Sample records for anti-atherogenic enzymes lcat

  1. Role of sphingosine 1-phosphate in anti-atherogenic actions of high-density lipoprotein

    Institute of Scientific and Technical Information of China (English)

    Koichi; Sato; Fumikazu; Okajima


    The reverse cholesterol transport mediated by highdensity lipoprotein(HDL)is an important mechanism for maintaining body cholesterol,and hence,the crucial anti-atherogenic action of the lipoprotein.Recent studies,however,have shown that HDL exerts a variety of anti-inflammatory and anti-atherogenic actions independently of cholesterol metabolism.The present review provides an overview of the roles of sphingosine 1-phosphate(S1P)/S1P receptor and apolipoprotein A-I/ scavenger receptor class B typeⅠsystems in the antiatherogenic HDL actions.In addition,the physiological significance of the existence of S1P in the HDL particles is discussed.

  2. Date (Phoenix dactylifera L.) fruit soluble phenolics composition and anti-atherogenic properties in nine Israeli varieties. (United States)

    Borochov-Neori, Hamutal; Judeinstein, Sylvie; Greenberg, Amnon; Volkova, Nina; Rosenblat, Mira; Aviram, Michael


    Date (Phoenix dactylifera L.) fruit soluble phenolics composition and anti-atherogenic properties were examined in nine diverse Israeli grown varieties. Ethanol and acetone extracts of 'Amari', 'Barhi', 'Deglet Noor', 'Deri', 'Hadrawi', 'Hallawi', 'Hayani', 'Medjool', and 'Zahidi' fruit were analyzed for phenolics composition by RP-HPLC and tested for anti-atherogenicity by measuring their effects on LDL susceptibility to copper ion- and free radical-induced oxidation, and on serum-mediated cholesterol efflux from macrophages. The most frequently detected phenolics were hydroxybenzoates, hydroxycinnamates, and flavonols. Significant differences in phenolics composition were established between varieties as well as extraction solvents. All extracts inhibited LDL oxidation, and most extracts also stimulated cholesterol removal from macrophages. Considerable varietal differences were measured in the levels of the bioactivities. Also, acetone extracts exhibited a significantly higher anti-atherogenic potency for most varieties. The presence of soluble ingredients with anti-atherogenic capacities in dates and the possible involvement of phenolics are discussed.

  3. Anti-atherogenic peptide Ep1.B derived from apolipoprotein E induces tolerogenic plasmacytoid dendritic cells. (United States)

    Bellemore, S M; Nikoopour, E; Au, B C Y; Krougly, O; Lee-Chan, E; Haeryfar, S M; Singh, B


    Tolerogenic dendritic cells (DCs) play a critical role in the induction of regulatory T cells (Tregs ), which in turn suppress effector T cell responses. We have previously shown the induction of DCs from human and mouse monocytic cell lines, mouse splenocytes and human peripheral blood monocytes by a novel apolipoprotein E (ApoE)-derived self-peptide termed Ep1.B. We also showed that this C-terminal region 239-252 peptide of ApoE has strong anti-atherogenic activity and reduces neointimal hyperplasia after vascular surgery in rats and wild-type as well as ApoE-deficient mice. In this study, we explored the phenotype of DC subset induced by Ep1.B from monocytic cell lines and from the bone marrow-derived cells. We found Ep1.B treatment induced cells that showed characteristics of plasmacytoid dendritic cells (pDC). We explored in-vitro and in-vivo effects of Ep1.B-induced DCs on antigen-specific T cell responses. Upon in-vivo injection of these cells with antigen, the subsequent ex-vivo antigen-specific proliferation of lymph node cells and splenocytes from recipient mice was greatly reduced. Our results suggest that Ep1.B-induced pDCs promote the generation of Treg cells, and these cells contribute to the induction of peripheral tolerance in adaptive immunity and potentially contribute its anti-atherogenic activity.

  4. Anti-atherogenic effect of hydrogen sulfide by over-expression of cystathionine gamma-lyase (CSE gene.

    Directory of Open Access Journals (Sweden)

    Sau Ha Cheung

    Full Text Available Hydrogen sulfide (H2S is an important gaseous signaling molecule that functions in physiological and pathological conditions, such as atherosclerosis. H2S dilates vessels and therefore has been suggested as an anti-atherogenic molecule. Since cystathionine gamma-lyase (CSE enzyme is responsible for producing H2S in the cardiovascular system, we hypothesized that up-regulation of CSE expression in vivo with preservation of H2S bioactivity can slow down plaque formation and, can serve as a therapeutic strategy against atherosclerosis. In this study, C57BL/6 wild type mice (WT, ApoE knockout mice (KO and transgenic ApoE knockout mice overexpressing CSE (Tg/KO at four weeks of age were weaned. They were then fed with either normal or atherogenic diet for 12 weeks. At week 16, serial plasma lipid levels, body weight, and blood pressure were measured prior to euthanization of the mice and the size of atherosclerotic plaques at their aortic roots was measured. Tg/KO mice showed an increase in endogenous H2S production in aortic tissue, reduced atherosclerotic plaque sizes and attenuation in plasma lipid profiles. We also showed an up-regulation in plasma glutathionine peroxidase that could indicate reduced oxidative stress. Furthermore, there was an increase in expression of p-p53 and down regulation of inflammatory nuclear factor-kappa B (NF-κB in aorta. To conclude, alteration of endogenous H2S by CSE gene activation was associated with reduced atherosclerosis in ApoE-deficient mice. Up-regulation of CSE/H2S pathway attenuates atherosclerosis and this would be a potential target for therapeutic intervention against its formation.

  5. An experimental evaluation of the anti-atherogenic potential of the plant, Piper betle, and its active constitutent, eugenol, in rats fed an atherogenic diet. (United States)

    Venkadeswaran, Karuppasamy; Thomas, Philip A; Geraldine, Pitchairaj


    Hypercholesterolemia is a major risk factor for systemic atherosclerosis and subsequent cardiovascular disease. Lipoperoxidation-mediated oxidative damage is believed to contribute strongly to the progression of atherogenesis. In the current investigation, putative anti-atherogenic and antioxidative properties of an ethanolic extract of Piper betle and of its active constituent, eugenol, were sought in an experimental animal model of chronic hypercholesterolemia. Atherogenic diet-fed rats that received either Piper betle extract orally (500mg/kg b.wt) or eugenol orally (5mg/kg b.wt) for 15days (commencing 30days after the atherogenic diet had been started) exhibited the following variations in different parameters, when compared to atherogenic diet-fed rats that received only saline: (1) significantly lower mean levels of total cholesterol, triglycerides, low-density lipoprotein cholesterol and very low density lipoprotein cholesterol in both serum and hepatic tissue samples; (2) lower mean serum levels of aspartate amino-transferase, alanine amino-transferase, alkaline phosphatase, lactate dehydrogenase and lipid-metabolizing enzymes (lipoprotein lipase, 3-hydroxy-3-methyl-glutaryl-CoA reductase; (3) significantly lower mean levels of enzymatic antioxidants (catalase, superoxide dismutase, glutathione peroxidase, glutathione-S-transferase) and non-enzymatic antioxidants (reduced glutathione, vitamin C and vitamin E) and significantly higher mean levels of malondialdehyde in haemolysate and hepatic tissue samples. Histopathological findings suggested a protective effect of the Piper betle extract and a more pronounced protective effect of eugenol on the hepatic and aortic tissues of atherogenic diet-fed (presumed atherosclerotic) rats. These results strongly suggest that the Piper betle extract and its active constituent, eugenol, exhibit anti-atherogenic effects which may be due to their anti-oxidative properties.

  6. Increased plasma cholesterol esterification by LCAT reduces diet-induced atherosclerosis in SR-BI knockout mice. (United States)

    Thacker, Seth G; Rousset, Xavier; Esmail, Safiya; Zarzour, Abdalrahman; Jin, Xueting; Collins, Heidi L; Sampson, Maureen; Stonik, John; Demosky, Stephen; Malide, Daniela A; Freeman, Lita; Vaisman, Boris L; Kruth, Howard S; Adelman, Steven J; Remaley, Alan T


    LCAT, a plasma enzyme that esterifies cholesterol, has been proposed to play an antiatherogenic role, but animal and epidemiologic studies have yielded conflicting results. To gain insight into LCAT and the role of free cholesterol (FC) in atherosclerosis, we examined the effect of LCAT over- and underexpression in diet-induced atherosclerosis in scavenger receptor class B member I-deficient [Scarab(-/-)] mice, which have a secondary defect in cholesterol esterification. Scarab(-/-)×LCAT-null [Lcat(-/-)] mice had a decrease in HDL-cholesterol and a high plasma ratio of FC/total cholesterol (TC) (0.88 ± 0.033) and a marked increase in VLDL-cholesterol (VLDL-C) on a high-fat diet. Scarab(-/-)×LCAT-transgenic (Tg) mice had lower levels of VLDL-C and a normal plasma FC/TC ratio (0.28 ± 0.005). Plasma from Scarab(-/-)×LCAT-Tg mice also showed an increase in cholesterol esterification during in vitro cholesterol efflux, but increased esterification did not appear to affect the overall rate of cholesterol efflux or hepatic uptake of cholesterol. Scarab(-/-)×LCAT-Tg mice also displayed a 51% decrease in aortic sinus atherosclerosis compared with Scarab(-/-) mice (P esterification by LCAT is atheroprotective, most likely through its ability to increase HDL levels and decrease pro-atherogenic apoB-containing lipoprotein particles.

  7. An apoA-I mimetic peptide increases LCAT activity in mice through increasing HDL concentration

    Directory of Open Access Journals (Sweden)

    Xun Chen, Charlotte Burton, Xuelei Song, Lesley Mcnamara, Annunziata Langella, Simona Cianetti, Ching H. Chang, Jun Wang


    Full Text Available Lecithin cholesterol acyltransferase (LCAT plays a key role in the reverse cholesterol transport (RCT process by converting cholesterol to cholesteryl ester to form mature HDL particles, which in turn deliver cholesterol back to the liver for excretion and catabolism. HDL levels in human plasma are negatively correlated with cardiovascular risk and HDL functions are believed to be more important in atheroprotection. This study investigates whether and how D-4F, an apolipoprotein A-I (apoA-I mimetic peptide, influences LCAT activity in the completion of the RCT process. We demonstrated that the apparent rate constant value of the LCAT enzyme reaction gives a measure of LCAT activity and determined the effects of free metals and a reducing agent on LCAT activity, showing an inhibition hierarchy of Zn2+>Mg2+>Ca2+ and no inhibition with β-mercaptoethanol up to 10 mM. We reconstituted nano-disc particles using apoA-I or D-4F with phospholipids. These particles elicited good activity in vitro in the stimulation of cholesterol efflux from macrophages through the ATP-binding cassette transporter A1 (ABCA1. With these particles we studied the LCAT activity and demonstrated that D-4F did not activate LCAT in vitro. Furthermore, we have done in vivo experiments with apoE-null mice and demonstrated that D-4F (20 mg/kg body weight, once daily subcutaneously increased LCAT activity and HDL level as well as apoA-I concentration at 72 hours post initial dosing. Finally, we have established a correlation between HDL concentration and LCAT activity in the D-4F treated mice.

  8. Antioxidant and anti-atherogenic activities of three Piper species on atherogenic diet fed hamsters. (United States)

    Agbor, Gabriel A; Vinson, Joe A; Sortino, Julianne; Johnson, Robert


    Atherogenic diet is known to induce high plasma lipid concentration, oxidative stress and early atherosclerosis. Antioxidants have potentials to counter the effect of atherogenic diet. The present research aims at evaluating the antioxidant and anti-atherosclerotic activities of three Piper species (Piper guineense, Piper nigrum and Piper umbellatum) on atherogenic diet fed hamsters. Hamsters divided into 8 groups: normal control, atherosclerotic control and six test groups. The normal animals fed normal rodent chow, the atherosclerotic control animals fed the same rodent chow supplemented with 0.2% cholesterol and 10% coconut oil (high cholesterol diet). The 6 test groups' animals fed same diet as the atherosclerotic control group but with additional supplementation of 2 graded doses (1 and 0.25 mg/kg body weight, o.p.) of plant extracts for 12 weeks. The atherogenic diet induced a collapse of the erythrocyte antioxidant defense system (significant decrease in superoxide dismutase, catalase and glutathione peroxidase activities). Atherogenic diet also induced an increase in plasma total cholesterol, triglyceride, thiobarbituric acid reactive substances (TBARS), oxidation of low density lipoprotein cholesterol (LDL) and accumulation of foam cells in the aorta a hall mark for atherosclerosis. Administration of the Piper species prevented the collapse of the antioxidant system and the increase of plasma parameters maintaining them towards normality. The Piper species also prevented LDL oxidation by increasing the time (lag time) for its oxidation. The results suggest that these Piper species have significant antioxidant and anti-atherogenic effect against atherogenic diet intoxication.

  9. Anti-Atherogenic Activity of Ethanolic Fraction of Terminalia arjuna Bark on Hypercholesterolemic Rabbits

    Directory of Open Access Journals (Sweden)

    Saravanan Subramaniam


    Full Text Available Atherosclerosis which results from gradual deposition of lipids in medium and large arteries is a leading cause of mortality worldwide. Terminalia arjuna is a herb of Combretaceae family which contains hypolipidemic compounds and flavonoids with high antioxidative properties. This study was conducted to determine the effect of ethanolic fraction of T. arjuna on blood lipids and atherosclerosis in rabbits fed with high fat diet (HFD. Twenty New Zealand rabbits of either sex were randomly divided into five groups: the first two were normal diet group and HFD (21% fat group and the remaining three groups received high cholesterol diet supplemented with standard drug (Atorvastatin 10 mg kg−1 body weight, T. arjuna ethanolic fraction (100 and 200 mg kg−1 body weight, respectively. The concentration of total cholesterol (TC, low density lipoprotein (LDL cholesterol, triglycerides (TGs, very low density lipoprotein (VLDL cholesterol and high density lipoprotein (HDL cholesterol was determined in rabbits at the start of the experiment, at the 14th, 30th days and at the end of the study. Anti-atherogenic index was calculated from the lipid profile of the rabbits before sacrifice. At the end of the experimental period, the aorta was removed for assessment of atherosclerotic plaques. Results show that T. arjuna significantly decreases TC, LDL and TG levels and increases HDL and lessens atherosclerotic lesion in aorta (P < .05. Hence T. arjuna extract can effectively prevent the progress of atherosclerosis. This is likely due to the effect of T. arjuna on serum lipoproteins and its antioxidant and anti-inflammatory properties.

  10. High-density lipoprotein affects antigen presentation by interfering with lipid raft: a promising anti-atherogenic strategy. (United States)

    Wang, S-H; Yuan, S-G; Peng, D-Q; Zhao, S-P


    Atherosclerosis is a chronic inflammatory disease. Immunomodulation of atherosclerosis emerges as a promising approach to prevention and treatment of this widely prevalent disease. The function of high-density lipoprotein (HDL) to promote reverse cholesterol transport may explain the ability of its protection against atherosclerosis. Findings that HDL and apolipoprotein A-I (apoA-I) inhibited the ability of antigen presenting cells (APCs) to stimulate T cells might be attributed to lipid raft, a cholesterol-rich microdomain exhibiting functional properties depending largely upon its lipid composition. Thus, modulating cholesterol in lipid raft may provide a promising anti-atherogenic strategy.

  11. A study of anti-hyperlipidemia, hypolipedimic and anti-atherogenic activity of fruit of emblica officinalis (amla in high fat fed albino rats

    Directory of Open Access Journals (Sweden)

    Jeevangi Santoshkumar, Manjunath S, Sakhare Pranavkumar M


    Full Text Available : Emblica Officinalis (Amla, belonging to the genus, Phyllanthus emblica is widely used for medicinal purpose. Its fruits have been used traditionally as a hypolipidemic. Objectives: The present study was aimed to evaluate hypolipedimic and anti-atherogenic activity of fruit of Emblica officinalis in high fat fed albino rats. Materials and Methods: For study of anti-hyperlipidemic, hypolipidemic, and anti-atherogenic activity. 5 groups of 6 animals in each received normal saline, E. Officinalis powder, high fat diet, High fat diet plus E. Officinalis powder both and Atorvastatin respectively for 8 weeks. Hyperlipidemia was induced by feeding animals with high fat diet per orally, consisting of coconut oil and vanaspati ghee, daily ad libitum. At the end of the study, blood samples of the animals were sent for the estimation of the lipid profile and effects of test drug studied by comparing levels of Total Cholesterol, Triglycerides, HDL, LDL, and Atherogenic index. The statistical significance between groups was analysed by using one way ANOVA, followed by Dunnet’s multiple comparison test. Results: Fruit of Amla showed significant anti-hyperlipidemic, hypolipidemic, and anti-atherogenic effect. All these effects may contribute to its anti-atherogenic activity. Conclusion: Present study revealed the antihyperlipidemic, hypolipidemic, and anti-atherogenic effect of Amla fruit powder and can be safely used in the treatment of mild to moderate cases of hyperlipidemia considering its easy availability, cost effectiveness, and other beneficial effects.

  12. Anti-atherogenic properties of Deglet Noor Date seeds (Phoenix dactylifera) Methanol extract on Diet-Induced Hypercholesterolemic Rats (United States)

    Saryono, S.; Eliyan, J.; Herdiati, D.; Khikmatullah, AA; Silvana, CP; Adi, HP


    This is the first study to investigate the completely anti-atherogenic effect of Deglet Noor Date seeds methanol extract administration on diet-induced hypercholesterolemic rats. About 24 male Wistar rats were divided into 6 groups. The normal control (NC) group, Hypercholesterolemic Control (HC) group was given high cholesterol diet, and Simvastatin Control (SC) group was given 0.18 mg/200g simvastatin after high cholesterol diet induction. The treatment groups of T0.25, T0.5 and T1 were given supplementation of 0.25, 0.5 and 1 g/kg of dates seed extract after high cholesterol diet induction, respectively for 21 days. Blood was collected from orbitals plexus vein for plasma lipid profile analysis. The levels of Total Cholesterol (TC), Low-Density Lipoprotein (LDL) and Atherogenic Index (AI) values were significantly decreased (p<0.05) on diet-induced hypercholesterolemic rats after supplemented with date seeds extract (T0.25, T0.5 and T1) but not in Triglycerides (TG). Along with that, High Density Lipoprotein (HDL) level was significantly increased (p<0.05). However, the T1 group was the best anti-atherogenic activity in compared to other groups. Results showed that plasma lipid profile was significant to get better after supplemented with date seeds extract.

  13. Molecular phylogeny of rodents, with special emphasis on murids: evidence from nuclear gene LCAT. (United States)

    Robinson, M; Catzeflis, F; Briolay, J; Mouchiroud, D


    Phylogenetic relationships among 19 extant species of rodents, with special emphasis on rats, mice, and allied Muroidea, were studied using sequences of the nuclear protein-coding gene LCAT (lecithin:cholesterol acyltransferase), an enzyme of cholesterol metabolism. Analysis of 705 base pairs from the exonic regions of LCAT confirmed known groupings in and around Muroidea. Strong support was found for the families Sciuridae (squirrel and marmot) and Gliridae (dormice) and for suprafamilial taxa Muroidea and Caviomorpha (guinea pig and allies). Within Muroidea, the first branching leads to the fossorial mole rats Spalacinae and bamboo rats Rhizomyinae. The other Muroidea appear as a polytomy from which are issued Gerbillinae (gerbils), Murinae (rats and mice), Sigmodontinae (New World cricetids), Cricetinae (hamsters), and Arvicolinae (voles). Evidence from LCAT sequences agrees with that from a number of previous molecular and morphological studies, both concerning branching orders inside Muroidea and the bush-like radiation of rodent suprafamilial taxa (caviomorphs, sciurids, glirids, muroids), thus suggesting that this nuclear gene is an appropriate candidate for addressing questions of rodents relationships.

  14. Lipoprotein X Causes Renal Disease in LCAT Deficiency. (United States)

    Ossoli, Alice; Neufeld, Edward B; Thacker, Seth G; Vaisman, Boris; Pryor, Milton; Freeman, Lita A; Brantner, Christine A; Baranova, Irina; Francone, Nicolás O; Demosky, Stephen J; Vitali, Cecilia; Locatelli, Monica; Abbate, Mauro; Zoja, Carlamaria; Franceschini, Guido; Calabresi, Laura; Remaley, Alan T


    Human familial lecithin:cholesterol acyltransferase (LCAT) deficiency (FLD) is characterized by low HDL, accumulation of an abnormal cholesterol-rich multilamellar particle called lipoprotein-X (LpX) in plasma, and renal disease. The aim of our study was to determine if LpX is nephrotoxic and to gain insight into the pathogenesis of FLD renal disease. We administered a synthetic LpX, nearly identical to endogenous LpX in its physical, chemical and biologic characteristics, to wild-type and Lcat-/- mice. Our in vitro and in vivo studies demonstrated an apoA-I and LCAT-dependent pathway for LpX conversion to HDL-like particles, which likely mediates normal plasma clearance of LpX. Plasma clearance of exogenous LpX was markedly delayed in Lcat-/- mice, which have low HDL, but only minimal amounts of endogenous LpX and do not spontaneously develop renal disease. Chronically administered exogenous LpX deposited in all renal glomerular cellular and matrical compartments of Lcat-/- mice, and induced proteinuria and nephrotoxic gene changes, as well as all of the hallmarks of FLD renal disease as assessed by histological, TEM, and SEM analyses. Extensive in vivo EM studies revealed LpX uptake by macropinocytosis into mouse glomerular endothelial cells, podocytes, and mesangial cells and delivery to lysosomes where it was degraded. Endocytosed LpX appeared to be degraded by both human podocyte and mesangial cell lysosomal PLA2 and induced podocyte secretion of pro-inflammatory IL-6 in vitro and renal Cxl10 expression in Lcat-/- mice. In conclusion, LpX is a nephrotoxic particle that in the absence of Lcat induces all of the histological and functional hallmarks of FLD and hence may serve as a biomarker for monitoring recombinant LCAT therapy. In addition, our studies suggest that LpX-induced loss of endothelial barrier function and release of cytokines by renal glomerular cells likely plays a role in the initiation and progression of FLD nephrosis.

  15. Single Nucleotide Polymorphisms (SNPs in Exon 6 of Lecithin Cholesterol Acyltransferase (LCAT Gene in Indonesian Local Sheep

    Directory of Open Access Journals (Sweden)



    Full Text Available Lecithin cholesterol acyltransferase (LCAT is a soluble enzyme that converts cholesterol and lecithin to cholesteryl esters and lysolecithins on the surface of high density lipoprotein and plays an important role in lipoprotein metabolism. The research was aimed to explore single nucleotide polymorphisms of LCAT gene in Indonesian local sheep. A total of 118 genomic DNA of Indonesian local sheep were used in this research, consisted of Sumatera Thin Tail (43 heads, Garut (19 heads, Javanese Thin Tail (17 heads, Javanese Fat Tail (6 heads, Rote Island (7 heads, Kissar (7 heads, Sumbawa (10 heads, and Lembah Palu (9 heads. Polymerase chain reaction was used to amplify genomic DNA for exon 6 (250 bp and direct sequencing method was used to identify polymorphism sequences. The sequences were analyzed with BioEdit and MEGA 5.2 software. The BLAST sequence was obtained from Gene Bank GQ 150556.1. The results showed three novel SNPs, i.e. c.742C>T, c.770 T>A and c.882C>T. Substitution of cytosine to thymine c.742 is a synonymous mutation; thymine to adenine c.770 and cytosine to thymine c.882 are non-synonymous mutations. Polymorphisms of LCAT gene exon 6 was found in Sumatera Thin Tail, Javanese Thin Tail, Javanese Fat Tail, Garut, Lembah Palu, and Rote Island.

  16. Anti-atherogenic effect of trivalent chromium-loaded CPMV nanoparticles in human aortic smooth muscle cells under hyperglycemic conditions in vitro (United States)

    Ganguly, Rituparna; Wen, Amy M.; Myer, Ashley B.; Czech, Tori; Sahu, Soumyadip; Steinmetz, Nicole F.; Raman, Priya


    Atherosclerosis, a major macrovascular complication associated with diabetes, poses a tremendous burden on national health care expenditure. Despite extensive efforts, cost-effective remedies are unknown. Therapies for atherosclerosis are challenged by a lack of targeted drug delivery approaches. Toward this goal, we turn to a biology-derived drug delivery system utilizing nanoparticles formed by the plant virus, Cowpea mosaic virus (CPMV). The aim herein is to investigate the anti-atherogenic potential of the beneficial mineral nutrient, trivalent chromium, loaded CPMV nanoparticles in human aortic smooth muscle cells (HASMC) under hyperglycemic conditions. A non-covalent loading protocol is established yielding CrCl3-loaded CPMV (CPMV-Cr) carrying 2000 drug molecules per particle. Using immunofluorescence microscopy, we show that CPMV-Cr is readily taken up by HASMC in vitro. In glucose (25 mM)-stimulated cells, 100 nM CPMV-Cr inhibits HASMC proliferation concomitant to attenuated proliferating cell nuclear antigen (PCNA, proliferation marker) expression. This is accompanied by attenuation in high glucose-induced phospho-p38 and pAkt expression. Moreover, CPMV-Cr inhibits the expression of pro-inflammatory cytokines, transforming growth factor-β (TGF-β) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), in glucose-stimulated HASMCs. Finally glucose-stimulated lipid uptake is remarkably abrogated by CPMV-Cr, revealed by Oil Red O staining. Together, these data provide key cellular evidence for an atheroprotective effect of CPMV-Cr in vascular smooth muscle cells (VSMC) under hyperglycemic conditions that may promote novel therapeutic ventures for diabetic atherosclerosis.

  17. LCAT deficiency in mice is associated with a diminished adrenal glucocorticoid function

    NARCIS (Netherlands)

    Hoekstra, Menno; Korporaal, Suzanne J. A.; van der Sluis, Ronald J.; Hirsch-Reinshagen, Veronica; Bochem, Andrea E.; Wellington, Cheryl L.; Van Berkel, Theo J. C.; Kuivenhoven, Jan Albert; Van Eck, Miranda


    containing lipoproteins can provide cholesterol for synthesis of glucocorticoids. Here we assessed adrenal glucocorticoid function in LCAT knockout (KO) mice to determine the specific contribution of HDL-cholesteryl esters to adrenal glucocorticoid output in vivo. LCAT KO mice exhibit an 8-fold high

  18. Power Systems Life Cycle Analysis Tool (Power L-CAT).

    Energy Technology Data Exchange (ETDEWEB)

    Andruski, Joel; Drennen, Thomas E.


    The Power Systems L-CAT is a high-level dynamic model that calculates levelized production costs and tracks environmental performance for a range of electricity generation technologies: natural gas combined cycle (using either imported (LNGCC) or domestic natural gas (NGCC)), integrated gasification combined cycle (IGCC), supercritical pulverized coal (SCPC), existing pulverized coal (EXPC), nuclear, and wind. All of the fossil fuel technologies also include an option for including carbon capture and sequestration technologies (CCS). The model allows for quick sensitivity analysis on key technical and financial assumptions, such as: capital, O&M, and fuel costs; interest rates; construction time; heat rates; taxes; depreciation; and capacity factors. The fossil fuel options are based on detailed life cycle analysis reports conducted by the National Energy Technology Laboratory (NETL). For each of these technologies, NETL's detailed LCAs include consideration of five stages associated with energy production: raw material acquisition (RMA), raw material transport (RMT), energy conversion facility (ECF), product transportation and distribution (PT&D), and end user electricity consumption. The goal of the NETL studies is to compare existing and future fossil fuel technology options using a cradle-to-grave analysis. The NETL reports consider constant dollar levelized cost of delivered electricity, total plant costs, greenhouse gas emissions, criteria air pollutants, mercury (Hg) and ammonia (NH3) emissions, water withdrawal and consumption, and land use (acreage).

  19. Characteristic, polymorphism and expression distribution of LCAT gene in a Mongolian gerbil model for hyperlipidemia. (United States)

    Liu, Yue huan; Wu, Jiu sheng; Wang, Zhi yuan; Yu, Chen huan; Ying, Hua zhong; Xu, Ning ying


    This study aims to evaluate the genetic basis and activity of lecithin cholesterol acyltransferase (LCAT) in a novel Mongolian gerbil model for hyperlipidemia. Gerbils may be susceptible to high fat and cholesterol (HF/HC) diets, which can rapidly lead to the development of hyperlipidemia. Approximately 10-30% of gerbils that are over 8months old and fed controlled diets spontaneously develop hyperlipidemia. Using the HF/HC diet model, we detected triglycerides (TG), total cholesterol (TC), HDL (high density lipoprotein)-C, LDL (low density lipoprotein)-C and LCAT in both old (>8months) and young gerbils. The TC and HDL-C levels were two times higher in old gerbils compared with young gerbils (Phyperlipidemia. The entire LCAT gene was cloned by splicing sequences of RACE (rapid amplification of cDNA ends) and nest-PCR products (AN: KC533867.1). The results showed that the 3683base pair gene consists of six exons and five introns. The LCAT protein consists of 444 amino acid (AA) residues, which are analogous to the human LCAT gene, and includes 24 signal peptide AA and 420 mature protein AA. Expression of LCAT was detected in the kidney, spleen and adrenal tissue, apart from the liver, by immunohistochemistry. The abundance of the protein was greater in the older group compared with the control group. Polymorphisms were analyzed by PCR-SSCP (PCR-single-strand conformation polymorphism) but none were found in 444 animals of the ZCLA closed population (a Chinese cultured laboratory gerbil population).

  20. Omega-3 fatty acids, inflammation and angiogenesis: nutrigenomic effects as an explanation for anti-atherogenic and anti-inflammatory effects of fish and fish oils. (United States)

    Massaro, Marika; Scoditti, Egeria; Carluccio, Maria Annunziata; Montinari, Maria Rosa; De Caterina, Raffaele


    Atherosclerosis is a dynamic process with inflammatory aspects playing a considerable pathogenetic role. In this process, the vascular endothelium is the key regulator of vascular function, promoting the maintenance of vascular homeostasis or the progression towards vascular disease. In the past 30 years, the dietary intake of omega-3 (n-3) polyunsaturated fatty acids - mainly derived from fish - has emerged as an important way to modify cardiovascular risk through beneficial effects on all stages of atherosclerosis. This review specifically focuses on the modulating effects of n-3 fatty acids on molecular events involved in early and late atherogenesis, including effects on endothelial expression of adhesion molecules, as well as pro-inflammatory and pro-angiogenic enzymes. By accumulating in endothelial membrane phospholipids, omega-3 fatty acids have been shown to decrease the transcriptional activation of several genes through a decreased activation of the nuclear factor-kappaB system of transcription factors. This occurs secondary to decreased generation of intracellular reactive oxygen species. This series of investigations configures a clear example of nutrigenomics, i.e. how nutrients may affect gene expression, ultimately affecting a wide spectrum of human diseases.

  1. Coincubation of PON1, APO A1, and LCAT increases the time HDL is able to prevent LDL oxidation. (United States)

    Hine, David; Mackness, Bharti; Mackness, Mike


    The inhibition of low-density lipoprotein (LDL) oxidation by high-density lipoprotein (HDL) is a major antiatherogenic property of this lipoprotein. This activity is due, in part, to HDL associated proteins. However, whether these proteins interact in the antioxidant activity of HDL is unknown. LDL was incubated with apolipoprotein A1 (apo A1), lecithin:cholesterol acyltransferase (LCAT), and paraoxonase-1 (PON1) alone or in combination, in the presence or absence of HDL under oxidizing conditions. LDL lipid peroxide concentrations were determined. Apo A1, LCAT, and PON1 all inhibit LDL oxidation in the absence of HDL and enhance the ability of HDL to inhibit LDL oxidation. Their effect was additive rather than synergistic; the combination of these proteins significantly enhanced the length of time LDL was protected from oxidation. This seemed to be due to the ability of PON1 to prevent the oxidative inactivation of LCAT. Apo A1, LCAT, and PON1 can all contribute to the antioxidant activity of HDL in vitro. The combination of apo A1, LCAT, and PON1 prolongs the time that HDL can prevent LDL oxidation, due, at least in part, to the prevention LCAT inactivation.

  2. 冠心病患者血浆LCAT水平与HDL亚类组成的关系%Relationship between plasma LCAT level and distribution of plasma HDL subclasses in patients with coronary heart disease

    Institute of Scientific and Technical Information of China (English)

    丁岚; 田英; 林国平; 陈志军; 张彩平; 王小鸥; 陈浩; 龙石银


    目的:探讨冠心病(coronary heart disease,CHD)患者血浆卵磷脂胆固醇酰基转移酶(lecithin cholesterol acyltransferase,LCAT)与高密度脂蛋白(high-density lipoprotein,HDL)亚类分布的关系.方法:采用双向电泳-免疫印记法分析了73例正常对照者和144例冠心病患者HDL亚类的组成、含量及分布特征,用酶联免疫法测定其LCAT浓度.冠心病患者按血浆LCAT浓度进行四分位数(19.22、36.39和55.32 mg/L)分层(Q1:LCAT< 19.22 mg/L; Q2:19.22≤LCAT< 36.39 mg/L; Q3:36.39≤LcAT< 55.32 mg/L; Q4:LCAT≥55.32 mg/L).结果:随着LCAT浓度的降低,冠心病患者血浆总胆固醇(TC)、甘油三酯(TG)水平和载脂蛋白B-100/A-I(apoB-100/A-I)比值呈增加趋势,高密度脂蛋白胆固醇(HDL-C)和apoA-I水平呈减少趋势.与最高四分位数组相比,第三、第二和最低四分位数组中preβ1-HDL含量增加,HDL2a和HDL2b含量减少(P<0.05或P<0.01).与正常TC组比较,高TC组LCAT浓度降低,且preβ1-HDL含量增加,HDL2a和HDL2b含量减少(P<0.01).直线相关和多元回归分析中发现,血浆LCAT水平与preβ1-HDL浓度呈负相关,与HDL2a和HDL2b浓度呈正相关.结论:CHD患者血浆HDL颗粒呈变小趋势,并且随着LCAT水平的降低,其HDL颗粒的变小程度更加明显.%AIM:To study the relationship between plasma level of lecithin cholesterol acyltransferase (LCAT) and the distribution of plasma high-density lipoprotein (HDL) subclasses in the patients with coronary heart disease (CHD).METHODS:The levels of plasma HDL subclasses in the healthy controls (n =73) and the CHD subjects (n =144) were determined by two-dimensional gel electrophoresis associated with immunodetection method.The plasma levels of LCAT was detected by enzyme-linked immunosorbent assay (ELISA).The CHD subjects were stratified according to quartiles of the plasma LCAT level (Q1:LCAT < 19.22 mg/L; Q2:19.22 ≤LCAT < 36.39 mg/L; Q3:36.39 ≤LCAT <55.32 mg/L; Q4:LCAT≥55.32 mg

  3. CFD Analysis of Flexible Thermal Protection System Shear Configuration Testing in the LCAT Facility (United States)

    Ferlemann, Paul G.


    This paper documents results of computational analysis performed after flexible thermal protection system shear configuration testing in the LCAT facility. The primary objectives were to predict the shear force on the sample and the sensitivity of all surface properties to the shape of the sample. Bumps of 0.05, 0.10,and 0.15 inches were created to approximate the shape of some fabric samples during testing. A large amount of information was extracted from the CFD solutions for comparison between runs and also current or future flight simulations.

  4. Very low levels of HDL cholesterol and atherosclerosis, a variable relationship – a review of LCAT deficiency

    Directory of Open Access Journals (Sweden)

    Savel J


    Full Text Available Julia Savel,1,2 Marianne Lafitte,1 Yann Pucheu,1,3 Vincent Pradeau,1 Antoine Tabarin,2,3 Thierry Couffinhal1,3,41Centre d'Exploration, de Prévention et de Traitement de l'Athérosclérose, Hôpital Cardiologique, 2Service d'endocrinologie, CHU Bordeaux, Université Bordeaux Segalen, Bordeaux, France; 3Université de Bordeaux Adaptation cardiovasculaire à l'ischémie, 4INSERM, Adaptation cardiovasculaire à l'ischémie, U1034, Pessac, FranceAbstract: A number of epidemiological and clinical studies have demonstrated that plasma high-density lipoprotein (HDL level is a strong inverse predictor of cardiovascular events. HDL is believed to retard the formation of atherosclerotic lesions by removing excess cholesterol from cells and preventing endothelial dysfunction. Lecithin cholesterol acyltransferase (LCAT plays a central role in the formation and maturation of HDL, and in the intravascular stage of reverse cholesterol transport: a major mechanism by which HDL modulates the development and progression of atherosclerosis. A defect in LCAT function would be expected to enhance atherosclerosis, by interfering with the reverse cholesterol transport step. As such, one would expect to find more atherosclerosis and cardiovascular events in LCAT-deficient patients. But this relationship is not always evident. In this review, we describe contradictory reports in the literature about cardiovascular risks in this patient population. We discuss the paradoxical finding of severe HDL deficiency and an absence of subclinical atherosclerosis in LCAT-deficient patients, which has been used to reject the hypothesis that HDL level is important in the protection against atherosclerosis. Furthermore, to illustrate this paradoxical finding, we present a case study of one patient, referred for evaluation of global cardiovascular risk in the presence of a low HDL cholesterol level, who was diagnosed with LCAT gene mutations.Keywords: atherosclerosis, LCAT function

  5. Enzyme (United States)

    Enzymes are complex proteins that cause a specific chemical change in all parts of the body. For ... use them. Blood clotting is another example of enzymes at work. Enzymes are needed for all body ...

  6. Efeito de tratamento cirúrgico sobre a atividade da enzima hepática lecitina: colesterol aciltransferase (LCAT na esquistossomose mansônica

    Directory of Open Access Journals (Sweden)

    Silva Cesar Augusto da


    Full Text Available A esquistossomose mansônica é uma doença tropical que constitui um importante problema de saúde pública, na Região Nordeste do Brasil, onde é encontrada em alta endemicidade. Essa parasitose tem o fígado como principal alvo de suas lesões histológicas, alterações fisiopatológicas e manifestações clínicas. Estudos anteriores reportam alterações no metabolismo lipídico associadas à forma hepatoesplênica da esquistosomose.Uma das principais alterações consiste na redução da atividade da enzima hepática LCAT, responsável pela esterificação do colesterol no plasma. Neste trabalho, avaliamos a atividade da LCAT no plasma de pacientes portadores da esquistossomose mansônica hepatoesplênica, os quais foram submetidos a esplenectomia e reimplante de parte de tecido do baço. A atividade enzimática da LCAT foi determinada com substrato radioativo. O [14C]colesterol livre e esterificado, formados por ação da LCAT, foram separados por cromatografia em camada delgada e a radioatividade das amostras foi contada em analisador de cintilação líquida. A atividade da LCAT nos pacientes submetidos a esplenectomia e reimplante de tecido do baço apresentou redução de 32 %, em relação ao grupo controle. Contudo, nos portadores da doença que não foram submetidos ao procedimento cirúrgico a redução na atividade da LCAT foi o dobro (64% da observada em pacientes esplenectomizados e com reimplante de parte do tecido do baço. Esses resultados sugerem haver uma melhora significativa no efeito da forma grave da esquistossomose mansônica sobre a atividade da LCAT.

  7. Antioxidant and anti-atherogenic activities of olive oil phenolics. (United States)

    Turner, Rufus; Etienne, Nicolas; Alonso, Maria Garcia; de Pascual-Teresa, Sonia; Minihane, Anne Marie; Weinberg, Peter D; Rimbach, Gerald


    The aim of the current study was to investigate the antioxidant and cellular activity of the olive oil phenolics oleuropein, tyrosol, hydroxytyrosol, and homovanillic alcohol (which is also a major metabolite of hydroxytyrosol). Well-characterized chemical and biochemical assays were used to assess the antioxidant potential of the compounds. Further experiments investigated their influence in cell culture on cytotoxic effects of hydrogen peroxide and oxidized low-density lipoprotein (LDL), nitric oxide production by activated macrophages, and secretion of chemoattractant and cell adhesion molecules by the endothelium. Inhibitory influences on in vitro platelet aggregation were also measured. The antioxidant assays indicated that homovanillic alcohol was a significantly more potent antioxidant than the other phenolics, both in chemical assays and in prolonging the lag phase of LDL oxidation. Cell culture experiments suggested that the olive oil phenolics induce a significant reduction in the secretion of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 (and a trend towards a reduced secretion of monocyte chemoattractant protein-1), and protect against cytotoxic effects of hydrogen peroxide and oxidized LDL. However, no influence on nitric oxide production or platelet aggregation was evident. The data show that olive oil phenolics have biochemical and cellular actions, which, if also apparent in vivo, could exert cardioprotective effects.

  8. Amelioration of cholesterol induced atherosclerosis by normalizing gene expression, cholesterol profile and antioxidant enzymes by Vigna unguiculata. (United States)

    Janeesh, P A; Abraham, Annie


    Cardiovascular diseases, especially atherosclerosis, have found to be the dreadful diseases worldwide and therapeutic interventions using plant sources have wide therapeutic value. Vigna unguiculata (VU) leaves have been used as food and therapeutics. Hence, our study was designed to evaluate the hypolipidemic as well as anti-atherogenic potential of VU leaves in normalizing atherogenic gene expression, cholesterol profile, generation of reactive oxygen species (ROS) and antioxidant enzyme system on cholesterol fed rabbit model. For the study New Zealand white rabbits were randomly divided into four groups of six animals each and experimental period was three months; group -i - ND [normal diet (40 g feed)], group-ii- ND (normal diet) +EAVU [ethyl acetate fraction of Vigna unguiculata (150 mg/kg body weight)], group -iii- ND [normal diet ]+ CFD [cholesterol fed diet (cholesterol 1 % of 40 g feed and cholic acid 0.5 % of 40 g feed)] and group-iv - ND [normal diet] +CFD [cholesterol fed diet ]+EAVU [ethyl acetate fraction of Vigna unguiculata (150 mg/kg body weight)]. Atherosclerosis was induced by feeding the rabbit with cholesterol (1 % of 40 g feed) and cholic acid (0.5 % of 40 g feed). Supplementation of EAVU normalized cholesterol profile, generation of reactive oxygen species (ROS), lipid peroxidation products like thiobarbituric acid reactive substance (TBARS), antioxidant system and important genes of cardiovascular diseases like interleukin-10 (IL 10), paraoxanase-1 (PON I), interleukin-6 (IL 6), and cyclooxygenase-2 (Cox 2) to near normal level as compared with normal diet. The result obtained showed the antioxidant as well as anti-atherogenic potential of Vigna unguiculata leaves in ameliorating cholesterol induced atherosclerosis, and thus it is good task to include VU leaves in daily diet for the prevention of cardiovascular diseases especially atherosclerosis.

  9. Automation of PRM-dependent D3-Leu tracer enrichment in HDL to study the metabolism of apoA-I, LCAT and other apolipoproteins. (United States)

    Lee, Lang Ho; Andraski, Allison B; Pieper, Brett; Higashi, Hideyuki; Sacks, Frank M; Aikawa, Masanori; Singh, Sasha A


    We developed an automated quantification workflow for PRM-enabled detection of D3-Leu labeled apoA-I in high-density lipoprotein (HDL) isolated from humans. Subjects received a bolus injection of D3-Leu and blood was drawn at eight time points over three days. HDL was isolated and separated into six size fractions for subsequent proteolysis and PRM analysis for the detection of D3-Leu signal from ∼0.03 to 0.6% enrichment. We implemented an intensity-based quantification approach that takes advantage of high-resolution/accurate mass PRM scans to identify the D3-Leu 2HM3 ion from non-specific peaks. Our workflow includes five modules for extracting the targeted PRM peak intensities (XPIs): Peak centroiding, noise removal, fragment ion matching using Δm/z windows, nine intensity quantification options, and validation and visualization outputs. We optimized the XPI workflow using in vitro synthesized and clinical samples of D0/D3-Leu labeled apoA-I. Three subjects' apoA-I enrichment curves in six HDL size fractions, and LCAT, apoA-II and apoE from two size fractions were generated within a few hours. Our PRM strategy and automated quantification workflow will expedite the turnaround of HDL apoA-I metabolism data in clinical studies that aim to understand and treat the mechanisms behind dyslipidemia.

  10. Alterations in plasma lecithin : cholesterol acyltransferase and myeloperoxidase in acute myocardial infarction: Implications for cardiac outcome

    NARCIS (Netherlands)

    Dullaart, Robin P. F.; Tietge, Uwe J. F.; Kwakernaak, Arjan J.; Dikkeschei, Bert D.; Perton, Frank; Tio, Rene A.


    Background: The cholesterol esterifying enzyme, lecithin: cholesterol acyltransferase (LCAT), plays a key role in HDL maturation and remodeling. Myeloperoxidase (MPO) may compromise LCAT enzymatic activity. We tested the extent to which plasma LCAT activity is altered in acute myocardial infarction

  11. Evaluation of antioxidant and anti-atherogenic properties of Glycyrrhiza glabra root using in vitro models. (United States)

    Visavadiya, Nishant P; Soni, Badrish; Dalwadi, Nirav


    The aim of present study was to evaluate antioxidant property of Glycyrrhiza glabra root extracts using in vitro models. The dose-dependent aqueous and ethanolic extracts demonstrated the scavenging activity against nitric oxide (concentration that caused 50% inhibition of nitric oxide radicals [IC(50)]=72 and 62.1 microg/ml, respectively), superoxide (IC(50)=64.2 and 38.4 microg/ml, respectively), hydroxyl (IC(50)=81.9 and 63 microg/ml, respectively), DPPH (IC(50)=43.6 and 28.3 microg/ml, respectively) and ABTS(*+) (IC(50)=77.3 and 57.2 microg/ml, respectively) radicals. Further, both extracts showed strong reducing power and iron-chelating capacities. In the Fe(2+)/ascorbate system, both extracts were found to inhibit mitochondrial fraction lipid peroxidation. In copper-catalyzed human serum and low-density lipoprotein oxidation models, both extracts significantly (Pglabra possess considerable antioxidant activity and protective effect against the human lipoprotein oxidative system.


    Directory of Open Access Journals (Sweden)

    S. Devika


    Full Text Available Obesity is an abnormal or excessive fat accumulation that causes risk to health. In severe case weight gain leads to various risks in the general health. Several classical formulations of ayurveda and other modern medicines give only time bound recovery. Hence treatment of obesity has been remained as a challenging problem to the medical field. The test drug herbotrim is a polyherbal formulation has showed promising results in reducing the elevated serum cholesterol and lipids by correcting lipid metabolism. It also prevents atherosclerosis of blood vessels and fatty infiltration of vital organs thereby protecting from cardiovascular and cerebrovascular diseases. It can be used as an excellent supplement for the patients of myocardial infarction, coronary artery diseases and diabetes mellitus. Acute toxicity study carried out as per the Globally Harmonized system has proved that herbotrim is absolutely safe and no side effects even at high doses. Hence it is very important in this era to discover this type of multi beneficiary drugs to cure obese patients with no side effects. Histopathological studies of the drug proved that herbotrim having tissue protective activities against fatty infiltration and tissue damage. So that herbotrim tablets can serve as a potent ayurvedic medicine for the prevention of heart diseases.

  13. 缺血性脑血管病病人血浆LCAT 活性与脂蛋白和红细胞膜脂质成分的相关性研究%Investigation of the Relativity between Activity of Plasma LCAT and Composition of Lipoprotein and Red Blood Cell Membrane Lipid in Patients with Ischemic Cerebrovascular Disorders

    Institute of Scientific and Technical Information of China (English)

    郭英华; 李延年; 初开秋; 周淑华; 赵仁亮; 唐盛孟


    目的:探讨缺血性脑血管病(ischemic cerebrovascular disorders,ICVD)病人血浆卵磷脂-胆固醇酰基转移酶(LCAT)活性与脂蛋白和红细胞膜脂质成分含量的相互关系.方法:采用改良的Nagaski酶学方法-外加底物法测定103例ICVD病人和60例健康者血浆LCAT活性,并检测血浆高密度脂蛋白胆固醇(HDL-C)及其亚组分(HDL2-C、HDL3-C)、低密度脂蛋白胆固醇(LDL-C)、载脂蛋白A1和B(apoA1, apoB)、红细胞膜胆固醇(RBCM-C)和红细胞膜磷脂(RBCM-PL)的含量变化.结果:ICVD病人血浆LCAT活性、HDL-C、HDL2-C及apoA1含量明显降低,血浆LDL-C、apoB、RBCM-C及RBCM-C/RBCM-PL比值显著增高,与对照组相比差异有显著性(P<0.05),血浆LCAT活性分别与HDL-C、HDL2-C及apoA1水平呈正相关(P<0.01、P<0.05、 P<0.05), 而与LDL-C和RBCM-C呈负相关(P<0.05).结论:ICVD病人脂质代谢异常与血浆LCAT活性降低有关.

  14. Pectic enzymes

    NARCIS (Netherlands)

    Benen, J.A.E.; Voragen, A.G.J.; Visser, J.


    The pectic enzymes comprise a diverse group of enzymes. They consist of main-chain depolymerases and esterases active on methyl- and acetylesters of galacturonosyl uronic acid residues. The depolymerizing enzymes comprise hydrolases as wel as lyases

  15. Enzyme assays. (United States)

    Reymond, Jean-Louis; Fluxà, Viviana S; Maillard, Noélie


    Enzyme assays are analytical tools to visualize enzyme activities. In recent years a large variety of enzyme assays have been developed to assist the discovery and optimization of industrial enzymes, in particular for "white biotechnology" where selective enzymes are used with great success for economically viable, mild and environmentally benign production processes. The present article highlights the aspects of fluorogenic and chromogenic substrates, sensors, and enzyme fingerprinting, which are our particular areas of interest.

  16. Nitro-Oleic Acid Reduces J774A.1 Macrophage Oxidative Status and Triglyceride Mass: Involvement of Paraoxonase2 and Triglyceride Metabolizing Enzymes. (United States)

    Rosenblat, Mira; Rom, Oren; Volkova, Nina; Aviram, Michael


    Nitro-fatty acids possess anti-atherogenic properties, but their effects on macrophage oxidative status and lipid metabolism that play important roles in atherosclerosis development are unclear. This study compared the effects of nitro-oleic acid (OLA-NO2) with those of native oleic acid (OLA) on intracellular reactive oxygen species (ROS) generation, anti-oxidants and metabolism of triglycerides and cholesterol in J774A.1 macrophages. Upon incubating the cells with physiological concentrations of OLA-NO2 (0-1 µM) or with equivalent levels of OLA, ROS levels measured by 2, 7-dichlorofluorescein diacetate, decreased dose-dependently, but the anti-oxidative effects of OLA-NO2 were significantly augmented. Copper ion addition increased ROS generation in OLA treated macrophages without affecting OLA-NO2 treated cells. These effects could be attributed to elevated glutathione levels and to increased activity and expression of paraoxonase2 that were observed in OLA-NO2 vs OLA treated cells. Beneficial effects on triglyceride metabolism were noted in OLA-NO2 vs OLA treated macrophages in which cellular triglycerides were reduced due to attenuated biosynthesis and accelerated hydrolysis of triglycerides. Accordingly, OLA-NO2 treated cells demonstrated down-regulation of diacylglycerol acyltransferase1, the key enzyme in triglyceride biosynthesis, and increased expression of hormone-sensitive lipase and adipose triglyceride lipase that regulate triglyceride hydrolysis. Finally, OLA-NO2 vs OLA treatment resulted in modest but significant beneficial effects on macrophage cholesterol metabolism, reducing cholesterol biosynthesis rate and low density lipoprotein influx into the cells, while increasing high density lipoprotein-mediated cholesterol efflux from the macrophages. Collectively, compared with OLA, OLA-NO2 modestly but significantly reduces macrophage oxidative status and cellular triglyceride content via modulation of cellular anti-oxidants and triglyceride

  17. Anti-Atherogenic Properties of Allium ursinum Liophylisate: Impact on Lipoprotein Homeostasis and Cardiac Biomarkers in Hypercholesterolemic Rabbits

    Directory of Open Access Journals (Sweden)

    Mariann Bombicz


    Full Text Available The present investigation evaluates the capacity of Allium ursinum (wild garlic leaf lyophilisate (WGLL; alliin content: 0.261% to mitigate cardiovascular damage in hypercholesterolemic rabbits. New Zealand rabbits were divided into three groups: (i cholesterol-free rabbit chow (control; (ii rabbit chow containing 2% cholesterol (hypercholesterolemic, HC; (iii rabbit chow containing 2% cholesterol + 2% WGLL (hypercholesterolemic treated, HCT; for eight weeks. At the zero- and eight-week time points, echocardiographic measurements were made, along with the determination of basic serum parameters. Following the treatment period, after ischemia-reperfusion injury, hemodynamic parameters were measured using an isolated working heart model. Western blot analyses of heart tissue followed for evaluating protein expression and histochemical study for the atheroma status determination. WGLL treatment mediated increases in fractional shortening; right ventricular function; peak systolic velocity; tricuspidal annular systolic velocity in live animals; along with improved aortic and coronary flow. Western blot analysis revealed WGLL-associated increases in HO-1 protein and decreases in SOD-1 protein production. WGLL-associated decreases were observed in aortic atherosclerotic plaque coverage, plasma ApoB and the activity of LDH and CK (creatine kinase in plasma. Plasma LDL was also significantly reduced. The results clearly demonstrate that WGLL has complex cardioprotective effects, suggesting future strategies for its use in prevention and therapy for atherosclerotic disorders.

  18. Food Enzymes (United States)

    McBroom, Rachel; Oliver-Hoyo, Maria T.


    Many students view biology and chemistry as two unrelated, separate sciences; how these courses are generally taught in high schools may do little to change that impression. The study of enzymes provide a great opportunity for both biology and chemistry teachers to share with students the interdisciplinary nature of science. This article describes…

  19. Enzyme immunoassay

    DEFF Research Database (Denmark)

    Feldt-Rasmussen, B; Dinesen, B; Deckert, M


    An enzyme linked immunoadsorbent assay for urinary albumin using commercially available reagents is described. The assay range is 2.5-120 micrograms/l. When samples are analysed in two standard dilutions, the assayable albumin concentration range is 2.5-240 mg/l, covering the clinical range from...

  20. Alkylating enzymes. (United States)

    Wessjohann, Ludger A; Keim, Jeanette; Weigel, Benjamin; Dippe, Martin


    Chemospecific and regiospecific modifications of natural products by methyl, prenyl, or C-glycosyl moieties are a challenging and cumbersome task in organic synthesis. Because of the availability of an increasing number of stable and selective transferases and cofactor regeneration processes, enzyme-assisted strategies turn out to be promising alternatives to classical synthesis. Two categories of alkylating enzymes become increasingly relevant for applications: firstly prenyltransferases and terpene synthases (including terpene cyclases), which are used in the production of terpenoids such as artemisinin, or meroterpenoids like alkylated phenolics and indoles, and secondly methyltransferases, which modify flavonoids and alkaloids to yield products with a specific methylation pattern such as 7-O-methylaromadendrin and scopolamine.

  1. The enzyme lecithin-cholesterol acyltransferase esterifies cerebrosterol and limits the toxic effect of this oxysterol on SH-SY5Y cells. (United States)

    La Marca, Valeria; Spagnuolo, Maria Stefania; Cigliano, Luisa; Marasco, Daniela; Abrescia, Paolo


    Cholesterol is mostly removed from the CNS by its conversion to cerebrosterol (24(S)-hydroxycholesterol, 24(S)OH-C), which is transported to the circulation for bile formation in liver. A neurotoxic role of this oxysterol was previously demonstrated in cell culture. Here, we provide evidence that the enzyme lecithin-cholesterol acyltransferase, long known to esterify cholesterol, also produces monoesters of 24(S)OH-C. Proteoliposomes containing apolipoprotein A-I or apolipoprotein E were used to stimulate the enzyme activity and entrap the formed esters. Proteoliposomes with apolipoprotein A-I were found to be more active than those with apolipoprotein E in stimulating the production of oxysteryl esters. Cholesterol and 24(S)OH-C were found to compete for enzyme activity. High levels of haptoglobin, as those circulating during the acute inflammatory phase, inhibited 24(S)OH-C esterification. When highly neurotoxic 24(S)OH-C was treated with enzyme and proteoliposomes before incubation with differentiated SH-SY5Y cells, the neuron survival improved. The esters of 24(S)OH-C, embedded into proteoliposomes by the enzyme and isolated from unesterified 24(S)OH-C by gel filtration chromatography, did not enter the neurons in culture. These results suggest that the enzyme, in the presence of the apolipoproteins, converts 24(S)OH-C into esters restricted to the extracellular environment, thus preventing or limiting oxysterol-induced neurotoxic injuries to neurons in culture. 24-hydroxycholesterol (24(S)OH-C) is neurotoxic. The enzyme lecithin-cholesterol acyltransferase (LCAT) synthesizes monoesters of 24(S)OH-C in reaction mixtures with proteoliposomes containing phospholipids and apolipoprotein A-I or apolipoprotein E. The esters, also produced by incubation of cerebrospinal fluid only with tritiated 24(S)OH-C, are embedded into lipoproteins that do not enter neurons in culture. The enzyme activity limits the toxicity of 24-hydroxycholesterol in neuron culture.

  2. Enzyme detection by microfluidics

    DEFF Research Database (Denmark)


    Microfluidic-implemented methods of detecting an enzyme, in particular a DNA-modifying enzyme, are provided, as well as methods for detecting a cell, or a microorganism expressing said enzyme. The enzyme is detected by providing a nucleic acid substrate, which is specifically targeted...... by that enzyme...

  3. Elevated Liver Enzymes (United States)

    Symptoms Elevated liver enzymes By Mayo Clinic Staff Elevated liver enzymes may indicate inflammation or damage to cells in the liver. Inflamed or ... than normal amounts of certain chemicals, including liver enzymes, into the bloodstream, which can result in elevated ...

  4. 血浆卵磷脂-胆固醇酰基转移酶与红细胞膜脂质成分的相关性探讨%The Relativity between Activity of Plasma LCAT and Lipoprotein and Red Blood Cell Membrane Lipid Composition in Patients with Cerebrovascular Disorders

    Institute of Scientific and Technical Information of China (English)

    初开秋; 唐晓燕; 董争鸣


    目的探讨缺血性脑血管病(ischemic cerebrovascular disorders,ICVD)患者血浆卵磷脂-胆固醇酰基转移酶(LCAT)活性与红细胞膜脂质成分含量的相关性.方法采用酶学方法分别测定105例ICVD患者和65例健康对照者血浆LCAT活性,并同时检测血清高密度脂蛋白胆固醇(HDL-C)、低密度脂蛋白胆固醇(LDL-C)、载脂蛋白A1和载脂蛋白B(apoA1,apoB)、红细胞膜胆固醇(RBCM-CH)和红细胞膜磷脂(RBCM-PL)含量.结果 ICVD患者LCAT活性、HCL-C及apoA1含量明显低于对照组(P<0.05),LDL-C、apoB、RBCM-CH及RBCM-CH/RBCM-PL比值显著高于对照组(P<0.05),并且LCAT活性分别与HDL-C、及apoA1呈正相关(P<0.01、P<0.05),而与LDL-C和RBCM-CH呈负相关(P<0.05).结论 ICVD患者脂质代谢方面的异常可能与血浆LCAT活性降低有关.

  5. Enzyme inhibition by iminosugars

    DEFF Research Database (Denmark)

    López, Óscar; Qing, Feng-Ling; Pedersen, Christian Marcus


    Imino- and azasugar glycosidase inhibitors display pH dependant inhibition reflecting that both the inhibitor and the enzyme active site have groups that change protonation state with pH. With the enzyme having two acidic groups and the inhibitor one basic group, enzyme-inhibitor complexes...

