WorldWideScience

Sample records for anti-apoptotic protein bcl-2

  1. Homologous recombination control by the anti-apoptotic onco-protein Bcl-2

    International Nuclear Information System (INIS)

    Dumay, A.

    2003-12-01

    This research thesis deals with the different biological mechanisms, notably the repair and apoptosis mechanisms induced by irradiation in cells. After a presentation of the genotoxic stress and DNA repair mechanisms, the author discusses the cellular response to a DNA double-strand break, and the regulation of these response mechanisms (how a cellular response emerges: life or death). The next part deals with the apoptosis (cell death by necrosis or apoptosis), and presents the BCL-2 protein family. Results are then reported on laboratory studies of the effect of this protein family

  2. Reconstitution of the anti-apoptotic Bcl-2 protein into lipid membranes and biophysical evidence for its detergent-driven association with the pro-apoptotic Bax protein.

    Directory of Open Access Journals (Sweden)

    Marcus Wallgren

    Full Text Available The anti-apoptotic B-cell CLL/lymphoma-2 (Bcl-2 protein and its counterpart, the pro-apoptotic Bcl-2-associated X protein (Bax, are key players in the regulation of the mitochondrial pathway of apoptosis. However, how they interact at the mitochondrial outer membrane (MOM and there determine whether the cell will live or be sentenced to death remains unknown. Competing models have been presented that describe how Bcl-2 inhibits the cell-killing activity of Bax, which is common in treatment-resistant tumors where Bcl-2 is overexpressed. Some studies suggest that Bcl-2 binds directly to and sequesters Bax, while others suggest an indirect process whereby Bcl-2 blocks BH3-only proteins and prevents them from activating Bax. Here we present the results of a biophysical study in which we investigated the putative interaction of solubilized full-length human Bcl-2 with Bax and the scope for incorporating the former into a native-like lipid environment. Far-UV circular dichroism (CD spectroscopy was used to detect direct Bcl-2-Bax-interactions in the presence of polyoxyethylene-(23-lauryl-ether (Brij-35 detergent at a level below its critical micelle concentration (CMC. Additional surface plasmon resonance (SPR measurements confirmed this observation and revealed a high affinity between the Bax and Bcl-2 proteins. Upon formation of this protein-protein complex, Bax also prevented the binding of antimycin A2 (a known inhibitory ligand of Bcl-2 to the Bcl-2 protein, as fluorescence spectroscopy experiments showed. In addition, Bcl-2 was able to form mixed micelles with Triton X-100 solubilized neutral phospholipids in the presence of high concentrations of Brij-35 (above its CMC. Following detergent removal, the integral membrane protein was found to have been fully reconstituted into a native-like membrane environment, as confirmed by ultracentrifugation and subsequent SDS-PAGE experiments.

  3. B cell lymphoma-2 (BCL-2) homology domain 3 (BH3) mimetics demonstrate differential activities dependent upon the functional repertoire of pro- and anti-apoptotic BCL-2 family proteins.

    Science.gov (United States)

    Renault, Thibaud T; Elkholi, Rana; Bharti, Archana; Chipuk, Jerry E

    2014-09-19

    The B cell lymphoma-2 (BCL-2) family is the key mediator of cellular sensitivity to apoptosis during pharmacological interventions for numerous human pathologies, including cancer. There is tremendous interest to understand how the proapoptotic BCL-2 effector members (e.g. BCL-2-associated X protein, BAX) cooperate with the BCL-2 homology domain only (BH3-only) subclass (e.g. BCL-2 interacting mediator of death, BIM; BCL-2 interacting-domain death agonist, BID) to induce mitochondrial outer membrane permeabilization (MOMP) and apoptosis and whether these mechanisms may be pharmacologically exploited to enhance the killing of cancer cells. Indeed, small molecule inhibitors of the anti-apoptotic BCL-2 family members have been designed rationally. However, the success of these "BH3 mimetics" in the clinic has been limited, likely due to an incomplete understanding of how these drugs function in the presence of multiple BCL-2 family members. To increase our mechanistic understanding of how BH3 mimetics cooperate with multiple BCL-2 family members in vitro, we directly compared the activity of several BH3-mimetic compounds (i.e. ABT-263, ABT-737, GX15-070, HA14.1, TW-37) in biochemically defined large unilamellar vesicle model systems that faithfully recapitulate BAX-dependent mitochondrial outer membrane permeabilization. Our investigations revealed that the presence of BAX, BID, and BIM differentially regulated the ability of BH3 mimetics to derepress proapoptotic molecules from anti-apoptotic proteins. Using mitochondria loaded with fluorescent BH3 peptides and cells treated with inducers of cell death, these differences were supported. Together, these data suggest that although the presence of anti-apoptotic BCL-2 proteins primarily dictates cellular sensitivity to BH3 mimetics, additional specificity is conferred by proapoptotic BCL-2 proteins. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Metformin combined with aspirin significantly inhibit pancreatic cancer cell growth in vitro and in vivo by suppressing anti-apoptotic proteins Mcl-1 and Bcl-2

    Science.gov (United States)

    Yue, Wen; Zheng, Xi; Lin, Yong; Yang, Chung S.; Xu, Qing; Carpizo, Darren; Huang, Huarong; DiPaola, Robert S.; Tan, Xiang-Lin

    2015-01-01

    Metformin and aspirin have been studied extensively as cancer preventive or therapeutic agents. However, the effects of their combination on pancreatic cancer cells have not been investigated. Herein, we evaluated the effects of metformin and aspirin, alone or in combination, on cell viability, migration, and apoptosis as well as the molecular changes in mTOR, STAT3 and apoptotic signaling pathways in PANC-1 and BxPC3 cells. Metformin and aspirin, at relatively low concentrations, demonstrated synergistically inhibitory effects on cell viability. Compared to the untreated control or individual drug, the combination of metformin and aspirin significantly inhibited cell migration and colony formation of both PANC-1 and BxPC-3 cells. Metformin combined with aspirin significantly inhibited the phosphorylation of mTOR and STAT3, and induced apoptosis as measured by caspase-3 and PARP cleavage. Remarkably, metformin combined with aspirin significantly downregulated the anti-apoptotic proteins Mcl-1 and Bcl-2, and upregulated the pro-apoptotic proteins Bim and Puma, as well as interrupted their interactions. The downregulation of Mcl-1 and Bcl-2 was independent of AMPK or STAT3 pathway but partially through mTOR signaling and proteasome degradation. In a PANC-1 xenograft mouse model, we demonstrated that the combination of metformin and aspirin significantly inhibited tumor growth and downregulated the protein expression of Mcl-1 and Bcl-2 in tumors. Taken together, the combination of metformin and aspirin significantly inhibited pancreatic cancer cell growth in vitro and in vivo by regulating the pro- and anti-apoptotic Bcl-2 family members, supporting the continued investigation of this two drug combination as chemopreventive or chemotherapeutic agents for pancreatic cancer. PMID:26056043

  5. Interaction of a putative BH3 domain of clusterin with anti-apoptotic Bcl-2 family proteins as revealed by NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong-Hwa; Ha, Ji-Hyang [Medical Proteomics Research Center, KRIBB, Daejeon 305-806 (Korea, Republic of); Kim, Yul [Department of Bio and Brain Engineering, KAIST, Daejeon 305-701 (Korea, Republic of); Bae, Kwang-Hee [Medical Proteomics Research Center, KRIBB, Daejeon 305-806 (Korea, Republic of); Park, Jae-Yong [Department of Physiology, Institute of Health Science, School of Medicine, Gyeongsang National University, Jinju, Gyeongnam 660-751 (Korea, Republic of); Choi, Wan Sung [Department of Anatomy and Neurobiology, Institute of Health Science, School of Medicine, Gyeongsang National University, Jinju, Gyeongnam 660-751 (Korea, Republic of); Yoon, Ho Sup [Division of Structural and Computational Biology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637511 (Singapore); Park, Sung Goo; Park, Byoung Chul [Medical Proteomics Research Center, KRIBB, Daejeon 305-806 (Korea, Republic of); Yi, Gwan-Su, E-mail: gsyi@kaist.ac.kr [Department of Bio and Brain Engineering, KAIST, Daejeon 305-701 (Korea, Republic of); Chi, Seung-Wook, E-mail: swchi@kribb.re.kr [Medical Proteomics Research Center, KRIBB, Daejeon 305-806 (Korea, Republic of)

    2011-05-20

    Highlights: {yields} Identification of a conserved BH3 motif in C-terminal coiled coil region of nCLU. {yields} The nCLU BH3 domain binds to BH3 peptide-binding grooves in both Bcl-X{sub L} and Bcl-2. {yields} A conserved binding mechanism of nCLU BH3 and the other pro-apoptotic BH3 peptides with Bcl-X{sub L}. {yields} The absolutely conserved Leu323 and Asp328 of nCLU BH3 domain are critical for binding to Bcl-X{sub L.} {yields} Molecular understanding of the pro-apoptotic function of nCLU as a novel BH3-only protein. -- Abstract: Clusterin (CLU) is a multifunctional glycoprotein that is overexpressed in prostate and breast cancers. Although CLU is known to be involved in the regulation of apoptosis and cell survival, the precise molecular mechanism underlying the pro-apoptotic function of nuclear CLU (nCLU) remains unclear. In this study, we identified a conserved BH3 motif in C-terminal coiled coil (CC2) region of nCLU by sequence analysis and characterized the molecular interaction of the putative nCLU BH3 domain with anti-apoptotic Bcl-2 family proteins by nuclear magnetic resonance (NMR) spectroscopy. The chemical shift perturbation data demonstrated that the nCLU BH3 domain binds to pro-apoptotic BH3 peptide-binding grooves in both Bcl-X{sub L} and Bcl-2. A structural model of the Bcl-X{sub L}/nCLU BH3 peptide complex reveals that the binding mode is remarkably similar to those of other Bcl-X{sub L}/BH3 peptide complexes. In addition, mutational analysis confirmed that Leu323 and Asp328 of nCLU BH3 domain, absolutely conserved in the BH3 motifs of BH3-only protein family, are critical for binding to Bcl-X{sub L}. Taken altogether, our results suggest a molecular basis for the pro-apoptotic function of nCLU by elucidating the residue specific interactions of the BH3 motif in nCLU with anti-apoptotic Bcl-2 family proteins.

  6. Inhibition of early 99mTc-MIBI uptake by Bcl-2 anti-apoptotic protein overexpression in untreated breast carcinoma

    International Nuclear Information System (INIS)

    Del Vecchio, Silvana; Zannetti, Antonella; Aloj, Luigi; Caraco, Corradina; Ciarmiello, Andrea; Salvatore, Marco

    2003-01-01

    Lack of technetium-99m methoxyisobutylisonitrile ( 99m Tc-MIBI) uptake is consistently reported to predict poor response to subsequent chemotherapy in a variety of human malignant tumours. Since 99m Tc-MIBI accumulates within mitochondria, which also play a central role in apoptosis through the integration of death signals by Bcl-2 family members, we tested whether early 99m Tc-MIBI uptake is affected by alterations of the apoptotic pathway. Forty-two breast cancer patients were intravenously injected with 740 MBq of 99m Tc-MIBI and planar images were obtained 10 min post injection with the patients in the prone lateral position. Ten carcinomas failed to accumulate 99m Tc-MIBI and could not be visualised on scintigraphic images despite being larger than 1.8 cm (MIBI negative). Thirty-two of the 42 breast carcinomas showed focal uptake of 99m Tc-MIBI (MIBI positive), and 10 min tumour-to-background ratios (T/B) varied between 1.14 and 6.93. The apoptotic index, the rate of proliferation, and the expression of the anti-apoptotic Bcl-2 protein and pro-apoptotic Bax protein were assessed in surgically excised tumours. All MIBI-negative carcinomas showed a dramatic and statistically significant reduction in the apoptotic index as compared with MIBI-positive lesions (mean±SD, 0.14±0.15 vs 1.28±0.83, P 99m Tc-MIBI in breast carcinomas is affected by alterations of apoptotic pathway. High levels of Bcl-2, despite the stabilisation of mitochondrial membrane potentials, prevent accumulation of 99m Tc-MIBI in tumour cells. In conclusion, absent or reduced early 99m Tc-MIBI uptake in large tumours may indicate a Bcl-2-mediated resistance to chemo- and radiotherapy. (orig.)

  7. An Optically Pure Apogossypolone Derivative as Potent Pan-Active Inhibitor of Anti-Apoptotic Bcl-2 Family Proteins

    International Nuclear Information System (INIS)

    Wei, Jun; Stebbins, John L.; Kitada, Shinichi; Dash, Rupesh; Zhai, Dayong; Placzek, William J.; Wu, Bainan; Rega, Michele F.; Zhang, Ziming; Barile, Elisa; Yang, Li; Dahl, Russell; Fisher, Paul B.; Reed, John C.; Pellecchia, Maurizio

    2011-01-01

    Our focus in the past several years has been on the identification of novel and effective pan-Bcl-2 antagonists. We have recently reported a series of Apogossypolone (ApoG2) derivatives, resulting in the chiral compound (±) BI97D6. We report here the synthesis and evaluation on its optically pure (−) and (+) atropisomers. Compound (−) BI97D6 potently inhibits the binding of BH3 peptides to Bcl-X L , Bcl-2, Mcl-1, and Bfl-1 with IC 50 values of 76 ± 5, 31 ± 2, 25 ± 8, and 122 ± 28 nM, respectively. In a cellular assay, compound (−) BI97D6 effectively inhibits cell growth in the PC-3 human prostate cancer and H23 human lung cancer cell lines with EC 50 values of 0.22 ± 0.08 and 0.14 ± 0.02 μM, respectively. Similarly, compound (−) BI97D6 effectively induces apoptosis in the BP3 human lymphoma cell line in a dose-dependent manner. The compound also shows little cytotoxicity against bax −/− /bak −/− cells, suggesting that it kills cancers cells predominantly via a Bcl-2 pathway. Moreover, compound (−) BI97D6 displays in vivo efficacy in both a Bcl-2-transgenic mouse model and in a prostate cancer xenograft model in mice. Therefore, compound (−) BI97D6 represents a promising drug lead for the development of novel apoptosis-based therapies for cancer.

  8. Withaferin A Suppresses Anti-apoptotic BCL2, Bcl-xL, XIAP and ...

    African Journals Online (AJOL)

    apoptotic ... Quantitative real-time polymerase chain reaction (qPCR) was performed using Taq PCR Master ... Keywords: Anti-apoptotic genes, Cervical cancer, Apoptosis, Cell viability, BCL2, .... polyclonal anti-rabbit immunoglobulin HRP-linked.

  9. The anti-apoptotic members of the Bcl-2 family are attractive tumor-associated antigens

    DEFF Research Database (Denmark)

    Straten, Per thor; Andersen, Mads Hald; Andersen, Mads Hald

    2010-01-01

    Anti-apoptotic members of the Bcl-2 family (Bcl-2, Bcl-X(L) and Mcl-2) are pivotal regulators of apoptotic cell death. They are all highly overexpressed in cancers of different origin in which they enhance the survival of the cancer cells. Consequently, they represent prime candidates for anti-ca...

  10. Molecular interactions of prodiginines with the BH3 domain of anti-apoptotic Bcl-2 family members.

    Directory of Open Access Journals (Sweden)

    Ali Hosseini

    Full Text Available Prodigiosin and obatoclax, members of the prodiginines family, are small molecules with anti-cancer properties that are currently under preclinical and clinical trials. The molecular target(s of these agents, however, is an open question. Combining experimental and computational techniques we find that prodigiosin binds to the BH3 domain in some BCL-2 protein families, which play an important role in the apoptotic programmed cell death. In particular, our results indicate a large affinity of prodigiosin for MCL-1, an anti-apoptotic member of the BCL-2 family. In melanoma cells, we demonstrate that prodigiosin activates the mitochondrial apoptotic pathway by disrupting MCL-1/BAK complexes. Computer simulations with the PELE software allow the description of the induced fit process, obtaining a detailed atomic view of the molecular interactions. These results provide new data to understand the mechanism of action of these molecules, and assist in the development of more specific inhibitors of anti-apoptotic BCL-2 proteins.

  11. Targeting anti-apoptotic Bcl-2 by AT-101 to increase radiation efficacy: data from in vitro and clinical pharmacokinetic studies in head and neck cancer

    International Nuclear Information System (INIS)

    Zerp, Shuraila F.; Stoter, T. Rianne; Hoebers, Frank J. P.; Brekel, Michiel W. M. van den; Dubbelman, Ria; Kuipers, Gitta K.; Lafleur, M. Vincent M.; Slotman, Ben J.; Verheij, Marcel

    2015-01-01

    Pro-survival Bcl-2 family members can promote cancer development and contribute to treatment resistance. Head and neck squamous cell carcinoma (HNSCC) is frequently characterized by overexpression of anti-apoptotic Bcl-2 family members. Increased levels of these anti-apoptotic proteins have been associated with radio- and chemoresistance and poor clinical outcome. Inhibition of anti-apoptotic Bcl-2 family members therefore represents an appealing strategy to overcome resistance to anti-cancer therapies. The aim of this study was to evaluate combined effects of radiation and the pan-Bcl-2 inhibitor AT-101 in HNSCC in vitro. In addition, we determined human plasma levels of AT-101 obtained from a phase I/II trial, and compared these with the effective in vitro concentrations to substantiate therapeutic opportunities. We examined the effect of AT-101, radiation and the combination on apoptosis induction and clonogenic survival in two HNSCC cell lines that express the target proteins. Apoptosis was assessed by bis-benzimide staining to detect morphological nuclear changes and/or by propidium iodide staining and flow-cytometry analysis to quantify sub-diploid apoptotic nuclei. The type of interaction between AT-101 and radiation was evaluated by calculating the Combination Index (CI) and by performing isobolographic analysis. For the pharmacokinetic analysis, plasma AT-101 levels were measured by HPLC in blood samples collected from patients enrolled in our clinical phase I/II study. These patients with locally advanced HNSCC were treated with standard cisplatin-based chemoradiotherapy and received dose-escalating oral AT-101 in a 2-weeks daily schedule every 3 weeks. In vitro results showed that AT-101 enhances radiation-induced apoptosis with CI’s below 1.0, indicating synergy. This effect was sequence-dependent. Clonogenic survival assays demonstrated a radiosensitizing effect with a DEF 37 of 1.3 at sub-apoptotic concentrations of AT-101. Pharmacokinetic analysis

  12. Withaferin A Suppresses Anti-apoptotic BCL2, Bcl-xL, XIAP and ...

    African Journals Online (AJOL)

    apoptotic genes, BCL2, Bcl-xL, XIAP and Survivin), in cervical carcinoma cells. Methods: Annexin V-FITC/propidium iodide (PI) staining was used for the investigation of cell apoptosis. RNA RNeasy Kits was used to isolate RNA and Omniscript ...

  13. Orphan Nuclear Receptor NR4A1 Binds a Novel Protein Interaction Site on Anti-apoptotic B Cell Lymphoma Gene 2 Family Proteins.

    Science.gov (United States)

    Godoi, Paulo H C; Wilkie-Grantham, Rachel P; Hishiki, Asami; Sano, Renata; Matsuzawa, Yasuko; Yanagi, Hiroko; Munte, Claudia E; Chen, Ya; Yao, Yong; Marassi, Francesca M; Kalbitzer, Hans R; Matsuzawa, Shu-Ichi; Reed, John C

    2016-07-01

    B cell lymphoma gene 2 (Bcl-2) family proteins are key regulators of programmed cell death and important targets for drug discovery. Pro-apoptotic and anti-apoptotic Bcl-2 family proteins reciprocally modulate their activities in large part through protein interactions involving a motif known as BH3 (Bcl-2 homology 3). Nur77 is an orphan member of the nuclear receptor family that lacks a BH3 domain but nevertheless binds certain anti-apoptotic Bcl-2 family proteins (Bcl-2, Bfl-1, and Bcl-B), modulating their effects on apoptosis and autophagy. We used a combination of NMR spectroscopy-based methods, mutagenesis, and functional studies to define the interaction site of a Nur77 peptide on anti-apoptotic Bcl-2 family proteins and reveal a novel interaction surface. Nur77 binds adjacent to the BH3 peptide-binding crevice, suggesting the possibility of cross-talk between these discrete binding sites. Mutagenesis of residues lining the identified interaction site on Bcl-B negated the interaction with Nur77 protein in cells and prevented Nur77-mediated modulation of apoptosis and autophagy. The findings establish a new protein interaction site with the potential to modulate the apoptosis and autophagy mechanisms governed by Bcl-2 family proteins. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Bcl-2 protein level in blood of patients with acute myeloid leukaemia ...

    African Journals Online (AJOL)

    (AML), bcl-2 being an anti-apoptotic protein incriminated in cancer. ... resistant to apoptosis, defining this protein as a factor of bad prognosis in AML. Moreover, the determination ..... of the molecular mechanisms of physiological ... long term survival in breast cancer, Am. J. Pathol. ... Burkitt subtype at presentation, and is not.

  15. A Review on Structures and Functions of Bcl-2 Family Proteins from Homo sapiens.

    Science.gov (United States)

    Sivakumar, Dakshinamurthy; Sivaraman, Thirunavukkarasu

    2016-01-01

    Cancer cells evade apoptosis, which is regulated by proteins of Bcl-2 family in the intrinsic pathways. Numerous experimental three-dimensional (3D) structures of the apoptotic proteins and the proteins bound with small chemical molecules/peptides/proteins have been reported in the literature. In this review article, the 3D structures of the Bcl-2 family proteins from Homo sapiens and as well complex structures of the anti-apoptotic proteins bound with small molecular inhibitors reported in the literature to date have been comprehensively listed out and described in detail. Moreover, the molecular mechanisms by which the Bcl-2 family proteins modulate the apoptotic processes and strategies for designing antagonists to anti-apoptotic proteins have been concisely discussed.

  16. BAG1: the guardian of anti-apoptotic proteins in acute myeloid leukemia.

    Directory of Open Access Journals (Sweden)

    Sanja Aveic

    Full Text Available BCL2 associated Athano-Gene 1 (BAG1 is a multifunctional protein that has been described to be involved in different cell processes linked to cell survival. It has been reported as deregulated in diverse cancer types. Here, BAG1 protein was found highly expressed in children with acute myeloid leukemia at diagnosis, and in a cohort of leukemic cell lines. A silencing approach was used for determining BAG1's role in AML, finding that its down-regulation decreased expression of BCL2, BCL-XL, MCL1, and phospho-ERK1/2, all proteins able to sustain leukemia, without affecting the pro-apoptotic protein BAX. BAG1 down-regulation was also found to increase expression of BAG3, whose similar activity was able to compensate the loss of function of BAG1. BAG1/BAG3 co-silencing caused an enhanced cell predisposition to death in cell lines and also in primary AML cultures, affecting the same proteins. Cell death was CASPASE-3 dependent, was accompanied by PARP cleavage and documented by an increased release of pro-apoptotic molecules Smac/DIABLO and Cytochrome c. BAG1 was found to directly maintain BCL2 and to protect MCL1 from proteasomal degradation by controlling USP9X expression, which appeared to be its novel target. Finally, BAG1 was found able to affect leukemia cell fate by influencing the expression of anti-apoptotic proteins crucial for AML maintenance.

  17. Overexpression of the anti-apoptotic protein BAG3 in human choroidal melanoma: A case report.

    Science.gov (United States)

    Yunoki, Tatsuya; Tabuchi, Yoshiaki; Kondo, Takashi; Ishii, Yoko; Hayashi, Atsushi

    2017-06-01

    Bcl-2-associated athanogene 3 (BAG3), a co-chaperone of heat shock protein 70 (HSP70), exerts anti-apoptotic effects in various malignant tumors. However, relationships between choroidal melanoma and BAG3 are poorly studied. This study investigated the expression of BAG3 in a case of human choroidal melanoma. Funduscopy, computed tomography, and single-photon emission computed tomography with the intravenous injection of N-isopropyl-p-[ 123 I] iodoamphetamine strongly indicated choroidal melanoma in a 68-year-old woman. Accordingly, we carried out an enucleation and pathological diagnosis. Proteins and total RNA were extracted from normal retinochoroidal and tumor tissues. Proteins were also extracted from ocular nevus tissues of other patients. We examined the expression of BAG3 protein and mRNA using Western blotting and the real-time quantitative polymerase chain reaction, respectively. Immunohistochemical stains were positive for melan-A, HMB-45, and S-100. Histopathology confirmed a choroidal melanoma. The expression of BAG3 protein and mRNA in the choroidal melanoma tissue was upregulated with respect to both normal retinochoroidal tissue and ocular nevus tissues from other patients. Because BAG3 may inhibit apoptosis of choroidal melanoma and facilitate its survival, overexpression of this gene product may be a prognostic marker and therapeutic target.

  18. The anti-apoptotic activity associated with phosphatidylinositol transfer protein α activates the MAPK and Akt/PKB pathway

    NARCIS (Netherlands)

    Schenning, M.; Goedhart, J.; Gadella (jr.), T.W.J.; Avram, D.; Wirtz, K.W.A.; Snoek, G.T.

    2008-01-01

    The conditioned medium (CM) from mouse NIH3T3 fibroblast cells overexpressing phosphatidylinositol transfer protein α (PI-TPα; SPIα cells) demonstrates an increased anti-apoptotic activity compared with CM from wild type NIH3T3 (wtNIH3T3) cells. As previously shown, the anti-apoptotic activity acts

  19. Xanthorrhizol induced DNA fragmentation in HepG2 cells involving Bcl-2 family proteins

    Energy Technology Data Exchange (ETDEWEB)

    Tee, Thiam-Tsui, E-mail: thiamtsu@yahoo.com [School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Cheah, Yew-Hoong [School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Bioassay Unit, Herbal Medicine Research Center, Institute for Medical Research, Jalan Pahang, Kuala Lumpur (Malaysia); Meenakshii, Nallappan [Biology Department, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Mohd Sharom, Mohd Yusof; Azimahtol Hawariah, Lope Pihie [School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer We isolated xanthorrhizol, a sesquiterpenoid compound from Curcuma xanthorrhiza. Black-Right-Pointing-Pointer Xanthorrhizol induced apoptosis in HepG2 cells as observed using SEM. Black-Right-Pointing-Pointer Apoptosis in xanthorrhizol-treated HepG2 cells involved Bcl-2 family proteins. Black-Right-Pointing-Pointer DNA fragmentation was observed in xanthorrhizol-treated HepG2 cells. Black-Right-Pointing-Pointer DNA fragmentation maybe due to cleavage of PARP and DFF45/ICAD proteins. -- Abstract: Xanthorrhizol is a plant-derived pharmacologically active sesquiterpenoid compound isolated from Curcuma xanthorrhiza. Previously, we have reported that xanthorrhizol inhibited the proliferation of HepG2 human hepatoma cells by inducing apoptotic cell death via caspase activation. Here, we attempt to further elucidate the mode of action of xanthorrhizol. Apoptosis in xanthorrhizol-treated HepG2 cells as observed by scanning electron microscopy was accompanied by truncation of BID; reduction of both anti-apoptotic Bcl-2 and Bcl-X{sub L} expression; cleavage of PARP and DFF45/ICAD proteins and DNA fragmentation. Taken together, these results suggest xanthorrhizol as a potent antiproliferative agent on HepG2 cells by inducing apoptosis via Bcl-2 family members. Hence we proposed that xanthorrhizol could be used as an anti-liver cancer drug for future studies.

  20. Xanthorrhizol induced DNA fragmentation in HepG2 cells involving Bcl-2 family proteins

    International Nuclear Information System (INIS)

    Tee, Thiam-Tsui; Cheah, Yew-Hoong; Meenakshii, Nallappan; Mohd Sharom, Mohd Yusof; Azimahtol Hawariah, Lope Pihie

    2012-01-01

    Highlights: ► We isolated xanthorrhizol, a sesquiterpenoid compound from Curcuma xanthorrhiza. ► Xanthorrhizol induced apoptosis in HepG2 cells as observed using SEM. ► Apoptosis in xanthorrhizol-treated HepG2 cells involved Bcl-2 family proteins. ► DNA fragmentation was observed in xanthorrhizol-treated HepG2 cells. ► DNA fragmentation maybe due to cleavage of PARP and DFF45/ICAD proteins. -- Abstract: Xanthorrhizol is a plant-derived pharmacologically active sesquiterpenoid compound isolated from Curcuma xanthorrhiza. Previously, we have reported that xanthorrhizol inhibited the proliferation of HepG2 human hepatoma cells by inducing apoptotic cell death via caspase activation. Here, we attempt to further elucidate the mode of action of xanthorrhizol. Apoptosis in xanthorrhizol-treated HepG2 cells as observed by scanning electron microscopy was accompanied by truncation of BID; reduction of both anti-apoptotic Bcl-2 and Bcl-X L expression; cleavage of PARP and DFF45/ICAD proteins and DNA fragmentation. Taken together, these results suggest xanthorrhizol as a potent antiproliferative agent on HepG2 cells by inducing apoptosis via Bcl-2 family members. Hence we proposed that xanthorrhizol could be used as an anti-liver cancer drug for future studies.

  1. CC genotype of anti-apoptotic gene BCL-2 (-938 C/A) is an independent prognostic marker of unfavorable clinical outcome in patients with non-small-cell lung cancer.

    Science.gov (United States)

    Javid, J; Mir, R; Mirza, M; Imtiyaz, A; Prasant, Y; Mariyam, Z; Julka, P K; Mohan, A; Lone, M; Ray, P C; Saxena, A

    2015-04-01

    B cell lymphoma 2 (BCL-2) gene is a well-known regulator of apoptosis and a key element in cancer development and progression. A regulatory (-938C>A, rs2279115) single-nucleotide polymorphism in the inhibitory P2 BCL-2 gene promoter generates significantly different BCL-2 promoter activities and has been associated with different clinical outcomes in various malignancies. The aim of the present study was to analyze the possible influence of the (-938C>A) SNP on the risk and survival of Indian patients suffering from NSCLC. A hospital-based case-control study of 155 age- and sex-matched patients diagnosed with NSCLC and 155 cancer-free controls was conducted and genotyped by performing PIRA-PCR to elucidate the putative association between clinical outcome and genotypes of BCL-2 (-938C>A, rs2279115). The association of the polymorphism with the survival of NSCLC patients was analyzed by Kaplan-Meier curves. In Indian NSCLC, patients increased risk of developing NSCLC was found to be associated with BCL-2 (-938) CC genotype, [OR 3.68 (1.92-6.79), RR 1.87 (1.35-2.57) and RD 31.03 (16.79-45.27) p 0.00006 for CC and OR 2.08 (1.18-3.66), RR 1.36 (1.08-1.71) and RD 17.74 (4.68-30.81) p 0.01 for AC genotype]. Patients homozygous for C allele exhibited a significant poor overall survival compared with patients displaying AC + CC or AC or AA genotype [median survival (months) 8 vs. 11 vs. 14 vs. 35.5 (p A) polymorphism. Genetic polymorphism in the inhibitory P2 promoter region of anti-apoptotic BCL-2 genes contributes to the risk of developing non-small-cell lung cancer in Indian population. BCL-2 (-938CC) genotype was an independent adverse prognostic factor for patients with NSCLC.

  2. Peptide vaccination against multiple myeloma using peptides derived from anti-apoptotic protein

    DEFF Research Database (Denmark)

    Jørgensen, Nicolai Grønne Dahlager; Ahmad, Shamaila Munir; Abildgaard, N.

    2016-01-01

    The B-cell lymphoma-2 (Bcl-2) family of proteins play a crucial role in multiple myeloma (MM), contributing to lacking apoptosis which is a hallmark of the disease. This makes the Bcl-2 proteins interesting targets for therapeutic peptide vaccination. We report a phase I trial of therapeutic vacc...... vaccination. Vaccination against Bcl-2 was well tolerated and was able to induce immune responses in patients with relapsed MM. © Stem Cell Investigation. All rights reserved.......The B-cell lymphoma-2 (Bcl-2) family of proteins play a crucial role in multiple myeloma (MM), contributing to lacking apoptosis which is a hallmark of the disease. This makes the Bcl-2 proteins interesting targets for therapeutic peptide vaccination. We report a phase I trial of therapeutic...... vaccination with peptides from the proteins Bcl-2, Bcl-XL and Mcl-1 in patients with relapsed MM. Vaccines were given concomitant with bortezomib. Out of 7 enrolled patients, 4 received the full course of 8 vaccinations. The remaining 3 patients received fewer vaccinations due to progression, clinical...

  3. Bcl-2 Protein Expression in Egyptian Acute Myeloid Leukemia

    International Nuclear Information System (INIS)

    El-Shakankiry, N.; El-Sayed, Gh.M.M.; El-Maghraby, Sh.; Moneer, M.M.

    2009-01-01

    Objective: The primary cause of treatment failure in acute myeloid leukemia (AML) is the emergence of both resistant disease and early relapse. The bcl-2 gene encodes a 26-kDa protein that promotes cell survival by blocking programmed cell death (apoptosis). In the present study, bcl-2 protein expression was evaluated in newly diagnosed AML patients and correlated with the induction of remission and overall survival (OS), in an attempt to define patients who might benefit from modified therapeutic strategies. Patients and methods: Pretreatment cellular bcl-2 protein expression was measured in bone marrow samples obtained from 68 patients of newly diagnosed acute myeloid leukemia and 10 healthy controls by western blotting. Results: The mean bcl-2 protein expression was significantly higher in patients (0.68610.592) compared to controls (0.313±0.016) (p=0.002). The overall survival for patients with mean bcl-2 expression of less, and more than or equal to 0.315, was 67% and 56%, respectively, with no significant difference between the two groups 0»=0.86). Conclusion: Even though we did not observe a significant difference in overall survival between patients with high and low levels of bcl-2, modulation of this protein might still be considered as an option for enhancing the effectiveness of conventional chemotherapy.

  4. Bcl-2 family of proteins as drug targets for cancer chemotherapy: the long way of BH3 mimetics from bench to bedside.

    Science.gov (United States)

    Vela, Laura; Marzo, Isabel

    2015-08-01

    Bcl-2 proteins are key determinants in the life-death balance. In recent years, proteins in this family have been identified as drug targets in the design of new anti-tumor therapies. Advances in the knowledge of the mechanism of action of anti-apoptotic and pro-apoptotic members of the Bcl-2 family have enabled the development of the so-called 'BH3 mimetics'. These compounds act by inhibiting anti-apoptotic proteins of the family, imitating the function of the BH3-only subset of pro-apoptotic members. Combinations of BH3-mimetics with anti-tumor drugs are being evaluated in both preclinical models and clinical trials. Recent advances in these approaches will be reviewed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Light induced apoptosis is accelerated in transgenic retina overexpressing human EAT/mcl-1, an anti-apoptotic bcl-2 related gene.

    Science.gov (United States)

    Shinoda, K; Nakamura, Y; Matsushita, K; Shimoda, K; Okita, H; Fukuma, M; Yamada, T; Ohde, H; Oguchi, Y; Hata, J; Umezawa, A

    2001-10-01

    EAT/mcl-1 (EAT), an immediate early gene, functions in a similar way to bcl-2 in neutralising Bax mediated cytotoxicity, suggesting that EAT is a blocker of cell death. The aim of this study was to determine the effect of overexpression of the human EAT gene on light induced retinal cell apoptosis. EAT transgenic mice incorporating the EF-1alpha promoter were utilised, and expression of human EAT was detected by RT-PCR. Light damage was induced by raising mice under constant illumination. Two groups of animals, EAT transgenic mice (n=14) and littermates (n=13), were examined by ERG testing and histopathology at regular time points up to 20 weeks of constant light stimulation. Electrophysiological and histopathological findings were evaluated by established systems of arbitrary scoring as scores 0-2 and scores 0-3, respectively. The mean score (SD) of ERG response was significantly lower in EAT transgenic mice (0.79 (0.89)) than in littermates (1.69 (0.48)) (pstatistical significance (p=0.1156), the estimated incidence of electrophysiological retinal damage was higher in EAT mice (0.0495/mouse/week; 95% confidence interval (CI) 0.0347-0.0500) than in littermates (0. 0199/mouse/week; 95% CI 0.0035-0.0364). The mean scores (SD) for histopathological retinal degeneration were 2.31 (0.63) in littermates and 1.43 (1.22) in EAT transgenic mice (p=0.065). However, Kaplan-Meier curves for histopathological failure in two groups of mice showed that retinal photoreceptor cells were preserved significantly against constant light in the littermate compared with transgenic mice (p=0.0241). The estimated incidence of histopathological retinal damage was 0.0042/mouse/week in the littermates (95% CI 0-0.0120) and 0.0419/mouse/week in the EAT mice (95% CI 0.0286-0.0500). Retinal photoreceptor cell apoptosis under constant light stimulation is likely to be accelerated in transgenic retina overexpressing EAT.

  6. The sensitivity of diffuse large B-cell lymphoma cell lines to histone deacetylase inhibitor-induced apoptosis is modulated by BCL-2 family protein activity.

    Directory of Open Access Journals (Sweden)

    Ryan C Thompson

    Full Text Available BACKGROUND: Diffuse large B-cell lymphoma (DLBCL is a genetically heterogeneous disease and this variation can often be used to explain the response of individual patients to chemotherapy. One cancer therapeutic approach currently in clinical trials uses histone deacetylase inhibitors (HDACi's as monotherapy or in combination with other agents. METHODOLOGY/PRINCIPAL FINDINGS: We have used a variety of cell-based and molecular/biochemical assays to show that two pan-HDAC inhibitors, trichostatin A and vorinostat, induce apoptosis in seven of eight human DLBCL cell lines. Consistent with previous reports implicating the BCL-2 family in regulating HDACi-induced apoptosis, ectopic over-expression of anti-apoptotic proteins BCL-2 and BCL-XL or pro-apoptotic protein BIM in these cell lines conferred further resistance or sensitivity, respectively, to HDACi treatment. Additionally, BCL-2 family antgonist ABT-737 increased the sensitivity of several DLBCL cell lines to vorinostat-induced apoptosis, including one cell line (SUDHL6 that is resistant to vorinostat alone. Moreover, two variants of the HDACi-sensitive SUDHL4 cell line that have decreased sensitivity to vorinostat showed up-regulation of BCL-2 family anti-apoptotic proteins such as BCL-XL and MCL-1, as well as decreased sensitivity to ABT-737. These results suggest that the regulation and overall balance of anti- to pro-apoptotic BCL-2 family protein expression is important in defining the sensitivity of DLBCL to HDACi-induced apoptosis. However, the sensitivity of DLBCL cell lines to HDACi treatment does not correlate with expression of any individual BCL-2 family member. CONCLUSIONS/SIGNIFICANCE: These studies indicate that the sensitivity of DLBCL to treatment with HDACi's is dependent on the complex regulation of BCL-2 family members and that BCL-2 antagonists may enhance the response of a subset of DLBCL patients to HDACi treatment.

  7. Protein phosphatase 2A mediates JS-K-induced apoptosis by affecting Bcl-2 family proteins in human hepatocellular carcinoma HepG2 cells.

    Science.gov (United States)

    Liu, Ling; Huang, Zile; Chen, Jingjing; Wang, Jiangang; Wang, Shuying

    2018-04-25

    Protein phosphatase 2A (PP2A) is an important enzyme within various signal transduction pathways. The present study was investigated PP2A mediates JS-K-induced apoptosis by affecting Bcl-2 family protein. JS-K showed diverse inhibitory effects in five HCC cell lines, especially HepG2 cells. JS-K caused a dose- and time-dependent reduction in cell viability and increased in levels of LDH release. Meanwhile, JS-K- induced apoptosis was characterized by mitochondrial membrane potential reduction, Hoechst 33342 + /PI + dual staining, release of cytochrome c (Cyt c), and activation of cleaved caspase-9/3. Moreover, JS-K-treatment could lead to the activation of protein phosphatase 2A-C (PP2A-C), decrease of anti-apoptotic Bcl-2 family-protein expression including p-Bcl-2 (Ser70), Bcl-2, Bcl-xL, and Mcl-1 as well as the increase of pro-apoptosis Bcl-2 family-protein including Bim, Bad, Bax, and Bak. Furthermore, JS-K caused a marked increase of intracellular NO levels while pre-treatment with Carboxy-PTIO (a NO scavenger) reduced the cytotoxicity effects and the apoptosis rate. Meanwhile, pre-treatment with Carboxy-PTIO attenuated the JS-K-induced up-regulation of PP2A, Cyt c, and cleaved-caspase-9/3 activation. The silencing PP2A-C by siRNA could abolish the activation of PP2A-C, down-regulation of anti-apoptotic Bcl-2 family-protein (p-Bcl-2, Bcl-2, Bcl-xL, and Mcl-1), increase of pro-apoptosis Bcl-2 family-protein (Bim, Bad, Bax, and Bak) and apoptotic-related protein (Cyt c, cleaved caspase-9/3) that were caused by JS-K in HepG2 cells. In addition, pre-treatment with OA (a PP2A inhibitor) also attenuated the above effects induced by JS-K. In summary, NO release from JS-K induces apoptosis through PP2A activation, which contributed to the regulation of Bcl-2 family proteins. © 2018 Wiley Periodicals, Inc.

  8. SPATA4 Counteracts Etoposide-Induced Apoptosis via Modulating Bcl-2 Family Proteins in HeLa Cells.

    Science.gov (United States)

    Jiang, Junjun; Li, Liyuan; Xie, Mingchao; Fuji, Ryosuke; Liu, Shangfeng; Yin, Xiaobei; Li, Genlin; Wang, Zhao

    2015-01-01

    Spermatogenesis associated 4 (SPATA4) is a testis-specific gene first cloned by our laboratory, and plays an important role in maintaining the physiological function of germ cells. Accumulated evidence suggests that SPATA4 might be associated with apoptosis. Here we established HeLa cells that stably expressed SPATA4 to investigate the function of SPATA4 in apoptosis. SPATA4 protected HeLa cells from etoposide-induced apoptosis through the mitochondrial apoptotic pathway, in the way that SPATA4 suppressed decrease of the mitochondrial membrane potential, the release of cytochrome c, and subsequent activation of caspase-9 and -3. We further demonstrated that SPATA4 upregulated anti-apoptotic members of Bcl-2 family proteins, Bcl-2, and downregulated the pro-apoptotic member of Bcl-2 family proteins, Bax. Knockdown of SPATA4 in HeLa/SPATA4 cells could partially rescue expression levels of bcl-2 and bax. In conclusion, SPATA4 protects HeLa cells against etoposide-induced apoptosis through the mitochondrial apoptotic pathway. Our findings provide further evidence that SPATA4 plays a role in regulating apoptosis.

  9. BH3-only proteins and BH3 mimetics induce autophagy by competitively disrupting the interaction between Beclin 1 and Bcl-2/Bcl-X(L).

    Science.gov (United States)

    Maiuri, Maria Chiara; Criollo, Alfredo; Tasdemir, Ezgi; Vicencio, José Miguel; Tajeddine, Nicolas; Hickman, John A; Geneste, Olivier; Kroemer, Guido

    2007-01-01

    Beclin 1 has recently been identified as novel BH3-only protein, meaning that it carries one Bcl-2-homology-3 (BH3) domain. As other BH3-only proteins, Beclin 1 interacts with anti-apoptotic multidomain proteins of the Bcl-2 family (in particular Bcl-2 and its homologue Bcl-X(L)) by virtue of its BH3 domain, an amphipathic alpha-helix that binds to the hydrophobic cleft of Bcl-2/Bcl-X(L). The BH3 domains of other BH3-only proteins such as Bad, as well as BH3-mimetic compounds such as ABT737, competitively disrupt the inhibitory interaction between Beclin 1 and Bcl-2/Bcl-X(L). This causes autophagy of mitochondria (mitophagy) but not of the endoplasmic reticulum (reticulophagy). Only ER-targeted (not mitochondrion-targeted) Bcl-2/Bcl-X(L) can inhibit autophagy induced by Beclin 1, and only Beclin 1-Bcl-2/Bcl-X(L) complexes present in the ER (but not those present on heavy membrane fractions enriched in mitochondria) are disrupted by ABT737. These findings suggest that the Beclin 1-Bcl-2/Bcl-X(L) complexes that normally inhibit autophagy are specifically located in the ER and point to an organelle-specific regulation of autophagy. Furthermore, these data suggest a spatial organization of autophagy and apoptosis control in which BH3-only proteins exert two independent functions. On the one hand, they can induce apoptosis, by (directly or indirectly) activating the mitochondrion-permeabilizing function of pro-apoptotic multidomain proteins from the Bcl-2 family. On the other hand, they can activate autophagy by liberating Beclin 1 from its inhibition by Bcl-2/Bcl-X(L) at the level of the endoplasmic reticulum.

  10. Fragment-based discovery of potent inhibitors of the anti-apoptotic MCL-1 protein.

    Science.gov (United States)

    Petros, Andrew M; Swann, Steven L; Song, Danying; Swinger, Kerren; Park, Chang; Zhang, Haichao; Wendt, Michael D; Kunzer, Aaron R; Souers, Andrew J; Sun, Chaohong

    2014-03-15

    Apoptosis is regulated by the BCL-2 family of proteins, which is comprised of both pro-death and pro-survival members. Evasion of apoptosis is a hallmark of malignant cells. One way in which cancer cells achieve this evasion is thru overexpression of the pro-survival members of the BCL-2 family. Overexpression of MCL-1, a pro-survival protein, has been shown to be a resistance factor for Navitoclax, a potent inhibitor of BCL-2 and BCL-XL. Here we describe the use of fragment screening methods and structural biology to drive the discovery of novel MCL-1 inhibitors from two distinct structural classes. Specifically, cores derived from a biphenyl sulfonamide and salicylic acid were uncovered in an NMR-based fragment screen and elaborated using high throughput analog synthesis. This culminated in the discovery of selective and potent inhibitors of MCL-1 that may serve as promising leads for medicinal chemistry optimization efforts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. The Role of Bcl-2 Family Proteins in Therapy Responses of Malignant Astrocytic Gliomas: Bcl2L12 and Beyond

    Directory of Open Access Journals (Sweden)

    Fotini M. Kouri

    2012-01-01

    Full Text Available Glioblastoma (GBM is a highly aggressive and lethal brain cancer with a median survival of less than two years after diagnosis. Hallmarks of GBM tumors include soaring proliferative indices, high levels of angiogenesis, diffuse invasion into normal brain parenchyma, resistance toward therapy-induced apoptosis, and pseudopallisading necrosis. Despite the recent advances in neurosurgery, radiation therapy, and the development of targeted chemotherapeutic regimes, GBM remains one of the deadliest types of cancer. Particularly, the alkylating agent temozolomide (TMZ in combination with radiation therapy prolonged patient survival only marginally, and clinical studies assessing efficacies of targeted therapies, foremost ATP mimetics inhibiting the activity of receptor tyrosine kinases (RTKs, revealed only few initial responders; tumor recurrence is nearly universal, and salvage therapies to combat such progression remain ineffective. Consequently, myriad preclinical and clinical studies began to define the molecular mechanisms underlying therapy resistance of GBM tumors, and pointed to the Bcl-2 protein family, in particular the atypical member Bcl2-Like 12 (Bcl2L12, as important regulators of therapy-induced cell death. This review will discuss the multi-faceted modi operandi of Bcl-2 family proteins, describe their roles in therapy resistance of malignant glioma, and outline current and future drug development efforts to therapeutically target Bcl-2 proteins.

  12. The anti-apoptotic BAG3 protein is involved in BRAF inhibitor resistance in melanoma cells.

    Science.gov (United States)

    Guerriero, Luana; Palmieri, Giuseppe; De Marco, Margot; Cossu, Antonio; Remondelli, Paolo; Capunzo, Mario; Turco, Maria Caterina; Rosati, Alessandra

    2017-10-06

    BAG3 protein, a member of BAG family of co-chaperones, has a pro-survival role in several tumour types. BAG3 anti-apoptotic properties rely on its characteristic to bind several intracellular partners, thereby modulating crucial events such as apoptosis, differentiation, cell motility, and autophagy. In human melanomas, BAG3 positivity is correlated with the aggressiveness of the tumour cells and can sustain IKK-γ levels, allowing a sustained activation of NF-κB. Furthermore, BAG3 is able to modulate BRAFV600E levels and activity in thyroid carcinomas. BRAFV600E is the most frequent mutation detected in malignant melanomas and is targeted by Vemurafenib, a specific inhibitor found to be effective in the treatment of advanced melanoma. However, patients with BRAF-mutated melanoma may result insensitive ab initio or, mostly, develop acquired resistance to the treatment with this molecule. Here we show that BAG3 down-modulation interferes with BRAF levels in melanoma cells and sensitizes them to Vemurafenib treatment. Furthermore, the down-modulation of BAG3 protein in an in vitro model of acquired resistance to Vemurafenib can induce sensitization to the BRAFV600E specific inhibition by interfering with BRAF pathway through reduction of ERK phosphorylation, but also on parallel survival pathways. Future studies on BAG3 molecular interactions with key proteins responsible of acquired BRAF inhibitor resistance may represent a promising field for novel multi-drugs treatment design.

  13. Mito-priming as a method to engineer Bcl-2 addiction.

    Science.gov (United States)

    Lopez, Jonathan; Bessou, Margaux; Riley, Joel S; Giampazolias, Evangelos; Todt, Franziska; Rochegüe, Tony; Oberst, Andrew; Green, Douglas R; Edlich, Frank; Ichim, Gabriel; Tait, Stephen W G

    2016-02-02

    Most apoptotic stimuli require mitochondrial outer membrane permeabilization (MOMP) in order to execute cell death. As such, MOMP is subject to tight control by Bcl-2 family proteins. We have developed a powerful new technique to investigate Bcl-2-mediated regulation of MOMP. This method, called mito-priming, uses co-expression of pro- and anti-apoptotic Bcl-2 proteins to engineer Bcl-2 addiction. On addition of Bcl-2 targeting BH3 mimetics, mito-primed cells undergo apoptosis in a rapid and synchronous manner. Using this method we have comprehensively surveyed the efficacy of BH3 mimetic compounds, identifying potent and specific MCL-1 inhibitors. Furthermore, by combining different pro- and anti-apoptotic Bcl-2 pairings together with CRISPR/Cas9-based genome editing, we find that tBID and PUMA can preferentially kill in a BAK-dependent manner. In summary, mito-priming represents a facile and robust means to trigger mitochondrial apoptosis.

  14. The anti-apoptotic activity associated with phosphatidylinositol transfer protein alpha activates the MAPK and Akt/PKB pathway.

    Science.gov (United States)

    Schenning, Martijn; Goedhart, Joachim; Gadella, Theodorus W J; Avram, Diana; Wirtz, Karel W A; Snoek, Gerry T

    2008-10-01

    The conditioned medium (CM) from mouse NIH3T3 fibroblast cells overexpressing phosphatidylinositol transfer protein alpha (PI-TPalpha; SPIalpha cells) demonstrates an increased anti-apoptotic activity compared with CM from wild type NIH3T3 (wtNIH3T3) cells. As previously shown, the anti-apoptotic activity acts by activating a G protein-coupled receptor, most probably a cannabinoid 1 (CB1)-like receptor as the activity was blocked by both pertussis toxin and rimonabant [M. Schenning, C.M. van Tiel, D. Van Manen, J.C. Stam, B.M. Gadella, K.W. Wirtz and G.T. Snoek, Phosphatidylinositol transfer protein alpha regulates growth and apoptosis of NIH3T3 cells: involvement of a cannabinoid 1-like receptor, J. Lipid Res. 45 (2004) 1555-1564]. The CB1 receptor appears to be expressed in mouse fibroblast cells, at levels in the order SPIalpha>wtNIH3T3>SPIbeta cells (i.e. wild type cells overexpressing PI-TPbeta). Upon incubation of SPIbeta cells with the PI-TPalpha-dependent anti-apoptotic factors, both the ERK/MAP kinase and the Akt/PKB pathway are activated in a CB1 receptor dependent manner as shown by Western blotting. In addition, activation of ERK2 was also shown by EYFP-ERK2 translocation to the nucleus, as visualized by confocal laser scanning microscopy. The subsequent activation of the anti-apoptotic transcription factor NF-kappaB is in line with the increased resistance towards UV-induced apoptosis. On the other hand, receptor activation by CM from SPIalpha cells was not linked to phospholipase C activation as the YFP-labelled C2-domain of protein kinase C was not translocated to the plasma membrane of SPIbeta cells as visualized by confocal laser scanning microscopy.

  15. Expression of Anti-apoptotic Protein BAG3 in Human Sebaceous Gland Carcinoma of the Eyelid.

    Science.gov (United States)

    Yunoki, Tatsuya; Tabuchi, Yoshiaki; Hayashi, Atsushi

    2017-04-01

    Bcl-2-associated athanogene 3 (BAG3), a co-chaperone of heat shock protein 70 (HSP70), has been shown to play a role in anti-apoptosis of various malignant tumors. In this study, the expression of BAG3 was examined in human sebaceous gland carcinoma of the eyelid. The expression of BAG3 was evaluated by immunohistochemistry of surgical samples from 5 patients with sebaceous gland carcinoma in the eyelid. BAG3 was positive diffusely in the cytoplasm in all patients. The average positive rate of BAG3 was 73.0±26.0% in tumor cells of all patients. BAG3 was highly expressed in sebaceous gland carcinoma of the eyelid. BAG3 may play an important role in the pathogenesis and progression of sebaceous gland carcinoma of the eyelid. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  16. Targeting the Anti-Apoptotic Protein c-FLIP for Cancer Therapy

    International Nuclear Information System (INIS)

    Safa, Ahmad R.; Pollok, Karen E.

    2011-01-01

    Cellular FLICE (FADD-like IL-1beta-converting enzyme)-inhibitory protein (c-FLIP) is a major resistance factor and critical anti-apoptotic regulator that inhibits tumor necrosis factor-alpha (TNF-alpha), Fas-L, and TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis as well as chemotherapy-triggered apoptosis in malignant cells. c-FLIP is expressed as long (c-FLIP L ), short (c-FLIP S ), and c-FLIP R splice variants in human cells. c-FLIP binds to FADD and/or caspase-8 or -10 in a ligand-dependent and-independent fashion, which in turn prevents death-inducing signaling complex (DISC) formation and subsequent activation of the caspase cascade. Moreover, c-FLIP L and c-FLIP S are known to have multifunctional roles in various signaling pathways, as well as activating and/or upregulating several cytoprotective signaling molecules. Upregulation of c-FLIP has been found in various tumor types, and its downregulation has been shown to restore apoptosis triggered by cytokines and various chemotherapeutic agents. Hence, c-FLIP is an important target for cancer therapy. For example, small interfering RNAs (siRNAs) that specifically knockdown the expression of c-FLIP L in diverse human cancer cell lines augmented TRAIL-induced DISC recruitment and increased the efficacy of chemotherapeutic agents, thereby enhancing effector caspase stimulation and apoptosis. Moreover, small molecules causing degradation of c-FLIP as well as decreasing mRNA and protein levels of c-FLIP L and c-FLIP S splice variants have been found, and efforts are underway to develop other c-FLIP-targeted cancer therapies. This review focuses on (1) the functional role of c-FLIP splice variants in preventing apoptosis and inducing cytokine and drug resistance; (2) the molecular mechanisms that regulate c-FLIP expression; and (3) strategies to inhibit c-FLIP expression and function

  17. Nitric oxide synthase-I containing cortical interneurons co-express antioxidative enzymes and anti-apoptotic Bcl-2 following focal ischemia: evidence for direct and indirect mechanisms towards their resistance to neuropathology.

    Science.gov (United States)

    Bidmon, H J; Emde, B; Kowalski, T; Schmitt, M; Mayer, B; Kato, K; Asayama, K; Witte, O W; Zilles, K

    2001-09-01

    Neuronal nitric oxide-I is constitutively expressed in approximately 2% of cortical interneurons and is co-localized with gamma-amino butric acid, somatostatin or neuropeptide Y. These interneurons additionally express high amounts of glutamate receptors which mediate the glutamate-induced hyperexcitation following cerebral injury, under these conditions nitric oxide production increases contributing to a potentiation of oxidative stress. However, perilesional nitric oxide synthase-I containing neurons are known to be resistant to ischemic and excitotoxic injury. In vitro studies show that nitrosonium and nitroxyl ions inactivate N-methyl-D-aspartate receptors, resulting in neuroprotection. The question remains of how these cells are protected against their own high intracellular nitric oxide production after activation. In this study, we investigated immunocytochemically nitric oxide synthase-I containing cortical neurons in rats after unilateral, cortical photothrombosis. In this model of focal ischemia, perilesional, constitutively nitric oxide synthase-I containing neurons survived and co-expressed antioxidative enzymes, such as manganese- and copper-zinc-dependent superoxide dismutases, heme oxygenase-2 and cytosolic glutathione peroxidase. This enhanced antioxidant expression was accompanied by a strong perinuclear presence of the antiapoptotic Bcl-2 protein. No colocalization was detectable with upregulated heme oxygenase-1 in glia and the superoxide and prostaglandin G(2)-producing cyclooxygenase-2 in neurons. These results suggest that nitric oxide synthase-I containing interneurons are protected against intracellular oxidative damage and apoptosis by Bcl-2 and several potent antioxidative enzymes. Since nitric oxide synthase-I positive neurons do not express superoxide-producing enzymes such as cyclooxygenase-1, xanthine oxidase and cyclooxygenase-2 in response to injury, this may additionally contribute to their resistance by reducing their internal

  18. Targeting MUC1-C suppresses BCL2A1 in triple-negative breast cancer.

    Science.gov (United States)

    Hiraki, Masayuki; Maeda, Takahiro; Mehrotra, Neha; Jin, Caining; Alam, Maroof; Bouillez, Audrey; Hata, Tsuyoshi; Tagde, Ashujit; Keating, Amy; Kharbanda, Surender; Singh, Harpal; Kufe, Donald

    2018-01-01

    B-cell lymphoma 2-related protein A1 (BCL2A1) is a member of the BCL-2 family of anti-apoptotic proteins that confers resistance to treatment with anti-cancer drugs; however, there are presently no agents that target BCL2A1. The MUC1-C oncoprotein is aberrantly expressed in triple-negative breast cancer (TNBC) cells, induces the epithelial-mesenchymal transition (EMT) and promotes anti-cancer drug resistance. The present study demonstrates that targeting MUC1-C genetically and pharmacologically in TNBC cells results in the downregulation of BCL2A1 expression. The results show that MUC1-C activates the BCL2A1 gene by an NF-κB p65-mediated mechanism, linking this pathway with the induction of EMT. The MCL-1 anti-apoptotic protein is also of importance for the survival of TNBC cells and is an attractive target for drug development. We found that inhibiting MCL-1 with the highly specific MS1 peptide results in the activation of the MUC1-C→NF-κB→BCL2A1 pathway. In addition, selection of TNBC cells for resistance to ABT-737, which inhibits BCL-2, BCL-xL and BCL-W but not MCL-1 or BCL2A1, is associated with the upregulation of MUC1-C and BCL2A1 expression. Targeting MUC1-C in ABT-737-resistant TNBC cells suppresses BCL2A1 and induces death, which is of potential therapeutic importance. These findings indicate that MUC1-C is a target for the treatment of TNBCs unresponsive to agents that inhibit anti-apoptotic members of the BCL-2 family.

  19. Anti-Apoptotic Protein Bcl-xL Expression in the Midbrain Raphe Region Is Sensitive to Stress and Glucocorticoids.

    Science.gov (United States)

    Shishkina, Galina T; Kalinina, Tatyana S; Bulygina, Veta V; Lanshakov, Dmitry A; Babluk, Ekaterina V; Dygalo, Nikolay N

    2015-01-01

    Anti-apoptotic proteins are suggested to be important for the normal health of neurons and synapses as well as for resilience to stress. In order to determine whether stressful events may influence the expression of anti-apoptotic protein Bcl-xL in the midbrain and specifically in the midbrain serotonergic (5-HT) neurons involved in neurobehavioral responses to adverse stimuli, adult male rats were subjected to short-term or chronic forced swim stress. A short-term stress rapidly increased the midbrain bcl-xl mRNA levels and significantly elevated Bcl-xL immunoreactivity in the midbrain 5-HT cells. Stress-induced increase in glucocorticoid secretion was implicated in the observed effect. The levels of bcl-xl mRNA were decreased after stress when glucocorticoid elevation was inhibited by metyrapone (MET, 150 mg/kg), and this decrease was attenuated by glucocorticoid replacement with dexamethasone (DEX; 0.2 mg/kg). Both short-term stress and acute DEX administration, in parallel with Bcl-xL, caused a significant increase in tph2 mRNA levels and slightly enhanced tryptophan hydroxylase immunoreactivity in the midbrain. The increasing effect on the bcl-xl expression was specific to the short-term stress. Forced swim repeated daily for 2 weeks led to a decrease in bcl-xl mRNA in the midbrain without any effects on the Bcl-xL protein expression in the 5-HT neurons. In chronically stressed animals, an increase in tph2 gene expression was not associated with any changes in tryptophan hydroxylase protein levels. Our findings are the first to demonstrate that both short-term stress and acute glucocorticoid exposures induce Bcl-xL protein expression in the midbrain 5-HT neurons concomitantly with the activation of the 5-HT synthesis pathway in these neurons.

  20. Anti-Apoptotic Protein Bcl-xL Expression in the Midbrain Raphe Region Is Sensitive to Stress and Glucocorticoids.

    Directory of Open Access Journals (Sweden)

    Galina T Shishkina

    Full Text Available Anti-apoptotic proteins are suggested to be important for the normal health of neurons and synapses as well as for resilience to stress. In order to determine whether stressful events may influence the expression of anti-apoptotic protein Bcl-xL in the midbrain and specifically in the midbrain serotonergic (5-HT neurons involved in neurobehavioral responses to adverse stimuli, adult male rats were subjected to short-term or chronic forced swim stress. A short-term stress rapidly increased the midbrain bcl-xl mRNA levels and significantly elevated Bcl-xL immunoreactivity in the midbrain 5-HT cells. Stress-induced increase in glucocorticoid secretion was implicated in the observed effect. The levels of bcl-xl mRNA were decreased after stress when glucocorticoid elevation was inhibited by metyrapone (MET, 150 mg/kg, and this decrease was attenuated by glucocorticoid replacement with dexamethasone (DEX; 0.2 mg/kg. Both short-term stress and acute DEX administration, in parallel with Bcl-xL, caused a significant increase in tph2 mRNA levels and slightly enhanced tryptophan hydroxylase immunoreactivity in the midbrain. The increasing effect on the bcl-xl expression was specific to the short-term stress. Forced swim repeated daily for 2 weeks led to a decrease in bcl-xl mRNA in the midbrain without any effects on the Bcl-xL protein expression in the 5-HT neurons. In chronically stressed animals, an increase in tph2 gene expression was not associated with any changes in tryptophan hydroxylase protein levels. Our findings are the first to demonstrate that both short-term stress and acute glucocorticoid exposures induce Bcl-xL protein expression in the midbrain 5-HT neurons concomitantly with the activation of the 5-HT synthesis pathway in these neurons.

  1. Interaction between Na-K-ATPase and Bcl-2 proteins BclXL and Bak.

    Science.gov (United States)

    Lauf, Peter K; Alqahtani, Tariq; Flues, Karin; Meller, Jaroslaw; Adragna, Norma C

    2015-01-01

    In silico analysis predicts interaction between Na-K-ATPase (NKA) and Bcl-2 protein canonical BH3- and BH1-like motifs, consistent with NKA inhibition by the benzo-phenanthridine alkaloid chelerythrine, a BH3 mimetic, in fetal human lens epithelial cells (FHLCs) (Lauf PK, Heiny J, Meller J, Lepera MA, Koikov L, Alter GM, Brown TL, Adragna NC. Cell Physiol Biochem 31: 257-276, 2013). This report establishes proof of concept: coimmunoprecipitation and immunocolocalization showed unequivocal and direct physical interaction between NKA and Bcl-2 proteins. Specifically, NKA antibodies (ABs) coimmunoprecipitated BclXL (B-cell lymphoma extra large) and BAK (Bcl-2 antagonist killer) proteins in FHLCs and A549 lung cancer cells. In contrast, both anti-Bcl-2 ABs failed to pull down NKA. Notably, the molecular mass of BAK1 proteins pulled down by NKA and BclXL ABs appeared to be some 4-kDa larger than found in input monomers. In silico analysis predicts these higher molecular mass BAK1 proteins as alternative splicing variants, encoding 42 amino acid (aa) larger proteins than the known 211-aa long canonical BAK1 protein. These BAK1 variants may constitute a pool separate from that forming mitochondrial pores by specifically interacting with NKA and BclXL proteins. We propose a NKA-Bcl-2 protein ternary complex supporting our hypothesis for a special sensor role of NKA in Bcl-2 protein control of cell survival and apoptosis. Copyright © 2015 the American Physiological Society.

  2. Increase of bcl-2 Protein Expression in Aggressive Basal Cell Carcinoma of Head and Neck

    OpenAIRE

    Cláudia CAZAL; Mariana Roesch ELY; Ana Paula Veras SOBRAL; Wilton Wilney Nascimento PADILHA

    2006-01-01

    Objective: The aim of this study was to verify the bcl-2 protein expression in 22 cutaneous basal cell carcinomas (BCC) of the head and neck, and to compare it with its aggressive behavior. Method: Tumors were histologically classified in non-aggressive (BCC 1) and aggressive (BCC 2) and then submitted to the immunohistochemistry technique with the streptavidin-biotin peroxidase method using the anti-bcl-2 antibody. Results: After proceeding to morphological analysis, sixteen tumors (72.7%) w...

  3. Endoplasmic Reticulum Stress Induces the Early Appearance of Pro-apoptotic and Anti-apoptotic Proteins in Neurons of Five Familial Alzheimer′s Disease Mice

    Directory of Open Access Journals (Sweden)

    Hui Shen

    2016-01-01

    Conclusions: These findings suggest that compared with those of age-matched WT mice, ERS-associated pro-apoptotic and anti-apoptotic proteins are upregulated in 2-month-old 5×FAD mice, consistent with intracellular Aβ aggregation in neurons.

  4. Alpha-helical destabilization of the Bcl-2-BH4-domain peptide abolishes its ability to inhibit the IP3 receptor.

    Directory of Open Access Journals (Sweden)

    Giovanni Monaco

    Full Text Available The anti-apoptotic Bcl-2 protein is the founding member and namesake of the Bcl-2-protein family. It has recently been demonstrated that Bcl-2, apart from its anti-apoptotic role at mitochondrial membranes, can also directly interact with the inositol 1,4,5-trisphosphate receptor (IP3R, the primary Ca(2+-release channel in the endoplasmic reticulum (ER. Bcl-2 can thereby reduce pro-apoptotic IP3R-mediated Ca(2+ release from the ER. Moreover, the Bcl-2 homology domain 4 (Bcl-2-BH4 has been identified as essential and sufficient for this IP3R-mediated anti-apoptotic activity. In the present study, we investigated whether the reported inhibitory effect of a Bcl-2-BH4 peptide on the IP 3R1 was related to the distinctive α-helical conformation of the BH4 domain peptide. We therefore designed a peptide with two glycine "hinges" replacing residues I14 and V15, of the wild-type Bcl-2-BH4 domain (Bcl-2-BH4-IV/GG. By comparing the structural and functional properties of the Bcl-2-BH4-IV/GG peptide with its native counterpart, we found that the variant contained reduced α-helicity, neither bound nor inhibited the IP 3R1 channel, and in turn lost its anti-apoptotic effect. Similar results were obtained with other substitutions in Bcl-2-BH4 that destabilized the α-helix with concomitant loss of IP3R inhibition. These results provide new insights for the further development of Bcl-2-BH4-derived peptides as specific inhibitors of the IP3R with significant pharmacological implications.

  5. Bcl-2 protein expression in mucoepidermoid carcinoma of salivary glands: a single institution experience.

    Science.gov (United States)

    Janjua, Omer Sefvan; Qureshi, Sana Mehmood; Khan, Tariq Sarfraz; Alamgir, Wajiha

    2012-01-01

    Mucoepidermoid carcinoma is the most common salivary gland tumor with varying behavior among different histopathological grades. The objective of this study was to determine the expression of Bcl-2 protein in mucoepidermoid carcinoma (MEC) and to correlate with histological grades. The records of 40 cases of MEC were collected from the histopathology department. Fresh slides were prepared and fresh diagnoses were made using the grading criteria for MEC. Immunohistochemical markers for Bcl-2 were applied and the results analyzed using the chi-square test. Of 40 cases, 20 were males and 20 were females. The range in age of the patients was 6 to 67 years mean (SD) was 42.6 (1.85) years. Twenty-two were low grade (55%), 11 high grade (27.5%) and 7 (17.5%) were intermediate grade MEC. Among these 40 cases, Bcl-2 expression was positive in 24 cases and negative in 16 cases. In 22 cases of low-grade MEC, 19 were positive while only 3 were negative. In high-grade tumors, all 11 cases were found to have a negative expression of Bcl-2 protein. In intermediate-grade MEC, 5 cases showed positive expression while only 2 cases showed negative expression. Bcl-2 protein expression showed positive expression in low-grade and negative expression in high-grade MEC. Intermediate grade showed more than 50% positive results for Bcl-2. Correlation between grades of MEC and expression of Bcl-2 is statistically significant and can be used for the depicting the prognosis of MEC along with other prognostic and clinico-pathological parameters.

  6. Mechanism of effect of ionizing radiation on bcl-2 protein expression and apoptosis in mouse thymus

    International Nuclear Information System (INIS)

    Liu Jiamei; Chen Aijun; Chen Dong; Liu Shuzheng

    2002-01-01

    Objective: To study the mechanism of effect of ionizing radiation in varied doses of X-rays on bcl-2 express and apoptosis in mouse thymus. Methods: Immunohistochemistry, image analysis and transmission electron microscope were used in the study. Results: The expression of bcl-2 protein was limited within thymic medulla, decreased with 2 Gy, however, increased with 0.075 Gy after whole-body irradiation. Some typical apoptotic cells were found in thymic cortex after 2 Gy irradiation. The apoptotic cells decreased and mitotic metaphase increased after 0.075 Gy irradiation. Conclusion: The mechanism of effect of ionizing radiation on apoptosis of thymus was related with the expression of bcl-2 proteins

  7. Inhibitory heterotrimeric GTP-binding proteins inhibit hydrogen peroxide-induced apoptosis by up-regulation of Bcl-2 via NF-κB in H1299 human lung cancer cells

    International Nuclear Information System (INIS)

    Seo, Mi Ran; Nam, Hyo-Jung; Kim, So-Young; Juhnn, Yong-Sung

    2009-01-01

    Inhibitory heterotrimeric GTP-binding proteins (Gi proteins) mediate a variety of signaling pathways by coupling receptors and effectors to regulate cellular proliferation, differentiation, and apoptosis. However, the role of Gi proteins in the modulation of hydrogen peroxide-induced apoptosis is not clearly understood. Thus, we investigated the effect of Gi proteins on hydrogen peroxide-induced apoptosis and the underlying mechanisms in H1299 human lung cancer cells. The stable expression of constitutively active alpha subunits of Gi1 (Gαi1QL), Gi2, or Gi3 inhibited hydrogen peroxide-induced apoptosis. The expression of Gαi1QL up-regulated Bcl-2 expression, and the knockdown of Bcl-2 with siRNA abolished the anti-apoptotic effect of Gαi1QL. Gαi1 induced the transcription of Bcl-2 by activation of NF-κB, which resulted from an increase in NF-κB p50 protein. We conclude that Gαi1 inhibits hydrogen peroxide-induced apoptosis of H1299 lung cancer cells by up-regulating the transcription of Bcl-2 through a p50-mediated NF-κB activation.

  8. Expression of Bcl-2 family proteins and spontaneous apoptosis in normal human testis.

    Science.gov (United States)

    Oldereid, N B; Angelis, P D; Wiger, R; Clausen, O P

    2001-05-01

    We investigated the frequency of spontaneous apoptosis and expression of the Bcl-2 family of proteins during normal spermatogenesis in man. Testicular tissue with both normal morphology and DNA content was obtained from necro-donors and fixed in Bouin's solution. A TdT-mediated dUTP end-labelling method (TUNEL) was used for the detection of apoptotic cells. Expression of apoptosis regulatory Bcl-2 family proteins and of p53 and p21(Waf1) was assessed by immunohistochemistry. Germ cell apoptosis was detected in all testes and was mainly seen in primary spermatocytes and spermatids and in a few spermatogonia. Bcl-2 and Bak were preferentially expressed in the compartments of spermatocytes and differentiating spermatids, while Bcl-x was preferentially expressed in spermatogonia. Bax showed a preferential expression in nuclei of round spermatids, whereas Bad was only seen in the acrosome region of various stages of spermatids. Mcl-1 staining was weak without a particular pattern, whereas expression of Bcl-w, p53 and p21(Waf1) proteins was not detected by immunohistochemistry. The results show that spontaneous apoptosis occurs in all male germ cell compartments in humans. Bcl-2 family proteins are distributed preferentially within distinct germ cell compartments suggesting a specific role for these proteins in the processes of differentiation and maturation during human spermatogenesis.

  9. Expanding the Cancer Arsenal with Targeted Therapies: Disarmament of the Antiapoptotic Bcl-2 Proteins by Small Molecules.

    Science.gov (United States)

    Yap, Jeremy L; Chen, Lijia; Lanning, Maryanna E; Fletcher, Steven

    2017-02-09

    A hallmark of cancer is the evasion of apoptosis, which is often associated with the upregulation of the antiapoptotic members of the Bcl-2 family of proteins. The prosurvival function of the antiapoptotic Bcl-2 proteins is manifested by capturing and neutralizing the proapoptotic Bcl-2 proteins via their BH3 death domains. Accordingly, strategies to antagonize the antiapoptotic Bcl-2 proteins have largely focused on the development of low-molecular-weight, synthetic BH3 mimetics ("magic bullets") to disrupt the protein-protein interactions between anti- and proapoptotic Bcl-2 proteins. In this way, apoptosis has been reactivated in malignant cells. Moreover, several such Bcl-2 family inhibitors are presently being evaluated for a range of cancers in clinical trials and show great promise as new additions to the cancer armamentarium. Indeed, the selective Bcl-2 inhibitor venetoclax (Venclexta) recently received FDA approval for the treatment of a specific subset of patients with chronic lymphocytic leukemia. This review focuses on the major developments in the field of Bcl-2 inhibitors over the past decade, with particular emphasis on binding modes and, thus, the origins of selectivity for specific Bcl-2 family members.

  10. Paraquat induces extrinsic pathway of apoptosis in A549 cells by induction of DR5 and repression of anti-apoptotic proteins, DDX3 and GSK3 expression.

    Science.gov (United States)

    Hathaichoti, Sasiphen; Visitnonthachai, Daranee; Ngamsiri, Pronrumpa; Niyomchan, Apichaya; Tsogtbayar, Oyu; Wisessaowapak, Churaibhon; Watcharasit, Piyajit; Satayavivad, Jutamaad

    2017-08-01

    Paraquat (PQ) is a bipyridyl derivative herbicide known to cause lung toxicity partly through induction of apoptosis. Here we demonstrated that PQ caused apoptosis in A549 cells. PQ increased cleavage of caspase-8 and Bid, indicating caspase-8 activation and truncated Bid, the two key mediators of extrinsic apoptosis. Additionally, PQ treatment caused an increase in DR5 (death receptor-5) and caspase-8 interaction, indicating formation of DISC (death-inducing signaling complex). These results indicate that PQ induces apoptosis through extrinsic pathway in A549 cells. Moreover, PQ drastically increased DR5 expression and membrane localization. Furthermore, PQ caused prominent concentration dependent reductions of DDX3 (the DEAD box protein-3) and GSK3 (glycogen synthase kinase-3) which can associate with DR5 and prevent DISC formation. Additionally, PQ decreased DR5-DDX3 interaction, suggesting a reduction of DDX3/GSK3 anti-apoptotic complex. Inhibition of GSK3, which is known to promote extrinsic apoptosis by its pharmacological inhibitor, BIO accentuated PQ-induced apoptosis. Moreover, GSK3 inhibition caused a further decrease in PQ-reduced DR5-DDX3 interaction. Taken together, these results suggest that PQ may induce extrinsic pathway of apoptosis in A549 cells through upregulation of DR5 and repression of anti-apoptotic proteins, DDX3/GSK3 leading to reduction of anti-apoptotic complex. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Bcl-2 antisense therapy in B-cell malignancies.

    Science.gov (United States)

    Chanan-Khan, Asher

    2005-07-01

    Bcl-2 is an apoptosis regulating protein, overexpression of which is associated with chemotherapy resistant disease, aggressive clinical course, and poor survival in patients with B-cell lymphoproliferative disorders. Overexpression of Bcl-2 protein results in an aberrant intrinsic apoptotic pathway that confers a protective effect on malignant cells against a death signal (e.g., chemotherapy or radiotherapy). Downregulation of this oncoprotein, thus, represents a possible new way to target clinically aggressive disease. Preclinical studies have shown that this oncoprotein can be effectively decreased by Bcl-2 antisense in malignant lymphoid cells and can reverse chemotherapy resistance, as well as enhance the anti-apoptotic potential of both chemotherapeutic and biologic agents. Ongoing clinical trials are exploring the role of Bcl-2 downregulation with oblimersen (Bcl-2 antisense) in patients with non-Hodgkin's lymphoma, chronic lymphocytic leukemia and multiple myeloma. Early results from these studies are promising and support the proof of the principle. As these studies are completed and mature data emerges, the role of Bcl-2 antisense therapy in the treatment of B-cell malignancies will become clearer.

  12. Original Article: Investigation of Bcl-2 and PCNA in Hepatocellular Carcinoma: Relation to Chronic HCV

    International Nuclear Information System (INIS)

    ALENZI, F.Q.Ph.; ABBAS, M.Y.Ph.; HAMAD, A.M.; EL-SAEED, O.M.; EL-NASHAR, E.M.; AL-GHAMDI, S.S.; WYSE, R.K.H.; LOTFY, M.

    2010-01-01

    Bcl-2 family members can be functionally divided into anti-apoptotic and pro-apoptotic groups. The balance between these two groups may determine the fate of tumor cells. In hepatocellular carcinoma (HCC), this balance is often tilted towards the anti-apoptotic members in tumor cells, leading to resistance to cell death and rapid proliferation. Material and Methods: In the current study, we in-vestigated Bcl-2 and proliferating cell nuclear antigen (PCNA) immunohistochemically, using specific mono-clonal antibodies in liver tissues obtained from two patient groups. The first group included fifty patients infected with hepatitis C virus (HCV) without hepatocellular carcinoma, the other group included twenty five HCV-infected patients but with confirmed HCC. Serum Bcl-2 was assayed using enzyme immunoassay. Results: Results showed serum Bcl-2 was elevated in 82% versus 100% in HCC-free and HCC patients, respectively. Moreover, cytoplasmic staining of Bcl-2 was found in only 16% of chronic HCV patients without HCC, versus 8% in HCC patients. On the other hand, nuclear staining of PCNA was detected in 100% of HCC patients, but in none of the HCV patients without HCC. Conclusion: The results collectively suggest that in HCV-infected patients with and without HCC, apoptosis is dysregulated and proliferation activity perturbed. There may be prognostic and/or diagnostic potential in estimating Bcl-2 and PCNA proteins in these patient groups

  13. Effect of polysaccharides from Angelica sinensis on Bcl-2 and Bax protein expression of irradiated liver cells

    International Nuclear Information System (INIS)

    Sun Yuanlin; Tang Jian; Gu Xiaohong; Li Deyuan

    2009-01-01

    Objective: To investigate the effect of polysaccharides from Angelica sinensis (ASP3) on Bcl-2 and Bax protein expression of irradiated liver cells from mice. Methods: Bcl-2 and Bax protein expression of liver cells in vitro exposed to 2.0 Gy rays were examined by using immunohistochemistry method. Results: The expression of apoptosis-accelerating protein Bax in the irradiation group was enhanced obviously (70.83%), while apoptosis inhibiting protein Bcl-2 tended to decline (55.60%), with the statistically significant difference (P <0.01) compared with that of the control. ASP3 pretreatment could regulate Bcl-2 and Bax protein expression of liver cells, inhibiting Bax protein expression(64.14/58.37%) and increasing Bcl-2 protein expression(59.21%/ 67.45%). The differences between the high dosage (100 mg/L of ASP3) and the irradiation group were statistically significant (P<0.05). Conclusions: ASP3 pretreatment could prohibit the apoptosis of radiation- damaged liver cells due to abnormal expression of Bcl-2 and Bax, and reduce the cell apoptosis by increasing Bcl-2/Bax protein expression so as to enhance the radiation endurance of liver cells. (authors)

  14. Histone deacetylase inhibitors strongly sensitise neuroblastoma cells to TRAIL-induced apoptosis by a caspases-dependent increase of the pro- to anti-apoptotic proteins ratio

    International Nuclear Information System (INIS)

    Mühlethaler-Mottet, Annick; Flahaut, Marjorie; Bourloud, Katia Balmas; Auderset, Katya; Meier, Roland; Joseph, Jean-Marc; Gross, Nicole

    2006-01-01

    Neuroblastoma (NB) is the second most common solid childhood tumour, an aggressive disease for which new therapeutic strategies are strongly needed. Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) selectively induces apoptosis in most tumour cells, but not in normal tissues and therefore represents a valuable candidate in apoptosis-inducing therapies. Caspase-8 is silenced in a subset of highly malignant NB cells, which results in full TRAIL resistance. In addition, despite constitutive caspase-8 expression, or its possible restoration by different strategies, NB cells remain weakly sensitive to TRAIL indicating a need to develop strategies to sensitise NB cells to TRAIL. Histone deacetylase inhibitors (HDACIs) are a new class of anti-cancer agent inducing apoptosis or cell cycle arrest in tumour cells with very low toxicity toward normal cells. Although HDACIs were recently shown to increase death induced by TRAIL in weakly TRAIL-sensitive tumour cells, the precise involved sensitisation mechanisms have not been fully identified. NB cell lines were treated with various doses of HDACIs and TRAIL, then cytotoxicity was analysed by MTS/PMS proliferation assays, apoptosis was measured by the Propidium staining method, caspases activity by colorimetric protease assays, and (in)activation of apoptotic proteins by immunoblotting. Sub-toxic doses of HDACIs strongly sensitised caspase-8 positive NB cell lines to TRAIL induced apoptosis in a caspases dependent manner. Combined treatments increased the activation of caspases and Bid, and the inactivation of the anti-apoptotic proteins XIAP, Bcl-x, RIP, and survivin, thereby increasing the pro- to anti-apoptotic protein ratio. It also enhanced the activation of the mitochondrial pathway. Interestingly, the kinetics of caspases activation and inactivation of anti-apoptotic proteins is accelerated by combined treatment with TRAIL and HDACIs compared to TRAIL alone. In contrast, cell surface expression of TRAIL

  15. FLASH knockdown sensitizes cells to Fas-mediated apoptosis via down-regulation of the anti-apoptotic proteins, MCL-1 and Cflip short.

