WorldWideScience

Sample records for anti-angiogenic therapy targeting

  1. Targeting Metabolic Symbiosis to Overcome Resistance to Anti-angiogenic Therapy

    Directory of Open Access Journals (Sweden)

    Laura Pisarsky

    2016-05-01

    Full Text Available Despite the approval of several anti-angiogenic therapies, clinical results remain unsatisfactory, and transient benefits are followed by rapid tumor recurrence. Here, we demonstrate potent anti-angiogenic efficacy of the multi-kinase inhibitors nintedanib and sunitinib in a mouse model of breast cancer. However, after an initial regression, tumors resume growth in the absence of active tumor angiogenesis. Gene expression profiling of tumor cells reveals metabolic reprogramming toward anaerobic glycolysis. Indeed, combinatorial treatment with a glycolysis inhibitor (3PO efficiently inhibits tumor growth. Moreover, tumors establish metabolic symbiosis, illustrated by the differential expression of MCT1 and MCT4, monocarboxylate transporters active in lactate exchange in glycolytic tumors. Accordingly, genetic ablation of MCT4 expression overcomes adaptive resistance against anti-angiogenic therapy. Hence, targeting metabolic symbiosis may be an attractive avenue to avoid resistance development to anti-angiogenic therapy in patients.

  2. Metabolic and hypoxic adaptation to anti-angiogenic therapy: a target for induced essentiality.

    Science.gov (United States)

    McIntyre, Alan; Harris, Adrian L

    2015-04-01

    Anti-angiogenic therapy has increased the progression-free survival of many cancer patients but has had little effect on overall survival, even in colon cancer (average 6-8 weeks) due to resistance. The current licensed targeted therapies all inhibit VEGF signalling (Table 1). Many mechanisms of resistance to anti-VEGF therapy have been identified that enable cancers to bypass the angiogenic blockade. In addition, over the last decade, there has been increasing evidence for the role that the hypoxic and metabolic responses play in tumour adaptation to anti-angiogenic therapy. The hypoxic tumour response, through the transcription factor hypoxia-inducible factors (HIFs), induces major gene expression, metabolic and phenotypic changes, including increased invasion and metastasis. Pre-clinical studies combining anti-angiogenics with inhibitors of tumour hypoxic and metabolic adaptation have shown great promise, and combination clinical trials have been instigated. Understanding individual patient response and the response timing, given the opposing effects of vascular normalisation versus reduced perfusion seen with anti-angiogenics, provides a further hurdle in the paradigm of personalised therapeutic intervention. Additional approaches for targeting the hypoxic tumour microenvironment are being investigated in pre-clinical and clinical studies that have potential for producing synthetic lethality in combination with anti-angiogenic therapy as a future therapeutic strategy. © 2015 The Authors. Published under the terms of the CC BY 4.0 license.

  3. Targeting Metabolic Symbiosis to Overcome Resistance to Anti-angiogenic Therapy

    OpenAIRE

    Pisarsky Laura; Bill Ruben; Fagiani Ernesta; Dimeloe Sarah; Goosen Ryan William; Hagmann Jorg; Hess Christoph; Christofori Gerhard

    2016-01-01

    Summary Despite the approval of several anti-angiogenic therapies, clinical results remain unsatisfactory, and transient benefits are followed by rapid tumor recurrence. Here, we demonstrate potent anti-angiogenic efficacy of the multi-kinase inhibitors nintedanib and?sunitinib in a mouse model of breast cancer. However, after an initial regression, tumors resume growth in the absence of active tumor angiogenesis. Gene expression profiling of tumor cells reveals metabolic reprogramming toward...

  4. Realizing the Potential of Vascular Targeted Therapy: The Rationale for Combining Vascular Disrupting Agents and Anti-Angiogenic Agents to Treat Cancer

    DEFF Research Database (Denmark)

    Siemann, D W; Chaplin, D J; Horsman, M R

    2017-01-01

    Vascular targeted therapies (VTTs) are agents that target tumor vasculature and can be classified into two categories: those that inhibit angiogenesis and those that directly interfere with established tumor vasculature. Although both the anti-angiogenic agents (AAs) and the vascular disrupting a...

  5. Mechanisms of resistance to chemotherapeutic and anti-angiogenic drugs as novel targets for pancreatic cancer therapy

    Science.gov (United States)

    Tamburrino, Anna; Piro, Geny; Carbone, Carmine; Tortora, Giampaolo; Melisi, Davide

    2013-01-01

    Pancreatic cancer remains one of the most lethal and poorly understood human malignancies and will continue to be a major unsolved health problem in the 21st century. Despite efforts over the past three decades to improve diagnosis and treatment, the prognosis for patients with pancreatic cancer is extremely poor with or without treatment, and incidence rates are virtually identical to mortality rates. Although advances have been made through the identification of relevant molecular pathways in pancreatic cancer, there is still a critical, unmet need for the translation of these findings into effective therapeutic strategies that could reduce the intrinsic drug resistance of this disease and for the integration of these molecularly targeted agents into established combination chemotherapy and radiotherapy regimens in order to improve patients’ survival. Tumors are heterogeneous cellular entities whose growth and progression depend on reciprocal interactions between genetically altered neoplastic cells and a non-neoplastic microenvironment. To date, most of the mechanisms of resistance studied have been related to tumor cell-autonomous signaling pathways. However, recent data suggest a putative important role of tumor microenvironment in the development and maintenance of resistance to classic chemotherapeutic and targeted therapies. This present review is meant to describe and discuss some of the most important advances in the comprehension of the tumor cell-autonomous and tumor microenvironment-related molecular mechanisms responsible for the resistance of pancreatic cancer to the proapoptotic activity of the classic chemotherapeutic agents and to the most novel anti-angiogenic drugs. We present some of the emerging therapeutic targets for the modulation of this resistant phenotype. PMID:23641216

  6. Integrating Molecular Imaging Approaches to Monitor Prostate Targeted Suicide and Anti-angiogenic Gene Therapy

    Science.gov (United States)

    2005-02-01

    Bruno , M. D., Korfhagen, T. R., Liu, C., Morrisey, E. E., and Whitsett, J. A. (2000). GATA-6 activates transcription of surfactant protein A. J. Biol...the tail vein (for in- travenous administration), peritoneum, prostate, or forepaw. Before imaging, mice were anesthetized with ketamine–xy- lazine...DOTAP:cholesterol DNA complexes [Iyer et al., 2002]. In- travenous delivery of transferin-targeted DNA-PEI poly- plexes results in specific fluc gene

  7. The role of tumor microenvironment in resistance to anti-angiogenic therapy

    Science.gov (United States)

    Ma, Shaolin; Pradeep, Sunila; Hu, Wei; Zhang, Dikai; Coleman, Robert; Sood, Anil

    2018-01-01

    Anti-angiogenic therapy has been demonstrated to increase progression-free survival in patients with many different solid cancers. Unfortunately, the benefit in overall survival is modest and the rapid emergence of drug resistance is a significant clinical problem. Over the last decade, several mechanisms have been identified to decipher the emergence of resistance. There is a multitude of changes within the tumor microenvironment (TME) in response to anti-angiogenic therapy that offers new therapeutic opportunities. In this review, we compile results from contemporary studies related to adaptive changes in the TME in the development of resistance to anti-angiogenic therapy. These include preclinical models of emerging resistance, dynamic changes in hypoxia signaling and stromal cells during treatment, and novel strategies to overcome resistance by targeting the TME. PMID:29560266

  8. Perforated Gastric Ulcer Associated with Anti-Angiogenic Therapy

    Directory of Open Access Journals (Sweden)

    Diogo Libânio

    2017-08-01

    Full Text Available Anti-angiogenic therapy with bevacizumab, an inhibitor of vascular endothelial growth factor, is commonly used in metastatic colorectal cancer and is rarely associated with gastrointestinal perforation, perforation being more frequent in the primary tumor site or at the anastomotic level. We present the case of a 64-year-old male with stage IV rectal adenocarcinoma who was on palliative chemotherapy with FOLFOX and bevacizumab. After the 4th chemotherapy cycle, our patient started fever and epigastric pain. He was hemodynamically stable, and signs of peritoneal irritation were absent. There were no alterations in the abdominal X-ray, and C-reactive protein was markedly elevated. A CT scan revealed a de novo thickness in the gastric antrum. Upper digestive endoscopy showed an ulcerated 40-mm lesion in the angulus, with a 20-mm orifice communicating with an exsudative cavity revested by the omentum. A conservative approach was decided including fasting, broad-spectrum intravenous antibiotics, and proton-pump inhibitors. Subsequent gastroduodenal series showed no contrast extravasation, allowing the resumption of oral nutrition. Esophagogastroduodenoscopy after 8 weeks showed perforation closure. Biopsies did not show neoplastic cells or Heliobacter pylori infection. Although the success in the conservative management of perforation allowing the maintenance of palliative chemotherapy (without bevacizumab, the patient died after 4 months due to liver failure. The reported case shows an uncommon endoscopic finding due to a rare complication of anti-angiogenic therapy. Additionally, it reminds clinicians that a history of gastroduodenal ulcers should be actively sought before starting anti-angiogenic treatment and that suspicion for perforation should be high in these cases.

  9. Biomarkers in Tumor Angiogenesis and Anti-Angiogenic Therapy

    Science.gov (United States)

    Pircher, Andreas; Hilbe, Wolfgang; Heidegger, Isabel; Drevs, Joachim; Tichelli, André; Medinger, Michael

    2011-01-01

    Tumor angiogenesis has been identified to play a critical role in tumor growth and tumor progression, and is regulated by a balance of angiogenic and anti-angiogenic cytokines. Among them VEGF (vascular endothelial growth factor) and its signaling through its receptors are of crucial relevance. Inhibition of VEGF signaling by monoclonal antibodies or small molecules (kinase inhibitors) has already been successfully established for the treatment of different cancer entities and multiple new drugs are being tested in clinical trials. However not all patients are likely to respond to these therapies, but to date there are no reliable biomarkers available to predict therapy response. Many studies integrated biomarker programs in their study protocols, thus several potential biomarkers have been identified which are currently under clinical investigation in prospective randomized studies. This review intends to give an overview of the described potential biomarkers as well as different imaging techniques such as ultrasound and magnetic resonance imaging that can indicate benefit, resistance and toxicity to anti-angiogenic therapies. PMID:22072937

  10. Assessment of response to anti-angiogenic targeted therapy in pulmonary metastatic renal cell carcinoma: R2* value as a predictive biomarker

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Guangyu; Liu, Guiqin; Suo, Shiteng; Liu, Xiaosheng; Xu, Jianrong [Shanghai Jiao Tong University, Department of Radiology, Renji Hospital, School of Medicine, Shanghai (China); Kong, Wen; Zhang, Jin [Shanghai Jiao Tong University, Department of Urinary Surgery, Renji Hospital, School of Medicine, Shanghai (China); Qu, Jianxun [GE Healthcare, Shanghai (China)

    2017-09-15

    To evaluate the utility of MR R2*-mapping and the optimal time-point for assessing the response of pulmonary metastatic renal cell carcinoma (mRCC) to anti-angiogenic targeted therapy (aATT). The exploration-sample group and the validation-sample group consisted of 22 and 16 patients. The parameters of MR R2*-mapping, including the R2* value at each time-point (R2*{sub base}, R2*{sub 1cyc} and R2*{sub 2cyc}) and change between different time-points (R2*{sub (1cyc-base)/base}, R2*{sub (2cyc-base)/base} and R2*{sub (2cyc-1cyc)/1cyc}), were evaluated with a receiver-operating-characteristic analysis, and a cut-off value derived from the clinical outcome was applied to the Kaplan-Meier method to assess the value of R2* mapping and Response-Evaluation-Criteria in Solid Tumours (RECIST) during treatment evaluation. The inter-, intra-observer agreements and inter-scan consistency were excellent (p > 0.80). For the exploration-sample group, the areas under the curve for the parameters of MR R2* mapping were 0.55, 0.60, 0.83, 0.64, 0.88 and 0.83 for R2*{sub base}, R2*{sub 1cyc}, R2*{sub 2cyc}, R2*{sub (1cyc-base)/base}, R2*{sub (2cyc-base)/base} and R2*{sub (2cyc-1cyc)/1cyc.} For the validation-sample, R2*{sub (2cyc-base)/base} better predicted progression-free survival (p = 0.03) than RECIST and other R2* mapping parameters with a lower p value. Assessing aATT outcome based on changes in the R2* value between baseline and second treatment is more accurate than assessment at other time-points and assessment based on the RECIST. (orig.)

  11. Anti-angiogenic therapy and radioimmunotherapy in colon cancer xenografts

    Energy Technology Data Exchange (ETDEWEB)

    Kinuya, Seigo; Yokoyama, Kunihiko; Michigishi, Takatoshi; Tonami, Norihisa [Dept. of Nuclear Medicine, Kanazawa Univ. (Japan); Kawashima, Atsuhiro [Dept. of Pathology (I), Kanazawa Univ. School of Medicine, Kanazawa, Ishikawa (Japan); Kudo, Miho; Kasahara, Yoshihito [Dept. of Pediatrics, Kanazawa University School of Medicine, Kanazawa, Ishikawa (Japan); Watanabe, Naoto [Dept. of Radiology, Toyama Medical and Pharmaceutical University, Toyama (Japan); Shuke, Noriyuki [Dept. of Radiology, Asahikawa Medical College, Asahikawa (Japan); Bunko, Hisashi [Medical Informatics, Kanazawa University Hospital, Kanazawa (Japan)

    2001-09-01

    Angiogenesis is critical to the growth and metastatic process of malignant tumors. An endogenous estrogen metabolite, 2-methoxyestradiol (2-ME), displays anti-angiogenic and anti-tumorigenic effects. The purpose of this investigation was to determine whether exogenously administered 2-ME would enhance the efficacy of radioimmunotherapy (RIT). Experimental RIT with 4.63 MBq of {sup 131}I-A7, an IgG1 anti-colorectal monoclonal antibody, was conducted in mice xenografted with LS180 human colon cancer cells. 2-ME suspended in 0.5% carboxymethylcellulose was administered daily at a dose of 75 mg/kg per day. 2-ME administration suppressed tumor growth and improved the efficacy of RIT in comparison to RIT alone. Tumor volumes on day 13, expressed as a ratio relative to the initial volume, were 12.7{+-}2.95 in the nontreated control, 4.73{+-}0.89 with 2-ME, 3.05{+-}0.37 with RIT and 0.97{+-}0.20 with RIT+2-ME. Immunohistochemistry of tumor sections stained with an antibody against factor VIII demonstrated a decrease in microvessel number within tumors treated with 2-ME (7.9{+-}0.8/200 x field) as compared with that in control tumors (29.9{+-}2.5). Cell proliferation assay at increasing concentrations of 2-ME showed direct cytotoxicity of 2-ME in vitro at 5 {mu}M and greater. In conclusion, 2-ME enhanced the efficacy of RIT with {sup 131}I-A7 via inhibition of angiogenesis within the xenografts. The direct cytotoxicity of 2-ME appears to have contributed to this improvement. Anti-angiogenic therapy may prolong the dormancy of microscopic metastases while RIT may exterminate this population of cells. Therefore, the combined treatment may improve the therapeutic outcome of patients with disseminated cancer. (orig.)

  12. On dynamic tumor eradication conditions under combined chemical/anti-angiogenic therapies

    Science.gov (United States)

    Starkov, Konstantin E.

    2018-02-01

    In this paper ultimate dynamics of the five-dimensional cancer tumor growth model at the angiogenesis phase is studied. This model elaborated by Pinho et al. in 2014 describes interactions between normal/cancer/endothelial cells under chemotherapy/anti-angiogenic agents in tumor growth process. The author derives ultimate upper bounds for normal/tumor/endothelial cells concentrations and ultimate upper and lower bounds for chemical/anti-angiogenic concentrations. Global asymptotic tumor clearance conditions are obtained for two versions: the use of only chemotherapy and the combined application of chemotherapy and anti-angiogenic therapy. These conditions are established as the attraction conditions to the maximum invariant set in the tumor free plane, and furthermore, the case is examined when this set consists only of tumor free equilibrium points.

  13. Sprouting strategies and dead ends in anti-angiogenic targeting of NETs.

    Science.gov (United States)

    Carrasco, Patricia; Zuazo-Gaztelu, Iratxe; Casanovas, Oriol

    2017-07-01

    Neuroendocrine tumors (NETs) are a heterogeneous group of neoplasms that arise from cells of the neuroendocrine system. NETs are characterized by being highly vascularized tumors that produce large amounts of proangiogenic factors. Due to their complexity and heterogeneity, progress in the development of successful therapeutic approaches has been limited. For instance, standard chemotherapy-based therapies have proven to be poorly selective for tumor cells and toxic for normal tissues. Considering the urge to develop an efficient therapy to treat NET patients, vascular targeting has been proposed as a new approach to block tumor growth. This review provides an update of the mechanisms regulating different components of vessels and their contribution to tumor progression in order to develop new therapeutic drugs. Following the description of classical anti-angiogenic therapies that target VEGF pathway, new angiogenic targets such as PDGFs, EGFs, FGFs and semaphorins are further explored. Based on recent research in the field, the combination of therapies that target multiple and different components of vessel formation would be the best approach to specifically target NETs and inhibit tumor growth. © 2017 The authors.

  14. Blood-Based Biomarkers for the Optimization of Anti-Angiogenic Therapies

    Directory of Open Access Journals (Sweden)

    Cristina Rabascio

    2010-05-01

    Full Text Available The dependence of tumor growth and metastasis on blood vessels makes tumor angiogenesis a rational target for therapy. Strategies have been pursued to inhibit neovascularization and to destroy existing tumor vessels, or both. These include direct targeting of endothelial cells, and indirect targeting by inhibiting the release of proangiogenic growth factors by cancer or stromal cells. Many patients benefit from antiangiogenic therapies; thus, development of noninvasive biomarkers of disease response and relapse is a crucial objective to aid in their management. A number of non-invasive tools are described with their potential benefits and limitations. We review currently available candidate biomarkers of anti-angiogenic agent effect. Including these markers into clinical trials may provide insight into appropriate dosing for desired biological effects, appropriate timing of additional therapy, and prediction of individual response. This has important consequences for the clinical use of angiogenesis inhibitors and for drug discovery, not only for optimizing the treatment of cancer, but possibly also for developing therapeutic approaches for various other diseases.

  15. Ferulic Acid Exerts Anti-Angiogenic and Anti-Tumor Activity by Targeting Fibroblast Growth Factor Receptor 1-Mediated Angiogenesis.

    Science.gov (United States)

    Yang, Guang-Wei; Jiang, Jin-Song; Lu, Wei-Qin

    2015-10-12

    Most anti-angiogenic therapies currently being evaluated target the vascular endothelial growth factor (VEGF) pathway; however, the tumor vasculature can acquire resistance to VEGF-targeted therapy by shifting to other angiogenesis mechanisms. Therefore, other therapeutic agents that block non-VEGF angiogenic pathways need to be evaluated. Here, we identified ferulic acid as a novel fibroblast growth factor receptor 1 (FGFR1) inhibitor and a novel agent with potential anti-angiogenic and anti-cancer activities. Ferulic acid demonstrated inhibition of endothelial cell proliferation, migration and tube formation in response to basic fibroblast growth factor 1 (FGF1). In ex vivo and in vivo angiogenesis assays, ferulic acid suppressed FGF1-induced microvessel sprouting of rat aortic rings and angiogenesis. To understand the underlying molecular basis, we examined the effects of ferulic acid on different molecular components and found that ferulic acid suppressed FGF1-triggered activation of FGFR1 and phosphatidyl inositol 3-kinase (PI3K)-protein kinase B (Akt) signaling. Moreover, ferulic acid directly inhibited proliferation and blocked the PI3K-Akt pathway in melanoma cell. In vivo, using a melanoma xenograft model, ferulic acid showed growth-inhibitory activity associated with inhibition of angiogenesis. Taken together, our results indicate that ferulic acid targets the FGFR1-mediated PI3K-Akt signaling pathway, leading to the suppression of melanoma growth and angiogenesis.