  6. The pro-inflammatory effect of uraemia overrules the anti-atherogenic potential of immunization with oxidized LDL in apoE-/- mice

    DEFF Research Database (Denmark)

    Pedersen, Tanja X; Binder, Christoph J; Fredrikson, Gunilla N


    BACKGROUND: Uraemia increases oxidative stress, plasma titres of antibodies recognizing oxidized low-density lipoprotein (oxLDL) and development of atherosclerosis. Immunization with oxLDL prevents classical, non-uraemic atherosclerosis. We have investigated whether immunization with oxLDL might...... also prevent uraemia-induced atherosclerosis in apolipoprotein E knockout (apoE-/-) mice. METHODS: ApoE-/- mice were immunized with either native LDL (n = 25), Cu(2+)-oxidized LDL (n = 25), PBS (n = 25), the apolipoprotein B-derived peptide P45 (apoB-peptide P45) conjugated to bovine serum albumin (BSA......) (n = 25) or BSA (n = 25) prior to induction of uraemia by 5/6 nephrectomy (NX). RESULTS: Immunization with oxLDL increased plasma titres of immunoglobulin G (IgG) recognizing Cu(2+)-oxLDL and malondialdehyde-modified LDL (MDA-LDL). However, 5/6 NX induced a marked increase in plasma concentrations...

  7. Enzyme kinetics of conjugating enzymes: PAPS sulfotransferase. (United States)

    James, Margaret O


    The sulfotransferase (SULT) enzymes catalyze the formation of sulfate esters or sulfamates from substrates that contain hydroxy or amine groups, utilizing 3'-phosphoadenosyl-5'-phosphosulfate (PAPS) as the donor of the sulfonic group. The rate of product formation depends on the concentrations of PAPS and substrate as well as the sulfotransferase enzyme; thus, if PAPS is held constant while varying substrate concentration (or vice versa), the kinetic constants derived are apparent constants. When studied over a narrow range of substrate concentrations, classic Michaelis-Menten kinetics can be observed with many SULT enzymes and most substrates. Some SULT enzymes exhibit positive or negative cooperativity during conversion of substrate to product, and the kinetics fit the Hill plot. A characteristic feature of most sulfotransferase-catalyzed reactions is that, when studied over a wide range of substrate concentrations, the rate of product formation initially increases as substrate concentration increases, then decreases at high substrate concentrations, i.e., they exhibit substrate inhibition or partial substrate inhibition. This chapter gives an introduction to sulfotransferases, including a historical note, the nomenclature, a description of the function of SULTs with different types of substrates, presentation of examples of enzyme kinetics with SULTs, and a discussion of what is known about mechanisms of substrate inhibition in the sulfotransferases.

  8. Enzymes for improved biomass conversion (United States)

    Brunecky, Roman; Himmel, Michael E.


    Disclosed herein are enzymes and combinations of the enzymes useful for the hydrolysis of cellulose and the conversion of biomass. Methods of degrading cellulose and biomass using enzymes and cocktails of enzymes are also disclosed.

  9. Unhairing with enzymes


    Crispim, A.; Mota, M.


    The use of enzymes in the leather industry is increasing and their application is being widened to include operations such as de-greasing, unhairing and other wet-end operations. Enzymes can also be used to assist with recycling leather wastes as well as to avoid pollution. The present work is devoted to illustrate the potential application of enzymes in unhairing without hair destruction. Enzymatic unhairing is based upon the weakening of the epidermis basal layer to which the hair is at...

  10. Microbial amylolytic enzymes. (United States)

    Vihinen, M; Mäntsälä, P


    Starch-degrading, amylolytic enzymes are widely distributed among microbes. Several activities are required to hydrolyze starch to its glucose units. These enzymes include alpha-amylase, beta-amylase, glucoamylase, alpha-glucosidase, pullulan-degrading enzymes, exoacting enzymes yielding alpha-type endproducts, and cyclodextrin glycosyltransferase. Properties of these enzymes vary and are somewhat linked to the environmental circumstances of the producing organisms. Features of the enzymes, their action patterns, physicochemical properties, occurrence, genetics, and results obtained from cloning of the genes are described. Among all the amylolytic enzymes, the genetics of alpha-amylase in Bacillus subtilis are best known. Alpha-Amylase production in B. subtilis is regulated by several genetic elements, many of which have synergistic effects. Genes encoding enzymes from all the amylolytic enzyme groups dealt with here have been cloned, and the sequences have been found to contain some highly conserved regions thought to be essential for their action and/or structure. Glucoamylase appears usually in several forms, which seem to be the results of a variety of mechanisms, including heterogeneous glycosylation, limited proteolysis, multiple modes of mRNA splicing, and the presence of several structural genes.

  11. Adenylate-forming enzymes (United States)

    Schmelz, Stefan; Naismith, James H.


    Thioesters, amides and esters are common chemical building blocks in a wide array of natural products. The formation of these bonds can be catalyzed in a variety of ways. For chemists, the use of an activating group is a common strategy and adenylate enzymes are exemplars of this approach. Adenylating enzymes activate the otherwise unreactive carboxylic acid by transforming the normal hydroxyl leaving group into adenosine monophosphate. Recently there have been a number of studies of such enzymes and in this review we suggest a new classification scheme. The review highlights the diversity in enzyme fold, active site architecture and metal coordination that has evolved to catalyze this particular reaction. PMID:19836944

  12. Magnetically responsive enzyme powders

    Energy Technology Data Exchange (ETDEWEB)

    Pospiskova, Kristyna, E-mail: [Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 11, 783 71 Olomouc (Czech Republic); Safarik, Ivo, E-mail: [Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 11, 783 71 Olomouc (Czech Republic); Department of Nanobiotechnology, Institute of Nanobiology and Structural Biology of GCRC, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic)


    Powdered enzymes were transformed into their insoluble magnetic derivatives retaining their catalytic activity. Enzyme powders (e.g., trypsin and lipase) were suspended in various liquid media not allowing their solubilization (e.g., saturated ammonium sulfate and highly concentrated polyethylene glycol solutions, ethanol, methanol, 2-propanol) and subsequently cross-linked with glutaraldehyde. Magnetic modification was successfully performed at low temperature in a freezer (−20 °C) using magnetic iron oxides nano- and microparticles prepared by microwave-assisted synthesis from ferrous sulfate. Magnetized cross-linked enzyme powders were stable at least for two months in water suspension without leakage of fixed magnetic particles. Operational stability of magnetically responsive enzymes during eight repeated reaction cycles was generally without loss of enzyme activity. Separation of magnetically modified cross-linked powdered enzymes from reaction mixtures was significantly simplified due to their magnetic properties. - Highlights: • Cross-linked enzyme powders were prepared in various liquid media. • Insoluble enzymes were magnetized using iron oxides particles. • Magnetic iron oxides particles were prepared by microwave-assisted synthesis. • Magnetic modification was performed under low (freezing) temperature. • Cross-linked powdered trypsin and lipase can be used repeatedly for reaction.

  13. Artificial Enzymes, "Chemzymes"

    DEFF Research Database (Denmark)

    Bjerre, Jeannette; Rousseau, Cyril Andre Raphaël; Pedersen, Lavinia Georgeta M;


    Enzymes have fascinated scientists since their discovery and, over some decades, one aim in organic chemistry has been the creation of molecules that mimic the active sites of enzymes and promote catalysis. Nevertheless, even today, there are relatively few examples of enzyme models...... that successfully perform Michaelis-Menten catalysis under enzymatic conditions (i.e., aqueous medium, neutral pH, ambient temperature) and for those that do, very high rate accelerations are seldomly seen. This review will provide a brief summary of the recent developments in artificial enzymes, so called...... "Chemzymes", based on cyclodextrins and other molecules. Only the chemzymes that have shown enzyme-like activity that has been quantified by different methods will be mentioned. This review will summarize the work done in the field of artificial glycosidases, oxidases, epoxidases, and esterases, as well...

  14. Cotton cellulose: enzyme adsorption and enzymic hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Beltrame, P.L.; Carniti, P.; Focher, B.; Marzetti, A.; Cattaneo, M.


    The adsorption of a crude cellulase complex from Trichoderma viride on variously pretreated cotton cellulose samples was studied in the framework of the Langmuir approach at 2-8 degrees. The saturation amount of adsorbed enzyme was related to the susceptibility of the substrates to hydrolysis. In every case the adsorption process was faster by 2-3 orders of magnitude than the hydrolysis step to give end products. For ZnCl/sub 2/-treated cotton cellulose the Langmuir parameters correlated fairly well with the value of the Michaelis constant, measured for its enzymic hydrolysis, and the adsorptive complex was indistinguishable from the complex of the Michaelis-Menten model for the hydrolysis.

  15. Enzyme molecules as nanomotors. (United States)

    Sengupta, Samudra; Dey, Krishna K; Muddana, Hari S; Tabouillot, Tristan; Ibele, Michael E; Butler, Peter J; Sen, Ayusman


    Using fluorescence correlation spectroscopy, we show that the diffusive movements of catalase enzyme molecules increase in the presence of the substrate, hydrogen peroxide, in a concentration-dependent manner. Employing a microfluidic device to generate a substrate concentration gradient, we show that both catalase and urease enzyme molecules spread toward areas of higher substrate concentration, a form of chemotaxis at the molecular scale. Using glucose oxidase and glucose to generate a hydrogen peroxide gradient, we induce the migration of catalase toward glucose oxidase, thereby showing that chemically interconnected enzymes can be drawn together.

  16. Enzymic lactose hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J.J.; Brand, J.C.


    Acid or enzymic hydrolysis can be used to hydrolyze lactose. Advantages of both are compared and details of enzymic hydrolysis using yeast or fungal enzymes given. The new scheme outlined involves recycling lactase. Because lactose and lactase react to ultrafiltration (UF) membranes differently separation is possible. Milk or milk products are ultrafiltered to separate a concentrate from a lactose-rich permeate which is treated with lactase in a reactor until hydrolysis reaches a required level. The lactase can be removed by UF as it does not permeate the membrane, and it is recycled back to the reactor. Permeate from the second UF stage may or may not be recombined with the concentrate from the first stage to produce a low lactose product (analysis of a typical low-lactose dried whole milk is given). Batch or continuous processes are explained and a batch process without enzyme recovery is discussed. (Refs. 4).

  17. Enzymes in Analytical Chemistry. (United States)

    Fishman, Myer M.


    Presents tabular information concerning recent research in the field of enzymes in analytic chemistry, with methods, substrate or reaction catalyzed, assay, comments and references listed. The table refers to 128 references. Also listed are 13 general citations. (CS)

  18. Membrane Assisted Enzyme Fractionation

    DEFF Research Database (Denmark)

    Yuan, Linfeng

    . In this thesis, separations using crossflow elecro-membrane filtration (EMF) of amino acids, bovine serum albumin (BSA) and industrial enzymes from Novozymes were performed. The main objective of this study was to investigate the technological feasibility of EMF in the application of industrial enzyme...... fractionation, such as removal of a side activity from the main enzyme activity. As a proof-of-concept, amino acids were used as model solution to test the feasibility of EMF in the application of amphoteric molecule separation. A single amino acid was used to illustrate the effect of an electric field...... on the separation performance were very small in the investigated range. The mass transport of each enzyme can be well explained by the Extended-Nernst-Planck equation. Better separation was observed at lower feed concentration, higher solution pH in the investigated range and with a polysulfone (PS) MF membrane...

  19. Overproduction of ligninolytic enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Elisashvili, Vladimir; Kachlishvili, Eva; Torok, Tamas


    Methods, compositions, and systems for overproducing ligninolytic enzymes from the basidiomycetous fungus are described herein. As described, the method can include incubating a fungal strain of Cerrena unicolor IBB 303 in a fermentation system having growth medium which includes lignocellulosic material and then cultivating the fungal strain in the fermentation system under conditions wherein the fungus expresses the ligninolytic enzymes. In some cases, the lignocellulosic material is mandarin peel, ethanol production residue, walnut pericarp, wheat bran, wheat straw, or banana peel.

  20. RNA-modifying enzymes. (United States)

    Ferré-D'Amaré, Adrian R


    A bewildering number of post-transcriptional modifications are introduced into cellular RNAs by enzymes that are often conserved among archaea, bacteria and eukaryotes. The modifications range from those with well-understood functions, such as tRNA aminoacylation, to widespread but more mysterious ones, such as pseudouridylation. Recent structure determinations have included two types of RNA nucleobase modifying enzyme: pseudouridine synthases and tRNA guanine transglycosylases.

  1. Red cell enzymes. (United States)

    Paniker, N V


    As compared to other cells of the body, the mammalian red cell has one of the simplest structural organizations. As a result, this cell has been extensively used in studies involving the structure, function, and integrity of cell membranes as well as cytoplasmic events. Additionally, the metabolic activities of the red blood cell are also relatively simple. During the past quarter century or so, an ocean of knowledge has been gathered on various aspects of red cell metabolism and function. The fields of enzymes, hemoglobin, membrane, and metabolic products comprise the major portion of this knowledge. These advances have made valuable contributions to biochemistry and medicine. Despite these favorable aspects of this simple, anucleated cell, it must be conceded that our knowledge about the red cell is far from complete. We are still in the dark concerning the mechanism involved in several aspects of its membrane, hemoglobin, enzymes, and a large number of other constituents. For example, a large number of enzymes with known catalytic activity but with unknown function have eluded investigators despite active pursuit. This review will be a consolidation of our present knowledge of human red cell enzymes, with particular reference to their usefulness in the diagnosis and therapy of disease. Owing to the multitude of publications by prominent investigators on each of the approximately 50 enzymes discussed in this review, it was impossible to cite a majority of them.

  2. Random-walk enzymes (United States)

    Mak, Chi H.; Pham, Phuong; Afif, Samir A.; Goodman, Myron F.


    Enzymes that rely on random walk to search for substrate targets in a heterogeneously dispersed medium can leave behind complex spatial profiles of their catalyzed conversions. The catalytic signatures of these random-walk enzymes are the result of two coupled stochastic processes: scanning and catalysis. Here we develop analytical models to understand the conversion profiles produced by these enzymes, comparing an intrusive model, in which scanning and catalysis are tightly coupled, against a loosely coupled passive model. Diagrammatic theory and path-integral solutions of these models revealed clearly distinct predictions. Comparison to experimental data from catalyzed deaminations deposited on single-stranded DNA by the enzyme activation-induced deoxycytidine deaminase (AID) demonstrates that catalysis and diffusion are strongly intertwined, where the chemical conversions give rise to new stochastic trajectories that were absent if the substrate DNA was homogeneous. The C → U deamination profiles in both analytical predictions and experiments exhibit a strong contextual dependence, where the conversion rate of each target site is strongly contingent on the identities of other surrounding targets, with the intrusive model showing an excellent fit to the data. These methods can be applied to deduce sequence-dependent catalytic signatures of other DNA modification enzymes, with potential applications to cancer, gene regulation, and epigenetics. PMID:26465508

  3. Random-walk enzymes (United States)

    Mak, Chi H.; Pham, Phuong; Afif, Samir A.; Goodman, Myron F.


    Enzymes that rely on random walk to search for substrate targets in a heterogeneously dispersed medium can leave behind complex spatial profiles of their catalyzed conversions. The catalytic signatures of these random-walk enzymes are the result of two coupled stochastic processes: scanning and catalysis. Here we develop analytical models to understand the conversion profiles produced by these enzymes, comparing an intrusive model, in which scanning and catalysis are tightly coupled, against a loosely coupled passive model. Diagrammatic theory and path-integral solutions of these models revealed clearly distinct predictions. Comparison to experimental data from catalyzed deaminations deposited on single-stranded DNA by the enzyme activation-induced deoxycytidine deaminase (AID) demonstrates that catalysis and diffusion are strongly intertwined, where the chemical conversions give rise to new stochastic trajectories that were absent if the substrate DNA was homogeneous. The C →U deamination profiles in both analytical predictions and experiments exhibit a strong contextual dependence, where the conversion rate of each target site is strongly contingent on the identities of other surrounding targets, with the intrusive model showing an excellent fit to the data. These methods can be applied to deduce sequence-dependent catalytic signatures of other DNA modification enzymes, with potential applications to cancer, gene regulation, and epigenetics.

  4. Random-walk enzymes. (United States)

    Mak, Chi H; Pham, Phuong; Afif, Samir A; Goodman, Myron F


    Enzymes that rely on random walk to search for substrate targets in a heterogeneously dispersed medium can leave behind complex spatial profiles of their catalyzed conversions. The catalytic signatures of these random-walk enzymes are the result of two coupled stochastic processes: scanning and catalysis. Here we develop analytical models to understand the conversion profiles produced by these enzymes, comparing an intrusive model, in which scanning and catalysis are tightly coupled, against a loosely coupled passive model. Diagrammatic theory and path-integral solutions of these models revealed clearly distinct predictions. Comparison to experimental data from catalyzed deaminations deposited on single-stranded DNA by the enzyme activation-induced deoxycytidine deaminase (AID) demonstrates that catalysis and diffusion are strongly intertwined, where the chemical conversions give rise to new stochastic trajectories that were absent if the substrate DNA was homogeneous. The C→U deamination profiles in both analytical predictions and experiments exhibit a strong contextual dependence, where the conversion rate of each target site is strongly contingent on the identities of other surrounding targets, with the intrusive model showing an excellent fit to the data. These methods can be applied to deduce sequence-dependent catalytic signatures of other DNA modification enzymes, with potential applications to cancer, gene regulation, and epigenetics.

  5. Enzyme recycling in lignocellulosic biorefineries

    DEFF Research Database (Denmark)

    Jørgensen, Henning; Pinelo, Manuel


    platform. Cellulases are the most important enzymes required in this process, but the complex nature of lignocellulose requires several other enzymes (hemicellulases and auxiliary enzymes) for efficient hydrolysis. Enzyme recycling increases the catalytic productivity of the enzymes by reusing them...... upscaled and tested in industrial settings, mainly because of many difficulties with recycling of enzymes from the complex lignocellulose hydrolyzate at industrially relevant conditions, i.e., high solids loadings. The challenges are associated with the large number of different enzymes required...... for efficient hydrolysis, enzyme stability, and the detrimental interaction between enzyme and lignin. This review provides a comprehensive overview of the various methods for enzyme recovery and recycling, for example recycling of free enzymes, readsorption to fresh material, recycling of solids, membrane...

  6. Entropy and Enzyme Catalysis. (United States)

    Åqvist, Johan; Kazemi, Masoud; Isaksen, Geir Villy; Brandsdal, Bjørn Olav


    The role played by entropy for the enormous rate enhancement achieved by enzymes has been debated for many decades. There are, for example, several confirmed cases where the activation free energy is reduced by around 10 kcal/mol due to entropic effects, corresponding to a rate enhancement of ∼10(7) compared to the uncatalyzed reaction. However, despite substantial efforts from both the experimental and theoretical side, no real consensus has been reached regarding the origin of such large entropic contributions to enzyme catalysis. Another remarkable instance of entropic effects is found in enzymes that are adapted by evolution to work at low temperatures, near the freezing point of water. These cold-adapted enzymes invariably show a more negative entropy and a lower enthalpy of activation than their mesophilic orthologs, which counteracts the exponential damping of reaction rates at lower temperature. The structural origin of this universal phenomenon has, however, remained elusive. The basic problem with connecting macroscopic thermodynamic quantities, such as activation entropy and enthalpy derived from Arrhenius plots, to the 3D protein structure is that the underlying detailed (microscopic) energetics is essentially inaccessible to experiment. Moreover, attempts to calculate entropy contributions by computer simulations have mostly focused only on substrate entropies, which do not provide the full picture. We have recently devised a new approach for accessing thermodynamic activation parameters of both enzyme and solution reactions from computer simulations, which turns out to be very successful. This method is analogous to the experimental Arrhenius plots and directly evaluates the temperature dependence of calculated reaction free energy profiles. Hence, by extensive molecular dynamics simulations and calculations of up to thousands of independent free energy profiles, we are able to extract activation parameters with sufficient precision for making

  7. Angiotensin-converting enzyme

    DEFF Research Database (Denmark)

    Sørensen, P G; Rømer, F K; Cortes, D


    In order to evaluate bleomycin-associated lung damage in humans, lung function parameters and serum levels of the endothelial-bound angiotensin-converting enzyme (ACE) were determined by serial measurements in 11 patients who were treated for testicular cancer. None developed clinical or radiolog......In order to evaluate bleomycin-associated lung damage in humans, lung function parameters and serum levels of the endothelial-bound angiotensin-converting enzyme (ACE) were determined by serial measurements in 11 patients who were treated for testicular cancer. None developed clinical...

  8. The surface science of enzymes

    DEFF Research Database (Denmark)

    Rod, Thomas Holm; Nørskov, Jens Kehlet


    One of the largest challenges to science in the coming years is to find the relation between enzyme structure and function. Can we predict which reactions an enzyme catalyzes from knowledge of its structure-or from its amino acid sequence? Can we use that knowledge to modify enzyme function......? To solve these problems we must understand in some detail how enzymes interact with reactants from its surroundings. These interactions take place at the surface of the enzyme and the question of enzyme function can be viewed as the surface science of enzymes. In this article we discuss how to describe...... catalysis by enzymes, and in particular the analogies between enzyme catalyzed reactions and surface catalyzed reactions. We do this by discussing two concrete examples of reactions catalyzed both in nature (by enzymes) and in industrial reactors (by inorganic materials), and show that although analogies...

  9. Amperometric Enzyme Electrodes (United States)


    form of carbon (glascy carbon, graphite, reticulated vitreous carbon, carbon paste, fiber or foil). Carbon is favored for enzyme immoblization...interference from spurious electroactive species in blood, t proprietary multilayer membranie that includes a cellulose acetate memirane and a Nucleopore

  10. Computational enzyme design (United States)

    Bolon, Daniel N.


    The long-term objective of computational enzyme design is the ability to generate efficient protein catalysts for any chemical reaction. This thesis develops and experimentally validates a general computational approach for the design of enzymes with novel function. In order to include catalytic mechanism in protein design, a high-energy state (HES) rotamer (side chain representation) was constructed. In this rotamer, substrate atoms are in a HES. In addition, at least one amino acid side chain is positioned to interact favorably with substrate atoms in their HES and facilitate the reaction. Including an amino acid side chain in the HES rotamer automatically positions substrate relative to a protein scaffold and allows protein design algorithms to search for sequences capable of interacting favorably with the substrate. Because chemical similarity exists between the transition state and the high-energy state, optimizing the protein sequence to interact favorably with the HES rotamer should lead to transition state stabilization. In addition, the HES rotamer model focuses the subsequent computational active site design on a relevant phase space where an amino acid is capable of interacting in a catalytically active geometry with substrate. Using a HES rotamer model of the histidine mediated nucleophilic hydrolysis of p-nitrophenyl acetate, the catalytically inert 108 residue E. coli thioredoxin as a scaffold, and the ORBIT protein design software to compute sequences, an active site scan identified two promising active site designs. Experimentally, both candidate ?protozymes? demonstrated catalytic activity significantly above background. In addition, the rate enhancement of one of these ?protozymes? was the same order of magnitude as the first catalytic antibodies. Because polar groups are frequently buried at enzyme-substrate interfaces, improved modeling of buried polar interactions may benefit enzyme design. By studying native protein structures, rules have been

  11. The Moderately Efficient Enzyme: Futile Encounters and Enzyme Floppiness. (United States)

    Bar-Even, Arren; Milo, Ron; Noor, Elad; Tawfik, Dan S


    The pioneering model of Henri, Michaelis, and Menten was based on the fast equilibrium assumption: the substrate binds its enzyme reversibly, and substrate dissociation is much faster than product formation. Here, we examine this assumption from a somewhat different point of view, asking what fraction of enzyme-substrate complexes are futile, i.e., result in dissociation rather than product formation. In Knowles' notion of a "perfect" enzyme, all encounters of the enzyme with its substrate result in conversion to product. Thus, the perfect enzyme's catalytic efficiency, kcat/KM, is constrained by only the diffusion on-rate, and the fraction of futile encounters (defined as φ) approaches zero. The available data on >1000 different enzymes suggest that for ≥90% of enzymes φ > 0.99 and for the "average enzyme" φ ≥ 0.9999; namely, <1 of 10(4) encounters is productive. Thus, the "fast equilibrium" assumption holds for the vast majority of enzymes. We discuss possible molecular origins for the dominance of futile encounters, including the coexistence of multiple sub-states of an enzyme's active site (enzyme floppiness) and/or its substrate. Floppiness relates to the inherent flexibility of proteins, but also to conflicting demands, or trade-offs, between rate acceleration (the rate-determining chemical step) and catalytic turnover, or between turnover rate and accuracy. The study of futile encounters and active-site floppiness may contribute to a better understanding of enzyme catalysis, enzyme evolution, and improved enzyme design.

  12. Halophilic adaptation of enzymes. (United States)

    Madern, D; Ebel, C; Zaccai, G


    It is now clear that the understanding of halophilic adaptation at a molecular level requires a strategy of complementary experiments, combining molecular biology, biochemistry, and cellular approaches with physical chemistry and thermodynamics. In this review, after a discussion of the definition and composition of halophilic enzymes, the effects of salt on their activity, solubility, and stability are reviewed. We then describe how thermodynamic observations, such as parameters pertaining to solvent-protein interactions or enzyme-unfolding kinetics, depend strongly on solvent composition and reveal the important role played by water and ion binding to halophilic proteins. The three high-resolution crystal structures now available for halophilic proteins are analyzed in terms of haloadaptation, and finally cellular response to salt stress is discussed briefly.

  13. Treating Wastewater With Immobilized Enzymes (United States)

    Jolly, Clifford D.


    Experiments show enzymes are immobilized on supporting materials to make biocatalyst beds for treatment of wastewater. With suitable combination of enzymes, concentrations of various inorganic and organic contaminants, including ammonia and urea, reduced significantly.

  14. The Catalytic Function of Enzymes. (United States)

    Splittgerber, Allan G.


    Discusses: structure of the enzyme molecule; active site; reaction mechanism; transition state; factors affecting enzyme reaction rates, concentration of enzyme; concentration of substrate; product concentration; temperature effects and pH effects; factors causing a lowering of activation energy; proximity and orientation effects; substrate strain…

  15. Kinetic Measurements for Enzyme Immobilization. (United States)

    Cooney, Michael J


    Enzyme kinetics is the study of the chemical reactions that are catalyzed by enzymes, with a focus on their reaction rates. The study of an enzyme's kinetics considers the various stages of activity, reveals the catalytic mechanism of this enzyme, correlates its value to assay conditions, and describes how a drug or a poison might inhibit the enzyme. Victor Henri initially reported that enzyme reactions were initiated by a bond between the enzyme and the substrate. By 1910, Michaelis and Menten were advancing their work by studying the kinetics of an enzyme saccharase which catalyzes the hydrolysis of sucrose into glucose and fructose. They published their analysis and ever since the Michaelis-Menten equation has been used as the standard to describe the kinetics of many enzymes. Unfortunately, soluble enzymes must generally be immobilized to be reused for long times in industrial reactors. In addition, other critical enzyme properties have to be improved like stability, activity, inhibition by reaction products, and selectivity towards nonnatural substrates. Immobilization is by far the chosen process to achieve these goals.Although the Michaelis-Menten approach has been regularly adapted to the analysis of immobilized enzyme activity, its applicability to the immobilized state is limited by the barriers the immobilization matrix places upon the measurement of compounds that are used to model enzyme kinetics. That being said, the estimated value of the Michaelis-Menten coefficients (e.g., V max, K M) can be used to evaluate effects of immobilization on enzyme activity in the immobilized state when applied in a controlled manner. In this review enzyme activity and kinetics are discussed in the context of the immobilized state, and a few novel protocols are presented that address some of the unique constraints imposed by the immobilization barrier.

  16. Effects of white lupin associated with wheat or oat on hyperglycemia, dyslipidemia and reverse cholesterol transport in obese rats

    Directory of Open Access Journals (Sweden)

    Mounia Besbes


    Full Text Available Objective: In this study, we investigated the beneficial effects of cereals and legumes association on hyperglycemia, dyslipidemia, serum high density lipoproteins (HDL2 and HDL3 amounts and compositions and lecithin-cholesterol acyltransferase (LCAT activity in rats fed a high-fat-diet. Methods: Obesity was induced by feeding a high-fat-diet (20% animal fats during 3 months. At 400 ± 10 g, sixteen obese rats were divided into two homogenous groups and fed a diet containing either 1/3 white lupin + 2/3 wheat (wheat-lupin group or 1/3 white lupin + 2/3 oat (oat-lupin group for 28 days. Results: After 28 days of experimentation, wheat-lupin and oat-lupin diets significantly decreased hyperglycemia 1.4-fold, hypercholesterolemia 1.6- and 1.4-fold, and hypertriacylglycerolemia 2.4- and 3.2-fold, respectively, when compared with baseline values (day 0. At day 28, in the wheat-lupin group compared with the oat-lupin group glycemia was similar, whereas triacylglycerolemia was significantly enhanced (+25%. Furthermore, cholesterolemia value had a tendency to decrease (but not significantly and the content of very low density lipoproteins-cholesterol (VLDL-C was decreased by 43%. Despite similar concentrations of HDL3-PL (phospholipid, a preferential substrate of LCAT, HDL3-UC (unesterified cholesterol, an acceptor of lecithinacyl group, and HDL2-CE (cholesteryl esters, product of enzymatic reaction, wheat-lupin increased serum LCAT activity by 31% when compared with the oat-lupin group. Conclusion: In rats fed a high-fat-diet, wheat-lupin compared with oat-lupin association had no effect on hypertriacylglycerolemia but it acts slightly on hypercholesterolemia and improves reverse cholesterol transport by enhancing LCAT activity leading to anti-atherogenic effects. [J Exp Integr Med 2013; 3(3.000: 205-212

  17. Measuring the Enzyme Activity of Arabidopsis Deubiquitylating Enzymes. (United States)

    Kalinowska, Kamila; Nagel, Marie-Kristin; Isono, Erika


    Deubiquitylating enzymes, or DUBs, are important regulators of ubiquitin homeostasis and substrate stability, though the molecular mechanisms of most of the DUBs in plants are not yet understood. As different ubiquitin chain types are implicated in different biological pathways, it is important to analyze the enzyme characteristic for studying a DUB. Quantitative analysis of DUB activity is also important to determine enzyme kinetics and the influence of DUB binding proteins on the enzyme activity. Here, we show methods to analyze DUB activity using immunodetection, Coomassie Brilliant Blue staining, and fluorescence measurement that can be useful for understanding the basic characteristic of DUBs.

  18. Enzyme Molecules in Solitary Confinement

    Directory of Open Access Journals (Sweden)

    Raphaela B. Liebherr


    Full Text Available Large arrays of homogeneous microwells each defining a femtoliter volume are a versatile platform for monitoring the substrate turnover of many individual enzyme molecules in parallel. The high degree of parallelization enables the analysis of a statistically representative enzyme population. Enclosing individual enzyme molecules in microwells does not require any surface immobilization step and enables the kinetic investigation of enzymes free in solution. This review describes various microwell array formats and explores their applications for the detection and investigation of single enzyme molecules. The development of new fabrication techniques and sensitive detection methods drives the field of single molecule enzymology. Here, we introduce recent progress in single enzyme molecule analysis in microwell arrays and discuss the challenges and opportunities.

  19. Enzyme molecules in solitary confinement. (United States)

    Liebherr, Raphaela B; Gorris, Hans H


    Large arrays of homogeneous microwells each defining a femtoliter volume are a versatile platform for monitoring the substrate turnover of many individual enzyme molecules in parallel. The high degree of parallelization enables the analysis of a statistically representative enzyme population. Enclosing individual enzyme molecules in microwells does not require any surface immobilization step and enables the kinetic investigation of enzymes free in solution. This review describes various microwell array formats and explores their applications for the detection and investigation of single enzyme molecules. The development of new fabrication techniques and sensitive detection methods drives the field of single molecule enzymology. Here, we introduce recent progress in single enzyme molecule analysis in microwell arrays and discuss the challenges and opportunities.

  20. Heat Stable Enzymes from Thermophiles (United States)


    ultrafiltration and microfiltration that might be suitable. These utilize hollow fiber membranes manufactured in such a manner that they are free of...words) Alkaline phosphatase is widely used in the military and civilian sectors . Commercially available enzyme from calf intestine is the weak link in...widely used enzymes with numerous uses in both the military and civilian sectors . The commercially available enzyme from calf intestine breaks down

  1. Enzyme therapeutics for systemic detoxification. (United States)

    Liu, Yang; Li, Jie; Lu, Yunfeng


    Life relies on numerous biochemical processes working synergistically and correctly. Certain substances disrupt these processes, inducing living organism into an abnormal state termed intoxication. Managing intoxication usually requires interventions, which is referred as detoxification. Decades of development on detoxification reveals the potential of enzymes as ideal therapeutics and antidotes, because their high substrate specificity and catalytic efficiency are essential for clearing intoxicating substances without adverse effects. However, intrinsic shortcomings of enzymes including low stability and high immunogenicity are major hurdles, which could be overcome by delivering enzymes with specially designed nanocarriers. Extensive investigations on protein delivery indicate three types of enzyme-nanocarrier architectures that show more promise than others for systemic detoxification, including liposome-wrapped enzymes, polymer-enzyme conjugates, and polymer-encapsulated enzymes. This review highlights recent advances in these nano-architectures and discusses their applications in systemic detoxifications. Therapeutic potential of various enzymes as well as associated challenges in achieving effective delivery of therapeutic enzymes will also be discussed.

  2. Multi-enzyme Process Modeling

    DEFF Research Database (Denmark)

    Andrade Santacoloma, Paloma de Gracia

    The subject of this thesis is to develop a methodological framework that can systematically guide mathematical model building for better understanding of multi-enzyme processes. In this way, opportunities for process improvements can be identified by analyzing simulations of either existing...... are affected (in a positive or negative way) by the presence of the other enzymes and compounds in the media. In this thesis the concept of multi-enzyme in-pot term is adopted for processes that are carried out by the combination of enzymes in a single reactor and implemented at pilot or industrial scale...

  3. Digestive Enzyme Replacement Therapy: Pancreatic Enzymes and Lactase. (United States)

    Felicilda-Reynaldo, Rhea Faye D; Kenneally, Maria


    Maldigestion occurs when digestive enzymes are lacking to help break complex food components into absorbable nutrients within the gastrointestinal tract. Education is needed to help patients manage the intricacies of digestive enzyme replacement therapies and ensure their effectiveness in reducing symptoms of maldigestion.

  4. [The rise of enzyme engineering in China]. (United States)

    Li, Gaoxiang


    Enzyme engineering is an important part of the modern biotechnology. Industrial biocatalysis is considered the third wave of biotechnology following pharmaceutical and agricultural waves. In 25 years, China has made a mighty advances in enzyme engineering research. This review focuses on enzyme genomics, enzyme proteomics, biosynthesis, microbial conversion and biosensors in the Chinese enzyme engineering symposiums and advances in enzyme preparation industry in China.

  5. Deubiquitylating enzymes and disease

    Directory of Open Access Journals (Sweden)

    Baker Rohan T


    Full Text Available Abstract Deubiquitylating enzymes (DUBs can hydrolyze a peptide, amide, ester or thiolester bond at the C-terminus of UBIQ (ubiquitin, including the post-translationally formed branched peptide bonds in mono- or multi-ubiquitylated conjugates. DUBs thus have the potential to regulate any UBIQ-mediated cellular process, the two best characterized being proteolysis and protein trafficking. Mammals contain some 80–90 DUBs in five different subfamilies, only a handful of which have been characterized with respect to the proteins that they interact with and deubiquitylate. Several other DUBs have been implicated in various disease processes in which they are changed by mutation, have altered expression levels, and/or form part of regulatory complexes. Specific examples of DUB involvement in various diseases are presented. While no specific drugs targeting DUBs have yet been described, sufficient functional and structural information has accumulated in some cases to allow their rapid development. Publication history Republished from Current BioData's Targeted Proteins database (TPdb;

  6. [Effect of protein-vitamin deficiency on the enzyme activity of lipolysis and the synthesis of cholesterol esters during hypokinesia]. (United States)

    Koshkenbaev, B Kh; Tazhibaev, Sh S; Maksimenko, V B; Sisemalieva, Zh S


    Balanced diet during 60-day hypokinesia leads to inhibition of lipoprotein lypase (LPLA) and liver triglyceride lypase (L-TGLA) activity of the rat blood serum. The level of very low density lipoproteins (VLDLP) grows, and suppression of lecithin-cholesteryl-acyltransferase (LCAT) activity is accompanied by reduction of the share of cholesterol derivatives with polyunsaturated fatty acids. Combined effects of protein-vitamin insufficiency and hypokinesia result in parversion of the lipolysis processes, that manifests in prevalence of L-TGLA over LPLA. The levels of VLDLP increase, and growth of LCAT activity is acompanied by the growth of cholesteryl linoleate share and level. Hypokinesia combined with the studied experimental diets was found to lead to increase of the free fatty acid level and to decrease of the blood serum levels of phospholipids and triglycerides.

  7. Computational enzyme design: transitioning from catalytic proteins to enzymes. (United States)

    Mak, Wai Shun; Siegel, Justin B


    The widespread interest in enzymes stem from their ability to catalyze chemical reactions under mild and ecologically friendly conditions with unparalleled catalytic proficiencies. While thousands of naturally occurring enzymes have been identified and characterized, there are still numerous important applications for which there are no biological catalysts capable of performing the desired chemical transformation. In order to engineer enzymes for which there is no natural starting point, efforts using a combination of quantum chemistry and force-field based protein molecular modeling have led to the design of novel proteins capable of catalyzing chemical reactions not catalyzed by naturally occurring enzymes. Here we discuss the current status and potential avenues to pursue as the field of computational enzyme design moves forward.

  8. Stability of Enzymes in Granular Enzyme Products for Laundry Detergents

    DEFF Research Database (Denmark)

    Biran, Suzan; Bach, Poul; Simonsen, Ole

    Enzymes have long been of interest to the detergent industry due to their ability to improve the cleaning efficiency of synthetic detergents, contribute to shortening washing times, and reduce energy and water consumption, provision of environmentally friendlier wash water effluents and fabric care...... particles. However, enzymes may loose a significant part of their activity over a time period of several weeks. Possible causes of inactivation of enzymes in a granule may be related to the release of hydrogen peroxide from the bleaching chemicals in a moisture-containing atmosphere, humidity, autolysis...... and humidity by bubbling nitrogen gas through their corresponding solutions. An enzyme column, acting as a plug-flow reactor, was exposed to known concentrations of H2O2 (g) and humidity in a thermally stabilized chamber. Samples were analyzed for adsorptive behavior and residual enzyme activity. Since...

  9. Enzymic hydrolysis of chlorella cells

    Energy Technology Data Exchange (ETDEWEB)

    Khraptsova, G.I.; Tsaplina, I.A.; Burdenko, L.G.; Khoreva, S.L.; Loginova, L.G.


    Treatment of C. ellipsoidea, C. pyrenoidosa, and C. vulgaris with cellulolytic enzymes (from Aspergillus terreus) and pectofoetidin p10x (from A. foetidus) resulted in the degradation and lysis of the algae cells. The cells were more sensitive to cellulase than to pectinase. The combination of both enzymes produced a synergistic effect on cell lysis.

  10. Phage lytic enzymes: a history

    Institute of Scientific and Technical Information of China (English)

    David; Trudil


    There are many recent studies regarding the efficacy of bacteriophage-related lytic enzymes: the enzymes of ‘bacteria-eaters’ or viruses that infect bacteria. By degrading the cell wall of the targeted bacteria, these lytic enzymes have been shown to efficiently lyse Gram-positive bacteria without affecting normal flora and non-related bacteria. Recent studies have suggested approaches for lysing Gram-negative bacteria as well(Briersa Y, et al., 2014). These enzymes include: phage-lysozyme, endolysin, lysozyme, lysin, phage lysin, phage lytic enzymes, phageassociated enzymes, enzybiotics, muralysin, muramidase, virolysin and designations such as Ply, PAE and others. Bacteriophages are viruses that kill bacteria, do not contribute to antimicrobial resistance, are easy to develop, inexpensive to manufacture and safe for humans, animals and the environment. The current focus on lytic enzymes has been on their use as anti-infectives in humans and more recently in agricultural research models. The initial translational application of lytic enzymes, however, was not associated with treating or preventing a specifi c disease but rather as an extraction method to be incorporated in a rapid bacterial detection assay(Bernstein D, 1997).The current review traces the translational history of phage lytic enzymes–from their initial discovery in 1986 for the rapid detection of group A streptococcus in clinical specimens to evolving applications in the detection and prevention of disease in humans and in agriculture.

  11. Statistical Mechanics of Allosteric Enzymes. (United States)

    Einav, Tal; Mazutis, Linas; Phillips, Rob


    The concept of allostery in which macromolecules switch between two different conformations is a central theme in biological processes ranging from gene regulation to cell signaling to enzymology. Allosteric enzymes pervade metabolic processes, yet a simple and unified treatment of the effects of allostery in enzymes has been lacking. In this work, we take a step toward this goal by modeling allosteric enzymes and their interaction with two key molecular players-allosteric regulators and competitive inhibitors. We then apply this model to characterize existing data on enzyme activity, comment on how enzyme parameters (such as substrate binding affinity) can be experimentally tuned, and make novel predictions on how to control phenomena such as substrate inhibition.

  12. Moonlighting enzymes in parasitic protozoa. (United States)

    Collingridge, Peter W; Brown, Robert W B; Ginger, Michael L


    Enzymes moonlight in a non-enzymatic capacity in a diverse variety of cellular processes. The discovery of these non-enzymatic functions is generally unexpected, and moonlighting enzymes are known in both prokaryotes and eukaryotes. Importantly, this unexpected multi-functionality indicates that caution might be needed on some occasions in interpreting phenotypes that result from the deletion or gene-silencing of some enzymes, including some of the best known enzymes from classic intermediary metabolism. Here, we provide an overview of enzyme moonlighting in parasitic protists. Unequivocal and putative examples of moonlighting are discussed, together with the possibility that the unusual biological characteristics of some parasites either limit opportunities for moonlighting to arise or perhaps contribute to the evolution of novel proteins with clear metabolic ancestry.

  13. Polyphenols from Cocoa and Vascular Health—A Critical Review



    Cocoa is a rich source of dietary polyphenols. In vitro as well as cell culture data indicate that cocoa polyphenols may exhibit antioxidant and anti-inflammatory, as well as anti-atherogenic activity. Several molecular targets (e.g., nuclear factor kappa B, endothelial nitric oxide synthase, angiotensin converting enzyme) have been recently identified which may partly explain potential beneficial cardiovascular effects of cocoa polyphenols. However cocoa polyphenol concentrations, as used in...

  14. Stability of Enzymes in Granular Enzyme Products for Laundry Detergents


    Biran, Suzan; Jensen, Anker Degn; Kiil, Søren; Bach, Poul; Simonsen, Ole


    Enzymes have long been of interest to the detergent industry due to their ability to improve the cleaning efficiency of synthetic detergents, contribute to shortening washing times, and reduce energy and water consumption, provision of environmentally friendlier wash water effluents and fabric care. However, incorporating enzymes in detergent formulations gives rise to numerous practical problems due to their incompatibility with and stability against various detergent components. In powdered...

  15. Photosynthetic fuel for heterologous enzymes

    DEFF Research Database (Denmark)

    Mellor, Silas Busck; Vavitsas, Konstantinos; Nielsen, Agnieszka Janina Zygadlo


    , competition from native pathways and inefficient electron transfer rates present major obstacles, which limit the productivity of heterologous reactions coupled to photosynthesis. We discuss specific approaches to address these bottlenecks and ensure high productivity of such enzymes in a photosynthetic...... of reducing power. Recent work on the metabolic engineering of photosynthetic organisms has shown that the electron carriers such as ferredoxin and flavodoxin can be used to couple heterologous enzymes to photosynthetic reducing power. Because these proteins have a plethora of interaction partners and rely...... on electrostatically steered complex formation, they form productive electron transfer complexes with non-native enzymes. A handful of examples demonstrate channeling of photosynthetic electrons to drive the activity of heterologous enzymes, and these focus mainly on hydrogenases and cytochrome P450s. However...

  16. GRE Enzymes for Vector Analysis (United States)

    U.S. Environmental Protection Agency — Microbial enzyme data that were collected during the 2004-2006 EMAP-GRE program. These data were then used by Moorhead et al (2016) in their ecoenzyme vector...

  17. Controlled enzyme catalyzed heteropolysaccharide degradation

    DEFF Research Database (Denmark)

    Rasmussen, Louise Enggaard

    The work presented in this PhD thesis has provided a better understanding of the enzyme kinetics and quantitative phenomena of the hydrolysis of xylan substrates by selected pure enzyme preparations. Furthermore, the options for producing specific substituted xylooligosaccharides from selected...... substrates by specific xylanase treatment have been examined. The kinetics of the enzymatic degradation of water-extractable wheat arabinoxylan (WE-AX) during designed treatments with selected monocomponent enzymes was investigated by monitoring the release of xylose and arabinose. The results of different...... between -xylosidase and the α-L-arabinofuranosidases on the xylose release were low as compared to the effect of xylanase addition with β-xylosidase, which increased the xylose release by ~25 times in 30 minutes. At equimolar addition levels of the four enzymes, the xylanase activity was thus rate...

  18. Enzymes: principles and biotechnological applications. (United States)

    Robinson, Peter K


    Enzymes are biological catalysts (also known as biocatalysts) that speed up biochemical reactions in living organisms, and which can be extracted from cells and then used to catalyse a wide range of commercially important processes. This chapter covers the basic principles of enzymology, such as classification, structure, kinetics and inhibition, and also provides an overview of industrial applications. In addition, techniques for the purification of enzymes are discussed.

  19. Engineering Cellulase Enzymes for Bioenergy (United States)

    Atreya, Meera Elizabeth

    Sustainable energy sources, such as biofuels, offer increasingly important alternatives to fossil fuels that contribute less to global climate change. The energy contained within cellulosic biofuels derives from sunlight energy stored in the form of carbon-carbon bonds comprising sugars such as glucose. Second-generation biofuels are produced from lignocellulosic biomass feedstocks, including agricultural waste products and non-food crops like Miscanthus, that contain lignin and the polysaccharides hemicellulose and cellulose. Cellulose is the most abundant biological material on Earth; it is a polymer of glucose and a structural component of plant cell walls. Accessing the sugar is challenging, as the crystalline structure of cellulose resists degradation; biochemical and thermochemical means can be used to depolymerize cellulose. Cellulase enzymes catalyze the biochemical depolymerization of cellulose into glucose. Glucose can be used as a carbon source for growth of a biofuel-producing microorganism. When it converts glucose to a hydrocarbon fuel, this microbe completes the biofuels process of transforming sunlight energy into accessible, chemical energy capable of replacing non-renewable transportation fuels. Due to strong intermolecular interactions between polymer chains, cellulose is significantly more challenging to depolymerize than starch, a more accessible polymer of glucose utilized in first-generation biofuels processes (often derived from corn). While most mammals cannot digest cellulose (dietary fiber), certain fungi and bacteria produce cellulase enzymes capable of hydrolyzing it. These organisms secrete a wide variety of glycoside hydrolase and other classes of enzymes that work in concert. Because cellulase enzymes are slow-acting and expensive to produce, my aim has been to improve the properties of these enzymes as a means to make a cellulosic biofuels process possible that is more efficient and, consequently, more economical than current

  20. Heavy enzymes--experimental and computational insights in enzyme dynamics. (United States)

    Swiderek, Katarzyna; Ruiz-Pernía, J Javier; Moliner, Vicent; Tuñón, Iñaki


    The role of protein motions in the chemical step of enzyme-catalyzed reactions is the subject of an open debate in the scientific literature. The systematic use of isotopically substituted enzymes has been revealed as a useful tool to quantify the role of these motions. According to the Born-Oppenheimer approximation, changing the mass of the protein does not change the forces acting on the system but alters the frequencies of the protein motions, which in turn can affect the rate constant. Experimental and theoretical studies carried out in this field are presented in this article and discussed in the framework of Transition State Theory.

  1. The Kinetics of Enzyme Mixtures

    Directory of Open Access Journals (Sweden)

    Simon Brown


    Full Text Available Even purified enzyme preparations are often heterogeneous. For example, preparations of aspartate aminotransferase or cytochrome oxidase can consist of several different forms of the enzyme. For this reason we consider how different the kinetics of the reactions catalysed by a mixture of forms of an enzyme must be to provide some indication of the characteristics of the species present. Based on the standard Michaelis-Menten model, we show that if the Michaelis constants (Km of two isoforms differ by a factor of at least 20 the steady-state kinetics can be used to characterise the mixture. However, even if heterogeneity is reflected in the kinetic data, the proportions of the different forms of the enzyme cannot be estimated from the kinetic data alone. Consequently, the heterogeneity of enzyme preparations is rarely reflected in measurements of their steady-state kinetics unless the species present have significantly different kinetic properties. This has two implications: (1 it is difficult, but not impossible, to detect molecular heterogeneity using kinetic data and (2 even when it is possible, a considerable quantity of high quality data is required.

  2. Enzymes in CO2 Capture

    DEFF Research Database (Denmark)

    Fosbøl, Philip Loldrup; Gladis, Arne; Thomsen, Kaj

    of carbon capture is the application of enzymes for acceleration of typically slow ternary amines or inorganic carbonates. There is a hidden potential to revive currently infeasible amines which have an interesting low energy consumption for regeneration but too slow kinetics for viable CO2 capture. The aim......The enzyme Carbonic Anhydrase (CA) can accelerate the absorption rate of CO2 into aqueous solutions by several-fold. It exist in almost all living organisms and catalyses different important processes like CO2 transport, respiration and the acid-base balances. A new technology in the field...... of this work is to discuss the measurements of kinetic properties for CA promoted CO2 capture solvent systems. The development of a rate-based model for enzymes will be discussed showing the principles of implementation and the results on using a well-known ternary amine for CO2 capture. Conclusions...

  3. Taking the Mystery Out of Enzymes. (United States)

    DeYoung, H. Garrett


    Discusses structure and function of enzymes, design of new enzymes and enzyme substitutes, and enzyme uses in industry, medicine, and wastewater treatment. The latter is a low-cost method which can remove as much as 99 percent of toxic substances found in many industrial wastewater streams. (JN)

  4. Insolubilized enzymes for food synthesis (United States)

    Marshall, D. L.


    Cellulose matrix with numerous enzyme-coated silica particles of colloidal size permanently bound at various sites within matrix was produced that has high activity and possesses requisite physical characteristics for filtration or column operations. Product also allows coupling step in synthesis of edible food to proceed under mild conditions.

  5. Kathepsine C : Een allosterisch enzyme

    NARCIS (Netherlands)

    Gorter, Jeannette


    In chapter I an introduction into allosteric systems is given. In chapter II is a detailed method is described for the applica of Gly-Phe--p. nitroanilide (GPNA) as a substrate for the activity assay of the lysosomal enzyme cathepsin C. It is an allosteric which is activated by Cl-, Br-, 1-, CNS-, N

  6. Rapid-Equilibrium Enzyme Kinetics (United States)

    Alberty, Robert A.


    Rapid-equilibrium rate equations for enzyme-catalyzed reactions are especially useful because if experimental data can be fit by these simpler rate equations, the Michaelis constants can be interpreted as equilibrium constants. However, for some reactions it is necessary to use the more complicated steady-state rate equations. Thermodynamics is…

  7. Enzyme nanoassemblies for biomass conversion (United States)

    Biomass represents a vast resource for the production of the world’s fuel and chemical feedstock needs. The use of enzymes to effect these bioconversions offers an alternative that is potentially more specific and environmentally-friendly than harsher chemical methodologies. Some species of anaero...

  8. Silica-Immobilized Enzyme Reactors (United States)


    immobilized artificial membrane chromatography and lysophospholipid micellar electrokinetic chromatography . J. Chromatogr. A 1998, 810, 95-103. 50...Journal of Liquid Chromatography and Related Technologies. Air Force Research Laboratory Materials and Manufacturing Directorate Airbase...immobilized enzyme reactors (IMERs) can also be integrated directly to further analytical methods such as liquid chromatography or mass spectrometry.[6] In

  9. Enzyme recovery using reversed micelles.

    NARCIS (Netherlands)

    Dekker, M.


    The objective of this study was to develop a liquid-liquid extraction process for the recovery of extracellular enzymes. The potentials of reaching this goal by using reversed micelles in an organic solvent have been investigated.Reversed micelles are aggregates of surfactant molecules containing an

  10. The enzymes associated with denitrification (United States)

    Hochstein, L. I.; Tomlinson, G. A.


    The enzymes involved in the reduction of nitrogenous oxides are thought to be intermediates in denitrification processes. This review examines the roles of nitrate reductase, nitrite reductases, nitric oxide reductase, mechanisms of N-N bond formation, and nitrous oxide reductases.

  11. Virulence-Associated Enzymes of Cryptococcus neoformans



    Enzymes play key roles in fungal pathogenesis. Manipulation of enzyme expression or activity can significantly alter the infection process, and enzyme expression profiles can be a hallmark of disease. Hence, enzymes are worthy targets for better understanding pathogenesis and identifying new options for combatting fungal infections. Advances in genomics, proteomics, transcriptomics, and mass spectrometry have enabled the identification and characterization of new fungal enzymes. This review f...

  12. Thermodynamics of Enzyme-Catalyzed Reactions Database (United States)

    SRD 74 Thermodynamics of Enzyme-Catalyzed Reactions Database (Web, free access)   The Thermodynamics of Enzyme-Catalyzed Reactions Database contains thermodynamic data on enzyme-catalyzed reactions that have been recently published in the Journal of Physical and Chemical Reference Data (JPCRD). For each reaction the following information is provided: the reference for the data, the reaction studied, the name of the enzyme used and its Enzyme Commission number, the method of measurement, the data and an evaluation thereof.

  13. Grape Polyphenols Increase the Activity of HDL Enzymes in Old and Obese Rats

    Directory of Open Access Journals (Sweden)

    Andriy L. Zagayko


    Full Text Available HDL particles are protein-rich particles that act as a vehicle for reverse cholesterol transport from tissues to the liver. The purpose of this study was to investigate age-dependent changes in the functional activity of HDL and the effect of high-energy diet on this index, as well as to correct it under the influence of grape polyphenols from “Enoant” obtained from Vitis vinifera grapes. We observed the age-dependent composition changes in HDL particle. It was shown that total lipids and triacylglycerol (TG levels were higher in 24-month-old animals. In obese rats, HDL total lipids and TG levels were higher in 24-month-old than in the 3-month-old and 12-month-old groups but did not differ from 24-month-old group. The plasma HDL paraoxonase (PON and lecithin:cholesterol acyltransferase (LCAT activity levels were decreased in old-aged rats, and cholesteryl ester transfer protein (CETP activity was higher in old rats. Keeping 12-month-old animals on high-fructose diet completely leveled the age differences in the data that have been measured between 12-month-old and 24-month-old rats. After “Enoant” administration, an increase of HDL PON and LCAT activity levels and a reduction of CETP activity were found in 24-month-old and obese rats.

  14. Engineering cytochrome p450 enzymes. (United States)

    Gillam, Elizabeth M J


    The last 20 years have seen the widespread and routine application of methods in molecular biology such as molecular cloning, recombinant protein expression, and the polymerase chain reaction. This has had implications not only for the study of toxicological mechanisms but also for the exploitation of enzymes involved in xenobiotic clearance. The engineering of P450s has been performed with several purposes. The first and most fundamental has been to enable successful recombinant expression in host systems such as bacteria. This in turn has led to efforts to solubilize the proteins as a prerequisite to crystallization and structure determination. Lagging behind has been the engineering of enzyme activity, hampered in part by our still-meager comprehension of fundamental structure-function relationships in P450s. However, the emerging technique of directed evolution holds promise in delivering both engineered enzymes for use in biocatalysis and incidental improvements in our understanding of sequence-structure and sequence-function relationships, provided that data mining can extract the fundamental correlations underpinning the data. From the very first studies on recombinant P450s, efforts were directed toward constructing fusions between P450s and redox partners in the hope of generating more efficient enzymes. While this aim has been allowed to lie fallow for some time, this area merits further investigation as does the development of surface-displayed P450 systems for biocatalytic and biosensor applications. The final application of engineered P450s will require other aspects of their biology to be addressed, such as tolerance to heat, solvents, and high substrate and product concentrations. The most important application of these enzymes in toxicology in the near future is likely to be the biocatalytic generation of drug metabolites for the pharmaceutical industry. Further tailoring will be necessary for specific toxicological applications, such as in

  15. Platelet enzyme abnormalities in leukemias

    Directory of Open Access Journals (Sweden)

    S Sharma


    Full Text Available Aim of the Study: The aim of this study was to evaluate platelet enzyme activity in cases of leukemia. Materials and Methods: Platelet enzymes glucose-6-phosphate dehydrogenase (G6PD, pyruvate kinase (PK and hexokinase (HK were studied in 47 patients of acute and chronic leukemia patients, 16 patients with acute myeloid leukemia (AML(13 relapse, three in remission, 12 patients with acute lymphocytic leukemia (ALL (five in relapse, seven in remission, 19 patients with chronic myeloid leukemia (CML. Results: The platelet G6PD activity was significantly low in cases of AML, ALL and also in CML. G6PD activity was normalized during AML remission. G6PD activity, although persistently low during ALL remission, increased significantly to near-normal during remission (P < 0.05 as compared with relapse (P < 0.01. Platelet PK activity was high during AML relapse (P < 0.05, which was normalized during remission. Platelet HK however was found to be decreased during all remission (P < 0.05. There was a significant positive correlation between G6PD and PK in cases of AML (P < 0.001 but not in ALL and CML. G6PD activity did not correlate with HK activity in any of the leukemic groups. A significant positive correlation was however seen between PK and HK activity in cases of ALL remission (P < 0.01 and CML (P < 0.05. Conclusions: Both red cell and platelet enzymes were studied in 36 leukemic patients and there was no statistically significant correlation between red cell and platelet enzymes. Platelet enzyme defect in leukemias suggests the inherent abnormality in megakaryopoiesis and would explain the functional platelet defects in leukemias.

  16. Enzymes involved in triglyceride hydrolysis. (United States)

    Taskinen, M R; Kuusi, T


    The lipolytic enzymes LPL and HL play important roles in the metabolism of lipoproteins and participate in lipoprotein interconversions. LPL was originally recognized to be the key enzyme in the hydrolysis of chylomicrons and triglyceride, but it also turned out to be one determinant of HDL concentration in plasma. When LPL activity is high, chylomicrons and VLDL are rapidly removed from circulation and a concomitant rise of the HDL2 occurs. In contrast, low LPL activity impedes the removal of triglyceride-rich particles, resulting in the elevation of serum triglycerides and a decrease of HDL (HDL2). Concordant changes of this kind in LPL and HDL2 are induced by many physiological and pathological perturbations. Finally, the operation of LPL is also essential for the conversion of VLDL to LDL. This apparently clear-cut role of LPL in lipoprotein interconversions is contrasted with the enigmatic actions of HL. The enzyme was originally thought to participate in the catalyses of chylomicron and VLDL remnants generated in the LPL reaction. However, substantial in vitro and in vivo data indicate that HL is a key enzyme in the degradation of plasma HDL (HDL2) in a manner which opposes LPL. A scheme is presented for the complementary actions of the two enzymes in plasma HDL metabolism. In addition, recent studies have attributed a role to HL in the catabolism of triglyceride-rich lipoproteins, particularly those containing apo E. However, this function becomes clinically important only under conditions where the capacity of the LPL-mediated removal system is exceeded. Such a situation may arise when the input of triglyceride-rich particles (chylomicrons and/or VLDL) is excessive or LPL activity is decreased or absent.

