drugs, vaccines and diagnostic tests. Consequently, the identification and evaluation of a range of anti-mycobacterial compounds against pathogenic mycobacterial species is of paramount importance. My colleagues and I at Cork Institute of Technology (CIT) and University College Cork (UCC) have tackled this issue through the initial optimization of the rapid, robust and inexpensive microtitre alamarBlue assay (MABA) and subsequent employment of this assay to facilitate the rapid assessment of a new wave of potential therapeutic compounds, namely bacteriocins, in particular type 1 bacteriocins known as lantibiotics. The gene encoded nature of these peptides facilitates their genetic manipulation and consequent activities as anti-microbial agents. In this regard, it may be possible to one day develop diverse populations of anti-mycobacterial bacteriocins with species specific activities. This may in turn provide more targeted therapies, resulting in less side effects, shorter treatment times and thus better patient compliance. Although current drug regimes are effective in the interim, previous lessons have taught us not to be complacent. In the words of the Intel founder Andrew Grove, 'Success breeds complacency. Complacency breeds failure. Only the paranoid survive'. Armed with knowledge of previous failures, it is the duty of the scientific community to anticipate future bacterial resistance and have an arsenal of compounds standing by in such an eventuality.

  12. [Effect of anti-inflammatory therapy on the treatment of dry eye syndrome].

    Science.gov (United States)

    Mrukwa-Kominek, Ewa; Rogowska-Godela, Anna; Gierek-Ciaciura, Stanisława

    2007-01-01

    Dry eye syndrome is a common chronic disease; agents and strategies for its effective management are still lacking. The syndrome tends to be accompanied by ocular surface inflammation; therefore, the use of anti-inflammatory agents might prove beneficial. The authors present up-to-date guidelines, strategies, and efficacy of dry eye syndrome management, including anti-inflammatory treatment. As no diagnostic tests are now available to assess ocular surface inflammation severity, the right timing to launch an anti-inflammatory agent is difficult to determine. Patients with mild intermittent bouts of symptoms which can be alleviated with ophthalmic lubricants do not typically require anti-inflammatory therapy. The latter should be considered in those who do not respond to lubricating drops, obtain poor results on clinical tests, and show symptoms of ocular surface irritation (eg. conjunctivae redness). Anti-inflammatory treatment of dry eye syndrome may include short-term corticosteroids, cyclosporine A emulsion, oral tetracycline therapy, oral omega-3 fatty acid supplements, and autologous serum eye drops. Anti-inflammatory treatment should be safe and effective; potential benefits should be evaluated for each individual patient. The authors have reviewed the advantages of anti-inflammatory treatment in dry eye syndrome, presented in literature.

  13. Enhanced Biofilm Formation and Increased Resistance to Antimicrobial Agents and Bacterial Invasion Are Caused by Synergistic Interactions in Multispecies Biofilms

    DEFF Research Database (Denmark)

    Burmølle, Mette; Webb, J.S.; Rao, D.

    2006-01-01

    from the surface of the marine alga Ulva australis, were screened for synergistic interactions within biofilms when present together in different combinations. Four isolates, Microbacterium phyllosphaerae, Shewanella japonica, Dokdonia donghaensis, and Acinetobacter lwoffii, were found to interact......Most biofilms in their natural environments are likely to consist of consortia of species that influence each other in synergistic and antagonistic manners. However, few reports specifically address interactions within multispecies biofilms. In this study, 17 epiphytic bacterial strains, isolated...... synergistically in biofilms formed in 96-well microtiter plates: biofilm biomass was observed to increase by >167% in biofilms formed by the four strains compared to biofilms composed of single strains. When exposed to the antibacterial agent hydrogen peroxide or tetracycline, the relative activity (exposed...

  14. Differentiation of etiologic agents of bacterial keratitis from presentation characteristics.

    Science.gov (United States)

    Mascarenhas, Jeena; Srinivasan, Muthiah; Chen, Michael; Rajaraman, Revathi; Ravindran, Meenakshi; Lalitha, Prajna; Oldenburg, Catherine E; Ray, Kathryn J; Glidden, David V; Costanza, Stephanie; Lietman, Thomas M; Acharya, Nisha R

    2012-12-01

    Presenting characteristics of bacterial corneal ulcers may suggest particular causative organisms, helping to guide treatment decisions before cultures become available. In this study, we analyze the association between presentation demographic and clinical characteristics, using data collected as part of a randomized, controlled clinical trial. Data for this study were collected as part of the Steroids for Corneal Ulcers Trial, a randomized, placebo-controlled, double-masked trial. All patients had a culture-proven bacterial corneal ulcer. Patient history, clinical examination, and photography were performed in a standardized fashion at enrollment. Analysis of variance or Fisher's exact test was used to compare characteristics by organism. Univariate logistic regression was used to analyze predictors of the most common organisms. Five hundred patients were enrolled in the trial, of whom 488 were included in this analysis. The most common organism was Streptococcus pneumoniae (N = 248, 51 %) followed by Pseudomonas aeruginosa (N = 110, 23 %). Compared to other organisms, P. aeruginosa was significantly associated with a larger baseline infiltrate/scar size [odds ratio (OR) 1.6, 95 % confidence interval (CI) 1.4-1.8] and deeper infiltrate (OR 2.4, 95 % CI 1.5-3.8). S. pneumoniae was significantly associated with a smaller baseline infiltrate/scar size (OR 0.8, 95 % CI 0.7-0.9) and dacryocystitis (OR 7.3, 95 % CI 4.1-13.3). Nocardia spp. were significantly associated with longer duration of symptoms prior to presentation (OR 1.4, 95 % CI 1.2-1.6), more shallow infiltrate (OR 0.3, 95 % CI 0.2-0.5), and better baseline visual acuity (OR 0.4, 95 % CI 0.2-0.65). Staphylococcus spp. were less likely to be central in location (OR 0.16, 95 % CI 0.08-0.3). Baseline characteristics of bacterial ulcers may suggest the likely etiology and guide early management.

  15. Evaluation by biodistribution of two anti-peptidoglycan aptamers labeled with Technetium-99m for in vivo bacterial infection identification

    International Nuclear Information System (INIS)

    Ferreira, Iêda M.; Lacerda, Camila M.S.; Santos, Sara R.; Andrade, Antero S.R. de; Fernandes, Simone O.; Barros, André B. de; Cardoso, Valbert N.

    2017-01-01

    Nuclear medicine clinics are still awaiting optimal scintigraphic imaging agents capable of discriminating between infection and inflammation, and between fungal and bacterial infections. Aptamers are oligonucleotides that display high affinity and specificity for their molecular targets and are emerging as promising molecules for radiopharmaceuticals development. In the present study, two aptamers for peptidoglycan (termed Antibac1 and Antibac2) were labeled with 99m Tc and evaluated for bacterial infection identification by biodistribution. The direct labeling method with 99m Tc allowed radiolabel yields higher than 90% and the complexes were stable in saline, plasma and cysteine excess. The 99m Tc-Antibac1 in the group infected with S. aureus presented a target/non-target ratio (T/NT) of 2.81 ± 0.67, significantly higher than verified for the 99m Tc-library (control): 1.52 ± 0.07. A radiolabeled library of oligonucleotides with random sequences was used as a control for monitoring nonspecific uptake at the site of infection. In the model with C. albicans infection the T/NT ratio for 99m Tc-Antibac1 was 1.46 ± 0.11, similar that obtained for the 99m Tc-library in the same model: 1.52 ± 0.05. The 99m Tc-Antibac2 in the group infected with S. aureus showed a T/NT ratio of 2.61 ± 0.66, statistically higher than achieved for the 99m Tc-library: 1.52 ± 0.07. In the group infected with C. albicans this ratio for 99m Tc-Antibac2 was 1.75 ± 0.19, also statistically higher in relation to the 99m Tc-library: 1.52 ± 0.05. Both aptamers were effective in identifying bacterial infection foci, but only 99m Tc-Antibac1 showed no cross reactivity for fungal cells. (author)

  16. Elucidating Duramycin’s Bacterial Selectivity and Mode of Action on the Bacterial Cell Envelope

    Directory of Open Access Journals (Sweden)

    Sahar Hasim

    2018-02-01

    Full Text Available The use of naturally occurring antimicrobial peptides provides a promising route to selectively target pathogenic agents and to shape microbiome structure. Lantibiotics, such as duramycin, are one class of bacterially produced peptidic natural products that can selectively inhibit the growth of other bacteria. However, despite longstanding characterization efforts, the microbial selectivity and mode of action of duramycin are still obscure. We describe here a suite of biological, chemical, and physical characterizations that shed new light on the selective and mechanistic aspects of duramycin activity. Bacterial screening assays have been performed using duramycin and Populus-derived bacterial isolates to determine species selectivity. Lipidomic profiles of selected resistant and sensitive strains show that the sensitivity of Gram-positive bacteria depends on the presence of phosphatidylethanolamine (PE in the cell membrane. Further the surface and interface morphology were studied by high resolution atomic force microscopy and showed a progression of cellular changes in the cell envelope after treatment with duramycin for the susceptible bacterial strains. Together, these molecular and cellular level analyses provide insight into duramycin’s mode of action and a better understanding of its selectivity.

  17. [Upper gastrointestinal hemorrhage caused by anti-inflammatory agents].

    Science.gov (United States)

    Duhamel, C; Czernichow, P; Dechelotte, P; Ducrotte, P; Lerebours, E; Colin, R

    1989-03-01

    The aim of this study was to describe the clinical and evolutive characteristics of gastroduodenal bleeding occurring in patients receiving nonsteroidal anti-inflammatory (NSAI) drugs, containing salicylates or not, and to determine the relative toxicity of the NSAI drugs without salicylates. Eight hundred and fourty-five consecutive patients with upper gastrointestinal bleeding related to endoscopically proven peptic ulcer or gastroduodenal erosions were admitted between 1983 and June 1987 to an intensive care unit for digestive tract hemorrhage. Of these, 267 were using anti-inflammatory drugs; 151 (56 p. 100) were taking NSAI drugs other than salicylates, 97 salicylates (36 p. 100) and 10, steroids (4 p. 100). Patients taking nonsteroidal drugs without or with salicylates were compared with patients bleeding from gastroduodenal ulcer or erosion not receiving anti-inflammatory therapy. Patients receiving nonsteroidal drugs not containing salicylates were older (70 p. 100 over 65 years of age vs 46 p. 100, p less than 0.001) and the proportion of female patients was greater (54 p. 100 vs 33 p. 100, p less than 0.001) than in the other group. No significant difference was observed with regard to the following parameters: percentage of gastric lesions, concomitant anticoagulant therapy, need for surgical hemostasis, or mortality. Patients taking aspirin had more gastric lesions (75 p. 100 vs 64 p. 100, p less than 0.05) and less need for surgical hemostasis (7 p. 100 vs 15 p. 100, p less than 0.05); the other parameters did not differ. NSAI drugs other than salicylates were taken more often for osteoarthritis than salicylates (33.6 p. 100 vs 17.4 p. 100, p less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Bleeding Sap and Old Wood Are the Two Main Sources of Contamination of Merging Organs of Vine Plants by Xylophilus ampelinus, the Causal Agent of Bacterial Necrosis

    OpenAIRE

    Grall, S.; Roulland, C.; Guillaumès, J.; Manceau, C.

    2005-01-01

    The spatial distribution of vine plants contaminated by Xylophilus ampelinus, the agent responsible for bacterial necrosis, was studied over a 5-year period within two vineyards in the Cognac area. Both vineyards were planted with Vitis vinifera cv. Ugni blanc but were different in age and agronomic location. The emission of X. ampelinus in contaminated bleeding sap was observed during vine sprouting. Contaminated bleeding sap is an important source of inoculum for external contamination due ...

  19. Labelling and biodistribution of /sup 99m/Tc-ceftriaxone: a new imaging agent

    International Nuclear Information System (INIS)

    Khurshid, Z.; Roohi, S.; Zahoor, R.; Tariq, S.

    2012-01-01

    Most commonly used infection imaging agents are specific for inflammation. Some newer agents like labeled antimicrobials and peptides have shown infection seeking properties. Research is underway for synthesis of newer imaging agents specific for infections. In this quest we have labeled and bio evaluated /sup 99m/Tc-ceftriaxone. Ceftriaxone is a commonly used third generation cephalosporin antibiotic having a broad anti-bacterial spectrum but has more specificity for gram-negative bacteria. /sup 99m/Tc-ceftriaxone was prepared at ph 7 by adding 30 mg of ligand to /sup 99m/Tc in the presence of 50 mu g of SnCl/sub 2/./sup 2/H/sub 2/O. Boiling for ten minutes gave maximum labeling yield (96+1.76%). The stability at room temperature both with and without human serum was more than 90% till 24 hours. In-vitro binding revealed maximum binding of 68% and 47% with E.coli and S.aureus respectively after 4 hours incubation. Biodistribution studies in normal rats showed maximum uptake in hepatobiliary system followed by kidney. In infection and inflammation models the maximum target to non- target ratios of 12.66 +- 2.59, 2.36 +- 0.30 and 1.44 +- 0.53 were achieved with E. coli, S. aureus and oil inflammation respectively 4 hours post injection. Scintigraphic findings also correlated with biodistribution results. (Orig./A.B.)

  20. Modification of anti-bacterial surface properties of textile polymers by vacuum arc ion source implantation

    International Nuclear Information System (INIS)

    Nikolaev, A.G.; Yushkov, G.Yu.; Oks, E.M.; Oztarhan, A.; Akpek, A.; Hames-Kocabas, E.; Urkac, E.S.; Brown, I.G.

    2014-01-01

    Highlights: • Ion implantation. • Anti-bacterial properties. • Textile polymer. • Vacuum arc ion source. - Abstract: Ion implantation provides an important technology for the modification of material surface properties. The vacuum arc ion source is a unique instrument for the generation of intense beams of metal ions as well as gaseous ions, including mixed metal–gas beams with controllable metal:gas ion ratio. Here we describe our exploratory work on the application of vacuum arc ion source-generated ion beams for ion implantation into polymer textile materials for modification of their biological cell compatibility surface properties. We have investigated two specific aspects of cell compatibility: (i) enhancement of the antibacterial characteristics (we chose to use Staphylococcus aureus bacteria) of ion implanted polymer textile fabric, and (ii) the “inverse” concern of enhancement of neural cell growth rate (we chose Rat B-35 neuroblastoma cells) on ion implanted polymer textile. The results of both investigations were positive, with implantation-generated antibacterial efficiency factor up to about 90%, fully comparable to alternative conventional (non-implantation) approaches and with some potentially important advantages over the conventional approach; and with enhancement of neural cell growth rate of up to a factor of 3.5 when grown on suitably implanted polymer textile material

  1. Modification of anti-bacterial surface properties of textile polymers by vacuum arc ion source implantation

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaev, A.G., E-mail: nik@opee.hcei.tsc.ru [High Current Electronics Institute, Siberian Branch of the Russian Academy of Sciences, Tomsk 634055 (Russian Federation); Yushkov, G.Yu.; Oks, E.M. [High Current Electronics Institute, Siberian Branch of the Russian Academy of Sciences, Tomsk 634055 (Russian Federation); Oztarhan, A. [Izmir University, Izmir 35140 (Turkey); Akpek, A.; Hames-Kocabas, E.; Urkac, E.S. [Bioengineering Department, Ege University, Bornova 35100, Izmir (Turkey); Brown, I.G. [Lawrence Berkeley National Laboratory, Berkeley, CA 94708 (United States)

    2014-08-15

    Highlights: • Ion implantation. • Anti-bacterial properties. • Textile polymer. • Vacuum arc ion source. - Abstract: Ion implantation provides an important technology for the modification of material surface properties. The vacuum arc ion source is a unique instrument for the generation of intense beams of metal ions as well as gaseous ions, including mixed metal–gas beams with controllable metal:gas ion ratio. Here we describe our exploratory work on the application of vacuum arc ion source-generated ion beams for ion implantation into polymer textile materials for modification of their biological cell compatibility surface properties. We have investigated two specific aspects of cell compatibility: (i) enhancement of the antibacterial characteristics (we chose to use Staphylococcus aureus bacteria) of ion implanted polymer textile fabric, and (ii) the “inverse” concern of enhancement of neural cell growth rate (we chose Rat B-35 neuroblastoma cells) on ion implanted polymer textile. The results of both investigations were positive, with implantation-generated antibacterial efficiency factor up to about 90%, fully comparable to alternative conventional (non-implantation) approaches and with some potentially important advantages over the conventional approach; and with enhancement of neural cell growth rate of up to a factor of 3.5 when grown on suitably implanted polymer textile material.

  2. Concurrent administration effect of antibiotic and anti-inflammatory drugs on the immunotoxicity of bacterial endotoxins.

    Science.gov (United States)

    El Amir, Azza M; Tanious, Dalia G; Mansour, Hanaa A

    2017-11-01

    Pseudomonas aeruginosa (P. aeruginosa) is a gram-negative bacterium that causes a variety of diseases in compromised hosts. Bacterial endotoxins such as lipopolysaccharide (LPS) are the major outer surface membrane components that are present in almost all gram-negative bacteria and act as extremely strong stimulators of innate immunity and inflammation of the airway. This study was undertaken to determine the effect of combined administration of Gentamicin (GENT) as an antibiotic and Dexamethasone (DEXA) as an anti-inflammatory drug on some immunological and histological parameters. After determination of LD 50 of P. aeruginosa, mice groups were injected with DEXA, GENT and lipopolysaccharide alone or in combination. Lipopolysaccharide single injection caused a significant increase of total leukocyte count, lymphocytes, neutrophils and levels of IgM and IgG. DEXA induced an increase of neutrophilia and lymphopenia. Immunological examination demonstrated that combined treatment has a significant effect of decreasing lymphocytes and IgG levels than single treatment does. Histological examination demonstrated that the inflammation of thymus, spleen, lymph node and liver decreases in mice that received combined treatment than those that received individual treatment. Concurrent administration of DEXA and GENT has a great effect on protecting organs against damage in case of endotoxemia. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Identification of novel 3,5-diarylpyrazoline derivatives containing salicylamide moiety as potential anti-melanoma agents.