  16. Fibrocyte-like cells mediate acquired resistance to anti-angiogenic therapy with bevacizumab

    Science.gov (United States)

    Mitsuhashi, Atsushi; Goto, Hisatsugu; Saijo, Atsuro; Trung, Van The; Aono, Yoshinori; Ogino, Hirokazu; Kuramoto, Takuya; Tabata, Sho; Uehara, Hisanori; Izumi, Keisuke; Yoshida, Mitsuteru; Kobayashi, Hiroaki; Takahashi, Hidefusa; Gotoh, Masashi; Kakiuchi, Soji; Hanibuchi, Masaki; Yano, Seiji; Yokomise, Hiroyasu; Sakiyama, Shoji; Nishioka, Yasuhiko

    2015-01-01

    Bevacizumab exerts anti-angiogenic effects in cancer patients by inhibiting vascular endothelial growth factor (VEGF). However, its use is still limited due to the development of resistance to the treatment. Such resistance can be regulated by various factors, although the underlying mechanisms remain incompletely understood. Here we show that bone marrow-derived fibrocyte-like cells, defined as alpha-1 type I collagen-positive and CXCR4-positive cells, contribute to the acquired resistance to bevacizumab. In mouse models of malignant pleural mesothelioma and lung cancer, fibrocyte-like cells mediate the resistance to bevacizumab as the main producer of fibroblast growth factor 2. In clinical specimens of lung cancer, the number of fibrocyte-like cells is significantly increased in bevacizumab-treated tumours, and correlates with the number of treatment cycles, as well as CD31-positive vessels. Our results identify fibrocyte-like cells as a promising cell biomarker and a potential therapeutic target to overcome resistance to anti-VEGF therapy. PMID:26635184

  17. Exploring the role of anti-angiogenic therapies in prostate cancer: results from the phase 3 trial of sunitinib

    Directory of Open Access Journals (Sweden)

    Himisha Beltran

    2014-08-01

    Full Text Available Prostate cancer is a leading cause of cancer death in men. Despite recent advances in our understanding and treatment of advanced disease, no systemic therapy is curative and new therapies are needed. Targeting angiogenesis is an attractive therapeutic strategy, as angiogenic pathways are upregulated in prostate tumors similar to other malignancies due to imbalance of pro- and anti-angiogenic factors secreted by tumor, endothelial and stromal cells and increased neovasculature. [1] Vascular endothelial growth factor (VEGF is the most well-characterized pro-angiogenenic factor, with several small molecule inhibitors (sunitinib, sorafenib, pazopanib, axitinib, others, antibodies (bevacizumab and other drugs that target the VEGF pathway approved and/or in development for the treatment of a wide range of tumor types.

  18. NI-23BRAIN BREAST METASTASES RESPOND TO ANTI-ANGIOGENIC THERAPY BY MODES OF VASCULAR NORMALIZATION

    Science.gov (United States)

    Emblem, Kyrre; Pinho, Marco; Chandra, Vyshak; Gerstner, Elizabeth; Stufflebeam, Steve; Sorenson, Greg; Harris, Gordon; Freedman, Rachel; Sohl, Jessica; Younger, Jerry; Krop, Ian; Winer, Eric; Lin, Nancy

    2014-01-01

    INTRODUCTION: As systemic therapy improves, brain metastases are increasingly common in patients with breast cancer. Unfortunately, effective therapy with durable control has remained elusive [1]. Combining bevacizumab and cyototoxic chemotherapy is an appealing approach as the anti-angiogenic effect of bevicizumab may improve delivery of cytotoxic drugs to brain tumors. METHODS: We conducted a Phase II study of patients with parenchymal brain metastasis treated with bevacizumab and carboplatin [2]. Patients could have any hormone receptor status or any number of prior therapies. Patients with HER2+ breast cancer also received trastuzamab. Correlative perfusion MRI scans to look at tumor perfusion, blood volume, vessel calibers and relative oxygen saturation (ΔSO2) levels were performed at baseline, day 1, and after 2 months of therapy [3, 4]. For consistency, the largest contrast-enhancing lesion in each patient visible on all three MR visits was selected for analysis. RESULTS: Thirty-eight patients were enrolled in the study of which 32 had, paired evaluable imaging datasets. Compared to baseline, 12/32 patients were identified as responders by a durable increase in ΔSO2 levels at day 1 and at 2 months above a 5% measurement error threshold. The remaining patients were identified by stable (15/32) or reduced (5/32) ΔSO2 levels. Patients responding to therapy showed increased tumor perfusion (Mann-Whitney; P10 µm) were seen across all patients. CONCLUSIONS: Similar to primary brain tumors [2, 3], perfusion MRI demonstrates that anti-angiogenic therapy can induce vascular normalization in a subset of patients with metastatic breast cancer to the brain. Our data indicate that the vascular response may also be associated with improved survival. [1] Lin NU, Lancet Oncol 2013 [2] Sorensen AG, Cancer Res 2012 [3] Emblem KE, Nat Med 2013

  19. Acidic pH reduces VEGF-mediated endothelial cell responses by downregulation of VEGFR-2; relevance for anti-angiogenic therapies.

    Science.gov (United States)

    Faes, Seraina; Uldry, Emilie; Planche, Anne; Santoro, Tania; Pythoud, Catherine; Demartines, Nicolas; Dormond, Olivier

    2016-12-27

    Anti-angiogenic treatments targeting the vascular endothelial growth factor or its receptors have shown clinical benefits. However, impact on long-term survival remains limited. Solid tumors display an acidic microenvironment that profoundly influences their biology. Consequences of acidity on endothelial cells and anti-angiogenic therapies remain poorly characterized and hence are the focus of this study. We found that exposing endothelial cells to acidic extracellular pH resulted in reduced cell proliferation and migration. Also, whereas VEGF increased endothelial cell proliferation and survival at pH 7.4, it had no effect at pH 6.4. Furthermore, in acidic conditions, stimulation of endothelial cells with VEGF did not result in activation of downstream signaling pathways such as AKT. At a molecular level, acidity significantly decreased the expression of VEGFR-2 by endothelial cells. Consequently, anti-angiogenic therapies that target VEGFR-2 such as sunitinib and sorafenib failed to block endothelial cell proliferation in acidic conditions. In vivo, neutralizing tumor acidity with sodium bicarbonate increased the percentage of endothelial cells expressing VEGFR-2 in tumor xenografts. Furthermore, combining sodium bicarbonate with sunitinib provided stronger anti-cancer activity than either treatment alone. Histological analysis showed that sunitinib had a stronger anti-angiogenic effect when combined with sodium bicarbonate. Overall, our results show that endothelial cells prosper independently of VEGF in acidic conditions partly as a consequence of decreased VEGFR-2 expression. They further suggest that strategies aiming to raise intratumoral pH can improve the efficacy of anti-VEGF treatments.

  20. Modeling tumor-associated edema in gliomas during anti-angiogenic therapy and its impact on imageable tumor

    Directory of Open Access Journals (Sweden)

    Andrea eHawkins-Daarud

    2013-04-01

    Full Text Available Glioblastoma, the most aggressive form of primary brain tumor is predominantly assessed with gadolinium-enhanced T1-weighted (T1Gd and T2-weighted magnetic resonance imaging (MRI. Pixel intensity enhancement on the T1Gd image is understood to correspond to the gadolinium contrast agent leaking from the tumor-induced neovasculature, while hyperintensity on the T2/FLAIR images corresponds with edema and infiltrated tumor cells. None of these modalities directly show tumor cells; rather, they capture abnormalities in the microenvironment caused by the presence of tumor cells. Thus, assessing disease response after treatments impacting the microenvironment remains challenging through the obscuring lens of MR imaging. Anti-angiogenic therapies have been used in the treatment of gliomas with spurious results ranging from no apparent response to significant imaging improvement with the potential for extremely diffuse patterns of tumor recurrence on imaging and autopsy. Anti-angiogenic treatment normalizes the vasculature, effectively decreasing vessel permeability and thus reducing tumor-induced edema, drastically altering T2-weighted MRI. We extend a previously developed mathematical model of glioma growth to explicitly incorporate edema formation allowing us to directly characterize and potentially predict the effects of anti-angiogenics on imageable tumor growth. A comparison of simulated glioma growth and imaging enhancement with and without bevacizumab supports the current understanding that anti-angiogenic treatment can serve as a surrogate for steroids and the clinically-driven hypothesis that anti-angiogenic treatment may not have any significant effect on the growth dynamics of the overall tumor-cell populations. However, the simulations do illustrate a potentially large impact on the level of edematous extracellular fluid, and thus on what would be imageable on T2/FLAIR MR for tumors with lower proliferation rates.

  1. An immature B cell population from peripheral blood serves as surrogate marker for monitoring tumor angiogenesis and anti-angiogenic therapy in mouse models.

    Science.gov (United States)

    Fagiani, Ernesta; Bill, Ruben; Pisarsky, Laura; Ivanek, Robert; Rüegg, Curzio; Christofori, Gerhard

    2015-07-01

    Tumor growth depends on the formation of new blood vessels (tumor angiogenesis) either from preexisting vessels or by the recruitment of bone marrow-derived cells. Despite encouraging results obtained with preclinical cancer models, the therapeutic targeting of tumor angiogenesis has thus far failed to deliver an enduring clinical response in cancer patients. One major obstacle for improving anti-angiogenic therapy is the lack of validated biomarkers, which allow patient stratification for suitable treatment and a rapid assessment of therapy response. Toward these goals, we have employed several mouse models of tumor angiogenesis to identify cell populations circulating in their blood that correlated with the extent of tumor angiogenesis and therapy response. Flow cytometry analyses of different combinations of cell surface markers that define subsets of bone marrow-derived cells were performed on peripheral blood mononuclear cells from tumor-bearing and healthy mice. We identified one cell population, CD45(dim)VEGFR1(-)CD31(low), that was increased in levels during active tumor angiogenesis in a variety of transgenic and syngeneic transplantation mouse models of cancer. Treatment with various anti-angiogenic drugs did not affect CD45(dim)VEGFR1(-)CD31(low) cells in healthy mice, whereas in tumor-bearing mice, a consistent reduction in their levels was observed. Gene expression profiling of CD45(dim)VEGFR1(-)CD31(low) cells characterized these cells as an immature B cell population. These immature B cells were then directly validated as surrogate marker for tumor angiogenesis and of pharmacologic responses to anti-angiogenic therapies in various mouse models of cancer.

  2. Immuno-Expression of Endoglin and Smooth Muscle Actin in the Vessels of Brain Metastases. Is There a Rational for Anti-Angiogenic Therapy?

    Directory of Open Access Journals (Sweden)

    Valeria Barresi

    2014-04-01

    Full Text Available Despite ongoing clinical trials, the efficacy of anti-angiogenic drugs for the treatment of brain metastases (BM is still questionable. The lower response rate to anti-angiogenic therapy in the presence of BM than in metastatic disease involving other sites suggests that BM may be insensitive to these drugs, although the biological reasons underlining this phenomenon are still to be clarified. With the aim of assessing whether the targets of anti-angiogenic therapies are actually present in BM, in the present study, we analyzed the microvessel density (MVD, a measure of neo-angiogenesis, and the vascular phenotype (mature vs. immature in the tumor tissue of a series of BM derived from different primary tumors. By using immunohistochemistry against endoglin, a specific marker for newly formed vessels, we found that neo-angiogenesis widely varies in BM depending on the site of the primary tumor, as well as on its histotype. According to our results, BM from lung cancer displayed the highest MVD counts, while those from renal carcinoma had the lowest. Then, among BM from lung cancer, those from large cell and adenocarcinoma histotypes had significantly higher MVD counts than those originating from squamous cell carcinoma (p = 0.0043; p = 0.0063. Of note, MVD counts were inversely correlated with the maturation index of the endoglin-stained vessels, reflected by the coverage of smooth muscle actin (SMA positive pericytes (r = −0.693; p < 0.0001. Accordingly, all the endoglin-positive vessels in BM from pulmonary squamous cell carcinoma and renal carcinoma, displayed a mature phenotype, while vessels with an immature phenotype were found in highly vascularized BM from pulmonary large cell and adenocarcinoma. The low MVD and mature phenotype observed in BM from some primary tumors may account for their low sensitivity to anti-angiogenic therapies. Although our findings need to be validated in correlative studies with a clinical response, this should

  3. Anti-angiogenic effect of triptolide in rheumatoid arthritis by targeting angiogenic cascade.

    Directory of Open Access Journals (Sweden)

    Xiangying Kong

    Full Text Available Rheumatoid arthritis (RA is characterized by a pre-vascular seriously inflammatory phase, followed by a vascular phase with high increase in vessel growth. Since angiogenesis has been considered as an essential event in perpetuating inflammatory and immune responses, as well as supporting pannus growth and development of RA, inhibition of angiogenesis has been proposed as a novel therapeutic strategy for RA. Triptolide, a diterpenoid triepoxide from Tripterygium wilfordii Hook F, has been extensively used in treatment of RA patients. It also acts as a small molecule inhibitor of tumor angiogenesis in several cancer types. However, it is unclear whether triptolide possesses an anti-angiogenic effect in RA. To address this problem, we constructed collagen-induced arthritis (CIA model using DA rats by the injection of bovine type II collagen. Then, CIA rats were treated with triptolide (11-45 µg/kg/day starting on the day 1 after first immunization. The arthritis scores (P<0.05 and the arthritis incidence (P<0.05 of inflamed joints were both significantly decreased in triptolide-treated CIA rats compared to vehicle CIA rats. More interestingly, doses of 11~45 µg/kg triptolide could markedly reduce the capillaries, small, medium and large vessel density in synovial membrane tissues of inflamed joints (all P<0.05. Moreover, triptolide inhibited matrigel-induced cell adhesion of HFLS-RA and HUVEC. It also disrupted tube formation of HUVEC on matrigel and suppressed the VEGF-induced chemotactic migration of HFLS-RA and HUVEC, respectively. Furthermore, triptolide significantly reduced the expression of angiogenic activators including TNF-α, IL-17, VEGF, VEGFR, Ang-1, Ang-2 and Tie2, as well as suppressed the IL1-β-induced phosphorylated of ERK, p38 and JNK at protein levels. In conclusion, our data suggest for the first time that triptolide may possess anti-angiogenic effect in RA both in vivo and in vitro assay systems by downregulating the

  4. Early response assessment in patients with multiple myeloma during anti-angiogenic therapy using arterial spin labelling: first clinical results

    Energy Technology Data Exchange (ETDEWEB)

    Fenchel, Michael [Eberhard-Karls University, Department of Diagnostic and Interventional Radiology, Tuebingen (Germany); Eberhard-Karls University, Department of Diagnostic and Interventional Neuroradiology, Tuebingen (Germany); Konaktchieva, Marina [Eberhard-Karls University, Department of Internal Medicine, Gastroenterology, Tuebingen (Germany); Weisel, Katja; Kraus, Sabina [Eberhard-Karls University, Department of Internal Medicine, Hematology, Tuebingen (Germany); Brodoefel, Harald; Claussen, Claus D.; Horger, Marius [Eberhard-Karls University, Department of Diagnostic and Interventional Radiology, Tuebingen (Germany)

    2010-12-15

    To determine if arterial-spin-labelling (ASL) MRI can reliably detect early response to anti-angiogenic therapy in patients with multiple myeloma by comparison with clinical/haematological response. Nineteen consecutive patients (10 men; mean age 63.5 {+-} 9.1 years) were included in the present study. Inclusion criteria were diagnosis of stage III multiple myeloma and clinical indication for therapeutical administration of bortezomib or lenalidomide. We performed MRI on 3.0T MR in the baseline setting, 3 weeks after onset of therapy and after 8 weeks. Clinical responses were determined on the basis of international uniform response criteria in correlation with haematological parameters and medium-term patient outcome. MRI studies were performed after approval by the local institutional review board. Fifteen patients responded to anti-myeloma therapy; 4/19 patients were non-responders to therapy. Mean tumour perfusion assessed by ASL-MRI in a reference lesion was 220.7 {+-} 132.5 ml min{sup -1} 100 g{sup -1} at baseline, and decreased to 125.7 {+-} 86.3 (134.5 {+-} 150.9) ml min{sup -1} 100 g{sup -1} 3 (8) weeks after onset of therapy (P < 0.02). The mean decrease in paraproteinaemia at week 3 (8) was 52.3 {+-} 47.7% (58.2 {+-} 58.7%), whereas {beta}2-microglobulinaemia decreased by 20.3 {+-} 53.1% (23.3 {+-} 57.0%). Correlation of ASL perfusion with outcome was significant (P = 0.0037). ASL tumour perfusion measurements are a valuable surrogate parameter for early assessment of response to novel anti-angiogenic therapy. (orig.)

  5. ADC histograms predict response to anti-angiogenic therapy in patients with recurrent high-grade glioma

    Energy Technology Data Exchange (ETDEWEB)

    Nowosielski, Martha; Tinkhauser, Gerd; Stockhammer, Guenther [Innsbruck Medical University, Department of Neurology, Innsbruck (Austria); Recheis, Wolfgang; Schocke, Michael; Gotwald, Thaddaeus [Innsbruck Medical University, Department of Radiology, Innsbruck (Austria); Goebel, Georg [Innsbruck Medical University, Department of Medical Statistics, Informatics and Health Economics, Innsbruck (Austria); Gueler, Oezguer [Innsbruck Medical University, 4D Visualization Laboratory, University Clinic of Oto-, Rhino- and Laryngology, Innsbruck (Austria); Kostron, Herwig [Innsbruck Medical University, Department of Neurosurgery, Innsbruck (Austria); Hutterer, Markus [Innsbruck Medical University, Department of Neurology, Innsbruck (Austria); Paracelsus Medical University Salzburg-Christian Doppler Hospital, Department of Neurology, Salzburg (Austria)

    2011-04-15

    The purpose of this study is to evaluate apparent diffusion coefficient (ADC) maps to distinguish anti-vascular and anti-tumor effects in the course of anti-angiogenic treatment of recurrent high-grade gliomas (rHGG) as compared to standard magnetic resonance imaging (MRI). This retrospective study analyzed ADC maps from diffusion-weighted MRI in 14 rHGG patients during bevacizumab/irinotecan (B/I) therapy. Applying image segmentation, volumes of contrast-enhanced lesions in T1 sequences and of hyperintense T2 lesions (hT2) were calculated. hT2 were defined as regions of interest (ROI) and registered to corresponding ADC maps (hT2-ADC). Histograms were calculated from hT2-ADC ROIs. Thereafter, histogram asymmetry termed ''skewness'' was calculated and compared to progression-free survival (PFS) as defined by the Response Assessment Neuro-Oncology (RANO) Working Group criteria. At 8-12 weeks follow-up, seven (50%) patients showed a partial response, three (21.4%) patients were stable, and four (28.6%) patients progressed according to RANO criteria. hT2-ADC histograms demonstrated statistically significant changes in skewness in relation to PFS at 6 months. Patients with increasing skewness (n = 11) following B/I therapy had significantly shorter PFS than did patients with decreasing or stable skewness values (n = 3, median percentage change in skewness 54% versus -3%, p = 0.04). In rHGG patients, the change in ADC histogram skewness may be predictive for treatment response early in the course of anti-angiogenic therapy and more sensitive than treatment assessment based solely on RANO criteria. (orig.)

  6. Immunological, anti-angiogenic and clinical effects of intratumoral interleukin 12 electrogene therapy combined with metronomic cyclophosphamide in dogs with spontaneous cancer: A pilot study.

    Science.gov (United States)

    Cicchelero, Laetitia; Denies, Sofie; Vanderperren, Katrien; Stock, Emmelie; Van Brantegem, Leen; de Rooster, Hilde; Sanders, Niek N

    2017-08-01

    The immunological, anti-angiogenic and clinical effects of metronomic cyclophosphamide and 3 consecutive intratumoral interleukin (IL)-12 gene therapy (electrogene therapy (EGT)) treatments were evaluated in 6 dogs with spontaneous cancer. In all dogs, a decrease in peripheral leukocytes 2 days after IL-12 EGT coincided with erythema and swelling of the tumor. In the tumor, a transient increase in IL-12 levels was measured, whereas a continuous increase in interferon γ (IFNγ) and thrombospondin 1 (TSP-1) were determined in contrast to a continuous decrease in vascular endothelial growth factor (VEGF). In the serum, a transient increase in IL-12 and IL-10 levels were noted in contrast to a transient decrease in VEGF and TSP-1. The treatment resulted in a significant anti-angiogenic effect. Although all primary tumors continued to progress in time, this progression was slower than before treatment according to the contrast-enhanced ultrasound data. Besides the encouraging immunostimulatory and anti-angiogenic effects observed in all dogs we also noticed in 4 out of 6 dogs clinically relevant improvements in quality of life and weight. These results hold great promise for combinatorial strategies of IL-12 EGT and metronomic chemotherapy with conventional antitumor (immuno)therapies. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Irradiation-induced angiosarcoma and anti-angiogenic therapy: A therapeutic hope?