  17. 7 CFR 58.436 - Rennet, pepsin, other milk clotting enzymes and flavor enzymes. (United States)


    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Rennet, pepsin, other milk clotting enzymes and flavor enzymes. 58.436 Section 58.436 Agriculture Regulations of the Department of Agriculture (Continued... clotting enzymes and flavor enzymes. Enzyme preparations used in the manufacture of cheese shall be...

  18. Enzyme technology: Key to selective biorefining

    DEFF Research Database (Denmark)

    Meyer, Anne S.


    to the reaction is a unique trait of enzyme catalysis. Since enzyme selectivity means that a specific reaction is catalysed between particular species to produce definite products, enzymes are particularly fit for converting specific compounds in mixed biomass streams. Since enzymes are protein molecules...... their rational use in biorefinery processes requires an understanding of the basic features of enzymes and reaction traits with respect to specificity, kinetics, reaction optima, stability and structure-function relations – we are now at a stage where it is possible to use nature’s enzyme structures as starting...... point and then improve the functional traits by targeted mutation of the protein. The talk will display some of our recent hypotheses related to enzyme action, recently obtained results within knowledge-based enzyme improvements as well as cast light on research methods used in optimizing enzyme...

  19. Finding homes for orphan enzymes

    Directory of Open Access Journals (Sweden)

    Frank M. Raushel


    Full Text Available The rate at which new genes are being sequenced greatly exceeds our ability to correctly annotate the functional properties of the corresponding proteins. Annotations based primarily on sequence identity to experimentally characterized proteins are often misleading because closely related sequences may have different functions, while highly divergent sequences may have identical functions. Our understanding of the principles that dictate the catalytic properties of enzymes, based on protein sequence alone, is often insufficient to correctly annotate proteins of unknown function. To address these problems, we are working to develop a comprehensive strategy for the functional annotation of newly sequenced genes using a combination of structural biology, bioinformatics, computational biology, and molecular enzymology. The power of this multidisciplinary approach for discovering new reactions catalyzed by uncharacterized enzymes has been tested using the amidohydrolase superfamily as a model system.

  20. Enzyme dynamics from NMR spectroscopy. (United States)

    Palmer, Arthur G


    CONSPECTUS: Biological activities of enzymes, including regulation or coordination of mechanistic stages preceding or following the chemical step, may depend upon kinetic or equilibrium changes in protein conformations. Exchange of more open or flexible conformational states with more closed or constrained states can influence inhibition, allosteric regulation, substrate recognition, formation of the Michaelis complex, side reactions, and product release. NMR spectroscopy has long been applied to the study of conformational dynamic processes in enzymes because these phenomena can be characterized over multiple time scales with atomic site resolution. Laboratory-frame spin-relaxation measurements, sensitive to reorientational motions on picosecond-nanosecond time scales, and rotating-frame relaxation-dispersion measurements, sensitive to chemical exchange processes on microsecond-millisecond time scales, provide information on both conformational distributions and kinetics. This Account reviews NMR spin relaxation studies of the enzymes ribonuclease HI from mesophilic (Escherichia coli) and thermophilic (Thermus thermophilus) bacteria, E. coli AlkB, and Saccharomyces cerevisiae triosephosphate isomerase to illustrate the contributions of conformational flexibility and dynamics to diverse steps in enzyme mechanism. Spin relaxation measurements and molecular dynamics (MD) simulations of the bacterial ribonuclease H enzymes show that the handle region, one of three loop regions that interact with substrates, interconverts between two conformations. Comparison of these conformations with the structure of the complex between Homo sapiens ribonuclease H and a DNA:RNA substrate suggests that the more closed state is inhibitory to binding. The large population of the closed conformation in T. thermophilus ribonuclease H contributes to the increased Michaelis constant compared with the E. coli enzyme. NMR spin relaxation and fluorescence spectroscopy have characterized a

  1. Substrate mediated enzyme prodrug therapy.

    Directory of Open Access Journals (Sweden)

    Betina Fejerskov

    Full Text Available In this report, we detail Substrate Mediated Enzyme Prodrug Therapy (SMEPT as a novel approach in drug delivery which relies on enzyme-functionalized cell culture substrates to achieve a localized conversion of benign prodrug(s into active therapeutics with subsequent delivery to adhering cells or adjacent tissues. For proof-of-concept SMEPT, we use surface adhered micro-structured physical hydrogels based on poly(vinyl alcohol, β-glucuronidase enzyme and glucuronide prodrugs. We demonstrate enzymatic activity mediated by the assembled hydrogel samples and illustrate arms of control over rate of release of model fluorescent cargo. SMEPT was not impaired by adhering cells and afforded facile time - and dose - dependent uptake of the in situ generated fluorescent cargo by hepatic cells, HepG2. With the use of a glucuronide derivative of an anticancer drug, SN-38, SMEPT afforded a decrease in cell viability to a level similar to that achieved using parent drug. Finally, dose response was achieved using SMEPT and administration of judiciously chosen concentration of SN-38 glucuronide prodrug thus revealing external control over drug delivery using drug eluting surface. We believe that this highly adaptable concept will find use in diverse biomedical applications, specifically surface mediated drug delivery and tissue engineering.

  2. Characterization of CIM monoliths as enzyme reactors. (United States)

    Vodopivec, Martina; Podgornik, Ales; Berovic, Marin; Strancar, Ales


    The immobilization of the enzymes citrate lyase, malate dehydrogenase, isocitrate dehydrogenase and lactate dehydrogenase to CIM monolithic supports was performed. The long-term stability, reproducibility, and linear response range of the immobilized enzyme reactors were investigated along with the determination of the kinetic behavior of the enzymes immobilized on the CIM monoliths. The Michaelis-Menten constant K(m) and the turnover number k(3) of the immobilized enzymes were found to be flow-unaffected. Furthermore, the K(m) values of the soluble and immobilized enzyme were found to be comparable. Both facts indicate the absence of a diffusional limitation in immobilized CIM enzyme reactors.

  3. Lignolytic Enzymes Production from Selected Mushrooms

    Directory of Open Access Journals (Sweden)

    H.M. Shantaveera Swamy


    Full Text Available In this paper, ligninase enzymes produced by selected mushrooms have been reported. We collected mushrooms from Western Ghats, most of them were edible food. Thirty samples isolated were tested using a plate assay through direct agar plate assay by using ABTS, decolourisation containing the fifteen isolates were able to decolourise the dye, indicating a lignin-degrading ability. Spectrophotometric enzyme assays from all selected isolates were carried out to examine the production of Ligninolytic enzymes (Laccase, lignin peroxidase and manganese peroxidase. Ten selected isolates produced all three kinds of enzymes tested. Lignolytic enzymes are groups of enzymes these are actively involved in bioremediation.

  4. A DNA tweezer-actuated enzyme nanoreactor. (United States)

    Liu, Minghui; Fu, Jinglin; Hejesen, Christian; Yang, Yuhe; Woodbury, Neal W; Gothelf, Kurt; Liu, Yan; Yan, Hao


    The functions of regulatory enzymes are essential to modulating cellular pathways. Here we report a tweezer-like DNA nanodevice to actuate the activity of an enzyme/cofactor pair. A dehydrogenase and NAD(+) cofactor are attached to different arms of the DNA tweezer structure and actuation of enzymatic function is achieved by switching the tweezers between open and closed states. The enzyme/cofactor pair is spatially separated in the open state with inhibited enzyme function, whereas in the closed state, enzyme is activated by the close proximity of the two molecules. The conformational state of the DNA tweezer is controlled by the addition of specific oligonucleotides that serve as the thermodynamic driver (fuel) to trigger the change. Using this approach, several cycles of externally controlled enzyme inhibition and activation are successfully demonstrated. This principle of responsive enzyme nanodevices may be used to regulate other types of enzymes and to introduce feedback or feed-forward control loops.

  5. Editorial: Special Issue — Enzyme Immobilization

    Directory of Open Access Journals (Sweden)

    Roberto Fernandez-Lafuente


    Full Text Available Immobilization of enzymes and proteins is a requirement for many industrial enzyme applications, as this facilitates enzyme recovery and reuse. Bearing in mind this necessity, the coupling of immobilization to the improvement of other enzyme features has been pursued by many researchers, and nowadays immobilization is recognized as a tool to improve not only stability, but also enzyme selectivity, specificity, resistance to inhibition or chemical modifiers, etc. To achieve these overall improvements of enzymes’ properties via immobilization, it is necessary to both develop new immobilization systems suitable for these purposes, and to achieve a deeper knowledge of the mechanisms of interaction between enzymes and activated solids. That way, immobilization of enzymes, far being an old-fashioned methodology to just reuse these expensive biocatalysts, is a tool of continuous interest that requires a continuous effort to be exploited in all its potential. This special issue collects 23 papers reporting advances in the field of immobilization of enzymes.[...

  6. Extracellular enzyme kinetics scale with resource availability (United States)

    Microbial community metabolism relies on external digestion, mediated by extracellular enzymes that break down complex organic matter into molecules small enough for cells to assimilate. We analyzed the kinetics of 40 extracellular enzymes that mediate the degradation and assimi...

  7. Activation of thiamin diphosphate in enzymes. (United States)

    Hübner, G; Tittmann, K; Killenberg-Jabs, M; Schäffner, J; Spinka, M; Neef, H; Kern, D; Kern, G; Schneider, G; Wikner, C; Ghisla, S


    Activation of the coenzyme ThDP was studied by measuring the kinetics of deprotonation at the C2 carbon of thiamin diphosphate in the enzymes pyruvate decarboxylase, transketolase, pyruvate dehydrogenase complex, pyruvate oxidase, in site-specific mutant enzymes and in enzyme complexes containing coenzyme analogues by proton/deuterium exchange detected by 1H-NMR spectroscopy. The respective deprotonation rate constant is above the catalytic constant in all enzymes investigated. The fast deprotonation requires the presence of an activator in pyruvate decarboxylase from yeast, showing the allosteric regulation of this enzyme to be accomplished by an increase in the C2-H dissociation rate of the enzyme-bound thiamin diphosphate. The data of the thiamin diphosphate analogues and of the mutant enzymes show the N1' atom and the 4'-NH2 group to be essential for the activation of the coenzyme and a conserved glutamate involved in the proton abstraction mechanism of the enzyme-bound thiamin diphosphate.

  8. Determining Enzyme Activity by Radial Diffusion (United States)

    Davis, Bill D.


    Discusses advantages of radial diffusion assay in determining presence of enzyme and/or rough approximation of amount of enzyme activities. Procedures are included for the preparation of starch-agar plates, and the application and determination of enzyme. Techniques using plant materials (homogenates, tissues, ungerminated embryos, and seedlings)…

  9. 21 CFR 864.4400 - Enzyme preparations. (United States)


    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Enzyme preparations. 864.4400 Section 864.4400...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Specimen Preparation Reagents § 864.4400 Enzyme preparations. (a) Identification. Enzyme preparations are products that are used in the...

  10. Curious cases of the enzymes


    Ulusu Nuriye Nuray


    J Med Biochem 2015; 34 (3) DOI: 10.2478/jomb-2014-0045 UDK 577. 1 : 61 ISSN 1452-8258 J Med Biochem 34: 271–281, 2015 Review article Pregledni ~lanak CURIOUS CASES OF THE ENZYMES NEOBI^NA ISTORIJA ENZIMA Nuriye Nuray Ulusu Koç University, School of Medicine, Sariyer-Istanbul, Turkey Address for correspondence: N. Nuray Ulusu, PhD Koç University School of Medicine Professor of Biochemistry Rumelifeneri Yolu Sarıyer-Istanbul – Turkey Phone: +90 (212)...

  11. Enzyme Analysis to Determine Glucose Content (United States)

    Carpenter, Charles; Ward, Robert E.

    Enzyme analysis is used for many purposes in food science and technology. Enzyme activity is used to indicate adequate processing, to assess enzyme preparations, and to measure constituents of foods that are enzyme substrates. In this experiment, the glucose content of corn syrup solids is determined using the enzymes, glucose oxidase and peroxidase. Glucose oxidase catalyzes the oxidation of glucose to form hydrogen peroxide (H2O2), which then reacts with a dye in the presence of peroxidase to give a stable colored product.

  12. Consumer attitudes to enzymes in food production

    DEFF Research Database (Denmark)

    Søndergaard, Helle Alsted; Grunert, Klaus G.; Scholderer, Joachim


    The use of enzymes in food production has potential benefits for both food manufacturers and consumers. A central question is how consumers react to new ways of producing foods with enzymes. This study investigates the formation of consumer attitudes to different enzyme production methods in three...... European countries. Results show that consumers are most positive towards non-GM enzyme production methods. The enzyme production method is by far the most important factor for the formation of buying intentions compared to price and benefits. Results also show that environmental concern and attitudes...

  13. Direct Electron Transfer of Enzymes in a Biologically Assembled Conductive Nanomesh Enzyme Platform. (United States)

    Lee, Seung-Woo; Lee, Ki-Young; Song, Yong-Won; Choi, Won Kook; Chang, Joonyeon; Yi, Hyunjung


    Nondestructive assembly of a nanostructured enzyme platform is developed in combination of the specific biomolecular attraction and electrostatic coupling for highly efficient direct electron transfer (DET) of enzymes with unprecedented applicability and versatility. The biologically assembled conductive nanomesh enzyme platform enables DET-based flexible integrated biosensors and DET of eight different enzyme with various catalytic activities.

  14. DNA-Based Enzyme Reactors and Systems

    Directory of Open Access Journals (Sweden)

    Veikko Linko


    Full Text Available During recent years, the possibility to create custom biocompatible nanoshapes using DNA as a building material has rapidly emerged. Further, these rationally designed DNA structures could be exploited in positioning pivotal molecules, such as enzymes, with nanometer-level precision. This feature could be used in the fabrication of artificial biochemical machinery that is able to mimic the complex reactions found in living cells. Currently, DNA-enzyme hybrids can be used to control (multi-enzyme cascade reactions and to regulate the enzyme functions and the reaction pathways. Moreover, sophisticated DNA structures can be utilized in encapsulating active enzymes and delivering the molecular cargo into cells. In this review, we focus on the latest enzyme systems based on novel DNA nanostructures: enzyme reactors, regulatory devices and carriers that can find uses in various biotechnological and nanomedical applications.

  15. Enzyme extraction by ultrasound from sludge flocs

    Institute of Scientific and Technical Information of China (English)

    YU Guanghui; HE Pinjing; SHAO Liming; ZHU Yishu


    Enzymes play essential roles in the biological processes of sludge treatment. In this article, the ultrasound method to extract enzymes from sludge flocs was presented. Results showed that using ultrasound method at 20 kHz could extract more types of enzymes than that ultrasound at 40 kHz and ethylenediamine tetraacetic acid (EDTA) methods. The optimum parameters of ultrasound extraction at 20 kHz were duration of 10 min and power of 480 W. Under the condition, ultrasound could break the cells and extract both the extracellular and intercellular enzymes. Ultrasound power was apparently more susceptive to enzyme extraction than duration, suggesting that the control of power during ultrasound extraction was more important than that of duration. The Pearson correlation analysis between enzyme activities and cation contents revealed that the different types of enzymes had distinct cation binding characteristics.

  16. Chaos in an enzyme reaction. (United States)

    Olsen, L F; Degn, H


    Dynamic systems are usually thought to have either monotonic or periodic behaviour. Although the possibility of other types of behaviour has been recognised for many years, the existence of non-monotonic, non-periodic behaviour in dynamic systems has been firmly established only recently. It is termed chaotic behaviour. A review on the rapidly expanding literature on chaos in discrete model systems described by difference equations has been published by May. Rössler, on the other hand, has discussed a few published works on systems of differential equations with chaotic solutions, and he has proposed a three-component chemical model system which he argues has chaotic solutions [figure see text]. The argument is based on a theorem by Li and Yorke. Here we report the finding of chaotic behaviour as an experimental result in an enzyme system (peroxidase). Like Rössler we base our identification of chaos on the theorem by Li and Yorke.

  17. Encapsulation of Enzymes and Peptides (United States)

    Meesters, Gabrie M. H.

    A large part of formulated peptides and proteins, e.g., enzymes used as food ingredients, are formulated in a liquid form. Often, they are dissolved in water to which glycerol or sorbitol is added to reduce the water activity of the liquid, thus reducing the change of microbial growth. Still, there are reasons to formulate them in a solid form. Often, these reasons are stability, since a dry formulation is often much better than liquid formulations, and less transportation cost, since less mass is transported if one gets rid of the liquid; however, most of the times, the reason is that the product is mixed with a solid powder. Here, a liquid addition would lead to lump formation.


    Directory of Open Access Journals (Sweden)

    Maria Dimarogona


    Full Text Available Enzymatic degradation of plant biomass has attracted intensive research interest for the production of economically viable biofuels. Here we present an overview of the recent findings on biocatalysts implicated in the oxidative cleavage of cellulose, including polysaccharide monooxygenases (PMOs or LPMOs which stands for lytic PMOs, cellobiose dehydrogenases (CDHs and members of carbohydrate-binding module family 33 (CBM33. PMOs, a novel class of enzymes previously termed GH61s, boost the efficiency of common cellulases resulting in increased hydrolysis yields while lowering the protein loading needed. They act on the crystalline part of cellulose by generating oxidized and non-oxidized chain ends. An external electron donor is required for boosting the activity of PMOs. We discuss recent findings concerning their mechanism of action and identify issues and questions to be addressed in the future.

  19. Ethanologenic Enzymes of Zymomonas mobilis

    Energy Technology Data Exchange (ETDEWEB)

    Ingram, Lonnie O' Neal


    Zymomonas mobilis is a unique microorganism in being both obligately fermentative and utilizing a Entner-Doudoroff pathway for glycolysis. Glycolytic flux in this organism is readily measured as evolved carbon dioxide, ethanol, or glucose consumed and exceeds 1 {micro}mole glucose/min per mg cell protein. To support this rapid glycolysis, approximately 50% of cytoplasmic protein is devoted to the 13 glycolytic and fermentative enzymes which constitute this central catabolic pathway. Only 1 ATP (net) is produced from each glucose metabolized. During the past grant period, we have completed the characterization of 11 of the 13 glycolytic genes from Z. mobilis together with complementary but separate DOE-fimded research by a former post-dot and collaborator, Dr. Tyrrell Conway. Research funded in my lab by DOE, Division of Energy Biosciences can be divided into three sections: A. Fundamental studies; B. Applied studies and utility; and C. Miscellaneous investigations.

  20. Stabilized enzymes in continuous gas phase reactions

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Fangxiao; LeJeune, K.; Yang, Zhen [Univ. of Pittsburgh, PA (United States)] [and others


    We are assessing the utility of enzymes to catalyze reactions in a continuous gas phase reactor. First, alcohol dehydrogenase has been used to oxidize an unsaturated alcohol, 3-methyl-2-buten-1-ol (UOL), to the corresponding unsaturated aldehyde, 3-methyl-2-butenal (UAL). Cofactor NAD{sup +} was regenerated by concomitant acetone reduction to isopropyl alcohol. Second, organophosphorus hydrolase (OPH) has been used to hydrolyze pesticide vapors. In order to control enzyme hydration level, enzyme water adsorption isotherms at different temperature have been studied. Huttig`s isotherm model has been found suitable to describe adsorption behavior. The influence of enzyme hydration level, enzyme loading on glass beads, reaction temperature and flow rate on enzymatic reaction rate and biocatalyst stability were investigated. Reaction kinetics were studied and a kinetic model was proposed. We will also report our attempts to further stabilize enzymes for use in gas reactions by incorporating them into polymer matrices.

  1. Production of Enzymes from Marine Actinobacteria. (United States)

    Zhao, X Q; Xu, X N; Chen, L Y

    Marine actinobacteria are well recognized for their capabilities to produce valuable natural products, which have great potential for applications in medical, agricultural, and fine chemical industries. In addition to producing unique enzymes responsible for biosynthesis of natural products, many marine actinobacteria also produce hydrolytic enzymes which are able to degrade various biopolymers, such as cellulose, xylan, and chitin. These enzymes are important to produce biofuels and biochemicals of interest from renewable biomass. In this chapter, the recent reports of novel enzymes produced by marine actinobacteria are reviewed, and advanced technologies that can be applied to search for novel marine enzymes as well as for improved enzyme production by marine actinobacteria are summarized, which include ribosome engineering, genome mining, as well as synthetic biology studies.

  2. Prediction of Wild-type Enzyme Characteristics

    DEFF Research Database (Denmark)

    Geertz-Hansen, Henrik Marcus

    of biotechnology, including enzyme discovery and characterization. This work presents two articles on sequence-based discovery and functional annotation of enzymes in environmental samples, and two articles on analysis and prediction of enzyme thermostability and cofactor requirements. The first article presents...... a sequence-based approach to discovery of proteolytic enzymes in metagenomes obtained from the Polar oceans. We show that microorganisms living in these extreme environments of constant low temperature harbour genes encoding novel proteolytic enzymes with potential industrial relevance. The second article...... presents a web server for the processing and annotation of functional metagenomics sequencing data, tailored to meet the requirements of non-bioinformaticians. The third article presents analyses of the molecular determinants of enzyme thermostability, and a feature-based prediction method of the melting...

  3. Operating windows for enzyme enhanced PCCC

    DEFF Research Database (Denmark)

    Deslauriers, Maria Gundersen; Gladis, Arne; Fosbøl, Philip Loldrup


    Today, enzyme enhanced carbon capture and storage (CCS) is gaining interest, since it can enable the use of energy efficient solvents, and thus potentially reduce the carbon footprint of CCS. However, a limitation of this technology is the high temperatures encountered in the stripper column, which...... can deactivate the enzymes. One solution to this challenge is the use of ultrafiltration to retain the enzyme in the absorber unit. In this report, a base case of a CCS facility is used to model the impact of such membranes for use in a full scale CCS commercial plant. The base case has an approximate...... capture capacity of 1 MTonn CO2/year, and is here operated for one year continuously. This publication compares soluble enzymes dissolved in a capture solvent with and without the use of ultrafiltration membranes. The membranes used here have an enzyme retention of 90%, 99% and 99.9%. Enzyme retention...


    Directory of Open Access Journals (Sweden)

    A. Sh. Mannapova


    Full Text Available Here in this article the justification of expediency of enzyme resistant starch use in therapeutic food products is presented . Enzyme resistant starch is capable to resist to enzymatic hydrolysis in a small intestine of a person, has a low glycemic index, leads to decrease of postprandial concentration of glucose, cholesterol, triglycerides in blood and insulin reaction, to improvement of sensitivity of all organism to insulin, to increase in sense of fulness and to reduction of adjournment of fats. Resistant starch makes bifidogenшс impact on microflora of a intestine of the person, leads to increase of a quantity of lactobacillus and bifidobacterium and to increased production of butyric acid in a large intestine. In this regard the enzyme resistant starch is an important component in food for prevention and curing of human diseases such as diabetes, obesity, colitis, a cancer of large and direct intestine. One method is specified by authors for imitation of starch digestion in a human body. This method is based on the definition of an enzyme resistance of starch in vitro by its hydrolysis to glucose with application of a glucoamylase and digestive enzyme preparation Pancreatin. This method is used in researches of an enzyme resistance of starch, of genetically modified potato, high amylose corn starch Hi-Maize 1043 and HYLON VII (National Starch Food Innovation, USA, amylopectin and amylose. It is shown that the enzyme resistance of the starch emitted from genetically modified potatoes conforms to the enzyme resistance of the high amylose corn starch “Hi-Maize 1043 and HYLON VII starch”, (National Starch Food Innovation, the USA relating to the II type of enzyme resistant starch. It is established that amylopectin doesn't have the enzyme resistant properties. The results of researches are presented. They allow us to make the following conclusion: amylose in comparison with amylopectin possesses higher enzyme resistance and gives to

  5. Conductometric transducers for enzyme-based biosensors. (United States)

    Mikkelsen, S R; Rechnitz, G A


    The use of alternating current conductometric transducers in biosensing devices has been investigated for urea and D-amino acid sensors using the enzyme systems urease and D-amino acid oxidase/catalase. Transducers with copper and platinum electrodes were constructed and characterized, and two enzyme immobilization methods were tested. Detection limits of 1 x 10(-6)M and linear ranges of 2 orders of magnitude were routinely achieved for these model sensors with enzymes covalently immobilized on collagen films.

  6. Peptide-modified surfaces for enzyme immobilization.

    Directory of Open Access Journals (Sweden)

    Jinglin Fu

    Full Text Available BACKGROUND: Chemistry and particularly enzymology at surfaces is a topic of rapidly growing interest, both in terms of its role in biological systems and its application in biocatalysis. Existing protein immobilization approaches, including noncovalent or covalent attachments to solid supports, have difficulties in controlling protein orientation, reducing nonspecific absorption and preventing protein denaturation. New strategies for enzyme immobilization are needed that allow the precise control over orientation and position and thereby provide optimized activity. METHODOLOGY/PRINCIPAL FINDINGS: A method is presented for utilizing peptide ligands to immobilize enzymes on surfaces with improved enzyme activity and stability. The appropriate peptide ligands have been rapidly selected from high-density arrays and when desirable, the peptide sequences were further optimized by single-point variant screening to enhance both the affinity and activity of the bound enzyme. For proof of concept, the peptides that bound to β-galactosidase and optimized its activity were covalently attached to surfaces for the purpose of capturing target enzymes. Compared to conventional methods, enzymes immobilized on peptide-modified surfaces exhibited higher specific activity and stability, as well as controlled protein orientation. CONCLUSIONS/SIGNIFICANCE: A simple method for immobilizing enzymes through specific interactions with peptides anchored on surfaces has been developed. This approach will be applicable to the immobilization of a wide variety of enzymes on surfaces with optimized orientation, location and performance, and provides a potential mechanism for the patterned self-assembly of multiple enzymes on surfaces.

  7. The mechanisms of Excited states in enzymes

    DEFF Research Database (Denmark)

    Petersen, Frederic Nicolas Rønne; Bohr, Henrik


    Enzyme catalysis is studied on the basis of excited state processes, which are of electronic, vibrational and thermal nature. The ways of achieving the excited state, such as photo-absorption and ligand binding, are discussed and exemplified by various cases of enzymes.......Enzyme catalysis is studied on the basis of excited state processes, which are of electronic, vibrational and thermal nature. The ways of achieving the excited state, such as photo-absorption and ligand binding, are discussed and exemplified by various cases of enzymes....

  8. Substrate analogues for isoprenoid enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Stremler, K.E.


    Diphosphonate analogues of geranyl diphosphate, resistant to degradation by phosphatases, were found to be alternate substrates for the reaction with farnesyl diphosphate synthetase isolated from avian liver. The difluoromethane analogue was shown to be the better alternate substrate, in agreement with solvolysis results which indicate that the electronegativity of the difluoromethylene unit more closely approximates that of the normal bridging oxygen. The usefulness of the C/sub 10/ difluoro analogue, for detecting low levels of isoprenoid enzymes in the presence of high levels of phosphatase activity, was demonstrated with a cell-free preparation from lemon peel. A series of C/sub 5/ through C/sub 15/ homoallylic and allylic diphosphonates, as well as two 5'-nucleotide diphosphonates, was prepared in high overall yield using the activation-displacement sequence. Radiolabeled samples of several of the allylic diphosphonates were prepared with tritium located at C1. A series of geraniols, stereospecifically deuterated at C1, was prepared. The enantiomeric purities and absolute configurations were determined by derivatization as the mandelate esters for analysis by /sup 1/H NMR. The stereochemistry of the activation-displacement sequence was examined using C1-deuterated substrates.

  9. The Impact of Enzyme Orientation and Electrode Topology on the Catalytic Activity of Adsorbed Redox Enzymes (United States)

    McMillan, Duncan G. G.; Marritt, Sophie J.; Kemp, Gemma L.; Gordon-Brown, Piers; Butt, Julea N.; Jeuken, Lars J. C.


    It is well established that the structural details of electrodes and their interaction with adsorbed enzyme influences the interfacial electron transfer rate. However, for nanostructured electrodes, it is likely that the structure also impacts on substrate flux near the adsorbed enzymes and thus catalytic activity. Furthermore, for enzymes converting macro-molecular substrates it is possible that the enzyme orientation determines the nature of interactions between the adsorbed enzyme and substrate and therefore catalytic rates. In essence the electrode may impede substrate access to the active site of the enzyme. We have tested these possibilities through studies of the catalytic performance of two enzymes adsorbed on topologically distinct electrode materials. Escherichia coli NrfA, a nitrite reductase, was adsorbed on mesoporous, nanocrystalline SnO2 electrodes. CymA from Shewanella oneidensis MR-1 reduces menaquinone-7 within 200 nm sized liposomes and this reaction was studied with the enzyme adsorbed on SAM modified ultra-flat gold electrodes. PMID:24634538

  10. The Impact of Enzyme Orientation and Electrode Topology on the Catalytic Activity of Adsorbed Redox Enzymes. (United States)

    McMillan, Duncan G G; Marritt, Sophie J; Kemp, Gemma L; Gordon-Brown, Piers; Butt, Julea N; Jeuken, Lars J C


    It is well established that the structural details of electrodes and their interaction with adsorbed enzyme influences the interfacial electron transfer rate. However, for nanostructured electrodes, it is likely that the structure also impacts on substrate flux near the adsorbed enzymes and thus catalytic activity. Furthermore, for enzymes converting macro-molecular substrates it is possible that the enzyme orientation determines the nature of interactions between the adsorbed enzyme and substrate and therefore catalytic rates. In essence the electrode may impede substrate access to the active site of the enzyme. We have tested these possibilities through studies of the catalytic performance of two enzymes adsorbed on topologically distinct electrode materials. Escherichia coli NrfA, a nitrite reductase, was adsorbed on mesoporous, nanocrystalline SnO2 electrodes. CymA from Shewanella oneidensis MR-1 reduces menaquinone-7 within 200 nm sized liposomes and this reaction was studied with the enzyme adsorbed on SAM modified ultra-flat gold electrodes.

  11. Enzyme Activity Experiments Using a Simple Spectrophotometer (United States)

    Hurlbut, Jeffrey A.; And Others


    Experimental procedures for studying enzyme activity using a Spectronic 20 spectrophotometer are described. The experiments demonstrate the effect of pH, temperature, and inhibitors on enzyme activity and allow the determination of Km, Vmax, and Kcat. These procedures are designed for teaching large lower-level biochemistry classes. (MR)

  12. Loop 7 of E2 enzymes

    DEFF Research Database (Denmark)

    Papaleo, Elena; Casiraghi, Nicola; Arrigoni, Alberto;


    The ubiquitin (Ub) system controls almost every aspect of eukaryotic cell biology. Protein ubiquitination depends on the sequential action of three classes of enzymes (E1, E2 and E3). E2 Ub-conjugating enzymes have a central role in the ubiquitination pathway, interacting with both E1 and E3...

  13. Biosilica-Immobilized Enzymes for Biocatalysis (Preprint) (United States)


    Manufacture of glucose syrups and starch modification Maltogenic alpha- amylase Improves shelf life of bread Lipoxygenase Used for bleaching and...Table 1) [1-3]. Table I: Examples of enzymes catalysis in common household items Enzyme Application Lipases, Amylases , Proteases, Cellulases...paper manufacturing Phytases Improves nutritional value of animal feeds Lipases, Acylase Drug products and pharmaceutical intermediates Amylase

  14. The use of enzymes for beer brewing

    NARCIS (Netherlands)

    Donkelaar, van Laura H.G.; Mostert, Joost; Zisopoulos, Filippos K.; Boom, Remko M.; Goot, van der Atze Jan


    The exergetic performance of beer produced by the conventional malting and brewing process is compared with that of beer produced using an enzyme-assisted process. The aim is to estimate if the use of an exogenous enzyme formulation reduces the environmental impact of the overall brewing process. Th

  15. Tryptophan catabolizing enzymes – party of three

    Directory of Open Access Journals (Sweden)

    Helen J Ball


    Full Text Available Indoleamine 2,3-dioxygenase (IDO and tryptophan 2,3-dioxygenase (TDO are tryptophan-degrading enzymes that have independently evolved to catalyze the first step in tryptophan catabolism via the kynurenine pathway. The depletion of tryptophan and formation of kynurenine pathway metabolites modulates the activity of the mammalian immune, reproductive and central nervous systems. IDO and TDO enzymes can have overlapping or distinct functions depending on their expression patterns. The expression of TDO and IDO enzymes in mammals differs not only by tissue/cellular localization but also by their induction by distinct stimuli. To add to the complexity, these genes also have undergone duplications in some organisms leading to multiple isoforms of IDO or TDO. For example, many vertebrates, including all mammals, have acquired two IDO genes via gene duplication, although the IDO1-like gene has been lost in some lower vertebrate lineages. Gene duplications can allow the homologs to diverge and acquire different properties to the original gene. There is evidence for IDO enzymes having differing enzymatic characteristics, signaling properties and biological functions. This review analyses the evolutionary convergence of IDO and TDO enzymes as tryptophan-catabolizing enzymes and the divergent evolution of IDO homologs to generate an enzyme family with diverse characteristics not possessed by TDO enzymes, with an emphasis on the immune system.

  16. Restriction Enzyme Mapping: A Simple Student Practical. (United States)

    Higgins, Stephen J.; And Others


    An experiment that uses the recombinant plasmid pX1108 to illustrate restriction mapping is described. The experiment involves three restriction enzymes and employs single and double restriction enzyme digestions. A list of needed materials, procedures, safety precautions, results, and discussion are included. (KR)

  17. Enzyme adsorption at solid-liquid interfaces.

    NARCIS (Netherlands)

    Duinhoven, S.


    Enzymes are proteins with the capacity of catalysing various reactions. Nowadays two types of enzymes, proteases and lipases, are available for use in detergent formulations for household and industrial laundry washing. Proteases are capable of catalysing the hydrolysis of proteins while lipases ena


    NARCIS (Netherlands)

    JANSSEN, DB; PRIES, F; VANDERPLOEG, [No Value; Ploeg, Jan R. van der


    Microorganisms that can utilize halogenated compounds as a growth substrate generally produce enzymes whose function is carbon-halogen bond cleavage. Based on substrate range, reaction type and gene sequences, the dehalogenating enzymes can be classified in different groups, including hydrolytic deh

  19. Bacterial Enzymes and Antibiotic Resistance- Oral Presentation

    Energy Technology Data Exchange (ETDEWEB)

    Maltz, Lauren [SLAC National Accelerator Lab., Menlo Park, CA (United States)


    By using protein crystallography and X-ray diffraction, structures of bacterial enzymes were solved to gain a better understanding of how enzymatic modification acts as an antibacterial resistance mechanism. Aminoglycoside phosphotransferases (APHs) are one of three aminoglycoside modifying enzymes that confer resistance to the aminoglycoside antibiotics via enzymatic modification, rendering many drugs obsolete. Specifically, the APH(2”) family vary in their substrate specificities and also in their preference for the phosphate donor (ADP versus GDP). By solving the structures of members of the APH(2”) family of enzymes, we can see how domain movements are important to their substrate specificity. Our structure of the ternary complex of APH(2”)-IIIa with GDP and kanamycin, when compared to the known structures of APH(2”)-IVa, reveals that there are real physical differences between these two enzymes, a structural finding that explains why the two enzymes differ in their preferences for certain aminoglycosides. Another important group of bacterial resistance enzymes are the Class D β-lactamases. Oxacillinase carbapenemases (OXAs) are part of this enzyme class and have begun to confer resistance to ‘last resort’ drugs, most notably carbapenems. Our structure of OXA-143 shows that the conformational flexibility of a conserved hydrophobic residue in the active site (Val130) serves to control the entry of a transient water molecule responsible for a key step in the enzyme’s mechanism. Our results provide insight into the structural mechanisms of these two different enzymes.

  20. Illustrating Enzyme Inhibition Using Gibbs Energy Profiles (United States)

    Bearne, Stephen L.


    Gibbs energy profiles have great utility as teaching and learning tools because they present students with a visual representation of the energy changes that occur during enzyme catalysis. Unfortunately, most textbooks divorce discussions of traditional kinetic topics, such as enzyme inhibition, from discussions of these same topics in terms of…

  1. Biocatalytic material comprising multilayer enzyme coated fiber (United States)

    Kim, Jungbae [Richland, WA; Kwak, Ja Hun [Richland, WA; Grate, Jay W [West Richland, WA


    The present invention relates generally to high stability, high activity biocatalytic materials and processes for using the same. The materials comprise enzyme aggregate coatings having high biocatalytic activity and stability useful in heterogeneous environment. These new materials provide a new biocatalytic immobilized enzyme system with applications in bioconversion, bioremediation, biosensors, and biofuel cells.

  2. A toy quantum analog of enzymes

    CERN Document Server

    Svetlichny, George


    We present a quantum system incorporating qualitative aspects of enzyme action in which the possibility of quantum superposition of several conformations of the enzyme-substrate complex is investigated. We present numerical results showing quantum effects that transcend the case of a statistical mixture of conformations.

  3. Enzyme Catalysis and the Gibbs Energy (United States)

    Ault, Addison


    Gibbs-energy profiles are often introduced during the first semester of organic chemistry, but are less often presented in connection with enzyme-catalyzed reactions. In this article I show how the Gibbs-energy profile corresponds to the characteristic kinetics of a simple enzyme-catalyzed reaction. (Contains 1 figure and 1 note.)

  4. Orphan enzymes in ether lipid metabolism. (United States)

    Watschinger, Katrin; Werner, Ernst R


    Ether lipids are an emerging class of lipids which have so far not been investigated and understood in every detail. They have important roles as membrane components of e.g. lens, brain and testis, and as mediators such as platelet-activating factor. The metabolic enzymes for biosynthesis and degradation have been investigated to some extent. As most involved enzymes are integral membrane proteins they are tricky to handle in biochemical protocols. The sequence of some ether lipid metabolising enzymes has only recently been reported and other sequences still remain obscure. Defined enzymes without assigned sequence are known as orphan enzymes. One of these enzymes with uncharacterised sequence is plasmanylethanolamine desaturase, a key enzyme for the biosynthesis of one of the most abundant phospholipids in our body, the plasmalogens. This review aims to briefly summarise known functions of ether lipids, give an overview on their metabolism including the most prominent members, platelet-activating factor and the plasmalogens. A special focus is set on the description of orphan enzymes in ether lipid metabolism and on the successful strategies how four previous orphans have recently been assigned a sequence. Only one of these four was characterised by classical protein purification and sequencing, whereas the other three required alternative strategies such as bioinformatic candidate gene selection and recombinant expression or development of an inhibitor and multidimensional metabolic profiling.

  5. Computer-based studies on enzyme catalysis

    NARCIS (Netherlands)

    Ridder, L.


    Theoretical simulations are becoming increasingly important for our understanding of how enzymes work. The aim of the research presented in this thesis is to contribute to this development by applying various computational methods to three enzymes of theβ-ketoadipate pathway, and to validate the mod

  6. Enzyme activity assay of glycoprotein enzymes based on a boronate affinity molecularly imprinted 96-well microplate. (United States)

    Bi, Xiaodong; Liu, Zhen


    Enzyme activity assay is an important method in clinical diagnostics. However, conventional enzyme activity assay suffers from apparent interference from the sample matrix. Herein, we present a new format of enzyme activity assay that can effectively eliminate the effects of the sample matrix. The key is a 96-well microplate modified with molecularly imprinted polymer (MIP) prepared according to a newly proposed method called boronate affinity-based oriented surface imprinting. Alkaline phosphatase (ALP), a glycoprotein enzyme that has been routinely used as an indicator for several diseases in clinical tests, was taken as a representative target enzyme. The prepared MIP exhibited strong affinity toward the template enzyme (with a dissociation constant of 10(-10) M) as well as superb tolerance for interference. Thus, the enzyme molecules in a complicated sample matrix could be specifically captured and cleaned up for enzyme activity assay, which eliminated the interference from the sample matrix. On the other hand, because the boronate affinity MIP could well retain the enzymatic activity of glycoprotein enzymes, the enzyme captured by the MIP was directly used for activity assay. Thus, additional assay time and possible enzyme or activity loss due to an enzyme release step required by other methods were avoided. Assay of ALP in human serum was successfully demonstrated, suggesting a promising prospect of the proposed method in real-world applications.

  7. Fungal enzymes in the attine ant symbiosis

    DEFF Research Database (Denmark)

    de Fine Licht, Henrik Hjarvard; Schiøtt, Morten; Boomsma, Jacobus Jan

    the more basal attine genera use substrates such as flowers, plant debris, small twigs, insect feces and insect carcasses. This diverse array of fungal substrates across the attine lineage implies that the symbiotic fungus needs different enzymes to break down the plant material that the ants provide...... or different efficiencies of enzyme function. Fungal enzymes that degrade plant cell walls may have functionally co-evolved with the ants in this scenario. We explore this hypothesis with direct measurements of enzyme activity in fungus gardens in 12 species across 8 genera spanning the entire phylogeny...... and diversity of life-styles within the attine clade. We find significant differences in enzyme activity between different genera and life-styles of the ants. How these findings relate to attine ant coevolution and crop optimization are discussed....

  8. Production of cellulolytic enzymes from ascomycetes

    DEFF Research Database (Denmark)

    Hansen, Gustav Hammerich; Lübeck, Mette; Frisvad, Jens Christian;


    Optimizing production of cellulose degrading enzymes is of great interest in order to increase the feasibility of constructing biorefinery facilities for a sustainable supply of energy and chemical products. The ascomycete phylum has a large potential for the production of cellulolytic enzymes....... Although numerous enzymatic profiles have already been unraveled, the research has been covering only a limited number of species and genera, thus leaving many ascomycetes to be analyzed. Such analysis requires choosing appropriate media and cultivation methods that ensure enzyme profiles with high...... specificities and activities. However, the choice of media, cultivation methods and enzyme assays highly affect the enzyme activity profile observed. This review provides an overview of enzymatic profiles for several ascomycetes covering phylogenetically distinct genera and species. The profiles of cellulose...

  9. Enzyme-immobilized microfluidic process reactors. (United States)

    Asanomi, Yuya; Yamaguchi, Hiroshi; Miyazaki, Masaya; Maeda, Hideaki


    Microreaction technology, which is an interdisciplinary science and engineering area, has been the focus of different fields of research in the past few years. Several microreactors have been developed. Enzymes are a type of catalyst, which are useful in the production of substance in an environmentally friendly way, and they also have high potential for analytical applications. However, not many enzymatic processes have been commercialized, because of problems in stability of the enzymes, cost, and efficiency of the reactions. Thus, there have been demands for innovation in process engineering, particularly for enzymatic reactions, and microreaction devices represent important tools for the development of enzyme processes. In this review, we summarize the recent advances of microchannel reaction technologies especially for enzyme immobilized microreactors. We discuss the manufacturing process of microreaction devices and the advantages of microreactors compared to conventional reaction devices. Fundamental techniques for enzyme immobilized microreactors and important applications of this multidisciplinary technology are also included in our topics.

  10. Enzyme-Immobilized Microfluidic Process Reactors

    Directory of Open Access Journals (Sweden)

    Hideaki Maeda


    Full Text Available Microreaction technology, which is an interdisciplinary science and engineering area, has been the focus of different fields of research in the past few years. Several microreactors have been developed. Enzymes are a type of catalyst, which are useful in the production of substance in an environmentally friendly way, and they also have high potential for analytical applications. However, not many enzymatic processes have been commercialized, because of problems in stability of the enzymes, cost, and efficiency of the reactions. Thus, there have been demands for innovation in process engineering, particularly for enzymatic reactions, and microreaction devices represent important tools for the development of enzyme processes. In this review, we summarize the recent advances of microchannel reaction technologies especially for enzyme immobilized microreactors. We discuss the manufacturing process of microreaction devices and the advantages of microreactors compared to conventional reaction devices. Fundamental techniques for enzyme immobilized microreactors and important applications of this multidisciplinary technology are also included in our topics.

  11. Enhanced Oil Recovery with Application of Enzymes

    DEFF Research Database (Denmark)

    Khusainova, Alsu

    Enzymes have recently been reported as effective enhanced oil recovery (EOR) agents. Both laboratory and field tests demonstrated significant increase in the ultimate oil production. Up to16% of additional oil was produced in the laboratory conditions and up to 269 barrels of additional oil per day...... were recovered in the field applications. The following mechanisms were claimed to be responsible for the enhancement of the oil production due to enzymes: wettability improvement of the rock surface; formation of the emulsions; reduction of oil viscosity; and removal of high molecular weight paraffins....... However, the positive effect of enzymes on oil recovery is not that obvious. In most of the studies commercial enzyme products composed of enzymes, surfactants and stabilisers were used. Application of such samples makes it difficult to assign a positive EOR effect to a certain compound, as several...

  12. Enzyme-based antifouling coatings: a review

    DEFF Research Database (Denmark)

    Olsen, Stefan Møller; Pedersen, Leif Toudal; Laursen, M.H.


    for successful development of enzymatic AF coatings. The approaches described in the literature are divided into direct and indirect enzymatic AF, depending on the intended action of the enzymes. Direct antifouling is used when the enzymes themselves are active antifoulants. Indirect antifouling refers...... to the use of enzymes to release an active biocide with AF activity. For direct AF, several patents have been granted, and a commercial product has been launched. However, the achievement of an efficient broad-spectrum AF coating based on a single or a few enzymes has not yet been achieved. An indirect AF...... coating is not yet available commercially. The technology is mainly limited by the instability of substrate supply, whether the substrates are found in the surrounding seawater or in the coating itself. Legislative issues regarding which part(s) of an enzyme system should be regarded as biocidal...

  13. Directed Evolution of Enzymes for Industrial Biocatalysis. (United States)

    Porter, Joanne L; Rusli, Rukhairul A; Ollis, David L


    Enzymes have the potential to catalyse a wide variety of chemical reactions. They are increasingly being sought as environmentally friendly and cost-effective alternatives to conventional catalysts used in industries ranging from bioremediation to applications in medicine and pharmaceutics. Despite the benefits, they are not without their limitations. Many naturally occurring enzymes are not suitable for use outside of their native cellular environments. However, protein engineering can be used to generate enzymes tailored for specific industrial applications. Directed evolution is particularly useful and can be employed even when lack of structural information impedes the use of rational design. The aim of this review is to provide an overview of current industrial applications of enzyme technology and to show how directed evolution can be used to modify and to enhance enzyme properties. This includes a brief discussion on library generation and a more detailed focus on library screening methods, which are critical to any directed evolution experiment.

  14. Electro-ultrafiltration of industrial enzyme solutions

    DEFF Research Database (Denmark)

    Enevoldsen, Ann Dorrit; Hansen, Erik Børresen; Jonsson, Gunnar Eigil


    To reduce the problems with fouling and concentration polarization during crossflow ultrafiltration of industrial enzyme solutions an electric field is applied across the membrane. The filtration performance during electro-ultrafiltration (EUF) has been tested with several enzymes. Results show...... that EUF is an effective method to filter high concentrated solutions at low crossfiow. The flux improved 3-7 times for enzymes with a significant surface charge at an electric field strength of 1600V/m compared to conventional UF. The greatest improvement is observed at high concentration. Not all enzymes...... can be filtered with EUF, mainly due to a low surface charge and impurities in the feed solution. Using a pulsed electric field did not improve the flux compared to a constant field. Gel electrophoresis experiments of the enzymes appear to be a useful method for estimating the influence...

  15. Increased LCAT activity and hyperglycaemia decrease the antioxidative functionality of HDL

    NARCIS (Netherlands)

    Kappelle, Paul J.W.H.; de Boer, Jan Freark; Perton, Frank G.; Annema, Wijtske; de Vries, Rindert; Dullaart, Robin P. F.; Tietge, Uwe J. F.


    Background Type 2 diabetes mellitus increases the risk of atherosclerotic cardiovascular disease. Antioxidative properties of high density lipoprotein (HDL) are important for atheroprotection. This study investigated whether the antioxidative functionality of HDL is altered in type 2 diabetes mellit

  16. Enzyme stereospecificity as a powerful tool in searching for new enzymes. (United States)

    Skarydová, Lucie; Skarka, Adam; Solich, Petr; Wsól, Vladimír


    Chirality is a ubiquitous feature present in all biological systems that plays a very important role in many processes. Drug metabolism is one of these and is the subject of this review. Chiral drugs can be metabolized without changes in their chiral characteristics, but also their biotransformation may give rise to a new chiral center. On the other hand, prochiral drugs are always metabolized to chiral metabolites. The ratio of formed enantiomers/diastereoisomers is the constant known as enzyme stereospecificity, and this is as important a characteristic for each enzyme-substrate pair as is the Michaelis constant. Drugs are often substrates for multiple biotransformation enzymes, and all enzymes involved may metabolize a chiral or prochiral drug with different stereospecificity so that variant enantiomer ratios are achieved. Enzyme stereospecificity of whole cell fraction is the sum of the stereospecificities of all enzymes participating in metabolism of a substrate. Differing stereospecificities in the metabolism of a drug between whole cell fraction and enzymes point to the contribution of other enzymes. Using several drugs as examples, this review shows that enzyme stereospecificity can serve as a powerful tool in searching for new biotransformation enzymes. Although it is not often used in this way, it is clear that this is possible. There are today drugs with well-known chiral metabolism, but, inasmuch as many xenobiotics are poorly characterized in terms of chiral metabolism, enzyme stereospecificity could be widely utilized in researching such substances.

  17. Ostensible enzyme promiscuity: alkene cleavage by peroxidases. (United States)

    Mutti, Francesco G; Lara, Miguel; Kroutil, Markus; Kroutil, Wolfgang


    Enzyme promiscuity is generally accepted as the ability of an enzyme to catalyse alternate chemical reactions besides the 'natural' one. In this paper peroxidases were shown to catalyse the cleavage of a C=C double bond adjacent to an aromatic moiety for selected substrates at the expense of molecular oxygen at an acidic pH. It was clearly shown that the reaction occurs due to the presence of the enzyme; furthermore, the reactivity was clearly linked to the hemin moiety of the peroxidase. Comparison of the transformations catalysed by peroxidase and by hemin chloride revealed that these two reactions proceed equally fast; additional experiments confirmed that the peptide backbone was not obligatory for the reaction and only a single functional group of the enzyme was required, namely in this case the prosthetic group (hemin). Consequently, we propose to define such a promiscuous activity as 'ostensible enzyme promiscuity'. Thus, we call an activity that is catalysed by an enzyme 'ostensible enzyme promiscuity' if the reactivity can be tracked back to a single catalytic site, which on its own can already perform the reaction equally well in the absence of the peptide backbone.

  18. A survey of orphan enzyme activities

    Directory of Open Access Journals (Sweden)

    Pouliot Yannick


    Full Text Available Abstract Background Using computational database searches, we have demonstrated previously that no gene sequences could be found for at least 36% of enzyme activities that have been assigned an Enzyme Commission number. Here we present a follow-up literature-based survey involving a statistically significant sample of such "orphan" activities. The survey was intended to determine whether sequences for these enzyme activities are truly unknown, or whether these sequences are absent from the public sequence databases but can be found in the literature. Results We demonstrate that for ~80% of sampled orphans, the absence of sequence data is bona fide. Our analyses further substantiate the notion that many of these enzyme activities play biologically important roles. Conclusion This survey points toward significant scientific cost of having such a large fraction of characterized enzyme activities disconnected from sequence data. It also suggests that a larger effort, beginning with a comprehensive survey of all putative orphan activities, would resolve nearly 300 artifactual orphans and reconnect a wealth of enzyme research with modern genomics. For these reasons, we propose that a systematic effort to identify the cognate genes of orphan enzymes be undertaken.

  19. Metagenomics as a Tool for Enzyme Discovery: Hydrolytic Enzymes from Marine-Related Metagenomes. (United States)

    Popovic, Ana; Tchigvintsev, Anatoly; Tran, Hai; Chernikova, Tatyana N; Golyshina, Olga V; Yakimov, Michail M; Golyshin, Peter N; Yakunin, Alexander F


    This chapter discusses metagenomics and its application for enzyme discovery, with a focus on hydrolytic enzymes from marine metagenomic libraries. With less than one percent of culturable microorganisms in the environment, metagenomics, or the collective study of community genetics, has opened up a rich pool of uncharacterized metabolic pathways, enzymes, and adaptations. This great untapped pool of genes provides the particularly exciting potential to mine for new biochemical activities or novel enzymes with activities tailored to peculiar sets of environmental conditions. Metagenomes also represent a huge reservoir of novel enzymes for applications in biocatalysis, biofuels, and bioremediation. Here we present the results of enzyme discovery for four enzyme activities, of particular industrial or environmental interest, including esterase/lipase, glycosyl hydrolase, protease and dehalogenase.

  20. Abeta-degrading enzymes in Alzheimer's disease. (United States)

    Miners, James Scott; Baig, Shabnam; Palmer, Jennifer; Palmer, Laura E; Kehoe, Patrick G; Love, Seth


    In Alzheimer's disease (AD) Abeta accumulates because of imbalance between the production of Abeta and its removal from the brain. There is increasing evidence that in most sporadic forms of AD, the accumulation of Abeta is partly, if not in some cases solely, because of defects in its removal--mediated through a combination of diffusion along perivascular extracellular matrix, transport across vessel walls into the blood stream and enzymatic degradation. Multiple enzymes within the central nervous system (CNS) are capable of degrading Abeta. Most are produced by neurons or glia, but some are expressed in the cerebral vasculature, where reduced Abeta-degrading activity may contribute to the development of cerebral amyloid angiopathy (CAA). Neprilysin and insulin-degrading enzyme (IDE), which have been most extensively studied, are expressed both neuronally and within the vasculature. The levels of both of these enzymes are reduced in AD although the correlation with enzyme activity is still not entirely clear. Other enzymes shown capable of degrading Abetain vitro or in animal studies include plasmin; endothelin-converting enzymes ECE-1 and -2; matrix metalloproteinases MMP-2, -3 and -9; and angiotensin-converting enzyme (ACE). The levels of plasmin and plasminogen activators (uPA and tPA) and ECE-2 are reported to be reduced in AD. Reductions in neprilysin, IDE and plasmin in AD have been associated with possession of APOEepsilon4. We found no change in the level or activity of MMP-2, -3 or -9 in AD. The level and activity of ACE are increased, the level being directly related to Abeta plaque load. Up-regulation of some Abeta-degrading enzymes may initially compensate for declining activity of others, but as age, genetic factors and diseases such as hypertension and diabetes diminish the effectiveness of other Abeta-clearance pathways, reductions in the activity of particular Abeta-degrading enzymes may become critical, leading to the development of AD and CAA.

  1. Activation of interfacial enzymes at membrane surfaces

    DEFF Research Database (Denmark)

    Mouritsen, Ole G.; Andresen, Thomas Lars; Halperin, Avi;


    A host of water-soluble enzymes are active at membrane surfaces and in association with membranes. Some of these enzymes are involved in signalling and in modification and remodelling of the membranes. A special class of enzymes, the phospholipases, and in particular secretory phospholipase A2 (s......PLA2), are only activated at the interface between water and membrane surfaces, where they lead to a break-down of the lipid molecules into lysolipids and free fatty acids. The activation is critically dependent on the physical properties of the lipid-membrane substrate. A topical review is given...

  2. Immobilized enzyme studies in a microscale bioreactor. (United States)

    Jones, Francis; Forrest, Scott; Palmer, Jim; Lu, Zonghuan; Elmore, John; Elmore, Bill B


    Novel microreactors with immobilized enzymes were fabricated using both silicon and polymer-based microfabrication techniques. The effectiveness of these reactors was examined along with their behavior over time. Urease enzyme was successfully incorporated into microchannels of a polymeric matrix of polydimethylsiloxane and through layer-bylayer self-assembly techniques onto silicon. The fabricated microchannels had cross-sectional dimensions ranging from tens to hundreds of micrometers in width and height. The experimental results for continuous-flow microreactors are reported for the conversion of urea to ammonia by urease enzyme. Urea conversions of >90% were observed.

  3. Development of Enzyme-Containing Functional Nanoparticles (United States)


    absorbed) roentgen shake slug torr (nm Hg , 0° C) 1.000 000 X E -10 1.013 25 X E +2 1.000 000 X E +2 1.000 000 X E -28 1.054 350 X E +3 4 .184 000...nanoparticles, containing no enzyme, after particle synthesis to demonstrate that the adsorption of the enzyme or the presence of nanoparticles was not the...thermo-responsive nanoparticle nor enzyme adsorption onto the surface of the nanoparticle were responsible for artificially increasing enzymatic

  4. Data mining of enzymes using specific peptides

    Directory of Open Access Journals (Sweden)

    Lavi Yair


    Full Text Available Abstract Background Predicting the function of a protein from its sequence is a long-standing challenge of bioinformatic research, typically addressed using either sequence-similarity or sequence-motifs. We employ the novel motif method that consists of Specific Peptides (SPs that are unique to specific branches of the Enzyme Commission (EC functional classification. We devise the Data Mining of Enzymes (DME methodology that allows for searching SPs on arbitrary proteins, determining from its sequence whether a protein is an enzyme and what the enzyme's EC classification is. Results We extract novel SP sets from Swiss-Prot enzyme data. Using a training set of July 2006, and test sets of July 2008, we find that the predictive power of SPs, both for true-positives (enzymes and true-negatives (non-enzymes, depends on the coverage length of all SP matches (the number of amino-acids matched on the protein sequence. DME is quite different from BLAST. Comparing the two on an enzyme test set of July 2008, we find that DME has lower recall. On the other hand, DME can provide predictions for proteins regarded by BLAST as having low homologies with known enzymes, thus supplying complementary information. We test our method on a set of proteins belonging to 10 bacteria, dated July 2008, establishing the usefulness of the coverage-length cutoff to determine true-negatives. Moreover, sifting through our predictions we find that some of them have been substantiated by Swiss-Prot annotations by July 2009. Finally we extract, for production purposes, a novel SP set trained on all Swiss-Prot enzymes as of July 2009. This new set increases considerably the recall of DME. The new SP set is being applied to three metagenomes: Sargasso Sea with over 1,000,000 proteins, producing predictions of over 220,000 enzymes, and two human gut metagenomes. The outcome of these analyses can be characterized by the enzymatic profile of the metagenomes, describing the relative

  5. Potato Peroxidase for the Study of Enzyme Properties. (United States)

    Shamaefsky, Brian R.


    Explains how the surface of a freshly sliced potato can be used for a variety of enzyme action experiments including the influence of pH on enzyme action, the enzyme denaturation potential of boiling water, the inhibition of enzymes by heavy metals, and the effects of salt concentration on enzyme effectiveness. (PR)


    Directory of Open Access Journals (Sweden)



    Full Text Available The oyster mushroom Pleurotus ostreatus is the most commonly cultivated mushroom, and are effective for antitumor, antibacterial, anti viral and hematological agents and in immune modulating treatments. Several compounds from oyster mushrooms, potentially beneficial for human health have been isolated and studied. The aim of this research is to purify an enzyme catalase from Pleurotus ostreatus through Sephadox G-75 column, its molecular weight was determined by polyacrylamide gel electrophoresis and the catalase enzyme stability were observed at various temperature and different pH condition. Under denaturing conditions, polyacrylamide gel electrophoresis revealed dissociation of a major component of molecular weight 62,000 kDa, which constituted 90% of the total protein of the stained gel, suggesting that the native enzyme is tetrameric. The optimum temperature and pH for the purified enzyme catalase from Pleurotus ostreatus enzymatic reaction were 30°C and pH 7.5.

  7. Enzymes: The possibility of production and applications

    Directory of Open Access Journals (Sweden)

    Petronijević Živomir B.


    Full Text Available Enzymes are biological catalysts with increasing application in the food pharmaceutical, cosmetic, textile and chemical industry. They are also important as reagents in chemical analysis, leather fabrications and as targets for the design of new drugs. Keeping in mind the growing need to replace classical chemical processes by alternative ones, because of ever growing environmental pollution, it is important that enzyme and other biotechnological processes are economical. Therefore, price decrease and stability and enzyme preparation efficiency increase are required more and more. This paper presents a short review of methods for yield increase and the improvement of the quality of enzyme products as commercial products, as well as a review of the possibilities of their application.