    Science.gov (United States)

    Li, Qing-Shan; Lv, Xian-Hai; Zhang, Yan-Bin; Dong, Jing-Jun; Zhou, Wen-Ping; Yang, Yang; Zhu, Hai-Liang

    2012-11-01

    There is an accumulating body of experimental evidences validating oncogenic BRAF(V600E) as a therapeutic target and offering opportunities for anti-melanoma drug development. Encouraged by the positive results of pyrazole derivatives as BRAF(V600E) inhibitors, we sought to design diverse novel potential BRAF(V600E) inhibitors as antitumor agents based on pyrazole skeleton. In silico and in vitro screening of our designed pyrazole derivatives has identified Hit 1 as BRAF(V600E) inhibitor. Based on its structure and through further structure modification, compound 25, which exhibited the most potent inhibitory activity with an IC(50) value of 0.16 μM for BRAF(V600E) and GI(50) value of 0.24 μM for mutant BRAF-dependent melanoma cells, was obtained. The 3D-QSAR models and the molecular docking simulation were introduced to analyze the structure-activity relationship. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. In vitro anti-Malassezia activity and potential use in anti-dandruff formulation of Asparagus racemosus.

    Science.gov (United States)

    Onlom, C; Khanthawong, S; Waranuch, N; Ingkaninan, K

    2014-02-01

    Malassezia species are frequently associated with dandruff and seborrhoeic dermatitis. The study was conducted to evaluate anti-fungal activities of the extracts obtained from the roots of Asparagus racemosus Willd against Malassezia furfur and M. globosa. Asparagus racemosus roots were successively extracted with the series of solvents, that is, hexane, ethanol and water, and also a saponin-enriched fraction was prepared. The amounts of saponin (equivalent to shatavarin IV) in the extracts were determined using ELISA. The extracts were tested for anti-fungal activity by disc diffusion and broth microdilution methods. By disc diffusion, only the ethanolic and saponin-enriched extracts demonstrated anti-fungal activity against M. furfur and M. globosa at the concentration of 1 mg per disc whereas the extracts with other solvents were ineffective. Multiple concentrations using the broth microdilution method against M. furfur and M. globosa yielded minimum inhibitory concentrations (MICs) of 25 mg mL(-1) for the ethanolic extract but much higher potency for the saponin-enriched extract: MICs to 0.20 and 0.40 mg mL(-1) for M. furfur and M. globosa, respectively. These extracts showed no antagonist effect with the anti-fungal agents, ketoconazole and zinc pyrithione. These studies revealed the antifungal activity of A. racemosus roots extracts. Because A. racemosus is also anti-inflammatory agent, it has the potential use as an active ingredient in an anti-dandruff formulation. © 2013 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  5. Baby Shampoo Versus Povidone-Iodine or Isopropyl Alcohol in Reducing Eyelid Skin Bacterial Load.

    Science.gov (United States)

    Garcia, Giancarlo A; Nguyen, Christine V; Yonkers, Marc A; Tao, Jeremiah P

    Baby shampoo is used as an alternative surgical skin preparation, but the evidence supporting its use is scarce with no descriptions of efficacy in the periocular region. The authors compare the efficacy of baby shampoo, povidone-iodine (PI, Betadine) and isopropyl alcohol (IA) in reducing eyelid skin bacterial load. Prospective, randomized, comparative, and interventional trial. Bacterial load on adult, human eyelid skin was quantitated before and after cleansing with 1) dilute baby shampoo, 2) 10% PI, or 3) 70% IA. Paired skin swabs were collected from a 1 cm area of the upper eyelid of subjects before and after a standardized surgical scrub technique. Samples were cultured on 5% sheep blood agar for 24 hours. The number of colony forming units (CFU) was assessed and bacterial load per square centimeter of eyelid skin was quantified. Baseline and postcleansing samples were assessed from 42 eyelids of 42 subjects (n = 14 for each of baby shampoo, PI, and IA). Before cleansing, similar amounts of bacterial flora were grown from all specimens (median log CFU/cm = 2.04 before baby shampoo, 2.01 before PI, 2.11 before IA; p > 0.05). All 3 cleansing agents significantly reduced the bacterial load (p shampoo, 0.39 after PI, 0.59 after IA; p > 0.05). Change from baseline in bacterial load was statistically similar for all 3 agents (median reduction in log CFU/cm = 1.28 with baby shampoo, 1.57 with PI, 1.40 with IA; p > 0.05). These corresponded to bacterial load reductions of 96.3%, 96.6%, and 98.4% for baby shampoo, PI, and IA, respectively. Baby shampoo achieved comparable diminution in eyelid skin bacterial load to PI or IA. These data suggest baby shampoo may be an effective preoperative cleansing agent.

  6. Alpha-1 antitrypsin: a potent anti-inflammatory and potential novel therapeutic agent.

    LENUS (Irish Health Repository)

    Bergin, David A

    2012-04-01

    Alpha-1 antitrypsin (AAT) has long been thought of as an important anti-protease in the lung where it is known to decrease the destructive effects of major proteases such as neutrophil elastase. In recent years, the perception of this protein in this simple one dimensional capacity as an anti-protease has evolved and it is now recognised that AAT has significant anti-inflammatory properties affecting a wide range of inflammatory cells, leading to its potential therapeutic use in a number of important diseases. This present review aims to discuss the described anti-inflammatory actions of AAT in modulating key immune cell functions, delineate known signalling pathways and specifically to identify the models of disease in which AAT has been shown to be effective as a therapy.

  7. Evaluation of a curcumin analog as an anti-cancer agent inducing ER stress-mediated apoptosis in non-small cell lung cancer cells

    International Nuclear Information System (INIS)

    Liu, Zhiguo; Wang, Yi; Sun, Yusheng; Ren, Luqing; Huang, Yi; Cai, Yuepiao; Weng, Qiaoyou; Shen, Xueqian; Li, Xiaokun; Liang, Guang

    2013-01-01

    Recent advances have highlighted the importance of the endoplasmic reticulum (ER) in cell death processes. Pharmacological interventions that effectively enhance tumor cell death through activating ER stress have attracted a great deal of attention for anti-cancer therapy. A bio-evaluation on 113 curcumin analogs against four cancer cell lines was performed through MTT assay. Furthermore, real time cell assay and flow cytometer were used to evaluate the apoptotic induction of (1E,4E)-1,5-bis(5-bromo-2-ethoxyphenyl)penta-1,4-dien-3-one (B82). Western blot, RT-qPCR, and siRNA were then utilized to confirm whether B82-induced apoptosis is mediated through activating ER stress pathway. Finally, the in vivo anti-tumor effect of B82 was evaluated. B82 exhibited strong anti-tumor activity in non-small cell lung cancer (NSCLC) H460 cells. Treatment with B82 significantly induced apoptosis in H460 cells in vitro and inhibited H460 tumor growth in vivo. Further studies demonstrated that the B82-induced apoptosis is mediated by activating ER stress both in vitro and in vivo. A new monocarbonyl analog of curcumin, B82, exhibited anti-tumor effects on H460 cells via an ER stress-mediated mechanism. B82 could be further explored as a potential anticancer agent for the treatment of NSCLC

  8. Research on Grooved Concrete Pavement Based on the Durability of Its Anti-Skid Performance

    Directory of Open Access Journals (Sweden)

    Mulian Zheng

    2018-05-01

    Full Text Available The objectives of the present study are to investigate the anti-skid performance of concrete pavement and to attempt to enhance its durability by two different methods: using a longitudinally-transversely grooved (LT form, and using a self-developed composite curing agent containing paraffin and Na2SiO3 as the main ingredients. The friction coefficient (μ was measured by self-developed equipment to evaluate the anti-skid performance of samples with three different groove forms (LT, longitudinally grooved (L, and transversely grooved (T. Abrasion tests were then carried out to evaluate the durability of the anti-skid performance. The results indicated that anti-skid performance of LT samples was approximately 46.2% greater than that of T samples, but its durability was not as significant as that of T samples. However, the resistance to abrasion could be improved by using the aforementioned curing agent. Comparisons were carried out between samples sprayed the curing agent and control samples without any curing agent under standard conditions. It was found that the application of the curing agent increased the anti-skid durability of concrete by 35.4%~47.8%, proving it to be a useful and promising technique.

  9. Quorum sensing Inhibitors as anti-pathogenic drugs

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Bovbjerg; Givskov, Michael Christian

    2006-01-01

    as well as elevated tolerance to the activity of the innate immune system. Gram-negative bacteria commonly use N-acyl homoserine lactones (AHL) as QS signal molecules. The use of signal molecule based drugs to attenuate bacterial pathogenecity rather than bacterial growth is attractive for several reasons......, particularly considering the emergence of increasingly antibiotic-resistant bacteria. Compounds capable of this type of interference have been termed anti-pathogenic drugs. A large variety of synthetic AHL analogues and natural products libraries have been screened and a number of QS inhibitors (QSI) have been...

  10. Mortality from bacterial meningitis in children in Kosovo.

    Science.gov (United States)

    Namani, Sadie; Milenkovic, Zvonko; Kuchar, Ernest; Koci, Remzie; Mehmeti, Murat

    2012-01-01

    Bacterial meningitis is a severe infection responsible for high mortality. This prospective study of 277 pediatric bacterial meningitis cases was done to identify factors predicting death in children 24 hours after admission (RR = 11.5), age <1 month (RR = 19.3), the use of inotropic agents (RR = 11.5), and admission after 5 days' duration of illness (P < .001). The mortality rate in children in Kosovo is similar to those reported from developing countries, and this is most likely due to the unfavorable living conditions.

  11. How carotenoids protect bacterial photosynthesis.

    OpenAIRE

    Cogdell, R J; Howard, T D; Bittl, R; Schlodder, E; Geisenheimer, I; Lubitz, W

    2000-01-01

    The essential function of carotenoids in photosynthesis is to act as photoprotective agents, preventing chlorophylls and bacteriochlorophylls from sensitizing harmful photodestructive reactions in the presence of oxygen. Based upon recent structural studies on reaction centres and antenna complexes from purple photosynthetic bacteria, the detailed organization of the carotenoids is described. Then with specific reference to bacterial antenna complexes the details of the photoprotective role, ...

  12. A new screening method for discovering antibacterial agents from ...

    African Journals Online (AJOL)

    A new screening method for discovering antibacterial agents from filamentous fungi. ... African Journal of Biotechnology ... Keywords: Drug-resistant bacterial pathogens, novel antibiotics; screening method, filamentous fungi products ...

  13. The use of chitosan-dextran gel shows anti-inflammatory, antibiofilm, and antiproliferative properties in fibroblast cell culture.

    Science.gov (United States)

    Paramasivan, Sathish; Jones, Damien; Baker, Leonie; Hanton, Lyall; Robinson, Simon; Wormald, Peter J; Tan, Lorwai

    2014-01-01

    Chitosan-dextran gel has been used as an antihemostatic agent and antiadhesive agent after endoscopic sinus surgery. Because Staphylococcus aureus biofilms have been implicated in recalcitrant chronic rhinosinusitis, this study aimed to further investigate the (i) anti-inflammatory, (ii) bacterial biofilm inhibition, (iii) antiproliferative effects, and (iv) wound-healing properties of chitosan and chitosan-dextran gel. Fibroblasts were isolated from human nasal tissue and were used to determine the effects of chitosan and chitosan-dextran gel on (i) cell proliferation, (ii) wound healing, (iii) inflammation in fibroblast cultures challenged with superantigens S. aureus enterotoxin B (SEB) and toxic shock syndrome toxin (TSST), and (iv) on S. aureus biofilms. Chitosan was highly effective at reducing IL-8 expression after TSST and SEB challenge. Chitosan was also effective at reducing IL-8 expression of nonchallenged fibroblasts showing its anti-inflammatory effects on fibroblasts in a diseased state. Chitosan-dextran gel showed strong antibiofilm properties at 50% (v/v) concentration in vitro. Dextran, on its own, showed antibiofilm properties at 1.25% (w/v) concentration. Chitosan, on its own, reduced proliferation of fibroblasts to 82% of control proliferation and chitosan-dextran gel reduced proliferation of the fibroblasts to 0.04% of control proliferation. Relative to the no treatment controls, chitosan-dextran gel significantly delayed the wound-healing rate over the first 48 hours of the experiment. Chitosan-dextran gel reduced fibroblast proliferation and wound-healing time, showing a possible mechanism of reducing adhesions in the postsurgical period. Chitosan reduced IL-8 levels, showing its anti-inflammatory properties. Chitosan-dextran gel and dextran treatment showed antibiofilm properties in our model.

  14. Biological Control of Bacterial Wilt in South East Asia

    OpenAIRE

    Arwiyanto, Triwidodo

    2014-01-01

    Bacterial wilt disease caused by Ralstonia solanacearum destroys many crops of different plant families in South East Asia despite many researches about the disease, and the availability of developed control method in other parts of the world. There is no chemical available for the bacterial wilt pathogen and biological control is then chosen as an alternative to save the crops. Most of the biological control studies were based on antagonism between biological control agent and the pathogen. ...

  15. Increased detection of mastitis pathogens by real-time PCR compared to bacterial culture.

    Science.gov (United States)

    Keane, O M; Budd, K E; Flynn, J; McCoy, F

    2013-09-21

    Rapid and accurate identification of mastitis pathogens is important for disease control. Bacterial culture and isolate identification is considered the gold standard in mastitis diagnosis but is time consuming and results in many culture-negative samples. Identification of mastitis pathogens by PCR has been proposed as a fast and sensitive alternative to bacterial culture. The results of bacterial culture and PCR for the identification of the aetiological agent of clinical mastitis were compared. The pathogen identified by traditional culture methods was also detected by PCR in 98 per cent of cases indicating good agreement between the positive results of bacterial culture and PCR. A mastitis pathogen could not be recovered from approximately 30 per cent of samples by bacterial culture, however, an aetiological agent was identified by PCR in 79 per cent of these samples. Therefore, a mastitis pathogen was detected in significantly more milk samples by PCR than by bacterial culture (92 per cent and 70 per cent, respectively) although the clinical relevance of PCR-positive culture-negative results remains controversial. A mixed infection of two or more mastitis pathogens was also detected more commonly by PCR. Culture-negative samples due to undetected Staphylococcus aureus infections were rare. The use of PCR technology may assist in rapid mastitis diagnosis, however, accurate interpretation of PCR results in the absence of bacterial culture remains problematic.

  16. Iridoid glucosides from Vitex grandifolia displayed Anti-inflammatory ...

    African Journals Online (AJOL)

    ADOWIE PERE

    2018-03-30

    Mar 30, 2018 ... a link between low incidence of some diseases and consumption of vegetables hence advantages of these vegetables are beyond nutritional gains. ..... Bioactivities of iridoids. Anti-inflam. Anti-Allerg. Agents. Med. Chem. 6: 307–314. Croft, SL; and Yardley, V; (2002). Chemotherapy of leishmaniasis. Current ...

  17. Alternatives to overcoming bacterial resistances: State-of-the-art.

    Science.gov (United States)

    Rios, Alessandra C; Moutinho, Carla G; Pinto, Flávio C; Del Fiol, Fernando S; Jozala, Angela; Chaud, Marco V; Vila, Marta M D C; Teixeira, José A; Balcão, Victor M

    2016-10-01

    Worldwide, bacterial resistance to chemical antibiotics has reached such a high level that endangers public health. Presently, the adoption of alternative strategies that promote the elimination of resistant microbial strains from the environment is of utmost importance. This review discusses and analyses several (potential) alternative strategies to current chemical antibiotics. Bacteriophage (or phage) therapy, although not new, makes use of strictly lytic phage particles as an alternative, or a complement, in the antimicrobial treatment of bacterial infections. It is being rediscovered as a safe method, because these biological entities devoid of any metabolic machinery do not possess any affinity whatsoever to eukaryotic cells. Lysin therapy is also recognized as an innovative antimicrobial therapeutic option, since the topical administration of preparations containing purified recombinant lysins with amounts in the order of nanograms, in infections caused by Gram-positive bacteria, demonstrated a high therapeutic potential by causing immediate lysis of the target bacterial cells. Additionally, this therapy exhibits the potential to act synergistically when combined with certain chemical antibiotics already available on the market. Another potential alternative antimicrobial therapy is based on the use of antimicrobial peptides (AMPs), amphiphilic polypeptides that cause disruption of the bacterial membrane and can be used in the treatment of bacterial, fungal and viral infections, in the prevention of biofilm formation, and as antitumoral agents. Interestingly, bacteriocins are a common strategy of bacterial defense against other bacterial agents, eliminating the potential opponents of the former and increasing the number of available nutrients in the environment for their own growth. They can be applied in the food industry as biopreservatives and as probiotics, and also in fighting multi-resistant bacterial strains. The use of antibacterial antibodies

  18. Anti-bacterial efficacy of alcoholic hand rubs in the Kenyan market, 2015

    Directory of Open Access Journals (Sweden)

    Missiani Ochwoto

    2017-01-01

    Full Text Available Abstract Background Hand hygiene is known to be effective in preventing hospital and community-acquired infections. The increasing number of hand sanitizer brands in Kenyan hospitals and consumer outlets is of concern. Thus the main aim of this study was to evaluate the anti-bacterial efficacy and organoleptic properties of these hand sanitizers in Kenya. Methods This was an experimental, laboratory-based study of 14 different brands of hand sanitizers (coded HS1-14 available in various retail outlets and hospitals in Kenya. Efficacy was evaluated using standard non-pathogenic Escherichia coli (ATCC 25922, Staphylococcus aureus (ATCC 25923 and Pseudomonas aeruginosa (ATCC 27853 as per the European Standard (EN. The logarithmic reduction factors (RF were assessed at baseline and after treatment, and log reduction then calculated. Ten and 25 healthy volunteers participated in the efficacy and organoleptic studies respectively. Results Four (28.6% hand sanitizers (HS12, HS9, HS13 and HS14 showed a 5.9 reduction factor on all the three bacteria strains. Seven (50% hand sanitizers had efficacies of <3 against all the three bacteria strains used. Efficacy on E. Coli was higher compared to the other pathogens. Three hand sanitizers were efficacious on one of the pathogens and not the other. In terms of organoleptic properties, gel-based formulations were rated far higher than the liquid based formulations brands. Conclusion Fifty percent (50% of the selected hand sanitizers in the Kenyan market have efficacy that falls below the World Health Organization (WHO and DIN EN 1500:2013. Of the 14 hand sanitizers found in the Kenyan market, only four showed efficacies that were comparable to the WHO-formulation. There is a need to evaluate how many of these products with <3 efficacy that have been incorporated into the health system for hand hygiene and the country’s policy on regulations on their usage.