    Directory of Open Access Journals (Sweden)

    Song Chen

    Full Text Available FLASH (FLICE-associated huge protein or CASP8AP2 is a large multifunctional protein that is involved in many cellular processes associated with cell death and survival. It has been reported to promote apoptosis, but we show here that depletion of FLASH in HT1080 cells by siRNA interference can also accelerate the process. As shown previously, depletion of FLASH halts growth by down-regulating histone biosynthesis and arrests the cell cycle in S-phase. FLASH knockdown followed by stimulating the cells with Fas ligand or anti-Fas antibodies was found to be associated with a more rapid cleavage of PARP, accelerated activation of caspase-8 and the executioner caspase-3 and rapid progression to cellular disintegration. As is the case for most anti-apoptotic proteins, FLASH was degraded soon after the onset of apoptosis. Depletion of FLASH also resulted in the reduced intracellular levels of the anti-apoptotic proteins, MCL-1 and the short isoform of cFLIP. FLASH knockdown in HT1080 mutant cells defective in p53 did not significantly accelerate Fas mediated apoptosis indicating that the effect was dependent on functional p53. Collectively, these results suggest that under some circumstances, FLASH suppresses apoptosis.

  16. BCL-2 family protein, BAD is down-regulated in breast cancer and inhibits cell invasion.

    Science.gov (United States)

    Cekanova, Maria; Fernando, Romaine I; Siriwardhana, Nalin; Sukhthankar, Mugdha; De la Parra, Columba; Woraratphoka, Jirayus; Malone, Christine; Ström, Anders; Baek, Seung J; Wade, Paul A; Saxton, Arnold M; Donnell, Robert M; Pestell, Richard G; Dharmawardhane, Suranganie; Wimalasena, Jay

    2015-02-01

    We have previously demonstrated that the anti-apoptotic protein BAD is expressed in normal human breast tissue and shown that BAD inhibits expression of cyclin D1 to delay cell-cycle progression in breast cancer cells. Herein, expression of proteins in breast tissues was studied by immunohistochemistry and results were analyzed statistically to obtain semi-quantitative data. Biochemical and functional changes in BAD-overexpressing MCF7 breast cancer cells were evaluated using PCR, reporter assays, western blotting, ELISA and extracellular matrix invasion assays. Compared to normal tissues, Grade II breast cancers expressed low total/phosphorylated forms of BAD in both cytoplasmic and nuclear compartments. BAD overexpression decreased the expression of β-catenin, Sp1, and phosphorylation of STATs. BAD inhibited Ras/MEK/ERK and JNK signaling pathways, without affecting the p38 signaling pathway. Expression of the metastasis-related proteins, MMP10, VEGF, SNAIL, CXCR4, E-cadherin and TlMP2 was regulated by BAD with concomitant inhibition of extracellular matrix invasion. Inhibition of BAD by siRNA increased invasion and Akt/p-Akt levels. Clinical data and the results herein suggest that in addition to the effect on apoptosis, BAD conveys anti-metastatic effects and is a valuable prognostic marker in breast cancer. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Using Förster-Resonance Energy Transfer to Measure Protein Interactions Between Bcl-2 Family Proteins on Mitochondrial Membranes.

    Science.gov (United States)

    Pogmore, Justin P; Pemberton, James M; Chi, Xiaoke; Andrews, David W

    2016-01-01

    The Bcl-2 family of proteins regulates the process of mitochondrial outer membrane permeabilization, causing the release of cytochrome c and committing a cell to apoptosis. The majority of the functional interactions between these proteins occur at, on, or within the mitochondrial outer membrane, complicating structural studies of the proteins and complexes. As a result most in vitro studies of these protein-protein interactions use truncated proteins and/or detergents which can cause artificial interactions. Herein, we describe a detergent-free, fluorescence-based, in vitro technique to study binding between full-length recombinant Bcl-2 family proteins, particularly cleaved BID (cBID) and BCL-XL, on the membranes of purified mitochondria.

  18. Anti-apoptotic effect of heat shock protein 90 on hypoxia-mediated cardiomyocyte damage is mediated via the phosphatidylinositol 3-kinase/AKT pathway.

    Science.gov (United States)

    Wang, Wei; Peng, Yizhi; Wang, Yuanyuan; Zhao, Xiaohui; Yuan, Zhiqiang

    2009-09-01

    1. Hypoxia-induced cardiomyocyte apoptosis contributes significantly to cardiac dysfunction following trauma, shock and burn injury. There is evidence that heat shock protein (HSP) 90 is anti-apoptotic in cardiomyocytes subjected to a variety of apoptotic stimuli. Because HSP90 acts as an upstream regulator of the serine/threonine protein kinase Akt survival pathway during cellular stress, we hypothesized that HSP90 exerts a cardioprotective effect via the phosphatidylinositol 3-kinase (PI3-K)/Akt pathway. 2. Neonatal rat cardiomyocytes were subjected to normoxia or hypoxia in the absence or presence of the HSP90 inhibitor geldanamycin (1 μg/mL). Cardiomyocyte apoptosis was assessed by release of lactate dehydrogenase (LDH), terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick end-labelling (TUNEL) staining and caspase 3 activity. Expression of HSP90, Akt, Bad and cytochrome c release was determined by western blot analysis. 3. Following exposure of cells to hypoxia, HSP90 was markedly elevated in a time-dependent manner, reaching a peak at 6 h (eightfold increase). Geldanamycin significantly increased hypoxia-induced release of LDH by 114%, the percentage of apoptotic cardiomyocytes by 102% and caspase 3 activity by 78%. Pretreatment of cells with geldanamycin also suppressed phosphorylation of both Akt and its downstream target Bad, but promoted the mitochondrial release of cytochrome c. 4. In conclusion, HSP90 activity is enhanced in cardiomyocytes following hypoxic insult. The anti-apoptotic effect of HSP90 on cardiomyocytes subjected to hypoxia is mediated, at least in part, by the PI3-K/Akt pathway. Key words: apoptosis, cardiomyocyte, heart failure, heat shock protein 90, hypoxia, phosphatidylinositol 3-kinase/Akt signalling pathway, serine/threonine protein kinase Akt.

  19. BCL-2 family protein, BAD is down-regulated in breast cancer and inhibits cell invasion

    Energy Technology Data Exchange (ETDEWEB)

    Cekanova, Maria, E-mail: mcekanov@utk.edu [Department of Small Animal Clinical Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN (United States); Fernando, Romaine I. [Department of Obstetrics and Gynecology, Graduate School of Medicine, Medical Center, The University of Tennessee, Knoxville, TN (United States); Siriwardhana, Nalin [Department of Animal Science, The University of Tennessee, Knoxville, TN (United States); Sukhthankar, Mugdha [Department of Biomedical and Diagnostics Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN (United States); Parra, Columba de la [Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, PR (United States); Woraratphoka, Jirayus [Department of Obstetrics and Gynecology, Graduate School of Medicine, Medical Center, The University of Tennessee, Knoxville, TN (United States); Malone, Christine [Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle Park, NC (United States); Ström, Anders [Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX (United States); Baek, Seung J. [Department of Biomedical and Diagnostics Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN (United States); Wade, Paul A. [Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle Park, NC (United States); Saxton, Arnold M. [Department of Animal Science, The University of Tennessee, Knoxville, TN (United States); Donnell, Robert M. [Department of Biomedical and Diagnostics Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN (United States); Pestell, Richard G. [Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA (United States); and others

    2015-02-01

    We have previously demonstrated that the anti-apoptotic protein BAD is expressed in normal human breast tissue and shown that BAD inhibits expression of cyclin D1 to delay cell-cycle progression in breast cancer cells. Herein, expression of proteins in breast tissues was studied by immunohistochemistry and results were analyzed statistically to obtain semi-quantitative data. Biochemical and functional changes in BAD-overexpressing MCF7 breast cancer cells were evaluated using PCR, reporter assays, western blotting, ELISA and extracellular matrix invasion assays. Compared to normal tissues, Grade II breast cancers expressed low total/phosphorylated forms of BAD in both cytoplasmic and nuclear compartments. BAD overexpression decreased the expression of β-catenin, Sp1, and phosphorylation of STATs. BAD inhibited Ras/MEK/ERK and JNK signaling pathways, without affecting the p38 signaling pathway. Expression of the metastasis-related proteins, MMP10, VEGF, SNAIL, CXCR4, E-cadherin and TlMP2 was regulated by BAD with concomitant inhibition of extracellular matrix invasion. Inhibition of BAD by siRNA increased invasion and Akt/p-Akt levels. Clinical data and the results herein suggest that in addition to the effect on apoptosis, BAD conveys anti-metastatic effects and is a valuable prognostic marker in breast cancer. - Highlights: • BAD and p-BAD expressions are decreased in breast cancer compared with normal breast tissue. • BAD impedes breast cancer invasion and migration. • BAD inhibits the EMT and transcription factors that promote cancer cell migration. • Invasion and migration functions of BAD are distinct from the BAD's role in apoptosis.

  20. BCL-2 family protein, BAD is down-regulated in breast cancer and inhibits cell invasion

    International Nuclear Information System (INIS)

    Cekanova, Maria; Fernando, Romaine I.; Siriwardhana, Nalin; Sukhthankar, Mugdha; Parra, Columba de la; Woraratphoka, Jirayus; Malone, Christine; Ström, Anders; Baek, Seung J.; Wade, Paul A.; Saxton, Arnold M.; Donnell, Robert M.; Pestell, Richard G.

    2015-01-01

    We have previously demonstrated that the anti-apoptotic protein BAD is expressed in normal human breast tissue and shown that BAD inhibits expression of cyclin D1 to delay cell-cycle progression in breast cancer cells. Herein, expression of proteins in breast tissues was studied by immunohistochemistry and results were analyzed statistically to obtain semi-quantitative data. Biochemical and functional changes in BAD-overexpressing MCF7 breast cancer cells were evaluated using PCR, reporter assays, western blotting, ELISA and extracellular matrix invasion assays. Compared to normal tissues, Grade II breast cancers expressed low total/phosphorylated forms of BAD in both cytoplasmic and nuclear compartments. BAD overexpression decreased the expression of β-catenin, Sp1, and phosphorylation of STATs. BAD inhibited Ras/MEK/ERK and JNK signaling pathways, without affecting the p38 signaling pathway. Expression of the metastasis-related proteins, MMP10, VEGF, SNAIL, CXCR4, E-cadherin and TlMP2 was regulated by BAD with concomitant inhibition of extracellular matrix invasion. Inhibition of BAD by siRNA increased invasion and Akt/p-Akt levels. Clinical data and the results herein suggest that in addition to the effect on apoptosis, BAD conveys anti-metastatic effects and is a valuable prognostic marker in breast cancer. - Highlights: • BAD and p-BAD expressions are decreased in breast cancer compared with normal breast tissue. • BAD impedes breast cancer invasion and migration. • BAD inhibits the EMT and transcription factors that promote cancer cell migration. • Invasion and migration functions of BAD are distinct from the BAD's role in apoptosis

  1. Xanthurenic acid translocates proapoptotic Bcl-2 family proteins into mitochondria and impairs mitochondrial function

    Directory of Open Access Journals (Sweden)

    Hess Otto M

    2004-04-01

    Full Text Available Abstract Background Xanthurenic acid is an endogenous molecule produced by tryptophan degradation, produced in the cytoplasm and mitochondria. Its accumulation can be observed in aging-related diseases, e.g. senile cataract and infectious disease. We previously reported that xanthurenic acid provokes apoptosis, and now present a study of the response of mitochondria to xanthurenic acid. Results Xanthurenic acid at 10 or 20 μM in culture media of human aortic smooth muscle cells induces translocation of the proteins Bax, Bak, Bclxs, and Bad into mitochondria. In 20 μM xanthurenic acid, Bax is also translocated to the nucleus. In isolated mitochondria xanthurenic acid leads to Bax and Bclxs oligomerization, accumulation of Ca2+, and increased oxygen consumption. Conclusion Xanthurenic acid interacts directly with Bcl-2 family proteins, inducing mitochondrial pathways of apoptosis and impairing mitochondrial functions.

  2. Correlation of mammographical imaging signs with the expression of bcl-2 and bax proteins in breast cancer

    International Nuclear Information System (INIS)

    Zhang Yili; Du Hongwen; Zhang Yun; Zhang Yuelang; Kuang Fangjun; Guo Zuomin

    2004-01-01

    Objective: To discuss the correlation of mammographical imaging signs with the expression of bcl-2 and bax proteins in breast cancer for early diagnosis and forecast of its prognoses. Methods: Fifty-four breast cancers and 26 benign diseases were proved by pathologic methods and all cases underwent mammography. Immunohistochemical technique was used to measure the expression of bcl-2 and bax proteins in these tissues. The correlation of imaging signs with the expression of bcl-2 and bax proteins in breast cancer and benign lesion was analyzed. Results: The expression of bcl-2 or bax protein in the breast cancer was higher than that in breast benign diseases (χ 2 =15.116, 11.361, P 2 =10.358, 12.818, P 2 =10.996, 10.667, P 2 =10.405, P 2 =6.841, P<0.05). Conclusion: Some imaging signs of breast cancer were closely related to the expression of bcl-2 and bax proteins and these signs could reflect the biological behavior of tumor cells and prognoses. Therefore it could be helpful to the early diagnosis and treatment of breast cancer. (authors)

  3. Bcl-2 protein expression is associated with p27 and p53 protein expressions and MIB-1 counts in breast cancer

    International Nuclear Information System (INIS)

    Tsutsui, Shinichi; Yasuda, Kazuhiro; Suzuki, Kosuke; Takeuchi, Hideya; Nishizaki, Takashi; Higashi, Hidefumi; Era, Shoichi

    2006-01-01

    Recent experimental studies have shown that Bcl-2, which has been established as a key player in the control of apoptosis, plays a role in regulating the cell cycle and proliferation. The aim of this study was to investigate the relationship between Bcl-2 and p27 protein expression, p53 protein expression and the proliferation activity as defined by the MIB-1 counts. The prognostic implication of Bcl-2 protein expression in relation to p27 and p53 protein expressions and MIB-1 counts for breast cancer was also evaluated. The immunohistochemical expression of Bcl-2 protein was evaluated in a series of 249 invasive ductal carcinomas of the breast, in which p27 and p53 protein expressions and MIB-1 counts had been determined previously. The Bcl-2 protein expression was found to be decreased in 105 (42%) cases. A decreased Bcl-2 protein expression was significantly correlated with a nuclear grade of III, a negative estrogen receptor, a decreased p27 protein expression, a positive p53 protein expression, positive MIB-1 counts and a positive HER2 protein expression. The incidence of a nuclear grade of III and positive MIB-1 counts increased as the number of abnormal findings of Bcl-2, p27 and p53 protein expressions increased. A univariate analysis indicated a decreased Bcl-2 protein expression to be significantly (p = 0.0089) associated with a worse disease free survival (DFS), while a multivariate analysis indicated the lymph node status and MIB-1 counts to be independently significant prognostic factors for the DFS. The Bcl-2 protein expression has a close correlation with p27 and p53 protein expressions and the proliferation activity determined by MIB-1 counts in invasive ductal carcinoma of the breast. The prognostic value of Bcl-2 as well as p27 and p53 protein expressions was dependent on the proliferation activity in breast cancer

  4. Bcl-2 protein expression is associated with p27 and p53 protein expressions and MIB-1 counts in breast cancer

    Directory of Open Access Journals (Sweden)

    Nishizaki Takashi

    2006-07-01

    Full Text Available Abstract Background Recent experimental studies have shown that Bcl-2, which has been established as a key player in the control of apoptosis, plays a role in regulating the cell cycle and proliferation. The aim of this study was to investigate the relationship between Bcl-2 and p27 protein expression, p53 protein expression and the proliferation activity as defined by the MIB-1 counts. The prognostic implication of Bcl-2 protein expression in relation to p27 and p53 protein expressions and MIB-1 counts for breast cancer was also evaluated. Methods The immunohistochemical expression of Bcl-2 protein was evaluated in a series of 249 invasive ductal carcinomas of the breast, in which p27 and p53 protein expressions and MIB-1 counts had been determined previously. Results The Bcl-2 protein expression was found to be decreased in 105 (42% cases. A decreased Bcl-2 protein expression was significantly correlated with a nuclear grade of III, a negative estrogen receptor, a decreased p27 protein expression, a positive p53 protein expression, positive MIB-1 counts and a positive HER2 protein expression. The incidence of a nuclear grade of III and positive MIB-1 counts increased as the number of abnormal findings of Bcl-2, p27 and p53 protein expressions increased. A univariate analysis indicated a decreased Bcl-2 protein expression to be significantly (p = 0.0089 associated with a worse disease free survival (DFS, while a multivariate analysis indicated the lymph node status and MIB-1 counts to be independently significant prognostic factors for the DFS. Conclusion The Bcl-2 protein expression has a close correlation with p27 and p53 protein expressions and the proliferation activity determined by MIB-1 counts in invasive ductal carcinoma of the breast. The prognostic value of Bcl-2 as well as p27 and p53 protein expressions was dependent on the proliferation activity in breast cancer.

  5. Protective effects of melittin on transforming growth factor-β1 injury to hepatocytes via anti-apoptotic mechanism

    International Nuclear Information System (INIS)

    Lee, Woo-Ram; Park, Ji-Hyun; Kim, Kyung-Hyun; Park, Yoon-Yub; Han, Sang-Mi; Park, Kwan-kyu

    2011-01-01

    Melittin is a cationic, hemolytic peptide that is the main toxic component in the venom of the honey bee (Apis mellifera). Melittin has multiple effects, including anti-bacterial, anti-viral and anti-inflammatory, in various cell types. However, the anti-apoptotic mechanisms of melittin have not been fully elucidated in hepatocytes. Apoptosis contributes to liver inflammation and fibrosis. Knowledge of the apoptotic mechanisms is important to develop new and effective therapies for treatment of cirrhosis, portal hypertension, liver cancer, and other liver diseases. In the present study, we investigated the anti-apoptotic effect of melittin on transforming growth factor (TGF)-β1-induced apoptosis in hepatocytes. TGF-β1-treated hepatocytes were exposed to low doses (0.5 and 1 μg/mL) and high dose (2 μg/mL) of melittin. The low doses significantly protected these cells from DNA damage in TGF-β1-induced apoptosis compared to the high dose. Also, melittin suppressed TGF-β1-induced apoptotic activation of the Bcl-2 family and caspase family of proteins, which resulted in the inhibition of poly-ADP-ribose polymerase (PARP) cleavage. These results demonstrate that TGF-β1 induces hepatocyte apoptosis and that an optimal dose of melittin exerts anti-apoptotic effects against TGF-β1-induced injury to hepatocytes via the mitochondrial pathway. These results suggest that an optimal dose of melittin can serve to protect cells against TGF-β1-mediated injury. - Highlights: → We investigated the anti-apoptotic effect of melittin on TGF-β1-induced hepatocyte. → TGF-β1 induces hepatocyte apoptosis. → TGF-β1-treated hepatocytes were exposed to low doses and high dose of melittin. → Optimal dose of melittin exerts anti-apoptotic effects to hepatocytes.

  6. Exhaustive Training Increases Uncoupling Protein 2 Expression and Decreases Bcl-2/Bax Ratio in Rat Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    W. Y. Liu

    2013-01-01

    Full Text Available This work investigates the effects of oxidative stress due to exhaustive training on uncoupling protein 2 (UCP2 and Bcl-2/Bax in rat skeletal muscles. A total of 18 Sprague-Dawley female rats were randomly divided into three groups: the control group (CON, the trained control group (TC, and the exhaustive trained group (ET. Malondialdehyde (MDA, superoxide dismutase (SOD, xanthine oxidase (XOD, ATPase, UCP2, and Bcl-2/Bax ratio in red gastrocnemius muscles were measured. Exhaustive training induced ROS increase in red gastrocnemius muscles, which led to a decrease in the cell antiapoptotic ability (Bcl-2/Bax ratio. An increase in UCP2 expression can reduce ROS production and affect mitochondrial energy production. Thus, oxidative stress plays a significant role in overtraining.

  7. The BH3 α-Helical Mimic BH3-M6 Disrupts Bcl-XL, Bcl-2, and MCL-1 Protein-Protein Interactions with Bax, Bak, Bad, or Bim and Induces Apoptosis in a Bax- and Bim-dependent Manner*

    Science.gov (United States)

    Kazi, Aslamuzzaman; Sun, Jiazhi; Doi, Kenichiro; Sung, Shen-Shu; Takahashi, Yoshinori; Yin, Hang; Rodriguez, Johanna M.; Becerril, Jorge; Berndt, Norbert; Hamilton, Andrew D.; Wang, Hong-Gang; Sebti, Saïd M.

    2011-01-01

    A critical hallmark of cancer cell survival is evasion of apoptosis. This is commonly due to overexpression of anti-apoptotic proteins such as Bcl-2, Bcl-XL, and Mcl-1, which bind to the BH3 α-helical domain of pro-apoptotic proteins such as Bax, Bak, Bad, and Bim, and inhibit their function. We designed a BH3 α-helical mimetic BH3-M6 that binds to Bcl-XL and Mcl-1 and prevents their binding to fluorescently labeled Bak- or Bim-BH3 peptides in vitro. Using several approaches, we demonstrate that BH3-M6 is a pan-Bcl-2 antagonist that inhibits the binding of Bcl-XL, Bcl-2, and Mcl-1 to multi-domain Bax or Bak, or BH3-only Bim or Bad in cell-free systems and in intact human cancer cells, freeing up pro-apoptotic proteins to induce apoptosis. BH3-M6 disruption of these protein-protein interactions is associated with cytochrome c release from mitochondria, caspase-3 activation and PARP cleavage. Using caspase inhibitors and Bax and Bak siRNAs, we demonstrate that BH3-M6-induced apoptosis is caspase- and Bax-, but not Bak-dependent. Furthermore, BH3-M6 disrupts Bcl-XL/Bim, Bcl-2/Bim, and Mcl-1/Bim protein-protein interactions and frees up Bim to induce apoptosis in human cancer cells that depend for tumor survival on the neutralization of Bim with Bcl-XL, Bcl-2, or Mcl-1. Finally, BH3-M6 sensitizes cells to apoptosis induced by the proteasome inhibitor CEP-1612. PMID:21148306

  8. The BH3 alpha-helical mimic BH3-M6 disrupts Bcl-X(L), Bcl-2, and MCL-1 protein-protein interactions with Bax, Bak, Bad, or Bim and induces apoptosis in a Bax- and Bim-dependent manner.

    Science.gov (United States)

    Kazi, Aslamuzzaman; Sun, Jiazhi; Doi, Kenichiro; Sung, Shen-Shu; Takahashi, Yoshinori; Yin, Hang; Rodriguez, Johanna M; Becerril, Jorge; Berndt, Norbert; Hamilton, Andrew D; Wang, Hong-Gang; Sebti, Saïd M

    2011-03-18

    A critical hallmark of cancer cell survival is evasion of apoptosis. This is commonly due to overexpression of anti-apoptotic proteins such as Bcl-2, Bcl-X(L), and Mcl-1, which bind to the BH3 α-helical domain of pro-apoptotic proteins such as Bax, Bak, Bad, and Bim, and inhibit their function. We designed a BH3 α-helical mimetic BH3-M6 that binds to Bcl-X(L) and Mcl-1 and prevents their binding to fluorescently labeled Bak- or Bim-BH3 peptides in vitro. Using several approaches, we demonstrate that BH3-M6 is a pan-Bcl-2 antagonist that inhibits the binding of Bcl-X(L), Bcl-2, and Mcl-1 to multi-domain Bax or Bak, or BH3-only Bim or Bad in cell-free systems and in intact human cancer cells, freeing up pro-apoptotic proteins to induce apoptosis. BH3-M6 disruption of these protein-protein interactions is associated with cytochrome c release from mitochondria, caspase-3 activation and PARP cleavage. Using caspase inhibitors and Bax and Bak siRNAs, we demonstrate that BH3-M6-induced apoptosis is caspase- and Bax-, but not Bak-dependent. Furthermore, BH3-M6 disrupts Bcl-X(L)/Bim, Bcl-2/Bim, and Mcl-1/Bim protein-protein interactions and frees up Bim to induce apoptosis in human cancer cells that depend for tumor survival on the neutralization of Bim with Bcl-X(L), Bcl-2, or Mcl-1. Finally, BH3-M6 sensitizes cells to apoptosis induced by the proteasome inhibitor CEP-1612.

  9. Loss in MCL-1 function sensitizes non-Hodgkin's lymphoma cell lines to the BCL-2-selective inhibitor venetoclax (ABT-199)

    International Nuclear Information System (INIS)

    Phillips, D C; Xiao, Y; Lam, L T; Litvinovich, E; Roberts-Rapp, L; Souers, A J; Leverson, J D

    2015-01-01

    As a population, non-Hodgkin's lymphoma (NHL) cell lines positive for the t(14;18) translocation and/or possessing elevated BCL2 copy number (CN; BCL2 High ) are exquisitely sensitive to navitoclax or the B-cell lymphoma protein-2 (BCL-2)-selective inhibitor venetoclax. Despite this, some BCL2 High cell lines remain resistant to either agent. Here we show that the MCL-1-specific inhibitor A-1210477 sensitizes these cell lines to navitoclax. Chemical segregation of this synergy with the BCL-2-selective inhibitor venetoclax or BCL-X L -selective inhibitor A-1155463 indicated that MCL-1 and BCL-2 are the two key anti-apoptotic targets for sensitization. Similarly, the CDK inhibitor flavopiridol downregulated MCL-1 expression and synergized with venetoclax in BCL2 High NHL cell lines to a similar extent as A-1210477. A-1210477 also synergized with navitoclax in the majority of BCL2 Low NHL cell lines. However, chemical segregation with venetoclax or A-1155463 revealed that synergy was driven by BCL-X L inhibition in this population. Collectively these data emphasize that BCL2 status is predictive of venetoclax potency in NHL not only as a single agent, but also in the adjuvant setting with anti-tumorigenic agents that inhibit MCL-1 function. These studies also potentially identify a patient population (BCL2 Low ) that could benefit from BCL-X L (navitoclax)-driven combination therapy

  10. Bcl-2 overexpression prevents 99mTc-MIBI uptake in breast cancer cell lines

    International Nuclear Information System (INIS)

    Aloj, Luigi; Zannetti, Antonella; Caraco, Corradina; Del Vecchio, Silvana; Salvatore, Marco

    2004-01-01

    We have previously shown a correlation between the absence of technetium-99m methoxyisobutylisonitrile ( 99m Tc-MIBI) uptake and overexpression of the anti-apoptotic protein Bcl-2 in human breast carcinoma. To establish a direct cause-effect relationship between Bcl-2 overexpression and reduced 99m Tc-MIBI uptake, MCF-7 and T47D breast cancer cell lines were stably transfected with the human Bcl-2 gene to increase intracellular protein levels and tested for 99m Tc-MIBI uptake. All clones overexpressing Bcl-2 showed a dramatic reduction of 99m Tc-MIBI uptake as compared with mock transfected control cells. Tracer uptake was promptly and partially restored by induction of apoptosis with staurosporine treatment. After 4.5 h of staurosporine treatment, a tenfold increase in 99m Tc-MIBI uptake was observed in treated as compared with untreated Bcl-2 overexpressing cells. Our findings provide a rational basis for the development of an in vivo test to detect Bcl-2 overexpression in human tumours. (orig.)

  11. The anti-apoptotic BAG3 protein is expressed in lung carcinomas and regulates small cell lung carcinoma (SCLC) tumor growth.

    Science.gov (United States)

    Chiappetta, Gennaro; Basile, Anna; Barbieri, Antonio; Falco, Antonia; Rosati, Alessandra; Festa, Michelina; Pasquinelli, Rosa; Califano, Daniela; Palma, Giuseppe; Costanzo, Raffaele; Barcaroli, Daniela; Capunzo, Mario; Franco, Renato; Rocco, Gaetano; Pascale, Maria; Turco, Maria Caterina; De Laurenzi, Vincenzo; Arra, Claudio

    2014-08-30

    BAG3, member the HSP70 co-chaperones family, has been shown to play a relevant role in the survival, growth and invasiveness of different tumor types. In this study, we investigate the expression of BAG3 in 66 specimens from different lung tumors and the role of this protein in small cell lung cancer (SCLC) tumor growth. Normal lung tissue did not express BAG3 while we detected the expression of BAG3 by immunohistochemistry in all the 13 squamous cell carcinomas, 13 adenocarcinomas and 4 large cell carcinomas. Furthermore, we detected BAG3 expression in 22 of the 36 SCLCs analyzed. The role on SCLC cell survival was determined by down-regulating BAG3 levels in two human SCLC cell lines, i.e. H69 and H446, in vitro and measuring cisplatin induced apoptosis. Indeed down-regulation of BAG3 determines increased cell death and sensitizes cells to cisplatin treatment. The effect of BAG3 down-regulation on tumor growth was also investigated in an in vivo xenograft model by treating mice with an adenovirus expressing a specific bag3 siRNA. Treatment with bag3 siRNA-Ad significantly reduced tumor growth and improved animal survival. In conclusion we show that a subset of SCLCs over express BAG3 that exerts an anti-apoptotic effect resulting in resistance to chemotherapy.

  12. Deletion of AU-rich elements within the Bcl2 3'UTR reduces protein expression and B cell survival in vivo.

    Directory of Open Access Journals (Sweden)

    Manuel D Díaz-Muñoz

    Full Text Available Post-transcriptional mRNA regulation by RNA binding proteins (RBPs associated with AU-rich elements (AREs present in the 3' untranslated region (3'UTR of specific mRNAs modulates transcript stability and translation in eukaryotic cells. Here we have functionally characterised the importance of the AREs present within the Bcl2 3'UTR in order to maintain Bcl2 expression. Gene targeting deletion of 300 nucleotides of the Bcl2 3'UTR rich in AREs diminishes Bcl2 mRNA stability and protein levels in primary B cells, decreasing cell lifespan. Generation of chimeric mice indicates that Bcl2-ARE∆/∆ B cells have an intrinsic competitive disadvantage compared to wild type cells. Biochemical assays and predictions using a bioinformatics approach show that several RBPs bind to the Bcl2 AREs, including AUF1 and HuR proteins. Altogether, association of RBPs to Bcl2 AREs contributes to Bcl2 protein expression by stabilizing Bcl2 mRNA and promotes B cell maintenance.

  13. BCL2-BH4 antagonist BDA-366 suppresses human myeloma growth.

    Science.gov (United States)

    Deng, Jiusheng; Park, Dongkyoo; Wang, Mengchang; Nooka, Ajay; Deng, Qiaoya; Matulis, Shannon; Kaufman, Jonathan; Lonial, Sagar; Boise, Lawrence H; Galipeau, Jacques; Deng, Xingming

    2016-05-10

    Multiple myeloma (MM) is a heterogeneous plasma cell malignancy and remains incurable. B-cell lymphoma-2 (BCL2) protein correlates with the survival and the drug resistance of myeloma cells. BH3 mimetics have been developed to disrupt the binding between BCL2 and its pro-apoptotic BCL2 family partners for the treatment of MM, but with limited therapeutic efficacy. We recently identified a small molecule BDA-366 as a BCL2 BH4 domain antagonist, converting it from an anti-apoptotic into a pro-apoptotic molecule. In this study, we demonstrated that BDA-366 induces robust apoptosis in MM cell lines and primary MM cells by inducing BCL2 conformational change. Delivery of BDA-366 substantially suppressed the growth of human MM xenografts in NOD-scid/IL2Rγnull mice, without significant cytotoxic effects on normal hematopoietic cells or body weight. Thus, BDA-366 functions as a novel BH4-based BCL2 inhibitor and offers an entirely new tool for MM therapy.

  14. The role of the acidity of N-heteroaryl sulfonamides as inhibitors of bcl-2 family protein-protein interactions.

    Science.gov (United States)

    Touré, B Barry; Miller-Moslin, Karen; Yusuff, Naeem; Perez, Lawrence; Doré, Michael; Joud, Carol; Michael, Walter; DiPietro, Lucian; van der Plas, Simon; McEwan, Michael; Lenoir, Francois; Hoe, Madelene; Karki, Rajesh; Springer, Clayton; Sullivan, John; Levine, Kymberly; Fiorilla, Catherine; Xie, Xiaoling; Kulathila, Raviraj; Herlihy, Kara; Porter, Dale; Visser, Michael

    2013-02-14

    Overexpression of the antiapoptotic members of the Bcl-2 family of proteins is commonly associated with cancer cell survival and resistance to chemotherapeutics. Here, we describe the structure-based optimization of a series of N-heteroaryl sulfonamides that demonstrate potent mechanism-based cell death. The role of the acidic nature of the sulfonamide moiety as it relates to potency, solubility, and clearance is examined. This has led to the discovery of novel heterocyclic replacements for the acylsulfonamide core of ABT-737 and ABT-263.

  15. Novel Phosphorylation and Ubiquitination Sites Regulate Reactive Oxygen Species-dependent Degradation of Anti-apoptotic c-FLIP Protein*

    Science.gov (United States)

    Wilkie-Grantham, Rachel P.; Matsuzawa, Shu-Ichi; Reed, John C.

    2013-01-01

    The cytosolic protein c-FLIP (cellular Fas-associated death domain-like interleukin 1β-converting enzyme inhibitory protein) is an inhibitor of death receptor-mediated apoptosis that is up-regulated in a variety of cancers, contributing to apoptosis resistance. Several compounds found to restore sensitivity of cancer cells to TRAIL, a TNF family death ligand with promising therapeutic potential, act by targeting c-FLIP ubiquitination and degradation by the proteasome. The generation of reactive oxygen species (ROS) has been implicated in c-FLIP protein degradation. However, the mechanism by which ROS post-transcriptionally regulate c-FLIP protein levels is not well understood. We show here that treatment of prostate cancer PPC-1 cells with the superoxide generators menadione, paraquat, or buthionine sulfoximine down-regulates c-FLIP long (c-FLIPL) protein levels, which is prevented by the proteasome inhibitor MG132. Furthermore, pretreatment of PPC-1 cells with a ROS scavenger prevented ubiquitination and loss of c-FLIPL protein induced by menadione or paraquat. We identified lysine 167 as a novel ubiquitination site of c-FLIPL important for ROS-dependent degradation. We also identified threonine 166 as a novel phosphorylation site and demonstrate that Thr-166 phosphorylation is required for ROS-induced Lys-167 ubiquitination. The mutation of either Thr-166 or Lys-167 was sufficient to stabilize c-FLIP protein levels in PPC-1, HEK293T, and HeLa cancer cells treated with menadione or paraquat. Accordingly, expression of c-FLIP T166A or K167R mutants protected cells from ROS-mediated sensitization to TRAIL-induced cell death. Our findings reveal novel ROS-dependent post-translational modifications of the c-FLIP protein that regulate its stability, thus impacting sensitivity of cancer cells to TRAIL. PMID:23519470

  16. [Apoptosis-modulating effects of heat shock proteins: the influence of Hsp27 chaperone on TBA Bcl-2 family proteins in Jurkat cell line].

    Science.gov (United States)

    Riazantseva, N V; Kaĭgorodova, E V; Maroshkina, A N; Belkina, M V; Novitskiĭ, V V

    2012-01-01

    The in vitro phosphorylated and non-phosphorylated Hsp27 forms concentrations and Bcl-2 proteins affected by Hsp27 inhibition were studied in Jurkat-line tumor cells and healthy donor mononuclear lymphocytes by Western blotting technique. The Hsp27 inhibition causes the increase of intracellular Bax protein concentration and the decrease of Bcl-2 level leading to an increase of apoptotic changes in Jurkat line cells.

  17. Inhibition of Bcl-2 or IAP proteins does not provoke mutations in surviving cells

    International Nuclear Information System (INIS)

    Shekhar, Tanmay M.; Green, Maja M.; Rayner, David M.; Miles, Mark A.; Cutts, Suzanne M.; Hawkins, Christine J.

    2015-01-01

    Graphical abstract: - Highlights: • Mutagenicities of anti-cancer drugs were tested using HPRT, γH2AX and comet assays. • TRAIL, doxorubicin and etoposide were more mutagenic than BH3- or Smac-mimetics. • Physiologically achievable levels of the BH3-mimetic ABT-737 were not mutagenic. • High concentrations of ABT-737 provoked mutations via an off-target mechanism. • Even very high concentrations of IAP antagonists were not mutagenic. - Abstract: Chemotherapy and radiotherapy can cause permanent damage to the genomes of surviving cells, provoking severe side effects such as second malignancies in some cancer survivors. Drugs that mimic the activity of death ligands, or antagonise pro-survival proteins of the Bcl-2 or IAP families have yielded encouraging results in animal experiments and early phase clinical trials. Because these agents directly engage apoptosis pathways, rather than damaging DNA to indirectly provoke tumour cell death, we reasoned that they may offer another important advantage over conventional therapies: minimisation or elimination of side effects such as second cancers that result from mutation of surviving normal cells. Disappointingly, however, we previously found that concentrations of death receptor agonists like TRAIL that would be present in vivo in clinical settings provoked DNA damage in surviving cells. In this study, we used cell line model systems to investigate the mutagenic capacity of drugs from two other classes of direct apoptosis-inducing agents: the BH3-mimetic ABT-737 and the IAP antagonists LCL161 and AT-406. Encouragingly, our data suggest that IAP antagonists possess negligible genotoxic activity. Doses of ABT-737 that were required to damage DNA stimulated Bax/Bak-independent signalling and exceeded concentrations detected in the plasma of animals treated with this drug. These findings provide hope that cancer patients treated by BH3-mimetics or IAP antagonists may avoid mutation-related illnesses that afflict

  18. Inhibition of Bcl-2 or IAP proteins does not provoke mutations in surviving cells

    Energy Technology Data Exchange (ETDEWEB)

    Shekhar, Tanmay M. [Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora 3083 (Australia); Green, Maja M. [Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora 3083 (Australia); Department of Anatomy & Neuroscience, The University of Melbourne, Parkville 3010 (Australia); Rayner, David M.; Miles, Mark A.; Cutts, Suzanne M. [Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora 3083 (Australia); Hawkins, Christine J., E-mail: c.hawkins@latrobe.edu.au [Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora 3083 (Australia)

    2015-07-15

    Graphical abstract: - Highlights: • Mutagenicities of anti-cancer drugs were tested using HPRT, γH2AX and comet assays. • TRAIL, doxorubicin and etoposide were more mutagenic than BH3- or Smac-mimetics. • Physiologically achievable levels of the BH3-mimetic ABT-737 were not mutagenic. • High concentrations of ABT-737 provoked mutations via an off-target mechanism. • Even very high concentrations of IAP antagonists were not mutagenic. - Abstract: Chemotherapy and radiotherapy can cause permanent damage to the genomes of surviving cells, provoking severe side effects such as second malignancies in some cancer survivors. Drugs that mimic the activity of death ligands, or antagonise pro-survival proteins of the Bcl-2 or IAP families have yielded encouraging results in animal experiments and early phase clinical trials. Because these agents directly engage apoptosis pathways, rather than damaging DNA to indirectly provoke tumour cell death, we reasoned that they may offer another important advantage over conventional therapies: minimisation or elimination of side effects such as second cancers that result from mutation of surviving normal cells. Disappointingly, however, we previously found that concentrations of death receptor agonists like TRAIL that would be present in vivo in clinical settings provoked DNA damage in surviving cells. In this study, we used cell line model systems to investigate the mutagenic capacity of drugs from two other classes of direct apoptosis-inducing agents: the BH3-mimetic ABT-737 and the IAP antagonists LCL161 and AT-406. Encouragingly, our data suggest that IAP antagonists possess negligible genotoxic activity. Doses of ABT-737 that were required to damage DNA stimulated Bax/Bak-independent signalling and exceeded concentrations detected in the plasma of animals treated with this drug. These findings provide hope that cancer patients treated by BH3-mimetics or IAP antagonists may avoid mutation-related illnesses that afflict

  19. [From dualism to multiplicity: seeing BCL-2 family proteins and cell death with new eyes].

    Science.gov (United States)

    Aouacheria, Abdel

    2015-01-01

    The concept of cell death has many links to the concept of death itself, defined as the opposite of life. Achievements obtained through research on apoptosis have apparently allowed us to transcend this Manichean view. Death is no longer outside, but rather inside living systems, as a constitutive force at work within the living matter. Whereas the death of cells can be positive and breed "creation" (e.g. during morphogenesis), its dysregulation can also cause or contribute to fatal diseases including cancer. It is tempting to apply this biological discourse to illuminate the relations between life and death, taken in general terms, but does this generalization actually hold? Is this discourse not essentially a metaphor? If cell death is considered as a vital aspect of various biological processes, then are we not faced with some vitalistic conception of death? Are there one or more meanings to the word "death"? Does the power to self-destruct act in opposition to other key features of living entities, or rather in juxtaposition to them? In this article, we first describe how the field of cell death has been developed on the basis of perceived and built dichotomies, mirroring the original opposition between life and death. We detail the limitations of the current paradigm of apoptosis regulation by BCL-2 family proteins, which nicely illustrate the problem of binary thinking in biology. Last, we try to show a way out of this dualistic matrix, by drawing on the notions of multiplicity, complexity, diversity, evolution and contingency. © Société de Biologie, 2016.

  20. Combination of Bcl-2 and MYC protein expression improves high-risk stratification in diffuse large B-cell lymphoma

    Directory of Open Access Journals (Sweden)

    Wang J

    2015-09-01

    Full Text Available Jing Wang,* Min Zhou,* Jing-Yan Xu,* Bing Chen, Jian OuyangDepartment of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, People’s Republic of China*These authors contributed equally to this work and should be considered as cofirst authorsPurpose: To evaluate whether the addition of two biological markers (MYC and BCL-2 protein overexpression improves the stratification of high-risk patients with diffuse large B-cell lymphoma (DLBCL.Method: Seven risk factors were identified at diagnosis, and a maximum of 7 points were assigned to each patient. The patients were classified according to four risk groups: low (0–1, low-intermediate (2–3, high-intermediate (4, and high (5–7. Only high-risk patients with DLBCL were included in this analysis. We retrospectively examined 20 cases from 2008 to 2013 at the Nanjing Drum Tower Hospital.Results: The median expression of MYC protein was 60%, and 17 of 20 (65% evaluable cases overexpressed MYC. The median expression of BCL-2 protein was also 60%. Eighteen of 20 (90% evaluable cases showed BCL-2 overexpression. Additionally, 12 out of 20 cases (60% demonstrated coexpression of MYC and BCL-2 proteins. The percentages of overall survival and progression-free survival at the median follow-up time (36 months were 33.3%±16.1% and 16.9%±13.5%, respectively. By comparison, nine, four, and 20 patients were classified as high risk based on the International Prognostic Index (IPI, National Comprehensive Cancer Network(NCCN-IPI, and revised IPI criteria, respectively. According to the IPI and NCCN-IPI stratification, the risk groups demonstrated closely overlapping survival curves. In addition, four out of 20 cases were identified as low-intermediate risk according to the NCCN-IPI criteria.Conclusion: The addition of MYC and BCL-2 protein expression to the IPI could identify a subset of DLBCL patients with high-risk clinicopathological characteristics and

  1. Ultra-High-Throughput Screening of Natural Product Extracts to Identify Proapoptotic Inhibitors of Bcl-2 Family Proteins.

    Science.gov (United States)

    Hassig, Christian A; Zeng, Fu-Yue; Kung, Paul; Kiankarimi, Mehrak; Kim, Sylvia; Diaz, Paul W; Zhai, Dayong; Welsh, Kate; Morshedian, Shana; Su, Ying; O'Keefe, Barry; Newman, David J; Rusman, Yudi; Kaur, Harneet; Salomon, Christine E; Brown, Susan G; Baire, Beeraiah; Michel, Andrew R; Hoye, Thomas R; Francis, Subhashree; Georg, Gunda I; Walters, Michael A; Divlianska, Daniela B; Roth, Gregory P; Wright, Amy E; Reed, John C

    2014-09-01

    Antiapoptotic Bcl-2 family proteins are validated cancer targets composed of six related proteins. From a drug discovery perspective, these are challenging targets that exert their cellular functions through protein-protein interactions (PPIs). Although several isoform-selective inhibitors have been developed using structure-based design or high-throughput screening (HTS) of synthetic chemical libraries, no large-scale screen of natural product collections has been reported. A competitive displacement fluorescence polarization (FP) screen of nearly 150,000 natural product extracts was conducted against all six antiapoptotic Bcl-2 family proteins using fluorochrome-conjugated peptide ligands that mimic functionally relevant PPIs. The screens were conducted in 1536-well format and displayed satisfactory overall HTS statistics, with Z'-factor values ranging from 0.72 to 0.83 and a hit confirmation rate between 16% and 64%. Confirmed active extracts were orthogonally tested in a luminescent assay for caspase-3/7 activation in tumor cells. Active extracts were resupplied, and effort toward the isolation of pure active components was initiated through iterative bioassay-guided fractionation. Several previously described altertoxins were isolated from a microbial source, and the pure compounds demonstrate activity in both Bcl-2 FP and caspase cellular assays. The studies demonstrate the feasibility of ultra-high-throughput screening using natural product sources and highlight some of the challenges associated with this approach. © 2014 Society for Laboratory Automation and Screening.

  2. Active fragments from pro- and antiapoptotic BCL-2 proteins have distinct membrane behavior reflecting their functional divergence.

    Directory of Open Access Journals (Sweden)

    Yannis Guillemin

    Full Text Available BACKGROUND: The BCL-2 family of proteins includes pro- and antiapoptotic members acting by controlling the permeabilization of mitochondria. Although the association of these proteins with the outer mitochondrial membrane is crucial for their function, little is known about the characteristics of this interaction. METHODOLOGY/PRINCIPAL FINDINGS: Here, we followed a reductionist approach to clarify to what extent membrane-active regions of homologous BCL-2 family proteins contribute to their functional divergence. Using isolated mitochondria as well as model lipid Langmuir monolayers coupled with Brewster Angle Microscopy, we explored systematically and comparatively the membrane activity and membrane-peptide interactions of fragments derived from the central helical hairpin of BAX, BCL-xL and BID. The results show a connection between the differing abilities of the assayed peptide fragments to contact, insert, destabilize and porate membranes and the activity of their cognate proteins in programmed cell death. CONCLUSION/SIGNIFICANCE: BCL-2 family-derived pore-forming helices thus represent structurally analogous, but functionally dissimilar membrane domains.

  3. BH3-only protein Bim inhibits activity of antiapoptotic members of Bcl-2 family when expressed in yeast.

    Science.gov (United States)

    Juhásová, Barbora; Mentel, Marek; Bhatia-Kiššová, Ingrid; Zeman, Igor; Kolarov, Jordan; Forte, Michael; Polčic, Peter

    2011-09-02

    Proteins of the Bcl-2 family regulate programmed cell death in mammals by promoting the release of cytochrome c from mitochondria in response to various proapoptotic stimuli. The mechanism by which BH3-only members of the family activate multidomain proapoptotic proteins Bax and Bak to form a pore in mitochondrial membranes remains under dispute. We report that cell death promoting activity of BH3-only protein Bim can be reconstituted in yeast when both Bax and antiapoptotic protein Bcl-X(L) are present, suggesting that Bim likely activates Bax indirectly by inhibiting antiapoptotic proteins. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  4. Role of reactive oxygen species and Bcl-2 family proteins in TNF-α-induced apoptosis of lymphocytes.

    Science.gov (United States)

    Ryazanceva, N V; Novickiy, V V; Zhukova, O B; Biktasova, A K; Chechina, O E; Sazonova, E V; Belkina, M V; Chasovskih, N Yu; Khaitova, Z K

    2010-08-01

    We studied the in vitro apoptosis-inducing effect of recombinant TNF-α (rTNF-α) on blood lymphocytes from healthy donors. rTNF-α-induced apoptosis was accompanied by an increase in the number of cells with low mitochondrial transmembrane potential, increased intracellular content of reactive oxygen species, reduced content of Bcl-2, Bcl-xL, and Bax proteins, and elevated Bad content. The molecular mechanisms of these changes are discussed.

  5. Effect of Bcl-2 rs956572 polymorphism on age-related gray matter volume changes.

    Directory of Open Access Journals (Sweden)

    Mu-En Liu

    Full Text Available The anti-apoptotic protein B-cell CLL/lymphoma 2 (Bcl-2 gene is a major regulator of neural plasticity and cellular resilience. Recently, the Bcl-2 rs956572 single nucleotide polymorphism was proposed to be a functional allelic variant that modulates cellular vulnerability to apoptosis. Our cross-sectional study investigated the genetic effect of this Bcl-2 polymorphism on age-related decreases in gray matter (GM volume across the adult lifespan. Our sample comprised 330 healthy volunteers (191 male, 139 female with a mean age of 56.2±22.0 years (range: 21-92. Magnetic resonance imaging and genotyping of the Bcl-2 rs956572 were performed for each participant. The differences in regional GM volumes between G homozygotes and A-allele carriers were tested using optimized voxel-based morphometry. The association between the Bcl-2 rs956572 polymorphism and age was a predictor of regional GM volumes in the right cerebellum, bilateral lingual gyrus, right middle temporal gyrus, and right parahippocampal gyrus. We found that the volume of these five regions decreased with increasing age (all P<.001. Moreover, the downward slope was steeper among the Bcl-2 rs956572 A-allele carriers than in the G-homozygous participants. Our data provide convergent evidence for the genetic effect of the Bcl-2 functional allelic variant in brain aging. The rs956572 G-allele, which is associated with significantly higher Bcl-2 protein expression and diminished cellular sensitivity to stress-induced apoptosis, conferred a protective effect against age-related changes in brain GM volume, particularly in the cerebellum.

  6. PENGARUH EKSTRAK ETHANOL PROPOLIS TERHADAP EKSPRESI PROTEIN Bcl2, CYCLIN D1 DAN INDUKSI APOPTOSIS PADA KULTUR SEL KANKER KOLON

    Directory of Open Access Journals (Sweden)

    Haryono Yuniarto

    2017-06-01

    Full Text Available Kanker kolorektal menempati urutan kejadian kanker ketiga di seluruh dunia, dengan lebih dari 1 juta angka kejadian tiap tahunnya. Berbagai strategi terapi pengobatan kanker kolorektal tetapi relatif belum optimal. Oleh karena itu, terdapat kebutuhan mengembangkan terapi alternatif sebagai pendamping. Propolis menunjukkan aktivitas proapoptosis pada berbagai jenis sel kanker. Mengetahui pengaruh pemberian propolis yang berasal dari Kerjo, Karanganyar, Indonesia terhadap induksi proses apoptosis dan aktivitas antiproliferasi, terutama terkait dengan penekanan ekspresi protein Bcl 2 dan cyclin D1 pada kultur sel WiDr (cell line kanker kolon. Penelitian eksperimental laboratorik menggunakan post test with control group design. Penelitian dilakukan pada kultur sel WiDr (sel kanker kolon dengan pemberian propolis. Pengamatan ekspresi protein Cyclin D1 dan Bcl2 dilakukan dengan metode imunositokimia, sedangkan pengamatan induksi apoptosis dilakukan dengan flowcytometry. Analisis statistik dengan uji Kruskal-Wallis, signifikan bila p <0,05. Rata-rata ekspresi Bcl2 pada kelima kelompok yaitu kontrol 83.40 ± 0.69 μg/ml, EEP 1/2 IC50 60.63 ± 0.40, EEP IC50 33.77 ± 1.08 μg/ml, EEP 2 IC50 24.28 ± 1.91 μg/ml, 5fluorouracil 12.74 ± 2.19 μg/ml. Terdapat perbedaan bermakna ekspresi Bcl2 antara kelompok uji dibandingkan kelompok kontrol (p < 0,001. Rata-rata ekspresi cyclin D1 pada kelima kelompok yaitu kontrol 83.77 ± 0.39 μg/ml, EEP 1/2 IC50 61.44 ± 0.41, EEP IC50 36.67 ± 1.18 μg/ml, EEP 2 IC50 24.50 ± 0.38 μg/ml, 5fluorouracil 13.42 ± 1.04μg/ml. Terdapat perbedaan bermakna ekspresi cyclin D1 antara kelompok uji dibandingkan kelompok kontrol (p < 0,001. Pemberian ekstrak etanol propolis mempunyai pengaruh menekan ekspresi Bcl2, cyclin D1, dan menginduksi apoptosis pada kultur sel kanker kolon (WiDr Cell Line.   Kata Kunci: Ekstrak Ethanol Propolis, Bcl2, cyclin D1, Sel WiDr

  7. Epistatic mutations in PUMA BH3 drive an alternate binding mode to potently and selectively inhibit anti-apoptotic Bfl-1

    Energy Technology Data Exchange (ETDEWEB)

    Jenson, Justin M.; Ryan, Jeremy A.; Grant, Robert A.; Letai, Anthony; Keating, Amy E. (DFCI); (MIT)

    2017-06-08

    Overexpression of anti-apoptotic Bcl-2 family proteins contributes to cancer progression and confers resistance to chemotherapy. Small molecules that target Bcl-2 are used in the clinic to treat leukemia, but tight and selective inhibitors are not available for Bcl-2 paralog Bfl-1. Guided by computational analysis, we designed variants of the native BH3 motif PUMA that are > 150-fold selective for Bfl-1 binding. The designed peptides potently trigger disruption of the mitochondrial outer membrane in cells dependent on Bfl-1, but not in cells dependent on other anti-apoptotic homologs. High-resolution crystal structures show that designed peptide FS2 binds Bfl-1 in a shifted geometry, relative to PUMA and other binding partners, due to a set of epistatic mutations. FS2 modified with an electrophile reacts with a cysteine near the peptide-binding groove to augment specificity. Designed Bfl-1 binders provide reagents for cellular profiling and leads for developing enhanced and cell-permeable peptide or small-molecule inhibitors.

  8. An Epstein-Barr virus anti-apoptotic protein constitutively expressed in transformed cells and implicated in burkitt lymphomagenesis: the Wp/BHRF1 link.

    Directory of Open Access Journals (Sweden)

    Gemma L Kelly

    2009-03-01

    Full Text Available Two factors contribute to Burkitt lymphoma (BL pathogenesis, a chromosomal translocation leading to c-myc oncogene deregulation and infection with Epstein-Barr virus (EBV. Although the virus has B cell growth-transforming ability, this may not relate to its role in BL since many of the transforming proteins are not expressed in the tumor. Mounting evidence supports an alternative role, whereby EBV counteracts the high apoptotic sensitivity inherent to the c-myc-driven growth program. In that regard, a subset of BLs carry virus mutants in a novel form of latent infection that provides unusually strong resistance to apoptosis. Uniquely, these virus mutants use Wp (a viral promoter normally activated early in B cell transformation and express a broader-than-usual range of latent antigens. Here, using an inducible system to express the candidate antigens, we show that this marked apoptosis resistance is mediated not by one of the extended range of EBNAs seen in Wp-restricted latency but by Wp-driven expression of the viral bcl2 homologue, BHRF1, a protein usually associated with the virus lytic cycle. Interestingly, this Wp/BHRF1 connection is not confined to Wp-restricted BLs but appears integral to normal B cell transformation by EBV. We find that the BHRF1 gene expression recently reported in newly infected B cells is temporally linked to Wp activation and the presence of W/BHRF1-spliced transcripts. Furthermore, just as Wp activity is never completely eclipsed in in vitro-transformed lines, low-level BHRF1 transcripts remain detectable in these cells long-term. Most importantly, recognition by BHRF1-specific T cells confirms that such lines continue to express the protein independently of any lytic cycle entry. This work therefore provides the first evidence that BHRF1, the EBV bcl2 homologue, is constitutively expressed as a latent protein in growth-transformed cells in vitro and, in the context of Wp-restricted BL, may contribute to virus

  9. Seasonal variations of anti-/apoptotic and antioxidant proteins in the heart and gastrocnemius muscle of the water frog Pelophylax ridibundus.

    Science.gov (United States)

    Feidantsis, Konstantinos; Anestis, Andreas; Michaelidis, Basile

    2013-10-01

    In the present work we investigated the seasonal variations of apoptotic and antioxidant proteins in the heart and gastrocnemius muscle of the amphibian Pelophylax ridibundus. Particularly processes studied included the evaluation of hypoxia through the levels of transcriptional factor Hif-1α, of apoptosis through the determination of Bcl-2 and Bax, ubiquitin conjugates levels and the antioxidant defense through the determination of the activity of enzymes such as superoxide dismutase, catalase and glutathione peroxidase. Due to a general metabolic depression during overwintering, levels of the above mentioned proteins and enzymes are generally retained at low levels of expression and activity in the examined tissues of P. ridibundus. On the other hand recovery from overwintering induces oxidative stress, followed by increased levels of the specific proteins and enzymes. A milder up-regulation of antioxidant enzymes during overwintering probably prepares P. ridibundus for oxidative stress during arousal. The seasonal activation of these mechanisms seems to protect this species from these unfavourable conditions. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. B1-induced caspase-independent apoptosis in MCF-7 cells is mediated by down-regulation of Bcl-2 via p53 binding to P2 promoter TATA box

    International Nuclear Information System (INIS)

    Liang Xin; Xu Ke; Xu Yufang; Liu Jianwen; Qian Xuhong

    2011-01-01

    The Bcl-2 family contains a panel of proteins which are conserved regulators of apoptosis in mammalian cells, like the anti-apoptotic protein Bcl-2. According to its significant role in altering susceptibility to apoptosis, the deciphering of the mechanism of Bcl-2 expression modulation may be crucial for identifying therapeutics strategies for cancer. Treatment with naphthalimide-based DNA intercalators, including M2-A and R16, generally leads to a decrease in Bcl-2 intracellular amounts. Whereas the interest for these chemotherapeutics is accompanied by advances in the fundamental understanding of their anticancer properties, the molecular mechanism underlying changes in Bcl-2 expression remains poorly understood. We report here that p53 contributes to Bcl-2 down-regulation induced by B1, a novel naphthalimide-based DNA intercalating agent. Indeed, the decrease in Bcl-2 protein levels observed during B1-induced apoptosis was correlated to the decrease in mRNA levels, as a result of the inhibition of Bcl-2 transcription and promoter activity. In this context, we evaluated p53 contribution in the Bcl-2 transcriptional down-regulation. We found a significant increase of p53 binding to P 2 promoter TATA box in MCF7 cells by chromatin immunoprecipitation. These data suggest that B1-induced caspase-independent apoptosis in MCF-7 cells is associated with the activation of p53 and the down-regulation of Bcl-2. Our study strengthens the links between p53 and Bcl-2 at a transcriptional level, upon naphthalimide-based DNA intercalator treatment. - Research highlights: → B1 induced apoptosis in MCF-7 cells, following a transcriptional decrease in Bcl-2. → B1 treatment triggered p53 activation and leads to a p53-dependent down-regulation of Bcl-2. → B1 induced significant increase of p53 binding to Bcl-2 P 2 promoter TATA box.

  11. Inhibition of oxygen-glucose deprivation-induced apoptosis of human adipose-derived stem cells by genetic modification with antiapoptotic protein bcl-2.

    Science.gov (United States)

    Cui, Ziwei; Shen, Liangyun; Lin, Yue; Wang, Shuqin; Zheng, Dongfeng; Tan, Qian

    2014-08-01

    Adipose-derived stem cells (ADSCs) have become a promising tool for a wide range of cell-based therapies. However, transplanted ADSCs do not survive well under ischemic conditions. In this study we aimed to inhibit oxygen-glucose deprivation (OGD)-induced apoptosis of human ADSCs by genetic modification with antiapoptotic protein Bcl-2. After isolation and culture, the phenotypes of human ADSCs at passage 3 were analyzed by flow cytometry. Then, genetic modification of ADSCs with Bcl-2 was carried out. Bcl-2 gene transfection was verified by Western blot analysis and multipotent differentiation properties were evaluated in Bcl-2-modified ADSCs (Bcl-2-ADSCs). Apoptosis was evaluated by a TUNEL assay under ischemic conditions induced by OGD. Apoptotic nuclei were also assessed and quantified by Hoechst staining. The cultured ADSCs expressed stem cell-associated markers CD29, CD34, CD44, and CD90, but not fibroblast marker HLA-DR or hematopoietic stem cell marker CD133. The Bcl-2 gene was transferred into ADSCs efficiently, and Bcl-2-ADSCs differentiated into adipocytes, chondrocytes, and osteoblasts. In addition, Bcl-2 overexpression reduced the percentage of apoptotic Bcl-2-ADSCs by 38 % under OGD. Our results indicate that Bcl-2 overexpression through gene transfection inhibits apoptosis of ADSCs under ischemic conditions. This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  12. Apoptosis in differentiating C2C12 muscle cells selectively targets Bcl-2-deficient myotubes

    Science.gov (United States)

    Schoneich, Christian; Dremina, Elena; Galeva, Nadezhda; Sharov, Victor

    2014-01-01

    Muscle cell apoptosis accompanies normal muscle development and regeneration, as well as degenerative diseases and aging. C2C12 murine myoblast cells represent a common model to study muscle differentiation. Though it was already shown that myogenic differentiation of C2C12 cells is accompanied by enhanced apoptosis in a fraction of cells, either the cell population sensitive to apoptosis or regulatory mechanisms for the apoptotic response are unclear so far. In the current study we characterize apoptotic phenotypes of different types of C2C12 cells at all stages of differentiation, and report here that myotubes of differentiated C2C12 cells with low levels of anti-apoptotic Bcl-2 expression are particularly vulnerable to apoptosis even though they are displaying low levels of pro-apoptotic proteins Bax, Bak and Bad. In contrast, reserve cells exhibit higher levels of Bcl-2 and high resistance to apoptosis. The transfection of proliferating myoblasts with Bcl-2 prior to differentiation did not protect against spontaneous apoptosis accompanying differentiation of C2C12 cell but led to Bcl-2 overexpression in myotubes and to significant protection from apoptotic cell loss caused by exposure to hydrogen peroxide. Overall, our data advocate for a Bcl-2-dependent mechanism of apoptosis in differentiated muscle cells. However, downstream processes for spontaneous and hydrogen peroxide induced apoptosis are not completely similar. Apoptosis in differentiating myoblasts and myotubes is regulated not through interaction of Bcl-2 with pro-apoptotic Bcl-2 family proteins such as Bax, Bak, and Bad. PMID:24129924

  13. Cyanide-induced death of dopaminergic cells is mediated by uncoupling protein-2 up-regulation and reduced Bcl-2 expression

    International Nuclear Information System (INIS)

    Zhang, X.; Li, L.; Zhang, L.; Borowitz, J.L.; Isom, G.E.

    2009-01-01

    Cyanide is a potent inhibitor of mitochondrial oxidative metabolism and produces mitochondria-mediated death of dopaminergic neurons and sublethal intoxications that are associated with a Parkinson-like syndrome. Cyanide toxicity is enhanced when mitochondrial uncoupling is stimulated following up-regulation of uncoupling protein-2 (UCP-2). In this study, the role of a pro-survival protein, Bcl-2, in cyanide-mediated cell death was determined in a rat dopaminergic immortalized mesencephalic cell line (N27 cells). Following pharmacological up-regulation of UCP-2 by treatment with Wy14,643, cyanide reduced cellular Bcl-2 expression by increasing proteasomal degradation of the protein. The increased turnover of Bcl-2 was mediated by an increase of oxidative stress following UCP-2 up-regulation. The oxidative stress involved depletion of mitochondrial glutathione (mtGSH) and increased H 2 O 2 generation. Repletion of mtGSH by loading cells with glutathione ethyl ester reduced H 2 O 2 generation and in turn blocked the cyanide-induced decrease of Bcl-2. To determine if UCP-2 mediated the response, RNAi knock down was conducted. The RNAi decreased cyanide-induced depletion of mtGSH, reduced H 2 O 2 accumulation, and inhibited down-regulation of Bcl-2, thus blocking cell death. To confirm the role of Bcl-2 down-regulation in the cell death, it was shown that over-expression of Bcl-2 by cDNA transfection attenuated the enhancement of cyanide toxicity after UCP-2 up-regulation. It was concluded that UCP-2 up-regulation sensitizes cells to cyanide by increasing cellular oxidative stress, leading to an increase of Bcl-2 degradation. Then the reduced Bcl-2 levels sensitize the cells to cyanide-mediated cell death.

  14. Genetic and pharmacological screens converge in identifying FLIP, BCL2 and IAP proteins as key regulators of sensitivity to the TRAIL-inducing anti-cancer agent ONC201/TIC10

    Science.gov (United States)

    Allen, Joshua E.; Prabhu, Varun V.; Talekar, Mala; van den Heuvel, AP; Lim, Bora; Dicker, David T.; Fritz, Jennifer L.; Beck, Adam; El-Deiry, Wafik S.

    2015-01-01

    ONC201/TIC10 is a small molecule inducer of the TRAIL gene under current investigation as a novel anticancer agent. In this study, we identify critical molecular determinants of ONC201 sensitivity offering potential utility as pharmacodynamic or predictive response markers. By screening a library of kinase siRNAs in combination with a subcytotoxic dose of ONC201, we identified several kinases that ablated tumor cell sensitivity, including the MAPK pathway inducer KSR1. Unexpectedly, KSR1 silencing did not affect MAPK signaling in the presence or absence of ONC201, but instead reduced expression of the anti-apoptotic proteins FLIP, Mcl-1, Bcl-2, cIAP1, cIAP2, and survivin. In parallel to this work, we also conducted a synergy screen in which ONC201 was combined with approved small molecule anticancer drugs. In multiple cancer cell populations, ONC201 synergized with diverse drug classes including the multi-kinase inhibitor sorafenib. Notably, combining ONC201 and sorafenib led to synergistic induction of TRAIL and its receptor DR5 along with a potent induction of cell death. In a mouse xenograft model of hepatocellular carcinoma, we demonstrated that ONC201 and sorafenib cooperatively and safely triggered tumor regressions. Overall, our results established a set of determinants for ONC201 sensitivity that may predict therapeutic response, particularly in settings of sorafenib co-treatment to enhance anticancer responses. PMID:25681273

  15. Sheeppox virus SPPV14 encodes a Bcl-2-like cell death inhibitor that counters a distinct set of mammalian proapoptotic proteins.

    Science.gov (United States)

    Okamoto, Toru; Campbell, Stephanie; Mehta, Ninad; Thibault, John; Colman, Peter M; Barry, Michele; Huang, David C S; Kvansakul, Marc

    2012-11-01

    Many viruses express inhibitors of programmed cell death (apoptosis), thereby countering host defenses that would otherwise rapidly clear infected cells. To counter this, viruses such as adenoviruses and herpesviruses express recognizable homologs of the mammalian prosurvival protein Bcl-2. In contrast, the majority of poxviruses lack viral Bcl-2 (vBcl-2) homologs that are readily identified by sequence similarities. One such virus, myxoma virus, which is the causative agent of myxomatosis, expresses a virulence factor that is a potent inhibitor of apoptosis. In spite of the scant sequence similarity to Bcl-2, myxoma virus M11L adopts an almost identical 3-dimensional fold. We used M11L as bait in a sequence similarity search for other Bcl-2-like proteins and identified six putative vBcl-2 proteins from poxviruses. Some are potent inhibitors of apoptosis, in particular sheeppox virus SPPV14, which inhibited cell death induced by multiple agents. Importantly, SPPV14 compensated for the loss of antiapoptotic F1L in vaccinia virus and acts to directly counter the cell death mediators Bax and Bak. SPPV14 also engages a unique subset of the death-promoting BH3-only ligands, including Bim, Puma, Bmf, and Hrk. This suggests that SPPV14 may have been selected for specific biological roles as a virulence factor for sheeppox virus.

  16. Born to be Alive: A Role for the BCL-2 Family in Melanoma Tumor Cell Survival, Apoptosis, and Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Anvekar, Rina A.; Asciolla, James J.; Missert, Derek J.; Chipuk, Jerry E., E-mail: jerry.chipuk@mssm.edu [Department of Oncological Sciences, Mount Sinai School of Medicine, New York, NY (United States); Department of Dermatology, Mount Sinai School of Medicine, New York, NY (United States); The Tisch Cancer Institute, Mount Sinai Medical Center, New York, NY (United States)

    2011-10-13

    The global incidence of melanoma has dramatically increased during the recent decades, yet the advancement of primary and adjuvant therapies has not kept a similar pace. The development of melanoma is often centered on cellular signaling that hyper-activates survival pathways, while inducing a concomitant blockade to cell death. Aberrations in cell death signaling not only promote tumor survival and enhanced metastatic potential, but also create resistance to anti-tumor strategies. Chemotherapeutic agents target melanoma tumor cells by inducing a form of cell death called apoptosis, which is governed by the BCL-2 family of proteins. The BCL-2 family is comprised of anti-apoptotic proteins (e.g., BCL-2, BCL-xL, and MCL-1) and pro-apoptotic proteins (e.g., BAK, BAX, and BIM), and their coordinated regulation and function are essential for optimal responses to chemotherapeutics. Here we will discuss what is currently known about the mechanisms of BCL-2 family function with a focus on the signaling pathways that maintain melanoma tumor cell survival. Importantly, we will critically evaluate the literature regarding how chemotherapeutic strategies directly impact on BCL-2 family function and offer several suggestions for future regimens to target melanoma and enhance patient survival.

  17. Cannabinoids Regulate Bcl-2 and Cyclin D2 Expression in Pancreatic β Cells.

    Directory of Open Access Journals (Sweden)

    Jihye Kim

    Full Text Available Recent reports have shown that cannabinoid 1 receptors (CB1Rs are expressed in pancreatic β cells, where they induce cell death and cell cycle arrest by directly inhibiting insulin receptor activation. Here, we report that CB1Rs regulate the expression of the anti-apoptotic protein Bcl-2 and cell cycle regulator cyclin D2 in pancreatic β cells. Treatment of MIN6 and βTC6 cells with a synthetic CB1R agonist, WIN55,212-2, led to a decrease in the expression of Bcl-2 and cyclin D2, in turn inducing cell cycle arrest in G0/G1 phase and caspase-3-dependent apoptosis. Additionally, genetic deletion and pharmacological blockade of CB1Rs after injury in mice led to increased levels of Bcl-2 and cyclin D2 in pancreatic β cells. These findings provide evidence for the involvement of Bcl-2 and cyclin D2 mediated by CB1Rs in the regulation of β-cell survival and growth, and will serve as a basis for developing new therapeutic interventions to enhance β-cell function and growth in diabetes.

  18. Arsenite induces apoptosis in human mesenchymal stem cells by altering Bcl-2 family proteins and by activating intrinsic pathway

    International Nuclear Information System (INIS)

    Yadav, Santosh; Shi Yongli; Wang Feng; Wang He

    2010-01-01

    Purpose: Environmental exposure to arsenic is an important public health issue. The effects of arsenic on different tissues and organs have been intensively studied. However, the effects of arsenic on bone marrow mesenchymal stem cells (MSCs) have not been reported. This study is designed to investigate the cell death process caused by arsenite and its related underlying mechanisms on MSCs. The rationale is that absorbed arsenic in the blood circulation can reach to the bone marrow and may affect the cell survival of MSCs. Methods: MSCs of passage 1 were purchased from Tulane University, grown till 70% confluency level and plated according to the experimental requirements followed by treatment with arsenite at various concentrations and time points. Arsenite (iAs III ) induced cytotoxic effects were confirmed by cell viability and cell cycle analysis. For the presence of canonic apoptosis markers; DNA damage, exposure of intramembrane phosphotidylserine, protein and m-RNA expression levels were analyzed. Results: iAs III induced growth inhibition, G2-M arrest and apoptotic cell death in MSCs, the apoptosis induced by iAs III in the cultured MSCs was, via altering Bcl-2 family proteins and by involving intrinsic pathway. Conclusion: iAs III can induce apoptosis in bone marrow-derived MSCs via Bcl-2 family proteins, regulating intrinsic apoptotic pathway. Due to the multipotency of MSC, acting as progenitor cells for a variety of connective tissues including bone, adipose, cartilage and muscle, these effects of arsenic may be important in assessing the health risk of the arsenic compounds and understanding the mechanisms of arsenic-induced harmful effects.

  19. Manganese activates the mitochondrial apoptotic pathway in rat astrocytes by modulating the expression of proteins of the Bcl-2 family.

    Science.gov (United States)

    Gonzalez, Laura E; Juknat, A Ana; Venosa, Andrea J; Verrengia, Noemi; Kotler, Mónica L

    2008-12-01

    Manganese induces the central nervous system injury leading to manganism, by mechanisms not completely understood. Chronic exposure to manganese generates oxidative stress and induces the mitochondrial permeability transition. In the present study, we characterized apoptotic cell death mechanisms associated with manganese toxicity in rat cortical astrocytes and demonstrated that (i) Mn treatment targets the mitochondria and induces mitochondrial membrane depolarization followed by cytochrome c release to the cytoplasm, (ii) Mn induces both effector caspases 3/7 and 6 as well as PARP-1 cleavage and (iii) Mn shifts the balance of cell death/survival of Bcl-2 family proteins to favor the apoptotic demise of astrocytes. Our model system using cortical rat astrocytes treated with Mn would emerge as a good tool for investigations aimed to elucidate the role of apoptosis in manganism.

  20. Immunohistochemical expression of p53, BCL-2, BAX and VEGFR1 proteins in nephroblastomas A expressão imuno-histoquímica das proteínas p53, BCL-2, BAX e VEGFR1 em nefroblastomas

    Directory of Open Access Journals (Sweden)

    Ana Paula Percicote

    2013-02-01

    Full Text Available INTRODUCTION: Nephroblastoma or Wilms' tumor is the most frequent renal cancer in children. Although its prognosis is favorable for most patients, it may relapse or have a fatal outcome. The characterization of risk groups by applying immunohistochemical biomarkers aims to adapt the treatment to its corresponding group as well as to reduce relapses and fatal outcome. p53, B-cell lymphoma 2 (BCL-2, BCL-2 associated protein X (BAX and vascular endothelial growth factor receptor 1 (VEGFR1 are among the most widely studied biomarkers, which are related to the apoptotic pathway, DNA repair and neovascularization. OBJECTIVE: The objective of this study is to assess the immunohistochemical expression of p53, BCL-2, BAX and VEGFR1 in samples of human nephroblastoma and to correlate them with clinicopathological prognostic factors. MATERIAL AND METHODS: Twenty-nine surgical specimens of nephroblastoma diagnosed from 1994 to 2007 were selected from the Anatomopathological Service of two hospitals in Curitiba. The immunohistochemical analysis of tissue microarrays was performed through immunoperoxidase staining and the yielded results were compared with clinicopathological prognostic factors. RESULTS: The major immunohistochemical expression of VEGFR1 in blastema and epithelium presented positive association with the risk group. Hence this may be related to higher vascular neoplastic invasion apparently caused by the endothelial growth factor, which maximizes the chances of metastasis and ultimately changes tumor staging, risk group and clinical evolution. CONCLUSIONS: The immunohistochemical expression of VEGFR1 substantiated a directly proportional association with the nephroblastoma risk group.INTRODUÇÃO: O nefroblastoma, ou tumor de Wilms, é a neoplasia renal mais frequente na infância. Embora o prognóstico seja favorável para a maioria dos pacientes, muitos evoluem para recidiva ou óbito. A caracterização de grupos de risco por meio de

  1. The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized

    OpenAIRE

    van Delft, Mark F.; Wei, Andrew H.; Mason, Kylie D.; Vandenberg, Cassandra J.; Chen, Lin; Czabotar, Peter E.; Willis, Simon N.; Scott, Clare L.; Day, Catherine L.; Cory, Suzanne; Adams, Jerry M.; Roberts, Andrew W.; Huang, David C.S.

    2006-01-01

    Since apoptosis is impaired in malignant cells overexpressing pro-survival Bcl-2 proteins, drugs mimicking their natural antagonists, BH3-only proteins, might overcome chemoresistance. Of seven putative BH3 mimetics tested, only ABT-737 triggered Bax/Bak-mediated apoptosis. Despite its high affinity for Bcl-2, Bcl-xL and Bcl-w, many cell types proved refractory to ABT-737. We show that this resistance reflects its inability to target another pro-survival relative, Mcl-1. Down-regulation of Mc...

  2. Homologous recombination in mammalian cells: effect of p53 and Bcl-2 proteins, replication inhibition and ionizing radiations

    International Nuclear Information System (INIS)

    Saintigny, Yannick

    1999-01-01

    The control of cell cycle, associated with the mechanisms of replication, DNA repair/recombination allows the cells to maintain their genetic integrity. The p53 protein ensures the control of G1/S transition. Its inactivation would allow to initial replication on damaged matrix and lead to the block of replication forks followed by DNA strand breaks, good substrates for recombination. This work shows that the expression of mutant p53 protein stimulates both spontaneous and radio-induced homologous recombination, independently of the control of cell cycle. Moreover, the use of a set of replication inhibitors show that inhibition of the replication elongation stimulates recombination more strongly than the initiation inhibition. Replication arrest by these inhibitors also significantly increases the number of DNA strand breaks. These results highlighted a point of action of p53 protein on the ultimate stages of the homologous recombination mechanism. Lastly, the expression of Bcl-2 protein inhibits apoptosis and increases survival, but specifically inhibits conservative recombination, after radiation as well as in absence of apoptotic stress. The extinction of this mechanism of DNA repair is associated with an increase of mutagenesis. Taken together, these results allow ta consider the maintenance of the genetic stability as a cellular network involving different pathways. A multiple stages model for tumoral progression can be deduced. (author) [fr

  3. The anti-apoptotic effect of IGF-1 on tissue resident stem cells is mediated via PI3-kinase dependent secreted frizzled related protein 2 (Sfrp2) release

    International Nuclear Information System (INIS)

    Gehmert, Sebastian; Sadat, Sanga; Song Yaohua; Yan Yasheng; Alt, Eckhard

    2008-01-01

    Previous studies suggest that IGF-1 may be used as an adjuvant to stem cell transfer in order to improve cell engraftment in ischemic tissue. In the current study, we investigated the effect of IGF-1 on serum deprivation and hypoxia induced stem cell apoptosis and the possible mechanisms involved. Exposure of adipose tissue derived stem cells (ASCs) to serum deprivation and hypoxia resulted in significant apoptosis in ASC which is partially prevented by IGF-1. IGF-1's anti-apoptotic effect was abolished in ASCs transfected with Sfrp2 siRNA but not by the control siRNA. Using Western blot analysis, we demonstrated that serum deprivation and hypoxia reduced the expression of nuclear β-catenin, which is reversed by IGF-1. IGF-1's effect on β-catenin expression was abolished by the presence of PI3-kinase inhibitor LY294002 or in ASCs transfected with Sfrp2 siRNA. These results suggest that IGF-1, through the release of the Sfrp2, contributes to cell survival by stabilizing β-catenin

  4. Relationship between bcl-2, bax, beclin-1, and cathepsin-D proteins during postovulatory follicular regression in fish ovary.

    Science.gov (United States)

    Morais, Roberto D V S; Thomé, Ralph G; Santos, Hélio B; Bazzoli, Nilo; Rizzo, Elizete

    2016-04-01

    In fish ovaries, postovulatory follicles (POFs) are key biomarkers of breeding and provide an interesting model for studying the relationship between autophagy and apoptosis. In this study, we investigated the immunohistochemical expression of autophagic and apoptotic proteins to improve the knowledge on the mechanisms regulating ovarian remodeling after spawning. Females from three neotropical fish species kept in captivity were submitted to hormonal induction. After ova stripping, ovarian sections were sampled daily until 5 days postspawning (dps). Similar events of POF regression were detected by histology, terminal transferase-mediated dUTP nick-end labeling (TUNEL), and electron microscopy in the three species: follicular cells hypertrophy, progressive disintegration of the basement membrane, gradual closing of the follicular lumen, theca thickening, and formation of large autophagic vacuoles preceding apoptosis of the follicular cells. Autophagic and apoptotic proteins were assessed by immunohistochemistry. Morphometric analysis of the immunolabeling revealed a more intense reaction for bcl-2 and beclin-1 (BECN1) in POFs at 0 to 1 dps and for bax at 2 to 3 dps (P family, BECN1, and cathepsin-D can be involved in the regulation of ovarian remodeling in teleost fish. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Clinical profiling of BCL-2 family members in the setting of BRAF inhibition offers a rationale for targeting de novo resistance using BH3 mimetics.

    Directory of Open Access Journals (Sweden)

    Dennie T Frederick

    Full Text Available While response rates to BRAF inhibitiors (BRAFi are high, disease progression emerges quickly. One strategy to delay the onset of resistance is to target anti-apoptotic proteins such as BCL-2, known to be associated with a poor prognosis. We analyzed BCL-2 family member expression levels of 34 samples from 17 patients collected before and 10 to 14 days after treatment initiation with either vemurafenib or dabrafenib/trametinib combination. The observed changes in mRNA and protein levels with BRAFi treatment led us to hypothesize that combining BRAFi with a BCL-2 inhibitor (the BH3-mimetic navitoclax would improve outcome. We tested this hypothesis in cell lines and in mice. Pretreatment mRNA levels of BCL-2 negatively correlated with maximal tumor regression. Early increases in mRNA levels were seen in BIM, BCL-XL, BID and BCL2-W, as were decreases in MCL-1 and BCL2A. No significant changes were observed with BCL-2. Using reverse phase protein array (RPPA, significant increases in protein levels were found in BIM and BID. No changes in mRNA or protein correlated with response. Concurrent BRAF (PLX4720 and BCL2 (navitoclax inhibition synergistically reduced viability in BRAF mutant cell lines and correlated with down-modulation of MCL-1 and BIM induction after PLX4720 treatment. In xenograft models, navitoclax enhanced the efficacy of PLX4720. The combination of a selective BRAF inhibitor with a BH3-mimetic promises to be an important therapeutic strategy capable of enhancing the clinical efficacy of BRAF inhibition in many patients that might otherwise succumb quickly to de novo resistance. Trial registrations: ClinicalTrials.gov NCT01006980; ClinicalTrials.gov NCT01107418; ClinicalTrials.gov NCT01264380; ClinicalTrials.gov NCT01248936; ClinicalTrials.gov NCT00949702; ClinicalTrials.gov NCT01072175.

