WorldWideScience

Sample records for anti-atherogenic enzymes lcat

  1. Glucocorticoid receptor-mediated upregulation of human CYP27A1, a potential anti-atherogenic enzyme.

    Science.gov (United States)

    Tang, Wanjin; Norlin, Maria; Wikvall, Kjell

    2008-01-01

    Sterol 27-hydroxylase (CYP27A1) is required for the hepatic conversion of cholesterol into bile acids and for production of 27-hydroxycholesterol which affects cholesterol homeostasis in several ways. Dexamethasone increases hepatic bile acid biosynthesis and CYP27A1-mediated enzyme activity in HepG2 cells. This study examines the mechanism of the dexamethasone-induced effect on the human CYP27A1 promoter. Dexamethasone treatment of HepG2 cells overexpressed with glucocorticoid receptor alpha (GRalpha) increased the CYP27A1 promoter activity more than four-fold as compared with untreated cells. The GR-antagonist mifepristone almost completely abolished the dexamethasone-induced effect on the promoter activity. Progressive deletion analysis of the CYP27A1 promoter indicated that sequences involved in GR-mediated induction by dexamethasone are present in a region between -1094 and -792. Several putative GRE sites could be found in this region and EMSA experiments revealed that two of these could bind GR. Site-directed mutagenesis of GR-binding sequences in the CYP27A1 promoter identified a GRE at -824/-819 important for GR-mediated regulation of the transcriptional activity. Endogenous and pharmacological glucocorticoids may have a strong impact on several aspects of cholesterol homeostasis and other processes related to CYP27A1-mediated metabolism. The glucocorticoid-mediated induction of human CYP27A1 transcription is of particular interest due to the anti-atherogenic properties ascribed to this enzyme.

  2. Androgen receptor-mediated regulation of the anti-atherogenic enzyme CYP27A1 involves the JNK/c-jun pathway.

    Science.gov (United States)

    Norlin, Maria; Pettersson, Hanna; Tang, Wanjin; Wikvall, Kjell

    2011-02-15

    CYP27A1, an enzyme with several important roles in cholesterol homeostasis and vitamin D₃ metabolism, has been ascribed anti-atherogenic properties. This study addresses an important problem regarding how this enzyme, involved in cholesterol metabolism in the liver and peripheral tissues, is regulated. Our results identify the human CYP27A1 gene as a new target for the JNK/c-jun pathway. Initial experiments showed that an inhibitor of c-Jun N-terminal kinase (JNK) downregulated basal CYP27A1 promoter activity whereas overexpression of JNK slightly enhanced promoter activity. Androgen receptor (AR)-mediated upregulation of mRNA levels and endogenous enzyme activity was recently reported. In the present study, the AR antagonist nilutamide blocked the androgen induction of CYP27A1. The present data revealed that inhibition of the JNK/c-jun pathway abolishes the AR-mediated effect on CYP27A1 transcription and enzyme activity, whereas overexpression of JNK markedly increased androgenic upregulation of CYP27A1. In conclusion, the current results indicate involvement of the JNK/c-jun pathway in AR-mediated upregulation of human CYP27A1. The link to JNK signaling is interesting since inflammatory processes may upregulate CYP27A1 to clear cholesterol from peripheral tissues. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. Familial LCAT deficiency: from renal replacement to enzyme replacement

    NARCIS (Netherlands)

    Stoekenbroek, R. M.; van den Bergh Weerman, M. A.; Hovingh, G. K.; Potter van Loon, B. J.; Siegert, C. E. H.; Holleboom, A. G.

    2013-01-01

    Familial LCAT deficiency (FLD) is a recessive lipid disorder ultimately leading to end-stage renal disease (ESRD). We present two brothers with considerable variation in the age at which they developed ESRD. Kidney biopsies revealed both tubular and glomerular pathology. To date, no causal therapy

  4. Hepatic lipase: a pro- or anti-atherogenic protein?

    NARCIS (Netherlands)

    H. Jansen (Hans); A.J.M. Verhoeven (Adrie); E.J.G. Sijbrands (Eric)

    2002-01-01

    textabstractHepatic lipase (HL) plays a role in the metabolism of pro- and anti-atherogenic lipoproteins affecting their plasma level and composition. However, there is controversy regarding whether HL accelerates or retards atherosclerosis. Its effects on different

  5. In silico design of anti-atherogenic biomaterials.

    Science.gov (United States)

    Lewis, Daniel R; Kholodovych, Vladyslav; Tomasini, Michael D; Abdelhamid, Dalia; Petersen, Latrisha K; Welsh, William J; Uhrich, Kathryn E; Moghe, Prabhas V

    2013-10-01

    Atherogenesis, the uncontrolled deposition of modified lipoproteins in inflamed arteries, serves as a focal trigger of cardiovascular disease (CVD). Polymeric biomaterials have been envisioned to counteract atherogenesis based on their ability to repress scavenger mediated uptake of oxidized lipoprotein (oxLDL) in macrophages. Following the conceptualization in our laboratories of a new library of amphiphilic macromolecules (AMs), assembled from sugar backbones, aliphatic chains and poly(ethylene glycol) tails, a more rational approach is necessary to parse the diverse features such as charge, hydrophobicity, sugar composition and stereochemistry. In this study, we advance a computational biomaterials design approach to screen and elucidate anti-atherogenic biomaterials with high efficacy. AMs were quantified in terms of not only 1D (molecular formula) and 2D (molecular connectivity) descriptors, but also new 3D (molecular geometry) descriptors of AMs modeled by coarse-grained molecular dynamics (MD) followed by all-atom MD simulations. Quantitative structure-activity relationship (QSAR) models for anti-atherogenic activity were then constructed by screening a total of 1164 descriptors against the corresponding, experimentally measured potency of AM inhibition of oxLDL uptake in human monocyte-derived macrophages. Five key descriptors were identified to provide a strong linear correlation between the predicted and observed anti-atherogenic activity values, and were then used to correctly forecast the efficacy of three newly designed AMs. Thus, a new ligand-based drug design framework was successfully adapted to computationally screen and design biomaterials with cardiovascular therapeutic properties. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Anti-Atherogenic Activity of Polyphenol-Rich Extract from Bee Pollen

    Directory of Open Access Journals (Sweden)

    Anna Rzepecka-Stojko

    2017-12-01

    Full Text Available The aim of this study was to determine the effect of polyphenol-rich ethanol extract of bee pollen (EEP on atherosclerosis induced by a high-fat diet in ApoE-knockout mice. EEP was given with feed in two doses of 0.1 and 1 g/kg body mass (BM. The studies have been conducted in a period of 16 weeks. The following factors were estimated: total cholesterol (TC, oxidized low density lipoproteins (ox-LDL, asymmetric dimethylarginine (ADMA, angiotensin-converting enzyme (ACE and angiotensin II (ANG II in the 5th, 10th, 12th, 14th, and 16th week of the experiment. In the last, i.e., 16th week of the studies the development of coronary artery disease (CAD was also estimated histopathologically. Supplementing diet with EEP resulted in decreasing TC level. EEP reduced oxidative stress by lowering the levels of ox-LDL, ADMA, ANG II and ACE. EEP protected coronary arteries by significantly limiting the development of atherosclerosis (the dose of 0.1 g/kg BM or completely preventing its occurrence (the dose of 1 g/kg BM. The obtained results demonstrate that EEP may be useful as a potential anti-atherogenic agent.

  7. 14 Days of supplementation with blueberry extract shows anti-atherogenic properties and improves oxidative parameters in hypercholesterolemic rats model.

    Science.gov (United States)

    Ströher, Deise Jaqueline; Escobar Piccoli, Jacqueline da Costa; Güllich, Angélica Aparecida da Costa; Pilar, Bruna Cocco; Coelho, Ritiéle Pinto; Bruno, Jamila Benvegnú; Faoro, Debora; Manfredini, Vanusa

    2015-01-01

    The effects of supplementation with blueberry (BE) extract (Vaccinium ashei Reade) for 14 consecutive days on biochemical, hematological, histopathological and oxidative parameters in hypercholesterolemic rats were investigated. After supplementation with lyophilized extract of BE, the levels of total cholesterol, low-density lipoprotein cholesterol and triglycerides were decreased. Histopathological analysis showed significant decrease (p < 0.05) of aortic lesions in hypercholesterolemic rats. Oxidative parameters showed significant reductions (p < 0.05) in oxidative damage to lipids and proteins and an increase in activities of antioxidant enzymes such as catalase, superoxide dismutase and glutathione peroxidase. The BE extract showed an important cardioprotective effect by the improvements in the serum lipid profile, antioxidant system, particularly in reducing oxidative stress associated with hypercholesterolemia and anti-atherogenic effect in rats.

  8. Distant homology modeling of LCAT and its validation through in silico targeting and in vitro and in vivo assays.

    Directory of Open Access Journals (Sweden)

    Cristina Sensi

    Full Text Available LCAT (lecithin:cholesterol acyltransferase catalyzes the transacylation of a fatty acid of lecithin to cholesterol, generating a cholesteryl ester and lysolecithin. The knowledge of LCAT atomic structure and the identification of the amino acids relevant in controlling its structure and function are expected to be very helpful to understand the enzyme catalytic mechanism, as involved in HDL cholesterol metabolism. However - after an early report in the late '90 s - no recent advance has been made about LCAT three-dimensional structure. In this paper, we propose an LCAT atomistic model, built following the most up-to-date molecular modeling approaches, and exploiting newly solved crystallographic structures. LCAT shows the typical folding of the α/β hydrolase superfamily, and its topology is characterized by a combination of α-helices covering a central 7-strand β-sheet. LCAT presents a Ser/Asp/His catalytic triad with a peculiar geometry, which is shared with such other enzyme classes as lipases, proteases and esterases. Our proposed model was validated through different approaches. We evaluated the impact on LCAT structure of some point mutations close to the enzyme active site (Lys218Asn, Thr274Ala, Thr274Ile and explained, at a molecular level, their phenotypic effects. Furthermore, we devised some LCAT modulators either designed through a de novo strategy or identified through a virtual high-throughput screening pipeline. The tested compounds were proven to be potent inhibitors of the enzyme activity.

  9. Lecithin-cholesterol acyltransferase (LCAT) catalyzes transacylation of intact cholesteryl esters. Evidence for the partial reversal of the forward LCAT reaction

    International Nuclear Information System (INIS)

    Sorci-Thomas, M.; Babiak, J.; Rudel, L.L.

    1990-01-01

    Lecithin-cholesterol acyltransferase (LCAT) catalyzes the intravascular synthesis of lipoprotein cholesteryl esters by converting cholesterol and lecithin to cholesteryl ester and lysolecithin. LCAT is unique in that it catalyzes sequential reactions within a single polypeptide sequence. In this report we find that LCAT mediates a partial reverse reaction, the transacylation of lipoprotein cholesteryl oleate, in whole plasma and in a purified, reconstituted system. As a result of the reverse transacylation reaction, a linear accumulation of [3H]cholesterol occurred during incubations of plasma containing high density lipoprotein labeled with [3H]cholesteryl oleate. When high density lipoprotein labeled with cholesteryl [14C]oleate was also included in the incubation the labeled fatty acyl moiety remained in the cholesteryl [14C]oleate pool showing that the formation of labeled cholesterol did not result from hydrolysis of the doubly labeled cholesteryl esters. The rate of release of [3H]cholesterol was only about 10% of the forward rate of esterification of cholesterol using partially purified human LCAT and was approximately 7% in whole monkey plasma. Therefore, net production of cholesterol via the reverse LCAT reaction would not occur. [3H]Cholesterol production from [3H]cholesteryl oleate was almost completely inhibited by a final concentration of 1.4 mM 5,5'-dithiobis(nitrobenzoic acid) during incubation with either purified LCAT or whole plasma. Addition of excess lysolecithin to the incubation system did not result in the formation of [14C]oleate-labeled lecithin, showing that the reverse reaction found here for LCAT was limited to the last step of the reaction. To explain these results we hypothesize that LCAT forms a [14C]oleate enzyme thioester intermediate after its attack on the cholesteryl oleate molecule

  10. An experimental evaluation of the anti-atherogenic potential of the plant, Piper betle, and its active constitutent, eugenol, in rats fed an atherogenic diet.

    Science.gov (United States)

    Venkadeswaran, Karuppasamy; Thomas, Philip A; Geraldine, Pitchairaj

    2016-05-01

    Hypercholesterolemia is a major risk factor for systemic atherosclerosis and subsequent cardiovascular disease. Lipoperoxidation-mediated oxidative damage is believed to contribute strongly to the progression of atherogenesis. In the current investigation, putative anti-atherogenic and antioxidative properties of an ethanolic extract of Piper betle and of its active constituent, eugenol, were sought in an experimental animal model of chronic hypercholesterolemia. Atherogenic diet-fed rats that received either Piper betle extract orally (500mg/kg b.wt) or eugenol orally (5mg/kg b.wt) for 15days (commencing 30days after the atherogenic diet had been started) exhibited the following variations in different parameters, when compared to atherogenic diet-fed rats that received only saline: (1) significantly lower mean levels of total cholesterol, triglycerides, low-density lipoprotein cholesterol and very low density lipoprotein cholesterol in both serum and hepatic tissue samples; (2) lower mean serum levels of aspartate amino-transferase, alanine amino-transferase, alkaline phosphatase, lactate dehydrogenase and lipid-metabolizing enzymes (lipoprotein lipase, 3-hydroxy-3-methyl-glutaryl-CoA reductase; (3) significantly lower mean levels of enzymatic antioxidants (catalase, superoxide dismutase, glutathione peroxidase, glutathione-S-transferase) and non-enzymatic antioxidants (reduced glutathione, vitamin C and vitamin E) and significantly higher mean levels of malondialdehyde in haemolysate and hepatic tissue samples. Histopathological findings suggested a protective effect of the Piper betle extract and a more pronounced protective effect of eugenol on the hepatic and aortic tissues of atherogenic diet-fed (presumed atherosclerotic) rats. These results strongly suggest that the Piper betle extract and its active constituent, eugenol, exhibit anti-atherogenic effects which may be due to their anti-oxidative properties. Copyright © 2016 Elsevier Masson SAS. All rights

  11. Assessment of anti-atherogenic drugs in vivo and reconstitution of lipoproteins using radioiodinated cholesteryl iopanoate

    International Nuclear Information System (INIS)

    DeGalan, M.R.

    1987-01-01

    A nonhydrolyzable radioiodinated cholesteryl ester, 125I-cholesteryl iopanoate (125I-Cl), was found to accumulate in high concentrations in atherosclerotic aortas of cholesterol-fed rabbits after intravenous administration. Aortas from normal chow-fed rabbits did not exhibit significant 125I-Cl accumulation. When cholesterol-fed rabbits were intravenously administered Tween-solubilized 125I-Cl and simultaneously treated with either of two anti-atherogenic compounds, estradiol 17β-cypionate or colestipol, the extent of aortic atherosclerosis was found to dramatically decrease. Measurement of aortic radioactivity was found to strongly correlate with the severity of atherosclerosis. Although the specificity of 125I-Cl for atheromatous lesions was very good, gamma-camera scintigraphy of the abdomens of these rabbits 6 days after cessation of 125I-Cl administration was not able to consistently predict the severity of atherosclerosis. Tissue distribution studies suggested that high blood and spinal column bone marrow radioactivity produced aorta:nontarget radioactivity ratios unfavorable with respect to imaging. To improve this ratio so as to permit noninvasive imaging, attempts were made to incorporate 125I-Cl into serum lipoproteins. Labelling of either rabbit LDL by in vivo incorporation or human LDL by transfer of 125I-Cl from liposomes using cholesteryl ester transfer protein resulted in lipoproteins with low specific activity. Higher specific activity was achieved by reconstituting delipidated human LDL with a mixture of 125I-Cl and unlabeled cholesteryl oleate. These particles were taken up in high amounts by monolayers of human fibroblasts but not by fibroblasts deficient in LDL receptors or by normal fibroblasts during competition with unlabeled native LDL

  12. Increased plasma cholesterol esterification by LCAT reduces diet-induced atherosclerosis in SR-BI knockout mice[S

    Science.gov (United States)

    Thacker, Seth G.; Rousset, Xavier; Esmail, Safiya; Zarzour, Abdalrahman; Jin, Xueting; Collins, Heidi L.; Sampson, Maureen; Stonik, John; Demosky, Stephen; Malide, Daniela A.; Freeman, Lita; Vaisman, Boris L.; Kruth, Howard S.; Adelman, Steven J.; Remaley, Alan T.

    2015-01-01

    LCAT, a plasma enzyme that esterifies cholesterol, has been proposed to play an antiatherogenic role, but animal and epidemiologic studies have yielded conflicting results. To gain insight into LCAT and the role of free cholesterol (FC) in atherosclerosis, we examined the effect of LCAT over- and underexpression in diet-induced atherosclerosis in scavenger receptor class B member I-deficient [Scarab(−/−)] mice, which have a secondary defect in cholesterol esterification. Scarab(−/−)×LCAT-null [Lcat(−/−)] mice had a decrease in HDL-cholesterol and a high plasma ratio of FC/total cholesterol (TC) (0.88 ± 0.033) and a marked increase in VLDL-cholesterol (VLDL-C) on a high-fat diet. Scarab(−/−)×LCAT-transgenic (Tg) mice had lower levels of VLDL-C and a normal plasma FC/TC ratio (0.28 ± 0.005). Plasma from Scarab(−/−)×LCAT-Tg mice also showed an increase in cholesterol esterification during in vitro cholesterol efflux, but increased esterification did not appear to affect the overall rate of cholesterol efflux or hepatic uptake of cholesterol. Scarab(−/−)×LCAT-Tg mice also displayed a 51% decrease in aortic sinus atherosclerosis compared with Scarab(−/−) mice (P < 0.05). In summary, we demonstrate that increased cholesterol esterification by LCAT is atheroprotective, most likely through its ability to increase HDL levels and decrease pro-atherogenic apoB-containing lipoprotein particles. PMID:25964513

  13. A study of anti-hyperlipidemia, hypolipedimic and anti-atherogenic activity of fruit of emblica officinalis (amla in high fat fed albino rats

    Directory of Open Access Journals (Sweden)

    Jeevangi Santoshkumar, Manjunath S, Sakhare Pranavkumar M

    2013-01-01

    Full Text Available : Emblica Officinalis (Amla, belonging to the genus, Phyllanthus emblica is widely used for medicinal purpose. Its fruits have been used traditionally as a hypolipidemic. Objectives: The present study was aimed to evaluate hypolipedimic and anti-atherogenic activity of fruit of Emblica officinalis in high fat fed albino rats. Materials and Methods: For study of anti-hyperlipidemic, hypolipidemic, and anti-atherogenic activity. 5 groups of 6 animals in each received normal saline, E. Officinalis powder, high fat diet, High fat diet plus E. Officinalis powder both and Atorvastatin respectively for 8 weeks. Hyperlipidemia was induced by feeding animals with high fat diet per orally, consisting of coconut oil and vanaspati ghee, daily ad libitum. At the end of the study, blood samples of the animals were sent for the estimation of the lipid profile and effects of test drug studied by comparing levels of Total Cholesterol, Triglycerides, HDL, LDL, and Atherogenic index. The statistical significance between groups was analysed by using one way ANOVA, followed by Dunnet’s multiple comparison test. Results: Fruit of Amla showed significant anti-hyperlipidemic, hypolipidemic, and anti-atherogenic effect. All these effects may contribute to its anti-atherogenic activity. Conclusion: Present study revealed the antihyperlipidemic, hypolipidemic, and anti-atherogenic effect of Amla fruit powder and can be safely used in the treatment of mild to moderate cases of hyperlipidemia considering its easy availability, cost effectiveness, and other beneficial effects.

  14. Taurine supplementation has anti-atherogenic and anti-inflammatory effects before and after incremental exercise in heart failure.

    Science.gov (United States)

    Ahmadian, Mehdi; Roshan, Valiollah Dabidi; Aslani, Elaheh; Stannard, Stephen R

    2017-07-01

    The purpose of this study was to examine the anti-atherogenic and anti-inflammatory effect of supplemental taurine prior to and following incremental exercise in patients with heart failure (HF). Patients with HF and left ventricle ejection fraction less than 50%, and placed in functional class II or III according to the New York Heart Association classification, were randomly assigned to two groups: (1) taurine supplementation; or (2) placebo. The taurine group received oral taurine (500 mg) 3 times a day for 2 weeks, and performed exercise before and after the supplementation period. The placebo group followed the same protocol, but with a starch supplement (500 mg) rather than taurine. The incremental multilevel treadmill test was done using a modified Bruce protocol. Our results indicate that inflammatory indices [C-reactive protein (CRP), platelets] decreased in the taurine group in pre-exercise, post-supplementation and post-exercise, post-supplementation as compared with pre-exercise, pre-supplementation ( p taurine group in pre-exercise, post-supplementation and post-exercise, post-supplementation as compared with pre-exercise, pre-supplementation ( p 0.05). our results suggest that 2 weeks of oral taurine supplementation increases the taurine levels and has anti-atherogenic and anti-inflammatory effects prior to and following incremental exercise in HF patients.

  15. Anti-atherogenic properties of Deglet Noor Date seeds (Phoenix dactylifera) Methanol extract on Diet-Induced Hypercholesterolemic Rats

    Science.gov (United States)

    Saryono, S.; Eliyan, J.; Herdiati, D.; Khikmatullah, AA; Silvana, CP; Adi, HP

    2017-02-01

    This is the first study to investigate the completely anti-atherogenic effect of Deglet Noor Date seeds methanol extract administration on diet-induced hypercholesterolemic rats. About 24 male Wistar rats were divided into 6 groups. The normal control (NC) group, Hypercholesterolemic Control (HC) group was given high cholesterol diet, and Simvastatin Control (SC) group was given 0.18 mg/200g simvastatin after high cholesterol diet induction. The treatment groups of T0.25, T0.5 and T1 were given supplementation of 0.25, 0.5 and 1 g/kg of dates seed extract after high cholesterol diet induction, respectively for 21 days. Blood was collected from orbitals plexus vein for plasma lipid profile analysis. The levels of Total Cholesterol (TC), Low-Density Lipoprotein (LDL) and Atherogenic Index (AI) values were significantly decreased (p<0.05) on diet-induced hypercholesterolemic rats after supplemented with date seeds extract (T0.25, T0.5 and T1) but not in Triglycerides (TG). Along with that, High Density Lipoprotein (HDL) level was significantly increased (p<0.05). However, the T1 group was the best anti-atherogenic activity in compared to other groups. Results showed that plasma lipid profile was significant to get better after supplemented with date seeds extract.

  16. Lipoprotein X Causes Renal Disease in LCAT Deficiency.

    Directory of Open Access Journals (Sweden)

    Alice Ossoli

    Full Text Available Human familial lecithin:cholesterol acyltransferase (LCAT deficiency (FLD is characterized by low HDL, accumulation of an abnormal cholesterol-rich multilamellar particle called lipoprotein-X (LpX in plasma, and renal disease. The aim of our study was to determine if LpX is nephrotoxic and to gain insight into the pathogenesis of FLD renal disease. We administered a synthetic LpX, nearly identical to endogenous LpX in its physical, chemical and biologic characteristics, to wild-type and Lcat-/- mice. Our in vitro and in vivo studies demonstrated an apoA-I and LCAT-dependent pathway for LpX conversion to HDL-like particles, which likely mediates normal plasma clearance of LpX. Plasma clearance of exogenous LpX was markedly delayed in Lcat-/- mice, which have low HDL, but only minimal amounts of endogenous LpX and do not spontaneously develop renal disease. Chronically administered exogenous LpX deposited in all renal glomerular cellular and matrical compartments of Lcat-/- mice, and induced proteinuria and nephrotoxic gene changes, as well as all of the hallmarks of FLD renal disease as assessed by histological, TEM, and SEM analyses. Extensive in vivo EM studies revealed LpX uptake by macropinocytosis into mouse glomerular endothelial cells, podocytes, and mesangial cells and delivery to lysosomes where it was degraded. Endocytosed LpX appeared to be degraded by both human podocyte and mesangial cell lysosomal PLA2 and induced podocyte secretion of pro-inflammatory IL-6 in vitro and renal Cxl10 expression in Lcat-/- mice. In conclusion, LpX is a nephrotoxic particle that in the absence of Lcat induces all of the histological and functional hallmarks of FLD and hence may serve as a biomarker for monitoring recombinant LCAT therapy. In addition, our studies suggest that LpX-induced loss of endothelial barrier function and release of cytokines by renal glomerular cells likely plays a role in the initiation and progression of FLD nephrosis.

  17. Anti-atherogenic effect of trivalent chromium-loaded CPMV nanoparticles in human aortic smooth muscle cells under hyperglycemic conditions in vitro

    Science.gov (United States)

    Ganguly, Rituparna; Wen, Amy M.; Myer, Ashley B.; Czech, Tori; Sahu, Soumyadip; Steinmetz, Nicole F.; Raman, Priya

    2016-03-01

    Atherosclerosis, a major macrovascular complication associated with diabetes, poses a tremendous burden on national health care expenditure. Despite extensive efforts, cost-effective remedies are unknown. Therapies for atherosclerosis are challenged by a lack of targeted drug delivery approaches. Toward this goal, we turn to a biology-derived drug delivery system utilizing nanoparticles formed by the plant virus, Cowpea mosaic virus (CPMV). The aim herein is to investigate the anti-atherogenic potential of the beneficial mineral nutrient, trivalent chromium, loaded CPMV nanoparticles in human aortic smooth muscle cells (HASMC) under hyperglycemic conditions. A non-covalent loading protocol is established yielding CrCl3-loaded CPMV (CPMV-Cr) carrying 2000 drug molecules per particle. Using immunofluorescence microscopy, we show that CPMV-Cr is readily taken up by HASMC in vitro. In glucose (25 mM)-stimulated cells, 100 nM CPMV-Cr inhibits HASMC proliferation concomitant to attenuated proliferating cell nuclear antigen (PCNA, proliferation marker) expression. This is accompanied by attenuation in high glucose-induced phospho-p38 and pAkt expression. Moreover, CPMV-Cr inhibits the expression of pro-inflammatory cytokines, transforming growth factor-β (TGF-β) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), in glucose-stimulated HASMCs. Finally glucose-stimulated lipid uptake is remarkably abrogated by CPMV-Cr, revealed by Oil Red O staining. Together, these data provide key cellular evidence for an atheroprotective effect of CPMV-Cr in vascular smooth muscle cells (VSMC) under hyperglycemic conditions that may promote novel therapeutic ventures for diabetic atherosclerosis.

  18. Inhibition of LDL oxidation and oxidized LDL-induced foam cell formation in RAW 264.7 cells show anti-atherogenic properties of a foliar methanol extract of Scoparia dulcis.

    Science.gov (United States)

    Nambiar, Sinjitha S; Shetty, Nandini Prasad; Bhatt, Praveena; Neelwarne, Bhagyalakshmi

    2014-04-01

    Oxidation of low density lipoproteins and their further uptake by macrophages is known to result in the formation of foam cells, which are critical in the initiation of atherosclerosis through activation of inflammatory signalling cascades. Thus, powerful dietary antioxidants are receiving attention for the reversal of such pathological states. Extracts of Scoparia dulcis have been used as tea and health drinks with various health promoting effects. In the present study, we examined the reactive oxygen scavenging potential as well as anti-inflammatory and anti-atherogenic efficacies, using leaf extracts obtained after successive extraction with various solvents. A methanol extract showed potent antioxidant activity with an IC50 value of 570 μg/ml, caused hydrogen peroxide scavenging (28.9 µg/ml) and anti-inflammatory effects by improving human erythrocyte membrane stabilisation (about 86%). The methanol extract also efficiently inhibited lipid peroxidation and oxidation of low density lipoproteins, thus preventing foam cell formation in cultured RAW 264.7 cells. Furthermore, phytochemical screening of the extracts showed high accumulation of flavonoids. The foliar methanol extract of Scoparia dulcis has a strong anti-atherogenic potential and this property could be attributed maybe due to presence of flavonoids since HPLC analysis showed high concentrations of myricetin and rutin in the methanol extract.

  19. Power Systems Life Cycle Analysis Tool (Power L-CAT).

    Energy Technology Data Exchange (ETDEWEB)

    Andruski, Joel; Drennen, Thomas E.

    2011-01-01

    The Power Systems L-CAT is a high-level dynamic model that calculates levelized production costs and tracks environmental performance for a range of electricity generation technologies: natural gas combined cycle (using either imported (LNGCC) or domestic natural gas (NGCC)), integrated gasification combined cycle (IGCC), supercritical pulverized coal (SCPC), existing pulverized coal (EXPC), nuclear, and wind. All of the fossil fuel technologies also include an option for including carbon capture and sequestration technologies (CCS). The model allows for quick sensitivity analysis on key technical and financial assumptions, such as: capital, O&M, and fuel costs; interest rates; construction time; heat rates; taxes; depreciation; and capacity factors. The fossil fuel options are based on detailed life cycle analysis reports conducted by the National Energy Technology Laboratory (NETL). For each of these technologies, NETL's detailed LCAs include consideration of five stages associated with energy production: raw material acquisition (RMA), raw material transport (RMT), energy conversion facility (ECF), product transportation and distribution (PT&D), and end user electricity consumption. The goal of the NETL studies is to compare existing and future fossil fuel technology options using a cradle-to-grave analysis. The NETL reports consider constant dollar levelized cost of delivered electricity, total plant costs, greenhouse gas emissions, criteria air pollutants, mercury (Hg) and ammonia (NH3) emissions, water withdrawal and consumption, and land use (acreage).

  20. Deletion of N-terminal amino acids from human lecithin:cholesterol acyltransferase differentially affects enzyme activity toward alpha- and beta-substrate lipoproteins.

    Science.gov (United States)

    Vickaryous, Nicola K; Teh, Evelyn M; Stewart, Bruce; Dolphin, Peter J; Too, Catherine K L; McLeod, Roger S

    2003-03-21

    Lecithin:cholesterol acyltransferase (LCAT) is the enzyme responsible for generation of the majority of the cholesteryl esters (CE) in human plasma. Although most plasma cholesterol esterification occurs on high-density lipoprotein (HDL), via alpha-LCAT activity, esterification also occurs on low-density lipoprotein (LDL) via the beta-activity of the enzyme. Computer threading techniques have provided a three-dimensional model for use in the structure-function analysis of the core and catalytic site of the LCAT protein, but the model does not extend to the N-terminal region of the enzyme, which may mediate LCAT interaction with lipoprotein substrates. In the present study, we have examined the functional consequences of deletion of the highly conserved hydrophobic N-terminal amino acids (residues 1-5) of human LCAT. Western blot analysis showed that the mutant proteins (Delta 1-Delta 5) were synthesized and secreted from transfected COS-7 cells at levels approximately equivalent to those of wild-type hLCAT. The secreted proteins had apparent molecular weights of 67 kDa, indicating that they were correctly processed and glycosylated during cellular transit. However, deletion of the first residue of the mature LCAT protein (Delta 1 mutant) resulted in a dramatic loss of alpha-LCAT activity (5% of wild type using reconstituted HDL substrate, rHDL), although this mutant retained full beta-LCAT activity (108% of wild-type using human LDL substrate). Removal of residues 1 and 2 (Delta 2 mutant) abolished alpha-LCAT activity and reduced beta-LCAT activity to 12% of wild type. Nevertheless, LCAT Delta 1 and Delta 2 mutants retained their ability to bind to rHDL and LDL lipoprotein substrates. The dramatic loss of enzyme activity suggests that the N-terminal residues of LCAT may be involved in maintaining the conformation of the lid domain and influence activation by the alpha-LCAT cofactor apoA-I (in Delta 1) and/or loss of enzyme activity (in Delta 1-Delta 5). Since the

  1. Betulinic acid and fluvastatin exhibits synergistic effect on toll-like receptor-4 mediated anti-atherogenic mechanism in type II collagen induced arthritis.

    Science.gov (United States)

    Mathew, Limi Elizabeth; Rajagopal, Vrinda; A, Helen

    2017-09-01

    Cardiovascular disease (CVD) is a major problem during rheumatoid arthritis which leads to morbidity and mortality in arthritic patients. So the present study emphasizes combinatorial effect of Betulinic acid, a triterpenoid and fluvastatin, an HMG CoA reductase inhibitor on atherogenesis during arthritis. Arthritis was induced by bovine type II collagen dissolved in 0.01M acetic acid at a concentration of 4mg/mL and emulsified in equal volume of incomplete Freund's adjuvant. Betulinic acid (2mg/kg) and fluvastatin (5mg/kg) alone and in combination was administered orally from day 14 to 60. At the end of 60days, tissues and blood were isolated for evaluation of biochemical parameters. Treatment with betulinic acid and fluvastatin showed significant (p<0.05) reduction in Arthritic index, Rheumatoid factor, C-reactive protein (CRP), total lipids and anti-CCP (cyclic citrullinated peptide) antibody. Anti-inflammatory enzyme activities and oxidative stress were significantly decreased in the peripheral blood mononuclear cells by the administration of both betulinic acid and fluvastatin than alone treatments. Combination therapy was found to be a potential enhancer of the expression of anti-inflammatory cytokine interleukin-10 whereas it significantly blocked the expression of Toll-like receptors-2 and 4, inflammatory markers such as interleukin-1β, tumor necrosis factor-α, Interferon-γ, cell adhesion molecules and nuclear translocation of NF-kappa B in aorta than drug alone treated groups. So the present study summarizes a combination therapy of betulinic acid and fluvastatin that reduces the risk of both rheumatoid arthritis and CVD by modulating the expression of various inflammatory mediators through Toll-like receptors-4-NF-κB downstream signaling pathway, atherogenic index and oxidative stress in collagen induced arthritis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. CFD Analysis of Flexible Thermal Protection System Shear Configuration Testing in the LCAT Facility

    Science.gov (United States)

    Ferlemann, Paul G.

    2014-01-01

    This paper documents results of computational analysis performed after flexible thermal protection system shear configuration testing in the LCAT facility. The primary objectives were to predict the shear force on the sample and the sensitivity of all surface properties to the shape of the sample. Bumps of 0.05, 0.10,and 0.15 inches were created to approximate the shape of some fabric samples during testing. A large amount of information was extracted from the CFD solutions for comparison between runs and also current or future flight simulations.

  3. Very low levels of HDL cholesterol and atherosclerosis, a variable relationship – a review of LCAT deficiency

    Directory of Open Access Journals (Sweden)

    Savel J

    2012-06-01

    Full Text Available Julia Savel,1,2 Marianne Lafitte,1 Yann Pucheu,1,3 Vincent Pradeau,1 Antoine Tabarin,2,3 Thierry Couffinhal1,3,41Centre d'Exploration, de Prévention et de Traitement de l'Athérosclérose, Hôpital Cardiologique, 2Service d'endocrinologie, CHU Bordeaux, Université Bordeaux Segalen, Bordeaux, France; 3Université de Bordeaux Adaptation cardiovasculaire à l'ischémie, 4INSERM, Adaptation cardiovasculaire à l'ischémie, U1034, Pessac, FranceAbstract: A number of epidemiological and clinical studies have demonstrated that plasma high-density lipoprotein (HDL level is a strong inverse predictor of cardiovascular events. HDL is believed to retard the formation of atherosclerotic lesions by removing excess cholesterol from cells and preventing endothelial dysfunction. Lecithin cholesterol acyltransferase (LCAT plays a central role in the formation and maturation of HDL, and in the intravascular stage of reverse cholesterol transport: a major mechanism by which HDL modulates the development and progression of atherosclerosis. A defect in LCAT function would be expected to enhance atherosclerosis, by interfering with the reverse cholesterol transport step. As such, one would expect to find more atherosclerosis and cardiovascular events in LCAT-deficient patients. But this relationship is not always evident. In this review, we describe contradictory reports in the literature about cardiovascular risks in this patient population. We discuss the paradoxical finding of severe HDL deficiency and an absence of subclinical atherosclerosis in LCAT-deficient patients, which has been used to reject the hypothesis that HDL level is important in the protection against atherosclerosis. Furthermore, to illustrate this paradoxical finding, we present a case study of one patient, referred for evaluation of global cardiovascular risk in the presence of a low HDL cholesterol level, who was diagnosed with LCAT gene mutations.Keywords: atherosclerosis, LCAT function

  4. Enzyme

    Science.gov (United States)

    Enzymes are complex proteins that cause a specific chemical change in all parts of the body. For ... use them. Blood clotting is another example of enzymes at work. Enzymes are needed for all body ...

  5. Adrenal Function in females with low plasma HDL-C due to mutations in ABCA1 and LCAT.

    Directory of Open Access Journals (Sweden)

    Andrea E Bochem

    Full Text Available INTRODUCTION: Adrenal steroidogenesis is essential for human survival and depends on the availability of the precursor cholesterol. Male subjects with low plasma levels of high density lipoprotein (HDL cholesterol are characterized by decreased adrenal function. Whether this is also the case in female subjects with low plasma HDL-C levels is unresolved to date. FINDINGS: 15 female ATP binding cassette transporter AI (ABCAI and 14 female lecithin-cholesterol acyltransferase (LCAT were included in the study. HDL-C levels were 38% and 41% lower in ABCA1 and LCAT mutation carriers compared to controls, respectively. Urinary steroid excretion of 17-ketogenic steroids or 17-hydroxy corticosteroids did not differ between 15 female ABCA1 mutation carriers (p = 0.27 vs 0.30 respectively and 30 matched normolipidemic controls or between 14 female LCAT mutation carriers and 28 matched normolipidemic controls (p = 0.10 and 0.14, respectively. Cosyntropin testing in an unselected subgroup of 8 ABCA1 mutation carriers and 3 LCAT mutation carriers did not reveal differences between carriers and controls. CONCLUSION: Adrenal function in females with molecularly defined low HDL-C levels is not different from controls. The discrepancy with the finding of impaired steroidogenesis in males with molecularly defined low HDL-C levels underscores the importance of gender specific analyses in cholesterol-related research.

  6. Efeito de tratamento cirúrgico sobre a atividade da enzima hepática lecitina: colesterol aciltransferase (LCAT na esquistossomose mansônica

    Directory of Open Access Journals (Sweden)

    Silva Cesar Augusto da

    2002-01-01

    Full Text Available A esquistossomose mansônica é uma doença tropical que constitui um importante problema de saúde pública, na Região Nordeste do Brasil, onde é encontrada em alta endemicidade. Essa parasitose tem o fígado como principal alvo de suas lesões histológicas, alterações fisiopatológicas e manifestações clínicas. Estudos anteriores reportam alterações no metabolismo lipídico associadas à forma hepatoesplênica da esquistosomose.Uma das principais alterações consiste na redução da atividade da enzima hepática LCAT, responsável pela esterificação do colesterol no plasma. Neste trabalho, avaliamos a atividade da LCAT no plasma de pacientes portadores da esquistossomose mansônica hepatoesplênica, os quais foram submetidos a esplenectomia e reimplante de parte de tecido do baço. A atividade enzimática da LCAT foi determinada com substrato radioativo. O [14C]colesterol livre e esterificado, formados por ação da LCAT, foram separados por cromatografia em camada delgada e a radioatividade das amostras foi contada em analisador de cintilação líquida. A atividade da LCAT nos pacientes submetidos a esplenectomia e reimplante de tecido do baço apresentou redução de 32 %, em relação ao grupo controle. Contudo, nos portadores da doença que não foram submetidos ao procedimento cirúrgico a redução na atividade da LCAT foi o dobro (64% da observada em pacientes esplenectomizados e com reimplante de parte do tecido do baço. Esses resultados sugerem haver uma melhora significativa no efeito da forma grave da esquistossomose mansônica sobre a atividade da LCAT.

  7. Long term hypolipidaemic and anti-atherogenic effects of Carica ...

    African Journals Online (AJOL)

    This study was designed to assess the long term (24 weeks) effects of daily oral administration of C. papaya aqueous leaf extract (at 200 mg/kg body weight) on the serum lipid profile and other atherogenic indices of normal rabbits. Total cholesterol, total triglycerides, LDL-cholesterol, HDL-cholesterol, atherogenic and ...

  8. Amelioration of cholesterol induced atherosclerosis by normalizing gene expression, cholesterol profile and antioxidant enzymes by Vigna unguiculata.

    Science.gov (United States)

    Janeesh, P A; Abraham, Annie

    2013-06-01

    Cardiovascular diseases, especially atherosclerosis, have found to be the dreadful diseases worldwide and therapeutic interventions using plant sources have wide therapeutic value. Vigna unguiculata (VU) leaves have been used as food and therapeutics. Hence, our study was designed to evaluate the hypolipidemic as well as anti-atherogenic potential of VU leaves in normalizing atherogenic gene expression, cholesterol profile, generation of reactive oxygen species (ROS) and antioxidant enzyme system on cholesterol fed rabbit model. For the study New Zealand white rabbits were randomly divided into four groups of six animals each and experimental period was three months; group -i - ND [normal diet (40 g feed)], group-ii- ND (normal diet) +EAVU [ethyl acetate fraction of Vigna unguiculata (150 mg/kg body weight)], group -iii- ND [normal diet ]+ CFD [cholesterol fed diet (cholesterol 1 % of 40 g feed and cholic acid 0.5 % of 40 g feed)] and group-iv - ND [normal diet] +CFD [cholesterol fed diet ]+EAVU [ethyl acetate fraction of Vigna unguiculata (150 mg/kg body weight)]. Atherosclerosis was induced by feeding the rabbit with cholesterol (1 % of 40 g feed) and cholic acid (0.5 % of 40 g feed). Supplementation of EAVU normalized cholesterol profile, generation of reactive oxygen species (ROS), lipid peroxidation products like thiobarbituric acid reactive substance (TBARS), antioxidant system and important genes of cardiovascular diseases like interleukin-10 (IL 10), paraoxanase-1 (PON I), interleukin-6 (IL 6), and cyclooxygenase-2 (Cox 2) to near normal level as compared with normal diet. The result obtained showed the antioxidant as well as anti-atherogenic potential of Vigna unguiculata leaves in ameliorating cholesterol induced atherosclerosis, and thus it is good task to include VU leaves in daily diet for the prevention of cardiovascular diseases especially atherosclerosis.

  9. The effect of weight loss on HDL subfractions and LCAT activity in two genotypes of APOA-II -265T>C polymorphism.

    Science.gov (United States)

    Moradi, Masoumeh; Mahmoudi, Maryam; Saedisomeolia, Ahmad; Zahirihashemi, Roxana; Koohdani, Fariba

    2017-05-25

    People may have different responses to the same environmental changes. It has been reported that genome variations may be responsible for these differences. Also, HDL subfractions may be influenced by different genetic variations. The aim of the present study was to determine gene-diet interactions and to evaluate the influence of weight loss on HDL subfractions between two genotypes of -265 T>C APOA-II polymorphism. In the present study, 56 overweight and obese patients with type 2 diabetes mellitus were selected from 697 genotype-specified subjects. After matching for gender, age and BMI at the beginning of the study, an equal number of patients remained on each genotype of APOA-II (TT/TC and CC group). After a 6-week calorie restriction program, 44 patients completed the study. Serum HDL subfractions, including HDL2 and HDL3 and LCAT activity, were compared between the two genotypes and, before and after the intervention, were separated in each genotype. Serum concentration of HDL and its subfractions decreased significantly due to the weight loss. A comparison of the mean changes between the genotypes showed that HDL3 significantly decreased in the CC genotype while, in the TT/TC group, the serum concentration of HDL2 was significantly reduced. However, the increase of LCAT activity was not significant among the two genotypes. A comparison of mean changes of variables within two genotype groups showed that C homozygote carriers lead to a general shift toward larger size HDL subfractions and T allele carriers shift toward smaller size HDL subfractions after weight loss.

  10. Effect of Robola and Cabernet Sauvignon extracts on platelet activating factor enzymes activity on U937 cells.

    Science.gov (United States)

    Xanthopoulou, M N; Asimakopoulos, D; Antonopoulou, S; Demopoulos, C A; Fragopoulou, E

    2014-12-15

    A number of studies support the anti-atherogenic effect of wine compounds. The scope of this study was to examine the effect of a red (Cabernet Sauvignon-CS) and a white (Robola-R) wine, as well as resveratrol and quercetin, on the platelet activating factor (PAF) biosynthetic enzymes, acetyl-CoA:lyso-PAF acetyltransferase (lyso-PAF-AT) and DTT-insensitive CDP-choline 1-alkyl-2-acetyl-sn-glycerol cholinephosphotransferase (PAF-CPT), and its main catabolic enzyme (PAF acetylhydrolase; PAF-AH), on U937 cells, in cell free and in intact cell experiments. In cell free experiments, phenolic compounds and wine extracts inhibited PAF biosynthetic enzymes, however in higher concentrations than intact cell experiments. In the latter cases, polar lipids of both wines inhibited in the same order of magnitude the action of lyso-PAF-AT and of PAF-CPT. The water fractions possessed a dual action, in lower concentrations they activated both enzymes, while in higher concentrations only inhibited PAF-CPT. All fractions either did not affect or slightly activated PAF-AH activity. In conclusion, wine compounds may exert their anti-inflammatory activity by reducing PAF levels through modulation of the PAF metabolic enzymes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Hypolipidemic and anti-atherogenic effect of aqueous extract leaves of Ficus glumosa (Moraceae) in rats.

    Science.gov (United States)

    Ntchapda, Fidele; Djedouboum, Abakar; Talla, Emmanuel; Sokeng Dongmo, Sélestin; Nana, Paulin; Adjia, Hamadjida; Nguimbou, Richard Marcel; Bonabe, Christian; Gaimatakon, Samuel; Njintang Yanou, Nicolas; Dimo, Théophile

    2015-02-01

    Leaves of Ficus glumosa are used in northern Cameroon and southern Chad for the treatment of cardiovascular diseases, as food and as a stimulant for milk production in both women and animals. Atherosclerosis is a disease in which frequency increases with age. The first lesions appear at the young subject during adolescence. Atherosclerosis lesions appear very precociously and worsen with age. They interest the levels chronologically aortic, coronary then carotid. Age is a risk factor in that it reflects the exposure time of individual to the other risk factors. The frequency of the atherosclerosis increases with age because of the aging of the cells. This study was undertaken to evaluate the hypolipidemic and anti-atherosclerotic properties of aqueous extract of the leaves of F. glumosa in rats with hypercholesterolemia (HC). 60 male rats were fed for 4 weeks with a high-cholesterol diet (1%) and 3 doses (225, 300 and 375 mg/kg) of extract of F. glumosa were used in these experiments. The experiments were conducted under the same conditions with atorvastatin (1 mg/kg), as pharmacological reference substance. The effects of F. glumosa on weight gain, water and food consumption, levels of serum lipids and lipoprotein lipid oxidation and stress markers in the blood and liver were examined. The administration of F. glumosa extract prevented significant (P<0.05) elevation in TC, LDL-c, VLDL-c, hepatic and aortic TG and TC. The atherogenic, triglyceride, and lipid peroxidation (TBARS) indexes were also decreased in the rats treated with the extract. F. glumosa favored the performance of fecal cholesterol. It also significantly inhibited the changes and the formation of aortic atherosclerotic plaques. These results revealed the hypolipidemic and antiatherosclerotic effects of F. glumosa extract and support the traditional use of the extract of this plant in the treatment of hypertension and diabetes. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Multiple pathway assessment to predict anti-atherogenic efficacy of drugs targeting macrophages in atherosclerotic plaques

    NARCIS (Netherlands)

    Alaarg, Amr Muhmed Sabry Abdelhakeem; Zheng, K.H.; van der Valk, F.M.; Eduardo Da Silva, Acarilia; Versloot, M.; Quarles van Ufford, Linda C.; Schulte, D.M.; Storm, Gerrit; Metselaar, Josbert Maarten; Stroes, E.S.; Hamers, A.A.J.

    2016-01-01

    Background Macrophages play a central role in atherosclerosis development and progression, hence, targeting macrophage activity is considered an attractive therapeutic. Recently, we documented nanomedicinal delivery of the anti-inflammatory compound prednisolone to atherosclerotic plaque macrophages

  13. Pectic enzymes

    NARCIS (Netherlands)

    Benen, J.A.E.; Voragen, A.G.J.; Visser, J.

    2003-01-01

    The pectic enzymes comprise a diverse group of enzymes. They consist of main-chain depolymerases and esterases active on methyl- and acetylesters of galacturonosyl uronic acid residues. The depolymerizing enzymes comprise hydrolases as wel as lyases

  14. Enzyme Informatics

    Science.gov (United States)

    Alderson, Rosanna G.; Ferrari, Luna De; Mavridis, Lazaros; McDonagh, James L.; Mitchell, John B. O.; Nath, Neetika

    2012-01-01

    Over the last 50 years, sequencing, structural biology and bioinformatics have completely revolutionised biomolecular science, with millions of sequences and tens of thousands of three dimensional structures becoming available. The bioinformatics of enzymes is well served by, mostly free, online databases. BRENDA describes the chemistry, substrate specificity, kinetics, preparation and biological sources of enzymes, while KEGG is valuable for understanding enzymes and metabolic pathways. EzCatDB, SFLD and MACiE are key repositories for data on the chemical mechanisms by which enzymes operate. At the current rate of genome sequencing and manual annotation, human curation will never finish the functional annotation of the ever-expanding list of known enzymes. Hence there is an increasing need for automated annotation, though it is not yet widespread for enzyme data. In contrast, functional ontologies such as the Gene Ontology already profit from automation. Despite our growing understanding of enzyme structure and dynamics, we are only beginning to be able to design novel enzymes. One can now begin to trace the functional evolution of enzymes using phylogenetics. The ability of enzymes to perform secondary functions, albeit relatively inefficiently, gives clues as to how enzyme function evolves. Substrate promiscuity in enzymes is one example of imperfect specificity in protein-ligand interactions. Similarly, most drugs bind to more than one protein target. This may sometimes result in helpful polypharmacology as a drug modulates plural targets, but also often leads to adverse side-effects. Many cheminformatics approaches can be used to model the interactions between druglike molecules and proteins in silico. We can even use quantum chemical techniques like DFT and QM/MM to compute the structural and energetic course of enzyme catalysed chemical reaction mechanisms, including a full description of bond making and breaking. PMID:23116471

  15. Enzyme assays.

    Science.gov (United States)

    Brodelius, P E

    1991-02-01

    The past year or so has seen the development of new enzyme assays, as well as the improvement of existing ones. Assays are becoming more rapid and sensitive as a result of modifications such as amplification of the enzyme product(s). Recombinant DNA technology is now being recognized as a particularly useful tool in the search for improved assay systems.

  16. Nitro-Oleic Acid Reduces J774A.1 Macrophage Oxidative Status and Triglyceride Mass: Involvement of Paraoxonase2 and Triglyceride Metabolizing Enzymes.

    Science.gov (United States)

    Rosenblat, Mira; Rom, Oren; Volkova, Nina; Aviram, Michael

    2016-08-01

    Nitro-fatty acids possess anti-atherogenic properties, but their effects on macrophage oxidative status and lipid metabolism that play important roles in atherosclerosis development are unclear. This study compared the effects of nitro-oleic acid (OLA-NO2) with those of native oleic acid (OLA) on intracellular reactive oxygen species (ROS) generation, anti-oxidants and metabolism of triglycerides and cholesterol in J774A.1 macrophages. Upon incubating the cells with physiological concentrations of OLA-NO2 (0-1 µM) or with equivalent levels of OLA, ROS levels measured by 2, 7-dichlorofluorescein diacetate, decreased dose-dependently, but the anti-oxidative effects of OLA-NO2 were significantly augmented. Copper ion addition increased ROS generation in OLA treated macrophages without affecting OLA-NO2 treated cells. These effects could be attributed to elevated glutathione levels and to increased activity and expression of paraoxonase2 that were observed in OLA-NO2 vs OLA treated cells. Beneficial effects on triglyceride metabolism were noted in OLA-NO2 vs OLA treated macrophages in which cellular triglycerides were reduced due to attenuated biosynthesis and accelerated hydrolysis of triglycerides. Accordingly, OLA-NO2 treated cells demonstrated down-regulation of diacylglycerol acyltransferase1, the key enzyme in triglyceride biosynthesis, and increased expression of hormone-sensitive lipase and adipose triglyceride lipase that regulate triglyceride hydrolysis. Finally, OLA-NO2 vs OLA treatment resulted in modest but significant beneficial effects on macrophage cholesterol metabolism, reducing cholesterol biosynthesis rate and low density lipoprotein influx into the cells, while increasing high density lipoprotein-mediated cholesterol efflux from the macrophages. Collectively, compared with OLA, OLA-NO2 modestly but significantly reduces macrophage oxidative status and cellular triglyceride content via modulation of cellular anti-oxidants and triglyceride

  17. Portulaca oleracea reduces triglyceridemia, cholesterolemia, and improves lecithin: cholesterol acyltransferase activity in rats fed enriched-cholesterol diet.

    Science.gov (United States)

    Zidan, Y; Bouderbala, S; Djellouli, F; Lacaille-Dubois, M A; Bouchenak, M

    2014-10-15

    The effects of Portulaca oleracea (Po) lyophilized aqueous extract were determined on the serum high-density lipoproteins (HDL2 and HDL3) amounts and composition, as well as on lecithin: cholesterol acyltansferase (LCAT) activity. Male Wistar rats (n = 12) were fed on 1% cholesterol-enriched diet for 10 days. After this phase, hypercholesterolemic rats (HC) were divided into two groups fed the same diet supplemented or not with Portulaca oleracea (Po-HC) (0.5%) for four weeks. Serum total cholesterol (TC) and triacylglycerols (TG), and liver TG values were respectively 1.6-, 1.8-, and 1.6-fold lower in Po-HC than in HC group. Cholesterol concentrations in LDL-HDL1, HDL2, and HDL3 were respectively 1.8, 1.4-, and 2.4-fold decreased in Po-HC group. HDL2 and HDL3 amounts, which were the sum of apolipoproteins (apos), TG, cholesteryl esters (CE), unesterified cholesterol (UC), and phospholipids (PL) contents, were respectively 4.5-fold higher and 1.2-fold lower with Po treatment. Indeed, enhanced LCAT activity (1.2-fold), its cofactor-activator apo A-I (2-fold) and its reaction product HDL2-CE (2.1-fold) were observed, whereas HDL3-PL (enzyme substrate) and HDL3-UC (acyl group acceptor) were 1.2- and 2.4-fold lower. Portulaca oleracea reduces triglyceridemia, cholesterolemia, and improves reverse cholesterol transport in rat fed enriched-cholesterol diet, contributing to anti-atherogenic effects. Copyright © 2014 Elsevier GmbH. All rights reserved.

  18. Enzyme immunoassay

    DEFF Research Database (Denmark)

    Feldt-Rasmussen, B; Dinesen, B; Deckert, M

    1985-01-01

    An enzyme linked immunoadsorbent assay for urinary albumin using commercially available reagents is described. The assay range is 2.5-120 micrograms/l. When samples are analysed in two standard dilutions, the assayable albumin concentration range is 2.5-240 mg/l, covering the clinical range from...

  19. Vitamin E analogs:a new class of multiple action ogents with antineoplastic and anti-atherogenic activity

    Czech Academy of Sciences Publication Activity Database

    Neužil, J.; Kagedal, K.; Anděra, Ladislav; Weber, C.; Brunk, U. T.

    2002-01-01

    Roč. 7, č. 2 (2002), s. 179-187 ISSN 1360-8185 R&D Projects: GA MŠk LN00A026 Keywords : Vitamin E * TRAIL * apoptosis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.421, year: 2002

  20. Anti-Atherogenic Properties of Allium ursinum Liophylisate: Impact on Lipoprotein Homeostasis and Cardiac Biomarkers in Hypercholesterolemic Rabbits.

    Science.gov (United States)

    Bombicz, Mariann; Priksz, Daniel; Varga, Balazs; Gesztelyi, Rudolf; Kertesz, Attila; Lengyel, Peter; Balogh, Peter; Csupor, Dezso; Hohmann, Judit; Bhattoa, Harjit Pal; Haines, David D; Juhasz, Bela

    2016-08-10

    The present investigation evaluates the capacity of Allium ursinum (wild garlic) leaf lyophilisate (WGLL; alliin content: 0.261%) to mitigate cardiovascular damage in hypercholesterolemic rabbits. New Zealand rabbits were divided into three groups: (i) cholesterol-free rabbit chow (control); (ii) rabbit chow containing 2% cholesterol (hypercholesterolemic, HC); (iii) rabbit chow containing 2% cholesterol + 2% WGLL (hypercholesterolemic treated, HCT); for eight weeks. At the zero- and eight-week time points, echocardiographic measurements were made, along with the determination of basic serum parameters. Following the treatment period, after ischemia-reperfusion injury, hemodynamic parameters were measured using an isolated working heart model. Western blot analyses of heart tissue followed for evaluating protein expression and histochemical study for the atheroma status determination. WGLL treatment mediated increases in fractional shortening; right ventricular function; peak systolic velocity; tricuspidal annular systolic velocity in live animals; along with improved aortic and coronary flow. Western blot analysis revealed WGLL-associated increases in HO-1 protein and decreases in SOD-1 protein production. WGLL-associated decreases were observed in aortic atherosclerotic plaque coverage, plasma ApoB and the activity of LDH and CK (creatine kinase) in plasma. Plasma LDL was also significantly reduced. The results clearly demonstrate that WGLL has complex cardioprotective effects, suggesting future strategies for its use in prevention and therapy for atherosclerotic disorders.

  1. Enzyme detection by microfluidics

    DEFF Research Database (Denmark)

    2013-01-01

    Microfluidic-implemented methods of detecting an enzyme, in particular a DNA-modifying enzyme, are provided, as well as methods for detecting a cell, or a microorganism expressing said enzyme. The enzyme is detected by providing a nucleic acid substrate, which is specifically targeted...... by that enzyme...

  2. Elevated Liver Enzymes

    Science.gov (United States)

    Symptoms Elevated liver enzymes By Mayo Clinic Staff Elevated liver enzymes may indicate inflammation or damage to cells in the liver. Inflamed or ... than normal amounts of certain chemicals, including liver enzymes, into the bloodstream, which can result in elevated ...

  3. Biocatalytic Single Enzyme Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Grate, Jay W.; Kim, Jungbae

    2004-03-31

    As an innovative way of enzyme stabilization, we recently developed a new enzyme composite of nano-meter scale that we call "single-enzyme nanoparticles (SENs)" (9). Each enzyme molecule is surrounded with a porous composite organic/inorganic network of less than a few nanometers think. This approach represents a new type of enzyme-containing nanostructure. In experiments with perotease (chymotrypsin, CT), the activity of single enzyme nanoparticle form of the enzyme was greatly stabilized compared to the free form, without imposing a serious mass transfer limitation of substrates. In this chapter we will describe the synthesis, characterization and catalytic activity of the new SENs.

  4. The ENZYME data bank.

    Science.gov (United States)

    Bairoch, A

    1994-09-01

    The ENZYME data bank is a repository of information relative to the nomenclature of enzymes. It is primarily based on the recommendations of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology (IUBMB) and it contains the following data for each type of characterized enzyme for which an EC (Enzyme Commission) number has been provided: EC number Recommended name Alternative names (if any) Catalytic activity Cofactors (if any) Pointers to the SWISS-PROT protein sequence entrie(s) that correspond to the enzyme (if any) Pointers to human disease(s) associated with a deficiency of the enzyme (if any).