  19. Poly herbal formulation with anti-elastase and anti-oxidant properties for skin anti-aging.

    Science.gov (United States)

    Kalyana Sundaram, Induja; Sarangi, Deepika Deeptirekha; Sundararajan, Vignesh; George, Shinomol; Sheik Mohideen, Sahabudeen

    2018-01-29

    Skin forms an important part of human innate immune system. Wrinkles, thinning and roughening of skin are some of the symptoms that affect the skin as it ages. Reactive oxygen species induced oxidative stress plays a major role in skin aging by modulating the elastase enzyme level in the skin. Extrinsic factors that affect skin aging such as UV radiation can also cause malignant melanoma. Here we selected four medicinal plant materials, namely, leaves of Nyctanthes arbor-tristis, unripe and ripe Aegle marmelos fruit pulp and the terminal meristem of Musa paradisiaca flower and investigated their anti-aging properties and cytotoxicity in vitro individually as well as in a poly herbal formulation containing the four plant extracts in different ratios. The phytochemical contents of the plant extracts were investigated for radical scavenging activity and total reducing power. Based upon its anti-oxidant properties, a poly herbal formulation containing leaves of Nyctanthes arbor-tristis, unripe and ripe fruit pulp of Aegle marmelos, and the terminal meristem of Musa paradisiaca flower in the ratio 6:2:1:1 (Poly Herbal Formulation 1) and 1:1:1:1 (Poly Herbal Formulation 2), respectively were formulated. It has been observed that the Poly Herbal Formulation 1 was more potent than Poly Herbal Formulation 2 due to better anti-oxidant and anti-elastase activities in NIH3T3 fibroblast cells. In addition Poly Herbal formulation 1 also had better anti-cancer activity in human malignant melanoma cells. Based on these results these beneficial plant extracts were identified for its potential application as an anti-aging agent in skin creams as well as an anti-proliferation compound against cancer cells.

  20. The role of antiseptic agents in atopic dermatitis.

    Science.gov (United States)

    Lee, Melissa; Van Bever, Hugo

    2014-10-01

    The skin of individuals with atopic dermatitis has a susceptibility to be colonized with Staphylococcus aureus. This has been associated with increased frequency and severity of exacerbations of atopic dermatitis. Therefore, there is a growing interest in the use of antiseptic agents to target primary bacterial colonization and infection. Antiseptic agents have been found to be better tolerated and less likely to induce bacterial resistance as compared to antibiotics. There is also a wide variety of antiseptic agents available. The efficacy of antiseptic agents has yet to be established as the studies reviewed previously have been small and of suboptimal quality. This review discusses the rationale behind targeting S. aureus with antiseptic agents and presents findings from a review of studies assessing the efficacy of antiseptics in atopic dermatitis in the last five years. Four studies were found, including a bleach bath study which has already been reviewed elsewhere. The remaining 3 studies assessed the efficacy of sodium hypochlorite containing cleansing body wash, sodium hypochlorite baths and 1% triclosan in leave on emollient. These studies suggested some benefit for the inclusion of antiseptic use with the mainstay management of atopic dermatitis, including a potential steroid sparring effect. However, there are many limitations to these studies which therefore warrant further investigation on the impact of antiseptic use in atopic dermatitis.

  1. Synthesis and Characterization of Alkylated Bacterial Cellulose in an Ionic Liquid

    Directory of Open Access Journals (Sweden)

    Jinmin Qin

    2015-02-01

    Full Text Available Bacterial cellulose was alkylated by alkyl halide in the ionic liquid 1-butyl-3-methylimmidazolium chloride ([Bmim]Cl with NaH as the alkaline agent. The derivatives were characterized using Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, elemental analyses, X-ray diffraction, and thermal gravimetric analyses. The resultant bacterial cellulose alkylated derivatives (BCADs had a degree of substitution (DS between 0.21 and 2.01. The effects of the alkylating agent, reactant amount, and temperature on the DS were investigated. BCADs with a butyl substituent had a higher DS than did those with ethyl or propyl groups. The crystallinity and thermal stability of the derivatives decreased after modification owing to the change in morphological structure.

  2. Anti-tumor effects of an engineered “killer” transfer RNA

    International Nuclear Information System (INIS)

    Zhou, Dong-hui; Lee, Jiyoung; Frankenberger, Casey; Geslain, Renaud; Rosner, Marsha; Pan, Tao

    2012-01-01

    Highlights: ► tRNA with anti-cancer effects. ► tRNA induced protein misfolding. ► tRNA as anti-tumor agent. -- Abstract: A hallmark of cancer cells is their ability to continuously divide; and rapid proliferation requires increased protein translation. Elevating levels of misfolded proteins can elicit growth arrest due to ER stress and decreased global translation. Failure to correct prolonged ER stress eventually results in cell death via apoptosis. tRNA Ser (AAU) is an engineered human tRNA Ser with an anticodon coding for isoleucine. Here we test the possibility that tRNA Ser (AAU) can be an effective killing agent of breast cancer cells and can effectively inhibit tumor-formation in mice. We found that tRNA Ser (AAU) exert strong effects on breast cancer translation activity, cell viability, and tumor formation. Translation is strongly inhibited by tRNA Ser (AAU) in both tumorigenic and non-tumorigenic cells. tRNA Ser (AAU) significantly decreased the number of viable cells over time. A short time treatment with tRNA Ser (AAU) was sufficient to eliminate breast tumor formation in a xenograft mouse model. Our results indicate that tRNA Ser (AAU) can inhibit breast cancer metabolism, growth and tumor formation. This RNA has strong anti-cancer effects and presents an opportunity for its development into an anti-tumor agent. Because tRNA Ser (AAU) corrupts the protein synthesis mechanism that is an integral component of the cell, it would be extremely difficult for tumor cells to evolve and develop resistance against this anti-tumor agent.

  3. Metabolic Requirements of Escherichia coli in Intracellular Bacterial Communities during Urinary Tract Infection Pathogenesis

    Directory of Open Access Journals (Sweden)

    Matt S. Conover

    2016-04-01

    Full Text Available Uropathogenic Escherichia coli (UPEC is the primary etiological agent of over 85% of community-acquired urinary tract infections (UTIs. Mouse models of infection have shown that UPEC can invade bladder epithelial cells in a type 1 pilus-dependent mechanism, avoid a TLR4-mediated exocytic process, and escape into the host cell cytoplasm. The internalized UPEC can clonally replicate into biofilm-like intracellular bacterial communities (IBCs of thousands of bacteria while avoiding many host clearance mechanisms. Importantly, IBCs have been documented in urine from women and children suffering acute UTI. To understand this protected bacterial niche, we elucidated the transcriptional profile of bacteria within IBCs using microarrays. We delineated the upregulation within the IBC of genes involved in iron acquisition, metabolism, and transport. Interestingly, lacZ was highly upregulated, suggesting that bacteria were sensing and/or utilizing a galactoside for metabolism in the IBC. A ΔlacZ strain displayed significantly smaller IBCs than the wild-type strain and was attenuated during competitive infection with a wild-type strain. Similarly, a galK mutant resulted in smaller IBCs and attenuated infection. Further, analysis of the highly upregulated gene yeaR revealed that this gene contributes to oxidative stress resistance and type 1 pilus production. These results suggest that bacteria within the IBC are under oxidative stress and, consistent with previous reports, utilize nonglucose carbon metabolites. Better understanding of the bacterial mechanisms used for IBC development and establishment of infection may give insights into development of novel anti-virulence strategies.

  4. Candidate Targets for New Anti-Virulence Drugs: Selected Cases of Bacterial Adhesion and Biofilm Formation

    DEFF Research Database (Denmark)

    Klemm, Per; Hancock, Viktoria; Kvist, Malin

    2007-01-01

    is particularly problematic in medical contexts because biofilm-associated bacteria are particularly hard to eradicate. Several promising candidate drugs that target bacterial adhesion and biofilm formation are being developed. Some of these might be valuable weapons for fighting infectious diseases in the future...... formation are highly attractive targets for new drugs. Specific adhesion provides bacteria with target selection and prevents removal by hydrodynamic flow forces. Bacterial adhesion is of paramount importance for bacterial pathogenesis. Adhesion is also the first step in biofilm formation. Biofilm formation...

  5. Soaps and Germicides as Adjunct Topical Antimycotic Agents on ...

    African Journals Online (AJOL)

    Objective: The study aims at evaluating the potentials of soaps and germicides / disinfectants as adjunct topical anti-vulvovaginal candidasis agents. Methods: In vitro inhibitory activities of the test agents, prepared according to the manufacturer's specification for toilet and midwifery purposes were determined using modified ...

  6. Antimicrobial activity of ceftaroline and other anti-infective agents against microbial pathogens recovered from the surgical intensive care patient population: a prevalence analysis.

    Science.gov (United States)

    Edmiston, Charles E; Krepel, Candace J; Leaper, David; Ledeboer, Nathan A; Mackey, Tami-Lea; Graham, Mary Beth; Lee, Cheong; Rossi, Peter J; Brown, Kellie R; Lewis, Brian D; Seabrook, Gary R

    2014-12-01

    Ceftaroline is a new parenteral cephalosporin agent with excellent activity against methicillin-sensitive (MSSA) and resistant strains of Staphylococcus aureus (MRSA). Critically ill surgical patients are susceptible to infection, often by multi-drug-resistant pathogens. The activity of ceftaroline against such pathogens has not been described. Three hundred thirty-five consecutive microbial isolates were collected from surgical wounds or abscesses, respiratory, urine, and blood cultures from patients in the surgical intensive care unit (SICU) of a major tertiary medical center. Using Clinical and Laboratory Standards Institute (CLSI) standard methodology and published breakpoints, all aerobic, facultative anaerobic isolates were tested against ceftaroline and selected comparative antimicrobial agents. All staphylococcal isolates were susceptible to ceftaroline at a breakpoint of ≤1.0 mcg/mL. In addition, ceftaroline exhibited excellent activity against all streptococcal clinical isolates and non-ESBL-producing strains of Enterobacteriaceae (93.5%) recovered from SICU patients. Ceftaroline was inactive against ESBL-producing Enterobacteriaceae, Pseudomonas aeruginosa, vancomycin-resistant enterococci, and selective gram-negative anaerobic bacteria. At present, ceftaroline is the only cephalosporin agent that is active against community and healthcare-associated MRSA. Further studies are needed to validate the benefit of this novel broad-spectrum anti-infective agent for the treatment of susceptible serious infections in the SICU patient population.

  7. Golimumab and certolizumab: The two new anti-tumor necrosis factor kids on the block

    Directory of Open Access Journals (Sweden)

    Mittal Mohit

    2010-01-01

    Full Text Available Anti-tumor necrosis factor (anti-TNF agents have revolutionized treatment of psoriasis and many other inflammatory diseases of autoimmune origin. They have considerable advantages over the existing immunomodulators. Anti-TNF agents are designed to target a very specific component of the immune-mediated inflammatory cascades. Thus, they have lower risks of systemic side-effects. In a brief period of 10 years, a growing number of biological therapies are entering the clinical arena while many more biologicals remain on the horizon. With time, the long-term side-effects and efficacies of these individual agents will become clearer and help to determine which ones are the most suitable for long-term care. Golimumab (a human monoclonal anti-TNF-α antibody and Certolizumab (a PEGylated Fab fragment of humanized monoclonal TNF-α antibody are the two latest additions to the anti-TNF regimen. Here, we are providing a brief description about these two drugs and their uses.

  8. Early Changes of Retinal Morphology in Therapy of Neovascular Age-Related Macular Degeneration with Three Commonly Used Anti-VEGF Agents.

    Science.gov (United States)

    Enders, Philip; Sitnilska, Vasilena; Altay, Lebriz; Fauser, Sascha

    2018-01-01

    To compare changes of retinal morphology in the first weeks following injection of anti-VEGF agents for neovascular age-related macular degeneration (nAMD). In a prospective study 50 patients with active choroidal neovascularization secondary to nAMD were monitored weekly by spectral-domain optical coherence tomography for 3 weeks after treatment. Twenty-two patients received bevacizumab, 15 ranibizumab, and 13 aflibercept. Morphological parameters of retinal compartments were compared. Mean central retinal thickness (391.22 ± 123.41 µm) was reduced by -26.15 µm (p treatment. This information could be clinically helpful to evaluate early non-response. © 2017 S. Karger AG, Basel.

  9. Duloxetine versus other anti-depressive agents for depression

    Science.gov (United States)

    Cipriani, Andrea; Koesters, Markus; Furukawa, Toshi A; Nosè, Michela; Purgato, Marianna; Omori, Ichiro M; Trespidi, Carlotta; Barbui, Corrado

    2014-01-01

    Background Although pharmacological and psychological interventions are both effective for major depression, in primary and secondary care settings antidepressant drugs remain the mainstay of treatment. Amongst antidepressants many different agents are available. Duloxetine hydrochloride is a dual reuptake inhibitor of serotonin and norepinephrine and has been licensed by the Food and Drug Administration in the US for major depressive disorder (MDD), generalised anxiety disorder, diabetic peripheral neuropathic pain, fibromyalgia and chronic musculoskeletal pain. Objectives To assess the evidence for the efficacy, acceptability and tolerability of duloxetine in comparison with all other antidepressant agents in the acute-phase treatment of major depression. Search methods MEDLINE (1966 to 2012), EMBASE (1974 to 2012), the Cochrane Collaboration Depression, Anxiety and Neurosis Controlled Trials Register and the Cochrane Central Register of Controlled Trials up to March 2012. No language restriction was applied. Reference lists of relevant papers and previous systematic reviews were hand-searched. Pharmaceutical company marketing duloxetine and experts in this field were contacted for supplemental data. Selection criteria Randomised controlled trials allocating patients with major depression to duloxetine versus any other antidepressive agent. Data collection and analysis Two review authors independently extracted data and a double-entry procedure was employed. Information extracted included study characteristics, participant characteristics, intervention details and outcome measures in terms of efficacy, acceptability and tolerability. Main results A total of 16 randomised controlled trials (overall 5735 participants) were included in this systematic review. Of these, three trials were unpublished. We found 11 studies (overall 3304 participants) comparing duloxetine with one selective serotonin reuptake inhibitor (SSRI) (six studies versus paroxetine, three studies

  10. Design, Synthesis and Evaluation of Novel Phthalimide Derivatives as in Vitro Anti-Microbial, Anti-Oxidant and Anti-Inflammatory Agents

    Czech Academy of Sciences Publication Activity Database

    Lamie, P.F.; Philoppes, J.N.; El-Gendy, A.O.; Rárová, Lucie; Grúz, Jiří

    2015-01-01

    Roč. 20, č. 9 (2015), s. 16620-16642 ISSN 1420-3049 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : synthesis * phthalimides * anti-microbial Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.465, year: 2015

  11. Deoxypodophyllotoxin: a promising therapeutic agent from herbal medicine.

    Science.gov (United States)

    Khaled, Meyada; Jiang, Zhen-Zhou; Zhang, Lu-Yong

    2013-08-26

    Recently, biologically active compounds isolated from plants used in herbal medicine have been the center of interest. Deoxypodophyllotoxin (DPT), structurally closely related to the lignan podophyllotoxin, is a potent antitumor and anti-inflammatory agent. However, DPT has not been used clinically yet. Also, DPT from natural sources seems to be unavailable. Hence, it is important to establish alternative resources for the production of such lignan; especially that it is used as a precursor for the semi-synthesis of the cytostatic drugs etoposide phosphate and teniposide. The update paper provides an overview of DPT as an effective anticancer natural compound and a leader for cytotoxic drugs synthesis and development in order to highlight the gaps in our knowledge and explore future research needs. The present review covers the literature available from 1877 to 2012. The information was collected via electronic search using Chinese papers and the major scientific databases including PubMed, Sciencedirect, Web of Science and Google Scholar using the keywords. All abstracts and full-text articles reporting database on the history and current status of DPT were gathered and analyzed. Plants containing DPT have played an important role in traditional medicine. In light of the in vitro pharmacological investigations, DPT is a high valuable medicinal agent that has anti-tumor, anti-proliferative, anti-inflammatory and anti-allergic properties. Further, DPT is an important precursor for the cytotoxic aryltetralin lignan, podophyllotoxin, which is used to obtain semisynthetic derivatives like etoposide and teniposide used in cancer therapy. However, most studies have focused on the in vitro data. Therefore, DPT has not been used clinically yet. DPT has emerged as a potent chemical agent from herbal medicine. Therefore, in vivo studies are needed to carry out clinical trials in humans and enable the development of new anti-cancer agents. In addition, DPT from commercial

  12. New radiosynthesis of 2-deoxy-2-[18F]fluoroacetamido-D-glucopyranose and its evaluation as a bacterial infections imaging agent

    International Nuclear Information System (INIS)

    Martinez, Miguel E.; Kiyono, Yasushi; Noriki, Sakon; Inai, Kunihiro; Mandap, Katheryn S.; Kobayashi, Masato; Mori, Tetsuya; Tokunaga, Yuji; Tiwari, Vijay N.; Okazawa, Hidehiko; Fujibayashi, Yasuhisa; Ido, Tatsuo

    2011-01-01

    Introduction: The diagnosis of infection and the ability to distinguish bacterial infection from nonbacterial inflammation by positron emission tomography (PET) have gained interest in recent years, but still few specific radiopharmaceuticals are available for use. In this study, we developed a new radiosynthesis method of 2-deoxy-2-[ 18 F]fluoroacetamido-D-glucopyranose ([ 18 F]FAG) by applying microwave irradiation and demonstrated that [ 18 F]FAG could be a potential radiopharmaceutical to distinguish bacterial infection from nonbacterial inflammation. Methods: 1,3,4,6-Tetra-O-acetyl-2-deoxy-2-bromoacetamido-D-glucopyranose was used as precursor, and labeling was performed under microwave irradiation conditions followed by alkaline hydrolysis and high-performance liquid chromatography (HPLC) purification. In vitro uptake of [ 18 F]FAG by Escherichia coli was performed. Tissue biodistribution of [ 18 F]FAG was performed in mice. Moreover, PET imaging acquisition of E. coli infection and nonbacterial inflammation models was performed in rats. Tissue radiotracer-accumulated sites were analyzed by hematoxylin and eosin staining and anti-E.coli immunostaining. Results: The radiosynthesis of [ 18 F]FAG was achieved with microwave irradiation, and the radiochemical yield was 9.7%±2.8% end of bombardment (EOB); the radiochemical purity was more than 98%, and the total synthesis time was 62 min. Compared with control group, in vitro uptake of [ 18 F]FAG by E. coli was significantly decrease in inhibition group (P 18 F]FAG from the animal body. [ 18 F]FAG clearly visualized the infection areas but not nonbacterial inflammation areas in PET studies. Quantitative analysis revealed that the uptake of [ 18 F]FAG into infection areas was significantly higher than that of [ 18 F]FAG into inflammation areas (P 18 F]FAG. Conclusions: Using 1,3,4,6-tetra-O-acetyl-2-deoxy-2-bromoacetamido-D-glucopyranose as a precursor, the new radiosynthesis method of [ 18 F]FAG was achieved in

  13. Polish natural bee honeys are anti-proliferative and anti-metastatic agents in human glioblastoma multiforme U87MG cell line.