    Energy Technology Data Exchange (ETDEWEB)

    Azzariti, Amalia, E-mail: a.azzariti@oncologico.bari.it [Clinical and Preclinical Pharmacology Laboratory, National Cancer Research Centre, Istituto Tumori Giovanni Paolo II, Viale O. Flacco, 65, 70124 Bari (Italy); Porcelli, Letizia [Clinical and Preclinical Pharmacology Laboratory, National Cancer Research Centre, Istituto Tumori Giovanni Paolo II, Viale O. Flacco, 65, 70124 Bari (Italy); Mangia, Anita; Saponaro, Concetta [Functional Biomorphology Laboratory, National Cancer Research Centre, Istituto Tumori Giovanni Paolo II, Viale O. Flacco, 65, 70124 Bari (Italy); Quatrale, Anna E. [Clinical and Preclinical Pharmacology Laboratory, National Cancer Research Centre, Istituto Tumori Giovanni Paolo II, Viale O. Flacco, 65, 70124 Bari (Italy); Popescu, Ondina S. [Department of Pathology, National Cancer Research Centre, Istituto Tumori Giovanni Paolo II, Viale O. Flacco, 65, 70124 Bari (Italy); Strippoli, Sabino [Medical Oncology Unit, National Cancer Research Centre, Istituto Tumori Giovanni Paolo II, Viale O. Flacco, 65, 70124 Bari (Italy); Simone, Gianni [Department of Pathology, National Cancer Research Centre, Istituto Tumori Giovanni Paolo II, Viale O. Flacco, 65, 70124 Bari (Italy); Paradiso, Angelo [Experimental Medical Oncology, National Cancer Research Centre, Istituto Tumori Giovanni Paolo II, Viale O. Flacco, 65, 70124 Bari (Italy); Guida, Michele [Medical Oncology Unit, National Cancer Research Centre, Istituto Tumori Giovanni Paolo II, Viale O. Flacco, 65, 70124 Bari (Italy)

    2014-02-15

    Angiosarcomas are rare soft-tissue sarcomas of endothelial cell origin. They can be sporadic or caused by therapeutic radiation, hence secondary breast angiosarcomas are an important subgroup of patients. Assessing the molecular biology of angiosarcomas and identify specific targets for treatment is challenging. There is currently great interest in the role of angiogenesis and of angiogenic factors associated with tumor pathogenesis and as targets for treatment of angiosarcomas. A primary cell line derived from a skin fragment of a irradiation-induced angiosarcoma patient was obtained and utilized to evaluate cell biomarkers CD31, CD34, HIF-1alpha and VEGFRs expression by immunocytochemistry and immunofluorescence, drugs cytotoxicity by cell counting and VEGF release by ELISA immunoassay. In addition to previous biomarkers, FVIII and VEGF were also evaluated on tumor specimens by immunohistochemistry to further confirm the diagnosis. We targeted the VEGF–VEGFR-2 axis of tumor angiogenesis with two different class of vascular targeted drugs; caprelsa, the VEGFR-2/EGFR/RET inhibitor and bevacizumab the anti-VEGF monoclonal antibody. We found the same biomarkers expression either in tumor specimens and in the cell line derived from tumor. In vitro experiments demonstrated that angiogenesis plays a pivotal role in the progression of this tumor as cells displayed high level of VEGFR-2, HIF-1 alpha strongly accumulated into the nucleus and the pro-angiogenic factor VEGF was released by cells in culture medium. The evaluation of caprelsa and bevacizumab cytotoxicity demonstrated that both drugs were effective in inhibiting tumor proliferation. Due to these results, we started to treat the patient with pazopanib, which was the unique tyrosine kinase inhibitor available in Italy through a compassionate supply program, obtaining a long lasting partial response. Our data suggest that the study of the primary cell line could help physicians in choosing a therapeutic approach

  8. Next generation metronomic chemotherapy-report from the Fifth Biennial International Metronomic and Anti-angiogenic Therapy Meeting, 6-8 May 2016, Mumbai.

    Science.gov (United States)

    Pantziarka, Pan; Hutchinson, Lisa; André, Nicolas; Benzekry, Sébastien; Bertolini, Francesco; Bhattacharjee, Atanu; Chiplunkar, Shubhada; Duda, Dan G; Gota, Vikram; Gupta, Sudeep; Joshi, Amit; Kannan, Sadhana; Kerbel, Robert; Kieran, Mark; Palazzo, Antonella; Parikh, Aparna; Pasquier, Eddy; Patil, Vijay; Prabhash, Kumar; Shaked, Yuval; Sholler, Giselle Saulnier; Sterba, Jaroslav; Waxman, David J; Banavali, Shripad

    2016-01-01

    The 5 th Biennial Metronomic and Anti-angiogenic Therapy Meeting was held on 6 th - 8 th May in the Indian city of Mumbai. The meeting brought together a wide range of clinicians and researchers interested in metronomic chemotherapy, anti-angiogenics, drug repurposing and combinations thereof. Clinical experiences, including many from India, were reported and discussed in three symposia covering breast cancer, head and neck cancers and paediatrics. On the pre-clinical side research into putative mechanisms of action, and the interactions between low dose metronomic chemotherapy and angiogenesis and immune responses, were discussed in a number of presentations. Drug repurposing was discussed both in terms of clinical results, particularly with respect to angiosarcoma and high-risk neuroblastoma, and in pre-clinical settings, particularly the potential for peri-operative interventions. However, it was clear that there remain a number of key areas of challenge, particularly in terms of definitions, perceptions in the wider oncological community, mechanisms of action and predictive biomarkers. While the potential for metronomics and drug repurposing in low and middle income countries remains a key theme, it is clear that there is also considerable potential for clinically relevant improvements in patient outcomes even in high income economies.

  9. Vicrostatin - an anti-invasive multi-integrin targeting chimeric disintegrin with tumor anti-angiogenic and pro-apoptotic activities.

    Directory of Open Access Journals (Sweden)

    Radu O Minea

    2010-06-01

    Full Text Available Similar to other integrin-targeting strategies, disintegrins have previously shown good efficacy in animal cancer models with favorable pharmacological attributes and translational potential. Nonetheless, these polypeptides are notoriously difficult to produce recombinantly due to their particular structure requiring the correct pairing of multiple disulfide bonds for biological activity. Here, we show that a sequence-engineered disintegrin (called vicrostatin or VCN can be reliably produced in large scale amounts directly in the oxidative cytoplasm of Origami B E. coli. Through multiple integrin ligation (i.e., alphavbeta3, alphavbeta5, and alpha5beta1, VCN targets both endothelial and cancer cells significantly inhibiting their motility through a reconstituted basement membrane. Interestingly, in a manner distinct from other integrin ligands but reminiscent of some ECM-derived endogenous anti-angiogenic fragments previously described in the literature, VCN profoundly disrupts the actin cytoskeleton of endothelial cells (EC inducing a rapid disassembly of stress fibers and actin reorganization, ultimately interfering with EC's ability to invade and form tubes (tubulogenesis. Moreover, here we show for the first time that the addition of a disintegrin to tubulogenic EC sandwiched in vitro between two Matrigel layers negatively impacts their survival despite the presence of abundant haptotactic cues. A liposomal formulation of VCN (LVCN was further evaluated in vivo in two animal cancer models with different growth characteristics. Our data demonstrate that LVCN is well tolerated while exerting a significant delay in tumor growth and an increase in the survival of treated animals. These results can be partially explained by potent tumor anti-angiogenic and pro-apoptotic effects induced by LVCN.

  10. ICAM-1-Targeted, Lcn2 siRNA-Encapsulating Liposomes are Potent Anti-angiogenic Agents for Triple Negative Breast Cancer.

    Science.gov (United States)

    Guo, Peng; Yang, Jiang; Jia, Di; Moses, Marsha A; Auguste, Debra T

    2016-01-01

    Lipocalin 2 (Lcn2) is a promising therapeutic target as well as a potential diagnostic biomarker for breast cancer. It has been previously shown to promote breast cancer progression by inducing the epithelial to mesenchymal transition in breast cancer cells as well as by enhancing angiogenesis. Lcn2 levels in urine and tissue samples of breast cancer patients has also been correlated with breast cancer status and poor patient prognosis. In this study, we have engineered a novel liposomal small interfering RNA (siRNA) delivery system to target triple negative breast cancer (TNBC) via a recently identified molecular target, intercellular adhesion molecule-1 (ICAM-1). This ICAM-1-targeted, Lcn2 siRNA- encapsulating liposome (ICAM-Lcn2-LP) binds human TNBC MDA-MB-231cells significantly stronger than non-neoplastic MCF-10A cells. Efficient Lcn2 knockdown by ICAM-Lcn2-LPs led to a significant reduction in the production of vascular endothelial growth factor (VEGF) from MDA-MB-231 cells, which, in turn, led to reduced angiogenesis both in vitro and in vivo. Angiogenesis (neovascularization) is a requirement for solid tumor growth and progression, and its inhibition is an important therapeutic strategy for human cancers. Our results indicate that a tumor-specific strategy such as the TNBC-targeted, anti-angiogenic therapeutic approach developed here, may be clinically useful in inhibiting TNBC progression.

  11. Penduliflaworosin, a Diterpenoid from Croton crassifolius, Exerts Anti-Angiogenic Effect via VEGF Receptor-2 Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Yeyin Liang

    2017-01-01

    Full Text Available Anti-angiogenesis targeting vascular endothelial growth factor receptor-2 (VEGFR-2 has been considered as an important strategy for cancer therapy. Penduliflaworosin is a diterpenoid isolated from the plant Croton crassifolius. Our previous study showed that this diterpenoid possesses strong anti-angiogenic activity by inhibiting vessel formation in zebrafish. This study was conducted to further investigate the anti-angiogenic activity and mechanism of penduliflaworosin. Results revealed that penduliflaworosin significantly inhibited VEGF-induced angiogenesis processes including proliferation, invasion, migration, and tube formation of human umbilical vein endothelial cells (HUVECs. Moreover, it notably inhibited VEGF-induced sprout formation of aortic rings and blocked VEGF-induced vessel formation in mice. Western blotting studies showed that penduliflaworosin inhibited phosphorylation of the VEGF receptor-2 and its downstream signaling mediators in HUVECs, suggesting that the anti-angiogenic activity was due to an interference with the VEGF/VEGF receptor-2 pathway. In addition, molecular docking simulation indicated that penduliflaworosin could form hydrogen bonds within the ATP-binding region of the VEGF receptor-2 kinase unit. Finally, cytotoxicity assay showed that penduliflaworosin possessed little toxicity toward both cancer and normal cells. Taken together, our findings demonstrate that penduliflaworosin exerts its anti-angiogenic effect via the VEGF receptor-2 signaling pathway. The anti-angiogenic property and low cytotoxicity of penduliflaworosin suggest that it may be useful in cancer treatments.

  12. Perfusion CT allows prediction of therapy response in non-small cell lung cancer treated with conventional and anti-angiogenic chemotherapy.

    Science.gov (United States)

    Tacelli, Nunzia; Santangelo, Teresa; Scherpereel, Arnaud; Duhamel, Alain; Deken, Valérie; Klotz, Ernst; Cortot, Alexis; Lafitte, Jean-Jacques; Wallyn, Frédéric; Remy, Jacques; Remy-Jardin, Martine

    2013-08-01

    To determine whether CT can depict early perfusion changes in lung cancer treated by anti-angiogenic drugs, allowing prediction of response. Patients with non-small cell lung cancer, treated by conventional chemotherapy with (Group 1; n = 17) or without (Group 2; n = 23) anti-vascular endothelial growth factor (anti-VEGF) drug (bevacizumab) underwent CT perfusion before (TIME 0) and after 1 (TIME 1), 3 (TIME 2) and 6 (TIME 3) cycles of chemotherapy. The CT parameters evaluated included: (1) total tumour vascular volume (TVV) and total tumour extravascular flow (TEF); (2) RECIST (Response Evaluation Criteria in Solid Tumours) measurements. Tumour response was also assessed on the basis of the clinicians' overall evaluation. In Group 1, significant reduction in perfusion was identified between baseline and: (1) TIME 1 (TVV, P = 0.0395; TEF, P = 0.015); (2) TIME 2 (TVV, P = 0.0043; TEF, P Perfusion CT demonstrates early changes in lung cancer vascularity under anti-angiogenic chemotherapy that may help predict therapeutic response. • Perfusion CT has the potential of providing in vivo information about tumour vasculature. • CT depicts early and specific perfusion changes in NSCLC under anti-angiogenic drugs. • Specific therapeutic effects of anti-angiogenic drugs can be detected before tumour shrinkage. • Early perfusion changes can help predict therapeutic response to anti-angiogenic treatment. • Perfusion CT could be a non-invasive tool to monitor anti-angiogenic treatment.

  13. Anti-angiogenic treatment of gastrointestinal malignancies.

    Science.gov (United States)

    Salmon, J Stuart; Lockhart, A Craig; Berlin, Jordan

    2005-01-01

    The scientific rationale to block angiogenesis as a treatment strategy for human cancer has been developed over the last 30 years, but is only now entering the clinical arena. Preclinical studies have demonstrated the importance of the vascular endothelial growth factor (VEGF) pathways in both physiologic and pathologic angiogenesis, and have led to the development of approaches to block its role in tumor angiogenesis. Bevacizumab is an antibody to VEGF and has been shown to prolong survival when given with chemotherapy in the treatment of metastatic colorectal cancer (CRC). Although this is the first anti-angiogenic treatment to be approved for the treatment of human epithelial malignancy, a number of other approaches currently are in development. Soluble chimeric receptors to sequester serum VEGF and monoclonal antibodies against VEGF receptors have both shown considerable promise in the laboratory and are being brought into clinical investigation. A number of small-molecule tyrosine kinase inhibitors that have activity against VEGF receptors also are in clinical trials. Although these novel treatments are being pioneered in CRC, anti-angiogenic approaches also are being tested in the treatment of other gastrointestinal malignancies. Anti-VEGF therapy has shown promise in such traditionally resistant tumors as pancreatic cancer and hepatocellular carcinoma. This review will examine the preclinical foundation and then focus on the clinical studies of anti-VEGF therapy in gastrointestinal cancers.

  14. Circulating anti-retinal antibodies in response to anti-angiogenic therapy in exudative age-related macular degeneration.

    Science.gov (United States)

    Kubicka-Trząska, Agnieszka; Wilańska, Joanna; Romanowska-Dixon, Bożena; Sanak, Marek

    2014-12-01

    To determine changes in anti-retinal antibodies (ARAs) during anti-VEGF therapy in patients with exudative age-related macular degeneration (AMD) and to assess the correlations between ARAs and disease activity. The study comprised 98 patients treated with intravitreal bevacizumab. The ophthalmic examination included best corrected visual acuity (BCVA), slit lamp biomicroscopy, fundoscopy, fluorescein angiography (FA), and optical coherence tomography (OCT). Serum ARAs levels were assessed by indirect immunofluorescence (IIF) on normal monkey retina substrate. These studies were repeated at 4 week intervals within 8 months of a follow-up. The sera of 50 sex- and age-matched healthy subjects were used as controls. At baseline examination, 94 (95.5%) of the 98 patients were positive for ARAs. The ARAs titres were significantly higher (p = 0.0000) than in controls. A positive correlation was found between titres of ARAs and the diameter of choroidal neovascularization (CNV) as measured by FA (p = 0.0000), and central retinal thickness (CRT) assessed by OCT (p = 0.0000). A positive correlation was also found between the diameter of CNV, CRT and the complexity of circulating ARAs. Following treatment all patients demonstrated significant decrease in ARAs levels as well as improvement of BCVA, reduction of subretinal fluid on OCT and decreased leakage on FA. Changes in serum ARAs levels occurred in parallel with clinical outcomes of anti-VEGF therapy. Treatment reduced serum levels of ARAs, with the greatest reduction occurring during the 'loading' phase. This study demonstrated that ARAs may act as a serum biomarker of the efficacy of anti-VEGF therapy. © 2014 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  15. Metabolic Symbiosis Enables Adaptive Resistance to Anti-angiogenic Therapy that Is Dependent on mTOR Signaling

    Directory of Open Access Journals (Sweden)

    Elizabeth Allen

    2016-05-01

    Full Text Available Therapeutic targeting of tumor angiogenesis with VEGF inhibitors results in demonstrable, but transitory efficacy in certain human tumors and mouse models of cancer, limited by unconventional forms of adaptive/evasive resistance. In one such mouse model, potent angiogenesis inhibitors elicit compartmental reorganization of cancer cells around remaining blood vessels. The glucose and lactate transporters GLUT1 and MCT4 are induced in distal hypoxic cells in a HIF1α-dependent fashion, indicative of glycolysis. Tumor cells proximal to blood vessels instead express the lactate transporter MCT1, and p-S6, the latter reflecting mTOR signaling. Normoxic cancer cells import and metabolize lactate, resulting in upregulation of mTOR signaling via glutamine metabolism enhanced by lactate catabolism. Thus, metabolic symbiosis is established in the face of angiogenesis inhibition, whereby hypoxic cancer cells import glucose and export lactate, while normoxic cells import and catabolize lactate. mTOR signaling inhibition disrupts this metabolic symbiosis, associated with upregulation of the glucose transporter GLUT2.

  16. In vitro and in vivo anti-angiogenic activities of Panduratin A.

    Directory of Open Access Journals (Sweden)

    Siew-Li Lai

    Full Text Available Targeting angiogenesis has emerged as an attractive and promising strategy in anti-cancer therapeutic development. The present study investigates the anti-angiogenic potential of Panduratin A (PA, a natural chalcone isolated from Boesenbergia rotunda by using both in vitro and in vivo assays.PA exerted selective cytotoxicity on human umbilical vein endothelial cells (HUVECs with IC(50 value of 6.91 ± 0.85 µM when compared to human normal fibroblast and normal liver epithelial cells. Assessment of the growth kinetics by cell impedance-based Real-Time Cell Analyzer showed that PA induced both cytotoxic and cytostatic effects on HUVECs, depending on the concentration used. Results also showed that PA suppressed VEGF-induced survival and proliferation of HUVECs. Furthermore, endothelial cell migration, invasion, and morphogenesis or tube formation demonstrated significant time- and dose-dependent inhibition by PA. PA also suppressed matrix metalloproteinase-2 (MMP-2 secretion and attenuated its activation to intermediate and active MMP-2. In addition, PA suppressed F-actin stress fiber formation to prevent migration of the endothelial cells. More importantly, anti-angiogenic potential of PA was also evidenced in two in vivo models. PA inhibited neo-vessels formation in murine Matrigel plugs, and angiogenesis in zebrafish embryos.Taken together, our study demonstrated the distinctive anti-angiogenic properties of PA, both in vitro and in vivo. This report thus reveals another biological activity of PA in addition to its reported anti-inflammatory and anti-cancer activities, suggestive of PA's potential for development as an anti-angiogenic agent for cancer therapy.

  17. Perfusion CT allows prediction of therapy response in non-small cell lung cancer treated with conventional and anti-angiogenic chemotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Tacelli, Nunzia; Santangelo, Teresa; Remy, Jacques [University of Lille Nord de France, Department of Thoracic Imaging, Hospital Calmette (EA 2694), Lille (France); University of Lille Nord de France, Faculty of Medicine, Henri Warembourg, Lille (France); Scherpereel, Arnaud; Cortot, Alexis; Wallyn, Frederic [University of Lille Nord de France, Faculty of Medicine, Henri Warembourg, Lille (France); University of Lille Nord de France, Department of Pulmonary and Thoracic Oncology, Lille (France); Duhamel, Alain; Deken, Valerie [University of Lille Nord de France, Faculty of Medicine, Henri Warembourg, Lille (France); University of Lille Nord de France, Department of Medical Statistics, Lille (France); Klotz, Ernst [Siemens Healthcare, Computed Tomography Division, Forchheim (Germany); Lafitte, Jean-Jacques [University of Lille Nord de France, Faculty of Medicine, Henri Warembourg, Lille (France); University of Lille Nord de France, Department of Pulmonary and Thoracic Oncology, Lille (France); Pasteur Institute of Lille, INSERM unit 1019, CIIL, Lille (France); Remy-Jardin, Martine [University of Lille Nord de France, Department of Thoracic Imaging, Hospital Calmette (EA 2694), Lille (France); University of Lille Nord de France, Faculty of Medicine, Henri Warembourg, Lille (France); Hospital Calmette, Department of Thoracic Imaging, Lille cedex (France)

    2013-08-15

    To determine whether CT can depict early perfusion changes in lung cancer treated by anti-angiogenic drugs, allowing prediction of response. Patients with non-small cell lung cancer, treated by conventional chemotherapy with (Group 1; n = 17) or without (Group 2; n = 23) anti-vascular endothelial growth factor (anti-VEGF) drug (bevacizumab) underwent CT perfusion before (TIME 0) and after 1 (TIME 1), 3 (TIME 2) and 6 (TIME 3) cycles of chemotherapy. The CT parameters evaluated included: (1) total tumour vascular volume (TVV) and total tumour extravascular flow (TEF); (2) RECIST (Response Evaluation Criteria in Solid Tumours) measurements. Tumour response was also assessed on the basis of the clinicians' overall evaluation. In Group 1, significant reduction in perfusion was identified between baseline and: (1) TIME 1 (TVV, P = 0.0395; TEF, P = 0.015); (2) TIME 2 (TVV, P = 0.0043; TEF, P < 0.0001); (3) TIME 3 (TVV, P = 0.0034; TEF, P = 0.0005) without any significant change in Group 2. In Group 1: (1) the reduction in TVV at TIME 1 was significantly higher in responders versus non-responders at TIME 2 according to RECIST (P = 0.0128) and overall clinicians' evaluation (P = 0.0079); (2) all responders at TIME 2 had a concurrent decrease in TVV and TEF at TIME 1. Perfusion CT demonstrates early changes in lung cancer vascularity under anti-angiogenic chemotherapy that may help predict therapeutic response. (orig.)

  18. Comparison of anti-angiogenic properties of pristine carbon nanoparticles

    DEFF Research Database (Denmark)

    Wierzbicki, Mateusz; Sawosz, Ewa; Grodzik, Marta

    2013-01-01

    nanoparticles decreased the expression of vascular endothelial growth factor receptor. These results provide new insights into the biological activity of carbon nanomaterials and emphasise the potential use of multi-wall nanotubes and diamond nanoparticles in anti-angiogenic tumour therapy.......Angiogenesis is vital for tumour formation, development and metastasis. Recent reports show that carbon nanomaterials inhibit various angiogenic signalling pathways and, therefore, can be potentially used in anti-angiogenic therapy. In the present study, we compared the effect of different carbon...... nanomaterials on blood vessel development. Diamond nanoparticles, graphite nanoparticles, graphene nanosheets, multi-wall nanotubes and C60 fullerenes were evaluated for their angiogenic activities using the in ovo chick embryo chorioallantoic membrane model. Diamond nanoparticles and multi-wall nanotubes...