  8. Supramolecular Tectonics for Enzyme-like Reagents

    Institute of Scientific and Technical Information of China (English)

    MAO; LuYuan


    The enzyme-likes and bioactive species were closely related with the life phenomena and served as the reagent of bioassy1,2. In present works, the flow cytometry (FCM) and rapid-scanning stopped-flow (RSSF) spectroscopy combine with the stopped-flow difference UV/Vis spectra, FT-IR and other methods of assay, being used to study the biomimetic reaction and enzyme mimic. Based on catalytic kinetics of enzyme reaction3,4, the reaction mechanisms of the enzyme-likes had been studied and some new methods of kinetic determination were proposed. The study and methods not only provided the basic theoretical models for the life science, but also widened the application fields of biomimetic and analytical chemistry. The main contents of our works and the supramolecular models can be described as follows:  ……

  9. How thiamine diphosphate is activated in enzymes. (United States)

    Kern, D; Kern, G; Neef, H; Tittmann, K; Killenberg-Jabs, M; Wikner, C; Schneider, G; Hübner, G


    The controversial question of how thiamine diphosphate, the biologically active form of vitamin B1, is activated in different enzymes has been addressed. Activation of the coenzyme was studied by measuring thermodynamics and kinetics of deprotonation at the carbon in the 2-position (C2) of thiamine diphosphate in the enzymes pyruvate decarboxylase and transketolase by use of nuclear magnetic resonance spectroscopy, proton/deuterium exchange, coenzyme analogs, and site-specific mutant enzymes. Interaction of a glutamate with the nitrogen in the 1'-position in the pyrimidine ring activated the 4'-amino group to act as an efficient proton acceptor for the C2 proton. The protein component accelerated the deprotonation of the C2 atom by several orders of magnitude, beyond the rate of the overall enzyme reaction. Therefore, the earlier proposed concerted mechanism or stabilization of a C2 carbanion can be excluded.

  10. Enzyme Reactions in Nanoporous, Picoliter Volume Containers

    Energy Technology Data Exchange (ETDEWEB)

    Siuti, Piro [ORNL; Retterer, Scott T [ORNL; Choi, Chang Kyoung [Michigan Technological University; Doktycz, Mitchel John [ORNL


    Advancements in nanoscale fabrication allow creation of small volume reaction containers that can facilitate the screening and characterization of enzymes. A porous, ~19 pL volume vessel has been used in this work to carry out enzyme reactions under varying substrate concentrations. Glucose oxidase and horseradish peroxidase can be contained in these structures and diffusively fed with a solution containing glucose and the fluorogenic substrate Amplex Red through the engineered nanoscale pore structure. Fluorescent microscopy was used to monitor the reaction, which was carried out under microfluidic control. Kinetic characteristics of the enzyme were evaluated and compared with results from conventional scale reactions. These picoliter, nanoporous containers can facilitate quick determination of enzyme kinetics in microfluidic systems without the requirement of surface tethering and can be used for applications in drug discovery, clinical diagnostics and high-throughput screening.

  11. Archaeal Enzymes and Applications in Industrial Biocatalysts. (United States)

    Littlechild, Jennifer A


    Archaeal enzymes are playing an important role in industrial biotechnology. Many representatives of organisms living in "extreme" conditions, the so-called Extremophiles, belong to the archaeal kingdom of life. This paper will review studies carried by the Exeter group and others regarding archaeal enzymes that have important applications in commercial biocatalysis. Some of these biocatalysts are already being used in large scale industrial processes for the production of optically pure drug intermediates and amino acids and their analogues. Other enzymes have been characterised at laboratory scale regarding their substrate specificity and properties for potential industrial application. The increasing availability of DNA sequences from new archaeal species and metagenomes will provide a continuing resource to identify new enzymes of commercial interest using both bioinformatics and screening approaches.

  12. Microbial Enzymes: Tools for Biotechnological Processes

    Directory of Open Access Journals (Sweden)

    Jose L. Adrio


    Full Text Available Microbial enzymes are of great importance in the development of industrial bioprocesses. Current applications are focused on many different markets including pulp and paper, leather, detergents and textiles, pharmaceuticals, chemical, food and beverages, biofuels, animal feed and personal care, among others. Today there is a need for new, improved or/and more versatile enzymes in order to develop more novel, sustainable and economically competitive production processes. Microbial diversity and modern molecular techniques, such as metagenomics and genomics, are being used to discover new microbial enzymes whose catalytic properties can be improved/modified by different strategies based on rational, semi-rational and random directed evolution. Most industrial enzymes are recombinant forms produced in bacteria and fungi.

  13. Archaeal Enzymes and Applications in Industrial Biocatalysts

    Directory of Open Access Journals (Sweden)

    Jennifer A. Littlechild


    Full Text Available Archaeal enzymes are playing an important role in industrial biotechnology. Many representatives of organisms living in “extreme” conditions, the so-called Extremophiles, belong to the archaeal kingdom of life. This paper will review studies carried by the Exeter group and others regarding archaeal enzymes that have important applications in commercial biocatalysis. Some of these biocatalysts are already being used in large scale industrial processes for the production of optically pure drug intermediates and amino acids and their analogues. Other enzymes have been characterised at laboratory scale regarding their substrate specificity and properties for potential industrial application. The increasing availability of DNA sequences from new archaeal species and metagenomes will provide a continuing resource to identify new enzymes of commercial interest using both bioinformatics and screening approaches.

  14. Microbial enzymes: tools for biotechnological processes. (United States)

    Adrio, Jose L; Demain, Arnold L


    Microbial enzymes are of great importance in the development of industrial bioprocesses. Current applications are focused on many different markets including pulp and paper, leather, detergents and textiles, pharmaceuticals, chemical, food and beverages, biofuels, animal feed and personal care, among others. Today there is a need for new, improved or/and more versatile enzymes in order to develop more novel, sustainable and economically competitive production processes. Microbial diversity and modern molecular techniques, such as metagenomics and genomics, are being used to discover new microbial enzymes whose catalytic properties can be improved/modified by different strategies based on rational, semi-rational and random directed evolution. Most industrial enzymes are recombinant forms produced in bacteria and fungi.

  15. Highly efficient enzyme encapsulation in a protein nanocage: towards enzyme catalysis in a cellular nanocompartment mimic (United States)

    Schoonen, Lise; Nolte, Roeland J. M.; van Hest, Jan C. M.


    The study of enzyme behavior in small nanocompartments is crucial for the understanding of biocatalytic processes in the cellular environment. We have developed an enzymatic conjugation strategy to attach a model enzyme to the interior of a cowpea chlorotic mottle virus capsid. It is shown that with this methodology high encapsulation efficiencies can be achieved. Additionally, we demonstrate that the encapsulation does not affect the enzyme performance in terms of a decreased activity or a hampered substrate diffusion. Finally, it is shown that the encapsulated enzymes are protected against proteases. We believe that our strategy can be used to study enzyme kinetics in an environment that approaches physiological conditions.The study of enzyme behavior in small nanocompartments is crucial for the understanding of biocatalytic processes in the cellular environment. We have developed an enzymatic conjugation strategy to attach a model enzyme to the interior of a cowpea chlorotic mottle virus capsid. It is shown that with this methodology high encapsulation efficiencies can be achieved. Additionally, we demonstrate that the encapsulation does not affect the enzyme performance in terms of a decreased activity or a hampered substrate diffusion. Finally, it is shown that the encapsulated enzymes are protected against proteases. We believe that our strategy can be used to study enzyme kinetics in an environment that approaches physiological conditions. Electronic supplementary information (ESI) available: Experimental procedures for the cloning, expression, and purification of all proteins, as well as supplementary figures and calculations. See DOI: 10.1039/c6nr04181g

  16. "Enzyme Test Bench," a high-throughput enzyme characterization technique including the long-term stability. (United States)

    Rachinskiy, Kirill; Schultze, Hergen; Boy, Matthias; Bornscheuer, Uwe; Büchs, Jochen


    A new high throughput technique for enzyme characterization with specific attention to the long term stability, called "Enzyme Test Bench," is presented. The concept of the Enzyme Test Bench consists of short term enzyme tests in 96-well microtiter plates under partly extreme conditions to predict the enzyme long term stability under moderate conditions. The technique is based on the mathematical modeling of temperature dependent enzyme activation and deactivation. Adapting the temperature profiles in sequential experiments by optimal non-linear experimental design, the long term deactivation effects can be purposefully accelerated and detected within hours. During the experiment the enzyme activity is measured online to estimate the model parameters from the obtained data. Thus, the enzyme activity and long term stability can be calculated as a function of temperature. The engineered instrumentation provides for simultaneous automated assaying by fluorescent measurements, mixing and homogenous temperature control in the range of 10-85 +/- 0.5 degrees C. A universal fluorescent assay for online acquisition of ester hydrolysis reactions by pH-shift is developed and established. The developed instrumentation and assay are applied to characterize two esterases. The results of the characterization, carried out in microtiter plates applying short term experiments of hours, are in good agreement with the results of long term experiments at different temperatures in 1 L stirred tank reactors of a week. Thus, the new technique allows for both: the enzyme screening with regard to the long term stability and the choice of the optimal process temperature regarding such process parameters as turn over number, space time yield or optimal process duration. The comparison of the temperature dependent behavior of both characterized enzymes clearly demonstrates that the frequently applied estimation of long term stability at moderate temperatures by simple activity measurements

  17. Developing Unconstrained Methods for Enzyme Evolution (United States)


    methods fail to produce catalytically efficient enzymes. This study has broad application in many technologies from chemical synthesis to human health and...enzymes. This study has broad application in many technologies from chemical synthesis to human health and the environment. Our work centers around the...minimal media with N-15 labeled ammonia . After several months of screening, we finally identified conditions that allowed us to obtain labeled protein in



    A. Sh. Mannapova; Z. A. Kanarskaya; A. V. Kanarskii; G. P. Shuvaeva


    Here in this article the justification of expediency of enzyme resistant starch use in therapeutic food products is presented . Enzyme resistant starch is capable to resist to enzymatic hydrolysis in a small intestine of a person, has a low glycemic index, leads to decrease of postprandial concentration of glucose, cholesterol, triglycerides in blood and insulin reaction, to improvement of sensitivity of all organism to insulin, to increase in sense of fulness and to reduction of adjournment ...

  19. Semisupervised Gaussian Process for Automated Enzyme Search. (United States)

    Mellor, Joseph; Grigoras, Ioana; Carbonell, Pablo; Faulon, Jean-Loup


    Synthetic biology is today harnessing the design of novel and greener biosynthesis routes for the production of added-value chemicals and natural products. The design of novel pathways often requires a detailed selection of enzyme sequences to import into the chassis at each of the reaction steps. To address such design requirements in an automated way, we present here a tool for exploring the space of enzymatic reactions. Given a reaction and an enzyme the tool provides a probability estimate that the enzyme catalyzes the reaction. Our tool first considers the similarity of a reaction to known biochemical reactions with respect to signatures around their reaction centers. Signatures are defined based on chemical transformation rules by using extended connectivity fingerprint descriptors. A semisupervised Gaussian process model associated with the similar known reactions then provides the probability estimate. The Gaussian process model uses information about both the reaction and the enzyme in providing the estimate. These estimates were validated experimentally by the application of the Gaussian process model to a newly identified metabolite in Escherichia coli in order to search for the enzymes catalyzing its associated reactions. Furthermore, we show with several pathway design examples how such ability to assign probability estimates to enzymatic reactions provides the potential to assist in bioengineering applications, providing experimental validation to our proposed approach. To the best of our knowledge, the proposed approach is the first application of Gaussian processes dealing with biological sequences and chemicals, the use of a semisupervised Gaussian process framework is also novel in the context of machine learning applied to bioinformatics. However, the ability of an enzyme to catalyze a reaction depends on the affinity between the substrates of the reaction and the enzyme. This affinity is generally quantified by the Michaelis constant KM

  20. Enzyme conductometric biosensor for maltose determination



    Aim. To develop enzyme conductometric biosensor for maltose determination. Methods. A conductometric transducer consisting of two gold pairs of electrodes was applied. Three-enzyme membrane (glucose oxidase, mutarotase, -glucosidase) immobilized on the surface of the conductometric transducer was used as a bioselective element. Results. A linear range of maltose conductometric biosensor was from 0,002 mM to 1 mM for glucose and maltose detection. The time of maltose analysis in solution was 1...

  1. Protein engineering of enzymes for process applications

    DEFF Research Database (Denmark)

    Woodley, John M


    Scientific progress in the field of enzyme modification today enables the opportunity to tune a given biocatalyst for a specific industrial application. Much work has been focused on extending the substrate repertoire and altering selectivity. Nevertheless, it is clear that many new forthcoming...... opportunities will be targeted on modification to enable process application. This article discusses the challenges involved in enzyme modification focused on process requirements, such as the need to fulfill reaction thermodynamics, specific activity under the required conditions, kinetics at required...

  2. Building proficient enzymes with foldamer prostheses. (United States)

    Mayer, Clemens; Müller, Manuel M; Gellman, Samuel H; Hilvert, Donald


    Foldamers are non-natural oligomers that adopt stable conformations reminiscent of those found in proteins. To evaluate the potential of foldameric subunits for catalysis, semisynthetic enzymes containing foldamer fragments constructed from α- and β-amino acid residues were designed and characterized. Systematic variation of the α→β substitution pattern and types of β-residue afforded highly proficient hybrid catalysts, thus demonstrating the feasibility of expanding the enzyme-engineering toolkit with non-natural backbones.

  3. Extracellular enzyme kinetics scale with resource availability (United States)

    Sinsabaugh, Robert L.; Belnap, Jayne; Findlay, Stuart G.; Follstad Shah, Jennifer J.; Hill, Brian H.; Kuehn, Kevin A.; Kuske, Cheryl; Litvak, Marcy E.; Martinez, Noelle G.; Moorhead, Daryl L.; Warnock, Daniel D.


    Microbial community metabolism relies on external digestion, mediated by extracellular enzymes that break down complex organic matter into molecules small enough for cells to assimilate. We analyzed the kinetics of 40 extracellular enzymes that mediate the degradation and assimilation of carbon, nitrogen and phosphorus by diverse aquatic and terrestrial microbial communities (1160 cases). Regression analyses were conducted by habitat (aquatic and terrestrial), enzyme class (hydrolases and oxidoreductases) and assay methodology (low affinity and high affinity substrates) to relate potential reaction rates to substrate availability. Across enzyme classes and habitats, the scaling relationships between apparent Vmax and apparent Km followed similar power laws with exponents of 0.44 to 0.67. These exponents, called elasticities, were not statistically distinct from a central value of 0.50, which occurs when the Km of an enzyme equals substrate concentration, a condition optimal for maintenance of steady state. We also conducted an ecosystem scale analysis of ten extracellular hydrolase activities in relation to soil and sediment organic carbon (2,000–5,000 cases/enzyme) that yielded elasticities near 1.0 (0.9 ± 0.2, n = 36). At the metabolomic scale, the elasticity of extracellular enzymatic reactions is the proportionality constant that connects the C:N:P stoichiometries of organic matter and ecoenzymatic activities. At the ecosystem scale, the elasticity of extracellular enzymatic reactions shows that organic matter ultimately limits effective enzyme binding sites. Our findings suggest that one mechanism by which microbial communities maintain homeostasis is regulating extracellular enzyme expression to optimize the short-term responsiveness of substrate acquisition. The analyses also show that, like elemental stoichiometry, the fundamental attributes of enzymatic reactions can be extrapolated from biochemical to community and ecosystem scales.

  4. Enzymic saccharification of pretreated wheat straw. (United States)

    Vallander, L; Eriksson, K E


    Studies of pretreatment of wheat and its subsequent saccharification by Trichoderma reesei cellulases are reported. Steam explosion was found to be the most effective of the pretreatment methods tested. Data are presented describing the effect of enzyme and substrate concentration on the rate and degree of hydrolysis. Significant inhibition of the cellulases was observed when sugar concentrations were 6% or higher. This inhibition increased when glucose and ethanol were present simultaneously. Adsorption of enzymes to the substrate was followed during a 24-h hydrolysis period. An initial rapid and extensive adsorption occurred, followed by a short desorption period that was followed in turn by a further increased adsorption peaking after 3 h. Intermediate removal of hydrolysate, particularly in combination with a second addition of enzyme, clearly improved the yield of saccharification compared to an uninterrupted hydrolysis over a 24-h period. Thus, a 74% yield of reducing sugars was obtained. Furthermore, an increase in the amount of recoverable enzymes was observed under these conditions. Evidence is presented that suggests that a countercurrent technique, whereby free enzymes in recovered hydrolysate are adsorbed onto new substrate, may provide a means of recirculating dissolved enzymes.

  5. Enzymes for Enhanced Oil Recovery (EOR)

    Energy Technology Data Exchange (ETDEWEB)

    Nasiri, Hamidreza


    Primary oil recovery by reservoir pressure depletion and secondary oil recovery by waterflooding usually result in poor displacement efficiency. As a consequence there is always some trapped oil remaining in oil reservoirs. Oil entrapment is a result of complex interactions between viscous, gravity and capillary forces. Improving recovery from hydrocarbon fields typically involves altering the relative importance of the viscous and capillary forces. The potential of many EOR methods depends on their influence on fluid/rock interactions related to wettability and fluid/fluid interactions reflected in IFT. If the method has the potential to change the interactions favorably, it may be considered for further investigation, i.e. core flooding experiment, pilot and reservoir implementation. Enzyme-proteins can be introduced as an enhanced oil recovery method to improve waterflood performance by affecting interactions at the oil-water-rock interfaces. An important part of this thesis was to investigate how selected enzymes may influence wettability and capillary forces in a crude oil-brine-rock system, and thus possibly contribute to enhanced oil recovery. To investigate further by which mechanisms selected enzyme-proteins may contribute to enhance oil recovery, groups of enzymes with different properties and catalytic functions, known to be interfacially active, were chosen to cover a wide range of possible effects. These groups include (1) Greenzyme (GZ) which is a commercial EOR enzyme and consists of enzymes and stabilizers (surfactants), (2) The Zonase group consists of two types of pure enzyme, Zonase1 and Zonase2 which are protease enzymes and whose catalytic functions are to hydrolyze (breakdown) peptide bonds, (3) The Novozyme (NZ) group consists of three types of pure enzyme, NZ2, NZ3 and NZ6 which are esterase enzymes and whose catalytic functions are to hydrolyze ester bonds, and (4) Alpha-Lactalbumin ( -La) which is an important whey protein. The effect of

  6. Restriction enzyme mining for SNPs in genomes. (United States)

    Chuang, Li-Yeh; Yang, Cheng-Hong; Tsui, Ke-Hung; Cheng, Yu-Huei; Chang, Phei-Lang; Wen, Cheng-Hao; Chang, Hsueh-Wei


    Many different single nucleotide polymorphisms (SNPs) genotyping methods have been developed recently. However, most of them are expensive. Using restriction enzymes for SNP genotyping is a cost-effective method. However, restriction enzyme mining for SNPs in a genome sequence is still challenging for researchers who do not have a background in genomics and bioinformatics. In this review, the basic bioinformatics tools used for restriction enzyme mining for SNP genotyping are summarized and described. The objectives of this paper include: i) the introduction of SNPs, genotyping and PCR-restriction fragment length polymorphism (RFLP); ii) a review of components for genotyping software, including tools for primer design only or restriction enzyme mining only; iii) a review of software providing the flanking sequence for primer design; iv) recent advances in PCR-RFLP tools and natural and mutagenic PCR-RFLP; v) highlighting the strategy for restriction enzyme mining for SNP genotyping; vi) a discussion of potential problems for multiple PCR-RFLP. The different implications for restriction enzymes on sense and antisense strands are also discussed. Our PCR-RFLP freeware, SNP-RFLPing, is included in this review to illustrate many characteristics of PCR-RFLP software design. Future developments will include further sophistication of PCR-RFLP software in order to provide better visualization and a more interactive environment for SNP genotyping and to integrate the software with other tools used in association studies.

  7. Catalytic efficiency of enzymes: a theoretical analysis. (United States)

    Hammes-Schiffer, Sharon


    This brief review analyzes the underlying physical principles of enzyme catalysis, with an emphasis on the role of equilibrium enzyme motions and conformational sampling. The concepts are developed in the context of three representative systems, namely, dihydrofolate reductase, ketosteroid isomerase, and soybean lipoxygenase. All of these reactions involve hydrogen transfer, but many of the concepts discussed are more generally applicable. The factors that are analyzed in this review include hydrogen tunneling, proton donor-acceptor motion, hydrogen bonding, pKa shifting, electrostatics, preorganization, reorganization, and conformational motions. The rate constant for the chemical step is determined primarily by the free energy barrier, which is related to the probability of sampling configurations conducive to the chemical reaction. According to this perspective, stochastic thermal motions lead to equilibrium conformational changes in the enzyme and ligands that result in configurations favorable for the breaking and forming of chemical bonds. For proton, hydride, and proton-coupled electron transfer reactions, typically the donor and acceptor become closer to facilitate the transfer. The impact of mutations on the catalytic rate constants can be explained in terms of the factors enumerated above. In particular, distal mutations can alter the conformational motions of the enzyme and therefore the probability of sampling configurations conducive to the chemical reaction. Methods such as vibrational Stark spectroscopy, in which environmentally sensitive probes are introduced site-specifically into the enzyme, provide further insight into these aspects of enzyme catalysis through a combination of experiments and theoretical calculations.

  8. Visualization of enzyme activities inside earthworm pores (United States)

    Hoang, Duyen; Razavi, Bahar S.


    In extremely dynamic microhabitats as bio-pores made by earthworm, the in situ enzyme activities are assumed as a footprint of complex biotic interactions. Our study focused on the effect of earthworm on the enzyme activities inside bio-pores and visualizing the differences between bio-pores and earthworm-free soil by zymography technique (Spohn and Kuzyakov, 2013). For the first time, we aimed at quantitative imaging of enzyme activities in bio-pores. Lumbricus terrestris L. was placed into transparent box (15×20×15cm). After two weeks when bio-pore systems were formed by earthworms, we visualized in situ enzyme activities of five hydrolytic enzymes (β-glucosidase, cellobiohydrolase, chitinase, xylanase, leucine-aminopeptidase, and phosphatase. Zymography showed higher activity of β-glucosidase, chitinase, xylanase and phosphatase in biopores comparing to bulk soil. However, the differences in activity of cellobiohydrolase and leucine aminopeptidase between bio-pore and bulk soil were less pronounced. This demonstrated an applicability of zymography approach to monitor and to distinguish the in situ activity of hydrolytic enzymes in soil biopores.

  9. Directed evolution of enzymes using microfluidic chips (United States)

    Pilát, Zdeněk.; Ježek, Jan; Šmatlo, Filip; Kaůka, Jan; Zemánek, Pavel


    Enzymes are highly versatile and ubiquitous biological catalysts. They can greatly accelerate large variety of reactions, while ensuring appropriate catalytic activity and high selectivity. These properties make enzymes attractive biocatalysts for a wide range of industrial and biomedical applications. Over the last two decades, directed evolution of enzymes has transformed the field of protein engineering. We have devised microfluidic systems for directed evolution of haloalkane dehalogenases in emulsion droplets. In such a device, individual bacterial cells producing mutated variants of the same enzyme are encapsulated in microdroplets and supplied with a substrate. The conversion of a substrate by the enzyme produced by a single bacterium changes the pH in the droplet which is signalized by pH dependent fluorescence probe. The droplets with the highest enzymatic activity can be separated directly on the chip by dielectrophoresis and the resultant cell lineage can be used for enzyme production or for further rounds of directed evolution. This platform is applicable for fast screening of large libraries in directed evolution experiments requiring mutagenesis at multiple sites of a protein structure.

  10. Activity assessment of microbial fibrinolytic enzymes. (United States)

    Kotb, Essam


    Conversion of fibrinogen to fibrin inside blood vessels results in thrombosis, leading to myocardial infarction and other cardiovascular diseases. In general, there are four therapy options: surgical operation, intake of antiplatelets, anticoagulants, or fibrinolytic enzymes. Microbial fibrinolytic enzymes have attracted much more attention than typical thrombolytic agents because of the expensive prices and the side effects of the latter. The fibrinolytic enzymes were successively discovered from different microorganisms, the most important among which is the genus Bacillus. Microbial fibrinolytic enzymes, especially those from food-grade microorganisms, have the potential to be developed as functional food additives and drugs to prevent or cure thrombosis and other related diseases. There are several assay methods for these enzymes; this may due to the insolubility of substrate, fibrin. Existing assay methods can be divided into three major groups. The first group consists of assay of fibrinolytic activity with natural proteins as substrates, e.g., fibrin plate methods. The second and third groups of assays are suitable for kinetic studies and are based on the determination of hydrolysis of synthetic peptide esters. This review will deal primarily with the microorganisms that have been reported in literature to produce fibrinolytic enzymes and the first review discussing the methods used to assay the fibrinolytic activity.

  11. Lecithin-cholesterol acyltransferase in brain: Does oxidative stress influence the 24-hydroxycholesterol esterification? (United States)

    La Marca, Valeria; Maresca, Bernardetta; Spagnuolo, Maria Stefania; Cigliano, Luisa; Dal Piaz, Fabrizio; Di Iorio, Giuseppe; Abrescia, Paolo


    24-Hydroxycholesterol (24OH-C) is esterified by the enzyme lecithin-cholesterol acyltransferase (LCAT) in the cerebrospinal fluid (CSF). We report here that the level of 24OH-C esters was lower in CSF of patients with amyotrophic lateral sclerosis than in healthy subjects (54% vs 68% of total 24OH-C, p=0.0005; n=8). Similarly, the level of 24OH-C esters in plasma was lower in patients than in controls (62% vs 77% of total 24OH-C; p=0.0076). The enzyme amount in CSF, as measured by densitometry of the protein band revealed by immunoblotting, was about 4-fold higher in patients than in controls (p=0.0085). As differences in the concentration of the LCAT stimulator Apolipoprotein E were not found, we hypothesized that the reduced 24OH-C esterification in CSF of patients might depend on oxidative stress. We actually found that oxidative stress reduced LCAT activity in vitro, and 24OH-C effectively stimulated the enzyme secretion from astrocytoma cells in culture. Enhanced LCAT secretion from astrocytes might represent an adaptive response to the increase of non-esterified 24OH-C percentage, aimed to avoid the accumulation of this neurotoxic compound. The low degree of 24OH-C esterification in CSF or plasma might reflect reduced activity of LCAT during neurodegeneration.

  12. REtools: A laboratory program for restriction enzyme work: enzyme selection and reaction condition assistance

    Directory of Open Access Journals (Sweden)

    Boulukos Kim E


    Full Text Available Abstract Background Restriction enzymes are one of the everyday tools used in molecular biology. The continuously expanding panel of known restriction enzymes (several thousands renders their optimal use virtually impossible without computerized assistance. Several manufacturers propose on-line sites that assist scientists in their restriction enzyme work, however, none of these sites meet all the actual needs of laboratory workers, and they do not take into account the enzymes actually present in one's own laboratory. Results Using FileMaker Pro, we developed a stand-alone application which can run on both PCs and Macintoshes. We called it REtools, for Restriction Enzyme tools. This program, which references all currently known enzymes (>3500, permits the creation and update of a personalized list of restriction enzymes actually available in one's own laboratory. Upon opening the program, scientists will be presented with a user friendly interface that will direct them to different menus, each one corresponding to different situations that restriction enzyme users commonly encounter. We particularly emphasized the ease of use to make REtools a solution that laboratory members would actually want to use. Conclusion REtools, a user friendly and easily customized program to organize any laboratory enzyme stock, brings a software solution that will make restriction enzyme use and reaction condition determination straightforward and efficient. The usually unexplored potential of isoschizomers also becomes accessible to all, since REtools proposes all possible enzymes similar to the one(s chosen by the user. Finally, many of the commonly overlooked subtleties of restriction enzyme work, such as methylation requirement, unusual reaction conditions, or the number of flanking bases required for cleavage, are automatically provided by REtools.

  13. The effects of sterol structure upon sterol esterification. (United States)

    Lin, Don S; Steiner, Robert D; Merkens, Louise S; Pappu, Anuradha S; Connor, William E


    Cholesterol is esterified in mammals by two enzymes: LCAT (lecithin cholesterol acyltransferase) in plasma and ACAT(1) and ACAT(2) (acyl-CoA cholesterol acyltransferases) in the tissues. We hypothesized that the sterol structure may have significant effects on the outcome of esterification by these enzymes. To test this hypothesis, we analyzed sterol esters in plasma and tissues in patients having non-cholesterol sterols (sitosterolemia and Smith-Lemli-Opitz syndrome). The esterification of a given sterol was defined as the sterol ester percentage of total sterols. The esterification of cholesterol in plasma by LCAT was 67% and in tissues by ACAT was 64%. Esterification of nine sterols (cholesterol, cholestanol, campesterol, stigmasterol, sitosterol, campestanol, sitostanol, 7-dehydrocholesterol and 8-dehydrocholesterol) was examined. The relative esterification (cholesterol being 1.0) of these sterols by the plasma LCAT was 1.00, 0.95, 0.89, 0.40, 0.85, 0.82 and 0.80, 0.69 and 0.82, respectively. The esterification by the tissue ACAT was 1.00, 1.29, 0.75, 0.49, 0.45, 1.21 and 0.74, respectively. The predominant fatty acid of the sterol esters was linoleic acid for LCAT and oleic acid for ACAT. We compared the esterification of two sterols differing by only one functional group (a chemical group attached to sterol nucleus) and were able to quantify the effects of individual functional groups on sterol esterification. The saturation of the A ring of cholesterol increased ester formation by ACAT by 29% and decreased the esterification by LCAT by 5.9%. Esterification by ACAT and LCAT was reduced, respectively, by 25 and 11% by the presence of an additional methyl group on the side chain of cholesterol at the C-24 position. This data supports our hypothesis that the structure of the sterol substrate has a significant effect on its esterification by ACAT or LCAT.

  14. Purification of highly chlorinated dioxins degrading enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, K.; Furuichi, T.; Koike, K.; Kuboshima, M. [Hokkaido Univ. (Japan). Division of Environment Resource Engineering, Graduate School of Engineering


    Soil contamination caused by dioxins in and around sites of incinerators for municipal solid waste (MSW) is a concern in Japan. For example, scattering wastewater from a wet gas scrubber at an MSW incinerator facility in Nose, Osaka caused soil and surface water contamination. The concentration of dioxins in the soil was about 8,000 pg-TEQ/g. Other contamination sites include soils on which fly ash has been placed directly or improperly stored and landfill sites that have received bottom and fly ash over a long period. Some countermeasures are required immediately at these dioxins-contaminated sites. We have previously developed bioreactor systems for dioxin-contaminated water and soil. We have shown that a fungus, Pseudallescheria boydii (P. boydii), isolated from activated sludge treating wastewater that contained dioxins, has the ability to degrade highly chlorinated dioxins. A reaction product of octachlorinated dibenzo-p-dioxin (OCDD) was identified as heptachlorinated dibenzo-p-dioxin. Therefore, one of the pathways for degradation of OCDD by this fungus was predicted to be as follows: OCDD is transformed by dechlorination and then one of the remaining aromatic rings is oxidized. To apply P. boydii to on-site technologies (e.g., bioreactor systems), as well as in situ technologies, enzyme treatment using a dioxin-degrading enzyme from P. boydii needs to be developed because P. boydii is a weak pathogenic fungus, known to cause opportunistic infection. As a result, we have studied enzyme purification of nonchlorinated dioxin, namely, dibenzo-pdioxin (DD). However, we did not try to identify enzymes capable of degrading highly chlorinated dioxins. This study has elucidated a method of enzyme assay for measuring OCDD-degrading activity, and has attempted to purify OCDD-degrading enzymes from P. boydii using enzyme assay. In addition, as first step toward purifying 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD), 2,3,7,8-TCDD degradation tests were carried out

  15. Type I restriction enzymes and their relatives. (United States)

    Loenen, Wil A M; Dryden, David T F; Raleigh, Elisabeth A; Wilson, Geoffrey G


    Type I restriction enzymes (REases) are large pentameric proteins with separate restriction (R), methylation (M) and DNA sequence-recognition (S) subunits. They were the first REases to be discovered and purified, but unlike the enormously useful Type II REases, they have yet to find a place in the enzymatic toolbox of molecular biologists. Type I enzymes have been difficult to characterize, but this is changing as genome analysis reveals their genes, and methylome analysis reveals their recognition sequences. Several Type I REases have been studied in detail and what has been learned about them invites greater attention. In this article, we discuss aspects of the biochemistry, biology and regulation of Type I REases, and of the mechanisms that bacteriophages and plasmids have evolved to evade them. Type I REases have a remarkable ability to change sequence specificity by domain shuffling and rearrangements. We summarize the classic experiments and observations that led to this discovery, and we discuss how this ability depends on the modular organizations of the enzymes and of their S subunits. Finally, we describe examples of Type II restriction-modification systems that have features in common with Type I enzymes, with emphasis on the varied Type IIG enzymes.

  16. Actinomycetes: A Source of Lignocellulolytic Enzymes (United States)

    Saini, Anita; Aggarwal, Neeraj K.; Sharma, Anuja; Yadav, Anita


    Lignocellulose is the most abundant biomass on earth. Agricultural, forest, and agroindustrial activities generate tons of lignocellulosic wastes annually, which present readily procurable, economically affordable, and renewable feedstock for various lignocelluloses based applications. Lignocelluloses are the focus of present decade researchers globally, in an attempt to develop technologies based on natural biomass for reducing dependence on expensive and exhaustible substrates. Lignocellulolytic enzymes, that is, cellulases, hemicellulases, and lignolytic enzymes, play very important role in the processing of lignocelluloses which is prerequisite for their utilization in various processes. These enzymes are obtained from microorganisms distributed in both prokaryotic and eukaryotic domains including bacteria, fungi, and actinomycetes. Actinomycetes are an attractive microbial group for production of lignocellulose degrading enzymes. Various studies have evaluated the lignocellulose degrading ability of actinomycetes, which can be potentially implemented in the production of different value added products. This paper is an overview of the diversity of cellulolytic, hemicellulolytic, and lignolytic actinomycetes along with brief discussion of their hydrolytic enzyme systems involved in biomass modification. PMID:26793393

  17. Structure/function relationships in cellulolytic enzymes

    Institute of Scientific and Technical Information of China (English)

    Marc Claeyssens


    @@ Cellulose and hemicellulose (mostly xylan), together with lignin, are the major polymeric constituents of plant cell walls and from the largest reservoir of fixed carbon in nature. The enzymatic hydrolysis of polymeric substances by extracellular enzymes, such as cellulases, hemicellulases and laccases, is preferred to chemical depolymerisation to avoid the production of toxic by-products and waste that are expensive to treat. The monosaccharides released through enzymatic hydrolysis can subsequently be microbially converted to commercial commodities, such as bio-ethanol (fuel extender) or microbial protein as feed supplements. The individual depolymerisering enzymes used, such as cellulases,xylanases and laccases, also have industrial application in (i) biobleaching in the paper and pulp industry, (ii) improvement of animal feed (poultry and ruminants) digestibility in feed industries, and (iii) dough rheology and bread volume in the baking process, and beer viscosity and filtration velocity during brewing. The cloning of the genes, coding for several xylan degrading enzymes, and their expression in Baker' s yeast (Saccharomyces cerevisiae) and filamentous fungi (Aspergillus species)opened the possibility to study the pure enzymes, without contaminating activity.Trichoderma reesei produces several of these enzymes and detailed information on their specificity,synergies and structure/activity relationships is known. An overview will be presented.

  18. Soil Enzyme Activities with Greenhouse Subsurface Irrigation

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yu-Long; WANG Yao-Sheng


    Various environmental conditions determine soil enzyme activities, which are important indicators for changes of soil microbial activity, soil fertility, and land quality. The effect of subsurface irrigation scheduling on activities of three soil enzymes (phosphatase, urease, and catalase) was studied at five depths (0-10, 10-20, 20-30, 30-40, and 40-60 cm) of a tomato greenhouse soil. Irrigation was scheduled when soil water condition reached the maximum allowable depletion(MAD) designed for different treatments (-10, -16, -25, -40, and -63 kPa). Results showed that soil enzyme activities had significant responses to the irrigation scheduling during the period of subsurface irrigation. The neutral phosphatase activity and the catalase activity were found to generally increase with more frequent irrigation (MAD of -10 and -16kPa). This suggested that a higher level of water content favored an increase in activity of these two enzymes. In contrast,the urease activity decreased under irrigation, with less effect for MAD of -40 and -63 kPa. This implied that relatively wet soil conditions were conducive to retention of urea N, but relatively dry soil conditions could result in increasing loss of urea N. Further, this study revealed that soil enzyme activities could be alternative natural bio-sensors for the effect of irrigation on soil biochemical reactions and could help optimize irrigation management of greenhouse crop production.

  19. Evaluation of pressure tuning of enzymes

    DEFF Research Database (Denmark)

    Naghshineh, Mahsa

    The current industrial technique of pectin production is based on relatively harsh chemical process,which does not allow pectin to be extracted entirely with no damage to its structure. It is also not an environmentally friendly method due to acid usage, production of large amounts of waste...... and high energy consumption. Therefore, searching for an environmentally friendly method of pectin extraction is a task for science and industry. Employment of hydrolytic enzymes may represent a green approach to obtain intact pectin polymer. However, the low stability/activity of enzymes, and low polymer...... pressure treatment at 100 or 200 MPa for 30 min at 50 °C improved the enzymatic release of pectin providing higher polymer yield compared to enzymatic extractions at ambient pressure. The combined use of high pressure and enzyme adds a novel dimension to biocatalysis reactio ns as being environmentally...

  20. Engineering of pectinolytic enzymes for enhanced thermostability

    DEFF Research Database (Denmark)

    Larsen, Dorte Møller

    Conversion of waste materials into valuable compounds is promising concerning transformation of byproduct streams such as sugar beet and potato pulp. In order to obtain those compounds with reduced energy consumption, carbohydrate active enzymes can be used as catalysts. Sugar beet and potato pulp...... consist of pectin that can be converted into beneficial polymeric and oligomeric carbohydrates requiring enzymes such as pectin lyases, rhamnogalacturonan I (RGI) lyases, polygalacturonases and galactanases. Enzymatic conversion of such pectinaceous biomasses at high temperatures is advantageous....../Gly55Val/ Gly326Glu/ (37.6±2.8 min). Two pectin lyases and two polygalacturonase where selected in a study for maximal release of prebiotic polysaccharides from potato pulp. The enzymes had different pH and temperature profiles where from different hypotheses were argued. In addition phosphate buffer...

  1. Arabinogalactan proteins: focus on carbohydrate active enzymes

    Directory of Open Access Journals (Sweden)

    Eva eKnoch


    Full Text Available Arabinogalactan proteins (AGPs are a highly diverse class of cell surface proteoglycans that are commonly found in most plant species. AGPs play important roles in many cellular processes during plant development, such as reproduction, cell proliferation, pattern formation and growth, and in plant-microbe interaction. However, little is known about the molecular mechanisms of their function. Numerous studies using monoclonal antibodies that recognize different AGP glycan epitopes have shown the appearance of a slightly altered AGP glycan in a specific stage of development in plant cells. Therefore, it is anticipated that the biosynthesis and degradation of AGP glycan is tightly regulated during development. Until recently, however, little was known about the enzymes involved in the metabolism of AGP glycans. In this review, we summarize recent discoveries of carbohydrate active enzymes (CAZy; involved in the biosynthesis and degradation of AGP glycans, and we discuss the biological role of these enzymes in plant development.

  2. Enzyme-based multiplexer and demultiplexer. (United States)

    Arugula, Mary A; Bocharova, Vera; Halámek, Jan; Pita, Marcos; Katz, Evgeny


    A digital 2-to-1 multiplexer and a 1-to-2 demultiplexer were mimicked by biocatalytic reactions involving concerted operation of several enzymes. Using glucose oxidase (GOx) and laccase (Lac) as the data input signals and variable pH as the addressing signal, ferrocyanide oxidation in the output channel was selectively activated by one from two inputs, thus mimicking the multiplexer operation. A demultiplexer based on the enzyme system composed of GOx, glucose dehydrogenase (GDH) and horseradish peroxidase (HRP) allowed selective activation of different output channels (oxidation of ferrocyanide or reduction of NAD(+)) by the glucose input. The selection of the output channel was controlled by the addressing input of NAD(+). The designed systems represent important novel components of future branched enzyme networks processing biochemical signals for biosensing and bioactuating.

  3. Assays for investigating deSUMOylation enzymes. (United States)

    Madu, Ikenna G; Chen, Yuan


    Post-translational modifications by the SUMO (Small Ubiquitin-like MOdifier) family of proteins are recently discovered essential regulatory mechanisms. All SUMO proteins are synthesized as larger precursors that are matured by SUMO-specific proteases, known as SENPs, which remove several C-terminal amino acids of SUMO to expose the Gly-Gly motif. SENPs also remove SUMO modifications from target proteins, making this modification highly dynamic. At least six deSUMOylation enzymes, all of which are encoded by essential genes, have been identified in mammals. SENP1 has been shown to play an important role in the development of prostate cancer and in angiogenesis. This unit describes and discusses methods for characterizing the deSUMOylation enzymes. These assays enable the identification of inhibitors of these enzymes and investigation of their mechanism of inhibition in order to develop research tools and future therapeutics.

  4. Enzyme conductometric biosensor for maltose determination

    Directory of Open Access Journals (Sweden)

    Dzyadevych S. V.


    Full Text Available Aim. To develop enzyme conductometric biosensor for maltose determination. Methods. A conductometric transducer consisting of two gold pairs of electrodes was applied. Three-enzyme membrane (glucose oxidase, mutarotase, -glucosidase immobilized on the surface of the conductometric transducer was used as a bioselective element. Results. A linear range of maltose conductometric biosensor was from 0,002 mM to 1 mM for glucose and maltose detection. The time of maltose analysis in solution was 1–2 minutes. The dependence of biosensor responses to substrate on pH, ionic strength, and buffer capacity of work solution was studied. The data of biosensor selectivity are presented. The developed conductometric biosensor is characterized by high operational stability and signal reproducibility. Conclusion. The enzyme conductometric biosensor for maltose determination has been developed. The analytical characteristics of the maltose biosensor were investigated. The proposed method could be used in food industry to control and optimize production.

  5. Multicarbohydrase Enzymes for Non-ruminants. (United States)

    Masey O'Neill, H V; Smith, J A; Bedford, M R


    The first purpose of this review is to outline some of the background information necessary to understand the mechanisms of action of fibre-degrading enzymes in non-ruminants. Secondly, the well-known and understood mechanisms are described, i) eliminating the nutrient encapsulating effect of the cell wall and ii) ameliorating viscosity problems associated with certain Non Starch Polysaccharides, particularly arabinoxylans and β-glucans. A third, indirect mechanism is then discussed: the activity of such enzymes in producing prebiotic oligosaccharides and promoting beneficial cecal fermentation. The literature contains a wealth of information on various non starch polysaccharide degrading enzyme (NSPase) preparations and this review aims to conclude by discussing this body of work, with reference to the above mechanisms. It is suggested that the way in which multi- versus single-component products are compared is often flawed and that some continuity should be employed in methods and terminology.

  6. Studies on thiamine diphosphate-dependent enzymes. (United States)

    Leeper, F J; Hawksley, D; Mann, S; Perez Melero, C; Wood, M D H


    The 3-deaza analogue of TPP (thiamine diphosphate), a close mimic of the ylid intermediate, has been synthesized and is an extremely potent inhibitor of a variety of TPP-dependent enzymes, binding much more tightly than TPP itself. Results using deazaTPP complexed with the E1 subunit of PDH (pyruvate dehydrogenase) have led to a novel proposal about the mechanism of this enzyme. The 2-substituted forms of deazaTPP, which mimic other intermediates in the catalytic mechanism, can also be synthesized and 2-(1-hydroxyethyl)deazaTPP is also an extremely potent inhibitor of PDC (pyruvate decarboxylase). Attachment of such 2-substituents is expected to be a way to introduce selectivity in the inhibition of various TPP-dependent enzymes.

  7. Enzyme activity in dialkyl phosphate ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, M.F.; Dunn, J.; Li, L.-L.; Handley-Pendleton, J. M.; van der lelie, D.; Wishart, J. F.


    The activity of four metagenomic enzymes and an enzyme cloned from the straw mushroom, Volvariellavolvacea were studied in the following ionic liquids, 1,3-dimethylimidazolium dimethyl phosphate, [mmim][dmp], 1-ethyl-3-methylimidazolium dimethyl phosphate, [emim][dmp], 1-ethyl-3-methylimidazolium diethyl phosphate, [emim][dep] and 1-ethyl-3-methylimidazolium acetate, [emim][OAc]. Activity was determined by analyzing the hydrolysis of para-nitrobenzene carbohydrate derivatives. In general, the enzymes were most active in the dimethyl phosphate ionic liquids, followed by acetate. Generally speaking, activity decreased sharply for concentrations of [emim][dep] above 10% v/v, while the other ionic liquids showed less impact on activity up to 20% v/v.

  8. Enzyme activity in dialkyl phosphate ionic liquids. (United States)

    Thomas, Marie F; Li, Luen-Luen; Handley-Pendleton, Jocelyn M; van der Lelie, Daniel; Dunn, John J; Wishart, James F


    The activity of four metagenomic enzymes and an enzyme cloned from the straw mushroom, Volvariella volvacea were studied in the following ionic liquids, 1,3-dimethylimidazolium dimethyl phosphate, [mmim][dmp], 1-ethyl-3-methylimidazolium dimethyl phosphate, [emim][dmp], 1-ethyl-3-methylimidazolium diethyl phosphate, [emim][dep] and 1-ethyl-3-methylimidazolium acetate, [emim][OAc]. Activity was determined by analyzing the hydrolysis of para-nitrobenzene carbohydrate derivatives. In general, the enzymes were most active in the dimethyl phosphate ionic liquids, followed by acetate. Generally speaking, activity decreased sharply for concentrations of [emim][dep] above 10% v/v, while the other ionic liquids showed less impact on activity up to 20% v/v.

  9. Evaluation of thermostable enzymes for bioethanol processing

    DEFF Research Database (Denmark)

    Skovgaard, Pernille Anastasia

    Bioethanol from lignocellulosic biomass is among the green alternatives to fossil fuels, but as the processing techniques are today, gasolin is still heaper than bioethanol. Lignocellulose, which remains the primary resource for ioethanol production in Denmark, is complex when it comes to release...... for the ioethanol production, but the expenses can be reduced by using thermostable enzymes, which are known for their increased stability and inhibitor olerance. However, the advantage of using thermostable enzymes has not been studied thoroughly and more knowledge is needed for development of bioethanol processes....... Enzymes are added to the bioethanol process after pretreatment. For an efficient sugar and ethanol yield, the solids content of biomass is normally increased, which results in highly viscous slurries that are difficult to mix. Therefore, the first enzymatic challenge is to ensure rapid reduction...

  10. Development of enzymes and enzyme systems by genetic engineering to convert biomass to sugars (United States)

    TITLE Development of Enzymes and Enzyme Systems by Genetic Engineering to Convert Biomass to Sugars ABSTRACT Plant cellulosic material is one of the most viable renewable resources for the world’s fuel and chemical feedstock needs. Currently ethanol derived from corn starch is the most common li...

  11. Immobilization of enzymes using non-ionic colloidal liquid aphrons (CLAs): Surface and enzyme effects. (United States)

    Ward, Keeran; Xi, Jingshu; Stuckey, David C


    The use of non-ionic colloidal liquid aphrons (CLAs) as a support for enzyme immobilisation was investigated. Formulation required the mixing of an aqueous-surfactant solution with a relatively non-polar solvent-surfactant solution, forming a solvent droplet surrounded by a thin stabilised aqueous film (soapy shell). Studies utilising anionic surfactants have showed increased retention, however, very little have been understood about the forces governing immobilisation. This study seeks to determine the effects of enzyme properties on CLA immobilisation by examining a non-ionic/non-polar solvent system comprised of two non-ionic surfactants, Tween 20 and 80, mineral oil and the enzymes lipase, aprotinin and α-chymotrypsin. From these results it was deduced that hydrophobic interactions strongly governed immobilisation. Confocal Scanning Laser Microscopy (CSLM) revealed that immobilisation was predominantly achieved by surface adsorption attributed to hydrophobic interactions between the enzyme and the CLA surface. Enzyme surface affinity was found to increase when added directly to the formulation (pre-manufacture addition), as opposed to the bulk continuous phase (post-manufacture addition), with α-chymotrypsin and aprotinin being the most perturbed, while lipase was relatively unaffected. The effect of zeta potential on immobilisation showed that enzymes adsorbed better closer to their pI, indicating that charge minimisation was necessary for immobilisation. Finally, the effect of increasing enzyme concentration in the aqueous phase resulted in an increase in adsorption for all enzymes due to cooperativity between protein molecules, with saturation occurring faster at higher adsorption rates.

  12. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. (United States)

    Wei, Hui; Wang, Erkang


    Over the past few decades, researchers have established artificial enzymes as highly stable and low-cost alternatives to natural enzymes in a wide range of applications. A variety of materials including cyclodextrins, metal complexes, porphyrins, polymers, dendrimers and biomolecules have been extensively explored to mimic the structures and functions of naturally occurring enzymes. Recently, some nanomaterials have been found to exhibit unexpected enzyme-like activities, and great advances have been made in this area due to the tremendous progress in nano-research and the unique characteristics of nanomaterials. To highlight the progress in the field of nanomaterial-based artificial enzymes (nanozymes), this review discusses various nanomaterials that have been explored to mimic different kinds of enzymes. We cover their kinetics, mechanisms and applications in numerous fields, from biosensing and immunoassays, to stem cell growth and pollutant removal. We also summarize several approaches to tune the activities of nanozymes. Finally, we make comparisons between nanozymes and other catalytic materials (other artificial enzymes, natural enzymes, organic catalysts and nanomaterial-based catalysts) and address the current challenges and future directions (302 references).

  13. Rhamnogalacturonan I modifying enzymes: an update

    DEFF Research Database (Denmark)

    Silva, Ines R.; Jers, Carsten; Meyer, Anne S.;


    been described to be produced by Aspergillus spp. and Bacillus subtilis and are categorized in glycosyl hydrolase families 28 and 105. The RGI lyases, EC–EC, have been isolated from different fungi and bacterial species and are categorized in polysaccharide lyase families 4 and 11......-joining phylogenetic trees. Some recently detected unique structural features and dependence of calcium for activity of some of these enzymes (notably the lyases) are discussed and newly published results regarding improvement of their thermostability by protein engineering are highlighted. Knowledge of these enzymes...

  14. Enzymes in bast fibrous plant processing. (United States)

    Kozlowski, Ryszard; Batog, Jolanta; Konczewicz, Wanda; Mackiewicz-Talarczyk, Maria; Muzyczek, Malgorzata; Sedelnik, Natalia; Tanska, Bogumila


    The program COST Action 847 Textile Quality and Biotechnology (2000-2005) has given an excellent chance to review the possibilities of the research, aiming at development of the industrial application of enzymes for bast fibrous plant degumming and primary processing. The recent advancements in enzymatic processing of bast fibrous plants (flax, hemp, jute, ramie and alike plants) and related textiles are given. The performance of enzymes in degumming, modification of bast fibres, roving, yarn, related fabrics as well as enzymatic bonding of lignocellulosic composites is provided.

  15. Translational control of an intestinal microvillar enzyme

    DEFF Research Database (Denmark)

    Danielsen, E M; Cowell, G M; Sjöström, H


    The rates of biosynthesis of adult and foetal pig small-intestinal aminopeptidase N (EC were compared to determine at which level the expression of the microvillar enzyme is developmentally controlled. In organ-cultured explants, the rate of biosynthesis of foetal aminopeptidase N is only...... about 3% of the adult rate. The small amount synthesized occurs in a high-mannose-glycosylated, membrane-bound, form that is processed to the mature, complex-glycosylated, form at a markedly slower rate than that of the adult enzyme. Extracts of total RNA from adult and foetal intestine contained...

  16. Hierarchically Nanoporous Bioactive Glasses for High Efficiency Immobilization of Enzymes

    DEFF Research Database (Denmark)

    He, W.; Min, D.D.; Zhang, X.D.


    spontaneously entrapped into the highly curved macropores (200–500 nm) via multipoint metal ion binding in electrical double layers. Hence, the enzyme activity and enzyme loading were enhanced, the cost of enzyme use was reduced, showing higher thermal and storage stabilities than free enzyme. The reactant...

  17. 21 CFR 184.1372 - Insoluble glucose isomerase enzyme preparations. (United States)


    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Insoluble glucose isomerase enzyme preparations... enzyme preparations. (a) Insoluble glucose isomerase enzyme preparations are used in the production of... additional requirements for enzyme preparations in the Food Chemicals Codex, 3d Ed. (1981), p. 107, which...

  18. Seeing & Feeling How Enzymes Work Using Tangible Models (United States)

    Lau, Kwok-chi


    This article presents a tangible model used to help students tackle some misconceptions about enzyme actions, particularly the induced-fit model, enzyme-substrate complementarity, and enzyme inhibition. The model can simulate how substrates induce a change in the shape of the active site and the role of attraction force during enzyme-substrate…

  19. An NMR Study of Enzyme Activity. (United States)

    Peterman, Keith E.; And Others


    A laboratory experiment designed as a model for studying enzyme activity with a basic spectrometer is presented. Included are background information, experimental procedures, and a discussion of probable results. Stressed is the value of the use of Nuclear Magnetic Resonance in biochemistry. (CW)

  20. Sertraline-induced pseudocholinesterase enzyme deficiency

    Directory of Open Access Journals (Sweden)

    Beyazit Zencirci


    Full Text Available Beyazit ZencirciMOSTAS Private Health Hospital, Department of Anesthesiology, Kahramanmaras, TurkeyAbstract: A 47-year-old Turkish male was scheduled for laparoscopic cholecystectomy under general anesthesia. The patient had 2 operations 28 and 19 years ago under general anesthesia. It was learned that the patient was administered succinylcholine during both of these previous operations and that he did not have a history of prolonged recovery or postoperative apnea. The patient had been using sertraline for 3 years before the operation. Pseudocholinesterase is a drug-metabolizing enzyme responsible for hydrolysis of the muscle-relaxant drugs mivacurium and succinylcholine. Deficiency of this enzyme from any cause can lead to prolonged apnea and paralysis following administration of mivacurium and succinylcholine. The diagnosis of pseudocholinesterase enzyme deficiency can be made after careful clinic supervision and peripheral nerve stimulator monitoring. A decrease in the activity of pseudocholinesterase enzyme and a decline in the block effect over time will help verify the diagnosis. Our patient’s plasma cholinesterase was found to have low activity. Instead of pharmacological interventions that may further complicate the situation in such cases, the preferred course of action should be to wait until the block effect declines with the help of sedation and mechanical ventilation. In our case, the prolonged block deteriorated in the course of time before any complications developed.Keywords: mivacurium, pseudocholinesterase deficiency, sertraline

  1. A Qualitative Approach to Enzyme Inhibition (United States)

    Waldrop, Grover L.


    Most general biochemistry textbooks present enzyme inhibition by showing how the basic Michaelis-Menten parameters K[subscript m] and V[subscript max] are affected mathematically by a particular type of inhibitor. This approach, while mathematically rigorous, does not lend itself to understanding how inhibition patterns are used to determine the…

  2. Enzyme catalysis by entropy without Circe effect. (United States)

    Kazemi, Masoud; Himo, Fahmi; Åqvist, Johan


    Entropic effects have often been invoked to explain the extraordinary catalytic power of enzymes. In particular, the hypothesis that enzymes can use part of the substrate-binding free energy to reduce the entropic penalty associated with the subsequent chemical transformation has been very influential. The enzymatic reaction of cytidine deaminase appears to be a distinct example. Here, substrate binding is associated with a significant entropy loss that closely matches the activation entropy penalty for the uncatalyzed reaction in water, whereas the activation entropy for the rate-limiting catalytic step in the enzyme is close to zero. Herein, we report extensive computer simulations of the cytidine deaminase reaction and its temperature dependence. The energetics of the catalytic reaction is first evaluated by density functional theory calculations. These results are then used to parametrize an empirical valence bond description of the reaction, which allows efficient sampling by molecular dynamics simulations and computation of Arrhenius plots. The thermodynamic activation parameters calculated by this approach are in excellent agreement with experimental data and indeed show an activation entropy close to zero for the rate-limiting transition state. However, the origin of this effect is a change of reaction mechanism compared the uncatalyzed reaction. The enzyme operates by hydroxide ion attack, which is intrinsically associated with a favorable activation entropy. Hence, this has little to do with utilization of binding free energy to pay the entropic penalty but rather reflects how a preorganized active site can stabilize a reaction path that is not operational in solution.

  3. Novel Industrial Enzymes from Uncultured Arctic Microorganisms

    DEFF Research Database (Denmark)

    Vester, Jan Kjølhede

    on the diversity of microorganisms from the ikaite columns as well as bioprospecting for enzyme activities using both culture dependent and independent methods. Two cold-active β-galactosidases and one extremely cold-active α-amylase, all related to Clostridia, were characterized in more details....

  4. Mechanistic insights into type III restriction enzymes. (United States)

    Raghavendra, Nidhanapati K; Bheemanaik, Shivakumara; Rao, Desirazu N


    Type III restriction-modification (R-M) enzymes need to interact with two separate unmethylated DNA sequences in indirectly repeated, head-to-head orientations for efficient cleavage to occur at a defined location next to only one of the two sites. However, cleavage of sites that are not in head-to-head orientation have been observed to occur under certain reaction conditions in vitro. ATP hydrolysis is required for the long-distance communication between the sites prior to cleavage. Type III R-M enzymes comprise two subunits, Res and Mod that form a homodimeric Mod2 and a heterotetrameric Res2Mod2 complex. The Mod subunit in M2 or R2M2 complex recognizes and methylates DNA while the Res subunit in R2M2 complex is responsible for ATP hydrolysis, DNA translocation and cleavage. A vast majority of biochemical studies on Type III R-M enzymes have been undertaken using two closely related enzymes, EcoP1I and EcoP15I. Divergent opinions about how the long-distance interaction between the recognition sites exist and at least three mechanistic models based on 1D- diffusion and/or 3D- DNA looping have been proposed.

  5. Directed Evolution of Enzymes : Library Screening Strategies

    NARCIS (Netherlands)

    Leemhuis, Hans; Kelly, Ronan M.; Dijkhuizen, Lubbert


    Directed evolution has become the preferred engineering approach to generate tailor-made enzymes. The method follows the design guidelines of nature: Darwinian selection of genetic variants. This review discusses the different stages of directed evolution experiments with the focus on developments i

  6. Substrate catalysis enhances single-enzyme diffusion. (United States)

    Muddana, Hari S; Sengupta, Samudra; Mallouk, Thomas E; Sen, Ayusman; Butler, Peter J


    We show that diffusion of single urease enzyme molecules increases in the presence of urea in a concentration-dependent manner and calculate the force responsible for this increase. Urease diffusion measured using fluorescence correlation spectroscopy increased by 16-28% over buffer controls at urea concentrations ranging from 0.001 to 1 M. This increase was significantly attenuated when urease was inhibited with pyrocatechol, demonstrating that the increase in diffusion was the result of enzyme catalysis of urea. Local molecular pH changes as measured using the pH-dependent fluorescence lifetime of SNARF-1 conjugated to urease were not sufficient to explain the increase in diffusion. Thus, a force generated by self-electrophoresis remains the most plausible explanation. This force, evaluated using Brownian dynamics simulations, was 12 pN per reaction turnover. These measurements demonstrate force generation by a single enzyme molecule and lay the foundation for a further understanding of biological force generation and the development of enzyme-driven nanomotors.