    Directory of Open Access Journals (Sweden)

    Justyna Moskwa

    Full Text Available Honey has been used as food and a traditional medicament since ancient times. However, recently many scientists have been concentrating on the anti-oxidant, anti-proliferative, anti-inflammatory and other properties of honey. In this study, we investigated for the first time an anticancer effect of different honeys from Poland on tumor cell line - glioblastoma multiforme U87MG. Anti-proliferative activity of honeys and its interferences with temozolomide were determined by a cytotoxicity test and DNA binding by [H3]-thymidine incorporation. A gelatin zymography was used to conduct an evaluation of metalloproteinases (MMP-2 and MMP-9 expression in U87MG treatment with honey samples. The honeys were previously tested qualitatively (diastase activity, total phenolic content, lead and cadmium content. The data demonstrated that the examined honeys have a potent anti-proliferative effect on U87MG cell line in a time- and dose-dependent manner, being effective at concentrations as low as 0.5% (multifloral light honey - viability 53% after 72 h of incubation. We observed that after 48 h, combining honey with temozolomide showed a significantly higher inhibitory effect than the samples of honey alone. We observed a strong inhibition of MMP-2 and MMP-9 for the tested honeys (from 20 to 56% and from 5 to 58% compared to control, respectively. Our results suggest that Polish honeys have an anti-proliferative and anti-metastatic effect on U87MG cell line. Therefore, natural bee honey can be considered as a promising adjuvant treatment for brain tumors.

  14. Bacterial microbiota profiling in gastritis without Helicobacter pylori infection or non-steroidal anti-inflammatory drug use.

    Directory of Open Access Journals (Sweden)

    Xiao-Xing Li

    Full Text Available Recent 16S ribosomal RNA gene (rRNA molecular profiling of the stomach mucosa revealed a surprising complexity of microbiota. Helicobacter pylori infection and non-steroidal anti-inflammatory drug (NSAID use are two main contributors to gastritis and peptic ulcer. However, little is known about the association between other members of the stomach microbiota and gastric diseases. In this study, cloning and sequencing of the 16S rRNA was used to profile the stomach microbiota from normal and gastritis patients. One hundred and thirty three phylotypes from eight bacterial phyla were identified. The stomach microbiota was found to be closely adhered to the mucosa. Eleven Streptococcus phylotypes were successfully cultivated from the biopsies. One to two genera represented a majority of clones within any of the identified phyla. We further developed two real-time quantitative PCR assays to quantify the relative abundance of the Firmicutes phylum and the Streptococcus genus. Significantly higher abundance of the Firmicutes phylum and the Streptococcus genus within the Firmicutes phylum was observed in patients with antral gastritis, compared with normal controls. This study suggests that the genus taxon level can largely represent much higher taxa such as the phylum. The clinical relevance and the mechanism underlying the altered microbiota composition in gastritis require further functional studies.

  15. Nitrofuranyl Methyl Piperazines as New Anti-TB Agents: Identification, Validation, Medicinal Chemistry, and PK Studies

    Science.gov (United States)

    2015-01-01

    Whole-cell screening of 20,000 drug-like small molecules led to the identification of nitrofuranyl methylpiperazines as potent anti-TB agents. In the present study, validation followed by medicinal chemistry has been used to explore the structure–activity relationship. Ten compounds demonstrated potent MIC in the range of 0.17–0.0072 μM against H37Rv Mycobacterium tuberculosis (MTB) and were further investigated against nonreplicating and resistant (RifR and MDR) strains of MTB. These compounds were also tested for cytotoxicity. Among the 10 tested compounds, five showed submicromolar to nanomolar potency against nonreplicating and resistant (RifR and MDR) strains of MTB along with a good safety index. Based on their overall in vitro profiles, the solubility and pharmacokinetic properties of five potent compounds were studied, and two analogues, 14f and 16g, were found to have comparatively better solubility than others tested and acceptable pharmacokinetic properties. This study presents the rediscovery of a nitrofuranyl class of compounds with improved aqueous solubility and acceptable oral PK properties, opening a new direction for further development. PMID:26487909

  16. SYNTHESIS NEW POTENTIAL ANTI-INFLAMMATORY AGENT SODIUM SALT OF PENTAGAMAVUNON-0

    Directory of Open Access Journals (Sweden)

    Enade Perdana Istyastono

    2010-06-01

    Full Text Available Inflammation is the response of living tissues to injury. The process affects physiological changes such as erythema, edema, asthma and fever. Non-steroid Anti-inflammatory Drugs (NSAIDs have been developed since they could inhibit inflammation process because of its ability to inhibit biosynthesis of prostaglandin, one of inflammation mediators, through inhibition of cyclooxigenase (COX enzymes. Molecules, which have been reported having anti-inflammatory activity, for example, are curcumin, some curcumin derivatives and curcumin analogues. One of curcumin analogues that has been  developed is pentagamavunon-0 (PGV-0 whose IUPAC name is 2,5-bis(4'-hidroxy-3'-methoxy-benzylidenecyclo-pentanone. But PGV-0, which is like curcumin, practically insoluble in water, so it causes problems in the development. The aim of this research is to synthesize a derivative of PGV-0, a natrium salt of PGV-0 (natrium pentagamavunonate-0/Na-pentagamavunonate-0, which is hoped to have a better anti-inflammatory activity and solubility in water than PGV-0. PGV-0 was synthesized by reacting vanillin and cyclopentanone catalized by acid. Na-pentagamavunonate-0 was synthesized with PGV-0 as a starting material using an appropriate method. This research was able to synthesize new compound that was estimated as a natrium salt of PGV-0 (natrium pentagamavunonate-0/Na-pentagamavunonate-0.   Keywords: Curcumin, PGV-0, Na-pentagamavunonate-0, anti-inflammation

  17. Anti-inflammatory and anti-cancer activity of mulberry (Morus alba L.) root bark

    Science.gov (United States)

    2014-01-01

    Background Root bark of mulberry (Morus alba L.) has been used in herbal medicine as anti-phlogistic, liver protective, kidney protective, hypotensive, diuretic, anti-cough and analgesic agent. However, the anti-cancer activity and the potential anti-cancer mechanisms of mulberry root bark have not been elucidated. We performed in vitro study to investigate whether mulberry root bark extract (MRBE) shows anti-inflammatory and anti-cancer activity. Methods In anti-inflammatory activity, NO was measured using the griess method. iNOS and proteins regulating NF-κB and ERK1/2 signaling were analyzed by Western blot. In anti-cancer activity, cell growth was measured by MTT assay. Cleaved PARP, ATF3 and cyclin D1 were analyzed by Western blot. Results In anti-inflammatory effect, MRBE blocked NO production via suppressing iNOS over-expression in LPS-stimulated RAW264.7 cells. In addition, MRBE inhibited NF-κB activation through p65 nuclear translocation via blocking IκB-α degradation and ERK1/2 activation via its hyper-phosphorylation. In anti-cancer activity, MRBE deos-dependently induced cell growth arrest and apoptosis in human colorectal cancer cells, SW480. MRBE treatment to SW480 cells activated ATF3 expression and down-regulated cyclin D1 level. We also observed that MRBE-induced ATF3 expression was dependent on ROS and GSK3β. Moreover, MRBE-induced cyclin D1 down-regulation was mediated from cyclin D1 proteasomal degradation, which was dependent on ROS. Conclusions These findings suggest that mulberry root bark exerts anti-inflammatory and anti-cancer activity. PMID:24962785

  18. Characterization, antibacterial, antioxidant, antidiabetic, anti-inflammatory and antityrosinase activity of green synthesized silver nanoparticles using Calophyllum tomentosum leaves extract

    Science.gov (United States)

    Govindappa, M.; Hemashekhar, B.; Arthikala, Manoj-Kumar; Ravishankar Rai, V.; Ramachandra, Y. L.

    2018-06-01

    The current research study is to develop an easy and eco-friendly method for the synthesis of AgNPs using aqueous leaf extract of Calophyllum tomentosum (CtAgNPs) and evaluated the extract to know the effects of anti-bacterial, antioxidant, anti-diabetic, anti-inflammatory and anti-tyrosinase activity. Using UV-vis spectrophotometer, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX) characterized the Calophyllum tomentosum mediated silver nanoparticles. The leaf extract of C. tomentosum yielded flavonoids, saponins, tannins, alkaloids, glycosides, phenols, terpenoids and coumarins. AgNPs formation was confirmed by UV-vis spectra at 438 nm. Crystalline structure with a face centered cubic (fcc) of AgNPs was observed in XRD. FTIR had shown that the phytochemicals were responsible for the reduction and capping material of silver nanoparticles. The size and shape of the AgNPs were determined using SEM. From EDX study analysed the strong absorption property of AgNPs. The CtAgNPs have showed significant antibacterial activity on multi drug resistance bacteria. The CtAgNPs had shown strong antioxidant (DPPH, H2O2 scavenging, nitric oxide scavenging power, reducing power) activities. The CtAgNPs had strongly inhibited the α-glucosidase and DPPIV compared to α-amylase. The CtAgNPs exhibited strong anti-inflammatory activity (albumin denaturation, membrane stabilization, heat haemolytic, protein inhibitory, lipoxygenase, xanthine oxidase) and tyrosinase inhibitory activity. To our best knowledge, this is the first attempt on the synthesis of silver nanoparticles using Calophyllum tomentosum leaves extract. Hence, to validate our results the in vivo studies at molecular level are needed to develop an antioxidant, anti-diabetic and anti-inflammatory agent.

  19. Metatranscriptomics reveals overall active bacterial composition in caries lesions

    Directory of Open Access Journals (Sweden)

    Aurea Simón-Soro

    2014-10-01

    Full Text Available Background: Identifying the microbial species in caries lesions is instrumental to determine the etiology of dental caries. However, a significant proportion of bacteria in carious lesions have not been cultured, and the use of molecular methods has been limited to DNA-based approaches, which detect both active and inactive or dead microorganisms. Objective: To identify the RNA-based, metabolically active bacterial composition of caries lesions at different stages of disease progression in order to provide a list of potential etiological agents of tooth decay. Design: Non-cavitated enamel caries lesions (n=15 and dentin caries lesions samples (n=12 were collected from 13 individuals. RNA was extracted and cDNA was constructed, which was used to amplify the 16S rRNA gene. The resulting 780 bp polymerase chain reaction products were pyrosequenced using Titanium-plus chemistry, and the sequences obtained were used to determine the bacterial composition. Results: A mean of 4,900 sequences of the 16S rRNA gene with an average read length of 661 bp was obtained per sample, giving a comprehensive view of the active bacterial communities in caries lesions. Estimates of bacterial diversity indicate that the microbiota of cavities is highly complex, each sample containing between 70 and 400 metabolically active species. The composition of these bacterial consortia varied among individuals and between caries lesions of the same individuals. In addition, enamel and dentin lesions had a different bacterial makeup. Lactobacilli were found almost exclusively in dentin cavities. Streptococci accounted for 40% of the total active community in enamel caries, and 20% in dentin caries. However, Streptococcus mutans represented only 0.02–0.73% of the total bacterial community. Conclusions: The data indicate that the etiology of dental caries is tissue dependent and that the disease has a clear polymicrobial origin. The low proportion of mutans streptococci

  20. Prevalence and antimicrobial resistance pattern of bacterial meningitis in Egypt

    Directory of Open Access Journals (Sweden)

    Shaban Lamyaa

    2009-09-01

    Full Text Available Abstract Infectious diseases are the leading cause of morbidity and mortality in the developing world. In Egypt bacterial diseases constitute a great burden, with several particular bacteria sustaining the leading role of multiple serious infections. This article addresses profound bacterial agents causing a wide array of infections including but not limited to pneumonia and meningitis. The epidemiology of such infectious diseases and the prevalence of Streptococcus pneumoniae, Neisseria meningitidis and Haemophilus influenzae are reviewed in the context of bacterial meningitis. We address prevalent serotypes in Egypt, antimicrobial resistance patterns and efficacy of vaccines to emphasize the importance of periodic surveillance for appropriate preventive and treatment strategies.

  1. Interference in Bacterial Quorum Sensing: A Biopharmaceutical Perspective

    Directory of Open Access Journals (Sweden)

    Benjamin Rémy

    2018-03-01

    Full Text Available Numerous bacteria utilize molecular communication systems referred to as quorum sensing (QS to synchronize the expression of certain genes regulating, among other aspects, the expression of virulence factors and the synthesis of biofilm. To achieve this process, bacteria use signaling molecules, known as autoinducers (AIs, as chemical messengers to share information. Naturally occurring strategies that interfere with bacterial signaling have been extensively studied in recent years, examining their potential to control bacteria. To interfere with QS, bacteria use quorum sensing inhibitors (QSIs to block the action of AIs and quorum quenching (QQ enzymes to degrade signaling molecules. Recent studies have shown that these strategies are promising routes to decrease bacterial pathogenicity and decrease biofilms, potentially enhancing bacterial susceptibility to antimicrobial agents including antibiotics and bacteriophages. The efficacy of QSIs and QQ enzymes has been demonstrated in various animal models and are now considered in the development of new medical devices against bacterial infections, including dressings, and catheters for enlarging the therapeutic arsenal against bacteria.

  2. Agentes bacterianos enteropatogênicos em suínos de diferentes faixas etárias e perfil de resistência a antimicrobianos de cepas de Escherichia coli e Salmonella spp Enteropathogenic bacterial agents in pigs of different age groups and profile of resistance in strains of Escherichia coli and Salmonella spp. to antimicrobial agents

    Directory of Open Access Journals (Sweden)

    Álvaro Menin

    2008-09-01

    Full Text Available As enterites infecciosas bacterianas provocam severas perdas para a indústria suína em todo o mundo. Os objetivos deste trabalho foram determinar os agentes bacterianos, associados com a ocorrência de diarréia em suínos, em diferentes faixas etárias, no Estado de Santa Catarina, Brasil, e verificar o perfil de resistência das cepas de Escherichia coli e Salmonella spp, frente aos principais antimicrobianos utilizados em granjas de suínos. Os principais gêneros/espécies bacterianos diagnosticados foram Escherichia coli, Clostridium spp, Salmonella spp Brachyspira hyodysenteriae, Brachyspira pilosicoli e Lawsonia intracellularis. Os fatores de virulência de E. coli mais prevalentes na fase de maternidade foram F5 / (K99 20%, F6 / (987P 16,3%, F42 6,8% e F41 5,7%, já nas fases de creche e terminação, predominaram cepas com fimbrias F4 (K88 11,2% e 5,4%, respectivamente. Para E. coli os maiores índices de resistência foram encontrados para oxitetraciclina (94% e tetraciclina (89,5% e os menores índices de resistência para neomicina (55%, ceftiofur (57,4%. Quanto às amostras de Salmonella spp, estas apresentaram maior resistência à oxitetraciclina (77%, e à tetraciclina (42,1% e menor à gentamicina (3,5% e amoxicilina (4,8%.Infectious bacterial enteritis causes severe losses to the swine industry worldwide. The objective of this study was to determine the epidemiology of bacterial agents that are associated with the occurrence of diarrhea in pigs at different age groups, and to verify the profile of resistance of strains of Escherichia coli and Salmonella spp to the main antimicrobial agents. The main bacterial species diagnosed were Escherichia coli, Clostridium spp, Salmonella spp, Brachyspira hyodysenteriae, Brachyspira pilosicoli and Lawsonia intracellularis. The E. coli virulence factors of higher prevalence in preweaning piglets were F5 / (K99 20%, F6 / (987P 16.3%, F42 6.8% and F41 5.7%, whereas at the nursery and with

  3. The PRECiSE 2 trial of certolizumab pegol, a new PEGylated anti-TNF agent, in the treatment of Crohn's disease - An interview with David A Schwartz, 13 June 2007

    Directory of Open Access Journals (Sweden)

    David A Schwartz

    2008-03-01

    Full Text Available David A SchwartzVanderbilt University Medical Center, Nashville, TN, USAContext: Certolizumab pegol (CDP 870 is a new anti-tumor necrosis factor (TNF therapy currently in development for the treatment of Crohn’s disease, rheumatoid arthritis, and psoriasis. Certolizumab pegol is the first PEGylated biologic anti-TNF agent and has a high binding affinity for TNF. Dr. Schwartz was an investigator of the PRECiSE (PEGylated Antibody Fragment Evaluation in Crohn’s Disease Safety and Efficacy 2 trial of certolizumab pegol in patients with Crohn’s disease.Keywords: certolizumab pegol, PRECiSE 2 trial, Crohn’s disease

  4. GC-MS analysis, evaluation of phytochemicals, anti-oxidant, thrombolytic and anti-inflammatory activities of Exacum bicolor

    Directory of Open Access Journals (Sweden)

    Appaji Mahesh Ashwini

    2015-12-01

    Full Text Available The aim of the present study was to investigate the GC-MS analysis, phytochemical screening, anti-oxidant, thrombolytic and anti-inflammatory activities of methanol extract of leaves of Exacum bicolor. FTIR analysis confirmed the presence of alcohol, phenols, alkanes, aromatic compounds, aldehyde and ethers. GC-MS analysis revealed the presence of eight phyto-constituents. The total phenol, flavonoid and alkaloid contents were 18.0 ± 0.2 mg/GAE/g, 13.1 ± 0.4 mg QE/g and 108.0 ± 1.2 mg AE/g respectively. The DPPH assay exhibited potent anti-oxidant abilities with IC50 8.8 µg/mL. Significant thrombolytic activity was demonstrated by clot lysis method (45.1 ± 0.8%. The methanol extract showed significant membrane stabilization on human red blood cell with IC50 value of 37.4 µg/mL. There was a significant correlation (R2>0.98 with total phenolic content versus anti-oxidant and anti-inflammatory activity. The above results confirmed that E. bicolor could be a promising anti-oxidant, thrombolytic and anti-inflammatory agent.