  19. Endothelial membrane remodeling is obligate for anti-angiogenic radiosensitization during tumor radiosurgery.

    Directory of Open Access Journals (Sweden)

    Jean-Philip Truman

    2010-08-01

    Full Text Available While there is significant interest in combining anti-angiogenesis therapy with conventional anti-cancer treatment, clinical trials have as of yet yielded limited therapeutic gain, mainly because mechanisms of anti-angiogenic therapy remain to a large extent unknown. Currently, anti-angiogenic tumor therapy is conceptualized to either "normalize" dysfunctional tumor vasculature, or to prevent recruitment of circulating endothelial precursors into the tumor. An alternative biology, restricted to delivery of anti-angiogenics immediately prior to single dose radiotherapy (radiosurgery, is provided in the present study.Genetic data indicate an acute wave of ceramide-mediated endothelial apoptosis, initiated by acid sphingomyelinase (ASMase, regulates tumor stem cell response to single dose radiotherapy, obligatory for tumor cure. Here we show VEGF prevented radiation-induced ASMase activation in cultured endothelium, occurring within minutes after radiation exposure, consequently repressing apoptosis, an event reversible with exogenous C(16-ceramide. Anti-VEGFR2 acts conversely, enhancing ceramide generation and apoptosis. In vivo, MCA/129 fibrosarcoma tumors were implanted in asmase(+/+ mice or asmase(-/- littermates and irradiated in the presence or absence of anti-VEGFR2 DC101 or anti-VEGF G6-31 antibodies. These anti-angiogenic agents, only if delivered immediately prior to single dose radiotherapy, de-repressed radiation-induced ASMase activation, synergistically increasing the endothelial apoptotic component of tumor response and tumor cure. Anti-angiogenic radiosensitization was abrogated in tumors implanted in asmase(-/- mice that provide apoptosis-resistant vasculature, or in wild-type littermates pre-treated with anti-ceramide antibody, indicating that ceramide is necessary for this effect.These studies show that angiogenic factors fail to suppress apoptosis if ceramide remains elevated while anti-angiogenic therapies fail without ceramide

  20. Alpha-V Integrin Targeted PET Imagining of Breast Cancer Angiogenesis and Lose-Dose Metronomic Anti-Angiogenic Chemotherapy Efficacy

    Science.gov (United States)

    2005-08-01

    reabsorption of the dimeric RGD peptide and its Bodkin DJ, Cheresh DA (2000). Targeted antiangiogenic therapy Molecular Imaging * Vol. 3, No. 2, April...room lit for 12 hours each day and maintained at 27°C for 1 hour postinjection by cervical dislocation under ketamine/ 2 days prior to injection. Teklad...presence of various concentrations of RGD peptide cervical dislocation under ketaimine-xylazine anesthesia, and (0.1 nmol/L-5 pnmol/L) at room

  1. Improvements in progression-free and overall survival due to the use of anti-angiogenic agents in gynecologic cancers.

    Science.gov (United States)

    Schmid, Bernd C; Oehler, Martin K

    2015-01-01

    In ovarian cancer (OC), the best established anti-angiogenic drug, bevacizumab, has demonstrated only modest prolonged progression free survival (PFS) and no increased overall survival (OS). The unanswered question is in which clinical situation bevacizumab might benefit ovarian cancer patients most. The cost-benefit analysis in the primary treatment was found not to be favorable but the use in the recurrent OC setting might be more compelling. Multi-targeted anti-angiogenic tyrosine kinase inhibitors (TKI) such as cediranib and pazopanib have shown some therapeutic benefits with improvements of PFS and OS in patients with platinum-sensitive as well as resistant OC, in whom there is a major need for novel therapies. Very promising is also the observed improvement of PFS in recurrent OC in patients when combining cediranib with the PARP inhibitor olaparib without giving additional chemotherapy. The anti-angiogenic agent trebananib has achieved similar results like TKI, but has a favorable toxicity profile which does not overlap with those of VEGF inhibitors. In cervical cancer the addition of bevacizumab to combination chemotherapy in patients with recurrent, persistent or metastatic chemotherapy-naive disease results in a significant increase in OS. Considering the lack of therapeutic options in this difficult clinical setting, the inclusion of bevacizumab most likely will become a new standard for recurrent cervical cancer. In uterine sarcomas as very aggressive malignancies with a substantial need for better therapies the observed improved PFS with sorafenib warrants further investigation. No data showing a convincing improvement of survival in endometrial cancer have been presented yet. In view of the limited PFS and OS benefit observed with anti-angiogenics in gynecologic oncology, increased morbidity due to side effects of this treatment resulting in loss of quality of life and also substantial costs have to be taken into consideration. Thorough case selection

  2. Molecular targeted therapy in modern oncology: Imaging assessment of treatment response and toxicities

    Energy Technology Data Exchange (ETDEWEB)

    Krajewski, Katherine M.; Braschi-Amirfarzan, Marta; DiPiro, Pamela J.; Jagannathan, Jyothi P.; Shinagare, Atul B. [Dept. of of Imaging, Dana Farber Cancer Institute, Boston (United States)

    2017-01-15

    Oncology is a rapidly evolving field with a shift toward personalized cancer treatment. The use of therapies targeted to the molecular features of individual tumors and the tumor microenvironment has become much more common. In this review, anti-angiogenic and other molecular targeted therapies are discussed, with a focus on typical and atypical response patterns and imaging manifestations of drug toxicities.

  3. VEGFR2 heterogeneity and response to anti-angiogenic low dose metronomic cyclophosphamide treatment

    Directory of Open Access Journals (Sweden)

    Skowronski Karolina

    2010-12-01

    stabilization of colorectal microvessels, but no such change in melanoma vessels. Conclusions Overall, our study suggests that while heterogeneous expression of VEGFR2 is a feature of human tumors, it may not affect response to low dose metronomic cyclophosphamide treatment and possibly other anti-angiogenic approaches. It remains to be seen whether this heterogeneity is partly responsible for the variable clinical success seen to date with targeted anti-VEGFR2 therapy.

  4. VEGFR2 heterogeneity and response to anti-angiogenic low dose metronomic cyclophosphamide treatment

    International Nuclear Information System (INIS)

    Patten, Steven G; Adamcic, Una; Lacombe, Kristen; Minhas, Kanwal; Skowronski, Karolina; Coomber, Brenda L

    2010-01-01

    such change in melanoma vessels. Overall, our study suggests that while heterogeneous expression of VEGFR2 is a feature of human tumors, it may not affect response to low dose metronomic cyclophosphamide treatment and possibly other anti-angiogenic approaches. It remains to be seen whether this heterogeneity is partly responsible for the variable clinical success seen to date with targeted anti-VEGFR2 therapy

  5. Dual-Energy CT in Patients Treated with Anti-Angiogenic Agents for Non-Small Cell Lung Cancer: New Method of Monitoring Tumor Response?

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yoo Na; Lee, Ho Yun; Lee, Kyung Soo; Chung, Myung Jin; Ahn, Myung Ju; Park, Keun Chil; Kim, Tae Sung; Yi, Chin A [Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Seo, Joon Beom [Dept. of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of)

    2012-11-15

    To evaluate tumor responses in patients treated with anti-angiogenic agents for non-small cell lung cancer (NSCLC) by assessing intratumoral changes using a dual-energy CT (DECT) (based on Choi's criteria) and to compare it to traditional Response Evaluation Criteria in Solid Tumors (RECIST) criteria. Ten NSCLC patients treated with bevacizumab underwent DECT. Tumor responses to anti-angiogenic therapy were assessed and compared with the baseline CT results using both RECIST (size changes only) and Choi's criteria (reflecting net tumor enhancement). Kappa statistics was used to evaluate agreements between tumor responses assessed by RECIST and Choi's criteria. The weighted {kappa} value for the comparison of tumor responses between the RECIST and Choi's criteria was 0.72. Of 31 target lesions (21 solid nodules, 8 lymph nodes, and two ground-glass opacity nodules [GGNs]), five lesions (16%) showed discordant responses between RECIST and Choi's criteria. Iodine-enhanced images allowed for a distinction between tumor enhancement and hemorrhagic response (detected in 14% [4 of 29, excluding GGNs] of target lesions on virtual nonenhanced images). DECT may serve as a useful tool for response evaluation after anti-angiogenic treatment in NSCLC patients by providing information on the net enhancement of target lesions without obtaining non-enhanced images.

  6. Angiogenic and anti-angiogenic factor gene transcript level quantitation by quantitative real time PCR in patients with hepatocellular carcinoma.

    Science.gov (United States)

    Sharma, Bal Krishan; Srinivasan, Radhika; Kapil, Shweta; Singla, Bhupesh; Chawla, Yogesh Kumar; Chakraborti, Anuradha; Saini, Nitin; Duseja, Ajay; Das, Ashim; Kalra, Naveen; Dhiman, Radha Krishan

    2013-10-01

    Tumor angiogenesis, a major requirement for tumor growth and metastasis, is regulated by pro- and anti-angiogenic factors. The aim of this study was to quantify the expression of angiogenic (VEGF, HIF-1α, Angiopiotein-2) and anti-angiogenic (endostatin, angiostatin and Thrombospondin-1) factors and to discern their clinical relevance. A total 90 patients (67 HCC, 9 cirrhosis and 14 chronic hepatitis) were enrolled in the study. Tissue transcript levels of angiogenic (VEGF, HIF-1α, Ang-2) and anti-angiogenic (endostatin, angiostatin and TSP-1) factors were analyzed by quantitative real time-polymerase chain reaction (qRT-PCR) in the tissue samples. The tissue transcript levels of VEGF, HIF-1α and endostatin were found to be significantly higher in HCC in comparison to cirrhosis and chronic hepatitis. Although Ang-2, angiostatin and TSP-1 tissue transcript levels were higher in HCC group than the others groups but the difference was not statistically significant. In univariate analysis both VEGF and HIF-1α were found to be associated with poor survival of HCC patients. Multivariate analysis by the cox proportional hazard model revealed only VEGF as an independent factor predicting poor survival of the HCC patients. Angiogenic and anti-angiogenic factors are all highly expressed in HCC patients. Upregulation of tissue anti-angiogenic factors indicates the urgency for the alternative of anti-angiogenic therapies.

  7. The anti-proliferative and anti-angiogenic effect of the methanol extract from brittle star.

    Science.gov (United States)

    Baharara, Javad; Amini, Elaheh; Mousavi, Marzieh

    2015-04-01

    Anti-angiogenic therapy is a crucial step in cancer treatment. The discovery of new anti-angiogenic compounds from marine organisms has become an attractive concept in anti-cancer therapy. Because little data correlated to the pro- and anti-angiogenic efficacies of Ophiuroidea, which include brittle star, the current study was designed to explore the anti-angiogenic potential of brittle star methanol extract in vitro and in vivo. The anti-proliferative effect of brittle star extract on A2780cp cells was examined by MTT assays, and transcriptional expression of VEGF and b-FGF was evaluated by RT-PCR. In an in vivo model, 40 fertilized Ross eggs were divided into control and three experimental groups. The experimental groups were incubated with brittle star extract at concentrations of 25, 50 and 100 µg/ml, and photographed by photo-stereomicroscopy. Ultimately, numbers and lengths of vessels were measured by Image J software. Data were analyzed with SPSS software (pstar extract exerted a dose- and time-dependent anti-proliferative effect on A2780cp cancer cells. In addition, VEGF and b-FGF expression decreased with brittle star methanol extract treatment. Macroscopic evaluations revealed significant changes in the second and third experimental group compared to controls (pstar methanol extract in vitro and in vivo confer novel insight into the application of natural marine products in angiogenesis-related pathologies.

  8. Endothelial membrane remodeling is obligate for anti-angiogenic radiosensitization during tumor radiosurgery.

    Directory of Open Access Journals (Sweden)

    Jean-Philip Truman

    Full Text Available BACKGROUND: While there is significant interest in combining anti-angiogenesis therapy with conventional anti-cancer treatment, clinical trials have as of yet yielded limited therapeutic gain, mainly because mechanisms of anti-angiogenic therapy remain to a large extent unknown. Currently, anti-angiogenic tumor therapy is conceptualized to either “normalize” dysfunctional tumor vasculature, or to prevent recruitment of circulating endothelial precursors into the tumor. An alternative biology, restricted to delivery of anti-angiogenics immediately prior to single dose radiotherapy (radiosurgery, is provided in the present study. METHODOLOGY/PRINCIPAL FINDINGS: Genetic data indicate an acute wave of ceramide-mediated endothelial apoptosis, initiated by acid sphingomyelinase (ASMase, regulates tumor stem cell response to single dose radiotherapy, obligatory for tumor cure. Here we show VEGF prevented radiation-induced ASMase activation in cultured endothelium, occurring within minutes after radiation exposure, consequently repressing apoptosis, an event reversible with exogenous C16-ceramide. Anti-VEGFR2 acts conversely, enhancing ceramide generation and apoptosis. In vivo, MCA/129 fibrosarcoma tumors were implanted in asmase+/+ mice or asmase−/− littermates and irradiated in the presence or absence of anti-VEGFR2 DC101 or anti-VEGF G6-31 antibodies. These anti-angiogenic agents, only if delivered immediately prior to single dose radiotherapy, de-repressed radiation-induced ASMase activation, synergistically increasing the endothelial apoptotic component of tumor response and tumor cure. Anti-angiogenic radiosensitization was abrogated in tumors implanted in asmase−/− mice that provide apoptosis-resistant vasculature, or in wild-type littermates pre-treated with anti-ceramide antibody, indicating that ceramide is necessary for this effect. CONCLUSIONS/SIGNIFICANCE: These studies show that angiogenic factors fail to suppress apoptosis if

  9. Monitoring early response to anti-angiogenic therapy: diffusion-weighted magnetic resonance imaging and volume measurements in colon carcinoma xenografts.

    Directory of Open Access Journals (Sweden)

    Moritz Jörg Schneider

    Full Text Available OBJECTIVES: To evaluate the use of diffusion-weighted MRI (DW-MRI and volume measurements for early monitoring of antiangiogenic therapy in an experimental tumor model. MATERIALS AND METHODS: 23 athymic nude rats, bearing human colon carcinoma xenografts (HT-29 were examined before and after 6 days of treatment with regorafenib (n = 12 or placebo (n = 11 in a clinical 3-Tesla MRI. For DW-MRI, a single-shot EPI sequence with 9 b-values (10-800 s/mm2 was used. The apparent diffusion coefficient (ADC was calculated voxelwise and its median value over a region of interest, covering the entire tumor, was defined as the tumor ADC. Tumor volume was determined using T2-weighted images. ADC and volume changes between first and second measurement were evaluated as classifiers by a receiver-operator-characteristic (ROC analysis individually and combined using Fisher's linear discriminant analysis (FLDA. RESULTS: All ADCs and volumes are stated as median±standard deviation. Tumor ADC increased significantly in the therapy group (0.76±0.09×10(-3 mm2/s to 0.90±0.12×10(-3 mm2/s; p<0.001, with significantly higher changes of tumor ADC than in the control group (0.10±0.11×10(-3 mm2/s vs. 0.03±0.09×10(-3 mm2/s; p = 0.027. Tumor volume increased significantly in both groups (therapy: 347.8±449.1 to 405.3±823.6 mm3; p = 0.034; control: 219.7±79.5 to 443.7±141.5 mm3; p<0.001, however, the therapy group showed significantly reduced tumor growth (33.30±47.30% vs. 96.43±31.66%; p<0.001. Area under the curve and accuracy of the ADC-based ROC analysis were 0.773 and 78.3%; and for the volume change 0.886 and 82.6%. The FLDA approach yielded an AUC of 0.985 and an accuracy of 95.7%. CONCLUSIONS: Regorafenib therapy significantly increased tumor ADC after 6 days of treatment and also significantly reduced tumor growth. However, ROC analyses using each parameter individually revealed a lack of accuracy in discriminating between therapy and

  10. Anti-angiogenic and anti-inflammatory properties of kahweol, a coffee diterpene.

    Directory of Open Access Journals (Sweden)

    Casimiro Cárdenas

    Full Text Available BACKGROUND: Epidemiological studies have shown that unfiltered coffee consumption is associated with a low incidence of cancer. This study aims to identify the effects of kahweol, an antioxidant diterpene contained in unfiltered coffee, on angiogenesis and key inflammatory molecules. METHODOLOGY/PRINCIPAL FINDINGS: The experimental procedures included in vivo angiogenesis assays (both the chicken and quail choriallantoic membrane assay and the angiogenesis assay with fluorescent zebrafish, the ex vivo mouse aortic ring assay and the in vitro analysis of the effects of treatment of human endothelial cells with kahweol in cell growth, cell viability, cell migration and zymographic assays, as well as the tube formation assay on Matrigel. Additionally, two inflammation markers were determined, namely, the expression levels of cyclooxygenase 2 and the levels of secreted monocyte chemoattractant protein-1. We show for the first time that kahweol is an anti-angiogenic compound with inhibitory effects in two in vivo and one ex vivo angiogenesis models, with effects on specific steps of the angiogenic process: endothelial cell proliferation, migration, invasion and tube formation on Matrigel. We also demonstrate the inhibitory effect of kahweol on the endothelial cell potential to remodel extracellular matrix by targeting two key molecules involved in the process, MMP-2 and uPA. Finally, the anti-inflammatory potential of this compound is demonstrated by its inhibition of both COX-2 expression and MCP-1 secretion in endothelial cells. CONCLUSION/SIGNIFICANCE: Taken together, our data indicate that, indeed, kahweol behaves as an anti-inflammatory and anti-angiogenic compound with potential use in antitumoral therapies. These data may contribute to the explanation of the reported antitumoral effects of kahweol, including the recent epidemiological meta-analysis showing that drinking coffee could decrease the risk of certain cancers.

  11. [Management of side effects of targeted therapies in renal cancer: stomatological side effects (mucositis, epistaxis)].

    Science.gov (United States)

    Agbo-Godeau, Scarlette; Nicolas-Virelizier, Emmanuelle; Scotté, Florian

    2011-01-01

    The advent of targeted therapies in the treatment of renal cancer has shown different types of lesions of the oral cavity, which appear to be specific to the drug classes used (mTOR inhibitors, anti-angiogenic agents and conventional cytotoxic drugs). Before starting treatment with targeted therapy, it is essential to have an oral and a dental examination. The treatment of mucositis induced by targeted therapies is based on bicarbonate-based mouthwash, with the optional addition of an antifungal or a local antiseptic. It is possible to use topical or systemic analgesics for the pain. Dietary advice for patients is also useful. Most cases of epistaxis caused by anti-angiogenics stop spontaneously and require no medical intervention. Regular application of an emollient can be used to prevent the formation of scabs. Copyright © 2011 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  12. Growth of MCF-7 breast cancer cells and efficacy of anti-angiogenic agents in a hydroxyethyl chitosan/glycidyl methacrylate hydrogel.