  7. Thermophilic enzymes and their biotechnological potential. (United States)

    Lasa, I; Berenguer, J


    The ability of many microorganisms to grow at high temperatures has held a particular fascination for microbiologists and biochemists since a long time. As any of their cellular components, their proteins are inherently more stable to heat than those of conventional organisms. This thermal stability is not due to any specific characteristic, but results a consequence of various changes which contribute to the whole stability of the protein in an additive manner. These enzymes are not only more thermostable, but also more resistant to chemical agents than their mesophilic homologous, what makes them extremely interesting for industrial processes. Despite this, most of the enzymes used at present in industrial processes have been isolated from mesophiles due to the limited knowledge and difficulties to grow thermophiles in high scale. The objective of this review is to consider briefly the importance of the thermostability in order to apply enzymes in the industry, and to overview the most recent advances in the identification of new thermophilic organisms and enzymes. Furthermore, the recent development of genetic model systems for moderate and extreme thermophiles are referred.

  8. Nanostructure enzyme assemblies for biomass conversion (United States)

    Biomass represents a vast resource for production of the world’s fuel and chemical feedstock needs. The use of enzymes to effect these bioconversions offers an alternative that is potentially more specific and environmentally-friendly than harsher chemical methodologies. Some species of anaerobic ...




    The conductometric biosensor for fructose determination based on fructose dehydrogenase and potassium ferricyanide mediator as electron acceptor has been developed. The enzyme was immobilized on a surface of the conductometric transducer together with bovine serum albumin using crosslinking with glutaraldehyde. Working conditions of the discribed fructose biosensor were optimized. The results concerning influence of the buffer solution concentration and potassium ferricyanide concentration on...

  10. Artificial concurrent catalytic processes involving enzymes. (United States)

    Köhler, Valentin; Turner, Nicholas J


    The concurrent operation of multiple catalysts can lead to enhanced reaction features including (i) simultaneous linear multi-step transformations in a single reaction flask (ii) the control of intermediate equilibria (iii) stereoconvergent transformations (iv) rapid processing of labile reaction products. Enzymes occupy a prominent position for the development of such processes, due to their high potential compatibility with other biocatalysts. Genes for different enzymes can be co-expressed to reconstruct natural or construct artificial pathways and applied in the form of engineered whole cell biocatalysts to carry out complex transformations or, alternatively, the enzymes can be combined in vitro after isolation. Moreover, enzyme variants provide a wider substrate scope for a given reaction and often display altered selectivities and specificities. Man-made transition metal catalysts and engineered or artificial metalloenzymes also widen the range of reactivities and catalysed reactions that are potentially employable. Cascades for simultaneous cofactor or co-substrate regeneration or co-product removal are now firmly established. Many applications of more ambitious concurrent cascade catalysis are only just beginning to appear in the literature. The current review presents some of the most recent examples, with an emphasis on the combination of transition metal with enzymatic catalysis and aims to encourage researchers to contribute to this emerging field.

  11. A Comprehensive Enzyme Kinetic Exercise for Biochemistry (United States)

    Barton, Janice S.


    This article describes a comprehensive treatment of experimental enzyme kinetics strongly coupled to electronic data acquisition and use of spreadsheets to organize data and perform linear and nonlinear least-squares analyses, all in a manner that promotes development of important reasoning skills. Kinetic parameters are obtained for the stable…

  12. Enzyme kinetic characterization of protein tyrosine phosphatases

    DEFF Research Database (Denmark)

    Peters, Günther H.J.; Branner, S.; Møller, K. B.


    Protein tyrosine phosphatases (PTPs) play a central role in cellular signaling processes, resulting in an increased interest in modulating the activities of PTPs. We therefore decided to undertake a detailed enzyme kinetic evaluation of various transmembrane and cytosolic PTPs (PTPalpha, PTPbeta...

  13. Modelling Fungal Fermentations for Enzyme Production

    DEFF Research Database (Denmark)

    Albæk, Mads Orla; Gernaey, Krist; Hansen, Morten S.

    We have developed a process model of fungal fed-batch fermentations for enzyme production. In these processes, oxygen transfer rate is limiting and controls the substrate feeding rate. The model has been shown to describe cultivations of both Aspergillus oryzae and Trichoderma reesei strains in 550...

  14. Enzyme replacement therapy for alpha-mannosidosis

    DEFF Research Database (Denmark)

    Borgwardt, Line Gutte; Dali, Christine I.; Fogh, J


    Alpha-mannosidosis (OMIM 248500) is a rare lysosomal storage disease (LSD) caused by alpha-mannosidase deficiency. Manifestations include intellectual disabilities, facial characteristics and hearing impairment. A recombinant human alpha-mannosidase (rhLAMAN) has been developed for weekly intrave...... intravenous enzyme replacement therapy (ERT). We present the preliminary data after 12 months of treatment....

  15. EnzymeDetector: an integrated enzyme function prediction tool and database

    Directory of Open Access Journals (Sweden)

    Schomburg Dietmar


    Full Text Available Abstract Background The ability to accurately predict enzymatic functions is an essential prerequisite for the interpretation of cellular functions, and the reconstruction and analysis of metabolic models. Several biological databases exist that provide such information. However, in many cases these databases provide partly different and inconsistent genome annotations. Description We analysed nine prokaryotic genomes and found about 70% inconsistencies in the enzyme predictions of the main annotation resources. Therefore, we implemented the annotation pipeline EnzymeDetector. This tool automatically compares and evaluates the assigned enzyme functions from the main annotation databases and supplements them with its own function prediction. This is based on a sequence similarity analysis, on manually created organism-specific enzyme information from BRENDA (Braunschweig Enzyme Database, and on sequence pattern searches. Conclusions EnzymeDetector provides a fast and comprehensive overview of the available enzyme function annotations for a genome of interest. The web interface allows the user to work with customisable weighting schemes and cut-offs for the different prediction methods. These customised quality criteria can easily be applied, and the resulting annotation can be downloaded. The summarised view of all used annotation sources provides up-to-date information. Annotation errors that occur in only one of the databases can be recognised (because of their low relevance score. The results are stored in a database and can be accessed at

  16. Mechanism and physiologic significance of the suppression of cholesterol esterification in human interstitial fluid

    Directory of Open Access Journals (Sweden)

    Norman Eric Miller


    Full Text Available Cholesterol esterification in high density lipoproteins (HDLs by lecithin:cholesterol acyltransferase (LCAT promotes unesterified cholesterol (UC transfer from red cell membranes to plasma in vitro. However, it does not explain the transfer of UC from most peripheral cells to interstitial fluid in vivo, as HDLs in afferent peripheral lymph are enriched in UC. Having already reported that the endogenous cholesterol esterification rate (ECER in lymph is only five per cent of that in plasma, we have now explored the underlying mechanism. In peripheral lymph from 20 healthy men, LCAT concentration, LCAT activity (assayed using an optimized substrate, and LCAT specific activity averaged respectively 11.8, 10.3, and 84.9 per cent of plasma values. When recombinant human LCAT was added to lymph, the increments in enzyme activity were similar to those when LCAT was added to plasma. Addition of apolipoprotein AI (apo AI, fatty acid-free albumin, Intralipid, or the d<1.006 g/ml plasma fraction had no effect on ECER. During incubation of lymph plus plasma, the ECER was similar to that observed with buffer plus plasma. When lymph was added to heat-inactivated plasma, the ECER was 11-fold greater than with lymph plus buffer. Addition of discoidal proteoliposomes of apo AI and phosphatidycholine (PC to lymph increased ECER ten-fold, while addition of apo AI/PC/UC discs did so by only six-fold. We conclude that the low ECER in lymph is due to a property of the HDLs, seemingly substrate inhibition of LCAT by excess cell-derived UC. This is reversed when lymph enters plasma, consequent upon redistribution of UC from lymph HDLs to plasma lipoproteins.

  17. Imbalance between pulmonary angiotensin-converting enzyme and angiotensin-converting enzyme 2 activity in acute respiratory distress syndrome

    NARCIS (Netherlands)

    Wosten-van Asperen, Roelie M.; Bos, Albert; Bem, Reinout A.; Dierdorp, Barbara S.; Dekker, Tamara; van Goor, Harry; Kamilic, Jelena; van der Loos, Chris M.; van den Berg, Elske; Bruijn, Martijn; van Woensel, Job B.; Lutter, Rene


    Objective: Angiotensin-converting enzyme and its effector peptide angiotensin II have been implicated in the pathogenesis of acute respiratory distress syndrome. Recently, angiotensin-converting enzyme 2 was identified as the counter-regulatory enzyme of angiotensin-converting enzyme that converts a

  18. Non-homologous isofunctional enzymes: A systematic analysis of alternative solutions in enzyme evolution

    Directory of Open Access Journals (Sweden)

    Wolf Yuri I


    Full Text Available Abstract Background Evolutionarily unrelated proteins that catalyze the same biochemical reactions are often referred to as analogous - as opposed to homologous - enzymes. The existence of numerous alternative, non-homologous enzyme isoforms presents an interesting evolutionary problem; it also complicates genome-based reconstruction of the metabolic pathways in a variety of organisms. In 1998, a systematic search for analogous enzymes resulted in the identification of 105 Enzyme Commission (EC numbers that included two or more proteins without detectable sequence similarity to each other, including 34 EC nodes where proteins were known (or predicted to have distinct structural folds, indicating independent evolutionary origins. In the past 12 years, many putative non-homologous isofunctional enzymes were identified in newly sequenced genomes. In addition, efforts in structural genomics resulted in a vastly improved structural coverage of proteomes, providing for definitive assessment of (nonhomologous relationships between proteins. Results We report the results of a comprehensive search for non-homologous isofunctional enzymes (NISE that yielded 185 EC nodes with two or more experimentally characterized - or predicted - structurally unrelated proteins. Of these NISE sets, only 74 were from the original 1998 list. Structural assignments of the NISE show over-representation of proteins with the TIM barrel fold and the nucleotide-binding Rossmann fold. From the functional perspective, the set of NISE is enriched in hydrolases, particularly carbohydrate hydrolases, and in enzymes involved in defense against oxidative stress. Conclusions These results indicate that at least some of the non-homologous isofunctional enzymes were recruited relatively recently from enzyme families that are active against related substrates and are sufficiently flexible to accommodate changes in substrate specificity. Reviewers This article was reviewed by Andrei

  19. Influence of high temperature and ethanol on thermostable lignocellulolytic enzymes

    DEFF Research Database (Denmark)

    Skovgaard, Pernille Anastasia; Jørgensen, Henning


    Lignocellulolytic enzymes are among the most costly part in production of bioethanol. Therefore, recycling of enzymes is interesting as a concept for reduction of process costs. However, stability of the enzymes during the process is critical. In this work, focus has been on investigating...... the influence of temperature and ethanol on enzyme activity and stability in the distillation step, where most enzymes are inactivated due to high temperatures. Two enzyme mixtures, a mesophilic and a thermostable mixture, were exposed to typical process conditions [temperatures from 55 to 65 °C and up to 5...... % ethanol (w/v)] followed by specific enzyme activity analyses and SDS-PAGE. The thermostable and mesophilic mixture remained active at up to 65 and 55 °C, respectively. When the enzyme mixtures reached their maximum temperature limit, ethanol had a remarkable influence on enzyme activity, e.g., the more...

  20. (Enzyme use in the Jute Industry)

    Energy Technology Data Exchange (ETDEWEB)

    Niyogi, S.K.


    This report covers my official visit to the Indian Jute Industries' Research Association (IJIRA), Calcutta, India. The visit lasted a little over two weeks, including two trips to three jute mills outside Calcutta and a one-day visit to the library of the Indian Institute of Chemical Biology, Calcutta. The report describes the applications of enzymes (derived from a moldy wheat bran extract) in upgrading the jute fiber and in enhancing the quality of tamarind kernel powder used for sizing of jute. The various methodological developments in these processes are discussed in detail along with suggestions for possible improvements. The report also describes the visits to the jute mills where enzyme applications are being made. Interactions with the IJIRA research staff are described in detail. My contributions to the Project are described along with specific recommendations for future research.

  1. Enzyme-Based Fiber Optic Sensors (United States)

    Kulp, Thomas J.; Camins, Irene; Angel, Stanley M.


    Fiber optic chemical sensors capable of detecting glucose and penicillin were developed. Each consists of a polymer membrane that is covalently attached to the tip of a glass optical fiber. The membrane contains the enzyme and a pH-sensitive fluorescent dye (fluorescein). A signal is produced when the enzyme catalyzes the conversion of the analyte (glucose or penicillin) into a product (gluconic or penicilloic acid, respectively) that lowers the microenvironmental pH of the membrane and, consequently, lowers the fluorescence intensity of the dye. Each sensor is capable of responding to analyte concentrations in the range of ~0.1 to 100 mM. The penicillin optrode response time is 40 to 60 s while that for glucose is ~5 to 12 min.

  2. Restriction Enzymes in Microbiology, Biotechnology and Biochemistry

    Directory of Open Access Journals (Sweden)

    Geoffrey G. Wilson


    Full Text Available Since their discovery in the nineteen-seventies, a collection of simple enzymes termed Type II restriction endonucleases, made by microbes to ward off viral infections, have transformed molecular biology, spawned the multi-billion dollar Biotechnology industry, and yielded fundamental insights into the biochemistry of life, health and disease. In this article we describe how these enzymes were discovered, and we review their properties, organizations and genetics. We summarize current ideas about the mechanism underlying their remarkable ability to recognize and bind to specific base pair sequences in DNA, and we discuss why these ideas might not be correct. We conclude by proposing an alternative explanation for sequence-recognition that resolves certain inconsistencies and provides, in our view, a more satisfactory account of the mechanism.

  3. The role of deubiquitinating enzymes in spermatogenesis. (United States)

    Suresh, Bharathi; Lee, Junwon; Hong, Seok-Ho; Kim, Kye-Seong; Ramakrishna, Suresh


    Spermatogenesis is a complex process through which spermatogonial stem cells undergo mitosis, meiosis, and cell differentiation to generate mature spermatozoa. During this process, male germ cells experience several translational modifications. One of the major post-translational modifications in eukaryotes is the ubiquitination of proteins, which targets proteins for degradation; this enables control of the expression of enzymes and structural proteins during spermatogenesis. It has become apparent that ubiquitination plays a key role in regulating every stage of spermatogenesis starting from gonocytes to differentiated spermatids. It is understood that, where there is ubiquitination, deubiquitination by deubiquitinating enzymes (DUBs) also exists to counterbalance the ubiquitination process in a reversible manner. Normal spermatogenesis is dependent on the balanced actions of ubiquitination and deubiquitination. This review highlights the current knowledge of the role of DUBs and their essential regulatory contribution to spermatogenesis, especially during progression into meiotic phase, acrosome biogenesis, quality sperm production, and apoptosis of germ cells.

  4. Coccolithophores: Functional Biodiversity, Enzymes and Bioprospecting

    Directory of Open Access Journals (Sweden)

    Michael J. Allen


    Full Text Available Emiliania huxleyi is a single celled, marine phytoplankton with global distribution. As a key species for global biogeochemical cycling, a variety of strains have been amassed in various culture collections. Using a library consisting of 52 strains of E. huxleyi and an ‘in house‘ enzyme screening program, we have assessed the functional biodiversity within this species of fundamental importance to global biogeochemical cycling, whilst at the same time determining their potential for exploitation in biocatalytic applications. Here, we describe the screening of E. huxleyi strains, as well as a coccolithovirus infected strain, for commercially relevant biocatalytic enzymes such as acid/alkali phosphodiesterase, acid/alkali phosphomonoesterase, EC1.1.1-type dehydrogenase, EC1.3.1-type dehydrogenase and carboxylesterase.

  5. Coccolithophores: functional biodiversity, enzymes and bioprospecting. (United States)

    Reid, Emma L; Worthy, Charlotte A; Probert, Ian; Ali, Sohail T; Love, John; Napier, Johnathan; Littlechild, Jenny A; Somerfield, Paul J; Allen, Michael J


    Emiliania huxleyi is a single celled, marine phytoplankton with global distribution. As a key species for global biogeochemical cycling, a variety of strains have been amassed in various culture collections. Using a library consisting of 52 strains of E. huxleyi and an 'in house' enzyme screening program, we have assessed the functional biodiversity within this species of fundamental importance to global biogeochemical cycling, whilst at the same time determining their potential for exploitation in biocatalytic applications. Here, we describe the screening of E. huxleyi strains, as well as a coccolithovirus infected strain, for commercially relevant biocatalytic enzymes such as acid/alkali phosphodiesterase, acid/alkali phosphomonoesterase, EC1.1.1-type dehydrogenase, EC1.3.1-type dehydrogenase and carboxylesterase.

  6. Programmable DNA-Guided Artificial Restriction Enzymes. (United States)

    Enghiad, Behnam; Zhao, Huimin


    Restriction enzymes are essential tools for recombinant DNA technology that have revolutionized modern biological research. However, they have limited sequence specificity and availability. Here we report a Pyrococcus furiosus Argonaute (PfAgo) based platform for generating artificial restriction enzymes (AREs) capable of recognizing and cleaving DNA sequences at virtually any arbitrary site and generating defined sticky ends of varying length. Short DNA guides are used to direct PfAgo to target sites for cleavage at high temperatures (>87 °C) followed by reannealing of the cleaved single stranded DNAs. We used this platform to generate over 18 AREs for DNA fingerprinting and molecular cloning of PCR-amplified or genomic DNAs. These AREs work as efficiently as their naturally occurring counterparts, and some of them even do not have any naturally occurring counterparts, demonstrating easy programmability, generality, versatility, and high efficiency for this new technology.

  7. Enzyme efficiency: An open reaction system perspective

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Kinshuk, E-mail: [Department of Chemistry, University of Calcutta, Rajabazar Science College Campus, Kolkata 700 009 (India); Bhattacharyya, Kamal, E-mail: [Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata 700 009 (India)


    A measure of enzyme efficiency is proposed for an open reaction network that, in suitable form, applies to closed systems as well. The idea originates from the description of classical enzyme kinetics in terms of cycles. We derive analytical expressions for the efficiency measure by treating the network not only deterministically but also stochastically. The latter accounts for any significant amount of noise that can be present in biological systems and hence reveals its impact on efficiency. Numerical verification of the results is also performed. It is found that the deterministic equation overestimates the efficiency, the more so for very small system sizes. Roles of various kinetics parameters and system sizes on the efficiency are thoroughly explored and compared with the standard definition k{sub 2}/K{sub M}. Study of substrate fluctuation also indicates an interesting efficiency-accuracy balance.


    Directory of Open Access Journals (Sweden)

    Keikhosro Karimi


    Full Text Available This article reviews developments in the technology for ethanol produc-tion from lignocellulosic materials by “enzymatic” processes. Several methods of pretreatment of lignocelluloses are discussed, where the crystalline structure of lignocelluloses is opened up, making them more accessible to the cellulase enzymes. The characteristics of these enzymes and important factors in enzymatic hydrolysis of the cellulose and hemicellulose to cellobiose, glucose, and other sugars are discussed. Different strategies are then described for enzymatic hydrolysis and fermentation, including separate enzymatic hydrolysis and fermentation (SHF, simultaneous saccharification and fermentation (SSF, non-isothermal simultaneous saccharification and fermentation (NSSF, simultaneous saccharification and co-fermentation (SSCF, and consolidated bioprocessing (CBP. Furthermore, the by-products in ethanol from lignocellulosic materials, wastewater treatment, commercial status, and energy production and integration are reviewed.

  9. Liver enzymes among microelectronics equipment maintenance technicians. (United States)

    Upfal, M


    Equipment maintenance workers within the microelectronics industry have opportunities for occupational exposure to a variety of toxic agents. This pilot investigation compares liver enzymes in this population with that of other coworkers. Participants (n = 135) were randomly selected from a medical surveillance program at the manufacturing facility. Nine job categories were examined, including equipment maintenance workers and electronic technicians. Although abnormal liver enzymes were detected among equipment maintenance workers (odds ratio 16.4; P less than .008) and electronic technicians (odds ratio 27; P less than .0005), the numbers of participants were small (n = 8, 10). The data suggest that independent and/or interactive etiologic roles of occupation and alcohol should be further investigated. Early detection of subclinical occupational or recreational hepatotoxicity with appropriate employment of industrial hygiene control technology and/or the reduction of alcohol consumption may provide a means of preventing liver disease.

  10. Nedd8 processing enzymes in Schizosaccharomyces pombe

    DEFF Research Database (Denmark)

    O'Donoghue, Jean; Bech-Otschir, Dawadschargal; Larsen, Ida;


    Conjugation of the ubiquitin-like modifier Nedd8 to cullins is critical for the function of SCF-type ubiquitin ligases and thus facilitates ubiquitin conjugation and ultimately degradation of SCF substrates, including several cell cycle regulators. Like ubiquitin, Nedd8 is produced as a precursor...... that must first be processed before it becomes active. In Saccharomyces cerevisiae this is carried out exclusively by the enzyme Yuh1....

  11. Atmospheric Hydrogen Scavenging: from Enzymes to Ecosystems



    We have known for 40 years that soils can consume the trace amounts of molecular hydrogen (H2) found in the Earth's atmosphere. This process is predicted to be the most significant term in the global hydrogen cycle. However, the organisms and enzymes responsible for this process were only recently identified. Pure culture experiments demonstrated that several species of Actinobacteria, including streptomycetes and mycobacteria, can couple the oxidation of atmospheric H2 to the reduction of am...

  12. Role of Deubiquitinating Enzymes in DNA Repair



    Both proteolytic and nonproteolytic functions of ubiquitination are essential regulatory mechanisms for promoting DNA repair and the DNA damage response in mammalian cells. Deubiquitinating enzymes (DUBs) have emerged as key players in the maintenance of genome stability. In this minireview, we discuss the recent findings on human DUBs that participate in genome maintenance, with a focus on the role of DUBs in the modulation of DNA repair and DNA damage signaling.

  13. Enzyme-inhibitor mediated red cell labelling

    Energy Technology Data Exchange (ETDEWEB)

    Ackery, D.M.; Singh, J.; Wyeth, P. (Southampton Univ. (UK). Dept. of Chemistry)

    Red blood cells contain 90% of the body's enzyme carbonic anhydrase to which aromatic sulphonamide inhibitors bind tightly. P-iodo-benzene sulphonamide (PIBS) is a lipophilic inhibitor which would afford rapid cell labelling. Radioiodinated PIBS was prepared, in high yield, by radio ion exchange in the presence of ammonium sulphate. After intravenous injection of /sup 131/I-PIBS the radiolabel was found in the blood pool.

  14. Ethanol from wood. Cellulase enzyme production

    Energy Technology Data Exchange (ETDEWEB)

    Szengyel, Zsolt


    Conversion of biomass to liquid fuels, such as ethanol, has been investigated during the past decades. First due to the oil crisis of the 1970s and lately because of concerns about greenhouse effect, ethanol has been found to be a suitable substitute for gasoline in transportation. Although ethanol is produced in large quantities from corn starch, the conversion of lignocellulosic biomass to ethanol is rather problematic. However, cellulosic raw materials are important as they are available in large quantities from agriculture and forestry. One of the most extensively investigated processes is the enzymatic process, in which fungal cellulolytic enzymes are used to convert the cellulose content of the biomass to glucose, which is then fermented to ethanol. In order to make the raw material accessible to biological attack, it has to be pretreated first. The most successful method, which has been evaluated for various lignocellulosic materials, is the steam pretreatment. In this thesis the utilization of steam pretreated willow (hardwood) and spruce (softwood) was examined for enzyme production using a filamentous fungus T. reesei RUT C30. Various carbon sources originating from the steam pretreated materials have been investigated. The replacement of the solid carbon source with a liquid carbon source, as well as the effect of pH, was studied. The effect of toxic compounds generated during pretreatment was also examined. Comparative study of softwood and hardwood showed that steam pretreated hardwood is a better carbon source than softwood. The hydrolytic potential of enzyme solutions produced on wood derived carbon sources was better compared to commercial cellulases. Also enzyme solutions produced on steam pretreated spruce showed less sensitivity towards toxic compounds formed during steam pretreatment.

  15. Substrates and method for determining enzymes (United States)

    Smith, Robert E.; Bissell, Eugene R.


    A method is disclosed for determining the presence of an enzyme in a biological fluid, which includes the steps of contacting the fluid with a synthetic chromogenic substrate, which is an amino acid derivative of 7-amino-4-trifluoromethylcoumarin; incubating the substrate-containing fluid to effect enzymatic hydrolysis; and fluorometrically determining the presence of the free 7-amino-4-trifluoromethylcoumarin chromophore in the hydrolyzate.

  16. Enzyme-Gelatin Electrochemical Biosensors: Scaling Down

    Directory of Open Access Journals (Sweden)

    Hendrik A. Heering


    Full Text Available In this article we investigate the possibility of scaling down enzyme-gelatin modified electrodes by spin coating the enzyme-gelatin layer. Special attention is given to the electrochemical behavior of the selected enzymes inside the gelatin matrix. A glassy carbon electrode was used as a substrate to immobilize, in the first instance, horse heart cytochrome c (HHC in a gelatin matrix. Both a drop dried and a spin coated layer was prepared. On scaling down, a transition from diffusion controlled reactions towards adsorption controlled reactions is observed. Compared to a drop dried electrode, a spin coated electrode showed a more stable electrochemical behavior. Next to HHC, we also incorporated catalase in a spin coated gelatin matrix immobilized on a glassy carbon electrode. By spincoating, highly uniform sub micrometer layers of biocompatible matrices can be constructed. A full electrochemical study and characterization of the modified surfaces has been carried out. It was clear that in the case of catalase, gluteraldehyde addition was needed to prevent leaking of the catalase from the gelatin matrix.

  17. New Enzyme Inhibitory Constituents from Tribulus longipetalus

    Directory of Open Access Journals (Sweden)

    Muhammad Akram Naveed


    Full Text Available Normal and reversed phasechromatographic purification of the chloroform soluble fraction of the methanolic extract of Tribulus longipetalus led to the isolation of a new tyramine amide, longipetalamide (1, two new benzocoumarins, longipetalasin A (8-n-propyl-threo-1 ¢ S ,2 ¢ S -dihydroxy-5-methoxy-5a,9a-benzocoumarin; 2 and B (8-n-propyl-threo-1 ¢ S ,2 ¢ S -dihydroxy-5,10-dimethoxy-5a,9a-benzocoumarin; 3 together with 1,2,3-propantriyl trioleate (4, crotamide A (5, stigmasterol (6, (25S-5α-furustan-22-methoxy-3β,26-diol (7, neotigogenin (8, tigogenin (9, methyl 4-hydroxyphenyl acetate (10 and 2-O-methylinositol (11. All the isolates (1-11 were characterized by using UV, IR, 1D- ( 1H and 13C, 2D-NMR (HSQC, HMBC, COSY spectroscopy, mass spectrometry (EI-MS, HR-EI-MS, FAB-MS, HR-FAB-MS and in comparison with the data reported in literature. The compounds 1-11 were evaluated for their enzyme inhibition studies against α-glucosidase, lipoxygenase (LOX, acetylcholinesterase (AChE and butyrylcholinesterase (BChE enzymes and found that 2 and 3 were the significant inhibitors of enzyme α-glucosidase with IC 50 values 94.17 ± 0.09 and 85.65 ± 0.08 µM, respectively.

  18. Genes Encoding Enzymes Involved in Ethanol Metabolism (United States)

    Hurley, Thomas D.; Edenberg, Howard J.


    The effects of beverage alcohol (ethanol) on the body are determined largely by the rate at which it and its main breakdown product, acetaldehyde, are metabolized after consumption. The main metabolic pathway for ethanol involves the enzymes alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH). Seven different ADHs and three different ALDHs that metabolize ethanol have been identified. The genes encoding these enzymes exist in different variants (i.e., alleles), many of which differ by a single DNA building block (i.e., single nucleotide polymorphisms [SNPs]). Some of these SNPs result in enzymes with altered kinetic properties. For example, certain ADH1B and ADH1C variants that are commonly found in East Asian populations lead to more rapid ethanol breakdown and acetaldehyde accumulation in the body. Because acetaldehyde has harmful effects on the body, people carrying these alleles are less likely to drink and have a lower risk of alcohol dependence. Likewise, an ALDH2 variant with reduced activity results in acetaldehyde buildup and also has a protective effect against alcoholism. In addition to affecting drinking behaviors and risk for alcoholism, ADH and ALDH alleles impact the risk for esophageal cancer. PMID:23134050

  19. Applications of Nanomaterials in Electrochemical Enzyme Biosensors

    Directory of Open Access Journals (Sweden)

    Xiaodi Yang


    Full Text Available A biosensor is defined as a kind of analytical device incorporating a biological material, a biologically derived material or a biomimic intimately associated with or integrated within a physicochemical transducer or transducing microsystem. Electrochemical biosensors incorporating enzymes with nanomaterials, which combine the recognition and catalytic properties of enzymes with the electronic properties of various nanomaterials, are new materials with synergistic properties originating from the components of the hybrid composites. Therefore, these systems have excellent prospects for interfacing biological recognition events through electronic signal transduction so as to design a new generation of bioelectronic devices with high sensitivity and stability. In this review, we describe approaches that involve nanomaterials in direct electrochemistry of redox proteins, especially our work on biosensor design immobilizing glucose oxidase (GOD, horseradish peroxidase (HRP, cytochrome P450 (CYP2B6, hemoglobin (Hb, glutamate dehydrogenase (GDH and lactate dehydrogenase (LDH. The topics of the present review are the different functions of nanomaterials based on modification of electrode materials, as well as applications of electrochemical enzyme biosensors.

  20. A thermodynamic and theoretical view for enzyme regulation. (United States)

    Zhao, Qinyi


    Precise regulation is fundamental to the proper functioning of enzymes in a cell. Current opinions about this, such as allosteric regulation and dynamic contribution to enzyme regulation, are experimental models and substantially empirical. Here we proposed a theoretical and thermodynamic model of enzyme regulation. The main idea is that enzyme regulation is processed via the regulation of abundance of active conformation in the reaction buffer. The theoretical foundation, experimental evidence, and experimental criteria to test our model are discussed and reviewed. We conclude that basic principles of enzyme regulation are laws of protein thermodynamics and it can be analyzed using the concept of distribution curve of active conformations of enzymes.

  1. Nutrient intake, serum lipids and iron status of colligiate rugby players

    Directory of Open Access Journals (Sweden)

    Imamura Hiroyuki


    increase their consumption of green and other vegetables, milk and dairy products, and fruits. The forwards showed more atherogenic lipid profiles than the backs, whereas the backs showed not only anti-atherogenic lipid profile, but also showed more atherogenic lipid profile relative to the control group. Additionally, our study showed none of the rugby players experienced anemia and/or iron depletion.

  2. High-Throughput Analysis of Enzyme Activities

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Guoxin [Iowa State Univ., Ames, IA (United States)


    High-throughput screening (HTS) techniques have been applied to many research fields nowadays. Robot microarray printing technique and automation microtiter handling technique allows HTS performing in both heterogeneous and homogeneous formats, with minimal sample required for each assay element. In this dissertation, new HTS techniques for enzyme activity analysis were developed. First, patterns of immobilized enzyme on nylon screen were detected by multiplexed capillary system. The imaging resolution is limited by the outer diameter of the capillaries. In order to get finer images, capillaries with smaller outer diameters can be used to form the imaging probe. Application of capillary electrophoresis allows separation of the product from the substrate in the reaction mixture, so that the product doesn't have to have different optical properties with the substrate. UV absorption detection allows almost universal detection for organic molecules. Thus, no modifications of either the substrate or the product molecules are necessary. This technique has the potential to be used in screening of local distribution variations of specific bio-molecules in a tissue or in screening of multiple immobilized catalysts. Another high-throughput screening technique is developed by directly monitoring the light intensity of the immobilized-catalyst surface using a scientific charge-coupled device (CCD). Briefly, the surface of enzyme microarray is focused onto a scientific CCD using an objective lens. By carefully choosing the detection wavelength, generation of product on an enzyme spot can be seen by the CCD. Analyzing the light intensity change over time on an enzyme spot can give information of reaction rate. The same microarray can be used for many times. Thus, high-throughput kinetic studies of hundreds of catalytic reactions are made possible. At last, we studied the fluorescence emission spectra of ADP and obtained the detection limits for ADP under three different

  3. Photolithographically patterned enzyme membranes for the detection of pesticides and copper(II) based on enzyme inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Zuern, A. (Inst. fuer Analytik und Umweltchemie, Univ. Halle, FB Chemie, Merseburg (Germany)); Mueller, H. (Inst. fuer Analytik und Umweltchemie, Univ. Halle, FB Chemie, Merseburg (Germany))

    A non-aqueous and an aqueous photopolymer system with an enzyme are used to prepare photolithographically patterned enzyme membranes for amperometric (thinfilm platinum electrode) and potentiometric (ISFET) sensors based on enzyme inhibition. Flow methods for enzyme inhibition tests are described. The decrease in enzyme (AChE) activity after incubation in a solution of dichlorvos as inhibitor is detected amperometrically. The enzyme urease is immobilized onto the pH-sensitive gate area of an ISFET. Such a biosensor is able to detect copper(II) in water in the ppm-range without preconcentration. (orig.)

  4. Bisphenol A degradation in water by ligninolytic enzymes. (United States)

    Gassara, Fatma; Brar, Satinder K; Verma, M; Tyagi, R D


    Many endocrine disruptor compounds, such as bisphenol A (BPA) are used today and released into the environment at low doses but they are barely degraded in wastewater treatment plants. One of the potential alternatives to effectively degrade endocrine disruptor compounds is based on the use of the oxidative action of extracellular fungal enzymes. The aim of this work is to study the ability of free and encapsulated enzymes (manganese peroxidase, lignin peroxidase and laccase) to degrade BPA. Higher degradation of BPA (90%) by ligninolytic enzymes encapsulated on polyacrylamide hydrogel and pectin after 8h was obtained. The degradation of BPA while using the free enzyme (26%) was lower than the value obtained with encapsulated enzymes. The presence of pectin in the formulation significantly (p>0.05) enhanced the activity of enzymes. Kinetics of BPA degradation showed an increase in Vm, while Km remained constant when enzymes were encapsulated. Hence, encapsulation protected the enzymes from non-competitive inhibition.

  5. Layer-by-Layer Assembly of Enzymes on Carbon Nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jun; Liu, Guodong; Lin, Yuehe


    The use of Layer-by-layer techniques for immobilizing several types of enzymes, e.g. glucose oxidase (GOx), horse radish oxidases(HRP), and choline oxidase(CHO) on carbon nanotubes and their applications for biosenseing are presented. The enzyme is immobilized on the negatively charged CNT surface by alternatively assembling a cationic polydiallyldimethyl-ammonium chloride (PDDA) layer and a enzyme layer. The sandwich-like layer structure (PDDA/enzyme/PDDA/CNT) formed by electrostatic assembling provides a favorable microenvironment to keep the bioactivity of enzyme and to prevent enzyme molecule leakage. The morphologies and electrocatalytic acitivity of the resulted enzyme film were characterized using TEM and electrochemical techniques, respectively. It was found that these enzyme-based biosensors are very sensitive, selective for detection of biomolecules, e.g. glucose, choline.

  6. Usage of enzymes in a novel baking process. (United States)

    Keskin, Semin Ozge; Sumnu, Gülüm; Sahin, Serpil


    In this study, the effects of different enzymes (alpha-amylase, xylanase, lipase, protease) on quality of breads baked in different ovens (microwave, halogen lamp-microwave combination and conventional oven) were investigated. It was also aimed to reduce the quality problems of breads baked in microwave ovens with the usage of enzymes. As a control, bread dough containing no enzyme was used. Specific volume, firmness and color of the breads were measured as quality parameters. All of the enzymes were found to be effective in reducing the initial firmness and increasing the specific volume of breads baked in microwave and halogen lamp-microwave combination ovens. However, in conventional baking, the effects of enzymes on crumb firmness were seen mostly during storage. The color of protease enzyme added breads were found to be significantly different from that of the no enzyme and the other enzyme added breads in the case of all type of ovens.

  7. Structure and function of α-glucan debranching enzymes

    DEFF Research Database (Denmark)

    Møller, Marie Sofie; Henriksen, Anette; Svensson, Birte


    α-Glucan debranching enzymes hydrolyse α-1,6-linkages in starch/glycogen, thereby, playing a central role in energy metabolism in all living organisms. They belong to glycoside hydrolase families GH13 and GH57 and several of these enzymes are industrially important. Nine GH13 subfamilies include α......-glucan debranching enzymes; isoamylase and glycogen debranching enzymes (GH13_11); pullulanase type I/limit dextrinase (GH13_12–14); pullulan hydrolase (GH13_20); bifunctional glycogen debranching enzyme (GH13_25); oligo-1 and glucan-1,6-α-glucosidases (GH13_31); pullulanase type II (GH13_39); and α-amylase domains......_39 enzymes could represent a “missing link” between the strictly α-1,6-specific debranching enzymes and the enzymes with dual specificity and α-1,4-linkage preference....

  8. CADEE: Computer-Aided Directed Evolution of Enzymes (United States)

    Amrein, Beat Anton; Steffen-Munsberg, Fabian; Szeler, Ireneusz; Purg, Miha; Kamerlin, Shina Caroline Lynn


    The tremendous interest in enzymes as biocatalysts has led to extensive work in enzyme engineering, as well as associated methodology development. Here, a new framework for computer-aided directed evolution of enzymes (CADEE) is presented which allows a drastic reduction in the time necessary to prepare and analyze in silico semi-automated directed evolution of enzymes. A pedagogical example of the application of CADEE to a real biological system is also presented in order to illustrate the CADEE workflow. PMID:28250941

  9. Industrial applications of enzyme biocatalysis: Current status and future aspects. (United States)

    Choi, Jung-Min; Han, Sang-Soo; Kim, Hak-Sung


    Enzymes are the most proficient catalysts, offering much more competitive processes compared to chemical catalysts. The number of industrial applications for enzymes has exploded in recent years, mainly owing to advances in protein engineering technology and environmental and economic necessities. Herein, we review recent progress in enzyme biocatalysis, and discuss the trends and strategies that are leading to broader industrial enzyme applications. The challenges and opportunities in developing biocatalytic processes are also discussed.

  10. Biosensors with reversed micelle-enzyme sensitive membrane

    Institute of Scientific and Technical Information of China (English)


    The effect of reversed micelle on the conformation of enzyme was studied by sensor techniques. By means of measurement of the response current of GOD enzyme membrane electrode, the effects of enzyme embedded in AOT reversed micellar on GOD conformation and catalytic activity are discussed. The results show that the response current increased greatly with decreasing ratio of GOD/AOT, meaning that the catalytic activity and the conformation stability of enzyme were enhanced.

  11. Fouling-induced enzyme immobilization for membrane reactors

    DEFF Research Database (Denmark)

    Luo, Jianquan; Meyer, Anne S.; Jonsson, Gunnar Eigil


    , but the reverse mode allowed for higher enzyme loading and stability, and irreversible fouling (i.e. pore blocking) developed more readily in the support structure than in the skin layer. Compared with an enzymatic membrane reactor (EMR) with free enzymes, the novel EMR with enzymes immobilized in membrane...... support improved the enzyme reusability (especially for ADH), and reduced the product inhibition (especially for GDH). © 2013 Elsevier Ltd....

  12. Evolution of enzymes in metabolism: a network perspective. (United States)

    Alves, Rui; Chaleil, Raphael A G; Sternberg, Michael J E


    Several models have been proposed to explain the origin and evolution of enzymes in metabolic pathways. Initially, the retro-evolution model proposed that, as enzymes at the end of pathways depleted their substrates in the primordial soup, there was a pressure for earlier enzymes in pathways to be created, using the later ones as initial template, in order to replenish the pools of depleted metabolites. Later, the recruitment model proposed that initial templates from other pathways could be used as long as those enzymes were similar in chemistry or substrate specificity. These two models have dominated recent studies of enzyme evolution. These studies are constrained by either the small scale of the study or the artificial restrictions imposed by pathway definitions. Here, a network approach is used to study enzyme evolution in fully sequenced genomes, thus removing both constraints. We find that homologous pairs of enzymes are roughly twice as likely to have evolved from enzymes that are less than three steps away from each other in the reaction network than pairs of non-homologous enzymes. These results, together with the conservation of the type of chemical reaction catalyzed by evolutionarily related enzymes, suggest that functional blocks of similar chemistry have evolved within metabolic networks. One possible explanation for these observations is that this local evolution phenomenon is likely to cause less global physiological disruptions in metabolism than evolution of enzymes from other enzymes that are distant from them in the metabolic network.

  13. Magnetic enzyme reactors for isolation and study of heterogeneous glycoproteins

    Energy Technology Data Exchange (ETDEWEB)

    Korecka, Lucie [Department of Analytical Chemistry, University of Pardubice, Namesti Cs. Legii 565, 532 10 Pardubice (Czech Republic)]. E-mail:; Jezova, Jana [Department of Analytical Chemistry, University of Pardubice, Namesti Cs. Legii 565, 532 10 Pardubice (Czech Republic); Bilkova, Zuzana [Department of Biological and Biochemical Sciences, University of Pardubice, Namesti Cs. Legii 565, 532 10 Pardubice (Czech Republic); Benes, Milan [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovskeho Namesti 2, 162 06 Prague (Czech Republic); Horak, Daniel [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovskeho Namesti 2, 162 06 Prague (Czech Republic); Hradcova, Olga [Department of Biological and Biochemical Sciences, University of Pardubice, Namesti Cs. Legii 565, 532 10 Pardubice (Czech Republic); Slovakova, Marcela [Department of Biological and Biochemical Sciences, University of Pardubice, Namesti Cs. Legii 565, 532 10 Pardubice (Czech Republic); Laboratoire Physicochimie Curie, UMR 168 CNRS/Institute Curie, Paris Cedex 05 (France); Viovy, Jean-Louis [Laboratoire Physicochimie Curie, UMR 168 CNRS/Institute Curie, Paris Cedex 05 (France)


    The newly developed magnetic micro- and nanoparticles with defined hydrophobicity and porosity were used for the preparation of magnetic enzyme reactors. Magnetic particles with immobilized proteolytic enzymes trypsin, chymotrypsin and papain and with enzyme neuraminidase were used to study the structure of heterogeneous glycoproteins. Factors such as the type of carrier, immobilization procedure, operational and storage stability, and experimental conditions were optimized.

  14. Exploration of the spontaneous fluctuating activity of single enzyme molecules

    NARCIS (Netherlands)

    Schwabe, A.; Maarleveld, T.R.; Bruggeman, F.J.


    Single enzyme molecules display inevitable, stochastic fluctuations in their catalytic activity. In metabolism, for instance, the stochastic activity of individual enzymes is averaged out due to their high copy numbers per single cell. However, many processes inside cells rely on single enzyme activ

  15. Accessory enzymes from Aspergillus involved in xylan and pectin degradation

    NARCIS (Netherlands)

    Vries, de R.P.


    The xylanolytic and pectinolytic enzyme systems from Aspergillus have been the subject of study for many years. Although the main chain cleaving enzymes and their encoding genes have been studied in detail, little information is available about most of the accessory enzymes and their corresponding g

  16. 21 CFR 864.7100 - Red blood cell enzyme assay. (United States)


    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Red blood cell enzyme assay. 864.7100 Section 864...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7100 Red blood cell enzyme assay. (a) Identification. Red blood cell enzyme assay is a device used to measure the activity...

  17. A virus-based single-enzyme nanoreactor

    NARCIS (Netherlands)

    Comellas-Aragones, M.; Engelkamp, H.; Claessen, V.I.; Sommerdijk, N.A.J.M.; Rowan, A.E.; Christianen, P.C.M.; Maan, J.C.; Verduin, B.J.M.; Cornelissen, J.J.L.M.; Nolte, R.J.M.


    Most enzyme studies are carried out in bulk aqueous solution, at the so-called ensemble level, but more recently studies have appeared in which enzyme activity is measured at the level of a single molecule, revealing previously unseen properties1, 2, 3, 4. To this end, enzymes have been chemically o

  18. 21 CFR 862.3360 - Drug metabolizing enzyme genotyping system. (United States)


    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Drug metabolizing enzyme genotyping system. 862... Test Systems § 862.3360 Drug metabolizing enzyme genotyping system. (a) Identification. A drug metabolizing enzyme genotyping system is a device intended for use in testing deoxyribonucleic acid...

  19. Screening genus Penicillium for producers of cellulolytic and xylanolytic enzymes

    DEFF Research Database (Denmark)

    Krogh, Kristian Bertel Rømer; Mørkeberg, Astrid; Frisvad, Jens Christian;


    For enzymatic hydrolysis of lignocellulosic material, cellulolytic enzymes from Trichoderma reesei are most commenly used, but, there is a need for more efficient enzyme cocktails. In this study, the production of cellulolytic and xylanolytic enzymes was investigated in 12 filamentous fungi from...

  20. Development of the Enzyme-Substrate Interactions Concept Inventory (United States)

    Bretz, Stacey Lowery; Linenberger, Kimberly J.


    Enzyme function is central to student understanding of multiple topics within the biochemistry curriculum. In particular, students must understand how enzymes and substrates interact with one another. This manuscript describes the development of a 15-item Enzyme-Substrate Interactions Concept Inventory (ESICI) that measures student understanding…

  1. A hydrogel-based enzyme-loaded polymersome reactor

    NARCIS (Netherlands)

    Hoog, de Hans-Peter; Arends, Isabel W.C.E.; Rowan, Alan E.; Cornelissen, Jeroen J.L.M.; Nolte, Roeland J.M.


    In this study we report the immobilization of enzyme-containing polymersomes into a macromolecular hydrogel. Whereas free enzyme shows progressive leakage from the hydrogel in a period of days, leakage of the polymersome-protected enzyme is virtually absent. The preparation of the hydrogel occurs un

  2. Food-processing enzymes from recombinant microorganisms--a review. (United States)

    Olempska-Beer, Zofia S; Merker, Robert I; Ditto, Mary D; DiNovi, Michael J


    Enzymes are commonly used in food processing and in the production of food ingredients. Enzymes traditionally isolated from culturable microorganisms, plants, and mammalian tissues are often not well-adapted to the conditions used in modern food production methods. The use of recombinant DNA technology has made it possible to manufacture novel enzymes suitable for specific food-processing conditions. Such enzymes may be discovered by screening microorganisms sampled from diverse environments or developed by modification of known enzymes using modern methods of protein engineering or molecular evolution. As a result, several important food-processing enzymes such as amylases and lipases with properties tailored to particular food applications have become available. Another important achievement is improvement of microbial production strains. For example, several microbial strains recently developed for enzyme production have been engineered to increase enzyme yield by deleting native genes encoding extracellular proteases. Moreover, certain fungal production strains have been modified to reduce or eliminate their potential for production of toxic secondary metabolites. In this article, we discuss the safety of microorganisms used as hosts for enzyme-encoding genes, the construction of recombinant production strains, and methods of improving enzyme properties. We also briefly describe the manufacture and safety assessment of enzyme preparations and summarize options for submitting information on enzyme preparations to the US Food and Drug Administration.

  3. Effects of cryoprotectants on enzyme structure. (United States)

    Fink, A L


    The interaction between organic cosolvents and proteins is considered, especially from the point of view of effects on protein stability. It is concluded that each protein-cosolvent system constitutes a unique situation, making generalized predictions of expected effects difficult. Two classes of cosolvents are distinguished, based on the nature of their interactions with the protein surface. The thermodynamic instability to the system introduced by the presence of the cosolvent can be accommodated (i) by preferential exclusion of the cosolvent from the vicinity of the protein, (ii) by major structural changes of the protein, or (iii) by aggregation. Polyols tend to undergo preferential exclusion due to unfavorable interactions with nonpolar surface groups, whereas monohydric alcohols and other more hydrophobic cosolvents may undergo preferential exclusion due to adverse interactions with charged groups on the protein surface. Typical cosolvent effects on the structural and catalytic properties of enzymes are illustrated with data for ribonuclease and beta-lactamase with alcohol cosolvents. The relative hydrophobicity of the cosolvent is the major determinant of the effect of a cryosolvent on the enzyme stability and properties. Thus the position of the unfolding transition in cryosolvent will be decreased more by a more nonpolar cosolvent. Different cosolvents can have significantly different effects on the catalytic and structural properties of the same enzyme. Conversely the same cosolvent can have significantly different effects on similar proteins. The number and distribution of the nonpolar and charged groups on the protein's surface probably are the major determinants of the protein contribution to the solvent-protein interaction. The large temperature dependence of the rates of protein unfolding and refolding can be beneficially utilized in cryoprotectant studies of living cells.

  4. Restriction enzyme-mediated DNA family shuffling. (United States)

    Behrendorff, James B Y H; Johnston, Wayne A; Gillam, Elizabeth M J


    DNA shuffling is an established recombinatorial method that was originally developed to increase the speed of directed evolution experiments beyond what could be accomplished using error-prone PCR alone. To achieve this, mutated copies of a protein-coding sequence are fragmented with DNase I and the fragments are then reassembled in a PCR without primers. The fragments anneal where there is sufficient sequence identity, resulting in full-length variants of the original gene that have inherited mutations from multiple templates. Subsequent studies demonstrated that directed evolution could be further accelerated by shuffling similar native protein-coding sequences from the same gene family, rather than mutated variants of a single gene. Generally at least 65-75 % global identity between parental sequences is required in DNA family shuffling, with recombination mostly occurring at sites with at least five consecutive nucleotides of local identity. Since DNA shuffling was originally developed, many variations on the method have been published. In particular, the use of restriction enzymes in the fragmentation step allows for greater customization of fragment lengths than DNase I digestion and avoids the risk that parental sequences may be over-digested into unusable very small fragments. Restriction enzyme-mediated fragmentation also reduces the occurrence of undigested parental sequences that would otherwise reduce the number of unique variants in the resulting library. In the current chapter, we provide a brief overview of the alternative methods currently available for DNA shuffling as well as a protocol presented here that improves on several previous implementations of restriction enzyme-mediated DNA family shuffling, in particular with regard to purification of DNA fragments for reassembly.

  5. Epigenetics of dominance for enzyme activity

    Indian Academy of Sciences (India)

    Kuldip S Trehan; Kulbir S Gill


    We have isolated and purified two parental homodimers and a unique heterodimer of acid phosphatase [coded by Acph-11.05() and Acph-10.95()] from isogenic homozygotes and heterozygotes of Drosophila malerkotliana. and produce qualitatively different allozymes and the two alleles are expressed equally within and across all three genotypes and and play an equal role in the epigenetics of dominance. Subunit interaction in the heterodimer over a wide range of H+ concentrations accounts for the epigenetics of dominance for enzyme activity.

  6. Extracting enzyme processivity from kinetic assays

    Energy Technology Data Exchange (ETDEWEB)

    Barel, Itay; Brown, Frank L. H. [Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106 (United States); Department of Physics, University of California, Santa Barbara, California 93106 (United States); Reich, Norbert O. [Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106 (United States)


    A steady-state analysis for the catalytic turnover of molecules containing two substrate sites is presented. A broad class of Markovian dynamic models, motivated by the action of DNA modifying enzymes and the rich variety of translocation mechanisms associated with these systems (e.g., sliding, hopping, intersegmental transfer, etc.), is considered. The modeling suggests an elementary and general method of data analysis, which enables the extraction of the enzyme’s processivity directly and unambiguously from experimental data. This analysis is not limited to the initial velocity regime. The predictions are validated both against detailed numerical models and by revisiting published experimental data for EcoRI endonuclease acting on DNA.

  7. The enzymes of bacterial census and censorship. (United States)

    Fast, Walter; Tipton, Peter A


    N-Acyl-L-homoserine lactones (AHLs) are a major class of quorum-sensing signals used by Gram-negative bacteria to regulate gene expression in a population-dependent manner, thereby enabling group behavior. Enzymes capable of generating and catabolizing AHL signals are of significant interest for the study of microbial ecology and quorum-sensing pathways, for understanding the systems that bacteria have evolved to interact with small-molecule signals, and for their possible use in therapeutic and industrial applications. The recent structural and functional studies reviewed here provide a detailed insight into the chemistry and enzymology of bacterial communication.

  8. Assessment of steroidogenesis and steroidogenic enzyme functions. (United States)

    Luu-The, Van


    There is some confusion in the literature about steroidogenesis in endocrine glands and steroidogenesis in peripheral intracrine tissues. The objective of the present review is to bring some clarifications and better understanding about steroidogenesis in these two types of tissues. Concerns about substrate specificity, kinetic constants and place of enzymes in the pathway have been discussed. The role of 17α-hydroxylase/17-20 lyase (CYP17A1) in the production of dehydroepiandrosterone and back-door pathways of dihydrotestosterone biosynthesis is also analyzed. This article is part of a Special Issue entitled "Synthesis and biological testing of steroid derivatives as inhibitors".

  9. NADPH oxidase: an enzyme for multicellularity? (United States)

    Lalucque, Hervé; Silar, Philippe


    Multicellularity has evolved several times during the evolution of eukaryotes. One evolutionary pressure that permits multicellularity relates to the division of work, where one group of cells functions as nutrient providers and the other in specialized roles such as defence or reproduction. This requires signalling systems to ensure harmonious development of multicellular structures. Here, we show that NADPH oxidases are specifically present in organisms that differentiate multicellular structures during their life cycle and are absent from unicellular life forms. The biochemical properties of these enzymes make them ideal candidates for a role in intercellular signalling.


    Directory of Open Access Journals (Sweden)

    O. Y. Dudchenko


    Full Text Available The conductometric biosensor for fructose determination based on fructose dehydrogenase and potassium ferricyanide mediator as electron acceptor has been developed. The enzyme was immobilized on a surface of the conductometric transducer together with bovine serum albumin using crosslinking with glutaraldehyde. Working conditions of the discribed fructose biosensor were optimized. The results concerning influence of the buffer solution concentration and potassium ferricyanide concentration on the biosensor performance are given. The fructose biosensor is characterized by high signal reproducibility and selectivity to fructose. The developed conductometric biosensor can be successfully used for fructose monitoring in the procedures of food and clinical diagnostic.

  11. Expression of Enzymes that Metabolize Medications (United States)

    Wotring, Virginia E.; Peters, C. P.


    Most pharmaceuticals are metabolized by the liver. Clinically-used medication doses are given with normal liver function in mind. A drug overdose can result if the liver is damaged and removing pharmaceuticals from the circulation at a rate slower than normal. Alternatively, if liver function is elevated and removing drugs from the system more quickly than usual, it would be as if too little drug had been given for effective treatment. Because of the importance of the liver in drug metabolism we want to understand the effects of spaceflight on the enzymes of the liver.

  12. [Enzyme immunoassay of usnic acid in lichens]. (United States)

    Burkin, A A; Kononenko, G P; Tolpysheva, T Iu


    An enzyme immunoassay for usnic acid in lichens was developed, the sensitivity of which was 0.1 microg/g of air-dried material (0.00001%). Polyclonal rabbit antibodies against bovine serum albumin conjugated to (+)-usnic acid under the conditions of formaldehyde condensation made it possible to determine the analyzed substance in solutions at concentrations from 1 ng/mL when it interacts with an immobilized gelatin conjugate homologous in the binding mode. Usnic acid in 2-26600 microg/g (0.0002-2.6%) amounts was found in all 236 studied samples of lichens belonging to 53 species and 8 families.

  13. Adsorption of amylase enzyme on ultrafiltration membranes

    DEFF Research Database (Denmark)

    Beier, Søren; Enevoldsen, Ann Dorrit; Kontogeorgis, Georgios


    A method to measure the static adsorption on membrane surfaces has been developed and described. The static adsorption of an amylase-F has been measured on two different ultrafiltration membranes, both with a cut-off value of 10 kDa (a PES membrane and the ETNA10PP membrane, which is a surface-mo...... is independent of the membrane type. At higher concentrations of enzyme, concentration polarization effects can not be neglected. Therefore stagnant film theory and the osmotic pressure model can describe the dependency between flux and bulk concentration....

  14. Ultrasonic Monitoring of Enzyme Catalysis; Enzyme Activity in Formulations for Lactose-Intolerant Infants. (United States)

    Altas, Margarida C; Kudryashov, Evgeny; Buckin, Vitaly


    The paper introduces ultrasonic technology for real-time, nondestructive, precision monitoring of enzyme-catalyzed reactions in solutions and in complex opaque media. The capabilities of the technology are examined in a comprehensive analysis of the effects of a variety of diverse factors on the performance of enzyme β-galactosidase in formulations for reduction of levels of lactose in infant milks. These formulations are added to infant's milk bottles prior to feeding to overcome the frequently observed intolerance to lactose (a milk sugar), a serious issue in healthy development of infants. The results highlight important impediments in the development of these formulations and also illustrate the capability of the described ultrasonic tools in the assessment of the performance of enzymes in complex reaction media and in various environmental conditions.

  15. Dynamic relationships between microbial biomass, respiration, inorganic nutrients and enzyme activities: informing enzyme based decomposition models

    Directory of Open Access Journals (Sweden)

    Daryl L Moorhead


    Full Text Available We re-examined data from a recent litter decay study to determine if additional insights could be gained to inform decomposition modeling. Rinkes et al. (2013 conducted 14-day laboratory incubations of sugar maple (Acer saccharum or white oak (Quercus alba leaves, mixed with sand (0.4% organic C content or loam (4.1% organic C. They measured microbial biomass C, carbon dioxide efflux, soil ammonium, nitrate, and phosphate concentrations, and β-glucosidase (BG, β-N-acetyl-glucosaminidase (NAG, and acid phosphatase (AP activities on days 1, 3, and 14. Analyses of relationships among variables yielded different insights than original analyses of individual variables. For example, although respiration rates per g soil were higher for loam than sand, rates per g soil C were actually higher for sand than loam, and rates per g microbial C showed little difference between treatments. Microbial biomass C peaked on day 3 when biomass-specific activities of enzymes were lowest, suggesting uptake of litter C without extracellular hydrolysis. This result refuted a common model assumption that all enzyme production is constitutive and thus proportional to biomass, and/or indicated that part of litter decay is independent of enzyme activity. The length and angle of vectors defined by ratios of enzyme activities (BG/NAG versus BG/AP represent relative microbial investments in C (length, and N and P (angle acquiring enzymes. Shorter lengths on day 3 suggested low C limitation, whereas greater lengths on day 14 suggested an increase in C limitation with decay. The soils and litter in this study generally had stronger P limitation (angles > 45˚. Reductions in vector angles to < 45˚ for sand by day 14 suggested a shift to N limitation. These relational variables inform enzyme-based models, and are usually much less ambiguous when obtained from a single study in which measurements were made on the same samples than when extrapolated from separate studies.

  16. The Daily Practice of Pancreatic Enzyme Replacement Therapy After Pancreatic Surgery: A Northern European Survey: Enzyme Replacement After Surgery

    NARCIS (Netherlands)

    E.C.M. Sikkens (Edmée); D.L. Cahen; C.H.J. van Eijck (Casper); E.J. Kuipers (Ernst); M.J. Bruno (Marco)


    textabstractIntroduction: After pancreatic surgery, up to 80 % of patients will develop exocrine insufficiency. For enzyme supplementation to be effective, prescribing an adequate dose of pancreatic enzymes is mandatory but challenging because the required dose varies. Data on the practice of enzyme

  17. Enzyme kinetics informatics: from instrument to browser. (United States)

    Swainston, Neil; Golebiewski, Martin; Messiha, Hanan L; Malys, Naglis; Kania, Renate; Kengne, Sylvestre; Krebs, Olga; Mir, Saqib; Sauer-Danzwith, Heidrun; Smallbone, Kieran; Weidemann, Andreas; Wittig, Ulrike; Kell, Douglas B; Mendes, Pedro; Müller, Wolfgang; Paton, Norman W; Rojas, Isabel


    A limited number of publicly available resources provide access to enzyme kinetic parameters. These have been compiled through manual data mining of published papers, not from the original, raw experimental data from which the parameters were calculated. This is largely due to the lack of software or standards to support the capture, analysis, storage and dissemination of such experimental data. Introduced here is an integrative system to manage experimental enzyme kinetics data from instrument to browser. The approach is based on two interrelated databases: the existing SABIO-RK database, containing kinetic data and corresponding metadata, and the newly introduced experimental raw data repository, MeMo-RK. Both systems are publicly available by web browser and web service interfaces and are configurable to ensure privacy of unpublished data. Users of this system are provided with the ability to view both kinetic parameters and the experimental raw data from which they are calculated, providing increased confidence in the data. A data analysis and submission tool, the kineticswizard, has been developed to allow the experimentalist to perform data collection, analysis and submission to both data resources. The system is designed to be extensible, allowing integration with other manufacturer instruments covering a range of analytical techniques.