  5. Enzyme inhibition by iminosugars

    DEFF Research Database (Denmark)

    López, Óscar; Qing, Feng-Ling; Pedersen, Christian Marcus

    2013-01-01

    Imino- and azasugar glycosidase inhibitors display pH dependant inhibition reflecting that both the inhibitor and the enzyme active site have groups that change protonation state with pH. With the enzyme having two acidic groups and the inhibitor one basic group, enzyme-inhibitor complexes...

  6. Structure and function of lysosomal phospholipase A2 and lecithin:cholesterol acyltransferase

    Science.gov (United States)

    Glukhova, Alisa; Hinkovska-Galcheva, Vania; Kelly, Robert; Abe, Akira; Shayman, James A.; Tesmer, John J. G.

    2015-03-01

    Lysosomal phospholipase A2 (LPLA2) and lecithin:cholesterol acyltransferase (LCAT) belong to a structurally uncharacterized family of key lipid-metabolizing enzymes responsible for lung surfactant catabolism and for reverse cholesterol transport, respectively. Whereas LPLA2 is predicted to underlie the development of drug-induced phospholipidosis, somatic mutations in LCAT cause fish eye disease and familial LCAT deficiency. Here we describe several high-resolution crystal structures of human LPLA2 and a low-resolution structure of LCAT that confirms its close structural relationship to LPLA2. Insertions in the α/β hydrolase core of LPLA2 form domains that are responsible for membrane interaction and binding the acyl chains and head groups of phospholipid substrates. The LCAT structure suggests the molecular basis underlying human disease for most of the known LCAT missense mutations, and paves the way for rational development of new therapeutics to treat LCAT deficiency, atherosclerosis and acute coronary syndrome.

  7. Enzymes for improved biomass conversion

    Science.gov (United States)

    Brunecky, Roman; Himmel, Michael E.

    2016-02-02

    Disclosed herein are enzymes and combinations of the enzymes useful for the hydrolysis of cellulose and the conversion of biomass. Methods of degrading cellulose and biomass using enzymes and cocktails of enzymes are also disclosed.

  8. Magnetically responsive enzyme powders

    Science.gov (United States)

    Pospiskova, Kristyna; Safarik, Ivo

    2015-04-01

    Powdered enzymes were transformed into their insoluble magnetic derivatives retaining their catalytic activity. Enzyme powders (e.g., trypsin and lipase) were suspended in various liquid media not allowing their solubilization (e.g., saturated ammonium sulfate and highly concentrated polyethylene glycol solutions, ethanol, methanol, 2-propanol) and subsequently cross-linked with glutaraldehyde. Magnetic modification was successfully performed at low temperature in a freezer (-20 °C) using magnetic iron oxides nano- and microparticles prepared by microwave-assisted synthesis from ferrous sulfate. Magnetized cross-linked enzyme powders were stable at least for two months in water suspension without leakage of fixed magnetic particles. Operational stability of magnetically responsive enzymes during eight repeated reaction cycles was generally without loss of enzyme activity. Separation of magnetically modified cross-linked powdered enzymes from reaction mixtures was significantly simplified due to their magnetic properties.

  9. Enzymes in animal nutrition

    OpenAIRE

    Scientific Committee on Animal Nutrition

    2011-01-01

    This report brings overview of endogenous as well as exogenous enzymes and their role and importance in animal nutrition. Enzymes for animal nutrition have been systematically developed since 1980´s. Phytase, xylanase and β-glucanase are used in poultry-rising, pig breeding, aquaculture and begin to push to the ruminant nutrition. Phytase increase availability of P, Ca, Zn, digestibility of proteins and fats. Its positive effect on the environment is well described – enzymes decrease the cont...

  10. Profiling the orphan enzymes

    Science.gov (United States)

    2014-01-01

    The emergence of Next Generation Sequencing generates an incredible amount of sequence and great potential for new enzyme discovery. Despite this huge amount of data and the profusion of bioinformatic methods for function prediction, a large part of known enzyme activities is still lacking an associated protein sequence. These particular activities are called “orphan enzymes”. The present review proposes an update of previous surveys on orphan enzymes by mining the current content of public databases. While the percentage of orphan enzyme activities has decreased from 38% to 22% in ten years, there are still more than 1,000 orphans among the 5,000 entries of the Enzyme Commission (EC) classification. Taking into account all the reactions present in metabolic databases, this proportion dramatically increases to reach nearly 50% of orphans and many of them are not associated to a known pathway. We extended our survey to “local orphan enzymes” that are activities which have no representative sequence in a given clade, but have at least one in organisms belonging to other clades. We observe an important bias in Archaea and find that in general more than 30% of the EC activities have incomplete sequence information in at least one superkingdom. To estimate if candidate proteins for local orphans could be retrieved by homology search, we applied a simple strategy based on the PRIAM software and noticed that candidates may be proposed for an important fraction of local orphan enzymes. Finally, by studying relation between protein domains and catalyzed activities, it appears that newly discovered enzymes are mostly associated with already known enzyme domains. Thus, the exploration of the promiscuity and the multifunctional aspect of known enzyme families may solve part of the orphan enzyme issue. We conclude this review with a presentation of recent initiatives in finding proteins for orphan enzymes and in extending the enzyme world by the discovery of new

  11. The EBI enzyme portal

    OpenAIRE

    Alc?ntara, Rafael; Onwubiko, Joseph; Cao, Hong; de Matos, Paula; Cham, Jennifer A.; Jacobsen, Jules; Holliday, Gemma L.; Fischer, Julia D.; Rahman, Syed Asad; Jassal, Bijay; Goujon, Mikael; Rowland, Francis; Velankar, Sameer; L?pez, Rodrigo; Overington, John P.

    2012-01-01

    The availability of comprehensive information about enzymes plays an important role in answering questions relevant to interdisciplinary fields such as biochemistry, enzymology, biofuels, bioengineering and drug discovery. At the EMBL European Bioinformatics Institute, we have developed an enzyme portal (http://www.ebi.ac.uk/enzymeportal) to provide this wealth of information on enzymes from multiple in-house resources addressing particular data classes: protein sequence and structure, reacti...

  12. Enzyme catalysed tandem reactions

    OpenAIRE

    Oroz-Guinea, Isabel; García-Junceda, Eduardo

    2013-01-01

    To transfer to the laboratory, the excellent efficiency shown by enzymes in Nature, biocatalysis, had to mimic several synthetic strategies used by the living organisms. Biosynthetic pathways are examples of tandem catalysis and may be assimilated in the biocatalysis field for the use of isolated multi-enzyme systems in the homogeneous phase. The concurrent action of several enzymes that work sequentially presents extraordinary advantages from the synthetic point of view, since it permits a r...

  13. Enzymes from extremophiles.

    Science.gov (United States)

    Demirjian, D C; Morís-Varas, F; Cassidy, C S

    2001-04-01

    The industrial application of enzymes that can withstand harsh conditions has greatly increased over the past decade. This is mainly a result of the discovery of novel enzymes from extremophilic microorganisms. Recent advances in the study of extremozymes point to the acceleration of this trend. In particular, enzymes from thermophilic organisms have found the most practical commercial use to date because of their overall inherent stability. This has also led to a greater understanding of stability factors involved in adaptation of these enzymes to their unusual environments.

  14. Artificial Enzymes, "Chemzymes"

    DEFF Research Database (Denmark)

    Bjerre, Jeannette; Rousseau, Cyril Andre Raphaël; Pedersen, Lavinia Georgeta M

    2008-01-01

    "Chemzymes", based on cyclodextrins and other molecules. Only the chemzymes that have shown enzyme-like activity that has been quantified by different methods will be mentioned. This review will summarize the work done in the field of artificial glycosidases, oxidases, epoxidases, and esterases, as well......Enzymes have fascinated scientists since their discovery and, over some decades, one aim in organic chemistry has been the creation of molecules that mimic the active sites of enzymes and promote catalysis. Nevertheless, even today, there are relatively few examples of enzyme models...

  15. Magnetically responsive enzyme powders

    International Nuclear Information System (INIS)

    Pospiskova, Kristyna; Safarik, Ivo

    2015-01-01

    Powdered enzymes were transformed into their insoluble magnetic derivatives retaining their catalytic activity. Enzyme powders (e.g., trypsin and lipase) were suspended in various liquid media not allowing their solubilization (e.g., saturated ammonium sulfate and highly concentrated polyethylene glycol solutions, ethanol, methanol, 2-propanol) and subsequently cross-linked with glutaraldehyde. Magnetic modification was successfully performed at low temperature in a freezer (−20 °C) using magnetic iron oxides nano- and microparticles prepared by microwave-assisted synthesis from ferrous sulfate. Magnetized cross-linked enzyme powders were stable at least for two months in water suspension without leakage of fixed magnetic particles. Operational stability of magnetically responsive enzymes during eight repeated reaction cycles was generally without loss of enzyme activity. Separation of magnetically modified cross-linked powdered enzymes from reaction mixtures was significantly simplified due to their magnetic properties. - Highlights: • Cross-linked enzyme powders were prepared in various liquid media. • Insoluble enzymes were magnetized using iron oxides particles. • Magnetic iron oxides particles were prepared by microwave-assisted synthesis. • Magnetic modification was performed under low (freezing) temperature. • Cross-linked powdered trypsin and lipase can be used repeatedly for reaction

  16. Enzymes in Fermented Fish.

    Science.gov (United States)

    Giyatmi; Irianto, H E

    Fermented fish products are very popular particularly in Southeast Asian countries. These products have unique characteristics, especially in terms of aroma, flavor, and texture developing during fermentation process. Proteolytic enzymes have a main role in hydrolyzing protein into simpler compounds. Fermentation process of fish relies both on naturally occurring enzymes (in the muscle or the intestinal tract) as well as bacteria. Fermented fish products processed using the whole fish show a different characteristic compared to those prepared from headed and gutted fish. Endogenous enzymes like trypsin, chymotrypsin, elastase, and aminopeptidase are the most involved in the fermentation process. Muscle tissue enzymes like cathepsins, peptidases, transaminases, amidases, amino acid decarboxylases, glutamic dehydrogenases, and related enzymes may also play a role in fish fermentation. Due to the decreased bacterial number during fermentation, contribution of microbial enzymes to proteolysis may be expected prior to salting of fish. Commercial enzymes are supplemented during processing for specific purposes, such as quality improvement and process acceleration. In the case of fish sauce, efforts to accelerate fermentation process and to improve product quality have been studied by addition of enzymes such as papain, bromelain, trypsin, pepsin, and chymotrypsin. © 2017 Elsevier Inc. All rights reserved.

  17. Enzyme Vs. Extremozyme -32 ...

    Indian Academy of Sciences (India)

    Enzyme Vs. Extremozyme. What Makes Extremozymes Function Under Harsh Conditions? Santosh Kumar is ... extremozymes to high temperature or pH so that enzymes from mesophiles can be engineered to behave .... alkalinity (above pH 10, soda lake) from which extremozymes have been isolated. F C Lowyer of the ...

  18. Industrial Enzymes and Biocatalysis

    Science.gov (United States)

    McAuliffe, Joseph C.; Aehle, Wolfgang; Whited, Gregory M.; Ward, Donald E.

    All life processes are the result of enzyme activity. In fact, life itself, whether plant or animal, involves a complex network of enzymatic reactions. An enzyme is a protein that is synthesized in a living cell. It catalyzes a thermodynamically possible reaction so that the rate of the reaction is compatible with the numerous biochemical processes essential for the growth and maintenance of a cell. The synthesis of an enzyme thus is under tight metabolic regulations and controls that can be genetically or environmentally manipulated sometimes to cause the overproduction of an enzyme by the cell. An enzyme, like chemical catalysts, in no way modifies the equilibrium constant or the free energy change of a reaction.

  19. Enzymic lactose hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J.J.; Brand, J.C.

    1980-01-01

    Acid or enzymic hydrolysis can be used to hydrolyze lactose. Advantages of both are compared and details of enzymic hydrolysis using yeast or fungal enzymes given. The new scheme outlined involves recycling lactase. Because lactose and lactase react to ultrafiltration (UF) membranes differently separation is possible. Milk or milk products are ultrafiltered to separate a concentrate from a lactose-rich permeate which is treated with lactase in a reactor until hydrolysis reaches a required level. The lactase can be removed by UF as it does not permeate the membrane, and it is recycled back to the reactor. Permeate from the second UF stage may or may not be recombined with the concentrate from the first stage to produce a low lactose product (analysis of a typical low-lactose dried whole milk is given). Batch or continuous processes are explained and a batch process without enzyme recovery is discussed. (Refs. 4).

  20. Indicators: Sediment Enzymes

    Science.gov (United States)

    Sediment enzymes are proteins that are produced by microorganisms living in the sediment or soil. They are indicators of key ecosystem processes and can help determine which nutrients are affecting the biological community of a waterbody.

  1. Enzymes in Analytical Chemistry.

    Science.gov (United States)

    Fishman, Myer M.

    1980-01-01

    Presents tabular information concerning recent research in the field of enzymes in analytic chemistry, with methods, substrate or reaction catalyzed, assay, comments and references listed. The table refers to 128 references. Also listed are 13 general citations. (CS)

  2. Enzyme Vs. Extremozyme -32 ...

    Indian Academy of Sciences (India)

    Enzyme Vs. Extremozyme. What Makes Extremozymes Function Under Harsh Conditions? Santosh Kumar is doing his Ph D at Biotechnology. Centre, Indian Institute of. Technology, Bombay. His research interests include: enzymology, metabolism, metabolic regulation and metabolic engineering of a filamentous fungi,.

  3. Membrane Assisted Enzyme Fractionation

    DEFF Research Database (Denmark)

    Yuan, Linfeng

    . In this thesis, separations using crossflow elecro-membrane filtration (EMF) of amino acids, bovine serum albumin (BSA) and industrial enzymes from Novozymes were performed. The main objective of this study was to investigate the technological feasibility of EMF in the application of industrial enzyme...... fractionation, such as removal of a side activity from the main enzyme activity. As a proof-of-concept, amino acids were used as model solution to test the feasibility of EMF in the application of amphoteric molecule separation. A single amino acid was used to illustrate the effect of an electric field...... on the separation performance were very small in the investigated range. The mass transport of each enzyme can be well explained by the Extended-Nernst-Planck equation. Better separation was observed at lower feed concentration, higher solution pH in the investigated range and with a polysulfone (PS) MF membrane...

  4. Advances in enzyme immobilisation

    CSIR Research Space (South Africa)

    Brady, D

    2009-07-10

    Full Text Available improved protein binding capacity. Novel methods of enzyme self immobilisation have been developed (CLEC, CLEA, Spherezyme), as well as carrier materials (Dendrispheres), encapsulation (PEI Microspheres), and entrapment. Apart from retention, recovery...

  5. Enzyme catalysed tandem reactions.

    Science.gov (United States)

    Oroz-Guinea, Isabel; García-Junceda, Eduardo

    2013-04-01

    To transfer to the laboratory, the excellent efficiency shown by enzymes in Nature, biocatalysis, had to mimic several synthetic strategies used by the living organisms. Biosynthetic pathways are examples of tandem catalysis and may be assimilated in the biocatalysis field for the use of isolated multi-enzyme systems in the homogeneous phase. The concurrent action of several enzymes that work sequentially presents extraordinary advantages from the synthetic point of view, since it permits a reversible process to become irreversible, to shift the equilibrium reaction in such a way that enantiopure compounds can be obtained from prochiral or racemic substrates, reduce or eliminate problems due to product inhibition or prevent the shortage of substrates by dilution or degradation in the bulk media, etc. In this review we want to illustrate the developments of recent studies involving in vitro multi-enzyme reactions for the synthesis of different classes of organic compounds. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Anti-atherogenic effects of a phenol-rich fraction from Brazilian red wine (Vitis labrusca L.) in hypercholesterolemic low-density lipoprotein receptor knockout mice.

    Science.gov (United States)

    Hort, Mariana Appel; Schuldt, Elke Zuleika; Bet, Angela Cristina; DalBó, Silvia; Siqueira, Jarbas Mota; Ianssen, Carla; Abatepaulo, Fátima; de Souza, Heraldo Possolo; Veleirinho, Beatriz; Maraschin, Marcelo; Ribeiro-do-Valle, Rosa Maria

    2012-10-01

    Moderate wine intake (i.e., 1-2 glasses of wine a day) is associated with a reduced risk of morbidity and mortality from cardiovascular disease. The aim of this study was to evaluate the anti-atherosclerotic effects of a nonalcoholic ethyl acetate fraction (EAF) from a South Brazilian red wine obtained from Vitis labrusca grapes. Experiments were carried out on low-density lipoprotein (LDL) receptor knockout (LDLr⁻/⁻) mice, which were subjected to a hypercholesterolemic diet and treated with doses of EAF (3, 10, and 30 mg/kg) for 12 weeks. At the end of the treatment, the level of plasma lipids, the vascular reactivity, and the atherosclerotic lesions were evaluated. Our results demonstrated that the treatment with EAF at 3 mg/kg significantly decreased total cholesterol, triglycerides, and LDL plus very low-density lipoprotein levels compared with control hypercholesterolemic mice. The treatment of mice with EAF at 3 mg/kg also preserved the vasodilatation induced by acetylcholine on isolated thoracic aorta from hypercholesterolemic LDLr⁻/⁻ mice. This result is in agreement with the degree of lipid deposit on arteries. Taken together, the results show for the first time that the lowest concentration of an EAF obtained from a red wine produced in southern Brazil significantly reduced the progression of atherosclerosis in mice.

  7. The pro-inflammatory effect of uraemia overrules the anti-atherogenic potential of immunization with oxidized LDL in apoE-/- mice

    DEFF Research Database (Denmark)

    Pedersen, Tanja X; Binder, Christoph J; Fredrikson, Gunilla N

    2010-01-01

    BACKGROUND: Uraemia increases oxidative stress, plasma titres of antibodies recognizing oxidized low-density lipoprotein (oxLDL) and development of atherosclerosis. Immunization with oxLDL prevents classical, non-uraemic atherosclerosis. We have investigated whether immunization with oxLDL might...... also prevent uraemia-induced atherosclerosis in apolipoprotein E knockout (apoE-/-) mice. METHODS: ApoE-/- mice were immunized with either native LDL (n = 25), Cu(2+)-oxidized LDL (n = 25), PBS (n = 25), the apolipoprotein B-derived peptide P45 (apoB-peptide P45) conjugated to bovine serum albumin (BSA...

  8. Concurrent Training Promoted Sustained Anti-Atherogenic Benefits In The Fasting Plasma Triacylglycerolemia Of Postmenopausal Women At 1-Year Follow-Up.

    Science.gov (United States)

    Rossi, Fabrício E; Diniz, Tiego A; Fortaleza, Ana Claudia S; Neves, Lucas M; Picolo, Malena R; Monteiro, Paula A; Buonani, Camila; Lira, Fábio S; Freitas, Ismael F

    2016-11-16

    The aim of this study was to compare the effects of aerobic and concurrent training (aerobic plus strength training) on the lipid profiles of normotriacylglycerolemic and hypertriacylglycerolemic postmenopausal women and to verify whether the benefits of aerobic and concurrent training were sustained after 1 year. Total cholesterol, high-density lipoprotein cholesterol (HDL-c), low-density lipoprotein cholesterol (LDL-c), Triacylglycerol (TAG) and glucose were assessed in 46 normotriacylglycerolemic (TAGbenefits are sustained at the 1-year follow-up among the hypertriacylglycerolemic subjects.

  9. Overproduction of ligninolytic enzymes

    Science.gov (United States)

    Elisashvili, Vladimir; Kachlishvili, Eva; Torok, Tamas

    2014-06-17

    Methods, compositions, and systems for overproducing ligninolytic enzymes from the basidiomycetous fungus are described herein. As described, the method can include incubating a fungal strain of Cerrena unicolor IBB 303 in a fermentation system having growth medium which includes lignocellulosic material and then cultivating the fungal strain in the fermentation system under conditions wherein the fungus expresses the ligninolytic enzymes. In some cases, the lignocellulosic material is mandarin peel, ethanol production residue, walnut pericarp, wheat bran, wheat straw, or banana peel.

  10. Measurement of enzyme activity.

    Science.gov (United States)

    Harris, T K; Keshwani, M M

    2009-01-01

    To study and understand the nature of living cells, scientists have continually employed traditional biochemical techniques aimed to fractionate and characterize a designated network of macromolecular components required to carry out a particular cellular function. At the most rudimentary level, cellular functions ultimately entail rapid chemical transformations that otherwise would not occur in the physiological environment of the cell. The term enzyme is used to singularly designate a macromolecular gene product that specifically and greatly enhances the rate of a chemical transformation. Purification and characterization of individual and collective groups of enzymes has been and will remain essential toward advancement of the molecular biological sciences; and developing and utilizing enzyme reaction assays is central to this mission. First, basic kinetic principles are described for understanding chemical reaction rates and the catalytic effects of enzymes on such rates. Then, a number of methods are described for measuring enzyme-catalyzed reaction rates, which mainly differ with regard to techniques used to detect and quantify concentration changes of given reactants or products. Finally, short commentary is given toward formulation of reaction mixtures used to measure enzyme activity. Whereas a comprehensive treatment of enzymatic reaction assays is not within the scope of this chapter, the very core principles that are presented should enable new researchers to better understand the logic and utility of any given enzymatic assay that becomes of interest.

  11. Random-walk enzymes

    Science.gov (United States)

    Mak, Chi H.; Pham, Phuong; Afif, Samir A.; Goodman, Myron F.

    2015-01-01

    Enzymes that rely on random walk to search for substrate targets in a heterogeneously dispersed medium can leave behind complex spatial profiles of their catalyzed conversions. The catalytic signatures of these random-walk enzymes are the result of two coupled stochastic processes: scanning and catalysis. Here we develop analytical models to understand the conversion profiles produced by these enzymes, comparing an intrusive model, in which scanning and catalysis are tightly coupled, against a loosely coupled passive model. Diagrammatic theory and path-integral solutions of these models revealed clearly distinct predictions. Comparison to experimental data from catalyzed deaminations deposited on single-stranded DNA by the enzyme activation-induced deoxycytidine deaminase (AID) demonstrates that catalysis and diffusion are strongly intertwined, where the chemical conversions give rise to new stochastic trajectories that were absent if the substrate DNA was homogeneous. The C → U deamination profiles in both analytical predictions and experiments exhibit a strong contextual dependence, where the conversion rate of each target site is strongly contingent on the identities of other surrounding targets, with the intrusive model showing an excellent fit to the data. These methods can be applied to deduce sequence-dependent catalytic signatures of other DNA modification enzymes, with potential applications to cancer, gene regulation, and epigenetics. PMID:26465508

  12. Random-walk enzymes

    Science.gov (United States)

    Mak, Chi H.; Pham, Phuong; Afif, Samir A.; Goodman, Myron F.

    2015-09-01

    Enzymes that rely on random walk to search for substrate targets in a heterogeneously dispersed medium can leave behind complex spatial profiles of their catalyzed conversions. The catalytic signatures of these random-walk enzymes are the result of two coupled stochastic processes: scanning and catalysis. Here we develop analytical models to understand the conversion profiles produced by these enzymes, comparing an intrusive model, in which scanning and catalysis are tightly coupled, against a loosely coupled passive model. Diagrammatic theory and path-integral solutions of these models revealed clearly distinct predictions. Comparison to experimental data from catalyzed deaminations deposited on single-stranded DNA by the enzyme activation-induced deoxycytidine deaminase (AID) demonstrates that catalysis and diffusion are strongly intertwined, where the chemical conversions give rise to new stochastic trajectories that were absent if the substrate DNA was homogeneous. The C →U deamination profiles in both analytical predictions and experiments exhibit a strong contextual dependence, where the conversion rate of each target site is strongly contingent on the identities of other surrounding targets, with the intrusive model showing an excellent fit to the data. These methods can be applied to deduce sequence-dependent catalytic signatures of other DNA modification enzymes, with potential applications to cancer, gene regulation, and epigenetics.

  13. Enzyme recycling in lignocellulosic biorefineries

    DEFF Research Database (Denmark)

    Jørgensen, Henning; Pinelo, Manuel

    2017-01-01

    platform. Cellulases are the most important enzymes required in this process, but the complex nature of lignocellulose requires several other enzymes (hemicellulases and auxiliary enzymes) for efficient hydrolysis. Enzyme recycling increases the catalytic productivity of the enzymes by reusing them...... upscaled and tested in industrial settings, mainly because of many difficulties with recycling of enzymes from the complex lignocellulose hydrolyzate at industrially relevant conditions, i.e., high solids loadings. The challenges are associated with the large number of different enzymes required...... for efficient hydrolysis, enzyme stability, and the detrimental interaction between enzyme and lignin. This review provides a comprehensive overview of the various methods for enzyme recovery and recycling, for example recycling of free enzymes, readsorption to fresh material, recycling of solids, membrane...

  14. Angiotensin-converting enzyme

    DEFF Research Database (Denmark)

    Sørensen, P G; Rømer, F K; Cortes, D

    1984-01-01

    In order to evaluate bleomycin-associated lung damage in humans, lung function parameters and serum levels of the endothelial-bound angiotensin-converting enzyme (ACE) were determined by serial measurements in 11 patients who were treated for testicular cancer. None developed clinical or radiolog......In order to evaluate bleomycin-associated lung damage in humans, lung function parameters and serum levels of the endothelial-bound angiotensin-converting enzyme (ACE) were determined by serial measurements in 11 patients who were treated for testicular cancer. None developed clinical...

  15. The ENZYME database in 2000.

    Science.gov (United States)

    Bairoch, A

    2000-01-01

    The ENZYME database is a repository of information related to the nomenclature of enzymes. In recent years it has became an indispensable resource for the development of metabolic databases. The current version contains information on 3705 enzymes. It is available through the ExPASy WWW server (http://www.expasy.ch/enzyme/ ).

  16. The surface science of enzymes

    DEFF Research Database (Denmark)

    Rod, Thomas Holm; Nørskov, Jens Kehlet

    2002-01-01

    One of the largest challenges to science in the coming years is to find the relation between enzyme structure and function. Can we predict which reactions an enzyme catalyzes from knowledge of its structure-or from its amino acid sequence? Can we use that knowledge to modify enzyme function......? To solve these problems we must understand in some detail how enzymes interact with reactants from its surroundings. These interactions take place at the surface of the enzyme and the question of enzyme function can be viewed as the surface science of enzymes. In this article we discuss how to describe...... catalysis by enzymes, and in particular the analogies between enzyme catalyzed reactions and surface catalyzed reactions. We do this by discussing two concrete examples of reactions catalyzed both in nature (by enzymes) and in industrial reactors (by inorganic materials), and show that although analogies...

  17. Magnetically responsive enzyme powders

    Czech Academy of Sciences Publication Activity Database

    Pospišková, K.; Šafařík, Ivo

    2015-01-01

    Roč. 380, APR 2015 (2015), s. 197-200 ISSN 0304-8853 R&D Projects: GA MŠk(CZ) LD13021 Institutional support: RVO:67179843 Keywords : enzyme powders * cross-linking * magnetic modification * magnetic separation * magnetic iron oxides particles * microwave-assisted synthesis Subject RIV: CE - Biochemistry Impact factor: 2.357, year: 2015

  18. ISFET based enzyme sensors

    NARCIS (Netherlands)

    van der Schoot, Bart H.; Bergveld, Piet

    1987-01-01

    This paper reviews the results that have been reported on ISFET based enzyme sensors. The most important improvement that results from the application of ISFETs instead of glass membrane electrodes is in the method of fabrication. Problems with regard to the pH dependence of the response and the

  19. Implantable enzyme amperometric biosensors.

    Science.gov (United States)

    Kotanen, Christian N; Moussy, Francis Gabriel; Carrara, Sandro; Guiseppi-Elie, Anthony

    2012-05-15

    The implantable enzyme amperometric biosensor continues as the dominant in vivo format for the detection, monitoring and reporting of biochemical analytes related to a wide range of pathologies. Widely used in animal studies, there is increasing emphasis on their use in diabetes care and management, the management of trauma-associated hemorrhage and in critical care monitoring by intensivists in the ICU. These frontier opportunities demand continuous indwelling performance for up to several years, well in excess of the currently approved seven days. This review outlines the many challenges to successful deployment of chronically implantable amperometric enzyme biosensors and emphasizes the emerging technological approaches in their continued development. The foreign body response plays a prominent role in implantable biotransducer failure. Topics considering the approaches to mitigate the inflammatory response, use of biomimetic chemistries, nanostructured topographies, drug eluting constructs, and tissue-to-device interface modulus matching are reviewed. Similarly, factors that influence biotransducer performance such as enzyme stability, substrate interference, mediator selection and calibration are reviewed. For the biosensor system, the opportunities and challenges of integration, guided by footprint requirements, the limitations of mixed signal electronics, and power requirements, has produced three systems approaches. The potential is great. However, integration along the multiple length scales needed to address fundamental issues and integration across the diverse disciplines needed to achieve success of these highly integrated systems, continues to be a challenge in the development and deployment of implantable amperometric enzyme biosensor systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Photoperiodism and Enzyme Activity

    Science.gov (United States)

    Queiroz, Orlando; Morel, Claudine

    1974-01-01

    Metabolic readjustments after a change from long days to short days appear, in Kalanchoe blossfeldiana, to be achieved through the operation of two main mechanisms: variation in enzyme capacity, and circadian rhythmicity. After a lag time, capacity in phosphoenolpyruvate carboxylase and capacity in aspartate aminotransferase increase exponentially and appear to be allometrically linked during 50 to 60 short days; then a sudden fall takes place in the activity of the former. Malic enzyme and alanine aminotransferase behave differently. Thus, the operation of the two sections of the pathway (before and after the malate step) give rise to a continuously changing functional compartmentation in the pathway. Circadian rhythmicity, on the other hand, produces time compartmentation through phase shifts and variation in amplitude, independently for each enzyme. These characteristics suggest that the operation of a so-called biological clock would be involved. We propose the hypothesis that feedback regulation would be more accurate and efficient when applied to an already oscillating, clock-controlled enzyme system. PMID:16658749

  1. Uronic polysaccharide degrading enzymes.

    Science.gov (United States)

    Garron, Marie-Line; Cygler, Miroslaw

    2014-10-01

    In the past several years progress has been made in the field of structure and function of polysaccharide lyases (PLs). The number of classified polysaccharide lyase families has increased to 23 and more detailed analysis has allowed the identification of more closely related subfamilies, leading to stronger correlation between each subfamily and a unique substrate. The number of as yet unclassified polysaccharide lyases has also increased and we expect that sequencing projects will allow many of these unclassified sequences to emerge as new families. The progress in structural analysis of PLs has led to having at least one representative structure for each of the families and for two unclassified enzymes. The newly determined structures have folds observed previously in other PL families and their catalytic mechanisms follow either metal-assisted or Tyr/His mechanisms characteristic for other PL enzymes. Comparison of PLs with glycoside hydrolases (GHs) shows several folds common to both classes but only for the β-helix fold is there strong indication of divergent evolution from a common ancestor. Analysis of bacterial genomes identified gene clusters containing multiple polysaccharide cleaving enzymes, the Polysaccharides Utilization Loci (PULs), and their gene complement suggests that they are organized to process completely a specific polysaccharide. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. NRSA enzyme decomposition model data

    Data.gov (United States)

    U.S. Environmental Protection Agency — Microbial enzyme activities measured at more than 2000 US streams and rivers. These enzyme data were then used to predict organic matter decomposition and microbial...

  3. The Catalytic Function of Enzymes.

    Science.gov (United States)

    Splittgerber, Allan G.

    1985-01-01

    Discusses: structure of the enzyme molecule; active site; reaction mechanism; transition state; factors affecting enzyme reaction rates, concentration of enzyme; concentration of substrate; product concentration; temperature effects and pH effects; factors causing a lowering of activation energy; proximity and orientation effects; substrate strain…

  4. Enzymes as Sensors.

    Science.gov (United States)

    Staiano, Maria; Pennacchio, Angela; Varriale, Antonio; Capo, Alessandro; Majoli, Adelia; Capacchione, Clotilde; D'Auria, Sabato

    2017-01-01

    Over the last few decades the development of new technologies, the fabrication of new materials, and the introduction of nanotechnologies created new trends in a series of advances that produced innovations in biological sensing devices with a wide range of application from health, security, defense, food, and medicine, to the environment. Specificity, low cost, rapidity, sensitivity, and multiplicity are some of the reasons for their growth, and their commercial success is expected to increase in the next future. Biosensors are devices in which the recognition part of the target molecule is accomplished by biological macromolecules such as proteins, enzymes, antibodies, aptamers, etc. These biomolecules are able to bind to the target molecules with high selectivity and specificity. The interaction between the target molecule and the specific biomolecule is reflected as a change of the biomolecule structural features. The extent of this change is strictly related to the biosensor response. Fluorescence spectroscopy, due to its sensitivity, is often used as the principal technique to monitor biological interactions, and thus the biosensor response as well. Both the intrinsic ultraviolet fluorescence of protein, arising from aromatic amino acids (tryptophan, tyrosine, and phenylalanine), and extrinsic fluorescent labels emitting in the visible region of the spectrum together allow for very flexible transduction of the analyte recognition, suitable for many different applications. This chapter focuses special attention on enzymes as practically unmatched recognition elements for biosensors and emphasizes the potential advantages of customized biosensor devices using apo- or holo forms of enzymes also isolated from thermophile sources. © 2017 Elsevier Inc. All rights reserved.

  5. Protein Crystal Malic Enzyme

    Science.gov (United States)

    1992-01-01

    Malic Enzyme is a target protein for drug design because it is a key protein in the life cycle of intestinal parasites. After 2 years of effort on Earth, investigators were unable to produce any crystals that were of high enough quality and for this reason the structure of this important protein could not be determined. Crystals obtained from one STS-50 were of superior quality allowing the structure to be determined. This is just one example why access to space is so vital for these studies. Principal Investigator is Larry DeLucas.

  6. Evolution of Enzyme Kinetic Mechanisms.

    Science.gov (United States)

    Ulusu, Nuriye Nuray

    2015-06-01

    This review paper discusses the reciprocal kinetic behaviours of enzymes and the evolution of structure-function dichotomy. Kinetic mechanisms have evolved in response to alterations in ecological and metabolic conditions. The kinetic mechanisms of single-substrate mono-substrate enzyme reactions are easier to understand and much simpler than those of bi-bi substrate enzyme reactions. The increasing complexities of kinetic mechanisms, as well as the increasing number of enzyme subunits, can be used to shed light on the evolution of kinetic mechanisms. Enzymes with heterogeneous kinetic mechanisms attempt to achieve specific products to subsist. In many organisms, kinetic mechanisms have evolved to aid survival in response to changing environmental factors. Enzyme promiscuity is defined as adaptation to changing environmental conditions, such as the introduction of a toxin or a new carbon source. Enzyme promiscuity is defined as adaptation to changing environmental conditions, such as the introduction of a toxin or a new carbon source. Enzymes with broad substrate specificity and promiscuous properties are believed to be more evolved than single-substrate enzymes. This group of enzymes can adapt to changing environmental substrate conditions and adjust catalysing mechanisms according to the substrate's properties, and their kinetic mechanisms have evolved in response to substrate variability.

  7. Measuring the Enzyme Activity of Arabidopsis Deubiquitylating Enzymes.

    Science.gov (United States)

    Kalinowska, Kamila; Nagel, Marie-Kristin; Isono, Erika

    2016-01-01

    Deubiquitylating enzymes, or DUBs, are important regulators of ubiquitin homeostasis and substrate stability, though the molecular mechanisms of most of the DUBs in plants are not yet understood. As different ubiquitin chain types are implicated in different biological pathways, it is important to analyze the enzyme characteristic for studying a DUB. Quantitative analysis of DUB activity is also important to determine enzyme kinetics and the influence of DUB binding proteins on the enzyme activity. Here, we show methods to analyze DUB activity using immunodetection, Coomassie Brilliant Blue staining, and fluorescence measurement that can be useful for understanding the basic characteristic of DUBs.

  8. Enzyme changes associated with mitochondrial malic enzyme deficiency in mice

    Energy Technology Data Exchange (ETDEWEB)

    Mohrenweiser, H.W.; Erickson, R.P.

    1979-01-01

    A genetically determined absence of mitochondrial malic enzyme (EC 1.1.1.40) in c/sup 3H//c/sup 6H/ mice is accompanied by a four-fold increase in liver glucose-6-phosphate dehydrogenase and a two-fold increase for 6-phosphogluconate dehydrogenase activity. Smaller increases in the activity of serine dehydratase and glutamic oxaloacetic transaminase are observed while the level of glutamic pyruvate transaminase activity is reduced in the liver of deficient mice. Unexpectedly, the level of activity of total malic enzyme in the livers of mitochrondrial malic enzyme-deficient mice is increased approximately 50% compared to littermate controls. No similar increase in solublle malic enzyme activity is observed in heart of kidney tissue of mutant mice and the levels of total malic enzyme in these tissues are in accord with expected levels of activity in mitochondrial malic enzyme-deficient mice. The divergence in levels of enzyme activity between mutant and wild-type mice begins at 19 to 21 days of age. Immunoinactivation experiments with monospecific antisera to the soluble malic enzyme and glucose-6-phosphate dehydrogenase demonstrate that the activity increases represent increases in the amount of enzyme protein. The alterations are not consistent with a single hormonal response.

  9. Enzyme molecules in solitary confinement.

    Science.gov (United States)

    Liebherr, Raphaela B; Gorris, Hans H

    2014-09-12

    Large arrays of homogeneous microwells each defining a femtoliter volume are a versatile platform for monitoring the substrate turnover of many individual enzyme molecules in parallel. The high degree of parallelization enables the analysis of a statistically representative enzyme population. Enclosing individual enzyme molecules in microwells does not require any surface immobilization step and enables the kinetic investigation of enzymes free in solution. This review describes various microwell array formats and explores their applications for the detection and investigation of single enzyme molecules. The development of new fabrication techniques and sensitive detection methods drives the field of single molecule enzymology. Here, we introduce recent progress in single enzyme molecule analysis in microwell arrays and discuss the challenges and opportunities.

  10. Penetration Enzymes of Schistosome Cercariae.

    Science.gov (United States)

    1982-10-12

    schistosomules; *: (4) differences in intraspecific geographical strains of Schistosoma mansoni; and (5) snail -parasite relationships. (1) Cercarial Enzymes...3) Skin surface lipid can be used to stimulate cercarial secretion which can be collected in vitro. (4) Since postacetabular gland mucus is not water...enzyme activity throughout the patency of infection in snails exposed to 8 to 10 or to I miracidium, required recording cercarial harvests and enzyme

  11. Enzyme Mimics: Advances and Applications.

    Science.gov (United States)

    Kuah, Evelyn; Toh, Seraphina; Yee, Jessica; Ma, Qian; Gao, Zhiqiang

    2016-06-13

    Enzyme mimics or artificial enzymes are a class of catalysts that have been actively pursued for decades and have heralded much interest as potentially viable alternatives to natural enzymes. Aside from having catalytic activities similar to their natural counterparts, enzyme mimics have the desired advantages of tunable structures and catalytic efficiencies, excellent tolerance to experimental conditions, lower cost, and purely synthetic routes to their preparation. Although still in the midst of development, impressive advances have already been made. Enzyme mimics have shown immense potential in the catalysis of a wide range of chemical and biological reactions, the development of chemical and biological sensing and anti-biofouling systems, and the production of pharmaceuticals and clean fuels. This Review concerns the development of various types of enzyme mimics, namely polymeric and dendrimeric, supramolecular, nanoparticulate and proteinic enzyme mimics, with an emphasis on their synthesis, catalytic properties and technical applications. It provides an introduction to enzyme mimics and a comprehensive summary of the advances and current standings of their applications, and seeks to inspire researchers to perfect the design and synthesis of enzyme mimics and to tailor their functionality for a much wider range of applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Enzymes From Rare Actinobacterial Strains.

    Science.gov (United States)

    Suriya, J; Bharathiraja, S; Manivasagan, P; Kim, S-K

    Actinobacteria constitute rich sources of novel biocatalysts and novel natural products for medical and industrial utilization. Although actinobacteria are potential source of economically important enzymes, the isolation and culturing are somewhat tough because of its extreme habitats. But now-a-days, the rate of discovery of novel compounds producing actinomycetes from soil, freshwater, and marine ecosystem has increased much through the developed culturing and genetic engineering techniques. Actinobacteria are well-known source of their bioactive compounds and they are the promising source of broad range of industrially important enzymes. The bacteria have the capability to degrade a range of pesticides, hydrocarbons, aromatic, and aliphatic compounds (Sambasiva Rao, Tripathy, Mahalaxmi, & Prakasham, 2012). Most of the enzymes are mainly derived from microorganisms because of their easy of growth, minimal nutritional requirements, and low-cost for downstream processing. The focus of this review is about the new, commercially useful enzymes from rare actinobacterial strains. Industrial requirements are now fulfilled by the novel actinobacterial enzymes which assist the effective production. Oxidative enzymes, lignocellulolytic enzymes, extremozymes, and clinically useful enzymes are often utilized in many industrial processes because of their ability to catalyze numerous reactions. Novel, extremophilic, oxidative, lignocellulolytic, and industrially important enzymes from rare Actinobacterial population are discussed in this chapter. © 2016 Elsevier Inc. All rights reserved.

  13. Enzyme therapeutics for systemic detoxification.

    Science.gov (United States)

    Liu, Yang; Li, Jie; Lu, Yunfeng

    2015-08-01

    Life relies on numerous biochemical processes working synergistically and correctly. Certain substances disrupt these processes, inducing living organism into an abnormal state termed intoxication. Managing intoxication usually requires interventions, which is referred as detoxification. Decades of development on detoxification reveals the potential of enzymes as ideal therapeutics and antidotes, because their high substrate specificity and catalytic efficiency are essential for clearing intoxicating substances without adverse effects. However, intrinsic shortcomings of enzymes including low stability and high immunogenicity are major hurdles, which could be overcome by delivering enzymes with specially designed nanocarriers. Extensive investigations on protein delivery indicate three types of enzyme-nanocarrier architectures that show more promise than others for systemic detoxification, including liposome-wrapped enzymes, polymer-enzyme conjugates, and polymer-encapsulated enzymes. This review highlights recent advances in these nano-architectures and discusses their applications in systemic detoxifications. Therapeutic potential of various enzymes as well as associated challenges in achieving effective delivery of therapeutic enzymes will also be discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Direct comparison of enzyme histochemical and immunohistochemical methods to localize an enzyme

    NARCIS (Netherlands)

    van Noorden, Cornelis J. F.

    2002-01-01

    Immunohistochemical localization of enzymes is compared directly with localization of enzyme activity with (catalytic) enzyme histochemical methods. The two approaches demonstrate principally different aspects of an enzyme. The immunohistochemical method localizes the enzyme protein whether it is

  15. Enzyme structure, enzyme function and allozyme diversity in ...

    African Journals Online (AJOL)

    In estimates of population genetic diversity based on allozyme heterozygosity, some enzymes are regularly more variable than others. Evolutionary theory suggests that functionally less important molecules, or parts of molecules, evolve more rapidly than more important ones; the latter enzymes should then theoretically be ...

  16. Immobilized enzymes: understanding enzyme - surface interactions at the molecular level.

    Science.gov (United States)

    Hoarau, Marie; Badieyan, Somayesadat; Marsh, E Neil G

    2017-11-22

    Enzymes immobilized on solid supports have important and industrial and medical applications. However, their uses are limited by the significant reductions in activity and stability that often accompany the immobilization process. Here we review recent advances in our understanding of the molecular level interactions between proteins and supporting surfaces that contribute to changes in stability and activity. This understanding has been facilitated by the application of various surface-sensitive spectroscopic techniques that allow the structure and orientation of enzymes at the solid/liquid interface to be probed, often with monolayer sensitivity. An appreciation of the molecular interactions between enzyme and surface support has allowed the surface chemistry and method of enzyme attachement to be fine-tuned such that activity and stability can be greatly enhanced. These advances suggest that a much wider variety of enzymes may eventually be amenable to immobilization as green catalysts.

  17. Computational enzyme design: transitioning from catalytic proteins to enzymes.

    Science.gov (United States)

    Mak, Wai Shun; Siegel, Justin B

    2014-08-01

    The widespread interest in enzymes stem from their ability to catalyze chemical reactions under mild and ecologically friendly conditions with unparalleled catalytic proficiencies. While thousands of naturally occurring enzymes have been identified and characterized, there are still numerous important applications for which there are no biological catalysts capable of performing the desired chemical transformation. In order to engineer enzymes for which there is no natural starting point, efforts using a combination of quantum chemistry and force-field based protein molecular modeling have led to the design of novel proteins capable of catalyzing chemical reactions not catalyzed by naturally occurring enzymes. Here we discuss the current status and potential avenues to pursue as the field of computational enzyme design moves forward. Published by Elsevier Ltd.

  18. Human plasma lecithin:cholesterol acyltransferase. Preparation and use of immobilized p-aminophenylarsenoxide as a catalytic site-directed covalent ligand in enzyme purification.

    Science.gov (United States)

    Zhou, G Y; Jauhiainen, M; Stevenson, K; Dolphin, P J

    1991-07-17

    A method is described for the preparation of p-aminophenylarsenoxide-linked carboxymethyl (CM) Bio-Gel A and its use as a specific, catalytic site-directed affinity chromatography ligand in the final stages of the purification of human plasma lecithin:cholesterol acyltransferase (LCAT) (EC 2.3.1.43). Previous mechanistic studies by us demonstrated that phenylarsenoxide derivatives, which are highly specific for vicinal thiols, could inhibit LCAT via a covalent interaction with the sulphydryl groups of the two catalytic cysteine residues and that this inhibition could be rapidly and completely reversed upon addition of 2,3-dimercaptopropanesulphonic acid. The ligand was covalently linked to CM Bio-Gel A activated through an N-hydroxysuccinyl ester formed by N-hydroxysuccinimide and dicyclohexylcarbodiimide in dry dimethyl sulphoxide; 87% of the added p-aminophenylarsenoxide was coupled to the CM Bio-Gel A in 3 h at 25 degrees C giving 2.3 mg of p-aminophenylarsenoxide per ml of gel. Homogeneous LCAT free of apo A-I, apo E, apo D and albumin was obtained in an 11% yield and purified 15,013-fold overall. A 13-fold purification was obtained by chromatography upon p-aminophenylarsenoxide-CM Bio-Gel A. This method is a useful final step in LCAT purification and will prove valuable in the purification of other proteins and compounds containing vicinal thiols.

  19. Digestive enzymes of some earthworms.

    Science.gov (United States)

    Mishra, P C; Dash, M C

    1980-10-15

    4 species of tropical earthworms differed with regard to enzyme activity. The maximum activity of protease and of cellulase occurred in the posterior region of the gut of the earthworms. On the average Octochaetona surensis shows maximum activity and Drawida calebi shows minimum activity for all the enzymes studied.

  20. Enzyme Kinetics? Elementary, my dear

    Indian Academy of Sciences (India)

    In addition, enzymes usually exhibit a remarkable specificity for the reactants and reactions, including the ability to distinguish between optical isomers 1. The Principle of Catalysis. An enzyme, like a catalyst, only increases the rate of a reaction without altering itself at the end of the reaction. Consider the interconversion of ...

  1. Enzyme-carrying electrospun nanofibers.

    Science.gov (United States)

    Jia, Hongfei

    2011-01-01

    Compared to other nanomaterials as supports for enzyme immobilization, nanofibers provide a promising configuration in balancing the key factors governing the catalytic performance of the immobilized enzymes including surface area-to-volume ratio, mass transfer resistance, effective loading, and the easiness to recycle. Synthetic and natural polymers can be fabricated into nanofibers via a physical process called electrospinning. The process requires only simple apparatus to operate, yet has proved to be very flexible in the selection of feedstock materials and also effective to control and manipulate the properties of the resulting nanofibers such as size and surface morphology, which are typically important parameters for enzyme immobilization supports. This chapter describes a protocol for the preparation of nanofibrous enzyme, involving the synthesis and end-group functionalization of polystyrene, production of electrospun nanofibers, and surface immobilization of enzyme via covalent attachment.

  2. Positron emitter labeled enzyme inhibitors

    International Nuclear Information System (INIS)

    Fowler, J.S.; MacGregor, R.R.; Wolf, A.P.; Langstrom, B.

    1990-01-01

    This invention involves a new strategy for imagining and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide inactivators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography

  3. BAKERY ENZYMES IN CEREAL TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    Václav Koman

    2012-10-01

    Full Text Available Normal 0 21 false false false SK X-NONE X-NONE Bread is the most common and traditional food in the world. For years, enzymes such as malt and fungal alpha-amylase have been used in bread making. Due to the changes in the baking industry and the ever-increasing demand for more natural products, enzymes have gained real importance in bread-making. If an enzyme is added, it is often destroyed by the heat during the baking process. For generations, enzymes have been used for the improvement of texture and appearance, enhancement of nutritional values and generation of appealing flavours and aromas. Enzymes used in bakery industry constitute nearly one third of the market. The bakery products have undergone radical improvements in quality over the past years in terms of flavour, texture and shelf-life. The the biggest contributor for these improvementsis the usage of enzymes. Present work seeks to systematically describe bakery enzymes, their classification, benefits, usage and chemical reactions in the bread making process.doi:10.5219/193

  4. Stability of Enzymes in Granular Enzyme Products for Laundry Detergents

    DEFF Research Database (Denmark)

    Biran, Suzan; Bach, Poul; Simonsen, Ole

    Enzymes have long been of interest to the detergent industry due to their ability to improve the cleaning efficiency of synthetic detergents, contribute to shortening washing times, and reduce energy and water consumption, provision of environmentally friendlier wash water effluents and fabric care....... However, incorporating enzymes in detergent formulations gives rise to numerous practical problems due to their incompatibility with and stability against various detergent components. In powdered detergent formulations, these issues can be partly overcome by physically isolating the enzymes in separate...... of enzymes, high local pH in granule, oxygen, defects in granulate structure and the effect of other detergent components. However, the actual mechanism of inactivation is not known yet. It is believed that a combination of the factors mentioned above plays a role in the activity loss, and is the focus...

  5. GRE Enzymes for Vector Analysis

    Data.gov (United States)

    U.S. Environmental Protection Agency — Microbial enzyme data that were collected during the 2004-2006 EMAP-GRE program. These data were then used by Moorhead et al (2016) in their ecoenzyme vector...

  6. PIXE analysis of Zn enzymes

    International Nuclear Information System (INIS)

    Solis, C.; Oliver, A.; Andrade, E.; Ruvalcaba-Sil, J.L.; Romero, I.; Celis, H.

    1999-01-01

    Zinc is a necessary component in the action and structural stability of many enzymes. Some of them are well characterized, but in others, Zn stoichiometry and its association is not known. PIXE has been proven to be a suitable technique for analyzing metallic proteins embedded in electrophoresis gels. In this study, PIXE has been used to investigate the Zn content of enzymes that are known to carry Zn atoms. These include the carbonic anhydrase, an enzyme well characterized by other methods and the cytoplasmic pyrophosphatase of Rhodospirillum rubrum that is known to require Zn to be stable but not how many metal ions are involved or how they are bound to the enzyme. Native proteins have been purified by polyacrylamide gel electrophoresis and direct identification and quantification of Zn in the gel bands was performed with an external proton beam of 3.7 MeV energy

  7. Enzymes: principles and biotechnological applications

    Science.gov (United States)

    Robinson, Peter K.

    2015-01-01

    Enzymes are biological catalysts (also known as biocatalysts) that speed up biochemical reactions in living organisms, and which can be extracted from cells and then used to catalyse a wide range of commercially important processes. This chapter covers the basic principles of enzymology, such as classification, structure, kinetics and inhibition, and also provides an overview of industrial applications. In addition, techniques for the purification of enzymes are discussed. PMID:26504249

  8. Engineering Cellulase Enzymes for Bioenergy

    Science.gov (United States)

    Atreya, Meera Elizabeth

    Sustainable energy sources, such as biofuels, offer increasingly important alternatives to fossil fuels that contribute less to global climate change. The energy contained within cellulosic biofuels derives from sunlight energy stored in the form of carbon-carbon bonds comprising sugars such as glucose. Second-generation biofuels are produced from lignocellulosic biomass feedstocks, including agricultural waste products and non-food crops like Miscanthus, that contain lignin and the polysaccharides hemicellulose and cellulose. Cellulose is the most abundant biological material on Earth; it is a polymer of glucose and a structural component of plant cell walls. Accessing the sugar is challenging, as the crystalline structure of cellulose resists degradation; biochemical and thermochemical means can be used to depolymerize cellulose. Cellulase enzymes catalyze the biochemical depolymerization of cellulose into glucose. Glucose can be used as a carbon source for growth of a biofuel-producing microorganism. When it converts glucose to a hydrocarbon fuel, this microbe completes the biofuels process of transforming sunlight energy into accessible, chemical energy capable of replacing non-renewable transportation fuels. Due to strong intermolecular interactions between polymer chains, cellulose is significantly more challenging to depolymerize than starch, a more accessible polymer of glucose utilized in first-generation biofuels processes (often derived from corn). While most mammals cannot digest cellulose (dietary fiber), certain fungi and bacteria produce cellulase enzymes capable of hydrolyzing it. These organisms secrete a wide variety of glycoside hydrolase and other classes of enzymes that work in concert. Because cellulase enzymes are slow-acting and expensive to produce, my aim has been to improve the properties of these enzymes as a means to make a cellulosic biofuels process possible that is more efficient and, consequently, more economical than current

  9. Enzymes and Enzyme Activity Encoded by Nonenveloped Viruses.

    Science.gov (United States)

    Azad, Kimi; Banerjee, Manidipa; Johnson, John E

    2017-09-29

    Viruses are obligate intracellular parasites that rely on host cell machineries for their replication and survival. Although viruses tend to make optimal use of the host cell protein repertoire, they need to encode essential enzymatic or effector functions that may not be available or accessible in the host cellular milieu. The enzymes encoded by nonenveloped viruses-a group of viruses that lack any lipid coating or envelope-play vital roles in all the stages of the viral life cycle. This review summarizes the structural, biochemical, and mechanistic information available for several classes of enzymes and autocatalytic activity encoded by nonenveloped viruses. Advances in research and development of antiviral inhibitors targeting specific viral enzymes are also highlighted.

  10. Rethinking fundamentals of enzyme action.

    Science.gov (United States)

    Northrop, D B

    1999-01-01

    Despite certain limitations, investigators continue to gainfully employ concepts rooted in steady-state kinetics in efforts to draw mechanistically relevant inferences about enzyme catalysis. By reconsidering steady-state enzyme kinetic behavior, this review develops ideas that allow one to arrive at the following new definitions: (a) V/K, the ratio of the maximal initial velocity divided by the Michaelis-Menten constant, is the apparent rate constant for the capture of substrate into enzyme complexes that are destined to yield product(s) at some later point in time; (b) the maximal velocity V is the apparent rate constant for the release of substrate from captured complexes in the form of free product(s); and (c) the Michaelis-Menten constant K is the ratio of the apparent rate constants for release and capture. The physiologic significance of V/K is also explored to illuminate aspects of antibiotic resistance, the concept of "perfection" in enzyme catalysis, and catalytic proficiency. The conceptual basis of congruent thermodynamic cycles is also considered in an attempt to achieve an unambiguous way for comparing an enzyme-catalyzed reaction with its uncatalyzed reference reaction. Such efforts promise a deeper understanding of the origins of catalytic power, as it relates to stabilization of the reactant ground state, stabilization of the transition state, and reciprocal stabilizations of ground and transition states.

  11. Nonclassical Kinetics of Clonal yet Heterogeneous Enzymes.

    Science.gov (United States)

    Park, Seong Jun; Song, Sanggeun; Jeong, In-Chun; Koh, Hye Ran; Kim, Ji-Hyun; Sung, Jaeyoung

    2017-07-06

    Enzyme-to-enzyme variation in the catalytic rate is ubiquitous among single enzymes created from the same genetic information, which persists over the lifetimes of living cells. Despite advances in single-enzyme technologies, the lack of an enzyme reaction model accounting for the heterogeneous activity of single enzymes has hindered a quantitative understanding of the nonclassical stochastic outcome of single enzyme systems. Here we present a new statistical kinetics and exactly solvable models for clonal yet heterogeneous enzymes with possibly nonergodic state dynamics and state-dependent reactivity, which enable a quantitative understanding of modern single-enzyme experimental results for the mean and fluctuation in the number of product molecules created by single enzymes. We also propose a new experimental measure of the heterogeneity and nonergodicity for a system of enzymes.

  12. Electric Fields and Enzyme Catalysis.

    Science.gov (United States)

    Fried, Stephen D; Boxer, Steven G

    2017-06-20

    What happens inside an enzyme's active site to allow slow and difficult chemical reactions to occur so rapidly? This question has occupied biochemists' attention for a long time. Computer models of increasing sophistication have predicted an important role for electrostatic interactions in enzymatic reactions, yet this hypothesis has proved vexingly difficult to test experimentally. Recent experiments utilizing the vibrational Stark effect make it possible to measure the electric field a substrate molecule experiences when bound inside its enzyme's active site. These experiments have provided compelling evidence supporting a major electrostatic contribution to enzymatic catalysis. Here, we review these results and develop a simple model for electrostatic catalysis that enables us to incorporate disparate concepts introduced by many investigators to describe how enzymes work into a more unified framework stressing the importance of electric fields at the active site.

  13. Enzyme-Based Listericidal Nanocomposites

    Science.gov (United States)

    Solanki, Kusum; Grover, Navdeep; Downs, Patrick; Paskaleva, Elena E.; Mehta, Krunal K.; Lee, Lillian; Schadler, Linda S.; Kane, Ravi S.; Dordick, Jonathan S.

    2013-01-01

    Cell lytic enzymes represent an alternative to chemical decontamination or use of antibiotics to kill pathogenic bacteria, such as listeria. A number of phage cell lytic enzymes against listeria have been isolated and possess listericidal activity; however, there has been no attempt to incorporate these enzymes onto surfaces. We report three facile routes for the surface incorporation of the listeria bacteriophage endolysin Ply500: covalent attachment onto FDA approved silica nanoparticles (SNPs), incorporation of SNP-Ply500 conjugates into a thin poly(hydroxyethyl methacrylate) film; and affinity binding to edible crosslinked starch nanoparticles via construction of a maltose binding protein fusion. These Ply500 formulations were effective in killing L. innocua (a reduced pathogenic surrogate) at challenges up to 105 CFU/ml both in non-growth sustaining PBS as well as under growth conditions on lettuce. This strategy represents a new route toward achieving highly selective and efficient pathogen decontamination and prevention in public infrastructure. PMID:23545700

  14. Enzymes in CO2 Capture

    DEFF Research Database (Denmark)

    Fosbøl, Philip Loldrup; Gladis, Arne; Thomsen, Kaj

    The enzyme Carbonic Anhydrase (CA) can accelerate the absorption rate of CO2 into aqueous solutions by several-fold. It exist in almost all living organisms and catalyses different important processes like CO2 transport, respiration and the acid-base balances. A new technology in the field...... of carbon capture is the application of enzymes for acceleration of typically slow ternary amines or inorganic carbonates. There is a hidden potential to revive currently infeasible amines which have an interesting low energy consumption for regeneration but too slow kinetics for viable CO2 capture. The aim...... of this work is to discuss the measurements of kinetic properties for CA promoted CO2 capture solvent systems. The development of a rate-based model for enzymes will be discussed showing the principles of implementation and the results on using a well-known ternary amine for CO2 capture. Conclusions...