    Science.gov (United States)

    Wang, Hejing; Qian, Junmin; Zhang, Yaping; Xu, Weijun; Xiao, Juxiang; Suo, Aili

    2017-01-01

    Breast cancer negatively affects women's health worldwide. The tumour microenvironment plays a critical role in tumour initiation, proliferation, and metastasis. Cancer cells are traditionally grown in two-dimensional (2D) cultures as monolayers on a flat solid surface lacking cell-cell and cell-matrix interactions. These experimental conditions deviate from the clinical situation. Improved experimental systems that can mimic the in vivo situation are required to discover new therapies, particularly for anti-angiogenic agents that mainly target intercellular factors and play an essential role in treating some cancers. Chitosan can be modified to construct three-dimensional (3D) tumour models. Here, we report an in vitro 3D tumour model using a hydroxyethyl chitosan/glycidyl methacrylate (HECS-GMA) hydrogel produced by a series of chitosan modifications. Parameters relating to cell morphology, viability, proliferation, and migration were analysed using breast cancer MCF-7 cells. In a xenograft model, secretion of angiogenesis-related growth factors and the anti-angiogenic efficacy of Endostar and Bevacizumab in cells grown in HECS-GMA hydrogels were assessed by immunohistochemistry. Hydroxyethyl chitosan/glycidyl methacrylate hydrogels had a highly porous microstructure, mechanical properties, swelling ratio, and morphology consistent with a 3D tumour model. Compared with a 2D monolayer culture, breast cancer MCF-7 cells residing in the HECS-GMA hydrogels grew as tumour-like clusters in a 3D formation. In a xenograft model, MCF-7 cells cultured in the HECS-GMA hydrogels had increased secretion of angiogenesis-related growth factors. Recombinant human endostatin (Endostar), but not Bevacizumab (Avastin), was an effective anti-angiogenic agent in HECS-GMA hydrogels. The HECS-GMA hydrogel provided a 3D tumour model that mimicked the in vivo cancer microenvironment and supported the growth of MCF7 cells better than traditional tissue culture plates. The HECS

  13. Broad targeting of angiogenesis for cancer prevention and therapy.

    Science.gov (United States)

    Wang, Zongwei; Dabrosin, Charlotta; Yin, Xin; Fuster, Mark M; Arreola, Alexandra; Rathmell, W Kimryn; Generali, Daniele; Nagaraju, Ganji P; El-Rayes, Bassel; Ribatti, Domenico; Chen, Yi Charlie; Honoki, Kanya; Fujii, Hiromasa; Georgakilas, Alexandros G; Nowsheen, Somaira; Amedei, Amedeo; Niccolai, Elena; Amin, Amr; Ashraf, S Salman; Helferich, Bill; Yang, Xujuan; Guha, Gunjan; Bhakta, Dipita; Ciriolo, Maria Rosa; Aquilano, Katia; Chen, Sophie; Halicka, Dorota; Mohammed, Sulma I; Azmi, Asfar S; Bilsland, Alan; Keith, W Nicol; Jensen, Lasse D

    2015-12-01

    Deregulation of angiogenesis--the growth of new blood vessels from an existing vasculature--is a main driving force in many severe human diseases including cancer. As such, tumor angiogenesis is important for delivering oxygen and nutrients to growing tumors, and therefore considered an essential pathologic feature of cancer, while also playing a key role in enabling other aspects of tumor pathology such as metabolic deregulation and tumor dissemination/metastasis. Recently, inhibition of tumor angiogenesis has become a clinical anti-cancer strategy in line with chemotherapy, radiotherapy and surgery, which underscore the critical importance of the angiogenic switch during early tumor development. Unfortunately the clinically approved anti-angiogenic drugs in use today are only effective in a subset of the patients, and many who initially respond develop resistance over time. Also, some of the anti-angiogenic drugs are toxic and it would be of great importance to identify alternative compounds, which could overcome these drawbacks and limitations of the currently available therapy. Finding "the most important target" may, however, prove a very challenging approach as the tumor environment is highly diverse, consisting of many different cell types, all of which may contribute to tumor angiogenesis. Furthermore, the tumor cells themselves are genetically unstable, leading to a progressive increase in the number of different angiogenic factors produced as the cancer progresses to advanced stages. As an alternative approach to targeted therapy, options to broadly interfere with angiogenic signals by a mixture of non-toxic natural compound with pleiotropic actions were viewed by this team as an opportunity to develop a complementary anti-angiogenesis treatment option. As a part of the "Halifax Project" within the "Getting to know cancer" framework, we have here, based on a thorough review of the literature, identified 10 important aspects of tumor angiogenesis and the

  14. Anti-angiogenic activity and phytochemical screening of fruit fractions from Vitex agnus castus.

    Science.gov (United States)

    Certo, Giovanna; Costa, Rosaria; D'Angelo, Valeria; Russo, Marina; Albergamo, Ambrogina; Dugo, Giacomo; Germanò, Maria Paola

    2017-12-01

    Although the antitumour activity of Vitex agnus castus fruits has been already addressed, no work has yet assessed their anti-angiogenic potential. To this purpose, several extractive fractions of such fruits were tested on zebrafish embrios by EAP assay, so that only the bioactive fractions could be subsequently tested on the chick chorioallantoic membrane by CAM assay. Bioactive fractions were also phytochemically screened to identify those bioactive compounds responsible for anti-angiogenic activity. A marked inhibition of vessel formation was detected only in zebrafish embryos treated with chloroform or ethyl acetate fractions. Considering CAM assay, chloroform fraction induced a strong reduction of microvasculature and haemoglobin content; while lower anti-angiogenic effects of the ethyl acetate fraction were determined. Phytochemical analyses confirmed the presence of several bioactive anti-angiogenic compounds. Overall, obtained preliminary results highlighted a potential anti-angiogenic activity of V. agnus castus fruits.

  15. Anti-angiogenic activity of the methanol extract and its fractions of Ulmus davidiana var. japonica.

    Science.gov (United States)

    Jung, Hyun-Joo; Jeon, Hye-Jin; Lim, Eun-Ju; Ahn, Eun-Kyoung; Song, Yun Seon; Lee, Sanghyun; Shin, Kuk Hyun; Lim, Chang-Jin; Park, Eun-Hee

    2007-06-13

    This study aimed to elucidate anti-angiogenic activity of Ulmus davidiana var. japonica that has been widely used in folk medicine. The methanol extract (UDE) of Ulmus davidiana var. japonica concentration-dependently displayed a strong inhibition in the chick chorioallantoic membrane (CAM) angiogenesis. The n-butanol fraction of UDE and subsequent 30% MeOH subfraction were identified to be most responsible for the anti-angiogenic activity.

  16. Therapy of Experimental Nerve Sheath Tumors Using Oncolytic Viruses

    National Research Council Canada - National Science Library

    Rabkin, Samuel D

    2005-01-01

    .... To examine the combination of anti-angiogenic and oncolytic virus therapy, recombinant G47 deta vectors expressing anti- angiogenic factors dominant-negative fibroblast growth factor receptor (dnFGFR...

  17. Antiretroviral therapy and HIV-associated cancers: Anti- angiogenic ...

    African Journals Online (AJOL)

    thalidomide (83 %) (F = 1.000, p = 0.341). Conclusion: Being a first-line drug in both HAART and combination treatment of HIV-1, efavirenz may ... reported for lung cancers [6] in relation to the use of “highly active antiretroviral therapy” .... longer showed angiogenic activity in the CAM but instead, had excessive fibrotic tissue ...

  18. Mechanisms of action and resistance to anti-angiogenic small-molecule tyrosine kinase inhibitors in preclinical breast cancer and pancreatic neuroendocrine tumor mouse models

    OpenAIRE

    Bill, Ruben

    2015-01-01

    „Cancer“ – this one term is used to name a large spectrum of different syndromes, ranging from the relatively indolent chronic lymphocytic leukemia to highly lethal cancer types such as glioblastoma multiforme with a median survival of about 15 months even when treated with upfront treatment schedules. Based on the notion that tumors critically rely on their own blood supply, targeting the tumor blood vasculature by anti-angiogenic therapeutics has been implemented as an important treatment m...

  19. Mechanistic Insights into the Anti-angiogenic Activity of Trypanosoma cruzi Protein 21 and its Potential Impact on the Onset of Chagasic Cardiomyopathy.

    Science.gov (United States)

    Teixeira, Samuel Cota; Lopes, Daiana Silva; Gimenes, Sarah Natalie Cirilo; Teixeira, Thaise Lara; da Silva, Marcelo Santos; Brígido, Rebecca Tavares E Silva; da Luz, Felipe Andrés Cordero; da Silva, Aline Alves; Silva, Makswell Almeida; Florentino, Pilar Veras; Tavares, Paula Cristina Brígido; Dos Santos, Marlus Alves; Ávila, Veridiana de Melo Rodrigues; Silva, Marcelo José Barbosa; Elias, Maria Carolina; Mortara, Renato Arruda; da Silva, Claudio Vieira

    2017-03-21

    Chronic chagasic cardiomyopathy (CCC) is arguably the most important form of the Chagas Disease, caused by the intracellular protozoan Trypanosoma cruzi; it is estimated that 10-30% of chronic patients develop this clinical manifestation. The most common and severe form of CCC can be related to ventricular abnormalities, such as heart failure, arrhythmias, heart blocks, thromboembolic events and sudden death. Therefore, in this study, we proposed to evaluate the anti-angiogenic activity of a recombinant protein from T. cruzi named P21 (rP21) and the potential impact of the native protein on CCC. Our data suggest that the anti-angiogenic activity of rP21 depends on the protein's direct interaction with the CXCR4 receptor. This capacity is likely related to the modulation of the expression of actin and angiogenesis-associated genes. Thus, our results indicate that T. cruzi P21 is an attractive target for the development of innovative therapeutic agents against CCC.

  20. Anti-angiogenic activity of a new andrographolide derivative in zebrafish and HUVECs.

    Science.gov (United States)

    Li, Jingjing; Peng, Yuran; Li, Shang; Sun, Yicheng; Chan, Judy Yuet-Wa; Cui, Guozhen; Wang, Decai; Zhou, Guo-Chun; Lee, Simon Ming-Yuen

    2016-10-15

    Andrographolide is among the most promising anti-tumor and anti-angiogenic components in Andrographis paniculata but its poor bioavailability and limited efficacy pose difficulties for its therapeutic development. Therefore, improving its pharmaceutical features and potency, by modifying its chemical structure, is desirable. In the present study, a new andrographolide derivative (AGP-40) was synthesized and characterized for its anti-angiogenic properties. Human umbilical vein endothelial cells (HUVECs) and zebrafish models were used to identify the anti-angiogenic activity of AGP-40. AGP-40 significantly suppressed the formation of blood vessels in zebrafish and inhibited proliferation, migration and tube formation in vitro. The anti-angiogenic effects of AGP-40 are at least partially mediated via the PI3K/Akt and MEK/Erk(1/2) signaling pathways. Furthermore, AGP-40 exhibited stronger anti-proliferative effects than andrographolide against A549, HepG2, Hela cancer cell lines. This study is the first to demonstrate the promising anti-angiogenic activity of the new andrographolide derivative AGP-40. Our results indicate that AGP-40 could serve as a potential therapeutic agent for the treatment and prevention of diseases associated with excessive angiogenesis. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Peptide-Mediated Liposomal Drug Delivery System Targeting Tumor Blood Vessels in Anticancer Therapy

    Directory of Open Access Journals (Sweden)

    Han-Chung Wu

    2010-01-01

    Full Text Available Solid tumors are known to recruit new blood vessels to support their growth. Therefore, unique molecules expressed on tumor endothelial cells can function as targets for the antiangiogenic therapy of cancer. Current efforts are focusing on developing therapeutic agents capable of specifically targeting cancer cells and tumor-associated microenvironments including tumor blood vessels. These therapies hold the promise of high efficacy and low toxicity. One recognized strategy for improving the therapeutic effectiveness of conventional chemotherapeutics is to encapsulate anticancer drugs into targeting liposomes that bind to the cell surface receptors expressed on tumor-associated endothelial cells. These anti-angiogenic drug delivery systems could be used to target both tumor blood vessels as well as the tumor cells, themselves. This article reviews the mechanisms and advantages of various present and potential methods using peptide-conjugated liposomes to specifically destroy tumor blood vessels in anticancer therapy.

  2. The evaluation of anti-angiogenic treatment effects for implanted rabbit VX2 breast tumors using functional multi-slice spiral computed tomography (f-MSCT)

    Energy Technology Data Exchange (ETDEWEB)

    Lei Zhen, E-mail: leizhen2004@163.com [Department of Anatomy, Chinese Medical University, No. 92, Beiermalu Road, Heping District, Shenyang, 110001 (China) and Department of Radiology, The First Hospital of Liaoning Medical College, No. 2, Wuduan, Renmin Street, Jinzhou, 121001 (China); Ma Heji, E-mail: maheji9831@sina.com [Department of Radiology, The First Hospital of Liaoning Medical College, No. 2, Wuduan, Renmin Street, Jinzhou, 121001 (China); Xu Na, E-mail: xuna821230@sohu.com [Department of Radiology, The First Hospital of Liaoning Medical College, No. 2, Wuduan, Renmin Street, Jinzhou, 121001 (China); Xi Huanjiu, E-mail: xihuanjiu2004@yahoo.cn [Anthropology Institute, Liaoning Medical College, No. 40, Sanduan, Songpo Rd, Jinzhou, 121001 (China)

    2011-05-15

    Objective: Investigate the benefit of functional multi-slice spiral computed tomography (f-MSCT) perfusion imaging in the non-invasive assessment of targeted anti-angiogenesis therapy on an implanted rabbit VX2 breast tumor model. Method: 69 female pure New Zealand white rabbits were randomly assigned to one of the 4 groups and received treatment accordingly: control (saline), Endostar, neoadjuvant chemotherapy (Cyclophosphamide, Epirubicin and 5-Fluorouracil, CEF), combination therapy (Endostar and CEF). After 2 weeks of treatment, f-MSCT perfusion scannings were performed for all rabbits and information about blood flow (BF), blood volume (BV), mean transit time (MTT) and surface permeability (SP) was collected. After perfusion imaging, tumor tissues were sampled for immunohistochemistry and the Western blot test of VEGF protein expression. Results: (1) The VEGF expression level, measured by immunohistochemistry and Western blot, decreased by treatment group (control > Endostar > CEF > combination therapy). The same was true for the mean BF, BV, MTT and PS, which decreased from the control group to the combination therapy group gradually. The mean MTT level increased in reverse order from the control to the combination therapy group. The difference between any 2 groups on these measures was statistically significant (P < 0.05). (2) There was moderate positive correlation between VEGF expression and BE, BV, or PS level (P < 0.05) and a negative correlation between VEGF expression and MTT level for all 4 groups (P < 0.05). Conclusion: Therefore, f-MSCT can be used as a non-invasive approach to evaluate the effect of anti-angiogenic therapy for implanted rabbit VX2 breast tumors.

  3. The evaluation of anti-angiogenic treatment effects for implanted rabbit VX2 breast tumors using functional multi-slice spiral computed tomography (f-MSCT)

    International Nuclear Information System (INIS)

    Lei Zhen; Ma Heji; Xu Na; Xi Huanjiu

    2011-01-01

    Objective: Investigate the benefit of functional multi-slice spiral computed tomography (f-MSCT) perfusion imaging in the non-invasive assessment of targeted anti-angiogenesis therapy on an implanted rabbit VX2 breast tumor model. Method: 69 female pure New Zealand white rabbits were randomly assigned to one of the 4 groups and received treatment accordingly: control (saline), Endostar, neoadjuvant chemotherapy (Cyclophosphamide, Epirubicin and 5-Fluorouracil, CEF), combination therapy (Endostar and CEF). After 2 weeks of treatment, f-MSCT perfusion scannings were performed for all rabbits and information about blood flow (BF), blood volume (BV), mean transit time (MTT) and surface permeability (SP) was collected. After perfusion imaging, tumor tissues were sampled for immunohistochemistry and the Western blot test of VEGF protein expression. Results: (1) The VEGF expression level, measured by immunohistochemistry and Western blot, decreased by treatment group (control > Endostar > CEF > combination therapy). The same was true for the mean BF, BV, MTT and PS, which decreased from the control group to the combination therapy group gradually. The mean MTT level increased in reverse order from the control to the combination therapy group. The difference between any 2 groups on these measures was statistically significant (P < 0.05). (2) There was moderate positive correlation between VEGF expression and BE, BV, or PS level (P < 0.05) and a negative correlation between VEGF expression and MTT level for all 4 groups (P < 0.05). Conclusion: Therefore, f-MSCT can be used as a non-invasive approach to evaluate the effect of anti-angiogenic therapy for implanted rabbit VX2 breast tumors.

  4. Anti-angiogenic-specific adverse events in patients with non-small cell lung cancer treated with nintedanib and docetaxel

    DEFF Research Database (Denmark)

    Reck, Martin; Mellemgaard, Anders; von Pawel, Joachim

    2015-01-01

    OBJECTIVES: LUME-Lung 1 was a randomized, placebo-controlled, Phase III trial investigating nintedanib+docetaxel versus placebo+docetaxel in patients with advanced NSCLC progressing after first-line chemotherapy. Progression-free survival was significantly improved with nintedanib...... between arms for all grades (5.1% vs 4.6%) and Grade ≥3 (2.1% vs 3.1%). Safety evaluation of the LUME-Lung 1 study showed that the frequency of AEs commonly associated with other anti-angiogenic agents was lower with nintedanib+docetaxel. Survival benefits from addition of nintedanib to docetaxel...... in patients with adenocarcinoma after first-line therapy can be achieved alongside a manageable safety profile....

  5. Resistance to cytotoxic and anti-angiogenic anticancer agents: similarities and differences.

    NARCIS (Netherlands)

    Broxterman, H.J.; Lankelma, J.; Hoekman, K.

    2003-01-01

    Intrinsic resistance to anticancer drugs, or resistance developed during chemotherapy, remains a major obstacle to successful treatment. This is the case both for resistance to cytotoxic agents, directed at malignant cells, and for resistance to anti-angiogenic agents, directed at non-malignant

  6. Multi-parametric assessment of the anti-angiogenic effects of liposomal glucocorticoids

    NARCIS (Netherlands)

    Kluza, Ewelina; Heisen, Marieke; Schmid, Sophie; van der Schaft, Daisy W. J.; Schiffelers, Raymond M.; Storm, Gert; ter Haar Romeny, Bart M.; Strijkers, Gustav J.; Nicolay, Klaas

    2011-01-01

    Inflammation plays a prominent role in tumor growth. Anti-inflammatory drugs have therefore been proposed as anti-cancer therapeutics. In this study, we determined the anti-angiogenic activity of a single dose of liposomal prednisolone phosphate (PLP-L), by monitoring tumor vascular function and

  7. Emerging targeted therapies for castration-resistant prostate cancer

    Directory of Open Access Journals (Sweden)

    Vincenzo eAdamo

    2012-05-01

    Full Text Available Until recently, few therapeutic options were available for patients with castration-resistant prostate cancer (CRPC. Since 2010, four new molecules with a demonstrated benefit (sipuleucel-T, cabazitaxel, abiraterone and denosumab have been approved in this setting, and to-date several other agents are under investigation in clinical trials. The purpose of this review is to present an update of targeted therapies for CRPC. Presented data are obtained from literature and congress reports updated until December 2011. Targeted therapies in advanced phases of clinical development include novel hormone-therapeutic, intracellular molecular pathways inhibiting, anti-angiogenic, bone microenvironment targeting and immunotherapeutic agents. Radium-223 and MDV3100 demonstrated a survival advantage in phase III trials and the road for their introduction in clinical practice is rapidly ongoing. Results are also awaited for phase III studies currently underway or planned with new drugs given as monotherapy (TAK-700, cabozantinib, tasquinimod, PROSTVAC-VF, ipilimumab or in combination with docetaxel (custirsen, aflibercept, dasatinib, zibotentan. Optimal timing, right combination and/or sequencing of emerging therapies as well as use of more sensitive biological markers to individualize therapies for CRPC remain challenging and studies to investigate these aspects are needed.

  8. Engineering of magnetic DNA nanoparticles for tumor-targeted therapy

    International Nuclear Information System (INIS)

    Hosseinkhani, Hossein; Chen Yiru; He Wenjie; Hong Poda; Yu, Dah-Shyong; Domb, Abraham J.

    2013-01-01

    This study aims to engineer novel targeted delivery system composed of magnetic DNA nanoparticles to be effective as an efficient targeted gene therapy vehicle for tumor therapy. A polysaccharide, dextran, was chosen as the vector of plasmid DNA-encoded NK4 that acts as an HGF-antagonist and anti-angiogenic regulator for inhibitions of tumor growth, invasion, and metastasis. Spermine (Sm) was chemically introduced to the hydroxyl groups of dextran to obtain dextran-Sm. When Fe 2+ solution was added to the mixture of dextran-Sm and a plasmid DNA, homogenous DNA nanoparticles were formed via chemical metal coordination bonding with average size of 230 nm. Characterization of DNA nanoparticles was performed via dynamic light scattering measurement, electrophoretic light scattering measurement, as well as transmission electron microscope. DNA nanoparticles effectively condensed plasmid DNA into nanoparticles and enhanced the stability of DNA, while significantly improved transfection efficiency in vitro and tumor accumulation in vivo. In addition, magnetic DNA nanoparticles exhibited high efficiency in antitumor therapy with regards to tumor growth as well as survival of animals evaluated in the presence of external magnetic field. We conclude that the magnetic properties of these DNA nanoparticles would enhance the tracking of non-viral gene delivery systems when administrated in vivo in a test model. These findings suggest that DNA nanoparticles effectively deliver DNA to tumor and thereby inhibiting tumor growth.

  9. Engineering of magnetic DNA nanoparticles for tumor-targeted therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hosseinkhani, Hossein, E-mail: hosseinkhani@yahoo.com [Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology (Taiwan Tech) (China); Chen Yiru [National Yang-Ming University, Department of Biomedical Engineering (China); He Wenjie; Hong Poda [Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology (Taiwan Tech) (China); Yu, Dah-Shyong [Nanomedicine Research Center, National Defense Medical Center (China); Domb, Abraham J. [Institute of Drug Research, The Center for Nanoscience and Nanotechnology, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem (Israel)

    2013-01-15

    This study aims to engineer novel targeted delivery system composed of magnetic DNA nanoparticles to be effective as an efficient targeted gene therapy vehicle for tumor therapy. A polysaccharide, dextran, was chosen as the vector of plasmid DNA-encoded NK4 that acts as an HGF-antagonist and anti-angiogenic regulator for inhibitions of tumor growth, invasion, and metastasis. Spermine (Sm) was chemically introduced to the hydroxyl groups of dextran to obtain dextran-Sm. When Fe{sup 2+} solution was added to the mixture of dextran-Sm and a plasmid DNA, homogenous DNA nanoparticles were formed via chemical metal coordination bonding with average size of 230 nm. Characterization of DNA nanoparticles was performed via dynamic light scattering measurement, electrophoretic light scattering measurement, as well as transmission electron microscope. DNA nanoparticles effectively condensed plasmid DNA into nanoparticles and enhanced the stability of DNA, while significantly improved transfection efficiency in vitro and tumor accumulation in vivo. In addition, magnetic DNA nanoparticles exhibited high efficiency in antitumor therapy with regards to tumor growth as well as survival of animals evaluated in the presence of external magnetic field. We conclude that the magnetic properties of these DNA nanoparticles would enhance the tracking of non-viral gene delivery systems when administrated in vivo in a test model. These findings suggest that DNA nanoparticles effectively deliver DNA to tumor and thereby inhibiting tumor growth.