  5. Lichens: Unexpected anti-prion agents?

    Science.gov (United States)

    Rodriguez, Cynthia M.; Bennett, James P.; Johnson, Christopher J.

    2012-01-01

    The prion diseases sheep scrapie and cervid chronic wasting disease are transmitted, in part, via an environmental reservoir of infectivity; prions released from infected animals persist in the environment and can cause disease years later. Central to controlling disease transmission is the identification of methods capable of inactivating these agents on the landscape. We have found that certain lichens, common, ubiquitous, symbiotic organisms, possess a serine protease capable of degrading prion protein (PrP) from prion-infected animals. The protease functions against a range of prion strains from various hosts and reduces levels of abnormal PrP by at least two logs. We have now tested more than 20 lichen species from several geographical locations and from various taxa and found that approximately half of these species degrade PrP. Critical next steps include examining the effect of lichens on prion infectivity and cloning the protease responsible for PrP degradation. The impact of lichens on prions in the environment remains unknown. We speculate that lichens could have the potential to degrade prions when they are shed from infected animals onto lichens or into environments where lichens are abundant. In addition, lichens are frequently consumed by cervids and many other animals and the effect of dietary lichens on prion disease transmission should also be considered.

  6. Antimicrobial Peptides: a promising class of antimicrobial compounds against BWA and multi-drug resistant bacteria: in the spotlight: the lactoferrin chimera

    NARCIS (Netherlands)

    Bikker, F.J.; Sijbrandij, T.; Nazmi, K.; Bolscher, J.G.M.; Veerman, E.C.I.; Jansen, H-J.

    2014-01-01

    Anti-Microbial Peptides (AMPs) are part of the innate immune defense system and considered as promising lead compounds for the development of novel anti-bacterial agents. In general, AMPs are simple, short peptides with broad-spectrum activity against Gram-negative and Gram-positive bacteria, fungi,

  7. NASA FACTS: E. coli AntiMicrobial Satellite (EcAMSat)

    Science.gov (United States)

    Spremo, Stevan; Cappuccio, Gelsomina; Tomko, David

    2013-01-01

    The E. coli AntiMicrobial Satellite(EcAMSat) mission will investigate space microgravity affects on the antibiotic resistance of E. coli, a bacterial pathogen responsible for urinary tract infection in humans and animals. EcAMSat is being developed through a partnership between NASAs Ames Research Center and the Stanford University School of Medicine. Dr. A.C. Matin is the Stanford University Principal Investigator. EcAMSat will investigate spaceflight effects on bacterial antibiotic resistance and its genetic basis. Bacterial antibiotic resistance may pose a danger to astronauts in microgravity, where the immune response is weakened. Scientists believe that the results of this experiment could help design effective countermeasures to protect astronauts health during long duration human space missions.

  8. MgO nanoparticles as antibacterial agent: preparation and activity

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Zhen-Xing, E-mail: tangzhenxing@126.com [Department of Food Science, Anqing, Vocational and Technical College, Anqing, Anhui (China); Lv, Bin-Feng [Date Palm Research Center, King Faisal University, (Saudi Arabia)

    2014-07-15

    Bacterial pollution is a great risk for human health. Nanotechnology offers a way to develop new inorganic antibacterial agents. Nano-inorganic metal oxide has a potential to reduce bacterial contamination. MgO is an important inorganic oxide and has been widely used in many fields. Many studies have shown that MgO nanoparticles have good antibacterial activity. Therefore, in this paper, the main synthesis methods, antibacterial activity and antibacterial mechanisms of MgO nanoparticles are reviewed. (author)

  9. MgO nanoparticles as antibacterial agent: preparation and activity

    International Nuclear Information System (INIS)

    Tang, Zhen-Xing; Lv, Bin-Feng

    2014-01-01

    Bacterial pollution is a great risk for human health. Nanotechnology offers a way to develop new inorganic antibacterial agents. Nano-inorganic metal oxide has a potential to reduce bacterial contamination. MgO is an important inorganic oxide and has been widely used in many fields. Many studies have shown that MgO nanoparticles have good antibacterial activity. Therefore, in this paper, the main synthesis methods, antibacterial activity and antibacterial mechanisms of MgO nanoparticles are reviewed. (author)

  10. Perspectives on Phytochemicals as Antibacterial Agents: An Outstanding Contribution to Modern Therapeutics.

    Science.gov (United States)

    Khatri, Savita; Kumar, Manish; Phougat, Neetu; Chaudhary, Renu; Chhillar, Anil Kumar

    2016-01-01

    Despite the considerable advancements in the development of antimicrobial agents, incidents of epidemics due to multi drug resistance in microorganisms have created a massive hazard to mankind. Due to increased resistance against conventional antibiotics, researchers and pharmaceutical industries are more concerned about novel therapeutic agents for the prevention of bacterial infections. Enormous wealth of traditional system of medicine gains importance in health therapies over again. With ancient credentials of potent medicinal plants, various herbal remedies came forward for the management of bacterial infections. The Ayurvedic approach facilitates the development of new therapeutic agents due to structural and functional diversity among phytochemicals. The abundance and diversity is responsible for the characterization of new lead structures from medicinal plants. Industrial interest has increased due to recent research advancements viz. synergistic and high-throughput screening approach for the evaluation of vast variety of phytochemicals. The review certainly emphasizes on the traditional medicines as alternatives to conventional chemotherapeutic drugs. The review briefly describes mode of action of various antibiotics and resistance mechanisms. This review focuses on the chemical diversity and various mechanisms of action of phytochemicals against bacterial pathogens.

  11. Modeling protective anti-tumor immunity via preventative cancer vaccines using a hybrid agent-based and delay differential equation approach.

    Science.gov (United States)

    Kim, Peter S; Lee, Peter P

    2012-01-01

    A next generation approach to cancer envisions developing preventative vaccinations to stimulate a person's immune cells, particularly cytotoxic T lymphocytes (CTLs), to eliminate incipient tumors before clinical detection. The purpose of our study is to quantitatively assess whether such an approach would be feasible, and if so, how many anti-cancer CTLs would have to be primed against tumor antigen to provide significant protection. To understand the relevant dynamics, we develop a two-compartment model of tumor-immune interactions at the tumor site and the draining lymph node. We model interactions at the tumor site using an agent-based model (ABM) and dynamics in the lymph node using a system of delay differential equations (DDEs). We combine the models into a hybrid ABM-DDE system and investigate dynamics over a wide range of parameters, including cell proliferation rates, tumor antigenicity, CTL recruitment times, and initial memory CTL populations. Our results indicate that an anti-cancer memory CTL pool of 3% or less can successfully eradicate a tumor population over a wide range of model parameters, implying that a vaccination approach is feasible. In addition, sensitivity analysis of our model reveals conditions that will result in rapid tumor destruction, oscillation, and polynomial rather than exponential decline in the tumor population due to tumor geometry.

  12. Anti-biofilm, anti-hemolysis, and anti-virulence activities of black pepper, cananga, myrrh oils, and nerolidol against Staphylococcus aureus.

    Science.gov (United States)

    Lee, Kayeon; Lee, Jin-Hyung; Kim, Soon-Il; Cho, Moo Hwan; Lee, Jintae

    2014-11-01

    The long-term usage of antibiotics has resulted in the evolution of multidrug-resistant bacteria. Unlike antibiotics, anti-virulence approaches target bacterial virulence without affecting cell viability, which may be less prone to develop drug resistance. Staphylococcus aureus is a major human pathogen that produces diverse virulence factors, such as α-toxin, which is hemolytic. Also, biofilm formation of S. aureus is one of the mechanisms of its drug resistance. In this study, anti-biofilm screening of 83 essential oils showed that black pepper, cananga, and myrrh oils and their common constituent cis-nerolidol at 0.01 % markedly inhibited S. aureus biofilm formation. Furthermore, the three essential oils and cis-nerolidol at below 0.005 % almost abolished the hemolytic activity of S. aureus. Transcriptional analyses showed that black pepper oil down-regulated the expressions of the α-toxin gene (hla), the nuclease genes, and the regulatory genes. In addition, black pepper, cananga, and myrrh oils and cis-nerolidol attenuated S. aureus virulence in the nematode Caenorhabditis elegans. This study is one of the most extensive on anti-virulence screening using diverse essential oils and provides comprehensive data on the subject. This finding implies other beneficial effects of essential oils and suggests that black pepper, cananga, and myrrh oils have potential use as anti-virulence strategies against persistent S. aureus infections.

  13. [The bacterial biofilm and the possibilities of chemical plaque control. Literature review].

    Science.gov (United States)

    Gera, István

    2008-06-01

    Most microorganisms in the oral cavity attach to surfaces and form matrix-embedded biofilms. Biofilms are structured and spatially organized, composed of consortia of interacting microorganisms. The properties of the mass of biofilm are different from that of the simple sum of the component species. The older the plaque (biofilm) is the more structurally organized and become more resistant to environmental attacks. The bacterial community favors the growth of obligatory anaerobic microorganisms. The most effective means of the elimination of matured biofilm is the mechanical disruption of the interbacterial protective matrix and removal of bacterial colonies. The antiseptic agents are primarily effective in the prevention of biofilm formation and anticipation of the maturation of the bacterial plaque. Bacteria in matured biofilms are less susceptible to antimicrobial agents because several physical and biological factors protect the bacterial consortia. To kill bacteria in a matured, well organized biofilm, significantly higher concentration and longer exposition are required. Antiseptic mouthrinses in a conventional dose and time can only reach the superficial bacteria while the bacteria in the depth of the biofilm remains intact. Therefore, the efficacy of any antiseptic mouthwash depends not just on its microbicidal properties demonstrated in vitro, but also on its ability to penetrate the organized biofilm on the teeth. Recent studies have demonstrated that both bisbiguanid compounds and essential oils are capable of penetrating the biofilm, and reduce established plaque and gingivitis. The essential oils showed high penetrability and were more effective on organized biofilm than stannous fluorides or triclosan copolymer antiplaque agents.

  14. Antimicrobial topical agents used in the vagina.

    Science.gov (United States)

    Frey Tirri, Brigitte

    2011-01-01

    Vaginally applied antimicrobial agents are widely used in the vagina in women with lower genital tract infections. An 'antimicrobial' is a general term that refers to a group of drugs that are effective against bacteria, fungi, viruses and protozoa. Topical treatments can be prescribed for a wide variety of vaginal infections. Many bacterial infections, such as bacterial vaginosis, desquamative inflammatory vaginitis or, as some European authors call it, aerobic vaginitis as well as infection with Staphylococcus aureus or group A streptococci, may be treated in this way. Candida vulvovaginitis is a fungal infection that is very amenable to topical treatment. The most common viral infections which can be treated with topical medications are condylomata acuminata and herpes simplex. The most often encountered protozoal vaginitis, which is caused by Trichomonas vaginalis, may be susceptible to topical medications, although this infection is treated systemically. This chapter covers the wide variety of commonly used topical antimicrobial agents for these diseases and focuses on the individual therapeutic agents and their clinical efficacy. In addition, potential difficulties that can occur in practice, as well as the usage of these medications in the special setting of pregnancy, are described in this chapter. Copyright © 2011 S. Karger AG, Basel.

  15. Use of DNA Microarrays to Identify Diagnostic Signature Transcriptional Profiles for Host Responses to Infectious Agents

    National Research Council Canada - National Science Library

    Ellner, J. J; Connell, N. D; Gallagher, G; Raveche, E

    2005-01-01

    Infections by agents of bioterrorism, especially bacterial agents such as Bacillus anthracis and Yersinia pestis present their initial symptoms in a way that does not reveal their identity or permit rapid diagnosis...

  16. Synthesis of Benzimidazole Derivatives: As Anti-hypertensive Agents

    Directory of Open Access Journals (Sweden)

    Jat Rakesh Kumar

    2006-01-01

    Full Text Available A new series of non peptide angiotensin(A-II receptor antagonist has been prepared. This N-(biphenyl methyl imidazoles e.g. 5-substituted (amino -2- phenyl-1-(2ʼcarboxy biphenyl-4-yl benzimidazoles differ from the previously reported and related compounds in that they produce a potent hypertensive effect upon oral administration. The earlier series were generally active only when administered intravenously. It has been found that 2’-position of biphenyl is essential. Only ortho substituted acid possess both high affinity for the AII receptor and oral anti-hypertensive potency.

  17. Engineered Mesenchymal Stem Cells as an Anti-Cancer Trojan Horse

    Science.gov (United States)

    Nowakowski, Adam; Drela, Katarzyna; Rozycka, Justyna; Janowski, Miroslaw

    2016-01-01

    Cell-based gene therapy holds a great promise for the treatment of human malignancy. Among different cells, mesenchymal stem cells (MSCs) are emerging as valuable anti-cancer agents that have the potential to be used to treat a number of different cancer types. They have inherent migratory properties, which allow them to serve as vehicles for delivering effective therapy to isolated tumors and metastases. MSCs have been engineered to express anti-proliferative, pro-apoptotic, and anti-angiogenic agents that specifically target different cancers. Another field of interest is to modify MSCs with the cytokines that activate pro-tumorigenic immunity or to use them as carriers for the traditional chemical compounds that possess the properties of anti-cancer drugs. Although there is still controversy about the exact function of MSCs in the tumor settings, the encouraging results from the preclinical studies of MSC-based gene therapy for a large number of tumors support the initiation of clinical trials. PMID:27460260

  18. Temperate bacterial viruses as double-edged swords in bacterial warfare.

    Science.gov (United States)

    Gama, João Alves; Reis, Ana Maria; Domingues, Iolanda; Mendes-Soares, Helena; Matos, Ana Margarida; Dionisio, Francisco

    2013-01-01

    It has been argued that bacterial cells may use their temperate viruses as biological weapons. For instance, a few bacterial cells among a population of lysogenic cells could release the virus and kill susceptible non-lysogenic competitors, while their clone mates would be immune. Because viruses replicate inside their victims upon infection, this process would amplify their number in the arena. Sometimes, however, temperate viruses spare recipient cells from death by establishing themselves in a dormant state inside cells. This phenomenon is called lysogenization and, for some viruses such as the λ virus, the probability of lysogenization increases with the multiplicity of infection. Therefore, the amplification of viruses leads to conflicting predictions about the efficacy of temperate viruses as biological weapons: amplification can increase the relative advantage of clone mates of lysogens but also the likelihood of saving susceptible cells from death, because the probability of lysogenization is higher. To test the usefulness of viruses as biological weapons, we performed competition experiments between lysogenic Escherichia coli cells carrying the λ virus and susceptible λ-free E. coli cells, either in a structured or unstructured habitat. In structured and sometimes in unstructured habitats, the λ virus qualitatively behaved as a "replicating toxin". However, such toxic effect of λ viruses ceased after a few days of competition. This was due to the fact that many of initially susceptible cells became lysogenic. Massive lysogenization of susceptible cells occurred precisely under the conditions where the amplification of the virus was substantial. From then on, these cells and their descendants became immune to the λ virus. In conclusion, if at short term bacterial cells may use temperate viruses as biological weapons, after a few days only the classical view of temperate bacterial viruses as parasitic agents prevails.

  19. Temperate bacterial viruses as double-edged swords in bacterial warfare.

    Directory of Open Access Journals (Sweden)

    João Alves Gama

    Full Text Available It has been argued that bacterial cells may use their temperate viruses as biological weapons. For instance, a few bacterial cells among a population of lysogenic cells could release the virus and kill susceptible non-lysogenic competitors, while their clone mates would be immune. Because viruses replicate inside their victims upon infection, this process would amplify their number in the arena. Sometimes, however, temperate viruses spare recipient cells from death by establishing themselves in a dormant state inside cells. This phenomenon is called lysogenization and, for some viruses such as the λ virus, the probability of lysogenization increases with the multiplicity of infection. Therefore, the amplification of viruses leads to conflicting predictions about the efficacy of temperate viruses as biological weapons: amplification can increase the relative advantage of clone mates of lysogens but also the likelihood of saving susceptible cells from death, because the probability of lysogenization is higher. To test the usefulness of viruses as biological weapons, we performed competition experiments between lysogenic Escherichia coli cells carrying the λ virus and susceptible λ-free E. coli cells, either in a structured or unstructured habitat. In structured and sometimes in unstructured habitats, the λ virus qualitatively behaved as a "replicating toxin". However, such toxic effect of λ viruses ceased after a few days of competition. This was due to the fact that many of initially susceptible cells became lysogenic. Massive lysogenization of susceptible cells occurred precisely under the conditions where the amplification of the virus was substantial. From then on, these cells and their descendants became immune to the λ virus. In conclusion, if at short term bacterial cells may use temperate viruses as biological weapons, after a few days only the classical view of temperate bacterial viruses as parasitic agents prevails.