  18. Recombinant Enzyme Replacement Therapy in Hypophosphatasia. (United States)

    Hofmann, Christine; Jakob, Franz; Seefried, Lothar; Mentrup, Birgit; Graser, Stephanie; Plotkin, Horacio; Girschick, Hermann J; Liese, Johannes


    Hypophosphatasia (HPP) is a rare monogenetic and multisystemic disease with involvement of different organs, including bone, muscle, kidney, lung, gastrointestinal tract and the nervous system. The exact metabolic mechanisms of the effects of TNAP deficiency in different tissues are not understood in detail. There is no approved specific treatment for HPP; therefore symptomatic treatment in order to improve the clinical features is of major interest. Enzyme replacement therapy (ERT) is a relatively new type of treatment based on the principle of administering a medical treatment replacing a defective or absent enzyme. Recently ERT with a bone targeted recombinant human TNAP molecule has been reported to be efficient in ten severely affected patients and improved survival of life threatening forms. These results are very promising especially with regard to the skeletal phenotype but it is unclear whether ERT also has beneficial effects for craniosynostosis and in other affected tissues in HPP such as brain and kidney. Long-term data are not yet available and further systematic clinical trials are needed. It is also necessary to establish therapeutic approaches to help patients who are affected by less severe forms of HPP but also suffer from a significant reduction in quality of life. Further basic research on TNAP function and role in different tissues and on its physiological substrates is critical to gain a better insight in the pathogenesis in HPP. This and further experiences in new therapeutic strategies may improve the prognosis and quality of life of patients with all forms of HPP.

  19. Cutoff lensing: predicting catalytic sites in enzymes (United States)

    Aubailly, Simon; Piazza, Francesco


    Predicting function-related amino acids in proteins with unknown function or unknown allosteric binding sites in drug-targeted proteins is a task of paramount importance in molecular biomedicine. In this paper we introduce a simple, light and computationally inexpensive structure-based method to identify catalytic sites in enzymes. Our method, termed cutoff lensing, is a general procedure consisting in letting the cutoff used to build an elastic network model increase to large values. A validation of our method against a large database of annotated enzymes shows that optimal values of the cutoff exist such that three different structure-based indicators allow one to recover a maximum of the known catalytic sites. Interestingly, we find that the larger the structures the greater the predictive power afforded by our method. Possible ways to combine the three indicators into a single figure of merit and into a specific sequential analysis are suggested and discussed with reference to the classic case of HIV-protease. Our method could be used as a complement to other sequence- and/or structure-based methods to narrow the results of large-scale screenings.

  20. Degradation of various dyes using Laccase enzyme. (United States)

    Dhaarani, S; Priya, A K; Rajan, T Vel; Kartic, D Navamani


    Disposal of untreated dyeing effluent in water bodies, from textile industries, cause serious environmental and health hazards. The chemical structures of dye molecules are designed to resist fading on exposure to light or chemical attack, and they prove to be quite resistant towards microbial degradation. Therefore, current conventional biological processes may not be able to meet wastewater discharge criteria and reuse. An enzymatic treatment undergoes oxidative cleavage avoiding formation of toxic amines. Laccase is a multi-copper containing protein that catalyzes the oxidation of a wide range of aromatic substrates concomitantly with the reduction of molecular oxygen to water. UV visible spectral analysis of various synthetic dyes was performed in the study and wavelengths of maximum absorbance determined. Laccase enzyme was obtained from the fungi Pleorotus ostreatus. The enzyme showed high efficiency against Malachite Green, Basic Red and Acid Majanta with decolorization capacities of 97%, 94% and 94% respectively. Further, these dyes can be used for optimization of degradation parameters and analysis of degradation products.

  1. Atmospheric hydrogen scavenging: from enzymes to ecosystems. (United States)

    Greening, Chris; Constant, Philippe; Hards, Kiel; Morales, Sergio E; Oakeshott, John G; Russell, Robyn J; Taylor, Matthew C; Berney, Michael; Conrad, Ralf; Cook, Gregory M


    We have known for 40 years that soils can consume the trace amounts of molecular hydrogen (H2) found in the Earth’s atmosphere.This process is predicted to be the most significant term in the global hydrogen cycle. However, the organisms and enzymes responsible for this process were only recently identified. Pure culture experiments demonstrated that several species of Actinobacteria, including streptomycetes and mycobacteria, can couple the oxidation of atmospheric H2 to the reduction of ambient O2. A combination of genetic, biochemical, and phenotypic studies suggest that these organisms primarily use this fuel source to sustain electron input into the respiratory chain during energy starvation. This process is mediated by a specialized enzyme, the group 5 [NiFe]-hydrogenase, which is unusual for its high affinity, oxygen insensitivity, and thermostability. Atmospheric hydrogen scavenging is a particularly dependable mode of energy generation, given both the ubiquity of the substrate and the stress tolerance of its catalyst. This minireview summarizes the recent progress in understanding how and why certain organisms scavenge atmospheric H2. In addition, it provides insight into the wider significance of hydrogen scavenging in global H2 cycling and soil microbial ecology.

  2. Biotechnological production of vanillin using immobilized enzymes. (United States)

    Furuya, Toshiki; Kuroiwa, Mari; Kino, Kuniki


    Vanillin is an important and popular plant flavor, but the amount of this compound available from plant sources is very limited. Biotechnological methods have high potential for vanillin production as an alternative to extraction from plant sources. Here, we report a new approach using immobilized enzymes for the production of vanillin. The recently discovered oxygenase Cso2 has coenzyme-independent catalytic activity for the conversion of isoeugenol and 4-vinylguaiacol to vanillin. Immobilization of Cso2 on Sepabeads EC-EA anion-exchange carrier conferred enhanced operational stability enabling repetitive use. This immobilized Cso2 catalyst allowed 6.8mg yield of vanillin from isoeugenol through ten reaction cycles at a 1mL scale. The coenzyme-independent decarboxylase Fdc, which has catalytic activity for the conversion of ferulic acid to 4-vinylguaiacol, was also immobilized on Sepabeads EC-EA. We demonstrated that the immobilized Fdc and Cso2 enabled the cascade synthesis of vanillin from ferulic acid via 4-vinylguaiacol with repetitive use of the catalysts. This study is the first example of biotechnological production of vanillin using immobilized enzymes, a process that provides new possibilities for vanillin production.

  3. Enzyme Teaching by a Virtual Laboratory

    Directory of Open Access Journals (Sweden)

    J.K. Sugai


    Full Text Available Biochemistry learning demands skills to obtaining and interpreting the experimental data. In a classical model of teaching involve student’s hands-on participation. However this model is expensive, not safe and should be carried out in a short and limited time course. With utilization of educational software these disadvantages are overcome, since the virtual activity could be realized at free full access, and is a tool for individual study. The aim of the present work is to present educational software focused on a virtual for undergraduate student of biochemistry courses. The software development was performed with the help of concept maps, ISIS Draw, ADOBE Photoshop and FLASH MX Program applied on the subject salivary amylase. It was possible to present the basic methodologies for study of the kinetic of enzyme. The substrate (starch consumption was determinate by iodine reaction, while the products (reducing sugars formation was evaluated by cupper-alkaline reaction. The protocols of the virtual experiments are present verbally as well as a subtitle. A set of exercises are disposable, which allowed an auto evaluation and a review of the subject. The experimental treatment involved the presentation of this hypermedia for Nutrition and Dentistry/UFSC undergraduate students as a tool for better comprehension of the theme and promoted the understanding of the kinetic of enzyme.

  4. Enzyme catalytic nitration of aromatic compounds. (United States)

    Kong, Mingming; Wang, Kun; Dong, Runan; Gao, Haijun


    Nitroaromatic compounds are important intermediates in organic synthesis. The classic method used to synthesize them is chemical nitration, which involves the use of nitric acid diluted in water or acetic acid, both harmful to the environment. With the development of green chemistry, environmental friendly enzyme catalysis is increasingly employed in chemical processes. In this work, we adopted a non-aqueous horseradish peroxidase (HRP)/NaNO2/H2O2 reaction system to study the structural characteristics of aromatic compounds potentially nitrated by enzyme catalysis, as well as the relationship between the charges on carbon atoms in benzene ring and the nitro product distribution. Investigation of various reaction parameters showed that mild reaction conditions (ambient temperature and neutral pH), plus appropriate use of H2O2 and NaNO2 could prevent inactivation of HRP and polymerization of the substrates. Compared to aqueous-organic co-solvent reaction media, the aqueous-organic two-liquid phase system had great advantages in increasing the dissolved concentration of substrate and alleviating substrate inhibition. Analysis of the aromatic compounds' structural characteristics indicated that substrates containing substituents of NH2 or OH were readily catalyzed. Furthermore, analysis of the relationship between natural bond orbital (NBO) charges on carbon atoms in benzene ring, as calculated by the density functional method, and the nitro product distribution characteristics, demonstrated that the favored nitration sites were the ortho and para positions of substituents in benzene ring, similar to the selectivity of chemical nitration.

  5. Angiotensin converting enzyme 2 and atherosclerosis. (United States)

    Wang, Yutang; Tikellis, Chris; Thomas, Merlin C; Golledge, Jonathan


    Angiotensin converting enzyme 2 (ACE2) is a homolog of angiotensin converting enzyme (ACE) which generates angiotensin II from angiotensin I. ACE, its product angiotensin II and the downstream angiotensin type I receptor are important components of the renin-angiotensin system (RAS). Angiotensin II, the most important component of the RAS, promotes the development of atherosclerosis. The identification of ACE2 in 2000 opened a new chapter of research on the regulation of the RAS. ACE2 degrades pro-atherosclerotic angiotensin II and generates anti-atherosclerotic angiotensin 1-7. In this review, we explored the importance of ACE2 in protecting experimental animals from developing atherosclerosis and its involvement in human atherosclerosis. We also examined the published evidence assessing the importance of ACE2 in different cell types relevant to atherosclerosis and putative underlying cellular and molecular mechanisms linking ACE2 with protection from atherosclerosis. ACE2 shifts the balance from angiotensin II to angiotensin 1-7 inhibiting the progression of atherosclerosis in animal models.

  6. Flavin-Dependent Enzymes in Cancer Prevention

    Directory of Open Access Journals (Sweden)

    Danuta Wojcieszyńska


    Full Text Available Statistical studies have demonstrated that various agents may reduce the risk of cancer’s development. One of them is activity of flavin-dependent enzymes such as flavin-containing monooxygenase (FMOGS-OX1, FAD-dependent 5,10-methylenetetrahydrofolate reductase and flavin-dependent monoamine oxidase. In the last decade, many papers concerning their structure, reaction mechanism and role in the cancer prevention were published. In our work, we provide a more in-depth analysis of flavin-dependent enzymes and their contribution to the cancer prevention. We present the actual knowledge about the glucosinolate synthesized by flavin-containing monooxygenase (FMOGS-OX1 and its role in cancer prevention, discuss the influence of mutations in FAD-dependent 5,10-methylenetetrahydrofolate reductase on the cancer risk, and describe FAD as an important cofactor for the demethylation of histons. We also present our views on the role of riboflavin supplements in the prevention against cancer.

  7. Assay Methods for H2S Biogenesis and Catabolism Enzymes (United States)

    Banerjee, Ruma; Chiku, Taurai; Kabil, Omer; Libiad, Marouane; Motl, Nicole; Yadav, Pramod K.


    H2S is produced from sulfur-containing amino acids, cysteine and homocysteine, or a catabolite, 3-mercaptopyruvate, by three known enzymes: cystathionine β-synthase, γ-cystathionase, and 3-mercaptopyruvate sulfurtransferase. Of these, the first two enzymes reside in the cytoplasm and comprise the transsulfuration pathway, while the third enzyme is found both in the cytoplasm and in the mitochondrion. The following mitochondrial enzymes oxidize H2S: sulfide quinone oxidoreductase, sulfur dioxygenase, rhodanese, and sulfite oxidase. The products of the sulfide oxidation pathway are thiosulfate and sulfate. Assays for enzymes involved in the production and oxidative clearance of sulfide to thiosulfate are described in this chapter. PMID:25725523

  8. Mutation of Gly-444 inactivates the S. pombe malic enzyme. (United States)

    Viljoen, M; van der Merwe, M; Subden, R E; van Vuuren, H J


    A mutant malic enzyme gene, mae2-, was cloned from a strain of Schizosaccharomyces pombe that displayed almost no malic enzyme activity. Sequence analysis revealed only one codon-altering mutation, a guanine to adenine at nucleotide 1331, changing the glycine residue at position 444 to an aspartate residue. Gly-444 is located in Region H, previously identified as one of eight highly conserved regions in malic enzymes. We found that Gly-444 is absolutely conserved in 27 malic enzymes from various prokaryotic and eukaryotic sources, as well as in three bacterial malolactic enzymes investigated. The evolutionary conservation of Gly-444 suggests that this residue is important for enzymatic function.

  9. Expanding the alkane oxygenase toolbox: new enzymes and applications. (United States)

    van Beilen, Jan B; Funhoff, Enrico G


    As highly reduced hydrocarbons are abundant in the environment, enzymes that catalyze the terminal or subterminal oxygenation of alkanes are relatively easy to find. A number of these enzymes have been biochemically characterized in detail, because the potential of alkane hydroxylases to catalyze high added-value reactions is widely recognized. Nevertheless, the industrial application of these enzymes is restricted owing to the complex biochemistry, challenging process requirements, and the limited number of cloned and expressed enzymes. Rational and evolutionary engineering approaches have started to yield more robust and versatile enzyme systems, broadening the alkane oxygenase portfolio. In addition, metagenomic approaches provide access to many novel alkane oxygenase sequences.

  10. Enzyme loading dependence of cellulose hydrolysis of sugarcane bagasse

    Directory of Open Access Journals (Sweden)

    Carlos Martín


    Full Text Available The enzymatic hydrolysis of steam-pretreated sugarcane bagasse, either delignified or non-delignified, was studied as a function of enzyme loading. Hydrolysis experiments were carried out using five enzyme loadings (2.5 to 20 FPU/g cellulose and the concentration of solids was 2% for both materials. Alkaline delignification improved cellulose hydrolysis by increasing surface area. For both materials, glucose concentrations increased with enzyme loading. On the other hand, enzyme loadings higher than 15 FPU/g did not result in any increase in the initial rate, since the excess of enzyme adsorbed onto the substrate restricted the diffusion process through the structure.

  11. [Detection of enzyme activity in decontaminated spices in industrial use]. (United States)

    Müller, R; Theobald, R


    A range of decontaminated species of industrial use have been examined for their enzymes (catalase, peroxidase, amylase, lipase activity). The genuine enzymes remain fully active in irradiated spices, whereas the microbial load is clearly reduced. In contrast steam treated spices no longer demonstrate enzyme activities. Steam treatment offers e.g. black pepper without lipase activity, which can no longer cause fat deterioration. Low microbial load in combination with clearly detectable enzyme activity in spices is an indication for irradiation, whereas, reduced microbial contamination combined with enzyme inactivation indicate steam treatment of raw material.

  12. Bioethanol from lignocellulose - pretreatment, enzyme immobilization and hydrolysis kinetics

    DEFF Research Database (Denmark)

    Tsai, Chien Tai

    , the cost of enzyme is still the bottle neck, re-using the enzyme is apossible way to reduce the input of enzyme in the process. In the point view of engineering, the prediction of enzymatic hydrolysis kinetics under different substrate loading, enzyme combination is usful for process design. Therefore...... following enzymatic hydrolysis of hot water pretreated barley straw by immobilized and free BG. Finally, this is the first time that BG aggregates in a calcium alginate were visualized by confocallaser scanning microscope. The images prove that more BG aggregates were entrapped in the matrix when the enzyme...

  13. Progress of Mimetic Enzymes and Their Applications in Chemical Sensors. (United States)

    Yang, Bin; Li, Jianping; Deng, Huan; Zhang, Lianming


    The need to develop innovative and reformative approaches to synthesize chemical sensors has increased in recent years because of demands for selectivity, stability, and reproducibility. Mimetic enzymes provide an efficient and convenient method for chemical sensors. This review summarizes the application of mimetic enzymes in chemical sensors. Mimetic enzymes can be classified into five categories: hydrolases, oxidoreductases, transferases, isomerases, and induced enzymes. Potential and recent applications of mimetic enzymes in chemical sensors are reviewed in detail, and the outlook of profound development has been illustrated.

  14. A model study of sequential enzyme reactions and electrostatic channeling. (United States)

    Eun, Changsun; Kekenes-Huskey, Peter M; Metzger, Vincent T; McCammon, J Andrew


    We study models of two sequential enzyme-catalyzed reactions as a basic functional building block for coupled biochemical networks. We investigate the influence of enzyme distributions and long-range molecular interactions on reaction kinetics, which have been exploited in biological systems to maximize metabolic efficiency and signaling effects. Specifically, we examine how the maximal rate of product generation in a series of sequential reactions is dependent on the enzyme distribution and the electrostatic composition of its participant enzymes and substrates. We find that close proximity between enzymes does not guarantee optimal reaction rates, as the benefit of decreasing enzyme separation is countered by the volume excluded by adjacent enzymes. We further quantify the extent to which the electrostatic potential increases the efficiency of transferring substrate between enzymes, which supports the existence of electrostatic channeling in nature. Here, a major finding is that the role of attractive electrostatic interactions in confining intermediate substrates in the vicinity of the enzymes can contribute more to net reactive throughput than the directional properties of the electrostatic fields. These findings shed light on the interplay of long-range interactions and enzyme distributions in coupled enzyme-catalyzed reactions, and their influence on signaling in biological systems.

  15. Mixtures of thermostable enzymes show high performance in biomass saccharification. (United States)

    Kallioinen, Anne; Puranen, Terhi; Siika-aho, Matti


    Optimal enzyme mixtures of six Trichoderma reesei enzymes and five thermostable enzyme components were developed for the hydrolysis of hydrothermally pretreated wheat straw, alkaline oxidised sugar cane bagasse and steam-exploded bagasse by statistically designed experiments. Preliminary studies to narrow down the optimization parameters showed that a cellobiohydrolase/endoglucanase (CBH/EG) ratio of 4:1 or higher of thermostable enzymes gave the maximal CBH-EG synergy in the hydrolysis of hydrothermally pretreated wheat straw. The composition of optimal enzyme mixtures depended clearly on the substrate and on the enzyme system studied. The optimal enzyme mixture of thermostable enzymes was dominated by Cel7A and required a relatively high amount of xylanase, whereas with T. reesei enzymes, the high proportion of Cel7B appeared to provide the required xylanase activity. The main effect of the pretreatment method was that the required proportion of xylanase was higher and the proportion of Cel7A lower in the optimized mixture for hydrolysis of alkaline oxidised bagasse than steam-exploded bagasse. In prolonged hydrolyses, less Cel7A was generally required in the optimal mixture. Five-component mixtures of thermostable enzymes showed comparable hydrolysis yields to those of commercial enzyme mixtures.

  16. A Theoretical Approach to Engineering a New Enzyme (United States)

    Anderson, Greg; Behera, Raghu N.; Gomatam, Ravi


    Density function theory, a subfield of quantum mechanics (QM), in combination with molecular mechanics (MM) has opened the way to engineer new artificial enzymes. Herein, we report theoretical calculations done using QM/MM to examine whether the regioselectivity and rate of chlorination of the enzyme chloroperoxidase can be improved by replacing the vanadium of this enzyme with niobium through dialysis. Our calculations show that a niobium substituted chloroperoxidase will be able to enter the initial steps of the catalytic cycle for chlorination. Although the protonation state of the niobium substituted enzyme is calculated to be different from than that of the natural vanadium substituted enzyme, our calculations show that the catalytic cycle can still proceed forward. Using natural bond orbitals, we analyse the electronic differences between the niobium substituted enzyme and the natural enzyme. We conclude by briefly examining how good of a model QM/MM provides for understanding the mechanism of catalysis of chloroperoxidase.

  17. [Cytochrome P450 enzymes and microbial drug development - A review]. (United States)

    Li, Zhong; Zhang, Wei; Li, Shengying


    Cytochrome P450 enzymes broadly exist in animals, plants and microorganisms. This superfamily of monooxygenases holds the greatest diversity of substrate structures and catalytic reaction types among all enzymes. P450 enzymes play important roles in natural product biosynthesis. In particular, P450 enzymes are capable of catalyzing the regio- and stereospecific oxidation of non-activated C-H bonds in complex organic compounds under mild conditions, which overrides many chemical catalysts. This advantage thus warrants their great potential in microbial drug development. In this review, we introduce a variety of P450 enzymes involved in natural product biosynthesis; provide a brief overview on protein engineering, biotransformation and practical application of P450 enzymes; and discuss the limits, challenges and prospects of industrial application of P450 enzymes.

  18. Directing filtration to optimize enzyme immobilization in reactive membranes

    DEFF Research Database (Denmark)

    Luo, Jianquan; Marpani, Fauziah; Brites, Rita


    In this work, fouling principles in force in ultrafiltration were deployed to understand the role of selected variables-applied pressure (1-3bar), enzyme concentration (0.05-0.2gL-1), pH (5-9) and membrane properties-on fouling-induced enzyme immobilization. The immobilization and subsequent...... enzymatic reaction efficiency were evaluated in terms of enzyme loading, conversion rate and biocatalytic stability. Alcohol dehydrogenase (ADH) was selected as a model enzyme. Lower pressure, higher enzyme concentration and lower pH resulted in higher irreversible fouling resistance and lower permeate flux....... High pH during immobilization produced increased permeate flux but declines in conversion rates, likely because of the weak immobilization resulting from strong electrostatic repulsion between enzymes and membrane. The results showed that pore blocking as a fouling mechanism permitted a higher enzyme...

  19. Development of a commercial enzymes system for lignocellulosic biomass saccharification

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Manoj


    DSM Innovation Inc., in its four year effort was able to evaluate and develop its in-house DSM fungal cellulolytic enzymes system to reach enzyme efficiency mandates set by DoE Biomass program MYPP goals. DSM enzyme cocktail is uniquely active at high temperature and acidic pH, offering many benefits and product differentiation in 2G bioethanol production. Under this project, strain and process development, ratio optimization of enzymes, protein and genetic engineering has led to multitudes of improvement in productivity and efficiency making development of a commercial enzyme system for lignocellulosic biomass saccharification viable. DSM is continuing further improvement by additional biodiversity screening, protein engineering and overexpression of enzymes to continue to further lower the cost of enzymes for saccharification of biomass.

  20. Controlled exogenous enzyme imbibition and activation in whole chickpea seed enzyme reactor (SER). (United States)

    Kliger, Eynav; Fischer, Lutz; Lutz-Wahl, Sabine; Saguy, I Sam


    Chickpeas are of excellent quality (protein, vitamins, minerals, unsaturated fatty acids) and very low in phytoestrogen, making them a potentially promising source for vegetarian-based infant formula (VBIF). However, their high starch and fiber concentration could hinder their utilization for infants. To overcome this natural shortcoming, a solid-state "enzymation" (SSE) process was developed in which imbibition of exogenous enzyme facilitates hydrolysis within the intact chickpea seed. The process was termed seed enzyme reactor (SER). Liquid imbibition data of dry chickpeas during soaking were fitted with the Weibull distribution model. The derived Weibull shape parameter, β, value (0.77 ± 0.11) indicated that the imbibition mechanism followed Fickian diffusion. Imbibition occurred through the coat and external layers. The process was tested using green fluorescent protein (GFP) as an exogenous marker, and involved soaking, thermal treatment, peeling, microwave partial drying, rehydration in enzyme solution, and SSE at an adjusted pH, time, and temperature. Amylases, or a combination of amylases and cellulases, resulted in significant carbohydrate hydrolysis (23% and 47% of the available starch, respectively). In addition, chickpea initial raffinose and stachyose concentration was significantly reduced (91% and 92%, respectively). The process could serve as a proof of concept, requiring additional development and optimization to become a full industrial application.

  1. Enzyme-catalyzed reaction of voltammetric enzyme-linked immunoassay system based on OAP as substrate

    Institute of Scientific and Technical Information of China (English)

    张书圣; 陈洪渊; 焦奎


    The o-aminophenol (OAP)-H2O2-horseradish peroxidase (HRP) voltammetric enzyme-linked immunoassay new system has extremely high sensitivity. HRP can be measured with a detection limit of 6.0×10-(10) g/L and a linear range of 1.0×10-9—4.0×10-6 g/L. The pure product of H2O2 oxidizing OAP catalyzed by HRP was prepared with chemical method. The enzyme-catalyzed reaction has been investigated with electroanalytical chemistry, UV/Vis spectrum, IR spectrum, 13C NMR, 1H NMR, mass spectrum, elemental analysis, etc. Under the selected enzyme-catalyzed reaction conditions, the oxidation product of OAP with H2O2 catalyzed by HRP is 2-aminophe-noxazine-3-one. The processes of the enzyme-catalyzed reaction and the electroreduction of the product of the enzymecatalyzed reaction have been described.

  2. [Interaction between CYP450 enzymes and metabolism of traditional Chinese medicine as well as enzyme activity assay]. (United States)

    Lu, Tu-lin; Su, Lian-lin; Ji, De; Gu, Wei; Mao, Chun-qin


    Drugs are exogenous compounds for human bodies, and will be metabolized by many enzymes after administration. CYP450 enzyme, as a major metabolic enzyme, is an important phase I drug metabolizing enzyme. In human bodies, about 75% of drug metabolism is conducted by CYP450 enzymes, and CYP450 enzymes is the key factor for drug interactions between traditional Chinese medicine( TCM) -TCM, TCM-medicine and other drug combination. In order to make clear the interaction between metabolic enzymes and TCM metabolism, we generally chose the enzymatic activity as an evaluation index. That is to say, the enhancement or reduction of CYP450 enzyme activity was used to infer the inducing or inhibitory effect of active ingredients and extracts of traditional Chinese medicine on enzymes. At present, the common method for measuring metabolic enzyme activity is Cocktail probe drugs, and it is the key to select the suitable probe substrates. This is of great significance for study drug's absorption, distribution, metabolism and excretion (ADME) process in organisms. The study focuses on the interaction between TCMs, active ingredients, herbal extracts, cocktail probe substrates as well as CYP450 enzymes, in order to guide future studies.

  3. Descriptive and predictive assessment of enzyme activity and enzyme related processes in biorefinery using IR spectroscopy and chemometrics

    DEFF Research Database (Denmark)

    Baum, Andreas

    the understanding of the structural properties of the extracted pectin. Secondly, enzyme kinetics of biomass converting enzymes was examined in terms of measuring enzyme activity by spectral evolution profiling utilizing FTIR. Chemometric multiway methods were used to analyze the tensor datasets enabling the second......-order calibration advantage (reference Theory of Analytical chemistry). As PAPER 3 illustrates the method is universally applicable without the need of any external standards and was exemplified by performing quantitative enzyme activity determinations for glucose oxidase, pectin lyase and a cellolytic enzyme blend...... (Celluclast 1.5L). In PAPER 4, the concept is extended to quantify enzyme activity of two simultaneously acting enzymes, namely pectin lyase and pectin methyl esterase. By doing so the multiway methods PARAFAC, TUCKER3 and NPLS were compared and evaluated towards accuracy and precision....

  4. Enzyme production by species of Cephalosporium. (United States)



    The culture filtrates of ten species of Cephalosporium, which had been grown under conditions of submerged culture, were tested for enzymatic activity against each of seven substrates. The latter included casein, gelatin, milk, hemoglobin, human plasma clots, starch, and N-acetyl-beta-D-glucosaminide. All organisms tested were active, but to varying degrees. The most pronounced activities were obtained against the proteinaceous substrates. Two unidentified species of Cephalosporium exhibited the highest over-all activities, but no one organism predominated for all enzymatic functions. The ability of a filtrate to degrade a specific substrate was not always correlated with its ability to attack other substrates. The fibrinolytic properties of three of the cephalosporia were of particular interest. alpha-Amylase activity was not significant. The results obtained suggest the possible use of selected species of Cephalosporium as sources of a variety of microbial enzymes.

  5. Bacterial molybdoenzymes: old enzymes for new purposes. (United States)

    Leimkühler, Silke; Iobbi-Nivol, Chantal


    Molybdoenzymes are widespread in eukaryotic and prokaryotic organisms where they play crucial functions in detoxification reactions in the metabolism of humans and bacteria, in nitrate assimilation in plants and in anaerobic respiration in bacteria. To be fully active, these enzymes require complex molybdenum-containing cofactors, which are inserted into the apoenzymes after folding. For almost all the bacterial molybdoenzymes, molybdenum cofactor insertion requires the involvement of specific chaperones. In this review, an overview on the molybdenum cofactor biosynthetic pathway is given together with the role of specific chaperones dedicated for molybdenum cofactor insertion and maturation. Many bacteria are involved in geochemical cycles on earth and therefore have an environmental impact. The roles of molybdoenzymes in bioremediation and for environmental applications are presented.

  6. Competitive enzyme immunoassay for urinary vanillylmandelic acid. (United States)

    Taran, F; Bernard, H; Valleix, A; Créminon, C; Grassi, J; Olichon, D; Deverre, J R; Pradelles, P


    An enzyme immunoassay for urinary vanillylmandelic acid (VMA) using polyclonal antiserum and VMA-acetylcholinesterase conjugate as enzymatic tracer is described. Two different strategies for immunogen preparation were developed and enantioselectivity was demonstrated. Selected EIA allowed direct measurement of urinary VMA using D(-)-VMA as standard with good sensitivity (MDC = 0.1 mumol/l) and precision (CV less than 7% in 0.2-2.25 mumol/l range). Cross-reactivity with homovanillic acid (HVA) was 0.8% and less than 0.4% with other structurally related catecholamine metabolites. Intra- and inter-assay repeatability were less than 10% and recovery was 97.3% +/- 3%. Good correlation was obtained for EIA and HPLC analysis with normal and pathologic human urine samples (EIA = 0.895 HPLC-7.085, r2 = 0.98, n = 47).

  7. Fermentation and enzyme treatments for sorghum

    Directory of Open Access Journals (Sweden)

    Patrícia Fernanda Schons


    Full Text Available Sorghum (Sorghum bicolor Moench is the fifth most produced cereal worldwide. However, some varieties of this cereal contain antinutritional factors, such as tannins and phytate that may form stable complexes with proteins and minerals which decreases digestibility and nutritional value. The present study sought to diminish antinutritional tannins and phytate present in sorghum grains. Three different treatments were studied for that purpose, using enzymes tannase (945 U/Kg sorghum, phytase (2640 U/Kg sorghum and Paecilomyces variotii (1.6 X 10(7 spores/mL; A Tannase, phytase and Paecilomyces variotii, during 5 and 10 days; B An innovative blend made of tanase and phytase for 5 days followed by a Pv increase for 5 more days; C a third treatment where the reversed order of B was used starting with Pv for 5 days and then the blend of tannase and phytase for 5 more days. The results have shown that on average the three treatments were able to reduce total phenols and both hydrolysable and condensed tannins by 40.6, 38.92 and 58.00 %, respectively. Phytase increased the amount of available inorganic phosphorous, on the average by 78.3 %. The most promising results concerning tannins and phytate decreases were obtained by the enzymes combination of tannase and phytase. The three treatments have shown effective on diminishing tannin and phytate contents in sorghum flour which leads us to affirm that the proposed treatments can be used to increase the nutritive value of sorghum grains destined for either animal feeds or human nutrition.

  8. Potential enzyme toxicity of oxytetracycline to catalase

    Energy Technology Data Exchange (ETDEWEB)

    Chi Zhenxing; Liu Rutao; Zhang Hao, E-mail: [School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment and Health, Shandong Province, 27 Shanda South Road, Jinan 250100 (China)


    Oxytetracycline (OTC) is a kind of widely used veterinary drugs. The residue of OTC in the environment is potentially harmful. In the present work, the non-covalent toxic interaction of OTC with catalase was investigated by the fluorescence spectroscopy, UV-vis absorption and circular dichroism (CD) spectroscopy at physiological pH 7.4. OTC can interact with catalase to form a complex mainly by van der Waals' interactions and hydrogen bonds with one binding site. The association constants K were determined to be K{sub 293K} = 7.09 x 10{sup 4} L mol{sup -1} and K{sub 311K} = 3.31 x 10{sup 4} L mol{sup -1}. The thermodynamic parameters ({Delta}H{sup o}, {Delta}G{sup o} and {Delta}S{sup o}) of the interaction were calculated. Based on the Foerster theory of non-radiative energy transfer, the distance between bound OTC and the tryptophan residues of catalase was determined to be 6.48 nm. The binding of OTC can result in change of the micro-environment of the tryptophan residues and the secondary structure of catalase. The activity of catalase was also inhibited for the bound OTC. This work establishes a new strategy to probe the enzyme toxicity of veterinary drug residues and is helpful for clarifying the molecular toxic mechanism of OTC in vivo. The established strategy can be used to investigate the potential enzyme toxicity of other small organic pollutants and drugs.

  9. Bacteriophages and their enzymes in biofilm control. (United States)

    Chan, Benjamin K; Abedon, Stephen T


    Although free-swimming planktonic bacteria historically have been the typical focus of microbiological studies, the natural state of many or most bacteria is one where they instead are associated with surfaces and/or each other. For many pathogenic as well as nuisance bacteria, including biofouling bacteria, it consequently is within the context of this biofilm state that antibacterial strategies must be implemented. For reasons that are not fully understood, however, biofilm-associated bacteria tend to be less susceptible to treatments with standard chemical antibacterial agents than are planktonic bacteria, and this appears to be especially an issue with the use of less-harsh agents such as antibiotics. Within a variety of contexts the development of less- or selectively toxic antibacterial agents capable of clearing biofilms therefore would be welcome. In this review we consider the use of three categories of such agents as anti-biofilm antibacterials. These are lytic viruses of bacteria, that is, bacteriophages, effecting phage-mediated biocontrol of bacteria (a.k.a., phage therapy); purified phage-encoded enzymes that digest bacterial cell-wall material (endolysins or simply lysins); and a second category of phage-encoded enzymes that digest the extracellular polymeric substance (EPS) that are particularly notable components of bacterial biofilms (EPS depolymerases). These agents have been shown to reduce the bacterial density of a diversity of biofilms and, in many cases, tend to be lacking in inherent toxicity against the tissues of animals. Here we consider these phage-based anti-biofilm strategies with emphasis on ecological aspects of their action and with particular consideration of EPS depolymerases.

  10. Enzyme mechanisms for sterol C-methylations. (United States)

    Nes, W David


    The mechanisms by which sterol methyl transferases (SMT) transform olefins into structurally different C-methylated products are complex, prompting over 50 years of intense research. Recent enzymological studies, together with the latest discoveries in the fossil record, functional analyses and gene cloning, establish new insights into the enzymatic mechanisms of sterol C-methylation and form a basis for understanding regulation and evolution of the sterol pathway. These studies suggest that SMTs, originated shortly after life appeared on planet earth. SMTs, including those which ultimately give rise to 24 alpha- and 24 beta-alkyl sterols, align the si(beta)-face pi-electrons of the Delta(24)-double bond with the S-methyl group of AdoMet relative to a set of deprotonation bases in the active site. From the orientation of the conformationally flexible side chain in the SMT Michaelis complex, it has been found that either a single product is formed or cationic intermediates are partitioned into multiple olefins. The product structure and stereochemistry of SMT action is phylogenetically distinct and physiologically significant. SMTs control phytosterol homeostasis and their activity is subject to feedback regulation by specific sterol inserts in the membrane. A unified conceptual framework has been formulated in the steric-electric plug model that posits SMT substrate acceptability on the generation of single or double 24-alkylated side chains, which is the basis for binding order, stereospecificity and product diversity in this class of AdoMet-dependent methyl transferase enzymes. The focus of this review is the mechanism of the C-methylation process which, as discussed, can be altered by point mutations in the enzyme to direct the shape of sterol structure to optimize function.

  11. BRENDA, AMENDA and FRENDA: the enzyme information system in 2007. (United States)

    Barthelmes, Jens; Ebeling, Christian; Chang, Antje; Schomburg, Ida; Schomburg, Dietmar


    The BRENDA (BRaunschweig ENzyme DAtabase) enzyme information system ( is the largest publicly available enzyme information system worldwide. The major parts of its contents are manually extracted from primary literature. It is not restricted to specific groups of enzymes, but includes information on all identified enzymes irrespective of the enzyme's source. The range of data encompasses functional, structural, sequence, localisation, disease-related, isolation, stability information on enzyme and ligand-related data. Each single entry is linked to the enzyme source and to a literature reference. Recently the data repository was complemented by text-mining data in AMENDA (Automatic Mining of ENzyme DAta) and FRENDA (Full Reference ENzyme DAta). A genome browser, membrane protein prediction and full-text search capacities were added. The newly implemented web service provides instant access to the data for programmers via a SOAP (Simple Object Access Protocol) interface. The BRENDA data can be downloaded in the form of a text file from the beginning of 2007.

  12. Microbial Enzyme Activity and Carbon Cycling in Grassland Soil Fractions (United States)

    Allison, S. D.; Jastrow, J. D.


    Extracellular enzymes are necessary to degrade complex organic compounds present in soils. Using physical fractionation procedures, we tested whether old soil carbon is spatially isolated from degradative enzymes across a prairie restoration chronosequence in Illinois, USA. We found that carbon-degrading enzymes were abundant in all soil fractions, including macroaggregates, microaggregates, and the clay fraction, which contains carbon with a mean residence time of ~200 years. The activities of two cellulose-degrading enzymes and a chitin-degrading enzyme were 2-10 times greater in organic matter fractions than in bulk soil, consistent with the rapid turnover of these fractions. Polyphenol oxidase activity was 3 times greater in the clay fraction than in the bulk soil, despite very slow carbon turnover in this fraction. Changes in enzyme activity across the restoration chronosequence were small once adjusted for increases in soil carbon concentration, although polyphenol oxidase activity per unit carbon declined by 50% in native prairie versus cultivated soil. These results are consistent with a `two-pool' model of enzyme and carbon turnover in grassland soils. In light organic matter fractions, enzyme production and carbon turnover both occur rapidly. However, in mineral-dominated fractions, both enzymes and their carbon substrates are immobilized on mineral surfaces, leading to slow turnover. Soil carbon accumulation in the clay fraction and across the prairie restoration chronosequence probably reflects increasing physical isolation of enzymes and substrates on the molecular scale, rather than the micron to millimeter scale.

  13. On the Temperature Dependence of Enzyme-Catalyzed Rates. (United States)

    Arcus, Vickery L; Prentice, Erica J; Hobbs, Joanne K; Mulholland, Adrian J; Van der Kamp, Marc W; Pudney, Christopher R; Parker, Emily J; Schipper, Louis A


    One of the critical variables that determine the rate of any reaction is temperature. For biological systems, the effects of temperature are convoluted with myriad (and often opposing) contributions from enzyme catalysis, protein stability, and temperature-dependent regulation, for example. We have coined the phrase "macromolecular rate theory (MMRT)" to describe the temperature dependence of enzyme-catalyzed rates independent of stability or regulatory processes. Central to MMRT is the observation that enzyme-catalyzed reactions occur with significant values of ΔCp(‡) that are in general negative. That is, the heat capacity (Cp) for the enzyme-substrate complex is generally larger than the Cp for the enzyme-transition state complex. Consistent with a classical description of enzyme catalysis, a negative value for ΔCp(‡) is the result of the enzyme binding relatively weakly to the substrate and very tightly to the transition state. This observation of negative ΔCp(‡) has important implications for the temperature dependence of enzyme-catalyzed rates. Here, we lay out the fundamentals of MMRT. We present a number of hypotheses that arise directly from MMRT including a theoretical justification for the large size of enzymes and the basis for their optimum temperatures. We rationalize the behavior of psychrophilic enzymes and describe a "psychrophilic trap" which places limits on the evolution of enzymes in low temperature environments. One of the defining characteristics of biology is catalysis of chemical reactions by enzymes, and enzymes drive much of metabolism. Therefore, we also expect to see characteristics of MMRT at the level of cells, whole organisms, and even ecosystems.

  14. Construction of chimeric enzymes out of maize endosperm branching enzymes I and II: activity and properties. (United States)

    Kuriki, T; Stewart, D C; Preiss, J


    Branching enzyme I and II isoforms from maize endosperm (mBE I and mBE II, respectively) have quite different properties, and to elucidate the domain(s) that determines the differences, chimeric genes consisting of part mBE I and part mBE II were constructed. When expressed under the control of the T7 promoter in Escherichia coli, several of the chimeric enzymes were inactive. The only fully active chimeric enzyme was mBE II-I BspHI, in which the carboxyl-terminal part of mBE II was exchanged for that of mBE I at a BspHI restriction site and was purified to homogeneity and characterized. Another chimeric enzyme, mBE I-II HindIII, in which the amino-terminal end of mBE II was replaced with that of mBE I, had very little activity and was only partially characterized. The purified mBE II-I BspHI exhibited higher activity than wild-type mBE I and mBE II when assayed by the phosphorylase a stimulation assay. mBE II-I BspHI had substrate specificity (preference for amylose rather than amylopectin) and catalytic capacity similar to mBE I, despite the fact that only the carboxyl terminus was from mBE I, suggesting that the carboxyl terminus may be involved in determining substrate specificity and catalytic capacity. In chain transfer experiments, mBE II-I BspHI transferred more short chains (with a degree of polymerization of around 6) in a fashion similar to mBE II. In contrast, mBE I-II HindIII transferred more long chains (with a degree of polymerization of around 11-12), similar to mBE I, suggesting that the amino terminus of mBEs may play a role in the size of oligosaccharide chain transferred. This study challenges the notion that the catalytic centers for branching enzymes are exclusively located in the central portion of the enzyme; it suggests instead that the amino and carboxyl termini may also be involved in determining substrate preference, catalytic capacity, and chain length transfer.


    Directory of Open Access Journals (Sweden)

    Fedotov O.V.


    Full Text Available A method for obtaining of enzyme preparations of enzyme preparations (EP of peroxidases and catalases fungal extracellular and inracellular origin from cultures of Basidiomycetes was developed. The strains Flammulina velutipes F-vv, Agrocybe cylindracea167; Fistulina hepatica Fh-08 and Pleurotus ostreatus P-208 and P-01 were used as producers of oxidoreductases. Strains were grown on modified glucose-peptone media. Fractionation was carried out by salting out the enzymes with ammonium sulfate at 40-70% saturation of peroxidases and 80% of saturation - for catalase. These solutions protein fractions was further purified by dialysis and gel filtration on Molselekt granules G-50 and G-75. The enzyme solution was subjected to freeze-drying. The individual characteristics of the enzyme preparations were found. The individual characteristics of the enzyme preparations are the activity of enzymes, the protein content and amino-acid composition of enzyme preparations. It was established that strain F. velutipes F-vv was an active producer of intracellular and strain of A. cylindracea 167 was an active producer of extracellular peroxidase. The strains of P. ostreatus P-01 and P-208 were the active producers of extracellular catalase, and the strainsof F. hepatica Fh-08 were active producers of intracellular catalase. The developed methods for producing of enzymes catalase and peroxidase preparations of extra-and intracellular origin provided new antioxidant enzymes, which have their own properties and application prospects in various sectors of industry and science research.

  16. Comparative void-volume analysis of psychrophilic and mesophilic enzymes: Structural bioinformatics of psychrophilic enzymes reveals sources of core flexibility

    Directory of Open Access Journals (Sweden)

    Bystroff Christopher


    Full Text Available Abstract Background Psychrophiles, cold-adapted organisms, have adapted to live at low temperatures by using a variety of mechanisms. Their enzymes are active at cold temperatures by being structurally more flexible than mesophilic enzymes. Even though, there are some indications of the possible structural mechanisms by which psychrophilic enzymes are catalytic active at cold temperatures, there is not a generalized structural property common to all psychrophilic enzymes. Results We examine twenty homologous enzyme pairs from psychrophiles and mesophiles to investigate flexibility as a key characteristic for cold adaptation. B-factors in protein X-ray structures are one way to measure flexibility. Comparing psychrophilic to mesophilic protein B-factors reveals that psychrophilic enzymes are more flexible in 5-turn and strand secondary structures. Enzyme cavities, identified using CASTp at various probe sizes, indicate that psychrophilic enzymes have larger average cavity sizes at probe radii of 1.4-1.5 Å, sufficient for water molecules. Furthermore, amino acid side chains lining these cavities show an increased frequency of acidic groups in psychrophilic enzymes. Conclusions These findings suggest that embedded water molecules may play a significant role in cavity flexibility, and therefore, overall protein flexibility. Thus, our results point to the important role enzyme flexibility plays in adaptation to cold environments.

  17. Water-mediated correlations in DNA-enzyme interactions

    CERN Document Server

    Capolupo, A; Kurian, P; Vitiello, G


    In this paper we consider dipole-mediated correlations between DNA and enzymes in the context of their water environment. Such correlations emerge from electric dipole-dipole interactions between aromatic ring structures in DNA and in enzymes, and they are mediated by radiative fields that stimulate transitions between the $l=0$ and $l=1$ rotational levels of the molecular water electric dipoles. We show that there are matching collective modes between DNA and enzyme dipole fields, and that a dynamic time-averaged polarization vanishes in the water dipole field only if either DNA, enzyme, or both are absent from the sample. This persistent field may serve as the electromagnetic image that, in popular colloquialisms about DNA biochemistry, allows enzymes to "scan" or "read" the double helix. Topologically nontrivial configurations in the coherent ground state requiring clamplike enzyme behavior on the DNA may stem, ultimately, from spontaneously broken gauge symmetries.

  18. Marine Microbiological Enzymes: Studies with Multiple Strategies and Prospects. (United States)

    Wang, Yan; Song, Qinghao; Zhang, Xiao-Hua


    Marine microorganisms produce a series of promising enzymes that have been widely used or are potentially valuable for our daily life. Both classic and newly developed biochemistry technologies have been broadly used to study marine and terrestrial microbiological enzymes. In this brief review, we provide a research update and prospects regarding regulatory mechanisms and related strategies of acyl-homoserine lactones (AHL) lactonase, which is an important but largely unexplored enzyme. We also detail the status and catalytic mechanism of the main types of polysaccharide-degrading enzymes that broadly exist among marine microorganisms but have been poorly explored. In order to facilitate understanding, the regulatory and synthetic biology strategies of terrestrial microorganisms are also mentioned in comparison. We anticipate that this review will provide an outline of multiple strategies for promising marine microbial enzymes and open new avenues for the exploration, engineering and application of various enzymes.

  19. Marine Microbiological Enzymes: Studies with Multiple Strategies and Prospects

    Directory of Open Access Journals (Sweden)

    Yan Wang


    Full Text Available Marine microorganisms produce a series of promising enzymes that have been widely used or are potentially valuable for our daily life. Both classic and newly developed biochemistry technologies have been broadly used to study marine and terrestrial microbiological enzymes. In this brief review, we provide a research update and prospects regarding regulatory mechanisms and related strategies of acyl-homoserine lactones (AHL lactonase, which is an important but largely unexplored enzyme. We also detail the status and catalytic mechanism of the main types of polysaccharide-degrading enzymes that broadly exist among marine microorganisms but have been poorly explored. In order to facilitate understanding, the regulatory and synthetic biology strategies of terrestrial microorganisms are also mentioned in comparison. We anticipate that this review will provide an outline of multiple strategies for promising marine microbial enzymes and open new avenues for the exploration, engineering and application of various enzymes.

  20. Solvent effects on enzymes - Implications for extraterrestrial life. (United States)

    Heinrich, M. R.


    Review of several studies on the alterations taking place in the structure, catalytic activity, specificity, and stability of an enzyme when some or all of the water in the medium is replaced by another solvent. These studies show the utility of solvents as a tool for probing enzyme function. They also suggest that solvents other than water should be investigated as media for controlling and directing enzyme reactions.

  1. Cellular delivery of enzyme-loaded DNA origami. (United States)

    Ora, Ari; Järvihaavisto, Erika; Zhang, Hongbo; Auvinen, Henni; Santos, Hélder A; Kostiainen, Mauri A; Linko, Veikko


    In this communication, we show that active enzymes can be delivered into HEK293 cells in vitro when they are attached to tubular DNA origami nanostructures. We use bioluminescent enzymes as a cargo and monitor their activity from a cell lysate. The results show that the enzymes stay intact and retain their activity in the transfection process. The method is highly modular, which makes it a compelling candidate for a great variety of delivery applications.

  2. Enzymic liquefaction and saccharification of agricultural biomass. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Beldman, G.; Searle-Van Leeuwen, M.J.F.; Voragen, A.G.J.; Rombouts, F.M.; Pilnik, W.


    The aim of this project was to study the application of polysaccharide degrading enzymes (cellulases, hemicellulases, pectinases) in the conversion of agricultural and horticultural raw materials, surpluses and wastes to fermentable sugar solutions. Several aspects of such a process had to be investigated. In order to select optimal enzyme combinations, the polysaccharide composition of the raw materials had to be studied. Commercial enzyme preparations had to be screened on their liquefying and saccharifying capability. We had to study optimal reaction conditions of these enzymes such as pH, temperature and reactor design as well as the effect of pretreatment of the raw materials on enzyme action. Ligno-cellulosic materials like wood chips and tomato plant waste gave low sugar yields, when treated with enzymes alone. Extrusion of wood chips in a single screw extruder at 170/sup 0/C gave a 5 fold increase of its enzymic digestibility. The same pretreatment on tomato plant waste gave less satisfactory results. Preliminary experiments were carried out on the improvement of the solid phase fermentation of sugar beets. Addition of pectolytic and cellulolytic enzymes to the mash gave a liquid product, faster fermentation and more ethanol. The cellulase preparation Maxazyme was studied into more detail by fractionation and characterization of the different endoglucanases, exoglucanases and ..beta..-glucosidases. Binding of the individual enzymes to crystalline cellulose was studied, as well as the endoglucanase/exoglucanase ratio for maximum synergism between the two enzymes. From experiments with the original enzyme preparation Maxazyme Cl, enriched with the purified enzymes, we concluded that a harmoniously composed mixture is needed to obtain maximal cellulose hydrolysis.

  3. Molecular Synchronization Waves in Arrays of Allosterically Regulated Enzymes

    CERN Document Server

    Casagrande, Vanessa; Mikhailov, Alexander S


    Spatiotemporal pattern formation in a product-activated enzymic reaction at high enzyme concentrations is investigated. Stochastic simulations show that catalytic turnover cycles of individual enzymes can become coherent and that complex wave patterns of molecular synchronization can develop. The analysis based on the mean-field approximation indicates that the observed patterns result from the presence of Hopf and wave bifurcations in the considered system.

  4. Enzymes, Dentinogenesis and Dental Caries: a Literature Review



    ABSTRACT Objectives Search in PubMed with keywords “enzymes, dentinogenesis, and dental caries” revealed only 4 items, but when combined with “enzymes, osteogenesis, and osteoporosis” as high as 404 items resulted. Dental caries was associated with an order of magnitude fewer studies than the chronic bone disease, osteoporosis. This observation motivated this review. Material and Methods A comprehensive review of the available literature on role of enzymes in dentinogenesis and dental caries ...

  5. Spatial distribution of enzyme activities in the rhizosphere (United States)

    Razavi, Bahar S.; Zarebanadkouki, Mohsen; Blagodatskaya, Evgenia; Kuzyakov, Yakov


    The rhizosphere, the tiny zone of soil surrounding roots, certainly represents one of the most dynamic habitat and interfaces on Earth. Activities of enzymes produced by both plant roots and microbes are the primary biological drivers of organic matter decomposition and nutrient cycling. That is why there is an urgent need in spatially explicit methods for the determination of the rhizosphere extension and enzyme distribution. Recently, zymography as a new technique based on diffusion of enzymes through the 1 mm gel plate for analysis has been introduced (Spohn & Kuzyakov, 2013). We developed the zymography technique to visualize the enzyme activities with a higher spatial resolution. For the first time, we aimed at quantitative imaging of enzyme activities as a function of distance from the root tip and the root surface in the soil. We visualized the two dimensional distribution of the activity of three enzymes: β-glucosidase, phosphatase and leucine amino peptidase in the rhizosphere of maize using fluorogenically labelled substrates. Spatial-resolution of fluorescent images was improved by direct application of a substrate saturated membrane to the soil-root system. The newly-developed direct zymography visualized heterogeneity of enzyme activities along the roots. The activity of all enzymes was the highest at the apical parts of individual roots. Across the roots, the enzyme activities were higher at immediate vicinity of the roots (1.5 mm) and gradually decreased towards the bulk soil. Spatial patterns of enzyme activities as a function of distance from the root surface were enzyme specific, with highest extension for phosphatase. We conclude that improved zymography is promising in situ technique to analyze, visualize and quantify spatial distribution of enzyme activities in the rhizosphere hotspots. References Spohn, M., Kuzyakov, Y., 2013. Phosphorus mineralization can be driven by microbial need for carbon. Soil Biology & Biochemistry 61: 69-75

  6. Release and uptake of lysosomal enzymes : studied in cultured cells



    textabstractThe purpose of the experimental work described in this thesiswas to investigate some aspects of the release and uptake of lysosomal enzymes. The experiments involved the use of normal human and animal fibroblasts and some other cell types such as hepatocytes and hepatoma cells as sources of hydrolytic enzymes, and fibroblasts from patients with lysosomal storage diseases associated with a single lysosomal enzyme deficiency and with "1-cell" disease as recipient cells. In a number ...

  7. Detection of Extracellular Enzyme Activities in Ganoderma neo-japonicum


    Jo, Woo-Sik; Park, Ha-Na; Cho, Doo-Hyun; Yoo, Young-Bok; Park, Seung-Chun


    The ability of Ganoderma to produce extracellular enzymes, including β-glucosidase, cellulase, avicelase, pectinase, xylanase, protease, amylase, and ligninase was tested in chromogenic media. β-glucosidase showed the highest activity, among the eight tested enzymes. In particular, Ganoderma neo-japonicum showed significantly stronger activity for β-glucosidase than that of the other enzymes. Two Ganoderma lucidum isolates showed moderate activity for avicelase; however, Ganoderma neo-japonic...

  8. Spherezymes: A novel structured self-immobilisation enzyme technology

    Directory of Open Access Journals (Sweden)

    Arumugam Cherise


    Full Text Available Abstract Background Enzymes have found extensive and growing application in the field of chemical organic synthesis and resolution of chiral intermediates. In order to stabilise the enzymes and to facilitate their recovery and recycle, they are frequently immobilised. However, immobilisation onto solid supports greatly reduces the volumetric and specific activity of the biocatalysts. An alternative is to form self-immobilised enzyme particles. Results Through addition of protein cross-linking agents to a water-in-oil emulsion of an aqueous enzyme solution, structured self-immobilised spherical enzyme particles of Pseudomonas fluorescens lipase were formed. The particles could be recovered from the emulsion, and activity in aqueous and organic solvents was successfully demonstrated. Preliminary data indicates that the lipase tended to collect at the interface. Conclusion The immobilised particles provide a number of advantages. The individual spherical particles had a diameter of between 0.5–10 μm, but tended to form aggregates with an average particle volume distribution of 100 μm. The size could be controlled through addition of surfactant and variations in protein concentration. The particles were robust enough to be recovered by centrifugation and filtration, and to be recycled for further reactions. They present lipase enzymes with the active sites selectively orientated towards the exterior of the particle. Co-immobilisation with other enzymes, or other proteins such as albumin, was also demonstrated. Moreover, higher activity for small ester molecules could be achieved by the immobilised enzyme particles than for free enzyme, presumably because the lipase conformation required for catalysis had been locked in place during immobilisation. The immobilised enzymes also demonstrated superior activity in organic solvent compared to the original free enzyme. This type of self-immobilised enzyme particle has been named spherezymes.

  9. Development of a synchronous enzyme-reaction system for a highly sensitive enzyme immunoassay. (United States)

    Inouye, Kuniyo; Ueno, Iori; Yokoyama, Shin-ichi; Sakaki, Toshiyuki


    A synchronous enzyme-reaction system using water-soluble formazan and a non-enzymatic electron mediator was developed and applied to an enzyme immunoassay (EIA). The reaction system consists of four steps: (I) dephosphorylation of NADP(+) to produce NAD(+) by alkaline phosphatase (ALP), (II) reduction of NAD(+) to produce NADH with oxidation of ethanol to yield acetaldehyde by alcohol dehydrogenase (ADH), (III) reduction of water-soluble tetrazolium salt (WST-1) to produce formazan by NADH via 1-methoxy-5-methyl-phenazinium methyl sulfate (PMS), and (IV) re-reduction of NAD(+) to produce NADH by ADH. During each cycle, one molecule of tetrazolium is converted to one molecule of formazan. The concentration of formazan during the reaction was given by second-order polynomials of the reaction time. Kinetic studies strongly suggested that the synchronous enzyme-reaction system had the potential to detect an analyte at the attomole level in EIA. On the basis of the kinetic studies, optimal conditions for EIA incorporating the synchronous system were examined. NADP(+) was purified thoroughly to remove minor traces of NAD(+) in the preparation, and an ADH preparation contaminated with the lowest level of ALP activity was used. When the synchronous system was applied to a sandwich-type EIA for human C-reactive protein, the protein was detected with a sensitivity of 50 attomole per well of a micro-titer plate (0.1 ml) in a 1-h reaction. In addition, EIA with water-soluble formazan showed a more quantitative and sensitive result than that with insoluble formazan. These findings indicated that the (WST-1)-PMS system introduced in this study has a great potential for highly sensitive enzyme immunoassay.

  10. EnzymeDetector: an integrated enzyme function prediction tool and database


    Schomburg Dietmar; Quester Susanne


    Abstract Background The ability to accurately predict enzymatic functions is an essential prerequisite for the interpretation of cellular functions, and the reconstruction and analysis of metabolic models. Several biological databases exist that provide such information. However, in many cases these databases provide partly different and inconsistent genome annotations. Description We analysed nine prokaryotic genomes and found about 70% inconsistencies in the enzyme predictions of the main a...

  11. The Endosome-associated Deubiquitinating Enzyme USP8 Regulates BACE1 Enzyme Ubiquitination and Degradation. (United States)

    Yeates, Eniola Funmilayo Aduke; Tesco, Giuseppina


    The β-site amyloid precursor protein-cleaving enzyme (BACE1) is the rate-limiting enzyme in the production of amyloid-β, the toxic peptide that accumulates in the brain of subjects affected by Alzheimer disease. Our previous studies have shown that BACE1 is degraded via the lysosomal pathway and that that depletion of the trafficking molecule Golgi-localized γ-ear-containing ARF-binding protein 3 (GGA3) results in increased BACE1 levels and activity because of impaired lysosomal degradation. We also determined that GGA3 regulation of BACE1 levels requires its ability to bind ubiquitin. Accordingly, we reported that BACE1 is ubiquitinated at lysine 501 and that lack of ubiquitination at lysine 501 produces BACE1 stabilization. Ubiquitin conjugation is a reversible process mediated by deubiquitinating enzymes. The ubiquitin-specific peptidase 8 (USP8), an endosome-associated deubiquitinating enzyme, regulates the ubiquitination, trafficking, and lysosomal degradation of several plasma membrane proteins. Here, we report that RNAi-mediated depletion of USP8 reduced levels of both ectopically expressed and endogenous BACE1 in H4 human neuroglioma cells. Moreover, USP8 depletion increased BACE1 ubiquitination, promoted BACE1 accumulation in the early endosomes and late endosomes/lysosomes, and decreased levels of BACE1 in the recycling endosomes. We also found that decreased BACE1 protein levels were accompanied by a decrease in BACE1-mediated amyloid precursor protein cleavage and amyloid-β levels. Our findings demonstrate that USP8 plays a key role in the trafficking and degradation of BACE1 by deubiquitinating lysine 501. These studies suggest that therapies able to accelerate BACE1 degradation (e.g. by increasing BACE1 ubiquitination) may represent a potential treatment for Alzheimer disease.