  15. Photosynthetic fuel for heterologous enzymes

    DEFF Research Database (Denmark)

    Mellor, Silas Busck; Vavitsas, Konstantinos; Nielsen, Agnieszka Janina Zygadlo

    2017-01-01

    Plants, cyanobacteria, and algae generate a surplus of redox power through photosynthesis, which makes them attractive for biotechnological exploitations. While central metabolism consumes most of the energy, pathways introduced through metabolic engineering can also tap into this source of reduc......Plants, cyanobacteria, and algae generate a surplus of redox power through photosynthesis, which makes them attractive for biotechnological exploitations. While central metabolism consumes most of the energy, pathways introduced through metabolic engineering can also tap into this source...... on electrostatically steered complex formation, they form productive electron transfer complexes with non-native enzymes. A handful of examples demonstrate channeling of photosynthetic electrons to drive the activity of heterologous enzymes, and these focus mainly on hydrogenases and cytochrome P450s. However......, competition from native pathways and inefficient electron transfer rates present major obstacles, which limit the productivity of heterologous reactions coupled to photosynthesis. We discuss specific approaches to address these bottlenecks and ensure high productivity of such enzymes in a photosynthetic...

  16. Internal friction in enzyme reactions.

    Science.gov (United States)

    Rauscher, Anna; Derényi, Imre; Gráf, László; Málnási-Csizmadia, András

    2013-01-01

    The empirical concept of internal friction was introduced 20 years ago. This review summarizes the results of experimental and theoretical studies that help to uncover the nature of internal friction. After the history of the concept, we describe the experimental challenges in measuring and interpreting internal friction based on the viscosity dependence of enzyme reactions. We also present speculations about the structural background of this viscosity dependence. Finally, some models about the relationship between the energy landscape and internal friction are outlined. Alternative concepts regarding the viscosity dependence of enzyme reactions are also discussed. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.

  17. Substrate mediated enzyme prodrug therapy

    DEFF Research Database (Denmark)

    Fejerskov, Betina; Jarlstad Olesen, Morten T; Zelikin, Alexander N

    2017-01-01

    Substrate mediated enzyme prodrug therapy (SMEPT) is a biomedical platform developed to perform a localized synthesis of drugs mediated by implantable biomaterials. This approach combines the benefits and at the same time offers to overcome the drawbacks for traditional pill-based drug administra......Substrate mediated enzyme prodrug therapy (SMEPT) is a biomedical platform developed to perform a localized synthesis of drugs mediated by implantable biomaterials. This approach combines the benefits and at the same time offers to overcome the drawbacks for traditional pill-based drug...

  18. Enzyme and biochemical producing fungi

    DEFF Research Database (Denmark)

    Lübeck, Peter Stephensen; Lübeck, Mette; Nilsson, Lena

    2010-01-01

    We are developing a biorefinery concept for biological production of chemicals, drugs, feed and fuels using plant biomass as raw material in well-defined cell-factories. Among the important goals is the discovery of new biocatalysts for production of enzymes, biochemicals and fuels and already our...... screening of a large collection of fungal strains isolated from natural habitats have resulted in identification of strains with high production of hydrolytic enzymes and excretion of organic acids. Our research focuses on creating a fungal platform based on synthetic biology for developing new cell...

  19. Immunomodulatory Effects of Chitotriosidase Enzyme

    Directory of Open Access Journals (Sweden)

    Mohamed A. Elmonem

    2016-01-01

    Full Text Available Chitotriosidase enzyme (EC: 3.2.1.14 is the major active chitinase in the human body. It is produced mainly by activated macrophages, in which its expression is regulated by multiple intrinsic and extrinsic signals. Chitotriosidase was confirmed as essential element in the innate immunity against chitin containing organisms such as fungi and protozoa; however, its immunomodulatory effects extend far beyond innate immunity. In the current review, we will try to explore the expanding spectrum of immunological roles played by chitotriosidase enzyme in human health and disease and will discuss its up-to-date clinical value.

  20. Phage lytic enzymes targeting streptococci

    Science.gov (United States)

    Streptococcal pathogens contribute to a wide variety of human and livestock diseases. There is a need for new antimicrobials to replace over-used conventional antibiotics. Bacteriophage (viruses that infect bacteria) endolysins (enzymes that help degrade the bacterial cell wall) are ideal candidat...

  1. Enzyme recovery using reversed micelles

    NARCIS (Netherlands)

    Dekker, M.

    1990-01-01

    The objective of this study was to develop a liquid-liquid extraction process for the recovery of extracellular enzymes. The potentials of reaching this goal by using reversed micelles in an organic solvent have been investigated.

    Reversed micelles are aggregates of surfactant

  2. Kathepsine C : Een allosterisch enzyme

    NARCIS (Netherlands)

    Gorter, Jeannette

    1969-01-01

    In chapter I an introduction into allosteric systems is given. In chapter II is a detailed method is described for the applica of Gly-Phe--p. nitroanilide (GPNA) as a substrate for the activity assay of the lysosomal enzyme cathepsin C. It is an allosteric which is activated by Cl-, Br-, 1-, CNS-,

  3. Thermodynamics of Enzyme-Catalyzed Reactions Database

    Science.gov (United States)

    SRD 74 Thermodynamics of Enzyme-Catalyzed Reactions Database (Web, free access)   The Thermodynamics of Enzyme-Catalyzed Reactions Database contains thermodynamic data on enzyme-catalyzed reactions that have been recently published in the Journal of Physical and Chemical Reference Data (JPCRD). For each reaction the following information is provided: the reference for the data, the reaction studied, the name of the enzyme used and its Enzyme Commission number, the method of measurement, the data and an evaluation thereof.

  4. Heavy enzymes--experimental and computational insights in enzyme dynamics.

    Science.gov (United States)

    Swiderek, Katarzyna; Ruiz-Pernía, J Javier; Moliner, Vicent; Tuñón, Iñaki

    2014-08-01

    The role of protein motions in the chemical step of enzyme-catalyzed reactions is the subject of an open debate in the scientific literature. The systematic use of isotopically substituted enzymes has been revealed as a useful tool to quantify the role of these motions. According to the Born-Oppenheimer approximation, changing the mass of the protein does not change the forces acting on the system but alters the frequencies of the protein motions, which in turn can affect the rate constant. Experimental and theoretical studies carried out in this field are presented in this article and discussed in the framework of Transition State Theory. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Enzyme technology: Key to selective biorefining

    DEFF Research Database (Denmark)

    Meyer, Anne S.

    2014-01-01

    to the reaction is a unique trait of enzyme catalysis. Since enzyme selectivity means that a specific reaction is catalysed between particular species to produce definite products, enzymes are particularly fit for converting specific compounds in mixed biomass streams. Since enzymes are protein molecules...... their rational use in biorefinery processes requires an understanding of the basic features of enzymes and reaction traits with respect to specificity, kinetics, reaction optima, stability and structure-function relations – we are now at a stage where it is possible to use nature’s enzyme structures as starting...... point and then improve the functional traits by targeted mutation of the protein. The talk will display some of our recent hypotheses related to enzyme action, recently obtained results within knowledge-based enzyme improvements as well as cast light on research methods used in optimizing enzyme...

  6. Consumer attitudes to enzymes in food production

    DEFF Research Database (Denmark)

    Søndergaard, Helle Alsted; Grunert, Klaus G.; Scholderer, Joachim

    2005-01-01

    The use of enzymes in food production has potential benefits for both food manufacturers and consumers. A central question is how consumers react to new ways of producing foods with enzymes. This study investigates the formation of consumer attitudes to different enzyme production methods in thre...... to technological progress are the socio-political attitudes that have the highest predictive value regarding attitudes to enzyme production methods.......The use of enzymes in food production has potential benefits for both food manufacturers and consumers. A central question is how consumers react to new ways of producing foods with enzymes. This study investigates the formation of consumer attitudes to different enzyme production methods in three...... European countries. Results show that consumers are most positive towards non-GM enzyme production methods. The enzyme production method is by far the most important factor for the formation of buying intentions compared to price and benefits. Results also show that environmental concern and attitudes...

  7. Localization of enzymes within microbodies.

    Science.gov (United States)

    Huang, A H; Beevers, H

    1973-08-01

    Microbodies from rat liver and a variety of plant tissues were osmotically shocked and subsequently centrifuged at 40,000 g for 30 min to yield supernatant and pellet fractions. From rat liver microbodies, all of the uricase activity but little glycolate oxidase or catalase activity were recovered in the pellet, which probably contained the crystalline cores as many other reports had shown. All the measured enzymes in spinach leaf microbodies were solubilized. With microbodies from potato tuber, further sucrose gradient centrifugation of the pellet yielded a fraction at density 1.28 g/cm(3) which, presumably representing the crystalline cores, contained 7% of the total catalase activity but no uricase or glycolate oxidase activity. Using microbodies from castor bean endosperm (glyoxysomes), 50-60% of the malate dehydrogenase, fatty acyl CoA dehydrogenase, and crotonase and 90% of the malate synthetase and citrate synthetase were recovered in the pellet, which also contained 96% of the radioactivity when lecithin in the glyoxysomal membrane had been labeled by previous treatment of the tissue with [(14)C]choline. When the labeled pellet was centrifuged to equilibrium on a sucrose gradient, all the radioactivity, protein, and enzyme activities were recovered together at peak density 1.21-1.22 g/cm(3), whereas the original glyoxysomes appeared at density 1.24 g/cm(3). Electron microscopy showed that the fraction at 1.21-1.22 g/cm(3) was comprised of intact glyoxysomal membranes. All of the membrane-bound enzymes were stripped off with 0.15 M KCl, leaving the "ghosts" still intact as revealed by electron microscopy and sucrose gradient centrifugation. It is concluded that the crystalline cores of plant microbodies contain no uricase and are not particularly enriched with catalase. Some of the enzymes in glyoxysomes are associated with the membranes and this probably has functional significance.

  8. Malolactic enzyme from Oenococcus oeni

    Science.gov (United States)

    Schümann, Christina; Michlmayr, Herbert; del Hierro, Andrés M.; Kulbe, Klaus D.; Jiranek, Vladimir; Eder, Reinhard; Nguyen, Thu-Ha

    2013-01-01

    Malolactic enzymes (MLE) are known to directly convert L-malic acid into L-lactic acid with a catalytical requirement of nicotinamide adenine dinucleotide (NAD+) and Mn2+; however, the reaction mechanism is still unclear. To study a MLE, the structural gene from Oenococcus oeni strain DSM 20255 was heterologously expressed in Escherichia coli, yielding 22.9 kU l−1 fermentation broth. After affinity chromatography and removal of apparently inactive protein by precipitation, purified recombinant MLE had a specific activity of 280 U mg−1 protein with a recovery of approximately 61%. The enzyme appears to be a homodimer with a molecular mass of 128 kDa consisting of two 64 kDa subunits. Characterization of the recombinant enzyme showed optimum activity at pH 6.0 and 45°C, and Km, Vmax and kcat values of 4.9 mM, 427 U mg−1 and 456 sec−1 for L-malic acid, 91.4 µM, 295 U mg−1 and 315 sec−1 for NAD+ and 4.6 µM, 229 U mg−1 and 244 sec−1 for Mn2+, respectively. The recombinant MLE retained 95% of its activity after 3 mo at room temperature and 7 mo at 4°C. When using pyruvic acid as substrate, the enzyme showed the conversion of pyruvic acid with detectable L-lactate dehydrogenase (L-LDH) activity and oxidation of NADH. This interesting observation might explain that MLE catalyzes a redox reaction and hence, the requirements for NAD+ and Mn2+ during the conversion of L-malic to L-lactic acid. PMID:23196745

  9. Allosteric regulation of epigenetic modifying enzymes.

    Science.gov (United States)

    Zucconi, Beth E; Cole, Philip A

    2017-08-01

    Epigenetic enzymes including histone modifying enzymes are key regulators of gene expression in normal and disease processes. Many drug development strategies to target histone modifying enzymes have focused on ligands that bind to enzyme active sites, but allosteric pockets offer potentially attractive opportunities for therapeutic development. Recent biochemical studies have revealed roles for small molecule and peptide ligands binding outside of the active sites in modulating the catalytic activities of histone modifying enzymes. Here we highlight several examples of allosteric regulation of epigenetic enzymes and discuss the biological significance of these findings. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Lignin-degrading enzyme activities.

    Science.gov (United States)

    Chen, Yi-ru; Sarkanen, Simo; Wang, Yun-Yan

    2012-01-01

    Over the past three decades, the activities of four kinds of enzyme have been purported to furnish the mechanistic foundations for macromolecular lignin depolymerization in decaying plant cell walls. The pertinent fungal enzymes comprise lignin peroxidase (with a relatively high redox potential), manganese peroxidase, an alkyl aryl etherase, and laccase. The peroxidases and laccase, but not the etherase, are expressed extracellularly by white-rot fungi. A number of these microorganisms exhibit a marked preference toward lignin in their degradation of lignocellulose. Interestingly, some white-rot fungi secrete both kinds of peroxidase but no laccase, while others that are equally effective express extracellular laccase activity but no peroxidases. Actually, none of these enzymes has been reported to possess significant depolymerase activity toward macromolecular lignin substrates that are derived with little chemical modification from the native biopolymer. Here, the assays commonly employed for monitoring the traditional fungal peroxidases, alkyl aryl etherase, and laccase are described in their respective contexts. A soluble native polymeric substrate that can be isolated directly from a conventional milled-wood lignin preparation is characterized in relation to its utility in next-generation lignin-depolymerase assays.

  11. Immobilised enzymes in biorenewables production.

    Science.gov (United States)

    Franssen, Maurice C R; Steunenberg, Peter; Scott, Elinor L; Zuilhof, Han; Sanders, Johan P M

    2013-08-07

    Oils, fats, carbohydrates, lignin, and amino acids are all important raw materials for the production of biorenewables. These compounds already play an important role in everyday life in the form of wood, fabrics, starch, paper and rubber. Enzymatic reactions do, in principle, allow the transformation of these raw materials into biorenewables under mild and sustainable conditions. There are a few examples of processes using immobilised enzymes that are already applied on an industrial scale, such as the production of High-Fructose Corn Syrup, but these are still rather rare. Fortunately, there is a rapid expansion in the research efforts that try to improve this, driven by a combination of economic and ecological reasons. This review focusses on those efforts, by looking at attempts to use fatty acids, carbohydrates, proteins and lignin (and their building blocks), as substrates in the synthesis of biorenewables using immobilised enzymes. Therefore, many examples (390 references) from the recent literature are discussed, in which we look both at the specific reactions as well as to the methods of immobilisation of the enzymes, as the latter are shown to be a crucial factor with respect to stability and reuse. The applications of the renewables produced in this way range from building blocks for the pharmaceutical and polymer industry, transport fuels, to additives for the food industry. A critical evaluation of the relevant factors that need to be improved for large-scale use of these examples is presented in the outlook of this review.

  12. Substrate mediated enzyme prodrug therapy.

    Directory of Open Access Journals (Sweden)

    Betina Fejerskov

    Full Text Available In this report, we detail Substrate Mediated Enzyme Prodrug Therapy (SMEPT as a novel approach in drug delivery which relies on enzyme-functionalized cell culture substrates to achieve a localized conversion of benign prodrug(s into active therapeutics with subsequent delivery to adhering cells or adjacent tissues. For proof-of-concept SMEPT, we use surface adhered micro-structured physical hydrogels based on poly(vinyl alcohol, β-glucuronidase enzyme and glucuronide prodrugs. We demonstrate enzymatic activity mediated by the assembled hydrogel samples and illustrate arms of control over rate of release of model fluorescent cargo. SMEPT was not impaired by adhering cells and afforded facile time - and dose - dependent uptake of the in situ generated fluorescent cargo by hepatic cells, HepG2. With the use of a glucuronide derivative of an anticancer drug, SN-38, SMEPT afforded a decrease in cell viability to a level similar to that achieved using parent drug. Finally, dose response was achieved using SMEPT and administration of judiciously chosen concentration of SN-38 glucuronide prodrug thus revealing external control over drug delivery using drug eluting surface. We believe that this highly adaptable concept will find use in diverse biomedical applications, specifically surface mediated drug delivery and tissue engineering.

  13. Grape Polyphenols Increase the Activity of HDL Enzymes in Old and Obese Rats

    Science.gov (United States)

    Zagayko, Andriy L.; Kravchenko, Ganna B.; Krasilnikova, Oksana A.; Ogai, Yuri O.

    2013-01-01

    HDL particles are protein-rich particles that act as a vehicle for reverse cholesterol transport from tissues to the liver. The purpose of this study was to investigate age-dependent changes in the functional activity of HDL and the effect of high-energy diet on this index, as well as to correct it under the influence of grape polyphenols from “Enoant” obtained from Vitis vinifera grapes. We observed the age-dependent composition changes in HDL particle. It was shown that total lipids and triacylglycerol (TG) levels were higher in 24-month-old animals. In obese rats, HDL total lipids and TG levels were higher in 24-month-old than in the 3-month-old and 12-month-old groups but did not differ from 24-month-old group. The plasma HDL paraoxonase (PON) and lecithin:cholesterol acyltransferase (LCAT) activity levels were decreased in old-aged rats, and cholesteryl ester transfer protein (CETP) activity was higher in old rats. Keeping 12-month-old animals on high-fructose diet completely leveled the age differences in the data that have been measured between 12-month-old and 24-month-old rats. After “Enoant” administration, an increase of HDL PON and LCAT activity levels and a reduction of CETP activity were found in 24-month-old and obese rats. PMID:23936611

  14. Grape polyphenols increase the activity of HDL enzymes in old and obese rats.

    Science.gov (United States)

    Zagayko, Andriy L; Kravchenko, Ganna B; Krasilnikova, Oksana A; Ogai, Yuri O

    2013-01-01

    HDL particles are protein-rich particles that act as a vehicle for reverse cholesterol transport from tissues to the liver. The purpose of this study was to investigate age-dependent changes in the functional activity of HDL and the effect of high-energy diet on this index, as well as to correct it under the influence of grape polyphenols from "Enoant" obtained from Vitis vinifera grapes. We observed the age-dependent composition changes in HDL particle. It was shown that total lipids and triacylglycerol (TG) levels were higher in 24-month-old animals. In obese rats, HDL total lipids and TG levels were higher in 24-month-old than in the 3-month-old and 12-month-old groups but did not differ from 24-month-old group. The plasma HDL paraoxonase (PON) and lecithin:cholesterol acyltransferase (LCAT) activity levels were decreased in old-aged rats, and cholesteryl ester transfer protein (CETP) activity was higher in old rats. Keeping 12-month-old animals on high-fructose diet completely leveled the age differences in the data that have been measured between 12-month-old and 24-month-old rats. After "Enoant" administration, an increase of HDL PON and LCAT activity levels and a reduction of CETP activity were found in 24-month-old and obese rats.

  15. Grape Polyphenols Increase the Activity of HDL Enzymes in Old and Obese Rats

    Directory of Open Access Journals (Sweden)

    Andriy L. Zagayko

    2013-01-01

    Full Text Available HDL particles are protein-rich particles that act as a vehicle for reverse cholesterol transport from tissues to the liver. The purpose of this study was to investigate age-dependent changes in the functional activity of HDL and the effect of high-energy diet on this index, as well as to correct it under the influence of grape polyphenols from “Enoant” obtained from Vitis vinifera grapes. We observed the age-dependent composition changes in HDL particle. It was shown that total lipids and triacylglycerol (TG levels were higher in 24-month-old animals. In obese rats, HDL total lipids and TG levels were higher in 24-month-old than in the 3-month-old and 12-month-old groups but did not differ from 24-month-old group. The plasma HDL paraoxonase (PON and lecithin:cholesterol acyltransferase (LCAT activity levels were decreased in old-aged rats, and cholesteryl ester transfer protein (CETP activity was higher in old rats. Keeping 12-month-old animals on high-fructose diet completely leveled the age differences in the data that have been measured between 12-month-old and 24-month-old rats. After “Enoant” administration, an increase of HDL PON and LCAT activity levels and a reduction of CETP activity were found in 24-month-old and obese rats.

  16. Biomedical Applications of Enzymes From Marine Actinobacteria.

    Science.gov (United States)

    Kamala, K; Sivaperumal, P

    Marine microbial enzyme technologies have progressed significantly in the last few decades for different applications. Among the various microorganisms, marine actinobacterial enzymes have significant active properties, which could allow them to be biocatalysts with tremendous bioactive metabolites. Moreover, marine actinobacteria have been considered as biofactories, since their enzymes fulfill biomedical and industrial needs. In this chapter, the marine actinobacteria and their enzymes' uses in biological activities and biomedical applications are described. © 2017 Elsevier Inc. All rights reserved.

  17. Zymography methods for visualizing hydrolytic enzymes

    OpenAIRE

    Vandooren, Jennifer; Geurts, Nathalie; Martens, Erik; Van den Steen, Philippe E.; Opdenakker, Ghislain

    2013-01-01

    Zymography is a technique for studying hydrolytic enzymes on the basis of substrate degradation. It is a powerful., but often misinterpreted, tool. yielding information on potential. hydrolytic activities, enzyme forms and the locations of active enzymes. In this Review, zymography techniques are compared in terms of advantages, limitations and interpretations. With in gel zymography, enzyme forms are visualized according to their molecular weights. Proteolytic activities are localized in tis...

  18. Cellulolytic enzyme compositions and uses thereof

    Science.gov (United States)

    Iyer, Prashant; Gaspar, Armindo Ribiero; Croonenberghs, James; Binder, Thomas P.

    2017-07-25

    The present invention relates enzyme composition comprising a cellulolytic preparation and an acetylxylan esterase (AXE); and the used of cellulolytic enzyme compositions for hydrolyzing acetylated cellulosic material. Finally the invention also relates to processes of producing fermentation products from acetylated cellulosic materials using a cellulolytic enzyme composition of the invention.

  19. 21 CFR 864.4400 - Enzyme preparations.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Enzyme preparations. 864.4400 Section 864.4400...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Specimen Preparation Reagents § 864.4400 Enzyme preparations. (a) Identification. Enzyme preparations are products that are used in the histopathology...

  20. PROCESS FOR DUST-FREE ENZYME MANUFACTURE

    NARCIS (Netherlands)

    Andela, C.; Feijen, Jan; Dillissen, Marc

    1994-01-01

    New enzyme granules are provided with improved properties. The granules are based on core particles having a good pore size and pore size distribution to allow an enzyme solution to enter into the particle. Accordingly, the core material comprises the enzyme in liquid form, thus eliminating the

  1. Purification and characterization of extracellular amylolytic enzyme ...

    African Journals Online (AJOL)

    In the present study, the amylase enzyme producing potential of four different Aspergillus species was analyzed. The extracted amylase enzyme was purified by diethyl amino ethyl (DEAE) cellulose and Sephadex G-50 column chromatography and the enzyme activity was measured by using synthetic substrate starch.

  2. Immobilization of Enzymes in Polymer Supports.

    Science.gov (United States)

    Conlon, Hugh D.; Walt, David R.

    1986-01-01

    Two experiments in which an enzyme is immobilized onto a polymeric support are described. The experiments (which also demonstrate two different polymer preparations) involve: (1) entrapping an enzyme in an acrylamide polymer; and (2) reacting the amino groups on the enzyme's (esterase) lysine residues with an activated polymer. (JN)

  3. Activation of interfacial enzymes at membrane surfaces

    DEFF Research Database (Denmark)

    Mouritsen, Ole G.; Andresen, Thomas Lars; Halperin, Avi

    2006-01-01

    A host of water-soluble enzymes are active at membrane surfaces and in association with membranes. Some of these enzymes are involved in signalling and in modification and remodelling of the membranes. A special class of enzymes, the phospholipases, and in particular secretory phospholipase A2 (s...

  4. The ENZYME data bank in 1999.

    Science.gov (United States)

    Bairoch, A

    1999-01-01

    The ENZYME data bank is a repository of information related to the nomenclature of enzymes. In recent years it has become an indispensable resource for the development of metabolic databases. The current version contains information on 3704 enzymes. It is available through the ExPASy WWW server (http://www.expasy.ch/).

  5. The ENZYME data bank in 1995.

    Science.gov (United States)

    Bairoch, A

    1996-01-01

    The ENZYME data bank is a repository of information relative to the nomenclature of enzymes. The current version (October 1995) contains information relevant to 3594 enzymes. It is available from a variety of file and ftp servers as well as through the ExPASy World Wide Web server (http://expasy.hcuge.ch/).

  6. Electrical Microengineering of Redox Enzymes

    Science.gov (United States)

    1994-03-31

    control of blood glucose levels in diabetics , it is desirable th’ of loss of enzyme-reduced mediator by radial difflusion, the the electrode be...e la ye rs g aesn e ato a mifo r hn te r an t ee n . A b o iat -so. layeremscbAcaly 1imkti t s kecuoos. iete lra from ft uferit- 01 02 03 04 05 obysd...brittle, insulin-dependent M Aupoietric Blosensors diabetics . Although operation of a chemical or biotechnological manufacturing plant without

  7. Enzyme structure and interaction with inhibitors

    International Nuclear Information System (INIS)

    London, R.E.

    1983-01-01

    This article reviews some of the results of studies on the 13 C-labeled enzyme dihydrofolate reductase (DHFR). Nuclear magnetic resonance (NMR) techniques are used in combination with isotopic labeling to learn about the structure and dynamics of this enzyme. 13 C-labeling is used for the purpose of studying enzyme/substrate and enzyme/inhibitor interactions. A second set of studies with DHFR was designed to investigate the basis for the high affinity between the inhibitor methotrexate and DHFR. The label was placed on the inhibitor, rather than the enzyme

  8. Applications of Microbial Enzymes in Food Industry

    Directory of Open Access Journals (Sweden)

    Binod Parameswaran

    2018-01-01

    Full Text Available The use of enzymes or microorganisms in food preparations is an age-old process. With the advancement of technology, novel enzymes with wide range of applications and specificity have been developed and new application areas are still being explored. Microorganisms such as bacteria, yeast and fungi and their enzymes are widely used in several food preparations for improving the taste and texture and they offer huge economic benefits to industries. Microbial enzymes are the preferred source to plants or animals due to several advantages such as easy, cost-effective and consistent production. The present review discusses the recent advancement in enzyme technology for food industries. A comprehensive list of enzymes used in food processing, the microbial source of these enzymes and the wide range of their application are discussed.

  9. DNA-Based Enzyme Reactors and Systems

    Directory of Open Access Journals (Sweden)

    Veikko Linko

    2016-07-01

    Full Text Available During recent years, the possibility to create custom biocompatible nanoshapes using DNA as a building material has rapidly emerged. Further, these rationally designed DNA structures could be exploited in positioning pivotal molecules, such as enzymes, with nanometer-level precision. This feature could be used in the fabrication of artificial biochemical machinery that is able to mimic the complex reactions found in living cells. Currently, DNA-enzyme hybrids can be used to control (multi-enzyme cascade reactions and to regulate the enzyme functions and the reaction pathways. Moreover, sophisticated DNA structures can be utilized in encapsulating active enzymes and delivering the molecular cargo into cells. In this review, we focus on the latest enzyme systems based on novel DNA nanostructures: enzyme reactors, regulatory devices and carriers that can find uses in various biotechnological and nanomedical applications.

  10. Multi-enzyme Process Modeling

    DEFF Research Database (Denmark)

    Andrade Santacoloma, Paloma de Gracia

    The subject of this thesis is to develop a methodological framework that can systematically guide mathematical model building for better understanding of multi-enzyme processes. In this way, opportunities for process improvements can be identified by analyzing simulations of either existing...... features of the process and provides the information required to structure the process model by using a step-by-step procedure with the required tools and methods. In this way, this framework increases efficiency of the model development process with respect to time and resources needed (fast and effective...... in the scientific literature. Reliable mathematical models of such multi-catalytic schemes can exploit the potential benefit of these processes. In this way, the best outcome of the process can be obtained understanding the types of modification that are required for process optimization. An effective evaluation...

  11. Ethanologenic Enzymes of Zymomonas mobilis

    Energy Technology Data Exchange (ETDEWEB)

    Ingram, Lonnie O' Neal

    1999-03-01

    Zymomonas mobilis is a unique microorganism in being both obligately fermentative and utilizing a Entner-Doudoroff pathway for glycolysis. Glycolytic flux in this organism is readily measured as evolved carbon dioxide, ethanol, or glucose consumed and exceeds 1 {micro}mole glucose/min per mg cell protein. To support this rapid glycolysis, approximately 50% of cytoplasmic protein is devoted to the 13 glycolytic and fermentative enzymes which constitute this central catabolic pathway. Only 1 ATP (net) is produced from each glucose metabolized. During the past grant period, we have completed the characterization of 11 of the 13 glycolytic genes from Z. mobilis together with complementary but separate DOE-fimded research by a former post-dot and collaborator, Dr. Tyrrell Conway. Research funded in my lab by DOE, Division of Energy Biosciences can be divided into three sections: A. Fundamental studies; B. Applied studies and utility; and C. Miscellaneous investigations.

  12. Carboxylic acid reductase enzymes (CARs).

    Science.gov (United States)

    Winkler, Margit

    2018-04-01

    Carboxylate reductases (CARs) are emerging as valuable catalysts for the selective one-step reduction of carboxylic acids to their corresponding aldehydes. The substrate scope of CARs is exceptionally broad and offers potential for their application in diverse synthetic processes. Two major fields of application are the preparation of aldehydes as end products for the flavor and fragrance sector and the integration of CARs in cascade reactions with aldehydes as the key intermediates. The latest applications of CARs are dominated by in vivo cascades and chemo-enzymatic reaction sequences. The challenge to fully exploit product selectivity is discussed. Recent developments in the characterization of CARs are summarized, with a focus on aspects related to the domain architecture and protein sequences of CAR enzymes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Enzyme Enzyme activities in relation to sugar accumulation in tomato

    International Nuclear Information System (INIS)

    Alam, M.J.; Rahman, M.H.; Mamun, M.A.; Islam, K.

    2006-01-01

    Enzyme activities in tomato juice of five different varieties viz. Ratan, Marglove, BARI-1, BARI-5 and BARI-6, in relation to sugar accumulation were investigated at different maturity stages. The highest amount of invertase and beta-galactosidase was found in Marglove and the lowest in BARI- 6 at all maturity stages. Total soluble sugar and sucrose contents were highest in BARI-1 and lowest in BARI-6. The activity of amylase was maximum in Ratan and minimum in Marglove. Protease activity was highest in Ratan and lowest in BARI-6. BARI-1 contained the highest cellulase activity and the lowest in BARI-5. The amount of total soluble sugar and sucrose increased moderately from premature to ripe stage. The activities of amylase and cellulase increased up to the mature stage and then decreased drastically in the ripe stage. The activities of invertase and protease increased sharply from the premature to the ripe stage while the beta-galactosidase activity decreased remarkably. No detectable amount of reducing sugar was present in the premature stage in all cultivars of tomato but increased thereafter upto the ripe stage. The highest reducing sugar was present in BARI-5 in all of the maturity stages. (author)

  14. Cooperation of Aspergillus nidulans enzymes increases plant polysaccharide saccharification

    NARCIS (Netherlands)

    Tramontina, Robson; Robl, Diogo; Maitan-Alfenas, Gabriela Piccolo; de Vries, Ronald P

    2016-01-01

    Efficient polysaccharide degradation depends on interaction between enzymes acting on the main chain and the side chains. Previous studies demonstrated cooperation between several enzymes, but not all enzyme combinations have been explored. A better understanding of enzyme cooperation would enable

  15. Evaluation of pressure tuning of enzymes

    DEFF Research Database (Denmark)

    Naghshineh, Mahsa

    and high energy consumption. Therefore, searching for an environmentally friendly method of pectin extraction is a task for science and industry. Employment of hydrolytic enzymes may represent a green approach to obtain intact pectin polymer. However, the low stability/activity of enzymes, and low polymer...... yield of enzymatic extraction limits the application of enzyme in pectin production. There is evidence that emerging technology of high hydrostatic pressure processing can result in stabilization and activation of some enzymes. Therefore, the use of high hydrostatic pressure in combination with enzyme...... (cellulase/xylanase: 50/0, 50/25, 50/50, 25/50, and 0/50 U/g lime peel) at ambient pressure, 100 and 200 MPa were used to extract pectin from dried lime peel waste. It was found that pressure level, type and concentration of enzyme significantly influenced pectin yield and degree of esterification (DE...

  16. Production of Enzymes from Marine Actinobacteria.

    Science.gov (United States)

    Zhao, X Q; Xu, X N; Chen, L Y

    Marine actinobacteria are well recognized for their capabilities to produce valuable natural products, which have great potential for applications in medical, agricultural, and fine chemical industries. In addition to producing unique enzymes responsible for biosynthesis of natural products, many marine actinobacteria also produce hydrolytic enzymes which are able to degrade various biopolymers, such as cellulose, xylan, and chitin. These enzymes are important to produce biofuels and biochemicals of interest from renewable biomass. In this chapter, the recent reports of novel enzymes produced by marine actinobacteria are reviewed, and advanced technologies that can be applied to search for novel marine enzymes as well as for improved enzyme production by marine actinobacteria are summarized, which include ribosome engineering, genome mining, as well as synthetic biology studies. © 2016 Elsevier Inc. All rights reserved.

  17. Prediction of Wild-type Enzyme Characteristics

    DEFF Research Database (Denmark)

    Geertz-Hansen, Henrik Marcus

    of biotechnology, including enzyme discovery and characterization. This work presents two articles on sequence-based discovery and functional annotation of enzymes in environmental samples, and two articles on analysis and prediction of enzyme thermostability and cofactor requirements. The first article presents...... a sequence-based approach to discovery of proteolytic enzymes in metagenomes obtained from the Polar oceans. We show that microorganisms living in these extreme environments of constant low temperature harbour genes encoding novel proteolytic enzymes with potential industrial relevance. The second article...... presents a web server for the processing and annotation of functional metagenomics sequencing data, tailored to meet the requirements of non-bioinformaticians. The third article presents analyses of the molecular determinants of enzyme thermostability, and a feature-based prediction method of the melting...

  18. How Do Enzymes 'Meet' Nanoparticles and Nanomaterials?

    Science.gov (United States)

    Chen, Ming; Zeng, Guangming; Xu, Piao; Lai, Cui; Tang, Lin

    2017-11-01

    Enzymes are fundamental biological catalysts responsible for biological regulation and metabolism. The opportunity for enzymes to 'meet' nanoparticles and nanomaterials is rapidly increasing due to growing demands for applications in nanomaterial design, environmental monitoring, biochemical engineering, and biomedicine. Therefore, understanding the nature of nanomaterial-enzyme interactions is becoming important. Since 2014, enzymes have been used to modify, degrade, or make nanoparticles/nanomaterials, while numerous nanoparticles/nanomaterials have been used as materials for enzymatic immobilization and biosensors and as enzyme mimicry. Among the various nanoparticles and nanomaterials, metal nanoparticles and carbon nanomaterials have received extensive attention due to their fascinating properties. This review provides an overview about how enzymes meet nanoparticles and nanomaterials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. ENZYME RESISTANCE OF GENETICALLY MODIFIED STARCH POTATOES

    Directory of Open Access Journals (Sweden)

    A. Sh. Mannapova

    2015-01-01

    Full Text Available Here in this article the justification of expediency of enzyme resistant starch use in therapeutic food products is presented . Enzyme resistant starch is capable to resist to enzymatic hydrolysis in a small intestine of a person, has a low glycemic index, leads to decrease of postprandial concentration of glucose, cholesterol, triglycerides in blood and insulin reaction, to improvement of sensitivity of all organism to insulin, to increase in sense of fulness and to reduction of adjournment of fats. Resistant starch makes bifidogenшс impact on microflora of a intestine of the person, leads to increase of a quantity of lactobacillus and bifidobacterium and to increased production of butyric acid in a large intestine. In this regard the enzyme resistant starch is an important component in food for prevention and curing of human diseases such as diabetes, obesity, colitis, a cancer of large and direct intestine. One method is specified by authors for imitation of starch digestion in a human body. This method is based on the definition of an enzyme resistance of starch in vitro by its hydrolysis to glucose with application of a glucoamylase and digestive enzyme preparation Pancreatin. This method is used in researches of an enzyme resistance of starch, of genetically modified potato, high amylose corn starch Hi-Maize 1043 and HYLON VII (National Starch Food Innovation, USA, amylopectin and amylose. It is shown that the enzyme resistance of the starch emitted from genetically modified potatoes conforms to the enzyme resistance of the high amylose corn starch “Hi-Maize 1043 and HYLON VII starch”, (National Starch Food Innovation, the USA relating to the II type of enzyme resistant starch. It is established that amylopectin doesn't have the enzyme resistant properties. The results of researches are presented. They allow us to make the following conclusion: amylose in comparison with amylopectin possesses higher enzyme resistance and gives to

  20. [Advances on enzymes and enzyme inhibitors research based on microfluidic devices].

    Science.gov (United States)

    Hou, Feng-Hua; Ye, Jian-Qing; Chen, Zuan-Guang; Cheng, Zhi-Yi

    2010-06-01

    With the continuous development in microfluidic fabrication technology, microfluidic analysis has evolved from a concept to one of research frontiers in last twenty years. The research of enzymes and enzyme inhibitors based on microfluidic devices has also made great progress. Microfluidic technology improved greatly the analytical performance of the research of enzymes and enzyme inhibitors by reducing the consumption of reagents, decreasing the analysis time, and developing automation. This review focuses on the development and classification of enzymes and enzyme inhibitors research based on microfluidic devices.

  1. Engineering Foundation Conference on Enzyme Engineering XII

    National Research Council Canada - National Science Library

    Russell, Author

    1997-01-01

    Partial Contents: Preparation and Properties of Designed Biocatalysts Biopolymer Structure and Function Biocatalysts under Extreme Environments Application of Protein Expression in Biocatalysis Biochemical Engineering of Enzyme Systems...

  2. Escherichia coli photoreactivating enzyme: purification and properties

    International Nuclear Information System (INIS)

    Snapka, R.M.; Sutherland, B.M.

    1980-01-01

    Researchers have purified large quantities of Escherichia coli photoreactivating enzyme to apparent homogeneity and have studied its physical and chemical properties. The enzyme has a molecular weight of 36,800 and a S/sub 20,w/ 0 of 3.72 S. Amino acid analysis revealed an apparent absence of tryptophan, a low content of aromatic residues, and the presence of no unusual amino acids. The N terminus is arginine. The purified enzyme contained up to 13% carbohydrate by weight. The carbohydrate was composed of mannose, galactose, glucose, and N-acetylglucosamine. The enzyme is also associated with RNA containing uracil, adenine, guanine, and cytosine with no unusual bases detected

  3. The mechanisms of Excited states in enzymes

    DEFF Research Database (Denmark)

    Petersen, Frederic Nicolas Rønne; Bohr, Henrik

    2010-01-01

    Enzyme catalysis is studied on the basis of excited state processes, which are of electronic, vibrational and thermal nature. The ways of achieving the excited state, such as photo-absorption and ligand binding, are discussed and exemplified by various cases of enzymes.......Enzyme catalysis is studied on the basis of excited state processes, which are of electronic, vibrational and thermal nature. The ways of achieving the excited state, such as photo-absorption and ligand binding, are discussed and exemplified by various cases of enzymes....

  4. Detoxification enzymes activities in deltamethrin and bendiocarb ...

    African Journals Online (AJOL)

    Detoxification enzymes activities in deltamethrin and bendiocarb resistant and susceptible malarial vectors ( Anopheles gambiae ) breeding in Bichi agricultural and residential sites, Kano state, Nigeria.

  5. Zymography methods for visualizing hydrolytic enzymes.

    Science.gov (United States)

    Vandooren, Jennifer; Geurts, Nathalie; Martens, Erik; Van den Steen, Philippe E; Opdenakker, Ghislain

    2013-03-01

    Zymography is a technique for studying hydrolytic enzymes on the basis of substrate degradation. It is a powerful, but often misinterpreted, tool yielding information on potential hydrolytic activities, enzyme forms and the locations of active enzymes. In this Review, zymography techniques are compared in terms of advantages, limitations and interpretations. With in gel zymography, enzyme forms are visualized according to their molecular weights. Proteolytic activities are localized in tissue sections with in situ zymography. In vivo zymography can pinpoint proteolytic activity to sites in an intact organism. Future development of novel substrate probes and improvement in detection and imaging methods will increase the applicability of zymography for (reverse) degradomics studies.

  6. Substrate analogues for isoprenoid enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Stremler, K.E.

    1987-01-01

    Diphosphonate analogues of geranyl diphosphate, resistant to degradation by phosphatases, were found to be alternate substrates for the reaction with farnesyl diphosphate synthetase isolated from avian liver. The difluoromethane analogue was shown to be the better alternate substrate, in agreement with solvolysis results which indicate that the electronegativity of the difluoromethylene unit more closely approximates that of the normal bridging oxygen. The usefulness of the C/sub 10/ difluoro analogue, for detecting low levels of isoprenoid enzymes in the presence of high levels of phosphatase activity, was demonstrated with a cell-free preparation from lemon peel. A series of C/sub 5/ through C/sub 15/ homoallylic and allylic diphosphonates, as well as two 5'-nucleotide diphosphonates, was prepared in high overall yield using the activation-displacement sequence. Radiolabeled samples of several of the allylic diphosphonates were prepared with tritium located at C1. A series of geraniols, stereospecifically deuterated at C1, was prepared. The enantiomeric purities and absolute configurations were determined by derivatization as the mandelate esters for analysis by /sup 1/H NMR. The stereochemistry of the activation-displacement sequence was examined using C1-deuterated substrates.

  7. Direct Electron Transfer of Enzymes in a Biologically Assembled Conductive Nanomesh Enzyme Platform.

    Science.gov (United States)

    Lee, Seung-Woo; Lee, Ki-Young; Song, Yong-Won; Choi, Won Kook; Chang, Joonyeon; Yi, Hyunjung

    2016-02-24

    Nondestructive assembly of a nanostructured enzyme platform is developed in combination of the specific biomolecular attraction and electrostatic coupling for highly efficient direct electron transfer (DET) of enzymes with unprecedented applicability and versatility. The biologically assembled conductive nanomesh enzyme platform enables DET-based flexible integrated biosensors and DET of eight different enzyme with various catalytic activities. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. REtools: A laboratory program for restriction enzyme work: enzyme selection and reaction condition assistance

    OpenAIRE

    Boulukos Kim E; Martin Patrick; Pognonec Philippe

    2006-01-01

    Abstract Background Restriction enzymes are one of the everyday tools used in molecular biology. The continuously expanding panel of known restriction enzymes (several thousands) renders their optimal use virtually impossible without computerized assistance. Several manufacturers propose on-line sites that assist scientists in their restriction enzyme work, however, none of these sites meet all the actual needs of laboratory workers, and they do not take into account the enzymes actually pres...

  9. Enzyme adsorption at solid-liquid interfaces

    NARCIS (Netherlands)

    Duinhoven, S.

    1992-01-01

    Enzymes are proteins with the capacity of catalysing various reactions. Nowadays two types of enzymes, proteases and lipases, are available for use in detergent formulations for household and industrial laundry washing. Proteases are capable of catalysing the hydrolysis of proteins while

  10. Cytochrome P450 enzyme systems in fungi

    NARCIS (Netherlands)

    Brink, H.M. van den; Gorcom, R.F.M. van; Hondel, C.A.M.J.J. van den; Punt, P.J.

    1998-01-01

    The involvement of cytochrome P450 enzymes in many complex fungal bioconversion processes has been characterized in recent years. Accordingly, there is now considerable scientific interest in fungal cytochrome P450 enzyme systems. In contrast to S. cerevisiae, where surprisingly few P450 genes have

  11. Production of cellulolytic enzymes from ascomycetes

    DEFF Research Database (Denmark)

    Hansen, Gustav Hammerich; Lübeck, Mette; Frisvad, Jens Christian

    2015-01-01

    Optimizing production of cellulose degrading enzymes is of great interest in order to increase the feasibility of constructing biorefinery facilities for a sustainable supply of energy and chemical products. The ascomycete phylum has a large potential for the production of cellulolytic enzymes...

  12. Tryptophan catabolizing enzymes – party of three

    Directory of Open Access Journals (Sweden)

    Helen J Ball

    2014-10-01

    Full Text Available Indoleamine 2,3-dioxygenase (IDO and tryptophan 2,3-dioxygenase (TDO are tryptophan-degrading enzymes that have independently evolved to catalyze the first step in tryptophan catabolism via the kynurenine pathway. The depletion of tryptophan and formation of kynurenine pathway metabolites modulates the activity of the mammalian immune, reproductive and central nervous systems. IDO and TDO enzymes can have overlapping or distinct functions depending on their expression patterns. The expression of TDO and IDO enzymes in mammals differs not only by tissue/cellular localization but also by their induction by distinct stimuli. To add to the complexity, these genes also have undergone duplications in some organisms leading to multiple isoforms of IDO or TDO. For example, many vertebrates, including all mammals, have acquired two IDO genes via gene duplication, although the IDO1-like gene has been lost in some lower vertebrate lineages. Gene duplications can allow the homologs to diverge and acquire different properties to the original gene. There is evidence for IDO enzymes having differing enzymatic characteristics, signaling properties and biological functions. This review analyses the evolutionary convergence of IDO and TDO enzymes as tryptophan-catabolizing enzymes and the divergent evolution of IDO homologs to generate an enzyme family with diverse characteristics not possessed by TDO enzymes, with an emphasis on the immune system.

  13. Partial purification and characterization of ligninolytic enzymes ...

    African Journals Online (AJOL)

    The production of ligninolytic enzymes including laccase, manganese peroxidase and lignin peroxidase from Pleurotus ostreatus was studied under different parameters using solid state fermentation. Maximum production of enzymes was observed after 7 days in solid state fermentation (SSF) medium containing 5 g wheat ...

  14. Enzyme Kinetics? Elementary, my dear 3 -8 ...

    Indian Academy of Sciences (India)

    relationship between the actual steady-state concentrations rather than the equilibrium concentrations. Table 1 shows theKm values of some enzymes. Km depends on the particular substrate used,. pH, temperature and ionic strength. Observed values of Km for differen t substrates and different enzymes vary widel y; the ...

  15. Application of radiopolymerization for immobilization of enzymes

    International Nuclear Information System (INIS)

    Higa, O.Z.; Mastro, N.L. del; Castagnet, A.C.G.

    1986-01-01

    Hydrophilic glass-forming monomers were used in an application of irradiation technology for the immobilization of cellulase and cellobiase. Experiments to observe the effect of additives such as silicates and polyethylene glycol in the enzyme entrapment are reported on. In all cases, enzymatic activity was maintained for more than fifteen batch enzyme reactions. (Author) [pt

  16. Utilization of enzyme supplemented Telfairia occidentalis stalk ...

    African Journals Online (AJOL)

    An eight (8) week feeding trial was carried out to assess the use of enzyme natuzyme supplemented Telfairia occidentalis stalk extract as growth inducer in the practical diet for Oreochromis niloticus fingerlings. Five isonitrogenous (35% crude protein) diets at 0 ml of stalk extract and enzyme (TRT 1), 15 ml (TRT 2) and 30 ...

  17. Illustrating Enzyme Inhibition Using Gibbs Energy Profiles

    Science.gov (United States)

    Bearne, Stephen L.

    2012-01-01

    Gibbs energy profiles have great utility as teaching and learning tools because they present students with a visual representation of the energy changes that occur during enzyme catalysis. Unfortunately, most textbooks divorce discussions of traditional kinetic topics, such as enzyme inhibition, from discussions of these same topics in terms of…

  18. Enzyme Catalysis and the Gibbs Energy

    Science.gov (United States)

    Ault, Addison

    2009-01-01

    Gibbs-energy profiles are often introduced during the first semester of organic chemistry, but are less often presented in connection with enzyme-catalyzed reactions. In this article I show how the Gibbs-energy profile corresponds to the characteristic kinetics of a simple enzyme-catalyzed reaction. (Contains 1 figure and 1 note.)

  19. Biocatalytic material comprising multilayer enzyme coated fiber

    Science.gov (United States)

    Kim, Jungbae [Richland, WA; Kwak, Ja Hun [Richland, WA; Grate, Jay W [West Richland, WA

    2009-11-03

    The present invention relates generally to high stability, high activity biocatalytic materials and processes for using the same. The materials comprise enzyme aggregate coatings having high biocatalytic activity and stability useful in heterogeneous environment. These new materials provide a new biocatalytic immobilized enzyme system with applications in bioconversion, bioremediation, biosensors, and biofuel cells.

  20. Enzyme Engineering for In Situ Immobilization.

    Science.gov (United States)

    Rehm, Fabian B H; Chen, Shuxiong; Rehm, Bernd H A

    2016-10-14

    Enzymes are used as biocatalysts in a vast range of industrial applications. Immobilization of enzymes to solid supports or their self-assembly into insoluble particles enhances their applicability by strongly improving properties such as stability in changing environments, re-usability and applicability in continuous biocatalytic processes. The possibility of co-immobilizing various functionally related enzymes involved in multistep synthesis, conversion or degradation reactions enables the design of multifunctional biocatalyst with enhanced performance compared to their soluble counterparts. This review provides a brief overview of up-to-date in vitro immobilization strategies while focusing on recent advances in enzyme engineering towards in situ self-assembly into insoluble particles. In situ self-assembly approaches include the bioengineering of bacteria to abundantly form enzymatically active inclusion bodies such as enzyme inclusions or enzyme-coated polyhydroxyalkanoate granules. These one-step production strategies for immobilized enzymes avoid prefabrication of the carrier as well as chemical cross-linking or attachment to a support material while the controlled oriented display strongly enhances the fraction of accessible catalytic sites and hence functional enzymes.

  1. Lignocellulose biotechnology: issues of bioconversion and enzyme ...

    African Journals Online (AJOL)

    Lignocellulose biotechnology: issues of bioconversion and enzyme production. ... and secondly to highlight some of the modern approaches which potentially could be used to tackle one of the major impediments, namely high enzyme cost, to speed-up the extensive commercialisation of the lignocellulose bioprocessing.

  2. Immobilization to prevent enzyme incompatibility with proteases

    NARCIS (Netherlands)

    Vossenberg, P.; Beeftink, H.H.; Cohen Stuart, M.A.; Tramper, J.

    2011-01-01

    Enzyme incompatibility is a problem in multi-enzyme processes that involve a non-specific protease, such as Alcalase. An example is the one-pot enzymatic synthesis of peptides catalyzed by a lipase and a protease. The incompatibility between lipase B from Candida antarctica (CalB) and Alcalase was

  3. Enzyme-Catalyzed Transetherification of Alkoxysilanes

    Directory of Open Access Journals (Sweden)

    Peter G. Taylor

    2013-01-01

    Full Text Available We report the first evidence of an enzyme-catalyzed transetherification of model alkoxysilanes. During an extensive enzymatic screening in the search for new biocatalysts for silicon-oxygen bond formation, we found that certain enzymes promoted the transetherification of alkoxysilanes when tert-butanol or 1-octanol were used as the reaction solvents.

  4. Bacterial Enzymes and Antibiotic Resistance- Oral Presentation

    Energy Technology Data Exchange (ETDEWEB)

    Maltz, Lauren [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-25

    By using protein crystallography and X-ray diffraction, structures of bacterial enzymes were solved to gain a better understanding of how enzymatic modification acts as an antibacterial resistance mechanism. Aminoglycoside phosphotransferases (APHs) are one of three aminoglycoside modifying enzymes that confer resistance to the aminoglycoside antibiotics via enzymatic modification, rendering many drugs obsolete. Specifically, the APH(2”) family vary in their substrate specificities and also in their preference for the phosphate donor (ADP versus GDP). By solving the structures of members of the APH(2”) family of enzymes, we can see how domain movements are important to their substrate specificity. Our structure of the ternary complex of APH(2”)-IIIa with GDP and kanamycin, when compared to the known structures of APH(2”)-IVa, reveals that there are real physical differences between these two enzymes, a structural finding that explains why the two enzymes differ in their preferences for certain aminoglycosides. Another important group of bacterial resistance enzymes are the Class D β-lactamases. Oxacillinase carbapenemases (OXAs) are part of this enzyme class and have begun to confer resistance to ‘last resort’ drugs, most notably carbapenems. Our structure of OXA-143 shows that the conformational flexibility of a conserved hydrophobic residue in the active site (Val130) serves to control the entry of a transient water molecule responsible for a key step in the enzyme’s mechanism. Our results provide insight into the structural mechanisms of these two different enzymes.

  5. Role of antioxidant scavenging enzymes and extracellular ...

    African Journals Online (AJOL)

    ChithrashreeGS

    2012-08-23

    Aug 23, 2012 ... In the present work, we studied the role of antioxidant scavenging enzymes of plant pathogenic bacteria: catalase ... Key words: Paddy, plant pathogenic bacteria, antioxidant scavenging enzymes, exopolysaccharide, virulence, ..... the development of a non-host hypersensitive reaction in lettuce. Plant ...

  6. Enzyme Activity Experiments Using a Simple Spectrophotometer

    Science.gov (United States)

    Hurlbut, Jeffrey A.; And Others

    1977-01-01

    Experimental procedures for studying enzyme activity using a Spectronic 20 spectrophotometer are described. The experiments demonstrate the effect of pH, temperature, and inhibitors on enzyme activity and allow the determination of Km, Vmax, and Kcat. These procedures are designed for teaching large lower-level biochemistry classes. (MR)

  7. A DNA enzyme that cleaves RNA

    Science.gov (United States)

    Breaker, R. R.; Joyce, G. F.; Hoyce, G. F. (Principal Investigator)

    1994-01-01

    BACKGROUND: Several types of RNA enzymes (ribozymes) have been identified in biological systems and generated in the laboratory. Considering the variety of known RNA enzymes and the similarity of DNA and RNA, it is reasonable to imagine that DNA might be able to function as an enzyme as well. No such DNA enzyme has been found in nature, however. We set out to identify a metal-dependent DNA enzyme using in vitro selection methodology. RESULTS: Beginning with a population of 10(14) DNAs containing 50 random nucleotides, we carried out five successive rounds of selective amplification, enriching for individuals that best promote the Pb(2+)-dependent cleavage of a target ribonucleoside 3'-O-P bond embedded within an otherwise all-DNA sequence. By the fifth round, the population as a whole carried out this reaction at a rate of 0.2 min-1. Based on the sequence of 20 individuals isolated from this population, we designed a simplified version of the catalytic domain that operates in an intermolecular context with a turnover rate of 1 min-1. This rate is about 10(5)-fold increased compared to the uncatalyzed reaction. CONCLUSIONS: Using in vitro selection techniques, we obtained a DNA enzyme that catalyzes the Pb(2+)-dependent cleavage of an RNA phosphoester in a reaction that proceeds with rapid turnover. The catalytic rate compares favorably to that of known RNA enzymes. We expect that other examples of DNA enzymes will soon be forthcoming.

  8. Restriction Enzyme Mapping: A Simple Student Practical.

    Science.gov (United States)

    Higgins, Stephen J.; And Others

    1990-01-01

    An experiment that uses the recombinant plasmid pX1108 to illustrate restriction mapping is described. The experiment involves three restriction enzymes and employs single and double restriction enzyme digestions. A list of needed materials, procedures, safety precautions, results, and discussion are included. (KR)

  9. Evaluation of thermostable enzymes for bioethanol processing

    DEFF Research Database (Denmark)

    Skovgaard, Pernille Anastasia

    8). It was possible to recover more thermostable activity after distillation meaning that the nzymes could be recycled more efficiently resulting in a net savings of enzymes used. By testing different enzyme cocktails through the bioethanol process, specially during liquefaction and distillation...

  10. Enzyme activity assay of glycoprotein enzymes based on a boronate affinity molecularly imprinted 96-well microplate.

    Science.gov (United States)

    Bi, Xiaodong; Liu, Zhen

    2014-12-16

    Enzyme activity assay is an important method in clinical diagnostics. However, conventional enzyme activity assay suffers from apparent interference from the sample matrix. Herein, we present a new format of enzyme activity assay that can effectively eliminate the effects of the sample matrix. The key is a 96-well microplate modified with molecularly imprinted polymer (MIP) prepared according to a newly proposed method called boronate affinity-based oriented surface imprinting. Alkaline phosphatase (ALP), a glycoprotein enzyme that has been routinely used as an indicator for several diseases in clinical tests, was taken as a representative target enzyme. The prepared MIP exhibited strong affinity toward the template enzyme (with a dissociation constant of 10(-10) M) as well as superb tolerance for interference. Thus, the enzyme molecules in a complicated sample matrix could be specifically captured and cleaned up for enzyme activity assay, which eliminated the interference from the sample matrix. On the other hand, because the boronate affinity MIP could well retain the enzymatic activity of glycoprotein enzymes, the enzyme captured by the MIP was directly used for activity assay. Thus, additional assay time and possible enzyme or activity loss due to an enzyme release step required by other methods were avoided. Assay of ALP in human serum was successfully demonstrated, suggesting a promising prospect of the proposed method in real-world applications.

  11. Malic enzymes of Trichomonas vaginalis: two enzyme families, two distinct origins.

    Science.gov (United States)

    Dolezal, Pavel; Vanácová, Stepánka; Tachezy, Jan; Hrdý, Ivan

    2004-03-31

    The cytosolic malic enzyme of the amitochondriate protist Trichomonas vaginalis was purified to homogeneity and characterized. The corresponding gene was sequenced and compared with its hydrogenosomal homologue from the same organism. The enzymes were found to differ in coenzyme specificity, molecular mass and physiological role. The cytosolic malic enzyme is a dimer consisting of two 42-kDa subunits with strict specificity for nicotinamide adenine dinucleotide phosphate (NADP(+)), and has a presumed function of pyruvate and NADPH production. The hydrogenosomal malic enzyme is a tetramer of 60-kDa subunits that preferentially utilizes nicotinamide adenine dinucleotide (NAD(+)) to NADP(+). The hydrogenosomal enzyme supplies the hydrogenosome with pyruvate for further catabolic processes linked with substrate-level phosphorylation. Phylogenetic analysis of malic enzymes showed the existence of two distinct families of these enzymes in nature, which differ in subunit size. The trichomonad cytosolic malic enzyme belongs to the small subunit-type family that occurs almost exclusively in prokaryotes. In contrast, the hydrogenosomal malic enzyme displays a close relationship with the large subunit-type family of the enzyme, which is found in mitochondria, plastids and the cytosol of eukaryotes. The eubacterial origin of trichomonad cytosolic malic enzyme suggests an occurrence of horizontal gene transfer from a eubacterium to the ancestor of T. vaginalis. The presence of both prokaryotic and eukaryotic type of malic enzyme in different compartments of a single eukaryotic cell appears to be unique in nature.