  6. Effects of low dose radiation on tumor apoptosis, cell cycle progression and changes of apoptosis-related protein bcl-2 in tumor-bearing mice

    International Nuclear Information System (INIS)

    Yu Hongsheng; Fei Conghe; Shen Fangzhen; Liang Jun

    2003-01-01

    Objective: To study the effect of low dose radiation (LDR) on tumor apoptosis, cell cycle progression and changes of apoptosis-related protein bcl-2 in tumor-bearing mice. Methods: Kunming stain male mice were implanted with S180 sarcoma cells in the left inguen subcutaneously as an in situ experimental animal model. Seven days after implantation, the mice were given 75 mGy whole-body γ-irradiation. At 24 and 48 h after irradiation, all mice were sacrificed to measure the tumor volume, and tumor cell apoptosis, cell cycle progression were analyzed by flow cytometry. The expression of apoptosis-related protein bcl-2 and the apoptotic rate of tumor cells were observed by immunohistochemistry and electron microscopy. Results: Tumor growth was significantly slowed down after LDR (P 1 phase and the expression of bcl-2 protein decreased at 24 h. Apoptotic rate of tumor cells increased significantly at 48 h after LDR. Conclusion: LDR could cause a G 1 -phase arrest and increase the apoptosis of tumor cells through the low level of apoptosis-related protein bcl-2 in the tumor-bearing mice. The organized immune function and anti-tumor ability are markedly increased after LDR. The study provides practical evidence of clinical application to cancer treatment

  7. Opposite role of Bax and BCL-2 in the anti-tumoral responses of the immune system

    International Nuclear Information System (INIS)

    Bougras, Gwenola; Cartron, Pierre-François; Gautier, Fabien; Martin, Stéphane; LeCabellec, Marité; Meflah, Khaled; Gregoire, Marc; Vallette, François M

    2004-01-01

    The relative role of anti apoptotic (i.e. Bcl-2) or pro-apoptotic (e.g. Bax) proteins in tumor progression is still not completely understood. The rat glioma cell line A15A5 was stably transfected with human Bcl-2 and Bax transgenes and the viability of theses cell lines was analyzed in vitro and in vivo. In vitro, the transfected cell lines (huBax A15A5 and huBcl-2 A15A5) exhibited different sensitivities toward apoptotic stimuli. huBax A15A5 cells were more sensitive and huBcl-2 A15A5 cells more resistant to apoptosis than mock-transfected A15A5 cells (pCMV A15A5). However, in vivo, in syngenic rat BDIX, these cell lines behaved differently, as no tumor growth was observed with huBax A15A5 cells while huBcl-2 A15A5 cells formed large tumors. The immune system appeared to be involved in the rejection of huBax A15A5 cells since i) huBax A15A5 cells were tumorogenic in nude mice, ii) an accumulation of CD8+ T-lymphocytes was observed at the site of injection of huBax A15A5 cells and iii) BDIX rats, which had received huBax A15A5 cells developed an immune protection against pCMV A15A5 and huBcl-2 A15A5 cells. We show that the expression of Bax and Bcl-2 controls the sensitivity of the cancer cells toward the immune system. This sensitization is most likely to be due to an increase in immune induced cell death and/or the amplification of an anti tumour immune response

  8. Photobiomodulation on Bax and Bcl-2 Proteins and SIRT1/PGC-1α Axis mRNA Expression Levels of Aging Rat Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Fang-Hui Li

    2014-01-01

    Full Text Available Objective. This study aimed to analyze the effects of low level laser irradiation (LLLI on Bax and IGF-1 and Bcl-2 protein contents and SIRT1/PGC-1α axis mRNA expression levels to prevent sarcopenia in aged rats. Material and Methods. Twenty female Sprague Dawley rats (18 months old were randomly divided into two groups (n=10 per group: control (CON and LLLI groups. The gallium-aluminum-arsenium (GaAlAs laser irradiation at 810 nm was used in the single point contact mode (3.75 J/cm2; 0.4 cm2; 125 mW/cm2; 30 s. Bax, Bcl-2, and IGF-1 proteins and SIRT1/PGC-1α axis mRNA expression were assessed 24 h after LLLI on gastrocnemius in aged rat. Results. Gastrocnemius muscle weights, gastrocnemius mass/body mass, Bcl-2/BAX ratio, Bcl-2 protein, IGF-1 protein, and the mRNA contents in SIRT1, PGC-1α, NRF1, TMF, and SOD2 were significantly (P<0.05 increased by LLLI compared to CON group without LLLI. However, levels of BAX protein and caspase 3 mRNA were significantly attenuated by LLLI compared to CON group (P<0.05. Conclusion. LLLI at 810 nm inhibits sarcopenia associated with upregulation of Bcl-2/BAX ratio and IGF-1 and SIRT1/PGC-1α axis mRNA expression in aged rats. This indicates that LLLI has potential to decrease progression of myocyte apoptosis in sarcopenic muscles.

  9. SS-A/Ro52 promotes apoptosis by regulating Bcl-2 production

    International Nuclear Information System (INIS)

    Jauharoh, Siti Nur Aisyah; Saegusa, Jun; Sugimoto, Takeshi; Ardianto, Bambang; Kasagi, Shimpei; Sugiyama, Daisuke; Kurimoto, Chiyo; Tokuno, Osamu; Nakamachi, Yuji; Kumagai, Shunichi; Kawano, Seiji

    2012-01-01

    Highlights: ► Ro52 low HeLa cells are resistant to apoptosis upon various stimulations. ► Ro52 is upregulated by IFN-α, etoposide, or IFN-γ and anti-Fas Ab. ► Ro52-mediated apoptosis is independent of p53. ► Ro52 selectively regulates Bcl-2 expression. -- Abstract: SS-A/Ro52 (Ro52), an autoantigen in systemic autoimmune diseases such as systemic lupus erythematosus and Sjögren’s syndrome, has E3 ligase activity to ubiquitinate proteins that protect against viral infection. To investigate Ro52’s role during stress, we transiently knocked it down in HeLa cells by siRo52 transfection. We found that Ro52 low HeLa cells were significantly more resistant to apoptosis than wild-type HeLa cells when stimulated by H 2 O 2 - or diamide-induced oxidative stress, IFN-α, IFN-γ and anti-Fas antibody, etoposide, or γ-irradiation. Furthermore, Ro52-mediated apoptosis was not influenced by p53 protein level in HeLa cells. Depleting Ro52 in HeLa cells caused Bcl-2, but not other Bcl-2 family molecules, to be upregulated. Taken together, our data showed that Ro52 is a universal proapoptotic molecule, and that its proapoptotic effect does not depend on p53, but is exerted through negative regulation of the anti-apoptotic protein Bcl-2. These findings shed light on a new physiological role for Ro52 that is important to intracellular immunity.

  10. SS-A/Ro52 promotes apoptosis by regulating Bcl-2 production

    Energy Technology Data Exchange (ETDEWEB)

    Jauharoh, Siti Nur Aisyah [Department of Clinical Pathology and Immunology, Kobe University Graduate School of Medicine, Hyogo 650-0017 (Japan); Faculty of Medicine and Health Science, Syarif Hidayatullah State Islamic University, Jakarta 15412 (Indonesia); Saegusa, Jun; Sugimoto, Takeshi [Department of Clinical Pathology and Immunology, Kobe University Graduate School of Medicine, Hyogo 650-0017 (Japan); Ardianto, Bambang [Department of Clinical Pathology and Immunology, Kobe University Graduate School of Medicine, Hyogo 650-0017 (Japan); Department of Child Health, Faculty of Medicine, Gadjah Mada University, Yogyakarta 55282 (Indonesia); Kasagi, Shimpei; Sugiyama, Daisuke; Kurimoto, Chiyo [Department of Clinical Pathology and Immunology, Kobe University Graduate School of Medicine, Hyogo 650-0017 (Japan); Tokuno, Osamu; Nakamachi, Yuji [Department of Laboratory Medicine, Kobe University Hospital, Hyogo 650-0017 (Japan); Kumagai, Shunichi [Department of Clinical Pathology and Immunology, Kobe University Graduate School of Medicine, Hyogo 650-0017 (Japan); Kawano, Seiji, E-mail: sjkawano@med.kobe-u.ac.jp [Department of Clinical Pathology and Immunology, Kobe University Graduate School of Medicine, Hyogo 650-0017 (Japan); Department of Laboratory Medicine, Kobe University Hospital, Hyogo 650-0017 (Japan)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Ro52{sup low} HeLa cells are resistant to apoptosis upon various stimulations. Black-Right-Pointing-Pointer Ro52 is upregulated by IFN-{alpha}, etoposide, or IFN-{gamma} and anti-Fas Ab. Black-Right-Pointing-Pointer Ro52-mediated apoptosis is independent of p53. Black-Right-Pointing-Pointer Ro52 selectively regulates Bcl-2 expression. -- Abstract: SS-A/Ro52 (Ro52), an autoantigen in systemic autoimmune diseases such as systemic lupus erythematosus and Sjoegren's syndrome, has E3 ligase activity to ubiquitinate proteins that protect against viral infection. To investigate Ro52's role during stress, we transiently knocked it down in HeLa cells by siRo52 transfection. We found that Ro52{sup low} HeLa cells were significantly more resistant to apoptosis than wild-type HeLa cells when stimulated by H{sub 2}O{sub 2}- or diamide-induced oxidative stress, IFN-{alpha}, IFN-{gamma} and anti-Fas antibody, etoposide, or {gamma}-irradiation. Furthermore, Ro52-mediated apoptosis was not influenced by p53 protein level in HeLa cells. Depleting Ro52 in HeLa cells caused Bcl-2, but not other Bcl-2 family molecules, to be upregulated. Taken together, our data showed that Ro52 is a universal proapoptotic molecule, and that its proapoptotic effect does not depend on p53, but is exerted through negative regulation of the anti-apoptotic protein Bcl-2. These findings shed light on a new physiological role for Ro52 that is important to intracellular immunity.

  11. The role of BIM-EL and BCL2-α on the efficacy of erlotinib and gefitinib in lung cancer.

    Science.gov (United States)

    Simasi, Jacinta; Oelkrug, Christopher; Schubert, Andreas; Nieber, Karen; Gillissen, Adrian

    2015-04-01

    Tyrosine kinase inhibitors (TKI), erlotinib and gefitinib are small molecule inhibitors which are used for the treatment of lung cancer. But, the development of drug resistance has been reported as one of the major setbacks in oncology. This study focused on the mechanisms leading to secondary resistance by assessing the gene expression of BCL2 family proteins which are associated with the intrinsic apoptotic signaling pathway. 8 genes were investigated in erlotinib and gefitinib treated cells by real time PCR and protein analysis by western blotting. The cells were exposed to the test drugs 48h prior to RNA or protein isolation. It was observed that BIM-EL, a pro-apoptotic protein was up-regulated in cells sensitive to the drugs but not in the resistant cells. On the other hand BCL2-α, an anti-apoptotic protein was up-regulated in the resistant cells and not in the sensitive cells. BCL2-α revealed a counter-regulation effect on BIM-EL and this effect is probably one of the causes of secondary resistance to erlotinib and gefitinib. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. A targeted proteomics approach to the quantitative analysis of ERK/Bcl-2-mediated anti-apoptosis and multi-drug resistance in breast cancer.

    Science.gov (United States)

    Yang, Ting; Xu, Feifei; Sheng, Yuan; Zhang, Wen; Chen, Yun

    2016-10-01

    Apoptosis suppression caused by overexpression of anti-apoptotic proteins is a central factor to the acquisition of multi-drug resistance (MDR) in breast cancer. As a highly conserved anti-apoptotic protein, Bcl-2 can initiate an anti-apoptosis response via an ERK1/2-mediated pathway. However, the details therein are still far from completely understood and a quantitative description of the associated proteins in the biological context may provide more insights into this process. Following our previous attempts in the quantitative analysis of MDR mechanisms, liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based targeted proteomics was continually employed here to describe ERK/Bcl-2-mediated anti-apoptosis. A targeted proteomics assay was developed and validated first for the simultaneous quantification of ERK1/2 and Bcl-2. In particular, ERK isoforms (i.e., ERK1 and ERK2) and their differential phosphorylated forms including isobaric ones were distinguished. Using this assay, differential protein levels and site-specific phosphorylation stoichiometry were observed in parental drug-sensitive MCF-7/WT cancer cells and drug-resistant MCF-7/ADR cancer cells and breast tissue samples from two groups of patients who were either suspected or diagnosed to have drug resistance. In addition, quantitative analysis of the time course of both ERK1/2 and Bcl-2 in doxorubicin (DOX)-treated MCF-7/WT cells confirmed these findings. Overall, we propose that targeted proteomics can be used generally to resolve more complex cellular events.

  13. Immunogenicity of Bcl-2 in patients with cancer

    DEFF Research Database (Denmark)

    Andersen, Mads Hald; Svane, Inge Marie; Kvistborg, Pia

    2005-01-01

    patients suffering from unrelated tumor types (ie, pancreatic cancer, breast cancer, acute myeloid leukemia [AML], and chronic lymphocytic leukemia [CLL]). Additionally, we show that these Bcl-2-reactive T cells are indeed peptide-specific, cytotoxic effector cells. Thus, Bcl-2 may serve as an important......B-cell lymphoma 2 (Bcl-2) is a pivotal regulator of apoptotic cell death and it is overexpressed in many cancers. Consequently, the Bcl-2 protein is an attractive target for drug design, and Bcl-2-specific antisense oligonucleotides or small-molecule Bcl-2 inhibitors have shown broad anticancer......-2 in cancer and the fact that immune escape by down-regulation or loss of expression of this protein would impair sustained tumor growth makes Bcl-2 a very attractive target for anticancer immunotherapy. Herein, we describe spontaneous T-cell reactivity against Bcl-2 in peripheral blood from...

  14. Zerumbone induced apoptosis in liver cancer cells via modulation of Bax/Bcl-2 ratio

    Directory of Open Access Journals (Sweden)

    Azimahtol Hawariah LP

    2007-04-01

    Full Text Available Abstract Background Zerumbone is a cytotoxic component isolated from Zingiber zerumbet Smith, a herbal plant which is also known as lempoyang. This new anticancer bioactive compound from Z. zerumbet was investigated for its activity and mechanism in human liver cancer cell lines. Results Zerumbone significantly showed an antiproliferative activity upon HepG2 cells with an IC50 of 3.45 ± 0.026 μg/ml. Zerumbone was also found to inhibit the proliferation of non-malignant Chang Liver and MDBK cell lines. However the IC50 obtained was higher compared to the IC50 for HepG2 cells (> 10 μg/ml. The extent of DNA fragmentation was evaluated by the Tdt-mediated dUTP nick end labelling assay which showed that, zerumbone significantly increased apoptosis in HepG2 cells in a time-course manner. In detail, the apoptotic process triggered by zerumbone involved the up-regulation of pro-apoptotic Bax protein and the suppression of anti-apoptotic Bcl-2 protein expression. The changes that occurred in the levels of this antagonistic proteins Bax/Bcl-2, was independent of p53 since zerumbone did not affect the levels of p53 although this protein exists in a functional form. Western blotting analysis for Bax protein was further confirmed qualitatively with an immunoassay that showed the distribution of Bax protein in zerumbone-treated cells. Conclusion Therefore, zerumbone was found to induce the apoptotic process in HepG2 cells through the up and down regulation of Bax/Bcl-2 protein independently of functional p53 activity.

  15. S phase entry causes homocysteine-induced death while ataxia telangiectasia and Rad3 related protein functions anti-apoptotically to protect neurons.

    Science.gov (United States)

    Ye, Weizhen; Blain, Stacy W

    2010-08-01

    A major phenotype seen in neurodegenerative disorders is the selective loss of neurons due to apoptotic death and evidence suggests that inappropriate re-activation of cell cycle proteins in post-mitotic neurons may be responsible. To investigate whether reactivation of the G1 cell cycle proteins and S phase entry was linked with apoptosis, we examined homocysteine-induced neuronal cell death in a rat cortical neuron tissue culture system. Hyperhomocysteinaemia is a physiological risk factor for a variety of neurodegenerative diseases, including Alzheimer's disease. We found that in response to homocysteine treatment, cyclin D1, and cyclin-dependent kinases 4 and 2 translocated to the nucleus, and p27 levels decreased. Both cyclin-dependent kinases 4 and 2 regained catalytic activity, the G1 gatekeeper retinoblastoma protein was phosphorylated and DNA synthesis was detected, suggesting transit into S phase. Double-labelling immunofluorescence showed a 95% co-localization of anti-bromodeoxyuridine labelling with apoptotic markers, demonstrating that those cells that entered S phase eventually died. Neurons could be protected from homocysteine-induced death by methods that inhibited G1 phase progression, including down-regulation of cyclin D1 expression, inhibition of cyclin-dependent kinases 4 or 2 activity by small molecule inhibitors, or use of the c-Abl kinase inhibitor, Gleevec, which blocked cyclin D and cyclin-dependent kinase 4 nuclear translocation. However, blocking cell cycle progression post G1, using DNA replication inhibitors, did not prevent apoptosis, suggesting that death was not preventable post the G1-S phase checkpoint. While homocysteine treatment caused DNA damage and activated the DNA damage response, its mechanism of action was distinct from that of more traditional DNA damaging agents, such as camptothecin, as it was p53-independent. Likewise, inhibition of the DNA damage sensors, ataxia-telangiectasia mutant and ataxia telangiectasia and Rad

  16. Behavior of solvent-exposed hydrophobic groove in the anti-apoptotic Bcl-XL protein: clues for its ability to bind diverse BH3 ligands from MD simulations.

    Directory of Open Access Journals (Sweden)

    Dilraj Lama

    Full Text Available Bcl-XL is a member of Bcl-2 family of proteins involved in the regulation of intrinsic pathway of apoptosis. Its overexpression in many human cancers makes it an important target for anti-cancer drugs. Bcl-XL interacts with the BH3 domain of several pro-apoptotic Bcl-2 partners. This helical bundle protein has a pronounced hydrophobic groove which acts as a binding region for the BH3 domains. Eight independent molecular dynamics simulations of the apo/holo forms of Bcl-XL were carried out to investigate the behavior of solvent-exposed hydrophobic groove. The simulations used either a twin-range cut-off or particle mesh Ewald (PME scheme to treat long-range interactions. Destabilization of the BH3 domain-containing helix H2 was observed in all four twin-range cut-off simulations. Most of the other major helices remained stable. The unwinding of H2 can be related to the ability of Bcl-XL to bind diverse BH3 ligands. The loss of helical character can also be linked to the formation of homo- or hetero-dimers in Bcl-2 proteins. Several experimental studies have suggested that exposure of BH3 domain is a crucial event before they form dimers. Thus unwinding of H2 seems to be functionally very important. The four PME simulations, however, revealed a stable helix H2. It is possible that the H2 unfolding might occur in PME simulations at longer time scales. Hydrophobic residues in the hydrophobic groove are involved in stable interactions among themselves. The solvent accessible surface areas of bulky hydrophobic residues in the groove are significantly buried by the loop LB connecting the helix H2 and subsequent helix. These observations help to understand how the hydrophobic patch in Bcl-XL remains stable in the solvent-exposed state. We suggest that both the destabilization of helix H2 and the conformational heterogeneity of loop LB are important factors for binding of diverse ligands in the hydrophobic groove of Bcl-XL.

  17. Anti-apoptotic ARC protein confers chemoresistance by controlling leukemia-microenvironment interactions through a NFκB/IL1β signaling network

    KAUST Repository

    Carter, Bing Z.; Mak, Po Yee; Chen, Ye; Mak, Duncan H.; Mu, Hong; Jacamo, Rodrigo; Ruvolo, Vivian; Arold, Stefan T.; Ladbury, John E.; Burks, Jared K.; Kornblau, Steven; Andreeff, Michael

    2016-01-01

    To better understand how the apoptosis repressor with caspase recruitment domain (ARC) protein confers drug resistance in acute myeloid leukemia (AML), we investigated the role of ARC in regulating leukemia-mesenchymal stromal cell (MSC) interactions. In addition to the previously reported effect on AML apoptosis, we have demonstrated that ARC enhances migration and adhesion of leukemia cells to MSCs both in vitro and in a novel human extramedullary bone/bone marrow mouse model. Mechanistic studies revealed that ARC induces IL1β expression in AML cells and increases CCL2, CCL4, and CXCL12 expression in MSCs, both through ARC-mediated activation of NFκB. Expression of these chemokines in MSCs increased by AML cells in an ARC/IL1β-dependent manner; likewise, IL1β expression was elevated when leukemia cells were co-cultured with MSCs. Further, cells from AML patients expressed the receptors for and migrated toward CCL2, CCL4, and CXCL12. Inhibition of IL1β suppressed AML cell migration and sensitized the cells co-cultured with MSCs to chemotherapy. Our results suggest the existence of a complex ARC-regulated circuit that maintains intimate connection of AML with the tumor microenvironment through NFκB/IL1β-regulated chemokine receptor/ligand axes and reciprocal crosstalk resulting in cytoprotection. The data implicate ARC as a promising drug target to potentially sensitize AML cells to chemotherapy.

  18. Anti-apoptotic ARC protein confers chemoresistance by controlling leukemia-microenvironment interactions through a NFκB/IL1β signaling network

    KAUST Repository

    Carter, Bing Z.

    2016-04-11

    To better understand how the apoptosis repressor with caspase recruitment domain (ARC) protein confers drug resistance in acute myeloid leukemia (AML), we investigated the role of ARC in regulating leukemia-mesenchymal stromal cell (MSC) interactions. In addition to the previously reported effect on AML apoptosis, we have demonstrated that ARC enhances migration and adhesion of leukemia cells to MSCs both in vitro and in a novel human extramedullary bone/bone marrow mouse model. Mechanistic studies revealed that ARC induces IL1β expression in AML cells and increases CCL2, CCL4, and CXCL12 expression in MSCs, both through ARC-mediated activation of NFκB. Expression of these chemokines in MSCs increased by AML cells in an ARC/IL1β-dependent manner; likewise, IL1β expression was elevated when leukemia cells were co-cultured with MSCs. Further, cells from AML patients expressed the receptors for and migrated toward CCL2, CCL4, and CXCL12. Inhibition of IL1β suppressed AML cell migration and sensitized the cells co-cultured with MSCs to chemotherapy. Our results suggest the existence of a complex ARC-regulated circuit that maintains intimate connection of AML with the tumor microenvironment through NFκB/IL1β-regulated chemokine receptor/ligand axes and reciprocal crosstalk resulting in cytoprotection. The data implicate ARC as a promising drug target to potentially sensitize AML cells to chemotherapy.

  19. Virtual screening, SAR, and discovery of 5-(indole-3-yl)-2-[(2-nitrophenyl)amino] [1,3,4]-oxadiazole as a novel Bcl-2 inhibitor.

    Science.gov (United States)

    Ziedan, Noha I; Hamdy, Rania; Cavaliere, Alessandra; Kourti, Malamati; Prencipe, Filippo; Brancale, Andrea; Jones, Arwyn T; Westwell, Andrew D

    2017-07-01

    A new series of oxadiazoles were designed to act as inhibitors of the anti-apoptotic Bcl-2 protein. Virtual screening led to the discovery of new hits that interact with Bcl-2 at the BH3 binding pocket. Further study of the structure-activity relationship of the most active compound of the first series, compound 1, led to the discovery of a novel oxadiazole analogue, compound 16j, that was a more potent small-molecule inhibitor of Bcl-2. 16j had good in vitro inhibitory activity with submicromolar IC 50 values in a metastatic human breast cancer cell line (MDA-MB-231) and a human cervical cancer cell line (HeLa). The antitumour effect of 16j is concomitant with its ability to bind to Bcl-2 protein as shown by an enzyme-linked immunosorbent assay (IC 50  = 4.27 μm). Compound 16j has a great potential to develop into highly active anticancer agent. © 2017 John Wiley & Sons A/S.

  20. Involvement of Bax and Bcl2 in Neuroprotective Effect of Curcumin in Kainic Acid-Induced Model of Temporal Lobe Epilepsy in Male Rat

    Directory of Open Access Journals (Sweden)

    zahra Kiasalari

    2016-04-01

    Full Text Available Background & objectives: Temporal lobe epilepsy is associated with neuronal apoptosis. Curcumin has antioxidant and anticonvulsant activities, therefore this study was conducted to assess involvement of Bax and Bcl2 in protective effect of curcumin in epileptic rats. Methods: 28 rats were divided into sham, curcumin-pretreated sham, epileptic (kainate, and curcumin-pretreated epileptic groups. Experimental model of epilepsy was induced by intrahippocampal administration of kainic acid. Rats received curcumin at a dose of 100 mg/kg. Finally, Nissl staining and Bax and Bcl2 immunohistochemistry were conducted on hippocampal sections and data were analyzed using one-way ANOVA and unpaired t-test. The p-value less than 0.05was considered statistically significant. Results: Induction of epilepsy was followed by a significant seizure and curcumin pretreatment significantly reduced seizure intensity (p<0.01. In addition, there were no significant differences between the groups in Nissl staining of CA3 area neurons. In addition, Bax positive neurons were observed in CA3 area in kainate group and significantly decreased in curcumin pretreated rats (p<0.05. Meanwhile, Bcl2 positive neurons were also moderately observed in kainate group and curcumin pretreatment significantly increased it (p<0.05. Conclusion: Curcumin pretreatment exhibits anticonvulsant activity in epileptic rats. It also decreases the expression of pro-apoptotic protein Bax and significantly enhances the expression of anti-apoptotic protein Bcl2 and hence could reduce neuronal apoptosis.

  1. Bcl-2 silencing attenuates hypoxia-induced apoptosis resistance in pulmonary microvascular endothelial cells.

    Science.gov (United States)

    Cao, Yongmei; Jiang, Zhen; Zeng, Zhen; Liu, Yujing; Gu, Yuchun; Ji, Yingying; Zhao, Yupeng; Li, Yingchuan

    2016-01-01

    Pulmonary arterial hypertension (PAH) is a life-threatening disorder that ultimately causes heart failure. While the underlying causes of this condition are not well understood, previous studies suggest that the anti-apoptotic nature of pulmonary microvascular endothelial cells (PMVECs) in hypoxic environments contributes to PAH pathogenesis. In this study, we focus on the contribution of Bcl-2 and hypoxia response element (HRE) to apoptosis-resistant endothelial cells and investigate the mechanism. PMVECs obtained from either normal rats or apoptosis-resistant PMVECs obtained from PAH rats were transduced with recombinant lentiviral vectors carrying either Bcl-2-shRNA or HRE combined Bcl-2-shRNA, and then cultured these cells for 24 h under hypoxic (5% O2) or normoxic (21% O2) conditions. In normal PMVECs, Bcl-2-shRNA or HRE combined with Bcl-2-shRNA transduction successfully decreased Bcl-2 expression, while increasing apoptosis as well as caspase-3 and P53 expression in a normoxic environment. In a hypoxic environment, the effects of Bcl-2-shRNA treatment on cell apoptosis, and on Bcl-2, caspase-3, P53 expression were significantly suppressed. Conversely, HRE activation combined with Bcl-2-shRNA transduction markedly enhanced cell apoptosis and upregulated caspase-3 and P53 expression, while decreasing Bcl-2 expression. Furthermore, in apoptosis-resistant PMVECs, HRE-mediated Bcl-2 silencing effectively enhanced cell apoptosis and caspase-3 activity. The apoptosis rate was significantly depressed when Lv-HRE-Bcl-2-shRNA was combined with Lv-P53-shRNA or Lv-caspase3-shRNA transduction in a hypoxic environment. These results suggest that HRE-mediated Bcl-2 inhibition can effectively attenuate hypoxia-induced apoptosis resistance in PMVECs by downregulating Bcl-2 expression and upregulating caspase-3 and P53 expression. This study therefore reveals critical insight into potential therapeutic targets for treating PAH.

  2. Immunogenicity of Bcl-2 in patients with cancer

    DEFF Research Database (Denmark)

    Andersen, Mads Hald; Svane, Inge Marie; Kvistborg, Pia

    2005-01-01

    activities in preclinical models and are currently in several clinical trials. The clinical application of immunotherapy against cancer is rapidly moving forward in multiple areas, including the adoptive transfer of anti-tumor-reactive T cells and the use of "therapeutic" vaccines. The overexpression of Bcl......-2 in cancer and the fact that immune escape by down-regulation or loss of expression of this protein would impair sustained tumor growth makes Bcl-2 a very attractive target for anticancer immunotherapy. Herein, we describe spontaneous T-cell reactivity against Bcl-2 in peripheral blood from......B-cell lymphoma 2 (Bcl-2) is a pivotal regulator of apoptotic cell death and it is overexpressed in many cancers. Consequently, the Bcl-2 protein is an attractive target for drug design, and Bcl-2-specific antisense oligonucleotides or small-molecule Bcl-2 inhibitors have shown broad anticancer...

  3. Effects of Helicobacter pylori infection on the expressions of Bax and Bcl-2 in patients with chronic gastritis and gastric cancer.

    Science.gov (United States)

    Bartchewsky, Waldemar; Martini, Mariana R; Squassoni, Aline C; Alvarez, Marisa C; Ladeira, Marcelo S P; Salvatore, Daisy M F; Trevisan, Miriam A; Pedrazzoli, José; Ribeiro, Marcelo L

    2010-01-01

    The aim of the present study is to evaluate the influence of Helicobacter pylori on Bax and Bcl-2 mRNA and protein levels in patients with chronic gastritis and gastric cancer. The study included 217 patients, of which 26 were uninfected; 127 had chronic gastritis and were H. pylori-positive, and 64 had gastric cancer. Bacterial genotypes were evaluated by PCR, and the expression values were determined by quantitative real-time PCR and immunohistochemistry. Our data showed that the up-regulationary effects of H. pylori infection on the pro-apoptotic gene, Bax, were stronger than its induction of Bcl-2; this effect may increase apoptosis in patients with chronic gastritis. In patients with gastric cancer, the up-regulation of the anti-apoptotic gene, Bcl-2, counteracted the pro-apoptotic effects of Bax, leading to a deregulation of apoptosis-associated gene expression, favoring cell proliferation. Thus, the disturbance in Bax and Bcl-2 balance, induced by H. pylori, might be important in gastric cancer development.

  4. Endometrial Polyps and Benign Endometrial Hyperplasia Present Increased Prevalence of DNA Fragmentation Factors 40 and 45 (DFF40 and DFF45) Together With the Antiapoptotic B-Cell Lymphoma (Bcl-2) Protein Compared With Normal Human Endometria.

    Science.gov (United States)

    Banas, Tomasz; Pitynski, Kazimierz; Mikos, Marcin; Cielecka-Kuszyk, Joanna

    2017-09-13

    DNA fragmentation factor 40 (DFF40) is a key executor of apoptosis. It localizes to the nucleus together with DNA fragmentation factor 45 (DFF45), which acts as a DFF40 inhibitor and chaperone. B-cell lymphoma (Bcl-2) protein is a proven antiapoptotic factor present in the cytoplasm. In this study, we aimed to investigate DFF40, DFF45, and Bcl-2 immunoexpression in endometrial polyps (EPs) and benign endometrial hyperplasia (BEH) tissue compared with that in normal proliferative endometrium (NPE) and normal secretory endometrium (NSE) as well as normal post menopausal endometrium (NAE). This study used archived samples from 65 and 62 cases of EPs and BEH, respectively. The control group consisted of 52 NPE, 54 NSE, and 54 NAE specimens. Immunohistochemistry was used to detect DFF40, DFF45, and Bcl-2. DFF40, DFF45, and Bcl-2 were more highly expressed in the glandular layer of EPs and BEH compared with the stroma, and this was not influenced by menopausal status. Both glandular and stromal expression of DFF40, DFF45, and Bcl-2 were significantly higher in EPs compared with NPE, NSE, and NAE. Glandular BEH tissue showed significantly higher DFF40, DFF45, and Bcl-2 expression than in NPE, NSE, and NAE. No differences in the glandular expression of DFF40, DFF45, and Bcl-2 were observed between EP and BEH tissues, while Bcl-2 stromal expression in BEH was significantly lower than in EPs. Glandular, menopause-independent DFF40, DFF45, and Bcl-2 overexpression may play an important role in the pathogenesis of EPs and BEH.

  5. Hypoxic human cancer cells are sensitized to BH-3 mimetic–induced apoptosis via downregulation of the Bcl-2 protein Mcl-1

    Science.gov (United States)

    Harrison, Luke R.E.; Micha, Dimitra; Brandenburg, Martin; Simpson, Kathryn L.; Morrow, Christopher J.; Denneny, Olive; Hodgkinson, Cassandra; Yunus, Zaira; Dempsey, Clare; Roberts, Darren; Blackhall, Fiona; Makin, Guy; Dive, Caroline

    2011-01-01

    Solid tumors contain hypoxic regions in which cancer cells are often resistant to chemotherapy-induced apoptotic cell death. Therapeutic strategies that specifically target hypoxic cells and promote apoptosis are particularly appealing, as few normal tissues experience hypoxia. We have found that the compound ABT-737, a Bcl-2 homology domain 3 (BH-3) mimetic, promotes apoptotic cell death in human colorectal carcinoma and small cell lung cancer cell lines exposed to hypoxia. This hypoxic induction of apoptosis was mediated through downregulation of myeloid cell leukemia sequence 1 (Mcl-1), a Bcl-2 family protein that serves as a biomarker for ABT-737 resistance. Downregulation of Mcl-1 in hypoxia was independent of hypoxia-inducible factor 1 (HIF-1) activity and was consistent with decreased global protein translation. In addition, ABT-737 induced apoptosis deep within tumor spheroids, consistent with an optimal hypoxic oxygen tension being necessary to promote ABT-737–induced cell death. Tumor xenografts in ABT-737–treated mice also displayed significantly more apoptotic cells within hypoxic regions relative to normoxic regions. Synergies between ABT-737 and other cytotoxic drugs were maintained in hypoxia, suggesting that this drug may be useful in combination with chemotherapeutic agents. Taken together, these findings suggest that Mcl-1–sparing BH-3 mimetics may induce apoptosis in hypoxic tumor cells that are resistant to other chemotherapeutic agents and may have a role in combinatorial chemotherapeutic regimens for treatment of solid tumors. PMID:21393866

  6. Asymmetric Synthesis and Evaluation of Danshensu-Cysteine Conjugates as Novel Potential Anti-Apoptotic Drug Candidates

    Science.gov (United States)

    Pan, Li-Long; Wang, Jie; Jia, Yao-Ling; Zheng, Hong-Ming; Wang, Yang; Zhu, Yi-Zhun

    2014-01-01

    We have previously reported that the danshensu-cysteine conjugate N-((R)-3-benzylthio-1-methoxy-1-oxo-2-propanyl)-2-acetoxy-3-(3,4-diacetoxyphenyl) propanamide (DSC) is a potent anti-oxidative and anti-apoptotic agent. Herein, we further design and asymmetrically synthesize two diastereoisomers of DSC and explore their potential bioactivities. Our results show that DSC and its two diastereoisomers exert similar protective effects in hydrogen peroxide (H2O2)-induced cellular injury in SH-SY5Y cells, as evidenced by the increase of cell viability, superoxide dismutase (SOD), and reduced glutathione (GSH) activity, and glutathione peroxidase (GPx) expression, and the decrease of cellular morphological changes and nuclear condensation, lactate dehydrogenase (LDH) release, and malondialdehyde (MDA) production. In H2O2-stimulated human umbilical vein endothelial cells (HUVEC), DSC concentration-dependently attenuates H2O2-induced cell death, LDH release, mitochondrial membrane potential collapse, and modulates the expression of apoptosis-related proteins (Bcl-2, Bax, caspase-3, and caspase-9). Our results provide strong evidence that DSC and its two diastereoisomers have similar anti-oxidative activity and that DSC exerts significant vascular-protective effects, at least in part, through inhibition of apoptosis and modulation of endogenous antioxidant enzymes. PMID:25551606

  7. Deregulated expression of A1, Bcl-2, Bcl-xL, and Mcl-1 antiapoptotic proteins and Bid, Bad, and Bax proapoptotic genes in polycythemia vera patients

    Directory of Open Access Journals (Sweden)

    Elainy Patricia Lino Gasparotto

    2011-12-01

    Full Text Available Apoptosis deregulation might have a role in the pathophysiology of polycythemia vera (PV. This study evaluated Bcl-2 molecule expression in CD34+ cells and leukocytes in 12 PV patients. Gene expression was investigated by real time PCR using SybrGreen Quantitect kit and protein expression was evaluated by western-blotting. JAK2 V617F mutation was detected according to Baxter et al (2005. CD34+ cells from PV patients presented higher levels of A1 and Mcl-1 expression (median: 22.6 and 5.2, respectively in comparison with controls (0.9 and 0.5, p=0.004 and p=0.020; while Bcl-2 and Bcl-xL expression decreased in PV patients (0.18 and 1.19 compared with controls (1.39 and 2.01, p=0.006 and p=0.020. CD34+ cells in PV patients showed an elevated Bid expression (14.4 in comparison with healthy subjects (1.0; p=0.002. Patients' leukocytes showed an A1 augmentation (7.41, p=0.001 and a reduced expression of Bax (0.19; p=0.040 and Bad (0.2; p=0.030. There was no correlation between JAK2 V617F allele burden and molecular expression. PV patients showed alterations in Bcl-2 members' expression, which may interfere with control of apoptotic machinery and contribute to disease pathogenesis.A desregulação da apoptose parece participar da fisiopatologia da policitemia vera (PV. Este estudo avaliou a expressão das moléculas da família Bcl-2 em células hematopoéticas CD34 + e leucócitos de 12 pacientes com PV. Foram realizados: a quantificação da expressão gênica por PCR em tempo real utilizando kit Sybrgreen Quantitect, avaliação da expressão de proteínas por western-blot e detecção da mutação JAK2 V617F segundo Baxter et al. (2005. Células CD34 + dos pacientes com PV apresentaram maior expressão de A1 e Mcl-1 (mediana: 22,6 e 5,2, respectivamente em comparação com controles (0,9 e 0,5, p = 0,004 e p = 0,020 e expressão de Bcl-2 e Bcl-xL diminuída nestes pacientes (0,18 e 1,19 em relação aos controles (1,39 e 2,01, p = 0,006 e p = 0

  8. MRP- and BCL-2-mediated drug resistance in human SCLC: effects of apoptotic sphingolipids in vitro.

    Science.gov (United States)

    Khodadadian, M; Leroux, M E; Auzenne, E; Ghosh, S C; Farquhar, D; Evans, R; Spohn, W; Zou, Y; Klostergaard, J

    2009-10-01

    Multidrug-resistance-associated protein (MRP) and BCL-2 contribute to drug resistance expressed in SCLC. To establish whether MRP-mediated drug resistance affects sphingolipid (SL)-induced apoptosis in SCLC, we first examined the human SCLC cell line, UMCC-1, and its MRP over-expressing, drug-resistant subline, UMCC-1/VP. Despite significantly decreased sensitivity to doxorubicin (Dox) and to the etoposide, VP-16, the drug-selected line was essentially equally as sensitive to treatment with exogenous ceramide (Cer), sphingosine (Sp) or dimethyl-sphingosine (DMSP) as the parental line. Next, we observed that high BCL-2-expressing human H69 SCLC cells, that were approximately 160-fold more sensitive to Dox than their combined BCL-2 and MRP-over-expressing (H69AR) counterparts, were only approximately 5-fold more resistant to DMSP. Time-lapse fluorescence microscopy of either UMCC cell line treated with DMSP-Coumarin revealed comparable extents and kinetics of SL uptake, further ruling out MRP-mediated effects on drug uptake. DMSP potentiated the cytotoxic activity of VP-16 and Taxol, but not Dox, in drug-resistant UMCC-1/VP cells. However, this sensitization did not appear to involve DMSP-mediated effects on the function of MRP in drug export; nor did DMSP strongly shift the balance of pro-apoptotic Sps and anti-apoptotic Sp-1-Ps in these cells. We conclude that SL-induced apoptosis markedly overcomes or bypasses MRP-mediated drug resistance relevant to SCLC and may suggest a novel therapeutic approach to chemotherapy for these tumors.

  9. Atherosclerosis-Associated Endothelial Cell Apoptosis by MiR-429-Mediated Down Regulation of Bcl-2

    Directory of Open Access Journals (Sweden)

    Tao Zhang

    2015-10-01

    Full Text Available Background/Aims: Endothelial cell injury and subsequent apoptosis play a key role in the development and pathogenesis of atherosclerosis, which is hallmarked by dysregulated lipid homeostasis, aberrant immunity and inflammation, and plaque-instability-associated coronary occlusion. Nevertheless, our understanding of the mechanisms underlying endothelial cell apoptosis is still limited. MicroRNA-429 (miR-29 is a known cancer suppressor that promotes cancer cell apoptosis. However, it is unknown whether miR-429 may be involved in the development of atherosclerosis through similar mechanisms. We addressed these questions in the current study. Methods: We examined the levels of endothelial cell apoptosis in ApoE (-/- mice suppled with high-fat diet (HFD, a mouse model for atherosclerosis (simplified as HFD mice. We analyzed the levels of anti-apoptotic protein Bcl-2 and the levels of miR-429 in the purified CD31+ endothelial cells from mouse aorta. Prediction of the binding between miR-429 and 3'-UTR of Bcl-2 mRNA was performed by bioinformatics analyses and confirmed by a dual luciferase reporter assay. The effects of miR-429 were further analyzed in an in vitro model using oxidized low-density lipoprotein (ox-LDL-treated human aortic endothelial cells (HAECs. Results: HFD mice developed atherosclerosis in 12 weeks, while the control ApoE (-/- mice that had received normal diet (simplified as NOR mice did not. HFD mice had significantly lower percentage of endothelial cells and significantly higher percentage of mesenchymal cells in the aorta than NOR mice. Significantly higher levels of endothelial cell apoptosis were detected in HFD mice, resulting from decreases in Bcl-2 protein, but not mRNA. The decreases in Bcl-2 in endothelial cells were due to increased levels of miR-429, which suppressed the translation of Bcl-2 mRNA via 3'-UTR binding. These in vivo findings were reproduced in vitro on ox-LDL-treated HAECs. Conclusion: Atherosclerosis

  10. Activation of mitochondrial promoter PH-binding protein in a radio-resistant Chinese hamster cell strain associated with Bcl-2

    International Nuclear Information System (INIS)

    Roychoudhury, Paromita; Ghosh, Utpal; Bhattacharyya, Nitai P.; Chaudhuri, Keya

    2006-01-01

    The cellular response to ionizing radiation is mediated by a complex interaction of number of proteins involving different pathways. Previously, we have shown that up regulation of mitochondrial genes ND1, ND4, and COX1 transcribed from the heavy strand promoter (P H ) has been increased in a radio-resistant cell strain designated as M5 in comparison with the parental Chinese hamster V79 cells. These genes are also up regulated in Chinese hamster V79 cells VB13 that express exogenous human Bcl2. In the present study, the expression of the gene ND6 that is expressed from the light strand promoter (P L ) was found to be similar in both the cell lines, as determined by RT-PCR. To test the possibility that this differential expression of mitochondrial genes under these two promoters was mediated by differences in proteins' affinity to interact with these promoters, we have carried out electrophoretic mobility shift assay (EMSA) using mitochondrial cell extracts from these two cell lines. Our result of these experiments revealed that two different proteins formed complex with the synthetic promoters and higher amount of protein from M5 cell extracts interacted with the P H promoter in comparison to that observed with cell extracts from Chinese hamster V79 cells. The promoter-specific differential binding of proteins was also observed in VB13. These results showed that differential mitochondrial gene expression observed earlier in the radio-resistant M5 cells was due to enhanced interaction proteins with the promoters P H and mediated by the expression of Bcl2

  11. Pure versus combined Merkel cell carcinomas: immunohistochemical evaluation of cellular proteins (p53, Bcl-2, and c-kit) reveals significant overexpression of p53 in combined tumors.

    Science.gov (United States)

    Lai, Jonathan H; Fleming, Kirsten E; Ly, Thai Yen; Pasternak, Sylvia; Godlewski, Marek; Doucette, Steve; Walsh, Noreen M

    2015-09-01

    Merkel cell polyomavirus is of oncogenic significance in approximately 80% of Merkel cell carcinomas. Morphological subcategories of the tumor differ in regard to viral status, the rare combined type being uniformly virus negative and the predominant pure type being mainly virus positive. Indications that different biological subsets of the tumor exist led us to explore this diversity. In an Eastern Canadian cohort of cases (75 patients; mean age, 76 years [range, 43-91]; male/female ratio, 43:32; 51 [68%] pure and 24 [34%] combined tumors), we semiquantitatively compared the immunohistochemical expression of 3 cellular proteins (p53, Bcl-2, and c-kit) in pure versus combined groups. Viral status was known in a subset of cases. The significant overexpression of p53 in the combined group (mean [SD], 153.8 [117.8] versus 121.6 [77.9]; P = .01) and the increased epidermal expression of this protein (p53 patches) in the same group lend credence to a primary etiologic role for sun damage in these cases. Expression of Bcl-2 and c-kit did not differ significantly between the 2 morphological groups. A relative increase in c-kit expression was significantly associated with a virus-negative status (median [interquartile range], 100 [60-115] versus 70 [0-100]; P = .03). Emerging data reveal divergent biological pathways in Merkel cell carcinoma, each with a characteristic immunohistochemical profile. Virus-positive tumors (all pure) exhibit high retinoblastoma protein and low p53 expression, whereas virus-negative cases (few pure and all combined) show high p53 and relatively high c-kit expression. The potential biological implications of this dichotomy call for consistent stratification of these tumors in future studies. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Association of anti-apoptotic Mcl-1L isoform expression with radioresistance of oral squamous carcinoma cells

    International Nuclear Information System (INIS)

    Palve, Vinayak C; Teni, Tanuja R

    2012-01-01

    Oral cancer is a common cancer and a major health problem in the Indian subcontinent. At our laboratory Mcl-1, an anti-apoptotic member of the Bcl-2 family has been demonstrated to be overexpressed in oral cancers and to predict outcome in oral cancer patients treated with definitive radiotherapy. To study the role of Mcl-1 isoforms in radiation response of oral squamous carcinoma cells (OSCC), we investigated in the present study, the association of Mcl-1 isoform expression with radiosensitivity of OSCC, using siRNA strategy. The time course expression of Mcl-1 splice variants (Mcl-1L, Mcl-1S & Mcl-1ES) was studied by RT-PCR, western blotting & immunofluorescence, post-irradiation in oral cell lines [immortalized FBM (radiosensitive) and tongue cancer AW8507 & AW13516 (radioresistant)]of relatively differing radiosensitivities. The effect of Mcl-1L knockdown alone or in combination with ionizing radiation (IR) on cell proliferation, apoptosis & clonogenic survival, was investigated in AW8507 & AW13516 cells. Further the expression of Mcl-1L protein was assessed in radioresistant sublines generated by fractionated ionizing radiation (FIR). Three to six fold higher expression of anti-apoptotic Mcl-1L versus pro-apoptotic Mcl-1S was observed at mRNA & protein levels in all cell lines, post-irradiation. Sustained high levels of Mcl-1L, downregulation of pro-apoptotic Bax & Bak and a significant (P < 0.05) reduction in apoptosis was observed in the more radioresistant AW8507, AW13516 versus FBM cells, post-IR. The ratios of anti to pro-apoptotic proteins were high in AW8507 as compared to FBM. Treatment with Mcl-1L siRNA alone or in combination with IR significantly (P < 0.01) increased apoptosis viz. 17.3% (IR), 25.3% (siRNA) and 46.3% (IR plus siRNA) and upregulated pro-apoptotic Bax levels in AW8507 cells. Combination of siRNA & IR treatment significantly (P < 0.05) reduced cell proliferation and clonogenic survival of radioresistant AW8507 & AW13516 cells

  13. The influence of sleep deprivation on expression of apoptosis regulatory proteins p53, bcl-2 and bax following rat tongue carcinogenesis induced by 4-nitroquinoline 1-oxide

    Directory of Open Access Journals (Sweden)

    Juliana Noguti

    2013-01-01

    Full Text Available Background: The aim of this study was to evaluate whether paradoxical sleep deprivation could affects the mechanisms and pathways essentials for cancer cells in tongue cancer induced by 4-nitroquinole 1-oxide in Wistar rats. Materials and Methods: For this purpose, the animals were distributed into 4 groups of 5 animals each treated with 50 ppm 4 nitroquinoline 1 oxide (4 NQO solution through their drinking water for 4 and 12 weeks. The animals were submitted to paradoxical sleep deprivation (PSD for 72 h using the modified multiple platform method, which consisted of placing 5 mice in a cage (41 × 34 × 16 cm containing 10 circular platforms (3.5 cm in diameter with water 1 cm below the upper surface. The investigations were conducted using immunohistochemistry of p53, Bax and Bcl-2 proteins related to apoptosis and its pathways. Statistical analysis was performed by Kruskal-Wallis non-parametric test followed by the Dunn′s test using SPSS software pack (version 1.0. P value < 0.05 was considered for statistic significance. Results: Although no histopathological abnormalities were induced in the epithelium after 4 weeks of carcinogen exposure in all groups, in 12 weeks were observed pre-neoplasic lesions. Data analysis revealed statistically significant differences ( P < 0.05 in 4 weeks group for p53 and for bcl-2 and for all immunomarkers after 12 weeks of 4NQO administration. Conclusion: Our results reveal that sleep deprivation exerted alterations in proteins associated with proliferation and apoptosis in carcinogenesis.

  14. The anti-apoptotic effect of fluid mechanics preconditioning by cells membrane and mitochondria in rats brain microvascular endothelial cells.

    Science.gov (United States)

    Tian, Shan; Zhu, Fengping; Hu, Ruiping; Tian, Song; Chen, Xingxing; Lou, Dan; Cao, Bing; Chen, Qiulei; Li, Bai; Li, Fang; Bai, Yulong; Wu, Yi; Zhu, Yulian

    2018-01-01

    Exercise preconditioning is a simple and effective way to prevent ischemia. This paper further provided the mechanism in hemodynamic aspects at the cellular level. To study the anti-apoptotic effects of fluid mechanics preconditioning, Cultured rats brain microvascular endothelial cells were given fluid intervention in a parallel plate flow chamber before oxygen glucose deprivation. It showed that fluid mechanics preconditioning could inhibit the apoptosis of endothelial cells, and this process might be mediated by the shear stress activation of Tie-2 on cells membrane surface and Bcl-2 on the mitochondria surface. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. [Distribution of Pathogenic Bacteria and Its Influence on Expression of BCL-2 and BAX Protein after HSCT in the Patients with Hematological Malignancies].

    Science.gov (United States)

    Su, Gui-Ping; Dai, Yan; Huang, Lai-Quan; Jiang, Yi-Zhi; Geng, Liang-Quan; Ding, Kai-Yang; Huang, Dong-Ping

    2016-06-01

    To investigate the distribution of pathogenic bacteria in the patients with hematologic malignancies received hematopoietic stem cell transplantation (HSCT) and its influence on the expression of BCL-2 and BAX proteins. The clinical data of 64 patients with malignant lymphoma (ML) received auto-HSCT from January 2011 to December 2015 in our hospital were analyzed. On basis of post-treansplant infection, the patients were divided into infection group (36 cases) and non-infection group (28 cases). The distribution of pathogenic bacteria in 2 groups was identified, the T lymphocyte subsets of peripheral blood, expression level of apoptotic proteins and C-reaction protein (CRP) in 2 group were detected. Thirty-six strains of pathogenic bacteria were isolated from 36 case of hematological malignancy after HSCT, including 24 strains of Gram-negative bacteria (66.67%) with predominamce of klebsiella pneumoniae (19.44%). The periperal blood CD4+ (t=2.637, Ppathogenic bacteria infecting ML patients after HSCT were mainly Gram-negative bacteria. The post-transplant infection can promote the expression up-regulation of related inflammatory factors and apoptotic proteins. The pathogens may be involved in cell apoptisis that provides a new strategy to treat the hematologic malignancies.

  16. [Survival of patients with primary central nervous system diffuse large B-cell lymphoma: impact of gene aberrations and protein overexpression of bcl-2 and C-MYC, and selection of chemotherapy regimens].

    Science.gov (United States)

    Yin, W J; Zhu, X; Yang, H Y; Sun, W Y; Wu, M J

    2018-01-08

    Objective: To investigate the impact of clinicopathological features, gene rearrangements and protein expression of bcl-6, bcl-2, C-MYC and chemotherapy regime on the prognosis of patients with primary central nervous system diffuse large B-cell lymphoma (PCNS-DLBCL). Methods: Thirty-three cases of PCNS-DLBCL diagnosed from January 2006 to December 2016 at Zhejiang Cancer Hospital were collected. The expression of CD10, bcl-6, bcl-2, MUM1 and MYC were detected by immunohistochemical staining (IHC). The presence of EB virus was detected by in situ hybridization(EBER). Copy number variation (ICN) and translocation status of bcl-6, bcl-2 and C-MYC genes were detected by fluorescence in situ hybridization (FISH). The relationship between the above indexes and the prognosis was analyzed by univariate, bivariate survival analysis and multiple Cox hazard regression analysis. Results: The study included 33 patients of PCNS-DLBCL, without evidence of primary or secondary immunodeficient disease. Male to female ratio was 1.36∶1.00, and the average age was 56 years. Twenty cases had single lesion while 13 had multiple lesions. Deep brain involvement was seen in 12 cases. All patients underwent partial or total tumor resection. Five patients received whole brain post-surgery radiotherapy, nine patients received high-dose methotrexate (HD-MTX) based chemotherapy, and 12 patients received whole-brain radiotherapy combined with HD-MTX based chemotherapy. Severn patients received no further treatment and rituximab was used in 8 patients. According to the Hans model, 27 cases were classified as non-GCB subtypes (81.8%). Bcl-2 was positive in 25 cases (75.8%, 25/33) and highly expressed in 8 (24.2%). MYC was positive in 12 cases (36.4%) and double expression of bcl-2 and MYC was seen in 6 cases. EBER positive rate was 10.0%(3/30), all of which had multiple lesions. Two bcl-6 gene translocations and 3 amplifications were found in 28 patients. Two translocations, 3 ICN or with both

  17. Simultaneous gene silencing of Bcl-2, XIAP and Survivin re-sensitizes pancreatic cancer cells towards apoptosis

    International Nuclear Information System (INIS)

    Rückert, Felix; Samm, Nicole; Lehner, Anne-Kathrin; Saeger, Hans-Detlev; Grützmann, Robert; Pilarsky, Christian

    2010-01-01

    Pancreatic ductal adenocarcinoma shows a distinct apoptosis resistance, which contributes significantly to the aggressive nature of this tumor and constrains the effectiveness of new therapeutic strategies. Apoptosis resistance is determined by the net balance of the cells pro-and anti-apoptotic 'control mechanisms'. Numerous dysregulated anti-apoptotic genes have been identified in pancreatic cancer and seem to contribute to the high anti-apoptotic buffering capacity. We aimed to compare the benefit of simultaneous gene silencing (SGS) of several candidate genes with conventional gene silencing of single genes. From literature search we identified the anti-apoptotic genes XIAP, Survivin and Bcl-2 as commonly upregulated in pancreatic cancer. We performed SGS and silencing of single candidate genes using siRNA molecules in two pancreatic cancer cell lines. Effectiveness of SGS was assessed by qRT-PCR and western blotting. Apoptosis induction was measured by flow cytometry and caspase activation. Simultaneous gene silencing reduced expression of the three target genes effectively. Compared to silencing of a single target or control, SGS of these genes resulted in a significant higher induction of apoptosis in pancreatic cancer cells. In the present study we performed a subliminal silencing of different anti-apoptotic target genes simultaneously. Compared to silencing of single target genes, SGS had a significant higher impact on apoptosis induction in pancreatic cancer cells. Thereby, we give further evidence for the concept of an anti-apoptotic buffering capacity of pancreatic cancer cells

  18. Targeted BCL2 inhibition effectively inhibits neuroblastoma tumour growth

    NARCIS (Netherlands)

    Lamers, Fieke; Schild, Linda; den Hartog, Ilona J. M.; Ebus, Marli E.; Westerhout, Ellen M.; Ora, Ingrid; Koster, Jan; Versteeg, Rogier; Caron, Huib N.; Molenaar, Jan J.

    2012-01-01

    Genomic aberrations of key regulators of the apoptotic pathway have hardly been identified in neuroblastoma. We detected high BCL2 mRNA and protein levels in the majority of neuroblastoma tumours by Affymetrix expression profiling and Tissue Micro Array analysis. This BCL2 mRNA expression is

  19. Cellular responses to a prolonged delay in mitosis are determined by a DNA damage response controlled by Bcl-2 family proteins.

    Science.gov (United States)

    Colin, Didier J; Hain, Karolina O; Allan, Lindsey A; Clarke, Paul R

    2015-03-01

    Anti-cancer drugs that disrupt mitosis inhibit cell proliferation and induce apoptosis, although the mechanisms of these responses are poorly understood. Here, we characterize a mitotic stress response that determines cell fate in response to microtubule poisons. We show that mitotic arrest induced by these drugs produces a temporally controlled DNA damage response (DDR) characterized by the caspase-dependent formation of γH2AX foci in non-apoptotic cells. Following exit from a delayed mitosis, this initial response results in activation of DDR protein kinases, phosphorylation of the tumour suppressor p53 and a delay in subsequent cell cycle progression. We show that this response is controlled by Mcl-1, a regulator of caspase activation that becomes degraded during mitotic arrest. Chemical inhibition of Mcl-1 and the related proteins Bcl-2 and Bcl-xL by a BH3 mimetic enhances the mitotic DDR, promotes p53 activation and inhibits subsequent cell cycle progression. We also show that inhibitors of DDR protein kinases as well as BH3 mimetics promote apoptosis synergistically with taxol (paclitaxel) in a variety of cancer cell lines. Our work demonstrates the role of mitotic DNA damage responses in determining cell fate in response to microtubule poisons and BH3 mimetics, providing a rationale for anti-cancer combination chemotherapies.

  20. Bcl-2-associated athanogene 3 (BAG3) is an enhancer of small heat shock protein turnover via activation of autophagy in the heart.

    Science.gov (United States)

    Inomata, Yui; Nagasaka, Shouta; Miyate, Kazuki; Goto, Yuta; Hino, Chizuru; Toukairin, Chihiro; Higashio, Rieko; Ishida, Kinji; Saino, Tomoyuki; Hirose, Masamichi; Tsumura, Hideki; Sanbe, Atsushi

    2018-02-19

    Bcl-2-associated athanogene 3 (BAG3) is strongly expressed in both cardiac and skeletal muscle. A recent study showed that BAG3 may play a protective role in muscles. Little is known, however, regarding the detailed role of BAG3 in cardiac muscle. To better understand the functional role of cardiac BAG3 in the heart, we generated transgenic (TG) mice that overexpress BAG3. A decrease in fractional shortening, and the induction of cardiac atrial natriuretic peptide, were observed in BAG3 TG mice. Moreover, a marked reduction in the protein level of small HSPs was detected in BAG3 TG mouse hearts. We analyzed the cardiac small HSP levels when either the ubiquitin-proteasome system (UPS) or the autophagy system (AS) was inhibited in BAG3 TG mice. The protein turnovers of small HSPs by the AS were activated in BAG3 TG mouse hearts. Thus, BAG3 is critical for the protein turnover of small HSPs via activation of autophagy in the heart. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Niclosamide, an anti-helminthic molecule, downregulates the retroviral oncoprotein Tax and pro-survival Bcl-2 proteins in HTLV-1-transformed T lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Di [Penn State Hershey Cancer Institute, Penn State University College of Medicine, Hershey, PA 17033 (United States); Yuan, Yunsheng [Penn State Hershey Cancer Institute, Penn State University College of Medicine, Hershey, PA 17033 (United States); Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai (China); Chen, Li [Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou (China); Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201 (United States); Liu, Xin; Belani, Chandra [Penn State Hershey Cancer Institute, Penn State University College of Medicine, Hershey, PA 17033 (United States); Cheng, Hua, E-mail: hcheng@ihv.umaryland.edu [Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201 (United States); Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201 (United States); Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201 (United States); Department Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201 (United States)

    2015-08-14

    Adult T cell leukemia and lymphoma (ATL) is a highly aggressive form of hematological malignancy and is caused by chronic infection of human T cell leukemia virus type 1 (HTLV-1). The viral genome encodes an oncogenic protein, Tax, which plays a key role in transactivating viral gene transcription and in deregulating cellular oncogenic signaling to promote survival, proliferation and transformation of virally infected T cells. Hence, Tax is a desirable therapeutic target, particularly at early stage of HTLV-1-mediated oncogenesis. We here show that niclosamide, an anti-helminthic molecule, induced apoptosis of HTLV-1-transformed T cells. Niclosamide facilitated degradation of the Tax protein in proteasome. Consistent with niclosamide-mediated Tax degradation, this compound inhibited activities of MAPK/ERK1/2 and IκB kinases. In addition, niclosamide downregulated Stat3 and pro-survival Bcl-2 family members such as Mcl-1 and repressed the viral gene transcription of HTLV-1 through induction of Tax degradation. Since Tax, Stat3 and Mcl-1 are crucial molecules for promoting survival and growth of HTLV-1-transformed T cells, our findings demonstrate a novel mechanism of niclosamide in inducing Tax degradation and downregulating various cellular pro-survival molecules, thereby promoting apoptosis of HTLV-1-associated leukemia cells. - Highlights: • Niclosamide is a promising therapeutic candidate for adult T cell leukemia. • Niclosamide employs a novel mechanism through proteasomal degradation of Tax. • Niclosamide downregulates certain cellular pro-survival molecules.

  2. Thymosin beta 4 protects cardiomyocytes from oxidative stress by targeting anti-oxidative enzymes and anti-apoptotic genes.

    Directory of Open Access Journals (Sweden)

    Chuanyu Wei

    Full Text Available Thymosin beta-4 (Tβ4 is a ubiquitous protein with many properties relating to cell proliferation and differentiation that promotes wound healing and modulates inflammatory mediators. The mechanism by which Tβ4 modulates cardiac protection under oxidative stress is not known. The purpose of this study is to dissect the cardioprotective mechanism of Tβ4 on H(2O(2 induced cardiac damage.Rat neonatal cardiomyocytes with or without Tβ4 pretreatment were exposed to H(2O(2 and expression of antioxidant, apoptotic, and anti-inflammatory genes was evaluated by quantitative real-time PCR and western blotting. ROS levels were estimated by DCF-DA using fluorescent microscopy and fluorimetry. Selected antioxidant, anti-inflammatory and antiapoptotic genes were silenced by siRNA transfections in neonatal cardiomyocytes and effect of Tβ4 on H(2O(2-induced cardiac damage was evaluated.Pre-treatment of Tβ4 resulted in reduction of the intracellular ROS levels induced by H(2O(2 in cardiomyocytes. Tβ4 pretreatment also resulted in an increase in the expression of antiapoptotic proteins and reduction of Bax/BCl(2 ratio in the cardiomyocytes. Pretreatment with Tβ4 resulted in stimulating the expression of antioxidant enzymes copper/zinc SOD and catalase in cardiomyocytes at both transcription and translation levels. Tβ4 treatment resulted in the increased expression of anti-apoptotic and anti-inflammatory genes. Silencing of Cu/Zn SOD and catalase gene resulted in apoptotic cell death in the cardiomyocytes which was prevented by treatment with Tβ4.This is the first report that demonstrates the effect of Tβ4 on cardiomyocytes and its capability to selectively upregulate anti-oxidative enzymes, anti-inflammatory genes, and antiapoptotic enzymes in the neonatal cardiomyocytes thus preventing cell death thereby protecting the myocardium. Tβ4 treatment resulted in decreased oxidative stress and inflammation in the myocardium under oxidative stress.

  3. Biliverdin reductase/bilirubin mediates the anti-apoptotic effect of hypoxia in pulmonary arterial smooth muscle cells through ERK1/2 pathway

    International Nuclear Information System (INIS)

    Song, Shasha; Wang, Shuang; Ma, Jun; Yao, Lan; Xing, Hao; Zhang, Lei; Liao, Lin; Zhu, Daling

    2013-01-01

    Inhibition of pulmonary arterial smooth muscle cell (PASMC) apoptosis induced by hypoxia plays an important role in pulmonary arterial remodeling leading to aggravate hypoxic pulmonary arterial hypertension. However, the mechanisms of hypoxia acting on PASMC apoptosis remain exclusive. Biliverdin reductase (BVR) has many essential biologic roles in physiological and pathological processes. Nevertheless, it is unclear whether the hypoxia-induced inhibition on PASMC apoptosis is mediated by BVR. In the present work, we found BVR majorly localized in PASMCs and was up-regulated in levels of protein and mRNA by hypoxia. Then we studied the contribution of BVR to anti-apoptotic response of hypoxia in PASMCs. Our results showed that siBVR, blocking generation of bilirubin, reversed the effect of hypoxia on enhancing cell survival and apoptotic protein (Bcl-2, procasepase-9, procasepase-3) expression, preventing nuclear shrinkage, DNA fragmentation and mitochondrial depolarization in starved PASMCs, which were recovered by exogenous bilirubin. Moreover, the inhibitory effect of bilirubin on PASMC apoptosis under hypoxic condition was blocked by the inhibitor of ERK1/2 pathway. Taken together, our data indicate that BVR contributes to the inhibitory process of hypoxia on PASMC apoptosis, which is mediated by bilirubin through ERK1/2 pathway. Highlights: • BVR expresses in PASMC and is up-regulated by hypoxia in protein and mRNA levels. • BVR/bilirubin contribute to the inhibitive process of hypoxia on PASMC apoptosis. • Bilirubin protects PASMC from apoptosis under hypoxia via ERK1/2 pathway

  4. Biliverdin reductase/bilirubin mediates the anti-apoptotic effect of hypoxia in pulmonary arterial smooth muscle cells through ERK1/2 pathway

    Energy Technology Data Exchange (ETDEWEB)

    Song, Shasha [Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical, University (Daqing), Daqing 163319 (China); Wang, Shuang [Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical, University (Daqing), Daqing 163319 (China); Biopharmaceutical Key Laboratory of Heilongjiang Province, Harbin 150081 (China); Ma, Jun; Yao, Lan; Xing, Hao; Zhang, Lei; Liao, Lin [Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical, University (Daqing), Daqing 163319 (China); Zhu, Daling, E-mail: dalingz@yahoo.com [Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical, University (Daqing), Daqing 163319 (China); Biopharmaceutical Key Laboratory of Heilongjiang Province, Harbin 150081 (China)

    2013-08-01

    Inhibition of pulmonary arterial smooth muscle cell (PASMC) apoptosis induced by hypoxia plays an important role in pulmonary arterial remodeling leading to aggravate hypoxic pulmonary arterial hypertension. However, the mechanisms of hypoxia acting on PASMC apoptosis remain exclusive. Biliverdin reductase (BVR) has many essential biologic roles in physiological and pathological processes. Nevertheless, it is unclear whether the hypoxia-induced inhibition on PASMC apoptosis is mediated by BVR. In the present work, we found BVR majorly localized in PASMCs and was up-regulated in levels of protein and mRNA by hypoxia. Then we studied the contribution of BVR to anti-apoptotic response of hypoxia in PASMCs. Our results showed that siBVR, blocking generation of bilirubin, reversed the effect of hypoxia on enhancing cell survival and apoptotic protein (Bcl-2, procasepase-9, procasepase-3) expression, preventing nuclear shrinkage, DNA fragmentation and mitochondrial depolarization in starved PASMCs, which were recovered by exogenous bilirubin. Moreover, the inhibitory effect of bilirubin on PASMC apoptosis under hypoxic condition was blocked by the inhibitor of ERK1/2 pathway. Taken together, our data indicate that BVR contributes to the inhibitory process of hypoxia on PASMC apoptosis, which is mediated by bilirubin through ERK1/2 pathway. Highlights: • BVR expresses in PASMC and is up-regulated by hypoxia in protein and mRNA levels. • BVR/bilirubin contribute to the inhibitive process of hypoxia on PASMC apoptosis. • Bilirubin protects PASMC from apoptosis under hypoxia via ERK1/2 pathway.

  5. Anti-apoptotic effect of insulin in the control of cell death and neurologic deficit after acute spinal cord injury in rats.

    Science.gov (United States)

    Wu, Xing-Huo; Yang, Shu-Hua; Duan, De-Yu; Cheng, Heng-Hui; Bao, Yu-Ting; Zhang, Yukun

    2007-09-01

    Recent studies confirmed that the new cell survival signal pathway of Insulin-PI3K-Akt exerted cyto-protective actions involving anti-apoptosis. This study was undertaken to investigate the potential neuroprotective effects of insulin in the pathogenesis of spinal cord injury (SCI) and evaluate its therapeutic effects in adult rats. SCI was produced by extradural compression using modified Allen's stall with damage energy of 40 g-cm force. One group of rats was subjected to SCI in combination with the administration of recombinant human insulin dissolved in 50% glucose solution at the dose of 1 IU/kg day, for 7 days. At the same time, another group of rats was subjected to SCI in combination with the administration of an equal volume of sterile saline solution. Functional recovery was evaluated using open-field walking, inclined plane tests, and motor evoked potentials (MEPs) during the first 14 days post-trauma. Levels of protein for B-cell lymphoma/leukemia-2 gene (Bcl-2), Caspase-3, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) were quantified in the injured spinal cord by Western blot analysis. Neuronal apoptosis was detected by TUNEL, and spinal cord blood flow (SCBF) was measured by laser-Doppler flowmetry (LDF). Ultimately, the data established the effectiveness of insulin treatment in improving neurologic recovery, increasing the expression of anti-apoptotic bcl-2 proteins, inhibiting caspase-3 expression decreasing neuronal apoptosis, reducing the expression of proinflammatory cytokines iNOS and COX-2, and ameliorating microcirculation of injured spinal cord after moderate contusive SCI in rats. In sum, this study reported the beneficial effects of insulin in the treatment of SCI, with the suggestion that insulin should be considered as a potential therapeutic agent.

  6. Unraveling the Molecular Mechanism of Benzothiophene and Benzofuran scaffold merged compounds binding to anti-apoptotic Myeloid cell leukemia 1.

    Science.gov (United States)

    Marimuthu, Parthiban; Singaravelu, Kalaimathy

    2018-05-10

    Myeloid cell leukemia 1 (Mcl1), is an anti-apoptotic member of the Bcl-2 family proteins, has gained considerable importance due to its overexpression activity prevents the oncogenic cells to undergo apoptosis. This overexpression activity of Mcl1 eventually develops strong resistance to a wide variety of anticancer agents. Therefore, designing novel inhibitors with potentials to elicit higher binding affinity and specificity to inhibit Mcl1 activity is of greater importance. Thus, Mcl1 acts as an attractive cancer target. Despite recent experimental advancement in the identification and characterization of Benzothiophene and Benzofuran scaffold merged compounds the molecular mechanisms of their binding to Mcl1 are yet to be explored. The current study demonstrates an integrated approach -pharmacophore-based 3D-QSAR, docking, Molecular Dynamics (MD) simulation and free-energy estimation- to access the precise and comprehensive effects of current inhibitors targeting Mcl1 together with its known activity values. The pharmacophore -ANRRR.240- based 3D-QSAR model from the current study provided high confidence (R 2 =0.9154, Q 2 =0.8736, and RMSE=0.3533) values. Furthermore, the docking correctly predicted the binding mode of highly active compound 42. Additionally, the MD simulation for docked complex under explicit-solvent conditions together with free-energy estimation exhibited stable interaction and binding strength over the time period. Also, the decomposition analysis revealed potential energy contributing residues -M231, M250, V253, R265, L267, and F270- to the complex stability. Overall, the current investigation might serve as a valuable insight, either to (i) improve the binding affinity of the current compounds or (ii) discover new generation anti-cancer agents that can effectively downregulate Mcl1 activity.

  7. The Bcl-2 Family in Host-Virus Interactions.

    Science.gov (United States)

    Kvansakul, Marc; Caria, Sofia; Hinds, Mark G

    2017-10-06

    Members of the B cell lymphoma-2 (Bcl-2) family are pivotal arbiters of mitochondrially mediated apoptosis, a process of fundamental importance during tissue development, homeostasis, and disease. At the structural and mechanistic level, the mammalian members of the Bcl-2 family are increasingly well understood, with their interplay ultimately deciding the fate of a cell. Dysregulation of Bcl-2-mediated apoptosis underlies a plethora of diseases, and numerous viruses have acquired homologs of Bcl-2 to subvert host cell apoptosis and autophagy to prevent premature death of an infected cell. Here we review the structural biology, interactions, and mechanisms of action of virus-encoded Bcl-2 proteins, and how they impact on host-virus interactions to ultimately enable successful establishment and propagation of viral infections.

  8. Prometaphase arrest-dependent phosphorylation of Bcl-2 family proteins and activation of mitochondrial apoptotic pathway are associated with 17α-estradiol-induced apoptosis in human Jurkat T cells.

    Science.gov (United States)

    Han, Cho Rong; Jun, Do Youn; Kim, Yoon Hee; Lee, Ji Young; Kim, Young Ho

    2013-10-01

    In Jurkat T cell clone (JT/Neo), G2/M arrest, apoptotic sub-G1 peak, mitochondrial membrane potential (Δψm) loss, and TUNEL-positive DNA fragmentation were induced following exposure to 17α-estradiol (17α-E2), whereas none of these events (except for G2/M arrest) were induced in Jurkat cells overexpressing Bcl-2 (JT/Bcl-2). Under these conditions, phosphorylation at Thr161 and dephosphorylation at Tyr15 of Cdk1, upregulation of cyclin B1 level, histone H1 phosphorylation, Cdc25C phosphorylation at Thr-48, Bcl-2 phosphorylation at Thr-56 and Ser-70, Mcl-1 phosphorylation, and Bim phosphorylation were detected in the presence of Bcl-2 overexpression. However, the 17α-E2-induced upregulation of Bak levels, activation of Bak, activation of caspase-3, and PARP degradation were abrogated by Bcl-2 overexpression. In the presence of the G1/S blocking agent hydroxyurea, 17α-E2 failed to induce G2/M arrest and all apoptotic events including Cdk1 activation and phosphorylation of Bcl-2, Mcl-1 and Bim. The 17α-E2-induced phosphorylation of Bcl-2 family proteins and mitochondrial apoptotic events were suppressed by a Cdk1 inhibitor but not by aurora A and aurora B kinase inhibitors. Immunofluorescence microscopic analysis showed that an aberrant bipolar microtubule array, incomplete chromosome congression at the metaphase plate, and prometaphase arrest, which was reversible, were the underlying factors for 17α-E2-induced mitotic arrest. The in vitro microtubule polymerization assay showed that 17α-E2 could directly inhibit microtubule formation. These results show that the apoptogenic activity of 17α-E2 was due to the impaired mitotic spindle assembly causing prometaphase arrest and prolonged Cdk1 activation, the phosphorylation of Bcl-2, Mcl-1 and Bim, and the activation of Bak and mitochondria-dependent caspase cascade. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Is upregulation of BCL2 a determinant of tumor development driven by inactivation of CDH1/E-cadherin?

    Directory of Open Access Journals (Sweden)

    Inga Karch

    Full Text Available Inactivation of CDH1, encoding E-cadherin, promotes cancer initiation and progression. According to a newly proposed molecular mechanism, loss of E-cadherin triggers an upregulation of the anti-apoptotic oncoprotein BCL2. Conversely, reconstitution of E-cadherin counteracts overexpression of BCL2. This reciprocal regulation is thought to be critical for early tumor development. We determined the relevance of this new concept in human infiltrating lobular breast cancer (ILBC, the prime tumor entity associated with CDH1 inactivation. BCL2 expression was examined in human ILBC cell lines (IPH-926, MDA-MB-134, SUM-44 harboring deleterious CDH1 mutations. To test for an intact regulatory axis between E-cadherin and BCL2, wild-type E-cadherin was reconstituted in ILBC cells by ectopic expression. Moreover, BCL2 and E-cadherin were evaluated in primary invasive breast cancers and in synchronous lobular carcinomas in situ (LCIS. MDA-MB-134 and IPH-926 showed little or no BCL2 expression, while SUM-44 ILBC cells were BCL2-positive. Reconstitution of E-cadherin failed to impact on BCL2 expression in all cell lines tested. Primary ILBCs were almost uniformly E-cadherin-negative (97% and were frequently BCL2-negative (46%. When compared with an appropriate control group, ILBCs showed a trend towards an increased frequency of BCL2-negative cases (P = 0.064. In terminal duct-lobular units affected by LCIS, the E-cadherin-negative neoplastic component showed a similar or a reduced BCL2-immunoreactivity, when compared with the adjacent epithelium. In conclusion, upregulation of BCL2 is not involved in lobular breast carcinogenesis and is unlikely to represent an important determinant of tumor development driven by CDH1 inactivation.

  10. Huperzine A ameliorates damage induced by acute myocardial infarction in rats through antioxidant, anti-apoptotic and anti-inflammatory mechanisms.

    Science.gov (United States)

    Sui, Xizhong; Gao, Changqing

    2014-01-01

    Huperzine A (HupA), an alkaloid used in traditional Chinese medicine and isolated from Huperzia serrata, has been shown to possess diverse biological activities. The present study was undertaken to evaluate the cardioprotective potential of HupA in myocardial ischemic damage using a rat model of acute myocardial infarction. HupA significantly diminished the infarct size and inhibited the activities of myocardial enzymes, including creatine kinase (CK), the MB isoenzyme of creatine kinase (CK-MB), lactate dehydrogenase (LDH) and cardiac troponin T (cTnT). A significantly reduced activity of malondialdehyde (MDA) and elevated activities of superoxide dismutase (SOD), of the non-enzymatic scavenger enzyme, glutathione (GSH), as well as of glutathione peroxidase (GSH-PX) were found in the HupA-treated groups. Furthermore, decreased protein levels of caspase-3 and Bax, and increased levels of Bcl-2 were observed in the infarcted hearts of the rats treated with various concentrations of HupA. In addition, treatment with HupA markedly inhibited the expression of the nuclear factor-κB (NF-κB) subunit p65, tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). These findings suggest that the cardioprotective potential of HupA is associated with its antioxidant, anti-apoptotic and anti-inflammatory properties in acute myocardial infarction in rats.

  11. CORRELATION BETWEEN PROTEIN-WITH-MOLECULAR-WEIGHT-53 (P53, BURKIT CELL LYMPHOMA 2 (BCL2, AND FAS LIGAND (FASL AND VASCULAR-CELL-ADHESION-MOLECULE-1 (VCAM-1 MRNA EXPRESSION LEVELS IN A PATHOGENESIS STUDY OF PREECLAMPSIA

    Directory of Open Access Journals (Sweden)

    Mintareja Teguh

    2014-06-01

    Full Text Available Objective: To determine the role of protein-with-molecular-weight-53 (p53, burkit cell lymphoma 2 (Bcl2, Fas ligand (FasL mRNA, and vascular cell adhesion molecule 1 (VCAM-1, known as the apoptosis-related molecular pathway, in preeclamptic patients. Methods: Observation on the correlation between the mRNA levels of p53, Bcl2 and FasL and VCAM-1 in 31 subjects at 28-42 weeks gestational age was performed in this study using the real time reverse transcriptase-polymerase chain reaction (RT-PCR. Results: The results showed that p53 mRNA increased (>1.2350 ng/μL in the preeclampsia group compared to the normal pregnancy group (p=0.010, Bcl2 mRNA was lower (≤0.9271 ng/μL in the preeclampsia group than the control group (p=0.041. There was also a tendency of increased FasL mRNA expression (>0.5509 ng/μL in the preeclampsia group compared to the normal pregnancy group (p=0.300. The level of VCAM-1 elevated (>890.08 ng/mL in the preeclampsia group compared to the normal pregnancy group (p=0.001. In preeclampsia, the correlation between the Bcl2/p53 ratio and VCAM-1 was r=0.541 (p=0.002, whereas the correlation in normal pregnancy was r=0.099 (p=0.595. Conclusions: There are correlations between the mRNA expression levels of p53 and Bcl2 as an intrinsic pathway of apoptosis along with the VCAM-1 levels in the incidence of preeclampsia. However, no correlation is found between FasL mRNA expression and the incidence of preeclampsia.

  12. Analyse bioinformatique des protéines BCL-2 et développement de la base de connaissance dédiée, BCL2DB

    OpenAIRE

    Rech de Laval , Valentine

    2013-01-01

    BCL-2 proteins play an essential role in the decision of life or death of animal cells. They control the induction of apoptosis (programmed cell death) in the mitochondrial pathway via regulators having opposite functions: anti- or pro-apoptotic. Proteins containing one or more Bcl-2 homology domains (BHl-4) are systematically classified in this family. Through bioinformatics and phylogenetic analysis, we revisited the different criteria for protein inclusion in the BCL-2 group and proposed a...

  13. Hypoxic human cancer cells are sensitized to BH-3 mimetic–induced apoptosis via downregulation of the Bcl-2 protein Mcl-1

    OpenAIRE

    Harrison, Luke R.E.; Micha, Dimitra; Brandenburg, Martin; Simpson, Kathryn L.; Morrow, Christopher J.; Denneny, Olive; Hodgkinson, Cassandra; Yunus, Zaira; Dempsey, Clare; Roberts, Darren; Blackhall, Fiona; Makin, Guy; Dive, Caroline

    2011-01-01

    Solid tumors contain hypoxic regions in which cancer cells are often resistant to chemotherapy-induced apoptotic cell death. Therapeutic strategies that specifically target hypoxic cells and promote apoptosis are particularly appealing, as few normal tissues experience hypoxia. We have found that the compound ABT-737, a Bcl-2 homology domain 3 (BH-3) mimetic, promotes apoptotic cell death in human colorectal carcinoma and small cell lung cancer cell lines exposed to hypoxia. This hypoxic indu...

  14. MicroRNAs expression in ox-LDL treated HUVECs: MiR-365 modulates apoptosis and Bcl-2 expression

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Bing; Xiao, Bo [Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008 (China); Liang, Desheng [State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410078 (China); Xia, Jian; Li, Ye [Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008 (China); Yang, Huan, E-mail: yangh69@yahoo.cn [Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008 (China)

    2011-06-24

    Highlights: {yields} We evaluated the role of miRNAs in ox-LDL induced apoptosis in ECs. {yields} We found 4 up-regulated and 11 down-regulated miRNAs in apoptotic ECs. {yields} Target genes of the dysregulated miRNAs regulate ECs apoptosis and atherosclerosis. {yields} MiR-365 promotes ECs apoptosis via suppressing Bcl-2 expression. {yields} MiR-365 inhibitor alleviates ECs apoptosis induced by ox-LDL. -- Abstract: Endothelial cells (ECs) apoptosis induced by oxidized low-density lipoprotein (ox-LDL) is thought to play a critical role in atherosclerosis. MicroRNAs (miRNAs) are a class of noncoding RNAs that posttranscriptionally regulate the expression of genes involved in diverse cell functions, including differentiation, growth, proliferation, and apoptosis. However, whether miRNAs are associated with ox-LDL induced apoptosis and their effect on ECs is still unknown. Therefore, this study evaluated potential miRNAs and their involvement in ECs apoptosis in response to ox-LDL stimulation. Microarray and qRT-PCR analysis performed on human umbilical vein endothelial cells (HUVECs) exposed to ox-LDL identified 15 differentially expressed (4 up- and 11 down-regulated) miRNAs. Web-based query tools were utilized to predict the target genes of the differentially expressed miRNAs, and the potential target genes were classified into different function categories with the gene ontology (GO) term and KEGG pathway annotation. In particular, bioinformatics analysis suggested that anti-apoptotic protein B-cell CLL/lymphoma 2 (Bcl-2) is a target gene of miR-365, an apoptomir up-regulated by ox-LDL stimulation in HUVECs. We further showed that transfection of miR-365 inhibitor partly restored Bcl-2 expression at both mRNA and protein levels, leading to a reduction of ox-LDL-mediated apoptosis in HUVECs. Taken together, our findings indicate that miRNAs participate in ox-LDL-mediated apoptosis in HUVECs. MiR-365 potentiates ox-LDL-induced ECs apoptosis by regulating the

  15. Quercetin inhibits the invasion and mobility of murine melanoma B16-BL6 cells through inducing apoptosis via decreasing Bcl-2 expression.