  10. Engineering of magnetic DNA nanoparticles for tumor-targeted therapy

    Science.gov (United States)

    Hosseinkhani, Hossein; Chen, Yi-Ru; He, Wenjie; Hong, Po-Da; Yu, Dah-Shyong; Domb, Abraham J.

    2013-01-01

    This study aims to engineer novel targeted delivery system composed of magnetic DNA nanoparticles to be effective as an efficient targeted gene therapy vehicle for tumor therapy. A polysaccharide, dextran, was chosen as the vector of plasmid DNA-encoded NK4 that acts as an HGF-antagonist and anti-angiogenic regulator for inhibitions of tumor growth, invasion, and metastasis. Spermine (Sm) was chemically introduced to the hydroxyl groups of dextran to obtain dextran-Sm. When Fe2+ solution was added to the mixture of dextran-Sm and a plasmid DNA, homogenous DNA nanoparticles were formed via chemical metal coordination bonding with average size of 230 nm. Characterization of DNA nanoparticles was performed via dynamic light scattering measurement, electrophoretic light scattering measurement, as well as transmission electron microscope. DNA nanoparticles effectively condensed plasmid DNA into nanoparticles and enhanced the stability of DNA, while significantly improved transfection efficiency in vitro and tumor accumulation in vivo. In addition, magnetic DNA nanoparticles exhibited high efficiency in antitumor therapy with regards to tumor growth as well as survival of animals evaluated in the presence of external magnetic field. We conclude that the magnetic properties of these DNA nanoparticles would enhance the tracking of non-viral gene delivery systems when administrated in vivo in a test model. These findings suggest that DNA nanoparticles effectively deliver DNA to tumor and thereby inhibiting tumor growth.

  11. Anti-angiogenic effect of curcumin, curcumin ethylenediamine derivative and curcumin ethylenediamine manganese complex

    OpenAIRE

    SUNTORNSUK, Leena; Koizumi, Keiichi; Saitoh, Yurika; Nakamura, ElianeShizuka; KAMMASUD, Naparat; VAJARAGUPTA, Opa; Saiki, Ikuo

    2004-01-01

    We investigated the anti-angiogenic effect of curcumin, curcumin ethylenediamine derivative (curcumin ED) and curcumin ethylenediamine manganese complex (curcumin EDMn) through the inhibition of the formation of tube-like structures by human umbilical vascular endothelial cells (HUVEC). Curcumin, curcumin ED, curcumin EDMn did not show cytotoxicity to HUVEC at concentrations equal and lower than 10 μM. At the concentration of 10 μM,curcumin, curcumin ED and curcumin EDMn inhibited the tube fo...

  12. Clinical Implication of Anti-Angiogenic Effect of Regorafenib in Metastatic Colorectal Cancer.

    Directory of Open Access Journals (Sweden)

    Yoojoo Lim

    Full Text Available Regorafenib induces distinct radiological changes that represent its anti-angiogenic effect. However, clinical implication of the changes is unclear.Tumor attenuation as measured by Hounsfield units (HU in contrast-enhanced computed tomography (CT and cavitary changes of lung metastases were analyzed in association with treatment outcome of metastatic colorectal cancer patients (N = 80 treated with regorafenib in a prospective study.141 lesions in 72 patients were analyzed with HU. After 2 cycles of regorafenib, 87.5% of patients showed decrease of HU (Median change -23.9%, range -61.5%-20.7%. Lesional attenuation change was modestly associated with metabolic changes of 18-fluoro-deoxyglucose positron emission tomography-CT (Pearson's r = 0.37, p = 0.002. Among 53 patients with lung metastases, 17 (32.1% developed cavitary changes. There were no differences in disease control rate, progression-free survival, or overall survival according to the radiological changes. At the time of progressive disease (PD according to RECIST 1.1, HU was lower than baseline in 86.0% (43/50 and cavitary change of lung metastasis persisted without refilling in 84.6% (11/13.Regorafenib showed prominent anti-angiogenic effect in colorectal cancer, but the changes were not associated with treatment outcome. However, the anti-angiogenic effects persisted at the time of PD, which suggests that we may need to develop new treatment strategies.

  13. Clinical Implication of Anti-Angiogenic Effect of Regorafenib in Metastatic Colorectal Cancer

    Science.gov (United States)

    Yoon, Jeong Hee; Lee, Jeong Min; Lee, Jung Min; Paeng, Jin Chul; Won, Jae-Kyung; Kang, Gyeong Hoon; Jeong, Seung-Yong; Park, Kyu Joo; Lee, Kyung-Hun; Kim, Jee Hyun; Kim, Tae-You

    2015-01-01

    Background Regorafenib induces distinct radiological changes that represent its anti-angiogenic effect. However, clinical implication of the changes is unclear. Methods Tumor attenuation as measured by Hounsfield units (HU) in contrast-enhanced computed tomography (CT) and cavitary changes of lung metastases were analyzed in association with treatment outcome of metastatic colorectal cancer patients (N = 80) treated with regorafenib in a prospective study. Results 141 lesions in 72 patients were analyzed with HU. After 2 cycles of regorafenib, 87.5% of patients showed decrease of HU (Median change -23.9%, range -61.5%–20.7%). Lesional attenuation change was modestly associated with metabolic changes of 18-fluoro-deoxyglucose positron emission tomography-CT (Pearson’s r = 0.37, p = 0.002). Among 53 patients with lung metastases, 17 (32.1%) developed cavitary changes. There were no differences in disease control rate, progression-free survival, or overall survival according to the radiological changes. At the time of progressive disease (PD) according to RECIST 1.1, HU was lower than baseline in 86.0% (43/50) and cavitary change of lung metastasis persisted without refilling in 84.6% (11/13). Conclusion Regorafenib showed prominent anti-angiogenic effect in colorectal cancer, but the changes were not associated with treatment outcome. However, the anti-angiogenic effects persisted at the time of PD, which suggests that we may need to develop new treatment strategies. PMID:26671465

  14. Progress on Antiangiogenic Therapy for Patients with Malignant Glioma

    Directory of Open Access Journals (Sweden)

    Manmeet S. Ahluwalia

    2010-01-01

    Full Text Available Glioblastoma (GBM is the most common primary brain tumor occurring in America. Despite recent advances in therapeutics, the prognosis for patients with newly diagnosed GBM remains dismal. As these tumors characteristically show evidence of angiogenesis (neovascularization there has been great interest in developing anti-angiogenic therapeutic strategies for the treatment of patients with this disease and some anti-angiogenic agents have now been used for the treatment of patients with malignant glioma tumors. Although the results of these clinical trials are promising in that they indicate an initial therapeutic response, the anti-angiogenic therapies tested to date have not changed the overall survival of patients with malignant glioma tumors. This is due, in large part, to the development of resistance to these therapies. Ongoing research into key features of the neovasculature in malignant glioma tumors, as well as the general angiogenesis process, is suggesting additional molecules that may be targeted and an improved response when both the neovasculature and the tumor cells are targeted. Prevention of the development of resistance may require the development of anti-angiogenic strategies that induce apoptosis or cell death of the neovasculature, as well as an improved understanding of the potential roles of circulating endothelial progenitor cells and vascular co-option by tumor cells, in the development of resistance.

  15. New Anti-angiogenic Leading Structure Discovered in the Fruit of Cimicifuga yunnanensis

    Science.gov (United States)

    Nian, Yin; Yang, Jing; Liu, Tong-Yang; Luo, Ying; Zhang, Ji-Hong; Qiu, Ming-Hua

    2015-03-01

    Cimyunnins A-C (1-3), characterized with an unusual fused cyclopentenone ring G, together with cimyunnin D (4), possessing a highly rearranged γ-lactone ring F, were characterized from the fruit of Cimicifuga yunnanensis. Their structures were elucidated by spectroscopic analysis, X-ray diffraction, and density functional theory calculations. In addition, cimyunnin A exhibited comparable anti-angiogenic activities to those of sunitinib, a clinically-used first-line angiogenesis inhibitor, in the in vitro and ex vivo studies.

  16. Orthotopic animal model of pseudomyxoma peritonei: An in vivo model to test anti-angiogenic drug effects.

    Science.gov (United States)

    Dohan, Anthony; Lousquy, Ruben; Eveno, Clarisse; Goere, Diane; Broqueres-You, Dong; Kaci, Rachid; Lehmann-Che, Jacqueline; Launay, Jean-Marie; Soyer, Philippe; Bonnin, Philippe; Pocard, Marc

    2014-07-01

    Pseudomyxoma peritonei (PMP) is an uncommon peritoneal mucinous carcinomatosis confined to the peritoneal cavity. The rarity of PMP in humans makes evaluation of the disease biological features and new therapeutic strategies difficult. Accordingly, there is a need for animal models of PMP. Human PMP tissue was i.p. grafted and grown into nude mice, then constituted into reliable and reproducible orthotopic models. Histological and immunostaining analysis was performed. Bevacizumab was injected twice a week either during tumor growth or after cytoreductive surgery. In vivo imaging of tumor angiogenesis was performed using barium sulfate or isolectin microangiography and Doppler ultrasonography of the superior mesenteric artery. Tumor angiogenesis was confirmed by the presence of tortuous vascular networks with high levels of expression of CD31, vascular endothelial cadherin, and desmin. Doppler ultrasonography of the superior mesenteric artery revealed a twofold increase in blood flow velocity compared with tumor-free mice (P preclinical studies, the efficacy of new therapeutic strategies and anti-angiogenic therapies. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  17. An ex vivo model for anti-angiogenic drug testing on intact microvascular networks.

    Directory of Open Access Journals (Sweden)

    Mohammad S Azimi

    Full Text Available New models of angiogenesis that mimic the complexity of real microvascular networks are needed. Recently, our laboratory demonstrated that cultured rat mesentery tissues contain viable microvascular networks and could be used to probe pericyte-endothelial cell interactions. The objective of this study was to demonstrate the efficacy of the rat mesentery culture model for anti-angiogenic drug testing by time-lapse quantification of network growth. Mesenteric windows were harvested from adult rats, secured in place with an insert, and cultured for 3 days according to 3 experimental groups: 1 10% serum (angiogenesis control, 2 10% serum + sunitinib (SU11248, and 3 10% serum + bevacizumab. Labeling with FITC conjugated BSI-lectin on Day 0 and 3 identified endothelial cells along blood and lymphatic microvascular networks. Comparison between day 0 (before and 3 (after in networks stimulated by 10% serum demonstrated a dramatic increase in vascular density and capillary sprouting. Growing networks contained proliferating endothelial cells and NG2+ vascular pericytes. Media supplementation with sunitinib (SU11248 or bevacizumab both inhibited the network angiogenic responses. The comparison of the same networks before and after treatment enabled the identification of tissue specific responses. Our results establish, for the first time, the ability to evaluate an anti-angiogenic drug based on time-lapse imaging on an intact microvascular network in an ex vivo scenario.

  18. In vitro and in vivo anti-angiogenic activity of girinimbine isolated from Murraya koenigii

    Directory of Open Access Journals (Sweden)

    Iman V

    2015-03-01

    Full Text Available Venoos Iman,1 Hamed Karimian,1 Syam Mohan,2 Yahya Hasan Hobani,2 Mohamed Ibrahim Noordin,1 Mohd Rais Mustafa,3 Suzita Mohd Noor41Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; 2Medical Research Center, University of Jazan, Jazan, Saudi Arabia; 3Department of Pharmacology, Centre for Natural Products and Drug Discovery (CENAR, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; 4Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, MalaysiaAbstract: Girinimbine is a carbazole alkaloid isolated from the stem bark and root of Murraya koenigii. Here we report that girinimbine is an inhibitor of angiogenic activity both in vitro and in vivo. MTT results showed that girinimbine inhibited proliferation of human umbilical vein endothelial cells, while results from endothelial cell invasion, migration, tube formation, and wound healing assays demonstrated significant time- and dose-dependent inhibition by girinimbine. A proteome profiler array done on girinimbine-treated human umbilical vein endothelial cells showed that girinimbine had mediated regulation of pro-angiogenic and anti-angiogenic proteins. The anti-angiogenic potential of girinimbine was also evidenced in vivo in the zebrafish embryo model wherein girinimbine inhibited neo vessel formation in zebrafish embryos following 24 hours of exposure. Together, these results showed that girinimbine could effectively suppress angiogenesis, suggestive of its therapeutic potential as a novel angiogenesis inhibitor. Keywords: angiogenesis, inhibitor, carbazole alkaloid, zebrafish

  19. Bisphosphonate-related osteonecrosis of jaw (BRONJ: an anti-angiogenic side-effect?

    Directory of Open Access Journals (Sweden)

    Petcu Eugen B

    2012-07-01

    Full Text Available Abstract Bisphosphonates are recommended in the treatment of osteoporosis and some cancers, in which case they prevent the appearance of bone metastasis. The patients taking bisphosphonates are at increased risk of developing bisphosphonate-related osteonecrosis of jaw (BRONJ which is characterised by the presence of an un-healing wound after dental surgery. BRONJ might represent an anti-angiogenic side effect. However, the real number of patients with BRONJ might be higher than currently recorded. Considering the differential diagnosis which includes various primary and secondary cancers, a correct histopathological diagnosis is very important. The morphological criteria for diagnosis of BRONJ are highlighted in this material. Virtual Slides The virtual slide(s for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1813972972323288

  20. Aminopeptidase N inhibition could be involved in the anti-angiogenic effect of dobesilates

    Directory of Open Access Journals (Sweden)

    Farsa Oldřich

    2015-01-01

    Full Text Available Calcium, magnesium and zinc 2,5-dihydroxybenzenesulfonates (dobesilates were synthesized by sulfonation of hydroquinone with sulfuric acid under mild conditions. To form the salts, neutralization with calcium carbonate followed by cation exchange by means of magnesium or zinc sulfates was performed. The dobesilates were characterized by standard spectral methods and by AAS for metal content and then tested for inhibitory activity against aminopeptidase N. Calcium and magnesium 2,5-dihydroxybenzene sulfonates exhibited rather weak inhibitory activity to aminopeptidase N as demonstrated by IC50 values of 978.0 and 832.1 mmol l-1 respectively while zinc 2,5-dihydroxybenzene sulfonate reached the more significant inhibitory activity characterized by IC50 77.4 mmol l-1. The inhibitory activity results suggest that the inhibition of aminopeptidase N could play a role in the anti-angiogenic activity of 2,5-dihydroxybenzenesulfonates.

  1. A biomimetic collagen derived peptide exhibits anti-angiogenic activity in triple negative breast cancer.

    Directory of Open Access Journals (Sweden)

    Elena V Rosca

    Full Text Available We investigated the application of a mimetic 20 amino acid peptide derived from type IV collagen for treatment of breast cancer. We showed that the peptide induced a decrease of proliferation, adhesion, and migration of endothelial and tumor cells in vitro. We also observed an inhibition of triple negative MDA-MB-231 xenograft growth by 75% relative to control when administered intraperitoneally for 27 days at 10 mg/kg. We monitored in vivo the changes in vascular properties throughout the treatment using MRI and found that the vascular volume and permeability surface area product decreased significantly. The treatment also resulted in an increase of caspase-3 activity and in a reduction of microvascular density. The multiple mode of action of this peptide, i.e., anti-angiogenic, and anti-tumorigenic, makes it a viable candidate as a therapeutic agent as a monotherapy or in combination with other compounds.

  2. Synthesis and anti-angiogenic effect of conjugates between serum albumin and non-steroidal anti-inflammatory drugs

    DEFF Research Database (Denmark)

    Kjaer, B; Struve, C; Friis, T

    2010-01-01

    of investigating the anti-angiogenic efficiency of NSAID-HSA conjugates in vitro, three NSAIDs, aspirin, ibuprofen, and naproxen were conjugated to HSA using different concentrations of their N-hydroxysuccinimide esters. Conjugation ratios from 10 to 50 were achieved and the conjugates retained a growth inhibitory...

  3. Anti-angiogenic potential of an ethanol extract of Annona atemoya seeds in vitro and in vivo.

    Science.gov (United States)

    Yi, Jin-Mu; Park, Jong-Shik; Lee, Jun; Hong, Jin Tae; Bang, Ok-Sun; Kim, No Soo

    2014-09-23

    Angiogenesis, which is initiated by certain tumor micro-environmental conditions and diverse protein factors, plays a pivotal role during tumor development and metastasis. Therefore, many efforts have been made to develop effective anti-angiogenic agents as anticancer therapeutics. In the current study, we investigated the anti-angiogenic potential of an ethanol extract of Annona atemoya seeds (EEAA) in vitro and in vivo. The anti-angiogenic potential of EEAA was evaluated using various in vitro/in vivo models, including cell proliferation, migration, and tube formation by human umbilical vascular endothelial cells (HUVECs); a Matrigel plug assay; and tumor-induced angiogenesis. The expression of hypoxia-inducible factors (HIFs) and vascular endothelial growth factor (VEGF) was investigated using reverse transcription-polymerase chain reaction, immunoassays, and western blotting. EEAA was able to significantly inhibit the angiogenic properties of HUVECs in vitro as well as angiogenic factor-induced blood vessel formation in vivo. EEAA down-regulated the expression of VEGF and HIF-1alpha/2alpha at the mRNA and protein levels, respectively, in cancer cells under hypoxic conditions. EEAA shows a strong anti-angiogenic potential in both in vitro and in vivo systems, and we suggest that EEAA may be a valuable herbal source for anticancer drug development.

  4. Dimethyl sulfoxide-caused changes in pro- and anti-angiogenic factor levels could contribute to an anti-angiogenic response in HeLa cells.

    Science.gov (United States)

    Şimşek, Ece; Aydemir, Esra Arslan; İmir, Nilüfer; Koçak, Orhan; Kuruoğlu, Aykut; Fışkın, Kayahan

    2015-10-01

    Dimethyl sulfoxide (DMSO) is widely used in biological research as a general solvent. While it has been previously demonstrated that DMSO possesses a wide range of pharmacological effects, there is no published work regarding the effects of DMSO on pro-angiogenic factor levels. This study was designed to investigate the possible effects of DMSO on the levels of three pro-angiogenic factors released from HeLa cells in vitro. Cells were treated with two different and previously determined concentrations of DMSO. The cytotoxic effects of DMSO concentrations on HeLa cells were determined via MTT. Survival rates of DMSO-treated cells were determined by Invitrogen live/dead viability/cytotoxicity kit and trypan blue exclusion assay. Changes in the pro-angiogenic levels in media were evaluated by Cayman's Substance P Enzyme Immunoassay ELISA kit. Vascular endothelial growth factor ELISA kit and interferon gamma ELISA kit for substance P, VEGF and IFNγ respectively. Changes in substance P levels were corrected by standard western blotting. Changes in VEGF and IFNγ levels were corrected both by western blot and real time PCR. Treatment with 1.4 μM DMSO caused a time-dependent inhibition of cell proliferation at 24, 48 and 72 h. 1.4 μM DMSO caused a significant reduction in VEGF levels at 72 h of incubation and sharp increases in IFNγ levels at both 48 and 72 h of incubation. According to real time PCR analyses, DMSO (1.4 μM) exhibited an inhibitory effect on VEGF but acted as an augmenter of IFNγ release on HeLa cells in vitro. This is the first report showing that the general solvent DMSO suppressed HeLa cell proliferation, decreased the levels of two pro-angiogenic factors (substance P and VEGF) and increased the release of an anti-angiogenic factor IFNγ in vitro. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Targeted Therapy of Cancer Using Photodynamic Therapy in Combination with Multi-faceted Anti-Tumor Modalities

    Directory of Open Access Journals (Sweden)

    Malini Olivo

    2010-05-01

    Full Text Available Photodynamic therapy (PDT has emerged as one of the important therapeutic options in the management of cancer and other diseases. PDT involves a tumor-localized photosensitizer (PS, which when appropriately illuminated by visible light converts oxygen into cytotoxic reactive oxygen species (ROS, that attack key structural entities within the targeted cells, ultimately resulting in necrosis or apoptosis. Though PDT is a selective modality, it can be further enhanced by combining other targeted therapeutic strategies that include the use of synthetic peptides and nanoparticles for selective delivery of photosensitizers. Another potentially promising strategy is the application of targeted therapeutics that exploit a myriad of critical pathways involved in tumorigenesis and metastasis. Vascular disrupting agents that eradicate tumor vasculature during PDT and anti-angiogenic agents that targets specific molecular pathways and prevent the formation of new blood vessels are novel therapeutic approaches that have been shown to improve treatment outcome. In addition to the well-documented mechanisms of direct cell killing and damage to the tumor vasculature, PDT can also activate the body’s immune response against tumors. Numerous pre-clinical studies and clinical observations have demonstrated the immuno-stimulatory capability of PDT. Herein, we aim to integrate the most important findings with regard to the combination of PDT and other novel targeted therapy approaches, detailing its potential in cancer photomedicine.