  12. Enhanced Oil Recovery with Application of Enzymes

    DEFF Research Database (Denmark)

    Khusainova, Alsu

    Enzymes have recently been reported as effective enhanced oil recovery (EOR) agents. Both laboratory and field tests demonstrated significant increase in the ultimate oil production. Up to16% of additional oil was produced in the laboratory conditions and up to 269 barrels of additional oil per day....... However, the positive effect of enzymes on oil recovery is not that obvious. In most of the studies commercial enzyme products composed of enzymes, surfactants and stabilisers were used. Application of such samples makes it difficult to assign a positive EOR effect to a certain compound, as several...... to the irreversible adsorption. The adsorption capacity of carbonate material was found to be much higher compared to sandstone. Various methods (forexample, change of ionic strength and pH of the enzyme solution and displacing fluid) were applied in order to desorb attached protein molecules, but no desorption...

  13. Electro-ultrafiltration of industrial enzyme solutions

    DEFF Research Database (Denmark)

    Enevoldsen, Ann Dorrit; Hansen, Erik Børresen; Jonsson, Gunnar Eigil

    2007-01-01

    To reduce the problems with fouling and concentration polarization during crossflow ultrafiltration of industrial enzyme solutions an electric field is applied across the membrane. The filtration performance during electro-ultrafiltration (EUF) has been tested with several enzymes. Results show...... that EUF is an effective method to filter high concentrated solutions at low crossfiow. The flux improved 3-7 times for enzymes with a significant surface charge at an electric field strength of 1600V/m compared to conventional UF. The greatest improvement is observed at high concentration. Not all enzymes...... can be filtered with EUF, mainly due to a low surface charge and impurities in the feed solution. Using a pulsed electric field did not improve the flux compared to a constant field. Gel electrophoresis experiments of the enzymes appear to be a useful method for estimating the influence...

  14. Upscaling of enzyme enhanced CO2 capture

    DEFF Research Database (Denmark)

    Gladis, Arne Berthold

    the mass transfer of CO2 with slow-capturing but energetically favorable solvents can open up a variety of new process options for this technology. The ubiquitous enzyme carbonic anhydrase (CA), which enhances the mass transfer of CO2 in the lungs by catalyzing the reversible hydration of CO2, is one very...... promising mass transfer rate promoter for CCS. This process has been previously been tested successfully in lab scale and in some rare cases in pilot scale, but no validated process model for this technology has been published yet. This PhD thesis presents an investigation of the feasibility of enzyme...... enzyme kinetic model and validating it against in-house pilot plant experiments. The work consisted of identifying a suitable enzyme-solvent system and the ideal process conditions by comparing mass transfer rates of different solvents and enzyme enhanced solvents in a lab scale wetted wall column...

  15. Biotechnological uses of enzymes from psychrophiles

    Science.gov (United States)

    Cavicchioli, R.; Charlton, T.; Ertan, H.; Omar, S. Mohd; Siddiqui, K. S.; Williams, T. J.

    2011-01-01

    Summary The bulk of the Earth's biosphere is cold (e.g. 90% of the ocean's waters are ≤ 5°C), sustaining a broad diversity of microbial life. The permanently cold environments vary from the deep ocean to alpine reaches and to polar regions. Commensurate with the extent and diversity of the ecosystems that harbour psychrophilic life, the functional capacity of the microorganisms that inhabitat the cold biosphere are equally diverse. As a result, indigenous psychrophilic microorganisms provide an enormous natural resource of enzymes that function effectively in the cold, and these cold‐adapted enzymes have been targeted for their biotechnological potential. In this review we describe the main properties of enzymes from psychrophiles and describe some of their known biotechnological applications and ways to potentially improve their value for biotechnology. The review also covers the use of metagenomics for enzyme screening, the development of psychrophilic gene expression systems and the use of enzymes for cleaning. PMID:21733127

  16. Practical steady-state enzyme kinetics.

    Science.gov (United States)

    Lorsch, Jon R

    2014-01-01

    Enzymes are key components of most biological processes. Characterization of enzymes is therefore frequently required during the study of biological systems. Steady-state kinetics provides a simple and rapid means of assessing the substrate specificity of an enzyme. When combined with site-directed mutagenesis (see Site-Directed Mutagenesis), it can be used to probe the roles of particular amino acids in the enzyme in substrate recognition and catalysis. Effects of interaction partners and posttranslational modifications can also be assessed using steady-state kinetics. This overview explains the general principles of steady-state enzyme kinetics experiments in a practical, rather than theoretical, way. Any biochemistry textbook will have a section on the theory of Michaelis-Menten kinetics, including derivations of the relevant equations. No specific enzymatic assay is described here, although a method for monitoring product formation or substrate consumption over time (an assay) is required to perform the experiments described. © 2014 Elsevier Inc. All rights reserved.

  17. Interactions between surfactants and hydrolytic enzymes.

    Science.gov (United States)

    Holmberg, Krister

    2017-12-05

    Hydrolytic enzymes are combined with surfactants in many types of formulations, for instance detergents and personal care products. If the surfactant interacts with the enzyme there may be conformational changes that eventually lead to loss of the enzymatic activity. From a practical point of view it is important to understand the nature and magnitude of these interactions. After an introduction of the topic the review briefly discusses enzyme catalyzed reactions where surfactants are substrates for the enzyme. The rest of the review relates to associations between surfactants and hydrolytic enzymes without the surfactant being a substrate in the reaction. A discussion about general principles for such interactions is followed by a survey of the relevant literature related to four important types of hydrolytic enzymes: lipases, proteases, amylases and cellulases. It is shown in the review that the effect exerted by the surfactant differs between the different types of enzymes; it is therefore difficult to make general statements about which surfactants are most detrimental to the activity of hydrolytic enzymes. However, as a general rule nonionic surfactants can be regarded as more benign to an enzyme than anionic and cationic surfactants. This difference can be ascribed to the difference in binding mode. Whereas a nonionic surfactant only binds to the enzyme through hydrophobic interactions, an ionic surfactant can bind by a combination of electrostatic attraction and hydrophobic interaction. This latter type of binding can be strong and lead to conformational changes already at very low surfactant concentration, often far below its critical micelle concentration. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Expanding the Halohydrin Dehalogenase Enzyme Family: Identification of Novel Enzymes by Database Mining.

    Science.gov (United States)

    Schallmey, Marcus; Koopmeiners, Julia; Wells, Elizabeth; Wardenga, Rainer; Schallmey, Anett

    2014-12-01

    Halohydrin dehalogenases are very rare enzymes that are naturally involved in the mineralization of halogenated xenobiotics. Due to their catalytic potential and promiscuity, many biocatalytic reactions have been described that have led to several interesting and industrially important applications. Nevertheless, only a few of these enzymes have been made available through recombinant techniques; hence, it is of general interest to expand the repertoire of these enzymes so as to enable novel biocatalytic applications. After the identification of specific sequence motifs, 37 novel enzyme sequences were readily identified in public sequence databases. All enzymes that could be heterologously expressed also catalyzed typical halohydrin dehalogenase reactions. Phylogenetic inference for enzymes of the halohydrin dehalogenase enzyme family confirmed that all enzymes form a distinct monophyletic clade within the short-chain dehydrogenase/reductase superfamily. In addition, the majority of novel enzymes are substantially different from previously known phylogenetic subtypes. Consequently, four additional phylogenetic subtypes were defined, greatly expanding the halohydrin dehalogenase enzyme family. We show that the enormous wealth of environmental and genome sequences present in public databases can be tapped for in silico identification of very rare but biotechnologically important biocatalysts. Our findings help to readily identify halohydrin dehalogenases in ever-growing sequence databases and, as a consequence, make even more members of this interesting enzyme family available to the scientific and industrial community. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  19. An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes

    Science.gov (United States)

    Mohamad, Nur Royhaila; Marzuki, Nur Haziqah Che; Buang, Nor Aziah; Huyop, Fahrul; Wahab, Roswanira Abdul

    2015-01-01

    The current demands of sustainable green methodologies have increased the use of enzymatic technology in industrial processes. Employment of enzyme as biocatalysts offers the benefits of mild reaction conditions, biodegradability and catalytic efficiency. The harsh conditions of industrial processes, however, increase propensity of enzyme destabilization, shortening their industrial lifespan. Consequently, the technology of enzyme immobilization provides an effective means to circumvent these concerns by enhancing enzyme catalytic properties and also simplify downstream processing and improve operational stability. There are several techniques used to immobilize the enzymes onto supports which range from reversible physical adsorption and ionic linkages, to the irreversible stable covalent bonds. Such techniques produce immobilized enzymes of varying stability due to changes in the surface microenvironment and degree of multipoint attachment. Hence, it is mandatory to obtain information about the structure of the enzyme protein following interaction with the support surface as well as interactions of the enzymes with other proteins. Characterization technologies at the nanoscale level to study enzymes immobilized on surfaces are crucial to obtain valuable qualitative and quantitative information, including morphological visualization of the immobilized enzymes. These technologies are pertinent to assess efficacy of an immobilization technique and development of future enzyme immobilization strategies. PMID:26019635

  20. Metagenomics as a Tool for Enzyme Discovery: Hydrolytic Enzymes from Marine-Related Metagenomes.

    Science.gov (United States)

    Popovic, Ana; Tchigvintsev, Anatoly; Tran, Hai; Chernikova, Tatyana N; Golyshina, Olga V; Yakimov, Michail M; Golyshin, Peter N; Yakunin, Alexander F

    2015-01-01

    This chapter discusses metagenomics and its application for enzyme discovery, with a focus on hydrolytic enzymes from marine metagenomic libraries. With less than one percent of culturable microorganisms in the environment, metagenomics, or the collective study of community genetics, has opened up a rich pool of uncharacterized metabolic pathways, enzymes, and adaptations. This great untapped pool of genes provides the particularly exciting potential to mine for new biochemical activities or novel enzymes with activities tailored to peculiar sets of environmental conditions. Metagenomes also represent a huge reservoir of novel enzymes for applications in biocatalysis, biofuels, and bioremediation. Here we present the results of enzyme discovery for four enzyme activities, of particular industrial or environmental interest, including esterase/lipase, glycosyl hydrolase, protease and dehalogenase.

  1. Enzyme inhibition activities of Andrachne cardifolia Muell.

    Science.gov (United States)

    Ahmad, Bashir; Shah, S M Hassan; Bashir, Shumaila; Shah, Jehandar

    2007-04-01

    The crude methanolic extract and various fractions of Andrachne cardifolia Muell, including chloroform, ethyl acetate and n-butanol fractions were subjected to in vitro enzyme inhibition activity against acetylcholinesterase, butyrylcholinesterase, lipoxygenase and urease enzymes. A significant enzyme inhibition activity (40-89%) was shown by the crude methanolic extract and its fractions against lipoxygenase, while low to significant activity (40-71%) against butyrylcholinesterase. The crude methanolic extract and its various fractions demonstrated poor to significant activity (25-73%) against acetylcholinesterase and no activity against urease.

  2. Dimeric assembly of enterocyte brush border enzymes

    DEFF Research Database (Denmark)

    Danielsen, E M

    1994-01-01

    The noncovalent, dimeric assembly of small intestinal brush border enzymes was studied by sedimentation analysis in density gradients of extracts of pulse-labeled pig jejunal mucosal explants. Like aminopeptidase N (EC 3.4.11.2), sucrase-isomaltase (EC 3.2.1.48-10), aminopeptidase A (EC 3...... appearance of the liposome-reconstituted enzyme [Norén et al. (1986) J. Biol. Chem. 261, 12306-12309], showing only the inner, membrane-anchored domains of the monomers to be in close contact with one another while the outer domains are far apart. In contrast to the other brush border enzymes studied...

  3. Evaluation of thermostable enzymes for bioethanol processing

    DEFF Research Database (Denmark)

    Skovgaard, Pernille Anastasia

    . Enzymes are added to the bioethanol process after pretreatment. For an efficient sugar and ethanol yield, the solids content of biomass is normally increased, which results in highly viscous slurries that are difficult to mix. Therefore, the first enzymatic challenge is to ensure rapid reduction...... content trough liquefaction and SSF, the cellulase and xylanase activity remained at 80% of the initial value. During distillation, the thermostable enzymes were more temperature and ethanol tolerant compared to mesophilic enzymes (chapter 7). For both mixtures it was seen that an increasing ethanol...

  4. Steroid promiscuity: Diversity of enzyme action. Preface.

    Science.gov (United States)

    Lathe, Richard; Kotelevtsev, Yuri; Mason, J Ian

    2015-07-01

    This Special Issue on the topic of Steroid and Sterol Signaling: Promiscuity and Diversity, dwells on the growing realization that the 'one ligand, one binding site' and 'one enzyme, one reaction' concepts are out of date. Focusing on cytochromes P450 (CYP), hydroxysteroid dehydrogenases (HSDs), and related enzymes, the Special Issue highlights that a single enzyme can bind to diverse substrates, and in different conformations, and can catalyze multiple different conversions (and in different directions), thereby, generating an unexpectedly wide spectrum of ligands that can have subtly different biological actions. This article is part of a Special Issue entitled 'Steroid/Sterol Signaling' . Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Castor Oil Transesterification Catalysed by Liquid Enzymes

    DEFF Research Database (Denmark)

    Andrade, Thalles; Errico, Massimiliano; Christensen, Knud Villy

    2017-01-01

    In the present work, biodiesel production by reaction of non-edible castor oil with methanol under enzymatic catalysis is investigated. Two liquid enzymes were tested: Eversa Transform and Resinase HT. Reactions were performed at 35 °C and with a molar ratio of methanol to oil of 6:1. The reaction...... and fully reused; in the latter, a mixture of 50 % reused and 50 % fresh enzymes was tested. In the case of total reuse after three cycles, both enzymes achieved only low conversions. The biodiesel content in the oil-phase using Eversa Transform was 94.21 % for the first cycle, 68.39 % in the second, and 33...

  6. Fungal enzymes in the attine ant symbiosis

    DEFF Research Database (Denmark)

    de Fine Licht, Henrik Hjarvard; Schiøtt, Morten; Boomsma, Jacobus Jan

    build huge nests displacing several cubic meters of soil, whereas lower attine genera such as Cyphomyrmex and Mycocepurus have small nests with a fungus garden the size of a table-tennis ball. Only the leaf-cutter ants are specialized on using fresh leaves as substrate for their fungus gardens, whereas...... or different efficiencies of enzyme function. Fungal enzymes that degrade plant cell walls may have functionally co-evolved with the ants in this scenario. We explore this hypothesis with direct measurements of enzyme activity in fungus gardens in 12 species across 8 genera spanning the entire phylogeny...

  7. 21 CFR 864.7100 - Red blood cell enzyme assay.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Red blood cell enzyme assay. 864.7100 Section 864... enzyme assay. (a) Identification. Red blood cell enzyme assay is a device used to measure the activity in... kinase or 2,3-diphosphoglycerate. A red blood cell enzyme assay is used to determine the enzyme defects...

  8. 21 CFR 184.1287 - Enzyme-modified fats.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Enzyme-modified fats. 184.1287 Section 184.1287... Listing of Specific Substances Affirmed as GRAS § 184.1287 Enzyme-modified fats. (a) Enzyme-modified refined beef fat, enzyme-modified butterfat, and enzyme-modified steam-rendered chicken fat are prepared...

  9. Nitrile Metabolizing Enzymes in Biocatalysis and Biotransformation.

    Science.gov (United States)

    Bhalla, Tek Chand; Kumar, Vijay; Kumar, Virender; Thakur, Neerja; Savitri

    2018-01-30

    Nitrile metabolizing enzymes, i.e., aldoxime dehydratase, hydroxynitrile lyase, nitrilase, nitrile hydratase, and amidase, are the key catalysts in carbon nitrogen triple bond anabolism and catabolism. Over the past several years, these enzymes have drawn considerable attention as prominent biocatalysts in academia and industries because of their wide applications. Research on various aspects of these biocatalysts, i.e., sources, screening, function, purification, molecular cloning, structure, and mechanisms, has been conducted, and bioprocesses at various scales have been designed for the synthesis of myriads of useful compounds. This review is focused on the potential of nitrile metabolizing enzymes in the production of commercially important fine chemicals such as nitriles, carboxylic acids, and amides. A number of opportunities and challenges of nitrile metabolizing enzymes in bioprocess development for the production of bulk and fine chemicals are discussed.

  10. Imaging enzyme kinetics at atomic resolution

    OpenAIRE

    Spence, John; Lattman, Eaton

    2016-01-01

    Serial crystallography at a synchrotron has been used to obtain time-resolved atomic resolution density maps of enzyme catalysis in copper nitrite reductase. Similar XFEL studies, intended to out-run radiation damage, will also soon appear.

  11. Oxidation Catalysis by Enzymes in Microemulsions

    Directory of Open Access Journals (Sweden)

    Evgenia Mitsou

    2017-02-01

    Full Text Available Microemulsions are regarded as “the ultimate enzyme microreactors” for liquid oxidations. Their structure, composed of water nanodroplets dispersed in a non-polar medium, provides several benefits for their use as media for enzymatic transformations. They have the ability to overcome the solubility limitations of hydrophobic substrates, enhance the enzymatic activity (superactivity phenomenon and stability, while providing an interface for surface-active enzymes. Of particular interest is the use of such systems to study biotransformations catalyzed by oxidative enzymes. Nanodispersed biocatalytic media are perfect hosts for liquid oxidation reactions catalyzed by many enzymes such as heme peroxidases, phenoloxidases, cholesterol oxidase, and dehydrogenases. The system’s composition and structural properties are important for better understanding of nanodispersion-biocatalyst interactions.

  12. Archaeal Enzymes and Applications in Industrial Biocatalysts

    Science.gov (United States)

    Littlechild, Jennifer A.

    2015-01-01

    Archaeal enzymes are playing an important role in industrial biotechnology. Many representatives of organisms living in “extreme” conditions, the so-called Extremophiles, belong to the archaeal kingdom of life. This paper will review studies carried by the Exeter group and others regarding archaeal enzymes that have important applications in commercial biocatalysis. Some of these biocatalysts are already being used in large scale industrial processes for the production of optically pure drug intermediates and amino acids and their analogues. Other enzymes have been characterised at laboratory scale regarding their substrate specificity and properties for potential industrial application. The increasing availability of DNA sequences from new archaeal species and metagenomes will provide a continuing resource to identify new enzymes of commercial interest using both bioinformatics and screening approaches. PMID:26494981

  13. Archaeal Enzymes and Applications in Industrial Biocatalysts

    Directory of Open Access Journals (Sweden)

    Jennifer A. Littlechild

    2015-01-01

    Full Text Available Archaeal enzymes are playing an important role in industrial biotechnology. Many representatives of organisms living in “extreme” conditions, the so-called Extremophiles, belong to the archaeal kingdom of life. This paper will review studies carried by the Exeter group and others regarding archaeal enzymes that have important applications in commercial biocatalysis. Some of these biocatalysts are already being used in large scale industrial processes for the production of optically pure drug intermediates and amino acids and their analogues. Other enzymes have been characterised at laboratory scale regarding their substrate specificity and properties for potential industrial application. The increasing availability of DNA sequences from new archaeal species and metagenomes will provide a continuing resource to identify new enzymes of commercial interest using both bioinformatics and screening approaches.

  14. Archaeal Enzymes and Applications in Industrial Biocatalysts.

    Science.gov (United States)

    Littlechild, Jennifer A

    2015-01-01

    Archaeal enzymes are playing an important role in industrial biotechnology. Many representatives of organisms living in "extreme" conditions, the so-called Extremophiles, belong to the archaeal kingdom of life. This paper will review studies carried by the Exeter group and others regarding archaeal enzymes that have important applications in commercial biocatalysis. Some of these biocatalysts are already being used in large scale industrial processes for the production of optically pure drug intermediates and amino acids and their analogues. Other enzymes have been characterised at laboratory scale regarding their substrate specificity and properties for potential industrial application. The increasing availability of DNA sequences from new archaeal species and metagenomes will provide a continuing resource to identify new enzymes of commercial interest using both bioinformatics and screening approaches.

  15. Polyphenol oxidase-based luminescent enzyme hydrogel

    Indian Academy of Sciences (India)

    shaped composite-basedluminescent enzyme hydrogel network as immobilized scaffold for oxido-reductase efficiency on phenolic substrates includingphenol, resorcinol, catechol and quinol was synthesized and characterized through ...

  16. Novel enzymes for the degradation of cellulose

    Directory of Open Access Journals (Sweden)

    Horn Svein

    2012-07-01

    Full Text Available Abstract The bulk terrestrial biomass resource in a future bio-economy will be lignocellulosic biomass, which is recalcitrant and challenging to process. Enzymatic conversion of polysaccharides in the lignocellulosic biomass will be a key technology in future biorefineries and this technology is currently the subject of intensive research. We describe recent developments in enzyme technology for conversion of cellulose, the most abundant, homogeneous and recalcitrant polysaccharide in lignocellulosic biomass. In particular, we focus on a recently discovered new type of enzymes currently classified as CBM33 and GH61 that catalyze oxidative cleavage of polysaccharides. These enzymes promote the efficiency of classical hydrolytic enzymes (cellulases by acting on the surfaces of the insoluble substrate, where they introduce chain breaks in the polysaccharide chains, without the need of first “extracting” these chains from their crystalline matrix.

  17. Growth and extracellular enzyme production by microorganisms ...

    African Journals Online (AJOL)

    Ugba', an indigenous Nigerian fermented food condiment. The isolated microorganisms were screened for amylase, protease and lipase production, the activity and specific activity of the enzymes were also determined. The effect of pH and ...

  18. Epigenetics of dominance for enzyme activity

    Indian Academy of Sciences (India)

    Unknown

    Acid phosphatase; dominance; Drosophila malerkotliana; epigenetics; heterodimeric allozymes; subunit interaction. J. Biosci. | Vol. 27 | No. ... Department of Genetics, Punjab Agricultural University, Ludhiana 141 004, India. *Corresponding ...... the genetic and complementation maps of the locus specifying the enzyme; J.

  19. Radioimmunoassay of polypeptide hormones and enzymes

    International Nuclear Information System (INIS)

    Felber, J.P.

    1974-01-01

    General principles of radioimmunoassay are reviewed. Detailed procedures are reviewed for the following hormones: insulin, pituitary hormones, gonadotropins, parathyroid hormone, ACTH, glucagon, gastrin, and peptide hormones. Radioimmunoassay of enzymes is also discussed. (U.S.)

  20. growth and extracellular enzyme production by microorganisms

    African Journals Online (AJOL)

    Okorie

    2013-06-26

    Ugba', an indigenous. Nigerian fermented food condiment. The isolated microorganisms were screened for amylase, protease and lipase production, the activity and specific activity of the enzymes were also determined.

  1. Impact of enzyme loading on the efficacy and recovery of cellulolytic enzymes immobilized on enzymogel nanoparticles.

    Science.gov (United States)

    Samaratunga, Ashani; Kudina, Olena; Nahar, Nurun; Zakharchenko, Andrey; Minko, Sergiy; Voronov, Andriy; Pryor, Scott W

    2015-03-01

    Cellulase and β-glucosidase were adsorbed on a polyacrylic acid polymer brush grafted on silica nanoparticles to produce enzymogels as a form of enzyme immobilization. Enzyme loading on the enzymogels was increased to a saturation level of approximately 110 μg (protein) mg(-1) (particle) for each enzyme. Enzymogels with varied enzyme loadings were then used to determine the impact on hydrolysis rate and enzyme recovery. Soluble sugar concentrations during the hydrolysis of filter paper and Solka-Floc with the enzymogels were 45 and 53%, respectively, of concentrations when using free cellulase. β-Glucosidase enzymogels showed lower performance; hydrolyzate glucose concentrations were just 38% of those using free enzymes. Increasing enzyme loading on the enzymogels did not reduce net efficacy for cellulase and improved efficacy for β-glucosidase. The use of free cellulases and cellulase enzymogels resulted in hydrolyzates with different proportions of cellobiose and glucose, suggesting differential attachment or efficacy of endoglucanases, exoglucanases, and β-glucosidases present in cellulase mixtures. When loading β-glucosidase individually, higher enzyme loadings on the enzymogels produced higher hydrolyzate glucose concentrations. Approximately 96% of cellulase and 66 % of β-glucosidase were recovered on the enzymogels, while enzyme loading level did not impact recovery for either enzyme.

  2. Enzyme kinetics informatics: From instrument to browser

    OpenAIRE

    Swainston, Neil; Golebiewski, Martin; Messiha, Hanan L.; Malys, Naglis; Kania, Renate; Kengne, Sylvestre; Krebs, Olga; Mir, Saqib; Sauer-Danzwith, Heidrun; Smallbone, Kieran; Weidemann, Andreas; Wittig, Ulrike; Kell, Douglas B.; Mendes, Pedro; Müller, Wolfgang

    2010-01-01

    A limited number of publicly available resources provide access to enzyme kinetic parameters. These have been compiled through manual data mining of published papers, not from the original, raw experimental data from which the parameters were calculated. This is largely due to the lack of software or standards to support the capture, analysis, storage and dissemination of such experimental data. Introduced here is an integrative system to manage experimental enzyme kinetics data from instrume...

  3. Extracellular enzyme kinetics scale with resource availability

    Science.gov (United States)

    Sinsabaugh, Robert L.; Belnap, Jayne; Findlay, Stuart G.; Follstad Shah, Jennifer J.; Hill, Brian H.; Kuehn, Kevin A.; Kuske, Cheryl; Litvak, Marcy E.; Martinez, Noelle G.; Moorhead, Daryl L.; Warnock, Daniel D.

    2014-01-01

    Microbial community metabolism relies on external digestion, mediated by extracellular enzymes that break down complex organic matter into molecules small enough for cells to assimilate. We analyzed the kinetics of 40 extracellular enzymes that mediate the degradation and assimilation of carbon, nitrogen and phosphorus by diverse aquatic and terrestrial microbial communities (1160 cases). Regression analyses were conducted by habitat (aquatic and terrestrial), enzyme class (hydrolases and oxidoreductases) and assay methodology (low affinity and high affinity substrates) to relate potential reaction rates to substrate availability. Across enzyme classes and habitats, the scaling relationships between apparent Vmax and apparent Km followed similar power laws with exponents of 0.44 to 0.67. These exponents, called elasticities, were not statistically distinct from a central value of 0.50, which occurs when the Km of an enzyme equals substrate concentration, a condition optimal for maintenance of steady state. We also conducted an ecosystem scale analysis of ten extracellular hydrolase activities in relation to soil and sediment organic carbon (2,000–5,000 cases/enzyme) that yielded elasticities near 1.0 (0.9 ± 0.2, n = 36). At the metabolomic scale, the elasticity of extracellular enzymatic reactions is the proportionality constant that connects the C:N:P stoichiometries of organic matter and ecoenzymatic activities. At the ecosystem scale, the elasticity of extracellular enzymatic reactions shows that organic matter ultimately limits effective enzyme binding sites. Our findings suggest that one mechanism by which microbial communities maintain homeostasis is regulating extracellular enzyme expression to optimize the short-term responsiveness of substrate acquisition. The analyses also show that, like elemental stoichiometry, the fundamental attributes of enzymatic reactions can be extrapolated from biochemical to community and ecosystem scales.

  4. Purification and characterization of protease enzyme from ...

    African Journals Online (AJOL)

    The enzyme was active in pH range 5 to11 and temperature of 30 to 80°C. The optimum pH and the temperature for protease activity were recorded to be pH 8 and 50°C, respectively. The enzyme was stable up to 40°C and pH 9. The protease activity was inhibited by Zn2+, Ni2+ and Sn2+ and increased by Ca2+, Mg2+ ...

  5. Carbon nanotube/enzyme biofuel cells

    International Nuclear Information System (INIS)

    Holzinger, Michael; Le Goff, Alan; Cosnier, Serge

    2012-01-01

    Graphical abstract: Recent advances in enzyme biofuel cell development using carbon nanotubes are reviewed in this article. Highlights: ► Recent advances and original approaches of enzyme biofuel cells using carbon nanotubes (CNTs) are highlighted. ► Enzymes were wired onto CNTs to enable direct electron transfer or mediated electron transfer. ► Different immobilization strategies were used to incorporate and to wire the enzymes in or around the CNT matrix. ► The performances and the evolution of reported CNT-biofuel cells and CNT-hybrid fuel cells are summarized. - Abstract: Carbon nanotubes (CNTs) became a prominent material for its use in bioanalytical devices due to their biocompatibility, their particular structure, and their conductivity. CNTs have shown to be particularly appropriate to establish electronic communication with redox enzymes since the thin diameter can be approached closely to the redox active sites enabling therefore the regeneration of the biocatalysts either by direct electron transfer (DET) or with the help of so-called redox mediators which serve as intermediated for the electron transfer. The possibility to capture the enzymatic redox processes by obtaining catalytic currents, the use of such CNT-enzyme electrode for biological energy conversion represents the logic consequence. The development of CNT based enzyme biofuel cells (BFCs) is a still young but steadily growing research topic where original approaches to construct electron transfer based CNT-bioelectrodes and impressive biofuel cell performances are highlighted in this review. The evolution of reported biofuel cells consisting of CNTs and enzymes at the bioanode and the biocathode are summarized.

  6. Semisupervised Gaussian Process for Automated Enzyme Search.

    Science.gov (United States)

    Mellor, Joseph; Grigoras, Ioana; Carbonell, Pablo; Faulon, Jean-Loup

    2016-06-17

    Synthetic biology is today harnessing the design of novel and greener biosynthesis routes for the production of added-value chemicals and natural products. The design of novel pathways often requires a detailed selection of enzyme sequences to import into the chassis at each of the reaction steps. To address such design requirements in an automated way, we present here a tool for exploring the space of enzymatic reactions. Given a reaction and an enzyme the tool provides a probability estimate that the enzyme catalyzes the reaction. Our tool first considers the similarity of a reaction to known biochemical reactions with respect to signatures around their reaction centers. Signatures are defined based on chemical transformation rules by using extended connectivity fingerprint descriptors. A semisupervised Gaussian process model associated with the similar known reactions then provides the probability estimate. The Gaussian process model uses information about both the reaction and the enzyme in providing the estimate. These estimates were validated experimentally by the application of the Gaussian process model to a newly identified metabolite in Escherichia coli in order to search for the enzymes catalyzing its associated reactions. Furthermore, we show with several pathway design examples how such ability to assign probability estimates to enzymatic reactions provides the potential to assist in bioengineering applications, providing experimental validation to our proposed approach. To the best of our knowledge, the proposed approach is the first application of Gaussian processes dealing with biological sequences and chemicals, the use of a semisupervised Gaussian process framework is also novel in the context of machine learning applied to bioinformatics. However, the ability of an enzyme to catalyze a reaction depends on the affinity between the substrates of the reaction and the enzyme. This affinity is generally quantified by the Michaelis constant KM

  7. Extreme halophilic enzymes in organic solvents.

    Science.gov (United States)

    Marhuenda-Egea, Frutos C; Bonete, María José

    2002-08-01

    The use of halophilic extremozymes in organic media has been limited by the lack of enzymological studies in these media. To explore the behaviour of these extremozymes in organic media, different approaches have been adopted, including the dispersal of the lyophilised enzyme or the use of reverse micelles. The use of reverse micelles in maintaining high activities of halophilic extremozymes under unfavourable conditions could open new fields of application such as the use of these enzymes as biocatalysts in organic media.

  8. Enzyme-based antifouling coatings: a review

    DEFF Research Database (Denmark)

    Olsen, Stefan Møller; Pedersen, Leif Toudal; Laursen, M.H.

    2007-01-01

    to the use of enzymes to release an active biocide with AF activity. For direct AF, several patents have been granted, and a commercial product has been launched. However, the achievement of an efficient broad-spectrum AF coating based on a single or a few enzymes has not yet been achieved. An indirect AF...... for product registration purposes are also considered. The above question currently remains unanswered for technologies utilising indirect enzymatic AF....

  9. A stochastic model of enzyme kinetics

    Science.gov (United States)

    Stefanini, Marianne; Newman, Timothy; McKane, Alan

    2003-10-01

    Enzyme kinetics is generally modeled by deterministic rate equations, and in the simplest case leads to the well-known Michaelis-Menten equation. It is plausible that stochastic effects will play an important role at low enzyme concentrations. We have addressed this by constructing a simple stochastic model which can be exactly solved in the steady-state. Throughout a wide range of parameter values Michaelis-Menten dynamics is replaced by a new and simple theoretical result.

  10. Controlled enzyme catalyzed heteropolysaccharide degradation:Xylans

    OpenAIRE

    Rasmussen, Louise Enggaard; Meyer, Anne S.

    2011-01-01

    The work presented in this PhD thesis has provided a better understanding of the enzyme kinetics and quantitative phenomena of the hydrolysis of xylan substrates by selected pure enzyme preparations. Furthermore, the options for producing specific substituted xylooligosaccharides from selected substrates by specific xylanase treatment have been examined. The kinetics of the enzymatic degradation of water-extractable wheat arabinoxylan (WE-AX) during designed treatments with selected monocompo...

  11. Enzymes for Enhanced Oil Recovery (EOR)

    Energy Technology Data Exchange (ETDEWEB)

    Nasiri, Hamidreza

    2011-04-15

    Primary oil recovery by reservoir pressure depletion and secondary oil recovery by waterflooding usually result in poor displacement efficiency. As a consequence there is always some trapped oil remaining in oil reservoirs. Oil entrapment is a result of complex interactions between viscous, gravity and capillary forces. Improving recovery from hydrocarbon fields typically involves altering the relative importance of the viscous and capillary forces. The potential of many EOR methods depends on their influence on fluid/rock interactions related to wettability and fluid/fluid interactions reflected in IFT. If the method has the potential to change the interactions favorably, it may be considered for further investigation, i.e. core flooding experiment, pilot and reservoir implementation. Enzyme-proteins can be introduced as an enhanced oil recovery method to improve waterflood performance by affecting interactions at the oil-water-rock interfaces. An important part of this thesis was to investigate how selected enzymes may influence wettability and capillary forces in a crude oil-brine-rock system, and thus possibly contribute to enhanced oil recovery. To investigate further by which mechanisms selected enzyme-proteins may contribute to enhance oil recovery, groups of enzymes with different properties and catalytic functions, known to be interfacially active, were chosen to cover a wide range of possible effects. These groups include (1) Greenzyme (GZ) which is a commercial EOR enzyme and consists of enzymes and stabilizers (surfactants), (2) The Zonase group consists of two types of pure enzyme, Zonase1 and Zonase2 which are protease enzymes and whose catalytic functions are to hydrolyze (breakdown) peptide bonds, (3) The Novozyme (NZ) group consists of three types of pure enzyme, NZ2, NZ3 and NZ6 which are esterase enzymes and whose catalytic functions are to hydrolyze ester bonds, and (4) Alpha-Lactalbumin ( -La) which is an important whey protein. The effect of

  12. Activity assessment of microbial fibrinolytic enzymes.

    Science.gov (United States)

    Kotb, Essam

    2013-08-01

    Conversion of fibrinogen to fibrin inside blood vessels results in thrombosis, leading to myocardial infarction and other cardiovascular diseases. In general, there are four therapy options: surgical operation, intake of antiplatelets, anticoagulants, or fibrinolytic enzymes. Microbial fibrinolytic enzymes have attracted much more attention than typical thrombolytic agents because of the expensive prices and the side effects of the latter. The fibrinolytic enzymes were successively discovered from different microorganisms, the most important among which is the genus Bacillus. Microbial fibrinolytic enzymes, especially those from food-grade microorganisms, have the potential to be developed as functional food additives and drugs to prevent or cure thrombosis and other related diseases. There are several assay methods for these enzymes; this may due to the insolubility of substrate, fibrin. Existing assay methods can be divided into three major groups. The first group consists of assay of fibrinolytic activity with natural proteins as substrates, e.g., fibrin plate methods. The second and third groups of assays are suitable for kinetic studies and are based on the determination of hydrolysis of synthetic peptide esters. This review will deal primarily with the microorganisms that have been reported in literature to produce fibrinolytic enzymes and the first review discussing the methods used to assay the fibrinolytic activity.

  13. Effects of Cellulytic Enzymes on Phytophthora cinnamomi.

    Science.gov (United States)

    Downer, A J; Menge, J A; Pond, E

    2001-09-01

    ABSTRACT Two enzyme systems, cellulase (beta-1,4-glucanase) and laminarinase (beta-1,3-glucanase), were added to soil extracts to simulate (in vitro) lytic components found in mulches suppressive to Phytophthora cinnamomi. Concentration ranges of each enzyme were incubated with Phytophthora cinnamomi mycelium, zoospores, zoospores cysts, and zoospore-infected excised roots to evaluate the roles of each enzyme in potential control of avocado root rot disease. Cellulase significantly retarded the development of zoosporangia and chlamydospores when mycelia were incubated in soil extract containing the enzyme at concentrations greater than 10 units/ml. Zoospore production was also reduced by cellulase but not by laminarinase. Laminarinase had little effect on zoosporangia or chlamydospore formation. At high concentrations, laminarinase was consistently more effective at preventing encystment than cellulase. Chlamydospores preformed in root tips were immune to the lytic effects of all treatments except cellulase at 100 units/ml. Zoospores placed in enzyme solutions and plated on a selective medium survived high cellulase concentrations and formed colonies, but there were fewer surviving zoospores when laminarinase was present at greater than 10 units/ml. Low concentrations of cellulase stimulated infection of excised roots, however, low concentrations of laminarinase prevented infection. Cellulase and laminarinase have different effects on the structures of the Phytophthora cinnamomi life history, however, each enzyme may have a role in reduction of inoculum.

  14. Computational Biochemistry-Enzyme Mechanisms Explored.

    Science.gov (United States)

    Culka, Martin; Gisdon, Florian J; Ullmann, G Matthias

    2017-01-01

    Understanding enzyme mechanisms is a major task to achieve in order to comprehend how living cells work. Recent advances in biomolecular research provide huge amount of data on enzyme kinetics and structure. The analysis of diverse experimental results and their combination into an overall picture is, however, often challenging. Microscopic details of the enzymatic processes are often anticipated based on several hints from macroscopic experimental data. Computational biochemistry aims at creation of a computational model of an enzyme in order to explain microscopic details of the catalytic process and reproduce or predict macroscopic experimental findings. Results of such computations are in part complementary to experimental data and provide an explanation of a biochemical process at the microscopic level. In order to evaluate the mechanism of an enzyme, a structural model is constructed which can be analyzed by several theoretical approaches. Several simulation methods can and should be combined to get a reliable picture of the process of interest. Furthermore, abstract models of biological systems can be constructed combining computational and experimental data. In this review, we discuss structural computational models of enzymatic systems. We first discuss various models to simulate enzyme catalysis. Furthermore, we review various approaches how to characterize the enzyme mechanism both qualitatively and quantitatively using different modeling approaches. © 2017 Elsevier Inc. All rights reserved.

  15. Computational Functional Analysis of Lipid Metabolic Enzymes.

    Science.gov (United States)

    Bagnato, Carolina; Have, Arjen Ten; Prados, María B; Beligni, María V

    2017-01-01

    The computational analysis of enzymes that participate in lipid metabolism has both common and unique challenges when compared to the whole protein universe. Some of the hurdles that interfere with the functional annotation of lipid metabolic enzymes that are common to other pathways include the definition of proper starting datasets, the construction of reliable multiple sequence alignments, the definition of appropriate evolutionary models, and the reconstruction of phylogenetic trees with high statistical support, particularly for large datasets. Most enzymes that take part in lipid metabolism belong to complex superfamilies with many members that are not involved in lipid metabolism. In addition, some enzymes that do not have sequence similarity catalyze similar or even identical reactions. Some of the challenges that, albeit not unique, are more specific to lipid metabolism refer to the high compartmentalization of the routes, the catalysis in hydrophobic environments and, related to this, the function near or in biological membranes.In this work, we provide guidelines intended to assist in the proper functional annotation of lipid metabolic enzymes, based on previous experiences related to the phospholipase D superfamily and the annotation of the triglyceride synthesis pathway in algae. We describe a pipeline that starts with the definition of an initial set of sequences to be used in similarity-based searches and ends in the reconstruction of phylogenies. We also mention the main issues that have to be taken into consideration when using tools to analyze subcellular localization, hydrophobicity patterns, or presence of transmembrane domains in lipid metabolic enzymes.

  16. Visualization of enzyme activities inside earthworm pores

    Science.gov (United States)

    Hoang, Duyen; Razavi, Bahar S.

    2015-04-01

    In extremely dynamic microhabitats as bio-pores made by earthworm, the in situ enzyme activities are assumed as a footprint of complex biotic interactions. Our study focused on the effect of earthworm on the enzyme activities inside bio-pores and visualizing the differences between bio-pores and earthworm-free soil by zymography technique (Spohn and Kuzyakov, 2013). For the first time, we aimed at quantitative imaging of enzyme activities in bio-pores. Lumbricus terrestris L. was placed into transparent box (15×20×15cm). After two weeks when bio-pore systems were formed by earthworms, we visualized in situ enzyme activities of five hydrolytic enzymes (β-glucosidase, cellobiohydrolase, chitinase, xylanase, leucine-aminopeptidase, and phosphatase. Zymography showed higher activity of β-glucosidase, chitinase, xylanase and phosphatase in biopores comparing to bulk soil. However, the differences in activity of cellobiohydrolase and leucine aminopeptidase between bio-pore and bulk soil were less pronounced. This demonstrated an applicability of zymography approach to monitor and to distinguish the in situ activity of hydrolytic enzymes in soil biopores.

  17. Enzyme-MOF (metal-organic framework) composites.

    Science.gov (United States)

    Lian, Xizhen; Fang, Yu; Joseph, Elizabeth; Wang, Qi; Li, Jialuo; Banerjee, Sayan; Lollar, Christina; Wang, Xuan; Zhou, Hong-Cai

    2017-06-06

    The ex vivo application of enzymes in various processes, especially via enzyme immobilization techniques, has been extensively studied in recent years in order to enhance the recyclability of enzymes, to minimize enzyme contamination in the product, and to explore novel horizons for enzymes in biomedical applications. Possessing remarkable amenability in structural design of the frameworks as well as almost unparalelled surface tunability, Metal-Organic Frameworks (MOFs) have been gaining popularity as candidates for enzyme immobilization platforms. Many MOF-enzyme composites have achieved unprecedented results, far outperforming free enzymes in many aspects. This review summarizes recent developments of MOF-enzyme composites with special emphasis on preparative techniques and the synergistic effects of enzymes and MOFs. The applications of MOF-enzyme composites, primarily in transferation, catalysis and sensing, are presented as well. The enhancement of enzymatic activity of the composites over free enzymes in biologically incompatible conditions is emphasized in many cases.

  18. Kinetics of enzyme action: essential principles for drug hunters

    National Research Council Canada - National Science Library

    Stein, Ross L

    2011-01-01

    ... field. Beginning with the most basic principles pertaining to simple, one-substrate enzyme reactions and their inhibitors, and progressing to a thorough treatment of two-substrate enzymes, Kinetics of Enzyme Action...

  19. Continuous enzyme reactions with immobilized enzyme tubes prepared by radiation cast-polymerization

    International Nuclear Information System (INIS)

    Kumakura, Minoru; Kaetsu, Isao

    1986-01-01

    Immobilized glucose oxidase tubes were prepared by radiation cast-polymerization of 2-hydroxyethyl methacrylate and tetraethyleneglycol diacrylate monomer at low temperatures. The immobilized enzyme tubes which were spirally set in a water bath were used as reactor, in which the enzyme activity varied with tube size and flow rate of the substrate. The conversion yield of the substrate in continuous enzyme reaction was about 80%. (author)

  20. REtools: a laboratory program for restriction enzyme work: enzyme selection and reaction condition assistance.

    Science.gov (United States)

    Martin, Patrick; Boulukos, Kim E; Pognonec, Philippe

    2006-02-28

    Restriction enzymes are one of the everyday tools used in molecular biology. The continuously expanding panel of known restriction enzymes (several thousands) renders their optimal use virtually impossible without computerized assistance. Several manufacturers propose on-line sites that assist scientists in their restriction enzyme work, however, none of these sites meet all the actual needs of laboratory workers, and they do not take into account the enzymes actually present in one's own laboratory. Using FileMaker Pro, we developed a stand-alone application which can run on both PCs and Macintoshes. We called it REtools, for Restriction Enzyme tools. This program, which references all currently known enzymes (>3500), permits the creation and update of a personalized list of restriction enzymes actually available in one's own laboratory. Upon opening the program, scientists will be presented with a user friendly interface that will direct them to different menus, each one corresponding to different situations that restriction enzyme users commonly encounter. We particularly emphasized the ease of use to make REtools a solution that laboratory members would actually want to use. REtools, a user friendly and easily customized program to organize any laboratory enzyme stock, brings a software solution that will make restriction enzyme use and reaction condition determination straightforward and efficient. The usually unexplored potential of isoschizomers also becomes accessible to all, since REtools proposes all possible enzymes similar to the one(s) chosen by the user. Finally, many of the commonly overlooked subtleties of restriction enzyme work, such as methylation requirement, unusual reaction conditions, or the number of flanking bases required for cleavage, are automatically provided by REtools.

  1. REtools: A laboratory program for restriction enzyme work: enzyme selection and reaction condition assistance

    Directory of Open Access Journals (Sweden)

    Boulukos Kim E

    2006-02-01

    Full Text Available Abstract Background Restriction enzymes are one of the everyday tools used in molecular biology. The continuously expanding panel of known restriction enzymes (several thousands renders their optimal use virtually impossible without computerized assistance. Several manufacturers propose on-line sites that assist scientists in their restriction enzyme work, however, none of these sites meet all the actual needs of laboratory workers, and they do not take into account the enzymes actually present in one's own laboratory. Results Using FileMaker Pro, we developed a stand-alone application which can run on both PCs and Macintoshes. We called it REtools, for Restriction Enzyme tools. This program, which references all currently known enzymes (>3500, permits the creation and update of a personalized list of restriction enzymes actually available in one's own laboratory. Upon opening the program, scientists will be presented with a user friendly interface that will direct them to different menus, each one corresponding to different situations that restriction enzyme users commonly encounter. We particularly emphasized the ease of use to make REtools a solution that laboratory members would actually want to use. Conclusion REtools, a user friendly and easily customized program to organize any laboratory enzyme stock, brings a software solution that will make restriction enzyme use and reaction condition determination straightforward and efficient. The usually unexplored potential of isoschizomers also becomes accessible to all, since REtools proposes all possible enzymes similar to the one(s chosen by the user. Finally, many of the commonly overlooked subtleties of restriction enzyme work, such as methylation requirement, unusual reaction conditions, or the number of flanking bases required for cleavage, are automatically provided by REtools.

  2. Converting Enzymes into Tools of Industrial Importance.

    Science.gov (United States)

    Prasad, Shivcharan; Roy, Ipsita

    2018-01-01

    Enzymes have applications in numerous biotechnological products and processes that are commonly used in the production of food and beverages, cleaning supplies, clothing, paper products, transportation fuels, pharmaceuticals, and monitoring devices. Enzymes, however, are optimized to function under physiological conditions. Any change in reaction conditions results in their activity as well as stability being compromised. Hence, most of the natural biomolecules are not suitable for industrial applications. Modifications are required to develop efficient and successful reagents as per demand. Protein engineering can be applied to cope up with these situations. This review describes some of the novel uses/unusual properties of enzymes as biological catalysts. It explains the different ways in which enzymes can be and have been used under non-native conditions. Different strategies have been discussed regarding stabilization of enzyme as well optimum conditions of its uses in different industries. The following patents databases were consulted: European Patent Office (EPO), the United States Patent and Trademark Office (USPTO), Patent scope Search International and National Patent Collections (WIPO) and Google Patents. The review illustrates the width of the umbrella of applications covered by biocatalysts. Employing the tools of solvent and protein engineering, viz. non-aqueous media, additives, immobilization, mutagenesis, to name a few; biotechnology has been able to make enzyme catalyzed processes an essential components of the industrialist's armoury. The article lists a number of successful examples, both of patented technology as well as biocatalysts which are currently being used in the industry, to highlight the accomplishments of technologies which have been adopted till now for making enzyme technology industrially viable. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Trametes suaveolens as ligninolytic enzyme producer

    Directory of Open Access Journals (Sweden)

    Knežević Aleksandar

    2013-01-01

    Full Text Available Species of the genus Trametes represent one of the most efficient lignin-degraders which can be attributed to a well developed ligninolytic enzyme system. Current trends are screening of ability of new species to produce these enzymes, as well as the optimization of conditions for their overproduction. Therefore, the aim of the study was to evaluate the potential of T. suaveolens to synthesize laccase and Mn-oxidizing peroxidases during fermentation of the selected plant raw materials. Level of enzyme activities was measured on 7, 10 and 14th day of submersion, as well as the solid-state fermentation of wheat straw and oak sawdust in the presence of NH4NO3 in previously determined optimal nitrogen concentration of 25 mM. The enzyme activity was determined spectrophotometrically using ABTS and phenol red as the substrates. The highest level of laccase activity (1087.1 U/L was noted after 7 days of wheat straw solid-state fermentation, while during the submerged cultivation the production of the enzyme was not noted. Submerged cultivation in oak sawdust-enriched medium was the optimal for activity of Mn-dependent peroxidase (1767.7 U/L on day 14 and Mn-independent peroxidase (1113.7 U/L on day 7. Introduction of T. suaveolens to produce ligninolytic enzyme represented the base for further study, as well as the determination of relation between enzyme activity and rate of lignin degradation. It could lead to greater possibility of fungal species selection with high delignification capacity, which could take participation in sustainable production of food, feed, fibres, and energy, environmentally friendly pollution prevention, and bioremediation.

  4. The development of a post occupancy evaluation tool for primary schools: learner comfort assessment tool (LCAT)

    CSIR Research Space (South Africa)

    Motsatsi, L

    2015-12-01

    Full Text Available Students spend majority of their time indoors, in school buildings or classroom. A poor and unsatisfactory indoor environment can affect health, productivity and comfort of occupants. Hence, a satisfactory indoor environment quality is important...

  5. The development of a post occupancy evaluation tool for primary schools: learner comfort assessment tool (LCAT)

    CSIR Research Space (South Africa)

    Motsatsi, L

    2015-12-01

    Full Text Available in order to facilitate teaching and learning. The aim of this study was to develop a Post Occupational Evaluation (POE) tool to assess learner comfort in relation to indoor environmental quality in the classroom. The development of POE tool followed a...

  6. Continuous-Flow Applications of Silica-Encapsulated Enzymes

    National Research Council Canada - National Science Library

    Luckarift, Heather R; Johnson, Glenn R; Tomczak, Melanie M; Naik, Rajesh R; Spain, Jim C

    2006-01-01

    .... The enzyme/inorganic nanocomposites exhibit excellent mechanical stability and provide an effective method for developing immobilized enzyme reactors, applicable to biocatalysis, biosensors and drug discovery...

  7. Purification of highly chlorinated dioxins degrading enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, K.; Furuichi, T.; Koike, K.; Kuboshima, M. [Hokkaido Univ. (Japan). Division of Environment Resource Engineering, Graduate School of Engineering

    2004-09-15

    Soil contamination caused by dioxins in and around sites of incinerators for municipal solid waste (MSW) is a concern in Japan. For example, scattering wastewater from a wet gas scrubber at an MSW incinerator facility in Nose, Osaka caused soil and surface water contamination. The concentration of dioxins in the soil was about 8,000 pg-TEQ/g. Other contamination sites include soils on which fly ash has been placed directly or improperly stored and landfill sites that have received bottom and fly ash over a long period. Some countermeasures are required immediately at these dioxins-contaminated sites. We have previously developed bioreactor systems for dioxin-contaminated water and soil. We have shown that a fungus, Pseudallescheria boydii (P. boydii), isolated from activated sludge treating wastewater that contained dioxins, has the ability to degrade highly chlorinated dioxins. A reaction product of octachlorinated dibenzo-p-dioxin (OCDD) was identified as heptachlorinated dibenzo-p-dioxin. Therefore, one of the pathways for degradation of OCDD by this fungus was predicted to be as follows: OCDD is transformed by dechlorination and then one of the remaining aromatic rings is oxidized. To apply P. boydii to on-site technologies (e.g., bioreactor systems), as well as in situ technologies, enzyme treatment using a dioxin-degrading enzyme from P. boydii needs to be developed because P. boydii is a weak pathogenic fungus, known to cause opportunistic infection. As a result, we have studied enzyme purification of nonchlorinated dioxin, namely, dibenzo-pdioxin (DD). However, we did not try to identify enzymes capable of degrading highly chlorinated dioxins. This study has elucidated a method of enzyme assay for measuring OCDD-degrading activity, and has attempted to purify OCDD-degrading enzymes from P. boydii using enzyme assay. In addition, as first step toward purifying 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD), 2,3,7,8-TCDD degradation tests were carried out

  8. Stabilization of enzymes in ionic liquids via modification of enzyme charge.

    Science.gov (United States)

    Nordwald, Erik M; Kaar, Joel L

    2013-09-01

    Due to the propensity of ionic liquids (ILs) to inactivate enzymes, the development of strategies to improve enzyme utility in these solvents is critical to fully exploit ILs for biocatalysis. We have developed a strategy to broadly improve enzyme utility in ILs based on elucidating the effect of charge modifications on the function of enzymes in IL environments. Results of stability studies in aqueous-IL mixtures indicated a clear connection between the ratio of enzyme-containing positive-to-negative sites and enzyme stability in ILs. Stability studies of the effect of [BMIM][Cl] and [EMIM][EtSO4 ] on chymotrypsin specifically found an optimum ratio of positively-charged amine-to-negatively-charged acid groups (0.39). At this ratio, the half-life of chymotrypsin was increased 1.6- and 4.3-fold relative to wild-type chymotrypsin in [BMIM][Cl] and [EMIM][EtSO4 ], respectively. The half-lives of lipase and papain were similarly increased as much as 4.0 and 2.4-fold, respectively, in [BMIM][Cl] by modifying the ratio of positive-to-negative sites of each enzyme. More generally, the results of stability studies found that modifications that reduce the ratio of enzyme-containing positive-to-negative sites improve enzyme stability in ILs. Understanding the impact of charge modification on enzyme stability in ILs may ultimately be exploited to rationally engineer enzymes for improved function in IL environments. Copyright © 2013 Wiley Periodicals, Inc.

  9. Radiolabelled substrates for angiotensin converting enzyme

    International Nuclear Information System (INIS)

    Chung, A.Y.; Ryan, J.W.; Ryan, J.P.; Ryan, U.S.

    1986-01-01

    Six [3H]benzoyl-tripeptides were prepared and tested as substrates for angiotensin converting enzyme. Each was prepared first as its [4-iodo]-benzoyl-analog, and an atom of 3H per molecule was introduced by catalytic dehalogenation in 3H2-gas. Kinetic parameters were measured at 37 degrees C using as buffer 0.05 M Hepes, pH 8.0 containing 0.1 M NaCl and 0.6 M Na2SO4. When the substrates were used at concentrations far below their respective Km values, fractional rates of substrate utilization per unit time for constant enzyme concentration were direct function of respective second order rate constants (Kc/Km). Although absolute values of Kc/Km differed for human enzyme as opposed to rabbit enzyme, relative values of Kc/Km were virtually identical. Similarly, relative rates of substrates utilization during passage through lungs of anesthetized rats were similar to relative values of Kc/Km measured in vitro. Thus, there is now a range of ACE substrates usable, in vitro and in vivo, under conditions of first order enzyme kinetics, conditions under which values of V/Km and Ki can be measured directly

  10. Sensitive radioenzymatic assay for epinephrine forming enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Ziegler, M.G.; Kennedy, B.; Elayan, H.

    1988-01-01

    Epinephrine (E) is formed in the adrenal medulla by phenylethanolamine-N-methyltransferase (PNMT), and in other tissues. Enzymes other than PNMT may be able to synthesize E, but this has been difficult to investigate because most assays do not have E as their final product. This assay produces /sup 3/H-E from norepinephrine (NE) and /sup 3/H-S-adenosylmethionine. The /sup 3/H-E is isolated on alumina, /sup 3/H-S-adenosylmethionine is precipitated and the /sup 3/H-E is suspended in diethylhexyl phosphoric acid in toluene for scintillation counting. The assay is sensitive and linear over a wide range. E was formed by most tissues tested. Brain and adrenal contained an enzyme specific for NE, but cardiac ventricle contained an enzyme that methylated both NE and dopamine. Denervated tissues in adrenal medullectomized rats contained very little NE, but still had E and E forming enzyme present. This assay detects a non-neuronal E forming enzyme with activity in vitro and in vivo.

  11. Salivary enzymes in peptic ulcer disease.

    Science.gov (United States)

    Motamedi, Mojdeh; Mansour-Ghanaei, Fariborz; Sariri, Reyhaneh; Vesal, Mahmoud

    2013-01-01

    Peptic ulcer, the common disease of the upper gastro-intestinal tract, occurs in about 5-10% of the world's population. Therefore, diagnosis of trace disease progression with a noninvasive method is of prime importance in the field of healthcare research. The aim of this study was to evaluate the validity of salivary enzymes as noninvasive biomarkers for peptic ulcer. In practice, 34 peptic ulcer patients and 30 healthy subjects donated their un-stimulated saliva samples after 8 h of fasting. The activity of some selected enzymes was measured using appropriate enzymatic assay methods. The results indicated an overall alternation in enzymatic activity of saliva in patients suffering from peptic ulcer. Biological activity of a-amylase, peroxidase and lactate dehydrogenase, showed significantly higher values in almost all patients as compared to control subjects. Based on the results of salivary enzyme activity, it was concluded that besides the influence of their peptic ulcer on enzyme activity of saliva, the considerably higher activity of a-amylase could also be related to the major role of the enzyme on physiological oxidative stress.

  12. Biomolecular computers with multiple restriction enzymes

    Directory of Open Access Journals (Sweden)

    Sebastian Sakowski

    2017-10-01

    Full Text Available Abstract The development of conventional, silicon-based computers has several limitations, including some related to the Heisenberg uncertainty principle and the von Neumann “bottleneck”. Biomolecular computers based on DNA and proteins are largely free of these disadvantages and, along with quantum computers, are reasonable alternatives to their conventional counterparts in some applications. The idea of a DNA computer proposed by Ehud Shapiro’s group at the Weizmann Institute of Science was developed using one restriction enzyme as hardware and DNA fragments (the transition molecules as software and input/output signals. This computer represented a two-state two-symbol finite automaton that was subsequently extended by using two restriction enzymes. In this paper, we propose the idea of a multistate biomolecular computer with multiple commercially available restriction enzymes as hardware. Additionally, an algorithmic method for the construction of transition molecules in the DNA computer based on the use of multiple restriction enzymes is presented. We use this method to construct multistate, biomolecular, nondeterministic finite automata with four commercially available restriction enzymes as hardware. We also describe an experimental applicaton of this theoretical model to a biomolecular finite automaton made of four endonucleases.