    Science.gov (United States)

    Zhang, X; Xu, Q; Saiki, I

    2000-01-01

    Quercetin has been known to have anti-tumor and anti-oxidation activities. In the present study, we have investigated its in vitro anti-metastatic activity. Quercetin inhibited the invasion and mobility of murine melanoma B16-BL6 cells in a dose-dependent manner but did not affect their adhesion to either laminin, fibronectin, or type VI collagen. Moreover, quercetin significantly inhibited the proliferation of B16-BL6 cells only in the case of time incubation longer than 48 h. Quercetin dose-dependently decreased the cell rates in S and G2-M phases of cell cycle. The effect of quercetin to cause a remarkable apoptosis of B16-BL6 cells was also demonstrated by flow cytometric assay as well as DNA fragmentation with a typical 180-bp ladder band in agarose electrophoresis and a quantitative analysis. Furthermore, quercetin markedly inhibited the expression of anti-apoptotic protein Bcl-2 but hardly influenced Bcl-XL. These results suggest that the inhibition of quercetin on invasiveness and migration of B16-BL6 cells are closely associated with the arrest of cell cycle as well as the induction of apoptosis by decreasing the Bcl-2 expression.

  16. Involvement of ERK, Bcl-2 family and caspase 3 in recombinant human activin A-induced apoptosis in A549

    International Nuclear Information System (INIS)

    Wang Baiding; Feng Yuling; Song Xingbo; Liu Qingqing; Ning Yunye; Ou Xuemei; Yang Jie; Zhang Xiaohong; Wen, Fuqiang

    2009-01-01

    Background: Activins are members of the transforming growth factor-β (TGF-β) superfamily. Previous studies have shown that activin A may have a central role in regulating both apoptosis and proliferation. However, direct studies of recombination human activin A on human NSCLC A549 cells have not yet been reported. The purpose of this study was to investigate whether activin A could induce apoptosis in A549 cells and the possible mechanisms via which it worked. Methods: Cellular apoptosis induced by activin A was detected by TUNEL assay and the levels of protein expression were detected by western blot. Results: Recombination human activin A induced apoptosis in human NSCLC A549 cells in a concentrate-dependent manner. Activin A-induced A549 apoptosis was accompanied by the up-regulation of Bax, Bad and Bcl-Xs and down-regulation of Bcl-2. Moreover, activin A treatment increased the expression of its typeII receptors, activated ERK and caspase 3 in A549. These results clearly demonstrate that the induction of apoptosis by activin-A involves multiple cellular/molecular pathways and strongly suggest that pro- and anti-apoptotic Bcl-2 family proteins and caspase 3 participate in activin A-induced apoptotic process in A549 cells. On the other hand, activin A treatment had little effect on primary human small airway epithelial cells (SAECs). Conclusion: Recombination human activin A induced apoptosis in A549 cells, at least partially, through ERK and mitochondrial pathway. The result that activin A did not affect the normal SAEC revealed activin A might be considered as a potential anticancer agent and worthy of further studies

  17. N-myc downstream-regulated gene 1 promotes oxaliplatin-triggered apoptosis in colorectal cancer cells via enhancing the ubiquitination of Bcl-2.

    Science.gov (United States)

    Yang, Xiao; Zhu, Fan; Yu, Chaoran; Lu, Jiaoyang; Zhang, Luyang; Lv, Yanfeng; Sun, Jing; Zheng, Minhua

    2017-07-18

    N-myc downstream-regulated gene1 (NDRG1) has been identified as a potent tumor suppressor gene. The molecular mechanisms of anti-tumor activity of NDRG1 involve its suppressive effects on a variety of tumorigenic signaling pathways. The purpose of this study was to investigate the role of NDRG1 in the apoptosis of colorectal cancer (CRC) cells. We first collected the clinical data of locally advanced rectal cancer (LARC) patients receiving oxaliplatin-based neoadjuvant chemotherapy in our medical center. Correlation analysis revealed that NDRG1 positively associated with the downstaging rates and prognosis of patients. Then, the effects of over-expression and depletion of NDRG1 gene on apoptosis of colorectal cancer were tested in vitro and in vivo. NDRG1 over-expression promoted apoptosis in colorectal cancer cells whereas depletion of NDRG1 resulted in resistance to oxaliplatin treatment. Furthermore, we observed that Bcl-2, a major anti-apoptotic protein, was regulated by NDRG1 at post-transcriptional level. By binding Protein kinase Cα (PKCα), a classical regulating factor of Bcl-2, NDRG1 enhanced the ubiquitination and degradation of Bcl-2, thus promoting apoptosis in CRC cells. In addition, NDRG1 inhibited tumor growth and promoted apoptosis in mouse xenograft model. In conclusion,NDRG1 promotes oxaliplatin-triggered apoptosis in colorectal cancer. Therefore, colorectal cancer patients can be stratified by the expression level of NDRG1. NDRG1-positive patients may benefit from oxaliplatin-containing chemotherapy regimens whereas those with negative NDRG1 expression should avoid the usage of this cytotoxic drug.

  18. Anti-apoptotic BFL-1 is the major effector in activation-induced human mast cell survival.

    Directory of Open Access Journals (Sweden)

    Maria Ekoff

    Full Text Available Mast cells are best known for their role in allergic reactions, where aggregation of FcεRI leads to the release of mast cell mediators causing allergic symptoms. The activation also induces a survival program in the cells, i.e., activation-induced mast cell survival. The aim of the present study was to investigate how the activation-induced survival is mediated. Cord blood-derived mast cells and the mast cell line LAD-2 were activated through FcεRI crosslinking, with or without addition of chemicals that inhibit the activity or expression of selected Bcl-2 family members (ABT-737; roscovitine. Cell viability was assessed using staining and flow cytometry. The expression and function of Bcl-2 family members BFL-1 and MCL-1 were investigated using real-time quantitative PCR and siRNA treatment. The mast cell expression of Bfl-1 was investigated in skin biopsies. FcεRI crosslinking promotes activation-induced survival of human mast cells and this is associated with an upregulation of the anti-apoptotic Bcl-2 family member Bfl-1. ABT-737 alone or in combination with roscovitine decreases viability of human mast cells although activation-induced survival is sustained, indicating a minor role for Bcl-X(L, Bcl-2, Bcl-w and Mcl-1. Reducing BFL-1 but not MCL-1 levels by siRNA inhibited activation-induced mast cell survival. We also demonstrate that mast cell expression of Bfl-1 is elevated in birch-pollen-provocated skin and in lesions of atopic dermatitis and psoriasis patients. Taken together, our results highlight Bfl-1 as a major effector in activation-induced human mast cell survival.

  19. Human Adipose-Derived Stem Cells Delay Retinal Degeneration in Royal College of Surgeons Rats Through Anti-Apoptotic and VEGF-Mediated Neuroprotective Effects.

    Science.gov (United States)

    Li, Z; Wang, J; Gao, F; Zhang, J; Tian, H; Shi, X; Lian, C; Sun, Y; Li, W; Xu, J-Y; Li, P; Zhang, J; Gao, Z; Xu, J; Wang, F; Lu, L; Xu, G-T

    2016-01-01

    Stem cell therapy is a promising therapeutic approach for retinal degeneration (RD). Our study investigated the effects of human adipose derived stem cell (hADSCs) on Royal College of Surgeons (RCS) rats. Green fluorescent protein (GFP)-labeled hADSCs were transplanted subretinally into RCS rats at postnatal (PN) 21 days to explore potential therapeutic effects, while adeno-associated viral vector (AAV2)-vascular endothelial growth factor (VEGF) and siVEGF-hADSCs were used to aid the mechanistic dissections. Visual function was evaluated by Electroretinogram (ERG) recording. Potential transdifferentiations were examined by Immunofluorescence (IF) and gene expressions were analyzed by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Apoptotic retinal cells were detected by Terminal Deoxynucleotidyl Transferase dUTP Nick End Labeling (TUNEL) assay and the cytokines secreted by hADSCs were measured by Enzyme-linked Immunosorbent Assay (ELISA). The visual function of RCS rats began to decrease one week after their eyes opened at PN week 3 and almost lost in PN 5 weeks, accompanied by the loss of retinal outer nuclear layer (ONL). Subretinal transplantation of hADSCs significantly improved the visual function 2 weeks after the transplantation and such therapeutic effect persisted up to 8 weeks after the treatment (PN 11 weeks), with 3-4 rows of photoreceptors remained in the ONL and reduced apoptosis. Consistent with these phenotypic changes, the gene expression of rod photoreceptor markers Rhodopsin (Rho), Crx and Opsin (Opn1) in RCS rats showed obvious decreasing trends over time after PN 3 weeks, but were elevated with hADSC treatment. hADSC transplantation also repressed the expressions of Bax, Bak and Caspase 3, but not the expression of anti-apoptotic genes, including Bcl-2 and Bcl-XL. Finally, substantial VEGF, hepatocyte growth factor (HGF) and pigment epithelium-derived factor (PEDF) secretions from hADSCs were detected, while endogenous

  20. A comparison of the effects of tributyltin chloride and triphenyltin chloride on cell proliferation, proapoptotic p53, Bax, and antiapoptotic Bcl-2 protein levels in human breast cancer MCF-7 cell line.

    Science.gov (United States)

    Fickova, Maria; Macho, Ladislav; Brtko, Julius

    2015-06-01

    In recent years it was disclosed, that numerous organotin(IV) derivatives have remarkable cytotoxicity against several types of cancer cells. The property to inhibit cell growth makes these compounds promising for antitumor therapy, as the clinical effectiveness of cisplatin is limited by drug resistance and significant side effects. Tributyltin and triphenyltin are known as endocrine disruptors. Moreover, the compounds exert their toxicity in mammals predominantly through nuclear receptor signaling. Here we present the effects of tributyltin chloride (TBT-Cl) and triphenyltin chloride (TPT-Cl) on cell proliferation, expression of proapoptotic p53, Bax, and antiapoptotic Bcl-2 proteins in human breast cancer MCF-7 cell line. Dose and time dependent (24, 48 and 72 h) cell expositions have demonstrated TBT-Cl as more effective in inhibiting MCF-7 cell proliferation than TPT-Cl. Short time treatment with TBT-Cl displayed marked stimulation of p53 protein expression when compared to TPT-Cl. Both organotin compounds displayed similar mild enhancement of Bax protein expression. The 24h exposition of TPT-Cl induced substantial diminution of Bcl-2 protein expression in comparison with both, untreated cells and TBT-Cl treated cells. Our observations indicate that TBT-Cl and TPT-Cl have different antiproliferative potency and distinct impact on expression of apoptosis marker proteins. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Cycloheximide Can Induce Bax/Bak Dependent Myeloid Cell Death Independently of Multiple BH3-Only Proteins.

    Directory of Open Access Journals (Sweden)

    Katharine J Goodall

    Full Text Available Apoptosis mediated by Bax or Bak is usually thought to be triggered by BH3-only members of the Bcl-2 protein family. BH3-only proteins can directly bind to and activate Bax or Bak, or indirectly activate them by binding to anti-apoptotic Bcl-2 family members, thereby relieving their inhibition of Bax and Bak. Here we describe a third way of activation of Bax/Bak dependent apoptosis that does not require triggering by multiple BH3-only proteins. In factor dependent myeloid (FDM cell lines, cycloheximide induced apoptosis by a Bax/Bak dependent mechanism, because Bax-/-Bak-/- lines were profoundly resistant, whereas FDM lines lacking one or more genes for BH3-only proteins remained highly sensitive. Addition of cycloheximide led to the rapid loss of Mcl-1 but did not affect the expression of other Bcl-2 family proteins. In support of these findings, similar results were observed by treating FDM cells with the CDK inhibitor, roscovitine. Roscovitine reduced Mcl-1 abundance and caused Bax/Bak dependent cell death, yet FDM lines lacking one or more genes for BH3-only proteins remained highly sensitive. Therefore Bax/Bak dependent apoptosis can be regulated by the abundance of anti-apoptotic Bcl-2 family members such as Mcl-1, independently of several known BH3-only proteins.

  2. Anti-ceramidase LCL385 acutely reduces BCL-2 expression in the hippocampus but is not associated with an increase of learned helplessness in rats.

    Science.gov (United States)

    Nahas, Ziad; Jiang, Yan; Zeidan, Youssef H; Bielawska, Alicja; Szulc, Zdzislaw; Devane, Lindsay; Kalivas, Peter; Hannun, Yusuf A

    2009-01-30

    Evidence from in situ studies supports the role of anti-apoptotic factors in the antidepressant responses of certain psychotropics. The availability of anti-ceramidase pro-apoptocic compound (LCL385) provides an opportunity to test in vivo the relation between hippocampal apopotosis and learned helplessness. 40 Sprague-Dawley male rodents underwent an FST after a treatment with LCL385, desipramine (DMI), or placebo (SAL) over 3 days. Behavioral responses, including immobility, swimming and climbing were counted during the 6min test. Western blot labeling was used to detect anti-apoptosis in hippocampus. DMI alone was associated with reduced immobility and increased climbing whereas LCL385 alone showed a decrease in Bcl-2/beta-actin ratio. Direct modulation of Bcl-2 expression in the hippocampus is not associated with learned helplessness in stressed rats. Three-day administration of DMI and LCL385 show divergent effects on behavioral and anti-apoptotic measures.

  3. Bcl-2 inhibitors potentiate the cytotoxic effects of radiation in Bcl-2 overexpressing radioresistant tumor cells

    International Nuclear Information System (INIS)

    Hara, Takamitsu; Omura-Minamisawa, Motoko; Chao Cheng; Nakagami, Yoshihiro; Ito, Megumi; Inoue, Tomio

    2005-01-01

    Purpose: Bcl-2, an inhibitor of apoptosis frequently shows elevated expression in human tumors, thus resulting in resistance to radiation therapy. Therefore, inhibiting Bcl-2 function may enhance the radiosensitivity of tumor cells. Tetrocarcin A (TC-A) and bcl-2 antisense oligonucleotides exhibit antitumor activity by inhibiting Bcl-2 function and transcription, respectively. We investigated whether these antitumor agents would enhance the cytotoxic effects of radiation in tumor cells overexpressing Bcl-2. Methods and materials: We used HeLa/bcl-2 cells, a stable Bcl-2-expressing cell line derived from wild-type HeLa (HeLa/wt) cells. Cells were incubated with TC-A and bcl-2 antisense oligonucleotides for 24 h after irradiation, and cell viability was then determined. Apoptotic cells were quantified by flow cytometric assay. Results: The HeLa/bcl-2 cells were more resistant to radiation than HeLa/wt cells. At concentrations that are not inherently cytotoxic, both TC-A and bcl-2 antisense oligonucleotides increased the cytotoxic effects of radiation in HeLa/bcl-2 cells, but not in HeLa/wt cells. However, in HeLa/bcl-2 cells, additional treatment with TC-A in combination with radiation did not significantly increase apoptosis. Conclusions: The present results suggest that TC-A and bcl-2 antisense oligonucleotides reduce radioresistance of tumor cells overexpressing Bcl-2. Therefore, a combination of radiotherapy and Bcl-2 inhibitors may prove to be a useful therapeutic approach for treating tumors that overexpress Bcl-2

  4. Protective effects of phosphodiesterase 2 inhibitor on depression- and anxiety-like behaviors: involvement of antioxidant and anti-apoptotic mechanisms.

    Science.gov (United States)

    Ding, Lianshu; Zhang, Chong; Masood, Anbrin; Li, Jianxin; Sun, Jiao; Nadeem, Ahmed; Zhang, Han-Ting; O' Donnell, James M; Xu, Ying

    2014-07-15

    Stress occurs in everyday life, but the relationship between stress and the onset or development of depression/anxiety remains unknown. Increasing evidence suggests that the impairment of antioxidant defense and the neuronal cell death are important in the process of emotional disorders. Chronic stress impairs the homeostasis of antioxidants/oxidation, which results in the aberrant stimulation of the cell cycle proteins where cGMP-PKG signaling is thought to have an inhibitory role. Phosphodiesterase 2 (PDE2) is linked to cGMP-PKG signaling and highly expressed in the limbic brain regions including hippocampus and amygdala, which may play important roles in the treatment of depression and anxiety. To address the possible effects of PDE2 inhibitors on depression-/anxiety-like behaviors and the underlying mechanisms, Bay 60-7550 (0.75, 1.5 and 3 mg/kg, i.p.) was administered 30 min before chronic stress. The results suggested that Bay 60-7550 not only restored the behavioral changes but also regulated Cu/Zn superoxide dismutase (SOD) levels differentially in hippocampus and amygdala, which were increased in the hippocampus while decreased in the amygdala. It was also significant that Bay 60-7550 regulated the abnormalities of pro- and anti-apoptotic components, such as Bax, Caspase 3 and Bcl-2, and the indicator of PKG signaling characterized by pVASP(ser239), in these two brain regions. The results suggested that Bay 60-7550 is able to alleviate oxidative stress and mediate part of the apoptotic machinery in neuronal cells possibly through SOD-cGMP/PKG-anti-apoptosis signaling and that inhibition of PDE2 may represent a novel therapeutic target for psychiatric disorders, such as depression and anxiety. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Bcl-2 prevents loss of mitochondria in CCCP-induced apoptosis

    International Nuclear Information System (INIS)

    Graaf, Aniek O. de; Heuvel, Lambert P. van den; Dijkman, Henry B.P.M.; Abreu, Ronney A. de; Birkenkamp, Kim U.; Witte, Theo de; Reijden, Bert A. van der; Smeitink, Jan A.M.; Jansen, Joop H.

    2004-01-01

    Bcl-2 family proteins regulate apoptosis at the level of mitochondria. To examine the mechanism of Bcl-2 function, we investigated the effects of the protonophore carbonyl cyanide m-chlorophenyl hydrazone (CCCP) on two hematopoietic cell lines and Bcl-2 overexpressing transfectants. CCCP directly interferes with mitochondrial function and induces apoptosis. We show that Bcl-2 inhibits apoptosis and that the antiapoptotic effect of Bcl-2 takes place upstream of caspase activation and nuclear changes associated with apoptosis, since these were markedly inhibited in cells overexpressing Bcl-2. Bcl-2 does not prevent the decrease in mitochondrial membrane potential nor the alterations in cellular ATP content induced by CCCP in FL5.12 and Jurkat cells. A higher number of mitochondria was observed in untreated Bcl-2 transfected cells compared to parental cells, as shown by electron microscopy. Exposure to CCCP induced a dramatic decrease in the number of mitochondria and severely disrupted mitochondrial ultrastructure, with apparent swelling and loss of cristae in parental cells. Bcl-2 clearly diminished the disruption of mitochondrial structure and preserved a higher number of mitochondria. These data suggest that CCCP induces apoptosis by structural disruption of mitochondria and that Bcl-2 prevents apoptosis and mitochondrial degeneration by preserving mitochondrial integrity

  6. Bcl-2 prevents loss of mitochondria in CCCP-induced apoptosis.

    Science.gov (United States)

    de Graaf, Aniek O; van den Heuvel, Lambert P; Dijkman, Henry B P M; de Abreu, Ronney A; Birkenkamp, Kim U; de Witte, Theo; van der Reijden, Bert A; Smeitink, Jan A M; Jansen, Joop H

    2004-10-01

    Bcl-2 family proteins regulate apoptosis at the level of mitochondria. To examine the mechanism of Bcl-2 function, we investigated the effects of the protonophore carbonyl cyanide m-chlorophenyl hydrazone (CCCP) on two hematopoietic cell lines and Bcl-2 overexpressing transfectants. CCCP directly interferes with mitochondrial function and induces apoptosis. We show that Bcl-2 inhibits apoptosis and that the antiapoptotic effect of Bcl-2 takes place upstream of caspase activation and nuclear changes associated with apoptosis, since these were markedly inhibited in cells overexpressing Bcl-2. Bcl-2 does not prevent the decrease in mitochondrial membrane potential nor the alterations in cellular ATP content induced by CCCP in FL5.12 and Jurkat cells. A higher number of mitochondria was observed in untreated Bcl-2 transfected cells compared to parental cells, as shown by electron microscopy. Exposure to CCCP induced a dramatic decrease in the number of mitochondria and severely disrupted mitochondrial ultrastructure, with apparent swelling and loss of cristae in parental cells. Bcl-2 clearly diminished the disruption of mitochondrial structure and preserved a higher number of mitochondria. These data suggest that CCCP induces apoptosis by structural disruption of mitochondria and that Bcl-2 prevents apoptosis and mitochondrial degeneration by preserving mitochondrial integrity.

  7. Anti-apoptotic signaling and failure of apoptosis in the ischemic rat hippocampus

    DEFF Research Database (Denmark)

    Müller, Georg Johannes; Lassmann, Hans; Johansen, Flemming Fryd

    2007-01-01

    Several anti-apoptotic proteins are induced in CA1 neurons after transient forebrain ischemia (TFI), but fail to protect the majority of these cells from demise. Correlating cell death morphologies (apoptosis-like and necrosis-like death) with immunohistochemistry (IHC), we investigated whether...... anti-apoptosis contributes to survival, compromises apoptosis effector functions and/or delays death in CA1 neurons 1-7 days after TFI. As surrogate markers for bioenergetic failure, the IHC of respiratory chain complex (RCC) subunits was investigated. Dentate granule cell (DGC) apoptosis following...... colchicine injection severed as a reference for classical apoptosis. Heat shock protein 70 (Hsp70), neuronal apoptosis inhibitory protein (NAIP) and manganese superoxide dismutase (MnSOD) were upregulated in the majority of intact CA1 neurons paralleling the occurrence of CA1 neuronal death (days 3...

  8. An Integrated Bioinformatics and Computational Biology Approach Identifies New BH3-Only Protein Candidates.

    Science.gov (United States)

    Hawley, Robert G; Chen, Yuzhong; Riz, Irene; Zeng, Chen

    2012-05-04

    In this study, we utilized an integrated bioinformatics and computational biology approach in search of new BH3-only proteins belonging to the BCL2 family of apoptotic regulators. The BH3 (BCL2 homology 3) domain mediates specific binding interactions among various BCL2 family members. It is composed of an amphipathic α-helical region of approximately 13 residues that has only a few amino acids that are highly conserved across all members. Using a generalized motif, we performed a genome-wide search for novel BH3-containing proteins in the NCBI Consensus Coding Sequence (CCDS) database. In addition to known pro-apoptotic BH3-only proteins, 197 proteins were recovered that satisfied the search criteria. These were categorized according to α-helical content and predictive binding to BCL-xL (encoded by BCL2L1) and MCL-1, two representative anti-apoptotic BCL2 family members, using position-specific scoring matrix models. Notably, the list is enriched for proteins associated with autophagy as well as a broad spectrum of cellular stress responses such as endoplasmic reticulum stress, oxidative stress, antiviral defense, and the DNA damage response. Several potential novel BH3-containing proteins are highlighted. In particular, the analysis strongly suggests that the apoptosis inhibitor and DNA damage response regulator, AVEN, which was originally isolated as a BCL-xL-interacting protein, is a functional BH3-only protein representing a distinct subclass of BCL2 family members.

  9. Identification and characterization of the Bcl-2- associated ...

    African Journals Online (AJOL)

    Identification and characterization of the Bcl-2- associated athanogene (BAG) protein family in rice. ... Data obtained from real-time PCR of OsBAG genes under heat stress showed that maximum induction in the expression of all the genes occurred after one hour exposure to heat stress, while reduction in the expression ...

  10. Bcl-2 overexpression: effects on transmembrane calcium movement

    International Nuclear Information System (INIS)

    Rangaswami, Arun A.; Premack, Brett; Walleczek, Jan; Killoran, Pamela; Gardner, Phyllis; Knox, Susan J.

    1996-01-01

    Purpose/Objective: High levels of expression of the proto-oncogene bcl-2 and its 26 kD protein product Bcl-2 have been correlated with the inhibition of apoptosis and the increased resistance of tumor cells to cytotoxic drugs and ionizing radiation. Unfortunately, the specific mechanism of action of Bcl-2 remains poorly understood. In the studies described here, the role of intracellular calcium fluxes and plasma membrane calcium cycling in the induction of apoptosis, and the effect of Bcl-2 expression on the modulation of transmembrane calcium fluxes following treatment of cells with cytotoxic agents were studied. The relationship between intracellular calcium release, capacitive calcium entry, and the plasma membrane potential were also investigated. Materials and Methods: Human B-cell lymphoma (PW) and human promyelocytic leukemia (HL60) cell lines were transfected with Bcl-2 and a control vector. The Bcl-2 transfectants over expressed the Bcl-2 onco-protein and were more resistant to irradiation than the control cells. Cells were loaded with fluorescent indicators indo-1 and fura-2 AM to quantify the cytosolic calcium concentration and subsequent calcium responses to a variety of cytotoxic stimuli, including the microsomal ATPase inhibitor, thapsigargin, using fluorometric measurements. Comparisons of resting and stimulated cytosolic calcium concentrations were made between the parental, neomycin control, and bcl-2 transfected cells. In order to determine the actual calcium influx rate, cells were loaded with either indo-1 or fura-2 and then exposed to 0.1 mM extracellular manganese, which enters the cells through calcium influx channels and quenches the fluorescent signal in proportion to the calcium influx rate. In order to determine the role of the membrane potential in driving calcium influx, cells were treated with either 0.1 μM Valinomycin or isotonic potassium chloride to either hyper polarize or depolarize the resting membrane potential, and the

  11. Bcl-2 antisense therapy in B-cell malignant proliferative disorders.

    Science.gov (United States)

    Chanan-Khan, Asher; Czuczman, Myron S

    2004-08-01

    Overexpression of Bcl-2 oncogene has been clinically associated with an aggressive clinical course, chemotherapy and radiotherapy resistance, and poor survival in patients with malignant B-cell disorders. Patients with relapsed or refractory chronic lymphocytic leukemia, multiple myeloma, or non-Hodgkin's lymphoma have limited therapeutic options. Preclinical and early clinical data have shown that Bcl-2 oncoprotein can be decreased by Bcl-2 antisense therapy. Also, downregulation of Bcl-2 protein can result in reversal of chemotherapy resistance and improved antitumor activity of biologic agents. Various clinical trials are evaluating the role of targeting Bcl-2 as a mechanism to enhance the antitumor potential of chemotherapy and immunotherapy. Early results from these clinical studies are encouraging and confirm the proof of principle for antisense therapy. As current data mature, these trials will hopefully validate preliminary results and establish Bcl-2 antisense as an important addition to the current armamentarium used in the treatment of patients with B-cell neoplasms.

  12. Expression of Bcl-2 and Bax in extrahepatic biliary tract carcinoma and dysplasia

    Science.gov (United States)

    Li, Sheng-Mian; Yao, Shu-Kun; Yamamura, Nobuyoshi; Nakamura, Toshitsugu

    2003-01-01

    AIM: To compare the difference of expression of Bcl-2 and Bax in extrahepatic biliary tract carcinoma and dysplasia, and to analyze the role of Bcl-2 and Bax proteins in the progression from dysplasia to carcinoma and to evaluate the correlation of Bcl-2/Bax protein expression with the biological behaviors. METHODS: Expressions of Bcl-2 and Bax were examined immunohistochemically in 27 cases of extrahepatic biliary tract carcinomas (bile duct carcinoma: n = 21, carcinoma of ampulla of Vater: n = 6), and 10 cases of atypical dysplasia. Five cases of normal biliary epithelial tissues were used as controls. A semiquantitative scoring system was used to assess the Bcl-2 and Bax reactivity. RESULTS: The expression of Bcl-2 was observed in 10 out of 27 (37.0%) invasive carcinomas, 1 out of 10 dysplasias, none out of 5 normal epithelial tissues. Bax expression rate was 74.1% (20/27) in invasive carcinoma, 30% (3/10) in dysplasia, and 40% (2/5) in normal biliary epithelium. Bcl-2 and Bax activities were more intense in carcinoma than in dysplasia, with no significant difference in Bcl-2 expression (P = 0.110), and significant difference in Bax expression (P = 0.038). Level of Bax expression was higher in invasive carcinoma than in dysplasia and normal tissue (P = 0.012). Bcl-2 expression was correlated to Bax expression (P = 0.0059). However, Bcl-2/Bax expression had no correlation with histological subtype, grade of differentiation, or level of invasion. CONCLUSION: Increased Bcl-2/Bax expression from dysplasia to invasive tumors supports the view that this is the usual route for the development of extrahepatic biliary tract carcinoma. Bcl-2/Bax may be involved, at least in part, in the apoptotic activity in extrahepatic biliary carcinoma. PMID:14606101

  13. Post-infarct treatment with [Pyr1]apelin-13 exerts anti-remodelling and anti-apoptotic effects in rats' hearts.

    Science.gov (United States)

    Azizi, Yaser; Imani, Alireza; Fanaei, Hamed; Khamse, Safoura; Parvizi, Mohammad Reza; Faghihi, Mahdieh

    2017-01-01

    Ischaemic heart disease is the main cause of mortality in the world. After myocardial infarction (MI) cardiomyocytes apoptosis and ventricular remodelling have occurred. Apelin is a peptide that has been shown to exert cardioprotective effects. The aim of this study was to investigate the anti-apoptotic and anti-remodelling effects of [Pyr¹]apelin-13 in the rat model of post-MI. Thirty-six male Wistar rats were randomly divided into three groups: (1) sham, (2) MI, and (3) MI treated with [Pyr¹] apelin-13 (MI+Apel). MI animals were subjected to 30-min ligation of the left anterior descending coronary artery (LAD) and 14 days of reperfusion. Twenty-four hours after LAD ligation, [Pyr¹]apelin-13 (10 nmol/kg/day, i.p.) was administered for five consecutive days. Hypertrophic parameters, left ventricular (LV) remodelling, and gene expression of Apel, apelin receptor (Apelr), Bax, caspase-3 (Casp-3), and Bcl-2 by real-time polymerase chain reaction and cardiomyocytes apoptosis by TUNEL immunostaining were assessed on day 14 post-MI. Post-infarct treatment with [Pyr¹]apelin-13 improved myocardial hypertrophic and LV remodelling parameters and led to a significant increase in the expression of Apel, Apelr, and Bcl-2, and a decrease in the expression of Bax and Casp-3. Furthermore, treatment with [Pyr¹]apelin-13 decreased cardiomyocyte apoptosis. [Pyr¹]apelin-13 has anti-hypertrophic, anti-remodelling, and anti-apoptotic effects via overexpression of Apel, Apelr, and Bcl-2 and reduces gene expression of Bax and Casp-3 in the infarcted myocardium, which can in turn lead to repair myocardium.

  14. HAMLET triggers apoptosis but tumor cell death is independent of caspases, Bcl-2 and p53.

    Science.gov (United States)

    Hallgren, O; Gustafsson, L; Irjala, H; Selivanova, G; Orrenius, S; Svanborg, C

    2006-02-01

    HAMLET (Human alpha-lactalbumin Made Lethal to Tumor cells) triggers selective tumor cell death in vitro and limits tumor progression in vivo. Dying cells show features of apoptosis but it is not clear if the apoptotic response explains tumor cell death. This study examined the contribution of apoptosis to cell death in response to HAMLET. Apoptotic changes like caspase activation, phosphatidyl serine externalization, chromatin condensation were detected in HAMLET-treated tumor cells, but caspase inhibition or Bcl-2 over-expression did not prolong cell survival and the caspase response was Bcl-2 independent. HAMLET translocates to the nuclei and binds directly to chromatin, but the death response was unrelated to the p53 status of the tumor cells. p53 deletions or gain of function mutations did not influence the HAMLET sensitivity of tumor cells. Chromatin condensation was partly caspase dependent, but apoptosis-like marginalization of chromatin was also observed. The results show that tumor cell death in response to HAMLET is independent of caspases, p53 and Bcl-2 even though HAMLET activates an apoptotic response. The use of other cell death pathways allows HAMLET to successfully circumvent fundamental anti-apoptotic strategies that are present in many tumor cells.

  15. Herpesvirus pan encodes a functional homologue of BHRF1, the Epstein-Barr virus v-Bcl-2

    Directory of Open Access Journals (Sweden)

    Williams Tracey

    2005-02-01

    Full Text Available Abstract Background Epstein-Barr virus (EBV latently infects about 90% of the human population and is associated with benign and malignant diseases of lymphoid and epithelial origin. BHRF1, an early lytic cycle antigen, is an apoptosis suppressing member of the Bcl-2 family. In vitro studies imply that BHRF1 is dispensable for both virus replication and transformation. However, the fact that BHRF1 is highly conserved not only in all EBV isolates studied to date but also in the analogous viruses Herpesvirus papio and Herpesvirus pan that infect baboons and chimpanzees respectively, suggests BHRF1 may play an important role in vivo. Results Herpesvirus papio BHRF1 has been shown to function in an analogous manner to EBV BHRF1 in response to DNA damaging agents in human keratinocytes. In this study we show that the heterologous expression of the previously uncharacterised Herpesvirus pan BHRF1 in the human Burkitt's lymphoma cell line Ramos-BL provides similar anti-apoptotic functions to that of EBV BHRF1 in response to apoptosis triggered by serum withdrawal, etoposide treatment and ultraviolet (UV radiation. We also map the amino acid changes onto the recently solved structure of the EBV BHRF1 and reveal that these changes are unlikely to alter the 3D structure of the protein. Conclusions These findings show that the functional conservation of BHRF1 extends to a lymphoid background, suggesting that the primate virus proteins interact with cellular proteins that are themselves highly conserved across the higher primates. Further weight is added to this suggestion when we show that the difference in amino acid sequences map to regions on the 3D structure of EBV BHRF1 that are unlikely to change the conformation of the protein.

  16. Endogenous PKI gamma limits the duration of the anti-apoptotic effects of PTH and beta-adrenergic agonists in osteoblasts.

    Science.gov (United States)

    Chen, Xin; Song, In-Hwan; Dennis, James E; Greenfield, Edward M

    2007-05-01

    PKI gamma knockdown substantially extended the anti-apoptotic effects of PTH and beta-adrenergic agonists, whereas PKI gamma overexpression decreased these effects. Therefore, inhibition of PKI gamma activity may provide a useful co-therapy in combination with intermittent PTH or beta-adrenergic agonists for bone loss in conditions such as osteoporosis. PTH has both catabolic and anabolic effects on bone, which are primarily caused by cAMP/protein kinase A (PKA) signaling and regulation of gene expression. We previously showed that protein kinase inhibitor-gamma (PKI gamma) is required for efficient termination of cAMP/PKA signaling and gene expression after stimulation with PTH or beta-adrenergic agonists. Inhibition of osteoblast apoptosis is thought to be an important, but transient, mechanism partly responsible for the anabolic effects of intermittent PTH. Therefore, we hypothesized that endogenous PKI gamma also terminates the anti-apoptotic effect of PTH. PKI gamma knockdown by antisense transfection or siRNA was used to examine the ability of endogenous PKI gamma to modulate the anti-apoptotic effects of PTH and beta-adrenergic agonists in ROS 17/2.8 cells. Knockdown of PKI gamma substantially extended the anti-apoptotic effects of PTH, whether apoptosis was induced by etoposide or dexamethasone. In contrast, overexpression of PKI gamma decreased the anti-apoptotic effect of PTH pretreatment. This study is also the first demonstration that beta-adrenergic agonists mimic the anti-apoptotic effects of PTH in osteoblasts. Moreover, PKI gamma knockdown also substantially extended this anti-apoptotic effect of beta-adrenergic agonists. Taken together, these results show that endogenous PKI gamma limits the duration of the anti-apoptotic effects of cAMP/PKA signaling in osteoblasts. Because significant individual variability exists in the anabolic responses to PTH therapy in current clinical treatment of osteoporosis, inhibition of PKI gamma activity may provide a

  17. Anti-apoptotic peptides protect against radiation-induced cell death

    International Nuclear Information System (INIS)

    McConnell, Kevin W.; Muenzer, Jared T.; Chang, Kathy C.; Davis, Chris G.; McDunn, Jonathan E.; Coopersmith, Craig M.; Hilliard, Carolyn A.; Hotchkiss, Richard S.; Grigsby, Perry W.; Hunt, Clayton R.

    2007-01-01

    The risk of terrorist attacks utilizing either nuclear or radiological weapons has raised concerns about the current lack of effective radioprotectants. Here it is demonstrated that the BH4 peptide domain of the anti-apoptotic protein Bcl-xL can be delivered to cells by covalent attachment to the TAT peptide transduction domain (TAT-BH4) and provide protection in vitro and in vivo from radiation-induced apoptotic cell death. Isolated human lymphocytes treated with TAT-BH4 were protected against apoptosis following exposure to 15 Gy radiation. In mice exposed to 5 Gy radiation, TAT-BH4 treatment protected splenocytes and thymocytes from radiation-induced apoptotic cell death. Most importantly, in vivo radiation protection was observed in mice whether TAT-BH4 treatment was given prior to or after irradiation. Thus, by targeting steps within the apoptosis signaling pathway it is possible to develop post-exposure treatments to protect radio-sensitive tissues

  18. A component of green tea (-)-epigallocatechin-3-gallate, promotes apoptosis in T24 human bladder cancer cells via modulation of the PI3K/Akt pathway and Bcl-2 family proteins

    International Nuclear Information System (INIS)

    Qin Jie; Xie Liping; Zheng Xiangyi; Wang Yunbin; Bai Yu; Shen Huafeng; Li Longcheng; Dahiya, Rajvir

    2007-01-01

    Bladder cancer is the fourth most common cancer in men and ninth most common in women. It has a protracted course of progression and is thus an ideal candidate for chemoprevention strategies and trials. This study was conducted to evaluate the chemopreventive/antiproliferative potential of (-)-epigallocatechin gallate (EGCG, the major phytochemical in green tea) against bladder cancer and its mechanism of action. Using the T24 human bladder cancer cell line, we found that EGCG treatment caused dose- and time-dependent inhibition of cellular proliferation and cell viability, and induced apoptosis. Mechanistically, EGCG inhibits phosphatidylinositol 3'-kinase/Akt activation that, in turn, results in modulation of Bcl-2 family proteins, leading to enhanced apoptosis of T24 cells. These findings suggest that EGCG may be an important chemoprevention agent for the management of bladder cancer

  19. Bax/Bcl-2 protein expression ratio and leukocyte function are related to reduction of Walker-256 tumor growth after β-hydroxy-β-methylbutyrate (HMB) administration in Wistar rats.

    Science.gov (United States)

    Kuczera, Diogo; Paro de Oliveira, Heloísa Helena; Fonseca Guimarães, Fernando de Souza; de Lima, Carina; Alves, Luciana; Machado, Andressa Franzói; Coelho, Isabela; Yamaguchi, Adriana; Donatti, Lucélia; Naliwaiko, Katya; Fernandes, Luiz Claudio; Nunes, Everson Araújo

    2012-01-01

    This study investigated the mechanisms by which β-hydroxy-β-methylbutyrate (HMB) administration in rats reduces Walker-256 tumor growth. Male Wistar rats were supplemented with HMB (76 mg/kg/day) (HW), or a placebo (W), during 8 wk by gavage. At the 6th wk, rats were inoculated with a suspension of Walker 256 tumor cells (3 × 10(7)/mL). Fifteen days after inoculation, the HW group showed higher glycemia (109.4 ± 5.53 vs. 89.87 ± 7.02 mg/dL, P HMB-treated rats displayed a 36.9% decrement in rates of proliferation ex vivo and a significant increase in the Bax/Bcl-2 protein expression ratio in comparison to those extracted from the placebo-treated rats (P HMB supplementation decreases tumor burden by modifying the inner environment of tumor cells and by interfering with blood leukocyte function.

  20. Predictive value of bcl-2 immunoreactivity in prostate cancer patients treated with radiotherapy

    International Nuclear Information System (INIS)

    Bylund, A.; Widmark, A.; Stattin, P.; Bergh, A.

    1998-01-01

    Background and purpose: Recent experimental evidence suggests that overexpression of bcl-2, a protein functioning by blocking apoptosis, may influence the treatment outcome in human tumours, including prostate cancer. To test the clinical implications of this hypothesis, tumours from patients with prostate cancer treated with external beam radiotherapy were investigated for bcl-2 immunoreactivity (IR) and correlated with prognosis and treatment outcome. Materials and methods: Bcl-2 IR was evaluated in archival tumour specimens obtained through transurethral resection from 42 patients with localized prostate cancer (T0-T4, N0 and M0). Bcl-2 IR expression was related to stage, grade and cancer-specific survival. Specimens were obtained prior to administrating routine radiotherapy for all patients. Results: Bcl-2 IR was present in 19/42 (45%) tumours. The bcl-2-positive patients had a significantly longer cancer-specific survival than the bcl-2-negative patients (10.3 versus 3.4 years, P<0.04). At follow-up (7-19 years), nine patients were still alive, 26 patients had died of prostate cancer and seven patients had died of other causes. Conclusions: This study indicates that pre-treatment bcl-2 overexpression is related to a favourable outcome in prostate cancer treated with radiotherapy. Low bcl-2 along with a high stage may be a predictor of poor prognosis and these patients might benefit from additional treatment. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  1. Synergistic and complete reversal of the multidrug resistance of mitoxantrone hydrochloride by three-in-one multifunctional lipid-sodium glycocholate nanocarriers based on simultaneous BCRP and Bcl-2 inhibition.

    Science.gov (United States)

    Ling, Guixia; Zhang, Tianhong; Zhang, Peng; Sun, Jin; He, Zhonggui

    Multidrug resistance (MDR) is a severe obstacle to successful chemotherapy due to its complicated nature that involves multiple mechanisms, such as drug efflux by transporters (P-glycoprotein and breast cancer resistance protein, BCRP) and anti-apoptotic defense (B-cell lymphoma, Bcl-2). To synergistically and completely reverse MDR by simultaneous inhibition of pump and non-pump cellular resistance, three-in-one multifunctional lipid-sodium glycocholate (GcNa) nanocarriers (TMLGNs) have been designed for controlled co-delivery of water-soluble cationic mitoxantrone hydrochloride (MTO), cyclosporine A (CsA - BCRP inhibitor), and GcNa (Bcl-2 inhibitor). GcNa and dextran sulfate were incorporated as anionic compounds to enhance the encapsulation efficiency of MTO (up to 97.8%±1.9%) and sustain the release of cationic MTO by electrostatic interaction. The results of a series of in vitro and in vivo investigations indicated that the TMLGNs were taken up by the resistant cancer cells by an endocytosis pathway that escaped the efflux induced by BCRP, and the simultaneous release of CsA with MTO further efficiently inhibited the efflux of the released MTO by BCRP; meanwhile GcNa induced the apoptosis process, and an associated synergistic antitumor activity and reversion of MDR were achieved because the reversal index was almost 1.0.

  2. Expression of bcl-2 in the Epithelial Lining of Odontogenic Keratocysts

    Directory of Open Access Journals (Sweden)

    Gh. Jahanshahi

    2006-03-01

    Full Text Available Statement of Problem: The aggressive nature and high recurrence rate of Odontogenic Keratocysts (OKCs may be due to unknown factors inherent in the epithelium or because of enzymatic activity in the fibrous wall. Bcl-2 protein is characterized by its ability to inhibit apoptosis.Purpose: The aim of the present study was to analyze the expression of bcl-2 protein in OKCs and to compare it with the more common radicular and dentigerous cysts. The possible relationship between inflammation and bcl-2 expression was also investigated.Materials and Methods: Formalin fixed paraffin-embedded tissue sections of 20 OKCs, 20 radicular and 20 dentigerous cysts were immunohistochemically analyzed for immunoreactivity of the bcl-2 protein.Results: Bcl-2 expression was observed in 19 OKCs (95%, one radicular cyst (5%and one dentigerous cyst (5%. There was no statistically significant relationship between inflammation and the number of bcl-2 positive cells. Immunoreactivity was mainly noted in the basal or basal/supra basal layers.Conclusion: Considering the fact that bcl-2 over expression may lead to increased survival of epithelial cells, present study may demonstrate a possible relationship between the aggressive nature of OKC and the intrinsic growth potential of its lining epithelium. Furthermore a basal/supra basal distribution of bcl-2 positive cells was seen in some odontogenic keratocysts which may have a significant impact on the behavior of this cyst.

  3. Expression of Bcl-2 in canine osteosarcoma

    Science.gov (United States)

    Piro, F.; Leonardi, L.

    2015-01-01

    Osteosarcoma (OS) is the most common primary malignancy of bone. It is responsible for 80-85% of the primary bone tumors affecting dogs and it is characterized by aggressive and invasive behavior, with a high metastatic potential. Several studies on cancer and related tumorigenesis, show an involvement of the mechanisms of programmed cell death and cell survival. Many signals seem to be involved in the related mechanism of autophagy and in particular, our interest is focused on the expression of a family of Bcl-2 that seems to be involved either in the control of biomolecular mechanisms like autophagy and apoptosis. In this study we investigated the expression of Bcl-2 in different cases of spontaneous canine osteosarcoma and the related preliminary results are described. We found Bcl-2 activity was increased in OS tissue compared to normal bone tissue. These results suggested that Bcl-2 activity may play an important role in the formation of OS and as a diagnostic for neoplastic activity. However, further research is needed to confirm the role of Bcl-2 activity in OS in canines. PMID:26623359

  4. Expression of Bcl-2 in canine osteosarcoma

    Directory of Open Access Journals (Sweden)

    F. Piro

    2015-03-01

    Full Text Available Osteosarcoma (OS is the most common primary malignancy of bone. It is responsible for 80-85% of the primary bone tumors affecting dogs and it is characterized by aggressive and invasive behavior, with a high metastatic potential. Several studies on cancer and related tumorigenesis, show an involvement of the mechanisms of programmed cell death and cell survival. Many signals seem to be involved in the related mechanism of autophagy and in particular, our interest is focused on the expression of a family of Bcl-2 that seems to be involved either in the control of biomolecular mechanisms like autophagy and apoptosis. In this study we investigated the expression of Bcl-2 in different cases of spontaneous canine osteosarcoma and the related preliminary results are described. We found Bcl-2 activity was increased in OS tissue compared to normal bone tissue. These results suggested that Bcl-2 activity may play an important role in the formation of OS and as a diagnostic for neoplastic activity. However, further research is needed to confirm the role of Bcl-2 activity in OS in canines.

  5. AMP-activated protein kinase couples 3-bromopyruvate-induced energy depletion to apoptosis via activation of FoxO3a and upregulation of proapoptotic Bcl-2 proteins.

    Science.gov (United States)

    Bodur, Cagri; Karakas, Bahriye; Timucin, Ahmet Can; Tezil, Tugsan; Basaga, Huveyda

    2016-11-01

    Most tumors primarily rely on glycolysis rather than mitochondrial respiration for ATP production. This phenomenon, also known as Warburg effect, renders tumors more sensitive to glycolytic disturbances compared to normal cells. 3-bromopyruvate is a potent inhibitor of glycolysis that shows promise as an anticancer drug candidate. Although investigations revealed that 3-BP triggers apoptosis through ATP depletion and subsequent AMPK activation, the underlying molecular mechanisms coupling AMPK to apoptosis are poorly understood. We showed that 3-BP leads to a rapid ATP depletion which was followed by growth inhibition and Bax-dependent apoptosis in HCT116 cells. Apoptosis was accompanied with activation of caspase-9 and -3 while pretreatment with a general caspase inhibitor attenuated cell death. AMPK, p38, JNK, and Akt were phosphorylated immediately upon treatment. Pharmacological inhibition and silencing of AMPK largely inhibited 3-BP-induced apoptosis and reversed phosphorylation of JNK. Transcriptional activity of FoxO3a was dramatically increased subsequent to AMPK-mediated phosphorylation of FoxO3a at Ser413. Cell death analysis of cells transiently transfected with wt or AMPK-phosphorylation-deficient FoxO3 expression plasmids verified the contributory role of AMPK-FoxO3a axis in 3-BP-induced apoptosis. In addition, expression of proapoptotic Bcl-2 proteins Bim and Bax were upregulated in an AMPK-dependent manner. Bim was transcriptionally activated in association with FoxO3a activity, while Bax upregulation was abolished in p53-null cells. Together, these data suggest that AMPK couples 3-BP-induced metabolic disruption to intrinsic apoptosis via modulation of FoxO3a-Bim axis and Bax expression. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  6. Caspase-Mediated Anti-Apoptotic Effect of Ginsenoside Rg5, a Main Rare Ginsenoside, on Acetaminophen-Induced Hepatotoxicity in Mice.

    Science.gov (United States)

    Wang, Zi; Hu, Jun-Nan; Yan, Meng-Han; Xing, Jing-Jing; Liu, Wen-Cong; Li, Wei

    2017-10-25

    Frequent overdose of acetaminophen (APAP) is one of the most common and important incentives of acute hepatotoxicity. Prior to this work, our research group confirmed that black ginseng (Panax ginseng, BG) showed powerful protective effects on APAP-induced ALI. However, it is not clear which kind of individual ginsenoside from BG plays such a liver protection effect. The objective of the current investigation was to evaluate whether ginsenoside Rg5 (G-Rg5) protected against APAP-induced hepatotoxicity and the involved action mechanisms. Mice were administrated with G-Rg5 at two dosages of 10 or 20 mg/kg for 7 consecutive days. After the last treatment, all of the animals that received a single intraperitoneal injection of APAP (250 mg/kg) showed severe liver toxicity after 24 h, and the liver protection effects of G-Rg5 were examined. The results clearly indicated that pretreatment with G-Rg5 remarkably inhibited the production of serum tumor necrosis factor (TNF-α) and interleukin-1β (IL-1β) compared with the APAP group. Meanwhile, G-Rg5 decreased the hepatic malondialdehyde (MDA) content, the protein expression levels of 4-hydroxynonenal (4-HNE) and cytochrome P450 2E1 (CYP2E1) in the liver tissues. G-Rg5 decreased APAP caused the hepatic overexpression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). Furthermore, analysis of immunohistochemistry and Western blotting also indicated that G-Rg5 pretreatment inhibited activation of apoptotic pathways mainly via increasing the expression of Bcl-2 protein, decreasing the expression of Bax protein, proliferating cell nuclear antigen (PCNA), cytochrome c, caspase-3, caspase-8, and caspase-9. Liver histopathological observation provided further evidence that pretreatment with G-Rg5 could significantly inhibit hepatocyte necrosis, inflammatory cell infiltration, and apoptosis caused by APAP. In conclusion, the present study clearly demonstrates that G-Rg5 exerts a liver protection effect against

  7. TIC10/ONC201 synergizes with Bcl-2/Bcl-xL inhibition in glioblastoma by suppression of Mcl-1 and its binding partners in vitro and in vivo.

    Science.gov (United States)

    Karpel-Massler, Georg; Bâ, Maïmouna; Shu, Chang; Halatsch, Marc-Eric; Westhoff, Mike-Andrew; Bruce, Jeffrey N; Canoll, Peter; Siegelin, Markus D

    2015-11-03

    Glioblastoma is the most frequent primary brain tumor in adults. Current therapeutic options are sparse and the prognosis of patients suffering from this disease is grim. Abundance in intratumoral heterogeneity among different deregulated signaling pathways is a hallmark of glioblastoma and likely accounts for its recurrence and resistance to treatment. Glioblastomas harbor a plethora of deregulated pathways driving tumor formation and growth. In this study, we show that TIC10/ONC201, a promising compound that is currently in planned clinical development, along with Bcl-2/Bcl-xL inhibition by ABT263 yields a strong synergistic antiproliferative effect on pediatric, adult, proneural glioblastoma and glioma stem-like cells. On the molecular level, treatment with TIC10/ONC201 results in a posttranslational decrease of the anti-apoptotic Bcl-2 family member, myeloid cell leukemia 1 (Mcl-1), through modulation of the chaperone Bag3 and the deubiquitinase Usp9X. Consistently, the combination treatment of TIC10/ONC201 and ABT263 required the presence of functional BAX and BAK to drive intrinsic apoptosis, but is surprisingly independent of the extrinsic apoptotic pathway. Moreover, the expression of Noxa protein was required for efficient apoptosis induction by TIC10/ONC201 and ABT263. Importantly, the drug combination of TIC10/ONC201 and the BH3-mimetic, ABT263, led to a regression of tumors in vivo, without any notable toxicity and side effects. Overall, TIC10/ONC201 along with Bcl-2/Bcl-xL inhibition holds significant promise as a novel potential approach for the treatment of recalcitrant tumors such as glioblastoma.

  8. Bcl-2 family-regulated apoptosis in health and disease

    Directory of Open Access Journals (Sweden)

    Grant Dewson

    2010-04-01

    Full Text Available Grant Dewson, Ruth M KluckMolecular Genetics of Cancer Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, AustraliaAbstract: Apoptotic cell death is essential for embryonic development, tissue homeostasis, and a well-functioning immune system, with aberrant apoptosis contributing to numerous disease conditions. Inadequate cell death is a major contributing factor to tumorigenesis, while excess cell death contributes to neurodegeneration and autoimmune disease. The major pathway of apoptotic cell death, the mitochondrial pathway, is controlled by the Bcl-2 family of proteins. The members of this family, more than 17 in humans, share significant sequence and structural homology, and fulfil either prosurvival or proapoptotic roles. Specific interactions between these functionally polar proteins, and their relative expression levels, govern the susceptibility of each cell to toxic insults. Here we review the current understanding on how apoptotic cell death is controlled by this important protein family. We also discuss how excessive or insufficient cell death can contribute to disease, and how targeting the Bcl-2 family offers novel therapeutic opportunities.Keywords: apoptosis, Bcl-2, cancer, cytochrome c, mitochondria

  9. BCL-2: Long and winding path from discovery to therapeutic target

    International Nuclear Information System (INIS)

    Schenk, Robyn L.; Strasser, Andreas; Dewson, Grant

    2017-01-01

    In 1988, the BCL-2 protein was found to promote cancer by limiting cell death rather than enhancing proliferation. This discovery set the wheels in motion for an almost 30 year journey involving many international research teams that has recently culminated in the approval for a drug, ABT-199/venetoclax/Venclexta that targets this protein in the treatment of cancer. This review will describe the long and winding path from the discovery of this protein and understanding the fundamental process of apoptosis that BCL-2 and its numerous homologues control, through to its exploitation as a drug target that is set to have significant benefit for cancer patients. - Highlights: • BCL-2 proteins control the intrinsic or mitochondrial pathway of apoptosis. • Defective apoptosis is a hallmark of cancer. • BH3-mimetics inhibit pro-survival BCL-2 proteins to induce cancer cell death. • ABT-199/venetoclax is approved for treatment of chronic lymphocytic leukaemia.

  10. BCL2 genotypes and prostate cancer survival

    Energy Technology Data Exchange (ETDEWEB)

    Renner, Wilfried [Medical University of Graz, Clinical Institute of Medical and Chemical Laboratory Diagnostics, Graz (Austria); Langsenlehner, Uwe [GKK Outpatient Department, Division of Internal Medicine, Graz (Austria); Krenn-Pilko, Sabine; Langsenlehner, Tanja [Medical University of Graz, Department of Therapeutic Radiology and Oncology, Graz (Austria); Eder, Petra [University Hospital Wuerzburg, Department of Internal Medicine I, Wuerzburg (Germany)

    2017-06-15

    The antiapoptotic B-cell lymphoma 2 (BCL2) gene is a key player in cancer development and progression. A functional single-nucleotide polymorphism (c.-938C>A, rs2279115) in the inhibitory P2 BCL2 gene promoter has been associated with clinical outcomes in various types of cancer. Aim of the present study was to analyze the role of BCL2-938C>A genotypes in prostate cancer mortality. The association between BCL2-938C>A (rs2279115) genotypes and prostate cancer outcome was studied within the prospective PROCAGENE study comprising 702 prostate cancer patients. During a median follow-up time of 92 months, 120 (17.1%) patients died. A univariate Cox regression model showed a significant association of the CC genotype with reduced cancer-specific survival (CSS; hazard ratio, HR, 2.13, 95% confidence interval, CI, 1.10-4.12; p = 0.024) and overall survival (OS; HR 2.34, 95% CI 1.58-3.47; p < 0.001). In a multivariate Cox regression model including age at diagnosis, risk group, and androgen deprivation therapy, the CC genotype remained a significant predictor of poor CSS (HR 2.05, 95% CI 1.05-3.99; p = 0.034) and OS (HR 2.25, 95% CI 1.51-3.36; p < 0.001). This study provides evidence that the homozygous BCL2-938 CC genotype is associated with OS and C in prostate cancer patients. (orig.) [German] Das antiapoptotische Gen B cell lymphoma 2 (BCL2) spielt eine Schluesselrolle in der Entstehung und Progression von Krebserkrankungen. Ein funktioneller Einzelnukleotid-Polymorphismus (c.-938C>A, rs2279115) im inhibitorischen P2-BCL2-Promotor wurde mit dem klinischen Outcome verschiedener Krebserkrankungen verknuepft. Ziel der vorliegenden Studie war die Untersuchung der Rolle von BCL2-938C>A-Genotypen fuer die Mortalitaet bei Patienten mit Prostatakarzinom. Der Zusammenhang zwischen BCL2-938C>A-Genotypen (rs2279115) und dem Outcome bei Prostatakrebs wurde in der prospektiven PROCAGENE-Studie, die 702 Patienten mit Prostatakarzinom umfasste, untersucht. Waehrend der medianen

  11. Inhibition of bcl-2 and cox-2 Protein Expression after Local Application of a New Carmustine-Loaded Clinoptilolite-Based Delivery System in a Chemically Induced Skin Cancer Model in Mice

    Directory of Open Access Journals (Sweden)

    Cristina Mihaela Ghiciuc

    2017-11-01

    Full Text Available Our research has focused on in vitro and in vivo evaluations of a new Carmustine (BCNU-loaded clinoptilolite-based delivery system. Two clinoptilolite ionic forms—hydrogen form (HCLI and sodium form (NaCLI—were prepared, allowing a loading degree of about 5–6 mg BCNU/g of zeolite matrix due to the dual porous feature of clinoptilolite. Clinoptilolite-based delivery systems released 35.23% of the load in 12 h for the BCNU@HCLI system and only 10.82% for the BCNU@NaCLI system. The BCNU@HCLI system was chosen to develop gel and cream semisolid dosage forms. The cream (C_BCNU@HCLI released 29.6% of the loaded BCNU after 12 h in the Nylon synthetic membrane test and 31.6% in the collagen membrane test, higher by comparison to the gel. The new cream was evaluated in vivo in a chemically induced model of skin cancer in mice. Quantitative immunohistochemistry analysis showed stronger inhibition of B-cell lymphoma-2 (bcl-2 and cyclooxygenase 2 (cox-2 protein expression, known markers for cancer survival and aggressiveness, after the treatment with C_BCNU@HCLI by comparison to all the control treatment types, including an off-label magistral formula commercially available Carmustine cream as reference, bringing evidence that a clinoptilolite-based delivery systems could be used as a cancer drug carriers and controlled release systems (skin-targeted topical delivery systems.

  12. Genetic and Pharmacological Screens Converge in Identifying FLIP, BCL2, and IAP Proteins as Key Regulators of Sensitivity to the TRAIL-Inducing Anticancer Agent ONC201/TIC10.

    Science.gov (United States)

    Allen, Joshua E; Prabhu, Varun V; Talekar, Mala; van den Heuvel, A Pieter J; Lim, Bora; Dicker, David T; Fritz, Jennifer L; Beck, Adam; El-Deiry, Wafik S

    2015-04-15

    ONC201/TIC10 is a small-molecule inducer of the TRAIL gene under current investigation as a novel anticancer agent. In this study, we identify critical molecular determinants of ONC201 sensitivity offering potential utility as pharmacodynamic or predictive response markers. By screening a library of kinase siRNAs in combination with a subcytotoxic dose of ONC201, we identified several kinases that ablated tumor cell sensitivity, including the MAPK pathway-inducer KSR1. Unexpectedly, KSR1 silencing did not affect MAPK signaling in the presence or absence of ONC201, but instead reduced expression of the antiapoptotic proteins FLIP, Mcl-1, Bcl-2, cIAP1, cIAP2, and survivin. In parallel to this work, we also conducted a synergy screen in which ONC201 was combined with approved small-molecule anticancer drugs. In multiple cancer cell populations, ONC201 synergized with diverse drug classes, including the multikinase inhibitor sorafenib. Notably, combining ONC201 and sorafenib led to synergistic induction of TRAIL and its receptor DR5 along with a potent induction of cell death. In a mouse xenograft model of hepatocellular carcinoma, we demonstrated that ONC201 and sorafenib cooperatively and safely triggered tumor regressions. Overall, our results established a set of determinants for ONC201 sensitivity that may predict therapeutic response, particularly in settings of sorafenib cotreatment to enhance anticancer responses. ©2015 American Association for Cancer Research.

  13. Discovery and molecular characterization of a Bcl-2–regulated cell death pathway in schistosomes

    OpenAIRE

    Lee, Erinna F.; Clarke, Oliver B.; Evangelista, Marco; Feng, Zhiping; Speed, Terence P.; Tchoubrieva, Elissaveta B.; Strasser, Andreas; Kalinna, Bernd H.; Colman, Peter M.; Fairlie, W. Douglas

    2011-01-01

    Schistosomiasis is an infectious disease caused by parasites of the phylum platyhelminthe. Here, we describe the identification and characterization of a Bcl-2–regulated apoptosis pathway in Schistosoma japonicum and S. mansoni. Genomic, biochemical, and cell-based mechanistic studies provide evidence for a tripartite pathway, similar to that in humans including BH3-only proteins that are inhibited by prosurvival Bcl-2–like molecules, and Bax/Bak-like proteins that facilitate mitochondrial ou...

  14. Identification of an HLA-A*0201 restricted Bcl2-derived epitope expressed on tumors

    DEFF Research Database (Denmark)

    Wang, Mingjun; Johansen, Britta; Nissen, Mogens H

    2006-01-01

    A large number of human tumor-associated antigen-derived peptides have been identified that are recognized by CTLs in a MHC-I restricted fashion. The apoptosis inhibitory protein Bcl2 is overexpressed in many human cancers as part of their neoplastic phenotype. Since inhibition or loss of Bcl2...... from the amino acid sequence of the Bcl2 protein and its binding affinity for HLA-A*0201 was confirmed using a biochemical binding assay. We here demonstrate that the 9-mer peptide Bcl2(85-93) induces specific CTL reactivity in immunized C57-A2K(b) or -A2D(b) tg mice. These Bcl2(85-93) specific CTLs...... react with and lyse Bcl2-expressing human colon carcinoma CCL220 cells which have been transfected with a chimeric HLA-A*0201/H2-K(b) DNA construct similar to that expressed in the transgenic mice. Based on these observations, we suggest that Bcl2(85-93) may be a target for immune therapy....

  15. Superior anti-tumor activity of the MDM2 antagonist idasanutlin and the Bcl-2 inhibitor venetoclax in p53 wild-type acute myeloid leukemia models

    Directory of Open Access Journals (Sweden)

    Christian Lehmann

    2016-06-01

    Full Text Available Abstract Background Venetoclax, a small molecule BH3 mimetic which inhibits the anti-apoptotic protein Bcl-2, and idasanutlin, a selective MDM2 antagonist, have both shown activity as single-agent treatments in pre-clinical and clinical studies in acute myeloid leukemia (AML. In this study, we deliver the rationale and molecular basis for the combination of idasanutlin and venetoclax for treatment of p53 wild-type AML. Methods The effect of idasanutlin and venetoclax combination on cell viability, apoptosis, and cell cycle progression was investigated in vitro using established AML cell lines. In vivo efficacy was demonstrated in subcutaneous and orthotopic xenograft models generated in female nude or non-obese diabetic/severe combined immunodeficiency (NOD/SCID mice. Mode-of-action analyses were performed by means of cell cycle kinetic studies, RNA sequencing as well as western blotting experiments. Results Combination treatment with venetoclax and idasanutlin results in synergistic anti-tumor activity compared with the respective single-agent treatments in vitro, in p53 wild-type AML cell lines, and leads to strongly superior efficacy in vivo, in subcutaneous and orthotopic AML models. The inhibitory effects of idasanutlin were cell-cycle dependent, with cells arresting in G1 in consecutive cycles and the induction of apoptosis only evident after cells had gone through at least two cell cycles. Combination treatment with venetoclax removed this dependency, resulting in an acceleration of cell death kinetics. As expected, gene expression studies using RNA sequencing showed significant alterations to pathways associated with p53 signaling and cell cycle arrest (CCND1 pathway in response to idasanutlin treatment. Only few gene expression changes were observed for venetoclax treatment and combination treatment, indicating that their effects are mediated mainly at the post-transcriptional level. Protein expression studies demonstrated that

  16. Curcumin significantly enhances dual PI3K/Akt and mTOR inhibitor NVP-BEZ235-induced apoptosis in human renal carcinoma Caki cells through down-regulation of p53-dependent Bcl-2 expression and inhibition of Mcl-1 protein stability.

    Directory of Open Access Journals (Sweden)

    Bo Ram Seo

    Full Text Available The PI3K/Akt and mTOR signaling pathways are important for cell survival and growth, and they are highly activated in cancer cells compared with normal cells. Therefore, these signaling pathways are targets for inducing cancer cell death. The dual PI3K/Akt and mTOR inhibitor NVP-BEZ235 completely inhibited both signaling pathways. However, NVP-BEZ235 had no effect on cell death in human renal carcinoma Caki cells. We tested whether combined treatment with natural compounds and NVP-BEZ235 could induce cell death. Among several chemopreventive agents, curcumin, a natural biologically active compound that is extracted from the rhizomes of Curcuma species, markedly induced apoptosis in NVP-BEZ235-treated cells. Co-treatment with curcumin and NVP-BEZ235 led to the down-regulation of Mcl-1 protein expression but not mRNA expression. Ectopic expression of Mcl-1 completely inhibited curcumin plus NVP-NEZ235-induced apoptosis. Furthermore, the down-regulation of Bcl-2 was involved in curcumin plus NVP-BEZ235-induced apoptosis. Curcumin or NVP-BEZ235 alone did not change Bcl-2 mRNA or protein expression, but co-treatment reduced Bcl-2 mRNA and protein expression. Combined treatment with NVP-BEZ235 and curcumin reduced Bcl-2 expression in wild-type p53 HCT116 human colon carcinoma cells but not p53-null HCT116 cells. Moreover, Bcl-2 expression was completely reversed by treatment with pifithrin-α, a p53-specific inhibitor. Ectopic expression of Bcl-2 also inhibited apoptosis in NVP-BE235 plus curcumin-treated cells. In contrast, NVP-BEZ235 combined with curcumin did not have a synergistic effect on normal human skin fibroblasts and normal human mesangial cells. Taken together, combined treatment with NVP-BEZ235 and curcumin induces apoptosis through p53-dependent Bcl-2 mRNA down-regulation at the transcriptional level and Mcl-1 protein down-regulation at the post-transcriptional level.

  17. The anti-apoptotic and cardioprotective effects of salvianolic acid a on rat cardiomyocytes following ischemia/reperfusion by DUSP-mediated regulation of the ERK1/2/JNK pathway.

    Directory of Open Access Journals (Sweden)

    Tongda Xu

    Full Text Available The purpose of this study was to observe the effects of salvianolic acid A (SAA pretreatment on the myocardium during ischemia/reperfusion (I/R and to illuminate the interrelationships among dual specificity protein phosphatase (DUSP 2/4/16, ERK1/2 and JNK pathways during myocardial I/R, with the ultimate goal of elucidating how SAA exerts cardioprotection against I/R injury (IRI. Wistar rats were divided into the following six groups: control group (CON, I/R group, SAA+I/R group, ERK1/2 inhibitor PD098059+I/R group (PD+I/R, PD+SAA+I/R group, and JNK inhibitor SP600125+I/R group (SP+I/R. The cardioprotective effects of SAA on the myocardium during I/R were investigated with a Langendorff device. Heart rate (HR, left ventricular systolic pressure (LVSP, left ventricular end-diastolic pressure (LVEDP, maximum rate of ventricular pressure rise and fall (±dp/dtmax, myocardial infarction areas (MIA, lactate dehydrogenase (LDH, and cardiomyocytes apoptosis were monitored. To determine the crosstalk betwee JNK and ERK1/2 via DUSP2/4/16 with SAA pretreatment, siRNA-DUSP2/4/16 were performed. The expression levels of Bcl-2, Bax, caspase 3, p-JNK, p-ERK1/2 and DUSP2/4/16 in cardiomyocytes were assayed by Western blot. Our results showed that LDH, MIA and cell apoptosis were decreased, and various parameters of heart function were improved by SAA pretreatment and SP application. In the I/R group, the expression levels of p-ERK1/2 and DUSP4/16 were not significantly different compared with the CON group, however, the protein expression levels of p-ERK1/2, Bcl-2 and DUSP4/16 were higher, while p-JNK, Bax, caspase 3 and DUSP2 levels were reduced among the SAA+I/R, PD+SAA+I/R and SP+I/R groups. The above indices were not significantly different between the SAA+I/R and SP+I/R groups. Compared with the SAA+I/R group, p-ERK1/2 was increased and p-JNK was decreased in the SAA+si-DUSP2+I/R, however, p-ERK was downregulated and p-JNK was upregulated in SAA+si-DUSP4

  18. Curcumin Anti-Apoptotic Action in a Model of Intestinal Epithelial Inflammatory Damage.

    Science.gov (United States)

    Loganes, Claudia; Lega, Sara; Bramuzzo, Matteo; Vecchi Brumatti, Liza; Piscianz, Elisa; Valencic, Erica; Tommasini, Alberto; Marcuzzi, Annalisa

    2017-06-06

    The purpose of this study is to determine if a preventive treatment with curcumin can protect intestinal epithelial cells from inflammatory damage induced by IFNγ. To achieve this goal we have used a human intestinal epithelial cell line (HT29) treated with IFNγ to undergo apoptotic changes that can reproduce the damage of intestinal epithelia exposed to inflammatory cytokines. In this model, we measured the effect of curcumin (curcuminoid from Curcuma Longa ) added as a pre-treatment at different time intervals before stimulation with IFNγ. Curcumin administration to HT29 culture before the inflammatory stimulus IFNγ reduced the cell apoptosis rate. This effect gradually declined with the reduction of the curcumin pre-incubation time. This anti-apoptotic action by curcumin pre-treatment was paralleled by a reduction of secreted IL7 in the HT29 culture media, while there was no relevant change in the other cytokine levels. Even though curcumin pre-administration did not impact the activation of the NF-κB pathway, a slight effect on the phosphorylation of proteins in this inflammatory signaling pathway was observed. In conclusion, curcumin pre-treatment can protect intestinal cells from inflammatory damage. These results can be the basis for studying the preventive role of curcumin in inflammatory bowel diseases.

  19. Anti-apoptotic role of retinoic acid in the inner ear of noise-exposed mice

    International Nuclear Information System (INIS)

    Ahn, Joong Ho; Kang, Hun Hee; Kim, Young-Jin; Chung, Jong Woo

    2005-01-01

    Exposure to loud noise can induce temporary or permanent hearing loss, and acoustic trauma is the major cause of hearing impairment in industrial nations. However, the mechanisms underlying the death of hair cells after acoustic trauma remain unclear. In addition to its involvement in cellular stress and apoptosis, the c-Jun N-terminal kinase (JNK), a member of the mitogen-activated protein kinase family, is involved in cell survival, transformation, embryonic morphogenesis, and differentiation. JNK is primarily activated by various environmental stresses including noise, and the phenotypic result appears be to cell death. All-trans retinoic acid (ATRA) is an active metabolite of vitamin A that regulates a wide range of biological processes, including cell proliferation, differentiation, and morphogenesis. We evaluated the role of ATRA in preserving hearing in mice exposed to noise that can induce permanent hearing loss. Mice fed with ATRA before and during 3 consecutive days of noise exposure had a more preserved hearing threshold than mice fed sesame oil or saline. Histological and TUNEL staining of the cochlea showed significantly enhanced preservation of the organ of Corti, including outer hair cells and relatively low apoptotic nuclei, in mice-fed ATRA than in mice-fed sesame oil or saline. Phospho-JNK immunohistochemistry showed that ATRA inhibited the activation of JNK. These results suggest that ATRA has an anti-apoptotic effect on cochleae exposed to noise

  20. EGFR and Bcl-2 in gastric mucosa of children infected with Helicobacter pylori

    Directory of Open Access Journals (Sweden)

    Ewa Ryszczuk

    2016-03-01

    Full Text Available Aim: The aim of the study was to evaluate the expression of EGFR and Bcl-2 proteins as inhibitory markers of apoptosis in surface epithelial cells and gland cells of antral gastric mucosa in children infected with Helicobacter pylori according to the severity and activity of antral gastritis and to assess the correlation between the number of cells expressing EGFR and the number of cells expressing Bcl-2 in H. pylori infected children.Materials and methods: The study included 44 children: 68.2% with chronic gastritis and positive IgG against H. pylori, and 31.8% with functional disorders of the gastrointestinal tract and with normal IgG against H. pylori. The evaluation of EGFR expression in gastric mucosa was performed immunohistochemically using monoclonal mouse anti-EGFR antibody. The polyclonal antibody was used to determine the expression of anti-Bcl-2.Results: A significant increase in the number of cells expressing EGFR and Bcl-2 protein was found in the epithelial cells in severe as well as mild and moderate gastritis in the group of children infected with H. pylori. An increase in the number of cells expressing EGFR and Bcl-2 protein was also found in the epithelial cells in group I according to the activity of gastritis. There was a statistically significant positive correlation between the numbers of cells expressing EGFR and Bcl-2 in H. pylori infected children.Conclusion: Increased expression of EGFR and Bcl-2 proteins in the epithelial cells and a statistically significant positive correlation between the numbers of cells expressing EGFR and Bcl-2 in H. pylori infected children could suggest increased regeneration abilities of gastric mucosa.

  1. Stress Hormone Cortisol Enhances Bcl2 Like-12 Expression to Inhibit p53 in Hepatocellular Carcinoma Cells.

    Science.gov (United States)

    Wu, Weizhong; Liu, Sanguang; Liang, Yunfei; Zhou, Zegao; Bian, Wei; Liu, Xueqing

    2017-12-01

    The pathogenesis of hepatocellular carcinoma (HC) is unclear. It is suggested that psychological stress associates with the pathogenesis of liver cancer. Bcl2-like protein 12 (Bcl2L12) suppresses p53 protein. This study tests a hypothesis that the major stress hormone, cortisol, inhibits the expression of p53 in HC cells (HCC) via up regulating the expression of Bcl2L12. Peripheral blood samples were collected from patients with HC to be analyzed for the levels of cortisol. HCC were cultured to assess the role of cortisol in the regulation of the expression of Bcl2L12 and p53 in HCC. We observed that the serum cortisol levels were higher in HC patients. Expression of Bcl2L12 in HCC was correlated with serum cortisol. Cortisol enhanced the Bcl2L12 expression in HCC. Bcl2L12 binding to the TP53 promoter was correlated with p53 expression in HCC. Cortisol increased the Bcl2L12 expression in HCC to inhibit p53 expression. Stress hormone cortisol suppresses p53 in HCC via enhancing Bcl2L12 expression in HCC. The results suggest that cortisol may be a therapeutic target for the treatment of HC.

  2. Proteomic analysis reveals a role for Bcl2-associated athanogene 3 and major vault protein in resistance to apoptosis in senescent cells by regulating ERK1/2 activation.

    Science.gov (United States)

    Pasillas, Martina P; Shields, Sarah; Reilly, Rebecca; Strnadel, Jan; Behl, Christian; Park, Robin; Yates, John R; Klemke, Richard; Gonias, Steven L; Coppinger, Judith A

    2015-01-01

    Senescence is a prominent solid tumor response to therapy in which cells avoid apoptosis and instead enter into prolonged cell cycle arrest. We applied a quantitative proteomics screen to identify signals that lead to therapy-induced senescence and discovered that Bcl2-associated athanogene 3 (Bag3) is up-regulated after adriamycin treatment in MCF7 cells. Bag3 is a member of the BAG family of co-chaperones that interacts with Hsp70. Bag3 also regulates major cell-signaling pathways. Mass spectrometry analysis of the Bag3 Complex revealed a novel interaction between Bag3 and Major Vault Protein (MVP). Silencing of Bag3 or MVP shifts the cellular response to adriamycin to favor apoptosis. We demonstrate that Bag3 and MVP contribute to apoptosis resistance in therapy-induced senescence by increasing the level of activation of extracellular signal-regulated kinase1/2 (ERK1/2). Silencing of either Bag3 or MVP decreased ERK1/2 activation and promoted apoptosis in adriamycin-treated cells. An increase in nuclear accumulation of MVP is observed during therapy-induced senescence and the shift in MVP subcellular localization is Bag3-dependent. We propose a model in which Bag3 binds to MVP and facilitates MVP accumulation in the nucleus, which sustains ERK1/2 activation. We confirmed that silencing of Bag3 or MVP shifts the response toward apoptosis and regulates ERK1/2 activation in a panel of diverse breast cancer cell lines. This study highlights Bag3-MVP as an important complex that regulates a potent prosurvival signaling pathway and contributes to chemotherapy resistance in breast cancer. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Proteomic Analysis Reveals a Role for Bcl2-associated Athanogene 3 and Major Vault Protein in Resistance to Apoptosis in Senescent Cells by Regulating ERK1/2 Activation*

    Science.gov (United States)

    Pasillas, Martina P.; Shields, Sarah; Reilly, Rebecca; Strnadel, Jan; Behl, Christian; Park, Robin; Yates, John R.; Klemke, Richard; Gonias, Steven L.; Coppinger, Judith A.

    2015-01-01

    Senescence is a prominent solid tumor response to therapy in which cells avoid apoptosis and instead enter into prolonged cell cycle arrest. We applied a quantitative proteomics screen to identify signals that lead to therapy-induced senescence and discovered that Bcl2-associated athanogene 3 (Bag3) is up-regulated after adriamycin treatment in MCF7 cells. Bag3 is a member of the BAG family of co-chaperones that interacts with Hsp70. Bag3 also regulates major cell-signaling pathways. Mass spectrometry analysis of the Bag3 Complex revealed a novel interaction between Bag3 and Major Vault Protein (MVP). Silencing of Bag3 or MVP shifts the cellular response to adriamycin to favor apoptosis. We demonstrate that Bag3 and MVP contribute to apoptosis resistance in therapy-induced senescence by increasing the level of activation of extracellular signal-regulated kinase1/2 (ERK1/2). Silencing of either Bag3 or MVP decreased ERK1/2 activation and promoted apoptosis in adriamycin-treated cells. An increase in nuclear accumulation of MVP is observed during therapy-induced senescence and the shift in MVP subcellular localization is Bag3-dependent. We propose a model in which Bag3 binds to MVP and facilitates MVP accumulation in the nucleus, which sustains ERK1/2 activation. We confirmed that silencing of Bag3 or MVP shifts the response toward apoptosis and regulates ERK1/2 activation in a panel of diverse breast cancer cell lines. This study highlights Bag3-MVP as an important complex that regulates a potent prosurvival signaling pathway and contributes to chemotherapy resistance in breast cancer. PMID:24997994

  4. THE EXPRESSION AND CLINICAL VALUE OF APOPTOSIS CONTROL GENE Bcl-2 AND Bax IN BREAST CANCER

    Institute of Scientific and Technical Information of China (English)

    ZHENG Jun; YAO Zhen-xiang; ZHANG Jing

    1999-01-01

    Objective: To study the expression and clinical value of apoptosis control gene bcl-2 and bax in breast cancer.Methods: Protein bax and bcl-2 in 41 breast cancers obtained from operations in our hospital in 1996 were detected using ABC immunohistochemical stain assay and compared with 10 cases with normal breast tissues.Results: The positive rate of bax in normal breast tissue was 90% and in breast cancer was 59%, with a significant statistical difference between them (P<0.05), but there was no statistical difference in bcl-2 protein expression. Among the 41 breast cancer, the group with lymph node metastasis (21 cases) had obviously low bax expression (43%) and high bcl-2 expression (76%), showing significant difference to the group without lymph node metastasis (P<0.05).Conclusion: The antiapoptosis function of bcl-2 was stronger than bax in breast cancer. Protein bax and bcl-2 assay may be useful in understanding the biological behaviors of breast cancer.

  5. The Anti-Apoptotic Properties of APEX1 in the Endothelium Require the First 20 Amino Acids and Converge on Thioredoxin-1.

    Science.gov (United States)

    Dyballa-Rukes, Nadine; Jakobs, Philipp; Eckers, Anna; Ale-Agha, Niloofar; Serbulea, Vlad; Aufenvenne, Karin; Zschauer, Tim-Christian; Rabanter, Lothar L; Jakob, Sascha; von Ameln, Florian; Eckermann, Olaf; Leitinger, Norbert; Goy, Christine; Altschmied, Joachim; Haendeler, Judith

    2017-04-20

    The APEX nuclease (multifunctional DNA repair enzyme) 1 (APEX1) has a disordered N-terminus, a redox, and a DNA repair domain. APEX1 has anti-apoptotic properties, which have been linked to both domains depending on cell type and experimental conditions. As protection against apoptosis is a hallmark of vessel integrity, we wanted to elucidate whether APEX1 acts anti-apoptotic in primary human endothelial cells and, if so, what the underlying mechanisms are. APEX1 inhibits apoptosis in endothelial cells by reducing Cathepsin D (CatD) cleavage, potentially by binding to the unprocessed form. Diminished CatD activation results in increased Thioredoxin-1 protein levels leading to reduced Caspase 3 activation. Consequently, apoptosis rates are decreased. This depends on the first twenty amino acids in APEX1, because APEX1 (21-318) induces CatD activity, decreases Thioredoxin-1 protein levels, and, thus, increases Caspase 3 activity and apoptosis. Along the same lines, APEX1 (1-20) inhibits Caspase 3 cleavage and apoptosis. Furthermore, re-expression of Thioredoxin-1 via lentiviral transduction rescues endothelial cells from APEX1 (21-318)-induced apoptosis. In an in vivo model of restenosis, which is characterized by oxidative stress, endothelial activation, and smooth muscle cell proliferation, Thioredoxin-1 protein levels are reduced in the endothelium of the carotids. APEX1 acts anti-apoptotic in endothelial cells. This anti-apoptotic effect depends on the first 20 amino acids of APEX1. As proper function of the endothelium during life span is a hallmark for individual health span, a detailed characterization of the functions of the APEX1N-terminus is required to understand all its cellular properties. Antioxid. Redox Signal. 26, 616-629.