  20. Human neutrophil clearance of bacterial pathogens triggers anti-microbial γδ T cell responses in early infection.

    Directory of Open Access Journals (Sweden)

    Martin S Davey

    2011-05-01

    Full Text Available Human blood Vγ9/Vδ2 T cells, monocytes and neutrophils share a responsiveness toward inflammatory chemokines and are rapidly recruited to sites of infection. Studying their interaction in vitro and relating these findings to in vivo observations in patients may therefore provide crucial insight into inflammatory events. Our present data demonstrate that Vγ9/Vδ2 T cells provide potent survival signals resulting in neutrophil activation and the release of the neutrophil chemoattractant CXCL8 (IL-8. In turn, Vγ9/Vδ2 T cells readily respond to neutrophils harboring phagocytosed bacteria, as evidenced by expression of CD69, interferon (IFN-γ and tumor necrosis factor (TNF-α. This response is dependent on the ability of these bacteria to produce the microbial metabolite (E-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP, requires cell-cell contact of Vγ9/Vδ2 T cells with accessory monocytes through lymphocyte function-associated antigen-1 (LFA-1, and results in a TNF-α dependent proliferation of Vγ9/Vδ2 T cells. The antibiotic fosmidomycin, which targets the HMB-PP biosynthesis pathway, not only has a direct antibacterial effect on most HMB-PP producing bacteria but also possesses rapid anti-inflammatory properties by inhibiting γδ T cell responses in vitro. Patients with acute peritoneal-dialysis (PD-associated bacterial peritonitis--characterized by an excessive influx of neutrophils and monocytes into the peritoneal cavity--show a selective activation of local Vγ9/Vδ2 T cells by HMB-PP producing but not by HMB-PP deficient bacterial pathogens. The γδ T cell-driven perpetuation of inflammatory responses during acute peritonitis is associated with elevated peritoneal levels of γδ T cells and TNF-α and detrimental clinical outcomes in infections caused by HMB-PP positive microorganisms. Taken together, our findings indicate a direct link between invading pathogens, neutrophils, monocytes and microbe-responsive γδ T cells in

  1. Human Neutrophil Clearance of Bacterial Pathogens Triggers Anti-Microbial γδ T Cell Responses in Early Infection

    Science.gov (United States)

    Roberts, Gareth W.; Heuston, Sinéad; Brown, Amanda C.; Chess, James A.; Toleman, Mark A.; Gahan, Cormac G. M.; Hill, Colin; Parish, Tanya; Williams, John D.; Davies, Simon J.; Johnson, David W.; Topley, Nicholas; Moser, Bernhard; Eberl, Matthias

    2011-01-01

    Human blood Vγ9/Vδ2 T cells, monocytes and neutrophils share a responsiveness toward inflammatory chemokines and are rapidly recruited to sites of infection. Studying their interaction in vitro and relating these findings to in vivo observations in patients may therefore provide crucial insight into inflammatory events. Our present data demonstrate that Vγ9/Vδ2 T cells provide potent survival signals resulting in neutrophil activation and the release of the neutrophil chemoattractant CXCL8 (IL-8). In turn, Vγ9/Vδ2 T cells readily respond to neutrophils harboring phagocytosed bacteria, as evidenced by expression of CD69, interferon (IFN)-γ and tumor necrosis factor (TNF)-α. This response is dependent on the ability of these bacteria to produce the microbial metabolite (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP), requires cell-cell contact of Vγ9/Vδ2 T cells with accessory monocytes through lymphocyte function-associated antigen-1 (LFA-1), and results in a TNF-α dependent proliferation of Vγ9/Vδ2 T cells. The antibiotic fosmidomycin, which targets the HMB-PP biosynthesis pathway, not only has a direct antibacterial effect on most HMB-PP producing bacteria but also possesses rapid anti-inflammatory properties by inhibiting γδ T cell responses in vitro. Patients with acute peritoneal-dialysis (PD)-associated bacterial peritonitis – characterized by an excessive influx of neutrophils and monocytes into the peritoneal cavity – show a selective activation of local Vγ9/Vδ2 T cells by HMB-PP producing but not by HMB-PP deficient bacterial pathogens. The γδ T cell-driven perpetuation of inflammatory responses during acute peritonitis is associated with elevated peritoneal levels of γδ T cells and TNF-α and detrimental clinical outcomes in infections caused by HMB-PP positive microorganisms. Taken together, our findings indicate a direct link between invading pathogens, neutrophils, monocytes and microbe-responsive γδ T cells in early

  2. Evaluation by biodistribution of two anti-peptidoglycan aptamers labeled with Technetium-{sup 99m} for in vivo bacterial infection identification

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Iêda M.; Lacerda, Camila M.S.; Santos, Sara R.; Andrade, Antero S.R. de, E-mail: imendesf@yahoo.com.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Fernandes, Simone O.; Barros, André B. de; Cardoso, Valbert N., E-mail: valbertcardoso@yahoo.com.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Análises Clínicas e Toxicológicas

    2017-07-01

    Nuclear medicine clinics are still awaiting optimal scintigraphic imaging agents capable of discriminating between infection and inflammation, and between fungal and bacterial infections. Aptamers are oligonucleotides that display high affinity and specificity for their molecular targets and are emerging as promising molecules for radiopharmaceuticals development. In the present study, two aptamers for peptidoglycan (termed Antibac1 and Antibac2) were labeled with {sup 99m}Tc and evaluated for bacterial infection identification by biodistribution. The direct labeling method with {sup 99m}Tc allowed radiolabel yields higher than 90% and the complexes were stable in saline, plasma and cysteine excess. The {sup 99m}Tc-Antibac1 in the group infected with S. aureus presented a target/non-target ratio (T/NT) of 2.81 ± 0.67, significantly higher than verified for the {sup 99m}Tc-library (control): 1.52 ± 0.07. A radiolabeled library of oligonucleotides with random sequences was used as a control for monitoring nonspecific uptake at the site of infection. In the model with C. albicans infection the T/NT ratio for {sup 99m}Tc-Antibac1 was 1.46 ± 0.11, similar that obtained for the {sup 99m}Tc-library in the same model: 1.52 ± 0.05. The {sup 99m}Tc-Antibac2 in the group infected with S. aureus showed a T/NT ratio of 2.61 ± 0.66, statistically higher than achieved for the {sup 99m}Tc-library: 1.52 ± 0.07. In the group infected with C. albicans this ratio for {sup 99m}Tc-Antibac2 was 1.75 ± 0.19, also statistically higher in relation to the {sup 99m}Tc-library: 1.52 ± 0.05. Both aptamers were effective in identifying bacterial infection foci, but only {sup 99m}Tc-Antibac1 showed no cross reactivity for fungal cells. (author)

  3. Novel Antitumor Platinum(II) Conjugates Containing the Nonsteroidal Anti-inflammatory Agent Diclofenac: Synthesis and Dual Mechanisms of Antiproliferative Effects.

    Science.gov (United States)

    Intini, Francesco Paolo; Zajac, Juraj; Novohradsky, Vojtech; Saltarella, Teresa; Pacifico, Concetta; Brabec, Viktor; Natile, Giovanni; Kasparkova, Jana

    2017-02-06

    One concept how to improve anticancer effects of conventional metallodrugs consists in conjugation of these compounds with other biologically (antitumor) active agents, acting by a different mechanism. Here, we present synthesis, biological effects, and mechanisms of action of new Pt(II) derivatives containing one or two nonsteroidal anti-inflammatory diclofenac (DCF) ligands also known for their antitumor effects. The antiproliferative properties of these metallic conjugates show that these compounds are potent and cancer cell selective cytotoxic agents exhibiting activity in cisplatin resistant and the COX-2 positive tumor cell lines. One of these compounds, compound 3, in which DCF molecules are coordinated to Pt(II) through their carboxylic group, is more potent than parental conventional Pt(II) drug cisplatin, free DCF and the congeners of 3 in which DCF ligands are conjugated to Pt(II) via a diamine. The potency of 3 is due to several factors including enhanced internalization that correlates with enhanced DNA binding and cytotoxicity. Mechanistic studies show that 3 combines multiple effects. After its accumulation in cells, it releases Pt(II) drug capable of binding/damaging DNA and DCF ligands, which affect distribution of cells in individual phases of the cell cycle, inhibit glycolysis and lactate transport, collapse mitochondrial membrane potential, and suppress the cellular properties characteristic of metastatic progression.

  4. 2-(2-(4-Benzoylpiperazin-1-ylethylisoindoline-1,3-dione derivatives: Synthesis, docking and acetylcholinesterase inhibitory evaluation as anti-alzheimer agents

    Directory of Open Access Journals (Sweden)

    Ahmad Mohammadi-Farani

    2017-01-01

    Full Text Available Objective(s: Alzheimer’s disease (AD as progressive cognitive decline and the most common form of dementia is due to degeneration of the cholinergic neurons in the brain. Therefore, administration of the acetylcholinesterase (AChE inhibitors such as donepezil is the first choice for treatment of the AD. In the present study, we focused on the synthesis and anti-cholinesterase evaluation of new donepezil like analogs. Materials and Methods: A new series of phthalimide derivatives (compounds 4a-4j were synthesized via Gabriel protocol and subsequently amidation reaction was performed using various benzoic acid derivatives. Then, the corresponding anti-acetylcholinesterase activity of the prepared derivatives (4a-4j was assessed by utilization of the Ellman's test and obtained results were compared to donepezil. Besides, docking study was also carried out to explore the likely in silico binding interactions.  Results: According to the obtained results, electron withdrawing groups (Cl, F at position 3 and an electron donating group (methoxy at position 4 of the phenyl ring enhanced the acetylcholinesterase inhibitory activity. Compound 4e (m-Fluoro, IC50 = 7.1 nM and 4i (p-Methoxy, IC50 = 20.3 nM were the most active compounds in this series and exerted superior potency than donepezil (410 nM. Moreover, a similar binding mode was observed in silico for all ligands in superimposition state with donepezil into the active site of acetylcholinesterase. Conclusion: Studied compounds could be potential leads for discovery of novel anti-Alzheimer agents in the future.

  5. Anti-tumor effects of an engineered 'killer' transfer RNA

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Dong-hui [Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637 (United States); Lee, Jiyoung; Frankenberger, Casey [Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637 (United States); Geslain, Renaud, E-mail: rgeslain@depaul.edu [Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637 (United States); Department of Biology, DePaul University, Chicago, IL 60614 (United States); Rosner, Marsha, E-mail: m-rosner@uchicago.edu [Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637 (United States); Pan, Tao, E-mail: taopan@uchicago.edu [Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637 (United States)

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer tRNA with anti-cancer effects. Black-Right-Pointing-Pointer tRNA induced protein misfolding. Black-Right-Pointing-Pointer tRNA as anti-tumor agent. -- Abstract: A hallmark of cancer cells is their ability to continuously divide; and rapid proliferation requires increased protein translation. Elevating levels of misfolded proteins can elicit growth arrest due to ER stress and decreased global translation. Failure to correct prolonged ER stress eventually results in cell death via apoptosis. tRNA{sup Ser}(AAU) is an engineered human tRNA{sup Ser} with an anticodon coding for isoleucine. Here we test the possibility that tRNA{sup Ser}(AAU) can be an effective killing agent of breast cancer cells and can effectively inhibit tumor-formation in mice. We found that tRNA{sup Ser}(AAU) exert strong effects on breast cancer translation activity, cell viability, and tumor formation. Translation is strongly inhibited by tRNA{sup Ser}(AAU) in both tumorigenic and non-tumorigenic cells. tRNA{sup Ser}(AAU) significantly decreased the number of viable cells over time. A short time treatment with tRNA{sup Ser}(AAU) was sufficient to eliminate breast tumor formation in a xenograft mouse model. Our results indicate that tRNA{sup Ser}(AAU) can inhibit breast cancer metabolism, growth and tumor formation. This RNA has strong anti-cancer effects and presents an opportunity for its development into an anti-tumor agent. Because tRNA{sup Ser}(AAU) corrupts the protein synthesis mechanism that is an integral component of the cell, it would be extremely difficult for tumor cells to evolve and develop resistance against this anti-tumor agent.

  6. Structure-Activity Relationship Study on the Ethyl p-Methoxycinnamate as an Anti-Inflammatory Agent

    Directory of Open Access Journals (Sweden)

    Ismiarni Komala

    2018-02-01

    Full Text Available Ethyl p-methoxycinnamate (EPMC (1 has been isolated as a major compound from the rhizome of Kaempferia galanga together with the other compound ethyl cinnamate (2. As reported in the literature, EPMC (1 exhibited a significant in vitro and in vivo anti-inflammatory activity. In this research, we investigated the anti-inflammatory activity of compounds 1 and 2 by using anti-denaturation of heat bovine serum albumin (BSA method. In order to analyze active sites that are responsible for the anti-inflammatory activity, therefore, it is necessary to conduct structural modification of EPMC (1. The structural modification was performed through re-esterification reaction by using conventional and assistance of the unmodified microwave oven. Evaluation of the results of the bioassay indicated that the ester and methoxy functional groups of EPMC (1 play an important role for the anti-inflammatory activity.

  7. Expression of a Recombinant Anti-HIV and Anti-Tumor Protein, MAP30, in Nicotiana tobacum Hairy Roots: A pH-Stable and Thermophilic Antimicrobial Protein.

    Directory of Open Access Journals (Sweden)

    Ali Moghadam

    Full Text Available In contrast to conventional antibiotics, which microorganisms can readily evade, it is nearly impossible for a microbial strain that is sensitive to antimicrobial proteins to convert to a resistant strain. Therefore, antimicrobial proteins and peptides that are promising alternative candidates for the control of bacterial infections are under investigation. The MAP30 protein of Momordica charantia is a valuable type I ribosome-inactivating protein (RIP with anti-HIV and anti-tumor activities. Whereas the antimicrobial activity of some type I RIPs has been confirmed, less attention has been paid to the antimicrobial activity of MAP30 produced in a stable, easily handled, and extremely cost-effective protein-expression system. rMAP30-KDEL was expressed in Nicotiana tobacum hairy roots, and its effect on different microorganisms was investigated. Analysis of the extracted total proteins of transgenic hairy roots showed that rMAP30-KDEL was expressed effectively and that this protein exhibited significant antibacterial activity in a dose-dependent manner. rMAP30-KDEL also possessed thermal and pH stability. Bioinformatic analysis of MAP30 and other RIPs regarding their conserved motifs, amino-acid contents, charge, aliphatic index, GRAVY value, and secondary structures demonstrated that these factors accounted for their thermophilicity. Therefore, RIPs such as MAP30 and its derived peptides might have promising applications as food preservatives, and their analysis might provide useful insights into designing clinically applicable antibiotic agents.

  8. Synergistic effect of PANI-ZrO2 composite as antibacterial, anti-corrosion, and phosphate adsorbent material: synthesis, characterization and applications.

    Science.gov (United States)

    Masim, Frances Camille P; Tsai, Cheng-Hsien; Lin, Yi-Feng; Fu, Ming-Lai; Liu, Minghua; Kang, Fei; Wang, Ya-Fen

    2017-11-03

    The increasing number of bacteria-related problems and presence of trace amounts of phosphate in treated wastewater effluents have become a growing concern in environmental research. The use of antibacterial agents and phosphate adsorbents for the treatment of wastewater effluents is of great importance. In this study, the potential applications of a synthesized polyaniline (PANI)-zirconium dioxide (ZrO 2 ) composite as an antibacterial, phosphate adsorbent and anti-corrosion material were systematically investigated. The results of an antibacterial test reveal an effective area of inhibition of 14 and 18 mm for the Escherichia coli and Staphylococcus aureus bacterial strains, respectively. The antibacterial efficiency of the PANI-ZrO 2 composite is twice that of commercial ZrO 2 . In particular, the introduction of PANI increased the specific surface area and roughness of the composite material, which was beneficial to increase the contact area with bacterial and phosphate. The experimental results demonstrated that phosphate adsorption studies using 200 mg P/L phosphate solution showed a significant phosphate removal efficiency of 64.4%, and the maximum adsorption capacity of phosphate on the solid surface of PANI-ZrO 2 is 32.4 mg P/g. Furthermore, PANI-ZrO 2 coated on iron substrate was tested for anti-corrosion studies by a natural salt spray test (7.5% NaCl), which resulted in the formation of no rust. To the best of our knowledge, no works have been reported on the synergistic effects of the PANI-ZrO 2 composite as an antibacterial, anti-corrosion, and phosphate adsorbent material. PANI-ZrO 2 composite is expected to be a promising comprehensive treatment method for water filters in the aquaculture industry and for use in water purification applications.

  9. Preparation of fluidized catalytic cracking slurry oil-in-water emulsion as anti-collapse agent for drilling fluids

    Directory of Open Access Journals (Sweden)

    Zhengqiang Xiong

    2016-12-01

    Full Text Available Fluidized catalytic cracking slurry oil-in-water emulsion (FCCSE was prepared by using interfacial complexes generation method that was simple and versatile. The critical factors influencing the sample preparation process were optimized, for instance, the optimum value of the mixed hydrophile-lipophile balance of compound emulsifier was 11.36, the content of compound emulsifier was 4 wt%, the emulsification temperature was 75 °C, the agitation speed was 200 rpm, and the emulsification time was 30–45 min. The performance as a drilling fluid additive was also investigated with respect to rheological properties, filtration loss and inhibition of FCCSE. Experimental results showed that FCCSE was favorable to inhibiting clay expansion and dispersion and reducing fluid loss. Furthermore, it had good compatibility with other additives and did not affect the rheological properties of drilling fluids. FCCSE exhibited better performance than the available emulsified asphalt. It has a promising application as anti-collapse agent in petroleum and natural gas drilling.

  10. Povidone-iodine: an anti-oedematous agent?

    Science.gov (United States)

    Arakeri, Gururaj; Brennan, Peter A

    2011-02-01

    Polyvinylpyrrolidone-iodine (PVP-I) is a well-known antiseptic, widely used in various preparations and concentrations in all surgical fields. It is also used as an irrigant for open wounds and in some centres for irrigating sockets after tooth extraction. One of the authors (GA) incidentally discovered an anti-oedematous effect of PVP-I after using it in low concentration as an irrigant/coolant during the surgical removal of lower third molars. A prospective randomized clinical trial was subsequently performed on 50 patients (25 control, 25 treatment group) undergoing removal of impacted lower third molars. In the treatment group a 0.5% PVP-I solution at a concentration of 0.5mg/ml (we call it as "Arakeri's iodine solution") resulted in a significant reduction in postoperative swelling compared with the control group (P<0.01). This effect of PVP-I was suspected due to its inhibitory effect on leukotriene B4 and leukocyte extravasation (chemotaxis). Further evaluation of the effects of PVP-I as an irrigant in oral and maxillofacial surgery is needed. Copyright © 2010 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  11. Nematode Peptides with host-directed anti-inflammatory activity rescue Caenorhabditis elegans from a Burkholderia pseudomallei infection

    Directory of Open Access Journals (Sweden)

    Mei-Perng Lim

    2016-09-01

    Full Text Available Burkholderia pseudomallei, the causative agent of melioidosis, is among a growing number of bacterial pathogens that are increasingly antibiotic resistant. Antimicrobial peptides (AMPs have been investigated as an alternative approach to treat microbial infections, as generally, there is a lower likelihood that a pathogen will develop resistance to AMPs. In this study, 36 candidate Caenorhabditis elegans genes that encode secreted peptides of <150 amino acids and previously shown to be overexpressed during infection by B. pseudomallei were identified from the expression profile of infected nematodes. RNA interference (RNAi-based knockdown of 12/34 peptide-encoding genes resulted in enhanced nematode susceptibility to B. pseudomallei without affecting worm fitness. A microdilution test demonstrated that two peptides, NLP-31 and Y43C5A.3, exhibited anti-B. pseudomallei activity in a dose dependent manner on different pathogens. Time kill analysis proposed that these peptides were bacteriostatic against B. pseudomallei at concentrations up to 8× MIC90. The SYTOX green assay demonstrated that NLP-31 and Y43C5A.3 did not disrupt the B. pseudomallei membrane. Instead, gel retardation assays revealed that both peptides were able to bind to DNA and interfere with bacterial viability. In parallel, microscopic examination showed induction of cellular filamentation, a hallmark of DNA synthesis inhibition, of NLP-31 and Y43C5A.3 treated cells. In addition, the peptides also regulated the expression of inflammatory cytokines in B. pseudomallei infected macrophage cells. Collectively, these findings demonstrate the potential of NLP-31 and Y43C5A.3 as anti-B. pseudomallei peptides based on their function as immune modulators.