  13. Directed Evolution of Enzymes for Industrial Biocatalysis.

    Science.gov (United States)

    Porter, Joanne L; Rusli, Rukhairul A; Ollis, David L

    2016-02-02

    Enzymes have the potential to catalyse a wide variety of chemical reactions. They are increasingly being sought as environmentally friendly and cost-effective alternatives to conventional catalysts used in industries ranging from bioremediation to applications in medicine and pharmaceutics. Despite the benefits, they are not without their limitations. Many naturally occurring enzymes are not suitable for use outside of their native cellular environments. However, protein engineering can be used to generate enzymes tailored for specific industrial applications. Directed evolution is particularly useful and can be employed even when lack of structural information impedes the use of rational design. The aim of this review is to provide an overview of current industrial applications of enzyme technology and to show how directed evolution can be used to modify and to enhance enzyme properties. This includes a brief discussion on library generation and a more detailed focus on library screening methods, which are critical to any directed evolution experiment. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Biomolecular computers with multiple restriction enzymes

    Science.gov (United States)

    Sakowski, Sebastian; Krasinski, Tadeusz; Waldmajer, Jacek; Sarnik, Joanna; Blasiak, Janusz; Poplawski, Tomasz

    2017-01-01

    Abstract The development of conventional, silicon-based computers has several limitations, including some related to the Heisenberg uncertainty principle and the von Neumann “bottleneck”. Biomolecular computers based on DNA and proteins are largely free of these disadvantages and, along with quantum computers, are reasonable alternatives to their conventional counterparts in some applications. The idea of a DNA computer proposed by Ehud Shapiro’s group at the Weizmann Institute of Science was developed using one restriction enzyme as hardware and DNA fragments (the transition molecules) as software and input/output signals. This computer represented a two-state two-symbol finite automaton that was subsequently extended by using two restriction enzymes. In this paper, we propose the idea of a multistate biomolecular computer with multiple commercially available restriction enzymes as hardware. Additionally, an algorithmic method for the construction of transition molecules in the DNA computer based on the use of multiple restriction enzymes is presented. We use this method to construct multistate, biomolecular, nondeterministic finite automata with four commercially available restriction enzymes as hardware. We also describe an experimental applicaton of this theoretical model to a biomolecular finite automaton made of four endonucleases. PMID:29064510

  15. Type I restriction enzymes and their relatives.

    Science.gov (United States)

    Loenen, Wil A M; Dryden, David T F; Raleigh, Elisabeth A; Wilson, Geoffrey G

    2014-01-01

    Type I restriction enzymes (REases) are large pentameric proteins with separate restriction (R), methylation (M) and DNA sequence-recognition (S) subunits. They were the first REases to be discovered and purified, but unlike the enormously useful Type II REases, they have yet to find a place in the enzymatic toolbox of molecular biologists. Type I enzymes have been difficult to characterize, but this is changing as genome analysis reveals their genes, and methylome analysis reveals their recognition sequences. Several Type I REases have been studied in detail and what has been learned about them invites greater attention. In this article, we discuss aspects of the biochemistry, biology and regulation of Type I REases, and of the mechanisms that bacteriophages and plasmids have evolved to evade them. Type I REases have a remarkable ability to change sequence specificity by domain shuffling and rearrangements. We summarize the classic experiments and observations that led to this discovery, and we discuss how this ability depends on the modular organizations of the enzymes and of their S subunits. Finally, we describe examples of Type II restriction-modification systems that have features in common with Type I enzymes, with emphasis on the varied Type IIG enzymes.

  16. Biomolecular computers with multiple restriction enzymes.

    Science.gov (United States)

    Sakowski, Sebastian; Krasinski, Tadeusz; Waldmajer, Jacek; Sarnik, Joanna; Blasiak, Janusz; Poplawski, Tomasz

    2017-01-01

    The development of conventional, silicon-based computers has several limitations, including some related to the Heisenberg uncertainty principle and the von Neumann "bottleneck". Biomolecular computers based on DNA and proteins are largely free of these disadvantages and, along with quantum computers, are reasonable alternatives to their conventional counterparts in some applications. The idea of a DNA computer proposed by Ehud Shapiro's group at the Weizmann Institute of Science was developed using one restriction enzyme as hardware and DNA fragments (the transition molecules) as software and input/output signals. This computer represented a two-state two-symbol finite automaton that was subsequently extended by using two restriction enzymes. In this paper, we propose the idea of a multistate biomolecular computer with multiple commercially available restriction enzymes as hardware. Additionally, an algorithmic method for the construction of transition molecules in the DNA computer based on the use of multiple restriction enzymes is presented. We use this method to construct multistate, biomolecular, nondeterministic finite automata with four commercially available restriction enzymes as hardware. We also describe an experimental applicaton of this theoretical model to a biomolecular finite automaton made of four endonucleases.

  17. Concentration profiles near an activated enzyme.

    Science.gov (United States)

    Park, Soohyung; Agmon, Noam

    2008-09-25

    When a resting enzyme is activated, substrate concentration profile evolves in its vicinity, ultimately tending to steady state. We use modern theories for many-body effects on diffusion-influenced reactions to derive approximate analytical expressions for the steady-state profile and the Laplace transform of the transient concentration profiles. These show excellent agreement with accurate many-particle Brownian-dynamics simulations for the Michaelis-Menten kinetics. The steady-state profile has a hyperbolic dependence on the distance of the substrate from the enzyme, albeit with a prefactor containing the complexity of the many-body effects. These are most conspicuous for the substrate concentration at the surface of the enzyme. It shows an interesting transition as a function of the enzyme turnover rate. When it is high, the contact concentration decays monotonically to steady state. However, for slow turnover it is nonmonotonic, showing a minimum due to reversible substrate binding, then a maximum due to diffusion of new substrate toward the enzyme, and finally decay to steady state. Under certain conditions one can obtain a good estimate for the critical value of the turnover rate constant at the transition.

  18. Comparison of Enzymes / Non-Enzymes Proteins Classification Models Based on 3D, Composition, Sequences and Topological Indices

    OpenAIRE

    Munteanu, Cristian Robert

    2014-01-01

    Comparison of Enzymes / Non-Enzymes Proteins Classification Models Based on 3D, Composition, Sequences and Topological Indices, German Conference on Bioinformatics (GCB), Potsdam, Germany (September, 2007)

  19. Pancreatic enzyme therapy for pancreatic exocrine insufficiency.

    Science.gov (United States)

    Domínguez-Muñoz, J Enrique

    2007-04-01

    Pancreatic exocrine insufficiency with steatorrhea is a major consequence of pancreatic diseases (eg, chronic pancreatitis, cystic fibrosis, severe acute necrotizing pancreatitis, pancreatic cancer), extrapancreatic diseases such as celiac disease and Crohn's disease, and gastrointestinal and pancreatic surgical resection. Recognition of this entity is highly relevant to avoid malnutrition-related morbidity and mortality. Therapy for pancreatic exocrine insufficiency is based on the oral administration of pancreatic enzymes aiming at providing the duodenal lumen with sufficient active lipase at the time of gastric emptying of nutrients. Administration of enzymes in the form of enteric-coated minimicrospheres avoids acid-mediated lipase inactivation and ensures gastric emptying of enzymes in parallel with nutrients. Nevertheless, such factors as acidic intestinal pH and bacterial overgrowth may prevent normalization of fat digestion even in compliant patients. The present article critically reviews current therapeutic approaches to pancreatic exocrine insufficiency.

  20. Enzyme Histochemistry for Functional Histology in Invertebrates.

    Science.gov (United States)

    Cima, Francesca

    2017-01-01

    In invertebrates, enzyme histochemistry has recently found a renaissance regarding its applications in morphology and ecology. Many enzyme activities are useful for the morphofunctional characterization of cells, as biomarkers of biological and pathologic processes, and as markers of the response to environmental stressors. Here, the adjustments to classic techniques, including the most common enzymes used for digestion, absorption, transport, and oxidation, as well as techniques for azo-coupling, metal salt substitution and oxidative coupling polymerization, are presented in detail for various terrestrial and aquatic invertebrates. This chapter also provides strategies to solve the problems regarding anesthesia, small body size, the presence of an exo- or endoskeleton and the search for the best fixative in relation to the internal fluid osmolarity. These techniques have the aim of obtaining good results for both the pre- and post-embedding labeling of specimens, tissue blocks, sections, and hemolymph smears using both light and transmission electron microscopy.

  1. Arabinogalactan proteins: focus on carbohydrate active enzymes

    Directory of Open Access Journals (Sweden)

    Eva eKnoch

    2014-06-01

    Full Text Available Arabinogalactan proteins (AGPs are a highly diverse class of cell surface proteoglycans that are commonly found in most plant species. AGPs play important roles in many cellular processes during plant development, such as reproduction, cell proliferation, pattern formation and growth, and in plant-microbe interaction. However, little is known about the molecular mechanisms of their function. Numerous studies using monoclonal antibodies that recognize different AGP glycan epitopes have shown the appearance of a slightly altered AGP glycan in a specific stage of development in plant cells. Therefore, it is anticipated that the biosynthesis and degradation of AGP glycan is tightly regulated during development. Until recently, however, little was known about the enzymes involved in the metabolism of AGP glycans. In this review, we summarize recent discoveries of carbohydrate active enzymes (CAZy; http://www.cazy.org/ involved in the biosynthesis and degradation of AGP glycans, and we discuss the biological role of these enzymes in plant development.

  2. Development of enzymes and enzyme systems by genetic engineering to convert biomass to sugars

    Science.gov (United States)

    TITLE Development of Enzymes and Enzyme Systems by Genetic Engineering to Convert Biomass to Sugars ABSTRACT Plant cellulosic material is one of the most viable renewable resources for the world’s fuel and chemical feedstock needs. Currently ethanol derived from corn starch is the most common li...

  3. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes.

    Science.gov (United States)

    Wei, Hui; Wang, Erkang

    2013-07-21

    Over the past few decades, researchers have established artificial enzymes as highly stable and low-cost alternatives to natural enzymes in a wide range of applications. A variety of materials including cyclodextrins, metal complexes, porphyrins, polymers, dendrimers and biomolecules have been extensively explored to mimic the structures and functions of naturally occurring enzymes. Recently, some nanomaterials have been found to exhibit unexpected enzyme-like activities, and great advances have been made in this area due to the tremendous progress in nano-research and the unique characteristics of nanomaterials. To highlight the progress in the field of nanomaterial-based artificial enzymes (nanozymes), this review discusses various nanomaterials that have been explored to mimic different kinds of enzymes. We cover their kinetics, mechanisms and applications in numerous fields, from biosensing and immunoassays, to stem cell growth and pollutant removal. We also summarize several approaches to tune the activities of nanozymes. Finally, we make comparisons between nanozymes and other catalytic materials (other artificial enzymes, natural enzymes, organic catalysts and nanomaterial-based catalysts) and address the current challenges and future directions (302 references).

  4. Structural Biology of Proline Catabolic Enzymes.

    Science.gov (United States)

    Tanner, John J

    2017-11-13

    Proline catabolism refers to the 4-electron oxidation of proline to glutamate catalyzed by the enzymes proline dehydrogenase (PRODH) and l-glutamate γ-semialdehyde dehydrogenase (GSALDH, aka ALDH4A1). These enzymes and the intermediate metabolites of the pathway have been implicated in tumor growth and suppression, metastasis, hyperprolinemia metabolic disorders, schizophrenia susceptibility, life span extension, and pathogen virulence and survival. In some bacteria, PRODH and GSALDH are combined into a bifunctional enzyme known as proline utilization A (PutA). PutAs are not only virulence factors in some pathogenic bacteria but also fascinating systems for studying the coordination of metabolic enzymes via substrate channeling. Recent Advances: The past decade has seen an explosion of structural data for proline catabolic enzymes. This review surveys these structures, emphasizing protein folds, substrate recognition, oligomerization, kinetic mechanisms, and substrate channeling in PutA. Major unsolved structural targets include eukaryotic PRODH, the complex between monofunctional PRODH and monofunctional GSALDH, and the largest of all PutAs, trifunctional PutA. The structural basis of PutA-membrane association is poorly understood. Fundamental aspects of substrate channeling in PutA remain unknown, such as the identity of the channeled intermediate, how the tunnel system is activated, and the roles of ancillary tunnels. New approaches are needed to study the molecular and in vivo mechanisms of substrate channeling. With the discovery of the proline cycle driving tumor growth and metastasis, the development of inhibitors of proline metabolic enzymes has emerged as an exciting new direction. Structural biology will be important in these endeavors. Antioxid. Redox Signal. 00, 000-000.

  5. Metabolic Enzymes of Cocaine Metabolite Benzoylecgonine.

    Science.gov (United States)

    Chen, Xiabin; Zheng, Xirong; Zhan, Max; Zhou, Ziyuan; Zhan, Chang-Guo; Zheng, Fang

    2016-08-19

    Cocaine is one of the most addictive drugs without a U.S. Food and Drug Administration (FDA)-approved medication. Enzyme therapy using an efficient cocaine-metabolizing enzyme is recognized as the most promising approach to cocaine overdose treatment. The actual enzyme, known as RBP-8000, under current clinical development for cocaine overdose treatment is our previously designed T172R/G173Q mutant of bacterial cocaine esterase (CocE). The T172R/G173Q mutant is effective in hydrolyzing cocaine but inactive against benzoylecgonine (a major, biologically active metabolite of cocaine). Unlike cocaine itself, benzoylecgonine has an unusually stable zwitterion structure resistant to further hydrolysis in the body and environment. In fact, benzoylecgonine can last in the body for a very long time (a few days) and, thus, is responsible for the long-term toxicity of cocaine and a commonly used marker for drug addiction diagnosis in pre-employment drug tests. Because CocE and its mutants are all active against cocaine and inactive against benzoylecgonine, one might simply assume that other enzymes that are active against cocaine are also inactive against benzoylecgonine. Here, through combined computational modeling and experimental studies, we demonstrate for the first time that human butyrylcholinesterase (BChE) is actually active against benzoylecgonine, and that a rationally designed BChE mutant can not only more efficiently accelerate cocaine hydrolysis but also significantly hydrolyze benzoylecgonine in vitro and in vivo. This sets the stage for advanced studies to design more efficient mutant enzymes valuable for the development of an ideal cocaine overdose enzyme therapy and for benzoylecgonine detoxification in the environment.

  6. Cold adaptation of enzyme reaction rates.

    Science.gov (United States)

    Bjelic, Sinisa; Brandsdal, Bjørn O; Aqvist, Johan

    2008-09-23

    A major issue for organisms living at extreme temperatures is to preserve both stability and activity of their enzymes. Cold-adapted enzymes generally have a reduced thermal stability, to counteract freezing, and show a lower enthalpy and a more negative entropy of activation compared to mesophilic and thermophilic homologues. Such a balance of thermodynamic activation parameters can make the reaction rate decrease more linearly, rather than exponentially, as the temperature is lowered, but the structural basis for rate optimization toward low working temperatures remains unclear. In order to computationally address this problem, it is clear that reaction simulations rather than standard molecular dynamics calculations are needed. We have thus carried out extensive computer simulations of the keto-enol(ate) isomerization steps in differently adapted citrate synthases to explore the structure-function relationships behind catalytic rate adaptation to different temperatures. The calculations reproduce the absolute rates of the psychrophilic and mesophilic enzymes at 300 K, as well as the lower enthalpy and more negative entropy of activation of the cold-adapted enzyme, where the latter simulation result is obtained from high-precision Arrhenius plots. The overall catalytic effect originates from electrostatic stabilization of the transition state and enolate and the reduction of reorganization free energy. The simulations, however, show psychrophilic, mesophilic, and hyperthermophilic citrate synthases to have increasingly stronger electrostatic stabilization of the transition state, while the energetic penalty in terms of internal protein interactions follows the reverse order with the cold-adapted enzyme having the most favorable energy term. The lower activation enthalpy and more negative activation entropy observed for cold-adapted enzymes are found to be associated with a decreased protein stiffness. The origin of this effect is, however, not localized to the

  7. Rhamnogalacturonan I modifying enzymes: an update

    DEFF Research Database (Denmark)

    Silva, Ines R.; Jers, Carsten; Meyer, Anne S.

    2016-01-01

    been described to be produced by Aspergillus spp. and Bacillus subtilis and are categorized in glycosyl hydrolase families 28 and 105. The RGI lyases, EC 4.2.2.23–EC 4.2.2.24, have been isolated from different fungi and bacterial species and are categorized in polysaccharide lyase families 4 and 11......-joining phylogenetic trees. Some recently detected unique structural features and dependence of calcium for activity of some of these enzymes (notably the lyases) are discussed and newly published results regarding improvement of their thermostability by protein engineering are highlighted. Knowledge of these enzymes...

  8. Enhanced Oil Recovery with Application of Enzymes

    OpenAIRE

    Khusainova, Alsu; Shapiro, Alexander; Woodley, John

    2016-01-01

    Enzymer er for nylig blevet rapporteret, som effektive stoffer for forbedret olieindvinding(EOR). Både laboratorie undersøgelser og felttest viste en markant stigning af olieproduktion. Op til ekstra 16 % af olien blev produceret i laboratorie eksperimenter og op til ekstra 269 tønder olie per dag blev fremstillet under feltforsøg. Det var foreslået, at følgende mekanismer har medvirket tiløget olieproduktionen på grund af enzymer: forbedringer af bjergartsoverfladens befugtningsevne;dannelse...

  9. The Angiotensin-Converting-Enzyme-Induced Angioedema.

    Science.gov (United States)

    Bas, Murat

    2017-02-01

    The bradykinin B2 receptor antagonist icatibant is effective in angiotensin-converting enzyme inhibitor-induced angioedema. The drug is not approved officially for this indication and has to be administered in an emergency situation off-label. Corticosteroids or antihistamines do not seem to work in this condition. The effectiveness of C1-esterase-inhibitor in angiotensin-converting enzyme-induced angioedema must be verified in a double-blind study. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Translational control of an intestinal microvillar enzyme

    DEFF Research Database (Denmark)

    Danielsen, E M; Cowell, G M; Sjöström, H

    1986-01-01

    The rates of biosynthesis of adult and foetal pig small-intestinal aminopeptidase N (EC 3.4.11.2) were compared to determine at which level the expression of the microvillar enzyme is developmentally controlled. In organ-cultured explants, the rate of biosynthesis of foetal aminopeptidase N is only...... about 3% of the adult rate. The small amount synthesized occurs in a high-mannose-glycosylated, membrane-bound, form that is processed to the mature, complex-glycosylated, form at a markedly slower rate than that of the adult enzyme. Extracts of total RNA from adult and foetal intestine contained...

  11. Furin is a chemokine-modifying enzyme

    DEFF Research Database (Denmark)

    Hensbergen, Paul J; Verzijl, Dennis; Balog, Crina I A

    2004-01-01

    Chemokines comprise a class of structurally related proteins that are involved in many aspects of leukocyte migration under basal and inflammatory conditions. In addition to the large number of genes, limited processing of these proteins by a variety of enzymes enhances the complexity of the total...... agonist activity on the virally encoded receptor ORF74 and the direct antibacterial activity of CXCL10 are fully retained. Hence, we have identified furin as a novel chemokine-modifying enzyme in vitro and most probably also in vivo, generating a C-terminally truncated CXCL10, which fully retains its...

  12. NADP+ -dependent malic enzyme of Rhizobium meliloti.

    OpenAIRE

    Driscoll, B T; Finan, T M

    1996-01-01

    The bacterium Rhizobium meliloti, which forms N2-fixing root nodules on alfalfa, has two distinct malic enzymes; one is NADP+ dependent, while a second has maximal activity when NAD+ is the coenzyme. The diphosphopyridine nucleotide (NAD+)-dependent malic enzyme (DME) is required for symbiotic N2 fixation, likely as part of a pathway for the conversion of C4-dicarboxylic acids to acetyl coenzyme A in N2-fixing bacteroids. Here, we report the cloning and localization of the tme gene (encoding ...

  13. Immobilized enzyme reactor chromatography: Optimization of protein retention and enzyme activity in monolithic silica stationary phases

    International Nuclear Information System (INIS)

    Besanger, Travis R.; Hodgson, Richard J.; Green, James R.A.; Brennan, John D.

    2006-01-01

    Our group recently reported on the application of protein-doped monolithic silica columns for immobilized enzyme reactor chromatography, which allowed screening of enzyme inhibitors present in mixtures using mass spectrometry for detection. The enzyme was immobilized by entrapment within a bimodal meso/macroporous silica material prepared by a biocompatible sol-gel processing route. While such columns proved to be useful for applications such as screening of protein-ligand interactions, significant amounts of entrapped proteins leached from the columns owing to the high proportion of macropores within the materials. Herein, we describe a detailed study of factors affecting the morphology of protein-doped bioaffinity columns and demonstrate that specific pH values and concentrations of poly(ethylene glycol) can be used to prepare essentially mesoporous columns that retain over 80% of initially loaded enzyme in an active and accessible form and yet still retain sufficient porosity to allow pressure-driven flow in the low μL/min range. Using the enzyme γ-glutamyl transpeptidase (γ-GT), we further evaluated the catalytic constants of the enzyme entrapped in capillary columns with different silica morphologies as a function of flowrate and backpressure using the enzyme reactor assay mode. It was found that the apparent activity of the enzyme was highest in mesoporous columns that retained high levels of enzyme. In such columns, enzyme activity increased by ∼2-fold with increases in both flowrate (from 250 to 1000 nL/min) and backpressure generated (from 500 to 2100 psi) during the chromatographic activity assay owing to increases in k cat and decreases in K M , switching from diffusion controlled to reaction controlled conditions at ca. 2000 psi. These results suggest that columns with minimal macropore volumes (<5%) are advantageous for the entrapment of soluble proteins for bioaffinity and bioreactor chromatography

  14. Seeing & Feeling How Enzymes Work Using Tangible Models

    Science.gov (United States)

    Lau, Kwok-chi

    2013-01-01

    This article presents a tangible model used to help students tackle some misconceptions about enzyme actions, particularly the induced-fit model, enzyme-substrate complementarity, and enzyme inhibition. The model can simulate how substrates induce a change in the shape of the active site and the role of attraction force during enzyme-substrate…

  15. 21 CFR 184.1063 - Enzyme-modified lecithin.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Enzyme-modified lecithin. 184.1063 Section 184.1063... Listing of Specific Substances Affirmed as GRAS § 184.1063 Enzyme-modified lecithin. (a) Enzyme-modified... Lysolecithin Content of Enzyme-Modified Lecithin: Method I,” dated 1985, which is incorporated by reference in...

  16. 21 CFR 864.9400 - Stabilized enzyme solution.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Stabilized enzyme solution. 864.9400 Section 864... and Blood Products § 864.9400 Stabilized enzyme solution. (a) Identification. A stabilized enzyme... enzyme solutions include papain, bromelin, ficin, and trypsin. (b) Classification. Class II (performance...

  17. 21 CFR 184.1372 - Insoluble glucose isomerase enzyme preparations.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Insoluble glucose isomerase enzyme preparations... enzyme preparations. (a) Insoluble glucose isomerase enzyme preparations are used in the production of... additional requirements for enzyme preparations in the Food Chemicals Codex, 3d Ed. (1981), p. 107, which is...

  18. 21 CFR 862.2500 - Enzyme analyzer for clinical use.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Enzyme analyzer for clinical use. 862.2500 Section... Instruments § 862.2500 Enzyme analyzer for clinical use. (a) Identification. An enzyme analyzer for clinical use is a device intended to measure enzymes in plasma or serum by nonkinetic or kinetic measurement of...

  19. Purification and characterization of extracellular amylolytic enzyme ...

    African Journals Online (AJOL)

    DOSS

    2012-10-16

    Oct 16, 2012 ... Sephadex G-50 column chromatography and the enzyme activity was measured by using synthetic substrate starch. ... Key words: Aspergillus species, Sephadex G-50, column chromatography, diethyl amino ethyl (DEAE) cellulose. ... chemical properties characterized (Ravan et al., 2009). Although ...

  20. Easily available enzymes as natural retting agents.

    Science.gov (United States)

    Antonov, Viktor; Marek, Jan; Bjelkova, Marie; Smirous, Prokop; Fischer, Holger

    2007-03-01

    Easily available commercial enzymes currently have great potential in bast fibre processing and can be modified for different end uses. There are several new technologies using enzymes that are able to modify fibre parameters, achieve requested properties, improve processing results and are more beneficial to the ecology in the area of bast fibre processing and fabrics finishing. Enzymatic methods for retting of flax, "cottonisation" of bast fibres, hemp separation, and processing of flax rovings before wet spinning, etc., fall into this group of new technologies. Such enzymatic biotechnologies can provide benefits in textile, composite, reinforced plastic and other technical applications. Laboratory, pilot and industrial scale results and experiences have demonstrated the ability of selected enzymes to decompose interfibre-bonding layers based on pectin, lignin and hemicelluloses. Texazym SER spray is able to increase flax long fibre yields by more than 40%. Other enzymes in combination with mild mechanical treatment can replace aggressive and energy-intensive processing like Laroche "cottonisation". Texazym SCW and DLG pretreatments of flax rovings are presented.

  1. Purification, characterization of phytase enzyme from Lactobacillus ...

    African Journals Online (AJOL)

    Purification, characterization of phytase enzyme from Lactobacillus plantarum bacteria and determination of its kinetic properties. ... Many of the cereal grains, legumes and oilseeds store phosphorus in phytate form. Phytases can be produced by plants, animals and microorganisms. However, the ones with microbial origin ...

  2. Role of antioxidant scavenging enzymes and extracellular ...

    African Journals Online (AJOL)

    In the present work, we studied the role of antioxidant scavenging enzymes of plant pathogenic bacteria: catalase, ascorbate peroxidase and a virulence factor; extracelluar polysaccharide production in determining the virulence of Xanthomonas oryzae pv. oryzae (Xoo) isolates and its differential reaction to rice cultivars.

  3. Purification, characterization of phytase enzyme from Lactobacillus ...

    African Journals Online (AJOL)

    SAM

    2014-06-04

    Jun 4, 2014 ... 2Department of Food Technology, Erzurum Vocational Training School, Ataturk University, 25240, Erzurum, Turkey. 3Department of ... considered suitable for use in many industrial areas, in feed and food industries in particular, due to its ..... phytase enzyme purified from B. subitilis (natto) N-77 strains is ...

  4. Enzyme Replacement Therapy for Fabry Disease

    Directory of Open Access Journals (Sweden)

    Maria Dolores Sanchez-Niño PhD

    2016-11-01

    Full Text Available Fabry disease is a rare X-linked disease caused by the deficiency of α-galactosidase that leads to the accumulation of abnormal glycolipid. Untreated patients develop potentially lethal complications by age 30 to 50 years. Enzyme replacement therapy is the current standard of therapy for Fabry disease. Two formulations of recombinant human α-galactosidase A (agalsidase are available in most markets: agalsidase-α and agalsidase-β, allowing a choice of therapy. However, the US Food and Drug Administration rejected the application for commercialization of agalsidase-α. The main difference between the 2 enzymes is the dose. The label dose for agalsidase-α is 0.2 mg/kg/2 weeks, while the dose for agalsidase-β is 1.0 mg/kg/2 weeks. Recent evidence suggests a dose-dependent effect of enzyme replacement therapy and agalsidase-β is 1.0 mg/kg/2 weeks, which has been shown to reduce the occurrence of hard end points (severe renal and cardiac events, stroke, and death. In addition, patients with Fabry disease who have developed tissue injury should receive coadjuvant tissue protective therapy, together with enzyme replacement therapy, to limit nonspecific progression of the tissue injury. It is likely that in the near future, additional oral drugs become available to treat Fabry disease, such as chaperones or substrate reduction therapy.

  5. Enzymes and Ecosystems -- Where Do They Overlap?

    Science.gov (United States)

    Richard E. Dickson

    1996-01-01

    The whole plant is not the sum of its enzyme systems. This book demonstrates the importance of whole-plant physiology by examining carbon-nitrogen interactions and how these interactions are influenced by demands of the whole plant. In some aspects it is a timely response to the current, strong reductionist trends in plant physiology associated with advances in...

  6. Purification and characterization of protease enzyme from ...

    African Journals Online (AJOL)

    user

    2013-03-20

    Mar 20, 2013 ... be absorbed and utilized by living cells. Due to their wide .... The effect of pH on protease stability was determined by pre-incubating the enzyme without substrate at different pH values (5 to 11) using different buffers. The residual ..... detergent formulations: effects of thermodynamic stabilizers and protease ...

  7. Ligninolytic enzyme complex of Armillaria spp

    Czech Academy of Sciences Publication Activity Database

    Stoychev, I.; Nerud, František

    2000-01-01

    Roč. 45, č. 3 (2000), s. 248-250 ISSN 0015-5632 Institutional research plan: CEZ:AV0Z5020903 Keywords : lignin olytic enzyme * lignin peroxidase Subject RIV: EE - Microbiology, Virology Impact factor: 0.752, year: 2000

  8. Enzyme catalysis by entropy without Circe effect.

    Science.gov (United States)

    Kazemi, Masoud; Himo, Fahmi; Åqvist, Johan

    2016-03-01

    Entropic effects have often been invoked to explain the extraordinary catalytic power of enzymes. In particular, the hypothesis that enzymes can use part of the substrate-binding free energy to reduce the entropic penalty associated with the subsequent chemical transformation has been very influential. The enzymatic reaction of cytidine deaminase appears to be a distinct example. Here, substrate binding is associated with a significant entropy loss that closely matches the activation entropy penalty for the uncatalyzed reaction in water, whereas the activation entropy for the rate-limiting catalytic step in the enzyme is close to zero. Herein, we report extensive computer simulations of the cytidine deaminase reaction and its temperature dependence. The energetics of the catalytic reaction is first evaluated by density functional theory calculations. These results are then used to parametrize an empirical valence bond description of the reaction, which allows efficient sampling by molecular dynamics simulations and computation of Arrhenius plots. The thermodynamic activation parameters calculated by this approach are in excellent agreement with experimental data and indeed show an activation entropy close to zero for the rate-limiting transition state. However, the origin of this effect is a change of reaction mechanism compared the uncatalyzed reaction. The enzyme operates by hydroxide ion attack, which is intrinsically associated with a favorable activation entropy. Hence, this has little to do with utilization of binding free energy to pay the entropic penalty but rather reflects how a preorganized active site can stabilize a reaction path that is not operational in solution.

  9. A Qualitative Approach to Enzyme Inhibition

    Science.gov (United States)

    Waldrop, Grover L.

    2009-01-01

    Most general biochemistry textbooks present enzyme inhibition by showing how the basic Michaelis-Menten parameters K[subscript m] and V[subscript max] are affected mathematically by a particular type of inhibitor. This approach, while mathematically rigorous, does not lend itself to understanding how inhibition patterns are used to determine the…

  10. Enzyme replacement therapy for alpha-mannosidosis

    DEFF Research Database (Denmark)

    Borgwardt, Line Gutte; Dali, Christine I.; Fogh, J

    2013-01-01

    Alpha-mannosidosis (OMIM 248500) is a rare lysosomal storage disease (LSD) caused by alpha-mannosidase deficiency. Manifestations include intellectual disabilities, facial characteristics and hearing impairment. A recombinant human alpha-mannosidase (rhLAMAN) has been developed for weekly intrave...... intravenous enzyme replacement therapy (ERT). We present the preliminary data after 12 months of treatment....

  11. A Comprehensive Enzyme Kinetic Exercise for Biochemistry

    Science.gov (United States)

    Barton, Janice S.

    2011-01-01

    This article describes a comprehensive treatment of experimental enzyme kinetics strongly coupled to electronic data acquisition and use of spreadsheets to organize data and perform linear and nonlinear least-squares analyses, all in a manner that promotes development of important reasoning skills. Kinetic parameters are obtained for the stable…

  12. Enzyme kinetic characterization of protein tyrosine phosphatases

    DEFF Research Database (Denmark)

    Peters, Günther H.J.; Branner, S.; Møller, K. B.

    2003-01-01

    Protein tyrosine phosphatases (PTPs) play a central role in cellular signaling processes, resulting in an increased interest in modulating the activities of PTPs. We therefore decided to undertake a detailed enzyme kinetic evaluation of various transmembrane and cytosolic PTPs (PTPalpha, PTPbeta...

  13. Modelling Fungal Fermentations for Enzyme Production

    DEFF Research Database (Denmark)

    Albæk, Mads Orla; Gernaey, Krist; Hansen, Morten S.

    We have developed a process model of fungal fed-batch fermentations for enzyme production. In these processes, oxygen transfer rate is limiting and controls the substrate feeding rate. The model has been shown to describe cultivations of both Aspergillus oryzae and Trichoderma reesei strains in 550...

  14. Enzyme activity of a Phanerochaete chrysosporium cellobiohydrolase

    African Journals Online (AJOL)

    The aim of this study was to produce a secreted, heterologously expressed Phanerochaete chrysosporium cellobiohydrolase (CBHI.1) protein that required no in vitro chemical refolding and to investigate the cellulolytic activity of the clone expressing the glutathione S-transferase (GST) fused CBHI.1 protein. Plate enzyme ...

  15. Angiotensin Converting Enzyme Insertion/Deletion Gene ...

    African Journals Online (AJOL)

    Purpose: This study investigated the influence of angiotensin-1 converting enzyme (ACE) insertiondeletion (ID) gene polymorphism on the treatment responses of type 2 diabetic subjects at varying stages of nephropathy to ACE inhibitors (ACEI) with regard to blood pressure (MAP) and renal response (GFR). Methods: The ...

  16. Enzyme Kinetics? Elementary, my dear 3 -8 ...

    Indian Academy of Sciences (India)

    reactions proceed at useful rates under physiological conditions. We had earlier discussed in Part 11 the basic principles of enzyme catalysis and derived the Michaelis-. Menten equation. In this article, the significance of kinetic parameters and analysis of kinetic data will be discussed. Why should one determine K and V ?

  17. Chitinolytic enzymes produces by ovine rumen bacteria

    Czech Academy of Sciences Publication Activity Database

    Kopečný, Jan; Hodrová, Blanka

    2000-01-01

    Roč. 45, č. 5 (2000), s. 465-468 ISSN 0015-5632 R&D Projects: GA ČR GA524/97/1221 Institutional research plan: CEZ:AV0Z5045916 Keywords : chitinolytic enzymes Subject RIV: ED - Physiology Impact factor: 0.752, year: 2000

  18. Enzyme Kinetics: The Use of Amylose Azure.

    Science.gov (United States)

    Cusimano, Vincent J.

    1978-01-01

    Amylose azure can be used as a chromogenic substrate for alpha-amylase in studying the effects of temperature and pH enzyme action. This is a model system which students can use to measure the energy of activation using the Arrhenius plot. (Author/BB)

  19. Involvement of methyltransferases enzymes during the energy ...

    African Journals Online (AJOL)

    The methyl group transfer from dimethylsulfide (DMS), trimethylamine and methanol to 2-mercaptoethanesulfonic acid (coenzyme M) were investigated from cell extracts of Methanosarcina semesiae sp. nov. to evaluate whether the enzyme systems involved were constitutive or inductive. The extracts from cells grown on ...

  20. Lignocellulose biotechnology: issues of bioconversion and enzyme ...

    African Journals Online (AJOL)

    Admin

    This review is written from the perspective of scientists working in lignocellulose bioconversion in a developing country and the aim of this review is to remind ourselves and other scientists working in related areas of ..... Table 4a. List of fungi with the highest specific activity (µmol.min-1.mg-1) for lignases. Enzyme. Organism.

  1. Biochemical assessement of liver enzymes in immunocompromised ...

    African Journals Online (AJOL)

    Aim: This study aims at the estimation of serum alkaline phosphatase (ALP), alanine aminotransferase (ALT), Aspartate aminotransferase (AST), and glutmyltransferase GGT (Liver enzymes) in Human immunodeficiency virus(HIV) and/or Acquired immune deficiency syndrome(AIDS) patients in parts of Edo State, Nigeria.

  2. DNP NMR of carbohydrate converting enzymes

    DEFF Research Database (Denmark)

    Kjeldsen, Christian; Ardenkjær-Larsen, Jan Henrik; Duus, Jens Øllgaard

    relaxation, but even with this limitation, it is possible to obtain detailed reaction parametersin less than one minute. The enzyme investigated was β-galactosidase from E. coli (E.C. 3.2.1.23). It is well described and the mechanism is generally accepted to be a double displacement with a covalently bound...

  3. Exogenous fibrolytic enzymes to unlock nutrients: Histological ...

    African Journals Online (AJOL)

    There is a need for a better understanding of the mode-of-action of exogenous fibrolytic enzymes (EFE) used as additives in ruminant feeds. Four forages, treated with EFE, were evaluated in vitro and histologically, in an attempt to determine the effect of EFE on tissue degradation. Weeping love grass, kikuyu leaf material, ...

  4. Dynamics of Radical-Mediated Enzyme Catalyses

    Science.gov (United States)

    Warncke, Kurt

    1997-11-01

    An emergent class of enzymes harnesses the extreme reactivity of electron-deficient free radical species to perform some of the most difficult reactions in biology. The regio- and stereo-selectivity achieved by these enzymes defies long-held ideas that radical reactions are non-specific. The common primary step in these catalyses is metal- or metallocenter-assisted generation of an electron-deficient organic "initiator radical". The initiator radical abstracts a hydrogen atom from the substrate, opening a new reaction channel for rearrangement to the product. Our aim is to elucidate the detailed molecular mechanisms of the radical pair separation and radical rearrangement steps. Radical pair separation and substrate radical rearrangement are tracked by using time-resolved (10-7 to 10-3 s) techniques of pulsed-electron paramagnetic resonance spectroscopy (FT-EPR, ESEEM). Synchronous time-evolution of the reactions is attained by triggering with a visible laser pulse. Transient non-Boltzmann population of the states of the spin-coupled systems, and resultant electron spin polarization, facilitates study at or near room temperature under conditions where the enzymes are operative. The systems examined include ethanolamine deaminase, a vitamin B12 coenzyme-dependent enzyme, ribonucleotide reductase and photosynthetic reaction centers. The electronic and nuclear structural and kinetic information obtained from the pulsed-EPR studies is used to address how the initiator radicals are stabilized against deleterious recombination with the metal, and to distinguish the participation of concerted versus sequential rearrangement pathways.

  5. Detergents - Zeolites and Enzymes Excel Cleaning Power

    Indian Academy of Sciences (India)

    Presently used detergent formulations generally consist of surfactants, builder and cobuilder, bleaching agents, addi- tives for secondary benefits and enzymes. Zeolites are basically hydrated crystalline aluminium silicates which function as ion exchangers and make the water soft by removing calcium, magnesium and ...

  6. Detergents - Zeolites and Enzymes Excel Cleaning Power

    Indian Academy of Sciences (India)

    and reverse osmosis membranes used for concentration, clarifi- cation and sterilization of liquid foods like skim milk, whey, egg white, fruit juices and beverages; and. (iii) for cleaning delicate Chinaware as they prevent the erosion of design and colours. Future Perspectives. In our opinion, enzymes in detergent formulations ...

  7. Epigenetics of dominance for enzyme activity

    Indian Academy of Sciences (India)

    Unknown

    as homomultimers (Zabin and Villarejo 1975; Kacser and. Burns 1981; Hollacher and Place 1987; Stuber et al 1992;. Xiau et al 1995; Stuber 1999). Using electrophoresis for isolating allozymes [different molecular forms of an enzyme coded by the same gene (Markert 1975)], free from contamination by other allozymes, ...

  8. Laccase Enzymes in Inocula Pleurotus spp

    Directory of Open Access Journals (Sweden)

    Nora García-Oduardo

    2017-01-01

    Full Text Available The cultivation of edible and medicinal mushrooms Pleurotus has been aimed at promoting alternative management for agricultural products. This basidiomicete has been the subject of numerous studies because of its fruiting body constitutes a food, being a producer of enzymes with industrial interest and for its ability of biotransformation of lignocellulosic substrates. Pleurotus inocula in the established technology for growing edible and medicinal mushrooms in the CEBI Research- Production Plant were performed using sorghum or wheat. However, it is possible to expand the possibilities with other substrates. In this paper, the results of laccase enzymes production in inocula prepared with sorghum, corn and coffee pulp with two strains Pleurotus ostreatus CCEBI 3021 and Pleurotus ostreatus CCEBI 3024 are presented. The period of preparation of seed reaches 15-21 days, the measurements of laccase activity were performed in periods of seven days. Extraction of crude enzyme was performed in aqueous phase, the determination of the laccase enzyme activity, using guaiacol as substrate. The results obtained in this work with studies in previous work using sorghum as inocula are compared. It is found that higher yields are obtained laccase in coffee pulp. This study contributes to the theoretical knowledge and to provide alternatives for securing the production process of the plant.

  9. Enzyme activity of a Phanerochaete chrysosporium cellobiohydrolase

    African Journals Online (AJOL)

    The aim of this study was to produce a secreted, heterologously expressed Phanerochaete chrysosporium cellobiohydrolase (CBHI.1) protein that required no in vitro chemical refolding and to investigate the cellulolytic activity of the clone expressing the glutathione S-transferase (GST) fused. CBHI.1 protein. Plate enzyme ...

  10. Mechanistic insights into type III restriction enzymes.

    Science.gov (United States)

    Raghavendra, Nidhanapati K; Bheemanaik, Shivakumara; Rao, Desirazu N

    2012-01-01

    Type III restriction-modification (R-M) enzymes need to interact with two separate unmethylated DNA sequences in indirectly repeated, head-to-head orientations for efficient cleavage to occur at a defined location next to only one of the two sites. However, cleavage of sites that are not in head-to-head orientation have been observed to occur under certain reaction conditions in vitro. ATP hydrolysis is required for the long-distance communication between the sites prior to cleavage. Type III R-M enzymes comprise two subunits, Res and Mod that form a homodimeric Mod2 and a heterotetrameric Res2Mod2 complex. The Mod subunit in M2 or R2M2 complex recognizes and methylates DNA while the Res subunit in R2M2 complex is responsible for ATP hydrolysis, DNA translocation and cleavage. A vast majority of biochemical studies on Type III R-M enzymes have been undertaken using two closely related enzymes, EcoP1I and EcoP15I. Divergent opinions about how the long-distance interaction between the recognition sites exist and at least three mechanistic models based on 1D- diffusion and/or 3D- DNA looping have been proposed.

  11. Protein engineering of enzymes for process applications

    DEFF Research Database (Denmark)

    Woodley, John M

    2013-01-01

    Scientific progress in the field of enzyme modification today enables the opportunity to tune a given biocatalyst for a specific industrial application. Much work has been focused on extending the substrate repertoire and altering selectivity. Nevertheless, it is clear that many new forthcoming...

  12. Transition state theory for enzyme kinetics

    Science.gov (United States)

    Truhlar, Donald G.

    2015-01-01

    This article is an essay that discusses the concepts underlying the application of modern transition state theory to reactions in enzymes. Issues covered include the potential of mean force, the quantization of vibrations, the free energy of activation, and transmission coefficients to account for nonequilibrium effect, recrossing, and tunneling. PMID:26008760

  13. Lignocellulose degradation, enzyme production and protein ...

    African Journals Online (AJOL)

    Microbial conversion of corn stover by white rot fungi has the potential to increase its ligninolysis and nutritional value, thereby transforming it into protein-enriched animal feed. Response surface methodology was applied to optimize conditions for the production of lignocellulolytic enzymes by Trametes versicolor during ...

  14. Comparative gene expression of intestinal metabolizing enzymes.

    Science.gov (United States)

    Shin, Ho-Chul; Kim, Hye-Ryoung; Cho, Hee-Jung; Yi, Hee; Cho, Soo-Min; Lee, Dong-Goo; Abd El-Aty, A M; Kim, Jin-Suk; Sun, Duxin; Amidon, Gordon L

    2009-11-01

    The purpose of this study was to compare the expression profiles of drug-metabolizing enzymes in the intestine of mouse, rat and human. Total RNA was isolated from the duodenum and the mRNA expression was measured using Affymetrix GeneChip oligonucleotide arrays. Detected genes from the intestine of mouse, rat and human were ca. 60% of 22690 sequences, 40% of 8739 and 47% of 12559, respectively. Total genes of metabolizing enzymes subjected in this study were 95, 33 and 68 genes in mouse, rat and human, respectively. Of phase I enzymes, the mouse exhibited abundant gene expressions for Cyp3a25, Cyp4v3, Cyp2d26, followed by Cyp2b20, Cyp2c65 and Cyp4f14, whereas, the rat showed higher expression profiles of Cyp3a9, Cyp2b19, Cyp4f1, Cyp17a1, Cyp2d18, Cyp27a1 and Cyp4f6. However, the highly expressed P450 enzymes were CYP3A4, CYP3A5, CYP4F3, CYP2C18, CYP2C9, CYP2D6, CYP3A7, CYP11B1 and CYP2B6 in the human. For phase II enzymes, glucuronosyltransferase Ugt1a6, glutathione S-transferases Gstp1, Gstm3 and Gsta2, sulfotransferase Sult1b1 and acyltransferase Dgat1 were highly expressed in the mouse. The rat revealed predominant expression of glucuronosyltransferases Ugt1a1 and Ugt1a7, sulfotransferase Sult1b1, acetyltransferase Dlat and acyltransferase Dgat1. On the other hand, in human, glucuronosyltransferases UGT2B15 and UGT2B17, glutathione S-transferases MGST3, GSTP1, GSTA2 and GSTM4, sulfotransferases ST1A3 and SULT1A2, acetyltransferases SAT1 and CRAT, and acyltransferase AGPAT2 were dominantly detected. Therefore, current data indicated substantial interspecies differences in the pattern of intestinal gene expression both for P450 enzymes and phase II drug-metabolizing enzymes. This genomic database is expected to improve our understanding of interspecies variations in estimating intestinal prehepatic clearance of oral drugs.

  15. Effect of irradiation on immobilized enzymes compared with that on enzymes in solution

    International Nuclear Information System (INIS)

    Schachinger, L.; Schippel, C.; Altmann, E.; Diepold, B.; Yang, C.; Jaenike, M.; Hochhaeuser, E.

    1985-01-01

    Glucose oxidase and catalase were immobilized by attaching them to nylon fibers that had been treated with triethyloxonium-tetrafluoroborate, diaminohexane and glutaraldialdehyde according to Morris, Campell and Hornby (1975). This method assures that the enzymes are bound to a side chain of the polyamide structure. Enzyme activity (as measured by the O 2 -uptake and by microcalorimetry) was found to be unchanged after 2 years. The apparent Ksub(m)-constants of the immobilized enzymes with glucose were the same as those for enzymes in solution. GOD and catalase immobilized in poly(acrylamide) gel had the same Ksub(m)-value. Despite the high stability during storage, the radiation induced inactivation of enzymes immobilized on gel or chromosorb, an inorganic carrier, was of the same order of magnitude as that of the dissolved enzymes. The enzymes bound to nylon fibers showed a higher radiation sensitivity. This might have been caused by an additional attack on the binding site of the carrier. (orig.)

  16. Nanoarmored Enzymes for Organic Enzymology: Synthesis and Characterization of Poly(2-Alkyloxazoline)-Enzyme Conjugates.

    Science.gov (United States)

    Leurs, Melanie; Tiller, Joerg C

    2017-01-01

    The properties of enzymes can be altered significantly by modification with polymers. Numerous different methods are known to obtain such polymer-enzyme conjugates (PECs). However, there is no universal method to render enzymes into PECs that are fully soluble in organic solvents. Here, we present a method, which achieves such high degree of modification of proteins that the majority of modified enzymes will be soluble in organic solvents. This is achieved by preparing poly(2-alkyloxazoline)s (POx) with an NH 2 end group and coupling this functional polymer via pyromellitic acid dianhydride onto the amino groups of the respective protein. The resulting PECs are capable of serving as surfactants for unmodified proteins, rendering the whole mixture organosoluble. Depending on the nature of the POx and the molecular weight and the nature of the enzyme, the PECs are soluble in chloroform or even toluene. Another advantage of this method is that the poly(2-alkyloxazoline) can be activated with the coupling agent and used for the enzyme conjugation without further purification. The POx-enzyme conjugates generated by this modification strategy show modulated catalytic activity in both, aqueous and organic, systems. © 2017 Elsevier Inc. All rights reserved.

  17. Adsorption of monocomponent enzymes in enzyme mixture analyzed quantitatively during hydrolysis of lignocellulose substrates.

    Science.gov (United States)

    Várnai, Anikó; Viikari, Liisa; Marjamaa, Kaisa; Siika-aho, Matti

    2011-01-01

    The adsorption of purified Trichoderma reesei cellulases (TrCel7A, TrCel6A and TrCel5A) and xylanase TrXyn11 and Aspergillus niger β-glucosidase AnCel3A was studied in enzyme mixture during hydrolysis of two pretreated lignocellulosic materials, steam pretreated and catalytically delignified spruce, along with microcrystalline cellulose (Avicel). The enzyme mixture was compiled to resemble the composition of commercial cellulase preparations. The hydrolysis was carried out at 35 °C to mimic the temperature of the simultaneous saccharification and fermentation (SSF). Enzyme adsorption was followed by analyzing the activity and the protein amount of the individual free enzymes in the hydrolysis supernatant. Most enzymes adsorbed quickly at early stages of the hydrolysis and remained bound throughout the hydrolysis, although the conversion reached was fairly high. Only with the catalytically oxidized spruce samples, the bound enzymes started to be released as the hydrolysis degree reached 80%. The results based on enzyme activities and protein assay were in good accordance. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Thermodynamic activity-based intrinsic enzyme kinetic sheds light on enzyme-solvent interactions.

    Science.gov (United States)

    Grosch, Jan-Hendrik; Wagner, David; Nistelkas, Vasilios; Spieß, Antje C

    2017-01-01

    The reaction medium has major impact on biocatalytic reaction systems and on their economic significance. To allow for tailored medium engineering, thermodynamic phenomena, intrinsic enzyme kinetics, and enzyme-solvent interactions have to be discriminated. To this end, enzyme reaction kinetic modeling was coupled with thermodynamic calculations based on investigations of the alcohol dehydrogenase from Lactobacillus brevis (LbADH) in monophasic water/methyl tert-butyl ether (MTBE) mixtures as a model solvent. Substrate concentrations and substrate thermodynamic activities were varied separately to identify the individual thermodynamic and kinetic effects on the enzyme activity. Microkinetic parameters based on concentration and thermodynamic activity were derived to successfully identify a positive effect of MTBE on the availability of the substrate to the enzyme, but a negative effect on the enzyme performance. In conclusion, thermodynamic activity-based kinetic modeling might be a suitable tool to initially curtail the type of enzyme-solvent interactions and thus, a powerful first step to potentially understand the phenomena that occur in nonconventional media in more detail. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:96-103, 2017. © 2016 American Institute of Chemical Engineers.

  19. Regulation of malic enzyme expression and the molecular basis for a cytosolic malic enzyme null mutation

    International Nuclear Information System (INIS)

    Brown, M.L.

    1987-01-01

    In order to investigate the basis for the MOD-1 null mutation, a λgt 11 cDNA library was constructed using mRNA from the livers of induced MOD-1 null mice as a template. A recombinant phage with a 2kb insert was isolated by screening with wild type malic enzyme cDNA probes. The subcloned insert exhibited an atypical (non-wild type) restriction pattern and was subjected to sequence analysis. MOD-1 null malic enzyme cDNA contains an internal, tandemly-duplicated sequence that corresponds to nucleotides 1027-1548 in the coding region of wild type murine malic enzyme cDNA. An open reading frame is retained throughout the duplicated sequences. The discovery of a 522 nucleotide, in-frame duplication accounts for the increased size of MOD-1 null malic enzyme mRNAs. Western immunoblot analysis disclosed that MOD-1 null liver cytosol contains an 82 kDa protein that is recognized by anti malic enzyme antibodies. Under stringent conditions, an anti-sense 32 P-oligonucleotide that spans the abnormal junction between the reiterated sequences hybridized with the 2.5 and 3.6 kb MOD-1 null malic enzyme mRNAs, but failed to form stable complexes with wild type malic enzyme mRNAs

  20. Imbalance between pulmonary angiotensin-converting enzyme and angiotensin-converting enzyme 2 activity in acute respiratory distress syndrome

    NARCIS (Netherlands)

    Wosten-van Asperen, Roelie M.; Bos, Albert; Bem, Reinout A.; Dierdorp, Barbara S.; Dekker, Tamara; van Goor, Harry; Kamilic, Jelena; van der Loos, Chris M.; van den Berg, Elske; Bruijn, Martijn; van Woensel, Job B.; Lutter, Rene

    2013-01-01

    Objective: Angiotensin-converting enzyme and its effector peptide angiotensin II have been implicated in the pathogenesis of acute respiratory distress syndrome. Recently, angiotensin-converting enzyme 2 was identified as the counter-regulatory enzyme of angiotensin-converting enzyme that converts

  1. Imbalance between pulmonary angiotensin-converting enzyme and angiotensin-converting enzyme 2 activity in acute respiratory distress syndrome

    NARCIS (Netherlands)

    Wösten-van Asperen, Roelie M.; Bos, Albert P.; Bem, Reinout A.; Dierdorp, Barbara S.; Dekker, Tamara; van Goor, Harry; Kamilic, Jelena; van der Loos, Chris M.; van den Berg, Elske; Bruijn, Martijn; van Woensel, Job B.; Lutter, René

    2013-01-01

    Angiotensin-converting enzyme and its effector peptide angiotensin II have been implicated in the pathogenesis of acute respiratory distress syndrome. Recently, angiotensin-converting enzyme 2 was identified as the counter-regulatory enzyme of angiotensin-converting enzyme that converts angiotensin

  2. Non-homologous isofunctional enzymes: a systematic analysis of alternative solutions in enzyme evolution.

    Science.gov (United States)

    Omelchenko, Marina V; Galperin, Michael Y; Wolf, Yuri I; Koonin, Eugene V

    2010-04-30

    Evolutionarily unrelated proteins that catalyze the same biochemical reactions are often referred to as analogous - as opposed to homologous - enzymes. The existence of numerous alternative, non-homologous enzyme isoforms presents an interesting evolutionary problem; it also complicates genome-based reconstruction of the metabolic pathways in a variety of organisms. In 1998, a systematic search for analogous enzymes resulted in the identification of 105 Enzyme Commission (EC) numbers that included two or more proteins without detectable sequence similarity to each other, including 34 EC nodes where proteins were known (or predicted) to have distinct structural folds, indicating independent evolutionary origins. In the past 12 years, many putative non-homologous isofunctional enzymes were identified in newly sequenced genomes. In addition, efforts in structural genomics resulted in a vastly improved structural coverage of proteomes, providing for definitive assessment of (non)homologous relationships between proteins. We report the results of a comprehensive search for non-homologous isofunctional enzymes (NISE) that yielded 185 EC nodes with two or more experimentally characterized - or predicted - structurally unrelated proteins. Of these NISE sets, only 74 were from the original 1998 list. Structural assignments of the NISE show over-representation of proteins with the TIM barrel fold and the nucleotide-binding Rossmann fold. From the functional perspective, the set of NISE is enriched in hydrolases, particularly carbohydrate hydrolases, and in enzymes involved in defense against oxidative stress. These results indicate that at least some of the non-homologous isofunctional enzymes were recruited relatively recently from enzyme families that are active against related substrates and are sufficiently flexible to accommodate changes in substrate specificity.

  3. Overview of PAF-Degrading Enzymes.

    Science.gov (United States)

    Karasawa, Ken; Inoue, Keizo

    2015-01-01

    Because the acetyl group of 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine (PAF) is essential for its biological activity, the degradation of PAF is the most important mechanism that regulates the level of PAF. The enzyme that catalyzes the hydrolysis of acetyl group at the sn-2 position of PAF was termed PAF-acetylhydrolase (PAF-AH). Subsequent research revealed that the PAF-AH family includes intracellular forms called PAF-AH I and PAF-AH II as well as an extracellular isoform, plasma PAF-AH. PAF-AH I forms a complex consisting of catalytic subunits α1, α2, and β regulatory subunits. PAF-AH I was identified from the brain, and previous studies focused on the role of PAF-AH I in brain development. However, subsequent studies found that PAF-AH I is involved in diverse functions such as spermatogenesis, amyloid-β generation, cancer pathogenesis, and protein trafficking. Another intracellular enzyme, PAF-AH II, has no homology with PAF-AH I, although this enzyme shares sequence similarity to plasma PAF-AH. Because PAF-AH preferentially hydrolyzes oxidatively modulated or truncated phospholipids, it is considered to play a protective role against oxidative stress. Homologs of this enzyme are widely distributed among evolutionarily diverse organisms. For example, studies of Caenorhabditis elegans PAF-AH II demonstrate its contribution to epidermal morphogenesis. Extracellular plasma PAF-AH associates strongly with plasma lipoproteins. Because PAF-AH is mainly associated with LDL particles, it is considered to play an anti-inflammatory role by removing oxidized phospholipids generated in LDLs exposed to oxidative stress. In this overview, we describe the crucial roles of these three PAF-degrading enzymes in cell function and cell pathology. © 2015 Elsevier Inc. All rights reserved.

  4. Working with Enzymes - Where Is Lactose Digested? An Enzyme Assay for Nutritional Biochemistry Laboratories

    Science.gov (United States)

    Pope, Sandi R.; Tolleson, Tonya D.; Williams, R. Jill; Underhill, Russell D.; Deal, S. Todd

    1998-06-01

    At Georgia Southern University, we offer a sophomore-level introductory biochemistry course that is aimed at nutrition and chemistry education majors. The laboratory portion of this course has long lacked an experimental introduction to enzymes. We have developed a simple enzyme assay utilizing lactase enzyme from crushed LactAid tablets and a 5% lactose solution ("synthetic milk"). In the experiment, the students assay the activity of the enzyme on the "synthetic milk" at pHs of approximately 1, 6, and 8 with the stated goal of determining where lactose functions in the digestive tract. The activity of the lactase may be followed chromatographically or spectrophotometrically. The experiment, which is actually a simple pH assay, is easily implemented in allied health chemistry laboratory courses and readily lends itself to adaptation for more complex kinetic assays in upper-level biochemistry laboratory courses. The experimental details, including a list of required supplies and hints for implementation, are provided.