  12. Enzyme immobilization and biocatalysis of polysiloxanes (United States)

    Poojari, Yadagiri

    Lipases have been proven to be versatile and efficient biocatalysts which can be used in a broad variety of esterification, transesterification, and ester hydrolysis reactions. Due to the high chemo-, regio-, and stereo-selectivity and the mild conditions of lipase-catalyzed reactions, the vast potential of these biocatalysts for use in industrial applications has been increasingly recognized. Polysiloxanes (silicones) are well known for their unique physico-chemical properties and can be prepared in the form of fluids, elastomers, gels and resins for a wide variety of applications. However, the enzymatic synthesis of silicone polyesters and copolymers is largely unexplored. In the present investigations, an immobilized Candida antarctica lipase B (CALB) on macroporous acrylic resin beads (Novozym-435 RTM) has been successfully employed as a catalyst to synthesize silicone polyesters and copolymers under mild reaction conditions. The silicone aliphatic polyesters and the poly(dimethylsiloxane)--poly(ethylene glycol) (PDMS-PEG) copolymers were synthesized in the bulk (without using a solvent), while the silicone aromatic polyesters, the silicone aromatic polyamides and the poly(epsilon-caprolactone)--poly(dimethylsiloxane)--poly(epsilon-caprolactone) (PCL-PDMS-PCL) triblock copolymers were synthesized in toluene. The synthesized silicone polyesters and copolymers were characterized by Gel Permeation Chromatography (GPC), Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC) and Wide Angle X-ray Diffraction (WAXD). This dissertation also describes a methodology for physical immobilization of the enzyme pepsin from Porcine stomach mucosa in silicone elastomers utilizing condensation-cure room temperature vulcanization (RTV) of silanol-terminated poly(dimethylsiloxane) (PDMS). The activity and the stability of free pepsin and pepsin immobilized in silicone elastomers were studied with respect to p

  13. Type IV collagen-degrading enzyme activity in human serum.


    Hashimoto, Noriaki; Kobayashi, Michio; Watanabe,Akiharu; Higashi, Toshiro; Tsuji, Takao


    Type IV collagen-degrading enzyme activity was detected in human serum. Serum was preincubated with 4-aminophenylmercuric acetate and trypsin to activate the enzyme prior to assay. Type IV collagen, purified from human placentas and radiolabeled with [1-14C] acetic anhydride, was used as the substrate. The enzyme activity was measured at pH 7.5 and inhibited by treatment with ethylenediaminetetraacetic acid or heat. The assay of type IV collagen-degrading enzyme in human serum might be useful...

  14. The structural biology of enzymes involved in natural product glycosylation. (United States)

    Singh, Shanteri; Phillips, George N; Thorson, Jon S


    The glycosylation of microbial natural products often dramatically influences the biological and/or pharmacological activities of the parental metabolite. Over the past decade, crystal structures of several enzymes involved in the biosynthesis and attachment of novel sugars found appended to natural products have emerged. In many cases, these studies have paved the way to a better understanding of the corresponding enzyme mechanism of action and have served as a starting point for engineering variant enzymes to facilitate to production of differentially-glycosylated natural products. This review specifically summarizes the structural studies of bacterial enzymes involved in biosynthesis of novel sugar nucleotides.

  15. Spatial Organization of Enzyme Cascade on a DNA Origami Nanostructure. (United States)

    Fu, Jinglin; Li, Tianran


    Self-assembled DNA nanostructures hold great promise to organize multi-enzyme systems with the precise control of the geometric arrangements. Enzymes modified with single-stranded DNA anchors are assembled onto the DNA origami tiles by hybridizing with the corresponding complementary strands displayed on the surface of the DNA nanostructures. Here, we describe a protocol of assembling a two-enzyme cascade on a discrete, rectangular DNA origami tile, where the distance between enzymes is precisely controlled for investigating the distance-dependent cascade activities.

  16. Aβ-degrading enzymes: potential for treatment of Alzheimer disease. (United States)

    Miners, James Scott; Barua, Neil; Kehoe, Patrick Gavin; Gill, Steven; Love, Seth


    There is increasing evidence that deficient clearance of β-amyloid (Aβ) contributes to its accumulation in late-onset Alzheimer disease (AD). Several Aβ-degrading enzymes, including neprilysin (NEP), insulin-degrading enzyme, and endothelin-converting enzyme reduce Aβ levels and protect against cognitive impairment in mouse models of AD. The activity of several Aβ-degrading enzymes rises with age and increases still further in AD, perhaps as a physiological response to minimize the buildup of Aβ. The age- and disease-related changes in expression of more recently recognized Aβ-degrading enzymes (e.g. NEP-2 and cathepsin B) remain to be investigated, and there is strong evidence that reduced NEP activity contributes to the development of cerebral amyloid angiopathy. Regardless of the role of Aβ-degrading enzymes in the development of AD, experimental data indicate that increasing the activity of these enzymes (NEP in particular) has therapeutic potential in AD, although targeting their delivery to the brain remains a major challenge. The most promising current approaches include the peripheral administration of agents that enhance the activity of Aβ-degrading enzymes and the direct intracerebral delivery of NEP by convection-enhanced delivery. In the longer term, genetic approaches to increasing the intracerebral expression of NEP or other Aβ-degrading enzymes may offer advantages.

  17. Recent advances in rational approaches for enzyme engineering

    Directory of Open Access Journals (Sweden)

    Kerstin Steiner


    Full Text Available Enzymes are an attractive alternative in the asymmetric syntheses of chiral building blocks. To meet the requirements of industrial biotechnology and to introduce new functionalities, the enzymes need to be optimized by protein engineering. This article specifically reviews rational approaches for enzyme engineering and de novo enzyme design involving structure-based approaches developed in recent years for improvement of the enzymes’ performance, broadened substrate range, and creation of novel functionalities to obtain products with high added value for industrial applications.

  18. CADEE: Computer-Aided Directed Evolution of Enzymes

    Directory of Open Access Journals (Sweden)

    Beat Anton Amrein


    Full Text Available The tremendous interest in enzymes as biocatalysts has led to extensive work in enzyme engineering, as well as associated methodology development. Here, a new framework for computer-aided directed evolution of enzymes (CADEE is presented which allows a drastic reduction in the time necessary to prepare and analyze in silico semi-automated directed evolution of enzymes. A pedagogical example of the application of CADEE to a real biological system is also presented in order to illustrate the CADEE workflow.

  19. Enzyme stabilization by linear chain polymers in ultrafiltration membrane reactors

    Energy Technology Data Exchange (ETDEWEB)

    Greco, G.; Gianfreda, L.


    The experimental results discussed in this article concern pi-nitrophenylphosphate hydrolysis by acid phosphatase in an ultrafiltration membrane reactor. The basic conclusions drawn are : 1) Linking the enzyme to a soluble support does not give rise to an increase in its stability while the chemical manipulations involved result in marked reductions in enzymic activity. 2) Enzyme entrapment within a proteic gel produces a considerable increase in its thermal stability as compared to the diluted native enzyme; this presumably stems from drastic reductions in enzyme mobility. 3) Correspondingly, considerable reductions occur in enzyme activity that depend on substrate mass transfer resistances within the gel layer. 4) Small amounts of linear chain water-soluble synthetic polymers (polyacrylamides) give rise to high macromolecular concentration levels in the reactor region where the enzyme is dynamically immobilized and produce the same enzyme stabilization as gel entrapment. 5) Only minor substrate mass transfer limitations take place in this region and hence enzyme activity is virtually unaffected. 6) Both effects (stabilization and slight activity reduction) seem not to depend strongly on the characteristics of the soluble polymer (molecular weight and ionic character). (Refs. 16).

  20. Early evolution of efficient enzymes and genome organization

    Directory of Open Access Journals (Sweden)

    Szilágyi András


    Full Text Available Abstract Background Cellular life with complex metabolism probably evolved during the reign of RNA, when it served as both information carrier and enzyme. Jensen proposed that enzymes of primordial cells possessed broad specificities: they were generalist. When and under what conditions could primordial metabolism run by generalist enzymes evolve to contemporary-type metabolism run by specific enzymes? Results Here we show by numerical simulation of an enzyme-catalyzed reaction chain that specialist enzymes spread after the invention of the chromosome because protocells harbouring unlinked genes maintain largely non-specific enzymes to reduce their assortment load. When genes are linked on chromosomes, high enzyme specificity evolves because it increases biomass production, also by reducing taxation by side reactions. Conclusion The constitution of the genetic system has a profound influence on the limits of metabolic efficiency. The major evolutionary transition to chromosomes is thus proven to be a prerequisite for a complex metabolism. Furthermore, the appearance of specific enzymes opens the door for the evolution of their regulation. Reviewers This article was reviewed by Sándor Pongor, Gáspár Jékely, and Rob Knight.

  1. Production of extremophilic bacterial cellulase enzymes in aspergillus niger.

    Energy Technology Data Exchange (ETDEWEB)

    Gladden, John Michael


    Enzymes can be used to catalyze a myriad of chemical reactions and are a cornerstone in the biotechnology industry. Enzymes have a wide range of uses, ranging from medicine with the production of pharmaceuticals to energy were they are applied to biofuel production. However, it is difficult to produce large quantities of enzymes, especially if they are non-native to the production host. Fortunately, filamentous fungi, such as Aspergillus niger, are broadly used in industry and show great potential for use a heterologous enzyme production hosts. Here, we present work outlining an effort to engineer A. niger to produce thermophilic bacterial cellulases relevant to lignocellulosic biofuel production.

  2. Domain relationships in thiamine diphosphate-dependent enzymes. (United States)

    Duggleby, Ronald G


    Three-dimensional structures have been determined for 13 different enzymes that use thiamine diphosphate (ThDP) as a cofactor. These enzymes fall into five families, where members within a family have similar structures. In different families, there are similarities between some domains that clearly point to a common ancestor for all of these enzymes. Where the enzyme structures differ, evolutionary relationships between families can be discerned. Here, I present an analysis of these families and propose an evolutionary pathway to explain the diversity of structures that are now known.

  3. Crystallographic B factor of critical residues at enzyme active site

    Institute of Scientific and Technical Information of China (English)

    张海龙; 宋时英; 林政炯


    Thirty-seven sets of crystallographic enzyme data were selected from Protein Data Bank (PDB, 1995). The average temperature factors (B) of the critical residues at the active site and the whole molecule of those enzymes were calculated respectively. The statistical results showed that the critical residues at the active site of most of the enzymes had lower B factors than did the whole molecules, indicating that in the crystalline state the critical residues at the active site of the natural enzymes possess more stable conformation than do the whole molecules. The flexibility of the active site during the unfolding by denaturing was also discussed.

  4. Studies on Ganoderma lucidum III. production of pectolytic enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Chang, L.S.; Tseng, T.C.


    Pectolytic enzymes produced by Ganoderma lucidum B in culture and polypropylene bags were investigated. Two pectolytic enzymes, i.e., endo-polygalacturonase (endo-PG) and endo-pectic methyl trans-eliminase (endo-PMTE) were obtained from crude enzymes of G. lucidum B extract from mycelia polypropylene bags. The endo-PMTE has to optimal pH at 4.5 and 8.0. The enzyme stimulated by Ca/sup + +/ ion and preferred only pectin; the enzyme activity decreased at temperature above 50/sup 0/C. The endo-PMTE a and endo-PMTE b, obtained from polypropylene bag with mycelia of G. lucidum B, were purified by 60-80% ammonium sulfate fractionation, Sephadex G-100 gel filtration, DEAE-cellulose ion exchange column chromatography and isoelectric focusing, showing pI at 8.2 and 5.5. Disc gel electrophoresis confirmed two peaks corresponding to endo-PMTE a and b as isoenzymes. Pectolytic enzymes purified by 60-80% ammonium sulfate fraction macerated potato disc and it was more active than the crude enzyme. At pH 4.5, maceration of potato disc by pectolytic enzymes more effective than those at pH 8.0 or 7.0. At pH 8.0, Ca/sup + +/ ion stimulate pectolytic enzyme activities and accelerated maceration.

  5. 21 CFR 862.2500 - Enzyme analyzer for clinical use. (United States)


    ... (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory... use is a device intended to measure enzymes in plasma or serum by nonkinetic or kinetic measurement...

  6. Autodisplay of enzymes--molecular basis and perspectives. (United States)

    Jose, Joachim; Maas, Ruth Maria; Teese, Mark George


    To display an enzyme on the surface of a living cell is an important step forward towards a broader use of biocatalysts. Enzymes immobilized on surfaces appeared to be more stable compared to free molecules. It is possible by standard techniques to let the bacterial cell (e.g. Escherichia coli) decorate its surface with the enzyme and produce it on high amounts with a minimum of costs and equipment. Moreover, these cells can be recovered and reused in several subsequent process cycles. Among other systems, autodisplay has some extra features that could overcome limitations in the industrial applications of enzymes. One major advantage of autodisplay is the motility of the anchoring domain. Enzyme subunits exposed at the cell surface having affinity to each other will spontaneously form dimers or multimers. Using autodisplay enzymes with prosthetic groups can be displayed, expanding the application of surface display to the industrial important P450 enzymes. Finally, up to 10⁵-10⁶ enzyme molecules can be displayed on a single cell. In the present review, we summarize recent achievements in the autodisplay of enzymes with particular attention to industrial needs and process development. Applications that will provide sustainable solutions towards a bio-based industry are discussed.

  7. Halophiles and their enzymes: negativity put to good use. (United States)

    DasSarma, Shiladitya; DasSarma, Priya


    Halophilic microorganisms possess stable enzymes that function in very high salinity, an extreme condition that leads to denaturation, aggregation, and precipitation of most other proteins. Genomic and structural analyses have established that the enzymes of halophilic Archaea and many halophilic Bacteria are negatively charged due to an excess of acidic over basic residues, and altered hydrophobicity, which enhance solubility and promote function in low water activity conditions. Here, we provide an update on recent bioinformatic analysis of predicted halophilic proteomes as well as experimental molecular studies on individual halophilic enzymes. Recent efforts on discovery and utilization of halophiles and their enzymes for biotechnology, including biofuel applications are also considered.

  8. Fast Diagnosis of Gonorrhea Witth Enhanced Luminescence Enzyme Immunoassay

    Institute of Scientific and Technical Information of China (English)

    ZHENG Heyi(郑和义); CAO Jingjiang(曹经江); SHAO Yanglin(邵燕玲)


    Objective:To evaluate the value of enhanced luminescence enzyme immunoassay in the diagnosis of Neisseria gonorrhea(NG) infection.Methods: Anti-catalase antibody for Neisseria gonorrheae combined with enhanced luminescence enzyme immunoassay were used to test for N. Gonorrhea.Results: A minimum of 1x104/CFU of GC in genital tract secretions or urine could be detected with the technique of luminescence enzyme immunoassay.Conclusion : The enhanced luninescence enzyme immunoassay has the advantage of high sensitivity and specificity for diagnosing NG from genitourinary tract secretion and urine.

  9. Exploiting the versatility and selectivity of Mo enzymes with electrochemistry. (United States)

    Bernhardt, Paul V


    This article covers recent advances in the electrochemical study of the mononuclear molybdenum enzymes. Virtually all of these enzymes catalyse a coupled 2-electron, O-atom transfer reaction on a substrate of either organic or inorganic origin. There is a remarkable commonality in structure, function and mechanism of the mononuclear Mo enzymes despite the diversity of their substrates; many that are important to environmental monitoring, food quality control and biomedical science. Mo enzymes routinely oxidise or reduce otherwise inert substrates for which there exist no rapid, simple and reliable analytical methods for their determination and as such represent a potentially rich source of proteins that may be applied in electrochemical biosensors.

  10. Bioremediation of Industrial Waste Through Enzyme Producing Marine Microorganisms. (United States)

    Sivaperumal, P; Kamala, K; Rajaram, R


    Bioremediation process using microorganisms is a kind of nature-friendly and cost-effective clean green technology. Recently, biodegradation of industrial wastes using enzymes from marine microorganisms has been reported worldwide. The prospectus research activity in remediation area would contribute toward the development of advanced bioprocess technology. To minimize industrial wastes, marine enzymes could constitute a novel alternative in terms of waste treatment. Nowadays, the evidence on the mechanisms of bioremediation-related enzymes from marine microorganisms has been extensively studied. This review also will provide information about enzymes from various marine microorganisms and their complexity in the biodegradation of comprehensive range of industrial wastes.

  11. Type IV collagen-degrading enzyme activity in human serum.

    Directory of Open Access Journals (Sweden)



    Full Text Available Type IV collagen-degrading enzyme activity was detected in human serum. Serum was preincubated with 4-aminophenylmercuric acetate and trypsin to activate the enzyme prior to assay. Type IV collagen, purified from human placentas and radiolabeled with [1-14C] acetic anhydride, was used as the substrate. The enzyme activity was measured at pH 7.5 and inhibited by treatment with ethylenediaminetetraacetic acid or heat. The assay of type IV collagen-degrading enzyme in human serum might be useful for estimating the degradation of type IV collagen.

  12. Effect of Barley and Enzyme on Performance, Carcass, Enzyme Activity and Digestion Parameters of Broilers

    Directory of Open Access Journals (Sweden)

    majid kalantar


    Full Text Available Introduction Corn has been recently used for producing ethanol fuel in the major corn-producing countries such as the US and Brazil. Recent diversion of corn for biofuel production along with the increased world's demand for this feedstuff has resulted in unprecedented rise in feed cost for poultry worldwide. Alternative grains such as wheat and barley can be successfully replaced for corn in poultry diets. These cereal grains can locally grow in many parts of the world as they have remarkably lower water requirement than corn. Wheat and barley are generally used as major sources of energy in poultry diets. Though the major components of these grains are starch and proteins, they have considerable content of non-starch polysaccharides (NSPs, derived from the cell walls (Olukosi et al. 2007; Mirzaie et al. 2012. NSPs are generally considered as anti-nutritional factors (Jamroz et al. 2002. The content and structure of NSP polymers vary between different grains, which consequently affect their nutritive value (Olukosi et al. 2007.Wheat and barley are generally used as major sources of energy in poultry diets. The major components of these grains are starch and proteins, they have considerable content of non-starch polysaccharides (NSPs, derived from the cell walls. NSPs are generally considered as anti-nutritional factors. The content and structure of NSP polymers vary between different grains, which consequently affect their nutritive value. The major part of NSPs in barley comprises polymers of (1→3 (1→4-β- glucans which could impede growth factors and consequently carcass quality through lowering the rate and amount of available nutrients in the mucosal surface of the intestinal. Materials and Methods This experiment was conducted to evaluate the effect of corn and barley based diets supplemented with multi-enzyme on growth, carcass, pancreas enzyme activity and physiological characteristics of broilers. A total number of 375 one day old

  13. Spectroscopic investigation of UV irradiated enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Ware, D.L.; Hibbard, L.B. (Spelman College, Atlanta, GA (United States))


    Trptophan (Trp) undergoes photolysis when exposed to light in the near UV region. The enzyme systems horse liver alcohol dehydrogenase (HLAD) and glyceraldehyde 3-phosphate dehydrogenase (G3PDH), which contain two and three Trps respectively, were chosen for analysis of Trp photolysis. Aqueous solutions of HLAD and G3PDH were irradiated at either 295 or 335nm with a xenon lamp. Tryptophan fluorescence was monitored at half hour intervals for two hours in the case of HLAD and one hour in the case of G3PDH. The decrease in fluorescence from 295 irradiation was compared to the fluorescence decrease from 335 irradiation and was found to be similar for both the HLAD and G3PDH samples irradiated at 295nm and for both samples irradiated at 335nm. It was found that, for HLAD, the 295 irradiation caused a decrease in fluorescence of 90% as compared to a decrease of only 12% of 335nm. Enzymatic assays were then performed to determine the enzymatic activity before and after irradiation.

  14. Enzyme-guided DNA Sewing Architecture. (United States)

    Song, In Hyun; Shin, Seung Won; Park, Kyung Soo; Lansac, Yves; Jang, Yun Hee; Um, Soong Ho


    With the advent of nanotechnology, a variety of nanoarchitectures with varied physicochemical properties have been designed. Owing to the unique characteristics, DNAs have been used as a functional building block for novel nanoarchitecture. In particular, a self-assembly of long DNA molecules via a piece DNA staple has been utilized to attain such constructs. However, it needs many talented prerequisites (e.g., complicated computer program) with fewer yields of products. In addition, it has many limitations to overcome: for instance, (i) thermal instability under moderate environments and (ii) restraint in size caused by the restricted length of scaffold strands. Alternatively, the enzymatic sewing linkage of short DNA blocks is simply designed into long DNA assemblies but it is more error-prone due to the undeveloped sequence data. Here, we present, for the first time, a comprehensive study for directly combining DNA structures into higher DNA sewing constructs through the 5'-end cohesive ligation of T4 enzyme. Inspired by these achievements, the synthesized DNA nanomaterials were also utilized for effective detection and real-time diagnosis of cancer-specific and cytosolic RNA markers. This generalized protocol for generic DNA sewing is expected to be useful in several DNA nanotechnology as well as any nucleic acid-related fields.

  15. Enzymes Enhance Biofilm Removal Efficiency of Cleaners. (United States)

    Stiefel, Philipp; Mauerhofer, Stefan; Schneider, Jana; Maniura-Weber, Katharina; Rosenberg, Urs; Ren, Qun


    Efficient removal of biofilms from medical devices is a big challenge in health care to avoid hospital-acquired infections, especially from delicate devices like flexible endoscopes, which cannot be reprocessed using harsh chemicals or high temperatures. Therefore, milder solutions such as enzymatic cleaners have to be used, which need to be carefully developed to ensure efficacious performance. In vitro biofilm in a 96-well-plate system was used to select and optimize the formulation of novel enzymatic cleaners. Removal of the biofilm was quantified by crystal violet staining, while the disinfecting properties were evaluated by a BacTiter-Glo assay. The biofilm removal efficacy of the selected cleaner was further tested by using European standard (EN) for endoscope cleaning EN ISO 15883, and removal of artificial blood soil was investigated by treating TOSI (Test Object Surgical Instrument) cleaning indicators. Using the process described here, a novel enzymatic endoscope cleaner was developed, which removed 95% of Staphylococcus aureus and 90% of Pseudomonas aeruginosa biofilms in the 96-well plate system. With a >99% reduction of CFU and a >90% reduction of extracellular polymeric substances, this cleaner enabled subsequent complete disinfection and fulfilled acceptance criteria of EN ISO 15883. Furthermore, it efficiently removed blood soil and significantly outperformed comparable commercial products. The cleaning performance was stable even after storage of the cleaner for 6 months. It was demonstrated that incorporation of appropriate enzymes into the cleaner enhanced performance significantly.

  16. Marine Enzymes and Microorganisms for Bioethanol Production. (United States)

    Swain, M R; Natarajan, V; Krishnan, C


    Bioethanol is a potential alternative fuel to fossil fuels. Bioethanol as a fuel has several economic and environmental benefits. Though bioethanol is produced using starch and sugarcane juice, these materials are in conflict with food availability. To avoid food-fuel conflict, the second-generation bioethanol production by utilizing nonfood lignocellulosic materials has been extensively investigated. However, due to the complexity of lignocellulose architecture, the process is complicated and not economically competitive. The cultivation of lignocellulosic energy crops indirectly affects the food supplies by extensive land use. Marine algae have attracted attention to replace the lignocellulosic feedstock for bioethanol production, since the algae grow fast, do not use land, avoid food-fuel conflict and have several varieties to suit the cultivation environment. The composition of algae is not as complex as lignocellulose due to the absence of lignin, which renders easy hydrolysis of polysaccharides to fermentable sugars. Marine organisms also produce cold-active enzymes for hydrolysis of starch, cellulose, and algal polysaccharides, which can be employed in bioethanol process. Marine microoorganisms are also capable of fermenting sugars under high salt environment. Therefore, marine biocatalysts are promising for development of efficient processes for bioethanol production.

  17. Serum angiotensin converting enzyme in pemphigus vulgaris

    Directory of Open Access Journals (Sweden)

    Reza M Robati


    Full Text Available Background: Pemphigus vulgaris is an autoimmune blistering skin disease with unknown etiology. Drugs such as angiotensin-converting enzyme (ACE inhibitors may contribute in the pathogenesis of pemphigus. Objective: We plan this essay to evaluate the serum ACE level in pemphigus vulgaris patients in comparison with healthy controls to recognize its possible role in disease pathogenesis or activity. Methods: This study was planned and performed in the dermatology clinics of Shahid Beheshti University of MedicalSciences′ Hospitals between July 2010 and June 2011. Patients with new onset of pemphigus vulgaris were enrolled in our study. Control subjects were frequency-matched to cases by sex and age. Serum ACE was determined by the spectrophotometric method. Results: Thirty-four patients with pemphigus vulgaris and 35 healthy individuals were recruited in the study. No statistical significant difference was detected in the mean level of serum ACE of the two groups (t-test, P = 0.11. The mean ACE level was significantly lower in male patients compared with male controls (P = 0.04. Moreover, a significant higher serum ACE level of patients with cutaneous involvement was observed compared to patients with mucosal involvement (P = 0.02. Conclusions: Despite lack of any significant difference of serum ACE level between pemphigus and control group, the serum ACE level was considerably lower in male pemphigus vulgaris patients compared with male controls. Therefore, ACE might have some association with pemphigus vulgaris especially in male patients; however, further studies are required to confirm this association.



    Fedotov O. V.; Voloshko T.E.


    A method for obtaining of enzyme preparations of enzyme preparations (EP) of peroxidases and catalases fungal extracellular and inracellular origin from cultures of Basidiomycetes was developed. The strains Flammulina velutipes F-vv, Agrocybe cylindracea167; Fistulina hepatica Fh-08 and Pleurotus ostreatus P-208 and P-01 were used as producers of oxidoreductases. Strains were grown on modified glucose-peptone media. Fractionation was carried out by salting out the enzymes with ammonium sulfat...

  19. Bacteriophage enzymes for the prevention and treatment of bacterial infections: Stability and stabilization of the enzyme lysing Streptococcus pyogenes cells

    Energy Technology Data Exchange (ETDEWEB)

    Klyachko, N. L.; Dmitrieva, N. F.; Eshchina, A. S.; Ignatenko, O. V.; Filatova, L. Y.; Rainina, Evguenia I.; Kazarov, A. K.; Levashov, A. V.


    Recombinant, phage associated lytic enzyme Ply C capable to lyse streptococci of groups A and C was stabilized in the variety of the micelles containing compositions to improve the stability of the enzyme for further application in medicine. It was shown that, in the micellar polyelectrolyte composition M16, the enzyme retained its activity for 2 months; while in a buffer solution under the same conditions ((pH 6.3, room temperature), it completely lost its activity in 2 days

  20. Effects of Different Substrates on Lignocellulosic Enzyme Expression, Enzyme Activity, Substrate Utilization and Biological Efficiency of Pleurotus Eryngii

    Directory of Open Access Journals (Sweden)

    Chunliang Xie


    Full Text Available Background/Aims: Pleurotus eryngii is one of the most valued and delicious mushrooms which are commercially cultivated on various agro-wastes. How different substrates affect lignocellulosic biomass degradation, lignocellulosic enzyme production and biological efficiency in Pleurotus eryngii was unclear. Methods and Results: In this report, Pleurotus eryngii was cultivated in substrates including ramie stalks, kenaf stalks, cottonseed hulls and bulrush stalks. The results showed that ramie stalks and kenaf stalks were found to best suitable to cultivate Pleurotus eryngii with the biological efficiency achieved at 55% and 57%, respectively. In order to establish correlations between different substrates and lignocellulosic enzymes expression, the extracellular proteins from four substrates were profiled with high throughput TMT-based quantitative proteomic approach. 241 non-redundant proteins were identified and 74 high confidence lignocellulosic enzymes were quantified. Most of the cellulases, hemicellulases and lignin depolymerization enzymes were highly up-regulated when ramie stalks and kenaf stalks were used as carbon sources. The enzyme activities results suggested cellulases, hemicellulases and lignin depolymerization enzymes were significantly induced by ramie stalks and kenaf stalks. Conclusion: The lignocelluloses degradation, most of the lignocellulosic enzymes expressions and activities of Pleurotus eryngii had positive correlation with the biological efficiency, which depend on the nature of lignocellulosic substrates. In addition, the lignocellulosic enzymes expression profiles during Pleurotus eryngii growth in different substrates were obtained. The present study suggested that most of the lignocellulosic enzymes expressions and activities can be used as tools for selecting better performing substrates for commercial mushroom cultivation.

  1. Restriction enzyme body doubles and PCR cloning: on the general use of type IIs restriction enzymes for cloning. (United States)

    Tóth, Eszter; Huszár, Krisztina; Bencsura, Petra; Kulcsár, Péter István; Vodicska, Barbara; Nyeste, Antal; Welker, Zsombor; Tóth, Szilvia; Welker, Ervin


    The procedure described here allows the cloning of PCR fragments containing a recognition site of the restriction endonuclease (Type IIP) used for cloning in the sequence of the insert. A Type IIS endonuclease--a Body Double of the Type IIP enzyme--is used to generate the same protruding palindrome. Thus, the insert can be cloned to the Type IIP site of the vector without digesting the PCR product with the same Type IIP enzyme. We achieve this by incorporating the recognition site of a Type IIS restriction enzyme that cleaves the DNA outside of its recognition site in the PCR primer in such a way that the cutting positions straddle the desired overhang sequence. Digestion of the PCR product by the Body Double generates the required overhang. Hitherto the use of Type IIS restriction enzymes in cloning reactions has only been used for special applications, the approach presented here makes Type IIS enzymes as useful as Type IIP enzymes for general cloning purposes. To assist in finding Body Double enzymes, we summarised the available Type IIS enzymes which are potentially useful for Body Double cloning and created an online program ( for the selection of suitable Body Double enzymes and the design of the appropriate primers.

  2. Forizymes - functionalised artificial forisomes as a platform for the production and immobilisation of single enzymes and multi-enzyme complexes. (United States)

    Visser, Franziska; Müller, Boje; Rose, Judith; Prüfer, Dirk; Noll, Gundula A


    The immobilisation of enzymes plays an important role in many applications, including biosensors that require enzyme activity, stability and recyclability in order to function efficiently. Here we show that forisomes (plant-derived mechanoproteins) can be functionalised with enzymes by translational fusion, leading to the assembly of structures designated as forizymes. When forizymes are expressed in the yeast Saccharomyces cerevisiae, the enzymes are immobilised by the self-assembly of forisome subunits to form well-structured protein bodies. We used glucose-6-phosphate dehydrogenase (G6PDH) and hexokinase 2 (HXK2) as model enzymes for the one-step production and purification of catalytically active forizymes. These structures retain the typical stimulus-response reaction of the forisome and the enzyme remains active even after multiple assay cycles, which we demonstrated using G6PDH forizymes as an example. We also achieved the co-incorporation of both HXK2 and G6PDH in a single forizyme, facilitating a two-step reaction cascade that was 30% faster than the coupled reaction using the corresponding enzymes on different forizymes or in solution. Our novel forizyme immobilisation technique therefore not only combines the sensory properties of forisome proteins with the catalytic properties of enzymes but also allows the development of multi-enzyme complexes for incorporation into technical devices.

  3. Revised selection criteria for candidate restriction enzymes in genome walking. (United States)

    Taheri, Ali; Robinson, Stephen J; Parkin, Isobel; Gruber, Margaret Y


    A new method to improve the efficiency of flanking sequence identification by genome walking was developed based on an expanded, sequential list of criteria for selecting candidate enzymes, plus several other optimization steps. These criteria include: step (1) initially choosing the most appropriate restriction enzyme according to the average fragment size produced by each enzyme determined using in silico digestion of genomic DNA, step (2) evaluating the in silico frequency of fragment size distribution between individual chromosomes, step (3) selecting those enzymes that generate fragments with the majority between 100 bp and 3,000 bp, step (4) weighing the advantages and disadvantages of blunt-end sites vs. cohesive-end sites, step (5) elimination of methylation sensitive enzymes with methylation-insensitive isoschizomers, and step (6) elimination of enzymes with recognition sites within the binary vector sequence (T-DNA and plasmid backbone). Step (7) includes the selection of a second restriction enzyme with highest number of recognition sites within regions not covered by the first restriction enzyme. Step (8) considers primer and adapter sequence optimization, selecting the best adapter-primer pairs according to their hairpin/dimers and secondary structure. In step (9), the efficiency of genomic library development was improved by column-filtration of digested DNA to remove restriction enzyme and phosphatase enzyme, and most important, to remove small genomic fragments (enzymes, NsiI and NdeI, fit these criteria for the Arabidopsis thaliana genome. Their efficiency was assessed using 54 T(3) lines from an Arabidopsis SK enhancer population. Over 70% success rate was achieved in amplifying the flanking sequences of these lines. This strategy was also tested with Brachypodium distachyon to demonstrate its applicability to other larger genomes.

  4. Enzymes useful for chiral compound synthesis: structural biology, directed evolution, and protein engineering for industrial use. (United States)

    Kataoka, Michihiko; Miyakawa, Takuya; Shimizu, Sakayu; Tanokura, Masaru


    Biocatalysts (enzymes) have many advantages as catalysts for the production of useful compounds as compared to chemical catalysts. The stereoselectivity of the enzymes is one advantage, and thus the stereoselective production of chiral compounds using enzymes is a promising approach. Importantly, industrial application of the enzymes for chiral compound production requires the discovery of a novel useful enzyme or enzyme function; furthermore, improving the enzyme properties through protein engineering and directed evolution approaches is significant. In this review, the significance of several enzymes showing stereoselectivity (quinuclidinone reductase, aminoalcohol dehydrogenase, old yellow enzyme, and threonine aldolase) in chiral compound production is described, and the improvement of these enzymes using protein engineering and directed evolution approaches for further usability is discussed. Currently, enzymes are widely used as catalysts for the production of chiral compounds; however, for further use of enzymes in chiral compound production, improvement of enzymes should be more essential, as well as discovery of novel enzymes and enzyme functions.

  5. Downstream processing of polysaccharide degrading enzymes by affinity chromatography.

    NARCIS (Netherlands)

    Somers, W.A.C.


    The objective of this study was the development of affinity matrices to isolate and purify a number of polysaccharide degrading enzymes and the application of these adsorbents in the large- scale purification of the enzymes from fermentation broths. Affinity adsorbents were developed for endo-polyga

  6. Isolation of a tyrosine-activating enzyme from baker's yeast

    NARCIS (Netherlands)

    Ven, A.M. van de; Koningsberger, V.V.; Overbeek, J.Th.G.


    The extracts of ether-CO2-frozen baker's yeast contain enzymes that catalyze the ATP-linked amino acid activation by way of pyrophosphate elimination. From the extract a tyrosine-activating enzyme could be isolated, which, judging from ultracentrifugation and electrophoretic data, was about 70% pure


    NARCIS (Netherlands)

    Adamczyk, Malgorzata; van Eunen, Karen; Bakker, Barbara M.; Westerhoff, Hans V.; Jameson, D; Verma, M; Westerhoff, HV


    In vitro enzymatic assays of cell-free extracts offer an opportunity to assess in vivo enzyme concentrations. If performed under conditions that resemble the conditions in vivo, they may also reveal some of the capacities and properties of the same enzymes in vivo; we shall call this the ex vivo app

  8. Lignocellulolytic enzyme production of Pleurotus ostreatus growth in agroindustrial wastes. (United States)

    da Luz, José Maria Rodrigues; Nunes, Mateus Dias; Paes, Sirlaine Albino; Torres, Denise Pereira; de Cássia Soares da Silva, Marliane; Kasuya, Maria Catarina Megumi


    The mushroom Pleurotus ostreatus has nutritional and medicinal characteristics that depend on the growth substrate. In nature, this fungus grows on dead wood, but it can be artificially cultivated on agricultural wastes (coffee husks, eucalyptus sawdust, corncobs and sugar cane bagasse). The degradation of agricultural wastes involves some enzyme complexes made up of oxidative (laccase, manganese peroxidase and lignin peroxidase) and hydrolytic enzymes (cellulases, xylanases and tanases). Understanding how these enzymes work will help to improve the productivity of mushroom cultures and decrease the potential pollution that can be caused by inadequate discharge of the agroindustrial residues. The objective of this work was to assess the activity of the lignocellulolytic enzymes produced by two P. ostreatus strains (PLO 2 and PLO 6). These strains were used to inoculate samples of coffee husks, eucalyptus sawdust or eucalyptus bark add with or without 20 % rice bran. Every five days after substrate inoculation, the enzyme activity and soluble protein concentration were evaluated. The maximum activity of oxidative enzymes was observed at day 10 after inoculation, and the activity of the hydrolytic enzymes increased during the entire period of the experiment. The results show that substrate composition and colonization time influenced the activity of the lignocellulolytic enzymes.

  9. Lignocellulolytic enzyme production of Pleurotus ostreatus growth in agroindustrial wastes

    Directory of Open Access Journals (Sweden)

    José Maria Rodrigues da Luz


    Full Text Available The mushroom Pleurotus ostreatus has nutritional and medicinal characteristics that depend on the growth substrate. In nature, this fungus grows on dead wood, but it can be artificially cultivated on agricultural wastes (coffee husks, eucalyptus sawdust, corncobs and sugar cane bagasse. The degradation of agricultural wastes involves some enzyme complexes made up of oxidative (laccase, manganese peroxidase and lignin peroxidase and hydrolytic enzymes (cellulases, xylanases and tanases. Understanding how these enzymes work will help to improve the productivity of mushroom cultures and decrease the potential pollution that can be caused by inadequate discharge of the agroindustrial residues. The objective of this work was to assess the activity of the lignocellulolytic enzymes produced by two P. ostreatus strains (PLO 2 and PLO 6. These strains were used to inoculate samples of coffee husks, eucalyptus sawdust or eucalyptus bark add with or without 20 % rice bran. Every five days after substrate inoculation, the enzyme activity and soluble protein concentration were evaluated. The maximum activity of oxidative enzymes was observed at day 10 after inoculation, and the activity of the hydrolytic enzymes increased during the entire period of the experiment. The results show that substrate composition and colonization time influenced the activity of the lignocellulolytic enzymes.

  10. Reexamining Michaelis-Menten Enzyme Kinetics for Xanthine Oxidase (United States)

    Bassingthwaighte, James B.; Chinn, Tamara M.


    Abbreviated expressions for enzyme kinetic expressions, such as the Michaelis-Menten (M-M) equations, are based on the premise that enzyme concentrations are low compared with those of the substrate and product. When one does progress experiments, where the solute is consumed during conversion to form a series of products, the idealized conditions…

  11. A Simple Endpoint Assay for Starch-Degrading Enzymes. (United States)

    Kroen, William K.


    Since many of the important energy-transferring pathways involve synthesis or degradation of biological macromolecules, observations of the enzymes responsible for starch breakdown provide a useful case study. Provides a short, one-step assay for the enzymes amylase and amyloglucosidase. Topics covered include goals, preparation, assay procedure,…

  12. Susceptibility of sweetpotato (Ipomoea batatas) peel proteins to digestive enzymes (United States)

    Sweet potato proteins have been shown to possess antioxidant and antidiabetic properties in vivo. The ability of a protein to exhibit systemic effects is somewhat unusual as proteins are typically susceptible to digestive enzymes. This study was undertaken to better understand how digestive enzymes ...

  13. Why do crown ethers activate enzymes in organic solvents?

    NARCIS (Netherlands)

    Unen, van Dirk-Jan; Engbersen, Johan F.J.; Reinhoudt, David N.


    One of the major drawbacks of enzymes in nonaqueous solvents is that their activity is often dramatically low compared to that in water. This limitation can be largely overcome by crown ether treatment of enzymes. In this paper, we describe a number of carefully designed new experiments that have im

  14. Phytase, a new life for an “old” enzyme (United States)

    Phytase represents a group of phosphohydrolytic enzymes that initiate stepwise removals of phosphate from phytate. Simple-stomached species such as swine, poultry, and fish require extrinsic phytase to digest phytate: the major form of phosphorus in plant feeds. Consequently, this enzyme is suppleme...

  15. A Simple and Accurate Method for Measuring Enzyme Activity. (United States)

    Yip, Din-Yan


    Presents methods commonly used for investigating enzyme activity using catalase and presents a new method for measuring catalase activity that is more reliable and accurate. Provides results that are readily reproduced and quantified. Can also be used for investigations of enzyme properties such as the effects of temperature, pH, inhibitors,…

  16. Enzymes approved for human therapy: indications, mechanisms and adverse effects. (United States)

    Baldo, Brian A


    Research and drug developments fostered under orphan drug product development programs have greatly assisted the introduction of efficient and safe enzyme-based therapies for a range of rare disorders. The introduction and regulatory approval of 20 different recombinant enzymes has enabled, often for the first time, effective enzyme-replacement therapy for some lysosomal storage disorders, including Gaucher (imiglucerase, taliglucerase, and velaglucerase), Fabry (agalsidase alfa and beta), and Pompe (alglucosidase alfa) diseases and mucopolysaccharidoses I (laronidase), II (idursulfase), IVA (elosulfase), and VI (galsulfase). Approved recombinant enzymes are also now used as therapy for myocardial infarction (alteplase, reteplase, and tenecteplase), cystic fibrosis (dornase alfa), chronic gout (pegloticase), tumor lysis syndrome (rasburicase), leukemia (L-asparaginase), some collagen-based disorders such as Dupuytren's contracture (collagenase), severe combined immunodeficiency disease (pegademase bovine), detoxification of methotrexate (glucarpidase), and vitreomacular adhesion (ocriplasmin). The development of these efficacious and safe enzyme-based therapies has occurred hand in hand with some remarkable advances in the preparation of the often specifically designed recombinant enzymes; the manufacturing expertise necessary for commercial production; our understanding of underlying mechanisms operative in the different diseases; and the mechanisms of action of the relevant recombinant enzymes. Together with information on these mechanisms, safety findings recorded so far on the various adverse events and problems of immunogenicity of the recombinant enzymes used for therapy are presented.

  17. Enzyme activity measurement via spectral evolution profiling and PARAFAC

    DEFF Research Database (Denmark)

    Baum, Andreas; Meyer, Anne S.; Garcia, Javier Lopez;


    The recent advances in multi-way analysis provide new solutions to traditional enzyme activity assessment. In the present study enzyme activity has been determined by monitoring spectral changes of substrates and products in real time. The method relies on measurement of distinct spectral fingerp...... parallel factor analysis (PARAFAC) for pectin lyase, glucose oxidase, and a cellulase preparation....

  18. 21 CFR 864.9400 - Stabilized enzyme solution. (United States)


    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Stabilized enzyme solution. 864.9400 Section 864.9400 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... and Blood Products § 864.9400 Stabilized enzyme solution. (a) Identification. A stabilized...

  19. Multi-enzyme catalyzed rapid ethanol lowering in vitro. (United States)

    Whitmire, D R; Chambers, R P; Dillon, A R


    Ethanol was oxidized to acetate by an enzyme system using yeast alcohol dehydrogenase (YADH), yeast aldehyde dehydrogenase (YALDH), and lactic dehydrogenase (LDH) recycling NAD in two model duodenal fluids and in canine duodenal aspirate in vitro. Sufficient enzyme activities were maintained to convert as much as 34% of the original ethanol to acetate with negligible acetaldehyde accumulation.

  20. Enzyme immobilisation in biocatalysis: why, what and how

    NARCIS (Netherlands)

    Sheldon, R.A.; Van Pelt, S.


    In this tutorial review, an overview of the why, what and how of enzyme immobilisation for use in biocatalysis is presented. The importance of biocatalysis in the context of green and sustainable chemicals manufacture is discussed and the necessity for immobilisation of enzymes as a key enabling tec

  1. Enzymes involved in organellar DNA replication in photosynthetic eukaryotes

    Directory of Open Access Journals (Sweden)

    Takashi eMoriyama


    Full Text Available Plastids and mitochondria possess their own genomes. Although the replication mechanisms of these organellar genomes remain unclear in photosynthetic eukaryotes, several organelle-localized enzymes related to genome replication, including DNA polymerase, DNA primase, DNA helicase, DNA topoisomerase, single-stranded DNA maintenance protein, DNA ligase, primer removal enzyme, and several DNA recombination-related enzymes, have been identified. In the reference Eudicot plant Arabidopsis thaliana, the replication-related enzymes of plastids and mitochondria are similar because many of them are dual targeted to both organelles, whereas in the red alga Cyanidioschyzon merolae, plastids and mitochondria contain different replication machinery components. The enzymes involved in organellar genome replication in green plants and red algae were derived from different origins, including proteobacterial, cyanobacterial, and eukaryotic lineages. In the present review, we summarize the available data for enzymes related to organellar genome replication in green plants and red algae. In addition, based on the type and distribution of replication enzymes in photosynthetic eukaryotes, we discuss the transitional history of replication enzymes in the organelles of plants.

  2. Increase in sphingolipid catabolic enzyme activity during aging

    Institute of Scientific and Technical Information of China (English)

    Santosh J SACKET; Hae-young CHUNG; Fumikazu OKAJIMA; Dong-soon IM


    Aim:To understand the contribution of sphingolipid metabolism and its metabolites to development and aging.Methods: A systemic analysis on the changes in activity of sphingolipid metabolic enzymes in kidney, liver and brain tissues during development and aging was conducted. The study was conducted using tissues from 1-day-old to 720-day-old rats.Results: Catabolic enzyme activities as well as the level of sphingomyelinase (SMase) and ceramidase (CDase) were higher than that of anabolic enzyme activities, sphingomyelin synthase and ceramide synthase. This suggested an accumulation of ceramide and sphingosine during development and aging. The liver showed the highest neutral-SMase activity among the tested enzymes while the kidney and brain exhibited higher neutral-SMase and ceramidase activities, indicating a high production of ceramide in liver and ceramide/sphingosine in the kidney and brain. The activities of sphingolipid metabolic enzymes were significantly elevated in all tested tissues during development and aging, although the onset of significant increase in activity varied on the tissue and enzyme type. During aging, 18 out of 21 enzyme activities were further increased on day 720 compared to day 180.Conclusion: Differential increases in sphingolipid metabolic enzyme activities suggest that sphingolipids including ceramide and sphingosine might play important and dynamic roles in proliferation, differentiation and apoptosis during development and aging.

  3. 21 CFR 184.1287 - Enzyme-modified fats. (United States)


    ... that are generally recognized as safe (GRAS). Enzyme-modified milk powder may be prepared with GRAS enzymes from reconstituted milk powder, whole milk, condensed or concentrated whole milk, evaporated milk, or milk powder. The lipolysis is maintained at a temperature that is optimal for the action of...

  4. Soluble inhibitors/deactivators of cellulase enzymes from lignocellulosic biomass. (United States)

    Kim, Youngmi; Ximenes, Eduardo; Mosier, Nathan S; Ladisch, Michael R


    Liquid hot water, steam explosion, and dilute acid pretreatments of lignocellulose generate soluble inhibitors which hamper enzymatic hydrolysis as well as fermentation of sugars to ethanol. Toxic and inhibitory compounds will vary with pretreatment and include soluble sugars, furan derivatives (hydroxymethyl fulfural, furfural), organic acids (acetic, formic and, levulinic acid), and phenolic compounds. Their effect is seen when an increase in the concentration of pretreated biomass in a hydrolysis slurry results in decreased cellulose conversion, even though the ratio of enzyme to cellulose is kept constant. We used lignin-free cellulose, Solka Floc, combined with mixtures of soluble components released during pretreatment of wood, to prove that the decrease in the rate and extent of cellulose hydrolysis is due to a combination of enzyme inhibition and deactivation. The causative agents were extracted from wood pretreatment liquid using PEG surfactant, activated charcoal or ethyl acetate and then desorbed, recovered, and added back to a mixture of enzyme and cellulose. At enzyme loadings of either 1 or 25mg protein/g glucan, the most inhibitory components, later identified as phenolics, decreased the rate and extent of cellulose hydrolysis by half due to both inhibition and precipitation of the enzymes. Full enzyme activity occurred when the phenols were removed. Hence detoxification of pretreated woods through phenol removal is expected to reduce enzyme loadings, and therefore reduce enzyme costs, for a given level of cellulose conversion.

  5. A Genomic and Functional Inventory of Deubiquitinating Enzymes

    NARCIS (Netherlands)

    Bernards, R.A.; Nijman, S.M.B.; Luna-Vargas, M.P.A.; Velds, A.; Brummelkamp, T.R.; Dirac, A.M.G.; Sixma, T.K.


    Posttranslational modification of proteins by the small molecule ubiquitin is a key regulatory event, and the enzymes catalyzing these modifications have been the focus of many studies. Deubiquitinating enzymes, which mediate the removal and processing of ubiquitin, may be functionally as important

  6. Applications of Enzymes in Oil and Oilseed Processing

    DEFF Research Database (Denmark)

    Xu, Xuebing

    conventionally high temperature conditioning or cooking is necessary. The good story in industry is the fish oil and olive oil processing. Good quality and higher oil yield have been achieved through the use of enzymes in the processing stages. For the refining stage, the use of enzymes for degumming has...

  7. The role of enzymes in fungus-growing ant evolution

    DEFF Research Database (Denmark)

    de Fine Licht, Henrik Hjarvard

    behaviour. Here we report the first large-scale comparative study on fungus garden enzyme profiles and show that various interesting changes can be documented. A more detailed analysis of laccase expression, an enzyme that is believed to oxidize phenols in defensive secondary plant compounds such as tannins...

  8. Selective distribution of enzymes in a microfluidic reactor

    DEFF Research Database (Denmark)

    Daugaard, Anders Egede; Pereira Rosinha Grundtvig, Ines; Krühne, Ulrich;

    enables the selective immobilization on either top-side or bottom-side or both sides of the reactor. Thereafter horseradish peroxidase was immobilized on the surface and activity tests illustrated how this distribution of the enzyme on the surface could be used to optimize the activity of the enzyme...

  9. Optimization of enzyme assisted extraction of polysaccharides from Astragalus membranaceus. (United States)

    Chen, Huaguo; Zhou, Xin; Zhang, Junzeng


    Astragalus polysaccharide (APS) is known to have a variety of pharmacological activities. In the present study, enzyme assisted extraction of APS from Astragalus mongholicus using various enzymes were examined. Research found that glucose oxidase offered a better performance in enhancement of extraction yields of APS than other ones. Glucose oxidase assisted extraction process was further optimized by using response surface method (RSM) to obtain maximum yield of crude APS. The optimized extraction conditions were as follows: enzyme amount of 3.0%, enzyme treated time of 3.44 d, enzyme treated temperature of 56.9 °C and extraction solvent pH of 7.8. Under these conditions, the experimental yield was 29.96 ± 0.14%, which was well in close agreement with the value (30.19%) predicted by RSM model and increased more than 250% compared with none enzyme treated ones. Pharmacological test showed that enzyme assisted APS had a better antioxidant activity (about 2 times higher) than none enzyme treated ones.

  10. Subunit topology in the V type ATPase and related enzymes

    NARCIS (Netherlands)

    Chaban, Yuriy


    During the last decades impressive progress has been made in understanding of the catalytic mechanism of F-type ATP synthase, which is the key enzyme in the energy metabolism of eukaryotes and most bacteria. This enzyme catalyzes the final step in the process of oxidative phosphorylation in bacteria

  11. Preliminary characterization of digestive enzymes in freshwater mussels (United States)

    Sauey, Blake W.; Amberg, Jon J.; Cooper, Scott T.; Grunwald, Sandra K.; Newton, Teresa J.; Haro, Roger J.


    Resource managers lack an effective chemical tool to control the invasive zebra mussel Dreissena polymorpha. Zebra mussels clog water intakes for hydroelectric companies, harm unionid mussel species, and are believed to be a reservoir of avian botulism. Little is known about the digestive physiology of zebra mussels and unionid mussels. The enzymatic profile of the digestive glands of zebra mussels and native threeridge (Amblema plicata) and plain pocketbook mussels (Lampsilis cardium) are characterized using a commercial enzyme kit, api ZYM, and validated the kit with reagent-grade enzymes. A linear correlation was shown for only one of nineteen enzymes, tested between the api ZYM kit and a specific enzyme kit. Thus, the api ZYM kit should only be used to make general comparisons of enzyme presence and to observe trends in enzyme activities. Enzymatic trends were seen in the unionid mussel species, but not in zebra mussels sampled 32 days apart from the same location. Enzymatic classes, based on substrate, showed different trends, with proteolytic and phospholytic enzymes having the most change in relative enzyme activity.

  12. Novel Enzymes for Targeted Hydrolysis of Algal Cell Walls

    DEFF Research Database (Denmark)

    Schultz-Johansen, Mikkel

    . These enzymes degraded fucoidan extracted from brown algae of the order Fucales, but displayed individual substrate preference and degradation pattern. This work adds substantial information to a protein family which is largely undiscovered to date. Several of the enzyme activities discovered in this thesis...

  13. Method of preparing cross-linked enzyme particles

    NARCIS (Netherlands)

    Mateo, C.; Van Langen, L.M.; Van Rantwijk, F.


    The invention relates to a method of preparing cross-linked enzyme particles using a cross-linking agent. According to the invention, the enzyme particles are formed and subsequently cross-linked using a cross-linking agent having at least n reactive groups where N>=3 and a molecular weight of >2,00

  14. LCAT, HDL Cholesterol and Ischemic Cardiovascular Disease: A Mendelian Randomization Study of HDL Cholesterol in 54,500 Individuals

    DEFF Research Database (Denmark)

    Haase, Christiane L; Tybjærg-Hansen, Anne; Ali Qayyum, Abbas


    Background:Epidemiologically, high-density lipoprotein (HDL) cholesterol levels associate inversely with risk of ischemic cardiovascular disease. Whether this is a causal relation is unclear.Methods:We studied 10,281 participants in the Copenhagen City Heart Study (CCHS) and 50,523 participants...... in the Copenhagen General Population Study (CGPS), of which 991 and 1,693 participants, respectively, had developed myocardial infarction (MI) by August 2010. Participants in the CCHS were genotyped for all six variants identified by resequencing lecithin-cholesterol acyltransferase in 380 individuals. One variant......, S208T (rs4986970, allele frequency 4%), associated with HDL cholesterol levels in both the CCHS and the CGPS was used to study causality of HDL cholesterol using instrumental variable analysis.Results:Epidemiologically, in the CCHS, a 13% (0.21 mmol/liter) decrease in plasma HDL cholesterol levels...

  15. Adrenal Function in Females with Low Plasma HDL-C Due to Mutations in ABCA1 and LCAT

    NARCIS (Netherlands)

    Bochem, Andrea E.; Holleboom, Adriaan G.; Romijn, Johannes A.; Hoekstra, Menno; Dallinga, Geesje M.; Motazacker, Mahdi M.; Hovingh, G. Kees; Kuivenhoven, Jan A.; Stroes, Erik S. G.


    Introduction: Adrenal steroidogenesis is essential for human survival and depends on the availability of the precursor cholesterol. Male subjects with low plasma levels of high density lipoprotein (HDL) cholesterol are characterized by decreased adrenal function. Whether this is also the case in fem

  16. CTX-M Enzymes: Origin and Diffusion (United States)

    Cantón, Rafael; González-Alba, José María; Galán, Juan Carlos


    CTX-M β-lactamases are considered a paradigm in the evolution of a resistance mechanism. Incorporation of different chromosomal blaCTX-M related genes from different species of Kluyvera has derived in different CTX-M clusters. In silico analyses have shown that this event has occurred at least nine times; in CTX-M-1 cluster (3), CTX-M-2 and CTX-M-9 clusters (2 each), and CTX-M-8 and CTX-M-25 clusters (1 each). This has been mainly produced by the participation of genetic mobilization units such as insertion sequences (ISEcp1 or ISCR1) and the later incorporation in hierarchical structures associated with multifaceted genetic structures including complex class 1 integrons and transposons. The capture of these blaCTX-M genes from the environment by highly mobilizable structures could have been a random event. Moreover, after incorporation within these structures, β-lactam selective force such as that exerted by cefotaxime and ceftazidime has fueled mutational events underscoring diversification of different clusters. Nevertheless, more variants of CTX-M enzymes, including those not inhibited by β-lactamase inhibitors such as clavulanic acid (IR-CTX-M variants), only obtained under in in vitro experiments, are still waiting to emerge in the clinical setting. Penetration and the later global spread of CTX-M producing organisms have been produced with the participation of the so-called “epidemic resistance plasmids” often carried in multi-drug resistant and virulent high-risk clones. All these facts but also the incorporation and co-selection of emerging resistance determinants within CTX-M producing bacteria, such as those encoding carbapenemases, depict the currently complex pandemic scenario of multi-drug resistant isolates. PMID:22485109

  17. Structure Biology of Membrane Bound Enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Dax [Johns Hopkins Univ., Baltimore, MD (United States). School of Medicine. Dept. of Physiology


    The overall goal of the proposed research is to understand the membrane-associated active processes catalyzed by an alkane $\\square$-hydroxylase (AlkB) from eubacterium Pseudomonase oleovorans. AlkB performs oxygenation of unactivated hydrocarbons found in crude oils. The enzymatic reaction involves energy-demanding steps in the membrane with the uses of structurally unknown metal active sites featuring a diiron [FeFe] center. At present, a critical barrier to understanding the membrane-associated reaction mechanism is the lack of structural information. The structural biology efforts have been challenged by technical difficulties commonly encountered in crystallization and structural determination of membrane proteins. The specific aims of the current budget cycle are to crystalize AlkB and initiate X-ray analysis to set the stage for structural determination. The long-term goals of our structural biology efforts are to provide an atomic description of AlkB structure, and to uncover the mechanisms of selective modification of hydrocarbons. The structural information will help elucidating how the unactivated C-H bonds of saturated hydrocarbons are oxidized to initiate biodegradation and biotransformation processes. The knowledge gained will be fundamental to biotechnological applications to biofuel transformation of non-edible oil feedstock. Renewable biodiesel is a promising energy carry that can be used to reduce fossil fuel dependency. The proposed research capitalizes on prior BES-supported efforts on over-expression and purification of AlkB to explore the inner workings of a bioenergy-relevant membrane-bound enzyme.

  18. Redox Impact on Starch Biosynthetic Enzymes in Arabidopsis thaliana

    DEFF Research Database (Denmark)

    Skryhan, Katsiaryna

    Summary The thesis provides new insight into the influence of the plant cell redox state on the transient starch metabolism in Arabidopsis thaliana with a focus on starch biosynthetic enzymes. Two main hypotheses forms the basis of this thesis: 1) photosynthesis and starch metabolism...... are coordinated by the redox state of the cell via post-translational modification of the starch metabolic enzymes containing redox active cysteine residues and these cysteine residues became cross-linked upon oxidation providing a conformational change leading to activity loss; 2) cysteine residues...... of chloroplast enzymes can play a role not only in enzyme activity and redox sensitivity but also in protein folding and stability upon oxidation. Several redox sensitive enzymes identified in this study can serve as potential targets to control the carbon flux to and from starch during the day and night...