  12. Short chain and polyunsaturated fatty acids in host gut health and foodborne bacterial pathogen inhibition.

    Science.gov (United States)

    Peng, Mengfei; Biswas, Debabrata

    2017-12-12

    As a major source of microbes and their numerous beneficial effects, the gut microflora/microbiome is intimately linked to human health and disease. The exclusion of enteric pathogens by these commensal microbes partially depends upon the production of bioactive compounds such as short-chain fatty acids (SCFAs) and polyunsaturated fatty acids (PUFAs). These key intestinal microbial byproducts are crucial to the maintenance of a healthy gut microbial community. Moreover, SCFAs and PUFAs play multiple critical roles in host defense and immunity, including anti-cancer, anti-inflammation, and anti-oxidant activities, as well as out-competition of enteric bacterial pathogens. In this review article, we hereby aim to highlight the importance of SCFAs and PUFAs and the microbes involved in production of these beneficial intestinal components, and their biological functions, specifically as to their immunomodulation and interactions with enteric bacterial pathogens. Finally, we also advance potential applications of these fatty acids with regards to food safety and human gut health.

  13. Cyanobacterial pigments as natural anti-hyperglycemic agents: An in vitro study

    Directory of Open Access Journals (Sweden)

    Tonmoy Ghosh

    2016-08-01

    Full Text Available Traditional medicines for controlling postprandial hyperglycemia includes herbs and plant extracts as well as synthetic drugs like acarbose. Synthetic drug molecules frequently have side effects such as flatulence and diarrhea. Cyanobacterial pigments have excellent anti-oxidant and free radical scavenging properties. Thus, α-amylase and α-glucosidase inhibiting activities of purified pigments and crude extracts from three cyanobacterial species, Lyngbya, Microcoleus and Synechocystis sp., were investigated. Lyngbya extract had the highest total anti-oxidant activity (TAC before digestion (48.26 ± 0.04 µg AAE ml-1 while purified lycopene had the highest TAC after digestion (154.16 ± 0.96 µg AAE ml-1. The Microcoleus extract had the highest ABTS scavenging activity before digestion (98.23 ± 0.25 % while purified C-phycocyanin (C-PC had the highest ABTS scavenging after digestion (99.69 ±0.04 %. None of the digested or undigested extracts performed better than acarbose in inhibiting α-amylase but the digested Microcoleus extract was able to inhibit its activity by ~35 %. The purified pigments gave inhibitory activities ranging from ~ 8 – 16 %. The Lyngbya extract had the highest inhibitory activity against α-glucosidase both before and after digestion (62.22 ± 0.02 and 97.82 ± 0.03 % respectively. Purified C-phycoerythrin (C-PE, C-PC, lycopene and myxoxanthophyll could inhibit α-glucosidase in a range of ~83 – 96 %. Considering the potent inhibitory activities of purified pigments against both α-amylase and α-glucosidase, cyanobacterial pigments could be used as food additives for their dual advantage of anti-oxidant and anti-hyperglycemic activities.

  14. Anti-glycation and anti-oxidation properties of Capsicum frutescens and Curcuma longa fruits: possible role in prevention of diabetic complication.

    Science.gov (United States)

    Khan, Ibrar; Ahmad, Haroon; Ahmad, Bashir

    2014-09-01

    The accumulation of advanced glycationend products (AGE's) in the body, due to the non-enzymatic glycation of proteins is associated with several pathological conditions like aging and diabetes mellitus. Hence a plant having anti-glycation and anti-oxidation potentials may serve as therapeutic agent for diabetic complications and aging. In this study the anti-glycation and anti-oxidation properties of crude methanolic extracts of fruits of Capsicum frutescens and Curcuma longa were investigated. Among the two C. frutescens had more anti-glycation ability with a minimum inhibitory concentration (MIC50) of 90βg/mLas compared to 324βg/mL MIC50 of C. longa. Curcuma longa had the more anti-oxidation potential i.e. 35.01, 30.83 and 28.08% at 0.5mg, 0.25mg and 0.125mg respectively.

  15. New phytochemicals as potential human anti-aging compounds: Reality, promise, and challenges.

    Science.gov (United States)

    Corrêa, Rúbia C G; Peralta, Rosane M; Haminiuk, Charles W I; Maciel, Giselle Maria; Bracht, Adelar; Ferreira, Isabel C F R

    2018-04-13

    Aging is an inevitable process influenced by genetic, lifestyle, and environmental factors. Indirect evidence shows that several phytochemicals can have anti-aging capabilities, although direct evidence in this field is still limited. This report aims to provide a critical review on aspects related to the use of novel phytochemicals as anti-aging agents, to discuss the obstacles found when performing most anti-aging study protocols in humans, and to analyze future perspectives. In addition to the extensively studied resveratrol, epicatechin, quercetin, and curcumin, new phytochemicals have been reported to act as anti-aging agents, such as the amino acid L-theanine isolated from green tea, and the lignans arctigenin and matairesinol isolated from Arctium lappa seeds. Furthermore, this review discusses the application of several new extracts rich in phytochemicals with potential use in anti-aging therapies. Finally, this review also discusses the most important biomarkers to test anti-aging interventions, the necessity of conducting epidemiological studies and the need of clinical trials with adequate study protocols for humans.

  16. Palmitoylethanolamide: A Natural Body-Own Anti-Inflammatory Agent, Effective and Safe against Influenza and Common Cold

    Directory of Open Access Journals (Sweden)

    J. M. Keppel Hesselink

    2013-01-01

    Full Text Available Palmitoylethanolamide (PEA is a food component known since 1957. PEA is synthesized and metabolized in animal cells via a number of enzymes and exerts a multitude of physiological functions related to metabolic homeostasis. Research on PEA has been conducted for more than 50 years, and over 350 papers are referenced in PubMed describing the physiological properties of this endogenous modulator and its pharmacological and therapeutical profile. The major focus of PEA research, since the work of the Nobel laureate Levi-Montalcini in 1993, has been neuropathic pain states and mast cell related disorders. However, it is less known that 6 clinical trials in a total of nearly 4000 people were performed and published last century, specifically studying PEA as a therapy for influenza and the common cold. This was done before Levi-Montalcini’s clarification of PEA’s mechanism of action, analyzing the role of PEA as an anti-inflammatory agent. We will review in depth these studies, as the results support the effectiveness and safety of PEA in flu and respiratory infections.

  17. Improved Therapeutic Regimens for Treatment of Post-Traumatic Ocular Infections

    National Research Council Canada - National Science Library

    Callegan, Michelle C

    2008-01-01

    .... This proposal was designed to analyze the effectiveness of antibiotics, anti-inflammatory drugs, and non-conventional agents targeting bacterial and host virulence factors, with the goal of improving...

  18. Mechanical transmission and survival of bacterial wilt on enset ...

    African Journals Online (AJOL)

    The transmission of enset bacterial wilt with contaminated knives and the survival of the causal agent in soil and enset plant debris was studied at the Awassa Agricultural Research Center, Awassa, Ethiopia. Contaminated knives were found to transmit the pathogen from infected to healthy plants. Disease symptoms were ...

  19. A short history of anti-rheumatic therapy - VII. Biological agents

    Directory of Open Access Journals (Sweden)

    B. Gatto

    2011-11-01

    Full Text Available The introduction of biological agents has been a major turning-point in the treatment of rheumatic diseases, particularly in rheumatoid arthritis. This review describes the principle milestones that have led, through the knowledge of the structure and functions of nucleic acids, to the development of production techniques of the three major families of biological agents: proteins, monoclonal antibodies and fusion proteins. A brief history has also been traced of the cytokines most involved in the pathogenesis of inflammatory rheumatic diseases (IL-1 and TNF and the steps which have led to the use of the main biological drugs in rheumatology: anakinra, infliximab, adalimumab, etanercept and rituximab.

  20. Severe asthma: anti-IgE or anti-IL-5?

    Directory of Open Access Journals (Sweden)

    Evgenia Papathanassiou

    2016-11-01

    Full Text Available Severe asthma is a discrete clinical entity characterised by recurrent exacerbations, reduced quality of life and poor asthma control as ordinary treatment regimens remain inadequate. Difficulty in managing severe asthma derives partly from the multiple existing phenotypes and our inability to recognise them. Though the exact pathogenetic pathway of severe allergic asthma remains unclear, it is known that numerous inflammatory cells and cytokines are involved, and eosinophils represent a key inflammatory cell mediator. Anti-IgE (omalizumab and anti-IL-5 (mepolizumab antibodies are biological agents that interfere in different steps of the Th2 inflammatory cascade and are licensed in severe asthma. Both exhibit a favourable clinical outcome as they reduce exacerbation rate and improve asthma control and quality of life, while mepolizumab also induces an oral steroid sparing effect. Nevertheless, it is still questionable which agent is more suitable in the management of severe allergic asthma since no comparable studies have been conducted. Omalizumab's established effectiveness in clinical practice over a long period is complemented by a beneficial effect on airway remodelling process mediated mainly through its impact on eosinophils and other parameters strongly related to eosinophilic inflammation. However, it is possible that mepolizumab through nearly depleting eosinophils could have a similar effect on airway remodelling. Moreover, to date, markers indicative of the patient population responding to each treatment are unavailable although baseline eosinophils and exacerbation rate in the previous year demonstrate a predictive value regarding anti-IL-5 therapy effectiveness. On the other hand, a better therapeutic response for omalizumab has been observed when low forced expiratory volume in 1 sec, high-dose inhaled corticosteroids and increased IgE concentrations are present. Consequently, conclusions are not yet safe to be drawn based on

  1. Novel chimeric peptide with enhanced cell specificity and anti-inflammatory activity.

    Science.gov (United States)

    Kim, Young-Min; Kim, Nam-Hong; Lee, Jong-Wan; Jang, Jin-Sun; Park, Yung-Hoon; Park, Seong-Cheol; Jang, Mi-Kyeong

    2015-07-31

    An antimicrobial peptide (AMP), Hn-Mc, was designed by combining the N-terminus of HPA3NT3 and the C-terminus of melittin. This chimeric AMP exhibited potent antibacterial activity with low minimal inhibitory concentrations (MICs), ranging from 1 to 2 μM against four drug-susceptible bacteria and ten drug-resistant bacteria. Moreover, the hemolysis and cytotoxicity was reduced significantly compared to those of the parent peptides, highlighting its high cell selectivity. The morphological changes in the giant unilamellar vesicles and bacterial cell surfaces caused by the Hn-Mc peptide suggested that it killed the microbial cells by damaging the membrane envelope. An in vivo study also demonstrated the antibacterial activity of the Hn-Mc peptide in a mouse model infected with drug-resistant bacteria. In addition, the chimeric peptide inhibited the expression of lipopolysaccharide (LPS)-induced cytokines in RAW 264.7 cells by preventing the interaction between LPS and Toll-like receptors. These results suggest that this chimeric peptide is an antimicrobial and anti-inflammatory candidate as a pharmaceutic agent. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Life history trade-offs and relaxed selection can decrease bacterial virulence in environmental reservoirs.

    Directory of Open Access Journals (Sweden)

    Lauri Mikonranta

    Full Text Available Pathogen virulence is usually thought to evolve in reciprocal selection with the host. While this might be true for obligate pathogens, the life histories of opportunistic pathogens typically alternate between within-host and outside-host environments during the infection-transmission cycle. As a result, opportunistic pathogens are likely to experience conflicting selection pressures across different environments, and this could affect their virulence through life-history trait correlations. We studied these correlations experimentally by exposing an opportunistic bacterial pathogen Serratia marcescens to its natural protist predator Tetrahymena thermophila for 13 weeks, after which we measured changes in bacterial traits related to both anti-predator defence and virulence. We found that anti-predator adaptation (producing predator-resistant biofilm caused a correlative attenuation in virulence. Even though the direct mechanism was not found, reduction in virulence was most clearly connected to a predator-driven loss of a red bacterial pigment, prodigiosin. Moreover, life-history trait evolution was more divergent among replicate populations in the absence of predation, leading also to lowered virulence in some of the 'predator absent' selection lines. Together these findings suggest that the virulence of non-obligatory, opportunistic bacterial pathogens can decrease in environmental reservoirs through life history trade-offs, or random accumulation of mutations that impair virulence traits under relaxed selection.

  3. Recombinant Plants Provide a New Approach to the Production of Bacterial Polysaccharide for Vaccines

    Science.gov (United States)

    Smith, Claire M.; Fry, Stephen C.; Gough, Kevin C.; Patel, Alexandra J. F.; Glenn, Sarah; Goldrick, Marie; Roberts, Ian S.; Andrew, Peter W.

    2014-01-01

    Bacterial polysaccharides have numerous clinical or industrial uses. Recombinant plants could offer the possibility of producing bacterial polysaccharides on a large scale and free of contaminating bacterial toxins and antigens. We investigated the feasibility of this proposal by cloning and expressing the gene for the type 3 synthase (cps3S) of Streptococcus pneumoniae in Nicotinia tabacum, using the pCambia2301 vector and Agrobacterium tumefaciens-mediated gene transfer. In planta the recombinant synthase polymerised plant-derived UDP-glucose and UDP-glucuronic acid to form type 3 polysaccharide. Expression of the cps3S gene was detected by RT-PCR and production of the pneumococcal polysaccharide was detected in tobacco leaf extracts by double immunodiffusion, Western blotting and high-voltage paper electrophoresis. Because it is used a component of anti-pneumococcal vaccines, the immunogenicity of the plant-derived type 3 polysaccharide was tested. Mice immunised with extracts from recombinant plants were protected from challenge with a lethal dose of pneumococci in a model of pneumonia and the immunised mice had significantly elevated levels of serum anti-pneumococcal polysaccharide antibodies. This study provides the proof of the principle that bacterial polysaccharide can be successfully synthesised in plants and that these recombinant polysaccharides could be used as vaccines to protect against life-threatening infections. PMID:24498433

  4. Chitosan nanoparticles enhances the anti-quorum sensing activity of kaempferol.

    Science.gov (United States)

    Ilk, Sedef; Sağlam, Necdet; Özgen, Mustafa; Korkusuz, Feza

    2017-01-01

    Quorum sensing (QS) is a cell density dependent expression of species in bacteria mediated by compounds called autoinducers (AI). Several processes responsible for successful establishment of bacterial infection are mediated by QS. Inhibition of QS is therefore being considered as a new target for antimicrobial chemotherapy. Flavonoid compounds are strong antioxidant and antimicrobial agents but their applications are limited due to their poor dissolution and bioavailability. Our objective was to investigate the effect of kaempferol loaded chitosan nanoparticles on modulating QS mediated by AI in model bioassay test systems. For this purpose, kaempferol loaded nanoparticles were synthesized and characterized in terms of hydrodynamic diameter, hydrogen bonding, amorphous transformation and antioxidant activity. QS inhibition in time dependent manner of nanoparticles was measured in violacein pigment producing using the biosensor strain Chromobacterium violaceum CV026 mediated by AI known as acylated homoserine lactone (AHL). Our results indicated that the average kaempferol loaded chitosan/TPP nanoparticle size and zeta potential were 192.27±13.6nm and +35mV, respectively. The loading and encapsulation efficiency of kaempferol into chitosan/TPP nanoparticles presented higher values between 78 and 93%. Kaempferol loaded chitosan/TPP nanoparticle during the 30 storage days significantly inhibited the production of violacein pigment in Chromobacterium violaceum CV026. The observation that kaempferol encapsulated chitosan nanoparticles can inhibit QS related processes opens up an exciting new strategy for antimicrobial chemotherapy as stable QS-based anti-biofilm agents. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Carbon nanotubes as in vivo bacterial probes.

    Science.gov (United States)

    Bardhan, Neelkanth M; Ghosh, Debadyuti; Belcher, Angela M

    2014-09-17

    With the rise in antibiotic-resistant infections, non-invasive sensing of infectious diseases is increasingly important. Optical imaging, although safer and simpler, is less developed than other modalities such as radioimaging, due to low availability of target-specific molecular probes. Here we report carbon nanotubes (SWNTs) as bacterial probes for fluorescence imaging of pathogenic infections. We demonstrate that SWNTs functionalized using M13 bacteriophage (M13-SWNT) can distinguish between F'-positive and F'-negative bacterial strains. Moreover, through one-step modification, we attach an anti-bacterial antibody on M13-SWNT, making it easily tunable for sensing specific F'-negative bacteria. We illustrate detection of Staphylococcus aureus intramuscular infections, with ~3.4 × enhancement in fluorescence intensity over background. SWNT imaging presents lower signal spread ~0.08 × and higher signal amplification ~1.4 × , compared with conventional dyes. We show the probe offers greater ~5.7 × enhancement in imaging of S. aureus infective endocarditis. These biologically functionalized, aqueous-dispersed, actively targeted, modularly tunable SWNT probes offer new avenues for exploration of deeply buried infections.

  6. Carbon nanotubes as in vivo bacterial probes

    Science.gov (United States)

    Bardhan, Neelkanth M.; Ghosh, Debadyuti; Belcher, Angela M.

    2014-09-01

    With the rise in antibiotic-resistant infections, non-invasive sensing of infectious diseases is increasingly important. Optical imaging, although safer and simpler, is less developed than other modalities such as radioimaging, due to low availability of target-specific molecular probes. Here we report carbon nanotubes (SWNTs) as bacterial probes for fluorescence imaging of pathogenic infections. We demonstrate that SWNTs functionalized using M13 bacteriophage (M13-SWNT) can distinguish between F‧-positive and F‧-negative bacterial strains. Moreover, through one-step modification, we attach an anti-bacterial antibody on M13-SWNT, making it easily tunable for sensing specific F‧-negative bacteria. We illustrate detection of Staphylococcus aureus intramuscular infections, with ~3.4 × enhancement in fluorescence intensity over background. SWNT imaging presents lower signal spread ~0.08 × and higher signal amplification ~1.4 × , compared with conventional dyes. We show the probe offers greater ~5.7 × enhancement in imaging of S. aureus infective endocarditis. These biologically functionalized, aqueous-dispersed, actively targeted, modularly tunable SWNT probes offer new avenues for exploration of deeply buried infections.