  6. Estradiol increases the Bax/Bcl-2 ratio and induces apoptosis in the anterior pituitary gland.

    Science.gov (United States)

    Zaldivar, Verónica; Magri, María Laura; Zárate, Sandra; Jaita, Gabriela; Eijo, Guadalupe; Radl, Daniela; Ferraris, Jimena; Pisera, Daniel; Seilicovich, Adriana

    2009-01-01

    Estrogens are recognized as acting as modulators of pituitary cell renewal, sensitizing cells to mitogenic and apoptotic signals, thus participating in anterior pituitary homeostasis during the estrous cycle. The balance of pro- and antiapoptotic proteins of the Bcl-2 family is known to regulate cell survival and apoptosis. In order to understand the mechanisms underlying apoptosis during the estrous cycle, we evaluated the expression of the proapoptotic protein Bax and the antiapoptotic proteins Bcl-2 and Bcl-xL in the anterior pituitary gland in cycling female rats as well as the influence of estradiol on the expression of these proteins in anterior pituitary cells of ovariectomized rats. As determined by Western blot, the expression of Bax was higher in anterior pituitary glands from rats at proestrus than at diestrus I, Bcl-2 protein levels showed no difference and Bcl-xL expression was lower, thus increasing the Bax/Bcl-2 ratio at proestrus. Assessed by annexin V binding and flow cytometry, the percentage of apoptotic anterior pituitary cells was higher in rats at proestrus than at diestrus I. Chronic estrogen treatment in ovariectomized rats enhanced the Bax/Bcl-2 ratio and induced apoptosis. Moreover, incubation of cultured anterior pituitary cells from ovariectomized rats with 17beta-estradiol for 24 h increased the Bax/Bcl-2 ratio, decreased Bcl-xL expression and induced apoptosis. Our results demonstrate that estradiol increases the ratio between proapoptotic and antiapoptotic proteins of the Bcl-2 family. This effect could participate in the sensitizing action of estrogens to proapoptotic stimuli and therefore be involved in the high apoptotic rate observed at proestrus in the anterior pituitary gland.

  7. Mapping of the bcl-2 oncogene on mouse chromosome 1.

    Science.gov (United States)

    Mock, B A; Givol, D; D'Hoostelaere, L A; Huppi, K; Seldin, M F; Gurfinkel, N; Unger, T; Potter, M; Mushinski, J F

    1988-01-01

    Two bcl-2 alleles have been identified in inbred strains of mice by restriction fragment length polymorphism (RFLP). Analysis of a bcl-2 RFLP in a series of bilineal congenic strains (C.D2), developed as a tool for chromosomal mapping studies, revealed linkage of bcl-2 to the Idh-1/Pep-3 region of murine chromosome 1. The co-segregation of bcl-2 alleles with allelic forms of two other chromosome 1 loci, Ren-1,2 and Spna-1, in a set of back-cross progeny, positions bcl-2 7.8 cM centromeric from Ren-1,2.

  8. High expression of BCL-2 predicts favorable outcome in non-small cell lung cancer patients with non squamous histology

    International Nuclear Information System (INIS)

    Anagnostou, Valsamo K; Boffa, Daniel; Gettinger, Scott; Detterbeck, Frank; Homer, Robert J; Dougenis, Dimitrios; Rimm, David L; Syrigos, Konstantinos N; Lowery, Frank J; Zolota, Vassiliki; Tzelepi, Vassiliki; Gopinath, Arun; Liceaga, Camil; Panagopoulos, Nikolaos; Frangia, Konstantina; Tanoue, Lynn

    2010-01-01

    Bcl-2 promotes cell survival by inhibiting adapters needed for the activation and cleavage of caspases thus blocking the proteolytic cascade that ultimately dismantles the cell. Bcl-2 has been investigated as a prognostic factor in non small cell lung cancer (NSCLC) patients with conflicting results. Here, we quantitatively assessed Bcl-2 expression in two large and independent cohorts to investigate the impact of Bcl-2 on survival. AQUA ® , a fluorescent-based method for analysis of in situ protein expression, was used to measure Bcl-2 protein levels and classify tumors by Bcl-2 expression in a cohort of 180 NSCLC patients. An independent cohort of 354 NSCLC patients was used to validate Bcl-2 classification and evaluate outcome. Fifty % and 52% of the cases were classified as high expressers in training and validation cohorts respectively. Squamous cell carcinomas were more likely to be high expressers compared to adenocarcinomas (63% vs. 45%, p = 0.002); Bcl-2 was not associated with other clinical or pathological characteristics. Survival analysis showed that patients with high BCL-2 expression had a longer median survival compared to low expressers (22 vs. 17.5 months, log rank p = 0.014) especially in the subset of non-squamous tumors (25 vs. 13.8 months, log rank p = 0.04). Multivariate analysis revealed an independent lower risk for all patients with Bcl-2 expressing tumors (HR = 0.53, 95% CI 0.37-0.75, p = 0.0003) and for patients with non-squamous tumors (HR = 0.5, 95% CI 0.31-0.81, p = 0.005). Bcl-2 expression defines a subgroup of patients with a favorable outcome and may be useful for prognostic stratification of NSCLC patients

  9. 7α-Hydroxy-β-Sitosterol from Chisocheton tomentosus Induces Apoptosis via Dysregulation of Cellular Bax/Bcl-2 Ratio and Cell Cycle Arrest by Downregulating ERK1/2 Activation

    Directory of Open Access Journals (Sweden)

    Mohammad Tasyriq

    2012-01-01

    Full Text Available In continuation of our interest towards the elucidation of apoptotic pathways of cytotoxic phytocompounds, we have embarked upon a study on the anticancer effects of 7α-hydroxy-β-sitosterol (CT1, a rare natural phytosterol oxide isolated from Chisocheton tomentosus. CT1 was found to be cytotoxic on three different human tumor cell lines with minimal effects on normal cell controls, where cell viability levels were maintained ≥80% upon treatment. Our results showed that cell death in MCF-7 breast tumor cells was achieved through the induction of apoptosis via downregulation of the ERK1/2 signaling pathway. CT1 was also found to increase proapoptotic Bax protein levels, while decreasing anti-apoptotic Bcl-2 protein levels, suggesting the involvement of the intrinsic pathway. Reduced levels of initiator procaspase-9 and executioner procaspase-3 were also observed following CT1 exposure, confirming the involvement of cytochrome c-mediated apoptosis via the mitochondrial pathway. These results demonstrated the cytotoxic and apoptotic ability of 7α-hydroxy-β-sitosterol and suggest its potential anti-cancer use particularly on breast adenocarcinoma cells.

  10. Involvement of p53 and Bcl-2 in sensory cell degeneration in aging rat cochleae.

    Science.gov (United States)

    Xu, Yang; Yang, Wei Ping; Hu, Bo Hua; Yang, Shiming; Henderson, Donald

    2017-06-01

    p53 and Bcl-2 (B-cell lymphoma 2) are involved in the process of sensory cell degeneration in aging cochleae. To determine molecular players in age-related hair cell degeneration, this study examined the changes in p53 and Bcl-2 expression at different stages of apoptotic and necrotic death of hair cells in aging rat cochleae. Young (3-4 months) and aging (23-24 months) Fisher 344/NHsd rats were used. The thresholds of the auditory brainstem response (ABR) were measured to determine the auditory function. Immunolabeling was performed to determine the expression of p53 and Bcl-2 proteins in the sensory epithelium. Propidium iodide staining was performed to determine the morphologic changes in hair cell nuclei. Aging rats exhibited a significant elevation in ABR thresholds at all tested frequencies (p aging hair cells showing the early signs of apoptotic changes in their nuclei. The Bcl-2 expression increase was also observed in hair cells displaying early signs of necrosis. As the hair cell degenerative process advanced, p53 and Bcl-2 immunoreactivity became reduced or absent. In the areas where no detectable nuclear staining was present, p53 and Bcl-2 immunoreactivity was absent.

  11. Dynamin inhibitors induce caspase-mediated apoptosis following cytokinesis failure in human cancer cells and this is blocked by Bcl-2 overexpression

    Directory of Open Access Journals (Sweden)

    Braithwaite Antony W

    2011-06-01

    Full Text Available Abstract Background The aim of both classical (e.g. taxol and targeted anti-mitotic agents (e.g. Aurora kinase inhibitors is to disrupt the mitotic spindle. Such compounds are currently used in the clinic and/or are being tested in clinical trials for cancer treatment. We recently reported a new class of targeted anti-mitotic compounds that do not disrupt the mitotic spindle, but exclusively block completion of cytokinesis. This new class includes MiTMAB and OcTMAB (MiTMABs, which are potent inhibitors of the endocytic protein, dynamin. Like other anti-mitotics, MiTMABs are highly cytotoxic and possess anti-proliferative properties, which appear to be selective for cancer cells. The cellular response following cytokinesis failure and the mechanistic pathway involved is unknown. Results We show that MiTMABs induce cell death specifically following cytokinesis failure via the intrinsic apoptotic pathway. This involves cleavage of caspase-8, -9, -3 and PARP, DNA fragmentation and membrane blebbing. Apoptosis was blocked by the pan-caspase inhibitor, ZVAD, and in HeLa cells stably expressing the anti-apoptotic protein, Bcl-2. This resulted in an accumulation of polyploid cells. Caspases were not cleaved in MiTMAB-treated cells that did not enter mitosis. This is consistent with the model that apoptosis induced by MiTMABs occurs exclusively following cytokinesis failure. Cytokinesis failure induced by cytochalasin B also resulted in apoptosis, suggesting that disruption of this process is generally toxic to cells. Conclusion Collectively, these data indicate that MiTMAB-induced apoptosis is dependent on both polyploidization and specific intracellular signalling components. This suggests that dynamin and potentially other cytokinesis factors are novel targets for development of cancer therapeutics.

  12. Hypoxia-response plasmid vector producing bcl-2 shRNA enhances the apoptotic cell death of mouse rectum carcinoma.

    Science.gov (United States)

    Fujioka, Takashi; Matsunaga, Naoya; Okazaki, Hiroyuki; Koyanagi, Satoru; Ohdo, Shigehiro

    2010-01-01

    Hypoxia-induced gene expression frequently occurs in malignant solid tumors because they often have hypoxic areas in which circulation is compromised due to structurally disorganized blood vessels. Hypoxia-response elements (HREs) are responsible for activating gene transcription in response to hypoxia. In this study, we constructed a hypoxia-response plasmid vector producing short hairpin RNA (shRNA) against B-cell leukemia/lymphoma-2 (bcl-2), an anti-apoptotic factor. The hypoxia-response promoter was made by inserting tandem repeats of HREs upstream of cytomegalovirus (CMV) promoter (HRE-CMV). HRE-CMV shbcl-2 vector consisted of bcl-2 shRNA under the control of HRE-CMV promoter. In hypoxic mouse rectum carcinoma cells (colon-26), the production of bcl-2 shRNA driven by HRE-CMV promoter was approximately 2-fold greater than that driven by CMV promoter. A single intratumoral (i.t.) injection of 40 microg HRE-CMV shbcl-2 to colon-26 tumor-bearing mice caused apoptotic cell death, and repetitive treatment with HRE-CMV shbcl-2 (40 microg/mouse, i.t.) also significantly suppressed the growth of colon-26 tumor cells implanted in mice. Apoptotic and anti-tumor effects were not observed in tumor-bearing mice treated with CMV shbcl-2. These results reveal the ability of HRE-CMV shbcl-2 vector to suppress the expression of bcl-2 in hypoxic tumor cells and suggest the usefulness of our constructed hypoxia-response plasmid vector to treat malignant tumors. [Supplementary Figures: available only at http://dx.doi.org/10.1254/jphs.10054FP].

  13. The role of the expression of bcl-2, p53 gene in tamoxifen-induced apoptosis of breast cancer cells and its relationship with hormone receptor status

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Woo Chul; Ham, Yong Ho [Korea Cancer Center Hospital, Seoul (Korea, Republic of)

    1998-01-01

    To investigate the relationship of bcl-2, p53, ER and tamoxifen-induced apoptosis of breast cancer cells, MCF-7 (ER+/bcl-2+/p53-) and MB MDA 468 (ER-/bcl-2-/p53+) cell line were cultured in estrogen-free condition. E2(10`-`9M) and tamoxifen (10`-`5M) were added to the media. The changes of bcl-2 and mutant p53 protein were checked by Western blot and apoptosis were measured by flowcytometry. In MCF-7 cells, we found that treatment with tamoxifen resulted in a decrease in bcl-2 protein level, but produced no change in mutant p53. In MB MDA 468 cell however, there were no changes of bcl-2 and mutant p53 protein level when E2 or tamoxifen were added. Apoptotic cells increased with time-dependent pattern when tamoxifen was added to MCF-7 cells. According to these result, ER+/blc-2+/mutant p53- cells, when treated with tamoxifen, were converted into bcl-2/mutant p53- cells which were more prone to apoptosis than bcl-2-/mutant p53+ cells. The paradoxical correlation of bcl-2 and ER which had been observed in clinical studies might be explained with this results and bcl-2 protein seems to be one of important factors that can predict the effect of hormone therapy. (author). 26 refs., 5 figs

  14. The role of the expression of bcl-2, p53 gene in tamoxifen-induced apoptosis of breast cancer cells and its relationship with hormone receptor status

    International Nuclear Information System (INIS)

    Noh, Woo Chul; Ham, Yong Ho

    1998-01-01

    To investigate the relationship of bcl-2, p53, ER and tamoxifen-induced apoptosis of breast cancer cells, MCF-7 (ER+/bcl-2+/p53-) and MB MDA 468 (ER-/bcl-2-/p53+) cell line were cultured in estrogen-free condition. E2(10'-'9M) and tamoxifen (10'-'5M) were added to the media. The changes of bcl-2 and mutant p53 protein were checked by Western blot and apoptosis were measured by flowcytometry. In MCF-7 cells, we found that treatment with tamoxifen resulted in a decrease in bcl-2 protein level, but produced no change in mutant p53. In MB MDA 468 cell however, there were no changes of bcl-2 and mutant p53 protein level when E2 or tamoxifen were added. Apoptotic cells increased with time-dependent pattern when tamoxifen was added to MCF-7 cells. According to these result, ER+/blc-2+/mutant p53- cells, when treated with tamoxifen, were converted into bcl-2/mutant p53- cells which were more prone to apoptosis than bcl-2-/mutant p53+ cells. The paradoxical correlation of bcl-2 and ER which had been observed in clinical studies might be explained with this results and bcl-2 protein seems to be one of important factors that can predict the effect of hormone therapy. (author). 26 refs., 5 figs

  15. Prohibitin (PHB) inhibits apoptosis in rat granulosa cells (GCs) through the extracellular signal-regulated kinase 1/2 (ERK1/2) and the Bcl family of proteins.

    Science.gov (United States)

    Chowdhury, Indrajit; Thompson, Winston E; Welch, Crystal; Thomas, Kelwyn; Matthews, Roland

    2013-12-01

    Mammalian ovarian follicular development is tightly regulated by crosstalk between cell death and survival signals, which include both endocrine and intra-ovarian regulators. Whether the follicle ultimately ovulates or undergoes atresia is dependent on the expression and actions of factors promoting follicular cell proliferation, differentiation or apoptosis. Prohibitin (PHB) is a highly conserved, ubiquitous protein that is abundantly expressed in granulosa cells (GCs) and associated with GC differentiation and apoptosis. The current study was designed to characterize the regulation of anti-apoptotic and pro-apoptotic factors in undifferentiated rat GCs (gonadotropin independent phase) governed by PHB. Microarray technology was initially employed to identify potential apoptosis-related genes, whose expression levels within GCs were altered by either staurosporine (STS) alone or STS in presence of ectopically over-expressed PHB. Next, immunoblot studies were performed to examine the expression patterns of selective Bcl-2 family members identified by the microarray analysis, which are commonly regulated in the intrinsic-apoptotic pathway. These studies were designed to measure protein levels of Bcl2 family in relation to expression of the acidic isoform (phosphorylated) PHB and the components of MEK-Erk1/2 pathway. These studies indicated that over-expression of PHB in undifferentiated GCs inhibit apoptosis which concomitantly results in an increased level of the anti-apoptotic proteins Bcl2 and Bclxl, reduced release of cytochrome c from mitochondria and inhibition of caspase-3 activity. In contrast, silencing of PHB expression resulted in change of mitochondrial morphology from the regular reticular network to a fragmented form, which enhanced sensitization of these GCs to the induction of apoptosis. Collectively, these studies have provided new insights on the PHB-mediated anti-apoptotic mechanism, which occurs in undifferentiated GCs through a PHB → Mek-Erk1

  16. Phospholipase D1 increases Bcl-2 expression during neuronal differentiation of rat neural stem cells.

    Science.gov (United States)

    Park, Shin-Young; Ma, Weina; Yoon, Sung Nyo; Kang, Min Jeong; Han, Joong-Soo

    2015-01-01

    We studied the possible role of phospholipase D1 (PLD1) in the neuronal differentiation, including neurite formation of neural stem cells. PLD1 protein and PLD activity increased during neuronal differentiation. Bcl-2 also increased. Downregulation of PLD1 by transfection with PLD1 siRNA or a dominant-negative form of PLD1 (DN-PLD1) inhibited both neurite outgrowth and Bcl-2 expression. PLD activity was dramatically reduced by a PLCγ (phospholipase Cγ) inhibitor (U73122), a Ca(2+)chelator (BAPTA-AM), and a PKCα (protein kinase Cα) inhibitor (RO320432). Furthermore, treatment with arachidonic acid (AA) which is generated by the action of PLA2 (phospholipase A2) on phosphatidic acid (a PLD1 product), increased the phosphorylation of p38 MAPK and CREB, as well as Bcl-2 expression, indicating that PLA2 is involved in the differentiation process resulting from PLD1 activation. PGE2 (prostaglandin E2), a cyclooxygenase product of AA, also increased during neuronal differentiation. Moreover, treatment with PGE2 increased the phosphorylation of p38 MAPK and CREB, as well as Bcl-2 expression, and this effect was inhibited by a PKA inhibitor (Rp-cAMP). As expected, inhibition of p38 MAPK resulted in loss of CREB activity, and when CREB activity was blocked with CREB siRNA, Bcl-2 production also decreased. We also showed that the EP4 receptor was required for the PKA/p38MAPK/CREB/Bcl-2 pathway. Taken together, these observations indicate that PLD1 is activated by PLCγ/PKCα signaling and stimulate Bcl-2 expression through PLA2/Cox2/EP4/PKA/p38MAPK/CREB during neuronal differentiation of rat neural stem cells.

  17. Anti-apoptotic effect of hyperglycemia can allow survival of potentially autoreactive T cells.

    Science.gov (United States)

    Ramakrishnan, P; Kahn, D A; Baltimore, D

    2011-04-01

    Thymocyte development is a tightly controlled multi-step process involving selective elimination of self-reactive and non-functional T cells by apoptosis. This developmental process depends on signaling by Notch, IL-7 and active glucose metabolism. In this study, we explored the requirement of glucose for thymocyte survival and found that in addition to metabolic regulation, glucose leads to the expression of anti-apoptotic genes. Under hyperglycemic conditions, both mouse and human thymocytes demonstrate enhanced survival. We show that glucose-induced anti-apoptotic genes are dependent on NF-κB p65 because high glucose is unable to attenuate normal ongoing apoptosis of thymocytes isolated from p65 knockout mice. Furthermore, we demonstrate that in vivo hyperglycemia decreases apoptosis of thymocytes allowing for survival of potentially self-reactive thymocytes. These results imply that hyperglycemic conditions could contribute to the development of autoimmunity through dysregulated thymic selection. © 2011 Macmillan Publishers Limited

  18. Expression of Bcl-2 in canine osteosarcoma | Piro | Open Veterinary ...

    African Journals Online (AJOL)

    Many signals seem to be involved in the related mechanism of autophagy and in particular, our interest is focused on the expression of a family of Bcl-2 that seems to be involved either in the control of biomolecular mechanisms like autophagy and apoptosis. In this study we investigated the expression of Bcl-2 in different ...

  19. RBP2 Promotes Adult Acute Lymphoblastic Leukemia by Upregulating BCL2.

    Directory of Open Access Journals (Sweden)

    Xiaoming Wang

    Full Text Available Despite recent increases in the cure rate of acute lymphoblastic leukemia (ALL, adult ALL remains a high-risk disease that exhibits a high relapse rate. In this study, we found that the histone demethylase retinoblastoma binding protein-2 (RBP2 was overexpressed in both on-going and relapse cases of adult ALL, which revealed that RBP2 overexpression was not only involved in the pathogenesis of ALL but that its overexpression might also be related to relapse of the disease. RBP2 knockdown induced apoptosis and attenuated leukemic cell viability. Our results demonstrated that BCL2 is a novel target of RBP2 and supported the notion of RBP2 being a regulator of BCL2 expression via directly binding to its promoter. As the role of RBP2 in regulating apoptosis was confirmed, RBP2 overexpression and activation of BCL2 might play important roles in ALL development and progression.

  20. Discovery and molecular characterization of a Bcl-2-regulated cell death pathway in schistosomes.

    Science.gov (United States)

    Lee, Erinna F; Clarke, Oliver B; Evangelista, Marco; Feng, Zhiping; Speed, Terence P; Tchoubrieva, Elissaveta B; Strasser, Andreas; Kalinna, Bernd H; Colman, Peter M; Fairlie, W Douglas

    2011-04-26

    Schistosomiasis is an infectious disease caused by parasites of the phylum platyhelminthe. Here, we describe the identification and characterization of a Bcl-2-regulated apoptosis pathway in Schistosoma japonicum and S. mansoni. Genomic, biochemical, and cell-based mechanistic studies provide evidence for a tripartite pathway, similar to that in humans including BH3-only proteins that are inhibited by prosurvival Bcl-2-like molecules, and Bax/Bak-like proteins that facilitate mitochondrial outer-membrane permeabilization. Because Bcl-2 proteins have been successfully targeted with "BH3 mimetic" drugs, particularly in the treatment of cancer, we investigated whether schistosome apoptosis pathways could provide targets for future antischistosomal drug discovery efforts. Accordingly, we showed that a schistosome prosurvival protein, sjA, binds ABT-737, a well-characterized BH3 mimetic. A crystal structure of sjA bound to a BH3 peptide provides direct evidence for the feasibility of developing BH3 mimetics to target Bcl-2 prosurvival proteins in schistosomes, suggesting an alternative application for this class of drugs beyond cancer treatment.

  1. Discovery and molecular characterization of a Bcl-2–regulated cell death pathway in schistosomes

    Science.gov (United States)

    Lee, Erinna F.; Clarke, Oliver B.; Evangelista, Marco; Feng, Zhiping; Speed, Terence P.; Tchoubrieva, Elissaveta B.; Strasser, Andreas; Kalinna, Bernd H.; Colman, Peter M.; Fairlie, W. Douglas

    2011-01-01

    Schistosomiasis is an infectious disease caused by parasites of the phylum platyhelminthe. Here, we describe the identification and characterization of a Bcl-2–regulated apoptosis pathway in Schistosoma japonicum and S. mansoni. Genomic, biochemical, and cell-based mechanistic studies provide evidence for a tripartite pathway, similar to that in humans including BH3-only proteins that are inhibited by prosurvival Bcl-2–like molecules, and Bax/Bak-like proteins that facilitate mitochondrial outer-membrane permeabilization. Because Bcl-2 proteins have been successfully targeted with “BH3 mimetic” drugs, particularly in the treatment of cancer, we investigated whether schistosome apoptosis pathways could provide targets for future antischistosomal drug discovery efforts. Accordingly, we showed that a schistosome prosurvival protein, sjA, binds ABT-737, a well-characterized BH3 mimetic. A crystal structure of sjA bound to a BH3 peptide provides direct evidence for the feasibility of developing BH3 mimetics to target Bcl-2 prosurvival proteins in schistosomes, suggesting an alternative application for this class of drugs beyond cancer treatment. PMID:21444803

  2. Arctigenin Treatment Protects against Brain Damage through an Anti-Inflammatory and Anti-Apoptotic Mechanism after Needle Insertion

    Science.gov (United States)

    Song, Jie; Li, Na; Xia, Yang; Gao, Zhong; Zou, Sa-feng; Kong, Liang; Yao, Ying-Jia; Jiao, Ya-Nan; Yan, Yu-Hui; Li, Shao-Heng; Tao, Zhen-Yu; Lian, Guan; Yang, Jing-Xian; Kang, Ting-Guo

    2016-01-01

    Convection enhanced delivery (CED) infuses drugs directly into brain tissue. Needle insertion is required and results in a stab wound injury (SWI). Subsequent secondary injury involves the release of inflammatory and apoptotic cytokines, which have dramatic consequences on the integrity of damaged tissue, leading to the evolution of a pericontusional-damaged area minutes to days after in the initial injury. The present study investigated the capacity for arctigenin (ARC) to prevent secondary brain injury and the determination of the underlying mechanism of action in a mouse model of SWI that mimics the process of CED. After CED, mice received a gavage of ARC from 30 min to 14 days. Neurological severity scores (NSS) and wound closure degree were assessed after the injury. Histological analysis and immunocytochemistry were used to evaluated the extent of brain damage and neuroinflammation. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) was used to detect universal apoptosis. Enzyme-linked immunosorbent assays (ELISA) was used to test the inflammatory cytokines (tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-10) and lactate dehydrogenase (LDH) content. Gene levels of inflammation (TNF-α, IL-6, and IL-10) and apoptosis (Caspase-3, Bax and Bcl-2) were detected by reverse transcription-polymerase chain reaction (RT-PCR). Using these, we analyzed ARC’s efficacy and mechanism of action. Results: ARC treatment improved neurological function by reducing brain water content and hematoma and accelerating wound closure relative to untreated mice. ARC treatment reduced the levels of TNF-α and IL-6 and the number of allograft inflammatory factor (IBA)- and myeloperoxidase (MPO)-positive cells and increased the levels of IL-10. ARC-treated mice had fewer TUNEL+ apoptotic neurons and activated caspase-3-positive neurons surrounding the lesion than controls, indicating increased neuronal survival. Conclusions: ARC treatment confers

  3. XIAP impairs mitochondrial function during apoptosis by regulating the Bcl-2 family in renal cell carcinoma.

    Science.gov (United States)

    Chen, Chao; Liu, Tian Shu; Zhao, Si Cong; Yang, Wen Zheng; Chen, Zong Ping; Yan, Yong

    2018-05-01

    Efficient apoptosis requires Bcl-2 family-mediated mitochondrial outer membrane permeabilization (MOMP), which releases pro-apoptotic proteins to the cytosol, activating apoptosis and inhibiting X-linked inhibitor of apoptosis protein (XIAP). XIAP is a member of the inhibitors of apoptosis protein family whose expression is elevated in many cancer types and participates in the release of pro-apoptotic proteins. To explore the association between XIAP and the Bcl-2 family, and the influence of XIAP on mitochondria, RNA interference of XIAP was performed in Caki-1 cells and the dynamic change in the levels of related proteins was compared with the original Caki-1 cells upon induction of apoptosis. Upon knockdown of XIAP, the release of cytochrome c (Cyt-c), second mitochondria-derived activator of caspase (Smac) and apoptotic protease activating factor 1 (Apaf-1) from mitochondria proceeded normally, whereas in Caki-1 cells, the release of these pro-apoptotic proteins was significantly prolonged, and incomplete. Downregulation of XIAP through small interfering RNA resulted in an increase of apoptosis and a marked decrease in Bcl-2 and Bcl-xl levels at 3 h. Additionally, the regulation of the level of XIAP protein affected the specific ratios of Bcl-2/Bax and Bcl-xl/Bax, which play decisive roles in cell death. In the present study, it was revealed that XIAP can feed back to mitochondria, delaying Cyt-c and Apaf-1 release. Furthermore, XIAP can limit the release of its inhibitor Smac with the involvement of Bcl-2 family proteins.

  4. Inter- and intratumoral heterogeneity of BCL2 correlates with IgH expression and prognosis in follicular lymphoma

    International Nuclear Information System (INIS)

    Barreca, A; Martinengo, C; Annaratone, L; Righi, L; Chiappella, A; Ladetto, M; Demurtas, A; Chiusa, L; Stacchini, A; Crosetto, N; Oudenaarden, A van; Chiarle, R

    2014-01-01

    Most follicular lymphomas (FLs) are genetically defined by the t(14;18)(q32;q21) translocation that juxtaposes the BCL2 gene to the immunoglobulin heavy chain (IgH) 3' regulatory regions (IgH-3'RRs). Despite this recurrent translocation, FL cases are heterogeneous in terms of intratumoral clonal diversity for acquired mutations and variations in the tumor microenvironment. Here we describe an additional mechanism that contributes to inter- and intratumoral heterogeneity in FLs. By applying a novel single-molecule RNA fluorescence-based in situ hybridization (FISH) technique to detect mRNA molecules of BCL2 and IgH in single cells, we found marked heterogeneity in the number of BCL2 mRNA transcripts within individual lymphoma cells. Moreover, BCL2 mRNA molecules correlated with IgH mRNA molecules in individual cells both in t(14;18) lymphoma cell lines and in patient samples. Consistently, a strong correlation between BCL2 and IgH protein levels was found in a series of 205 primary FL cases by flow cytometry and immunohistochemistry. Inter- and intratumoral heterogeneity of BCL2 expression determined resistance to drugs commonly used in FL treatment and affected overall survival of FL patients. These data demonstrate that BCL2 and IgH expressions are heterogeneous and coregulated in t(14;18)-translocated cells, and determine the response to therapy in FL patients

  5. Mutational analysis of Bax and Bcl-2 in childhood acute lymphoblastic leukaemia

    NARCIS (Netherlands)

    Salomons, G. S.; Buitenhuis, C. K.; Martínez Muñoz, C.; Verwijs-Jassen, M.; Behrendt, H.; Zsiros, J.; Smets, L. A.

    1998-01-01

    In childhood acute lymphoblastic leukaemia there are large interpatient variations in levels of the apoptosis-regulating proteins Bax and Bcl-2, but the molecular basis for this variation is unknown. Point-mutations in bax have been reported in cell lines derived from haematological malignancies.

  6. Overexpression of the human BCL-2 gene product results in growth enhancement of Epstein-Barr virus-immortalized B cells

    International Nuclear Information System (INIS)

    Tsujimoto, Yoshihide

    1989-01-01

    The biological activity of the human BCL-2 gene product was analyzed in an Epstein-Barr virus (EBV)-infected human lymphoblastoid B-cell line transfected with BCL-2 sequences driven by the simian virus 40 promoter and enhancer. Overproduction of the BCL-2 protein conferred a selective growth advantage to the EBV-infected B cells as compared with control transfectants in low-serum medium and also after seeding at limiting dilution but did not render the cells tumorigenic in athymic nude mice. This growth enhancement was also seen in cells transfected with the BCL-2 gene with its own promoter juxtaposed to the immunoglobulin heavy chain gene enhancer, which represents the translocated form of the BCL-2 gene observed in follicular lymphomas with the t(14;18) translocation. The growth advantage of EBV-infected B cells overproducing the BCL-2 protein is neither due to the enhanced growth factor production nor due to an enhanced sensitivity of the BCL-2 transfectants to interleukins 1 or 6, although both lymphokines are known to stimulate proliferation of EBV-infected B-cell lines. The growth advantage of EBV-infected B-cell lines. The growth advantage of EBV-infected B cells by overproduction of the BCL-2 protein suggests the direct involvement of the BCL-2 gene product in the pathogenesis of follicular lymphoma

  7. Prognostic Importance of Bcl-2 Expression in Colon Cancer

    Directory of Open Access Journals (Sweden)

    Arsenal Alikanoðlu

    2012-09-01

    Full Text Available Aim: TNM classification, that had been established according to pathologic and anatomic characteristics of the lesion , is the most important factor in decision of adjuvant therapy in colon cancer. Despite curative resection, recurrence can ocur with a rate of 20-30% in early stage disease. Therefore efficieny of TNM classification is controversial. In recent years ,significance of molecular characteristics of the tumors besides their anatomic and pathologic characteristics in determining the biological behaviour and response to treatment have been discussed. In our study, relation between expression of Bcl-2 and the other known prognostic factors in colon cancer had been searched. Material and Method: Patients who had been followed up in our clinic were enrolled in this study. Expression of Bcl-2 was searched by immunohistochemical method. Results: A total of 52, 19 (%36.5 female and 33 (%63.5 male patients were enrolled in this study. Bcl-2 expression was found positive in 7 (%13.5 and negative in 45 (%86.5 patients. Statistically no significant relationship was found between Bcl-2 expression and sex, stage, regional lymph node involvement, presence of distant metastasis and histologic grade. Discussion: In our study, although not in a statistical significance, we found that Bcl-2 expression is related to early stage disease. Bcl-2 is a low-priced and easily accessible prognostic marker. We think that establishing expression of Bcl-2 by immunohistohemistry may play a role in determining prognosis of patients with colon cancer.

  8. Membrane microdomain-associated uroplakin IIIa contributes to Src-dependent mechanisms of anti-apoptotic proliferation in human bladder carcinoma cells

    Directory of Open Access Journals (Sweden)

    Shigeru Kihira

    2012-08-01

    Our previous study demonstrated that tyrosine phosphorylation of p145met/β-subunit of hepatocyte growth factor receptor by epidermal growth factor receptor and Src contributes to the anti-apoptotic growth of human bladder carcinoma cell 5637 under serum-starved conditions. Here, we show that some other cell lines of human bladder carcinoma, but not other types of human cancer cells, also exhibit Src-dependent, anti-apoptotic proliferation under serum-starved conditions, and that low-density, detergent-insoluble membrane microdomains (MD serve as a structural platform for signaling events involving p145met, EGFR, and Src. As an MD-associated molecule that may contribute to bladder carcinoma-specific cellular function, we identified uroplakin IIIa (UPIIIa, an urothelium-specific protein. Results obtained so far revealed: 1 UPIIIa undergoes partial proteolysis in serum-starved cells; 2 a specific antibody to the extracellular domain of UPIIIa inhibits the proteolysis of UPIIIa and the activation of Src, and promotes apoptosis in serum-starved cells; and 3 knockdown of UPIIIa by short interfering RNA also promotes apoptosis in serum-starved cells. GM6001, a potent inhibitor of matrix metalloproteinase (MMP, inhibits the proteolysis of UPIIIa and promotes apoptosis in serum-starved cells. Furthermore, serum starvation promotes expression and secretion of the heparin-binding EGF-like growth factor in a manner that depends on the functions of MMP, Src, and UPIIIa. These results highlight a hitherto unknown signaling network involving a subset of MD-associated molecules in the anti-apoptotic mechanisms of human bladder carcinoma cells.

  9. Human tissue inhibitor of metalloproteinases-1 improved wound healing in diabetes through its anti-apoptotic effect.

    Science.gov (United States)

    Lao, Guojuan; Ren, Meng; Wang, Xiaoyi; Zhang, Jinglu; Huang, Yanrui; Liu, Dan; Luo, Hengcong; Yang, Chuan; Yan, Li

    2017-09-08

    Impaired wound healing accompanies severe cell apoptosis in diabetic patients. Tissue inhibitor of metalloproteinases-1 (TIMP-1) was known to have effects on promoting growth and anti-apoptosis for cells. We aimed to determine the actual levels of TIMP-1 and cell apoptosis in: (i) the biopsies of diabetic and non-diabetic foot tissue and (ii) the human fibroblasts with or without treatments of advanced glycation end-products (AGEs). Next, we aimed to determine the improved levels of cell apoptosis and wound healing after the treatments of either active protein of TIMP-1 or in vivo expression of gene therapy vector-mediated TIMP-1 in both the human fibroblasts and the animal model of diabetic rats. The levels of TIMP-1 were significantly reduced in diabetic skin tissues and in AGEs-treated fibroblasts. Both AGEs-treated cells were effectively protected from apoptosis by active protein of TIMP-1 at appropriate dose level. So did the induced in vivo TIMP-1 expression after gene delivery. Similar effects were also found on the significant improvement of impaired wound healing in diabetic rats. We concluded that TIMP-1 improved wound healing through its anti-apoptotic effect. Treatments with either active protein TIMP-1 or TIMP-1 gene therapy delivered in local wound sites may be used as a strategy for accelerating diabetic wound healing. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. A BioDesign Approach to Obtain High Yields of Biosimilars by Anti-apoptotic Cell Engineering: a Case Study to Increase the Production Yield of Anti-TNF Alpha Producing Recombinant CHO Cells.

    Science.gov (United States)

    Gulce Iz, Sultan; Inevi, Muge Anil; Metiner, Pelin Saglam; Tamis, Duygu Ayyildiz; Kisbet, Nazli

    2018-01-01

    Recent developments in medical biotechnology have facilitated to enhance the production of monoclonal antibodies (mAbs) and recombinant proteins in mammalian cells. Human mAbs for clinical applications have focused on three areas, particularly cancer, immunological disorders, and infectious diseases. Tumor necrosis factor alpha (TNF-α), which has both proinflammatory and immunoregulatory functions, is an important target in biopharmaceutical industry. In this study, a humanized anti-TNF-α mAb producing stable CHO cell line which produces a biosimilar of Humira (adalimumab) was used. Adalimumab is a fully human anti-TNF mAb among the top-selling mAb products in recent years as a biosimilar. Products from mammalian cell bioprocesses are a derivative of cell viability and metabolism, which is mainly disrupted by cell death in bioreactors. Thus, different strategies are used to increase the product yield. Suppression of apoptosis, also called anti-apoptotic cell engineering, is the most remarkable strategy to enhance lifetime of cells for a longer production period. In fact, using anti-apoptotic cell engineering as a BioDesign approach was inspired by nature; nature gives prolonged life span to some cells like stem cells, tumor cells, and memory B and T cells, and researchers have been using this strategy for different purposes. In this study, as a biomimicry approach, anti-apoptotic cell engineering was used to increase the anti-TNF-α mAb production from the humanized anti-TNF-α mAb producing stable CHO cell line by Bcl-xL anti-apoptotic protein. It was shown that transient transfection of CHO cells by the Bcl-xL anti-apoptotic protein expressing plasmid prolonged the cell survival rate and protected cells from apoptosis. The transient expression of Bcl-xL using CHO cells enhanced the anti-TNF-α production. The production of anti-TNF-α in CHO cells was increased up to 215 mg/L with an increase of 160% after cells were transfected with Bcl-xL expressing plasmid

  11. Anti-Apoptotic Signature in Thymic Squamous Cell Carcinomas - Functional Relevance of Anti-Apoptotic BIRC3 Expression in the Thymic Carcinoma Cell Line 1889c.

    Science.gov (United States)

    Huang, Bei; Belharazem, Djeda; Li, Li; Kneitz, Susanne; Schnabel, Philipp A; Rieker, Ralf J; Körner, Daniel; Nix, Wilfred; Schalke, Berthold; Müller-Hermelink, Hans Konrad; Ott, German; Rosenwald, Andreas; Ströbel, Philipp; Marx, Alexander

    2013-01-01

    The molecular pathogenesis of thymomas and thymic carcinomas (TCs) is poorly understood and results of adjuvant therapy are unsatisfactory in case of metastatic disease and tumor recurrence. For these clinical settings, novel therapeutic strategies are urgently needed. Recently, limited sequencing efforts revealed that a broad spectrum of genes that play key roles in various common cancers are rarely affected in thymomas and TCs, suggesting that other oncogenic principles might be important. This made us re-analyze historic expression data obtained in a spectrum of thymomas and thymic squamous cell carcinomas (TSCCs) with a custom-made cDNA microarray. By cluster analysis, different anti-apoptotic signatures were detected in type B3 thymoma and TSCC, including overexpression of BIRC3 in TSCCs. This was confirmed by qRT-PCR in the original and an independent validation set of tumors. In contrast to several other cancer cell lines, the BIRC3-positive TSCC cell line, 1889c showed spontaneous apoptosis after BIRC3 knock-down. Targeting apoptosis genes is worth testing as therapeutic principle in TSCC.

  12. Anti-Apoptotic Signature in Thymic Squamous Cell Carcinomas – Functional Relevance of Anti-Apoptotic BIRC3 Expression in the Thymic Carcinoma Cell Line 1889c

    Science.gov (United States)

    Huang, Bei; Belharazem, Djeda; Li, Li; Kneitz, Susanne; Schnabel, Philipp A.; Rieker, Ralf J.; Körner, Daniel; Nix, Wilfred; Schalke, Berthold; Müller-Hermelink, Hans Konrad; Ott, German; Rosenwald, Andreas; Ströbel, Philipp; Marx, Alexander

    2013-01-01

    The molecular pathogenesis of thymomas and thymic carcinomas (TCs) is poorly understood and results of adjuvant therapy are unsatisfactory in case of metastatic disease and tumor recurrence. For these clinical settings, novel therapeutic strategies are urgently needed. Recently, limited sequencing efforts revealed that a broad spectrum of genes that play key roles in various common cancers are rarely affected in thymomas and TCs, suggesting that other oncogenic principles might be important. This made us re-analyze historic expression data obtained in a spectrum of thymomas and thymic squamous cell carcinomas (TSCCs) with a custom-made cDNA microarray. By cluster analysis, different anti-apoptotic signatures were detected in type B3 thymoma and TSCC, including overexpression of BIRC3 in TSCCs. This was confirmed by qRT-PCR in the original and an independent validation set of tumors. In contrast to several other cancer cell lines, the BIRC3-positive TSCC cell line, 1889c showed spontaneous apoptosis after BIRC3 knock-down. Targeting apoptosis genes is worth testing as therapeutic principle in TSCC. PMID:24427739

  13. Anti-apoptotic signature in thymic squamous cell carcinomas - functional relevance of anti-apoptotic BIRC3 expression in the thymic carcinoma cell line 1889c

    Directory of Open Access Journals (Sweden)

    Bei eHuang

    2013-12-01

    Full Text Available The molecular pathogenesis of thymomas and thymic carcinomas (TCs is poorly understood and results of adjuvant therapy are unsatisfactory in case of metastatic disease and tumor recurrence. For these clinical settings, novel therapeutic strategies are urgently needed. Recently, limited sequencing efforts revealed that a broad spectrum of genes that play key roles in various common cancers are rarely affected in thymomas and thymic carcinomas, suggesting that other oncogenic principles might be important. This made us re-analyze historic expression data obtained in a spectrum of thymomas and thymic squamous cell carcinomas (TSCC with a custom made cDNA microarray. By cluster analysis, different anti-apoptotic signatures were detected in type B3 thymoma and TSCC, including overexpression of BIRC3 in TSCCs. This was confirmed by qRT-PCR in the original and an independent validation set of tumors. In contrast to several other cancer cell lines, the BIRC3-positive TSCC cell line, 1889c showed spontaneous apoptosis after BIRC3 knock-down. Targeting apoptosis genes is worth testing as therapeutic principle in TSCC.

  14. Characterization of vNr-13, the first alphaherpesvirus gene of the bcl-2 family

    International Nuclear Information System (INIS)

    Aouacheria, Abdel; Banyai, Michelle; Rigal, Dominique; Schmidt, Carl J.; Gillet, Germain

    2003-01-01

    The Bcl-2 family, including antiapoptotic and proapoptotic members, plays key regulating roles in programmed cell death. We report the characterization of a new member of the bcl-2 family, encoded by herpesvirus of turkeys (HVT). The product of this gene shares 80% homology with Nr-13, an apoptosis inhibitor, which is overexpressed in avian cells transformed by the v-src oncogene. This new gene, that we propose to call vnr-13, is the first member of the bcl-2 family to be isolated among α-herpesviruses. Results from cells expressing the HVT-vnr-13 gene product show that the encoded protein inhibits apoptosis and also reduces the rate of cellular proliferation. Contrary to all bcl-2 homologues found in γ-herpesvirus, which are intronless, vnr-13 has the same organization as the cellular nr-13 gene. Hence, the HVT vnr-13 gene may have been acquired from a reverse transcriptase product of an unspliced precursor RNA, or via direct recombination with the host chromosomal DNA

  15. In vivo efficacy of the Bcl-2 antagonist ABT-737 against aggressive Myc-driven lymphomas

    OpenAIRE

    Mason, Kylie D.; Vandenberg, Cassandra J.; Scott, Clare L.; Wei, Andrew H.; Cory, Suzanne; Huang, David C. S.; Roberts, Andrew W.

    2008-01-01

    Deregulated Myc expression drives many human cancers, including Burkitt's lymphoma and a highly aggressive subset of diffuse large cell lymphomas. Myc-driven tumors often display resistance to chemotherapeutics because of acquisition of mutations that impair the apoptosis pathway regulated by the Bcl-2 protein family. Given the need to identify new therapies for such lymphomas, we have evaluated the efficacy of ABT-737, a small molecule that mimics the action of the BH3-only proteins, natural...

  16. Protection of MES23.5 dopaminergic cells by obestatin is mediated by proliferative rather than anti-apoptotic action.

    Science.gov (United States)

    Shen, Xiao-Li; Jia, Feng-Ju; Song, Ning; Xie, Jun-Xia; Jiang, Hong

    2014-02-01

    Obestatin is an endogenous peptide sharing a precursor with ghrelin. This study aims to investigate whether and how obestatin protects MES23.5 dopaminergic cells against 1-methyl-4-phenylpyridinium (MPP(+))-induced neurotoxicity. MES23.5 cells were pretreated with obestatin (10(-13)-10(-6) mol/L) for 20 min prior to incubation with 200 μmol/L MPP(+) for 12 or 24 h, or treated with obestatin alone (10(-13) to 10(-6) mol/L) for 0, 6, 12, and 24 h. The methyl thiazolyl tetrazolium (MTT) assay was used to measure cell viability. Flow cytometry was used to measure the caspase-3 activity and the mitochondrial transmembrane potential. Proliferating cell nuclear antigen (PCNA) protein levels were determined by Western blotting. Obestatin (10(-13) to 10(-7) mol/L) pretreatment blocked or even reversed the MPP(+)-induced reduction of viability in MES23.5 cells, but had no effect on MPP(+)-induced mitochondrial transmembrane potential collapse and caspase-3 activation. When applied alone, obestatin increased viability. Elevated PCNA levels occurred with 10(-7), 10(-9), 10(-11) and 10(-13) mol/L obestatin treatment for 12 h. The results suggest that the protective effects of obestatin against MPP(+) in MES23.5 cells are due to its proliferation-promoting rather than anti-apoptotic effects.

  17. Tuberin and PRAS40 are anti-apoptotic gatekeepers during early human amniotic fluid stem-cell differentiation.

    Science.gov (United States)

    Fuchs, Christiane; Rosner, Margit; Dolznig, Helmut; Mikula, Mario; Kramer, Nina; Hengstschläger, Markus

    2012-03-01

    Embryoid bodies (EBs) are three-dimensional multicellular aggregates allowing the in vitro investigation of stem-cell differentiation processes mimicking early embryogenesis. Human amniotic fluid stem (AFS) cells harbor high proliferation potential, do not raise the ethical issues of embryonic stem cells, have a lower risk for tumor development, do not need exogenic induction of pluripotency and are chromosomal stable. Starting from a single human AFS cell, EBs can be formed accompanied by the differentiation into cells of all three embryonic germ layers. Here, we report that siRNA-mediated knockdown of the endogenous tuberous sclerosis complex-2 (TSC2) gene product tuberin or of proline-rich Akt substrate of 40 kDa (PRAS40), the two major negative regulators of mammalian target of rapamycin (mTOR), leads to massive apoptotic cell death during EB development of human AFS cells without affecting the endodermal, mesodermal and ectodermal cell differentiation spectrum. Co-knockdown of endogenous mTOR demonstrated these effects to be mTOR-dependent. Our findings prove this enzyme cascade to be an essential anti-apoptotic gatekeeper of stem-cell differentiation during EB formation. These data allow new insights into the regulation of early stem-cell maintenance and differentiation and identify a new role of the tumor suppressor tuberin and the oncogenic protein PRAS40 with the relevance for a more detailed understanding of the pathogenesis of diseases associated with altered activities of these gene products.

  18. Neuroprotective and Anti-Apoptotic Effects of CSP-1103 in Primary Cortical Neurons Exposed to Oxygen and Glucose Deprivation.

    Science.gov (United States)

    Porrini, Vanessa; Sarnico, Ilenia; Benarese, Marina; Branca, Caterina; Mota, Mariana; Lanzillotta, Annamaria; Bellucci, Arianna; Parrella, Edoardo; Faggi, Lara; Spano, Pierfranco; Imbimbo, Bruno Pietro; Pizzi, Marina

    2017-01-18

    CSP-1103 (formerly CHF5074) has been shown to reverse memory impairment and reduce amyloid plaque as well as inflammatory microglia activation in preclinical models of Alzheimer's disease. Moreover, it was found to improve cognition and reduce brain inflammation in patients with mild cognitive impairment. Recent evidence suggests that CSP-1103 acts through a single molecular target, the amyloid precursor protein intracellular domain (AICD), a transcriptional regulator implicated in inflammation and apoptosis. We here tested the possible anti-apoptotic and neuroprotective activity of CSP-1103 in a cell-based model of post-ischemic injury, wherein the primary mouse cortical neurons were exposed to oxygen-glucose deprivation (OGD). When added after OGD, CSP-1103 prevented the apoptosis cascade by reducing cytochrome c release and caspase-3 activation and the secondary necrosis. Additionally, CSP-1103 limited earlier activation of p38 and nuclear factor κB (NF-κB) pathways. These results demonstrate that CSP-1103 is neuroprotective in a model of post-ischemic brain injury and provide further mechanistic insights as regards its ability to reduce apoptosis and potential production of pro-inflammatory cytokines. In conclusion, these findings suggest a potential use of CSP-1103 for the treatment of brain ischemia.

  19. Associations of Bcl-2 rs956572 genotype groups in the structural covariance network in early-stage Alzheimer's disease.

    Science.gov (United States)

    Chang, Chiung-Chih; Chang, Ya-Ting; Huang, Chi-Wei; Tsai, Shih-Jen; Hsu, Shih-Wei; Huang, Shu-Hua; Lee, Chen-Chang; Chang, Wen-Neng; Lui, Chun-Chung; Lien, Chia-Yi

    2018-02-08

    Alzheimer's disease (AD) is a complex neurodegenerative disease, and genetic differences may mediate neuronal degeneration. In humans, a single-nucleotide polymorphism in the B-cell chronic lymphocytic leukemia/lymphoma-2 (Bcl-2) gene, rs956572, has been found to significantly modulate Bcl-2 protein expression in the brain. The Bcl-2 AA genotype has been associated with reduced Bcl-2 levels and lower gray matter volume in healthy populations. We hypothesized that different Bcl-2 genotype groups may modulate large-scale brain networks that determine neurobehavioral test scores. Gray matter structural covariance networks (SCNs) were constructed in 104 patients with AD using T1-weighted magnetic resonance imaging with seed-based correlation analysis. The patients were stratified into two genotype groups on the basis of Bcl-2 expression (G carriers, n = 76; A homozygotes, n = 28). Four SCNs characteristic of AD were constructed from seeds in the default mode network, salience network, and executive control network, and cognitive test scores served as the major outcome factor. For the G carriers, influences of the SCNs were observed mostly in the default mode network, of which the peak clusters anchored by the posterior cingulate cortex seed determined the cognitive test scores. In contrast, genetic influences in the A homozygotes were found mainly in the executive control network, and both the dorsolateral prefrontal cortex seed and the interconnected peak clusters were correlated with the clinical scores. Despite a small number of cases, the A homozygotes showed greater covariance strength than the G carriers among all four SCNs. Our results suggest that the Bcl-2 rs956572 polymorphism is associated with different strengths of structural covariance in AD that determine clinical outcomes. The greater covariance strength in the four SCNs shown in the A homozygotes suggests that different Bcl-2 polymorphisms play different modulatory roles.

  20. Bcl-2 and N-Myc Coexpression Increases IGF-IR and Features of Malignant Growth in Neuroblastoma Cell Lines

    Directory of Open Access Journals (Sweden)

    Rama Jasty

    2001-01-01

    Full Text Available The bcl-2 and c-myc oncogenes cooperate to transform multiple cell types. In the pediatric malignancy NB2, Bcl2 is highly expressed. In tumors with a poor prognosis, N-Myc, a protein homologous to c-Myc, is overexpressed as a result of gene amplification. The present study was designed to determine whether Bcl-2 cooperates with N-Myc to bestow a tumorigenic phenotype to neuroblastoma (NB cells. NB cell lines that at baseline express neither Bcl-2 nor N-Myc were stably transfected to express these gene products. In this model, we found Bcl-2 rescues N-Myc-expressing cells from apoptosis induced by serum withdrawal. Coexpression of Bcl-2 and N-Myc supports growth in low serum conditions and anchorage-independent growth in soft agar. Similarly, in vivo tumorigenic and angiogenic activity was dependent on coexpression. Our data further suggests that the mechanism underlying these changes involves the receptor for insulin growth factor type I (IGF-IR.

  1. Bag3 promotes resistance to apoptosis through Bcl-2 family members in non-small cell lung cancer.

    Science.gov (United States)

    Zhang, Yong; Wang, Jian-Hua; Lu, Qiang; Wang, Yun-Jie

    2012-01-01

    In non-small cell lung cancer (NSCLC) certain molecular characteristics, which are related to molecular alterations have been investigated. These are responsible for both the initiation and maintenance of the malignancy in lung cancer. The aim of this study was to evaluate the influence of Bag3 (Bcl-2 associated athanogene 3) in the regulation of apoptosis on NSCLC. Bag3 and Hsp70 expression were examined by immunohistochemistry to confirm their potential roles in the prevalence of NSCLC. We also established human normal bronchial epithelial cells and HOP-62 cell line as the model to analyze cell apoptosis and the expression of Hsp70, Bcl-XL and Bcl-2, which were affected by Bag3. In this study, we found that Bag3 and Hsp70 are highly expressed in few tissues and cell lines of NSCLC. Bag3 inhibits apoptosis in human normal bronchial epithelial cell lines and sustain the survival of NSCLC cells. Bag3, Hsp70, Bcl-XL and Bcl-2 are up-regulated in NSCLC cell lines. At the same time, the silencing of Bag3 results in diminishing protein levels of Bcl-XL and Bcl-2. The results of immunoprecipitation identified that Bag3 could interact with Hsp70, Bcl-XL and Bcl-2 NSCLC cells directly or indirectly. We conclude that NSCLC cells were protected from apoptosis through increasing Bag3 expression and consequently promoted the expression of Bcl-XL and Bcl-2.

  2. Tissue factor/FVIIa activates Bcl-2 and prevents doxorubicin-induced apoptosis in neuroblastoma cells

    International Nuclear Information System (INIS)

    Fang, Jun; Gu, Lubing; Zhu, Ningxi; Tang, Hao; Alvarado, Carlos S; Zhou, Muxiang

    2008-01-01

    Tissue factor (TF) is a transmembrane protein that acts as a receptor for activated coagulation factor VII (FVIIa), initiating the coagulation cascade. Recent studies demonstrate that expression of tumor-derived TF also mediates intracellular signaling relevant to tumor growth and apoptosis. Our present study investigates the possible mechanism by which the interaction between TF and FVIIa regulates chemotherapy resistance in neuroblastoma cell lines. Gene and siRNA transfection was used to enforce TF expression in a TF-negative neuroblastoma cell line and to silence endogenous TF expression in a TF-overexpressing neuroblastoma line, respectively. The expression of TF, Bcl-2, STAT5, and Akt as well as the phosphorylation of STAT5 and Akt in gene transfected cells or cells treated with JAK inhibitor and LY294002 were determined by Western blot assay. Tumor cell growth was determined by a clonogenic assay. Cytotoxic and apoptotic effect of doxorubicin on neuroblastoma cell lines was analyzed by WST assay and annexin-V staining (by flow cytometry) respectively. Enforced expression of TF in a TF-negative neuroblastoma cell line in the presence of FVIIa induced upregulation of Bcl-2, leading to resistance to doxorubicin. Conversely, inhibition of endogenous TF expression in a TF-overexpressing neuroblastoma cell line using siRNA resulted in down-regulation of Bcl-2 and sensitization to doxorubicin-induced apoptosis. Additionally, neuroblastoma cells expressing high levels of either endogenous or transfected TF treated with FVIIa readily phosphorylated STAT5 and Akt. Using selective pharmacologic inhibitors, we demonstrated that JAK inhibitor I, but not the PI3K inhibitor LY294002, blocked the TF/FVIIa-induced upregulation of Bcl-2. This study shows that in neuroblastoma cell lines overexpressed TF ligated with FVIIa produced upregulation of Bcl-2 expression through the JAK/STAT5 signaling pathway, resulting in resistance to apoptosis. We surmise that this TF

  3. Chlamydia infection across host species boundaries promotes distinct sets of transcribed anti-apoptotic factors.

    Directory of Open Access Journals (Sweden)

    Joshua eMessinger

    2015-12-01

    Full Text Available Chlamydiae, obligate intracellular bacteria, cause significant human and veterinary associated diseases. Having emerged an estimated 700-million years ago, these bacteria have twice adapted to humans as a host species, causing sexually transmitted infection (C. trachomatis and respiratory associated disease (C. pneumoniae. The principle mechanism of host cell defense against these intracellular bacteria is the induction of cell death via apoptosis. However, in the arms race of co-evolution, Chlamydiae have developed mechanisms to promote cell viability and inhibit cell death. Herein we examine the impact of Chlamydiae infection across multiple host species on transcription of anti-apoptotic genes. We found mostly distinct patterns of gene expression (Mcl1 and cIAPs elicited by each pathogen-host pair indicating Chlamydiae infection across host species boundaries does not induce a universally shared host response. Understanding species specific host-pathogen interactions is paramount to deciphering how potential pathogens become emerging diseases.

  4. NF-κB activation fails to protect cells to TNFα-induced apoptosis in the absence of Bcl-xL, but not Mcl-1, Bcl-2 or Bcl-w.

    Science.gov (United States)

    Casanelles, Elisenda; Gozzelino, Raffaella; Marqués-Fernández, Fernando; Iglesias-Guimarais, Victoria; Garcia-Belinchón, Mercè; Sánchez-Osuna, María; Solé, Carme; Moubarak, Rana S; Comella, Joan X; Yuste, Victor J

    2013-05-01

    TNFα can promote either cell survival or cell death. The activation of NF-κB plays a central role in cell survival while its inhibition makes TNFα-triggered cytotoxicity possible. Here, we report that the overexpression of a non-degradable mutant of the inhibitor of NF-κB (super-repressor (SR)-IκBα) sensitizes HeLa cells towards TNFα-induced apoptosis, involving caspases activation and cytocrome C release from the mitochondria. Interestingly, we describe that the specific knockdown of Bcl-xL, but not that of Bcl-2, Bcl-w or Mcl-1, renders cells sensitive to TNFα-induced apoptosis. This cytotoxic effect occurs without altering the activation of NF-κB. Then, the activation of the NF-κB pathway is not sufficient to protect Bcl-xL-downregulated cells from TNFα-induced cell death, meaning that TNFα is not able to promote cell survival in the absence of Bcl-xL. In addition, Bcl-xL silencing does not potentiate the cytotoxicity afforded by the cytokine in SR-IκBα-overexpressing cells. This indicates that TNFα-induced apoptosis in SR-IκBα-overexpressing cells relies on the protein levels of Bcl-xL. We have corroborated these findings using RD and DU-145 cells, which also become sensitive to TNFα-induced apoptosis after Bcl-xL knockdown despite that NF-κB remains activated. Altogether, our results point out that the impairment of the anti-apoptotic function of Bcl-xL should make cells sensitive towards external insults circumventing the TNFα-triggered NF-κB-mediated cytoprotective effect. Hence, the specific inhibition of Bcl-xL could be envisaged as a promising alternative strategy against NF-κB-dependent highly chemoresistant proliferative malignancies. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. p53-Dependent radiation-induced apoptosis in vivo: relationship to Bcl-2 and Bax expression

    International Nuclear Information System (INIS)

    Hasegawa, Masatoshi; Suzuki, Yoshiyuki; Furuta, Masaya; Yamakawa, Michitaka; Maebayashi, Katsuya; Hayakawa, Kayoko; Saito, Yoshihiro; Mitsuhashi, Norio; Niibe, Hideo

    1997-01-01

    Purpose: A close correlation between p53 protein expression and radiation-induced apoptosis has already been reported, however, Bcl-2 and Bax expression and the ratio of Bcl-2 to Bax have been also suggested to play an important role in the regulation of apoptotic cell death. In this study, we investigated the relationship between p53-dependent radiation-induced apoptosis and expression of Bcl-2 and Bax by using human tumors transplanted into nude mice. Materials and Methods: Three human tumors (an ependymoblastoma, a glioblastoma, and a small cell lung cancer) were subcutaneously transplanted into nude mice and irradiated with single doses of 1, 2, 5, or 10 Gy. The tumors were excised 1, 3, 6, 12, 24, and 48 hours after irradiation, fixed in 10% formalin for 24 hours, and embedded in paraffin. Slides were stained with hematoxylin and eosin for morphologic examination. Immunohistochemical studies were performed with mouse monoclonal antibodies to demonstrate p53, p21 (WAF-1), Bcl-2, and Bax expression. TdT-mediated dUTP-biotin nick-end labeling (TUNEL) and electron microscopic studies were performed to identify apoptosis, and PCR-SSCP analysis was used to evaluate p53 gene mutation. Results: All of the tumors showed only a few cells undergoing apoptosis before irradiation. Beginning several hours after irradiation, only the ependymoblastoma showed a large increase in the number of cells undergoing apoptosis, peaking at 6 hours after irradiation, and there was a clear dose-effect relationship. In contrast, the other tumors showed much less change following irradiation, and the dose-effect relationship was not as clear as in the ependymoblastoma. Immunohistochemically, the non-irradiated ependymoblastoma was negative for p53, p21, Bcl-2, and Bax. Following irradiation, however, many of the tumor cells became positive for p53 and p21, and a few cells became positive for bcl-2. In contrast, the glioblastoma and the small cell lung cancer were positive for p53 and Bcl-2

  6. Influence of p53 and bcl-2 on chemosensitivity in benign and malignant prostatic cell lines.

    Science.gov (United States)

    Serafin, Antonio M; Bohm, Lothar

    2005-01-01

    The administration of cancer chemotherapeutic agents results in an increase in the apoptotic cells in the tumor: therefore, it has been assumed that anticancer drugs exhibit their cytotoxic effects via apoptotic signaling pathways. Characteristics that confer sensitivity to drug-induced apoptosis are, a functional p53 protein and expression of the apoptosis-promoting protein, bax. The role of p53 and bax/bcl-2 in drug-induced apoptosis was assessed in six prostate cell lines, 1532T, 1535T, 1542T, 1542N, BPH-1 and LNCaP using TD(50) concentrations of etoposide, vinblastine and estramustine. Cell death was monitored morphologically by fluorescent microscopy, and by flow cytometry (Annexin-V assay). Apoptotic morphology was rather low and ranged from 0.1% to 12.1%, 3.0% to 6.0% and 0.1% to 8.5% for etoposide, estramustine and vinblastine, respectively. Annexin-V binding and flow cytometry indicated apoptotic propensities of 0% to 4%, 0% to 3% and 0% to 5%, respectively. The percentage of cells responding to drug-induced apoptosis was, on average, higher in the tumor cell lines than in the normal cell lines, but showed no correlation with p53 status. The percentage of cells showing necrosis, assessed by Annexin binding and Propidium Iodide permeability in aqueous medium, tended to be much higher, and was found to be at the level of 5% to 30%. Immunoblotting demonstrated that bax and bcl-2 proteins were expressed at a basal level in all cell lines, but did not increase after exposure to TD(50) doses of the three drugs. The ratio of bax and bcl-2, measured by laser scanning densitometry, was not altered by the drug-induced DNA damage. The results suggest that apoptosis is not a major mechanism of drug-induced cell death in prostate cell lines and appears to be independent of p53 status and bax/bcl-2 expression.

  7. Inhibition of Bcl-2 potentiates AZD-2014-induced anti-head and neck squamous cell carcinoma cell activity

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yi; Cui, Jiang-Tao, E-mail: cuijingtaopaper@126.com

    2016-09-02

    Mammalian target of rapamycin (mTOR) is a therapeutic target for head and neck squamous cell carcinoma (HNSCC). Here, we evaluated the activity of AZD-2014, a potent mTOR complex 1/2 (mTORC1/2) dual inhibitor, against HNSCC cells. We showed that AZD-2014 blocked mTORC1/2 activation in established and primary human HNSCC cells, where it was anti-proliferative and pro-apoptotic. Yet, AZD-2014 was non-cytotoxic to the human oral epithelial cells with low basal mTORC1/2 activation. In an effect to identify possible AZD-2014 resistance factors, we showed that the anti-apoptosis protein Bcl-2 was upregulated in AZD-2014-resistant SQ20B HNSCC cells. Inhibition of Bcl-2 by ABT-737 (a known Bcl-2 inhibitor) or Bcl-2 shRNA dramatically potentiated AZD-2014 lethality against HNSCC cells. On the other hand, exogenous overexpression of Bcl-2 largely attenuated AZD-2014’s activity against HNSCC cells. For the in vivo studies, we showed that oral gavage of AZD-2014 suppressed SQ20B xenograft growth in severe combined immunodeficient (SCID) mice. It also significantly improved mice survival. Importantly, AZD-2014’s anti-HNSCC activity in vivo was potentiated with co-administration of ABT-737. The preclinical results of this study suggest that AZD-2014 could be further tested as a valuable anti-HNSCC agent, either alone or in combination with Bcl-2 inhibitors. - Highlights: • AZD-2014 blocks mTORC1/2 activation in HNSCC cells. • AZD-2014 suppresses HNSCC cell proliferation. • AZD-2014 activates caspase-3 and apoptosis in HNSCC cells. • Bcl-2 is the key resistance factor of AZD-2014 in HNSCC cells. • ABT-737 sensitizes AZD-2014-induced anti-HNSCC activity in vivo.

  8. Inhibition of Bcl-2 potentiates AZD-2014-induced anti-head and neck squamous cell carcinoma cell activity

    International Nuclear Information System (INIS)

    Li, Yi; Cui, Jiang-Tao

    2016-01-01

    Mammalian target of rapamycin (mTOR) is a therapeutic target for head and neck squamous cell carcinoma (HNSCC). Here, we evaluated the activity of AZD-2014, a potent mTOR complex 1/2 (mTORC1/2) dual inhibitor, against HNSCC cells. We showed that AZD-2014 blocked mTORC1/2 activation in established and primary human HNSCC cells, where it was anti-proliferative and pro-apoptotic. Yet, AZD-2014 was non-cytotoxic to the human oral epithelial cells with low basal mTORC1/2 activation. In an effect to identify possible AZD-2014 resistance factors, we showed that the anti-apoptosis protein Bcl-2 was upregulated in AZD-2014-resistant SQ20B HNSCC cells. Inhibition of Bcl-2 by ABT-737 (a known Bcl-2 inhibitor) or Bcl-2 shRNA dramatically potentiated AZD-2014 lethality against HNSCC cells. On the other hand, exogenous overexpression of Bcl-2 largely attenuated AZD-2014’s activity against HNSCC cells. For the in vivo studies, we showed that oral gavage of AZD-2014 suppressed SQ20B xenograft growth in severe combined immunodeficient (SCID) mice. It also significantly improved mice survival. Importantly, AZD-2014’s anti-HNSCC activity in vivo was potentiated with co-administration of ABT-737. The preclinical results of this study suggest that AZD-2014 could be further tested as a valuable anti-HNSCC agent, either alone or in combination with Bcl-2 inhibitors. - Highlights: • AZD-2014 blocks mTORC1/2 activation in HNSCC cells. • AZD-2014 suppresses HNSCC cell proliferation. • AZD-2014 activates caspase-3 and apoptosis in HNSCC cells. • Bcl-2 is the key resistance factor of AZD-2014 in HNSCC cells. • ABT-737 sensitizes AZD-2014-induced anti-HNSCC activity in vivo.

  9. Inhibitory effects of Bcl-2 on mitochondrial respiration

    Czech Academy of Sciences Publication Activity Database

    Vrbacký, M.; Krijt, J.; Drahota, Zdeněk; Mělková, Z.

    2003-01-01

    Roč. 52, č. 5 (2003), s. 545-554 ISSN 0862-8408 R&D Projects: GA ČR GA301/00/1259; GA MZd NC5463 Institutional research plan: CEZ:AV0Z5011922 Keywords : apoptosis * mitochondria * Bcl-2 Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 0.939, year: 2003

  10. Combination of erlotinib and EGCG induces apoptosis of head and neck cancers through posttranscriptional regulation of Bim and Bcl-2.

    Science.gov (United States)

    Haque, Abedul; Rahman, Mohammad Aminur; Chen, Zhuo Georgia; Saba, Nabil F; Khuri, Fadlo R; Shin, Dong M; Ruhul Amin, A R M

    2015-07-01

    Combinatorial approaches using two or more compounds are gaining increasing attention for cancer therapy. We have previously reported that the combination of the EGFR-TKI erlotinib and epigallocatechin-3-gallate (EGCG) exhibited synergistic chemopreventive effects in head and neck cancers by inducing the expression of Bim, p21, p27, and by inhibiting the phosphorylation of ERK and AKT and expression of Bcl-2. In the current study, we further investigated the mechanism of regulation of Bim, Bcl-2, p21 and p27, and their role in apoptosis. shRNA-mediated silencing of Bim significantly inhibited apoptosis induced by the combination of erlotinib and EGCG (p = 0.005). On the other hand, overexpression of Bcl-2 markedly protected cells from apoptosis (p = 0.003), whereas overexpression of constitutively active AKT only minimally protected cells from apoptosis induced by the combination of the two compounds. Analysis of mRNA expression by RT-PCR revealed that erlotinib, EGCG and their combination had no significant effects on the mRNA expression of Bim, p21, p27 or Bcl-2 suggesting the post-transcriptional regulation of these molecules. Furthermore, we found that erlotinib or the combination of EGCG and erlotinib inhibited the phosphorylation of Bim and stabilized Bim after inhibition of protein translation by cycloheximide. Taken together, our results strongly suggest that the combination of erlotinib and EGCG induces apoptosis of SCCHN cells by regulating Bim and Bcl-2 at the posttranscriptional level.

  11. Combined Targeting of BCL-2 and BCR-ABL Tyrosine Kinase Eradicates Chronic Myeloid Leukemia Stem Cells

    Science.gov (United States)

    Mak, Po Yee; Mu, Hong; Zhou, Hongsheng; Mak, Duncan H.; Schober, Wendy; Leverson, Joel D.; Zhang, Bin; Bhatia, Ravi; Huang, Xuelin; Cortes, Jorge; Kantarjian, Hagop; Konopleva, Marina

    2016-01-01

    BCR-ABL tyrosine kinase inhibitors (TKIs) are effective against chronic myeloid leukemia (CML), but they rarely eliminate CML stem cells. Disease relapse is common upon therapy cessation, even in patients with complete molecular responses. Furthermore, once CML progresses to blast crisis (BC), treatment outcomes are dismal. We hypothesized that concomitant targeting of BCL-2 and BCR-ABL tyrosine kinase could overcome these limitations. We demonstrate increased BCL-2 expression at the protein level in bone marrow cells, particularly in Lin−Sca-1+cKit+ cells of inducible CML in mice as determined by CyTOF mass cytometry. Further, selective inhibition of BCL-2, aided by TKI-mediated MCL-1 and BCL-XL inhibition, markedly decreased leukemic Lin−Sca-1+cKit+ cell numbers and long-term stem cell frequency, and prolonged survival in a murine CML model. Additionally, this combination effectively eradicated CD34+CD38−, CD34+CD38+, and quiescent stem/progenitor CD34+ cells from BC CML patient samples. Our results suggest that BCL-2 is a key survival factor for CML stem/progenitor cells and that combined inhibition of BCL-2 and BCR-ABL tyrosine kinase has the potential to significantly improve depth of response and cure rates of chronic phase and BC CML. PMID:27605552

  12. Members of the bcl-2 and caspase families regulate nuclear degeneration during chick lens fibre differentiation.

    Science.gov (United States)

    Wride, M A; Parker, E; Sanders, E J

    1999-09-01

    The optical clarity of the lens is ensured by the programmed removal of nuclei and other organelles from the lens fibre cells during development. The morphology of the degenerating nuclei is similar to that observed during apoptosis and is accompanied by DNA fragmentation. Proteins encoded by the bcl-2 proto-oncogene family are important in either promoting or inhibiting apoptosis, and caspases are involved in downstream proteolytic events. Here, the expression of bcl-2 family members (bcl-2, bax, bad, and bcl-x(s/l)) and caspases-1, -2, -3, -4, and -6 was investigated through a range of stages of chick lens development using immunocytochemistry, Western blotting, and affinity labelling for caspases using biotinylated caspase inhibitors. Using differentiating lens epithelial cell cultures, it was demonstrated that the addition to cultures of synthetic peptide inhibitors of caspases -1, -2, -4, -6, and -9 brought about a 50-70% reduction in the number of degenerating nuclei per unit area of culture, as assessed by image analysis. These effects were comparable to those seen when general inhibitors of caspases were added to cultures. On the other hand, inhibitors of caspases-3 and -8 were not effective in significantly reducing the number of TUNEL-labelled nuclei. Expression of the caspase substrates poly(ADP-ribose) polymerase (PARP) and the 45-kDa subunit of DNA fragmentation factor (DFF 45) was also observed in the developing lens. Western blots of cultures to which caspase inhibitors were added revealed alterations in the PARP cleavage pattern, but not in that of DFF. These results demonstrate a role for members of the bcl-2 family and caspases in the degeneration of lens fibre cell nuclei during chick secondary lens fibre development and support the proposal that this process has many characteristics in common with apoptosis. Copyright 1999 Academic Press.

  13. Effect of Bcl-2/Bax gene expression on apoptosis of spermatogenic cells of mouse testes induced by low dose radiation

    International Nuclear Information System (INIS)

    Liu Guangwei; Wang Chunyan; Lu Zhe; Liu Shunchun; Gong Shouliang

    2003-01-01

    The different kinds of spermatogenic cells were separated using density gradient centrifugation and their apoptosis and Bcl-2 and Bax protein expression were measured with flow cytometry and immunohistochemical method, respectively. The results showed the apoptosis in all kinds of spermatogenic cells induced by low dose radiation (LDR) had a obvious regularity. When the doses were 0.025 and 0.05 Gy, spermatogonia apoptosis was dominant. With the increase of irradiation dose (0.075-0.2 Gy), spermatocytes also showed an apoptotic change, but the apoptotic percentage of spermatogonia was significantly higher than that of spermatocytes. Moreover, the apoptosis of spermatids and spermatozoa scarcely occurred after LDR. Bax protein was primarily expressed in spermatogonia and spermatocytes, and the former was significantly higher than that of the latter after LDR. With the increase of irradiation dose, Bax protein expression showed a upgrading tendency, but that of spermatids and spermatozoa scarcely occurred. Bcl-2 protein was primarily expressed in spermatids and spermatozoa, but the Bcl-2 protein expressions of spermatogonia and spermatocytes scarcely occurred after LDR. These results imply that the interacting regulation of Bcl-2 and Bax gene expression might be involved in selective apoptosis of spermatogenic cells induced by LDR, which provided an experimental evidence for further exploring the apoptotic mechanism of adaptive response of spermatogenic cells by LDR

  14. Anti-apoptotic effects of Z alpha1-antitrypsin in human bronchial epithelial cells.

    LENUS (Irish Health Repository)

    Greene, C M

    2010-05-01

    alpha(1)-antitrypsin (alpha(1)-AT) deficiency is a genetic disease which manifests as early-onset emphysema or liver disease. Although the majority of alpha(1)-AT is produced by the liver, it is also produced by bronchial epithelial cells, amongst others, in the lung. Herein, we investigate the effects of mutant Z alpha(1)-AT (ZAAT) expression on apoptosis in a human bronchial epithelial cell line (16HBE14o-) and delineate the mechanisms involved. Control, M variant alpha(1)-AT (MAAT)- or ZAAT-expressing cells were assessed for apoptosis, caspase-3 activity, cell viability, phosphorylation of Bad, nuclear factor (NF)-kappaB activation and induced expression of a selection of pro- and anti-apoptotic genes. Expression of ZAAT in 16HBE14o- cells, like MAAT, inhibited basal and agonist-induced apoptosis. ZAAT expression also inhibited caspase-3 activity by 57% compared with control cells (p = 0.05) and was a more potent inhibitor than MAAT. Whilst ZAAT had no effect on the activity of Bad, its expression activated NF-kappaB-dependent gene expression above control or MAAT-expressing cells. In 16HBE14o- cells but not HEK293 cells, ZAAT upregulated expression of cIAP-1, an upstream regulator of NF-kappaB. cIAP1 expression was increased in ZAAT versus MAAT bronchial biopsies. The data suggest a novel mechanism by which ZAAT may promote human bronchial epithelial cell survival.

  15. Pan-Bcl-2 inhibitor obatoclax delays cell cycle progression and blocks migration of colorectal cancer cells.

    Directory of Open Access Journals (Sweden)

    Bruno Christian Koehler

    Full Text Available Despite the fact that new treatment regimes have improved overall survival of patients challenged by colorectal cancer (CRC, prognosis in the metastatic situation is still restricted. The Bcl-2 family of proteins has been identified as promising anti cancer drug target. Even though small molecules targeting Bcl-2 proteins are in clinical trials, little is known regarding their effects on CRC. The aim of this study was to preclinically investigate the value of ABT-737 and Obatoclax as anticancer drugs for CRC treatment. The effects of the BH3-mimetics ABT-737 and Obatoclax on CRC cells were assessed using viability and apoptosis assays. Wound healing migration and boyden chamber invasion assays were applied. 3-dimensional cell cultures were used for long term assessment of invasion and proliferation. Clinically relevant concentrations of pan-Bcl-2 inhibitor Obatoclax did not induce cell death. In contrast, the BH3-mimetic ABT-737 induced apoptosis in a dose dependent manner. Obatoclax caused a cell line specific slowdown of CRC cell growth. Furthermore, Obatoclax, but not ABT-737, recovered E-Cadherin expression and led to impaired migration and invasion of CRC cells. The proliferative capacity and invasiveness of CRC cells was strikingly inhibited by low dose Obatoclax in long term 3-dimensional cell cultures. Obatoclax, but not ABT-737, caused a G1-phase arrest accompanied by a downregulation of Cyclin D1 and upregulation of p27 and p21. Overexpression of Mcl-1, Bcl-xL or Bcl-2 reversed the inhibitory effect of Obatoclax on migration but failed to restore the proliferative capacity of Obatoclax-treated CRC cells. The data presented indicate broad and multifaceted antitumor effects of the pan-Bcl-2 inhibitor Obatoclax on CRC cells. In contrast to ABT-737, Obatoclax inhibited migration, invasion and proliferation in sublethal doses. In summary, this study recommends pan-Bcl-2 inhibition as a promising approach for clinical trials in CRC.

  16. THE EXPRESSION OF Bcl-2 AND PRO-CASPASE 3 IN HEAD AND NECK SQUAMOUS CELL CARCINOMA

    Directory of Open Access Journals (Sweden)

    Andrej Cör

    2002-12-01

    Full Text Available Background. Head and neck squamous cell carcinoma (HNSCC is the sixth most common cancer and accounts for 6% of cancers worldwide. A better understanding of its biology could lead to improved treatment options. Generally, the goal of cancer treatment is to abolish cell proliferation and to induce necrotic or aptoptotic cell death. Apoptosis has been recognized as a key mechanism of tumour cell elimination. Different apoptotic signals converge to induce caspase cascade activation. Caspase 3 is the central executioner caspase and is necessary for effective apoptotic cell death. Bcl-2 protein family regulates apoptosis. The Bcl-2 protein itself is a product of a proto-oncogene and has an antiapoptotic action.Methods. In our study, the expression of Bcl-2 and pro-caspase 3 by immunohistochemistry in 28 HNSCC graded into well, moderately and poorly differentiated cancers were investigated.Results. Our results of Bcl-2 expression confirm and extend previous reports in which Bcl-2 over-expression has been recognised as an important parameter in HNSCC biological behaviour. Three of 28 tumours (11% showed significant Bcl-2 expression. Two of them were poorly and one was moderately differentiated. Pro-caspase 3 immunoreactivity was confined mainly to the cytoplasm. Absent or low pro-caspase 3 immunoreactivity was found only in 1 of 6 well differentiated and in 1of 10 moderately differentiated tumours in contrast to 5 of 12 poorly differentiated tumours. In six of 12 poorly differentiated tumours procasapse 3 immunoreactivity was strongly positive. In two cases hyperplastic epithelium was strongly positive in contrast to adjacent HNSCC in the same slide which was completely negative for pro-caspase 3.Conclusions. Our results indicate downregulation of pro-caspase 3 expression, especially in poorly differentiated HNSCC. Further studies are needed to test whether this is related to HNSCC behaviour and predict treatment outcome.

  17. Apoptosis and BCL-2 expression as predictors of survival in radiation-treated non-small-cell lung cancer

    International Nuclear Information System (INIS)

    Hwang, Jun-Hwa; Lim, Sung-Chul; Kim, Young-Chul; Park, Kyung-Ok; Ahn, Sung-Ja; Chung, Woong-Ki

    2001-01-01

    Objectives: We assessed the role of apoptosis and the expression of bcl-2, p53, and c-myc oncoproteins in pretreatment histologic specimens as a predictor of response to radiation therapy and survival in non-small-cell lung cancer (NSCLC) patients. Methods: Pretreatment biopsy specimens of 68 patients with NSCLC (62 squamous cell carcinoma, 6 adenocarcinoma) were stained with hematoxylin and eosin. From 5 high-powered fields, the apoptotic index (AI) was calculated as the ratio of apoptotic tumor cells to the total number of tumor cells. Bcl-2, p53, and c-myc oncoprotein expression was detected by immunohistochemical staining. Results: Twenty-nine cases showed partial or complete remission, whereas 39 showed no response. AI ranged from 0.2 to 12.0% (mean ± SD; 4.3±2.6%, median 4.0%). There was no difference in AI between responders (4.0±2.3) and nonresponders (4.5±2.8, p>0.05). However, in the responders, AI was correlated with the degree of change in tumor volume (r=0.41, p<0.05). In an analysis of 53 subjects who survived more than 1 month after the completion of radiation therapy, the patients with a higher AI (n=27, MST=22.8 m) survived longer than those with a lower AI (n=26, MST=9.2, log-rank, p=0.03). Patients expressing bcl-2 had poorer survival (n=22, MST=6.0 m) than patients without bcl-2 (n=31, 22.8 m, p<0.003). According to multivariate analysis, three variables, bcl-2 expression, AI, and response to radiation, were independent prognostic factors for survival. Conclusion: A low level of spontaneous apoptosis and expression of apoptosis blocking bcl-2 protein in pretreatment histology predict a poor prognosis for radiation-treated NSCLC patients

  18. Safflor yellow B suppresses angiotensin II-mediated human umbilical vein cell injury via regulation of Bcl-2/p22phox expression

    International Nuclear Information System (INIS)

    Wang, Chaoyun; He, Yanhao; Yang, Ming; Sun, Hongliu; Zhang, Shuping; Wang, Chunhua

    2013-01-01

    Intracellular reactive oxygen species (ROS) are derived from nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Angiotensin II (Ang II) can cause endothelial dysfunction by promoting intracellular ROS generation. Safflor yellow B (SYB) effectively inhibits ROS generation by upregulating Bcl-2 expression. In this study, we examined the effects of SYB on Ang II-induced injury to human umbilical vein endothelial cells (HUVECs), and elucidated the roles of NADPH oxidase and Bcl-2. We treated cultured HUVECs with Ang II, SYB, and Bcl-2 siRNA, and determined NADPH oxidase activity and ROS levels. Furthermore, cellular and mitochondrial physiological states were evaluated, and the expression levels of target proteins were analyzed. Ang II significantly enhanced intracellular ROS levels, caused mitochondrial membrane dysfunction, and decreased cell viability, leading to apoptosis. This was associated with increased expression of AT1R and p22 phox , increased NADPH oxidase activity, and an increased ratio of Bax/Bcl-2, leading to decreases in antioxidant enzyme activities, which were further strengthened after blocking Bcl-2. Compared to Ang II treatment alone, co-treatment with SYB significantly reversed HUVEC injury. Taken together, these results demonstrate that SYB could significantly protect endothelial cells from Ang II-induced cell damage, and that it does so by upregulating Bcl-2 expression and inhibiting ROS generation. - Highlights: • Angiotensin II depresses mitochondria physiological function. • Angiotensin II activates NADPH oxidase via up-regulating expresion of p22 phox . • Bcl-2 plays a pivotal role in improving mitochondria function and regulates ROS level. • Inhibitor of Bcl-2 promotes angiotensin II mediated HUVEC injury. • SYB attenuates angiotensin II mediated HUVEC injury via up regulating Bcl-2 expression

  19. The AA genotype of the regulatory BCL2 promoter polymorphism ( 938C>A) is associated with a favorable outcome in lymph node negative invasive breast cancer patients.