  19. Perspectives of Solid State Fermentation for Production of Food Enzymes

    Directory of Open Access Journals (Sweden)

    Cristobal Noe Aguilar


    Full Text Available Food industry represents one of the economic sectors where microbial metabolites have found a wide variety of applications. This is the case of some enzymes, such as amylases, cellulases, pectinases and proteases which have played a very important role as food additives. Most of these enzymes have been produced by submerged cultures at industrial level. Many works in the literature present detailed aspects involved with those enzymes and their importance in the food industry. However, the production and application studies of those enzymes produced by solid state fermentations are scarce in comparison with submerged fermentation. This review involves production aspects of the seven enzymes: tannases, pectinases, caffeinases, mannanases, phytases, xylanases and proteases, which can be produced by solid state fermentation showing attractive advantages. Additionally, process characteristics of solid state fermentation are considered.

  20. A Simple Structure Model for Enzyme Production by Phanerochaete chrysosporium

    Institute of Scientific and Technical Information of China (English)

    岑沛霖; 郑重鸣; FOOYinDin; JefferyPhilipObbard; 林建平


    In order to understand the behavior of ligninolytic enzyme production by white rot fungi Phanerochaete chrysosporium, study on time courses and a mathematical model for the production of lignin peroxidase (LiP) and manganese peroxidase (MnP) of the fungi was undertaken. Based on the Monod-Jacob operon model, the ligninolytic enzyme would be synthesized in the absence of a related repressor. The repressor is assumed to be active in the presence of ammonia nitrogen, and as combined as co-repressor, it causes the inhibition of enzyme synthesis. The model can explain the mechanism of extracellular ligninolytic enzyme production by white rot fungi. The results,as predicted by the model, correspond closely to those observed in experimental studies. In addition, some light is also shed on unmeasured variables, such as the concentrations of repressor and mRNA that are related to the enzyme synthesis.

  1. Computational approach for enzymes present in Capsicum annuum: A review

    Directory of Open Access Journals (Sweden)

    Shivendu Ranjan


    Full Text Available Capasicum annuumor sweet bell pepper is one of the more economical and agriculturally viable vegetable grown all over the world owing to its antioxidant and other medicinal properties. This review highlights the essential enzymes present and its mode of action using bioinformatics online tools viz.uniprot, swissprot and Brenda enzyme db and ExPAsy protein databases. The enzymes viz. peroxidase, polyphenol oxidase, tyrosinase, catecholase, Pectin esterase, Catalase, 9-lipoxygenase, L-asparaginase, Polygalactouronase, Capsanthin and Ribulose-Phosphate 3-Epimerase contribute to its properties by various molecular mechanisms. Understanding of these mechanisms will be helpful for application of these enzymes in food processing and in the production of food ingredients. The increasing sophistication of processing industries creates a demand for abroad variety of enzymes with characteristics compatible with food processing conditions for e.g. shelf life of fruits and vegetables canbe increased by decreasing the levels of peroxidase and polyphenoloxidase

  2. Diffusional correlations among multiple active sites in a single enzyme. (United States)

    Echeverria, Carlos; Kapral, Raymond


    Simulations of the enzymatic dynamics of a model enzyme containing multiple substrate binding sites indicate the existence of diffusional correlations in the chemical reactivity of the active sites. A coarse-grain, particle-based, mesoscopic description of the system, comprising the enzyme, the substrate, the product and solvent, is constructed to study these effects. The reactive and non-reactive dynamics is followed using a hybrid scheme that combines molecular dynamics for the enzyme, substrate and product molecules with multiparticle collision dynamics for the solvent. It is found that the reactivity of an individual active site in the multiple-active-site enzyme is reduced substantially, and this effect is analyzed and attributed to diffusive competition for the substrate among the different active sites in the enzyme.

  3. Why enzymes are proficient catalysts: beyond the Pauling paradigm. (United States)

    Zhang, Xiyun; Houk, K N


    Pauling proposed that "enzymes are molecules that are complementary in structure to the activated complexes of the reactions that they catalyze, ..., [rather than] entering into reactions". This paradigm has dominated thinking in the field. While complementarity of the type proposed by Pauling can account for acceleration up to 11 orders of magnitude, most enzymes exceed that proficiency. Enzymes with proficiencies ((k(cat)/K(M))/k(uncat)) > 10(11) M(-1) achieve over 15 kcal/mol of "transition state binding" not merely by a concatenation of noncovalent effects but by covalent bond formation between enzyme or cofactor and transition state, involving a change in mechanism from that in aqueous solution. Enzymes enter into reactions with substrates and do not merely complement the transition states of the uncatalyzed reactions.

  4. Lytic Polysaccharide Monooxygenases - Studies of Fungal Secretomes and Enzyme Properties

    DEFF Research Database (Denmark)

    Nekiunaite, Laura

    Efficient degradation of plant biomass by enzymes is an important step towards a more environmentally friendly and sustainable bioeconomy. However, the complexity and recalcitrant nature of the substrates limit enzyme performance on plant biomass and current enzyme cocktails are not efficient...... of the fungus secretomes on different starches was that the LPMOs, shown to be active on starch, were highly abundant, together with other oxidative enzymes suggesting an important role for these enzymes in fungal starch degradation. The presence of binding sites for AmyR, a transcriptional regulator for starch...... on cellulose and xyloglucan is demonstrated. Previous studies have shown that some fungal LPMOs are capable to degrade xyloglucan but only by unsubstituted glucose unit in the backbone. This study for the first time showed that LPMO from F. graminearum is able to cleave xyloglucan backbone randomly, including...

  5. Radiation sterilization of enzyme hybrids with biodegradable polymers

    Energy Technology Data Exchange (ETDEWEB)

    Furuta, Masakazu E-mail:; Oka, Masahito; Hayashi, Toshio


    Ionizing radiations, which have already been utilized for the sterilization of medical supplies as well as gas fumigation, should be the final candidate to decontaminate 'hybrid' biomaterials containing bio-active materials including enzymes because irradiation induces neither heat nor substances affecting the quality of the materials and our health. In order to check the feasibility of {sup 60}Co-gamma rays on these materials, we selected commercial proteases including papain and bromelain hybridized with commercial activated chitosan beads and demonstrated that these enzyme-hybrids suspended in water showed the significant radiation durability of more than twice as much as free enzyme solution at 25-kGy irradiation. Enhanced thermal and storage stability of the enzyme hybrids were not affected by the same dose level of irradiation, either, indicating that commercial irradiation sterilization method is applicable to enzyme hybrids without modification.

  6. Thermodynamics of Enzyme-Catalyzed Reactions. Part 3. Hydrolases (United States)

    Goldberg, Robert N.; Tewari, Yadu B.


    Equilibrium constants and enthalpy changes for reactions catalyzed by the hydrolase class of enzymes have been compiled. For each reaction the following information is given: The reference for the data; the reaction studied; the name of the enzyme used and its Enzyme Commission number; the method of measurement; the conditions of measurement [temperature, pH, ionic strength, and the buffer(s) and cofactor(s) used]; the data and an evaluation of it; and, sometimes, commentary on the data and on any corrections which have been applied to it or any calculations for which the data have been used. The data from 145 references have been examined and evaluated. Chemical Abstract Service registry numbers are given for the substances involved in these various reactions. There is a cross reference between the substances and the Enzyme Commission numbers of the enzymes used to catalyze the reactions in which the substances participate.

  7. Thermodynamics of Enzyme-Catalyzed Reactions: Part 4. Lyases (United States)

    Goldberg, Robert N.; Tewari, Yadu B.


    Equilibrium constants and enthalpy changes for reactions catalyzed by the lyase class of enzymes have been compiled. For each reaction the following information is given: the reference for the data; the reaction studied; the name of the enzyme used and its Enzyme Commission number; the method of measurement; the conditions of measurement (temperature, pH, ionic strength, and the buffer(s) and cofactor(s) used); the data and an evaluation of it; and, sometimes, commentary on the data and on any corrections which have been applied to it or any calculations for which the data have been used. The data from 106 references have been examined and evaluated. Chemical Abstract Service registry numbers are given for the substances involved in these various reactions. There is a cross reference between the substances and the Enzyme Commission numbers of the enzymes used to catalyze the reactions in which the substances participate.

  8. Thermodynamics of Enzyme-Catalyzed Reactions: Part 2. Transferases (United States)

    Goldberg, Robert N.; Tewari, Yadu B.


    Equilibrium constants and enthalpy changes for reactions catalyzed by the transferase class of enzymes have been compiled. For each reaction the following information is given: the reference for the data; the reaction studied; the name of the enzyme used and its Enzyme Commission number; the method of measurement; the conditions of measurement [temperature, pH, ionic strength, and the buffer(s) and cofactor(s) used]; the data and an evaluation of it; and, sometimes, commentary on the data and on any corrections which have been applied to it or any calculations for which the data have been used. The data from 285 references have been examined and evaluated. Chemical Abstract Service registry numbers are given for the substances involved in these various reactions. There is a cross reference between the substances and the Enzyme Commission numbers of the enzymes used to catalyze the reactions in which the substances participate.

  9. Evolution of Fungal enzymes in the attine ant symbiosis

    DEFF Research Database (Denmark)

    de Fine Licht, Henrik Hjarvard; Schiøtt, Morten; Boomsma, Jacobus Jan

    The attine ant symbiosis is characterized by ancient but varying degrees of diffuse co-evolution between the ants and their fungal cultivars. Domesticated fungi became dependent on vertical transmission by queens and the ant colonies came to rely on their symbiotic fungus for food and thus...... as garden substrate, whereas the more basal genera use leaf litter, insect feces and insect carcasses. We hypothesized that enzyme activity of fungal symbionts has co-evolved with substrate use and we measured enzyme activities of fungus gardens in the field to test this, focusing particularly on plant...... decomposing enzymes. We further obtained gene sequences coding for specific enzymes and used them to reconstruct the fungal symbiont phylogeny and to compare the trees obtained with those known from sequence information of genes that have no specific link to enzyme function. Differences in fungus garden...


    DEFF Research Database (Denmark)

    De Fine Licht, Henrik H; Schiøtt, Morten; Mueller, Ulrich G


    an association with a monophyletic clade of specialized symbionts. In conjunction with the transition to specialized symbionts, the ants advanced in colony size and social complexity. Here we provide a comparative study of the functional specialization in extracellular enzyme activities in fungus gardens across...... the attine phylogeny. We show that, relative to sister clades, gardens of higher-attine ants have enhanced activity of protein-digesting enzymes, whereas gardens of leaf-cutting ants also have increased activity of starch-digesting enzymes. However, the enzyme activities of lower-attine fungus gardens...... are targeted primarily towards partial degradation of plant cell walls, reflecting a plesiomorphic state of non-domesticated fungi. The enzyme profiles of the higher-attine and leaf-cutting gardens appear particularly suited to digest fresh plant materials and to access nutrients from live cells without major...

  11. Ligninolytic enzymes from Ganoderma spp: current status and potential applications. (United States)

    Zhou, Xuan-Wei; Cong, Wei-Ran; Su, Kai-Qi; Zhang, Yong-Ming


    White-rot fungal species belonging to Ganoderma have long been used as medicinal mushrooms in many Asian countries. In recent years, however, attention is not just being paid to their pharmacological properties, but to their other potentially valuable features as well, including their secretion of enzymes which decompose lignin. The current literature regarding lignin-modifying enzymes from the genus Ganoderma, their potential uses, and the components, structures and processes of lignocellulose degradation are discussed. The ligninolytic enzymes from the genus Ganoderma, as well as the number of additional enzymes that participate in lignin degradation, are summarized; further, the potential applications of these enzymes are analyzed and probed in this article. This review will provide insight on the valuable applications of Ganoderma spp. and will serve as a useful reference on the use of lignocellulose degradation as a means of environmental protection.

  12. Effect of Spacer and the Enzyme-Linked Immunosorbent Assay

    Directory of Open Access Journals (Sweden)

    Manisha Sathe


    Full Text Available The effect of spacers and the enzyme-linked immunosorbent assay (ELISA formats on the functional parameters of assays such as lower detection limit, inhibitory concentration at 50 per cent (IC50, and specificity were studied. Enzyme conjugates having hydrophobic and hydrophilic spacers were prepared using O-isopropyl methylphosphonic acid (IMPA and horseradish peroxidase (HRP as an enzyme label. Comparison was made with reference to enzyme conjugate without any spacer. The present investigation revealed that the presence of a hydrophilic spacer in the enzyme conjugate significantly improves the sensitivity of assays. An enhanced IC50 value achieved was 0.01 μg mL−1 for free antigen detection by direct immunoassay using hydrophilic spacers and precoating of ELISA plates by secondary antibody. The use of a hydrophilic spacer might have helped in projecting the hapten in the aqueous phase, leading to enhanced antibody binding signal and improved sensitivity of the assay.

  13. Structural analysis of enzymes used for bioindustry and bioremediation. (United States)

    Tanokura, Masaru; Miyakawa, Takuya; Guan, Lijun; Hou, Feng


    Microbial enzymes have been widely applied in the large-scale, bioindustrial manufacture of food products and pharmaceuticals due to their high substrate specificity and stereoselectivity, and their effectiveness under mild conditions with low environmental burden. At the same time, bioremedial techniques using microbial enzymes have been developed to solve the problem of industrial waste, particularly with respect to persistent chemicals and toxic substances. And finally, structural studies of these enzymes have revealed the mechanistic basis of enzymatic reactions, including the stereoselectivity and binding specificity of substrates and cofactors. The obtained structural insights are useful not only to deepen our understanding of enzymes with potential bioindustrial and/or bioremedial application, but also for the functional improvement of enzymes through rational protein engineering. This review shows the structural bases for various types of enzymatic reactions, including the substrate specificity accompanying cofactor-controlled and kinetic mechanisms.

  14. Enzyme Characterization in Microreactors by UV-Vis Spectroscopy

    DEFF Research Database (Denmark)

    Ringborg, Rolf Hoffmeyer; Krühne, Ulrich; Woodley, John

    for selection can at this point be improved by characterization of the enzyme performance where also inhibition and toxicity effects are taken into account. Enzyme characterization is here defined as the effect on initial rate of reaction with respect to pH, enzyme, substrate, co-substrate, product and co......-product concentration [2]. From this investigation, it will be possible to determine whether the enzyme meets the criteria for process requirements or not. The development of the process will determine the requirements and this can also reach a state of maturity that resolves obstacles, lowers criteria and paves......, as the enzyme resource is scarce at this point of development. In the case where the reaction operates with UV active components, UV can be used to detect compounds with high sensitivity supplemented by multivariate data analysis. The spectra are here decorrelated and regressed to yield concentrations...

  15. Targeting amyloid-degrading enzymes as therapeutic strategies in neurodegeneration. (United States)

    Turner, Anthony J; Fisk, Lilia; Nalivaeva, Natalia N


    The levels of amyloid beta-peptides (Abeta) in the brain represent a dynamic equilibrium state as a result of their biosynthesis from the amyloid precursor protein (APP) by beta- and gamma-secretases, their degradation by a team of amyloid-degrading enzymes, their subsequent oligomerization, and deposition into senile plaques. While most therapeutic attention has focused on developing inhibitors of secretases to prevent Abeta formation, enhancing the rate of Abeta degradation represents an alternative and viable strategy. Current evidence both in vivo and in vitro suggests that there are three major players in amyloid turnover: neprilysin, endothelin converting enzyme(s), and insulin-degrading enzyme, all of which are zinc metallopeptidases. Other proteases have also been implicated in amyloid metabolism, including angiotensin-converting enzyme, and plasmin but for these the evidence is less compelling. Neprilysin and endothelin converting enzyme(s) are homologous membrane proteins of the M13 peptidase family, which normally play roles in the biosynthesis and/or metabolism of regulatory peptides. Insulin-degrading enzyme is structurally and mechanistically distinct. The regional, cellular, and subcellular localizations of these enzymes differ, providing an efficient and diverse mechanism for protecting the brain against the normal accumulation of toxic Abeta peptides. Reduction in expression levels of some of these proteases following insults (e.g., hypoxia and ischemia) or aging might predispose to the development of Alzheimer's disease. Conversely, enhancement of their levels by gene delivery or pharmacological means could be neuroprotective. Even a relatively small enhancement of Abeta metabolism could slow the inexorable progression of the disease. The relative merits of targeting these enzymes for the treatment of Alzheimer's disease will be reviewed and possible side-effects of enhancing their activity evaluated.

  16. Paradoxical Roles of Antioxidant Enzymes: Basic Mechanisms and Health Implications. (United States)

    Lei, Xin Gen; Zhu, Jian-Hong; Cheng, Wen-Hsing; Bao, Yongping; Ho, Ye-Shih; Reddi, Amit R; Holmgren, Arne; Arnér, Elias S J


    Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated from aerobic metabolism, as a result of accidental electron leakage as well as regulated enzymatic processes. Because ROS/RNS can induce oxidative injury and act in redox signaling, enzymes metabolizing them will inherently promote either health or disease, depending on the physiological context. It is thus misleading to consider conventionally called antioxidant enzymes to be largely, if not exclusively, health protective. Because such a notion is nonetheless common, we herein attempt to rationalize why this simplistic view should be avoided. First we give an updated summary of physiological phenotypes triggered in mouse models of overexpression or knockout of major antioxidant enzymes. Subsequently, we focus on a series of striking cases that demonstrate "paradoxical" outcomes, i.e., increased fitness upon deletion of antioxidant enzymes or disease triggered by their overexpression. We elaborate mechanisms by which these phenotypes are mediated via chemical, biological, and metabolic interactions of the antioxidant enzymes with their substrates, downstream events, and cellular context. Furthermore, we propose that novel treatments of antioxidant enzyme-related human diseases may be enabled by deliberate targeting of dual roles of the pertaining enzymes. We also discuss the potential of "antioxidant" nutrients and phytochemicals, via regulating the expression or function of antioxidant enzymes, in preventing, treating, or aggravating chronic diseases. We conclude that "paradoxical" roles of antioxidant enzymes in physiology, health, and disease derive from sophisticated molecular mechanisms of redox biology and metabolic homeostasis. Simply viewing antioxidant enzymes as always being beneficial is not only conceptually misleading but also clinically hazardous if such notions underpin medical treatment protocols based on modulation of redox pathways.

  17. Database of ligand-induced domain movements in enzymes

    Directory of Open Access Journals (Sweden)

    Hayward Steven


    Full Text Available Abstract Background Conformational change induced by the binding of a substrate or coenzyme is a poorly understood stage in the process of enzyme catalysed reactions. For enzymes that exhibit a domain movement, the conformational change can be clearly characterized and therefore the opportunity exists to gain an understanding of the mechanisms involved. The development of the non-redundant database of protein domain movements contains examples of ligand-induced domain movements in enzymes, but this valuable data has remained unexploited. Description The domain movements in the non-redundant database of protein domain movements are those found by applying the DynDom program to pairs of crystallographic structures contained in Protein Data Bank files. For each pair of structures cross-checking ligands in their Protein Data Bank files with the KEGG-LIGAND database and using methods that search for ligands that contact the enzyme in one conformation but not the other, the non-redundant database of protein domain movements was refined down to a set of 203 enzymes where a domain movement is apparently triggered by the binding of a functional ligand. For these cases, ligand binding information, including hydrogen bonds and salt-bridges between the ligand and specific residues on the enzyme is presented in the context of dynamical information such as the regions that form the dynamic domains, the hinge bending residues, and the hinge axes. Conclusion The presentation at a single website of data on interactions between a ligand and specific residues on the enzyme alongside data on the movement that these interactions induce, should lead to new insights into the mechanisms of these enzymes in particular, and help in trying to understand the general process of ligand-induced domain closure in enzymes. The website can be found at:

  18. Evolutionarily conserved substrate substructures for automated annotation of enzyme superfamilies.

    Directory of Open Access Journals (Sweden)

    Ranyee A Chiang

    Full Text Available The evolution of enzymes affects how well a species can adapt to new environmental conditions. During enzyme evolution, certain aspects of molecular function are conserved while other aspects can vary. Aspects of function that are more difficult to change or that need to be reused in multiple contexts are often conserved, while those that vary may indicate functions that are more easily changed or that are no longer required. In analogy to the study of conservation patterns in enzyme sequences and structures, we have examined the patterns of conservation and variation in enzyme function by analyzing graph isomorphisms among enzyme substrates of a large number of enzyme superfamilies. This systematic analysis of substrate substructures establishes the conservation patterns that typify individual superfamilies. Specifically, we determined the chemical substructures that are conserved among all known substrates of a superfamily and the substructures that are reacting in these substrates and then examined the relationship between the two. Across the 42 superfamilies that were analyzed, substantial variation was found in how much of the conserved substructure is reacting, suggesting that superfamilies may not be easily grouped into discrete and separable categories. Instead, our results suggest that many superfamilies may need to be treated individually for analyses of evolution, function prediction, and guiding enzyme engineering strategies. Annotating superfamilies with these conserved and reacting substructure patterns provides information that is orthogonal to information provided by studies of conservation in superfamily sequences and structures, thereby improving the precision with which we can predict the functions of enzymes of unknown function and direct studies in enzyme engineering. Because the method is automated, it is suitable for large-scale characterization and comparison of fundamental functional capabilities of both characterized

  19. Parallel versus Off-Pathway Michaelis-Menten Mechanism for Single-Enzyme Kinetics of a Fluctuating Enzyme. (United States)

    Kumar, Ashutosh; Maity, Hiranmay; Dua, Arti


    Recent fluorescence spectroscopy measurements of the turnover time distribution of single-enzyme turnover kinetics of β-galactosidase provide evidence of Michaelis-Menten kinetics at low substrate concentration. However, at high substrate concentrations, the dimensionless variance of the turnover time distribution shows systematic deviations from the Michaelis-Menten prediction. This difference is attributed to conformational fluctuations in both the enzyme and the enzyme-substrate complex and to the possibility of both parallel- and off-pathway kinetics. Here, we use the chemical master equation to model the kinetics of a single fluctuating enzyme that can yield a product through either parallel- or off-pathway mechanisms. An exact expression is obtained for the turnover time distribution from which the mean turnover time and randomness parameters are calculated. The parallel- and off-pathway mechanisms yield strikingly different dependences of the mean turnover time and the randomness parameter on the substrate concentration. In the parallel mechanism, the distinct contributions of enzyme and enzyme-substrate fluctuations are clearly discerned from the variation of the randomness parameter with substrate concentration. From these general results, we conclude that an off-pathway mechanism, with substantial enzyme-substrate fluctuations, is needed to rationalize the experimental findings of single-enzyme turnover kinetics of β-galactosidase.

  20. Expression of Lecithin: Cholesterol Acyltransferaseand/or apoA-I Mediated by Recombinant Adeno-as-sociated Virus in Myogenic Cell

    Institute of Scientific and Technical Information of China (English)

    王立峰; 范乐明; 陈丙莺; 刘宝瑞; 王若宁; 魏恩会


    Objective Lecithia: cholesterol acyltrmsfer ase (LCAT) is the major enzyme producing most plasma cholesterol esters( CE )and a key partiipant in the process of reverse cholesterol traansfer ( RCT). The aim of the study was to co-express LCAT and its nature activator apoA- I medi ated by recombinant adeno-associated virus vectors in the skeletal muscle cells, and open a new avenue of gene therapy touard the primary or secondary LCAT deficiency. Methods 293T cells were cotrans fected with pDG and rAAVAIL/rAAVL plasmid to produce infectious rAAV, and non-iouic iodixanol gradients centri f ngation followed by heparin affinity chromatography was per formed f or separation . pu rification and concentration of rAAV. The particle numbers of rAAV were assayed by dot-blot, then these vectors transduced C2C12 myoblasts. ELISA and Western Blot asasayed for human apoA- I and 3H-cholesterol labeled radiochemical methods for LCAT activity. Genomic DNA was extracted from transduced C2C12 and analyzed fo the presence of vector sequence by PCR amplifiations. Results The particle mumbers of rAAV were 7× 1014/L (rAAAIL) and 1 × 1014/L (rAAVL). The expres sion of human apoA- I cDNA and/or human LCAT cDNA in transduced C2C12 cells lasted for 3 0 d, even after myoblasts were differentiated into myotubes. PCR products for transgene indiated the long-term persistence of transduced vector sequences. Conclusion The result indicated that the meth ods used for production and purification of rAAV is an effiient and rAAV vector mediate the expres sion and secretion of LCAT and apoA- I gene in C2C12 myoblasts successfully. It suggested that the use of rAAV vectors mediating the high efficiency, long-term expression of human LCAT cDNA and/ or apoA- I cDNA in skeletal muscle in vivo might be a safe and fessible strategy to the gene therapy of LCAT deficiency.

  1. Secondary Structure of Holo-Enzyme and Apo-Enzyme of Aminoacylase Using CD and FTIR Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    张艳; 陈培榕; 何飚; 周海梦


    Aminoacylase is a dimeric metal enzyme containing one Zn2+-ion per subunit of active site.It is essential for the activity of enzyme.Fourier transform-infrared spectroscopy has been used for the studyon the secondary structure of holo-enzyme and ago-enzyme of aminoaeylase from pig kidney.Resolution en-hancement of the amide I secondary structure-sensitive overlapped component bands has been achieved bymeans of the Fourier self-deconvolution and the Fourier derivation.The effect of Zn2+-ion on the secondarystructure of aminoacylase was observed clearly.After the removal of Zn2+in aminoacylase,the extent of theordered structure was decreased markedly.It suggests that the conformation st or near the active site ofaminoacylase contains more ordered structures,and the presence of Zn2+helps to keep the conformation ofthe active site required for the catalysis of the enzyme.

  2. Adsorption of amylase enzyme on ultrafiltration membranes. (United States)

    Beier, Søren Prip; Enevoldsen, Ann Dorrit; Kontogeorgis, Georgios M; Hansen, Ernst B; Jonsson, Gunnar


    A method to measure the static adsorption on membrane surfaces has been developed and described. The static adsorption of amylase-F has been measured on two different ultrafiltration membranes, both with a cutoff value of 10 kDa (a PES membrane and the ETNA10PP membrane, which is a surface-modified PVDF membrane). The adsorption follows the Langmuir adsorption theory. Thus, the static adsorption consists of monolayer coverage and is expressed both as a permeability drop and an adsorption resistance. From the adsorption isotherms, the maximum static permeability drops and the maximum static adsorption resistances are determined. The maximum static permeability drop for the hydrophobic PES membrane is 75%, and the maximum static adsorption resistance is 0.014 The maximum static permeability drop for the hydrophilic surface-modified PVDF membrane (ETNA10PP) is 23%, and the maximum static adsorption resistance is 0.0046 The difference in maximum static adsorption, by a factor of around 3, affects the performance during the filtration of a 5 g/L amylase-F solution at 2 bar. The two membranes behave very similarly during filtration with almost equal fluxes and retentions even though the initial water permeability of the PES membrane is around 3 times larger than the initial water permeability of the ETNA10PP membrane. This is mainly attributed to the larger maximum static adsorption of the PES membrane. The permeability drop during filtration exceeds the maximum static permeability drop, indicating that the buildup layer on the membranes during filtration exceeds monolayer coverage, which is also seen by the increase in fouling resistance during filtration. The accumulated layer on the membrane surface can be described as a continually increasing cake-layer thickness, which is independent of the membrane type. At higher concentrations of enzyme, concentration polarization effects cannot be neglected. Therefore, stagnant film theory and the osmotic

  3. Comparison of Candidate Pairs of Hydrolytic Enzymes for Spectrophotometric-dual-enzyme-simultaneous-assay. (United States)

    Liu, Hongbo; Yuan, Mei; Yang, Xiaolan; Hu, Xiaolei; Liao, Juan; Dang, Jizheng; Xie, Yanling; Pu, Jun; Li, Yuanli; Zhan, Chang-Guo; Liao, Fei


    Spectrophotometric-dual-enzyme-simultaneous-assay (SDESA) for enzyme-linked-immunosorbent-assay (ELISA) of two components in one well is a patented platform when a special pair of labels is accessible. With microplate readers, alkaline phosphatase on 4-nitro-1-naphthylphosphate (4NNPP) served as label A; Pseudomonas aeruginosa arylsulfatase (PAAS) and acetylcholinesterase (AChE) on their substrates derived from 4-nitrophenol/analogue served as candidate label B, and were compared for SDESA with an engineered alkaline phosphatase of Eschrichia coli (ECAP). For SDESA, the interference from overlapped absorbance was corrected based on linear additivity of absorbance to derive initial rates reflected by absorbance change at 450 nm for ECAP and at 405 nm for PAAS or AChE, after the correction of spontaneous hydrolysis. For SDESA with ECAP, AChE already had sufficient activity in an optimized buffer; PAAS was more favorable for substrate stability and product absorbance except for lower activity. Therefore, PAAS engineered for sufficient activity plus alkaline phosphatase is absorbing for ELISA via SDESA.

  4. Phylogenomic relationships between amylolytic enzymes from 85 strains of fungi.

    Directory of Open Access Journals (Sweden)

    Wanping Chen

    Full Text Available Fungal amylolytic enzymes, including α-amylase, gluocoamylase and α-glucosidase, have been extensively exploited in diverse industrial applications such as high fructose syrup production, paper making, food processing and ethanol production. In this paper, amylolytic genes of 85 strains of fungi from the phyla Ascomycota, Basidiomycota, Chytridiomycota and Zygomycota were annotated on the genomic scale according to the classification of glycoside hydrolase (GH from the Carbohydrate-Active enZymes (CAZy Database. Comparisons of gene abundance in the fungi suggested that the repertoire of amylolytic genes adapted to their respective lifestyles. Amylolytic enzymes in family GH13 were divided into four distinct clades identified as heterologous α-amylases, eukaryotic α-amylases, bacterial and fungal α-amylases and GH13 α-glucosidases. Family GH15 had two branches, one for gluocoamylases, and the other with currently unknown function. GH31 α-glucosidases showed diverse branches consisting of neutral α-glucosidases, lysosomal acid α-glucosidases and a new clade phylogenetically related to the bacterial counterparts. Distribution of starch-binding domains in above fungal amylolytic enzymes was related to the enzyme source and phylogeny. Finally, likely scenarios for the evolution of amylolytic enzymes in fungi based on phylogenetic analyses were proposed. Our results provide new insights into evolutionary relationships among subgroups of fungal amylolytic enzymes and fungal evolutionary adaptation to ecological conditions.

  5. The other face of restriction: modification-dependent enzymes. (United States)

    Loenen, Wil A M; Raleigh, Elisabeth A


    The 1952 observation of host-induced non-hereditary variation in bacteriophages by Salvador Luria and Mary Human led to the discovery in the 1960s of modifying enzymes that glucosylate hydroxymethylcytosine in T-even phages and of genes encoding corresponding host activities that restrict non-glucosylated phage DNA: rglA and rglB (restricts glucoseless phage). In the 1980's, appreciation of the biological scope of these activities was dramatically expanded with the demonstration that plant and animal DNA was also sensitive to restriction in cloning experiments. The rgl genes were renamed mcrA and mcrBC (modified cytosine restriction). The new class of modification-dependent restriction enzymes was named Type IV, as distinct from the familiar modification-blocked Types I-III. A third Escherichia coli enzyme, mrr (modified DNA rejection and restriction) recognizes both methylcytosine and methyladenine. In recent years, the universe of modification-dependent enzymes has expanded greatly. Technical advances allow use of Type IV enzymes to study epigenetic mechanisms in mammals and plants. Type IV enzymes recognize modified DNA with low sequence selectivity and have emerged many times independently during evolution. Here, we review biochemical and structural data on these proteins, the resurgent interest in Type IV enzymes as tools for epigenetic research and the evolutionary pressures on these systems.

  6. Type I restriction endonucleases are true catalytic enzymes. (United States)

    Bianco, Piero R; Xu, Cuiling; Chi, Min


    Type I restriction endonucleases are intriguing, multifunctional complexes that restrict DNA randomly, at sites distant from the target sequence. Restriction at distant sites is facilitated by ATP hydrolysis-dependent, translocation of double-stranded DNA towards the stationary enzyme bound at the recognition sequence. Following restriction, the enzymes are thought to remain associated with the DNA at the target site, hydrolyzing copious amounts of ATP. As a result, for the past 35 years type I restriction endonucleases could only be loosely classified as enzymes since they functioned stoichiometrically relative to DNA. To further understand enzyme mechanism, a detailed analysis of DNA cleavage by the EcoR124I holoenzyme was done. We demonstrate for the first time that type I restriction endonucleases are not stoichiometric but are instead catalytic with respect to DNA. Further, the mechanism involves formation of a dimer of holoenzymes, with each monomer bound to a target sequence and, following cleavage, each dissociates in an intact form to bind and restrict subsequent DNA molecules. Therefore, type I restriction endonucleases, like their type II counterparts, are true enzymes. The conclusion that type I restriction enzymes are catalytic relative to DNA has important implications for the in vivo function of these previously enigmatic enzymes.

  7. Purification and properties of elastolytic enzyme from Flavobacterium immotum. (United States)

    Ozaki, H; Shiio, I


    Elastolytic enzyme was purified and crystallized from culture fluid of Flavobacterium immotum No. 9-35. The purified enzyme was homogeneous on polyacrylamide gel electrophoresis. The molecular weight was determined by Sephadex G-100 gel filtration to be 13,000. The isoelectric point was between pH 8.3 and 8.9. The optimum pH of the enzyme was 7.2 for elastolytic activity. The purified enzyme showed not only elastolytic activity, but also non-specific proteolytic activity against various other proteins. Milk-clotting activity was also observed. The enzyme did not act on keratin, collagen, or fourteen amino acid esters, including N-benzoyl-L-alanine methyl ester, N-benzoyl-L-arginine ethyl ester, and N-acetyl-L-tyrosine ethyl ester, which were typical substrates of pancreatic elastase [EC], trypsin [EC], and chymotrypsin [EC], respectively. However, the enzyme selectively hydrolyzed elastin when both elastin and albumin were present in the reaction mixture. The enzyme was inhibited by o-phenanthroline and various heavy metals such as cadmium, lead, zinc, and mercury. Various inhibitors, such as diisopropyl phosphofluoridate, tosyl-L-lysine chloromethyl ketone, tosyl-L-phenylalanine chloromethyl ketone, trypsin inhibitor, iodoacetamide, etc., had no effect on the elastolytic activity.

  8. Benefits from Tween during enzymic hydrolysis of corn stover

    Energy Technology Data Exchange (ETDEWEB)

    Kaar, W.E.; Holtzapple, M.T. [Texas A and M Univ., College Station, TX (United States). Dept. of Chemical Engineering


    Corn stover is a potential substrate for fermentation processes. Previous work with corn stover demonstrated that lime pretreatment rendered it digestible by cellulase; however, high sugar yields required very high enzyme loadings. Because cellulase is a significant cost in biomass conversion processes, the present study focused on improving the enzyme efficiency using Tween 20 and Tween 80; Tween 20 is slightly more effective than Tween 80. The recommended pretreatment conditions for the biomass remained unchanged regardless of whether Tween was added during the hydrolysis. The recommended Tween loading was 0.15 g Tween/g dry biomass. The critical relationship was the Tween loading on the biomass, not the Tween concentration in solution. The 72-h enzymic conversion of pretreated corn stover using 5 FPU cellulase/g dry biomass at 50 C with Tween 20 as part of the medium was 0.85 g/g for cellulose, 0.66 g/g for xylan, and 0.75 for total polysaccharide; addition of Tween improved the cellulose, xylan, and total polysaccharide conversions by 42, 40, and 42%, respectively. Kinetic analyses showed that Tween improved the enzymic absorption constants, which increased the effective hydrolysis rate compared to hydrolysis without Tween. Furthermore, Tween prevented thermal deactivation of the enzymes, which allows for the kinetic advantage of higher temperature hydrolysis. Ultimate digestion studies showed higher conversions for samples containing Tween, indicating a substrate effect. It appears that Tween improves corn stover hydrolysis through three effects: enzyme stabilizer, lignocellulose disrupter, and enzyme effector.

  9. Water's contribution and enzyme's work: a KITA study (United States)

    Born, Benjamin; Sagi, Irit; Havenith, Martina


    Enzyme dynamics control and contribute to myriads of mostly well-characterized metabolic processes. Yet, understanding the role of the aqueous reaction matrix remains an experimental challenge. By kinetic THz absorption (KITA) spectroscopy, we have studied the dynamic interplay between water and a human metalloenzyme at work in realtime. In our KITA setup, we combined a THz-time domain spectrometer (THz-TDS) with a stopped-flow mixer to study reactions with millisecond time resolution. We used picosecond THz pulses which directly probe hydrogen bond formation and breaking in the water network to observe enzyme-water interactions upon enzyme catalysis at the active site of a matrix-metalloprotease. During formation of the productive Michaelis complex, we detected a perturbation of coupled enzyme-water network dynamics. Supplemented by real-time biophysical techniques and molecular dynamics simulations we characterized the enzyme-water interplay in the particular case of enzyme catalysis. Our results suggest a polarization-induced gradient of water dynamics at the remote active site of a metalloenzyme with decelerated hydration water dynamics towards the active site. The observed long-range gradient of collective water motions might facilitate productive binding of substrates to enzyme active sites. Further KITA experiments shall improve our understanding of water's contribution to biological function.

  10. Caenorhabditis elegans glutamylating enzymes function redundantly in male mating. (United States)

    Chawla, Daniel G; Shah, Ruchi V; Barth, Zachary K; Lee, Jessica D; Badecker, Katherine E; Naik, Anar; Brewster, Megan M; Salmon, Timothy P; Peel, Nina


    Microtubule glutamylation is an important modulator of microtubule function and has been implicated in the regulation of centriole stability, neuronal outgrowth and cilia motility. Glutamylation of the microtubules is catalyzed by a family of tubulin tyrosine ligase-like (TTLL) enzymes. Analysis of individual TTLL enzymes has led to an understanding of their specific functions, but how activities of the TTLL enzymes are coordinated to spatially and temporally regulate glutamylation remains relatively unexplored. We have undertaken an analysis of the glutamylating TTLL enzymes in C. elegans We find that although all five TTLL enzymes are expressed in the embryo and adult worm, loss of individual enzymes does not perturb microtubule function in embryonic cell divisions. Moreover, normal dye-filling, osmotic avoidance and male mating behavior indicate the presence of functional amphid cilia and male-specific neurons. A ttll-4(tm3310); ttll-11(tm4059); ttll-5(tm3360) triple mutant, however, shows reduced male mating efficiency due to a defect in the response step, suggesting that these three enzymes function redundantly, and that glutamylation is required for proper function of the male-specific neurons.

  11. Microbial Enzymes with Special Characteristics for Biotechnological Applications

    Directory of Open Access Journals (Sweden)

    Poonam Singh Nigam


    Full Text Available This article overviews the enzymes produced by microorganisms, which have been extensively studied worldwide for their isolation, purification and characterization of their specific properties. Researchers have isolated specific microorganisms from extreme sources under extreme culture conditions, with the objective that such isolated microbes would possess the capability to bio-synthesize special enzymes. Various Bio-industries require enzymes possessing special characteristics for their applications in processing of substrates and raw materials. The microbial enzymes act as bio-catalysts to perform reactions in bio-processes in an economical and environmentally-friendly way as opposed to the use of chemical catalysts. The special characteristics of enzymes are exploited for their commercial interest and industrial applications, which include: thermotolerance, thermophilic nature, tolerance to a varied range of pH, stability of enzyme activity over a range of temperature and pH, and other harsh reaction conditions. Such enzymes have proven their utility in bio-industries such as food, leather, textiles, animal feed, and in bio-conversions and bio-remediations.

  12. Structural Bases of Stability-Function Tradeoffs in Enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Beadle, Beth M; Shoichet, Brian K [NWU, MED


    The structures of enzymes reflect two tendencies that appear opposed. On one hand, they fold into compact, stable structures; on the other hand, they bind a ligand and catalyze a reaction. To be stable, enzymes fold to maximize favorable interactions, forming a tightly packed hydrophobic core, exposing hydrophilic groups, and optimizing intramolecular hydrogen-bonding. To be functional, enzymes carve out an active site for ligand binding, exposing hydrophobic surface area, clustering like charges, and providing unfulfilled hydrogen bond donors and acceptors. Using AmpC {beta}-lactamase, an enzyme that is well-characterized structurally and mechanistically, the relationship between enzyme stability and function was investigated by substituting key active-site residues and measuring the changes in stability and activity. Substitutions of catalytic residues Ser64, Lys67, Tyr150, Asn152, and Lys315 decrease the activity of the enzyme by 10{sup 3}-10{sup 5}-fold compared to wild-type. Concomitantly, many of these substitutions increase the stability of the enzyme significantly, by up to 4.7 kcal/mol. To determine the structural origins of stabilization, the crystal structures of four mutant enzymes were determined to between 1.90 {angstrom} and 1.50 {angstrom} resolution. These structures revealed several mechanisms by which stability was increased, including mimicry of the substrate by the substituted residue (S64D), relief of steric strain (S64G), relief of electrostatic strain (K67Q), and improved polar complementarity (N152H). These results suggest that the preorganization of functionality characteristic of active sites has come at a considerable cost to enzyme stability. In proteins of unknown function, the presence of such destabilized regions may indicate the presence of a binding site.

  13. Examinations of the Chemical Step in Enzyme Catalysis. (United States)

    Singh, P; Islam, Z; Kohen, A


    Advances in computational and experimental methods in enzymology have aided comprehension of enzyme-catalyzed chemical reactions. The main difficulty in comparing computational findings to rate measurements is that the first examines a single energy barrier, while the second frequently reflects a combination of many microscopic barriers. We present here intrinsic kinetic isotope effects and their temperature dependence as a useful experimental probe of a single chemical step in a complex kinetic cascade. Computational predictions are tested by this method for two model enzymes: dihydrofolate reductase and thymidylate synthase. The description highlights the significance of collaboration between experimentalists and theoreticians to develop a better understanding of enzyme-catalyzed chemical conversions.

  14. Ecological effects of atmospheric nitrogen deposition on soil enzyme activity

    Institute of Scientific and Technical Information of China (English)

    WANG Cong-yan; Lv Yan-na; LIU Xue-yan Liu; WANG Lei


    The continuing increase in human activities is causing global changes such as increased deposition of atmospheric nitrogen.There is considerable interest in understanding the effects of increasing atmospheric nitrogen deposition on soil enzyme activities,specifically in terms of global nitrogen cycling and its potential future contribution to global climate change.This paper summarizes the ecological effects of atmospheric nitrogen deposition on soil enzyme activities,including size-effects,stage-effects,site-effects,and the effects of different levels and forms of atmospheric nitrogen deposition.We discuss needs for further research on the relationship between atmospheric nitrogen deposition and soil enzymes.

  15. Spectrophotometric Enzyme Assays for High-Throughput Screening

    Directory of Open Access Journals (Sweden)

    Jean-Louis Reymond


    Full Text Available This paper reviews high-throughput screening enzyme assays developed in our laboratory over the last ten years. These enzyme assays were initially developed for the purpose of discovering catalytic antibodies by screening cell culture supernatants, but have proved generally useful for testing enzyme activities. Examples include TLC-based screening using acridone-labeled substrates, fluorogenic assays based on the β-elimination of umbelliferone or nitrophenol, and indirect assays such as the back-titration method with adrenaline and the copper-calcein fluorescence assay for aminoacids.

  16. Enzyme screening with synthetic multifunctional pores: Focus on biopolymers (United States)

    Sordé, Nathalie; Das, Gopal; Matile, Stefan


    This report demonstrates that a single set of identical synthetic multifunctional pores can detect the activity of many different enzymes. Enzymes catalyzing either synthesis or degradation of DNA (exonuclease III or polymerase I), RNA (RNase A), polysaccharides (heparinase I, hyaluronidase, and galactosyltransferase), and proteins (papain, ficin, elastase, subtilisin, and pronase) are selected to exemplify this key characteristic of synthetic multifunctional pore sensors. Because anionic, cationic, and neutral substrates can gain access to the interior of complementarily functionalized pores, such pores can be the basis for very user-friendly screening of a broad range of enzymes. PMID:14530413

  17. Measurement of enzyme kinetics and inhibitor constants using enthalpy arrays. (United States)

    Recht, Michael I; Torres, Frank E; De Bruyker, Dirk; Bell, Alan G; Klumpp, Martin; Bruce, Richard H


    Enthalpy arrays enable label-free, solution-based calorimetric detection of molecular interactions in a 96-detector array format. Compared with conventional calorimetry, enthalpy arrays achieve a significant reduction of sample volume and measurement time through the combination of the small size of the detectors and ability to perform measurements in parallel. The current capabilities of the technology for studying enzyme-catalyzed reactions are demonstrated by determining the kinetic parameters for reactions with three model enzymes. In addition, the technology has been used with two classes of enzymes to determine accurate inhibitor constants for competitive inhibitors from measurements at a single inhibitor concentration.

  18. Structural biology of starch-degrading enzymes and their regulation

    DEFF Research Database (Denmark)

    Møller, Marie Sofie; Svensson, Birte


    Starch is a major energy source for all domains of life. Recent advances in structures of starch-degrading enzymes encompass the substrate complex of starch debranching enzyme, the function of surface binding sites in plant isoamylase, details on individual steps in the mechanism of plant...... disproportionating enzyme and a self-stabilised conformation of amylose accommodated in the active site of plant α-glucosidase. Important inhibitor complexes include a flavonol glycoside, montbretin A, binding at the active site of human pancreatic α-amylase and barley limit dextrinase inhibitor binding...

  19. Application of magnetic nanoparticles in smart enzyme immobilization. (United States)

    Vaghari, Hamideh; Jafarizadeh-Malmiri, Hoda; Mohammadlou, Mojgan; Berenjian, Aydin; Anarjan, Navideh; Jafari, Nahideh; Nasiri, Shahin


    Immobilization of enzymes enhances their properties for efficient utilization in industrial processes. Magnetic nanoparticles, due to their high surface area, large surface-to-volume ratio and easy separation under external magnetic fields, are highly valued. Significant progress has been made to develop new catalytic systems that are immobilized onto magnetic nanocarriers. This review provides an overview of recent developments in enzyme immobilization and stabilization protocols using this technology. The current applications of immobilized enzymes based on magnetic nanoparticles are summarized and future growth prospects are discussed. Recommendations are also given for areas of future research.

  20. Studies on Enzyme Kinetics by Microchip and Related Techniques

    Institute of Scientific and Technical Information of China (English)

    James J. Bao; WANG Huai-Feng; ZHOU Da-Wei; Ken R. Wehmeyer


    Both conventional and microchip-based capillary electrophoresis(CE) technologies have been used for the analysis of enzymes. Practical procedures of using CE to determine the Km and Vmax values of an enzyme have been developed. By studying the inhibition to the enzyme, it is possible to select a suitable drug candidate. When compared with the conventional CE method, single lane microchip-based method can improve the speed for the assay three times. By using multiple lane-based microchip, the speed can be further increased.

  1. Mixed Enzyme Systems for Delignification of Lignocellulosic Biomass

    Directory of Open Access Journals (Sweden)

    Elisa M. Woolridge


    Full Text Available The application of enzymes such as laccase and xylanase for the preparation of cellulose from lignocellulosic material is an option for those industries seeking to reduce the use of chlorine-containing bleach agents, thus minimizing the environmental impact of their processes. Mixed hydrolytic and oxidative enzyme systems have been well described in the context of biopulping, and thus provide good precedent regarding effectiveness, despite the susceptibility of xylanase to inactivation by laccase-generated oxidants. This paper examines the progress towards development of sequential and simultaneous mixed enzyme systems to accomplish delignification.

  2. Arginine Deiminase Enzyme Evolving As A Potential Antitumor Agent. (United States)

    Somani, Rakesh; Chaskar, Pratip K


    Some melanomas and hepatocellular carcinomas have been shown to be auxotrophic for arginine. Arginine deiminase (ADI), an arginine degrading enzyme isolated from Mycoplasma, can inhibit the growth of these tumors. It is a catabolizing enzyme which catabolizes arginine to citrulline. Tumor cells do not express an enzyme called arginosuccinate synthetase (ASS) and hence, these cells becomes auxotrophic for arginine. It is found that ADI is specific for arginine and did not degrade other amino acid. This review covers various aspects of ADIs like origin, properties and chemical modifications for better antitumor activity.

  3. Potentials for Soil Enzyme as Indicators of Ecological Management (United States)

    Senwo, Z. N.; Manu, A.; Coleman, T. L.


    Activity measurements of selected soil enzymes (cellulase, glucosidase, amidohydrolase, phosphatase, arylsulfatase) involved in carbon, nitrogen, phosphorus, and sulfur cycling in the biosphere, hold potential as early and sensitive indicators of soil ecological stress and restoration, These measurements are advantageous because the procedures are simple, rapid, and reproducible over time. Enzyme activities are sensitive to short-term changes in soil and kind-use management. Enzyme activities have also been observed to be closely related to soil organic matter proposed as an index of soil quality.

  4. Recent advances in microbial raw starch degrading enzymes. (United States)

    Sun, Haiyan; Zhao, Pingjuan; Ge, Xiangyang; Xia, Yongjun; Hao, Zhikui; Liu, Jianwen; Peng, Ming


    Raw starch degrading enzymes (RSDE) refer to enzymes that can directly degrade raw starch granules below the gelatinization temperature of starch. These promising enzymes can significantly reduce energy and simplify the process in starch industry. RSDE are ubiquitous and produced by plants, animals, and microorganisms. However, microbial sources are the most preferred one for large-scale production. During the past few decades, RSDE have been studied extensively. This paper reviews the recent development in the production, purification, properties, and application of microbial RSDE. This is the first review on microbial RSDE to date.


    Institute of Scientific and Technical Information of China (English)

    Sufeng Zhang; Yuqin An; Shuangfei Wang


    In this investigation, the secondary fibers from old book papers were treated with a kind of commercial cellulase. The modifying conditions that cellulase works best as enzyme dosage, temperature, pH value,pulp consistency, the reaction time and the primary freeness of pulp were optimized. Investigative work showed that the better drainage of the pulp was obtained, and the physical strengths were improved in different degrees, including the breaking length and density, when the fibers were treated with adequate enzyme preparations. The enzyme treatment effects were evidenced by means of SEM technology.

  6. Quaternary Structure Analyses of an Essential Oligomeric Enzyme. (United States)

    Soares da Costa, Tatiana P; Christensen, Janni B; Desbois, Sebastien; Gordon, Shane E; Gupta, Ruchi; Hogan, Campbell J; Nelson, Tao G; Downton, Matthew T; Gardhi, Chamodi K; Abbott, Belinda M; Wagner, John; Panjikar, Santosh; Perugini, Matthew A


    Here, we review recent studies aimed at defining the importance of quaternary structure to a model oligomeric enzyme, dihydrodipicolinate synthase. This will illustrate the complementary and synergistic outcomes of coupling the techniques of analytical ultracentrifugation with enzyme kinetics, in vitro mutagenesis, macromolecular crystallography, small angle X-ray scattering, and molecular dynamics simulations, to demonstrate the role of subunit self-association in facilitating protein dynamics and enzyme function. This multitechnique approach has yielded new insights into the molecular evolution of protein quaternary structure.


    Institute of Scientific and Technical Information of China (English)

    SufengZhang; YuqinAn; ShuangfeiWang


    In this investigation, the secondary fibers from old book papers were treated with a kind of commercialcel lulase. The modifying conditions that cellulase works best as enzyme dosage, temperature, pH value, pulp consistency, the reaction time and the primary freeness of pulp were optimized. Investigative work showed that the better drainage of the pulp was obtained, and the physical strengths were improved in different degrees, including the breaking length and density, when the fibers were treated with adequate enzyme preparations. The enzyme treatment effects were evidenced by means of SEM technology.

  8. Interplay of drug metabolizing enzymes with cellular transporters. (United States)

    Böhmdorfer, Michaela; Maier-Salamon, Alexandra; Riha, Juliane; Brenner, Stefan; Höferl, Martina; Jäger, Walter


    Many endogenous and xenobiotic substances and their metabolites are substrates for drug metabolizing enzymes and cellular transporters. These proteins may not only contribute to bioavailability of molecules but also to uptake into organs and, consequently, to overall elimination. The coordinated action of uptake transporters, metabolizing enzymes, and efflux pumps, therefore, is a precondition for detoxification and elimination of drugs. As the understanding of the underlying mechanisms is important to predict alterations in drug disposal, adverse drug reactions and, finally, drug-drug interactions, this review illustrates the interplay between selected uptake/efflux transporters and phase I/II metabolizing enzymes.

  9. Multi-enzyme catalyzed processes: Next generation biocatalysis

    DEFF Research Database (Denmark)

    Andrade Santacoloma, Paloma de Gracia; Sin, Gürkan; Gernaey, Krist


    considerations for mathematical modeling are discussed for the specific case where the synthetic reactions are carried out in a single reactor, the so-called multienzyme ‘in-pot’ process. In addition, options for multienzyme ‘in-pot’ process improvements via process engineering and enzyme immobilization...... technology are described. Finally, enzyme modification via protein engineering is also discussed, such that a better compatibility of the enzymes in the reactor is achieved as a means of assisting the implementation of multienzyme ‘in-pot’ processes....

  10. Rational and combinatorial engineering of the glucan synthesizing enzyme amylosucrase

    DEFF Research Database (Denmark)

    Albenne, C.; Van Der Veen, B.A.; Potocki-Véronèse, G.;


    Rational engineering of amylosucrase required detailed investigations of the molecular basis of catalysis. Biochemical characterization of the enzyme coupled to structural analyses enabled the polymerization mechanism to be elucidated. This provided key information for successfully changing amylo...

  11. Microchannel enzyme reactors and their applications for processing. (United States)

    Miyazaki, Masaya; Maeda, Hideaki


    Microreaction technology is an interdisciplinary field combining science and engineering. It has attracted the attention of researchers from different fields for the past few years, resulting in the development of several microreactors. Enzymes are one of the catalysts used in microreactors: they are useful for substance production in an environmentally friendly way and have high potential for analytical applications. However, few enzymatic processes have been commercialized because of problems with stability and the cost and efficiency of the reactions. Thus, there have been demands for innovation in process engineering, particularly for enzymatic reactions, and microreaction devices can serve as efficient tools for the development of enzyme processes. In this review, we summarize the recent advances of enzyme-immobilized microchannel reactors; fundamental techniques for micro enzyme-reactor design and important applications of this multidisciplinary technology in chemical processing are also included in our topics.

  12. More Nuts and Bolts of Michaelis-Menten Enzyme Kinetics (United States)

    Lechner, Joseph H.


    Several additions to a classroom activity are proposed in which an "enzyme" (the student) converts "substrates" (nut-bolt assemblies) into "products" (separated nuts and bolts) by unscrewing them. (Contains 1 table.)

  13. The Enzymes of the Ammonia Assimilation in Pseudomonas aeruginosa

    NARCIS (Netherlands)

    Janssen, Dick B.; Camp, Huub J.M. op den; Leenen, Pieter J.M.; Drift, Chris van der


    Glutamine synthetase from Pseudomonas aeruginosa is regulated by repression/derepression of enzyme synthesis and by adenylylation/deadenylylation control. High levels of deadenylylated biosynthetically active glutamine synthetase were observed in cultures growing with limiting amounts of nitrogen wh

  14. [Clinical and pharmacological aspects of pancreatic enzyme substitution therapy]. (United States)

    Löser, C; Fölsch, U R


    The adequate therapy of pancreatic enzyme replacement in patients with exocrine pancreatic insufficiency is still a difficult clinical problem especially in patients following pancreatectomys, with chronic alcoholic pancreatitis or cystic fibrosis. The substitution of lipase to eliminate steatorrhoea is the most important aim but due to its acid lability even the most serious problem in pancreatic enzyme replacement therapy. Various different medications are meanwhile available: conventional preparations from porcine pancreatin or fungal enzymes as rizolipase, enteric-coated tablets or even enteric-coated microspheres or adjunctive therapy with H2-receptor antagonists. While dosage requirements vary widely and therefore have to be tried out individually, the choice of the adequate preparation should be influenced by the realization of the physiological and pathophysiological characteristics of the individual patient and the pharmaceutical characteristics of the different supplements. The advantages and disadvantages of the various medications for enzyme replacement therapy in patients with exocrine pancreatic insufficiency are reviewed in this article.

  15. Chemical and genomic evolution of enzyme-catalyzed reaction networks. (United States)

    Kanehisa, Minoru


    There is a tendency that a unit of enzyme genes in an operon-like structure in the prokaryotic genome encodes enzymes that catalyze a series of consecutive reactions in a metabolic pathway. Our recent analysis shows that this and other genomic units correspond to chemical units reflecting chemical logic of organic reactions. From all known metabolic pathways in the KEGG database we identified chemical units, called reaction modules, as the conserved sequences of chemical structure transformation patterns of small molecules. The extracted patterns suggest co-evolution of genomic units and chemical units. While the core of the metabolic network may have evolved with mechanisms involving individual enzymes and reactions, its extension may have been driven by modular units of enzymes and reactions.

  16. Functioned Calix[4]arenes as Artificial Enzymes Catalyze Aldol Condensation

    Institute of Scientific and Technical Information of China (English)


    Aldolase models derived from calix[4]arene were designed and synthesized. The aldol condensation of p-nitrobenzaldehyde with acetone was catalyzed by the synthetic enzymes proceeded under mild conditions to offer chiefly aldol-type product in good yield.

  17. Restriction enzyme cutting site distribution regularity for DNA looping technology. (United States)

    Shang, Ying; Zhang, Nan; Zhu, Pengyu; Luo, Yunbo; Huang, Kunlun; Tian, Wenying; Xu, Wentao


    The restriction enzyme cutting site distribution regularity and looping conditions were studied systematically. We obtained the restriction enzyme cutting site distributions of 13 commonly used restriction enzymes in 5 model organism genomes through two novel self-compiled software programs. All of the average distances between two adjacent restriction sites fell sharply with increasing statistic intervals, and most fragments were 0-499 bp. A shorter DNA fragment resulted in a lower looping rate, which was also directly proportional to the DNA concentration. When the length was more than 500 bp, the concentration did not affect the looping rate. Therefore, the best known fragment length was longer than 500 bp, and did not contain the restriction enzyme cutting sites which would be used for digestion. In order to make the looping efficiencies reach nearly 100%, 4-5 single cohesive end systems were recommended to digest the genome separately.

  18. A User-Friendly Method for Teaching Restriction Enzyme Mapping. (United States)

    Ehrman, Patrick


    Presented is a teaching progression that enhances learning through low-cost, manipulative transparencies. Discussed is instruction about restriction enzymes, plasmids, cutting plasmids, plasmid maps, recording data, and mapping restriction sites. Mapping wheels for student use is included. (CW)

  19. Enzyme technology for precision functional food ingredient processes

    DEFF Research Database (Denmark)

    Meyer, Anne S.


    modification of potato starch processing residues. Such targeted enzyme-catalyzed reactions provide new invention opportunities for designing functional foods with significant health benefits. The provision of well-defined naturally structured compounds can, moreover, assist in obtaining the much...

  20. Protein Methyltransferases: A Distinct, Diverse, and Dynamic Family of Enzymes. (United States)

    Boriack-Sjodin, P Ann; Swinger, Kerren K


    Methyltransferase proteins make up a superfamily of enzymes that add one or more methyl groups to substrates that include protein, DNA, RNA, and small molecules. The subset of proteins that act upon arginine and lysine side chains are characterized as epigenetic targets because of their activity on histone molecules and their ability to affect transcriptional regulation. However, it is now clear that these enzymes target other protein substrates, as well, greatly expanding their potential impact on normal and disease biology. Protein methyltransferases are well-characterized structurally. In addition to revealing the overall architecture of the subfamilies of enzymes, structures of complexes with substrates and ligands have permitted detailed analysis of biochemical mechanism, substrate recognition, and design of potent and selective inhibitors. This review focuses on how knowledge gained from structural studies has impacted the understanding of this large class of epigenetic enzymes.