  7. Bacterial endotoxin adhesion to different types of orthodontic adhesives

    Directory of Open Access Journals (Sweden)

    Priscilla Coutinho ROMUALDO

    Full Text Available Abstract Bacterial endotoxin (LPS adhesion to orthodontic brackets is a known contributing factor to inflammation of the adjacent gingival tissues. Objective The aim of this study was to assess whether LPS adheres to orthodontic adhesive systems, comparing two commercial brands. Material and Methods Forty specimens were fabricated from Transbond XT and Light Bond composite and bonding agent components (n=10/component, then contaminated by immersion in a bacterial endotoxin solution. Contaminated and non-contaminated acrylic resin samples were used as positive and negative control groups, respectively. LPS quantification was performed by the Limulus Amebocyte Lysate QCL-1000™ test. Data obtained were scored and subjected to the Chi-square test using a significance level of 5%. Results There was endotoxin adhesion to all materials (p0.05. There was no significant difference (p>0.05 among commercial brands. Affinity of endotoxin was significantly greater for the bonding agents (p=0.0025. Conclusions LPS adhered to both orthodontic adhesive systems. Regardless of the brand, the endotoxin had higher affinity for the bonding agents than for the composites. There is no previous study assessing the affinity of LPS for orthodontic adhesive systems. This study revealed that LPS adheres to orthodontic adhesive systems. Therefore, additional care is recommended to orthodontic applications of these materials.

  8. In silico identification of anti-cancer compounds and plants from traditional Chinese medicine database

    Science.gov (United States)

    Dai, Shao-Xing; Li, Wen-Xing; Han, Fei-Fei; Guo, Yi-Cheng; Zheng, Jun-Juan; Liu, Jia-Qian; Wang, Qian; Gao, Yue-Dong; Li, Gong-Hua; Huang, Jing-Fei

    2016-05-01

    There is a constant demand to develop new, effective, and affordable anti-cancer drugs. The traditional Chinese medicine (TCM) is a valuable and alternative resource for identifying novel anti-cancer agents. In this study, we aim to identify the anti-cancer compounds and plants from the TCM database by using cheminformatics. We first predicted 5278 anti-cancer compounds from TCM database. The top 346 compounds were highly potent active in the 60 cell lines test. Similarity analysis revealed that 75% of the 5278 compounds are highly similar to the approved anti-cancer drugs. Based on the predicted anti-cancer compounds, we identified 57 anti-cancer plants by activity enrichment. The identified plants are widely distributed in 46 genera and 28 families, which broadens the scope of the anti-cancer drug screening. Finally, we constructed a network of predicted anti-cancer plants and approved drugs based on the above results. The network highlighted the supportive role of the predicted plant in the development of anti-cancer drug and suggested different molecular anti-cancer mechanisms of the plants. Our study suggests that the predicted compounds and plants from TCM database offer an attractive starting point and a broader scope to mine for potential anti-cancer agents.

  9. Hypertension induced by chemotherapeutic and immunosuppresive agents: a new challenge.

    Science.gov (United States)

    Abi Aad, Simon; Pierce, Matthew; Barmaimon, Guido; Farhat, Fadi S; Benjo, Alexandre; Mouhayar, Elie

    2015-01-01

    Hypertension is a common adverse effect of certain anti neoplastic therapy. The incidence and severity of hypertension are dependent mainly on the type and the dose of the drug. We reviewed the literature for studies that reported the effect of anti neoplastic agents on blood pressure in patients with malignancies. The medical databases of PubMed, MEDLINE and EMBASE were searched for articles published in English between 1955 and June 2012. The effects of specific agents on blood pressure were analyzed. Hypertension is a prevalent adverse effect of many of the new chemotherapy agents such as VEGF inhibitors. Approximately 30% of patients treated for cancer will have concomitant hypertension, and crucial chemotherapy can sometimes be stopped due to new onset or worsening severe hypertension. The importance of a timely diagnosis and optimal management of HTN in this group of patients is related to the facts that HTN is a well established risk factor for chemotherapy-induced cardiotoxicity and if left untreated, can alter cancer management and result in dose reductions or termination of anti-cancer treatments as well as life-threatening end organ damage. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Cooperation between Monocyte-Derived Cells and Lymphoid Cells in the Acute Response to a Bacterial Lung Pathogen.

    Directory of Open Access Journals (Sweden)

    Andrew S Brown

    2016-06-01

    Full Text Available Legionella pneumophila is the causative agent of Legionnaires' disease, a potentially fatal lung infection. Alveolar macrophages support intracellular replication of L. pneumophila, however the contributions of other immune cell types to bacterial killing during infection are unclear. Here, we used recently described methods to characterise the major inflammatory cells in lung after acute respiratory infection of mice with L. pneumophila. We observed that the numbers of alveolar macrophages rapidly decreased after infection coincident with a rapid infiltration of the lung by monocyte-derived cells (MC, which, together with neutrophils, became the dominant inflammatory cells associated with the bacteria. Using mice in which the ability of MC to infiltrate tissues is impaired it was found that MC were required for bacterial clearance and were the major source of IL12. IL12 was needed to induce IFNγ production by lymphoid cells including NK cells, memory T cells, NKT cells and γδ T cells. Memory T cells that produced IFNγ appeared to be circulating effector/memory T cells that infiltrated the lung after infection. IFNγ production by memory T cells was stimulated in an antigen-independent fashion and could effectively clear bacteria from the lung indicating that memory T cells are an important contributor to innate bacterial defence. We also determined that a major function of IFNγ was to stimulate bactericidal activity of MC. On the other hand, neutrophils did not require IFNγ to kill bacteria and alveolar macrophages remained poorly bactericidal even in the presence of IFNγ. This work has revealed a cooperative innate immune circuit between lymphoid cells and MC that combats acute L. pneumophila infection and defines a specific role for IFNγ in anti-bacterial immunity.

  11. Fate of Bacterial and Viral Bio-Warfare Agents in Disinfected Waters

    Science.gov (United States)

    2010-10-01

    cultures, respectively. 2.3 Test Procedure. Prior to use, bacterial overnight cultures were pelleted via centrifugation (1,400 x g), washed once in...15 and 50 mL tubes Petri dish spreaders Microscope slides Disposable transfer pipettes Bunsen Burner Forceps 10 mL pipettes Pipetting device...Allow the slide to dry. 4. Heat-fix the bacteria to the slide by passing the slide through the flame of a Bunsen burner . 5. Apply crystal violet stain

  12. Anti-tumor promoting potential of selected spice ingredients with antioxidative and anti-inflammatory activities: a short review.

    Science.gov (United States)

    Surh, Young-Joon

    2002-08-01

    A wide variety of phenolic substances derived from spice possess potent antimutagenic and anticarcinogenic activities. Examples are curcumin, a yellow colouring agent, contained in turmeric (Curcuma longa L., Zingiberaceae), [6]-gingerol, a pungent ingredient present in ginger (Zingiber officinale Roscoe, Zingiberaceae) and capsaicin, a principal pungent principle of hot chili pepper (Capsicum annuum L, Solanaceae). The chemopreventive effects exerted by these phytochemicals are often associated with their antioxidative and anti-inflammatory activities. Cyclo-oxygenase-2 (COX-2) has been recognized as a molecular target of many chemopreventive as well as anti-inflammatory agents. Recent studies have shown that COX-2 is regulated by the eukaryotic transcription factor NF-kappaB. This short review summarizes the molecular mechanisms underlying chemopreventive effects of the aforementioned spice ingredients in terms of their effects on intracellular signaling cascades, particularly those involving NF-kappaB and mitogen-activated protein kinases.

  13. Assessment of the anti-angiogenic, anti-inflammatory and antinociceptive properties of ethyl vanillin.

    Science.gov (United States)

    Jung, Hyun-Joo; Song, Yun Seon; Kim, Kyunghoon; Lim, Chang-Jin; Park, Eun-Hee

    2010-02-01

    The present work aimed to assess novel pharmacological properties of ethyl vanillin (EVA) which is used as a flavoring agent for cakes, dessert, confectionary, etc. EVA exhibited an inhibitory activity in the chorioallantoic membrane angiogenesis. Anti-inflammatory activity of EVA was convinced using the two in vivo models, such as vascular permeability and air pouch models in mice. Antinociceptive activity of EVA was assessed using acetic acid-induced writhing model in mice. EVA suppressed production of nitric oxide and induction of inducible nitric oxide synthase in the lipopolysaccharide (LPS)-activated RAW264.7 macrophage cells. However, EVA could not suppress induction of cyclooxygenase-2 in the LPS-activated macrophages. EVA diminished reactive oxygen species level in the LPS-activated macrophages. EVA also suppressed enhanced matrix metalloproteinase-9 gelatinolytic activity in the LPSactivated RAW264.7 macrophage cells. EVA at the used concentrations couldn't diminish viability of the macrophage cells. Taken together, the anti-angiogenic, anti-inflammatory and anti-nociceptive properties of EVA are based on its suppressive effect on the production of nitric oxide possibly via decreasing the reactive oxygen species level.

  14. Conventional and nonconventional strategies for controlling bacterial contamination in fuel ethanol fermentations.

    Science.gov (United States)

    Ceccato-Antonini, Sandra Regina

    2018-05-25

    Ethanol bio-production in Brazil has some unique characteristics that inevitably lead to bacterial contamination, which results in the production of organic acids and biofilms and flocculation that impair the fermentation yield by affecting yeast viability and diverting sugars to metabolites other than ethanol. The ethanol-producing units commonly give an acid treatment to the cells after each fermentative cycle to decrease the bacterial number, which is not always effective. An alternative strategy must be employed to avoid bacterial multiplication but must be compatible with economic, health and environmental aspects. This review analyzes the issue of bacterial contamination in sugarcane-based fuel ethanol fermentation, and the potential strategies that may be utilized to control bacterial growth besides acid treatment and antibiotics. We have emphasized the efficiency and suitability of chemical products other than acids and those derived from natural sources in industrial conditions. In addition, we have also presented bacteriocins, bacteriophages, and beneficial bacteria as non-conventional antimicrobial agents to mitigate bacterial contamination in the bioethanol industry.

  15. Biological Control of Bacterial Wilt in South East Asia

    Directory of Open Access Journals (Sweden)

    Triwidodo Arwiyanto

    2014-12-01

    Full Text Available Bacterial wilt disease caused by Ralstonia solanacearum destroys many crops of different plant families in South East Asia despite many researches about the disease, and the availability of developed control method in other parts of the world. There is no chemical available for the bacterial wilt pathogen and biological control is then chosen as an alternative to save the crops. Most of the biological control studies were based on antagonism between biological control agent and the pathogen. The biological control agents were intended to reduce the initial inoculum of the pathogen. The effort to minimize the initial inoculum of the pathogen by baiting with the use of hypersensitive host-plant was only reliable when conducted in the greenhouse experiments. Various microorganisms have been searched as possible biological control agents, for instance avirulent form of the pathogen, soil or rhizosphere bacteria (Bacillus spp. and fluorescent pseudomonads, actinomycetes (Streptomyces spp., yeast (Pichia uillermondii, Candida ethanolica, and a consortium of microorganisms known as effective microorganisms (EM. None of these biological control agents has been used in field application and they need further investigation in order to effectively control bacterial wilt. Opportunities and challenges in developing biological control to combat bacterial wilt are discussed in the paper. Penyakit layu bakteri yang disebabkan oleh Ralstonia solanacearum menghancurkan banyak tanaman dalam famili yang berbeda di Asia Tenggara meskipun telah banyak penelitian tentang metode pengendaliannya. Penyakit ini sulit dikendalikan karena banyaknya variabilitas patogen dan belum tersedianya sumber ketahanan yang mapan. Di samping itu, sampai saat ini belum ada bahan kimia yang tersedia untuk patogen layu bakteri ini sehingga pengendalian biologi kemudian dipilih sebagai cara alternatif untuk menyelamatkan tanaman. Sebagian besar penelitian pengendalian biologi didasarkan

  16. Anti-tumor and anti-angiogenic ergosterols from Ganoderma lucidum

    Science.gov (United States)

    Chen, Shaodan; Yong, Tianqiao; Zhang, Yifang; Su, Jiyan; Jiao, Chunwei; Xie, Yizhen

    2017-10-01

    This study was carried out to isolate chemical constituents from the lipid enriched fraction of Ganoderma lucidum extract and to evaluate their anti-proliferative effect on cancer cell lines and human umbilical vein endothelial cells. Ergosterol derivatives (1-14) were isolated from the lipid enriched fraction of G. lucidum. Their structures were established on the basis of spectroscopic analyses or by comparison of mass and NMR spectral data with those reported previously. Amongst, compound 1 was isolated and identified as a new compound. All the compounds were evaluated for their inhibitory effect on tumor cells and human umbilical vein endothelial cells in vitro. Compounds 9-13 displayed inhibitory activity against two tumor cell lines and human umbilical vein endothelial cells, which indicated that these four compounds had both anti-tumor and anti-angiogenesis activities. Compound 2 had significant selective inhibition against two tumor cell lines, while 3 exhibited selective inhibition against human umbilical vein endothelial cells. The structure–activity relationships for inhibiting human HepG2 cells were revealed by 3D-QASR. Ergosterol content in different parts of the raw material and products of G. lucidum was quantified. This study provides a basis for further development and utilization of ergosterol derivatives as natural nutraceuticals and functional food ingredients, or as source of new potential antitumor or anti-angiogenesis chemotherapy agent.

  17. [Biological agents].

    Science.gov (United States)

    Amano, Koichi

    2009-03-01

    There are two types of biological agents for the treatment of rheumatoid arthritis (RA); monoclonal antibodies and recombinant proteins. Among the latter, etanercept, a recombinant fusion protein of soluble TNF receptor and IgG was approved in 2005 in Japan. The post-marketing surveillance of 13,894 RA patients revealed the efficacy and safety profiles of etanercept in the Japanese population, as well as overseas studies. Abatacept, a recombinant fusion protein of CTLA4 and IgG, is another biological agent for RA. Two clinical trials disclosed the efficacy of abatacept for difficult-to-treat patients: the AIM for MTX-resistant cases and the ATTAIN for patients who are resistant to anti-TNF. The ATTEST trial suggested abatacept might have more acceptable safety profile than infliximab. These biologics are also promising for the treatment of RA for not only relieving clinical symptoms and signs but retarding structural damage.

  18. Melatonin as an Anti-Inflammatory Agent Modulating Inflammasome Activation

    Directory of Open Access Journals (Sweden)

    Gaia Favero

    2017-01-01

    Full Text Available Inflammation may be defined as the innate response to harmful stimuli such as pathogens, injury, and metabolic stress; its ultimate function is to restore the physiological homeostatic state. The exact aetiology leading to the development of inflammation is not known, but a combination of genetic, epigenetic, and environmental factors seems to play an important role in the pathogenesis of many inflammation-related clinical conditions. Recent studies suggest that the pathogenesis of different inflammatory diseases also involves the inflammasomes, intracellular multiprotein complexes that mediate activation of inflammatory caspases thereby inducing the secretion of proinflammatory cytokines. Melatonin, an endogenous indoleamine, is considered an important multitasking molecule with fundamental clinical applications. It is involved in mood modulation, sexual behavior, vasomotor control, and immunomodulation and influences energy metabolism; moreover, it acts as an oncostatic and antiaging molecule. Melatonin is an important antioxidant and also a widespread anti-inflammatory molecule, modulating both pro- and anti-inflammatory cytokines in different pathophysiological conditions. This review, first, gives an overview concerning the growing importance of melatonin in the inflammatory-mediated pathological conditions and, then, focuses on its roles and its protective effects against the activation of the inflammasomes and, in particular, of the NLRP3 inflammasome.

  19. Toxic effects of non-steroidal anti-inflammatory agents in rats ...

    African Journals Online (AJOL)

    The toxicosis of some non-steroidal anti-inflammatory drugs, piroxicam, indomethacin, phenylbutazone, and aspirin, which occasionally are locally used in Nigeria as rodenticides have been evaluated in rats using changes in the serum biochemical and haematological parameters as indices of toxicity. In the study, no ...

  20. Therapeutic management of inflammatory bowel disease in real-life practice in the current era of anti-TNF agents: analysis of the French administrative health databases 2009-2014.

    Science.gov (United States)

    Kirchgesner, J; Lemaitre, M; Rudnichi, A; Racine, A; Zureik, M; Carbonnel, F; Dray-Spira, R

    2017-01-01

    Management of inflammatory bowel disease (IBD) has evolved in the last decade. To assess IBD therapeutic management, including treatment withdrawal and early treatment use in the current era of anti-TNF agents (anti-TNFs). All patients affiliated to the French national health insurance diagnosed with IBD were included from 2009 to 2013 and followed up until 31 December 2014. Medication uses, treatment sequences after introduction of thiopurine or anti-TNF monotherapies or both (combination therapy), surgical procedures and hospitalisations were assessed. A total of 210 001 patients were diagnosed with IBD [Crohn's disease (CD), 100 112; ulcerative colitis (UC), 109 889]. Five years after diagnosis, cumulative probabilities of anti-TNF monotherapy and combination therapy exposures were 33.8% and 18.3% in CD patients and 12.9% and 7.4% in UC patients, respectively. Among incident patients who received thiopurines or anti-TNFs, the first treatment was thiopurine in 69.1% of CD and 78.2% of UC patients. Among patients treated with anti-TNFs, 45.2% and 54.5% of CD patients and 38.2% and 39.9% of UC patients started monotherapy and combination therapy within 3 months after diagnosis, respectively; 31.3% of CD and 27.1% of UC incident patients withdrew from thiopurine or anti-TNFs for more than 3 months after their first course of treatment. Five years after diagnosis, the cumulative risks of first intestinal resection in CD patients and colectomy in UC patients were 11.9% and 5.7%, respectively. Step-up approach remains the predominant strategy, while exposure to anti-TNFs is high. Surgery rates are low. Treatment withdrawal in IBD is more common than expected. © 2016 John Wiley & Sons Ltd.