    Science.gov (United States)

    Bachmann, Hagen S; Otterbach, Friedrich; Callies, Rainer; Nückel, Holger; Bau, Maja; Schmid, Kurt W; Siffert, Winfried; Kimmig, Rainer

    2007-10-01

    Expression of the antiapoptotic and antiproliferative protein Bcl-2 has been repeatedly shown to be associated with better clinical outcome in breast cancer. We recently showed a novel regulatory (-938C>A) single-nucleotide polymorphism (SNP) in the inhibitory P2 BCL2 gene promoter generating significantly different BCL2 promoter activities. Paraffin-embedded neoplastic and nonneoplastic tissues from 274 patients (161 still alive after a follow-up period of at least 80 months) with primary unilateral invasive breast carcinoma were investigated. Bcl-2 expression of tumor cells was shown by immunohistochemistry; nonneoplastic tissues were used for genotyping. Both the Bcl-2 expression and the (-938C>A) genotypes were correlated with the patients' survival. Kaplan-Meier curves revealed a significant association of the AA genotype with increased survival (P = 0.030) in lymph node-negative breast cancer patients, whereas no genotype effect could be observed in lymph node-positive cases. Ten-year survival rates were 88.6% for the AA genotype, 78.4% for the AC genotype, and 65.8% for the CC genotype. Multivariable Cox regression identified the BCL2 (-938CC) genotype as an independent prognostic factor for cancer-related death in lymph node-negative breast carcinoma patients (hazard ratio, 3.59; P = 0.032). Immunohistochemical Bcl-2 expression was significantly associated with the clinical outcome of lymph node-positive but not of lymph node-negative breast cancer patients. In lymph node-negative cases, the (-938C>A) SNP was both significantly related with the immunohistochemically determined level of Bcl-2 expression (P = 0.044) and the survival of patients with Bcl-2-expressing carcinomas (P = 0.006). These results suggest the (-938C>A) polymorphism as a survival prognosticator as well as indicator of a high-risk group within patients with lymph node-negative breast cancer.

  20. Pro- and anti-apoptotic CD95 signaling in T cells

    Directory of Open Access Journals (Sweden)

    Janssen Ottmar

    2011-04-01

    Full Text Available Abstract The TNF receptor superfamily member CD95 (Fas, APO-1, TNFRSF6 is known as the prototypic death receptor in and outside the immune system. In fact, many mechanisms involved in apoptotic signaling cascades were solved by addressing consequences and pathways initiated by CD95 ligation in activated T cells or other "CD95-sensitive" cell populations. As an example, the binding of the inducible CD95 ligand (CD95L to CD95 on activated T lymphocytes results in apoptotic cell death. This activation-induced cell death was implicated in the control of immune cell homeostasis and immune response termination. Over the past years, however, it became evident that CD95 acts as a dual function receptor that also exerts anti-apoptotic effects depending on the cellular context. Early observations of a potential non-apoptotic role of CD95 in the growth control of resting T cells were recently reconsidered and revealed quite unexpected findings regarding the costimulatory capacity of CD95 for primary T cell activation. It turned out that CD95 engagement modulates TCR/CD3-driven signal initiation in a dose-dependent manner. High doses of immobilized CD95 agonists or cellular CD95L almost completely silence T cells by blocking early TCR-induced signaling events. In contrast, under otherwise unchanged conditions, lower amounts of the same agonists dramatically augment TCR/CD3-driven activation and proliferation. In the present overview, we summarize these recent findings with a focus on the costimulatory capacity of CD95 in primary T cells and discuss potential implications for the T cell compartment and the interplay between T cells and CD95L-expressing cells including antigen-presenting cells.

  1. BET inhibition silences expression of MYCN and BCL2 and induces cytotoxicity in neuroblastoma tumor models.

    Directory of Open Access Journals (Sweden)

    Anastasia Wyce

    Full Text Available BET family proteins are epigenetic regulators known to control expression of genes involved in cell growth and oncogenesis. Selective inhibitors of BET proteins exhibit potent anti-proliferative activity in a number of hematologic cancer models, in part through suppression of the MYC oncogene and downstream Myc-driven pathways. However, little is currently known about the activity of BET inhibitors in solid tumor models, and whether down-regulation of MYC family genes contributes to sensitivity. Here we provide evidence for potent BET inhibitor activity in neuroblastoma, a pediatric solid tumor associated with a high frequency of MYCN amplifications. We treated a panel of neuroblastoma cell lines with a novel small molecule inhibitor of BET proteins, GSK1324726A (I-BET726, and observed potent growth inhibition and cytotoxicity in most cell lines irrespective of MYCN copy number or expression level. Gene expression analyses in neuroblastoma cell lines suggest a role of BET inhibition in apoptosis, signaling, and N-Myc-driven pathways, including the direct suppression of BCL2 and MYCN. Reversal of MYCN or BCL2 suppression reduces the potency of I-BET726-induced cytotoxicity in a cell line-specific manner; however, neither factor fully accounts for I-BET726 sensitivity. Oral administration of I-BET726 to mouse xenograft models of human neuroblastoma results in tumor growth inhibition and down-regulation MYCN and BCL2 expression, suggesting a potential role for these genes in tumor growth. Taken together, our data highlight the potential of BET inhibitors as novel therapeutics for neuroblastoma, and suggest that sensitivity is driven by pleiotropic effects on cell growth and apoptotic pathways in a context-specific manner.

  2. Bcl-2–associated athanogene 3 protects the heart from ischemia/reperfusion injury

    OpenAIRE

    Su, Feifei; Myers, Valerie D.; Knezevic, Tijana; Wang, JuFang; Gao, Erhe; Madesh, Muniswamy; Tahrir, Farzaneh G.; Gupta, Manish K.; Gordon, Jennifer; Rabinowitz, Joseph; Ramsey, Frederick V.; Tilley, Douglas G.; Khalili, Kamel; Cheung, Joseph Y.; Feldman, Arthur M.

    2016-01-01

    Bcl-2–associated athanogene 3 (BAG3) is an evolutionarily conserved protein expressed at high levels in the heart and the vasculature and in many cancers. While altered BAG3 expression has been associated with cardiac dysfunction, its role in ischemia/reperfusion (I/R) is unknown. To test the hypothesis that BAG3 protects the heart from reperfusion injury, in vivo cardiac function was measured in hearts infected with either recombinant adeno-associated virus serotype 9–expressing (rAAV9-expre...

  3. G3139, a Bcl-2 antisense oligodeoxynucleotide, induces clinical responses in VAD refractory myeloma

    NARCIS (Netherlands)

    van de Donk, N. W. C. J.; de Weerdt, O.; Veth, G.; Eurelings, M.; van Stralen, E.; Frankel, S. R.; Hagenbeek, A.; Bloem, A. C.; Lokhorst, H. M.

    2004-01-01

    Expression of Bcl-2 in multiple myeloma is associated with resistance to chemotherapeutic drugs. Conversely, suppression of Bcl-2 enhanced the chemosensitivity of myeloma cells in vitro. G3139 is an antisense oligodeoxynucleotide targeted to the first six codons of the Bcl-2 mRNA open reading frame.

  4. Mcl-1 Ubiquitination: Unique Regulation of an Essential Survival Protein

    Directory of Open Access Journals (Sweden)

    Barbara Mojsa

    2014-05-01

    Full Text Available Mcl-1 is an anti-apoptotic protein of the Bcl-2 family that is essential for the survival of multiple cell lineages and that is highly amplified in human cancer. Under physiological conditions, Mcl-1 expression is tightly regulated at multiple levels, involving transcriptional, post-transcriptional and post-translational processes. Ubiquitination of Mcl-1, that targets it for proteasomal degradation, allows for rapid elimination of the protein and triggering of cell death, in response to various cellular events. In the last decade, a number of studies have elucidated different pathways controlling Mcl-1 ubiquitination and degradation. Four different E3 ubiquitin-ligases (e.g., Mule, SCFβ-TrCP, SCFFbw7 and Trim17 and one deubiquitinase (e.g., USP9X, that respectively mediate and oppose Mcl-1 ubiquitination, have been formerly identified. The interaction between Mule and Mcl-1 can be modulated by other Bcl-2 family proteins, while recognition of Mcl-1 by the other E3 ubiquitin-ligases and deubiquitinase is influenced by phosphorylation of specific residues in Mcl-1. The protein kinases and E3 ubiquitin-ligases that are involved in the regulation of Mcl-1 stability vary depending on the cellular context, highlighting the complexity and pivotal role of Mcl-1 regulation. In this review, we attempt to recapitulate progress in understanding Mcl-1 regulation by the ubiquitin-proteasome system.

  5. Effect of bcl-2 antisense oligodexynucleotides on chemotherapy efficacy of Vp-16 on human small cell lung cancer cell line NCI-H69

    International Nuclear Information System (INIS)

    He Wenqian; Liu Zhonghua

    2007-01-01

    Objective: To study the effect of bcl-2 antisense oligodexynucleotides on chemotherapy efficacy of Vp-16 on human small cell lung cancer cell line NCI-H69. Methods: Cultured NCI-H69 cells were derided into 4 groups: bcl-2 antisense oligodexynucleotides (ASODN) added, sense oligodexynucleotides (SODN) added, nonsense oligodexynucleotides (NSODN) added and control (no nucleotides added), the oligodexynucleotides were transfected into the cultured cells with oligofectamine. The cellular expression of Bcl-2 protein 72h later was examined with Western-Blot. The four different groups of cultured tumor cells were treated with etopside(Vp-16) at different concentrations (0, 0.25, 0.5, 1.0, 2.0 and 4.0 μg/ml) for 48hr then the cell survival fraction was assessed with MTY test. Results: The apoptotic rate of cells in the ASODN group was significantly higher than that of the control group, also, the survival fraction of cells in ASODN group was significantly lower than that of the control group. The Bcl-2 protein expression in ASODN group was significantly lower than that in the control group, but no inhibition was observed in SODN and NSODN groups. Conclusion: The bcl-2 ASODN could enhance the sensitivity to chemotherapy with Vp-16 in small cell lung cancer cell line NCI-H69 by effectively blocking bcl-2 gene expression. (authors)

  6. Clusterin silencing sensitizes pancreatic cancer MIA-PaCa-2 cells to gmcitabine via regulation of NF-kB/Bcl-2 signaling.

    Science.gov (United States)

    Xu, Miao; Chen, Xiumei; Han, Yanling; Ma, Chunqing; Ma, Lin; Li, Shirong

    2015-01-01

    Clusterin (CLU) is known as a multifunctional protein involved in a variety of physiological processes including lipid transport, epithelial cell differentiation, tumorigenesis, and apoptosis. Our recent study has demonstrated that knockdown of clusterin sensitizes pancreatic cancer cell lines to gmcitabine treatment. However the details of this survival mechanism remain undefined. Of the various downstream targets of CLU, we examined activation of the NF-kB transcription factor and subsequent transcriptional regulation of BCL-2 gene in pancreatic cancer cell MIA-PaCa-2. The MIA-PaCa-2 cells were transfected with an antisense oligonucleotide (ASO) against clusterin, which led to a decreased protein level of the antiapoptotic gene BCL-2. Furthermore, inhibition of CLU decreased the function of NF-kB, which is capable of transcriptional regulation of the BCL-2 gene. Inhibiting this pathway increased the apoptotic effect of gmcitabine chemotherapy. Re-activated NF-kB resulted in attenuation of ASO-induced effects, followed by the bcl-2 upregulation, and bcl-2 re-inhibition resulted in attenuation of Re-activated NF-kB -induced effects. Animals injected with ASO CLU in MIA-PaCa-2 cells combined with gmcitabine treatment had fewer tumors than gmcitabine or ASO CLU alone. These findings suggest that knockdown of CLU sensitized MIA-PaCa-2 cells to gmcitabine chemotherapy through modulating NF-Kb/bcl-2 pathway.

  7. Patients with diffuse large B-cell lymphoma of germinal center origin with BCL2 translocations have poor outcome, irrespective of MYC status: a report from an International DLBCL rituximab-CHOP Consortium Program Study.

    NARCIS (Netherlands)

    Visco, C.; Tzankov, A.; Xu-Monette, Z.Y.; Miranda, R.N.; Tai, Y.C.; Li, Y.; Liu, W.M.; d'Amore, E.S.; Li, Y.O.; Montes-Moreno, S.; Dybkaer, K.; Chiu, A.; Orazi, A.; Zu, Y.; Bhagat, G.; Wang, H.Y.; Dunphy, C.H.; His, E.D.; Zhao, X.F.; Choi, W.W.; Krieken, J.H.J.M. van; Huang, Q.; Ai, W.; O'Neill, S.; Ponzoni, M.; Ferreri, A.J.; Kahl, B.S.; Winter, J.N.; Go, R.S.; Dirnhofer, S.; Piris, M.A.; Moller, M.B.; Wu, L.; Medeiros, L.J.; Young, K.H.

    2013-01-01

    Diffuse large B-cell lymphoma can be classified by gene expression profiling into germinal center and activated B-cell subtypes with different prognoses after rituximab-CHOP. The importance of previously recognized prognostic markers, such as Bcl-2 protein expression and BCL2 gene abnormalities, has

  8. Coenzyme Q10 Protects Hippocampal Neurons against Ischemia/ Reperfusion Injury via Modulation of BAX/Bcl-2 Expression

    Directory of Open Access Journals (Sweden)

    Mohammad Zamani

    2012-09-01

    Full Text Available Introduction: Preliminary studies have con.rmed reduction in cell death following treatment with antioxidants. According to this .nding we study the relationship between consumption of CoQ10 and expression of Bax and Bcl2 in hippocampus following ischemia/reperfusion as proteins involved in cell programmed death or apoptosis. Methods: We studied the protective role of CoQ10 against ischemia-reperfusion. Experimental design includes four groups:  intact, ischemic control, sham control and treatment group with CoQ10. The mice were pre-treated with CoQ10 for a week, then ischemia was induced by common carotid artery ligation and following the reduction in in.ammation (a week the mice was treated with CoQ10.  Nissl staining was applied for counting the necrotic cells of hippocampus and the western blot was performed to measure the Bax and Bcl2 expression.Results: Cell death was signi.cantly lower when mice were treated with CoQ10. Bax expression was signi.cantly high in the ischemic group but low in the treatment group, and the bcl2 expression was lower in the ischemic group than the treatment and the vehicle groups.Discussion: Ischemia for 15 minutes induced cell death in hippocampus with more potent effect on CA1. CoQ10 intake signi.cantly reduced cell death and prevented the expression of Bax while inducing an increase in expression of bcl2.

  9. Coenzyme Q10 Protects Hippocampal Neurons Against Ischemia/Reperfusion Injury via Modulation of BAX/Bcl-2 Expression

    Directory of Open Access Journals (Sweden)

    M Zamani

    2012-12-01

    Full Text Available Introduction : Preliminary studies confirmed reduction in cell death following treatment with antioxidants. According to this finding we study the relationship between consumption of CoQ10 and expression of bax and bcl2 in hippocampus following ischemia/reperfusion as proteins involved in cell programmed death or apoptosis.Material & methods : We studied the protective role of CoQ10 against Ischemia-Reperfusion. Experimental design includes four groups: intact, ischemic control, sham control and treatment groups with CoQ10. The mice treated with CoQ10 as Pre - Treatment for a week. Then, ischemia induced by common carotid artery ligation and following the reduction in inflammation (a week the mice post-treated with CoQ10.Nissl staining applied to counting necrotic cells of hippocampus and the western blotting performed to measurement the bax and bcl2 expression.Results :. Cell death was significantly lower when mice treated with CoQ10. Bax expression was significantly high in ischemic group but in treatment group was less and reversely the bcl2 expression in ischemic group was lower than treatment and vehicle groups.Conclusion : Ischemia for 15 minutes induced cell death in hippocampus with more potent effect on CA1. CoQ10 intake significantly reduced cell death and prevented the expression of bax while inducing an increase in expression of bcl2.

  10. Knock-down of NDRG2 sensitizes cervical cancer Hela cells to cisplatin through suppressing Bcl-2 expression

    International Nuclear Information System (INIS)

    Liu, Junye; Guo, Guozhen; Yang, Le; Zhang, Jian; Zhang, Jing; Chen, Yongbin; Li, Kangchu; Li, Yurong; Li, Yan; Yao, Libo

    2012-01-01

    NDRG2, a member of N-Myc downstream regulated gene family, plays some roles in cellular stress, cell differentiation and tumor suppression. We have found that NDRG2 expression in cervical cancer Hela cells increases significantly upon stimulation with cisplatin, the most popular chemotherapeutic agent currently used for the treatment of advanced cervical cancer. This interesting phenomenon drove us to evaluate the role of NDRG2 in chemosensitivity of Hela cells. In the present study, RNA interference was employed to down-regulate NDRG2 expression in Hela cells. RT-PCR and Western blot were used to detect expression of NDRG2, Bcl-2 and Bax in cancer cells. Real-time PCR was applied to detect miR-15b and miR-16 expression levels. Drug sensitivity was determined with MTT assay. Cell cloning efficiency was evaluated by Colony-forming assay. Apoptotic cells were detected with annexin V staining and flow cytometry. In vitro drug sensitivity assay revealed that suppression of NDRG2 could sensitize Hela cells to cisplatin. Down-regulation of NDRG2 didn’t influence the colony-forming ability but promoted cisplatin-induced apoptosis of Hela cells. Inhibition of NDRG2 in Hela cells was accompanied by decreased Bcl-2 protein level. However, Bcl-2 mRNA level was not changed in Hela cells with down-regulation of NDRG2. Further study indicated that miR-15b and miR-16, two microRNAs targetting Bcl-2, were significantly up-regulated in NDRG2-suppressed Hela cells. These data suggested that down-regulation of NDRG2 could enhance sensitivity of Hela cells to cisplatin through inhibiting Bcl-2 protein expression, which might be mediated by up-regulating miR-15b and miR-16

  11. Bcl-2 and bax expression and prostate cancer outcome in men treated with radiotherapy in Radiation Therapy Oncology Group protocol 86-10

    International Nuclear Information System (INIS)

    Khor, L.-Y.; De Silvio, Michelle; Li, Rile; McDonnell, Timothy J.; Hammond, M. Elizabeth H.; Sause, William T.; Pilepich, Miljenko V.; Okunieff, Paul; Sandler, Howard M.; Pollack, Alan

    2006-01-01

    Purpose: Bcl-2 and bax are proteins with opposing roles in apoptosis regulation; yet abnormal expression of either has been associated with failure after radiotherapy (RT). In this study we examined bcl-2 and bax expression as predictive markers in men treated with radiotherapy ± androgen deprivation on Radiation Therapy Oncology Group (RTOG) protocol 86-10. Experimental Design: Suitable archival diagnostic tissue was obtained from 119 (26%) patients for bcl-2 analysis and 104 (23%) patients for bax analysis. Cox proportional hazards multivariate analysis was used to determine the relationship of abnormal bcl-2 and bax expression to the end points of local failure, distant metastasis, cause-specific mortality, and overall mortality. Bcl-2 overexpression was classified as any tumor cell cytoplasmic staining and altered bax expression was classified as greater or lesser cytoplasmic staining intensity of tumor cells as compared with adjacent normal prostate epithelium. Results: The study cohort exhibited bcl-2 overexpression in 26% (n = 30) of cases and abnormal bax expression in 47% (n = 49) of cases. A borderline significant relationship was observed between abnormal bax expression and higher Gleason score (p = 0.08). In univariate and multivariate analyses, there was no statistically significant relationship seen between abnormal bcl-2 or bax expression and outcome. Conclusions: Abnormal bcl-2 and bax expression were not related to any of the end points tested. The cohort examined was comprised of patients with locally advanced disease and it is possible that these markers may be of greater value in men with earlier-stage prostate cancer

  12. Effect of doxorubicin, oxaliplatin, and methotrexate administration on the transcriptional activity of BCL-2 family gene members in stomach cancer cells.

    Science.gov (United States)

    Florou, Dimitra; Patsis, Christos; Ardavanis, Alexandros; Scorilas, Andreas

    2013-07-01

    Defective apoptosis comprises the main reason for tumor aggressiveness and chemotherapy tolerance in solid neoplasias. Among the BCL-2 family members, whose mRNA or protein expression varies considerably in different human malignancies, BCL2L12 is the one for which we have recently shown its propitious prognostic value in gastric cancer. The purpose of the current work was to investigate the expression behavior of BCL2L12, BAX, and BCL-2 in human stomach adenocarcinoma cells following their exposure to anti-tumor substances. The 3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide and trypan blue methods assessed the impact of doxorubicin, oxaliplatin and methotrexate on AGS cells' viability and growth. Following isolation from cells, total RNA was reverse-transcribed to cDNA. Quantification of target genes' expression was performed with real-time PCR using SYBR Green detection system. The relative changes in their mRNA levels between drug-exposed and untreated cells were calculated with the comparative Ct method (2(-ddCt)). All three drugs, as a result of their administration to AGS cancer cells for particular time intervals, provoked substantial fluctuations in the transcriptional levels of the apoptosis-related genes studied. While BAX was principally upregulated, striking similar were the notable changes regarding BCL-2 and BCL2L12 expression in our cellular system. Our findings indicate the growth suppressive effects of doxorubicin, oxaliplatin and methotrexate treatment on stomach carcinoma cells and the implication of BCL2L12, BAX, and BCL-2 expression profiles in the molecular signaling pathways triggered by chemotherapy.

  13. Energetic heavy ions overcome tumor radioresistance caused by overexpression of Bcl-2

    International Nuclear Information System (INIS)

    Hamada, Nobuyuki; Hara, Takamitsu; Omura-Minamisawa, Motoko; Funayama, Tomoo; Sakashita, Tetsuya; Sora, Sakura; Yokota, Yuichiro; Nakano, Takashi

    2008-01-01

    Background and purpose: Overexpression of Bcl-2 is frequent in human cancers and has been associated with radioresistance. Here we investigated the potential impact of heavy ions on Bcl-2 overexpressing tumors. Materials and methods: Bcl-2 cells (Bcl-2 overexpressing HeLa cells) and Neo cells (neomycin resistant gene-expressing HeLa cells) exposed to γ-rays or heavy ions were assessed for the clonogenic survival, apoptosis and cell cycle distribution. Results: Whereas Bcl-2 cells were more resistant to γ-rays (0.2 keV/μm) and helium ions (16.2 keV/μm) than Neo cells, heavy ions (76.3-1610 keV/μm) yielded similar survival regardless of Bcl-2 overexpression. Carbon ions (108 keV/μm) decreased the difference in the apoptotic incidence between Bcl-2 and Neo cells, and prolonged G 2 /M arrest that occurred more extensively in Bcl-2 cells than in Neo cells. Conclusions: High-LET heavy ions overcome tumor radioresistance caused by Bcl-2 overexpression, which may be explained at least in part by the enhanced apoptotic response and prolonged G 2 /M arrest. Thus, heavy-ion therapy may be a promising modality for Bcl-2 overexpressing radioresistant tumors

  14. Neuroprotective effects of lycopene in spinal cord injury in rats via antioxidative and anti-apoptotic pathway.

    Science.gov (United States)

    Hu, Wei; Wang, Hongbo; Liu, Zhenfeng; Liu, Yanlu; Wang, Rong; Luo, Xiao; Huang, Yifei

    2017-03-06

    Oxidative damage induced-mitochondrial dysfunction and apoptosis has been widely studied in spinal cord injury (SCI). Lycopene, a polyunsaturated hydrocarbon, has the highest antioxidant capacity compared to the other carotenoids. However, the role of lycopene in SCI is unknown. In the present study, we evaluated the antioxidant effects of lycopene on mitochondrial dysfunction and apoptosis following T10 contusion SCI in rats. The rats were randomized into 5 groups: the sham group, the SCI group and the SCI pre-treated with lycopene (5, 10, or 20mg/kg) group. The SCI group showed increased malondialdehyde (MDA) content, decreased superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) ability, which indicated that SCI could induce oxidative damage. What's more, the SCI group showed decreased mRNA expression of cytochrome b and mitochondrial transcription factor A (Tfam), and decreased mitochondrial membrane potential (ΔYm), which indicated that SCI could induce mitochondrial dysfunction. Besides, the SCI group showed decreased protein expression of bcl-2 and mitochondrial cytochrome C, increased protein expression of cytosolic cytochrome C, cleaved caspase-9, cleaved caspase-3 and bax, and increased TUNEL-positive cell numbers, which indicated that SCI could induce cell apoptosis. Fortunately, the lycopene treatment significantly ameliorated oxidative damage, mitochondrial dysfunction and cell apoptosis via the reversion of those parameters described above in the dose of lycopene of 10 and 20mg/kg. In addition, lycopene significantly ameliorated the hind limb motor disturbances in the SCI+lyco10 group and the SCI+lyco20 group compared with the SCI group. These results suggested that lycopene administration could improve total antioxidant status and might have neuroprotective effects on SCI. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Micro-Economics of Apoptosis in Cancer: ncRNAs Modulation of BCL-2 Family Members.

    Science.gov (United States)

    Villanova, Lidia; Careccia, Silvia; De Maria, Ruggero; Fiori, Micol E

    2018-03-23

    In the last few years, non-coding RNAs (ncRNAs) have been a hot topic in cancer research. Many ncRNAs were found to regulate the apoptotic process and to play a role in tumor cell resistance to treatment. The apoptotic program is on the frontline as self-defense from cancer onset, and evasion of apoptosis has been classified as one of the hallmarks of cancer responsible for therapy failure. The B-cell lymphoma 2 (BCL-2) family members are key players in the regulation of apoptosis and mediate the activation of the mitochondrial death machinery in response to radiation, chemotherapeutic agents and many targeted therapeutics. The balance between the pro-survival and the pro-apoptotic BCL-2 proteins is strictly controlled by ncRNAs. Here, we highlight the most common mechanisms exerted by microRNAs, long non-coding RNAs and circular RNAs on the main mediators of the intrinsic apoptotic cascade with particular focus on their significance in cancer biology.

  16. Sodium phenylbutyrate prolongs survival and regulates expression of anti-apoptotic genes in transgenic amyotrophic lateral sclerosis mice.

    Science.gov (United States)

    Ryu, Hoon; Smith, Karen; Camelo, Sandra I; Carreras, Isabel; Lee, Junghee; Iglesias, Antonio H; Dangond, Fernando; Cormier, Kerry A; Cudkowicz, Merit E; Brown, Robert H; Ferrante, Robert J

    2005-06-01

    Multiple molecular defects trigger cell death in amyotrophic lateral sclerosis (ALS). Among these, altered transcriptional activity may perturb many cellular functions, leading to a cascade of secondary pathological effects. We showed that pharmacological treatment, using the histone deacetylase inhibitor sodium phenylbutyrate, significantly extended survival and improved both the clinical and neuropathological phenotypes in G93A transgenic ALS mice. Phenylbutyrate administration ameliorated histone hypoacetylation observed in G93A mice and induced expression of nuclear factor-kappaB (NF-kappaB) p50, the phosphorylated inhibitory subunit of NF-kappaB (pIkappaB) and beta cell lymphoma 2 (bcl-2), but reduced cytochrome c and caspase expression. Curcumin, an NF-kappaB inhibitor, and mutation of the NF-kappaB responsive element in the bcl-2 promoter, blocked butyrate-induced bcl-2 promoter activity. We provide evidence that the pharmacological induction of NF-kappaB-dependent transcription and bcl-2 gene expression is neuroprotective in ALS mice by inhibiting programmed cell death. Phenylbutyrate acts to phosphorylate IkappaB, translocating NF-kappaB p50 to the nucleus, or to directly acetylate NF-kappaB p50. NF-kappaB p50 transactivates bcl-2 gene expression. Up-regulated bcl-2 blocks cytochrome c release and subsequent caspase activation, slowing motor neuron death. These transcriptional and post-translational pathways ultimately promote motor neuron survival and ameliorate disease progression in ALS mice. Phenylbutyrate may therefore provide a novel therapeutic approach for the treatment of patients with ALS.

  17. Hexavalent chromium-induced apoptosis of granulosa cells involves selective sub-cellular translocation of Bcl-2 members, ERK1/2 and p53

    International Nuclear Information System (INIS)

    Banu, Sakhila K.; Stanley, Jone A.; Lee, JeHoon; Stephen, Sam D.; Arosh, Joe A.; Hoyer, Patricia B.; Burghardt, Robert C.

    2011-01-01

    Hexavalent chromium (CrVI) has been widely used in industries throughout the world. Increased usage of CrVI and atmospheric emission of CrVI from catalytic converters of automobiles, and its improper disposal causes various health hazards including female infertility. Recently we have reported that lactational exposure to CrVI induced a delay/arrest in follicular development at the secondary follicular stage. In order to investigate the underlying mechanism, primary cultures of rat granulosa cells were treated with 10 μM potassium dichromate (CrVI) for 12 and 24 h, with or without vitamin C pre-treatment for 24 h. The effects of CrVI on intrinsic apoptotic pathway(s) were investigated. Our data indicated that CrVI: (i) induced DNA fragmentation and increased apoptosis, (ii) increased cytochrome c release from the mitochondria to cytosol, (iii) downregulated anti-apoptotic Bcl-2, Bcl-XL, HSP70 and HSP90; upregulated pro-apoptotic BAX and BAD, (iv) altered translocation of Bcl-2, Bcl-XL, BAX, BAD, HSP70 and HSP90 to the mitochondria, (v) upregulated p-ERK and p-JNK, and selectively translocated p-ERK to the mitochondria and nucleus, (vi) activated caspase-3 and PARP, and (vii) increased phosphorylation of p53 at ser-6, ser-9, ser-15, ser-20, ser-37, ser-46 and ser-392, increased p53 transcriptional activation, and downregulated MDM-2. Vitamin C pre-treatment mitigated CrVI effects on apoptosis and related pathways. Our study, for the first time provides a clear insight into the effect of CrVI on multiple pathways that lead to apoptosis of granulosa cells which could be mitigated by vitamin C.

  18. Codelivery for Paclitaxel and Bcl-2 Conversion Gene by PHB-PDMAEMA Amphiphilic Cationic Copolymer for Effective Drug Resistant Cancer Therapy.

    Science.gov (United States)

    Wang, Xiaoyuan; Liow, Sing Shy; Wu, Qiaoqiong; Li, Chuang; Owh, Cally; Li, Zibiao; Loh, Xian Jun; Wu, Yun-Long

    2017-11-01

    Antiapoptotic Bcl-2 protein's upregulated expression is a key reason for drug resistance leading to failure of chemotherapy. In this report, a series of biocompatible amphiphilic cationic poly[(R)-3-hydroxybutyrate] (PHB)-b-poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) copolymer, comprising hydrophobic PHB block and cationic PDMAEMA block, is designed to codeliver hydrophobic chemotherapeutic paclitaxel and Bcl-2 converting gene Nur77/ΔDBD with enhanced stability, due to the micelle formation by hydrophobic PHB segment. This copolymer shows less toxicity but similar gene transfection efficiency to polyethyenimine (25k). More importantly, this codelivery approach by PHB-PDMAEMA leads to increased drug resistant HepG2/Bcl-2 cancer cell death, by increased expression of Nur77 proteins in the Bcl-2 present intracellular mitochondria. This work signifies for the first time that cationic amphiphilic PHB-b-PDMAEMA copolymers can be utilized for the drug and gene codelivery to drug resistant cancer cells with high expression of antiapoptosis Bcl-2 protein and the positive results are encouraging for the further design of codelivery platforms for combating drug resistant cancer cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Combination Anti-Apoptotic Effect of Erythropoietin and Melatonin on Ischemia Reperfusion-Induced Renal Injury in Rats

    Directory of Open Access Journals (Sweden)

    Shokofeh Banaei

    2016-11-01

    Full Text Available Renal ischemia-reperfusion (IR contributes to the development of acute renal failure (ARF. Oxygen free radicals are considered to be principal components involved in the pathophysiological tissue alterations observed during renal IR. The purpose of this study was to investigate the combination effect of melatonin (MEL and erythropoietin (EPO, which are a potent antioxidant and anti-apoptotic agents, in IR-induced renal injury in rats. Wistar Albino rats were unilaterally nephrectomized and subjected to 45 min of renal pedicle occlusion followed by 24 h reperfusion. MEL (10 mg/kg, i.p and EPO (5000 U/kg, i.p were administered prior to ischemia. After 24 h reperfusion, following decapitation, blood samples were collected for the determination of superoxide dismutase (SOD, glutathione peroxidase (GPx, and malondialdehyde (MDA levels. Also, renal samples were taken for histological evaluation and apoptosis assay. Ischemia-reperfusion increased SOD, GPx, MDA levels, and TUNEL positive cells. Histopathological findings of the IR group confirmed that there was renal impairment in the tubular epithelium. Treatment with EPO and MEL decreased SOD, GPx, and MDA levels, histopathological changes, and TUNEL positive cells. These results indicated that the combination of MEL and EPO could not exert more nephroprotective and anti-apoptotic effects than MEL treatment in renal ischemia-reperfusion injury.

  20. Anti-apoptotic A1 is not essential for lymphoma development in Eµ-Myc mice but helps sustain transplanted Eµ-Myc tumour cells.

    Science.gov (United States)

    Mensink, Mark; Anstee, Natasha S; Robati, Mikara; Schenk, Robyn L; Herold, Marco J; Cory, Suzanne; Vandenberg, Cassandra J

    2018-03-01

    The transcription factor c-MYC regulates a multiplicity of genes involved in cellular growth, proliferation, metabolism and DNA damage response and its overexpression is a hallmark of many tumours. Since MYC promotes apoptosis under conditions of stress, such as limited availability of nutrients or cytokines, MYC-driven cells are very much dependent on signals that inhibit cell death. Stress signals trigger apoptosis via the pathway regulated by opposing fractions of the BCL-2 protein family and previous genetic studies have shown that the development of B lymphoid tumours in Eµ-Myc mice is critically dependent on expression of pro-survival BCL-2 relatives MCL-1, BCL-W and, to a lesser extent, BCL-X L , but not BCL-2 itself, and that sustained growth of these lymphomas is dependent on MCL-1. Using recently developed mice that lack expression of all three functional pro-survival A1 genes, we show here that the kinetics of lymphoma development in Eµ-Myc mice and the competitive repopulation capacity of Eµ-Myc haemopoietic stem and progenitor cells is unaffected by the absence of A1. However, conditional loss of a single remaining functional A1 gene from transplanted A1-a -/- A1-b fl/fl A1-c -/- Eµ-Myc lymphomas slowed their expansion, significantly extending the life of the transplant recipients. Thus, A1 contributes to the survival of malignant Eµ-Myc-driven B lymphoid cells. These results strengthen the case for BFL-1, the human homologue of A1, being a valid target for drug development for MYC-driven tumours.

  1. Pharmacological and protein profiling suggest venetoclax (ABT-199) as optimal partner with ibrutinib in chronic lymphocytic leukemia

    Science.gov (United States)

    Cervantes-Gomez, Fabiola; Lamothe, Betty; Woyach, Jennifer A.; Wierda, William G.; Keating, Michael J.; Balakrishnan, Kumudha; Gandhi, Varsha

    2015-01-01

    Purpose Bruton’s tyrosine kinase (BTK) is a critical enzyme in the B-cell receptor pathway and is inhibited by ibrutinib due to covalent binding to the kinase domain. Though ibrutinib results in impressive clinical activity in chronic lymphocytic leukemia (CLL), most patients achieve only partial remission due to residual disease. We performed a pharmacologic profiling of residual circulating CLL cells from patients receiving ibrutinib to identify optimal agents that could induce cell death of these lymphocytes. Experimental design Ex vivo serial samples of CLL cells from patients on ibrutinib were obtained prior and after (weeks 2, 4, and 12) the start of treatment. These cells were incubated with PI3K inhibitors (idelalisib or IPI-145), bendamustine, additional ibrutinib, or BCL-2 antagonists (ABT-737 or ABT-199) and cell death was measured. In vitro investigations complemented ex vivo studies. Immunoblots for BTK signaling pathway and antiapoptotic proteins were performed. Results The BCL-2 antagonists, especially ABT-199, induced high cell death during ex vivo incubations. In concert with the ex vivo data, in vitro combinations also resulted highly cytotoxicity. Serial samples of CLL cells obtained before and 2, 4, 12, or 36 weeks after the start of ibrutinib showed inhibition of BTK activity and sensitivity to ABTs. Among the three BCL-2 family anti-apoptotic proteins that are overexpressed in CLL, levels of MCL-1 and BCL-XL were decreased after ibrutinib while ABT-199 selectively antagonizes BCL-2. Conclusions Our biological and molecular results suggest that ibrutinib and ABT-199 combination should be tested clinically against CLL. PMID:25829398

  2. Lycopene modulates cholinergic dysfunction, Bcl-2/Bax balance, and antioxidant enzymes gene transcripts in monosodium glutamate (E621) induced neurotoxicity in a rat model.

    Science.gov (United States)

    Sadek, Kadry; Abouzed, Tarek; Nasr, Sherif

    2016-04-01

    The effect of monosodium glutamate (MSG) on brain tissue and the relative ability of lycopene to avert these neurotoxic effects were investigated. Thirty-two male Wistar rats were distributed into 4 groups: group I, untreated (placebo); group II, injected with MSG (5 mg·kg(-1)) s.c.; group III, gastrogavaged with lycopene (10 mg·kg(-1)) p.o.; and group IV received MSG with lycopene with the same mentioned doses for 30 days. The results showed that MSG induced elevation in lipid peroxidation marker and perturbation in the antioxidant homeostasis and increased the levels of brain and serum cholinesterase (ChE), total creatine phosphokinase (CPK), creatine phosphokinase isoenzymes BB (CPK-BB), and lactate dehydrogenase (LDH). Glutathione S-transferase (GST), superoxide dismutase (SOD), and catalase (CAT) activities and gene expression were increased and glutathione content was reduced in the MSG-challenged rats, and these effects were ameliorated by lycopene. Furthermore, MSG induced apoptosis in brain tissues reflected in upregulation of pro-apoptotic Bax while lycopene upregulated the anti-apoptotic Bcl-2. Our results indicate that lycopene appears to be highly effective in relieving the toxic effects of MSG by inhibiting lipid peroxidation and inducing modifications in the activity of cholinesterase and antioxidant pathways. Interestingly, lycopene protects brain tissue by inhibiting apoptosis signaling induced by MSG.

  3. Estrous cycle dependent changes in expression and distribution of Fas, Fas ligand, Bcl-2, Bax, and pro- and active caspase-3 in the rat ovary

    NARCIS (Netherlands)

    Slot, K.A.; Voorendt, M.; Boer-Brouwer, de M.; Vugt, van H.H.; Teerds, K.J.

    2006-01-01

    In the present investigation, the localization of proteins involved in ovarian apoptosis were studied throughout the estrous cycle in the presence of fluctuating hormone levels. Fas, Fas ligand, Bcl-2, Bax and caspase-3 mRNA expression and proteins were detected in all ovarian tissue extracts,

  4. Screening for potential targets for therapy in mesenchymal, clear cell, and dedifferentiated chondrosarcoma reveals Bcl-2 family members and TGFβ as potential targets

    DEFF Research Database (Denmark)

    van Oosterwijk, Jolieke G; Meijer, Danielle; van Ruler, Maayke A J H

    2013-01-01

    . As in conventional chondrosarcoma, antiapoptotic proteins (Bcl-2, and/or Bcl-xl) were highly expressed in all subtypes. Inhibition with the BH-3 mimetic ABT-737 rendered dedifferentiated chondrosarcoma cell lines sensitive to doxorubicin or cisplatin. Our data indicate that antiapoptotic proteins may play...

  5. The regulatory BCL2 promoter polymorphism (-938C>A) is associated with relapse and survival of patients with oropharyngeal squamous cell carcinoma.

    Science.gov (United States)

    Lehnerdt, G F; Franz, P; Bankfalvi, A; Grehl, S; Kelava, A; Nückel, H; Lang, S; Schmid, K W; Siffert, W; Bachmann, H S

    2009-06-01

    Expression of the antiapoptotic and antiproliferative protein B-cell lymphoma 2 (Bcl-2) has been repeatedly shown to be associated with better locoregional control and patients' survival in oropharyngeal squamous cell carcinoma (OSCC). A regulatory (-938C>A) single-nucleotide polymorphism (SNP) in the inhibitory P2 BCL2 gene promoter generates significantly different BCL2 promoter activities and has been associated with outcome in different malignancies. The aim of the present study was to analyze the possible influence of the (-938C>A) SNP on survival of patients suffering from OSCC. One hundred and thirty-three patients with primary OSCC were retrospectively investigated. Bcl-2 expression of tumor cells was demonstrated by means of immunohistochemistry. Both the Bcl-2 expression and the (-938C>A) genotypes were correlated with the patients' survival. The (-938C>A) SNP was significantly related to Bcl-2 expression (P = 0.008). Kaplan-Meier curves revealed a significant association of the -938 SNP with relapse-free (P = 0.0283) and overall survival (P = 0.0247). Multiple Cox regression identified the BCL2 (-938CC) genotype as an independent prognostic factor for relapse [hazard ratio (HR) 1.898, P = 0.021] as well as for death in OSCC patients (HR 1.897, P = 0.013). The (-938C>A) SNP represents a potential novel prognostic marker in patients with OSCC that could help to identify a group of patients at high risk for relapse and death.

  6. Increase in Bcl2 expression of penile and prostate cells of Sprague Dawley male rats following treatment with buceng (combination of Pimpinella alpina molk with Eurycoma longifolia Jack

    Directory of Open Access Journals (Sweden)

    Taufiqurrachman Nasihun

    2015-04-01

    Full Text Available Background: Treatment with buceng combination of Eurycoma longifolia Jack and Pimpinella alpine Molk has been proven to increase testosterone level, decrease apoptosis and caspase3 expression. Bcl2 is an antiapoptotic protein found in cytoplasm which inhibits cells apoptosis. This study was aimed to investigate the effect of buceng on Bcl2 expression on penile and prostate tissues of the rats. Methods: In this experimental study, 24 male Sprague Dawley rats of 90 days old, weighing ± 300 grams, were randomly assigned into four groups. Group A, normal rats. Group B, castrated rats and treated with buceng 100 mg/day, per oral (Cast-Bcg; Group C, castrated rats and treated with 2 ml of water as placebo against buceng (Cast-Plac. Group D, castrated rats, treated with mesterolone 6.75 mg/day, per oral, as exogenous testosterone (Cast-Mest. All rats were treated for 30 days. Manova test was used to analyze the different expression of Bcl2 among groups with significance level at p ≤ 0.05. Results: Castration was associated with significant decrease of Bcl2 expression in the penile and prostate tissues (53.0 and 50.9%, respectively compared to normal rats (82.6 and 84.2%, respectively, p < 0.001. Treatment with mesterolone reversed Bcl2 expression (77.1 and 78.1% to a near normal level. The same level of Bcl2 expression was also observed with buceng treatment (73.8 and 78.2%.Conclusion: The treatment with buceng could enhance Bcl2 expression in penile and prostate tissues, comparable to normal rats and mesterolone treated rats.

  7. Pro-survival Effects of 17β-Estradiol on Osteocytes Are Mediated by Nitric Oxide/cGMP via Differential Actions of cGMP-dependent Protein Kinases I and II*

    Science.gov (United States)

    Marathe, Nisha; Rangaswami, Hema; Zhuang, Shunhui; Boss, Gerry R.; Pilz, Renate B.

    2012-01-01

    Estrogens promote bone health in part by increasing osteocyte survival, an effect that requires activation of the protein kinases Akt and ERK1/2, but the molecular mechanisms involved are only partly understood. Because estrogens increase nitric oxide (NO) synthesis and NO can have anti-apoptotic effects, we examined the role of NO/cGMP signaling in estrogen regulation of osteocyte survival. Etoposide-induced death of MLO-Y4 osteocyte-like cells, assessed by trypan blue staining, caspase-3 cleavage, and TUNEL assays, was completely prevented when cells were pre-treated with 17β-estradiol. This protective effect was mimicked when cells were pre-treated with a membrane-permeable cGMP analog and blocked by pharmacological inhibitors of NO synthase, soluble guanylate cyclase, or cGMP-dependent protein kinases (PKGs), supporting a requirement for NO/cGMP/PKG signaling downstream of 17β-estradiol. siRNA-mediated knockdown and viral reconstitution of individual PKG isoforms demonstrated that the anti-apoptotic effects of estradiol and cGMP were mediated by PKG Iα and PKG II. Akt and ERK1/2 activation by 17β-estradiol required PKG II, and cGMP mimicked the effects of estradiol on Akt and ERK, including induction of ERK nuclear translocation. cGMP induced BAD phosphorylation on several sites, and experiments with phosphorylation-deficient BAD mutants demonstrated that the anti-apoptotic effects of cGMP and 17β-estradiol required BAD phosphorylation on Ser136 and Ser155; these sites were targeted by Akt and PKG I, respectively, and regulate BAD interaction with Bcl-2. In conclusion, 17β-estradiol protects osteocytes against apoptosis by activating the NO/cGMP/PKG cascade; PKG II is required for estradiol-induced activation of ERK and Akt, and PKG Iα contributes to pro-survival signaling by directly phosphorylating BAD. PMID:22117068

  8. Hsp90 inhibitor 17-AAG sensitizes Bcl-2 inhibitor (-)-gossypol by suppressing ERK-mediated protective autophagy and Mcl-1 accumulation in hepatocellular carcinoma cells.

    Science.gov (United States)

    Wang, Bin; Chen, Linfeng; Ni, Zhenhong; Dai, Xufang; Qin, Liyan; Wu, Yaran; Li, Xinzhe; Xu, Liang; Lian, Jiqin; He, Fengtian

    2014-11-01

    Natural BH3-memitic (-)-gossypol shows promising antitumor efficacy in several kinds of cancer. However, our previous studies have demonstrated that protective autophagy decreases the drug sensitivities of Bcl-2 inhibitors in hepatocellular carcinoma (HCC) cells. In the present study, we are the first to report that Hsp90 inhibitor 17-AAG enhanced (-)-gossypol-induced apoptosis via suppressing (-)-gossypol-triggered protective autophagy and Mcl-1 accumulation. The suppression effect of 17-AAG on autophagy was mediated by inhibiting ERK-mediated Bcl-2 phosphorylation while was not related to Beclin1 or LC3 protein instability. Meanwhile, 17-AAG downregulated (-)-gossypol-triggered Mcl-1 accumulation by suppressing Mcl-1(Thr163) phosphorylation and promoting protein degradation. Collectively, our study indicates that Hsp90 plays an important role in tumor maintenance and inhibition of Hsp90 may become a new strategy for sensitizing Bcl-2-targeted chemotherapies in HCC cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Inhibition of Pro-inflammatory and Anti-apoptotic Biomarkers during Experimental Oral Cancer Chemoprevention by Dietary Black Raspberries

    Directory of Open Access Journals (Sweden)

    Steve Oghumu

    2017-10-01

    Full Text Available Oral cancer continues to be a significant public health problem worldwide. Recently conducted clinical trials demonstrate the ability of black raspberries (BRBs to modulate biomarkers of molecular efficacy that supports a chemopreventive strategy against oral cancer. However, it is essential that a preclinical animal model of black raspberry (BRB chemoprevention which recapitulates human oral carcinogenesis be developed, so that we can validate biomarkers and evaluate potential mechanisms of action. We therefore established the ability of BRBs to inhibit oral lesion formation in a carcinogen-induced rat oral cancer model and examined potential mechanisms. F344 rats were administered 4-nitroquinoline 1-oxide (4NQO (20 µg/ml in drinking water for 14 weeks followed by regular drinking water for 6 weeks. At week 14, rats were fed a diet containing either 5 or 10% BRB, or 0.4% ellagic acid (EA, a BRB phytochemical. Dietary administration of 5 and 10% BRB reduced oral lesion incidence and multiplicity by 39.3 and 28.6%, respectively. Histopathological analyses demonstrate the ability of BRBs and, to a lesser extent EA, to inhibit the progression of oral cancer. Oral lesion inhibition by BRBs was associated with a reduction in the mRNA expression of pro-inflammatory biomarkers Cxcl1, Mif, and Nfe2l2 as well as the anti-apoptotic and cell cycle associated markers Birc5, Aurka, Ccna1, and Ccna2. Cellular proliferation (Ki-67 staining in tongue lesions was inhibited by BRBs and EA. Our study demonstrates that, in the rat 4NQO oral cancer model, dietary administration of BRBs inhibits oral carcinogenesis via inhibition of pro-inflammatory and anti-apoptotic pathways.

  10. Crosstalk between Bcl-2 family and Ras family small GTPases: potential cell fate regulation?

    International Nuclear Information System (INIS)

    Kang, Jia; Pervaiz, Shazib

    2013-01-01

    Cell fate regulation is a function of diverse cell signaling pathways that promote cell survival and or inhibit cell death execution. In this regard, the role of the Bcl-2 family in maintaining a tight balance between cell death and cell proliferation has been extensively studied. The conventional dogma links cell fate regulation by the Bcl-2 family to its effect on mitochondrial permeabilization and apoptosis amplification. However, recent evidence provide a novel mechanism for death regulation by the Bcl-2 family via modulating cellular redox metabolism. For example overexpression of Bcl-2 has been shown to contribute to a pro-oxidant intracellular milieu and down-regulation of cellular superoxide levels enhanced death sensitivity of Bcl-2 overexpressing cells. Interestingly, gene knockdown of the small GTPase Rac1 or pharmacological inhibition of its activity also reverted death phenotype in Bcl-2 expressing cells. This appears to be a function of an interaction between Bcl-2 and Rac1. Similar functional associations have been described between the Bcl-2 family and other members of the Ras superfamily. These interactions at the mitochondria provide novel opportunities for strategic therapeutic targeting of drug-resistant cancers.

  11. Interphase FISH detection of BCL2 rearrangement in follicular lymphoma using breakpoint-flanking probes

    NARCIS (Netherlands)

    Vaandrager, J W; Schuuring, E; Raap, T; Philippo, K; Kleiverda, K; Kluin, P

    Rearrangement of the BCL2 gene is an important parameter for the differential diagnosis of non-Hodgkin lymphomas. Although a relatively large proportion of breakpoints is clustered, many are missed by standard PCR. A FISH assay is therefore desired. Up to now, a lack of probes flanking the BCL2 gene

  12. The effect of radiation on bcl-2 and bax in hyperplastic prostatic tissues

    International Nuclear Information System (INIS)

    Ma Qingjie; Li Yuxin; Gu Xinquan; Cao Xia; Zhao Jie; Kong Xiangbo; Cai Shanyu

    2004-01-01

    Aim: To investigate the expressions of bcl-2 and bax in benign prostatic hyperplasia (BPH) and the effect of β-rays on bcl-2 and bax. Methods: The expressions of bcl-2 and bax are studied by means of immunohistochemical method in 9 normal prostate (NP) and 15 BPH and 35 patients treated with 90Sr/90Y Prostatic Hyperplasia Applicator. Results: The expressions of bcl-2 in epithelia of NP and BPH are higher than that in stroma P<0.01=. The expressions of bcl-2 in epithelia and stroma of BPH are higher than that in NP P<0.01=. The expressions of bax in epithelia of NP are higher than that in BPH P<0.05=. However ,the expressions of bcl-2 in epithelia and stroma of BPH are higher than bax P<0.01 =. Compared with the control group, the expressions of bcl-2 in epithelia and stroma of BPH treated with 90Sr/90Y Prostatic Hyperplasia Applicator decreased and the expressions of bax increased P<0.01=. Conclusion: bcl-2 gene and bax gene play an important role in the regulation of prostatic apoptosis and the treatment of β-rays can accelerate the apoptosis of prostatic tissues. (authors)

  13. Borax-induced apoptosis in HepG2 cells involves p53, Bcl-2, and Bax.

    Science.gov (United States)

    Wei, Y; Yuan, F J; Zhou, W B; Wu, L; Chen, L; Wang, J J; Zhang, Y S

    2016-06-21

    Borax, a boron compound and a salt of boric acid, is known to inhibit the growth of tumor cells. HepG2 cells have been shown to be clearly susceptible to the anti-proliferative effects of borax. However, the specific mechanisms regulating this effect are poorly understood. This study aimed to investigate the pathways underlying the growth inhibition induced by borax in HepG2 cells. The effects of borax on HepG2 cell viability were characterized using MTT. Apoptosis was also verified by annexin V/propidium iodide staining. JC-1 dye and western blotting techniques were used to measure mitochondrial membrane potential and p53, Bax, and Bcl-2 protein expression, respectively. Relevant mRNA levels were measured by qRT-PCR. Borax inhibited the proliferation of HepG2 cells in a time- and dose-dependent manner in vitro. The apoptotic process triggered by borax involved the upregulation of p53 and Bax and the downregulation of Bcl-2, which was confirmed by a change in the mitochondrial membrane potential. These results elucidate a borax-induced apoptotic pathway in HepG2 cells that involves the upregulation of p53 and Bax and the downregulation of Bcl-2.

  14. [Effects of blueberry on apoptosis and expression of Bcl-2 and Bax in HSC-T6].

    Science.gov (United States)

    Lu, Shuang; Cheng, Mingliang; Yang, Demeng; Liu, Yang; Guan, Li; Wu, Jun

    2015-08-18

    To investigate the effects of blueberry on the apoptosis, expression of Bcl-2 and Bax in rat hepatic stellate cell (HSC-T6). 10% blueberry serum at low, middle and high dose, 10% Fu-Fang-Bie-Jia-Ruan-Gan tablet serum and 10% saline serum were prepared by method of serum pharmacology. Subcultured HSC-T6 was divided into saline serum control group, blueberry serum at low, middle, high dose and Fu-Fang-Bie-Jia-Ruan-Gan tablet serum group, and then was respectively incubated at different dose of 10% blueberry serum, 10% Fu-Fang-Bie-Jia-Ruan-Gan tablet serum and 10% saline serum for 72 hours.Apoptosis of HSC-T6 was detected using flow cytometry with annexin V FITC/PI double staining. The expression of Bcl-2 and Bax in HSC-T6 were examined using immunocytochemistry and Western blotting, respectively. There was no significant difference for HSC-T6 Bax protein expression in the low, middle and high dose blueberry serum groups, compared with saline serum control group, respectively.In the high-dose blueberry serum group HSC-T6 early and total apoptosis rate increased significantly compared with the saline serum control group (5.55% ± 0.98% vs 2.53% ± 0.46%, 7.01% ± 1.05% vs 2.96% ± 0.81%, both Pblueberry serum group showed no significant difference with the saline serum control group. Blueberry can induce HSC-T6 apoptosis by down-regulating Bcl-2 expression and decreasing the ratio of Bcl-2/Bax in HSC-T6 cells, so it may have potential interference effects on hepatic fibrosis.

  15. A plant Bcl-2-associated athanogene is proteolytically activated to confer fungal resistance

    Directory of Open Access Journals (Sweden)

    Mehdi Kabbage

    2016-04-01

    Full Text Available The Bcl-2-associated athanogene (BAG family is a multifunctional group of proteins involved in numerous cellular functions ranging from apoptosis to tumorigenesis. These proteins are evolutionarily conserved and encode a characteristic region known as the BAG domain. BAGs function as adapter proteins forming complexes with signaling molecules and molecular chaperones. In humans, a role for BAG proteins has been suggested in tumor growth, HIV infection, and neurodegenerative diseases; as a result, the BAGs are attractive targets for therapeutic interventions, and their expression in cells may serve as a predictive tool for disease development. The Arabidopsis genome contains seven homologs of BAG family proteins (Figure 1, including four with a domain organization similar to animal BAGs (BAG1-4. The remaining three members (BAG5-7 contain a predicted calmodulin-binding motif near the BAG domain, a feature unique to plant BAG proteins that possibly reflects divergent mechanisms associated with plant-specific functions. As reported for animal BAGs, plant BAGs also regulate several stress and developmental processes (Figure 2. The recent article by Li et al. focuses on the role of BAG6 in plant innate immunity. This study shows that BAG6 plays a key role in basal plant defense against fungal pathogens. Importantly, this work further shows that BAG6 is proteolytically activated to induce autophagic cell death and resistance in plants. This finding underscores the importance of proteases in the execution of plant cell death, yet little is known about proteases and their substrates in plants.

  16. The Role of the Multifunctional BAG3 Protein in Cellular Protein Quality Control and in Disease.

    Science.gov (United States)

    Stürner, Elisabeth; Behl, Christian

    2017-01-01

    In neurons, but also in all other cells the complex proteostasis network is monitored and tightly regulated by the cellular protein quality control (PQC) system. Beyond folding of newly synthesized polypeptides and their refolding upon misfolding the PQC also manages the disposal of aberrant proteins either by the ubiquitin-proteasome machinery or by the autophagic-lysosomal system. Aggregated proteins are primarily degraded by a process termed selective macroautophagy (or aggrephagy). One such recently discovered selective macroautophagy pathway is mediated by the multifunctional HSP70 co-chaperone BAG3 ( BCL-2-associated athanogene 3 ). Under acute stress and during cellular aging, BAG3 in concert with the molecular chaperones HSP70 and HSPB8 as well as the ubiquitin receptor p62/SQSTM1 specifically targets aggregation-prone proteins to autophagic degradation. Thereby, BAG3-mediated selective macroautophagy represents a pivotal adaptive safeguarding and emergency system of the PQC which is activated under pathophysiological conditions to ensure cellular proteostasis. Interestingly, BAG3-mediated selective macroautophagy is also involved in the clearance of aggregated proteins associated with age-related neurodegenerative disorders, like Alzheimer's disease (tau-protein), Huntington's disease (mutated huntingtin/polyQ proteins), and amyotrophic lateral sclerosis (mutated SOD1). In addition, based on its initial description BAG3 is an anti-apoptotic protein that plays a decisive role in other widespread diseases, including cancer and myopathies. Therefore, in the search for novel therapeutic intervention avenues in neurodegeneration, myopathies and cancer BAG3 is a promising candidate.

  17. Real world data on young patients with high-risk diffuse large B-cell lymphoma treated with R-CHOP or R-CHOEP - MYC, BCL2 and BCL6 as prognostic biomarkers

    DEFF Research Database (Denmark)

    Pedersen, Mette Ølgod; Gang, Anne Ortved; Brown, Peter

    2017-01-01

    BACKGROUND: Double expression of MYC and BCL2 proteins (DE) and double-hit MYC+BCL2/BCL6 translocations (DH) were established as important biomarkers in patients with diffuse large B-cell lymphoma (DLBCL) by the 2016 revision of the World Health Organization classification of lymphoid neoplasms...... in situ hybridization (FISH). RESULTS: DE with MYC>75% and BCL2>85% was an independent negative prognostic marker of progression free survival (PFS) in patients treated with R-CHOP but not R-CHOEP (peffect of DE for response (PFS) to R...

  18. Cycloheximide and actinomycin D delay death and affect bcl-2, bax, and Ice gene expression in astrocytes under in vitro ischemia.

    Science.gov (United States)

    Yu, Albert Cheung Hoi; Yung, Hon Wa; Hui, Michael Hung Kit; Lau, Lok Ting; Chen, Xiao Qian; Collins, Richard A

    2003-10-15

    An in vitro ischemia model was established and the effect of the metabolic inhibitors cycloheximide (CHX) and actinomycin D (ActD) on apoptosis in astrocytes under ischemia studied. CHX decreased by 75% the number of cells dying after 6 hr of ischemia compared with control cultures. TdT-mediated dUTP nick end labelling (TUNEL) staining of comparable cultures was reduced by 40%. ActD decreased cell death by 60% compared with controls. The number of TUNEL-positive cells was reduced by 38%. The nuclear shrinkage in TUNEL-positive astrocytes in control cultures did not occur in ActD-treated astrocytes, indicating that nuclear shrinkage and DNA fragmentation during apoptosis are two unrelated processes. Expression of bcl-2 (alpha and beta), bax, and Ice in astrocytes under similar ischemic conditions, as measured by quantitative reverse transcription-polymerase chain reaction, indicated that ischemia down-regulated bcl-2 (alpha and beta) and bax. Ice was initially down-regulated from 0 to 4 hr, before returning to control levels after 8 hr of ischemia. ActD decreased the expression of these genes. CHX reduced the expression of bcl-2 (alpha and beta) but increased bax and Ice expression. It is hypothesized that the balance of proapoptotic (Bad, Bax) and antiapoptotic (Bcl-2, Bcl-Xl) proteins determines apoptosis. The data suggest that the ratio of Bcl-2/Bad in astrocytes following ActD and CHX treatment does not decrease as much in untreated cells during ischemia. Our data indicate that it is the ratio of Bcl-2 family members that plays a critical role in determining ischemia-induced apoptosis. It is also important to note that ischemia-induced apoptosis involves the regulation of RNA and protein synthesis. Copyright 2003 Wiley-Liss, Inc.

  19. The Anti-Apoptotic Activity of BAG3 Is Restricted by Caspases and the Proteasome

    OpenAIRE

    Virador, Victoria M.; Davidson, Ben; Czechowicz, Josephine; Mai, Alisha; Kassis, Jareer; Kohn, Elise C.

    2009-01-01

    Background Caspase-mediated cleavage and proteasomal degradation of ubiquitinated proteins are two independent mechanisms for the regulation of protein stability and cellular function. We previously reported BAG3 overexpression protected ubiquitinated clients, such as AKT, from proteasomal degradation and conferred cytoprotection against heat shock. We hypothesized that the BAG3 protein is regulated by proteolysis. Methodology/Principal Findings Staurosporine (STS) was used as a tool to test ...

  20. Effects of voluntary and treadmill exercise on spontaneous withdrawal signs, cognitive deficits and alterations in apoptosis-associated proteins in morphine-dependent rats.

    Science.gov (United States)

    Mokhtari-Zaer, Amin; Ghodrati-Jaldbakhan, Shahrbanoo; Vafaei, Abbas Ali; Miladi-Gorji, Hossein; Akhavan, Maziar M; Bandegi, Ahmad Reza; Rashidy-Pour, Ali

    2014-09-01

    Chronic exposure to morphine results in cognitive deficits and alterations of apoptotic proteins in favor of cell death in the hippocampus, a brain region critically involved in learning and memory. Physical activity has been shown to have beneficial effects on brain health. In the current work, we examined the effects of voluntary and treadmill exercise on spontaneous withdrawal signs, the associated cognitive defects, and changes of apoptotic proteins in morphine-dependent rats. Morphine dependence was induced through bi-daily administrations of morphine (10mg/kg) for 10 days. Then, the rats were trained under two different exercise protocols: mild treadmill exercise or voluntary wheel exercise for 10 days. After exercise training, their spatial learning and memory and aversive memory were examined by a water maze and by an inhibitory avoidance task, respectively. The expression of the pro-apoptotic protein Bax and the anti-apoptotic protein Bcl-2 in the hippocampus were determined by immunoblotting. We found that chronic exposure to morphine impaired spatial and aversive memory and remarkably suppressed the expression of Bcl-2, but Bax expression remained constant. Both voluntary and treadmill exercise alleviated memory impairment, increased the expression of Bcl-2 protein, and only the later suppressed the expression of Bax protein in morphine-dependent animals. Moreover, both exercise protocols diminished the occurrence of spontaneous morphine withdrawal signs. Our findings showed that exercise reduces the spontaneous morphine-withdrawal signs, blocks the associated impairment of cognitive performance, and overcomes morphine-induced alterations in apoptotic proteins in favor of cell death. Thus, exercise may be a useful therapeutic strategy for cognitive and behavioral deficits in addict individuals. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. The apoptotic response in HCT116BAX-/- cancer cells becomes rapidly saturated with increasing expression of a GFP-BAX fusion protein

    International Nuclear Information System (INIS)

    Semaan, Sheila J; Nickells, Robert W

    2010-01-01

    Many chemotherapeutic agents promote tumor cell death by activating the intrinsic pathway of apoptosis. Intrinsic apoptosis involves permeabilization of the mitochondrial outer membrane and the release of cytochrome c, a process that is controlled by proteins of the BCL2 gene family. Chemoresistance is often associated with abnormalities in concentrations of BCL2 family proteins. Although stoichiometirc interactions between anti-apoptotic and BH3-only BCL2 family proteins have been well documented as affecting cell death, the association between changes in BAX concentration and intrinsic apoptosis are poorly understood. Exogenous GFP-murine Bax fusion constructs were transfected into BAX-deficient HCT116 cells. To titrate the expression of the fusion protein, GFP-BAX was cloned into a tetracycline sensitive expression cassette and cotransfected with a plasmid expressing the rtTA transcription factor into HCT116 BAX-/- cells. Linear expression of the fusion gene was induced with doxycycline and monitored by quantitative PCR and immunoblotting. Cell death was assayed by DAPI staining cells after exposure to indomethacin, and scoring nuclei for condensed chromatin and fragmented nuclei. HCT116 BAX-/- cells were resistant to indomethacin, but susceptibility could be recovered in cells expressing a GFP-BAX fusion protein. Titration of GFP-BAX expression revealed that the concentration of BAX required to induce a saturating apoptosis response from baseline, was rapidly achieved. Increased levels of GFP-BAX were unable to stimulate higher levels of cell death. Examination of GFP-BAX distribution before and after indomethacin treatment indicated that BAX protein did not form aggregates when present at sub-lethal concentrations. Within the limitations of this experimental system, BAX-dependent apoptosis in HCT116 cells exhibits an all-or-none response depending on the level of BAX protein present. The lack of BAX aggregation at sub-saturation levels suggests that the

  2. The apoptotic response in HCT116BAX-/- cancer cells becomes rapidly saturated with increasing expression of a GFP-BAX fusion protein

    Directory of Open Access Journals (Sweden)

    Semaan Sheila J

    2010-10-01

    Full Text Available Abstract Background Many chemotherapeutic agents promote tumor cell death by activating the intrinsic pathway of apoptosis. Intrinsic apoptosis involves permeabilization of the mitochondrial outer membrane and the release of cytochrome c, a process that is controlled by proteins of the BCL2 gene family. Chemoresistance is often associated with abnormalities in concentrations of BCL2 family proteins. Although stoichiometirc interactions between anti-apoptotic and BH3-only BCL2 family proteins have been well documented as affecting cell death, the association between changes in BAX concentration and intrinsic apoptosis are poorly understood. Methods Exogenous GFP-murine Bax fusion constructs were transfected into BAX-deficient HCT116 cells. To titrate the expression of the fusion protein, GFP-BAX was cloned into a tetracycline sensitive expression cassette and cotransfected with a plasmid expressing the rtTA transcription factor into HCT116BAX-/- cells. Linear expression of the fusion gene was induced with doxycycline and monitored by quantitative PCR and immunoblotting. Cell death was assayed by DAPI staining cells after exposure to indomethacin, and scoring nuclei for condensed chromatin and fragmented nuclei. Results HCT116BAX-/- cells were resistant to indomethacin, but susceptibility could be recovered in cells expressing a GFP-BAX fusion protein. Titration of GFP-BAX expression revealed that the concentration of BAX required to induce a saturating apoptosis response from baseline, was rapidly achieved. Increased levels of GFP-BAX were unable to stimulate higher levels of cell death. Examination of GFP-BAX distribution before and after indomethacin treatment indicated that BAX protein did not form aggregates when present at sub-lethal concentrations. Conclusion Within the limitations of this experimental system, BAX-dependent apoptosis in HCT116 cells exhibits an all-or-none response depending on the level of BAX protein present. The lack of

  3. Introduction of the anti-apoptotic baculovirus p35 gene in passion fruit induces herbicide tolerance, reduced bacterial lesions, but does not inhibits passion fruit woodiness disease progress induced by cowpea aphid-borne mosaic virus (CABMV

    NARCIS (Netherlands)

    Freitas, D.S.; Coelho, M.C.F.; Souza, M.T.; Marques, A.; Ribeiro, B.M.

    2007-01-01

    The introduction of anti-apoptotic genes into plants leads to resistance to environmental stress and broad-spectrum disease resistance. The anti-apoptotic gene (p35) from a baculovirus was introduced into the genome of passion fruit plants by biobalistics. Eleven regenerated plants showed the

  4. The Bcl-2-Beclin 1 interaction in (-)-gossypol-induced autophagy versus apoptosis in prostate cancer cells.

    Science.gov (United States)

    Lian, Jiqin; Karnak, David; Xu, Liang

    2010-11-01

    Bcl-2 is a key dual regulator of autophagy and apoptosis, but how the level of Bcl-2 influences the cellular decision between autophagy and apoptosis is unclear. The natural BH3-mimetic (-)-gossypol preferentially induces autophagy in androgen-independent (AI) prostate cancer cells that have high levels of Bcl-2 and are resistant to apoptosis, whereas apoptosis is preferentially induced in androgen-dependent or -independent cells with low Bcl-2. (-)-Gossypol induces autophagy via blocking Bcl-2-Beclin 1 interaction at the endoplasmic reticulum (ER), together with downregulating Bcl-2, upregulating Beclin 1 and activating the autophagic pathway. Furthermore, (-)-gossypol-induced autophagy is Beclin 1- and Atg5-dependent. These results provide new insights into the mode of cell death induced by Bcl-2 inhibitors, which could facilitate the rational design of clinical trials by selecting patients who are most likely to benefit from the Bcl-2-targeted molecular therapy.

  5. LDR reverses DDP resistance in ovarian cancer cells by affecting ERCC-1, Bcl-2, Survivin and Caspase-3 expressions.

    Science.gov (United States)

    Ju, Xingyan; Yu, Hongsheng; Liang, Donghai; Jiang, Tao; Liu, Yuanwei; Chen, Ling; Dong, Qing; Liu, Xiaoran

    2018-06-01

    Ovarian cancer is the most frequent cause of death resulting from malignant gynecological tumors. After surgical intervention, cisplatin (DDP) is a major chemotherapy drug for ovarian cancer, but the ovarian cancer cells tend to develop DDP resistance in the clinical setting. Tumor cells are sensitive to low-dose radiation (LDR). However, how the LDR therapy improves the effects of chemotherapy drugs on ovarian cancer is not well understood. This study aimed to explore this issue. The SKOV3/DDP cells were divided into 3 groups, including low-dose group, conventional-dose group, and control group (no radiation). Cell counting kit-8 assay was performed to measure cell proliferation. Flow cytometric analysis was then utilized to quantify the apoptosis with classical Annexin V/propidium iodide co-staining. And Real-time quantitative PCR and western blot were eventually used to analyze the mRNA and protein levels of excision repair cross complementing-group 1 (ERCC1), B-cell lymphoma 2 (Bcl-2), Survivin and Caspase-3, respectively. The IC50 value of DDP in the low-dose group was significantly lower compared with the other two groups. Compared with the conventional-dose group and control group, LDR treatment resulted in significantly more apoptosis. Besides, LDR treatment significantly decreased the mRNA and protein expression of ERCC1, Bcl-2, and Survivin, and enhanced the mRNA and protein expression of Caspase-3 compared with the other two groups. LDR reversed DDP resistance in SKOV3/DDP cells possibly by suppressing ERCC1, Bcl-2, and Survivin expressions, and increasing Caspase-3 expression. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  6. rno-miR-665 targets BCL2L1 (Bcl-xl) and increases vulnerability to propofol in developing astrocytes.

    Science.gov (United States)

    Sun, Wen-Chong; Pei, Ling

    2016-07-01

    Propofol exerts a cytotoxic influence over immature neurocytes. Our previous study revealed that clinically relevant doses of propofol accelerated apoptosis of primary cultured astrocytes of developing rodent brains via rno-miR-665 regulation. However, the role of rno-miR-665 during the growth spurt of neonatal rodent brains in vivo is still uncertain. Post-natal day 7 (P7) rats received a single injection of propofol 30 mg/kg intraperitoneally (i.p.), and neuroapoptosis of hippocampal astrocytes was analyzed by immunofluorescence and scanning electron microscopy. The differential expression of rno-miR-665, BCL2L1 (Bcl-xl), and cleaved caspase 3 (CC3) was surveyed by qRT-PCR and western blotting. In addition, the utility of A-1155463, a highly potent and BCL2L1-selective antagonist, was aimed to assess the contribution of BCL2L1 for neuroglial survival. Following the intraventricular injection of lentivirus rno-miR-665, neuroprotection was detected by 5-point scale measurement. The single dose of propofol 30 mg/kg triggered dose-dependent apoptosis of developing hippocampal astrocytes. Meanwhile, propofol triggered both rno-miR-665 and CC3, and depressed BCL2L1, which was predicted as one target gene of rno-miR-665. Combination treatment with A-1155463 and propofol induced lower mRNA and protein levels of BCL2L1 and more CC3 activation than propofol treatment alone in vivo. The lentivirus-mediated knockdown of rno-miR-665 elevated BCL2L1 and attenuated CC3 levels, whereas up-regulation of rno-miR-665 suppressed BCL2L1 and induced CC3 expression in vivo. More importantly, rno-miR-665 antagomir infusion improved neurological outcomes of pups receiving propofol during the brain growth spurt. Rno-miR-665, providing a potential target for alternative therapeutics for pediatric anesthesia, is susceptible to propofol by negatively targeting antiapoptotic BCL2L1. Relatively little is known about the association between exposure of astrocytes to brief propofol

  7. Prognostic significance of bcl-2 expression in stage III breast cancer patients who had received doxorubicin and cyclophosphamide followed by paclitaxel as adjuvant chemotherapy

    International Nuclear Information System (INIS)

    Lee, Kyung-Hun; Noh, Dong-Young; Heo, Dae Seog; Ha, Sung Whan; Bang, Yung-Jue; Im, Seock-Ah; Oh, Do-Youn; Lee, Se-Hoon; Chie, Eui Kyu; Han, Wonshik; Kim, Dong-Wan; Kim, Tae-You; Park, In Ae

    2007-01-01

    Bcl-2 is positively regulated by hormonal receptor pathways in breast cancer. A study was conducted to assess the prognostic significances of clinico-pathologic variables and of ER, PR, p53, c-erbB2, bcl-2, or Ki-67 as markers of relapse in breast cancer patients who had received the identical adjuvant therapy at a single institution. A cohort of 151 curatively resected stage III breast cancer patients (M:F = 3:148, median age 46 years) who had 4 or more positive lymph nodes and received doxorubicin and cyclophosphamide followed by paclitaxel (AC/T) as adjuvant chemotherapy was analyzed for clinico-pathologic characteristics including disease-free survival (DFS) and overall survival (OS). Patients with positive ER and/or PR expression received 5 years of tamoxifen following AC/T. The protein expressions of biomarkers were assessed immunohistochemically. The median follow-up duration was 36 months, and 37 patients (24.5%) experienced a recurrence. Univariate analyses indicated that the tumor size (P = 0.038) and the number of involved lymph nodes (P < 0.001) significantly affected the recurrences. However, the type of surgery, the histology, histologic grade, the presence of endolymphatic emboli, and a close resection margin did not. Moreover, ER positivity (P = 0.013), bcl-2 positivity (P = 0.002) and low p53 expression (P = 0.032) were found to be significantly associated with a prolonged DFS. Furthermore, multivariate analysis identified 10 or more involved lymph nodes (HR 7.366; P < 0.001), negative bcl-2 expression (HR 2.895; P = 0.030), and c-erbB2 over-expression (HR 3.535; P = 0.001) as independent indicators of poorer DFS. In addition, bcl-2 expression was found to be significantly correlated with the expressions of ER and PR, and inversely correlated with the expressions of p53, c-erbB2 and Ki-67. Patients with bcl-2 expression had a significantly longer DFS than those without, even in the ER (+) subgroup. Moreover, OS was significantly affected by ER, bcl

  8. Mycoplasma hyopneumoniae-derived lipid-associated membrane proteins induce inflammation and apoptosis in porcine peripheral blood mononuclear cells in vitro.

    Science.gov (United States)

    Bai, Fangfang; Ni, Bo; Liu, Maojun; Feng, Zhixin; Xiong, Qiyan; Shao, Guoqing

    2015-01-30

    Mycoplasma hyopneumoniae is the causative agent of swine enzootic pneumonia (EP), a disease that causes considerable economic losss in swine industry. Lipid-associated membrane proteins (LAMPs) of mycoplasma play important roles in causing mycoplasma diseases. The present study explores the pathogenic mechanisms of M. hyopneumoniae LAMPs by elucidating their role in modulating the inflammation, apoptosis, and relevant signaling pathways of peripheral blood mononuclear cells (PBMCs) of pig. LAMP treatment inhibited the growth of PBMCs. Up-regulation of cytokines, such as IL-6 and IL-1β, as well as increased production of nitric oxide (NO) and superoxide anion were all detected in the supernatant of LAMPs-treated PBMCs. Furthermore, flow cytometric analysis using dual staining with annexin-V-FITC and propidium iodide (PI) showed that LAMPs of M. hyopneumoniae induced a time-dependent apoptosis in lymphocyts and monocytes from PBMCs, which was blocked by NOS inhibitor or antioxidant. In addition, LAMPs induced the phosphorylation of p38, the ratio of pro-apoptotic Bax protein to anti-apoptotic Bcl-2, activation of caspase-3 and caspase-8, and poly ADP-ribose polymerase (PARP) cleavage in PBMCs. These findings demonstrated that M. hyopneumoniae LAMPs induced the production of proinflammatory cytokines, NO and reactive oxygen species (ROS), and apoptosis of PBMCs in vitro through p38 MAPK and Bax/Bcl-2 signaling pathways, as well as caspase activation. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Astro research fellowship: the role of bcl-2 and glutathione in an antioxidant pathway to prevent radiation-induced apoptosis

    International Nuclear Information System (INIS)

    Vlachaki, Maria T.; Meyn, Raymond E.

    1998-01-01

    Purpose: The expression of the bcl-2 proto-oncogene has been associated with resistance to radiation-induced apoptosis. There is evidence that the bcl-2 protein acts in an antioxidant pathway to block the effects of reactive oxygen species that mediate apoptosis possibly by increasing the levels of intracellular glutathione. Our hypothesis is that pretreatment of radiation-sensitive cells, known to lack bcl-2 expression, with antioxidants will reduce radiation-induced apoptosis. For this purpose, the apoptotic response to radiation and the intracellular levels of GSH were tested before and after pretreatment with antioxidants in two murine lymphoma cell lines, a radiation-resistant, bcl-2- expressing (LY-ar) line and a radiation-sensitive, non-bcl-2-expressing (LY-as) line. Methods and Materials: LY-ar and LY-as cells were irradiated at 0,1,2,3, and 4 hours before collection. The intracellular levels of reduced (GSH) and oxidized (GSSG) glutathione were determined by the use of the fluorescent dye o-phthalaldehyde. LY-as cells were treated with GSH ethyl-ester for 1 and 2 hours after irradiation. Apoptotic response was measured by the DNA fragmentation assay. The radiation dose was 2.5 Gy. Results: After irradiation, the apoptotic rate of LY-ar and LY-as cells was 10-20% and 50-70% respectively. LY-ar cells had higher intracellular GSH and GSSG levels compared to LY-as cells by 69.9% and 91.9% respectively and the GSH/GSSG ratio in LY-ar and LY-as cells was 15.09 and 17.09 respectively. GSH levels did not change during the first 2 hours after irradiation; however, there was a 49% and 84% reduction at 3 and 4 hours after irradiation, respectively, times at which the LY-as cells have already fragmented their DNA. Treatment of LY-as cells with GSH ethyl-ester at a concentration of 7 mM for 1 and 2 hours resulted in 70% and 231% increases in the intracellular GSH levels respectively. Treatment of LY-as cells with GSH ethyl-ester for 1 and 2 hours also conferred a 25

  10. Investigating The Anti-apoptotic Effects of Shigella Flexneri Infection In Epithelial Cells

    Science.gov (United States)

    2009-08-13

    Infect. Immun. 72:6012-6022. 103. Suzuki, T., L. Franchi , C. Toma, H. Ashida, M. Ogawa, Y. Yoshikawa, H. Mimuro, N. Inohara, C. Sasakawa, and G... rule out the 106 possibility that a bacterial T3SS effector protein expressed intracellularly also contributes to the induction of JUN...of the point-counting stereological method (79) using an intraocular reticle of 27-mm diameter, covering 3578 μm 2 (Kr409, Klarman Rulings ) (68

  11. Prognostic significance of CD95, P53, and BCL2 expression in extranodal non-Hodgkin's lymphoma

    OpenAIRE

    Chatzitolios , Anastasios; Venizelos , Ioannis; Tripsiannis , Gregory; Anastassopoulos , George; Papadopoulos , Nikolaos

    2010-01-01

    Abstract Apoptosis-related proteins play an important role in lymphoma cell death during chemotherapy. In our study, we investigated the prognostic significance of CD95, BCL2, and P53 expression in extranodal non-Hodgkin?s lymphoma (NHL). We examined 71 patients with extranodal NHL [45 diffuse large B-cell lymphomas (DLBCLs) and 26 mucosa-associated lymphoid tissue lymphomas (MALTLs)], 35 male and 36 female, with a median age of 65.8 years. The most common site of origin was the st...