  5. Immobilization of enzymes using non-ionic colloidal liquid aphrons (CLAs): Surface and enzyme effects.

    Science.gov (United States)

    Ward, Keeran; Xi, Jingshu; Stuckey, David C

    2015-12-01

    The use of non-ionic colloidal liquid aphrons (CLAs) as a support for enzyme immobilisation was investigated. Formulation required the mixing of an aqueous-surfactant solution with a relatively non-polar solvent-surfactant solution, forming a solvent droplet surrounded by a thin stabilised aqueous film (soapy shell). Studies utilising anionic surfactants have showed increased retention, however, very little have been understood about the forces governing immobilisation. This study seeks to determine the effects of enzyme properties on CLA immobilisation by examining a non-ionic/non-polar solvent system comprised of two non-ionic surfactants, Tween 20 and 80, mineral oil and the enzymes lipase, aprotinin and α-chymotrypsin. From these results it was deduced that hydrophobic interactions strongly governed immobilisation. Confocal Scanning Laser Microscopy (CSLM) revealed that immobilisation was predominantly achieved by surface adsorption attributed to hydrophobic interactions between the enzyme and the CLA surface. Enzyme surface affinity was found to increase when added directly to the formulation (pre-manufacture addition), as opposed to the bulk continuous phase (post-manufacture addition), with α-chymotrypsin and aprotinin being the most perturbed, while lipase was relatively unaffected. The effect of zeta potential on immobilisation showed that enzymes adsorbed better closer to their pI, indicating that charge minimisation was necessary for immobilisation. Finally, the effect of increasing enzyme concentration in the aqueous phase resulted in an increase in adsorption for all enzymes due to cooperativity between protein molecules, with saturation occurring faster at higher adsorption rates. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Direct detection of digestive enzymes in planktonic rotifers using enzyme-labelled fluorescence (ELF)

    Czech Academy of Sciences Publication Activity Database

    Štrojsová, M.; Vrba, Jaroslav

    2005-01-01

    Roč. 56, č. 2 (2005), s. 189-195 ISSN 1323-1650. [Symposium for European Freshwater Sciences /4./. Krakow, 22.08.2005-26.08.2005] R&D Projects: GA AV ČR(CZ) IAA6017202 Institutional research plan: CEZ:AV0Z60170517 Keywords : rotifers * digestive enzymes * enzyme-labelled-fluorescence method Subject RIV: DA - Hydrology ; Limnology Impact factor: 1.478, year: 2005

  7. Enzyme Immobilization: An Overview on Methods, Support Material, and Applications of Immobilized Enzymes.

    Science.gov (United States)

    Sirisha, V L; Jain, Ankita; Jain, Amita

    Immobilized enzymes can be used in a wide range of processes. In recent years, a variety of new approaches have emerged for the immobilization of enzymes that have greater efficiency and wider usage. During the course of the last two decades, this area has rapidly expanded into a multidisciplinary field. This current study is a comprehensive review of a variety of literature produced on the different enzymes that have been immobilized on various supporting materials. These immobilized enzymes have a wide range of applications. These include applications in the sugar, fish, and wine industries, where they are used for removing organic compounds from waste water. This study also reviews their use in sophisticated biosensors for metabolite control and in situ measurements of environmental pollutants. Immobilized enzymes also find significant application in drug metabolism, biodiesel and antibiotic production, bioremediation, and the food industry. The widespread usage of immobilized enzymes is largely due to the fact that they are cheaper, environment friendly, and much easier to use when compared to equivalent technologies. © 2016 Elsevier Inc. All rights reserved.

  8. Novel Industrial Enzymes from Uncultured Arctic Microorganisms

    DEFF Research Database (Denmark)

    Vester, Jan Kjølhede

    Many industrial and biotechnological processes make use of cold-active enzymes or could benefit from the use, as the reduced temperature can be beneficial in multiple ways. Such processes may save energy and production costs, improve hygiene, maintain taste and other organoleptic properties......, and reduce the risk of contaminations. Cold- and alkaline-active enzymes can be found in microorganisms adapted to living in natural environments with these conditions, which are extremely rare but found in the unique ikaite columns from SW Greenland (4-6 °C, pH >10). It is estimated that less than 1......% of the microorganisms in an environmental sample can be cultured in the laboratory with standard techniques, which is also the case for the ikaite columns. Thus, there is an enormous potential in the uncultured microorganisms, which cannot be accessed through cultivation based methods. This PhD thesis presents studies...

  9. Mannan-Degrading Enzymes from Cellulomonas fimi

    Science.gov (United States)

    Stoll, Dominik; Stålbrand, Henrik; Warren, R. Antony J.

    1999-01-01

    The genes man26a and man2A from Cellulomonas fimi encode mannanase 26A (Man26A) and β-mannosidase 2A (Man2A), respectively. Mature Man26A is a secreted, modular protein of 951 amino acids, comprising a catalytic module in family 26 of glycosyl hydrolases, an S-layer homology module, and two modules of unknown function. Exposure of Man26A produced by Escherichia coli to C. fimi protease generates active fragments of the enzyme that correspond to polypeptides with mannanase activity produced by C. fimi during growth on mannans, indicating that it may be the only mannanase produced by the organism. A significant fraction of the Man26A produced by C. fimi remains cell associated. Man2A is an intracellular enzyme comprising a catalytic module in a subfamily of family 2 of the glycosyl hydrolases that at present contains only mammalian β-mannosidases. PMID:10347049

  10. (Enzyme use in the Jute Industry)

    Energy Technology Data Exchange (ETDEWEB)

    Niyogi, S.K.

    1991-03-15

    This report covers my official visit to the Indian Jute Industries' Research Association (IJIRA), Calcutta, India. The visit lasted a little over two weeks, including two trips to three jute mills outside Calcutta and a one-day visit to the library of the Indian Institute of Chemical Biology, Calcutta. The report describes the applications of enzymes (derived from a moldy wheat bran extract) in upgrading the jute fiber and in enhancing the quality of tamarind kernel powder used for sizing of jute. The various methodological developments in these processes are discussed in detail along with suggestions for possible improvements. The report also describes the visits to the jute mills where enzyme applications are being made. Interactions with the IJIRA research staff are described in detail. My contributions to the Project are described along with specific recommendations for future research.

  11. Restriction Enzymes in Microbiology, Biotechnology and Biochemistry

    Directory of Open Access Journals (Sweden)

    Geoffrey G. Wilson

    2012-12-01

    Full Text Available Since their discovery in the nineteen-seventies, a collection of simple enzymes termed Type II restriction endonucleases, made by microbes to ward off viral infections, have transformed molecular biology, spawned the multi-billion dollar Biotechnology industry, and yielded fundamental insights into the biochemistry of life, health and disease. In this article we describe how these enzymes were discovered, and we review their properties, organizations and genetics. We summarize current ideas about the mechanism underlying their remarkable ability to recognize and bind to specific base pair sequences in DNA, and we discuss why these ideas might not be correct. We conclude by proposing an alternative explanation for sequence-recognition that resolves certain inconsistencies and provides, in our view, a more satisfactory account of the mechanism.

  12. Extracellular enzymes of Fusarium graminearum isolates

    Directory of Open Access Journals (Sweden)

    Gisele Eleonora Kikot

    2010-08-01

    Full Text Available Fusarium graminearum isolates from three different agroecological regions in Argentina were examined according to the production of different extracellular enzyme activities of potential biotechnological interest: pectinases (PGase: polygalacturonase and PMGase: polymethylgalacturonase, cellulase (CMCase: carboxymethylcellulase and hemicellulase (xylanase. The isolates were grown in minimum salt medium supplemented with 0.25% glucose, 0.125% citric pectin and 0.125% oat bran as carbon sources and/or enzyme inducers. PGase activity was detected early (after two days of incubation in all the cultures; it was found to be the highest for all the isolates. PMGase was high only for those isolates of the II region. CMCase and endoxylanase activities were particularly found at late stages (after four and seven days of incubation, respectively and the maximum values were lower than pectinase activities.

  13. Programmable DNA-Guided Artificial Restriction Enzymes.

    Science.gov (United States)

    Enghiad, Behnam; Zhao, Huimin

    2017-05-19

    Restriction enzymes are essential tools for recombinant DNA technology that have revolutionized modern biological research. However, they have limited sequence specificity and availability. Here we report a Pyrococcus furiosus Argonaute (PfAgo) based platform for generating artificial restriction enzymes (AREs) capable of recognizing and cleaving DNA sequences at virtually any arbitrary site and generating defined sticky ends of varying length. Short DNA guides are used to direct PfAgo to target sites for cleavage at high temperatures (>87 °C) followed by reannealing of the cleaved single stranded DNAs. We used this platform to generate over 18 AREs for DNA fingerprinting and molecular cloning of PCR-amplified or genomic DNAs. These AREs work as efficiently as their naturally occurring counterparts, and some of them even do not have any naturally occurring counterparts, demonstrating easy programmability, generality, versatility, and high efficiency for this new technology.

  14. Novel Industrial Enzymes from Uncultured Arctic Microorganisms

    DEFF Research Database (Denmark)

    Vester, Jan Kjølhede

    % of the microorganisms in an environmental sample can be cultured in the laboratory with standard techniques, which is also the case for the ikaite columns. Thus, there is an enormous potential in the uncultured microorganisms, which cannot be accessed through cultivation based methods. This PhD thesis presents studies......, and reduce the risk of contaminations. Cold- and alkaline-active enzymes can be found in microorganisms adapted to living in natural environments with these conditions, which are extremely rare but found in the unique ikaite columns from SW Greenland (4-6 °C, pH >10). It is estimated that less than 1...... on the diversity of microorganisms from the ikaite columns as well as bioprospecting for enzyme activities using both culture dependent and independent methods. Two cold-active β-galactosidases and one extremely cold-active α-amylase, all related to Clostridia, were characterized in more details....

  15. Ethanol from wood. Cellulase enzyme production

    Energy Technology Data Exchange (ETDEWEB)

    Szengyel, Zsolt

    2000-03-01

    Conversion of biomass to liquid fuels, such as ethanol, has been investigated during the past decades. First due to the oil crisis of the 1970s and lately because of concerns about greenhouse effect, ethanol has been found to be a suitable substitute for gasoline in transportation. Although ethanol is produced in large quantities from corn starch, the conversion of lignocellulosic biomass to ethanol is rather problematic. However, cellulosic raw materials are important as they are available in large quantities from agriculture and forestry. One of the most extensively investigated processes is the enzymatic process, in which fungal cellulolytic enzymes are used to convert the cellulose content of the biomass to glucose, which is then fermented to ethanol. In order to make the raw material accessible to biological attack, it has to be pretreated first. The most successful method, which has been evaluated for various lignocellulosic materials, is the steam pretreatment. In this thesis the utilization of steam pretreated willow (hardwood) and spruce (softwood) was examined for enzyme production using a filamentous fungus T. reesei RUT C30. Various carbon sources originating from the steam pretreated materials have been investigated. The replacement of the solid carbon source with a liquid carbon source, as well as the effect of pH, was studied. The effect of toxic compounds generated during pretreatment was also examined. Comparative study of softwood and hardwood showed that steam pretreated hardwood is a better carbon source than softwood. The hydrolytic potential of enzyme solutions produced on wood derived carbon sources was better compared to commercial cellulases. Also enzyme solutions produced on steam pretreated spruce showed less sensitivity towards toxic compounds formed during steam pretreatment.

  16. Application of enzyme bioluminescence in ecology.

    Science.gov (United States)

    Esimbekova, Elena; Kratasyuk, Valentina; Shimomura, Osamu

    2014-01-01

    : This review examines the general principles of bioluminescent enzymatic toxicity bioassays and describes the applications of these methods and the implementation in commercial biosensors. Bioluminescent enzyme system technology (BEST) has been proposed in the bacterial coupled enzyme system, wherein NADH:FMN-oxidoreductase-luciferase substitutes for living organisms. BEST was introduced to facilitate and accelerate the development of cost-competitive enzymatic systems for use in biosensors for medical, environmental, and industrial applications. For widespread use of BEST, the multicomponent reagent "Enzymolum" has been developed, which contains the bacterial luciferase, NADH:FMN-oxidoreductase, and their substrates, co-immobilized in starch or gelatin gel. Enzymolum is the central part of Portable Laboratory for Toxicity Detection (PLTD), which consists of a biodetector module, a sampling module, a sample preparation module, and a reagent module. PLTD instantly signals chemical-biological hazards and allows us to detect a wide range of toxic substances. Enzymolum can be integrated as a biological module into the portable biodetector-biosensor originally constructed for personal use. Based on the example of Enzymolum and the algorithm for creating new enzyme biotests with tailored characteristics, a new approach was demonstrated in biotechnological design and construction. The examples of biotechnological design of various bioluminescent methods for ecological monitoring were provided. Possible applications of enzyme bioassays are seen in the examples for medical diagnostics, assessment of the effect of physical load on sportsmen, analysis of food additives, and in practical courses for higher educational institutions and schools. The advantages of enzymatic assays are their rapidity (the period of time required does not exceed 3-5 min), high sensitivity, simplicity and safety of procedure, and possibility of automation of ecological monitoring; the required

  17. Substrates and method for determining enzymes

    Science.gov (United States)

    Smith, R.E.; Bissell, E.R.

    1981-10-13

    A method is disclosed for determining the presence of an enzyme in a biological fluid, which includes the steps of contacting the fluid with a synthetic chromogenic substrate, which is an amino acid derivative of 7-amino-4-trifluoromethylcoumarin; incubating the substrate-containing fluid to effect enzymatic hydrolysis; and fluorometrically determining the presence of the free 7-amino-4-trifluoromethylcoumarin chromophore in the hydrolyzate. No Drawings

  18. Tissue Dissociation Enzyme Neutral Protease Assessment

    OpenAIRE

    Breite, A.G.; Dwulet, F.E.; McCarthy, R.C.

    2010-01-01

    Neutral proteases, essential components of purified tissue dissociation enzymes required for successful human islet isolation, show variable activities and effects of substrate on their activities. Initially we used a spectrophotometric endpoint assay with azocasein substrate to measure neutral protease activity. After critical review of the results, we observed these data to be inconsistent and not correlating expected differences in specific activities between thermolysin and Bacillus polym...

  19. Purification and characterisation of alkaline phosphotase enzyme ...

    African Journals Online (AJOL)

    L'enzyme phosphatase alkaline était purifié de la bactérie Escherichia coli C90 cultivé dans un médium pauvre en phosphate comme phase stationnaire utilisant une colonne d'échange d'ion enveloppée avec une cellulose DEAE comme matrice et exclusion de taille chromographique utilisant le Sepharcryl S-300HR ...

  20. Nedd8 processing enzymes in Schizosaccharomyces pombe

    DEFF Research Database (Denmark)

    O'Donoghue, Jean; Bech-Otschir, Dawadschargal; Larsen, Ida

    2013-01-01

    Conjugation of the ubiquitin-like modifier Nedd8 to cullins is critical for the function of SCF-type ubiquitin ligases and thus facilitates ubiquitin conjugation and ultimately degradation of SCF substrates, including several cell cycle regulators. Like ubiquitin, Nedd8 is produced as a precursor...... that must first be processed before it becomes active. In Saccharomyces cerevisiae this is carried out exclusively by the enzyme Yuh1....

  1. Biosilica-Immobilized Enzymes for Biocatalysis (Preprint)

    Science.gov (United States)

    2007-08-01

    chapter in book review “Recent Advances in Biocatalysis and Biotransformation ”, J.M. Palomo (Ed.), published by Research Signpost. Air Force...R. and Pagliaro, M. 2004, Current Organic Chemistry 8, 1851. [50] Pierre, A.C. 2004, Biocatalysis and Biotransformation 22, 145. [51] Coradin, T...AFRL-ML-TY-TP-2007-4542 PREPRINT BIOSILICA-IMMOBILIZED ENZYMES FOR BIOCATALYSIS Lorena Betancor Department of Biochemistry

  2. Procedures and means for determining enzyme activities

    International Nuclear Information System (INIS)

    Hunger, H.; Behrendt, G.; Schmidt, G.

    1988-01-01

    Aim of the invention is an improved procedure for the determination of phosphorylating enzyme activity by using an improved means. Cellular extracts and cell lysates, resp., are contacted with surface carriers from natural and/or synthesized polymers, containing deprotonizable groups, in presence of 32 P-γ-ATP and, if necessary, of ATP. The phosphorylated antibiotic is evidenced by autoradiography or any other identifying procedure. Fields of application are molecular biology, genetic engineering, biotechnology and medical special fields

  3. Enzyme catalysis with small ionic liquid quantities.

    Science.gov (United States)

    Fischer, Fabian; Mutschler, Julien; Zufferey, Daniel

    2011-04-01

    Enzyme catalysis with minimal ionic liquid quantities improves reaction rates, stereoselectivity and enables solvent-free processing. In particular the widely used lipases combine well with many ionic liquids. Demonstrated applications are racemate separation, esterification and glycerolysis. Minimal solvent processing is also an alternative to sluggish solvent-free catalysis. The method allows simplified down-stream processing, as only traces of ionic liquids have to be removed.

  4. Translational control of an intestinal microvillar enzyme

    DEFF Research Database (Denmark)

    Danielsen, E M; Cowell, G M; Sjöström, H

    1986-01-01

    The rates of biosynthesis of adult and foetal pig small-intestinal aminopeptidase N (EC 3.4.11.2) were compared to determine at which level the expression of the microvillar enzyme is developmentally controlled. In organ-cultured explants, the rate of biosynthesis of foetal aminopeptidase N is on...... comparable amounts of aminopeptidase N mRNA, encoding gel-electrophoretically identical primary translation products. Together, these data indicate that the expression of aminopeptidase N is controlled at a translational level....

  5. Fouling-induced enzyme immobilization for membrane reactors

    DEFF Research Database (Denmark)

    Luo, Jianquan; Meyer, Anne S.; Jonsson, Gunnar Eigil

    2013-01-01

    A simple enzyme immobilization method accomplished by promoting membrane fouling formation is proposed. The immobilization method is based on adsorption and entrapment of the enzymes in/on the membrane. To evaluate the concept, two membrane orientations, skin layer facing feed (normal mode......, but the reverse mode allowed for higher enzyme loading and stability, and irreversible fouling (i.e. pore blocking) developed more readily in the support structure than in the skin layer. Compared with an enzymatic membrane reactor (EMR) with free enzymes, the novel EMR with enzymes immobilized in membrane...... support improved the enzyme reusability (especially for ADH), and reduced the product inhibition (especially for GDH). © 2013 Elsevier Ltd....

  6. Liquefaction of sugarcane bagasse for enzyme production.

    Science.gov (United States)

    Cunha, F M; Kreke, T; Badino, A C; Farinas, C S; Ximenes, E; Ladisch, M R

    2014-11-01

    The objective of this paper is to report liquefaction of pretreated and sterilized sugarcane bagasse for enhancing endoglucanase production through submerged fermentation by Aspergillus niger. After initial solid state fermentation of steam pretreated bagasse solids by A. niger, fed-batch addition of the substrate to cellulase in buffer over a 12h period, followed by 36h reaction, resulted in a liquid slurry with a viscosity of 0.30±0.07Pas at 30% (w/v) solids. Addition of A. niger for submerged fermentation of sterile liquefied bagasse at 23% w/v solids resulted in an enzyme titer of 2.5IUmL(-1) or about 15× higher productivity than solid-state fermentation of non-liquefied bagasse (final activity of 0.17IUmL(-1)). Bagasse not treated by initial solid-state fermentation but liquefied with enzyme gave 2IUmL(-1). These results show the utility of liquefied bagasse as a culture medium for enzyme production in submerged fermentations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Tissue dissociation enzyme neutral protease assessment.

    Science.gov (United States)

    Breite, A G; Dwulet, F E; McCarthy, R C

    2010-01-01

    Neutral proteases, essential components of purified tissue dissociation enzymes required for successful human islet isolation, show variable activities and effects of substrate on their activities. Initially we used a spectrophotometric endpoint assay with azocasein substrate to measure neutral protease activity. After critical review of the results, we observed these data to be inconsistent and not correlating expected differences in specific activities between thermolysin and Bacillus polymyxa proteases. This observation led to the development of a fluorescent microplate assay using fluorescein isothyocyanate-conjugated bovine serum albumin (FITC-BSA) as the substrate. This simpler, more flexible method offered a homogeneous, kinetic enzyme assay allowing determination of steady state reaction rates of sample replicates at various dilutions. The assay had a linear range of 4- to 8-fold and interassay coefficients of variation for B polymyxa protease and thermolysin of inhibitors, as illustrated by addition of sulfhydryl protease inhibitors, which, consistent with earlier reports, strongly indicated that the main contaminant in purified collagenase preparations was clostripain. Determination of the specific activities for several purified neutral proteases showed that the B polymyxa and Clostridium histolyticum proteases had approximately 40% and 15% specific activities, respectively, of those obtained with purified thermolysin, indicating the different characteristics of neutral protease enzymes for cell isolation procedures. Copyright 2010 Elsevier Inc. All rights reserved.

  8. Applications of Nanomaterials in Electrochemical Enzyme Biosensors

    Directory of Open Access Journals (Sweden)

    Xiaodi Yang

    2009-10-01

    Full Text Available A biosensor is defined as a kind of analytical device incorporating a biological material, a biologically derived material or a biomimic intimately associated with or integrated within a physicochemical transducer or transducing microsystem. Electrochemical biosensors incorporating enzymes with nanomaterials, which combine the recognition and catalytic properties of enzymes with the electronic properties of various nanomaterials, are new materials with synergistic properties originating from the components of the hybrid composites. Therefore, these systems have excellent prospects for interfacing biological recognition events through electronic signal transduction so as to design a new generation of bioelectronic devices with high sensitivity and stability. In this review, we describe approaches that involve nanomaterials in direct electrochemistry of redox proteins, especially our work on biosensor design immobilizing glucose oxidase (GOD, horseradish peroxidase (HRP, cytochrome P450 (CYP2B6, hemoglobin (Hb, glutamate dehydrogenase (GDH and lactate dehydrogenase (LDH. The topics of the present review are the different functions of nanomaterials based on modification of electrode materials, as well as applications of electrochemical enzyme biosensors.

  9. Asymmetric biocatalysis with microbial enzymes and cells.

    Science.gov (United States)

    Wohlgemuth, Roland

    2010-06-01

    Microbial enzymes and cells continue to be important tools and nature's privileged chiral catalysts for performing asymmetric biocatalysis from the analytical small scale to the preparative and large scale in synthesis and degradation. The application of biocatalysts for preparing molecular asymmetry has achieved high efficiency, enantioselectivity and yield and is experiencing today a worldwide renaissance. Recent developments in the discovery, development and production of stable biocatalysts, in the design of new biocatalytic processes and in the product recovery and purification processes have made biocatalytic approaches using microbial cells and enzymes attractive choices for the synthesis of chiral compounds. The methodologies of kinetic resolution and kinetic asymmetric transformation, dynamic kinetic resolution and deracemization, desymmetrization, asymmetric synthesis with or without diastereo control and multi-step asymmetric biocatalysis are finding increasing applications in research. The ever-increasing use of hydrolytic enzymes has been accompanied by new applications of oxidoreductases, transferases and lyases. Isomerases, already used in large-scale processes, and ligases, are emerging as interesting biocatalysts for new synthetic applications. The production of a wide variety of industrial products by asymmetric biocatalysis has even become the preferred method of production. Copyright 2010 Elsevier Ltd. All rights reserved.

  10. Effect of turmeric on xenobiotic metabolising enzymes.

    Science.gov (United States)

    Goud, V K; Polasa, K; Krishnaswamy, K

    1993-07-01

    Diet contains several substances capable of inhibiting chemical carcinogenesis. It is known that such inhibitors may either act directly by scavenging the reactive substances or indirectly by promoting mechanisms which enhance detoxification. Turmeric which contains curcumin both in vitro and in vivo is an active antimutagen. Studies were therefore conducted to evaluate the effects of turmeric on xenobiotic metabolising enzymes in hepatic tissue of rats fed turmeric ranging from 0.5-10% in the diet. Enzymes such as aryl hydrocarbon hydroxylase, UDP glucuronyl transferase and glutathione-S-transferase were assayed after four weeks of turmeric fed diets. No significant differences were seen in the activating enzyme AHH. However, UDPGT was significantly elevated in rats fed 10% turmeric while GSHT registered a significant increase in 5 and 10% turmeric fed diet as compared to controls and 0.5-1.0% turmeric fed animals. The results suggest that turmeric may increase detoxification systems in addition to its anti-oxidant properties. Curcumin perhaps is the active principle in turmeric. Turmeric used widely as a spice would probably mitigate the effects of several dietary carcinogens.

  11. Selenzyme: Enzyme selection tool for pathway design.

    Science.gov (United States)

    Carbonell, Pablo; Wong, Jerry; Swainston, Neil; Takano, Eriko; Turner, Nicholas J; Scrutton, Nigel S; Kell, Douglas B; Breitling, Rainer; Faulon, Jean-Loup

    2018-02-07

    Synthetic biology applies the principles of engineering to biology in order to create biological functionalities not seen before in nature. One of the most exciting applications of synthetic biology is the design of new organisms with the ability to produce valuable chemicals including pharmaceuticals and biomaterials in a greener; sustainable fashion. Selecting the right enzymes to catalyze each reaction step in order to produce a desired target compound is, however, not trivial. Here, we present Selenzyme, a free online enzyme selection tool for metabolic pathway design. The user is guided through several decision steps in order to shortlist the best candidates for a given pathway step. The tool graphically presents key information about enzymes based on existing databases and tools such as: similarity of sequences and of catalyzed reactions; phylogenetic distance between source organism and intended host species; multiple alignment highlighting conserved regions, predicted catalytic site, and active regions; and relevant properties such as predicted solubility and transmembrane regions. Selenzyme provides bespoke sequence selection for automated workflows in biofoundries. The tool is integrated as part of the pathway design stage into the design-build-test-learn SYNBIOCHEM pipeline. The Selenzyme web server is available at http://selenzyme.synbiochem.co.uk. pablo.carbonell@manchester.ac.uk. Supplementary data are available at Bioinformatics online. © The Author(s) 2018. Published by Oxford University Press.

  12. Enzyme-Gelatin Electrochemical Biosensors: Scaling Down

    Directory of Open Access Journals (Sweden)

    Hendrik A. Heering

    2012-03-01

    Full Text Available In this article we investigate the possibility of scaling down enzyme-gelatin modified electrodes by spin coating the enzyme-gelatin layer. Special attention is given to the electrochemical behavior of the selected enzymes inside the gelatin matrix. A glassy carbon electrode was used as a substrate to immobilize, in the first instance, horse heart cytochrome c (HHC in a gelatin matrix. Both a drop dried and a spin coated layer was prepared. On scaling down, a transition from diffusion controlled reactions towards adsorption controlled reactions is observed. Compared to a drop dried electrode, a spin coated electrode showed a more stable electrochemical behavior. Next to HHC, we also incorporated catalase in a spin coated gelatin matrix immobilized on a glassy carbon electrode. By spincoating, highly uniform sub micrometer layers of biocompatible matrices can be constructed. A full electrochemical study and characterization of the modified surfaces has been carried out. It was clear that in the case of catalase, gluteraldehyde addition was needed to prevent leaking of the catalase from the gelatin matrix.

  13. Ionizing radiation effect on enzymes. III

    International Nuclear Information System (INIS)

    Libicky, A.; Chottova, O.; Fidlerova, J.; Urban, J.; Kubankova, V.

    1980-01-01

    A decrease in the efficacy of trypsin (determination according to PhBs 3 with the use of L-lysine ethyl ester chloride) was investigated in pancreatin obtained by enzyme precipitation from a pancreas extraction after autolysis, in the identical sample with an additionally increased content of lipids, in pancreatin containing parts of the pancreatic tissue, in crystalline trypsin, and in crystalline salt-free and lyophilized trypsine after irradiation with gamma rays from 60 Co, doses ranging from 1x10 4 Gy to 12x10 4 Gy. The results were statistically evaluated and after the conversion to dried or lipid-free substance expressed in graphs. The dependence of the efficacy on the radiation dose has a linear course in semi-logarithmic arrangement, similarly as it occurred in chymotrypsin and in the total proteolytic efficacy. The decrease in the efficacy of trypsin in the samples of pancreatin in percentage maintains the same sequence in the samples under study as it was in the decrease in the efficacy of chymotrypsin and the total proteolytic efficacy, but it is smaller. The decrease in the efficacy of pure enzyme is, similarly to chymotrypsin, greater than the decrease in the efficacy of the enzyme in pancreatin. The present ballast substances thus significantly influence stability. (author)

  14. Magnetic enzyme membranes as active elements of electrochemical sensors: specific amino acid enzyme elctrodes.

    Science.gov (United States)

    Calvot, C; Berjonneau, A M; Gellf, G; Thomas, D

    1975-11-15

    The basic principle of the described magnetic enzyme electrodes is a kinetic accumulation of CO2 at the active layer electrode interface. The local pCO2 level is linked to three simultaneous phenomena: substrate diffusion in, enzyme reaction CO2 diffusion out. After a transient state there is a stationary state between the quantity of CO2 produced by the enzyme reaction and the CO2 diffusing from the active membrane to the bulk solution. Continuous determination of free amino acids in biological media is useful in biological processing, fermentation, medicine, pharmaceutical industries and biological research. No methods are presently available for any specific continuous measurement of lysine which is of nutritional importance in protein industrial syntheses; of phenylalanine and tyrosine which have to be monitored in several inborn diseases (phenylketonuria being the most important of them); of arginine and histidine which play a still imperfectly understood part in neurochemistry. The use of decarboxylase bearing membranes as sensors in such measurements could offer several novel advantages: (a) a simple device made of a currently manufactured electrode slightly modified by the use of an enzyme membrane; (b) The absence of any enzymic consumption due to the immobilization and the negligible consumption of substrate during the measurements; (c) The sensitivity which can be sharpened by a systematic study of the membrane parameters; (d) the continuous response of the electrode as long as it is in contact with the substrate solution; (e) the further feasibility as a miniature sensor. The magnetic device introduced allows obviously a convenient use of the enzyme electrode, the active part can be removed and replaced without disturbance for the pCO2 electrode itself. The enzyme electrodes are not only useful at the applied point of view but also at the fundamental point of view by allowing a direct measurement of an intra membrane concentration. The influence of

  15. High-Throughput Analysis of Enzyme Activities

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Guoxin [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    High-throughput screening (HTS) techniques have been applied to many research fields nowadays. Robot microarray printing technique and automation microtiter handling technique allows HTS performing in both heterogeneous and homogeneous formats, with minimal sample required for each assay element. In this dissertation, new HTS techniques for enzyme activity analysis were developed. First, patterns of immobilized enzyme on nylon screen were detected by multiplexed capillary system. The imaging resolution is limited by the outer diameter of the capillaries. In order to get finer images, capillaries with smaller outer diameters can be used to form the imaging probe. Application of capillary electrophoresis allows separation of the product from the substrate in the reaction mixture, so that the product doesn't have to have different optical properties with the substrate. UV absorption detection allows almost universal detection for organic molecules. Thus, no modifications of either the substrate or the product molecules are necessary. This technique has the potential to be used in screening of local distribution variations of specific bio-molecules in a tissue or in screening of multiple immobilized catalysts. Another high-throughput screening technique is developed by directly monitoring the light intensity of the immobilized-catalyst surface using a scientific charge-coupled device (CCD). Briefly, the surface of enzyme microarray is focused onto a scientific CCD using an objective lens. By carefully choosing the detection wavelength, generation of product on an enzyme spot can be seen by the CCD. Analyzing the light intensity change over time on an enzyme spot can give information of reaction rate. The same microarray can be used for many times. Thus, high-throughput kinetic studies of hundreds of catalytic reactions are made possible. At last, we studied the fluorescence emission spectra of ADP and obtained the detection limits for ADP under three different

  16. Enzymes/non-enzymes classification model complexity based on composition, sequence, 3D and topological indices.

    Science.gov (United States)

    Munteanu, Cristian Robert; González-Díaz, Humberto; Magalhães, Alexandre L

    2008-09-21

    The huge amount of new proteins that need a fast enzymatic activity characterization creates demands of protein QSAR theoretical models. The protein parameters that can be used for an enzyme/non-enzyme classification includes the simpler indices such as composition, sequence and connectivity, also called topological indices (TIs) and the computationally expensive 3D descriptors. A comparison of the 3D versus lower dimension indices has not been reported with respect to the power of discrimination of proteins according to enzyme action. A set of 966 proteins (enzymes and non-enzymes) whose structural characteristics are provided by PDB/DSSP files was analyzed with Python/Biopython scripts, STATISTICA and Weka. The list of indices includes, but it is not restricted to pure composition indices (residue fractions), DSSP secondary structure protein composition and 3D indices (surface and access). We also used mixed indices such as composition-sequence indices (Chou's pseudo-amino acid compositions or coupling numbers), 3D-composition (surface fractions) and DSSP secondary structure amino acid composition/propensities (obtained with our Prot-2S Web tool). In addition, we extend and test for the first time several classic TIs for the Randic's protein sequence Star graphs using our Sequence to Star Graph (S2SG) Python application. All the indices were processed with general discriminant analysis models (GDA), neural networks (NN) and machine learning (ML) methods and the results are presented versus complexity, average of Shannon's information entropy (Sh) and data/method type. This study compares for the first time all these classes of indices to assess the ratios between model accuracy and indices/model complexity in enzyme/non-enzyme discrimination. The use of different methods and complexity of data shows that one cannot establish a direct relation between the complexity and the accuracy of the model.

  17. Bacterial enzyme biosyntheses inhibition; a tool for ecotoxicity assay ...

    African Journals Online (AJOL)

    hydrocarbon fuels, oil spill dispersants, household detergents, drilling chemicals and crude oils) were examined as a tool for ecotoxicity assay. The enzyme systems were two extracellular inducible enzymes tryptophanase and ß - glucosidase ...

  18. Multi-enzyme catalyzed processes: Next generation biocatalysis

    DEFF Research Database (Denmark)

    Andrade Santacoloma, Paloma de Gracia; Sin, Gürkan; Gernaey, Krist

    2011-01-01

    Biocatalysis has been attracting increasing interest in recent years. Nevertheless, most studies concerning biocatalysis have been carried out using single enzymes (soluble or immobilized). Currently, multiple enzyme mixtures are attractive for the production of many compounds at an industrial...

  19. Spherezymes: A novel structured self-immobilisation enzyme technology

    CSIR Research Space (South Africa)

    Brady, D

    2008-01-31

    Full Text Available Enzymes have found extensive and growing application in the field of chemical organic synthesis and resolution of chiral intermediates. In order to stabilise the enzymes and to facilitate their recovery and recycle, they are frequently immobilised...

  20. Bacterial enzyme biosyntheses inhibition: a tool for ecotoxicity assay ...

    African Journals Online (AJOL)

    hydrocarbon fuels, oil spill dispersants, household detergents, drilling chemicals and crude oils) were examined as a tool for ecotoxicity assay. The enzyme systems were two extracellular inducible enzymes tryptophanase and a - glucosidase ...

  1. Compounds from silicones alter enzyme activity in curing barnacle glue and model enzymes.

    Science.gov (United States)

    Rittschof, Daniel; Orihuela, Beatriz; Harder, Tilmann; Stafslien, Shane; Chisholm, Bret; Dickinson, Gary H

    2011-02-17

    Attachment strength of fouling organisms on silicone coatings is low. We hypothesized that low attachment strength on silicones is, in part, due to the interaction of surface available components with natural glues. Components could alter curing of glues through bulk changes or specifically through altered enzyme activity. GC-MS analysis of silicone coatings showed surface-available siloxanes when the coatings were gently rubbed with a cotton swab for 15 seconds or given a 30 second rinse with methanol. Mixtures of compounds were found on 2 commercial and 8 model silicone coatings. The hypothesis that silicone components alter glue curing enzymes was tested with curing barnacle glue and with commercial enzymes. In our model, barnacle glue curing involves trypsin-like serine protease(s), which activate enzymes and structural proteins, and a transglutaminase which cross-links glue proteins. Transglutaminase activity was significantly altered upon exposure of curing glue from individual barnacles to silicone eluates. Activity of purified trypsin and, to a greater extent, transglutaminase was significantly altered by relevant concentrations of silicone polymer constituents. Surface-associated silicone compounds can disrupt glue curing and alter enzyme properties. Altered curing of natural glues has potential in fouling management.

  2. Mechanism and physiologic significance of the suppression of cholesterol esterification in human interstitial fluid

    Directory of Open Access Journals (Sweden)

    Norman Eric Miller

    2016-07-01

    Full Text Available Cholesterol esterification in high density lipoproteins (HDLs by lecithin:cholesterol acyltransferase (LCAT promotes unesterified cholesterol (UC transfer from red cell membranes to plasma in vitro. However, it does not explain the transfer of UC from most peripheral cells to interstitial fluid in vivo, as HDLs in afferent peripheral lymph are enriched in UC. Having already reported that the endogenous cholesterol esterification rate (ECER in lymph is only five per cent of that in plasma, we have now explored the underlying mechanism. In peripheral lymph from 20 healthy men, LCAT concentration, LCAT activity (assayed using an optimized substrate, and LCAT specific activity averaged respectively 11.8, 10.3, and 84.9 per cent of plasma values. When recombinant human LCAT was added to lymph, the increments in enzyme activity were similar to those when LCAT was added to plasma. Addition of apolipoprotein AI (apo AI, fatty acid-free albumin, Intralipid, or the d<1.006 g/ml plasma fraction had no effect on ECER. During incubation of lymph plus plasma, the ECER was similar to that observed with buffer plus plasma. When lymph was added to heat-inactivated plasma, the ECER was 11-fold greater than with lymph plus buffer. Addition of discoidal proteoliposomes of apo AI and phosphatidycholine (PC to lymph increased ECER ten-fold, while addition of apo AI/PC/UC discs did so by only six-fold. We conclude that the low ECER in lymph is due to a property of the HDLs, seemingly substrate inhibition of LCAT by excess cell-derived UC. This is reversed when lymph enters plasma, consequent upon redistribution of UC from lymph HDLs to plasma lipoproteins.

  3. Industrial applications of enzyme biocatalysis: Current status and future aspects.

    Science.gov (United States)

    Choi, Jung-Min; Han, Sang-Soo; Kim, Hak-Sung

    2015-11-15

    Enzymes are the most proficient catalysts, offering much more competitive processes compared to chemical catalysts. The number of industrial applications for enzymes has exploded in recent years, mainly owing to advances in protein engineering technology and environmental and economic necessities. Herein, we review recent progress in enzyme biocatalysis, and discuss the trends and strategies that are leading to broader industrial enzyme applications. The challenges and opportunities in developing biocatalytic processes are also discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Prediction of novel archaeal enzymes from sequence-derived features

    DEFF Research Database (Denmark)

    Jensen, Lars Juhl; Skovgaard, Marie; Brunak, Søren

    2002-01-01

    The completely sequenced archaeal genomes potentially encode, among their many functionally uncharacterized genes, novel enzymes of biotechnological interest. We have developed a prediction method for detection and classification of enzymes from sequence alone (available at http://www.cbs.dtu.dk/......The completely sequenced archaeal genomes potentially encode, among their many functionally uncharacterized genes, novel enzymes of biotechnological interest. We have developed a prediction method for detection and classification of enzymes from sequence alone (available at http...

  5. Enzyme production by anaerobic fermentation of beet pulp

    Energy Technology Data Exchange (ETDEWEB)

    Buchholz, K.; Arntz, H.J.

    1988-03-01

    The detailed analysis of hydrolysis of beet pulp by anaerobic mixed cultures showed that a wide range of extracellular enzymes can be found. Notably pectinases, pectin lyases, arabanases, galactanases and cellulases are secreted. Under appropriate conditions high levels of enzyme concentrations can be observed. Intermediate accumulation of oligosaccharides makes probable well known mechanisms of enzyme induction and repression. A two stage system with membrane filtration and ultrafiltration allowed for convenient production of concentrated stable enzyme solutions.

  6. Research status and development of application fields in enzyme technology

    Science.gov (United States)

    Ji, Y. B.; Wang, S. W.; Yu, M.; Ru, X.; Wei, C.; Zhu, H. J.; Li, Z. Y.; Zhao, H.; Qiao, A. N.; Guo, S. Z.; Lu, L.

    2018-01-01

    Biological enzymes are catalyzed by living cells, most of which are proteins, and very few are RNA. Biological engineering as a new high-tech has been rapid development, Enzyme manufacturing and application areas are gradually expanding, In this paper, the status and progress of the application of enzyme technology are reviewed by reviewing the literature. and aims to provide reference for the application of enzyme technology and provide scientific basis for its future research and development in new field.

  7. Production of cell wall enzymes in pepper seedlings, inoculated with ...

    African Journals Online (AJOL)

    Pepper seedlings inoculated with arbuscular mycorrhizal AM fungus, Glomus etunicatum, produced cellulase, polygal-acturonase and pectin methylestrase enzymes. The activities of the enzymes increased as the pepper seedlings matured in age, showing that the activity of the enzymes in the seedlings was age mediated.

  8. Influence of high temperature and ethanol on thermostable lignocellulolytic enzymes

    DEFF Research Database (Denmark)

    Skovgaard, Pernille Anastasia; Jørgensen, Henning

    2013-01-01

    % ethanol (w/v)] followed by specific enzyme activity analyses and SDS-PAGE. The thermostable and mesophilic mixture remained active at up to 65 and 55 °C, respectively. When the enzyme mixtures reached their maximum temperature limit, ethanol had a remarkable influence on enzyme activity, e.g., the more...

  9. Effects of bacterial inoculants and an enzyme on the fermentation ...

    African Journals Online (AJOL)

    jannes

    additives (bacterial inoculants, enzymes, etc.) ... sorghum during ensiling, an increase in ethanol content caused by enzyme treatment has led to poor aerobic ..... Food Agric. 60,. 223-228. Stokes, M.R., 1992. Effects of an enzyme mixture, an inoculant and their interaction on silage fermentation and dairy production. J. Dairy ...

  10. Milk clotting and proteolytic activity of enzyme preparation from ...

    African Journals Online (AJOL)

    Some microorganisms have the ability to produce enzymes that could clot milk and used as a substitute for calf rennet. Strains of lactic acid bacteria (LAB) could produce proteolytic enzymes that may have the potential to be used as a source of milk clotting enzyme (MCE). In the present study, LAB isolated from shrimp paste ...

  11. Microbial production of raw starch digesting enzymes | Sun | African ...

    African Journals Online (AJOL)

    Raw starch digesting enzymes refer to enzymes that can act directly on raw starch granules below the gelatinization temperature of starch. With the view of energy-saving, a worldwide interest has been focused on raw starch digesting enzymes in recent years, especially since the oil crisis of 1973. Raw starch digesting ...

  12. Development of the Enzyme-Substrate Interactions Concept Inventory

    Science.gov (United States)

    Bretz, Stacey Lowery; Linenberger, Kimberly J.

    2012-01-01

    Enzyme function is central to student understanding of multiple topics within the biochemistry curriculum. In particular, students must understand how enzymes and substrates interact with one another. This manuscript describes the development of a 15-item Enzyme-Substrate Interactions Concept Inventory (ESICI) that measures student understanding…

  13. Enzymes in Poultry and Swine Nutrition | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The use of enzymes as a feed additive has rapidly expanded during the past decade. Although the economic and social benefits of enzymes have been well established, more research and development are needed if enzymes are to reach their full potential in the industry.

  14. The most stirring technology in future: Cellulase enzyme and ...

    African Journals Online (AJOL)

    Significant advances have been made towards the production and alteration technology of cellulase enzyme. This review simply introduces cellulose and cellulase enzyme, gives a broad overview of the current research status of cellulase enzyme, briefly refers to its applied fields, and lastly summarizes its promising ...

  15. Cross-linked enzyme aggregates (CLEAs) : Stable and recyclable biocatalysts

    NARCIS (Netherlands)

    Sheldon, R.A.

    2007-01-01

    The key to obtaining an optimum performance of an enzyme is often a question of devising an effective method for its immobilization. In the present review, we describe a novel, versatile and effective methodology for enzyme immobilization as CLEAs (cross-linked enzyme aggregates). The method is

  16. Response Of Finisher Broilers To Antibiotic and Enzyme ...

    African Journals Online (AJOL)

    A 28 – day feeding trial was conducted to evaluate the response of finisher broilers to antibiotic (neocloxin) and enzyme (Roxazyme G) supplemented diets. Three experimental diets were formulated such that diet 1 had neither enzyme nor antibiotic supplementation. Diets 2 and 3 contained antibiotic and enzyme ...

  17. A Plain English Map of the Human Glycolysis Enzymes.

    Science.gov (United States)

    Offner, Susan

    1999-01-01

    Presents a plain English map of the gene coding for the glycolysis enzymes in humans to be used as a teaching tool. The map can be used to illustrate that every reaction in a cell requires an enzyme, and that every enzyme is a protein coded for by a gene somewhere on the chromosomes. (WRM)

  18. Investigations in enzyme replacement therapy in lipid storage diseases.

    Science.gov (United States)

    Brady, R O; Pentchev, P G; Gal, A G

    1975-04-01

    Enzyme replacement appears to offer much promise as specific therapeutic procedures for patients with Fabry's disease and Gaucher's disease. However, enzyme replacement in patients with Tay-Sachs disease and other heritable metabolic disorders where the central nervous system is affected will require first the development of effective methods for the delivery of exogenous enzymes to the brain; such methods are not yet available.

  19. [Wound management with enzyme alginogels : Expert consensus].

    Science.gov (United States)

    Strohal, R; Assenheimer, B; Augustin, M; Hämmerle, G; Läuchli, S; Pundt, B; Stern, G; Storck, M; Ulrich, C

    2017-01-01

    The challenges of modern wound management, such as the treatment of chronic wounds and their phase-specific handling, are demanding and require optimally adapted therapeutic measures. The principles of moist wound care as well as an adequate debridement have priority here. To support these necessary measures, different options are available, e.g., a new product group operating across several wound phases. A new treatment principle in modern wound management based on an expert consensus is presented. On the basis of clinical experience reports and published evidence, the current and new principles of wound treatment were discussed in a panel of experts and formulated as a consensus statement. Enzyme alginogels represent a combination of agents that allow phase-specific wound care. They exhibit autolytic, absorbent, and antimicrobial properties and simultaneously cover three components of wound management based on the TIME framework. Thus, according to the experts, they differ from other wound healing products and can be classified in a distinct product group. Clinical studies, as well as clinical experiences, provide evidence for the efficacy of enzyme alginogels. According to the experts, the potential of enzyme alginogels used considering the principles of moist wound care, comprises the three-fold effect (continuous and significantly simplified debridement, maintaining a moist wound environment and antimicrobial effect without cytotoxicity), the ease of use, and the flexible application. In addition, the flexibility of the product class regarding frequency of application, duration of treatment and combinability with secondary dressings, are of economic benefit in the health care sector.

  20. Restriction enzyme-mediated DNA family shuffling.

    Science.gov (United States)

    Behrendorff, James B Y H; Johnston, Wayne A; Gillam, Elizabeth M J

    2014-01-01

    DNA shuffling is an established recombinatorial method that was originally developed to increase the speed of directed evolution experiments beyond what could be accomplished using error-prone PCR alone. To achieve this, mutated copies of a protein-coding sequence are fragmented with DNase I and the fragments are then reassembled in a PCR without primers. The fragments anneal where there is sufficient sequence identity, resulting in full-length variants of the original gene that have inherited mutations from multiple templates. Subsequent studies demonstrated that directed evolution could be further accelerated by shuffling similar native protein-coding sequences from the same gene family, rather than mutated variants of a single gene. Generally at least 65-75 % global identity between parental sequences is required in DNA family shuffling, with recombination mostly occurring at sites with at least five consecutive nucleotides of local identity. Since DNA shuffling was originally developed, many variations on the method have been published. In particular, the use of restriction enzymes in the fragmentation step allows for greater customization of fragment lengths than DNase I digestion and avoids the risk that parental sequences may be over-digested into unusable very small fragments. Restriction enzyme-mediated fragmentation also reduces the occurrence of undigested parental sequences that would otherwise reduce the number of unique variants in the resulting library. In the current chapter, we provide a brief overview of the alternative methods currently available for DNA shuffling as well as a protocol presented here that improves on several previous implementations of restriction enzyme-mediated DNA family shuffling, in particular with regard to purification of DNA fragments for reassembly.

  1. The enzymes of bacterial census and censorship.

    Science.gov (United States)

    Fast, Walter; Tipton, Peter A

    2012-01-01

    N-Acyl-L-homoserine lactones (AHLs) are a major class of quorum-sensing signals used by Gram-negative bacteria to regulate gene expression in a population-dependent manner, thereby enabling group behavior. Enzymes capable of generating and catabolizing AHL signals are of significant interest for the study of microbial ecology and quorum-sensing pathways, for understanding the systems that bacteria have evolved to interact with small-molecule signals, and for their possible use in therapeutic and industrial applications. The recent structural and functional studies reviewed here provide a detailed insight into the chemistry and enzymology of bacterial communication. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Expression of Enzymes that Metabolize Medications

    Science.gov (United States)

    Wotring, Virginia E.; Peters, C. P.

    2012-01-01

    Most pharmaceuticals are metabolized by the liver. Clinically-used medication doses are given with normal liver function in mind. A drug overdose can result if the liver is damaged and removing pharmaceuticals from the circulation at a rate slower than normal. Alternatively, if liver function is elevated and removing drugs from the system more quickly than usual, it would be as if too little drug had been given for effective treatment. Because of the importance of the liver in drug metabolism we want to understand the effects of spaceflight on the enzymes of the liver.

  3. Adsorption of amylase enzyme on ultrafiltration membranes

    DEFF Research Database (Denmark)

    Beier, Søren; Enevoldsen, Ann Dorrit; Kontogeorgis, Georgios

    2007-01-01

    A method to measure the static adsorption on membrane surfaces has been developed and described. The static adsorption of an amylase-F has been measured on two different ultrafiltration membranes, both with a cut-off value of 10 kDa (a PES membrane and the ETNA10PP membrane, which is a surface-mo...... is independent of the membrane type. At higher concentrations of enzyme, concentration polarization effects can not be neglected. Therefore stagnant film theory and the osmotic pressure model can describe the dependency between flux and bulk concentration....

  4. DEGRADATION OF ZEARALENONE BY LACCASE ENZYME

    Directory of Open Access Journals (Sweden)

    IULIANA BANU

    2014-01-01

    Full Text Available The degradation of zearalenone by pure fungal laccase (Trametes versicolor was investigated in this study. In the experiments different activities of laccase and different initial zearalenone concentrations from liquid medium were used. At 0.4 mg∙mL-1 laccase concentration, after 240 min time of incubation, was obtained an 81.7 % reduction of zearalenone from liquid medium. The zearalenone degradation depends on the initial concentration of mycotoxin and on the activity of laccase. The results obtained can contribute to the development of preventative strategies to reduce mycotoxin contamination of food by involving enzymes.

  5. Detection of poliovirus antigen by enzyme immunoassay.

    OpenAIRE

    Ukkonen, P; Huovilainen, A; Hovi, T

    1986-01-01

    A solid-phase enzyme immunoassay (EIA) was developed for the detection of poliovirus antigen. Rabbit and guinea pig antisera for the assay were raised against purified poliovirus type 3/Fin (strain 3/Fin/K) isolated from a fecal specimen from a meningitis patient during an outbreak of poliomyelitis in Finland in 1984. The EIA was highly specific for poliovirus type 3, and it was about 30 times more sensitive for strain 3/Fin/K than for strain 3/Saukett used in the inactivated poliovirus vacci...

  6. Enzyme Promiscuity: Engine of Evolutionary Innovation*

    Science.gov (United States)

    Pandya, Chetanya; Farelli, Jeremiah D.; Dunaway-Mariano, Debra; Allen, Karen N.

    2014-01-01

    Catalytic promiscuity and substrate ambiguity are keys to evolvability, which in turn is pivotal to the successful acquisition of novel biological functions. Action on multiple substrates (substrate ambiguity) can be harnessed for performance of functions in the cell that supersede catalysis of a single metabolite. These functions include proofreading, scavenging of nutrients, removal of antimetabolites, balancing of metabolite pools, and establishing system redundancy. In this review, we present examples of enzymes that perform these cellular roles by leveraging substrate ambiguity and then present the structural features that support both specificity and ambiguity. We focus on the phosphatases of the haloalkanoate dehalogenase superfamily and the thioesterases of the hotdog fold superfamily. PMID:25210039

  7. Dynamic relationships between microbial biomass, respiration, inorganic nutrients and enzyme activities: informing enzyme based decomposition models

    Directory of Open Access Journals (Sweden)

    Daryl L Moorhead

    2013-08-01

    Full Text Available We re-examined data from a recent litter decay study to determine if additional insights could be gained to inform decomposition modeling. Rinkes et al. (2013 conducted 14-day laboratory incubations of sugar maple (Acer saccharum or white oak (Quercus alba leaves, mixed with sand (0.4% organic C content or loam (4.1% organic C. They measured microbial biomass C, carbon dioxide efflux, soil ammonium, nitrate, and phosphate concentrations, and β-glucosidase (BG, β-N-acetyl-glucosaminidase (NAG, and acid phosphatase (AP activities on days 1, 3, and 14. Analyses of relationships among variables yielded different insights than original analyses of individual variables. For example, although respiration rates per g soil were higher for loam than sand, rates per g soil C were actually higher for sand than loam, and rates per g microbial C showed little difference between treatments. Microbial biomass C peaked on day 3 when biomass-specific activities of enzymes were lowest, suggesting uptake of litter C without extracellular hydrolysis. This result refuted a common model assumption that all enzyme production is constitutive and thus proportional to biomass, and/or indicated that part of litter decay is independent of enzyme activity. The length and angle of vectors defined by ratios of enzyme activities (BG/NAG versus BG/AP represent relative microbial investments in C (length, and N and P (angle acquiring enzymes. Shorter lengths on day 3 suggested low C limitation, whereas greater lengths on day 14 suggested an increase in C limitation with decay. The soils and litter in this study generally had stronger P limitation (angles > 45˚. Reductions in vector angles to < 45˚ for sand by day 14 suggested a shift to N limitation. These relational variables inform enzyme-based models, and are usually much less ambiguous when obtained from a single study in which measurements were made on the same samples than when extrapolated from separate studies.

  8. Biophysical tools to monitor enzyme-ligand interactions of enzymes involved in vitamin biosynthesis.

    Science.gov (United States)

    Ciulli, A; Abell, C

    2005-08-01

    Knowledge of biomolecular interactions is of importance to our understanding of biological processes such as enzyme catalysis and inhibition. Biophysical techniques enable sensitive detection and accurate characterization of binding and are therefore powerful tools in enzymology and rational drug design. The applications of NMR spectroscopy and isothermal titration calorimetry to study enzyme-ligand interactions will be discussed. Recent work on ketopantoate reductase, which catalyses an important step on the biosynthetic pathway to vitamin B5, is used to illustrate the potential of this approach.

  9. The enzyme kinetics of the NADP-malic enzyme from tobacco leaves

    Czech Academy of Sciences Publication Activity Database

    Ryšlavá, H.; Doubnerová, V.; Müller, Karel; Baťková, Petra; Schnablová, Renáta; Liberda, J.; Synková, Helena; Čeřovská, Noemi

    2007-01-01

    Roč. 72, č. 10 (2007), s. 1420-1434 ISSN 0010-0765 R&D Projects: GA ČR GA206/03/0310 Grant - others:Grantová agentura Univerzity Karlovy(CZ) 428/2004/B-Ch/PrF Institutional research plan: CEZ:AV0Z50380511 Source of funding: V - iné verejné zdroje ; V - iné verejné zdroje Keywords : oxidoreductases * enzyme kinetics * NADP- malic enzyme * divalent metal ions * Nicotiana tabacum L. Subject RIV: CE - Biochemistry Impact factor: 0.879, year: 2007

  10. Detection of enzyme activity in decontaminated spices of industrial use

    International Nuclear Information System (INIS)

    Müller, R.; Theobald, R.

    1995-01-01

    A range of decontaminated spices of industrial use have been examinated for their enzymes (catalase, peroxidase, amylase, lipase activity). The genuine enzymes remain fully active in irradiated spices, whereas the microbial load is clearly reduced. In contrast steam treated spices no longer demonstrate enzyme activities. Steam treatment offers e.g. black pepper without lipase activity, which can no longer cause fat deterioration. Low microbial load in combination with clearly detectable enzyme activity in spices is an indication for irradiation, whereas, reduced microbial contamination combined with enzyme inactivation indicate steam treatment of raw material [de

  11. IntEnz, the integrated relational enzyme database.

    Science.gov (United States)

    Fleischmann, Astrid; Darsow, Michael; Degtyarenko, Kirill; Fleischmann, Wolfgang; Boyce, Sinéad; Axelsen, Kristian B; Bairoch, Amos; Schomburg, Dietmar; Tipton, Keith F; Apweiler, Rolf

    2004-01-01

    IntEnz is the name for the Integrated relational Enzyme database and is the official version of the Enzyme Nomenclature. The Enzyme Nomenclature comprises recommendations of the Nomenclature Committee of the International Union of Bio chemistry and Molecular Biology (NC-IUBMB) on the nomenclature and classification of enzyme-catalysed reactions. IntEnz is supported by NC-IUBMB and contains enzyme data curated and approved by this committee. The database IntEnz is available at http://www.ebi.ac.uk/intenz.

  12. Enzyme loading dependence of cellulose hydrolysis of sugarcane bagasse

    Directory of Open Access Journals (Sweden)

    Carlos Martín

    2012-01-01

    Full Text Available The enzymatic hydrolysis of steam-pretreated sugarcane bagasse, either delignified or non-delignified, was studied as a function of enzyme loading. Hydrolysis experiments were carried out using five enzyme loadings (2.5 to 20 FPU/g cellulose and the concentration of solids was 2% for both materials. Alkaline delignification improved cellulose hydrolysis by increasing surface area. For both materials, glucose concentrations increased with enzyme loading. On the other hand, enzyme loadings higher than 15 FPU/g did not result in any increase in the initial rate, since the excess of enzyme adsorbed onto the substrate restricted the diffusion process through the structure.

  13. Production of thermostable multiple enzymes from Bacillus amyloliquefaciens KUB29.

    Science.gov (United States)

    Devaraj, Kubendran; Aathika, Salma; Periyasamy, Karthik; Manickam Periyaraman, Premkumar; Palaniyandi, Shanmugam; Subramanian, Sivanesan

    2018-01-16

    A strain of Bacillus amyloliquefaciens KUB29 was identified by 16S ribosomal RNA sequencing (Genbank: MF772779.1). Production of thermostable protease, amylase and lipase were done by the isolated strain. The produced enzymes were partially purified by ammonium precipitation followed by dialysis process. Protease and lipase enzymes are effectively used in bio-oil extraction from proteinaceous sample followed by transesterification to produce methyl ester. Amylase enzyme is widely used in food and laundry industry. The produced enzymes are active at thermophilic condition of 55 °C. Use of these enzymes in biofuel production process will make the process cleaner and greener.

  14. Biotechnological production of vanillin using immobilized enzymes.

    Science.gov (United States)

    Furuya, Toshiki; Kuroiwa, Mari; Kino, Kuniki

    2017-02-10

    Vanillin is an important and popular plant flavor, but the amount of this compound available from plant sources is very limited. Biotechnological methods have high potential for vanillin production as an alternative to extraction from plant sources. Here, we report a new approach using immobilized enzymes for the production of vanillin. The recently discovered oxygenase Cso2 has coenzyme-independent catalytic activity for the conversion of isoeugenol and 4-vinylguaiacol to vanillin. Immobilization of Cso2 on Sepabeads EC-EA anion-exchange carrier conferred enhanced operational stability enabling repetitive use. This immobilized Cso2 catalyst allowed 6.8mg yield of vanillin from isoeugenol through ten reaction cycles at a 1mL scale. The coenzyme-independent decarboxylase Fdc, which has catalytic activity for the conversion of ferulic acid to 4-vinylguaiacol, was also immobilized on Sepabeads EC-EA. We demonstrated that the immobilized Fdc and Cso2 enabled the cascade synthesis of vanillin from ferulic acid via 4-vinylguaiacol with repetitive use of the catalysts. This study is the first example of biotechnological production of vanillin using immobilized enzymes, a process that provides new possibilities for vanillin production. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Degradation of various dyes using Laccase enzyme.