  6. The native structure of annexin A2 peptides in hydrophilic environment determines their anti-angiogenic effects.

    Science.gov (United States)

    Raddum, Aase M; Hollås, Hanne; Shumilin, Igor A; Henklein, Petra; Kretsinger, Robert; Fossen, Torgils; Vedeler, Anni

    2015-05-01

    The progression of aggressive cancer occurs via angiogenesis and metastasis makes these processes important targets for the development of anti-cancer agents. However, recent studies have raised the concern that selective inhibition of angiogenesis results in a switch towards increased tumour growth and metastasis. Since Annexin A2 (AnxA2) is involved in both angiogenesis and metastasis, it may serve as an ideal target for the simultaneous inhibition of both processes. Based on the discovery that domains I (D(I)) and IV (D(IV)) of AnxA2 are potent inhibitors of angiogenesis, we designed seven peptides derived from these domains based on AnxA2 crystal structures. The peptides were expressed as fusion peptides to increase their folding and solubility. Light scattering, far-UV circular dichroism and thermal transition analyses were employed to investigate their aggregation tendencies, α-helical propensity and stability, respectively. 2,2,2-trifluoroethanol (50%) increased the α-helical propensities of all peptides, indicating that they may favour a hydrophobic environment, but did not enhance their thermal stability. D(I)-P2 appears to be the most stable and folded peptide in a hydrophilic environment. The secondary structure of D(I)-P2 was confirmed by nuclear magnetic resonance spectra. The effect of the seven AnxA2 peptides on the formation and integrity of capillary-like networks was studied in a co-culture system mimicking many of the angiogenesis-related processes. Notably, D(I)-P2 inhibited significantly network formation in this system, indicating that the folded D(I)-P2 peptide interferes with vascular endothelial growth factor-dependent pro-angiogenic processes. Thus, this peptide has the potential of being developed further as an anti-angiogenic drug. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Imaging anti-angiogenic treatment response with DCE-VCT, DCE-MRI and DWI in an animal model of breast cancer bone metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Baeuerle, Tobias [Department of Medical Physics in Radiology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)], E-mail: t.baeuerle@dkfz-heidelberg.de; Bartling, Soenke [Department of Medical Physics in Radiology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)], E-mail: s.bartling@dkfz-heidelberg.de; Berger, Martin [Unit of Chemotherapy and Toxicology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)], E-mail: m.berger@dkfz-heidelberg.de; Schmitt-Graeff, Annette [Institute of Pathology, University of Freiburg, Postfach 214, 79002 Freiburg (Germany)], E-mail: annette.schmitt-graeff@uniklinik-freiburg.de; Hilbig, Heidegard [Institute of Anatomy, University of Leipzig, Liebigstrasse 13, 04103 Leipzig (Germany)], E-mail: Heidegard.Hilbig@medizin.uni-leipzig.de; Kauczor, Hans-Ulrich [Department of Diagnostic and Interventional Radiology, Radiologische Klinik, University of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg (Germany)], E-mail: hans-ulrich.kauczor@med.uni-heidelberg.de; Delorme, Stefan [Department of Radiology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)], E-mail: s.delorme@dkfz-heidelberg.de; Kiessling, Fabian [Department of Medical Physics in Radiology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Department of Experimental Molecular Imaging, RWTH Aachen, Pauwelsstrasse 20, 52074 Aachen (Germany)], E-mail: fkiessling@ukaachen.de

    2010-02-15

    As current classification systems for the assessment of treatment response in bone metastasis do not meet the needs of oncologists, new imaging biomarkers are desirable. Therefore, the diagnostic impact of dynamic contrast enhanced (DCE)-volumetric computed tomography (VCT) (descriptive analysis), DCE-MRI (two-compartment model) and diffusion weighted imaging (DWI) for monitoring anti-angiogenic therapy effects of the VEGF antibody bevacizumab in breast cancer bone metastases in rats was studied. Nude rats (n = 8 animals treated with bevacizumab and n = 9 untreated control rats) with site-specific osteolytic bone metastasis of the hind leg were imaged with a 1.5 T clinical MRI-scanner in an animal coil as well as in a volumetric CT-scanner at days 30, 40, 50 and 60 after inoculation of MDA-MB-231 human breast cancer cells. From these data, osteolytic lesion size (OLS), peak enhancement (PE), area under the curve (AUC), amplitude (A), exchange rate constant (k{sub ep}) and apparent diffusion coefficient (ADC) were determined in bone metastases. Prior to changes in OLS (p {<=} 0.05 at days 50 and 60) there was already a significant decrease in PE, AUC and A (p {<=} 0.05 at days 40-60) in treated animals compared to controls. However, for k{sub ep} and ADC there were no significant differences between the groups at any time point (p > 0.05 at days 40-60). In conclusion, anti-angiogenic treatment response in osteolytic breast cancer bone metastases can be assessed early with surrogate markers of vascularization, while DWI appears to be insensitive.

  8. Do anti-angiogenic VEGF (VEGFxxxb isoforms exist? A cautionary tale.

    Directory of Open Access Journals (Sweden)

    Sheila Harris

    Full Text Available Splicing of the human vascular endothelial growth factor-A (VEGF-A gene has been reported to generate angiogenic (VEGFxxx and anti-angiogenic (VEGFxxxb isoforms. Corresponding VEGFxxxb isoforms have also been reported in rat and mouse. We examined VEGFxxxb expression in mouse fibrosarcoma cell lines expressing all or individual VEGF isoforms (VEGF120, 164 or 188, grown in vitro and in vivo, and compared results with those from normal mouse and human tissues. Importantly, genetic construction of VEGF164 and VEGF188 expressing fibrosarcomas, in which exon 7 is fused to the conventional exon 8, precludes VEGFxxxb splicing from occurring. Thus, these two fibrosarcoma cell lines provided endogenous negative controls. Using RT-PCR we show that primers designed to simultaneously amplify VEGFxxx and VEGFxxxb isoforms amplified only VEGFxxx variants in both species. Moreover, only VEGFxxx species were generated when mouse podocytes were treated with TGFβ-1, a reported activator of VEGFxxxb splice selection in human podocytes. A VEGF164/120 heteroduplex species was identified as a PCR artefact, specifically in mouse. VEGFxxxb isoform-specific PCR did amplify putative VEGFxxxb species in mouse and human tissues, but unexpectedly also in VEGF188 and VEGF164 fibrosarcoma cells and tumours, where splicing to produce true VEGFxxxb isoforms cannot occur. Moreover, these products were only consistently generated using reverse primers spanning more than 5 bases across the 8b/7 or 8b/5 splice junctions. Primer annealing to VEGFxxx transcripts and amplification of exon 8b primer 'tails' explained the artefactual generation of VEGFxxxb products, since the same products were generated when the PCR reactions were performed with cDNA from VEGF164/VEGF188 'knock-in' vectors used in the generation of single VEGF isoform-expressing transgenic mice from which the fibrosarcoma lines were developed. Collectively, our results highlight important pitfalls in data

  9. Targeted therapy in lymphoma

    Directory of Open Access Journals (Sweden)

    Cavalli Franco

    2010-11-01

    Full Text Available Abstract Discovery of new treatments for lymphoma that prolong survival and are less toxic than currently available agents represents an urgent unmet need. We now have a better understanding of the molecular pathogenesis of lymphoma, such as aberrant signal transduction pathways, which have led to the discovery and development of targeted therapeutics. The ubiquitin-proteasome and the Akt/mammalian target of rapamycin (mTOR pathways are examples of pathological mechanisms that are being targeted in drug development efforts. Bortezomib (a small molecule protease inhibitor and the mTOR inhibitors temsirolimus, everolimus, and ridaforolimus are some of the targeted therapies currently being studied in the treatment of aggressive, relapsed/refractory lymphoma. This review will discuss the rationale for and summarize the reported findings of initial and ongoing investigations of mTOR inhibitors and other small molecule targeted therapies in the treatment of lymphoma.

  10. Targeted Radionuclide Therapy

    International Nuclear Information System (INIS)

    Ersahin, Devrim; Doddamane, Indukala; Cheng, David

    2011-01-01

    Targeted radiotherapy is an evolving and promising modality of cancer treatment. The killing of cancer cells is achieved with the use of biological vectors and appropriate radionuclides. Among the many advantages of this approach are its selectiveness in delivering the radiation to the target, relatively less severe and infrequent side effects, and the possibility of assessing the uptake by the tumor prior to the therapy. Several different radiopharmaceuticals are currently being used by various administration routes and targeting mechanisms. This article aims to briefly review the current status of targeted radiotherapy as well as to outline the advantages and disadvantages of radionuclides used for this purpose

  11. Assessment of the anti-angiogenic, anti-inflammatory and antinociceptive properties of ethyl vanillin.

    Science.gov (United States)

    Jung, Hyun-Joo; Song, Yun Seon; Kim, Kyunghoon; Lim, Chang-Jin; Park, Eun-Hee

    2010-02-01

    The present work aimed to assess novel pharmacological properties of ethyl vanillin (EVA) which is used as a flavoring agent for cakes, dessert, confectionary, etc. EVA exhibited an inhibitory activity in the chorioallantoic membrane angiogenesis. Anti-inflammatory activity of EVA was convinced using the two in vivo models, such as vascular permeability and air pouch models in mice. Antinociceptive activity of EVA was assessed using acetic acid-induced writhing model in mice. EVA suppressed production of nitric oxide and induction of inducible nitric oxide synthase in the lipopolysaccharide (LPS)-activated RAW264.7 macrophage cells. However, EVA could not suppress induction of cyclooxygenase-2 in the LPS-activated macrophages. EVA diminished reactive oxygen species level in the LPS-activated macrophages. EVA also suppressed enhanced matrix metalloproteinase-9 gelatinolytic activity in the LPSactivated RAW264.7 macrophage cells. EVA at the used concentrations couldn't diminish viability of the macrophage cells. Taken together, the anti-angiogenic, anti-inflammatory and anti-nociceptive properties of EVA are based on its suppressive effect on the production of nitric oxide possibly via decreasing the reactive oxygen species level.

  12. Anti-Oxidant, Anti-Inflammatory and Anti-Angiogenic Properties of Resveratrol in Ocular Diseases.

    Science.gov (United States)

    Lançon, Allan; Frazzi, Raffaele; Latruffe, Norbert

    2016-03-02

    Resveratrol (3,4',5 trihydroxy-trans-stilbene) is one of the best known phytophenols with pleiotropic properties. It is a phytoalexin produced by vine and it leads to the stimulation of natural plant defenses but also exhibits many beneficial effects in animals and humans by acting on a wide range of organs and tissues. These include the prevention of cardiovascular diseases, anti-cancer potential, neuroprotective effects, homeostasia maintenance, aging delay and a decrease in inflammation. Age-related macular degeneration (AMD) is one of the main causes of deterioration of vision in adults in developed countries This review deals with resveratrol and ophthalmology by focusing on the antioxidant, anti-inflammatory, and anti-angiogenic effects of this molecule. The literature reports that resveratrol is able to act on various cell types of the eye by increasing the level of natural antioxidant enzymatic and molecular defenses. Resveratrol anti-inflammatory effects are due to its capacity to limit the expression of pro-inflammatory factors, such as interleukins and prostaglandins, and also to decrease the chemo-attraction and recruitment of immune cells to the inflammatory site. In addition to this, resveratrol was shown to possess anti-VEGF effects and to inhibit the proliferation and migration of vascular endothelial cells. Resveratrol has the potential to be used in a range of human ocular diseases and conditions, based on animal models and in vitro experiments.

  13. Anti-Oxidant, Anti-Inflammatory and Anti-Angiogenic Properties of Resveratrol in Ocular Diseases

    Directory of Open Access Journals (Sweden)

    Allan Lançon

    2016-03-01

    Full Text Available Resveratrol (3,4′,5 trihydroxy-trans-stilbene is one of the best known phytophenols with pleiotropic properties. It is a phytoalexin produced by vine and it leads to the stimulation of natural plant defenses but also exhibits many beneficial effects in animals and humans by acting on a wide range of organs and tissues. These include the prevention of cardiovascular diseases, anti-cancer potential, neuroprotective effects, homeostasia maintenance, aging delay and a decrease in inflammation. Age-related macular degeneration (AMD is one of the main causes of deterioration of vision in adults in developed countries This review deals with resveratrol and ophthalmology by focusing on the antioxidant, anti-inflammatory, and anti-angiogenic effects of this molecule. The literature reports that resveratrol is able to act on various cell types of the eye by increasing the level of natural antioxidant enzymatic and molecular defenses. Resveratrol anti-inflammatory effects are due to its capacity to limit the expression of pro-inflammatory factors, such as interleukins and prostaglandins, and also to decrease the chemo-attraction and recruitment of immune cells to the inflammatory site. In addition to this, resveratrol was shown to possess anti-VEGF effects and to inhibit the proliferation and migration of vascular endothelial cells. Resveratrol has the potential to be used in a range of human ocular diseases and conditions, based on animal models and in vitro experiments.

  14. Mathematical Modeling of Cellular Cross-Talk Between Endothelial and Tumor Cells Highlights Counterintuitive Effects of VEGF-Targeted Therapies.

    Science.gov (United States)

    Jain, Harsh; Jackson, Trachette

    2017-04-24

    Tumor growth and progression are critically dependent on the establishment of a vascular support system. This is often accomplished via the expression of pro-angiogenic growth factors, including members of the vascular endothelial growth factor (VEGF) family of ligands. VEGF ligands are overexpressed in a wide variety of solid tumors and therefore have inspired optimism that inhibition of the different axes of the VEGF pathway-alone or in combination-would represent powerful anti-angiogenic therapies for most cancer types. When considering treatments that target VEGF and its receptors, it is difficult to tease out the differential anti-angiogenic and anti-tumor effects of all combinations experimentally because tumor cells and vascular endothelial cells are engaged in a dynamic cross-talk that impacts key aspects of tumorigenesis, independent of angiogenesis. Here we develop a mathematical model that connects intracellular signaling responsible for both endothelial and tumor cell proliferation and death to population-level cancer growth and angiogenesis. We use this model to investigate the effect of bidirectional communication between endothelial cells and tumor cells on treatments targeting VEGF and its receptors both in vitro and in vivo. Our results underscore the fact that in vitro therapeutic outcomes do not always translate to the in vivo situation. For example, our model predicts that certain therapeutic combinations result in antagonism in vivo that is not observed in vitro. Mathematical modeling in this direction can shed light on the mechanisms behind experimental observations that manipulating VEGF and its receptors is successful in some cases but disappointing in others.

  15. Combination of nanotechnology with vascular targeting agents for effective cancer therapy.

    Science.gov (United States)

    Jahanban-Esfahlan, Rana; Seidi, Khaled; Banimohamad-Shotorbani, Behnaz; Jahanban-Esfahlan, Ali; Yousefi, Bahman

    2018-04-01

    As a young science, nanotechnology promptly integrated into the current oncology practice. Accordingly, various nanostructure particles were developed to reduce drug toxicity and allow the targeted delivery of various diagnostic and therapeutic compounds to the cancer cells. New sophisticated nanosystems constantly emerge to improve the performance of current anticancer modalities. Targeting tumor vasculature is an attractive strategy to fight cancer. Though the idea was swiftly furthered from basic science to the clinic, targeting tumor vasculature had a limited potential in patients, where tumors relapse due to the development of multiple drug resistance and metastasis. The aim of this review is to discuss the advantages of nanosystem incorporation with various vascular targeting agents, including (i) endogen anti-angiogenic agents; (ii) inhibitors of angiogenesis-related growth factors; (iii) inhibitors of tyrosine kinase receptors; (iv) inhibitors of angiogenesis-related signaling pathways; (v) inhibitors of tumor endothelial cell-associated markers; and (vi) tumor vascular disrupting agents. We also review the efficacy of nanostructures as natural vascular targeting agents. The efficacy of each approach in cancer therapy is further discussed. © 2017 Wiley Periodicals, Inc.

  16. A ternary-complex of a suicide gene, a RAGE-binding peptide, and polyethylenimine as a gene delivery system with anti-tumor and anti-angiogenic dual effects in glioblastoma.

    Science.gov (United States)

    Choi, Eunji; Oh, Jungju; Lee, Dahee; Lee, Jaewon; Tan, Xiaonan; Kim, Minkyung; Kim, Gyeungyun; Piao, Chunxian; Lee, Minhyung

    2018-04-13

    The receptor for advanced glycation end-products (RAGE) is involved in tumor angiogenesis. Inhibition of RAGE might be an effective anti-angiogenic therapy for cancer. In this study, a cationic RAGE-binding peptide (RBP) was produced as an antagonist of RAGE, and a ternary-complex consisting of RBP, polyethylenimine (2 kDa, PEI2k), and a suicide gene (pHSVtk) was developed as a gene delivery system with dual functions: the anti-tumor effect of pHSVtk and anti-angiogenic effect of RBP. As an antagonist of RAGE, RBP decreased the secretion of vascular-endothelial growth factor (VEGF) in activated macrophages and reduced the tube-formation of endothelial cells in vitro. In in vitro transfection assays, the RBP/PEI2k/plasmid DNA (pDNA) ternary-complex had higher transfection efficiency than the PEI2k/pDNA binary-complex. In an intracranial glioblastoma animal model, the RBP/PEI2k/pHSVtk ternary-complex reduced α-smooth muscle actin expression, suggesting that the complex has an anti-angiogenic effect. In addition, the ternary-complex had higher pHSVtk delivery efficiency than the PEI2k/pHSVtk and PEI25k/pHSVtk binary-complexes in an animal model. As a result, the ternary-complex induced apoptosis and reduced tumor volume more effectively than the PEI2k/pHSVtk and PEI25k/pHSVtk binary-complexes. In conclusion, due to its dual anti-tumor and anti-angiogenesis effects, the RBP/PEI2k/pHSVtk ternary-complex might be an efficient gene delivery system for the treatment of glioblastoma. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. The roles of pathology in targeted therapy of women with gynecologic cancers.

    Science.gov (United States)

    Murali, Rajmohan; Grisham, Rachel N; Soslow, Robert A

    2018-01-01

    The role of the pathologist in the multidisciplinary management of women with gynecologic cancer has evolved substantially over the past decade. Pathologists' evaluation of parameters such as pathologic stage, histologic subtype, grade and microsatellite instability, and their identification of patients at risk for Lynch syndrome have become essential components of diagnosis, prognostic assessment and determination of optimal treatment of affected women. Despite the use of multimodality treatment and combination cytotoxic chemotherapy, the prognosis of women with advanced-stage gynecologic cancer is often poor. Therefore, expanding the arsenal of available systemic therapies with targeted therapeutic agents is appealing. Anti-angiogenic therapies, immunotherapy and poly ADP ribose polymerase (PARP) inhibitors are now routinely used for the treatment of advanced gynecologic cancer, and many more are under investigation. Pathologists remain important in the clinical management of patients with targeted therapy, by identifying potentially targetable tumors on the basis of their pathologic phenotype, by assessing biomarkers that are predictive of response to targeted therapy (e.g. microsatellite instability, PD1/PDL1 expression), and by monitoring treatment response and resistance. Pathologists are also vital to research efforts exploring novel targeted therapies by identifying homogenous subsets of tumors for more reliable and meaningful analyses, and by confirming expression in tumor tissues of novel targets identified in genomic, epigenetic or other screening studies. In the era of precision gynecologic oncology, the roles of pathologists in the discovery, development and implementation of targeted therapeutic strategies remain as central as they are for traditional (surgery-chemotherapy-radiotherapy) management of women with gynecologic cancers. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Targeted Therapy for Melanoma

    International Nuclear Information System (INIS)

    Quinn, Thomas; Moore, Herbert

    2016-01-01

    The research project, entitled ''Targeted Therapy for Melanoma,'' was focused on investigating the use of kidney protection measures to lower the non-specific kidney uptake of the radiolabeled Pb-DOTA-ReCCMSH peptide. Previous published work demonstrated that the kidney exhibited the highest non-target tissue uptake of the 212Pb/203 Pb radiolabeled melanoma targeting peptide DOTA-ReCCMSH. The radiolabeled alpha-melanocyte stimulating hormone (α-MSH) peptide analog DOTA-Re(Arg 11 )CCMSH, which binds the melanocortin-1 receptor over-expressed on melanoma tumor cells, has shown promise as a PRRT agent in pre-clinical studies. High tumor uptake of 212 Pb labeled DOTA-Re(Arg 11 )CCMSH resulted in tumor reduction or eradication in melanoma therapy studies. Of particular note was the 20-50% cure rate observed when melanoma mice were treated with alpha particle emitter 212 Pb. However, as with most PRRT agents, high radiation doses to the kidneys where observed. To optimize tumor treatment efficacy and reduce nephrotoxicity, the tumor to kidney uptake ratio must be improved. Strategies to reduce kidney retention of the radiolabeled peptide, while not effecting tumor uptake and retention, can be broken into several categories including modification of the targeting peptide sequence and reducing proximal tubule reabsorption.