  12. Effect of low dose ionizing radiation on Bcl-2 transcription level of Peyer's patches in mouse

    International Nuclear Information System (INIS)

    Liu Jiamei; Chen Dong; Zheng Yongchen; Liu Shuzheng

    2001-01-01

    Objective: To study the effect of whole body irradiation (WBI) with different doses of X-rays on apoptosis in cells of mouse Peyer's patches and its molecular mechanism. Methods: RT-PCR was used to detect the changes of Bcl-2 transcription level. Agarose electrophoresis and flow cytometry were used to detect the changes of DNA and apoptotic bodies in Peyer's patches after WBI with different doses of X-rays. Results: The apoptotic was increased and Bcl-2 transcription level was decreased in Peyer's patches after 2 Gy X-rays. The apoptotic rate was decreased and Bcl-2 transcription level was increased in Peyer's patches after 75 mGy X-rays. Conclusion: Bcl-2 participates in the regulation of radiation-induced apoptosis in Peyer's patches

  13. The anti-apoptotic activity of BAG3 is restricted by caspases and the proteasome.

    Directory of Open Access Journals (Sweden)

    Victoria M Virador

    Full Text Available Caspase-mediated cleavage and proteasomal degradation of ubiquitinated proteins are two independent mechanisms for the regulation of protein stability and cellular function. We previously reported BAG3 overexpression protected ubiquitinated clients, such as AKT, from proteasomal degradation and conferred cytoprotection against heat shock. We hypothesized that the BAG3 protein is regulated by proteolysis.Staurosporine (STS was used as a tool to test for caspase involvement in BAG3 degradation. MDA435 and HeLa human cancer cell lines exposed to STS underwent apoptosis with a concomitant time and dose-dependent loss of BAG3, suggesting the survival role of BAG3 was subject to STS regulation. zVAD-fmk or caspase 3 and 9 inhibitors provided a strong but incomplete protection of both cells and BAG3 protein. Two putative caspase cleavage sites were tested: KEVD (BAG3(E345A/D347A within the proline-rich center of BAG3 (PXXP and the C-terminal LEAD site (BAG3(E516A/D518A. PXXP deletion mutant and BAG3(E345A/D347A, or BAG3(E516A/D518A respectively slowed or stalled STS-mediated BAG3 loss. BAG3, ubiquitinated under basal growth conditions, underwent augmented ubiquitination upon STS treatment, while there was no increase in ubiquitination of the BAG3(E516A/D518A caspase-resistant mutant. Caspase and proteasome inhibition resulted in partial and independent protection of BAG3 whereas inhibitors of both blocked BAG3 degradation. STS-induced apoptosis was increased when BAG3 was silenced, and retention of BAG3 was associated with cytoprotection.BAG3 is tightly controlled by selective degradation during STS exposure. Loss of BAG3 under STS injury required sequential caspase cleavage followed by polyubiquitination and proteasomal degradation. The need for dual regulation of BAG3 in apoptosis suggests a key role for BAG3 in cancer cell resistance to apoptosis.

  14. Electromagnetic radiation at 900 MHz induces sperm apoptosis through bcl-2, bax and caspase-3 signaling pathways in rats.

    Science.gov (United States)

    Liu, Qi; Si, Tianlei; Xu, Xiaoyun; Liang, Fuqiang; Wang, Lufeng; Pan, Siyi

    2015-08-04

    The decreased reproductive capacity of men is an important factor contributing to infertility. Accumulating evidence has shown that Electromagnetic radiation potentially has negative effects on human health. However, whether radio frequency electromagnetic radiation (RF-EMR) affects the human reproductive system still requires further investigation. Therefore, The present study investigates whether RF-EMR at a frequency of 900 MHz can trigger sperm cell apoptosis and affect semen morphology, concentration, and microstructure. Twenty four rats were exposed to 900 MHz electromagnetic radiation with a special absorption rate of 0.66 ± 0.01 W/kg for 2 h/d. After 50d, the sperm count, morphology, apoptosis, reactive oxygen species (ROS), and total antioxidant capacity (TAC), representing the sum of enzymatic and nonenzymatic antioxidants, were investigated. Western blotting and reverse transcriptase PCR were used to determine the expression levels of apoptosis-related proteins and genes, including bcl-2, bax, cytochrome c, and capase-3. In the present study, the percentage of apoptotic sperm cells in the exposure group was significantly increased by 91.42% compared with the control group. Moreover, the ROS concentration in exposure group was increased by 46.21%, while the TAC was decreased by 28.01%. Radiation also dramatically decreased the protein and mRNA expression of bcl-2 and increased that of bax, cytochrome c, and capase-3. RF-EMR increases the ROS level and decreases TAC in rat sperm. Excessive oxidative stress alters the expression levels of apoptosis-related genes and triggers sperm apoptosis through bcl-2, bax, cytochrome c and caspase-3 signaling pathways.

  15. Correlation and role of nitric oxide (NO) and BCL-2 in duchenne muscular dystrophy (DMD) patients

    International Nuclear Information System (INIS)

    Moawed, F.S.M.

    2009-01-01

    Duchenne muscular dystrophy (DMD) is a lethal, degenerative muscle disease caused by a genetic mutation that leads to the complete absence of the cytoskeletal protein dystrophin in muscle fibers. Although the mechanisms underlying muscle degeneration are still uncertain, oxidative-damage and regenerating aging have been proposed to play a key role. The aim of the present study was to test for these two theories, and to evaluate the possible ameliorative effect of He;Ne laser on them. Subjects and Methods: twenty-two duchenne muscular dystrophy boys (7-15 years old ) with proven dystrophin gene mutation, together with twenty-two normal males, who served as controls, were enrolled for this study. Initial blood samples were taken for the determinations of creatine kinase (CK), markers of replicative aging; in terms of plasma and lymphocyte Bcl-2 protein and apoptosis percentage in circulating mononuclear cells, along with those of oxidative stress in terms of lipid peroxidation (as plasma malondialdehyde MDA), catalase activity, cholesterol, triacylglycerol and nitric oxide. Whole blood samples were then irradiated with 2.5 j/cm 2 by He-Ne laser at wave length 632.8 nm and power output 10 MW.

  16. Huperzine A attenuates hepatic ischemia reperfusion injury via anti-oxidative and anti-apoptotic pathways.

    Science.gov (United States)

    Xu, Zhe; Wang, Yang

    2014-08-01

    Hepatic ischemia reperfusion (HI/R) injury may occur during liver transplantation and remains a serious concern in clinical practice. Huperzine A (HupA), an alkaloid isolated from the Chinese traditional medicine Huperzia serrata, has been demonstrated to possess anti‑oxidative and anti‑apoptotic properties. In the present study, a rat model of HI/R was established by clamping the hepatic artery, the hepatoportal vein and the bile duct with a vascular clamp for 30 min followed by reperfusion for 6 h under anesthesia. HupA was injected into the tail vein 5 min prior to the induction of HI/R at doses of 167 and 500 µg/kg. The histopathological assessment of the liver was performed using hematoxylin and eosin staining. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were assayed in the serum samples. The tissue levels of superoxide dismutase (SOD), catalase (CAT), malondiadehyde (MDA) and glutathione (GSH) were also measured spectrophotometrically. Furthermore, the protein expression of caspase‑3, Bcl‑2 and Bax in hepatic tissues was detected via western blot analysis. Treatment of Wistar rats with HupA at doses of 167 and 500 µg/kg markedly attenuated HI/R injury as observed histologically. In addition, the significant reductions of serum ALT and AST were observed in HupA‑treated ischemic rats. Furthermore, HupA treatment enhanced the activity of hepatic tissue SOD, CAT and GSH, but decreased the MDA tissue content. Western blot analysis revealed elevated levels of Bcl‑2 expression but decreased Bax and caspase‑3 tissue expression at the protein level in the HupA‑treated group. The present data suggest that HupA attenuates the HI/R injury of rats through its anti‑oxidative and anti‑apoptotic signaling pathways.

  17. Increased Fas and Bcl-2 Expression on Peripheral Blood T and B Lymphocytes from Juvenile-Onset Systemic Lupus Erythematosus, but not from Juvenile Rheumatoid Arthritis and Juvenile Dermatomyositis

    Directory of Open Access Journals (Sweden)

    Bernadete L. Liphaus

    2006-01-01

    Full Text Available Defective regulation of apoptosis may play a role in the development of autoimmune diseases. Fas and Bcl-2 proteins are involved in the control of apoptosis. The aims of this study were to determine the expression of Fas antigen and Bcl-2 protein on peripheral blood T and B lymphocytes from patients with juvenile-onset systemic lupus erythematosus (JSLE, juvenile rheumatoid arthritis (JRA and juvenile dermatomyositis (JDM. Thirty-eight patients with JSLE, 19 patients with JRA, 10 patients with JDM and 25 healthy controls entered the study. Freshly isolated peripheral blood mononuclear cells (PBMC were stained for lymphocyte markers CD3, CD4, CD8, CD19 and for Fas and Bcl-2 molecules. Expressions were measured by three-color flow cytometry. Statistical analysis was performed using Kruskal–Wallis test. Percentages of freshly isolated T lymphocytes positively stained for Fas protein from JSLE patients were significantly increased compared to healthy controls, patients with JRA and patients with JDM. Percentages of B lymphocytes positive for Fas from JSLE patients were higher than healthy controls and JRA patients. In addition, Fas expression on T cells from patients with JRA was increased compared to JDM patients. Otherwise, Fas expression on T and B cells from JRA and JDM patients were similar to healthy controls. MFI of Bcl-2 positive T lymphocytes from JSLE patients were significantly increased compared to healthy controls and JRA patients. MFI of Bcl-2 protein on B lymphocytes from JSLE patients was similar to healthy controls and patients with JRA and JDM. Bcl-2 expression did not differ between JRA and JDM patients and healthy controls. In conclusion, increased expression of Fas and Bcl-2 proteins observed in circulating T and B lymphocytes from patients with JSLE, but not from patients with JRA and JDM, suggests that abnormalities of apoptosis may be related to the pathogenesis of JSLE and probably are not a result of chronic inflammation.

  18. Boron neutron capture therapy induces apoptosis of glioma cells through Bcl-2/Bax

    International Nuclear Information System (INIS)

    Wang, Peng; Zhen, Haining; Jiang, Xinbiao; Zhang, Wei; Cheng, Xin; Guo, Geng; Mao, Xinggang; Zhang, Xiang

    2010-01-01

    Boron neutron capture therapy (BNCT) is an alternative treatment modality for patients with glioma. The aim of this study was to determine whether induction of apoptosis contributes to the main therapeutic efficacy of BNCT and to compare the relative biological effect (RBE) of BNCT, γ-ray and reactor neutron irradiation. The neutron beam was obtained from the Xi'an Pulsed Reactor (XAPR) and γ-rays were obtained from [ 60 Co] γ source of the Fourth Military Medical University (FMMU) in China. Human glioma cells (the U87, U251, and SHG44 cell lines) were irradiated by neutron beams at the XAPR or [ 60 Co] γ-rays at the FMMU with different protocols: Group A included control nonirradiated cells; Group B included cells treated with 4 Gy of [ 60 Co] γ-rays; Group C included cells treated with 8 Gy of [ 60 Co] γ-rays; Group D included cells treated with 4 Gy BPA (p-borono-phenylalanine)-BNCT; Group E included cells treated with 8 Gy BPA-BNCT; Group F included cells irradiated in the reactor for the same treatment period as used for Group D; Group G included cells irradiated in the reactor for the same treatment period as used for Group E; Group H included cells irradiated with 4 Gy in the reactor; and Group I included cells irradiated with 8 Gy in the reactor. Cell survival was determined using the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium (MTT) cytotoxicity assay. The morphology of cells was detected by Hoechst33342 staining and transmission electron microscope (TEM). The apoptosis rate was detected by flow cytometer (FCM). The level of Bcl-2 and Bax protein was measured by western blot analysis. Proliferation of U87, U251, and SHG44 cells was much more strongly inhibited by BPA-BNCT than by irradiation with [ 60 Co] γ-rays (P < 0.01). Nuclear condensation was determined using both a fluorescence technique and electron microscopy in all cell lines treated with BPA-BNCT. Furthermore, the cellular apoptotic rates in Group D and Group E treated with

  19. Boron neutron capture therapy induces apoptosis of glioma cells through Bcl-2/Bax

    Directory of Open Access Journals (Sweden)

    Mao Xinggang

    2010-12-01

    Full Text Available Abstract Background Boron neutron capture therapy (BNCT is an alternative treatment modality for patients with glioma. The aim of this study was to determine whether induction of apoptosis contributes to the main therapeutic efficacy of BNCT and to compare the relative biological effect (RBE of BNCT, γ-ray and reactor neutron irradiation. Methods The neutron beam was obtained from the Xi'an Pulsed Reactor (XAPR and γ-rays were obtained from [60Co] γ source of the Fourth Military Medical University (FMMU in China. Human glioma cells (the U87, U251, and SHG44 cell lines were irradiated by neutron beams at the XAPR or [60Co] γ-rays at the FMMU with different protocols: Group A included control nonirradiated cells; Group B included cells treated with 4 Gy of [60Co] γ-rays; Group C included cells treated with 8 Gy of [60Co] γ-rays; Group D included cells treated with 4 Gy BPA (p-borono-phenylalanine-BNCT; Group E included cells treated with 8 Gy BPA-BNCT; Group F included cells irradiated in the reactor for the same treatment period as used for Group D; Group G included cells irradiated in the reactor for the same treatment period as used for Group E; Group H included cells irradiated with 4 Gy in the reactor; and Group I included cells irradiated with 8 Gy in the reactor. Cell survival was determined using the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium (MTT cytotoxicity assay. The morphology of cells was detected by Hoechst33342 staining and transmission electron microscope (TEM. The apoptosis rate was detected by flow cytometer (FCM. The level of Bcl-2 and Bax protein was measured by western blot analysis. Results Proliferation of U87, U251, and SHG44 cells was much more strongly inhibited by BPA-BNCT than by irradiation with [60Co] γ-rays (P 60Co] γ-rays (P P Conclusions Compared with ��-ray and reactor neutron irradiation, a higher RBE can be achieved upon treatment of glioma cells with BNCT. Glioma cell apoptosis induced by

  20. Expression, purification and characterization of hepatitis B virus X protein BH3-like motif-linker-Bcl-xL fusion protein for structural studies

    Directory of Open Access Journals (Sweden)

    Hideki Kusunoki

    2017-03-01

    Full Text Available Hepatitis B virus X protein (HBx is a multifunctional protein that interacts directly with many host proteins. For example, HBx interacts with anti-apoptotic proteins, Bcl-2 and Bcl-xL, through its BH3-like motif, which leads to elevated cytosolic calcium levels, efficient viral DNA replication and the induction of apoptosis. To facilitate sample preparation and perform detailed structural characterization of the complex between HBx and Bcl-xL, we designed and purified a recombinant HBx BH3-like motif-linker-Bcl-xL fusion protein produced in E. coli. The fusion protein was characterized by size exclusion chromatography, circular dichroism and nuclear magnetic resonance experiments. Our results show that the fusion protein is a monomer in aqueous solution, forms a stable intramolecular complex, and likely retains the native conformation of the complex between Bcl-xL and the HBx BH3-like motif. Furthermore, the HBx BH3-like motif of the intramolecular complex forms an α-helix. These observations indicate that the fusion protein should facilitate structural studies aimed at understanding the interaction between HBx and Bcl-xL at the atomic level.

  1. American Ginseng Stimulates Insulin Production and Prevents Apoptosis through Regulation of Uncoupling Protein-2 in Cultured β Cells

    Directory of Open Access Journals (Sweden)

    John Zeqi Luo

    2006-01-01

    Full Text Available American ginseng root displays the ability to achieve glucose homeostasis both experimentally and clinically but the unknown mechanism used by ginseng to achieve its therapeutic effects on diabetes limits its application. Disruption in the insulin secretion of pancreatic β cells is considered the major cause of diabetes. A mitochondrial protein, uncoupling protein-2 (UCP-2 has been found to play a critical role in insulin synthesis and β cell survival. Our preliminary studies found that the extracts of American ginseng inhibit UCP-2 expression which may contribute to the ability of ginseng protecting β cell death and improving insulin synthesis. Therefore, we hypothesized that ginseng extracts suppress UCP-2 in the mitochondria of pancreatic β cells, promoting insulin synthesis and anti-apoptosis (a programmed cell-death mechanism. To test the hypothesis, the serum-deprived quiescent β cells were cultured with or without interleukin-1β (IL-1β, (200 pg ml−1, a cytokine to induce β cell apoptosis and water extracts of American ginseng (25 μg per 5 μl administered to wells of 0.5 ml culture for 24 h. We evaluated effects of ginseng on UCP-2 expression, insulin production, anti-/pro-apoptotic factors Bcl-2/caspase-9 expression and cellular ATP levels. We found that ginseng suppresses UCP-2, down-regulates caspase-9 while increasing ATP and insulin production/secretion and up-regulates Bcl-2, reducing apoptosis. These findings suggest that stimulation of insulin production and prevention of β cell loss by American ginseng extracts can occur via the inhibition of mitochondrial UCP-2, resulting in increase in the ATP level and the anti-apoptotic factor Bcl-2, while down-regulation of pro-apoptotic factor caspase-9 occurs, lowering the occurrence of apoptosis, which support the hypothesis.

  2. Immunohistochemical study of ki-67 and bcl-2 expression in some odontogenic cystic lesions with different clinical behaviors

    Directory of Open Access Journals (Sweden)

    Seyed Hossein Tabatabaei

    2016-11-01

    Full Text Available Background: Cystic lesions with odontogenic epithelial origin and similar clinicoradiographic appearance, show different clinical behaviors. Objective: To compare some factors related to cell proliferation and escape from apoptosis in epithelium covering two groups of odontogenic cystic lesions with different clinical behaviors. Methods: In this cross-sectional study 11 paraffin-embedded samples were selected of each lesions radicular cyst, dentigerous cyst, odontogenic keratocyst, and unicystic ameloblastoma. The sample underwent immunohistochemical staining for investigating the expression of ki-67 antigen and bcl-2 protein. Data analyzed with SPSS17 software and Kruskal–Wallis and chi-square statistical tests. Findings: Most of ki-67 positive cells were observed in parabasal layer of odontogenic keratocyst [35.50±26.29%; P=0.001]. The average of ki-67-LI was more in parabasal layer of aggressive group (26.80±37.79% compared to non-aggressive group (4.04±3.38%, was not being statistically significant. The highest average of bcl-2-LI was 95±6.70% in basal layer of odontogenic keratocyst (P=0.001. In all layers, the average of bcl-2-LI was more in aggressive lesions compared to non-aggressive ones and the highest amount was found in basal layer (72.45±3.94×10% which was statistically significant (P=0.001. Conclusion: According to the results of this study, more expression of the markers related to escape from apoptosis in aggressive lesions group compared to non-aggressive group, suggests that escape from apoptosis had a more critical role in aggressive behavior of odontogenic cystic lesions.

  3. Regulatory effect of Bcl-2 in ultraviolet radiation-induced apoptosis of the mouse crystalline lens.

    Science.gov (United States)

    Dong, Yuchen; Zheng, Yajuan; Xiao, Jun; Zhu, Chao; Zhao, Meisheng

    2016-03-01

    The aim of the present study was to analyze the role of Bcl-2 during the process of apoptosis in the mouse crystalline lens. In total, 12 normal mice served as the control group and 12 Bcl-2 knockout (K.O) mice served as the experimental group. The mouse crystalline lens was sampled for the detection of Bcl-2 and caspase-3 expression following exposure to ultraviolet (UV) radiation. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to determine Bcl-2 expression in the groups of normal mice receiving UV radiation or not receiving UV radiation. Samples of the murine crystalline lens were microscopically harvested and analyzed using western blotting. Apoptosis was detected using terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay. Furthermore, caspase 3 activity was examined using enzyme-linked immunosorbent assay kits, and RT-qPCR was used to analyze caspase-3 expression levels. The results of the present study demonstrated that there was no statistically significant difference in the level of Bcl-2 gene transcription between the two groups. In addition, UV radiation did not change the macrostructure of the crystalline lens in the group of normal mice or the group of Bcl-2 K.O mice. The results of the TUNEL assay indicated that the normal-UV group exhibited a more significant apoptosis level compared with the Bcl-2 K.O-UV group. Furthermore, the mRNA expression level of caspase-3 in the normal-UV group was significantly higher compared with the normal-nonUV group (Plens.

  4. Bcl-2 expression during the development and degeneration of RCS rat retinae.

    Science.gov (United States)

    Sharma, R K

    2001-12-14

    In various hereditary retinal degenerations, including that in Royal College of Surgeons (RCS) rats, the photoreceptors ultimately die by apoptosis. Bcl-2 is one of the genes, which regulates apoptosis and is thought to promote survival of cells. This study has investigated the developmental expression of Bcl-2 in RCS rat, which is a well-studied animal model for hereditary retinal degeneration. An antibody against Bcl-2 was used for its immunohistochemical localization in dystrophic RCS rat retinae from postnatal (PN) days 4, 7, 13, 35, 45, 70, 202 and 14 months. Results were compared with Bcl-2 localization in congenic non-dystrophic rats from PN 4, 7, 13, 44, 202 and 14 months. Bcl-2 immunoreactivity in non-dystrophic retinae was already present in PN 4 retinae in the nerve fiber layer (presumably in the endfeet of immature Müller cells) and in the proximal parts of certain radially aligned neuroepithelial cells/immature Müller cell radial processes. With increasing age the immunoreactivity in relatively more mature Müller cell radial processes spread distally towards the outer retina and between PN 13 and 44 it reached the adult distribution. No cell bodies in the ganglion cell layer were found to be immunoreactive. Expression of Bcl-2 immunoreactivity in dystrophic RCS rat retinae closely resembled that of non-dystrophic retinae. No immunoreactivity was seen in photoreceptors or retinal pigment epithelium in dystrophic or non-dystrophic retinae. In conclusion, Bcl-2 expression is not altered, either in terms of its chronology or the cell type expressing it, during retinal degeneration in RCS rats.

  5. Cytoplasmic and nuclear anti-apoptotic roles of αB-crystallin in retinal pigment epithelial cells.

    Directory of Open Access Journals (Sweden)

    Woo Jin Jeong

    Full Text Available In addition to its well-characterized role in the lens, αB-crystallin performs other functions. Methylglyoxal (MGO can alter the function of the basement membrane of retinal pigment epithelial (RPE cells. Thus, if MGO is not efficiently detoxified, it can induce adverse reactions in RPE cells. In this study, we examined the mechanisms underlying the anti-apoptotic activity of αB-crystallin in the human retinal pigment epithelial cell line ARPE-19 following MGO treatment using various assays, including nuclear staining, flow cytometry, DNA electrophoresis, pulse field gel electrophoresis, western blot analysis, confocal microscopy and co-immunoprecipitation assays. To directly assess the role of phosphorylation of αB-crystallin, we used site-directed mutagenesis to convert relevant serine residues to alanine residues. Using these techniques, we demonstrated that MGO induces apoptosis in ARPE-19 cells. Silencing αB-crystallin sensitized ARPE-19 cells to MGO-induced apoptosis, indicating that αB-crystallin protects ARPE-19 cells from MGO-induced apoptosis. Furthermore, we found that αB-crystallin interacts with the caspase subtypes, caspase-2L, -2S, -3, -4, -7, -8, -9 and -12 in untreated control ARPE-19 cells and that MGO treatment caused the dissociation of these caspase subtypes from αB-crystallin; transfection of S19A, S45A or S59A mutants caused the depletion of αB-crystallin from the nuclei of untreated control RPE cells leading to the release of caspase subtypes. Additionally, transfection of these mutants enhanced MGO-induced apoptosis in ARPE-19 cells, indicating that phosphorylation of nuclear αB-crystallin on serine residues 19, 45 and 59 plays a pivotal role in preventing apoptosis in ARPE-19 cells. Taken together, these results suggest that αB-crystallin prevents caspase activation by physically interacting with caspase subtypes in the cytoplasm and nucleus, thereby protecting RPE cells from MGO-induced apoptosis.

  6. Prognostic significance of bcl-2 expression in stage III breast cancer patients who had received doxorubicin and cyclophosphamide followed by paclitaxel as adjuvant chemotherapy

    Directory of Open Access Journals (Sweden)

    Kim Dong-Wan

    2007-04-01

    Full Text Available Abstract Background Bcl-2 is positively regulated by hormonal receptor pathways in breast cancer. A study was conducted to assess the prognostic significances of clinico-pathologic variables and of ER, PR, p53, c-erbB2, bcl-2, or Ki-67 as markers of relapse in breast cancer patients who had received the identical adjuvant therapy at a single institution. Methods A cohort of 151 curatively resected stage III breast cancer patients (M:F = 3:148, median age 46 years who had 4 or more positive lymph nodes and received doxorubicin and cyclophosphamide followed by paclitaxel (AC/T as adjuvant chemotherapy was analyzed for clinico-pathologic characteristics including disease-free survival (DFS and overall survival (OS. Patients with positive ER and/or PR expression received 5 years of tamoxifen following AC/T. The protein expressions of biomarkers were assessed immunohistochemically. Results The median follow-up duration was 36 months, and 37 patients (24.5% experienced a recurrence. Univariate analyses indicated that the tumor size (P = 0.038 and the number of involved lymph nodes (P P = 0.013, bcl-2 positivity (P = 0.002 and low p53 expression (P = 0.032 were found to be significantly associated with a prolonged DFS. Furthermore, multivariate analysis identified 10 or more involved lymph nodes (HR 7.366; P P = 0.030, and c-erbB2 over-expression (HR 3.535; P = 0.001 as independent indicators of poorer DFS. In addition, bcl-2 expression was found to be significantly correlated with the expressions of ER and PR, and inversely correlated with the expressions of p53, c-erbB2 and Ki-67. Patients with bcl-2 expression had a significantly longer DFS than those without, even in the ER (+ subgroup. Moreover, OS was significantly affected by ER, bcl-2 and c-erbB2. Conclusion Bcl-2 is an independent prognostic factor of DFS in curatively resected stage III breast cancer patients and appears to be a useful prognostic factor in combination with c-erbB2 and the

  7. EFFECT OF AURICULAR ACUPUNCTURE ON THE LEARNING AND MEMORY AND bcl-2 EXPRESSION IN VASCULAR DEMENTIA RATS

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xuezhao; XIAO Maolei; SUN Guojie

    2002-01-01

    Objective: To study the effect of auricular acupuncture on dysmnesia and the relationship between the memory improvement and bcl-2 protein expression in vascular dementia (VD) rats. Methods: Forty Wistar rats were randomized into control group, VD group, acupuncture+ VD group and pseudo-operation group, with 10 cases in each group. Rat VD model was established by using 4-vessel occlusion method. Otopoint "Nao"-point and "Shen"(MA-SC)were punctured, once daily continuously for 15 days. The rats' memory capability was tested with Y-maze method and bcl-2 expression of the brain tissues displayed by immunohistochemical method and measured using MIAS-2000 Image Analyzer. Results: Results showed that the scores of control group, VD group and acupuncture+ VD group before operation were 5.68±1.29, 6.07±1.67 and 5.86±1.74 respectively, while following auricular acupuncture treatment,the scores of the 3 groups were 5.81±1.51, 18.06±2.68 and 8.31 ± 1.85 separately, suggesting that the VD rat's learning and memory abilities in acupuncture+ VD group were raised apparently in comparison with those of VD group (P < 0.01 ). In control, VD and acupuncture+VD group, bcl-2 immuno-reaction positive neurons in CA1 area of the hippocampus were 14.31 ± 4.87, 28.67 ± 5.63 and 65.74 ± 8.19 respectively, displaying that the improvement of learning and memory abilities caused by auricular acupuncture treatment may be related to the up-regulation of bcl-2expression (an inhibitory gene of apoptosis). In comparison with control group, the loss of neurons in the pyramidal cell layer of the hippocampal CA1 area of VD group was more severe, while that of acupuncture group was markedly lighter. Conclusion: Auricular acupuncture of otopoint "Nao"-point and "Shen" (MA-SC) can raise the learning and memory abilities of VD rats, which may be realized by its inhibitory effect on apoptosis and the protection action on ischemic hippocampal neurons.

  8. The studies on thyrocyte apoptosis and expression of Bcl-2 and Bax in Hashimoto's thyroiditis

    International Nuclear Information System (INIS)

    Zhao Yaping; Wang Jialing; Fan Zhiyong; Liu Zehong; Wu HeJun; Zhou Wei; Jia Meizhai

    2003-01-01

    To investigate the thyrocyte apoptosis, the expression of Bcl-2, Bax and the relationship between apoptosis and the pathogenesis in Hashimoto's thyroiditis (HT), 41 HT thyroid and 10 normal thyroid specimens were selected. The level of apoptosis was detected by TUNEL methods. The expression and distribution of Bcl-2 and Bax were detected using immunohistochemical methods and analyzed by Mias99 pathological image system. Immunohistochemical staining was carried out using S-P kit. The Result showed that an increased level of apoptosis was observed in Hashimoto's glands. The apoptosis mainly distributed in thyroid follicles destruction area. This was associated with increased Bax expression. The strongly positive Bcl-2 staining was observed in the thyrocyte of intact thyroid follicles. The ratios of positive granule area and total light density of Bcl-2 to those of Bax in HT thyroid follicle area were lower than those in normal thyroid. The apoptosis of thyrocyte induced by dysregulation of Bcl-2 and Bax may be involved in the pathogeneses of HT

  9. Saponins from Panax japonicus attenuate D-galactose-induced cognitive impairment through its anti-oxidative and anti-apoptotic effects in rats.

    Science.gov (United States)

    Wang, Ting; Di, Guojie; Yang, Li; Dun, Yaoyan; Sun, Zhiwei; Wan, Jingzhi; Peng, Ben; Liu, Chaoqi; Xiong, Guangrun; Zhang, Changcheng; Yuan, Ding

    2015-09-01

    To investigate the neuroprotective effects of saponins from Panax japonicus (SPJ) on D-galactose (D-gal)-induced brain ageing, and further explore the underlying mechanisms. SPJ were analysed using high-pressure liquid chromatography. Male Wistar rats weighing 200 ± 20 g were randomly divided into four groups: control group (saline), D-gal-treated group (400 mg/kg, subcutaneously), D-gal + SPJ groups (50, 100 and 200 mg/kg, orally) and vitamin E group (100 mg/kg). Rats were injected corresponding drugs once daily for 8 weeks. Neuroprotective effects of SPJ were evaluated by Morris water maze, histopathological observations, biochemical assays, western blot analysis and quantitative real-time polymerase chain reaction (PCR) analysis in vivo as well as reactive oxygen species (ROS) measurement and apoptosis assay in vitro. Our present study showed that D-gal had a neurotoxic effect in rats and in SH-SY5Y cells due to oxidative stress induction, including decreased total anti-oxidant capacity, superoxide dismutase (SOD) and glutathione peroxidase activity, ultimately leading to spatial learning and memory impairment in rats and ROS accumulation in SH-SY5Y cells. SPJ improved spatial learning and memory deficits, attenuated hippocampus histopathological injury and restored impaired anti-oxidative as well as anti-apoptotic capacities in D-gal-induced ageing rats. In addition, SPJ remarkably decreased lipofuscin levels, increased hippocampus nuclear factor erythroid 2-related factor 2 (Nrf2) and silent mating type information regulation 2 homologue (SIRT1) protein levels and anti-oxidant genes expression such as manganese superoxide dismutase (Mn-SOD), heme oxygenase (HO-1), NAD(P)H quinone oxidoreductase 1 (NQO1) and cysteine ligase catalytic (GCLC) in D-gal-induced brain ageing. Our data suggested that D-gal induced multiple molecular and functional changes in brain similar to natural ageing process. SPJ protected brain from D-gal-induced neuronal

  10. Anti-inflammatory and Anti-apoptotic Effect of Valproic Acid and Doxycycline Independent from MMP Inhibition in Early Radiation Damage

    Directory of Open Access Journals (Sweden)

    Ferda Hoşgörler

    2016-10-01

    Full Text Available Background: Matrix metalloproteinase (MMP inhibitors decrease inflammation in normal tissues and suppress cancer progress in normal tissues. Valproic acid (VA and doxycycline (DX are MMP inhibitors that have radio-protective effects. Their ability to inhibit MMPs in irradiated tissue is unknown and the role of MMPs in radio-protective effects has not been tested to date. Aims: The purpose of this study was to examine whether administration of VA and DX to rats before irradiation affects tissue inflammation and apoptosis in the early phase of radiation, and whether the effect of these drugs is mediated by MMP inhibition. Study Design: Animal experimentation. Methods: Twenty-six Wistar rats were randomized into four groups: control (CTRL, radiation (RT, VA plus radiation (VA+RT, and DX plus radiation (DX+RT.Three study groups were exposed to a single dose of abdominal 10 Gy gamma radiation; the CTRL group received no radiation. Single doses of VA 300 mg/kg and DX 100 mg/kg were administered to each rat before radiation and all rats were sacrificed 8 hours after irradiation, at which point small intestine tissue samples were taken for analyses. Levels of inflammatory cytokines (TNF-α, IL-1β, and IL-6 and matrix metalloproteinases (MMP-2 and MMP 9 were measured by ELISA, MMP activities were measured by gelatin and casein zymography and apoptosis was assessed by terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Results: VA decreased the levels of TNF-α and IL-1β proteins insignificantly and decreased apoptosis significantly in the irradiated tissue, but did not inhibit MMPs. In contrast, VA protected the basal MMP activities, which decreased in response to irradiation. No effect of DX was observed on the levels of inflammatory cytokines or activities of MMPs in the early phases of radiation apoptosis. Conclusion: Our findings indicated that VA protects against inflammation and apoptosis, and DX exhibits anti-apoptotic effects in

  11. Bcl2-associated Athanogene 3 Interactome Analysis Reveals a New Role in Modulating Proteasome Activity*

    Science.gov (United States)

    Chen, Ying; Yang, Li-Na; Cheng, Li; Tu, Shun; Guo, Shu-Juan; Le, Huang-Ying; Xiong, Qian; Mo, Ran; Li, Chong-Yang; Jeong, Jun-Seop; Jiang, Lizhi; Blackshaw, Seth; Bi, Li-Jun; Zhu, Heng; Tao, Sheng-Ce; Ge, Feng

    2013-01-01

    Bcl2-associated athanogene 3 (BAG3), a member of the BAG family of co-chaperones, plays a critical role in regulating apoptosis, development, cell motility, autophagy, and tumor metastasis and in mediating cell adaptive responses to stressful stimuli. BAG3 carries a BAG domain, a WW domain, and a proline-rich repeat (PXXP), all of which mediate binding to different partners. To elucidate BAG3's interaction network at the molecular level, we employed quantitative immunoprecipitation combined with knockdown and human proteome microarrays to comprehensively profile the BAG3 interactome in humans. We identified a total of 382 BAG3-interacting proteins with diverse functions, including transferase activity, nucleic acid binding, transcription factors, proteases, and chaperones, suggesting that BAG3 is a critical regulator of diverse cellular functions. In addition, we characterized interactions between BAG3 and some of its newly identified partners in greater detail. In particular, bioinformatic analysis revealed that the BAG3 interactome is strongly enriched in proteins functioning within the proteasome-ubiquitination process and that compose the proteasome complex itself, suggesting that a critical biological function of BAG3 is associated with the proteasome. Functional studies demonstrated that BAG3 indeed interacts with the proteasome and modulates its activity, sustaining cell survival and underlying resistance to therapy through the down-modulation of apoptosis. Taken as a whole, this study expands our knowledge of the BAG3 interactome, provides a valuable resource for understanding how BAG3 affects different cellular functions, and demonstrates that biologically relevant data can be harvested using this kind of integrated approach. PMID:23824909

  12. Quinacrine induces apoptosis in human leukemia K562 cells via p38 MAPK-elicited BCL2 down-regulation and suppression of ERK/c-Jun-mediated BCL2L1 expression

    International Nuclear Information System (INIS)

    Changchien, Jung-Jung; Chen, Ying-Jung; Huang, Chia-Hui; Cheng, Tian-Lu; Lin, Shinne-Ren; Chang, Long-Sen

    2015-01-01

    Although previous studies have revealed the anti-cancer activity of quinacrine, its effect on leukemia is not clearly resolved. We sought to explore the cytotoxic effect and mechanism of quinacrine action in human leukemia K562 cells. Quinacrine induced K562 cell apoptosis accompanied with ROS generation, mitochondrial depolarization, and down-regulation of BCL2L1 and BCL2. Upon exposure to quinacrine, ROS-mediated p38 MAPK activation and ERK inactivation were observed in K562 cells. Quinacrine-induced cell death and mitochondrial depolarization were suppressed by the p38MAPK inhibitor SB202190 and constitutively active MEK1 over-expression. Activation of p38 MAPK was shown to promote BCL2 degradation. Further, ERK inactivation suppressed c-Jun-mediated transcriptional expression of BCL2L1. Over-expression of BCL2L1 and BCL2 attenuated quinacrine-evoked mitochondrial depolarization and rescued the viability of quinacrine-treated cells. Taken together, our data indicate that quinacrine-induced K562 cell apoptosis is mediated through mitochondrial alterations triggered by p38 MAPK-mediated BCL2 down-regulation and suppression of ERK/c-Jun-mediated BCL2L1 expression. - Highlights: • Quinacrine induces K562 cell apoptosis via down-regulation of BCL2 and BCL2L1. • Quinacrine induces p38 MAPK activation and ERK inactivation in K562 cells. • Quinacrine elicits p38 MAPK-mediated BCL2 down-regulation. • Quinacrine suppresses ERK/c-Jun-mediated BCL2L1 expression

  13. Vitamin K2 inhibits rat vascular smooth muscle cell calcification by restoring the Gas6/Axl/Akt anti-apoptotic pathway.

    Science.gov (United States)

    Qiu, Cuiting; Zheng, Haijun; Tao, Huiren; Yu, Wenjun; Jiang, Xiaoyu; Li, Aiqin; Jin, Hui; Lv, Anlin; Li, Huan

    2017-09-01

    Vascular calcification is associated with cardiovascular disease as a complication of hypertension, hyperlipidemia, diabetes mellitus, and chronic kidney disease. Vitamin K2 (VK2) delays vascular calcification by an unclear mechanism. Moreover, apoptosis modulates vascular smooth muscle cell (VSMC) calcification. This paper aimed to study VK2-modified VSMC calcification and survival cell signaling mediated by growth arrest-specific gene 6 (Gas6) and its tyrosine kinase receptor Axl. Primary-cultured VSMCs were dose-dependently treated with VK2 in the presence of calcification medium for 8 days, or pre-treated for 1 h with/without the Axl inhibitor R428 (2 μmol/L) or the caspase inhibitor Z-VAD-fmk (20 μmol/L) followed by treatment with VK2 (10 μmol/L) or rmGas6 (200 nmol/L) in calcification medium for 8 days. Calcium deposition was determined by the o-cresolphthalein complexone assay and Alizarin Red S staining. Apoptosis was determined by TUNEL and flow cytometry using Annexin V-FITC and propidium iodide staining. Western blotting detected the expressions of Axl, Gas6, p-Akt, Akt, and Bcl2. VK2 significantly inhibited CaCl 2 - and β-sodium glycerophosphate (β-GP)-induced VSMC calcification and apoptosis, which was dependent on restored Gas6 expression and activated downstream signaling by Axl, p-Akt, and Bcl2. Z-VAD-fmk significantly inhibited CaCl 2 - and β-GP-induced VSMC calcification and apoptosis. Augmented recombinant mouse Gas6 protein (rmGas6) expression significantly reduced VSMC calcification and apoptosis. Furthermore, the Gas6/Axl interaction was inhibited by R428, which abolished the preventive effect of VK2 on CaCl 2 - and β-GP-induced apoptosis and calcification. These results suggest that Gas6 is critical in VK2-mediated functions that attenuate CaCl 2 - and β-GP-induced VSMC calcification by blocking apoptosis.

  14. Enrichment of Druggable Conformations from Apo Protein Structures Using Cosolvent-Accelerated Molecular Dynamics

    Directory of Open Access Journals (Sweden)

    Andrew Kalenkiewicz

    2015-04-01

    Full Text Available Here we describe the development of an improved workflow for utilizing experimental and simulated protein conformations in the structure-based design of inhibitors for anti-apoptotic Bcl-2 family proteins. Traditional structure-based approaches on similar targets are often constrained by the sparsity of available structures and difficulties in finding lead compounds that dock against flat, flexible protein-protein interaction surfaces. By employing computational docking of known small molecule inhibitors, we have demonstrated that structural ensembles derived from either accelerated MD (aMD or MD in the presence of an organic cosolvent generally give better scores than those assessed from analogous conventional MD. Furthermore, conformations obtained from combined cosolvent aMD simulations started with the apo-Bcl-xL structure yielded better average and minimum docking scores for known binders than an ensemble of 72 experimental apo- and ligand-bound Bcl-xL structures. A detailed analysis of the simulated conformations indicates that the aMD effectively enhanced conformational sampling of the flexible helices flanking the main Bcl-xL binding groove, permitting the cosolvent acting as small ligands to penetrate more deeply into the binding pocket and shape ligand-bound conformations not evident in conventional simulations. We believe this approach could be useful for identifying inhibitors against other protein-protein interaction systems involving highly flexible binding sites, particularly for targets with less accumulated structural data.

  15. Prognostic significances of overexpression MYC and/or BCL2 in R-CHOP-treated diffuse large B-cell lymphoma: A Systematic review and meta-analysis.

    Science.gov (United States)

    Li, Lu; Li, Yanyan; Que, Ximei; Gao, Xue; Gao, Qian; Yu, Mingxing; Ma, Kaili; Xi, Yanfeng; Wang, Tong

    2018-04-19

    Numerous studies have investigated the prognostic values of MYC and/or BCL2 protein overexpression in diffuse large B-cell lymphoma (DLBCL). However, the results still demonstrate discrepancies among different studies. We aimed to do a systematic review and meta-analysis on the relationships between overexpression MYC and/or BCL2 and DLBCLs treated with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP). This study followed the guidelines of PRISMA and Cochrane handbook. The hazard ratios (HRs) for overall survival (OS) were pooled to estimate the main effect size. Twenty studies recruited a total of 5576 patients were available for this meta-analysis. The results showed that MYC (HR = 1.96, 95%CI (confidence interval) = 1.69-2.27)without heterogeneity(I 2  = 17.2%, P = 0.280), BCL2 (HR = 1.65, 95%CI = 1.43-1.89, I 2  = 20.7%, P = 0.234) protein overexpression, and co-overexpression (HR = 2.58, 95%CI = 2.19-3.04, I 2  = 17.2%, P = 0.275) had a poor prognosis in R-CHOP treated DLBCL patients, respectively. The current analysis indicated that MYC and/or BCL2 protein overexpression, and particularly co-overexpression was related to short overall survival in R-CHOP treated DLBCL patients, showing that application of the two new biomarkers can help to better stratify DLBCL patients and guide targeted treatment.

  16. Bcl-2–associated athanogene 3 protects the heart from ischemia/reperfusion injury

    Science.gov (United States)

    Su, Feifei; Myers, Valerie D.; Knezevic, Tijana; Wang, JuFang; Gao, Erhe; Madesh, Muniswamy; Tahrir, Farzaneh G.; Gupta, Manish K.; Gordon, Jennifer; Rabinowitz, Joseph; Tilley, Douglas G.; Khalili, Kamel; Cheung, Joseph Y.

    2016-01-01

    Bcl-2–associated athanogene 3 (BAG3) is an evolutionarily conserved protein expressed at high levels in the heart and the vasculature and in many cancers. While altered BAG3 expression has been associated with cardiac dysfunction, its role in ischemia/reperfusion (I/R) is unknown. To test the hypothesis that BAG3 protects the heart from reperfusion injury, in vivo cardiac function was measured in hearts infected with either recombinant adeno-associated virus serotype 9–expressing (rAAV9-expressing) BAG3 or GFP and subjected to I/R. To elucidate molecular mechanisms by which BAG3 protects against I/R injury, neonatal mouse ventricular cardiomyocytes (NMVCs) in which BAG3 levels were modified by adenovirus expressing (Ad-expressing) BAG3 or siBAG3 were exposed to hypoxia/reoxygenation (H/R). H/R significantly reduced NMVC BAG3 levels, which were associated with enhanced expression of apoptosis markers, decreased expression of autophagy markers, and reduced autophagy flux. The deleterious effects of H/R on apoptosis and autophagy were recapitulated by knockdown of BAG3 with Ad-siBAG3 and were rescued by Ad-BAG3. In vivo, treatment of mice with rAAV9-BAG3 prior to I/R significantly decreased infarct size and improved left ventricular function when compared with mice receiving rAAV9-GFP and improved markers of autophagy and apoptosis. These findings suggest that BAG3 may provide a therapeutic target in patients undergoing reperfusion after myocardial infarction. PMID:27882354

  17. Canonical Bcl-2 motifs of the Na+/K+ pump revealed by the BH3 mimetic chelerythrine: early signal transducers of apoptosis?

    Science.gov (United States)

    Lauf, Peter K; Heiny, Judith; Meller, Jarek; Lepera, Michael A; Koikov, Leonid; Alter, Gerald M; Brown, Thomas L; Adragna, Norma C

    2013-01-01

    Chelerythrine [CET], a protein kinase C [PKC] inhibitor, is a prop-apoptotic BH3-mimetic binding to BH1-like motifs of Bcl-2 proteins. CET action was examined on PKC phosphorylation-dependent membrane transporters (Na+/K+ pump/ATPase [NKP, NKA], Na+-K+-2Cl+ [NKCC] and K+-Cl- [KCC] cotransporters, and channel-supported K+ loss) in human lens epithelial cells [LECs]. K+ loss and K+ uptake, using Rb+ as congener, were measured by atomic absorption/emission spectrophotometry with NKP and NKCC inhibitors, and Cl- replacement by NO3ˉ to determine KCC. 3H-Ouabain binding was performed on a pig renal NKA in the presence and absence of CET. Bcl-2 protein and NKA sequences were aligned and motifs identified and mapped using PROSITE in conjunction with BLAST alignments and analysis of conservation and structural similarity based on prediction of secondary and crystal structures. CET inhibited NKP and NKCC by >90% (IC50 values ~35 and ~15 μM, respectively) without significant KCC activity change, and stimulated K+ loss by ~35% at 10-30 μM. Neither ATP levels nor phosphorylation of the NKA α1 subunit changed. 3H-ouabain was displaced from pig renal NKA only at 100 fold higher CET concentrations than the ligand. Sequence alignments of NKA with BH1- and BH3-like motifs containing pro-survival Bcl-2 and BclXl proteins showed more than one BH1-like motif within NKA for interaction with CET or with BH3 motifs. One NKA BH1-like motif (ARAAEILARDGPN) was also found in all P-type ATPases. Also, NKA possessed a second motif similar to that near the BH3 region of Bcl-2. Findings support the hypothesis that CET inhibits NKP by binding to BH1-like motifs and disrupting the α1 subunit catalytic activity through conformational changes. By interacting with Bcl-2 proteins through their complementary BH1- or BH3-like-motifs, NKP proteins may be sensors of normal and pathological cell functions, becoming important yet unrecognized signal transducers in the initial phases of apoptosis. CET

  18. Canonical Bcl-2 Motifs of the Na+/K+ Pump Revealed by the BH3 Mimetic Chelerythrine: Early Signal Transducers of Apoptosis?

    Directory of Open Access Journals (Sweden)

    Peter K. Lauf

    2013-02-01

    Full Text Available Background/Aims: Chelerythrine [CET], a protein kinase C [PKC] inhibitor, is a prop-apoptotic BH3-mimetic binding to BH1-like motifs of Bcl-2 proteins. CET action was examined on PKC phosphorylation-dependent membrane transporters (Na+/K+ pump/ATPase [NKP, NKA], Na+-K+-2Cl+ [NKCC] and K+-Cl- [KCC] cotransporters, and channel-supported K+ loss in human lens epithelial cells [LECs]. Methods: K+ loss and K+ uptake, using Rb+ as congener, were measured by atomic absorption/emission spectrophotometry with NKP and NKCC inhibitors, and Cl- replacement by NO3ˉ to determine KCC. 3H-Ouabain binding was performed on a pig renal NKA in the presence and absence of CET. Bcl-2 protein and NKA sequences were aligned and motifs identified and mapped using PROSITE in conjunction with BLAST alignments and analysis of conservation and structural similarity based on prediction of secondary and crystal structures. Results: CET inhibited NKP and NKCC by >90% (IC50 values ∼35 and ∼15 µM, respectively without significant KCC activity change, and stimulated K+ loss by ∼35% at 10-30 µM. Neither ATP levels nor phosphorylation of the NKA α1 subunit changed. 3H-ouabain was displaced from pig renal NKA only at 100 fold higher CET concentrations than the ligand. Sequence alignments of NKA with BH1- and BH3-like motifs containing pro-survival Bcl-2 and BclXl proteins showed more than one BH1-like motif within NKA for interaction with CET or with BH3 motifs. One NKA BH1-like motif (ARAAEILARDGPN was also found in all P-type ATPases. Also, NKA possessed a second motif similar to that near the BH3 region of Bcl-2. Conclusion: Findings support the hypothesis that CET inhibits NKP by binding to BH1-like motifs and disrupting the α1 subunit catalytic activity through conformational changes. By interacting with Bcl-2 proteins through their complementary BH1- or BH3-like-motifs, NKP proteins may be sensors of normal and pathological cell functions, becoming important yet

  19. Electroporation increases antitumoral efficacy of the bcl-2 antisense G3139 and chemotherapy in a human melanoma xenograft

    Directory of Open Access Journals (Sweden)

    Baldi Alfonso

    2011-07-01

    Full Text Available Abstract Background Nucleic acids designed to modulate the expression of target proteins remain a promising therapeutic strategy in several diseases, including cancer. However, clinical success is limited by the lack of efficient intracellular delivery. In this study we evaluated whether electroporation could increase the delivery of antisense oligodeoxynucleotides against bcl-2 (G3139 as well as the efficacy of combination chemotherapy in human melanoma xenografts. Methods Melanoma-bearing nude mice were treated i.v. with G3139 and/or cisplatin (DDP followed by the application of trains of electric pulses to tumors. Western blot, immunohistochemistry and real-time PCR were performed to analyze protein and mRNA expression. The effect of electroporation on muscles was determined by histology, while tumor apoptosis and the proliferation index were analyzed by immunohistochemistry. Antisense oligodeoxynucleotides tumor accumulation was measured by FACS and confocal microscopy. Results The G3139/Electroporation combined therapy produced a significant inhibition of tumor growth (TWI, more than 50% accompanied by a marked tumor re-growth delay (TRD, about 20 days. The efficacy of this treatment was due to the higher G3139 uptake in tumor cells which led to a marked down-regulation of bcl-2 protein expression. Moreover, the G3139/EP combination treatment resulted in an enhanced apoptotic index and a decreased proliferation rate of tumors. Finally, an increased tumor response was observed after treatment with the triple combination G3139/DDP/EP, showing a TWI of about 75% and TRD of 30 days. Conclusions These results demonstrate that electroporation is an effective strategy to improve the delivery of antisense oligodeoxynucleotides within tumor cells in vivo and it may be instrumental in optimizing the response of melanoma to chemotherapy. The high response rate observed in this study suggest to apply this strategy for the treatment of melanoma patients.

  20. Bax/Bcl-2 expression ratio in prediction of response to breast cancer radiotherapy

    Directory of Open Access Journals (Sweden)

    Hosein Azimian

    2018-03-01

    Full Text Available Objective(s: Radiotherapy is one of the most effective modalities of cancer therapy, but clinical responses of individual patients varies considerably. To enhance treatment efficiency it is essential to implement an individual-based treatment. The aim of present study was to identify the mechanism of intrinsic apoptosis pathway on radiosensitivity and normal tissue complications caused by the radiotherapy. Materials and Methods: Peripheral blood mononuclear cells from ten breast cancer patients were exposed to 6MV X-rays to deliver 1 and 2 Gy. Expression levels of Bax, Bcl-2, and Bax/Bcl-2 ratio were examined by relative quantitative RT-PCR. All the patients received similar tangential irradiation of the whole breast and conventional fractionation. Skin dosimetry was done by GAFChromic EBT-3 film and clinical radiosensitivity was determined using the acute reactions to radiotherapy of the skin according to Radiation Therapy Oncology Group score. All statistical analyses were performed using GraphPad Prism, version 7.01. Results: In the in-vitro experiment, Bax and Bax/Bcl-2 ratios were significantly increased with 1 and 2 Gy doses (PP0.05 for all patients. Conclusion: Significant correlation between Bax/Bcl-2 ratio determined before radiation therapy and clinical response in the patients, can be used as a biomarker to identify radiosensitive individuals. However, further studies are required to validate radiation-induced apoptotic biomarkers.

  1. Expression of Bcl-2, Melan A and HMB-45 in Dysplastic Nevi.

    Science.gov (United States)

    Patrascu, Oana Maria; Costache, Mariana; Dumitru, Adrian Vasile; Mehotin, Corina Nicoleta; Sajin, Maria; Lazaroiu, Anca Mihaela

    2016-03-01

    From the first recognition of dysplastic nevi as a pathology per se, many debates have been raised and many histological and immunohistological studies have been conducted in order to establish the true significance of these lesions. Therefore, the aim of this study was to establish if there is a correlation between HMB-45, Melan A and Bcl-2 expression and the grade of dysplasia, as well as between the marker's staining patterns. Ten dysplastic nevi from six female patients were selected and their histological features (size, dysplasia), as well as the immunohistological staining patterns, were studied (HMB-45, Melan A, Bcl-2). The Pearson correlation coefficient and regression was calculated with Windows Excel Data Analysis. We demonstrated that there was a notable correlation between the dysplasia and the size of the lesions (r(8)= 0.62 with p-value= 0.052), and also between Melan A and Bcl-2 (a r(6)= 0.73, p0.05). We can affirm, at least in our cases, there is a correlation between the grade of dysplasia and the size of the lesion, and also, that there is a correlation between Melan A and Bcl-2 staining, explained by MITF gene. These results were only partial concordant with those in other studies, therefore a larger number of cases is recommended to be further analyzed in order to clearly draw a conclusion.

  2. MiR-34a-3p alters proliferation and apoptosis of meningioma cells in vitro and is directly targeting SMAD4, FRAT1 and BCL2

    Science.gov (United States)

    Werner, Tamara V.; Hart, Martin; Nickels, Ruth; Kim, Yoo-Jin; Menger, Michael D.; Bohle, Rainer M.; Keller, Andreas; Ludwig, Nicole; Meese, Eckart

    2017-01-01

    Micro (mi)RNAs are short, noncoding RNAs and deregulation of miRNAs and their targets are implicated in tumor generation and progression in many cancers. Meningiomas are mostly benign, slow growing tumors of the central nervous system with a small percentage showing a malignant phenotype. Following in silico prediction of potential targets of miR-34a-3p, SMAD4, FRAT1, and BCL2 have been confirmed as targets by dual luciferase assays with co-expression of miR-34a-3p and reporter gene constructs containing the respective 3'UTRs. Disruption of the miR-34a-3p binding sites in the 3'UTRs resulted in loss of responsiveness to miR-34a-3p overexpression. In meningioma cells, overexpression of miR-34a-3p resulted in decreased protein levels of SMAD4, FRAT1 and BCL2, while inhibition of miR-34a-3p led to increased levels of these proteins as confirmed by Western blotting. Furthermore, deregulation of miR-34a-3p altered cell proliferation and apoptosis of meningioma cells in vitro. We show that SMAD4, FRAT1 and BCL2 are direct targets of miR-34a-3p and that deregulation of miR-34a-3p alters proliferation and apoptosis of meningioma cells in vitro. As part of their respective signaling pathways, which are known to play a role in meningioma genesis and progression, deregulation of SMAD4, FRAT1 and BCL2 might contribute to the aberrant activation of these signaling pathways leading to increased proliferation and inhibition of apoptosis in meningiomas. PMID:28340489

  3. Apoptosis and the BCL-2 gene family - patterns of expression and prognostic value in STAGE I and II follicular center lymphoma

    International Nuclear Information System (INIS)

    Logsdon, Mark D.; Meyn, Raymond E.; Besa, Pelayo C.; Pugh, William C.; Stephens, L. Clifton; Peters, Lester J.; Milas, Luka; Cox, James D.; Cabanillas, Fernando; Brisbay, Shawn; Andersen, Margret; McDonnell, Timothy J.

    1999-01-01

    Purpose: The prognostic significance of spontaneous levels of apoptosis and Bcl-2, Bax, and Bcl-x protein expression in follicular center lymphoma (FCL) is unknown. The objectives of this retrospective study were (1) to investigate the relationship between pretreatment apoptosis levels and long-term treatment outcome in patients with Stage I and II FCL; (2) to define the incidence and patterns of Bax and Bcl-x protein expression in human FC; and (3) to determine the relationship of Bcl-2, Bax, and Bcl-x expression with spontaneous apoptosis levels and clinical outcome in localized FCL. Methods and Materials: Between 1974 and 1988, 144 patients with Stage I or II FCL were treated. Hematoxylin and eosin (H and E) stained tissue sections of pretreatment specimens were retrieved for 96 patients. Treatment consisted of regional radiation therapy (XRT) for 25 patients, combined modality therapy (CMT) consisting of combination chemotherapy and XRT for 57 patients, and other treatments for 14 patients. Median follow-up for living patients was nearly 12 years. The apoptotic index (AI) was calculated by dividing the number of apoptotic cells by the total number of cells counted and multiplying by 100. Expression of Bcl-2, Bax, and Bcl-x proteins was assessed using immunohistochemistry. Results: The mean and median AI values for the entire group were 0.53 and 0.4, respectively (range: 0-5.2). The AI strongly correlated with cytologic grade, with mean AI values of 0.25 for grade 1, 0.56 for grade 2, and 0.84 for grade 3 (p < 0.0005; Kendall correlation). A positive correlation was present between grouped AI and grouped mitotic index (MI) (p = 0.014). For patients treated with CMT, an AI < 0.4 correlated with improved freedom from relapse (FFR) (p = 0.0145) and overall survival (OS) (p = 0.0081). An AI < 0.4 did not correlate with clinical outcome for the entire cohort or for patients receiving XRT only. Staining of tumor follicles for the Bcl-2 protein was positive, variable

  4. Increased expression of Bcl-2 during mucous cell metaplasia induced by endotoxin and ozone

    Energy Technology Data Exchange (ETDEWEB)

    Tesfaigzi, J.; Ray, L.M.; Hotchkiss, J.A. [Michigan State Univ., East Lansing, MI (United States)] [and others

    1995-12-01

    Apoptosis or programmed cell death is accompanied by characteristic morphological changes that distinguish apoptosis from other forms of cell death. These changes include DNA fragmentation, chromatin condensation, cell shrinkage, cell surface pseudopodia, and finally the cellular collapse into membrane-enclosed apoptotic bodies which are rapidly engulfed by macrophages or neighboring cells. Although the morphological features of apoptotic cells are well studied, the biochemical events that control apoptosis are not understood. Programmed cell death is triggered by a variety of pathways that are initiated by different stimuli including noxious agents, DNA damage, the activation of TNF receptors, or the withdrawl of growth factors. The central process of programmed cell death involves a cascade of biochemical events that begins with the initiation of a family of cysteine proteases, including the interleukin-1-{Beta}-converting enzyme, CPP-32, and Apopain. The ratio of Bax, a death-inducer gene, to Bcl-2, an apoptosis suppressor gene, determines whether or not the main apoptotic pathyway is blocked. Apoptosis is suppressed if the ratio of Bcl-2/Bax is > 1, and cells undergo apoptosis if the ratio is < 1. The overexpression of Bcl-2 has been shown to block the apoptotic program triggered by a variety of agents. Therefore, Bcl-2 must be involved in blocking the central pathway of the cell death program. In conclusion, this study showed that high levels of Bcl-2 were detected in some mucous cells at specific time points during mucous cell metaplasia, and this expression was reduced at later time points or was absent after remodeling of this epithelium.

  5. PPAR-γ Silencing Inhibits the Apoptosis of A549 Cells by Upregulating Bcl-2

    Directory of Open Access Journals (Sweden)

    Jingyu YANG

    2013-03-01

    Full Text Available Background and objective Drug resistance is the one of primary causes of death in patients with lung cancer, PPAR-γ could induce the apoptosis and reverse drug resistance. The aim of this study is to investigate the expression of PPAR-γ on cisplatin sensitivity and apoptosis response of human lung cancer cell line A549. Methods Reconstruction of PPAR-γ silencing A549 cells (A549/PPAR-γ(- by siRNA. MTT assay was employed to determine the effect of cisplatin on the proliferation of A549/PPAR-γ(-, flow cytometry to determine the effect of cisplatin on the cell apoptosis, Western blot to determine the change of phosphorylation of Akt, caspase-3 and expression of bcl-2/bax. Finally, RT-PCR was employed to determine the transcriptional level of bcl-2. Results Two PPAR-γ silencing A549 cell clones were established successfully, and the expression of PPAR-γ was downregulated significantly as confirmed by RT-PCR and Western blot. After PPAR-γ silencing, the resistance of these two A549 clones to cisplatin was increased by 1.29-fold and 1.60-fold respectively. Flow cytometry showed that the apoptosis rate was decreased, and Western Blot showed that the phosphorylation of Akt and expression of bcl-2/bax were upregulated, caspase-3 was downregulated. Finally, RT-PCR showed that the transcriptional level of bcl-2 was upregulated as well. Conclusion Downregulation of PPAR-γ in A549 cells led to increase of cisplatin resistance. One of the mechanisms was upregulatin of phosphorylation of Akt and expression of bcl-2, which inhibited the apoptosis of cells. The downregulation of PPAR-γ is a possible mechanism that leads to the clinical drug resistance of cancer.

  6. Effect of bcl-2 overexpression in mice on ovotoxicity caused by 4-vinylcyclohexene

    International Nuclear Information System (INIS)

    Flaws, Jodi A.; Marion, Samuel L.; Miller, Kimberly P.; Christian, Patricia J.; Babus, Janice K.; Hoyer, Patricia B.

    2006-01-01

    The occupational chemical 4-vinylcyclohexene (VCH) destroys small preantral ovarian follicles in mice following repeated daily dosing. The cell survival gene bcl-2 is thought to protect against follicular death during embryogenesis because primordial follicle numbers in newborn bcl-2 overexpressing (OE) mice are greater than in wild-type (WT) controls. Thus, this study was designed to determine if overexpression of bcl-2 protects against VCH-induced follicle loss during embryonic development. Pregnant bcl-2 OE or WT mice were dosed (p.o.) daily with VCH (500 mg/kg) or sesame oil (vehicle control) on days 8-18 of pregnancy. Ovaries were collected from moms and female pups on pup postnatal day (PND) 8. Nonpregnant OE and WT females were also treated with VCH (500 mg/kg p.o.) or vehicle and evaluated in the same manner. As previously reported, ovaries from PND8 OE female pups contained 50% more primordial follicles than WT pups (P < 0.05). Unlike WT pups, relative to vehicle controls, in utero exposure to VCH resulted in a reduction in primordial (25% of control), primary (38% of control), and secondary (33% of control) follicles in ovaries of OE pups (P < 0.05). VCH had no significant effect on follicle numbers in OE or WT moms. Conversely, in nonpregnant adults, VCH did not affect WT mice but caused loss of primordial (55% of control), primary (51% of control), and secondary (69% of control) follicles in OE mice (P < 0.05). These results demonstrate that bcl-2 overexpression does not protect against, but instead increases susceptibility to VCH-induced follicle loss in transplacentally exposed or in nonpregnant mice

  7. Effects of aspartame on hsp70, bcl-2 and bax expression in immune organs of Wistar albino rats

    Science.gov (United States)

    Choudhary, Arbind Kumar; Devi, Rathinasamy Sheela

    2016-01-01

    Abstract Aspartame, a “first generation sweetener”, is widely used in a variety of foods, beverages, and medicine. The FDA has determined the acceptable daily intake (ADI) value of aspartame to be 50 mg/kg·day, while the JECFA (Joint FAO/WHO Expert Committee on Food Additives) has set this value at 40 mg/kg of body weight/day. Safety issues have been raised about aspartame due to its metabolites, specifically toxicity from methanol and/or its systemic metabolites formaldehyde and formic acid. The immune system is now recognized as a target organ for many xenobiotics, such as drugs and chemicals, which are able to trigger unwanted apoptosis or to alter the regulation of apoptosis. Our previous studies has shown that oral administration of aspartame [40 mg/(kg·day)] or its metabolites for 90 days increased oxidative stress in immune organs of Wistar albino rats. In this present study, we aimed to clarify whether aspartame consumption over a longer period (90-days) has any effect on the expression of hsp70, bcl-2 and bax at both mRNA transcript and protein expression levels in immune organs. We observed that oral administration of aspartame for 90 days did not cause any apparent DNA fragmentation in immune organs of aspartame treated animals; however, there was a significant increase in hsp70 expression, apart from significant alteration in bcl-2 and bax at both mRNA transcript and protein expression level in the immune organs of aspartame treated animals compared to controls. Hence, the results indicated that hsp70 levels increased in response to oxidative injury induced by aspartame metabolites; however, these metabolites did not induce apoptosis in the immune organs. Furthermore, detailed analyses are needed to elucidate the precise molecular mechanisms involved in these changes. PMID:27845306

  8. Drosophila larvae lacking the bcl-2 gene, buffy, are sensitive to nutrient stress, maintain increased basal target of rapamycin (Tor signaling and exhibit characteristics of altered basal energy metabolism

    Directory of Open Access Journals (Sweden)

    Monserrate Jessica P

    2012-07-01

    Full Text Available Abstract Background B cell lymphoma 2 (Bcl-2 proteins are the central regulators of apoptosis. The two bcl-2 genes in Drosophila modulate the response to stress-induced cell death, but not developmental cell death. Because null mutants are viable, Drosophila provides an optimum model system to investigate alternate functions of Bcl-2 proteins. In this report, we explore the role of one bcl-2 gene in nutrient stress responses. Results We report that starvation of Drosophila larvae lacking the bcl-2 gene, buffy, decreases survival rate by more than twofold relative to wild-type larvae. The buffy null mutant reacted to starvation with the expected responses such as inhibition of target of rapamycin (Tor signaling, autophagy initiation and mobilization of stored lipids. However, the autophagic response to starvation initiated faster in larvae lacking buffy and was inhibited by ectopic buffy. We demonstrate that unusually high basal Tor signaling, indicated by more phosphorylated S6K, was detected in the buffy mutant and that removal of a genomic copy of S6K, but not inactivation of Tor by rapamycin, reverted the precocious autophagy phenotype. Instead, Tor inactivation also required loss of a positive nutrient signal to trigger autophagy and loss of both was sufficient to activate autophagy in the buffy mutant even in the presence of enforced phosphoinositide 3-kinase (PI3K signaling. Prior to starvation, the fed buffy mutant stored less lipid and glycogen, had high lactate levels and maintained a reduced pool of cellular ATP. These observations, together with the inability of buffy mutant larvae to adapt to nutrient restriction, indicate altered energy metabolism in the absence of buffy. Conclusions All animals in their natural habitats are faced with periods of reduced nutrient availability. This study demonstrates that buffy is required for adaptation to both starvation and nutrient restriction. Thus, Buffy is a Bcl-2 protein that plays an

  9. Bcl-2 over-expression fails to prevent age-related loss of calretinin positive neurons in the mouse dentate gyrus

    Directory of Open Access Journals (Sweden)

    Han Mingbo

    2006-08-01

    Full Text Available Abstract Background Cognitive performance declines with increasing age. Possible cellular mechanisms underlying this age-related functional decline remain incompletely understood. Early studies attributed this functional decline to age-related neuronal loss. Subsequent studies using unbiased stereological techniques found little or no neuronal loss during aging. However, studies using specific cellular markers found age-related loss of specific neuronal types. To test whether there is age-related loss of specific neuronal populations in the hippocampus, and subsequently, whether over-expression of the B-cell lymphoma protein-2 (Bcl-2 in these neurons could delay possible age-related neuronal loss, we examined calretinin (CR positive neurons in the mouse dentate gyrus during aging. Result In normal mice, there was an age-related loss of CR positive cells in the dentate gyrus. At the same region, there was no significant decrease of total numbers of neurons, which suggested that age-related loss of CR positive cells was due to the decrease of CR expression in these cells instead of cell death. In the transgenic mouse line over-expressing Bcl-2 in neurons, there was an age-related loss of CR positive cells. Interestingly, there was also an age-related neuronal loss in this transgenic mouse line. Conclusion These data suggest an age-related loss of CR positive neurons but not total neuronal loss in normal mice and this age-related neuronal change is not prevented by Bcl-2 over-expression.

  10. IAP antagonists Birinapant and AT-406 efficiently synergise with either TRAIL, BRAF, or BCL-2 inhibitors to sensitise BRAFV600E colorectal tumour cells to apoptosis.

    Science.gov (United States)

    Perimenis, Philippos; Galaris, Apostolos; Voulgari, Alexandra; Prassa, Margarita; Pintzas, Alexander

    2016-08-12

    High expression levels of Inhibitors of Apoptosis Proteins (IAPs) have been correlated with poor cancer prognosis and block the cell death pathway by interfering with caspase activation. SMAC-mimetics are small-molecule inhibitors of IAPs that mimic the endogenous SMAC and promote the induction of cell death by neutralizing IAPs. In this study, anti-tumour activity of new SMAC-mimetics Birinapant and AT-406 is evaluated against colorectal adenocarcinoma cells and IAP cross-talk with either oncogenic BRAF or BCL-2, or with the TRAIL are further exploited towards rational combined protocols. It is shown that pre-treatment of SMAC-mimetics followed by their combined treatment with BRAF inhibitors can decrease cell viability, migration and can very efficiently sensitize colorectal tumour cells to apoptosis. Moreover, co-treatment of TRAIL with SMAC-mimetics can efficiently sensitize resistant tumour cells to apoptosis synergistically, as shown by median effect analysis. Finally, Birinapant and AT-406 can synergise with BCL-2 inhibitor ABT-199 to reduce viability of adenocarcinoma cells with high BCL-2 expression. Proposed synergistic rational anticancer combined protocols of IAP antagonists Birinapant and AT-406 in 2D and 3D cultures can be later further exploited in vivo, from precision tumour biology to precision medical oncology.

  11. BCL-2, in combination with MVP and IGF-1R expression, improves prediction of clinical outcome in complete response cervical carcinoma patients treated by radiochemotherapy.

    Science.gov (United States)

    Henríquez-Hernández, Luis Alberto; Lloret, Marta; Pinar, Beatriz; Bordón, Elisa; Rey, Agustín; Lubrano, Amina; Lara, Pedro Carlos

    2011-09-01

    To investigate whether BCL-2 expression would improve MVP/IGF-1R prediction of clinical outcome in cervix carcinoma patients treated by radiochemotherapy, and suggest possible mechanisms behind this effect. Fifty consecutive patients, who achieved complete response to treatment, from a whole series of 60 cases suffering from non-metastatic localized cervical carcinoma, were prospectively included in this study from July 1999 to December 2003. Follow-up was closed in January 2011. All patients received pelvic radiation (45-64.80 Gy in 1.8-2 Gy fractions) with concomitant cisplatin at 40 mg/m2/week doses followed by brachytherapy. Oncoprotein expression was studied by immunohistochemistry in paraffin-embedded tumour tissue. No relation was found between BCL-2 and clinicopathological variables. High MVP/IGF-1R/BCL-2 tumour expression was strongly related to poor local and regional disease-free survival (PMVP, and IGF-1R overexpression were related to poorer clinical outcome in cervical cancer patients who achieved clinical complete response to radiochemotherapy. The NHEJ repair protein Ku70/80 expression could be involved in the regulation of these oncoproteins. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Cotton Leaf Curl Multan Betasatellite DNA as a Tool to Deliver and Express the Human B-Cell Lymphoma 2 (Bcl-2) Gene in Plants.

    Science.gov (United States)

    Kharazmi, Sara; Ataie Kachoie, Elham; Behjatnia, Seyed Ali Akbar

    2016-05-01

    The betasatellite DNA associated with Cotton leaf curl Multan virus (CLCuMB) contains a single complementary-sense ORF, βC1, which is a pathogenicity determinant. CLCuMB was able to replicate in plants in the presence of diverse helper geminiviruses, including Tomato leaf curl virus-Australia (TLCV-Au), Iranian isolate of Tomato yellow leaf curl virus (TYLCV-[Ab]), and Beet curly top virus (BCTV-Svr), and can be used as a plant gene delivery vector. To test the hypothesis that CLCuMB has the potential to act as an animal gene delivery vector, a specific insertion construct was produced by the introduction of a human B-cell lymphoma 2 (Bcl-2) cDNA into a mutant DNA of CLCuMB in which the βC1 was deleted (β∆C1). The recombinant βΔC1-Bcl-2 construct was successfully replicated in tomato and tobacco plants in the presence of TLCV-Au, BCTV-Svr and TYLCV-[Ab]. Real-time PCR and Western blot analyses of plants containing the replicative forms of recombinant βΔC1-Bcl-2 DNA showed that Bcl-2 gene was expressed in an acceptable level in these plants, indicating that β∆C1 can be used as a tool to deliver and express animal genes in plants. This CLCuMB-based system, having its own promoter activity, offers the possibility of production of animal recombinant proteins in plants.

  13. Inhibition of Rac1 ameliorates neuronal oxidative stress damage via reducing Bcl-2/Rac1 complex formation in mitochondria through PI3K/Akt/mTOR pathway.

    Science.gov (United States)

    Pan, Yundan; Wang, Na; Xia, Pingping; Wang, E; Guo, Qulian; Ye, Zhi

    2018-02-01

    Although the neuroprotective effects of Rac1 inhibition have been reported in various cerebral ischemic models, the molecular mechanisms of action have not yet been fully elucidated. In this study, we investigated whether the inhibition of Rac1 provided neuroprotection in a diabetic rat model of focal cerebral ischemia and hyperglycemia-exposed PC-12 cells. Intracerebroventricular administration of lentivirus expressing the Rac1 small hairpin RNA (shRNA) and specific Rac1 inhibitor NSC23766 not only decreased the infarct volumes and improved neurologic deficits with a correlated significant activation of mitochondrial DNA specific proteins, such as OGG1 and POLG, but also elevated Bcl-2 S70 phosphorylation in mitochondria. Furthermore, the levels of p-PI3K, p-Akt and p-mTOR increased, while 8-OHdG, ROS production and Bcl-2/Rac1 complex formation in mitochondria reduced in both Rac1-shRNA- and NSC23766-treated rats. Moreover, to confirm our in vivo observations, inhibition of Rac1 activity by NSC23766 suppressed the interactions between Bcl-2 and Rac1 in the mitochondria of PC-12 cells cultured in high glucose conditions and protected PC-12 cells from high glucose-induced neurotoxicity. More importantly, these beneficial effects of Rac1 inhibition were abolished by PI3K inhibitor LY294002. In contrast to NSC23766 treatment, LY294002 had little effect on the decrement of p-PTEN level. Taken together, these findings revealed novel neuroprotective roles of Rac1 inhibition against cerebral ischemic reperfusion injury in vivo and high glucose-induced neurotoxicity in PC-12 cells in vitro, by reducing Bcl-2/Rac1 complex formation in mitochondria through the activation of PI3K/Akt/mTOR survival pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Effect of hrHPV infection on anti-apoptotic gene and pro-apoptotic gene expression in cervical cancer tissue

    Directory of Open Access Journals (Sweden)

    Min-Er Tang

    2016-09-01

    Full Text Available Objective: To study the effect of hrHPV infection on anti-apoptotic gene and pro-apoptotic gene expression in cervical cancer tissue. Methods: A total of 56 patients with cervical cancer, 94 cases of patients with cervical intraepithelial neoplasia and 48 cases of patients with chronic cervicitis who were treated in our hospital from May 2013 to December 2015 were selected for study and included in malignant group, precancerous lesion group and benign group respectively. hrHPV infection as well as the expression of anti-apoptotic genes and proapoptotic genes in cervical tissue were detected. Results: hrHPV infection rate and viral load in cervical tissue of malignant group were significantly higher than those of precancerous lesion group and benign group; P27 and p16 levels in cervical tissue of malignant group were significantly lower than those of precancerous lesion group and benign group, and K-ras, c-myc, Prdx4 and TNFAIP8 levels were significantly higher than those of precancerous lesion group and benign group; the greater the HPV virus load, the lower the p27 and p16 levels and the higher the K-ras, c-myc, Prdx4 and TNFAIP8 levels in cervical tissue. Conclusions: hrHPV infection can result in tumor suppressor genes p27 and p16 expression deletion and increase the expression of proto-oncogene and apoptosis-inhibiting genes, and it is associated with the occurrence and development of cervical cancer.

  15. DNA rearrangement in human follicular lymphoma can involve the 5' or the 3' region of the bcl-2 gene

    International Nuclear Information System (INIS)

    Tsujimoto, Y.; Bashir, M.M.; Givol, I.; Cossman, J.; Jaffe, E.; Croce, C.M.

    1987-01-01

    In most human lymphomas, the chromosome translocation t(14;18) occurs within two breakpoint clustering regions on chromosome 18, the major one at the 3' untranslated region of the bcl-2 gene and the minor one at 3' of the gene. Analysis of a panel of follicular lymphoma DNAs using probes for the first exon of the bcl-2 gene indicates that DNA rearrangements may also occur 5' to the involved bcl-2 gene. In this case the IgH locus and the bcl-2 gene are found in an order suggesting that an inversion also occurred during the translocation process. The coding region of the bcl-2 gene, however, are left intact in all cases of follicular lymphoma studied to date

  16. Polydatin attenuates d-galactose-induced liver and brain damage through its anti-oxidative, anti-inflammatory and anti-apoptotic effects in mice.

    Science.gov (United States)

    Xu, Lie-Qiang; Xie, You-Liang; Gui, Shu-Hua; Zhang, Xie; Mo, Zhi-Zhun; Sun, Chao-Yue; Li, Cai-Lan; Luo, Dan-Dan; Zhang, Zhen-Biao; Su, Zi-Ren; Xie, Jian-Hui

    2016-11-09

    Accumulating evidence has shown that chronic injection of d-galactose (d-gal) can mimic natural aging, with accompanying liver and brain injury. Oxidative stress and apoptosis play a vital role in the aging process. In this study, the antioxidant ability of polydatin (PD) was investigated using four established in vitro systems. An in vivo study was also conducted to investigate the possible protective effect of PD on d-gal-induced liver and brain damage. The results showed that PD had remarkable in vitro free radical scavenging activity on 2,2-diphenyl-1-picryl-hydrazyl (DPPH˙), 2,2'-azino-bis(3-ethylbenzo-thiazoline-6-sulfonic acid) (ABTS + ˙) radical ions, and hydroxyl and superoxide anions. Results in vivo indicated that, in a group treated with d-gal plus PD, PD remarkably decreased the depression of body weight and organ indexes, reduced the levels of the serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST), and alleviated alterations in liver and brain histopathology. PD also significantly decreased the level of MDA and elevated SOD, GSH-Px, CAT activity and T-AOC levels in the liver and brain. In addition, the levels of inflammatory mediators, such as TNF-α, IL-1β and IL-6 in serum were markedly reduced after PD treatment. Western blotting results revealed that PD treatment noticeably attenuated the d-gal-induced elevation of Bcl-2/Bax ratio and caspase-3 protein expression in liver and brain. Overall, our findings indicate that PD treatment could effectively attenuate d-gal-induced liver and brain damage, and the mechanism might be associated with decreasing the oxidative stress, inflammation and apoptosis caused by d-gal. PD holds good potential for further development into a promising pharmaceutical candidate for the treatment of age-associated diseases.

  17. Hedgehog Signaling Regulates the Survival of Gastric Cancer Cells by Regulating the Expression of Bcl-2

    Science.gov (United States)

    Han, Myoung-Eun; Lee, Young-Suk; Baek, Sun-Yong; Kim, Bong-Seon; Kim, Jae-Bong; Oh, Sae-Ock

    2009-01-01

    Gastric cancer is the second most common cause of cancer deaths worldwide. The underlying molecular mechanisms of its carcinogenesis are relatively poorly characterized. Hedgehog (Hh) signaling, which is critical for development of various organs including the gastrointestinal tract, has been associated with gastric cancer. The present study was undertaken to reveal the underlying mechanism by which Hh signaling controls gastric cancer cell proliferation. Treatment of gastric cancer cells with cyclopamine, a specific inhibitor of Hh signaling pathway, reduced proliferation and induced apoptosis of gastric cancer cells. Cyclopamine treatment induced cytochrome c release from mitochondria and cleavage of caspase 9. Moreover, Bcl-2 expression was significantly reduced by cyclopamine treatment. These results suggest that Hh signaling regulates the survival of gastric cancer cells by regulating the expression of Bcl-2. PMID:19742123

  18. The role of BCL-2 and glutathione in an antioxidant pathway to prevent radiation-induced apoptosis

    International Nuclear Information System (INIS)

    Vlachaki, Maria T.; Meyn, Raymond E.

    1997-01-01

    Objective: The expression of the bcl-2 gene has been associated with resistance to radiation induced apoptosis. There is evidence that the bcl-2 protein acts in the antioxidant pathways to block the effects of reactive oxygen spieces that mediate apoptosis possibly by increasing the levels of intracellular glutathione. Our hypothesis is that pretreatment of radiation-sensitive cells, known to lack bcl-2 expression, with antioxidants will reduce radiation-induced apoptosis. For this purpose, the apoptotic response to radiation and the intracellular levels of glutathione were tested before and after pretreatment with antioxidants in two murine lymphoma cell lines, a radiation resistant-bcl-2 expressing (Ly-ar) line and a radiation sensitive (Ly-as) line. Methods and Materials: Ly-ar and Ly-as cells were irradiated at 0,1,2,3 and 4 hours before collection. The intracellular levels of reduced (GSH) and oxidized (GSSG) glutathione were determined by the use of the fluorescent dye ophthalaldehyde. Ly-as cells were pretreated with dihydrolipoic acid and lipoamide for 1 hour before irradiation. Apoptosis response was measured by the DNA fragmentation assay. The radiation dose was 2.5 Gy. Results: After irradiation, the apoptotic rate of Ly-ar and Ly-as cells is 11-19% and 66-87% respectively. Ly-ar cells have higher intracellular GSH and GSSG levels compared to Ly-as cells by 69.9% and 91.9% respectively and the GSH/GSSG ratio in Ly-ar and Ly-as cells is 17.09 and 15.09 respectively (a difference of 13.25%). GSH levels do not change during the first three hours after irradiation; however there is a 46% reduction at four hours after irradiation, a time at which the Ly-as cells have already fragmented their DNA. Pretreatment of cells with dihydrolipoic acid or lipoamide at concentrations of 4mM and 2mM respectively was toxic and resulted in cell death in the absence of irradiation. Conclusions: GSH and GSSG levels are elevated in radiation-resistant murine lymphoma cells

  19. Effect of electrical stimulation on neural regeneration via the p38-RhoA and ERK1/2-Bcl-2 pathways in spinal cord-injured rats.