    Science.gov (United States)

    Dhaarani, S; Priya, A K; Rajan, T Vel; Kartic, D Navamani

    2012-10-01

    Disposal of untreated dyeing effluent in water bodies, from textile industries, cause serious environmental and health hazards. The chemical structures of dye molecules are designed to resist fading on exposure to light or chemical attack, and they prove to be quite resistant towards microbial degradation. Therefore, current conventional biological processes may not be able to meet wastewater discharge criteria and reuse. An enzymatic treatment undergoes oxidative cleavage avoiding formation of toxic amines. Laccase is a multi-copper containing protein that catalyzes the oxidation of a wide range of aromatic substrates concomitantly with the reduction of molecular oxygen to water. UV visible spectral analysis of various synthetic dyes was performed in the study and wavelengths of maximum absorbance determined. Laccase enzyme was obtained from the fungi Pleorotus ostreatus. The enzyme showed high efficiency against Malachite Green, Basic Red and Acid Majanta with decolorization capacities of 97%, 94% and 94% respectively. Further, these dyes can be used for optimization of degradation parameters and analysis of degradation products.

  16. Enzymes and Inhibitors in Neonicotinoid Insecticide Metabolism

    Science.gov (United States)

    Shi, Xueyan; Dick, Ryan A.; Ford, Kevin A.; Casida, John E.

    2009-01-01

    Neonicotinoid insecticide metabolism involves considerable substrate specificity and regioselectivity of the relevant CYP450, aldehyde oxidase, and phase II enzymes. Human CYP450 recombinant enzymes carry out the following conversions: CYP3A4, 2C19 and 2B6 for thiamethoxam (TMX) to clothianidin (CLO); 3A4, 2C19 and 2A6 for CLO to desmethyl-CLO; 2C19 for TMX to desmethyl-TMX. Human liver aldehyde oxidase reduces the nitro substituent of CLO to nitroso much more rapidly than that of TMX. Imidacloprid (IMI), CLO and several of their metabolites do not give detectable N-glucuronides but 5-hydroxy-IMI, 4,5-diol-IMI and 4-hydroxy-thiacloprid are converted to O-glucuronides in vitro with mouse liver microsomes and UDP-glucuronic acid or in vivo in mice. Mouse liver cytosol with S-adenosylmethionine converts desmethyl-CLO to CLO but not desmethyl-TMX to TMX. Two organophosphorus CYP450 inhibitors partially block IMI, thiacloprid and CLO metabolism in vivo in mice, elevating the brain and liver levels of the parent compounds while reducing amounts of the hydroxylated metabolites. PMID:19391582

  17. Wood mimetic hydrogel beads for enzyme immobilization.

    Science.gov (United States)

    Park, Saerom; Kim, Sung Hee; Won, Keehoon; Choi, Joon Weon; Kim, Yong Hwan; Kim, Hyung Joo; Yang, Yung-Hun; Lee, Sang Hyun

    2015-01-22

    Wood component-based composite hydrogels have potential applications in biomedical fields owing to their low cost, biodegradability, and biocompatibility. The controllable properties of wood mimetic composites containing three major wood components are useful for enzyme immobilization. Here, lipase from Candida rugosa was entrapped in wood mimetic beads containing cellulose, xylan, and lignin by dissolving wood components with lipase in [Emim][Ac], followed by reconstitution. Lipase entrapped in cellulose/xylan/lignin beads in a 5:3:2 ratio showed the highest activity; this ratio is very similar to that in natural wood. The lipase entrapped in various wood mimetic beads showed increased thermal and pH stability. The half-life times of lipase entrapped in cellulose/alkali lignin hydrogel were 31- and 82-times higher than those of free lipase during incubation under denaturing conditions of high temperature and low pH, respectively. Owing to their biocompatibility, biodegradability, and controllable properties, wood mimetic hydrogel beads can be used to immobilize various enzymes for applications in the biomedical, bioelectronic, and biocatalytic fields. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Flavin-Dependent Enzymes in Cancer Prevention

    Directory of Open Access Journals (Sweden)

    Danuta Wojcieszyńska

    2012-12-01

    Full Text Available Statistical studies have demonstrated that various agents may reduce the risk of cancer’s development. One of them is activity of flavin-dependent enzymes such as flavin-containing monooxygenase (FMOGS-OX1, FAD-dependent 5,10-methylenetetrahydrofolate reductase and flavin-dependent monoamine oxidase. In the last decade, many papers concerning their structure, reaction mechanism and role in the cancer prevention were published. In our work, we provide a more in-depth analysis of flavin-dependent enzymes and their contribution to the cancer prevention. We present the actual knowledge about the glucosinolate synthesized by flavin-containing monooxygenase (FMOGS-OX1 and its role in cancer prevention, discuss the influence of mutations in FAD-dependent 5,10-methylenetetrahydrofolate reductase on the cancer risk, and describe FAD as an important cofactor for the demethylation of histons. We also present our views on the role of riboflavin supplements in the prevention against cancer.

  19. Potential enzyme toxicity of oxytetracycline to catalase

    International Nuclear Information System (INIS)

    Chi Zhenxing; Liu Rutao; Zhang Hao

    2010-01-01

    Oxytetracycline (OTC) is a kind of widely used veterinary drugs. The residue of OTC in the environment is potentially harmful. In the present work, the non-covalent toxic interaction of OTC with catalase was investigated by the fluorescence spectroscopy, UV-vis absorption and circular dichroism (CD) spectroscopy at physiological pH 7.4. OTC can interact with catalase to form a complex mainly by van der Waals' interactions and hydrogen bonds with one binding site. The association constants K were determined to be K 293K = 7.09 x 10 4 L mol -1 and K 311K = 3.31 x 10 4 L mol -1 . The thermodynamic parameters (ΔH o , ΔG o and ΔS o ) of the interaction were calculated. Based on the Foerster theory of non-radiative energy transfer, the distance between bound OTC and the tryptophan residues of catalase was determined to be 6.48 nm. The binding of OTC can result in change of the micro-environment of the tryptophan residues and the secondary structure of catalase. The activity of catalase was also inhibited for the bound OTC. This work establishes a new strategy to probe the enzyme toxicity of veterinary drug residues and is helpful for clarifying the molecular toxic mechanism of OTC in vivo. The established strategy can be used to investigate the potential enzyme toxicity of other small organic pollutants and drugs.

  20. Enzyme Teaching by a Virtual Laboratory

    Directory of Open Access Journals (Sweden)

    J.K. Sugai

    2010-05-01

    Full Text Available Biochemistry learning demands skills to obtaining and interpreting the experimental data. In a classical model of teaching involve student’s hands-on participation. However this model is expensive, not safe and should be carried out in a short and limited time course. With utilization of educational software these disadvantages are overcome, since the virtual activity could be realized at free full access, and is a tool for individual study. The aim of the present work is to present educational software focused on a virtual for undergraduate student of biochemistry courses. The software development was performed with the help of concept maps, ISIS Draw, ADOBE Photoshop and FLASH MX Program applied on the subject salivary amylase. It was possible to present the basic methodologies for study of the kinetic of enzyme. The substrate (starch consumption was determinate by iodine reaction, while the products (reducing sugars formation was evaluated by cupper-alkaline reaction. The protocols of the virtual experiments are present verbally as well as a subtitle. A set of exercises are disposable, which allowed an auto evaluation and a review of the subject. The experimental treatment involved the presentation of this hypermedia for Nutrition and Dentistry/UFSC undergraduate students as a tool for better comprehension of the theme and promoted the understanding of the kinetic of enzyme.

  1. Mechanistic Understanding of Lanthipeptide Biosynthetic Enzymes

    Science.gov (United States)

    2017-01-01

    Lanthipeptides are ribosomally synthesized and post-translationally modified peptides (RiPPs) that display a wide variety of biological activities, from antimicrobial to antiallodynic. Lanthipeptides that display antimicrobial activity are called lantibiotics. The post-translational modification reactions of lanthipeptides include dehydration of Ser and Thr residues to dehydroalanine and dehydrobutyrine, a transformation that is carried out in three unique ways in different classes of lanthipeptides. In a cyclization process, Cys residues then attack the dehydrated residues to generate the lanthionine and methyllanthionine thioether cross-linked amino acids from which lanthipeptides derive their name. The resulting polycyclic peptides have constrained conformations that confer their biological activities. After installation of the characteristic thioether cross-links, tailoring enzymes introduce additional post-translational modifications that are unique to each lanthipeptide and that fine-tune their activities and/or stability. This review focuses on studies published over the past decade that have provided much insight into the mechanisms of the enzymes that carry out the post-translational modifications. PMID:28135077

  2. Pancreatic enzyme products: digesting the changes.

    Science.gov (United States)

    Giuliano, Christopher A; Dehoorne-Smith, Michelle L; Kale-Pradhan, Pramodini B

    2011-05-01

    To review the pharmacology, dosage regimens, efficacy, and safety of currently marketed pancreatic enzyme products (PEPs). Studies were identified by PubMed (1966-January 2011), clinicaltrials.gov, fda.gov, and International Pharmaceutical Abstracts. Search terms included pancreatic enzyme, lipase, Creon, Zenpep, Pancreaze, and exocrine pancreatic insufficiency (EPI). All human studies evaluating the efficacy of currently approved or potential PEPs were reviewed. PEPs are composed of porcine lipase, amylase, and protease and are used in patients with EPI secondary to cystic fibrosis, chronic pancreatitis, and pancreatectomy. In 1938, PEPs were exempted from the Food, Drug, and Cosmetic Act of 1938 and never underwent a formal Food and Drug Administration (FDA) review process. In response to reports of treatment failures during product interchange, the FDA conducted a review of available PEP products. This review found a large variability of response between the unapproved PEP products, which resulted in the FDA requiring approval of all PEP products by April 2010. The 3 delayed-release, enteric-coated PEPs currently approved by the FDA (Creon, Zenpep, and Pancreaze) have demonstrated efficacy and safety in EPI secondary to cystic fibrosis. Creon has also demonstrated safety and efficacy in EPI secondary to chronic pancreatitis and pancreatectomy. Cost difference between the 3 products is minimal. Treatment-related adverse events in clinical studies for all PEPs were less than or similar to those with placebo. At this time, Creon is an appropriate first-line agent, as it has been approved for chronic pancreatitis, pancreatectomy, and cystic fibrosis.

  3. Ionizing radiation effect on enzymes. V

    International Nuclear Information System (INIS)

    Libicky, A.; Fidlerova, J.; Urban, J.

    1981-01-01

    A decrease in proteolytic efficacy of crystalline lyophilized chymotrypsin, crystalline trypsin, and crystalline trypsin free of salts and lyophilized was observed after gamma irradiation, the source being a 60 Co, doses ranging from 1x10 4 to 12x10 4 Gy. Enzyme efficacy was determined with the use of casein as the substrate by the method used in PhBs 3 for the determination of proteolytic efficacy of pancreatin. The results are shown and statistically evaluated in tables and after calculation to the dried substance presented in diagrams. It was shown that after irradiation with a dose of 12x10 4 Gy there was no statistically significant difference between the percentage of residual efficacy of the samples. The comparison of the percentage of residual proteolytic efficacy with the results obtained in the investigation of esterolytic efficacy of the same enzymes indicates that no statistically significant difference can be demonstrated either between the decrease in the proteolytic efficacy and the decrease in the esterolytic efficacy determined with the use of the substrates and methods prescribed for the determination of efficacy of chymotrypsin and trypsin in PhBs 3. (author)

  4. Enzymes- An Existing and Promising Tool of Food Processing Industry.

    Science.gov (United States)

    Ray, Lalitagauri; Pramanik, Sunita; Bera, Debabrata

    2016-01-01

    The enzyme catalyzed process technology has enormous potential in the food sectors as indicated by the recent patents studies. It is very well realized that the adaptation of the enzyme catalyzed process depends on the availability of enzyme in affordable prices. Enzymes may be used in different food sectors like dairy, fruits & vegetable processing, meat tenderization, fish processing, brewery and wine making, starch processing and many other. Commercially only a small number of enzymes are used because of several factors including instability of enzymes during processing and high cost. More and more enzymes for food technology are now derived from specially selected or genetically modified microorganisms grown in industrial scale fermenters. Enzymes with microbial source have commercial advantages of using microbial fermentation rather than animal and plant extraction to produce food enzymes. At present only a relatively small number of enzymes are used commercially in food processing. But the number is increasing day by day and field of application will be expanded more and more in near future. The purpose of this review is to describe the practical applications of enzymes in the field of food processing.

  5. Modification of polymer surfaces to enhance enzyme activity and stability

    DEFF Research Database (Denmark)

    Hoffmann, Christian

    Enzyme immobilization is an important concept for the development of improved biocatalytic processes, primarily through facilitated separation procedures. However, enzyme immobilization usually comes at a price of reduced biocatalytic activity. For this reason, different immobilization methods have...... already been developed, combining the same goal to improve enzyme activity, stability and selectivity. Polymer materials have shown, due to their easy processibility and versatile properties, high potential as enzyme support. However, in order to achieve improved enzyme performance, the combination...... of different factors, such as the nature of the enzyme, the properties of the support, the type of immobilization and the interaction between enzyme and support, has to be taken into consideration. In this thesis, these factors are pursued and addressed by exploiting various types of polymers with focus...

  6. A Theoretical Approach to Engineering a New Enzyme

    International Nuclear Information System (INIS)

    Anderson, Greg; Gomatam, Ravi; Behera, Raghu N.

    2016-01-01

    Density function theory, a subfield of quantum mechanics (QM), in combination with molecular mechanics (MM) has opened the way to engineer new artificial enzymes. Herein, we report theoretical calculations done using QM/MM to examine whether the regioselectivity and rate of chlorination of the enzyme chloroperoxidase can be improved by replacing the vanadium of this enzyme with niobium through dialysis. Our calculations show that a niobium substituted chloroperoxidase will be able to enter the initial steps of the catalytic cycle for chlorination. Although the protonation state of the niobium substituted enzyme is calculated to be different from than that of the natural vanadium substituted enzyme, our calculations show that the catalytic cycle can still proceed forward. Using natural bond orbitals, we analyse the electronic differences between the niobium substituted enzyme and the natural enzyme. We conclude by briefly examining how good of a model QM/MM provides for understanding the mechanism of catalysis of chloroperoxidase. (paper)

  7. Directing filtration to optimize enzyme immobilization in reactive membranes

    DEFF Research Database (Denmark)

    Luo, Jianquan; Marpani, Fauziah; Brites, Rita

    2014-01-01

    In this work, fouling principles in force in ultrafiltration were deployed to understand the role of selected variables-applied pressure (1-3bar), enzyme concentration (0.05-0.2gL-1), pH (5-9) and membrane properties-on fouling-induced enzyme immobilization. The immobilization and subsequent....... High pH during immobilization produced increased permeate flux but declines in conversion rates, likely because of the weak immobilization resulting from strong electrostatic repulsion between enzymes and membrane. The results showed that pore blocking as a fouling mechanism permitted a higher enzyme......, promoted entrapment and hydrogen bonding of enzymes on the membrane, which improved the enzyme stability. This study suggests that a compromise between different fouling/immobilization mechanisms must be found in order to maximize the immobilization performance, both in terms of enzyme loading and also...

  8. Development of a commercial enzymes system for lignocellulosic biomass saccharification

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Manoj

    2012-12-20

    DSM Innovation Inc., in its four year effort was able to evaluate and develop its in-house DSM fungal cellulolytic enzymes system to reach enzyme efficiency mandates set by DoE Biomass program MYPP goals. DSM enzyme cocktail is uniquely active at high temperature and acidic pH, offering many benefits and product differentiation in 2G bioethanol production. Under this project, strain and process development, ratio optimization of enzymes, protein and genetic engineering has led to multitudes of improvement in productivity and efficiency making development of a commercial enzyme system for lignocellulosic biomass saccharification viable. DSM is continuing further improvement by additional biodiversity screening, protein engineering and overexpression of enzymes to continue to further lower the cost of enzymes for saccharification of biomass.

  9. Impact of Bee Venom Enzymes on Diseases and Immune Responses.

    Science.gov (United States)

    Hossen, Md Sakib; Shapla, Ummay Mahfuza; Gan, Siew Hua; Khalil, Md Ibrahim

    2016-12-27

    Bee venom (BV) is used to treat many diseases and exhibits anti-inflammatory, anti-bacterial, antimutagenic, radioprotective, anti-nociceptive immunity promoting, hepatocyte protective and anti-cancer activity. According to the literature, BV contains several enzymes, including phospholipase A2 (PLA2), phospholipase B, hyaluronidase, acid phosphatase and α-glucosidase. Recent studies have also reported the detection of different classes of enzymes in BV, including esterases, proteases and peptidases, protease inhibitors and other important enzymes involved in carbohydrate metabolism. Nevertheless, the physiochemical properties and functions of each enzyme class and their mechanisms remain unclear. Various pharmacotherapeutic effects of some of the BV enzymes have been reported in several studies. At present, ongoing research aims to characterize each enzyme and elucidate their specific biological roles. This review gathers all the current knowledge on BV enzymes and their specific mechanisms in regulating various immune responses and physiological changes to provide a basis for future therapies for various diseases.

  10. Impact of Bee Venom Enzymes on Diseases and Immune Responses

    Directory of Open Access Journals (Sweden)

    Md. Sakib Hossen

    2016-12-01

    Full Text Available Bee venom (BV is used to treat many diseases and exhibits anti-inflammatory, anti-bacterial, antimutagenic, radioprotective, anti-nociceptive immunity promoting, hepatocyte protective and anti-cancer activity. According to the literature, BV contains several enzymes, including phospholipase A2 (PLA2, phospholipase B, hyaluronidase, acid phosphatase and α-glucosidase. Recent studies have also reported the detection of different classes of enzymes in BV, including esterases, proteases and peptidases, protease inhibitors and other important enzymes involved in carbohydrate metabolism. Nevertheless, the physiochemical properties and functions of each enzyme class and their mechanisms remain unclear. Various pharmacotherapeutic effects of some of the BV enzymes have been reported in several studies. At present, ongoing research aims to characterize each enzyme and elucidate their specific biological roles. This review gathers all the current knowledge on BV enzymes and their specific mechanisms in regulating various immune responses and physiological changes to provide a basis for future therapies for various diseases.

  11. Microbial extracellular enzymes in biogeochemical cycling of ecosystems.

    Science.gov (United States)

    Luo, Ling; Meng, Han; Gu, Ji-Dong

    2017-07-15

    Extracellular enzymes, primarily produced by microorganisms, affect ecosystem processes because of their essential roles in degradation, transformation and mineralization of organic matter. Extracellular enzymes involved in the cycling of carbon (C), nitrogen (N) and phosphorus (P) have been widely investigated in many different ecosystems, and several enzymes have been recognized as key components in regulating C storage and nutrient cycling. In this review, it was the first time to summarize the specific extracellular enzymes related to C storage and nutrient cycling for better understanding the important role of microbial extracellular enzymes in biogeochemical cycling of ecosystems. Subsequently, ecoenzymatic stoichiometry - the relative ratio of extracellular enzyme, has been reviewed and further provided a new perspective for understanding biogeochemical cycling of ecosystems. Finally, the new insights of using microbial extracellular enzyme in indicating biogeochemical cycling and then protecting ecosystems have been suggested. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. [Regulation of extramitochondrial malic enzyme gene expression in lipogenic tissues].

    Science.gov (United States)

    Stelmańska, Ewa

    2007-11-06

    Extramitochondrial malic enzyme is widely distributed in mammalian tissues, including humans. The major role of this protein in the liver and white adipose tissue is the production of NADPH required for fatty-acid synthesis. Malic enzyme thus belongs to the family of lipogenic enzymes. Malic enzyme activity is regulated both by gene transcription and mRNA stability. Malic enzyme gene expression is tightly controlled by hormonal (i.e. insulin, glucagon, triiodothyronine) and nutritional conditions. There are many transcription factors which recognize special response elements present in the malic enzyme gene promoter. In this paper some important information about the structure and regulation of malic enzyme gene expression in mammalian lipogenic tissues is presented.

  13. 7 CFR 58.436 - Rennet, pepsin, other milk clotting enzymes and flavor enzymes.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Rennet, pepsin, other milk clotting enzymes and flavor...) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 1946 AND THE EGG PRODUCTS...

  14. Catalase, a remarkable enzyme: targeting the oldest antioxidant enzyme to find a new cancer treatment approach.

    Science.gov (United States)

    Glorieux, Christophe; Calderon, Pedro Buc

    2017-09-26

    This review is centered on the antioxidant enzyme catalase and will present different aspects of this particular protein. Among them: historical discovery, biological functions, types of catalases and recent data with regard to molecular mechanisms regulating its expression. The main goal is to understand the biological consequences of chronic exposure of cells to hydrogen peroxide leading to cellular adaptation. Such issues are of the utmost importance with potential therapeutic extrapolation for various pathologies. Catalase is a key enzyme in the metabolism of H2O2 and reactive nitrogen species, and its expression and localization is markedly altered in tumors. The molecular mechanisms regulating the expression of catalase, the oldest known and first discovered antioxidant enzyme, are not completely elucidated. As cancer cells are characterized by an increased production of reactive oxygen species (ROS) and a rather altered expression of antioxidant enzymes, these characteristics represent an advantage in terms of cell proliferation. Meanwhile, they render cancer cells particularly sensitive to an oxidant insult. In this context, targeting the redox status of cancer cells by modulating catalase expression is emerging as a novel approach to potentiate chemotherapy.

  15. [Interaction between CYP450 enzymes and metabolism of traditional Chinese medicine as well as enzyme activity assay].

    Science.gov (United States)

    Lu, Tu-lin; Su, Lian-lin; Ji, De; Gu, Wei; Mao, Chun-qin

    2015-09-01

    Drugs are exogenous compounds for human bodies, and will be metabolized by many enzymes after administration. CYP450 enzyme, as a major metabolic enzyme, is an important phase I drug metabolizing enzyme. In human bodies, about 75% of drug metabolism is conducted by CYP450 enzymes, and CYP450 enzymes is the key factor for drug interactions between traditional Chinese medicine( TCM) -TCM, TCM-medicine and other drug combination. In order to make clear the interaction between metabolic enzymes and TCM metabolism, we generally chose the enzymatic activity as an evaluation index. That is to say, the enhancement or reduction of CYP450 enzyme activity was used to infer the inducing or inhibitory effect of active ingredients and extracts of traditional Chinese medicine on enzymes. At present, the common method for measuring metabolic enzyme activity is Cocktail probe drugs, and it is the key to select the suitable probe substrates. This is of great significance for study drug's absorption, distribution, metabolism and excretion (ADME) process in organisms. The study focuses on the interaction between TCMs, active ingredients, herbal extracts, cocktail probe substrates as well as CYP450 enzymes, in order to guide future studies.

  16. Targeted quantification of functional enzyme dynamics in environmental samples for microbially mediated biogeochemical processes: Targeted quantification of functional enzyme dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Li, Minjing [School of Environmental Studies, China University of Geosciences, Wuhan 430074 People' s Republic of China; Gao, Yuqian [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Qian, Wei-Jun [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Shi, Liang [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Liu, Yuanyuan [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Nelson, William C. [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Nicora, Carrie D. [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Resch, Charles T. [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Thompson, Christopher [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Yan, Sen [School of Environmental Studies, China University of Geosciences, Wuhan 430074 People' s Republic of China; Fredrickson, James K. [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Zachara, John M. [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Liu, Chongxuan [Pacific Northwest National Laboratory, Richland, WA 99354 USA; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055 People' s Republic of China

    2017-07-13

    Microbially mediated biogeochemical processes are catalyzed by enzymes that control the transformation of carbon, nitrogen, and other elements in environment. The dynamic linkage between enzymes and biogeochemical species transformation has, however, rarely been investigated because of the lack of analytical approaches to efficiently and reliably quantify enzymes and their dynamics in soils and sediments. Herein, we developed a signature peptide-based technique for sensitively quantifying dissimilatory and assimilatory enzymes using nitrate-reducing enzymes in a hyporheic zone sediment as an example. Moreover, the measured changes in enzyme concentration were found to correlate with the nitrate reduction rate in a way different from that inferred from biogeochemical models based on biomass or functional genes as surrogates for functional enzymes. This phenomenon has important implications for understanding and modeling the dynamics of microbial community functions and biogeochemical processes in environments. Our results also demonstrate the importance of enzyme quantification for the identification and interrogation of those biogeochemical processes with low metabolite concentrations as a result of faster enzyme-catalyzed consumption of metabolites than their production. The dynamic enzyme behaviors provide a basis for the development of enzyme-based models to describe the relationship between the microbial community and biogeochemical processes.

  17. Design of immuno-enzymosomes with maximum enzyme targeting capability : effect of the enzyme density on the enzyme targeting capability and cell binding properties

    NARCIS (Netherlands)

    Fonseca, MJ; Haisma, HJ; Klaasen, S; Vingerhoeds, MH; Storm, G

    1999-01-01

    Immuno-enzymosomes have been proposed for the targeting of enzymes to cancer cells to achieve site specific activation of anticancer prodrugs. Previously, we reported that the enzyme beta-glucuronidase (GUS), capable of activating anthracycline-glucuronide prodrugs, can be coupled to the surface of

  18. Lecithin:cholesterol acyltransferase: old friend or foe in atherosclerosis?

    Science.gov (United States)

    Kunnen, Sandra; Van Eck, Miranda

    2012-01-01

    Lecithin:cholesterol acyltransferase (LCAT) is a key enzyme that catalyzes the esterification of free cholesterol in plasma lipoproteins and plays a critical role in high-density lipoprotein (HDL) metabolism. Deficiency leads to accumulation of nascent preβ-HDL due to impaired maturation of HDL particles, whereas enhanced expression is associated with the formation of large, apoE-rich HDL1 particles. In addition to its function in HDL metabolism, LCAT was believed to be an important driving force behind macrophage reverse cholesterol transport (RCT) and, therefore, has been a subject of great interest in cardiovascular research since its discovery in 1962. Although half a century has passed, the importance of LCAT for atheroprotection is still under intense debate. This review provides a comprehensive overview of the insights that have been gained in the past 50 years on the biochemistry of LCAT, the role of LCAT in lipoprotein metabolism and the pathogenesis of atherosclerosis in animal models, and its impact on cardiovascular disease in humans. PMID:22566575

  19. Fermentation and enzyme treatments for sorghum

    Directory of Open Access Journals (Sweden)

    Patrícia Fernanda Schons

    2012-03-01

    Full Text Available Sorghum (Sorghum bicolor Moench is the fifth most produced cereal worldwide. However, some varieties of this cereal contain antinutritional factors, such as tannins and phytate that may form stable complexes with proteins and minerals which decreases digestibility and nutritional value. The present study sought to diminish antinutritional tannins and phytate present in sorghum grains. Three different treatments were studied for that purpose, using enzymes tannase (945 U/Kg sorghum, phytase (2640 U/Kg sorghum and Paecilomyces variotii (1.6 X 10(7 spores/mL; A Tannase, phytase and Paecilomyces variotii, during 5 and 10 days; B An innovative blend made of tanase and phytase for 5 days followed by a Pv increase for 5 more days; C a third treatment where the reversed order of B was used starting with Pv for 5 days and then the blend of tannase and phytase for 5 more days. The results have shown that on average the three treatments were able to reduce total phenols and both hydrolysable and condensed tannins by 40.6, 38.92 and 58.00 %, respectively. Phytase increased the amount of available inorganic phosphorous, on the average by 78.3 %. The most promising results concerning tannins and phytate decreases were obtained by the enzymes combination of tannase and phytase. The three treatments have shown effective on diminishing tannin and phytate contents in sorghum flour which leads us to affirm that the proposed treatments can be used to increase the nutritive value of sorghum grains destined for either animal feeds or human nutrition.

  20. Enzyme based soil stabilization for unpaved road construction

    Directory of Open Access Journals (Sweden)

    Renjith Rintu

    2017-01-01

    Full Text Available Enzymes as soil stabilizers have been successfully used in road construction in several countries for the past 30 years. However, research has shown that the successful application of these enzymes is case specific, emphasizing that enzyme performance is dependent on subgrade soil type, condition and the type of enzyme used as the stabilizer. A universal standard or a tool for road engineers to assess the performance of stabilized unbound pavements using well-established enzymes is not available to date. The research aims to produce a validated assessment tool which can be used to predict strength enhancement within a generalized statistical framework. The objective of the present study is to identify new materials for developing the assessment tool which supports enzyme based stabilization, as well as to identify the correct construction sequence for such new materials. A series of characterization tests were conducted on several soil types obtained from proposed construction sites. Having identified the suitable soil type to mix with the enzyme, a trial road construction has been performed to investigate the efficiency of the enzyme stabilization along with the correct construction sequence. The enzyme stabilization has showed significant improvement of the road performance as was evidenced from the test results which were based on site soil obtained before and after stabilization. The research will substantially benefit the road construction industry by not only replacing traditional construction methods with economical/reliable approaches, but also eliminating site specific tests required in current practice of enzyme based road construction.

  1. Feed enzyme technology: present status and future developments.

    Science.gov (United States)

    Ravindran, Velmurugu; Son, Jang-Ho

    2011-05-01

    Exogenous enzymes are now well accepted as a class of feed additives in diet formulations for poultry and pigs to overcome the negative effects of anti-nutritional factors, and to improve digestion of dietary components and animal performance. An overview of the current status of feed enzyme technology, including the different type of enzymes and modes of action, is provided. Variable response to enzyme supplementation is an important reason limiting the widespread acceptance of feed enzymes. The major reasons contributing to these variable responses are discussed. Main features of the next generation of feed enzymes and the various trends that will drive the future use of enzymes are highlighted. The use of feed enzymes in poultry and pig feed formulations is expected to increase in the future and this will be driven by on-going changes in the world animal production. Aquaculture and ruminant industries are emerging markets for exogenous feed enzymes. The article presents some promising patents on feed enzyme technology.

  2. Regulation of the tryptophan synthetic enzymes in Clostridium butyricum.

    Science.gov (United States)

    Baskerville, E N; Twarog, R

    1972-10-01

    Experiments concerned with the regulation of the tryptophan synthetic enzymes in anaerobes were carried out with a strain of Clostridium butyricum. Enzyme activities for four of the five synthetic reactions were readily detected in wild-type cells grown in minimal medium. The enzymes mediating reactions 3, 4, and 5 were derepressed 4- to 20-fold, and the data suggest that these enzymes are coordinately controlled in this anaerobe. The first enzyme of the pathway, anthranilate synthetase, could be derepressed approximately 90-fold under these conditions, suggesting that this enzyme is semicoordinately controlled. Mutants resistant to 5-methyl tryptophan were isolated, and two of these were selected for further analysis. Both mutants retained high constitutive levels of the tryptophan synthetic enzymes even in the presence of repressing concentrations of tryptophan. The anthranilate synthetase from one mutant was more sensitive to feedback inhibition by tryptophan than the enzyme from wild-type cells. The enzyme from the second mutant was comparatively resistant to feedback inhibition by tryptophan. Neither strain excreted tryptophan into the culture fluid. Tryptophan inhibits anthranilate synthetase from wild-type cells noncompetitively with respect to chorismate and uncompetitively with respect to glutamine. The Michaelis constants calculated for chorismate and glutamine are 7.6 x 10(-5)m and 6.7 x 10(-5)m, respectively. The molecular weights of the enzymes estimated by zonal centrifugation in sucrose and by gel filtration ranged from 24,000 to 89,000. With the possible exception of a tryptophan synthetase complex, there was no evidence for the existence of other enzyme aggregates. The data indicate that tryptophan synthesis is regulated by repression control of the relevant enzymes and by feedback inhibition of anthranilate synthetase. That this enzyme system more closely resembles that found in Bacillus than that found in enteric bacteria is discussed.

  3. Regulation of the Tryptophan Synthetic Enzymes in Clostridium butyricum1

    Science.gov (United States)

    Baskerville, E. N.; Twarog, Robert

    1972-01-01

    Experiments concerned with the regulation of the tryptophan synthetic enzymes in anaerobes were carried out with a strain of Clostridium butyricum. Enzyme activities for four of the five synthetic reactions were readily detected in wild-type cells grown in minimal medium. The enzymes mediating reactions 3, 4, and 5 were derepressed 4- to 20-fold, and the data suggest that these enzymes are coordinately controlled in this anaerobe. The first enzyme of the pathway, anthranilate synthetase, could be derepressed approximately 90-fold under these conditions, suggesting that this enzyme is semicoordinately controlled. Mutants resistant to 5-methyl tryptophan were isolated, and two of these were selected for further analysis. Both mutants retained high constitutive levels of the tryptophan synthetic enzymes even in the presence of repressing concentrations of tryptophan. The anthranilate synthetase from one mutant was more sensitive to feedback inhibition by tryptophan than the enzyme from wild-type cells. The enzyme from the second mutant was comparatively resistant to feedback inhibition by tryptophan. Neither strain excreted tryptophan into the culture fluid. Tryptophan inhibits anthranilate synthetase from wild-type cells noncompetitively with respect to chorismate and uncompetitively with respect to glutamine. The Michaelis constants calculated for chorismate and glutamine are 7.6 × 10−5m and 6.7 × 10−5m, respectively. The molecular weights of the enzymes estimated by zonal centrifugation in sucrose and by gel filtration ranged from 24,000 to 89,000. With the possible exception of a tryptophan synthetase complex, there was no evidence for the existence of other enzyme aggregates. The data indicate that tryptophan synthesis is regulated by repression control of the relevant enzymes and by feedback inhibition of anthranilate synthetase. That this enzyme system more closely resembles that found in Bacillus than that found in enteric bacteria is discussed. PMID

  4. On the Temperature Dependence of Enzyme-Catalyzed Rates.

    Science.gov (United States)

    Arcus, Vickery L; Prentice, Erica J; Hobbs, Joanne K; Mulholland, Adrian J; Van der Kamp, Marc W; Pudney, Christopher R; Parker, Emily J; Schipper, Louis A

    2016-03-29

    One of the critical variables that determine the rate of any reaction is temperature. For biological systems, the effects of temperature are convoluted with myriad (and often opposing) contributions from enzyme catalysis, protein stability, and temperature-dependent regulation, for example. We have coined the phrase "macromolecular rate theory (MMRT)" to describe the temperature dependence of enzyme-catalyzed rates independent of stability or regulatory processes. Central to MMRT is the observation that enzyme-catalyzed reactions occur with significant values of ΔCp(‡) that are in general negative. That is, the heat capacity (Cp) for the enzyme-substrate complex is generally larger than the Cp for the enzyme-transition state complex. Consistent with a classical description of enzyme catalysis, a negative value for ΔCp(‡) is the result of the enzyme binding relatively weakly to the substrate and very tightly to the transition state. This observation of negative ΔCp(‡) has important implications for the temperature dependence of enzyme-catalyzed rates. Here, we lay out the fundamentals of MMRT. We present a number of hypotheses that arise directly from MMRT including a theoretical justification for the large size of enzymes and the basis for their optimum temperatures. We rationalize the behavior of psychrophilic enzymes and describe a "psychrophilic trap" which places limits on the evolution of enzymes in low temperature environments. One of the defining characteristics of biology is catalysis of chemical reactions by enzymes, and enzymes drive much of metabolism. Therefore, we also expect to see characteristics of MMRT at the level of cells, whole organisms, and even ecosystems.

  5. Cold labelled substrate and estimation of cholesterol esterification rate in lecithin cholesterol acyltransferase radioassay

    International Nuclear Information System (INIS)

    Dobiasova, M.; Schuetzova, M.

    1986-01-01

    A new method is described of cold labelling of blood serum, plasma and body fluids containing lecithin cholesterol acyltransferase (LCAT) and/or lipoproteins for radioassay to assess the cholesterol esterification rate. The method uses the principle of transfer, in refrigeration conditions, of 14 C-cholesterol from filter paper discs to the fluids. The preparation of the disc guarantees homogeneous labelling and high stability. The use of the labelling disc was shown to be reliable, easy and fast and suitable for accurate assessment of LCAT reaction, applicable in the widest possible enzyme concentration range. It was also, found suited for the measurement of the esterification rate of rabbit intraocular fluid which is a medium with the lowest contents of the substrate and LCAT. (L.O.)

  6. Enzyme encapsulated hollow silica nanospheres for intracellular biocatalysis.

    Science.gov (United States)

    Chang, Feng-Peng; Hung, Yann; Chang, Jen-Hsuan; Lin, Chen-Han; Mou, Chung-Yuan

    2014-05-14

    Hollow silica nanospheres (HSN) with low densities, large interior spaces and permeable silica shells are suitable for loading enzymes in the cavity to carry out intracellular biocatalysis. The porous shell can protect the encapsulated enzymes against proteolysis and attenuate immunological response. We developed a microemulsion-templating method for confining horseradish peroxidase (HRP) in the cavity of HSN. This simple one-pot enzyme encapsulation method allows entrapping of the enzyme, which retains high catalytic activity. Compared with HRP supported on solid silica spheres, HRP@HSN with thin porous silica shells displayed better enzyme activity. The small HRP@HSN (∼50 nm in diameter), giving satisfactory catalytic activity, can act as an intracellular catalyst for the oxidation of the prodrug indole-3-acetic acid to produce toxic free radicals for killing cancer cells. We envision this kind of hollow nanosystem could encapsulate multiple enzymes or other synergistic drugs and function as therapeutic nanoreactors.

  7. Enzymes of the tryptophan pathway in Acinetobacter calco-aceticus.

    Science.gov (United States)

    Twarog, R; Liggins, G L

    1970-10-01

    All enzymes of the tryptophan synthetic pathway were detectable in extracts from wild-type Acinetobacter calco-aceticus. The levels of these enzymes were determined in extracts from a number of auxotrophs grown under limiting tryptophan. In each case only anthranilate synthetase was found to be present in increased amounts, whereas the specific activities of the remaining enzymes remained unchanged and unaffected by the tryptophan concentration. Derepression of anthranilate synthetase was found to occur as the concentration of tryptophan became limiting. Anthranilate synthetase and phosphoribosyl transferase activities are both feedback-inhibited by tryptophan. Molecular weight determination carried out by gel filtration and zonal centrifugation in sucrose revealed that all the enzymes are less than 100,000, and no molecular aggregates of these enzymes were detected. The data indicate that tryptophan synthesis in Acinetobacter is regulated both by feedback inhibition of the first two enzymes of the pathway and by repression control of anthranilate synthetase.

  8. Substrate-driven chemotactic assembly in an enzyme cascade

    Science.gov (United States)

    Zhao, Xi; Palacci, Henri; Yadav, Vinita; Spiering, Michelle M.; Gilson, Michael K.; Butler, Peter J.; Hess, Henry; Benkovic, Stephen J.; Sen, Ayusman

    2018-03-01

    Enzymatic catalysis is essential to cell survival. In many instances, enzymes that participate in reaction cascades have been shown to assemble into metabolons in response to the presence of the substrate for the first enzyme. However, what triggers metabolon formation has remained an open question. Through a combination of theory and experiments, we show that enzymes in a cascade can assemble via chemotaxis. We apply microfluidic and fluorescent spectroscopy techniques to study the coordinated movement of the first four enzymes of the glycolysis cascade: hexokinase, phosphoglucose isomerase, phosphofructokinase and aldolase. We show that each enzyme independently follows its own specific substrate gradient, which in turn is produced by the preceding enzymatic reaction. Furthermore, we find that the chemotactic assembly of enzymes occurs even under cytosolic crowding conditions.

  9. Near universal support for covalent immobilisation of enzymes for biotechnology

    International Nuclear Information System (INIS)

    Elnashar, M.M.; Millner, P.A.; Gibson, T.D.

    2005-01-01

    Carrageenan [1], natural polymer, has been modified to be used as a universal/near universal support to immobilise enzymes, where the gel remained stable at 70 degree C for 24 h at a wide range of buffers and ph s and its mechanical strength was 400% greater than the unmodified gel. The new matrix successfully immobilised covalently eight commercially used enzymes including hydrolases, Upases, oxidoreductases, proteases and dehydrogenases. It also acted as a self buffering system in case of hydrolases and stopped enzyme's product inhibition. The apparent Km values of immobilised enzymes were found in many cases to be much less than those of the free enzymes. Another interesting correlation was observed where the great lowering of the apparent Km with immobilised enzymes was directly proportional to the substrate molecular weight. In economic terms, the new matrix is at least two orders of magnitude cheaper than supports such as Eupergit C

  10. Marine Microbiological Enzymes: Studies with Multiple Strategies and Prospects

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2016-09-01

    Full Text Available Marine microorganisms produce a series of promising enzymes that have been widely used or are potentially valuable for our daily life. Both classic and newly developed biochemistry technologies have been broadly used to study marine and terrestrial microbiological enzymes. In this brief review, we provide a research update and prospects regarding regulatory mechanisms and related strategies of acyl-homoserine lactones (AHL lactonase, which is an important but largely unexplored enzyme. We also detail the status and catalytic mechanism of the main types of polysaccharide-degrading enzymes that broadly exist among marine microorganisms but have been poorly explored. In order to facilitate understanding, the regulatory and synthetic biology strategies of terrestrial microorganisms are also mentioned in comparison. We anticipate that this review will provide an outline of multiple strategies for promising marine microbial enzymes and open new avenues for the exploration, engineering and application of various enzymes.

  11. 14. Enzymes as Biocatalysts for Lipid-based Bioproducts Processing

    DEFF Research Database (Denmark)

    Cheong, Ling-Zhi; Guo, Zheng; Fedosov, Sergey

    2012-01-01

    Bioproducts are materials, chemicals and energy derived from renewable biological resources such as agriculture, forestry, and biologically-derived wastes. To date, the use of enzymes as biocatalysts for lipid-based bioproducts processing has shown marked increase. This is mainly due to the fact...... that cost benefit derived from enzymatic processing such as enzyme specificity, higher product purity and lesser or none toxic waste disposal has surpassed the cost of biocatalysts itself. This chapter provided insights into distinct enzymes characteristics essential in industrial processing especially...... enzymes kinetics. Understanding of enzyme kinetics is important especially in designing efficient reaction set-ups including type of bioreactors, reaction conditions and reusability of biocatalysts to ensure efficient running cost. A brief review of state-of-the-art in industrial applications of enzymes...

  12. Internal Diffusion-Controlled Enzyme Reaction: The Acetylcholinesterase Kinetics.

    Science.gov (United States)

    Lee, Sangyun; Kim, Ji-Hyun; Lee, Sangyoub

    2012-02-14

    Acetylcholinesterase is an enzyme with a very high turnover rate; it quenches the neurotransmitter, acetylcholine, at the synapse. We have investigated the kinetics of the enzyme reaction by calculating the diffusion rate of the substrate molecule along an active site channel inside the enzyme from atomic-level molecular dynamics simulations. In contrast to the previous works, we have found that the internal substrate diffusion is the determinant of the acetylcholinesterase kinetics in the low substrate concentration limit. Our estimate of the overall bimolecular reaction rate constant for the enzyme is in good agreement with the experimental data. In addition, the present calculation provides a reasonable explanation for the effects of the ionic strength of solution and the mutation of surface residues of the enzyme. The study suggests that internal diffusion of the substrate could be a key factor in understanding the kinetics of enzymes of similar characteristics.

  13. Molecular Modeling of Enzyme Dynamics Towards Understanding Solvent Effects

    DEFF Research Database (Denmark)

    Wedberg, Nils Hejle Rasmus Ingemar

    ) in water and organic solvents. The effects of solvent on structural and dynamical enzyme properties are studied, and special attention is given to how enzyme properties in organic solvents are affected by the hydration level, which is shown to be related to the water activity. In experimental studies...... of enzyme kinetics in non-aqueous media, it has been a fruitful approach to fix the enzyme hydration level by controlling the water activity of the medium. In this work, a protocol is therefore developed for determining the water activity in non-aqueous protein simulations. The method relies on determining......This thesis describes the development of a molecular simulation methodology to study properties of enzymes in non-aqueous media at fixed thermodynamic water activities. The methodology is applied in a molecular dynamics study of the industrially important enzyme Candida antarctica lipase B (CALB...

  14. The effectiveness of dietary sunflower meal and exogenous enzyme on growth, digestive enzymes, carcass traits, and blood chemistry of broilers.

    Science.gov (United States)

    Alagawany, Mahmoud; Attia, Adel I; Ibrahim, Zenat A; Mahmoud, Reda A; El-Sayed, Sabry A

    2017-05-01

    High costs of conventional protein feed sources including soybean meal (SBM) generated the need for finding other alternatives. Thus, the present study was designed to evaluate the impact of graded replacements of SBM by sunflower seed meal (SFM) with or without enzyme supplementation on growth performance, digestive enzymes, carcass traits, and blood profile of broiler chickens. A total of 240 unsexed 1-week-old broiler chicks (Hubbard) were randomly divided into eight treatment groups of 30 chicks each in five replicates each of six chicks in a factorial design (4 × 2) arrangement, including four levels of SFM (0, 25, 50, and 75% replacing SBM) and two levels of enzyme (0- or 0.1-g/kg diet) supplementation. Performance traits including feed conversion ratio, body weight, and weight gain were significantly (P enzyme supplementation in broiler diet during the experiment. However, feed intake of broiler chicks was decreased with enzyme supplementation (P enzymes (protease and amylase) were significantly (P enzyme inclusion in diets, respectively. The activities of protease and amylase were improved with SFM diet supplemented with 0.1 g/kg enzyme in comparison with those with the un-supplemented diet. The evaluated carcass traits were not statistically (P > 0.05) influenced by feeding SFM meal or enzyme addition. Biochemical blood parameters were significantly (P enzyme, or their interaction in broiler diets, except for globulin that was not affected by dietary enzyme. It is concluded that increasing SFM level in the diet up to 50% replacing SBM with the supplementation of enzyme improved the growth performance and enhanced positively carcass traits as well as the activity of digestive enzymes in broiler chickens.

  15. Detection of Extracellular Enzyme Activities in Ganoderma neo-japonicum

    OpenAIRE

    Jo, Woo-Sik; Park, Ha-Na; Cho, Doo-Hyun; Yoo, Young-Bok; Park, Seung-Chun

    2011-01-01

    The ability of Ganoderma to produce extracellular enzymes, including β-glucosidase, cellulase, avicelase, pectinase, xylanase, protease, amylase, and ligninase was tested in chromogenic media. β-glucosidase showed the highest activity, among the eight tested enzymes. In particular, Ganoderma neo-japonicum showed significantly stronger activity for β-glucosidase than that of the other enzymes. Two Ganoderma lucidum isolates showed moderate activity for avicelase; however, Ganoderma neo-japonic...

  16. Methanol dehydrogenase biofuel cells and enzyme-based electrodes

    OpenAIRE

    Aston, W. J.

    1984-01-01

    This thesis describes the linking of enzymes to electrodes and their application in biofuel cells and as analytical devices. Methanol dehydrogenase, an NAD independent enzyme was purified by two phase aqueous partition. The enzyme incorporated into a biofuel cell was capable of producing a current in the presence of either a soluble or insoluble mediator. Optimisation of the current was carried out and a variety of alternative membranes, mediators and electrodes were investigated for possi...

  17. Selection and production of insoluble xylan hydrolyzing enzyme by ...

    African Journals Online (AJOL)

    Jane

    2011-03-07

    Mar 7, 2011 ... The effect of pH and temperature on the enzyme activity and stability of crude enzyme produced by T. lanuginosus THKU 56 were investigated. To study the effect of pH on activity, the reaction mixture of 0.5 ml of enzyme and 0.5 ml of 1% insoluble oat spelt xylan in 50 mM buffers with various pH values ...

  18. Enzymes: An integrated view of structure, dynamics and function

    Directory of Open Access Journals (Sweden)

    Agarwal Pratul K

    2006-01-01

    Full Text Available Abstract Microbes utilize enzymes to perform a variety of functions. Enzymes are biocatalysts working as highly efficient machines at the molecular level. In the past, enzymes have been viewed as static entities and their function has been explained on the basis of direct structural interactions between the enzyme and the substrate. A variety of experimental and computational techniques, however, continue to reveal that proteins are dynamically active machines, with various parts exhibiting internal motions at a wide range of time-scales. Increasing evidence also indicates that these internal protein motions play a role in promoting protein function such as enzyme catalysis. Moreover, the thermodynamical fluctuations of the solvent, surrounding the protein, have an impact on internal protein motions and, therefore, on enzyme function. In this review, we describe recent biochemical and theoretical investigations of internal protein dynamics linked to enzyme catalysis. In the enzyme cyclophilin A, investigations have lead to the discovery of a network of protein vibrations promoting catalysis. Cyclophilin A catalyzes peptidyl-prolyl cis/trans isomerization in a variety of peptide and protein substrates. Recent studies of cyclophilin A are discussed in detail and other enzymes (dihydrofolate reductase and liver alcohol dehydrogenase where similar discoveries have been reported are also briefly discussed. The detailed characterization of the discovered networks indicates that protein dynamics plays a role in rate-enhancement achieved by enzymes. An integrated view of enzyme structure, dynamics and function have wide implications in understanding allosteric and co-operative effects, as well as protein engineering of more efficient enzymes and novel drug design.

  19. Aptitude de trois souches de moisissures à produire des enzymes ...

    African Journals Online (AJOL)

    Les enzymes fongiques restent toujours les outils clés de la biotechnologie et reflètent de plus en plus l'importance et le rôle infini des moisissures dans les différentes applications alimentaires. Parmi ces enzymes, les lipases, les phytases et les tannases sont perçues comme étant des enzymes importantes en industrie.

  20. Mechanistic insights into the regulation of metabolic enzymes by acetylation

    Science.gov (United States)

    2012-01-01

    The activity of metabolic enzymes is controlled by three principle levels: the amount of enzyme, the catalytic activity, and the accessibility of substrates. Reversible lysine acetylation is emerging as a major regulatory mechanism in metabolism that is involved in all three levels of controlling metabolic enzymes and is altered frequently in human diseases. Acetylation rivals other common posttranslational modifications in cell regulation not only in the number of substrates it modifies, but also the variety of regulatory mechanisms it facilitates. PMID:22826120

  1. Enzymes in Poultry and Swine Nutrition | CRDI - Centre de ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    L'utilisation d'enzymes comme additifs alimentaires pour animaux a pris une expansion rapide au cours de la dernière décennie. Même si les avantages économiques et sociaux des enzymes sont bien établis, il faut pousser les travaux de recherche et de développement si l'on veut que les enzymes réalisent leur plein ...

  2. Enzymes in Poultry and Swine Nutrition | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    L'utilisation d'enzymes comme additifs alimentaires pour animaux a pris une expansion rapide au cours de la dernière décennie. Même si les avantages économiques et sociaux des enzymes sont bien établis, il faut pousser les travaux de recherche et de développement si l'on veut que les enzymes réalisent leur plein ...

  3. ORENZA: a web resource for studying ORphan ENZyme activities

    Directory of Open Access Journals (Sweden)

    Labedan Bernard

    2006-10-01

    Full Text Available Abstract Background Despite the current availability of several hundreds of thousands of amino acid sequences, more than 36% of the enzyme activities (EC numbers defined by the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology (NC-IUBMB are not associated with any amino acid sequence in major public databases. This wide gap separating knowledge of biochemical function and sequence information is found for nearly all classes of enzymes. Thus, there is an urgent need to explore these sequence-less EC numbers, in order to progressively close this gap. Description We designed ORENZA, a PostgreSQL database of ORphan ENZyme Activities, to collate information about the EC numbers defined by the NC-IUBMB with specific emphasis on orphan enzyme activities. Complete lists of all EC numbers and of orphan EC numbers are available and will be periodically updated. ORENZA allows one to browse the complete list of EC numbers or the subset associated with orphan enzymes or to query a specific EC number, an enzyme name or a species name for those interested in particular organisms. It is possible to search ORENZA for the different biochemical properties of the defined enzymes, the metabolic pathways in which they participate, the taxonomic data of the organisms whose genomes encode them, and many other features. The association of an enzyme activity with an amino acid sequence is clearly underlined, making it easy to identify at once the orphan enzyme activities. Interactive publishing of suggestions by the community would provide expert evidence for re-annotation of orphan EC numbers in public databases. Conclusion ORENZA is a Web resource designed to progressively bridge the unwanted gap between function (enzyme activities and sequence (dataset present in public databases. ORENZA should increase interactions between communities of biochemists and of genomicists. This is expected to reduce the number of orphan enzyme

  4. Hierarchically Nanoporous Bioactive Glasses for High Efficiency Immobilization of Enzymes

    DEFF Research Database (Denmark)

    He, W.; Min, D.D.; Zhang, X.D.

    2014-01-01

    Bioactive glasses with hierarchical nanoporosity and structures have been heavily involved in immobilization of enzymes. Because of meticulous design and ingenious hierarchical nanostructuration of porosities from yeast cell biotemplates, hierarchically nanostructured porous bioactive glasses can...... and products of catalytic reactions can freely diffuse through open mesopores (2–40 nm). The formation mechanism of hierarchically structured porous bioactive glasses, the immobilization mechanism of enzyme and the catalysis mechanism of immobilized enzyme are then discussed. The novel nanostructure...

  5. Spatial distribution of enzyme activities in the rhizosphere

    Science.gov (United States)

    Razavi, Bahar S.; Zarebanadkouki, Mohsen; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2015-04-01

    The rhizosphere, the tiny zone of soil surrounding roots, certainly represents one of the most dynamic habitat and interfaces on Earth. Activities of enzymes produced by both plant roots and microbes are the primary biological drivers of organic matter decomposition and nutrient cycling. That is why there is an urgent need in spatially explicit methods for the determination of the rhizosphere extension and enzyme distribution. Recently, zymography as a new technique based on diffusion of enzymes through the 1 mm gel plate for analysis has been introduced (Spohn & Kuzyakov, 2013). We developed the zymography technique to visualize the enzyme activities with a higher spatial resolution. For the first time, we aimed at quantitative imaging of enzyme activities as a function of distance from the root tip and the root surface in the soil. We visualized the two dimensional distribution of the activity of three enzymes: β-glucosidase, phosphatase and leucine amino peptidase in the rhizosphere of maize using fluorogenically labelled substrates. Spatial-resolution of fluorescent images was improved by direct application of a substrate saturated membrane to the soil-root system. The newly-developed direct zymography visualized heterogeneity of enzyme activities along the roots. The activity of all enzymes was the highest at the apical parts of individual roots. Across the roots, the enzyme activities were higher at immediate vicinity of the roots (1.5 mm) and gradually decreased towards the bulk soil. Spatial patterns of enzyme activities as a function of distance from the root surface were enzyme specific, with highest extension for phosphatase. We conclude that improved zymography is promising in situ technique to analyze, visualize and quantify spatial distribution of enzyme activities in the rhizosphere hotspots. References Spohn, M., Kuzyakov, Y., 2013. Phosphorus mineralization can be driven by microbial need for carbon. Soil Biology & Biochemistry 61: 69-75

  6. Spherezymes: A novel structured self-immobilisation enzyme technology

    Directory of Open Access Journals (Sweden)

    Arumugam Cherise

    2008-01-01

    Full Text Available Abstract Background Enzymes have found extensive and growing application in the field of chemical organic synthesis and resolution of chiral intermediates. In order to stabilise the enzymes and to facilitate their recovery and recycle, they are frequently immobilised. However, immobilisation onto solid supports greatly reduces the volumetric and specific activity of the biocatalysts. An alternative is to form self-immobilised enzyme particles. Results Through addition of protein cross-linking agents to a water-in-oil emulsion of an aqueous enzyme solution, structured self-immobilised spherical enzyme particles of Pseudomonas fluorescens lipase were formed. The particles could be recovered from the emulsion, and activity in aqueous and organic solvents was successfully demonstrated. Preliminary data indicates that the lipase tended to collect at the interface. Conclusion The immobilised particles provide a number of advantages. The individual spherical particles had a diameter of between 0.5–10 μm, but tended to form aggregates with an average particle volume distribution of 100 μm. The size could be controlled through addition of surfactant and variations in protein concentration. The particles were robust enough to be recovered by centrifugation and filtration, and to be recycled for further reactions. They present lipase enzymes with the active sites selectively orientated towards the exterior of the particle. Co-immobilisation with other enzymes, or other proteins such as albumin, was also demonstrated. Moreover, higher activity for small ester molecules could be achieved by the immobilised enzyme particles than for free enzyme, presumably because the lipase conformation required for catalysis had been locked in place during immobilisation. The immobilised enzymes also demonstrated superior activity in organic solvent compared to the original free enzyme. This type of self-immobilised enzyme particle has been named spherezymes.

  7. Enzymic liquefaction and saccharification of agricultural biomass. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Beldman, G.; Searle-Van Leeuwen, M.J.F.; Voragen, A.G.J.; Rombouts, F.M.; Pilnik, W.

    1985-01-01

    The aim of this project was to study the application of polysaccharide degrading enzymes (cellulases, hemicellulases, pectinases) in the conversion of agricultural and horticultural raw materials, surpluses and wastes to fermentable sugar solutions. Several aspects of such a process had to be investigated. In order to select optimal enzyme combinations, the polysaccharide composition of the raw materials had to be studied. Commercial enzyme preparations had to be screened on their liquefying and saccharifying capability. We had to study optimal reaction conditions of these enzymes such as pH, temperature and reactor design as well as the effect of pretreatment of the raw materials on enzyme action. Ligno-cellulosic materials like wood chips and tomato plant waste gave low sugar yields, when treated with enzymes alone. Extrusion of wood chips in a single screw extruder at 170/sup 0/C gave a 5 fold increase of its enzymic digestibility. The same pretreatment on tomato plant waste gave less satisfactory results. Preliminary experiments were carried out on the improvement of the solid phase fermentation of sugar beets. Addition of pectolytic and cellulolytic enzymes to the mash gave a liquid product, faster fermentation and more ethanol. The cellulase preparation Maxazyme was studied into more detail by fractionation and characterization of the different endoglucanases, exoglucanases and ..beta..-glucosidases. Binding of the individual enzymes to crystalline cellulose was studied, as well as the endoglucanase/exoglucanase ratio for maximum synergism between the two enzymes. From experiments with the original enzyme preparation Maxazyme Cl, enriched with the purified enzymes, we concluded that a harmoniously composed mixture is needed to obtain maximal cellulose hydrolysis.

  8. [Application of enzymes in pulp and paper industry].

    Science.gov (United States)

    Lin, Ying

    2014-01-01

    The application of enzymes has a high potential in the pulp and paper industry to improve the economics of the paper production process and to achieve, at the same time, a reduced environmental burden. Specific enzymes contribute to reduce the amount of chemicals, water and energy in various processes. This review is aimed at presenting the latest progresses of applying enzymes in bio-pulping, bio-bleaching, bio-deinking, enzymatic control of pitch and enzymatic modification of fibers.