    Science.gov (United States)

    Joo, Min Cheol; Jang, Chul Hwan; Park, Jong Tae; Choi, Seung Won; Ro, Seungil; Kim, Min Seob; Lee, Moon Young

    2018-02-01

    Although electrical stimulation is therapeutically applied for neural regeneration in patients, it remains unclear how electrical stimulation exerts its effects at the molecular level on spinal cord injury (SCI). To identify the signaling pathway involved in electrical stimulation improving the function of injured spinal cord, 21 female Sprague-Dawley rats were randomly assigned to three groups: control (no surgical intervention, n = 6), SCI (SCI only, n = 5), and electrical simulation (ES; SCI induction followed by ES treatment, n = 10). A complete spinal cord transection was performed at the 10 th thoracic level. Electrical stimulation of the injured spinal cord region was applied for 4 hours per day for 7 days. On days 2 and 7 post SCI, the Touch-Test Sensory Evaluators and the Basso-Beattie-Bresnahan locomotor scale were used to evaluate rat sensory and motor function. Somatosensory-evoked potentials of the tibial nerve of a hind paw of the rat were measured to evaluate the electrophysiological function of injured spinal cord. Western blot analysis was performed to measure p38-RhoA and ERK1/2-Bcl-2 pathways related protein levels in the injured spinal cord. Rat sensory and motor functions were similar between SCI and ES groups. Compared with the SCI group, in the ES group, the latencies of the somatosensory-evoked potential of the tibial nerve of rats were significantly shortened, the amplitudes were significantly increased, RhoA protein level was significantly decreased, protein gene product 9.5 expression, ERK1/2, p38, and Bcl-2 protein levels in the spinal cord were significantly increased. These data suggest that ES can promote the recovery of electrophysiological function of the injured spinal cord through regulating p38-RhoA and ERK1/2-Bcl-2 pathway-related protein levels in the injured spinal cord.

  20. Effect of electrical stimulation on neural regeneration via the p38-RhoA and ERK1/2-Bcl-2 pathways in spinal cord-injured rats

    Science.gov (United States)

    Joo, Min Cheol; Jang, Chul Hwan; Park, Jong Tae; Choi, Seung Won; Ro, Seungil; Kim, Min Seob; Lee, Moon Young

    2018-01-01

    Although electrical stimulation is therapeutically applied for neural regeneration in patients, it remains unclear how electrical stimulation exerts its effects at the molecular level on spinal cord injury (SCI). To identify the signaling pathway involved in electrical stimulation improving the function of injured spinal cord, 21 female Sprague-Dawley rats were randomly assigned to three groups: control (no surgical intervention, n = 6), SCI (SCI only, n = 5), and electrical simulation (ES; SCI induction followed by ES treatment, n = 10). A complete spinal cord transection was performed at the 10th thoracic level. Electrical stimulation of the injured spinal cord region was applied for 4 hours per day for 7 days. On days 2 and 7 post SCI, the Touch-Test Sensory Evaluators and the Basso-Beattie-Bresnahan locomotor scale were used to evaluate rat sensory and motor function. Somatosensory-evoked potentials of the tibial nerve of a hind paw of the rat were measured to evaluate the electrophysiological function of injured spinal cord. Western blot analysis was performed to measure p38-RhoA and ERK1/2-Bcl-2 pathways related protein levels in the injured spinal cord. Rat sensory and motor functions were similar between SCI and ES groups. Compared with the SCI group, in the ES group, the latencies of the somatosensory-evoked potential of the tibial nerve of rats were significantly shortened, the amplitudes were significantly increased, RhoA protein level was significantly decreased, protein gene product 9.5 expression, ERK1/2, p38, and Bcl-2 protein levels in the spinal cord were significantly increased. These data suggest that ES can promote the recovery of electrophysiological function of the injured spinal cord through regulating p38-RhoA and ERK1/2-Bcl-2 pathway-related protein levels in the injured spinal cord. PMID:29557386

  1. BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells

    Science.gov (United States)

    Lagadinou, Eleni D.; Sach, Alexander; Callahan, Kevin; Rossi, Randall M.; Neering, Sarah J.; Minhajuddin, Mohammad; Ashton, John M.; Pei, Shanshan; Grose, Valerie; O’Dwyer, Kristen M.; Liesveld, Jane L.; Brookes, Paul S.; Becker, Michael W.; Jordan, Craig T.

    2013-01-01

    Summary Most forms of chemotherapy employ mechanisms involving induction of oxidative stress, a strategy that can be effective due to the elevated oxidative state commonly observed in cancer cells. However, recent studies have shown that relative redox levels in primary tumors can be heterogeneous, suggesting that regimens dependent on differential oxidative state may not be uniformly effective. To investigate this issue in hematological malignancies, we evaluated mechanisms controlling oxidative state in primary specimens derived from acute myelogenous leukemia (AML) patients. Our studies demonstrate three striking findings. First, the majority of functionally-defined leukemia stem cells (LSCs) are characterized by relatively low levels of reactive oxygen species (termed “ROS-low”). Second, ROS-low LSCs aberrantly over-express BCL-2. Third, BCL-2 inhibition reduced oxidative phosphorylation and selectively eradicated quiescent LSCs. Based on these findings, we propose a model wherein the unique physiology of ROS-low LSCs provides an opportunity for selective targeting via disruption of BCL-2-dependent oxidative phosphorylation. PMID:23333149

  2. Methamphetamine induces apoptosis in immortalized neural cells: protection by the proto-oncogene, bcl-2.

    Science.gov (United States)

    Cadet, J L; Ordonez, S V; Ordonez, J V

    1997-02-01

    Methamphetamine (METH) is an amphetamine analog that produces degeneration of the dopaminergic system in mammals. The neurotoxic effects of the drug are thought to be mediated by oxygen-based free radicals. In the present report, we have used immortalized neural cells obtained from rat mesencephalon in order to further assess the role of oxidative stress in METH-induced neurotoxicity. We thus tested if the anti-death proto-oncogene, bcl-2 could protect against METH-induced cytotoxicity. METH caused dose-dependent loss of cellular viability in control cells while bcl-2-expressing cells were protected against these deleterious effects. Using flow cytometry, immunofluorescent staining, and DNA electrophoresis, we also show that METH exposure can cause DNA strand breaks, chromatin condensation, nuclear fragmentation, and DNA laddering. All these changes were prevented by bcl-2 expression. These observations provide further support for the involvement of oxidative stress in the toxic effects of amphetamine analogs. They also document that METH-induced cytotoxicity is secondary to apoptosis. These findings may be of relevance to the cause(s) of Parkinson's disease which involves degeneration of the nigrostriatal dopaminergic pathway.

  3. The Role of the Multifunctional BAG3 Protein in Cellular Protein Quality Control and in Disease

    Directory of Open Access Journals (Sweden)

    Elisabeth Stürner

    2017-06-01

    Full Text Available In neurons, but also in all other cells the complex proteostasis network is monitored and tightly regulated by the cellular protein quality control (PQC system. Beyond folding of newly synthesized polypeptides and their refolding upon misfolding the PQC also manages the disposal of aberrant proteins either by the ubiquitin-proteasome machinery or by the autophagic-lysosomal system. Aggregated proteins are primarily degraded by a process termed selective macroautophagy (or aggrephagy. One such recently discovered selective macroautophagy pathway is mediated by the multifunctional HSP70 co-chaperone BAG3 (BCL-2-associated athanogene 3. Under acute stress and during cellular aging, BAG3 in concert with the molecular chaperones HSP70 and HSPB8 as well as the ubiquitin receptor p62/SQSTM1 specifically targets aggregation-prone proteins to autophagic degradation. Thereby, BAG3-mediated selective macroautophagy represents a pivotal adaptive safeguarding and emergency system of the PQC which is activated under pathophysiological conditions to ensure cellular proteostasis. Interestingly, BAG3-mediated selective macroautophagy is also involved in the clearance of aggregated proteins associated with age-related neurodegenerative disorders, like Alzheimer’s disease (tau-protein, Huntington’s disease (mutated huntingtin/polyQ proteins, and amyotrophic lateral sclerosis (mutated SOD1. In addition, based on its initial description BAG3 is an anti-apoptotic protein that plays a decisive role in other widespread diseases, including cancer and myopathies. Therefore, in the search for novel therapeutic intervention avenues in neurodegeneration, myopathies and cancer BAG3 is a promising candidate.

  4. Immunohistochemical study of integrin α₅β₁, fibronectin, and Bcl-2 in normal oral mucosa, inflammatory fibroepithelial hyperplasia, oral epithelial dysplasia, and oral squamous cell carcinoma.

    Science.gov (United States)

    Núñez, Manuel Antonio Gordón; de Matos, Felipe Rodrigues; Freitas, Roseana de Almeida; Galvão, Hébel Cavalcanti

    2013-07-01

    The objective of this study was to compare the immunoexpression of integrin α₅β₁, fibronectin, and the Bcl-2 protein in normal oral mucosa (NOM), inflammatory fibroepithelial hyperplasia (IFH), oral epithelial dysplasia (OED), and oral squamous cell carcinoma (OSCC). Eleven cases of NOM, 16 IFH, 20 OED, and 27 OSCC were selected for analysis of the immunoexpression of integrin α₅β₁, fibronectin, and bcl-2 protein. There was an association between the intensity and location of the integrin α₅β₁ expression, especially in the OSCC, that 48.1% of cases showed weak immunoreactivity and 40.7% in the suprabasal layer (P < 0.05). There was an association between the pattern and distribution of fibronectin expression in basement membrane, where 90% of NOM showed a pattern of linear continuous and 80% of OED exhibited focal distribution (P < 0.05). The fibronectin expression in connective tissue was predominantly intense with an association of staining pattern among the different specimens, where 37% of OSCC showed a reticular pattern (P < 0.05). There was an association of bcl-2 protein among the types of specimens, especially in IFH and OSCC, where 100% of the cases exhibited scores 1 of staining (P < 0.05). Within this context, the interaction of integrin α₅β₁ with its main ligand in the extracellular matrix, fibronectin, is suggested to influence the survival of tumor cells and to favor their proliferation by modulating apoptosis through the upregulation of antiapoptotic proteins or the suppression of apoptotic mediators.

  5. The immunoprofile of odontogenic keratocyst (keratocystic odontogenic tumor) that includes expression of PTCH, SMO, GLI-1 and bcl-2 is similar to ameloblastoma but different from odontogenic cysts.

    Science.gov (United States)

    Vered, M; Peleg, O; Taicher, S; Buchner, A

    2009-08-01

    The aggressive biological behavior of odontogenic keratocysts (OKCs), unlike that of other odontogenic cysts, has argued for its recent re-classification as a neoplasm, 'keratocystic odontogenic tumor'. Identification of mutations in the PTCH gene in some of the OKCs that were expected to produce truncated proteins, resulting in loss of control of the cell cycle, provided additional support for OKCs having a neoplastic nature. We investigated the immunohistochemical expression of the sonic hedgehog (SHH) signaling pathway-related proteins, PTCH, smoothened (SMO) and GLI-1, and of the SHH-induced bcl-2 oncoprotein in a series of primary OKC (pOKC), recurrent OKC (rOKC) and nevoid basal cell carcinoma syndrome-associated OKCs (NBCCS-OKCs), and compared them to solid ameloblastomas (SAMs), unicystic ameloblastomas (UAMs), 'orthokeratinized' OKCs (oOKCs), dentigerous cysts (DCs) and radicular cysts (RCs). All studied lesions expressed the SHH pathway-related proteins in a similar pattern. The expression of bcl-2 in OKCs (pOKCs and NBCCS-OKCs) and SAMs was significantly higher than in oOKCs, DCs and RCs (P < 0.001). The present results of the immunoprofile of OKCs (that includes the expression of the SHH-related proteins and the SHH-induced bcl-2 oncoprotein) further support the notion of OKC having a neoplastic nature. As OKCs vary considerably in their biologic behavior, it is suggested that the quality and quantity of interactions between the SHH and other cell cycle regulatory pathways are likely to work synergistically to define the individual phenotype and corresponding biological behavior of this lesion.

  6. PI3K and Bcl-2 inhibition primes glioblastoma cells to apoptosis through downregulation of Mcl-1 and Phospho-BAD.

    Science.gov (United States)

    Pareja, Fresia; Macleod, David; Shu, Chang; Crary, John F; Canoll, Peter D; Ross, Alonzo H; Siegelin, Markus D

    2014-07-01

    Glioblastoma multiforme (GBM) is a highly malignant human brain neoplasm with limited therapeutic options. GBMs display a deregulated apoptotic pathway with high levels of the antiapoptotic Bcl-2 family of proteins and overt activity of the phosphatidylinositol 3-kinase (PI3K) signaling pathway. Therefore, combined interference of the PI3K pathway and the Bcl-2 family of proteins is a reasonable therapeutic strategy. ABT-263 (Navitoclax), an orally available small-molecule Bcl-2 inhibitor, and GDC-0941, a PI3K inhibitor, were used to treat established glioblastoma and glioblastoma neurosphere cells, alone or in combination. Although GDC-0941 alone had a modest effect on cell viability, treatment with ABT-263 displayed a marked reduction of cell viability and induction of apoptotic cell death. Moreover, combinatorial therapy using ABT-263 and GDC-0941 showed an enhanced effect, with a further decrease in cellular viability. Furthermore, combination treatment abrogated the ability of stem cell-like glioma cells to form neurospheres. ABT-263 and GDC-0941, in combination, resulted in a consistent and significant increase of Annexin V positive cells and loss of mitochondrial membrane potential compared with either monotherapy. The combination treatment led to enhanced cleavage of both initiator and effector caspases. Mechanistically, GDC-0941 depleted pAKT (Serine 473) levels and suppressed Mcl-1 protein levels, lowering the threshold for the cytotoxic actions of ABT-263. GDC-0941 decreased Mcl-1 in a posttranslational manner and significantly decreased the half-life of Mcl-1 protein. Ectopic expression of human Mcl-1 mitigated apoptotic cell death induced by the drug combination. Furthermore, GDC-0941 modulated the phosphorylation status of BAD, thereby further enhancing ABT-263-mediated cell death. Combination therapy with ABT-263 and GDC-0941 has novel therapeutic potential by specifically targeting aberrantly active, deregulated pathways in GBM, overcoming

  7. Effect of acetone extract of Rumex japonicas Houtt on hydrogen ...

    African Journals Online (AJOL)

    is the most important executor in the apoptotic process [25]. Furthermore, Bax is a pro-apoptotic protein in the mitochondria-mediated apoptosis, whereas Bcl-2 is an anti-apoptotic protein [24]. In the present study, AER down-regulated the caspase-3 and Bax, but up-regulated Bcl-2, indicating that AER suppresses apoptosis ...

  8. The catechin flavonoid reduces proliferation and induces apoptosis of murine lymphoma cells LB02 through modulation of antiapoptotic proteins

    Directory of Open Access Journals (Sweden)

    Daniela Laura Papademetrio

    2013-06-01

    Full Text Available Flavonoids are products of secondary metabolism of plants. They are present in herbs and trees and also act as natural chemopreventives and anticancer agents. Ligaria cuneifolia (Ruiz & Pav. Tiegh., Loranthaceae, is a hemiparasite species that belongs to Argentine flora. Phytochemical studies have disclosed the presence of quercetin, catechin-4β-ol and pro-anthocyanidine as polyphenolic compounds in the active extracts. We previously demonstrated that ethyl acetate extract was capable of reducing cell proliferation and inducing apoptotic death of lymphoid tumor cells. The aim of the current study is to determine whether or not catechin, isolated from L. cuneifolia extracts can induce leukemia cell death and to determine its effect on the cytoplasmatic proteins that modulate cell survival. Our results show that catechin can reduce proliferation of murine lymphoma cell line LB02. The effect is mediated by apoptosis at concentrations upper to 100 µg/mL. Cell death is related to the loss of mitochondrial membrane potential (ΔΨm and a down regulation of survivin and Bcl-2 together with the increase of pro-apoptotic protein Bax. In summary, the current study indicates that catechin present in the extract of L. cuneifolia is in part, responsible for the anti-proliferative activity of whole extracts by induction of ΔΨm disruption and modulation of the anti-apoptotic proteins over expressed in tumor cells. These results give new findings into the potential anticancer and chemopreventive activities of L. cuneifolia.

  9. The catechin flavonoid reduces proliferation and induces apoptosis of murine lymphoma cells LB02 through modulation of antiapoptotic proteins

    Directory of Open Access Journals (Sweden)

    Daniela Laura Papademetrio

    2013-03-01

    Full Text Available Flavonoids are products of secondary metabolism of plants. They are present in herbs and trees and also act as natural chemopreventives and anticancer agents. Ligaria cuneifolia (Ruiz & Pav. Tiegh., Loranthaceae, is a hemiparasite species that belongs to Argentine flora. Phytochemical studies have disclosed the presence of quercetin, catechin-4β-ol and pro-anthocyanidine as polyphenolic compounds in the active extracts. We previously demonstrated that ethyl acetate extract was capable of reducing cell proliferation and inducing apoptotic death of lymphoid tumor cells. The aim of the current study is to determine whether or not catechin, isolated from L. cuneifolia extracts can induce leukemia cell death and to determine its effect on the cytoplasmatic proteins that modulate cell survival. Our results show that catechin can reduce proliferation of murine lymphoma cell line LB02. The effect is mediated by apoptosis at concentrations upper to 100 µg/mL. Cell death is related to the loss of mitochondrial membrane potential (ΔΨm and a down regulation of survivin and Bcl-2 together with the increase of pro-apoptotic protein Bax. In summary, the current study indicates that catechin present in the extract of L. cuneifolia is in part, responsible for the anti-proliferative activity of whole extracts by induction of ΔΨm disruption and modulation of the anti-apoptotic proteins over expressed in tumor cells. These results give new findings into the potential anticancer and chemopreventive activities of L. cuneifolia.

  10. Anti-apoptotic effects of pan-caspase inhibitor (Z-VAD), SOD or catalase on antimycin A-induced HeLa cell death.

    Science.gov (United States)

    Han, Yong Hwan; Kim, Suhn Hee; Kim, Sung Zoo; Park, Woo Hyun

    2009-01-01

    Antimycin A (AMA) is an inhibitor of the electron transport chain in mitochondria. In this study, we investigated the anti-apoptotic effects of pan-caspase inhibitor (Z-VAD), superoxide dismutase (SOD) or catalase on AMA-induced HeLa cell death in relation to the cell cycle. Treatment with Z-VAD, SOD or catalase rescued some HeLa cells from AMA-induced apoptosis, but did not prevent the growth inhibition of HeLa cells by AMA. DNA flow cytometric analysis indicated that treatment with AMA significantly induced an S-phase arrest of the cell cycle at 72 h. Interestingly, Z-VAD, SOD and catalase intensified S-phase arrest in AMA-treated cells. In conclusion, treatment with Z-VAD, SOD or catalase decreased apoptotic levels in AMA-treated cells, which was associated with the enhancement of the S-phase arrest of the cell cycle in these cells.

  11. Novel roles of folic acid as redox regulator: Modulation of reactive oxygen species sinker protein expression and maintenance of mitochondrial redox homeostasis on hepatocellular carcinoma.

    Science.gov (United States)

    Lai, Kun-Goung; Chen, Chi-Fen; Ho, Chun-Te; Liu, Jun-Jen; Liu, Tsan-Zon; Chern, Chi-Liang

    2017-06-01

    We provide herein several lines of evidence to substantiate that folic acid (or folate) is a micronutrient capable of functioning as a novel redox regulator on hepatocellular carcinoma. First, we uncovered that folate deficiency could profoundly downregulate two prominent anti-apoptotic effectors including survivin and glucose-regulated protein-78. Silencing of either survivin or glucose-regulated protein-78 via small interfering RNA interfering technique established that both effectors could serve as reactive oxygen species sinker proteins. Second, folate deficiency-triggered oxidative-nitrosative stress could strongly induce endoplasmic reticulum stress that in turn could provoke cellular glutathione depletion through the modulation of the following two crucial events: (1) folate deficiency could strongly inhibit Bcl-2 expression leading to severe suppression of the mitochondrial glutathione pool and (2) folate deficiency could also profoundly inhibit two key enzymes that governing cellular glutathione redox regulation including γ-glutamylcysteinyl synthetase heavy chain, a catalytic enzyme for glutathione biosynthesis, and mitochondrial isocitrate dehydrogenase 2, an enzyme responsible for providing nicotinamide adenine dinucleotide phosphate necessary for regenerating oxidized glutathione disulfide back to glutathione via mitochondrial glutathione reductase. Collectively, we add to the literature new data to strengthen the notion that folate is an essential micronutrient that confers a novel role to combat reactive oxygen species insults and thus serves as a redox regulator via upregulating reactive oxygen species sinker proteins and averting mitochondrial glutathione depletion through proper maintenance of redox homeostasis via positively regulating glutathione biosynthesis, glutathione transporting system, and mitochondrial glutathione recycling process.

  12. Kaurene diterpene induces apoptosis in U87 human malignant glioblastoma cells by suppression of anti-apoptotic signals and activation of cysteine proteases

    Energy Technology Data Exchange (ETDEWEB)

    Lizarte, F.S. Neto; Tirapelli, D.P.C. [Universidade de São Paulo, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, SP (Brazil); Ambrosio, S.R. [Universidade de Franca, Núcleo de Pesquisa em Ciências e Tecnologia, Franca, SP (Brazil); Tirapelli, C.R. [Universidade de São Paulo, Laboratório de Farmacologia, Departamento de Enfermagem Psiquiátrica e Ciências Humanas, Escola de Enfermagem de Ribeirão Preto, Ribeirão Preto, SP (Brazil); Oliveira, F.M. [Universidade de São Paulo, Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, SP (Brazil); Novais, P.C. [Universidade de São Paulo, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, SP (Brazil); Peria, F.M.; Oliveira, H.F. [Universidade de São Paulo, Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, SP (Brazil); Carlotti, C.G. Junior; Tirapelli, L.F. [Universidade de São Paulo, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, SP (Brazil)

    2013-01-11

    Gliomas are the most common and malignant primary brain tumors in humans. Studies have shown that classes of kaurene diterpene have anti-tumor activity related to their ability to induce apoptosis. We investigated the response of the human glioblastoma cell line U87 to treatment with ent-kaur-16-en-19-oic acid (kaurenoic acid, KA). We analyzed cell survival and the induction of apoptosis using flow cytometry and annexin V staining. Additionally, the expression of anti-apoptotic (c-FLIP and miR-21) and apoptotic (Fas, caspase-3 and caspase-8) genes was analyzed by relative quantification (real-time PCR) of mRNA levels in U87 cells that were either untreated or treated with KA (30, 50, or 70 µM) for 24, 48, and 72 h. U87 cells treated with KA demonstrated reduced viability, and an increase in annexin V- and annexin V/PI-positive cells was observed. The percentage of apoptotic cells was 9% for control cells, 26% for cells submitted to 48 h of treatment with 50 µM KA, and 31% for cells submitted to 48 h of treatment with 70 µM KA. Similarly, in U87 cells treated with KA for 48 h, we observed an increase in the expression of apoptotic genes (caspase-8, -3) and a decrease in the expression of anti-apoptotic genes (miR-21 and c-FLIP). KA possesses several interesting properties and induces apoptosis through a unique mechanism. Further experiments will be necessary to determine if KA may be used as a lead compound for the development of new chemotherapeutic drugs for the treatment of primary brain tumors.

  13. Kaurene diterpene induces apoptosis in U87 human malignant glioblastoma cells by suppression of anti-apoptotic signals and activation of cysteine proteases

    International Nuclear Information System (INIS)

    Lizarte, F.S. Neto; Tirapelli, D.P.C.; Ambrosio, S.R.; Tirapelli, C.R.; Oliveira, F.M.; Novais, P.C.; Peria, F.M.; Oliveira, H.F.; Carlotti, C.G. Junior; Tirapelli, L.F.

    2013-01-01

    Gliomas are the most common and malignant primary brain tumors in humans. Studies have shown that classes of kaurene diterpene have anti-tumor activity related to their ability to induce apoptosis. We investigated the response of the human glioblastoma cell line U87 to treatment with ent-kaur-16-en-19-oic acid (kaurenoic acid, KA). We analyzed cell survival and the induction of apoptosis using flow cytometry and annexin V staining. Additionally, the expression of anti-apoptotic (c-FLIP and miR-21) and apoptotic (Fas, caspase-3 and caspase-8) genes was analyzed by relative quantification (real-time PCR) of mRNA levels in U87 cells that were either untreated or treated with KA (30, 50, or 70 µM) for 24, 48, and 72 h. U87 cells treated with KA demonstrated reduced viability, and an increase in annexin V- and annexin V/PI-positive cells was observed. The percentage of apoptotic cells was 9% for control cells, 26% for cells submitted to 48 h of treatment with 50 µM KA, and 31% for cells submitted to 48 h of treatment with 70 µM KA. Similarly, in U87 cells treated with KA for 48 h, we observed an increase in the expression of apoptotic genes (caspase-8, -3) and a decrease in the expression of anti-apoptotic genes (miR-21 and c-FLIP). KA possesses several interesting properties and induces apoptosis through a unique mechanism. Further experiments will be necessary to determine if KA may be used as a lead compound for the development of new chemotherapeutic drugs for the treatment of primary brain tumors

  14. The small-molecule Bcl-2 inhibitor HA14-1 sensitizes cervical cancer cells, but not normal fibroblasts, to heavy-ion radiation

    International Nuclear Information System (INIS)

    Hamada, Nobuyuki; Kataoka, Keiko; Sora, Sakura; Hara, Takamitsu; Omura-Minamisawa, Motoko; Funayama, Tomoo; Sakashita, Tetsuya; Nakano, Takashi; Kobayashi, Yasuhiko

    2008-01-01

    This is the first study to demonstrate that the small-molecule Bcl-2 inhibitor HA14-1 renders human cervical cancer cells and their Bcl-2 overexpressing radioresistant counterparts, but not normal fibroblasts, more susceptible to heavy ions. Thus, Bcl-2 may be an attractive target for improving the efficacy of heavy-ion therapy

  15. Disturbance of Bcl-2, Bax, Caspase-3, Ki-67 and C-myc expression in acute and subchronic exposure to benzo(a)pyrene in cervix.

    Science.gov (United States)

    Gao, Meili; Li, Yongfei; Ji, Xiaoying; Xue, Xiaochang; Chen, Lan; Feng, Guodong; Zhang, Huqin; Wang, Huichun; Shah, Walayat; Hou, Zhanwu; Kong, Yu

    2016-03-01

    Epidemiological studies have demonstrated that cigarette smoking is an important cofactor or an independent risk factor for the development of cervical cancer. Benzo(a)pyrene (BaP) is one of the most potent tobacco smoke carcinogens in tobacco smoke. BaP induced DNA damage and over expression in p53 cervical tissue of mice as demonstrated in our previous study. Here we present the findings of exposure to BaP on the expression of Bcl-2, C-myc, Ki-67, Caspase-3 and Bax genes in mouse cervix. Acute intraperitoneal administration of BaP (12.5, 25, 50, 100mg/kg body weight) to ICR female mice induced a significant increase in Bcl-2, C-myc, Ki-67 mRNA and protein level till 72h except in Bcl-2 at 24h with 12.5, 25, 50mg/kg as well as at 48h with 12.5mg/kg body weight post treatment. A significant increase was also seen in Caspase-3 and Bax mRNA and protein level with peak level at 24h and gradual decrease till 72h, however, the expression of caspase-3 increased while that of Bax decreased with increasing dose of Bap after 24h. In sub chronic intraperitoneal and oral gavage administration of BaP (2.5, 5, 10mg/kg body weight), similar significant increase was observed for all the examined genes as compared to the control and vehicle groups, however the expression of Bax decreased in a dose dependent manner. The findings of this study will help in further understanding the molecular mechanism of BaP induced carcinogenesis of cervical cancer. Copyright © 2015 Elsevier GmbH. All rights reserved.

  16. Apoptosis, proliferation, Bax, Bcl-2 and p53 status prior to and after preoperative radiochemotherapy for locally advanced rectal cancer

    International Nuclear Information System (INIS)

    Tannapfel, Andrea; Nuesslein, Siegfried; Fietkau, Rainer; Katalinic, Alexander; Koeckerling, Ferdinand; Wittekind, Christian

    1998-01-01

    Purpose: To investigate the relationship between apoptotic cell death, proliferative activity, and the expression of apoptosis regulating proteins in rectal cancer prior to and after radiochemotherapy. Materials and Methods: In 32 patients dispositioned to receive preoperative radiochemotherapy for locally advanced rectal carcinoma, pretherapy biopsies and the final resected specimen after radiochemotherapy were available for analyses. Apoptotic cells were identified and quantified using in situ end labeling (ISEL) technique. The expression of the bax protein was assessed immunohistochemically. Additionally, double immunostaining was performed for apoptotic cells and bax expression. The proliferative activity was determined by immunohistochemical assessment of the Ki67 (MIB-1) and the proliferating cell nuclear antigen (PCNA). p53- and bcl-2 expression was analyzed immunohistochemically. A clinical-to-pathologic downstaging after radiochemotherapy was achieved in 25 of 32 patients (78%). During follow-up, tumor recurrence was observed in six cases. In one case, no residual tumor was detected after radiochemotherapy. Results: After radiochemotherapy, the apoptotic index increased significantly in almost every case examined. In contrast, the proliferative activity was significantly decreased in resected specimens as compared to biopsies. Bax immunostaining was detected in 12/31 (39%) biopsies and in 26/31 (84%) resected specimens. In the resected specimen, significantly more apoptotic cells that were bax-positive were found than in biopsies. Bcl-2 immunostaining occurred in 15/31 biopsies and 12/31 resected specimens, respectively. Tumors that were immunohistochemically negative for p53 (20/31 [65%]) generally exhibited a higher apoptotic index and a high expression level of bax than p53-positive tumors (11/31 [35%]). However, we did not find any correlation between the (pre- and post-therapeutic) rate of apoptosis or the level of bax expression and the degree of

  17. Immunohistochemical study of p21 and Bcl-2 in leukoplakia, oral submucous fibrosis and oral squamous cell carcinoma.

    Science.gov (United States)

    Sutariya, Rakesh V; Manjunatha, Bhari Sharanesha

    2016-11-01

    Oral Squamous cell carcinoma (OSCC) results from genetic damage, leading to uncontrolled cell proliferation of damaged cells and the cell death. In the course of its progression, visible changes are taking place at the cellular level (atypical) and the resultant at the tissue level (epithelial dysplasia). The Aim of the present study was to evaluate and compare the expressions of intensity of p21 and Bcl-2 in Leukoplakia, oralsubmucous fibrosis (OSMF) and oral squamous cell carcinoma. Total 60 cases, 30 cases of oral squamous cell carcinoma, 15 cases of oral submucous fibrosis and 15 cases of Leukoplakia were evaluated immunohistochemically for p21 and Bcl-2 expression. p21 showed positive expression in 13 (86.67%) cases out of 15 cases of OSMF, 12 (80%) cases of leukoplakia out of 15 cases and 24 (80%) cases out of 30 cases of OSCC. The Bcl-2 expression was positive in 13 (86.67%) cases of OSMF, all cases of Leukoplakia and 25 (83.33%) cases of OSCC. No statistical significance was noted in the expression of p21 and Bcl-2 positive expression between OSMF, Leukoplakia and OSCC. Statistical analysis for comparison of intensity of p21 expression in different grades of OSCC showed no significance. Statistical significance difference was found between the expressions of Bcl-2 in moderately and poorly differentiated SCC. The intensity of p21 and Bcl-2 expressions in different grades of OSCC indicates a key role in progression of oral neoplasia.

  18. Obatoclax, a Pan-BCL-2 Inhibitor, Targets Cyclin D1 for Degradation to Induce Antiproliferation in Human Colorectal Carcinoma Cells.

    Science.gov (United States)

    Or, Chi-Hung R; Chang, Yachu; Lin, Wei-Cheng; Lee, Wee-Chyan; Su, Hong-Lin; Cheung, Muk-Wing; Huang, Chang-Po; Ho, Cheesang; Chang, Chia-Che

    2016-12-27

    Colorectal cancer is the third most common cancer worldwide. Aberrant overexpression of antiapoptotic BCL-2 (B-cell lymphoma 2) family proteins is closely linked to tumorigenesis and poor prognosis in colorectal cancer. Obatoclax is an inhibitor targeting all antiapoptotic BCL-2 proteins. A previous study has described the antiproliferative action of obatoclax in one human colorectal cancer cell line without elucidating the underlying mechanisms. We herein reported that, in a panel of human colorectal cancer cell lines, obatoclax inhibits cell proliferation, suppresses clonogenicity, and induces G₁-phase cell cycle arrest, along with cyclin D1 downregulation. Notably, ectopic cyclin D1 overexpression abrogated clonogenicity suppression but also G₁-phase arrest elicited by obatoclax. Mechanistically, pre-treatment with the proteasome inhibitor MG-132 restored cyclin D1 levels in all obatoclax-treated cell lines. Cycloheximide chase analyses further revealed an evident reduction in the half-life of cyclin D1 protein by obatoclax, confirming that obatoclax downregulates cyclin D1 through induction of cyclin D1 proteasomal degradation. Lastly, threonine 286 phosphorylation of cyclin D1, which is essential for initiating cyclin D1 proteasomal degradation, was induced by obatoclax in one cell line but not others. Collectively, we reveal a novel anticancer mechanism of obatoclax by validating that obatoclax targets cyclin D1 for proteasomal degradation to downregulate cyclin D1 for inducing antiproliferation.

  19. TMBIM3/GRINA is a novel unfolded protein response (UPR) target gene that controls apoptosis through the modulation of ER calcium homeostasis.

    Science.gov (United States)

    Rojas-Rivera, D; Armisén, R; Colombo, A; Martínez, G; Eguiguren, A L; Díaz, A; Kiviluoto, S; Rodríguez, D; Patron, M; Rizzuto, R; Bultynck, G; Concha, M L; Sierralta, J; Stutzin, A; Hetz, C

    2012-06-01

    Transmembrane BAX inhibitor motif-containing (TMBIM)-6, also known as BAX-inhibitor 1 (BI-1), is an anti-apoptotic protein that belongs to a putative family of highly conserved and poorly characterized genes. Here we report the function of TMBIM3/GRINA in the control of cell death by endoplasmic reticulum (ER) stress. Tmbim3 mRNA levels are strongly upregulated in cellular and animal models of ER stress, controlled by the PERK signaling branch of the unfolded protein response. TMBIM3/GRINA synergies with TMBIM6/BI-1 in the modulation of ER calcium homeostasis and apoptosis, associated with physical interactions with inositol trisphosphate receptors. Loss-of-function studies in D. melanogaster demonstrated that TMBIM3/GRINA and TMBIM6/BI-1 have synergistic activities against ER stress in vivo. Similarly, manipulation of TMBIM3/GRINA levels in zebrafish embryos revealed an essential role in the control of apoptosis during neuronal development and in experimental models of ER stress. These findings suggest the existence of a conserved group of functionally related cell death regulators across species beyond the BCL-2 family of proteins operating at the ER membrane.

  20. Real world data on young patients with high-risk diffuse large B-cell lymphoma treated with R-CHOP or R-CHOEP - MYC, BCL2 and BCL6 as prognostic biomarkers.

    Directory of Open Access Journals (Sweden)

    Mette Ølgod Pedersen

    Full Text Available Double expression of MYC and BCL2 proteins (DE and double-hit MYC+BCL2/BCL6 translocations (DH were established as important biomarkers in patients with diffuse large B-cell lymphoma (DLBCL by the 2016 revision of the World Health Organization classification of lymphoid neoplasms. Whether this applies to the subgroup of young patients with high risk DLBCL is not known. We previously found that in a uniform retrospective population-based cohort of patients aged 18-60 years with high-risk DLBCL, the addition of etoposide to R-CHOP chemotherapy (R-CHOEP resulted in improved survival mainly in patients with germinal center B-cell like (GCB immunophenotype. The aim of this study was to investigate the prognostic and predictive value of DE and DH in this patient cohort.Data on all young Danish patients diagnosed with de novo high-risk DLBCL 2004-2008 and treated with R-CHOP or R-CHOEP were obtained from the Danish Lymphoma database (n = 159. Tumor samples were available from 103 patients. MYC and BCL2 proteins were analyzed with quantitative immunohistochemistry (IHC using different cut off values. MYC-, BCL2- and BCL6-translocations were examined with fluorescent in situ hybridization (FISH.DE with MYC>75% and BCL2>85% was an independent negative prognostic marker of progression free survival (PFS in patients treated with R-CHOP but not R-CHOEP (p<0.001, also after exclusion of patients with DH. A predictive effect of DE for response (PFS to R-CHOEP vs. R-CHOP was almost significant (p = 0.07. DH was not prognostic in this patient cohort.In young patients with high-risk DLBCL, treatment with R-CHOEP may overcome the negative prognostic impact of DE observed in patients treated with R-CHOP.

  1. Dual targeting of MDM2 and BCL2 as a therapeutic strategy in neuroblastoma.

    Science.gov (United States)

    Van Goethem, Alan; Yigit, Nurten; Moreno-Smith, Myrthala; Vasudevan, Sanjeev A; Barbieri, Eveline; Speleman, Frank; Shohet, Jason; Vandesompele, Jo; Van Maerken, Tom

    2017-08-22

    Wild-type p53 tumor suppressor activity in neuroblastoma tumors is hampered by increased MDM2 activity, making selective MDM2 antagonists an attractive therapeutic strategy for this childhood malignancy. Since monotherapy in cancer is generally not providing long-lasting clinical responses, we here aimed to identify small molecule drugs that synergize with idasanutlin (RG7388). To this purpose we evaluated 15 targeted drugs in combination with idasanutlin in three p53 wild type neuroblastoma cell lines and identified the BCL2 inhibitor venetoclax (ABT-199) as a promising interaction partner. The venetoclax/idasanutlin combination was consistently found to be highly synergistic in a diverse panel of neuroblastoma cell lines, including cells with high MCL1 expression levels. A more pronounced induction of apoptosis was found to underlie the synergistic interaction, as evidenced by caspase-3/7 and cleaved PARP measurements. Mice carrying orthotopic xenografts of neuroblastoma cells treated with both idasanutlin and venetoclax had drastically lower tumor weights than mice treated with either treatment alone. In conclusion, these data strongly support the further evaluation of dual BCL2/MDM2 targeting as a therapeutic strategy in neuroblastoma.

  2. Antagonizing Bcl-2 family members sensitizes neuroblastoma and Ewing's sarcoma to an inhibitor of glutamine metabolism.

    Directory of Open Access Journals (Sweden)

    Rachelle R Olsen

    Full Text Available Neuroblastomas (NBL and Ewing's sarcomas (EWS together cause 18% of all pediatric cancer deaths. Though there is growing interest in targeting the dysregulated metabolism of cancer as a therapeutic strategy, this approach has not been fully examined in NBL and EWS. In this study, we first tested a panel of metabolic inhibitors and identified the glutamine antagonist 6-diazo-5-oxo-L-norleucine (DON as the most potent chemotherapeutic across all NBL and EWS cell lines tested. Myc, a master regulator of metabolism, is commonly overexpressed in both of these pediatric malignancies and recent studies have established that Myc causes cancer cells to become "addicted" to glutamine. We found DON strongly inhibited tumor growth of multiple tumor lines in mouse xenograft models. In vitro, inhibition of caspases partially reversed the effects of DON in high Myc expressing cell lines, but not in low Myc expressing lines. We further showed that induction of apoptosis by DON in Myc-overexpressing cancers is via the pro-apoptotic factor Bax. To relieve inhibition of Bax, we tested DON in combination with the Bcl-2 family antagonist navitoclax (ABT-263. In vitro, this combination caused an increase in DON activity across the entire panel of cell lines tested, with synergistic effects in two of the N-Myc amplified neuroblastoma cell lines. Our study supports targeting glutamine metabolism to treat Myc overexpressing cancers, such as NBL and EWS, particularly in combination with Bcl-2 family antagonists.

  3. The prognostic significance of the immunohistochemical expression of P53 and BCL-2 in endometrial cancer

    Directory of Open Access Journals (Sweden)

    Lech Chyczewski

    2012-01-01

    Full Text Available The objective of this study was to verify the frequency of P53 and BCL-2 immunohistochemical expression in 98 patients with endometrial carcinoma, and to correlate it with clinical stage and patient survival. A significant difference was found regarding the frequency of P53 expression when comparing type I and II tumors (23.7% and 54.5%, respectively; p = 0.006. A positive correlation was observed between P53 immunoexpression and patient survival in type I and II tumors (p = 0.009 and p = 0.036, respectively. BCL-2 expression was significantly more frequent in early clinical stages in both types of endometrial cancer (p < 0.001 and 0.002 and correlated with a decrease in overall survival in type I endometrial cancer (p = 0.014. Thus, the prognostic value of these biomarkers in endometrial cancer needs to be further investigated. (Folia Histochemica et Cytobiologica 2011; Vol. 49, No. 4, pp. 631–635

  4. Candida albicans induces pro-inflammatory and anti-apoptotic signals in macrophages as revealed by quantitative proteomics and phosphoproteomics

    DEFF Research Database (Denmark)

    Reales-Calderón, Jose Antonio; Sylvester, Marc; Strijbis, Karin

    2013-01-01

    Macrophages play a pivotal role in the prevention of Candida albicans infections. Yeast recognition and phagocytosis by macrophages is mediated by Pattern Recognition Receptors (PRRs) that initiate downstream signal transduction cascades by protein phosphorylation and dephosphorylation. We exposed...

  5. Targeting of BCL2 Family Proteins with ABT-199 and Homoharringtonine Reveals BCL2- and MCL1-Dependent Subgroups of Diffuse Large B-Cell Lymphoma

    Czech Academy of Sciences Publication Activity Database

    Klanova, M.; Anděra, Ladislav; Bražina, Jan; Švadlenka, Jan; Benešová, Simona; Soukup, J.; Průková, D.; Vejmelkova, D.; Jaksa, R.; Helman, K.; Vockova, P.; Lateckova, L.; Molinsky, J.; Maswabi, B.C.; Alam, M.; Kodet, R.; Pytlik, R.; Trneny, M.; Klener, P.

    2016-01-01

    Roč. 22, č. 5 (2016), s. 1138-1149 ISSN 1078-0432 R&D Projects: GA ČR GA14-19590S Institutional support: RVO:68378050 Keywords : NON-HODGKINS-LYMPHOMA * PROGNOSTIC-SIGNIFICANCE * OMACETAXINE MEPESUCCINATE * GENE-EXPRESSION * APOPTOSIS * REARRANGEMENT * SURVIVAL * LEUKEMIA * CANCER * AGENTS Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Genetics and heredity (medical genetics to be 3) Impact factor: 9.619, year: 2016

  6. Nicotine-induced damages in testicular tissue of rats; evidences for bcl-2, p53 and caspase-3 expression

    Directory of Open Access Journals (Sweden)

    Maryam Mosadegh

    2017-02-01

    Full Text Available Objective(s: Present study was performed in order to uncover new aspects for nicotine-induced damages on spermatogenesis cell lineage. Materials and Methods: For this purpose, 36 mature male Wistar rats were divided into three groups as; control-sham (0.2 ml, saline normal, IP, low dose (0.2 mg/kg BW-1, IP nicotine-received and high dose (0.4 mg/kg BW-1, IP nicotine-received groups. Following 7 weeks, the expression of bcl-2, p53 and caspase-3 at mRNA and protein levels were investigated by using reverse-transcriptase PCR (RT-PCR and immunohistochemical (IHC analyses, respectively. Moreover, the serum level of FSH, LH and testosterone were evaluated. Finally, the mRNA damage was analyzed by using special fluorescent staining. Results: Nicotine, at both dose levels, decreased tubular differentiation, spermiogenesis and repopulation indices and enhanced cellular depletion. Animals in nicotine-received groups exhibited a significant (P

  7. Spontaneous Remission of an Untreated, MYC and BCL2 Coexpressing, High-Grade B-Cell Lymphoma: A Case Report and Literature Review

    Directory of Open Access Journals (Sweden)

    D. Alan Potts

    2017-01-01

    Full Text Available Non-Hodgkin lymphomas (NHL are a heterogeneous group of hematologic malignancies typically treated with multiagent chemotherapy. Rarely, spontaneous remissions can be observed, particularly in more indolent subtypes. The prognosis of aggressive NHL can be predicted using clinical and histopathologic factors. In aggressive B-cell NHL, the importance of MYC and BCL2 proto-oncogene coexpression (as assessed by immunohistochemistry and high-grade histologic features are particularly noteworthy. We report a unique case of spontaneous remission in a patient with an aggressive B-cell NHL which harbored high-risk histopathologic features, including MYC protein expression at 70–80%, BCL2 protein expression, and morphologic features suggestive of high-grade B-cell lymphoma, NOS (formerly B-cell lymphoma unclassifiable with features intermediate between diffuse large B-cell lymphoma and Burkitt lymphoma [BCLU]. After undergoing a biopsy to confirm this diagnosis, he opted to forego curative-intent chemotherapy. The single, yet relatively large area of involvement noted on 18F-fluorodeoxyglucose positron emission tomography-computed tomography steadily resolved on subsequent follow-up studies. He remained without evidence of recurrence one year later, having never received treatment. This case emphasizes the potential for spontaneous remission in NHL and demonstrates that this phenomenon can be observed despite contemporary high-risk histopathologic features.

  8. Propofol-induced rno-miR-665 targets BCL2L1 and influences apoptosis in rodent developing hippocampal astrocytes.

    Science.gov (United States)

    Sun, Wen-Chong; Liang, Zuo-Di; Pei, Ling

    2015-12-01

    Propofol exerts neurotoxic effects on the developing mammalian brains, but the underlying molecular mechanism remains unclear. MicroRNAs (miRNAs) are a class of small noncoding RNAs that modulate gene expression at the post-transcriptional level. However, in specific types of neurocytes, the detailed functions of miRNAs were not entirely understood. We investigated the potential role of miRNAs in astrocyte pathogenesis caused by propofol. We performed genome-wide microRNA expression profiling in immature cultured hippocampal astrocytes by microarray analysis and predicted their targets and functions using bioinformatics tools. The functional effects of one differentially expressed miRNA were examined experimentally in relation to astrocyte viability. The results showed that 13 miRNAs were significantly differentially expressed after both short-term exposure to high-concentration propofol (10 μg/ml for 1h) and long-term exposure to low-concentration propofol (0.9 μg/ml for 48 h), including rno-miR-665, differing significantly between the 2. Bioinformatics predicted putative binding sites for rno-miR-665 existing in the 3'-untranslated region of Bcl-2-like protein 1 BCL2L1 (Bcl-xl) mRNA. Moreover, such relationship was assessed by luciferase reporter assay, qRT-PCR and western blot. Rno-miR-665 which was significantly up-regulated by propofol can suppress BCL2L1 and elevate cleaved caspase-3 expression in immature astrocytes in vitro. Apoptosis of developing hippocampal astrocytes was thus significantly influenced by propofol or rno-miR-665, or both. Taken together, rno-miR-665 is involved in the neurotoxicity induced by propofol via a caspase-3 mediated mechanism by negatively regulating BCL2L1. It might act as an alternative therapeutic target for treatment of neurological disorders in peadiatric prolonged anesthesia or sedation with propofol clinically. Copyright © 2015. Published by Elsevier B.V.

  9. Detection of bcl-2 translocation in patients with chronic hepatitis C and its possible relation to antiviral therapy: preliminary study

    International Nuclear Information System (INIS)

    Ibrahim, N.S.; Hanna, M.O.F.; Farid, R.J.; Zayed, N.A.; Hunter, S.S.; Esmat, J.

    2007-01-01

    It has been suggested that t(14; 18) translocation of bcl-2 to the immunoglobulin heavy chain (IgH) locus may contribute to the pathogenesis of lymphoproliferative disorders (LPD) related to hepatitis C virus (HCV) infection. The present study aimed to assess the prevalence of bcl-2 translocation in Egyptian chronic HCV patients and to investigate the effect of combination antiviral therapy of interferon a and ribavirin on t(14;18). Fifty five chronic HCV patients were studied for the prevalence of t(l4; 18). These patients were classified into 2 groups, 33 non treated HCV patients and 22 treated HCV patients with antiviral therapy as well as control group of age and sex matched individuals. The bcl-2/IgH rearrangement was detected in peripheral blood mononuclear cells (PBMCs) by nested polymerase chain reaction. All patients have undergone HCV viral determination by real time PCR. Bcl-2/IgH translocation was detected in 21 (38.2%) of all 55 chronically infected HCV patients. Considering all patients with chronic HCV-infection, bcl-2 rearrangement was slightly more frequent in the non treated group than in those who underwent treatment with interferon plus ribavirin but the difference was not statistically significant, although treated patients showed biochemical and virologic response at the end of 6 months of antiviral therapy. In conclusion, t(l4;18) in PBMCs is a frequent finding in chronic HCV infection

  10. Copper excess in liver HepG2 cells interferes with apoptosis and lipid metabolic signaling at the protein level.

    Science.gov (United States)

    Liu, Yu; Yang, Huarong; Song, Zhi; Gu, Shaojuan

    2014-12-01

    Copper is an essential trace element that serves as an important catalytic cofactor for cuproenzymes, carrying out major biological functions in growth and development. Although Wilson's disease (WD) is unquestionably caused by mutations in the ATP7B gene and subsequent copper overload, the precise role of copper in inducing pathological changes remains poorly understood. Our study aimed to explore, in HepG2 cells exposed to copper, the cell viability and apoptotic cells was tested by MTT and Hoechst 33342 stainning respectively, and the signaling pathways involved in oxidative stress response, apoptosis and lipid metabolism were determined by real time RT-PCR and Western blot analysis. The results demonstrate dose- and time-dependent cell viability and apoptosis in HepG2 cells following treatment with 10 μM, 200 μM and 500 μM of copper sulfate for 8 and 24 h. Copper overload significantly induced the expression of HSPA1A (heat shock 70 kDa protein 1A), an oxidative stress-responsive signal gene, and BAG3 (BCL2 associated athanogene3), an anti-apoptotic gene, while expression of HMGCR (3-hydroxy-3-methylglutaryl-CoA reductase), a lipid biosynthesis and lipid metabolism gene, was inhibited. These findings provide new insights into possible mechanisms accounting for the development of liver apoptosis and steatosis in the early stages of Wilson's disease.

  11. Double-hit lymphoma demonstrating t(6;14;18)(p25;q32;q21), suggesting two independent dual-hit translocations, MYC/BCL-2 and IRF4/BCL-2.

    Science.gov (United States)

    Tabata, Rie; Yasumizu, Ryoji; Tabata, Chiharu; Kojima, Masaru

    2013-01-01

    Here, we report a rare case of double-hit lymphoma, demonstrating t(6;14;18)(p25;q32;q21), suggesting two independent dual-translocations, c-MYC/BCL-2 and IRF4/BCL-2. The present case had a rare abnormal chromosome, t(6;14;18)(p25;q32;q21), independently, in addition to known dual-hit chromosomal abnormalities, t(14;18)(q32;q21) and t(8;22)(q24;q11.2). Lymph node was characterized by a follicular and diffuse growth pattern with variously sized neoplastic follicles. The intrafollicular area was composed of centrocytes with a few centroblasts and the interfollicular area was occupied by uniformly spread medium- to large-sized lymphocytes. CD23 immunostaining demonstrated a disrupted follicular dendritic cell meshwork. The intrafollicular tumor cells had a germinal center phenotype with the expression of surface IgM, CD10, Bcl-2, Bcl-6, and MUM1/IRF4. However, the interfollicular larger cells showed plasmacytic differentiation with diminished CD20, Bcl-2, Bcl-6, and positive intracytoplasmic IgM, and co-expression of MUM1/IRF4 and CD138 with increased Ki-67-positive cells (> 90%). MUM1/IRF4 has been found to induce c-MYC expression, and in turn, MYC transactivates MUM1/IRF4, creating a positive autoregulatory feedback loop. On the other hand, MUM1/IRF4 functions as a tumor suppressor in c-MYC-induced B-cell leukemia. The present rare case arouses interest in view of the possible "dual" activation of both c-MYC and MUM1/IRF4 through two independent dual-translocations, c-MYC/BCL-2 and IRF4/BCL-2.

  12. The activity of the anti-apoptotic fragment generated by the caspase-3/p120 RasGAP stress-sensing module displays strict Akt isoform specificity.

    Science.gov (United States)

    Vanli, Güliz; Peltzer, Nieves; Dubuis, Gilles; Widmann, Christian

    2014-12-01

    The caspase-3/p120 RasGAP module acts as a stress sensor that promotes pro-survival or pro-death signaling depending on the intensity and the duration of the stressful stimuli. Partial cleavage of p120 RasGAP generates a fragment, called fragment N, which protects stressed cells by activating Akt signaling. Akt family members regulate many cellular processes including proliferation, inhibition of apoptosis and metabolism. These cellular processes are regulated by three distinct Akt isoforms: Akt1, Akt2 and Akt3. However, which of these isoforms are required for fragment N mediated protection have not been defined. In this study, we investigated the individual contribution of each isoform in fragment N-mediated cell protection against Fas ligand induced cell death. To this end, DLD1 and HCT116 isogenic cell lines lacking specific Akt isoforms were used. It was found that fragment N could activate Akt1 and Akt2 but that only the former could mediate the protective activity of the RasGAP-derived fragment. Even overexpression of Akt2 or Akt3 could not rescue the inability of fragment N to protect cells lacking Akt1. These results demonstrate a strict Akt isoform requirement for the anti-apoptotic activity of fragment N. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Melatonin Promotes the In Vitro Development of Microinjected Pronuclear Mouse Embryos via Its Anti-Oxidative and Anti-Apoptotic Effects.

    Science.gov (United States)

    Tian, Xiuzhi; Wang, Feng; Zhang, Lu; Ji, Pengyun; Wang, Jing; Lv, Dongying; Li, Guangdong; Chai, Menglong; Lian, Zhengxing; Liu, Guoshi

    2017-05-05

    CRISPR/Cas9 (Clustered regularly interspaced short palindromic repeats) combined with pronuclear microinjection has become the most effective method for producing transgenic animals. However, the relatively low embryo developmental rate limits its application. In the current study, it was observed that 10 -7 M melatonin is considered an optimum concentration and significantly promoted the in vitro development of murine microinjected pronuclear embryos, as indicated by the increased blastocyst rate, hatching blastocyst rate and blastocyst cell number. When these blastocysts were implanted into recipient mice, the pregnancy rate and birth rate were significantly higher than those of the microinjected control, respectively. Mechanistic studies revealed that melatonin treatment reduced reactive oxygen species (ROS) production and cellular apoptosis during in vitro embryo development and improved the quality of the blastocysts. The implantation of quality-improved blastocysts led to elevated pregnancy and birth rates. In conclusion, the results revealed that the anti-oxidative and anti-apoptotic activities of melatonin improved the quality of microinjected pronuclear embryos and subsequently increased both the efficiency of embryo implantation and the birth rate of the pups. Therefore, the melatonin supplementation may provide a novel alternative method for generating large numbers of transgenic mice and this method can probably be used in human-assisted reproduction and genome editing.

  14. LncRNA TUG1 sponges microRNA-9 to promote neurons apoptosis by up-regulated Bcl2l11 under ischemia.

    Science.gov (United States)

    Chen, Shengcai; Wang, Mengdie; Yang, Hang; Mao, Ling; He, Quanwei; Jin, Huijuan; Ye, Zi-Ming; Luo, Xue-Ying; Xia, Yuan-Peng; Hu, Bo

    2017-03-25

    Emerging studies have illustrated that LncRNAs TUG1 play critical roles in multiple biologic processes. However, the LncRNA TUG1 expression and function in ischemic stroke have not been reported yet. In this study, we found that LncRNA TUG1 expression was significantly up-regulated in brain ischemic penumbra from rat middle carotid artery occlusion (MCAO) model, while similar results were also observed in cultured neurons under oxygen-glucose deprivation (OGD) insult. Knockdown of TUG1 decreased the ratio of apoptotic cells and promoted cells survival in vitro, which may be regulated by the elevated miRNA-9 expression and decreased Bcl2l11 protein. Furthermore, TUG1 could directly interact with miR-9 and down-regulating miR-9 could efficiently reverse the function of TUG1 on the Bcl2l11 expression. In summary, our result sheds light on the role of LncRNA TUG1 as a miRNA sponge for ischemic stroke, possibly providing a new therapeutic target in stroke. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Involvement of Bax and Bcl-2 in Induction of Apoptosis by Essential Oils of Three Lebanese Salvia Species in Human Prostate Cancer Cells

    Directory of Open Access Journals (Sweden)

    Alessandra Russo

    2018-01-01

    Full Text Available Prostate cancer is one of the most common forms of cancer in men, and research to find more effective and less toxic drugs has become necessary. In the frame of our ongoing program on traditionally used Salvia species from the Mediterranean Area, here we report the biological activities of Salvia aurea, S. judaica and S. viscosa essential oils against human prostate cancer cells (DU-145. The cell viability was measured by 3(4,5-dimethyl-thiazol-2-yl2,5-diphenyl-tetrazolium bromide (MTT test and lactate dehydrogenase (LDH release was used to quantify necrosis cell death. Genomic DNA, caspase-3 activity, expression of cleaved caspase-9, B-cell lymphoma 2 (Bcl-2 and Bcl-2 associated X (Bax proteins were analyzed in order to study the apoptotic process. The role of reactive oxygen species in cell death was also investigated. We found that the three essential oils, containing caryophyllene oxide as a main constituent, are capable of reducing the growth of human prostate cancer cells, activating an apoptotic process and increasing reactive oxygen species generation. These results suggest it could be profitable to further investigate the effects of these essential oils for their possible use as anticancer agents in prostate cancer, alone or in combination with chemotherapy agents.

  16. α/β-hydrolase domain containing protein 15 (ABHD15--an adipogenic protein protecting from apoptosis.

    Directory of Open Access Journals (Sweden)

    Evelyn Walenta

    Full Text Available Our knowledge about adipocyte metabolism and development is steadily growing, yet many players are still undefined. Here, we show that α/β-hydrolase domain containing protein 15 (Abhd15 is a direct and functional target gene of peroxisome proliferator-activated receptor gamma (PPARγ, the master regulator of adipogenesis. In line, Abhd15 is mainly expressed in brown and white adipose tissue and strongly upregulated during adipogenesis in various murine and human cell lines. Stable knockdown of Abhd15 in 3T3-L1 cells evokes a striking differentiation defect, as evidenced by low lipid accumulation and decreased expression of adipocyte marker genes. In preconfluent cells, knockdown of Abhd15 leads to impaired proliferation, which is caused by apoptosis, as we see an increased SubG1 peak, caspase 3/7 activity, and BAX protein expression as well as a reduction in anti-apoptotic BCL-2 protein. Furthermore, apoptosis-inducing amounts of palmitic acid evoke a massive increase of Abhd15 expression, proposing an apoptosis-protecting role for ABHD15. On the other hand, in mature adipocytes physiological (i.e. non-apoptotic concentrations of palmitic acid down-regulate Abhd15 expression. Accordingly, we found that the expression of Abhd15 in adipose tissue is reduced in physiological situations with high free fatty acid levels, like high-fat diet, fasting, and aging as well as in genetically obese mice. Collectively, our results position ABHD15 as an essential component in the development of adipocytes as well as in apoptosis, thereby connecting two substantial factors in the regulation of adipocyte number and size. Together with its intricate regulation by free fatty acids, ABHD15 might be an intriguing new target in obesity and diabetes research.

  17. Evaluation of Bcl-2, Bcl-x and Cleaved Caspase-3 in Malignant Peripheral Nerve Sheath Tumors and Neurofibromas

    Directory of Open Access Journals (Sweden)

    KARIN S. CUNHA

    2013-11-01

    Full Text Available AIMS: To study the expression of Bcl-2, Bcl-x, as well the presence of cleaved caspase-3 in neurofibromas and malignant peripheral nerve sheath tumors. The expression of Bcl-2 and Bcl-x and the presence of cleaved caspase 3 were compared to clinicopathological features of malignant peripheral nerve sheath tumors and their impact on survival rates were also investigated. MATERIALS AND METHODS: The evaluation of Bcl-2, Bcl-x and cleaved caspase-3 was performed by immunohistochemistry using tissue microarrays in 28 malignant peripheral nerve sheath tumors and 38 neurofibromas. Immunoquantification was performed by computerized digital image analysis. CONCLUSIONS: Apoptosis is altered in neurofibromas and mainly in malignant peripheral nerve sheath tumors. High levels of cleaved caspase-3 are more common in tumors with more aggressive histological features and it is associated with lower disease free survival of patients with malignant peripheral nerve sheath tumors.

  18. Evaluation of multiple bio-pathological factors in colorectal adenocarcinomas: independent prognostic role of p53 and bcl-2.

    Science.gov (United States)

    Buglioni, S; D'Agnano, I; Cosimelli, M; Vasselli, S; D'Angelo, C; Tedesco, M; Zupi, G; Mottolese, M

    1999-12-22

    About 40% of patients with colorectal carcinoma will develop local or distant tumour recurrences. Integrated analyses of bio-pathological markers, predictive of tumour aggressiveness, may offer a more rational approach to planning adjuvant therapy. To this end, we analysed the correlation between p53 accumulation, Bcl-2 expression, DNA ploidy, cell proliferation and conventional clinico-pathological parameters by testing the prognostic significance of these variables in a series of 171 colorectal carcinoma patients with long-term follow-up. The relationships among the various bio-pathological parameters, analysed by multiple correspondence analysis, showed 2 different clinico-biological profiles. The first, characterised by p53 negativity, Bcl-2 positivity, diploidy, low percentage of cells in S-phase (%S-phase), a low Ki-67 score, is associated with Dukes' A-B stage, well differentiated tumours and lack of relapse. The second, defined by p53 positivity, Bcl-2 negativity, aneuploidy, high %S-phase and elevated Ki-67 score, correlates with Dukes' C-D stage, poorly differentiated tumours and presence of relapse. When these parameters were examined according to Kaplan-Meier's method, significantly shorter disease-free (DFS) and overall survival (OS) were also observed in patients bearing p53 positive and Bcl-2 negative tumours, in Dukes' B stage. In multivariate analysis, p53 accumulation and Bcl-2 expression emerged as independent predictors of a worse and better clinical outcome, respectively. Our results indicate that, in colorectal adenocarcinomas, a biological profile, based on the combined evaluation of p53 and Bcl-2, may be useful for identifying high risk patients to be enrolled in an adjuvant setting, mainly in an early stage of the disease. Int. J. Cancer (Pred. Oncol.) 84:545-552, 1999. Copyright 1999 Wiley-Liss, Inc.

  19. Combination of Hydroxyl Acetylated Curcumin and Ultrasound Induces Macrophage Autophagy with Anti-Apoptotic and Anti-Lipid Aggregation Effects

    Directory of Open Access Journals (Sweden)

    Longbin Zheng

    2016-10-01

    Full Text Available Background/Aims: Sonodynamic therapy (SDT is considered a new approach for the treatment of atherosclerosis. We previously confirmed that hydroxyl acetylated curcumin (HAC was a sonosensitizer. In this study, we investigated the mechanism of THP-1 macrophage apoptosis and autophagy induced by HAC mediated SDT (HAC-SDT. Methods: Cell viability was measured using a CCK-8 assay. Laser scanning confocal microscopy was used to measure the levels of intracellular reactive oxygen species (ROS, sub-cellular HAC localization, BAX and cytochrome C translocation, LC3 expression, monodansylcadaverine staining and Dil-labeled oxidized low density lipoprotein (Dil-ox-LDL uptake. Flow cytometry was used to analyze apoptosis and autophagy via Annexin V/propidium iodide and acridine orange staining, respectively. The expression levels of apoptosis- and autophagy-related proteins were detected by Western blot. Oil red O was used to measure intracellular lipid accumulation. Results: We identified HAC (5.0 μg/mL located in lysosomes, endoplasmic reticulum, Golgi apparatus and mitochondria after 4 h of incubation. Compared with other sonosensitizers (e.g., curcumin and emodin, HAC had a more obvious sonodynamic effect on macrophages. Furthermore, the mitochondrial-caspase pathway was confirmed to play a crucial role in the HAC-SDT-induced apoptosis; BAX translocated from the cytosol to the mitochondria during HAC-SDT. Subsequently, mitochondrial cytochrome C was released into the cytosol, activating the caspase cascade in a time-dependent manner. Furthermore, HAC-SDT could induce PI3K/AKT/mTOR pathway dependent autophagy, accompanied by a decrease in the lipid uptake of THP-1 macrophages. This mechanism was demonstrated by the formation of acidic vesicular organelles, the conversion of LC3 I to LC3 II, the expression of related proteins, and the attenuation of both Dil-ox-LDL and oil red O staining. Moreover, pre-treatment with the autophagy inhibitor 3

  20. Correlation Among Six Biologic Factors (p53, p21WAF1, MIB-1, EGFR, HER2, and Bcl-2) and Clinical Outcomes After Curative Chemoradiation Therapy in Squamous Cell Cervical Cancer

    International Nuclear Information System (INIS)

    Yamashita, Hideomi; Murakami, Naoya; Asari, Takao; Okuma, Kae; Ohtomo, Kuni; Nakagawa, Keiichi

    2009-01-01

    Purpose: The expressions of six cell-cycle-associated proteins were analyzed in cervical squamous cell carcinomas in correlation in a search for prognostic correlations in tumors treated with concurrent chemoradiation therapy (cCRT). Methods and Materials: The expressions of p53, p21/waf1/cip1, molecular immunology borstel-1 (MIB-1), epidermal growth factor receptor (EGFR), human epidermal growth factor receptor type 2 (HER2), and Bcl-2 were studied using an immunohistochemical method in 57 cases of cervical squamous cell carcinoma treated with cCRT. Patients received cCRT between 1998 and 2005. The mean patient age was 61 years (range, 27-82 years). The number of patients with Stage II, III, and IVA disease was 18, 29, and 10, respectively. Results: The number of patients with tumors positive for p53, p21/waf1/cip1, MIB-1, EGFR, HER2, and Bcl-2 was 26, 24, 49, 26, 13, and 11, respectively; no significant correlation was noted. The 5-year overall survival rates of HER2-positive and -negative patients was 76% vs. 44%, which was of borderline significance (p = 0.0675). No significant correlation was noted between overall survival and expressions of p53, p21/waf1/cip1, MIB-1, EGFR, and Bcl-2. No correlation was observed between local control and expression of any of the proteins. Conclusion: Expression of HER2 protein had a weak impact of borderline significance on overall survival in squamous cell carcinoma of the uterine cervix treated with cCRT. However, no clinical associations could be established for p53, p21/waf1/cip1, MIB-1, EGFR, and Bcl-2 protein expressions.

  1. RAC1b overexpression stimulates proliferation and NF-kB-mediated anti-apoptotic signaling in thyroid cancer cells.

    Science.gov (United States)

    Faria, Márcia; Matos, Paulo; Pereira, Teresa; Cabrera, Rafael; Cardoso, Bruno A; Bugalho, Maria João; Silva, Ana Luísa

    2017-01-01

    Overexpression of tumor-associated RAC1b has been recently highlighted as one of the most promising targets for therapeutic intervention in colon, breast, lung and pancreatic cancer. RAC1b is a hyperactive variant of the small GTPase RAC1 and has been recently shown to be overexpressed in a subset of papillary thyroid carcinomas associated with unfavorable outcome. Using the K1 PTC derived cell line as an in vitro model, we observed that both RAC1 and RAC1b were able to induce a significant increase on NF-kB and cyclin D1 reporter activity. A clear p65 nuclear localization was found in cells transfected with RAC1b-WT, confirming NF-kB canonical pathway activation. Consistently, we observed a RAC1b-mediated decrease in IκBα (NF-kB inhibitor) protein levels. Moreover, we show that RAC1b overexpression stimulates G1/S progression and protects thyroid cells against induced apoptosis, the latter through a process involving the NF-kB pathway. Present data support previous findings suggesting an important role for RAC1b in the development of follicular cell-derived thyroid malignancies and point out NF-kB activation as one of the molecular mechanisms associated with the pro-tumorigenic advantage of RAC1b overexpression in thyroid carcinomas.

  2. Primary central nervous system diffuse large B-cell lymphoma shows an activated B-cell-like phenotype with co-expression of C-MYC, BCL-2, and BCL-6.

    Science.gov (United States)

    Li, Xiaomei; Huang, Ying; Bi, Chengfeng; Yuan, Ji; He, Hong; Zhang, Hong; Yu, QiuBo; Fu, Kai; Li, Dan

    2017-06-01

    Diffuse large B-cell lymphoma (DLBCL) is the most common non-Hodgkin lymphoma, whose main prognostic factor is closely related to germinal center B-cell-like subtype (GCB- DLBCL) or activated B-cell-like type (non-GCB-DLBCL). The most common type of primary central nervous system lymphoma is diffuse large B-cell type with poor prognosis and the reason is unclear. This study aims to stratify primary central nervous system diffuse large B-cell lymphoma (PCNS-DLBCL) according to the cell-of-origin (COO) and to investigate the multiple proteins expression of C-MYC, BCL-6, BCL-2, TP53, further to elucidate the reason why primary central nervous system diffuse large B-cell lymphoma possesses a poor clinical outcome as well. Nineteen cases of primary central nervous system DLBCL were stratified according to immunostaining algorithms of Hans, Choi and Meyer (Tally) and we investigated the multiple proteins expression of C-MYC, BCL-6, BCL-2, TP53. The Epstein-Barr virus and Borna disease virus infection were also detected. Among nineteen cases, most (15-17 cases) were assigned to the activated B-cell-like subtype, highly expression of C-MYC (15 cases, 78.9%), BCL-2 (10 cases, 52.6%), BCL-6 (15 cases, 78.9%). Unfortunately, two cases were positive for PD-L1 while PD-L2 was not expressed in any case. Two cases infected with BDV but no one infected with EBV. In conclusion, most primary central nervous system DLBCLs show an activated B-cell-like subtype characteristic and have multiple expressions of C-MYC, BCL-2, BCL-6 protein, these features might be significant factor to predict the outcome and guide treatment of PCNS-DLBCLs. Copyright © 2017 Elsevier GmbH. All rights reserved.

  3. Bcl-2 associated athanogene 5 (Bag5) is overexpressed in prostate cancer and inhibits ER-stress induced apoptosis

    International Nuclear Information System (INIS)

    Bruchmann, Anja; Roller, Corinna; Walther, Tamara Vanessa; Schäfer, Georg; Lehmusvaara, Sara; Visakorpi, Tapio; Klocker, Helmut; Cato, Andrew C B; Maddalo, Danilo

    2013-01-01

    The Bag (Bcl-2 associated athanogene) family of proteins consists of 6 members sharing a common, single-copied Bag domain through which they interact with the molecular chaperone Hsp70. Bag5 represents an exception in the Bag family since it consists of 5 Bag domains covering the whole protein. Bag proteins like Bag1 and Bag3 have been implicated in tumor growth and survival but it is not known whether Bag5 also exhibits this function. Bag5 mRNA and protein expression levels were investigated in prostate cancer patient samples using real-time PCR and immunoblot analyses. In addition immunohistological studies were carried out to determine the expression of Bag5 in tissue arrays. Analysis of Bag5 gene expression was carried out using one-way ANOVA and Bonferroni’s Multiple Comparison test. The mean values of the Bag5 stained cells in the tissue array was analyzed by Mann-Whitney test. Functional studies of the role of Bag5 in prostate cancer cell lines was performed using overexpression and RNA interference analyses. Our results show that Bag5 is overexpressed in malignant prostate tissue compared to benign samples. In addition we could show that Bag5 levels are increased following endoplasmic reticulum (ER)-stress induction, and Bag5 relocates from the cytoplasm to the ER during this process. We also demonstrate that Bag5 interacts with the ER-resident chaperone GRP78/BiP and enhances its ATPase activity. Bag5 overexpression in 22Rv.1 prostate cancer cells inhibited ER-stress induced apoptosis in the unfolded protein response by suppressing PERK-eIF2-ATF4 activity while enhancing the IRE1-Xbp1 axis of this pathway. Cells expressing high levels of Bag5 showed reduced sensitivity to apoptosis induced by different agents while Bag5 downregulation resulted in increased stress-induced cell death. We have therefore shown that Bag5 is overexpressed in prostate cancer and plays a role in ER-stress induced apoptosis. Furthermore we have identified GRP78/BiP as a novel

  4. RNA interference suppression of A100A4 reduces the growth and metastatic phenotype of human renal cancer cells via NF-kB-dependent MMP-2 and bcl-2 pathway.

    Science.gov (United States)

    Yang, X-C; Wang, X; Luo, L; Dong, D-H; Yu, Q-C; Wang, X-S; Zhao, K

    2013-06-01

    S100A4 is a well established marker and mediator of metastatic disease, but the exact mechanisms responsible for the metastasis promoting effects are less well defined. We tested a hypothesis that the S100A4 gene plays a role in the proliferation and invasiveness of human renal cancer cells (RCC) and may be associated with its metastatic spread. The small interference RNA vector pcDNA3.1-S100A4 siRNA was transfected in to the human renal cancer cell lines ACHN, Ketr-3, OS-RC-2, CaKi-2 and HTB-47, then treated with ABT-737 or BB94. Cell apoptosis and cell viability was detected by flow cytometry and MTT assay. Matrigel was used for cell motility and invasion assay. MMP-2, bcl-2 and S100A4 was detected by RT-PCR and western blot assay. NF-kB subunit p65 activity was detected by confocal microscopy assay. We then determine the effect S100A4 sliencing on tumor growth, lung metastasis development in vivo. Immunohistochemistry was used to detected the expression of S100A4, bcl-2, MMP-2, p65 and CD31. S100A4 silencing in ACHN cells by RNA interference significantly inhibited NF-kB and NF-kB-mediated MMP-2 and bcl-2 activation and cellular migration, proliferation, and promoted apoptosis. Furthermore, re-expression of S100A4 in S100A4-siRNA-transfected ACHN cells by transient S100A4 cDNA transfection restored the NF-kB and NF-kB-mediated MMP-2 and bcl-2 activation and their high migratory and cellular proliferative ability. An inhibitor ABT-737 (the Bcl-2 antagonist targets Bcl-2) against Bcl-2 suppressed cellular proliferation and promoted apoptosis induced by S100A4 re-expression in S100A4-siRNA-transfected ACHN cells. A inhibitor BB94 against MMPs to neutralize MMP-2 protein suppressed cellular invasion and migration induced by S100A4 re-expression in S100A4-siRNA-transfected ACHN cells. In the prevention model, S100A4 silencing inhibited primary tumor growth by (tumor weight) (76 ± 8%) and (tumor volum) (78 ± 4%) respectively and promoted apoptosis and the formation

  5. Electrical stimuli are anti-apoptotic in skeletal muscle via extracellular ATP. Alteration of this signal in Mdx mice is a likely cause of dystrophy.

    Science.gov (United States)

    Valladares, Denisse; Almarza, Gonzalo; Contreras, Ariel; Pavez, Mario; Buvinic, Sonja; Jaimovich, Enrique; Casas, Mariana

    2013-01-01

    ATP signaling has been shown to regulate gene expression in skeletal muscle and to be altered in models of muscular dystrophy. We have previously shown that in normal muscle fibers, ATP released through Pannexin1 (Panx1) channels after electrical stimulation plays a role in activating some signaling pathways related to gene expression. We searched for a possible role of ATP signaling in the dystrophy phenotype. We used muscle fibers from flexor digitorum brevis isolated from normal and mdx mice. We demonstrated that low frequency electrical stimulation has an anti-apoptotic effect in normal muscle fibers repressing the expression of Bax, Bim and PUMA. Addition of exogenous ATP to the medium has a similar effect. In dystrophic fibers, the basal levels of extracellular ATP were higher compared to normal fibers, but unlike control fibers, they do not present any ATP release after low frequency electrical stimulation, suggesting an uncoupling between electrical stimulation and ATP release in this condition. Elevated levels of Panx1 and decreased levels of Cav1.1 (dihydropyridine receptors) were found in triads fractions prepared from mdx muscles. Moreover, decreased immunoprecipitation of Cav1.1 and Panx1, suggest uncoupling of the signaling machinery. Importantly, in dystrophic fibers, exogenous ATP was pro-apoptotic, inducing the transcription of Bax, Bim and PUMA and increasing the levels of activated Bax and cytosolic cytochrome c. These evidence points to an involvement of the ATP pathway in the activation of mechanisms related with cell death in muscular dystrophy, opening new perspectives towards possible targets for pharmacological therapies.

  6. Systems modeling of anti-apoptotic pathways in prostate cancer: psychological stress triggers a synergism pattern switch in drug combination therapy.

    Directory of Open Access Journals (Sweden)

    Xiaoqiang Sun

    Full Text Available Prostate cancer patients often have increased levels of psychological stress or anxiety, but the molecular mechanisms underlying the interaction between psychological stress and prostate cancer as well as therapy resistance have been rarely studied and remain poorly understood. Recent reports show that stress inhibits apoptosis in prostate cancer cells via epinephrine/beta2 adrenergic receptor/PKA/BAD pathway. In this study, we used experimental data on the signaling pathways that control BAD phosphorylation to build a dynamic network model of apoptosis regulation in prostate cancer cells. We then compared the predictive power of two different models with or without the role of Mcl-1, which justified the role of Mcl-1 stabilization in anti-apoptotic effects of emotional stress. Based on the selected model, we examined and quantitatively evaluated the induction of apoptosis by drug combination therapies. We predicted that the combination of PI3K inhibitor LY294002 and inhibition of BAD phosphorylation at S112 would produce the best synergistic effect among 8 interventions examined. Experimental validation confirmed the effectiveness of our predictive model. Moreover, we found that epinephrine signaling changes the synergism pattern and decreases efficacy of combination therapy. The molecular mechanisms responsible for therapeutic resistance and the switch in synergism were explored by analyzing a network model of signaling pathways affected by psychological stress. These results provide insights into the mechanisms of psychological stress signaling in therapy-resistant cancer, and indicate the potential benefit of reducing psychological stress in designing more effective therapies for prostate cancer patients.

  7. Bcl-2 protects against apoptosis induced by antimycin A and bongkrekic acid without restoring cellular ATP levels.

    NARCIS (Netherlands)

    Graaf, A.O. de; Meijerink, J.P.P.; Heuvel, L.P.W.J. van den; Abreu, R.A. de; Witte, T.J.M. de; Jansen, J.H.; Smeitink, J.A.M.

    2002-01-01

    Several studies indicate that mitochondrial ATP production as well as ADP/ATP exchange across mitochondrial membranes are impaired during apoptosis. We investigated whether Bcl-2 could protect against cell death under conditions in which ATP metabolism is inhibited. Inhibition of ATP production

  8. Onco-miR-24 regulates cell growth and apoptosis by targeting BCL2L11 in gastric cancer

    Directory of Open Access Journals (Sweden)

    Haiyang Zhang

    2016-01-01

    Full Text Available ABSTRACT Gastric cancer is one of the most common malignancies worldwide; however, the molecular mechanism in tumorigenesis still needs exploration. BCL2L11 belongs to the BCL-2 family, and acts as a central regulator of the intrinsic apoptotic cascade and mediates cell apoptosis. Although miRNAs have been reported to be involved in each stage of cancer development, the role of miR-24 in GC has not been reported yet. In the present study, miR-24 was found to be up-regulated while the expression of BCL2L11 was inhibited in tumor tissues of GC. Studies from both in vitro and in vivo shown that miR-24 regulates BCL2L11 expression by directly binding with 3′UTR of mRNA, thus promoting cell growth, migration while inhibiting cell apoptosis. Therefore, miR-24 is a novel onco-miRNA that can be potential drug targets for future clinical use.

  9. The role of apoptosis in the development of AGM hematopoietic stem cells revealed by Bcl-2 overexpression

    NARCIS (Netherlands)

    C. Orelio; K.N. Harvey; C. Miles; R.A. Oostendorp (Robert); K. van der Horn; E.A. Dzierzak (Elaine)

    2004-01-01

    textabstractApoptosis is an essential process in embryonic tissue remodeling and adult tissue homeostasis. Within the adult hematopoietic system, it allows for tight regulation of hematopoietic cell subsets. Previously, it was shown that B-cell leukemia 2 (Bcl-2) overexpression in

  10. The effect of nickel as a nickel chromium restoration corrosion product on gingival fibroblast through analysis of BCl-2

    Directory of Open Access Journals (Sweden)

    FX Ady Soesetijo

    2012-12-01

    Full Text Available Background: Restoration of NiCr may undergo corrosion process in artificial saliva. Corrosion product is soluble Ni substances in salivary electrolytes. Ni2+ may freely enter the cells through passive transport DMT-1. Ni2+ in the cell causes initiation of the ROS formation,which subsequently can conduct the redoxs reactions leading to DNA damage. The damage DNA affects the genetic expression, especially bcl-2, and even triggers apoptosis. Purpose: The aim of this study was to reveal the mechanism of Ni toxicity as a corrosion product of NiCr restoration on gingival fibroblasts through expression analysis of Bcl-2. Methods: Cells with a density of 105 planted on each coverslip in 72 wells to the treatment group and 24 wells to the control group (24 hours incubation. In the treatment groups, each well exposed with 20 μL artificial saliva containing Ni concentration results immerse each restoration, whereas the control group was exposed to 20 μL artificial saliva (incubation 1, 3, and 7 days. The data collected were subsequently analyzed using two-ways ANOVA, followed by one-way ANOVA. Comparing between experimental groups after one-way ANOVA was conducted using Fisher’s LSD. Whereas, the calculation and documentation of Bcl-2 expression was performed camera of Olympus Microscope BX-50 Japan. Results: Statistical analysis of two-ways ANOVA showed the presence of interaction between the increasing Ni concentration and exposure duration on the expression of Bcl-2 gingival fibroblasts (p=0.021Bcl-2 expression.Latar belakang: Restorasi NiCr dapat mengalami proses korosi di dalam saliva artificial. Produk korosi yang dihasilkan adalah substansi Ni yang terlarut di dalam elektrolit saliva. Ni2+ bebas dapat memasuki sel (fibroblas gingiva melalui transport pasif DMT-1. Ni2+ di dalam sel

  11. The Antioxidant, Anti-Inflammatory and Anti-Apoptotic Activities of the Bauhinia Championii Flavone are Connected with Protection Against Myocardial Ischemia/Reperfusion Injury.

    Science.gov (United States)

    Jian, Jie; Xuan, Feifei; Qin, Feizhang; Huang, Renbin

    2016-01-01

    Previous studies have demonstrated that Bauhinia championii flavone (BCF) exhibits anti-oxidative, anti-hypoxic and anti-stress properties. This study was designed to investigate whether BCF has a cardioprotective effect against myocardial ischemia/reperfusion (I/R) injuries in rats and to shed light on its possible mechanism. The model of I/R was established by ligating the left anterior descending coronary artery for 30 min, then reperfusing for 180 min. Hemodynamic changes were continuously monitored. The content of malondialdehyde (MDA) as well as the lactate dehydrogenase (LDH), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities were assessed. The release of interleukin-6 (IL-6) was measured by enzyme-linked immunosorbent assay (ELISA). Apoptosis of cardiomyocytes was determined by caspase-3 activity and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. The expression of TLR4, NF-x03BA;Bp65, Bcl-2 and Bax were detected by western blotting. Pretreatment with BCF significantly reduced the serum levels of LDH, MDA and IL-6, but increased the activities of SOD and GSH-Px. It also attenuated myocardial infarct size, reduced the apoptosis rate and preserved cardiac function. Furthermore, BCF inhibited caspase-3 activity and the expression of TLR4, phosphorylated NF-x03BA;Bp65 and Bax, but enhanced the expression of Bcl-2. These results provide substantial evidence that BCF exerts a protective effect on myocardial I/R injury, which may be attributed to attenuating lipid peroxidation, the inflammatory response and apoptosis. © 2016 The Author(s) Published by S. Karger AG, Basel.