  9. ORENZA: a web resource for studying ORphan ENZyme activities.

    Science.gov (United States)

    Lespinet, Olivier; Labedan, Bernard

    2006-10-06

    Despite the current availability of several hundreds of thousands of amino acid sequences, more than 36% of the enzyme activities (EC numbers) defined by the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology (NC-IUBMB) are not associated with any amino acid sequence in major public databases. This wide gap separating knowledge of biochemical function and sequence information is found for nearly all classes of enzymes. Thus, there is an urgent need to explore these sequence-less EC numbers, in order to progressively close this gap. We designed ORENZA, a PostgreSQL database of ORphan ENZyme Activities, to collate information about the EC numbers defined by the NC-IUBMB with specific emphasis on orphan enzyme activities. Complete lists of all EC numbers and of orphan EC numbers are available and will be periodically updated. ORENZA allows one to browse the complete list of EC numbers or the subset associated with orphan enzymes or to query a specific EC number, an enzyme name or a species name for those interested in particular organisms. It is possible to search ORENZA for the different biochemical properties of the defined enzymes, the metabolic pathways in which they participate, the taxonomic data of the organisms whose genomes encode them, and many other features. The association of an enzyme activity with an amino acid sequence is clearly underlined, making it easy to identify at once the orphan enzyme activities. Interactive publishing of suggestions by the community would provide expert evidence for re-annotation of orphan EC numbers in public databases. ORENZA is a Web resource designed to progressively bridge the unwanted gap between function (enzyme activities) and sequence (dataset present in public databases). ORENZA should increase interactions between communities of biochemists and of genomicists. This is expected to reduce the number of orphan enzyme activities by allocating gene sequences to the relevant enzymes.

  10. Not different, Just Better: The Adaptive Evolution of an Enzyme

    Science.gov (United States)

    2015-12-20

    Our program provides a uniquely detailed functional understanding of how evolution by natural selection occurs at the molecular level. Many studies...different, just better: the adaptive evolution of a glycolytic enzyme. Queenstown, New Zealand: Queenstown Molecular Biology Conference, Enzyme Engineering... evolution experiment. This program was aimed at uncovering the molecular basis for a series of adaptive mutations in a key allosteric enzyme. We chose the

  11. Ketone Body Metabolic Enzyme OXCT1 Regulates Prostate Cancer Chemoresistance

    Science.gov (United States)

    2015-12-01

    AWARD NUMBER: W81XWH-13-1-0314 TITLE: Ketone Body Metabolic Enzyme OXCT1 Regulates Prostate Cancer Chemoresistance PRINCIPAL INVESTIGATOR...Sep 2015 4. TITLE AND SUBTITLE Ketone Body Metabolic Enzyme OXCT1 Regulates Prostate 5a. CONTRACT NUMBER W81XWH-13-1-0314 Cancer Chemoresistance 5b...AVAILABILITY STATEMENT Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT OXCT1 is a key enzyme in ketone body metabolism

  12. Research Applications of Proteolytic Enzymes in Molecular Biology

    OpenAIRE

    Mótyán, János András; Tóth, Ferenc; Tőzsér, József

    2013-01-01

    Proteolytic enzymes (also termed peptidases, proteases and proteinases) are capable of hydrolyzing peptide bonds in proteins. They can be found in all living organisms, from viruses to animals and humans. Proteolytic enzymes have great medical and pharmaceutical importance due to their key role in biological processes and in the life-cycle of many pathogens. Proteases are extensively applied enzymes in several sectors of industry and biotechnology, furthermore, numerous research applications ...

  13. Perspectives of Solid State Fermentation for Production of Food Enzymes

    OpenAIRE

    Cristobal Noe Aguilar; Gerardo Gutiérrez-Sánchez; PLilia A. rado-Barragán; Raul Rodríguez-Herrera; José L. Martínez-Hernandez; Juan C. Contreras-Esquivel

    2008-01-01

    Food industry represents one of the economic sectors where microbial metabolites have found a wide variety of applications. This is the case of some enzymes, such as amylases, cellulases, pectinases and proteases which have played a very important role as food additives. Most of these enzymes have been produced by submerged cultures at industrial level. Many works in the literature present detailed aspects involved with those enzymes and their importance in the food industry. However, the pro...

  14. Thermodynamic Activity-Based Progress Curve Analysis in Enzyme Kinetics.

    Science.gov (United States)

    Pleiss, Jürgen

    2018-03-01

    Macrokinetic Michaelis-Menten models based on thermodynamic activity provide insights into enzyme kinetics because they separate substrate-enzyme from substrate-solvent interactions. Kinetic parameters are estimated from experimental progress curves of enzyme-catalyzed reactions. Three pitfalls are discussed: deviations between thermodynamic and concentration-based models, product effects on the substrate activity coefficient, and product inhibition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. The Endosome-associated Deubiquitinating Enzyme USP8 Regulates BACE1 Enzyme Ubiquitination and Degradation.

    Science.gov (United States)

    Yeates, Eniola Funmilayo Aduke; Tesco, Giuseppina

    2016-07-22

    The β-site amyloid precursor protein-cleaving enzyme (BACE1) is the rate-limiting enzyme in the production of amyloid-β, the toxic peptide that accumulates in the brain of subjects affected by Alzheimer disease. Our previous studies have shown that BACE1 is degraded via the lysosomal pathway and that that depletion of the trafficking molecule Golgi-localized γ-ear-containing ARF-binding protein 3 (GGA3) results in increased BACE1 levels and activity because of impaired lysosomal degradation. We also determined that GGA3 regulation of BACE1 levels requires its ability to bind ubiquitin. Accordingly, we reported that BACE1 is ubiquitinated at lysine 501 and that lack of ubiquitination at lysine 501 produces BACE1 stabilization. Ubiquitin conjugation is a reversible process mediated by deubiquitinating enzymes. The ubiquitin-specific peptidase 8 (USP8), an endosome-associated deubiquitinating enzyme, regulates the ubiquitination, trafficking, and lysosomal degradation of several plasma membrane proteins. Here, we report that RNAi-mediated depletion of USP8 reduced levels of both ectopically expressed and endogenous BACE1 in H4 human neuroglioma cells. Moreover, USP8 depletion increased BACE1 ubiquitination, promoted BACE1 accumulation in the early endosomes and late endosomes/lysosomes, and decreased levels of BACE1 in the recycling endosomes. We also found that decreased BACE1 protein levels were accompanied by a decrease in BACE1-mediated amyloid precursor protein cleavage and amyloid-β levels. Our findings demonstrate that USP8 plays a key role in the trafficking and degradation of BACE1 by deubiquitinating lysine 501. These studies suggest that therapies able to accelerate BACE1 degradation (e.g. by increasing BACE1 ubiquitination) may represent a potential treatment for Alzheimer disease. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. The Endosome-associated Deubiquitinating Enzyme USP8 Regulates BACE1 Enzyme Ubiquitination and Degradation*

    Science.gov (United States)

    Yeates, Eniola Funmilayo Aduke; Tesco, Giuseppina

    2016-01-01

    The β-site amyloid precursor protein-cleaving enzyme (BACE1) is the rate-limiting enzyme in the production of amyloid-β, the toxic peptide that accumulates in the brain of subjects affected by Alzheimer disease. Our previous studies have shown that BACE1 is degraded via the lysosomal pathway and that that depletion of the trafficking molecule Golgi-localized γ-ear-containing ARF-binding protein 3 (GGA3) results in increased BACE1 levels and activity because of impaired lysosomal degradation. We also determined that GGA3 regulation of BACE1 levels requires its ability to bind ubiquitin. Accordingly, we reported that BACE1 is ubiquitinated at lysine 501 and that lack of ubiquitination at lysine 501 produces BACE1 stabilization. Ubiquitin conjugation is a reversible process mediated by deubiquitinating enzymes. The ubiquitin-specific peptidase 8 (USP8), an endosome-associated deubiquitinating enzyme, regulates the ubiquitination, trafficking, and lysosomal degradation of several plasma membrane proteins. Here, we report that RNAi-mediated depletion of USP8 reduced levels of both ectopically expressed and endogenous BACE1 in H4 human neuroglioma cells. Moreover, USP8 depletion increased BACE1 ubiquitination, promoted BACE1 accumulation in the early endosomes and late endosomes/lysosomes, and decreased levels of BACE1 in the recycling endosomes. We also found that decreased BACE1 protein levels were accompanied by a decrease in BACE1-mediated amyloid precursor protein cleavage and amyloid-β levels. Our findings demonstrate that USP8 plays a key role in the trafficking and degradation of BACE1 by deubiquitinating lysine 501. These studies suggest that therapies able to accelerate BACE1 degradation (e.g. by increasing BACE1 ubiquitination) may represent a potential treatment for Alzheimer disease. PMID:27302062

  17. A phylogenetic analysis of normal modes evolution in enzymes and its relationship to enzyme function.

    Science.gov (United States)

    Lai, Jason; Jin, Jing; Kubelka, Jan; Liberles, David A

    2012-09-21

    Since the dynamic nature of protein structures is essential for enzymatic function, it is expected that functional evolution can be inferred from the changes in protein dynamics. However, dynamics can also diverge neutrally with sequence substitution between enzymes without changes of function. In this study, a phylogenetic approach is implemented to explore the relationship between enzyme dynamics and function through evolutionary history. Protein dynamics are described by normal mode analysis based on a simplified harmonic potential force field applied to the reduced C(α) representation of the protein structure while enzymatic function is described by Enzyme Commission numbers. Similarity of the binding pocket dynamics at each branch of the protein family's phylogeny was analyzed in two ways: (1) explicitly by quantifying the normal mode overlap calculated for the reconstructed ancestral proteins at each end and (2) implicitly using a diffusion model to obtain the reconstructed lineage-specific changes in the normal modes. Both explicit and implicit ancestral reconstruction identified generally faster rates of change in dynamics compared with the expected change from neutral evolution at the branches of potential functional divergences for the α-amylase, D-isomer-specific 2-hydroxyacid dehydrogenase, and copper-containing amine oxidase protein families. Normal mode analysis added additional information over just comparing the RMSD of static structures. However, the branch-specific changes were not statistically significant compared to background function-independent neutral rates of change of dynamic properties and blind application of the analysis would not enable prediction of changes in enzyme specificity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Enzyme immobilization and biocatalysis of polysiloxanes

    Science.gov (United States)

    Poojari, Yadagiri

    Lipases have been proven to be versatile and efficient biocatalysts which can be used in a broad variety of esterification, transesterification, and ester hydrolysis reactions. Due to the high chemo-, regio-, and stereo-selectivity and the mild conditions of lipase-catalyzed reactions, the vast potential of these biocatalysts for use in industrial applications has been increasingly recognized. Polysiloxanes (silicones) are well known for their unique physico-chemical properties and can be prepared in the form of fluids, elastomers, gels and resins for a wide variety of applications. However, the enzymatic synthesis of silicone polyesters and copolymers is largely unexplored. In the present investigations, an immobilized Candida antarctica lipase B (CALB) on macroporous acrylic resin beads (Novozym-435 RTM) has been successfully employed as a catalyst to synthesize silicone polyesters and copolymers under mild reaction conditions. The silicone aliphatic polyesters and the poly(dimethylsiloxane)--poly(ethylene glycol) (PDMS-PEG) copolymers were synthesized in the bulk (without using a solvent), while the silicone aromatic polyesters, the silicone aromatic polyamides and the poly(epsilon-caprolactone)--poly(dimethylsiloxane)--poly(epsilon-caprolactone) (PCL-PDMS-PCL) triblock copolymers were synthesized in toluene. The synthesized silicone polyesters and copolymers were characterized by Gel Permeation Chromatography (GPC), Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC) and Wide Angle X-ray Diffraction (WAXD). This dissertation also describes a methodology for physical immobilization of the enzyme pepsin from Porcine stomach mucosa in silicone elastomers utilizing condensation-cure room temperature vulcanization (RTV) of silanol-terminated poly(dimethylsiloxane) (PDMS). The activity and the stability of free pepsin and pepsin immobilized in silicone elastomers were studied with respect to p

  19. Production of amylolytic enzymes by bacillus spp

    International Nuclear Information System (INIS)

    Dawood, Elham Shareif

    1997-12-01

    Sixty six bacteria and twenty fungi were isolated from various sources. These varied from rotten fruites to local drinks and soil samples from different parts of Sudan. On the basis of index of amylolytic activity, forty one bacteria and twelve fungi were found to hydrolyse strach. The best ten strach hydrolysing isolates were identified all as bacilli (Bacillus licheniformis SUD-K 1 , SUD-K 2 , SUD-K 4 , SUD-O, SUD-SRW, SUD-BRW, SUD-By, Bacillus subtilis SUD-K 3 , and Bacillus circulans SUD-D and SUD-K 7 ). Their amylase productivity was studied with respect to temperature and time. Amylolytic activity was measured by spectrophotometer, the highest activity was produced in around 24 hours of growth in all; six of which gave the highest amylase activity at 50 deg C and the rest at 45C. Based on the thermal production six isolates were chosen for further investigation. These were Bacillus licheniformis SUD-K 1 , SUD-K 2 , SUD-K 4 , SUD-O, Bacillus subtilis SUD-K 3 and Bacillus circulans SUD-K 7 . The inclusion of strach and Mg ++ ions in the culture medium gave the highest enzyme yield. The Ph 9.0 was found to be the optimum for amylase production for all isolates except Bacillus subtilis SUD-K 3 which had an optimum at pH 7.0. Three isolates (Bacillus licheniformis SUD-K 1 , SUD-K 4 and SUD-O recorded highestamylase production in a medium supplemented with peptone while the rest (Bacillus licheniformis SUD-K 2 , Bacillus subtilis SUD-K 3 and Bacillus circulans SUD-K 7 ) gave highest amylase productivity in a medium supplemented with malt extract. Four isolates (Bacillus licheniformis SUD-K 1 and Bacillus subtilis SUD-K 3 gave maximum amylase production in a medium containing 0.5% soluble strach while the rest (gave maximum amylase production at 2%. Soluble strach was found to be best substrate among the different carbon sources tested. The maximum temperature for amylase activity ranged from 60-70 deg C and 1% strach concentration was optimum for all isolates

  20. Structural studies of the Trypanosoma cruzi Old Yellow Enzyme: insights into enzyme dynamics and specificity.

    Science.gov (United States)

    Murakami, Mário T; Rodrigues, Nathalia C; Gava, Lisandra M; Honorato, Rodrigo V; Canduri, Fernanda; Barbosa, Leandro R S; Oliva, Glaucius; Borges, Júlio C

    2013-12-31

    The flavoprotein old yellow enzyme of Trypanosoma cruzi (TcOYE) is an oxidoreductase that uses NAD(P)H as cofactor. This enzyme is clinically relevant due to its role in the action mechanism of some trypanocidal drugs used in the treatment of Chagas' disease by producing reactive oxygen species. In this work, the recombinant enzyme TcOYE was produced and collectively, X-ray crystallography, small angle X-ray scattering, analytical ultracentrifugation and molecular dynamics provided a detailed description of its structure, specificity and hydrodynamic behavior. The crystallographic structure at 1.27Å showed a classical (α/β)8 fold with the FMN prosthetic group buried at the positively-charged active-site cleft. In solution, TcOYE behaved as a globular monomer, but it exhibited a molecular envelope larger than that observed in the crystal structure, suggesting intrinsic protein flexibility. Moreover, the binding mode of β-lapachone, a trypanocidal agent, and other naphthoquinones was investigated by molecular docking and dynamics suggesting that their binding to TcOYE are stabilized mainly by interactions with the isoalloxazine ring from FMN and residues from the active-site pocket. © 2013.

  1. Immunoassays of fungal laccases for screening of natural enzymes and control of recombinant enzyme production.

    Science.gov (United States)

    Loginov, Dmitry S; Vavilova, Ekaterina A; Savinova, Оlga S; Abyanova, Alfia R; Chulkin, Andrey M; Vasina, Daria V; Zherdev, Anatoly V; Koroleva, Olga V

    2014-01-01

    Because of the wide application of laccases in different biotechnological processes and intense studies of the enzymes from different sources, the development of efficient techniques for monitoring laccase level is a task of significant importance. Enzyme-linked immunosorbent assay (ELISA) and Western blotting techniques were developed to control total content and isoform composition of laccases, including their recombinant preparations. Because glycosylated and nonglycosylated forms have different structures and sets of epitopes, two kinds of polyclonal antibodies were obtained and applied. The first antibody recognized the native (glycosylated) laccase purified from Trametes hirsuta and the second one reacted with recombinant (nonglycosylated) laccase expressed in Escherichia coli. Titers of the antibodies were analyzed by indirect ELISA with laccases isolated from several strains of basidiomycetes. The obtained cross-reactivity data for both antibodies demonstrated a correspondence with sequence homology of the laccases. The antibodies raised against recombinant (nonglycosylated) laccase had higher titers and thus were preferable for screening of recombinant laccase in cultural media. Thus, optimal antibody preparations were selected for screening of laccase-producing strains, and the control of recombinant enzymes and the efficiency of their use in immunochemical control of laccase levels were confirmed. © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  2. Studies on Ganoderma lucidum III. production of pectolytic enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Chang, L.S.; Tseng, T.C.

    1986-07-01

    Pectolytic enzymes produced by Ganoderma lucidum B in culture and polypropylene bags were investigated. Two pectolytic enzymes, i.e., endo-polygalacturonase (endo-PG) and endo-pectic methyl trans-eliminase (endo-PMTE) were obtained from crude enzymes of G. lucidum B extract from mycelia polypropylene bags. The endo-PMTE has to optimal pH at 4.5 and 8.0. The enzyme stimulated by Ca/sup + +/ ion and preferred only pectin; the enzyme activity decreased at temperature above 50/sup 0/C. The endo-PMTE a and endo-PMTE b, obtained from polypropylene bag with mycelia of G. lucidum B, were purified by 60-80% ammonium sulfate fractionation, Sephadex G-100 gel filtration, DEAE-cellulose ion exchange column chromatography and isoelectric focusing, showing pI at 8.2 and 5.5. Disc gel electrophoresis confirmed two peaks corresponding to endo-PMTE a and b as isoenzymes. Pectolytic enzymes purified by 60-80% ammonium sulfate fraction macerated potato disc and it was more active than the crude enzyme. At pH 4.5, maceration of potato disc by pectolytic enzymes more effective than those at pH 8.0 or 7.0. At pH 8.0, Ca/sup + +/ ion stimulate pectolytic enzyme activities and accelerated maceration.

  3. How restriction enzymes became the workhorses of molecular biology.

    Science.gov (United States)

    Roberts, Richard J

    2005-04-26

    Restriction enzymes have proved to be invaluable for the physical mapping of DNA. They offer unparalleled opportunities for diagnosing DNA sequence content and are used in fields as disparate as criminal forensics and basic research. In fact, without restriction enzymes, the biotechnology industry would certainly not have flourished as it has. The first experiments demonstrating the utility of restriction enzymes were carried out by Danna and Nathans and reported in 1971. This pioneering study set the stage for the modern practice of molecular biology in which restriction enzymes are ubiquitous tools, although they are often taken for granted.

  4. Bioremediation of Industrial Waste Through Enzyme Producing Marine Microorganisms.

    Science.gov (United States)

    Sivaperumal, P; Kamala, K; Rajaram, R

    Bioremediation process using microorganisms is a kind of nature-friendly and cost-effective clean green technology. Recently, biodegradation of industrial wastes using enzymes from marine microorganisms has been reported worldwide. The prospectus research activity in remediation area would contribute toward the development of advanced bioprocess technology. To minimize industrial wastes, marine enzymes could constitute a novel alternative in terms of waste treatment. Nowadays, the evidence on the mechanisms of bioremediation-related enzymes from marine microorganisms has been extensively studied. This review also will provide information about enzymes from various marine microorganisms and their complexity in the biodegradation of comprehensive range of industrial wastes. © 2017 Elsevier Inc. All rights reserved.

  5. Enzyme immobilisation in biocatalysis: why, what and how.

    Science.gov (United States)

    Sheldon, Roger A; van Pelt, Sander

    2013-08-07

    In this tutorial review, an overview of the why, what and how of enzyme immobilisation for use in biocatalysis is presented. The importance of biocatalysis in the context of green and sustainable chemicals manufacture is discussed and the necessity for immobilisation of enzymes as a key enabling technology for practical and commercial viability is emphasised. The underlying reasons for immobilisation are the need to improve the stability and recyclability of the biocatalyst compared to the free enzyme. The lower risk of product contamination with enzyme residues and low or no allergenicity are further advantages of immobilised enzymes. Methods for immobilisation are divided into three categories: adsorption on a carrier (support), encapsulation in a carrier, and cross-linking (carrier-free). General considerations regarding immobilisation, regardless of the method used, are immobilisation yield, immobilisation efficiency, activity recovery, enzyme loading (wt% in the biocatalyst) and the physical properties, e.g. particle size and density, hydrophobicity and mechanical robustness of the immobilisate, i.e. the immobilised enzyme as a whole (enzyme + support). The choice of immobilisate is also strongly dependent on the reactor configuration used, e.g. stirred tank, fixed bed, fluidised bed, and the mode of downstream processing. Emphasis is placed on relatively recent developments, such as the use of novel supports such as mesoporous silicas, hydrogels, and smart polymers, and cross-linked enzyme aggregates (CLEAs).

  6. The role of enzymes in fungus-growing ant evolution

    DEFF Research Database (Denmark)

    de Fine Licht, Henrik Hjarvard

    behaviour. Here we report the first large-scale comparative study on fungus garden enzyme profiles and show that various interesting changes can be documented. A more detailed analysis of laccase expression, an enzyme that is believed to oxidize phenols in defensive secondary plant compounds such as tannins......, showed that this enzyme is exclusively found in the gardens of leaf-cutting ants, where it is significantly upregulated in the gongylidia. I’ll discuss the possible role of this enzyme and other fungal modifications in the evolution of the leafcutter ants and their non-leafcutting attine relatives....

  7. A Perspective on Bionanosensor Simulation & Computational Enzyme Engineering

    DEFF Research Database (Denmark)

    Hediger, Martin Robert

    helps in optimizing such sensors. In the second project, Computational Enzyme Engineering, a method is developed which can be used to calculate the reaction barrier of a large number of enzyme mutants. First technical details are discussed, then we compare to experiments from Novozymes A/S and show how...... accurate the method is. Finally we use the method to calcualte the rate-limiting step in the reaction profile of around 400 mutants of an enzyme. This is the first time that the barrier of the rate-determining step is alculated in as set of mutants of this size, consisting of the full enzyme structure...

  8. Molecular signatures-based prediction of enzyme promiscuity.

    Science.gov (United States)

    Carbonell, Pablo; Faulon, Jean-Loup

    2010-08-15

    Enzyme promiscuity, a property with practical applications in biotechnology and synthetic biology, has been related to the evolvability of enzymes. At the molecular level, several structural mechanisms have been linked to enzyme promiscuity in enzyme families. However, it is at present unclear to what extent these observations can be generalized. Here, we introduce for the first time a method for predicting catalytic and substrate promiscuity using a graph-based representation known as molecular signature. Our method, which has an accuracy of 85% for the non-redundant KEGG database, is also a powerful analytical tool for characterizing structural determinants of protein promiscuity. Namely, we found that signatures with higher contribution to the prediction of promiscuity are uniformly distributed in the protein structure of promiscuous enzymes. In contrast, those signatures that act as promiscuity determinants are significantly depleted around non-promiscuous catalytic sites. In addition, we present the study of the enolase and aminotransferase superfamilies as illustrative examples of characterization of promiscuous enzymes within a superfamily and achievement of enzyme promiscuity by protein reverse engineering. Recognizing the role of enzyme promiscuity in the process of natural evolution of enzymatic function can provide useful hints in the design of directed evolution experiments. We have developed a method with potential applications in the guided discovery and enhancement of latent catalytic capabilities surviving in modern enzymes. http://www.issb.genopole.fr~faulon.

  9. Recent advances in rational approaches for enzyme engineering

    Directory of Open Access Journals (Sweden)

    Kerstin Steiner

    2012-09-01

    Full Text Available Enzymes are an attractive alternative in the asymmetric syntheses of chiral building blocks. To meet the requirements of industrial biotechnology and to introduce new functionalities, the enzymes need to be optimized by protein engineering. This article specifically reviews rational approaches for enzyme engineering and de novo enzyme design involving structure-based approaches developed in recent years for improvement of the enzymes’ performance, broadened substrate range, and creation of novel functionalities to obtain products with high added value for industrial applications.

  10. Production of extremophilic bacterial cellulase enzymes in aspergillus niger.

    Energy Technology Data Exchange (ETDEWEB)

    Gladden, John Michael

    2013-09-01

    Enzymes can be used to catalyze a myriad of chemical reactions and are a cornerstone in the biotechnology industry. Enzymes have a wide range of uses, ranging from medicine with the production of pharmaceuticals to energy were they are applied to biofuel production. However, it is difficult to produce large quantities of enzymes, especially if they are non-native to the production host. Fortunately, filamentous fungi, such as Aspergillus niger, are broadly used in industry and show great potential for use a heterologous enzyme production hosts. Here, we present work outlining an effort to engineer A. niger to produce thermophilic bacterial cellulases relevant to lignocellulosic biofuel production.

  11. Antioxidant enzymes, presbycusis, and ethnic variability.

    Science.gov (United States)

    Bared, Anthony; Ouyang, Xiaomei; Angeli, Simon; Du, Li Lin; Hoang, Kimberly; Yan, Denise; Liu, Xue Zhong

    2010-08-01

    A proposed mechanism for presbycusis is a significant increase in oxidative stress in the cochlea. The enzymes glutathione S-transferase (GST) and N-acetyltransferase (NAT) are two classes of antioxidant enzymes active in the cochlea. In this work, we sought to investigate the association of different polymorphisms of GSTM1, GSTT1, and NAT2 and presbycusis and analyze whether ethnicity has an effect in the genotype-phenotype associations. Case-control study of 134 DNA samples. University-based tertiary care center. Clinical, audiometric, and DNA testing of 55 adults with presbycusis and 79 control patients with normal hearing. The GSTM1 null genotype was present in 77 percent of white Hispanics and 51 percent of white non-Hispanics (Fisher's exact test, 2-tail, P = 0.0262). The GSTT1 null genotype was present in 34 percent of control patients and in 60 percent of white presbycusis subjects (P = 0.0067, odds ratio [OR] = 2.843, 95% confidence interval [95% CI] = 1.379-5.860). The GSTM1 null genotype was more frequent in presbycusis subjects, i.e., 48 percent of control patients and 69 percent of white subjects carried this deletion (P = 0.0198, OR = 2.43, 95% CI = 1.163-5.067). The NAT2*6A mutant genotype was more frequent among subjects with presbycusis (60%) than in control patients (34%; P = 0.0086, OR = 2.88, 95% CI = 1.355-6.141). We showed an increased risk of presbycusis among white subjects carrying the GSTM1 and the GSTT1 null genotype and the NAT*6A mutant allele. Subjects with the GSTT1 null genotypes are almost three times more likely to develop presbycusis than those with the wild type. The GSTM1 null genotype was more prevalent in white Hispanics than in white non-Hispanics, but the GSTT1 and NAT2 polymorphisms were equally represented in the two groups. Copyright (c) 2010 American Academy of Otolaryngology-Head and Neck Surgery Foundation. Published by Mosby, Inc. All rights reserved.

  12. Engineering of GlcNAc-1-Phosphotransferase for Production of Highly Phosphorylated Lysosomal Enzymes for Enzyme Replacement Therapy.

    Science.gov (United States)

    Liu, Lin; Lee, Wang-Sik; Doray, Balraj; Kornfeld, Stuart

    2017-06-16

    Several lysosomal enzymes currently used for enzyme replacement therapy in patients with lysosomal storage diseases contain very low levels of mannose 6-phosphate, limiting their uptake via mannose 6-phosphate receptors on the surface of the deficient cells. These enzymes are produced at high levels by mammalian cells and depend on endogenous GlcNAc-1-phosphotransferase α/β precursor to phosphorylate the mannose residues on their glycan chains. We show that co-expression of an engineered truncated GlcNAc-1-phosphotransferase α/β precursor and the lysosomal enzyme of interest in the producing cells resulted in markedly increased phosphorylation and cellular uptake of the secreted lysosomal enzyme. This method also results in the production of highly phosphorylated acid β-glucocerebrosidase, a lysosomal enzyme that normally has just trace amounts of this modification.

  13. Flavourzyme, an Enzyme Preparation with Industrial Relevance: Automated Nine-Step Purification and Partial Characterization of Eight Enzymes.

    Science.gov (United States)

    Merz, Michael; Eisele, Thomas; Berends, Pieter; Appel, Daniel; Rabe, Swen; Blank, Imre; Stressler, Timo; Fischer, Lutz

    2015-06-17

    Flavourzyme is sold as a peptidase preparation from Aspergillus oryzae. The enzyme preparation is widely and diversely used for protein hydrolysis in industrial and research applications. However, detailed information about the composition of this mixture is still missing due to the complexity. The present study identified eight key enzymes by mass spectrometry and partially by activity staining on native polyacrylamide gels or gel zymography. The eight enzymes identified were two aminopeptidases, two dipeptidyl peptidases, three endopeptidases, and one α-amylase from the A. oryzae strain ATCC 42149/RIB 40 (yellow koji mold). Various specific marker substrates for these Flavourzyme enzymes were ascertained. An automated, time-saving nine-step protocol for the purification of all eight enzymes within 7 h was designed. Finally, the purified Flavourzyme enzymes were biochemically characterized with regard to pH and temperature profiles and molecular sizes.

  14. Lecithin : cholesterol acyltransferase: old friend or foe in atherosclerosis?

    NARCIS (Netherlands)

    Kunnen, S.; Eck, van M.

    2012-01-01

    Lecithin:cholesterol acyltransferase (LCAT) is a key enzyme that catalyzes the esterification of free cholesterol in plasma lipoproteins and plays a critical role in high-density lipoprotein (HDL) metabolism. Deficiency leads to accumulation of nascent preβ-HDL due to impaired maturation of HDL

  15. Effect of Barley and Enzyme on Performance, Carcass, Enzyme Activity and Digestion Parameters of Broilers

    Directory of Open Access Journals (Sweden)

    majid kalantar

    2016-04-01

    Full Text Available Introduction Corn has been recently used for producing ethanol fuel in the major corn-producing countries such as the US and Brazil. Recent diversion of corn for biofuel production along with the increased world's demand for this feedstuff has resulted in unprecedented rise in feed cost for poultry worldwide. Alternative grains such as wheat and barley can be successfully replaced for corn in poultry diets. These cereal grains can locally grow in many parts of the world as they have remarkably lower water requirement than corn. Wheat and barley are generally used as major sources of energy in poultry diets. Though the major components of these grains are starch and proteins, they have considerable content of non-starch polysaccharides (NSPs, derived from the cell walls (Olukosi et al. 2007; Mirzaie et al. 2012. NSPs are generally considered as anti-nutritional factors (Jamroz et al. 2002. The content and structure of NSP polymers vary between different grains, which consequently affect their nutritive value (Olukosi et al. 2007.Wheat and barley are generally used as major sources of energy in poultry diets. The major components of these grains are starch and proteins, they have considerable content of non-starch polysaccharides (NSPs, derived from the cell walls. NSPs are generally considered as anti-nutritional factors. The content and structure of NSP polymers vary between different grains, which consequently affect their nutritive value. The major part of NSPs in barley comprises polymers of (1→3 (1→4-β- glucans which could impede growth factors and consequently carcass quality through lowering the rate and amount of available nutrients in the mucosal surface of the intestinal. Materials and Methods This experiment was conducted to evaluate the effect of corn and barley based diets supplemented with multi-enzyme on growth, carcass, pancreas enzyme activity and physiological characteristics of broilers. A total number of 375 one day old

  16. The Amborella vacuolar processing enzyme family

    Directory of Open Access Journals (Sweden)

    Valérie ePoncet

    2015-08-01

    Full Text Available Most vacuolar proteins are synthesized on rough endoplasmic reticulum as proprotein precursors and then transported to the vacuoles, where they are converted into their respective mature forms by vacuolar processing enzymes (VPEs. In the case of the seed storage proteins, this process is of major importance, as it conditions the establishment of vigorous seedlings. Toward the goal of identifying proteome signatures that could be associated with the origin and early diversification of angiosperms, we previously characterized the 11S-legumin-type of seed storage proteins from Amborella trichopoda, a rainforest shrub endemic to New Caledonia that is also the probable sister to all other angiosperms (Amborella Genome Project, 2013. In the present study, proteomic and genomic approaches were used to characterize the VPE family in this species. Three genes were found to encode VPEs in the Amborella’s genome. Phylogenetic analyses showed that the Amborella sequences grouped within two major clades of angiosperm VPEs, indicating that the duplication that generated the ancestors of these clades occurred before the most recent common ancestor of living angiosperms. A further important duplication within the VPE family appears to have occurred in common ancestor of the core eudicots, while many more recent duplications have also occurred in specific taxa, including both Arabidopsis thaliana and Amborella. An analysis of natural genetic variation for each of the three Amborella VPE genes revealed the absence of selective forces acting on intronic and exonic single-nucleotide polymorphisms among several natural Amborella populations of in New Caledonia.

  17. Serum angiotensin converting enzyme in pemphigus vulgaris

    Directory of Open Access Journals (Sweden)

    Reza M Robati

    2014-01-01

    Full Text Available Background: Pemphigus vulgaris is an autoimmune blistering skin disease with unknown etiology. Drugs such as angiotensin-converting enzyme (ACE inhibitors may contribute in the pathogenesis of pemphigus. Objective: We plan this essay to evaluate the serum ACE level in pemphigus vulgaris patients in comparison with healthy controls to recognize its possible role in disease pathogenesis or activity. Methods: This study was planned and performed in the dermatology clinics of Shahid Beheshti University of MedicalSciences′ Hospitals between July 2010 and June 2011. Patients with new onset of pemphigus vulgaris were enrolled in our study. Control subjects were frequency-matched to cases by sex and age. Serum ACE was determined by the spectrophotometric method. Results: Thirty-four patients with pemphigus vulgaris and 35 healthy individuals were recruited in the study. No statistical significant difference was detected in the mean level of serum ACE of the two groups (t-test, P = 0.11. The mean ACE level was significantly lower in male patients compared with male controls (P = 0.04. Moreover, a significant higher serum ACE level of patients with cutaneous involvement was observed compared to patients with mucosal involvement (P = 0.02. Conclusions: Despite lack of any significant difference of serum ACE level between pemphigus and control group, the serum ACE level was considerably lower in male pemphigus vulgaris patients compared with male controls. Therefore, ACE might have some association with pemphigus vulgaris especially in male patients; however, further studies are required to confirm this association.

  18. Enzyme-guided DNA Sewing Architecture

    Science.gov (United States)

    Song, In Hyun; Shin, Seung Won; Park, Kyung Soo; Lansac, Yves; Jang, Yun Hee; Um, Soong Ho

    2015-12-01

    With the advent of nanotechnology, a variety of nanoarchitectures with varied physicochemical properties have been designed. Owing to the unique characteristics, DNAs have been used as a functional building block for novel nanoarchitecture. In particular, a self-assembly of long DNA molecules via a piece DNA staple has been utilized to attain such constructs. However, it needs many talented prerequisites (e.g., complicated computer program) with fewer yields of products. In addition, it has many limitations to overcome: for instance, (i) thermal instability under moderate environments and (ii) restraint in size caused by the restricted length of scaffold strands. Alternatively, the enzymatic sewing linkage of short DNA blocks is simply designed into long DNA assemblies but it is more error-prone due to the undeveloped sequence data. Here, we present, for the first time, a comprehensive study for directly combining DNA structures into higher DNA sewing constructs through the 5‧-end cohesive ligation of T4 enzyme. Inspired by these achievements, the synthesized DNA nanomaterials were also utilized for effective detection and real-time diagnosis of cancer-specific and cytosolic RNA markers. This generalized protocol for generic DNA sewing is expected to be useful in several DNA nanotechnology as well as any nucleic acid-related fields.

  19. Marine Enzymes and Microorganisms for Bioethanol Production.

    Science.gov (United States)

    Swain, M R; Natarajan, V; Krishnan, C

    Bioethanol is a potential alternative fuel to fossil fuels. Bioethanol as a fuel has several economic and environmental benefits. Though bioethanol is produced using starch and sugarcane juice, these materials are in conflict with food availability. To avoid food-fuel conflict, the second-generation bioethanol production by utilizing nonfood lignocellulosic materials has been extensively investigated. However, due to the complexity of lignocellulose architecture, the process is complicated and not economically competitive. The cultivation of lignocellulosic energy crops indirectly affects the food supplies by extensive land use. Marine algae have attracted attention to replace the lignocellulosic feedstock for bioethanol production, since the algae grow fast, do not use land, avoid food-fuel conflict and have several varieties to suit the cultivation environment. The composition of algae is not as complex as lignocellulose due to the absence of lignin, which renders easy hydrolysis of polysaccharides to fermentable sugars. Marine organisms also produce cold-active enzymes for hydrolysis of starch, cellulose, and algal polysaccharides, which can be employed in bioethanol process. Marine microoorganisms are also capable of fermenting sugars under high salt environment. Therefore, marine biocatalysts are promising for development of efficient processes for bioethanol production. © 2017 Elsevier Inc. All rights reserved.

  20. Telomerase – future drug target enzyme?

    Directory of Open Access Journals (Sweden)

    Tomaž Langerholc

    2012-06-01

    Full Text Available Eucaryotic chromosome endings (telomeres replication problem was solved in the 1980’s by discovery of the telomerase enzyme. The Nobel Prize in Physiology or Medicine was awarded in 2009 for the discovery of telomerase. Altered telomerase expression in cancer, and human dream of eternal youth have accelerated the development of pharmacological telomerase inhibitors and activators. However, after 15 years of development they are still not available on the market. In the present article we reviewed pharmacological agents that target telomerase activity, which have entered clinical trials. Current drugs in development are mostly not intended to be used alone, as telomerase inhibitors under clinical trials are used in combination with the existing chemotherapeutics and anti-telomerase vaccines in combination with immuno-stimulants. Apart from cancer and aging, there are other diseases linked to deregulated activity of telomerase/telomeres and we also discuss technical and legal problems that researchers encounter in developing anti-telomerase therapy. Given the pace of development, first anti-telomerase drugs might appear on the market in the next 5 years.

  1. Ionizing radiation effect on enzymes. I

    International Nuclear Information System (INIS)

    Libicky, A.; Chottova, O.; Fidlerova, J.; Urban, J.

    1980-01-01

    The effect was studied of gamma radiation on the proteolytic activity of pancreatin prepared either by separating enzymes from an activated extract of the pancreas, containing 2.15% of lipids, or by drying the not completely activated ground pancreas, containing 6.14% of lipids. A part of the first sample in which the proportion of lipids was additionally increased to 16.55% was also irradiated. The moisture content was practically the same in all three samples. The source of radiation was 60 Co, the dose rate 1.27 kGy/h. The samples of pancreatin in test-tubes were irradiated at 25 degC, doses ranging from 1x10 4 to 12x10 4 Gy. The results were statistically evaluated and are given in tables, and converted to the dried lipid-free substance they are expressed in graphs. The technological procedure of pancreatin preparation and the content of lipids do not influence the decrease in proteolytic activity (Graph 3). (author)

  2. Enzyme microarrays assembled by acoustic dispensing technology.

    Science.gov (United States)

    Wong, E Y; Diamond, S L

    2008-10-01

    Miniaturizing bioassays to the nanoliter scale for high-throughput screening reduces the consumption of reagents that are expensive or difficult to handle. Through the use of acoustic dispensing technology, nanodroplets containing 10 microM ATP (3 microCi/microL (32)P) and reaction buffer in 10% glycerol were positionally dispensed to the surface of glass slides to form 40-nL compartments (100 droplets/slide) for Pim1 (proviral integration site 1) kinase reactions. The reactions were activated by dispensing 4 nL of various levels of a pyridocarbazolo-cyclopentadienyl ruthenium complex Pim1 inhibitor, followed by dispensing 4 nL of a Pim1 kinase and peptide substrate solution to achieve final concentrations of 150 nM enzyme and 10 microM substrate. The microarray was incubated at 30 degrees C (97% R(h)) for 1.5 h. The spots were then blotted to phosphocellulose membranes to capture phosphorylated substrate. With phosphor imaging to quantify the washed membranes, the assay showed that, for doses of inhibitor from 0.75 to 3 microM, Pim1 was increasingly inhibited. Signal-to-background ratios were as high as 165, and average coefficients of variation for the assay were approximately 20%. Coefficients of variation for dispensing typical working buffers were under 5%. Thus, microarrays assembled by acoustic dispensing are promising as cost-effective tools that can be used in protein assay development.

  3. Enzyme reactions and their time resolved measurements

    International Nuclear Information System (INIS)

    Hajdu, Janos

    1990-01-01

    This paper discusses experimental strategies in data collection with the Laue method and summarises recent results using synchrotron radiation. Then, an assessment is made of the progress towards time resolved studies with protein crystals and the problems that remain. The paper consists of three parts which respectively describe some aspects of Laue diffraction, recent examples of structural results from Laue diffraction, and kinetic Laue crystallography. In the first part, characteristics of Laue diffraction is discussed first, focusing on the harmonics problems, spatials problem, wavelength normalization, low resolution hole, data completeness, and uneven coverage of reciprocal space. Then, capture of the symmetry unique reflection set is discussed focusing on the effect of wavelength range on the number of reciprocal lattice points occupying diffracting positions, effect of crystal to film distance and the film area and shape on the number of reflections captured, and effect of crystal symmetry on the number of unique reflections within the number of reflections captured. The second part addresses the determination of the structure of turkey egg white lysozyme, and calcium binding in tomato bushy stunt virus. The third part describes the initiation of reactions in enzyme crystals, picosecond Laue diffraction at high energy storage rings, and detectors. (N.K.)

  4. Ionizing radiation effect on enzymes. II

    International Nuclear Information System (INIS)

    Libicky, A.; Fidlerova, J.; Urban, J.; Chottova, O.; Kubankova, V.

    1980-01-01

    The effects of gamma radiation on the efficacy of chymotrypsin in pancreatin prepared by the separation of enzymes from an activated pancreas extract, in the same sample in which the content of lipids was increased to 16.55%, and in pancreatin prepared by drying an incompletely activated ground pancreas were compared with the effect of radiation on crystaline lyophilized chymotrypsin. The working conditions were identical with those described in the previous communication, all samples possessed nearly identical humidity on irradiation. The efficacy of chymotrypsin was determined by the method of PhBs 3, ethyl ester L-tyrosine hydrochloride being used as the substrate. The results were statistically evaluated and after calculation for dried lipid-free substance represented in graphs. The sequence of the loss of efficacy in pancreatin corresponded to the sequence of the loss of the total proteolytic efficacy found in the previous communication. The lowest remaining efficacy was found in crystalline lyophilized chymotrypsin. Percent losses of chymotrypsin efficacy in pancreatin determined by the synthetic substrate were in good agreement with the loss of the total proteolytic efficacy of the same samples determined by casein. (author)

  5. Expression of Malic Enzymes in Sebaceous Lesions.

    Science.gov (United States)

    Su, Ting-Fu; Gao, Hong-Wei

    2016-08-01

    Malic enzymes (MEs) are involved in fatty acid biosynthesis and lipid accumulation, and their expression in sebocytes and sebaceous lesions has not been investigated. The aims of this study were to examine ME1 and ME2 expression in normal skin and sebaceous lesions. A total of 68 cases including 5 specimens of normal skin, 12 facial lesions showing sebaceous hyperplasia, 18 sebaceous adenomas, 10 sebaceomas, 13 steatocystomas, and 10 sebaceous carcinomas were examined for the expression of ME1 and ME2. All benign and malignant sebaceous lesions showed ME1 in clear cells and ME2 in nonclear cells, respectively. ME1/ME2 phenotype is seen in basal sebocytes, basal keratinocytes, sweat glands, and outer root sheath cells and hence not specific. This study demonstrates that ME1/ME2 expression phenotype may have a potential to be a valuable marker for sebaceous differentiation. It is necessary to perform large-scale studies including skin tumors with a clear cell morphology that may mimic sebaceous differentiation.

  6. Expression of lipogenic enzymes in chickens.

    Science.gov (United States)

    Rosebrough, R W; Russell, B A; Poch, S M; Richards, M P

    2007-05-01

    Hubbard x Hubbard chickens (Gallus gallus) growing from 7 to 28 days of age were fed 12 or 30% protein diets and then switched to the diets containing the opposite level of protein. Birds were killed on days 28, 29, 30 and 31. Measurements taken included in vitro lipogenesis (IVL), malic enzyme (ME), isocitrate dehydrogenase (ICD) and aspartate aminotransferase (AAT) activities and the expression of the genes for ME, fatty acid synthase (FAS) and acetyl coenzyme carboxylase (ACC). Gene expression was determined with a combined RT-PCR using SYBR green as a fluorescent probe monitored in a real time mode. IVL and ME activity were inversely related to dietary protein levels (12 to 30%) and to acute changes in either level. In contrast, both ICD and AAT activities were increased by any increase in dietary protein. Lipogenic gene expression was inversely related to protein level, whether fed on an acute or chronic basis. It appears that real time RT-PCR is an acceptable method of estimating gene expression in birds. In addition, further work will focus on primer sizes that might further optimize RT-PCR as an instrument for studying the regulation of avian lipid metabolism. Results of the present study demonstrate a continued role for protein in the regulation of broiler metabolism. However, it should be pointed out that metabolic regulation at the gene level only occurs when feeding very high levels of dietary protein.

  7. Bacteriophage enzymes for the prevention and treatment of bacterial infections: Stability and stabilization of the enzyme lysing Streptococcus pyogenes cells

    Energy Technology Data Exchange (ETDEWEB)

    Klyachko, N. L.; Dmitrieva, N. F.; Eshchina, A. S.; Ignatenko, O. V.; Filatova, L. Y.; Rainina, Evguenia I.; Kazarov, A. K.; Levashov, A. V.

    2008-06-01

    Recombinant, phage associated lytic enzyme Ply C capable to lyse streptococci of groups A and C was stabilized in the variety of the micelles containing compositions to improve the stability of the enzyme for further application in medicine. It was shown that, in the micellar polyelectrolyte composition M16, the enzyme retained its activity for 2 months; while in a buffer solution under the same conditions ((pH 6.3, room temperature), it completely lost its activity in 2 days

  8. Application of residual polysaccharide-degrading enzymes in dried shiitake mushrooms as an enzyme preparation in food processing.

    Science.gov (United States)

    Tatsumi, E; Konishi, Y; Tsujiyama, S

    2016-11-01

    To examine the activities of residual enzymes in dried shiitake mushrooms, which are a traditional foodstuff in Japanese cuisine, for possible applications in food processing. Polysaccharide-degrading enzymes remained intact in dried shiitake mushrooms and the activities of amylase, β-glucosidase and pectinase were high. A potato digestion was tested using dried shiitake powder. The enzymes reacted with potato tuber specimens to solubilize sugars even under a heterogeneous solid-state condition and that their reaction modes were different at 38 and 50 °C. Dried shiitake mushrooms have a potential use in food processing as an enzyme preparation.

  9. Restriction enzyme body doubles and PCR cloning: on the general use of type IIs restriction enzymes for cloning.

    Science.gov (United States)

    Tóth, Eszter; Huszár, Krisztina; Bencsura, Petra; Kulcsár, Péter István; Vodicska, Barbara; Nyeste, Antal; Welker, Zsombor; Tóth, Szilvia; Welker, Ervin

    2014-01-01

    The procedure described here allows the cloning of PCR fragments containing a recognition site of the restriction endonuclease (Type IIP) used for cloning in the sequence of the insert. A Type IIS endonuclease--a Body Double of the Type IIP enzyme--is used to generate the same protruding palindrome. Thus, the insert can be cloned to the Type IIP site of the vector without digesting the PCR product with the same Type IIP enzyme. We achieve this by incorporating the recognition site of a Type IIS restriction enzyme that cleaves the DNA outside of its recognition site in the PCR primer in such a way that the cutting positions straddle the desired overhang sequence. Digestion of the PCR product by the Body Double generates the required overhang. Hitherto the use of Type IIS restriction enzymes in cloning reactions has only been used for special applications, the approach presented here makes Type IIS enzymes as useful as Type IIP enzymes for general cloning purposes. To assist in finding Body Double enzymes, we summarised the available Type IIS enzymes which are potentially useful for Body Double cloning and created an online program (http://group.szbk.u-szeged.hu/welkergr/body_double/index.html) for the selection of suitable Body Double enzymes and the design of the appropriate primers.

  10. Restriction Enzyme Body Doubles and PCR Cloning: On the General Use of Type IIS Restriction Enzymes for Cloning

    Science.gov (United States)

    Tóth, Eszter; Huszár, Krisztina; Bencsura, Petra; Kulcsár, Péter István; Vodicska, Barbara; Nyeste, Antal; Welker, Zsombor; Tóth, Szilvia; Welker, Ervin

    2014-01-01

    The procedure described here allows the cloning of PCR fragments containing a recognition site of the restriction endonuclease (Type IIP) used for cloning in the sequence of the insert. A Type IIS endonuclease - a Body Double of the Type IIP enzyme - is used to generate the same protruding palindrome. Thus, the insert can be cloned to the Type IIP site of the vector without digesting the PCR product with the same Type IIP enzyme. We achieve this by incorporating the recognition site of a Type IIS restriction enzyme that cleaves the DNA outside of its recognition site in the PCR primer in such a way that the cutting positions straddle the desired overhang sequence. Digestion of the PCR product by the Body Double generates the required overhang. Hitherto the use of Type IIS restriction enzymes in cloning reactions has only been used for special applications, the approach presented here makes Type IIS enzymes as useful as Type IIP enzymes for general cloning purposes. To assist in finding Body Double enzymes, we summarised the available Type IIS enzymes which are potentially useful for Body Double cloning and created an online program (http://group.szbk.u-szeged.hu/welkergr/body_double/index.html) for the selection of suitable Body Double enzymes and the design of the appropriate primers. PMID:24618593

  11. Crosslinked Enzyme Aggregates in Hierarchically-Ordered Mesoporous Silica: A Simple and Effective Method for Enzyme Stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Moon Il; Kim, Jungbae; Lee, Jinwoo; Jia, Hongfei; Na, Hyon Bin; Youn, Jongkyu; Kwak, Ja Hun; Dohnalkova, Alice; Grate, Jay W.; Wang, Ping; Hyeon, Taeghwan; Park, Hyun-Gyu; Chang, Ho Nam

    2007-02-01

    alpha-chymotrypsin (CT) and lipase (LP) were immobilized in hierarchically-ordered mesocellular mesoporous silica (HMMS) in a simple but effective way for the enzyme stabilization, which was achieved by the enzyme adsorption followed by glutaraldehyde (GA) crosslinking. This resulted in the formation of nanometer scale crosslinked enzyme aggregates (CLEAs) entrapped in the mesocellular pores of HMMS (37 nm), which did not leach out of HMMS through narrow mesoporous channels (13 nm). CLEA of alpha-chymotrypsin (CLEA-CT) in HMMS showed a high enzyme loading capacity and significantly increased enzyme stability. No activity decrease of CLEA-CT was observed for two weeks under even rigorously shaking condition, while adsorbed CT in HMMS and free CT showed a rapid inactivation due to the enzyme leaching and presumably autolysis, respectively. With the CLEA-CT in HMMS, however, there was no tryptic digestion observed suggesting that the CLEA-CT is not susceptible to autolysis. Moreover, CLEA of lipase (CLEA-LP) in HMMS retained 30% specific activity of free lipase with greatly enhanced stability. This work demonstrates that HMMS can be efficiently employed as host materials for enzyme immobilization leading to highly enhanced stability of the immobilized enzymes with high enzyme loading and activity.

  12. Studies on a photoreactivating enzyme from Drosophila melanogaster cultured cells

    International Nuclear Information System (INIS)

    Beck, L.A.

    1982-01-01

    A photoreactivating enzyme was purified from Schneider's Line No. 2 Drosophila melanogaster cultured cells. DEAE cellulose chromatography with high potassium phosphate buffer conditions was used to separate nucleic acids from the protein component of the crude cell extract. The protein pass-through fraction from DEAE cellulose was chromatographed on phosphocellulose followed by hydroxylapatite, using linear potassium phosphate gradients to elute the enzyme. Gel filtration chromatography on Sephacryl S-200 resulted in a 4500-fold purification of the enzyme with a final recovery of 4%. The enzyme has an apparent gel filtration molecular weight of 32,900 (+/- 1350 daltons) and an isoelectric pH of 4.9. Optimum ionic strength for activity is 0.17 at pH 6.5 in potassium phosphate buffer. The action spectrum for photoreactivation in Drosophila has an optimum at 365 nm with a response to wavelengths in the range of 313 to 465 nm. Drosophila photoreactivating enzyme contains an essential RNA that is necessary for activity in vitro. The ability of the enzyme to photoreactivate dimers in vitro is abolished by treatment of the enzyme with ribonucleases, or by disruption of the enzyme-RNA complex by electrophoresis or adsorption to DEAE cellulose. The essential RNA is heterogeneous in size but contains a 10-12 base region that may interact with the active site of the enzyme, and thus is protected from degradation by contaminating RNase activities during purification. The RNA is thought to stabilize the photoreactivating enzyme by maintaining the enzyme in the proper configuration for binding to dimer-containing DNA. It is not known whether this RNA is essential for in vivo photoreactivation

  13. Regions involved in fengycin synthetases enzyme complex formation

    Directory of Open Access Journals (Sweden)

    Yu-Chieh Cheng

    2017-12-01

    Full Text Available Background: Fengycin is a lipopeptide antibiotic synthesized nonribosomally by five fengycin synthetases. These enzymes are linked in a specific order to form the complex. This study investigates how these enzymes interact in the complex and analyzes the regions in the enzymes that are critical to the interactions. Methods: Deletions were generated in the fengycin synthetases. The interaction of these mutant proteins with their partner enzymes in the complex was analyzed in vitro by a glutathione S-transferase (GST or nickel pulldown assay. Results: The communication-mediating donor (COM-D domains of the fengycin synthetases, when fused to GST, specifically pulled down their downstream partner enzymes in the GST-pulldown assays. The communication-mediating acceptor (COM-A domains were required for binding between two partner enzymes, although the domains alone did not confer specificity of the binding to their upstream partner enzymes. This study found that the COM-A domain, the condensation domain, and a portion of the adenylation domain in fengycin synthetase B (FenB were required for specific binding to fengycin synthetase A (FenA. Conclusion: The interaction between the COM-D and COM-A domains in two partner enzymes is critical for nonribosomal peptide synthesis. The COM-A domain alone is insufficient for interacting with its upstream partner enzyme in the enzyme complex with specificity; a region that contains COM-A, condensation, and a portion of adenylation domains in the downstream partner enzyme is required. Keywords: communication-mediating donor and acceptor domain, fengycin synthetase, protein-protein interaction

  14. Revised selection criteria for candidate restriction enzymes in genome walking.

    Science.gov (United States)

    Taheri, Ali; Robinson, Stephen J; Parkin, Isobel; Gruber, Margaret Y

    2012-01-01

    A new method to improve the efficiency of flanking sequence identification by genome walking was developed based on an expanded, sequential list of criteria for selecting candidate enzymes, plus several other optimization steps. These criteria include: step (1) initially choosing the most appropriate restriction enzyme according to the average fragment size produced by each enzyme determined using in silico digestion of genomic DNA, step (2) evaluating the in silico frequency of fragment size distribution between individual chromosomes, step (3) selecting those enzymes that generate fragments with the majority between 100 bp and 3,000 bp, step (4) weighing the advantages and disadvantages of blunt-end sites vs. cohesive-end sites, step (5) elimination of methylation sensitive enzymes with methylation-insensitive isoschizomers, and step (6) elimination of enzymes with recognition sites within the binary vector sequence (T-DNA and plasmid backbone). Step (7) includes the selection of a second restriction enzyme with highest number of recognition sites within regions not covered by the first restriction enzyme. Step (8) considers primer and adapter sequence optimization, selecting the best adapter-primer pairs according to their hairpin/dimers and secondary structure. In step (9), the efficiency of genomic library development was improved by column-filtration of digested DNA to remove restriction enzyme and phosphatase enzyme, and most important, to remove small genomic fragments (enzymes, NsiI and NdeI, fit these criteria for the Arabidopsis thaliana genome. Their efficiency was assessed using 54 T(3) lines from an Arabidopsis SK enhancer population. Over 70% success rate was achieved in amplifying the flanking sequences of these lines. This strategy was also tested with Brachypodium distachyon to demonstrate its applicability to other larger genomes.

  15. Susceptibility of sweetpotato (Ipomoea batatas) peel proteins to digestive enzymes

    Science.gov (United States)

    Sweet potato proteins have been shown to possess antioxidant and antidiabetic properties in vivo. The ability of a protein to exhibit systemic effects is somewhat unusual as proteins are typically susceptible to digestive enzymes. This study was undertaken to better understand how digestive enzymes ...

  16. Relationship between locomotory habits and enzyme concentration in sects.

    Science.gov (United States)

    KITTO, G B; BRIGGS, M H

    1962-03-16

    The activity of alpha-glycerol phosphate dehydrogenase has been measured in muscles from four insect species. In flying insects the enzyme activity is much greater per unit weight for flight muscles than for leg muscles. The results indicate a direct relationship between muscle levels of the enzyme and habitual mode of locomotion.

  17. Polyphenol oxidase-based luminescent enzyme hydrogel: an ...

    Indian Academy of Sciences (India)

    2018-02-02

    Feb 2, 2018 ... (A) Photography of supramolecu- lar hydrogel [9] and (B) photography of enzyme hydrogel. type 18 Mili-Q water was used throughout the experiment. Polyphenol oxidase enzyme (10000 U) was purchased and used as received. 2.2 Instruments. Absorption and fluorescence spectra were measured in a.

  18. Why do crown ethers activate enzymes in organic solvents?

    NARCIS (Netherlands)

    van Unen, D.J.; Engbersen, Johannes F.J.; Reinhoudt, David

    2002-01-01

    One of the major drawbacks of enzymes in nonaqueous solvents is that their activity is often dramatically low compared to that in water. This limitation can be largely overcome by crown ether treatment of enzymes. In this paper, we describe a number of carefully designed new experiments that have

  19. Investigation of enzyme modified cheese production by two species ...

    African Journals Online (AJOL)

    ONOS

    2010-01-25

    Jan 25, 2010 ... Cheese curd which has been treated with enzymes to generate a concentrated cheese flavor is considered to be enzyme-modified cheese (EMC). EMCs provide the .... was brine salted and was kept for one month as the ripening period. For production of EMC, the cheese curd (65%), distilled water.

  20. Distribution, abundance and properties of restriction enzymes On ...

    African Journals Online (AJOL)

    Distribution, abundance and properties of restriction enzymes On genomic dna of granule-bound starch synthase i and ii in Cassava ( Manihot Esculenta ... Ife Journal of Science ... Thirty-one sites of 16 restriction enzymes were evenly distributed on 721 base-pair granule-bound starch synthase I (GBSS I) genomic DNA.