  19. Targeted Therapy for Melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, Thomas [Alphamed, Jackson, TN (United States); Moore, Herbert [Alphamed, Jackson, TN (United States)

    2016-12-05

    The research project, entitled ”Targeted Therapy for Melanoma,” was focused on investigating the use of kidney protection measures to lower the non-specific kidney uptake of the radiolabeled Pb-DOTA-ReCCMSH peptide. Previous published work demonstrated that the kidney exhibited the highest non-target tissue uptake of the 212Pb/203Pb radiolabeled melanoma targeting peptide DOTA-ReCCMSH. The radiolabeled alpha-melanocyte stimulating hormone (α-MSH) peptide analog DOTA-Re(Arg11)CCMSH, which binds the melanocortin-1 receptor over-expressed on melanoma tumor cells, has shown promise as a PRRT agent in pre-clinical studies. High tumor uptake of 212Pb labeled DOTA-Re(Arg11)CCMSH resulted in tumor reduction or eradication in melanoma therapy studies. Of particular note was the 20-50% cure rate observed when melanoma mice were treated with alpha particle emitter 212Pb. However, as with most PRRT agents, high radiation doses to the kidneys where observed. To optimize tumor treatment efficacy and reduce nephrotoxicity, the tumor to kidney uptake ratio must be improved. Strategies to reduce kidney retention of the radiolabeled peptide, while not effecting tumor uptake and retention, can be broken into several categories including modification of the targeting peptide sequence and reducing proximal tubule reabsorption.

  20. Molecular features of interaction between VEGFA and anti-angiogenic drugs used in retinal diseases: a computational approach

    Directory of Open Access Journals (Sweden)

    Chiara Bianca Maria Platania

    2015-10-01

    Full Text Available Anti-angiogenic agents are biological drugs used for treatment of retinal neovascular degenerative diseases. In this study, we aimed at in-silico analysis of interaction of vascular endothelial growth factor A (VEGFA, the main mediator of angiogenesis, with binding domains of anti-angiogenic agents used for treatment of retinal diseases, such as ranibizumab, bevacizumab and aflibercept. The analysis of anti-VEGF/VEGFA complexes was carried out by means of protein-protein docking and molecular dynamics (MD coupled to molecular mechanics-Poisson Boltzmann Surface Area (MM-PBSA calculation. Molecular dynamics simulation was further analyzed by protein contact networks. Rough energetic evaluation with protein-protein docking scores revealed that aflibercept/VEGFA complex was characterized by electrostatic stabilization, whereas ranibizumab and bevacizumab complexes were stabilized by Van der Waals (VdW energy term; these results were confirmed by MM-PBSA. Comparison of MM-PBSA predicted energy terms with experimental binding parameters reported in literature indicated that the high association rate (Kon of aflibercept to VEGFA was consistent with high stabilizing electrostatic energy. On the other hand, the relatively low experimental dissociation rate (Koff of ranibizumab may be attributed to lower conformational fluctuations of the ranibizumab/VEGFA complex, higher number of contacts and hydrogen bonds in comparison to bevacizumab and aflibercept. Thus, the anti-angiogenic agents have been found to be considerably different both in terms of molecular interactions and stabilizing energy. Characterization of such features can improve the design of novel biological drugs potentially useful in clinical practice.

  1. Monitoring and Targeting Anti-VEGF Induced Hypoxia within the Viable Tumor by 19F–MRI and Multispectral Analysis

    Directory of Open Access Journals (Sweden)

    Yunzhou Shi

    2017-11-01

    Full Text Available The effect of anti-angiogenic agents on tumor oxygenation has been in question for a number of years, where both increases and decreases in tumor pO2 have been observed. This dichotomy in results may be explained by the role of vessel normalization in the response of tumors to anti-angiogenic therapy, where anti-angiogenic therapies may initially improve both the structure and the function of tumor vessels, but more sustained or potent anti-angiogenic treatments will produce an anti-vascular response, producing a more hypoxic environment. The first goal of this study was to employ multispectral (MS 19F–MRI to noninvasively quantify viable tumor pO2 and evaluate the ability of a high dose of an antibody to vascular endothelial growth factor (VEGF to produce a strong and prolonged anti-vascular response that results in significant tumor hypoxia. The second goal of this study was to target the anti-VEGF induced hypoxic tumor micro-environment with an agent, tirapazamine (TPZ, which has been designed to target hypoxic regions of tumors. These goals have been successfully met, where an antibody that blocks both murine and human VEGF-A (B20.4.1.1 was found by MS 19F–MRI to produce a strong anti-vascular response and reduce viable tumor pO2 in an HM-7 xenograft model. TPZ was then employed to target the anti-VEGF-induced hypoxic region. The combination of anti-VEGF and TPZ strongly suppressed HM-7 tumor growth and was superior to control and both monotherapies. This study provides evidence that clinical trials combining anti-vascular agents with hypoxia-activated prodrugs should be considered to improved efficacy in cancer patients.

  2. Anti-angiogenic therapy in pediatric brain tumors : An effective strategy?

    NARCIS (Netherlands)

    Sie, Mariska; den Dunnen, Wilfred F. A.; Hoving, Eelco W.; de Bont, Eveline S. J. M.

    Brain tumors are still the leading cause of cancer morbidity and mortality among children, despite different therapeutic options including neurosurgery, chemotherapy and radiation. As angiogenesis is highly crucial in brain tumor growth and progression, numerous clinical trials evaluating diverse

  3. The anti-angiogenic effect of dexamethasone in a murine hepatocellular carcinoma model by augmentation of gluconeogenesis pathway in malignant cells.

    Science.gov (United States)

    Shang, Fei; Liu, Mingming; Li, Bingwei; Zhang, Xiaoyan; Sheng, Youming; Liu, Shuying; Han, Jianqun; Li, Hongwei; Xiu, Ruijuan

    2016-05-01

    Angiogenesis is a long-term complex process involving various protein factors in hepatocellular carcinoma (HCC). Dexamethasone (Dex), considered as a synthetic glucocorticoid drug in clinical therapy, has been reported to have the therapeutic efficacy against liver cancer by intervention of abnormal glycolysis. In this study, we investigated the anti-angiogenic effect of Dex in murine liver cancer and attempted to demonstrate the potential mechanism. The malignant cells H22 were treated with Dex. Western blotting was used to explore the expression of PEPCK and G6Pase which were the two key enzymes that regulated gluconeogenesis. The supernatants from cultured H22 treated by Dex were collected and co-cultured with HUVECs. In vitro, migration assay, transwell assay and tube formation assay were performed to assess for migration, proliferation and tube formation abilities of HUVECs, respectively. In situ murine hepatoma model with green fluorescent protein markers (HepG2-GFP) was constructed to determine angiogenesis after treatment by Dex. PEPCK and G6Pase were almost deficient in H22 compared with normal liver cells NCTC-1469 (P gluconeogenesis could be restored significantly (P gluconeogenesis pathway.

  4. Sustained systemic response paralleled with ovarian metastasis progression by sunitinib in metastatic renal cell carcinoma: Is this an anti-angiogenic potentiation of cancer?

    Directory of Open Access Journals (Sweden)

    Uttam K Mete

    2015-01-01

    Full Text Available Metastatic renal cell cancer is associated with poor prognosis and survival and is resistant to conventional chemotherapy. Therapeutic targeting of molecular pathways for tumor angiogenesis and other specific activation mechanisms offers improved tumor response and prolonged survival. A 48-year-old, female patient presented with large right renal mass with features suggesting of renal cell cancer without metastasis on contrast enhanced computed tomography (CT. Right radical nephrectomy was done. After 9 months of surgery, she got metastasis in lung, liver and ovary. The patient received sunitinib via an expanded access program. After eight 6-week cycles of sunitinib, a reassessment CT scan confirmed an excellent partial response with the almost complete disappearance (90% of liver and lung metastasis but the adnexal mass had increased in size (>10 times and the possibility was thought of second malignancy. Excision of the mass performed. Histopathology of the mass depicted metastatic renal cell cancer. There is possibility of a ′site-specific anti-angiogenic potentiation mechanism′ of malignancy in relation to sunitinib based upon the preclinical studies, in reference to the index case. Regression of one site with concurrent progression is possible. The exact mechanism of site-specific response, especially organ specific progression by vascular endothelial growth factor inhibitors in metastatic renal cell cancer warrants further study.

  5. Evaluation of anti-HIF and anti-angiogenic properties of honokiol for the treatment of ocular neovascular diseases.

    Directory of Open Access Journals (Sweden)

    Divya Teja Vavilala

    Full Text Available Pathological activation of the hypoxia-inducible-factor (HIF pathway leading to expression of pro-angiogenic genes, such as vascular endothelial growth factor (VEGF, is the fundamental cause of neovascularization in ocular ischemic diseases and cancers. We have shown that pure honokiol inhibits the HIF pathway and hypoxia-mediated expression of pro-angiogenic genes in a number of cancer and retinal pigment epithelial (RPE cell lines. The crude extracts, containing honokiol, from Magnolia plants have been used for thousands of years in the traditional oriental medicine for a number of health benefits. We have recently demonstrated that daily intraperitoneal injection of honokiol starting at postnatal day (P 12 in an oxygen induced retinopathy mouse model significantly reduced retinal neovascularization at P17. Here, we evaluate the mechanism of HIF inhibition by honokiol in RPE cells. Using chromatin immunoprecipitation experiments, we demonstrate that honokiol inhibits binding of HIF to hypoxia-response elements present on VEGF promoter. We further show using a number of in vitro angiogenesis assays that, in addition to anti-HIF effect, honokiol manifests potent anti-angiogenic effect on human retinal micro vascular endothelial cells. Our results suggest that honokiol possesses potent anti-HIF and anti-angiogenic properties. These properties of honokiol make it an ideal therapeutic agent for the treatment of ocular neovascular diseases and solid tumors.

  6. Chemical characterisation and the anti-inflammatory, anti-angiogenic and antibacterial properties of date fruit (Phoenix dactylifera L.).

    Science.gov (United States)

    Taleb, Hajer; Maddocks, Sarah E; Morris, R Keith; Kanekanian, Ara D

    2016-12-24

    Date fruit, Phoenix dactylifera L. has traditionally been used as a medicine in many cultures for the treatment of a range of ailments such as stomach and intestinal disorders, fever, oedema, bronchitis and wound healing. The present review aims to summarise the traditional use and application of P. dactylifera date fruit in different ethnomedical systems, additionally the botany and phytochemistry are identified. Critical evaluation of in vitro and in vitro studies examining date fruit in relation to anti-inflammatory, anti-angiogenic and antimicrobial activities are outlined. The ethnomedical use of P. dactylifera in the treatment of inflammatory disease has been previously identified and reported. Furthermore, date fruit and date fruit co-products such as date syrup are rich sources of polyphenols, anthocyanins, sterols and carotenoids. In vitro studies have demonstrated that date fruit exhibits antibacterial, anti-inflammatory and anti-angiogenic activity. The recent interest in the identification of the numerous health benefits of dates using in vitro and in vivo studies have confirmed that date fruit and date syrup have beneficial health effects that can be attributed to the presence of natural bioactive compounds. Date fruit and date syrup have therapeutic properties, which have the potential to be beneficial to health. However, more investigations are needed to quantify and validate these effects. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Differential expression of anti-angiogenic factors and guidance genes in the developing macula.

    Science.gov (United States)

    Kozulin, Peter; Natoli, Riccardo; O'Brien, Keely M Bumsted; Madigan, Michele C; Provis, Jan M

    2009-01-01

    The primate retina contains a specialized, cone-rich macula, which mediates high acuity and color vision. The spatial resolution provided by the neural retina at the macula is optimized by stereotyped retinal blood vessel and ganglion cell axon patterning, which radiate away from the macula and reduce shadowing of macular photoreceptors. However, the genes that mediate these specializations, and the reasons for the vulnerability of the macula to degenerative disease, remain obscure. The aim of this study was to identify novel genes that may influence retinal vascular patterning and definition of the foveal avascular area. We used RNA from human fetal retinas at 19-20 weeks of gestation (WG; n=4) to measure differential gene expression in the macula, a region nasal to disc (nasal) and in the surrounding retina (surround) by hybridization to 12 GeneChip microarrays (HG-U133 Plus 2.0). The raw data was subjected to quality control assessment and preprocessing, using GC-RMA. We then used ANOVA analysis (Partek) Genomic Suite 6.3) and clustering (DAVID website) to identify the most highly represented genes clustered according to "biological process." The neural retina is fully differentiated at the macula at 19-20 WG, while neuronal progenitor cells are present throughout the rest of the retina. We therefore excluded genes associated with the cell cycle, and markers of differentiated neurons, from further analyses. Significantly regulated genes (pmacula versus surround" and "macula versus nasal." KEGG pathway clustering of the filtered gene lists identified 25 axon guidance-related genes that are differentially regulated in the macula. Furthermore, we found significant upregulation of three anti-angiogenic factors in the macula: pigment epithelium derived factor (PEDF), natriuretic peptide precurusor B (NPPB), and collagen type IValpha2. Differential expression of several members of the ephrin and semaphorin axon guidance gene families, PEDF, and NPPB was verified by

  8. Monitoring early tumor response to drug therapy with diffuse optical tomography

    Science.gov (United States)

    Flexman, Molly L.; Vlachos, Fotios; Kim, Hyun Keol; Sirsi, Shashank R.; Huang, Jianzhong; Hernandez, Sonia L.; Johung, Tessa B.; Gander, Jeffrey W.; Reichstein, Ari R.; Lampl, Brooke S.; Wang, Antai; Borden, Mark A.; Yamashiro, Darrell J.; Kandel, Jessica J.; Hielscher, Andreas H.

    2012-01-01

    Although anti-angiogenic agents have shown promise as cancer therapeutics, their efficacy varies between tumor types and individual patients. Providing patient-specific metrics through rapid noninvasive imaging can help tailor drug treatment by optimizing dosages, timing of drug cycles, and duration of therapy--thereby reducing toxicity and cost and improving patient outcome. Diffuse optical tomography (DOT) is a noninvasive three-dimensional imaging modality that has been shown to capture physiologic changes in tumors through visualization of oxygenated, deoxygenated, and total hemoglobin concentrations, using non-ionizing radiation with near-infrared light. We employed a small animal model to ascertain if tumor response to bevacizumab (BV), an anti-angiogenic agent that targets vascular endothelial growth factor (VEGF), could be detected at early time points using DOT. We detected a significant decrease in total hemoglobin levels as soon as one day after BV treatment in responder xenograft tumors (SK-NEP-1), but not in SK-NEP-1 control tumors or in non-responder control or BV-treated NGP tumors. These results are confirmed by magnetic resonance imaging T2 relaxometry and lectin perfusion studies. Noninvasive DOT imaging may allow for earlier and more effective control of anti-angiogenic therapy.

  9. Radiological evaluation of response to treatment: Application to metastatic renal cancers receiving anti-angiogenic treatment

    International Nuclear Information System (INIS)

    Ammari, S.; Hernigou, A.; Grataloup, C.; Thiam, R.; Cuenod, C.A.; Siauve, N.; Fournier, L.S.; Oudard, S.; Medioni, J.

    2014-01-01

    Targeted therapies have considerably improved the prognosis of patients with metastatic renal cancer (mRCC) but there are no reliable response assessment criteria reflecting the clinical benefits, because there is no regression in size, or it is delayed. Such criteria would help early identification of non-responders, who would then benefit from a change of treatment, and would avoid their being subjected to unnecessary side effects related to the treatment. We will review the imaging techniques currently available for evaluating tumour response in mRCC patients, including the response evaluation criteria in solid tumours (RECIST), the Choi criteria, the modified Choi criteria, and the CT size and attenuation criteria (SACT). We will also discuss functional imaging techniques, which are based on the physiological characteristics of the tumours, such as perfusion CT, magnetic resonance imaging or ultrasound (DCE-CT, DCE-MRI, DCE-US), diffusion MRI, BOLD MRI and new positron emission tomography (PET) tracers. It is not possible at present to propose a unanimously acknowledged criterion for evaluating tumour response to targeted therapy. However, there is a real need for this according to oncologists and the pharmaceutical industry, and radiologists need to be involved in reflecting on the subject. (authors)

  10. Growing tumor vessels: more than one way to skin a cat - implications for angiogenesis targeted cancer therapies.

    Science.gov (United States)

    Leite de Oliveira, Rodrigo; Hamm, Alexander; Mazzone, Massimiliano

    2011-04-01

    The establishment of a functional, integrated vascular system is instrumental for tissue growth and homeostasis. Without blood vessels no adequate nutrition and oxygen would be provided to cells, nor could the undesired waste products be efficiently removed. Blood vessels constitute therefore one of the largest and most complex body network whose assembly depends on the precise balance of growth factors acting in a complementary and coordinated manner with cells of several identities. However, the vessels that are crucial for life can also foster death, given their involvement in cancer progression towards malignancy and metastasis. Targeting tumor vasculature has thus arisen as an appealing anti-cancer therapeutic approach. Since the milestone achievements that vascular endothelial growth factor (VEGF) blockade suppressed angiogenesis and tumor growth in mice and prolonged the survival of cancer patients when administered in combination with chemotherapy, the clinical development of anti-VEGF(R) drugs has accelerated remarkably. FDA has approved the use of bevacizumab - a humanized monoclonal antibody against VEGF - in colorectal, lung and metastatic breast cancers in combination with standard chemotherapy. Additional broad-spectrum VEGF receptor tyrosine kinase inhibitors, such as sunitinib and sorafenib, are used in monotherapy for metastatic renal carcinoma, while sunitinib is also approved for imatinib resistant gastrointestinal stromal tumors and sorafenib for advanced stage hepatocellular carcinoma. Nevertheless, the survival benefit offered by VEGF(R) blockers, either as single agents or in combination with chemotherapy, is calculated merely in the order of months. Posterior studies in preclinical models have reported that despite reducing primary tumor growth, the inhibition of VEGF increased tumor invasiveness and metastasis. The clinical implications of these findings urge the need to reconcile these conflicting results. Anti-angiogenic therapy

  11. Synergistic effect of anti-angiogenic herbal composition (Meta-X) in combination with radiotherapy on the inhibition of tumor growth

    International Nuclear Information System (INIS)

    Han, Young Soo; Song, Jie Young; Yoon, Yeon Sook; Kim, Joon Sik; Park, Byung Young; Lee, Hee Suk; Kim, Min Yung

    2004-01-01

    Anti-angiogenic composition called Meta-X was made from herbal medicines that are currently used oral drugs for other indications. We examined biochemical properties of Meta-X, and synergistic effect of Meta-X combined with irradiation on the inhibition of tumor growth

  12. Time until initiation of tumor growth is an effective measure of the anti-angiogenic effect of TNP-470 on human glioblastoma in nude mice

    DEFF Research Database (Denmark)

    Kragh, M; Spang-Thomsen, M; Kristjansen, P E

    1999-01-01

    We examined the effect of the anti-angiogenic compound TNP-470 on early tumor growth characteristics following subcutaneous implantation of 1 mm3 tissue blocks of human glioblastoma U87, in nude mice. The mice received daily injections with TNP-470, 7 mg/kg, from one day before until either 3, 7...

  13. Targeted therapies for cancer

    Science.gov (United States)

    ... Kummar S, Murgo AJ, Tomaszewski JE, Doroshow JH. Therapeutic targeting of cancer cells: era of molecularly targeted agents. ... ADAM Health Solutions. About MedlinePlus Site Map FAQs Customer Support Get email updates Subscribe to RSS Follow ...

  14. Tumor targeted gene therapy

    International Nuclear Information System (INIS)

    Kang, Joo Hyun

    2006-01-01

    Knowledge of molecular mechanisms governing malignant transformation brings new opportunities for therapeutic intervention against cancer using novel approaches. One of them is gene therapy based on the transfer of genetic material to an organism with the aim of correcting a disease. The application of gene therapy to the cancer treatment had led to the development of new experimental approaches such as suicidal gene therapy, inhibition of oncogenes and restoration of tumor-suppressor genes. Suicidal gene therapy is based on the expression in tumor cells of a gene encoding an enzyme that converts a prodrug into a toxic product. Representative suicidal genes are Herpes simplex virus type 1 thymidine kinase (HSV1-tk) and cytosine deaminase (CD). Especially, physicians and scientists of nuclear medicine field take an interest in suicidal gene therapy because they can monitor the location and magnitude, and duration of expression of HSV1-tk and CD by PET scanner

  15. In vitro anti-angiogenic properties of LGD1069, a selective retinoid X-receptor agonist through down-regulating Runx2 expression on Human endothelial cells

    International Nuclear Information System (INIS)

    Fu, Jianjiang; Wang, Wei; Liu, Yu-Hui; Lu, Hong; Luo, Yongming

    2011-01-01

    LGD1069 (Targretin ® ) is a selective retinoid X receptor (RXR) ligand, which is used in patients for cutaneous T-cell lymphoma. Our published study reported that LGD1069 inhibited tumor-induced angiogenesis in non-small cell lung cancer. In present study, we found that LGD1069 suppressed the proliferation, adhesion, invasion and migration of endothelial cells directly, and affected the expression of vegf and some matrix genes. Human umbilical vein endothelial cells (HUVECs) were used for in vitro study. MTT assay and Sulforhodamine B assay were used for cell viability assay; the tube formation assay was used to investigate the effect of LGD1069 on angiogenesis in vitro. In vitro adhesion, migration and invasion of HUVEC cells were analyzed by Matrigel adhesion, migration and invasion assay. Gene expressions were measured by RT-PCR and Western blot analysis. Our data showed here that LGD1069 inhibited the activation of TGF-β/Smad pathway significantly. Furthermore, it was demonstrated that expression of Runx2 was suppressed pronouncedly during incubation with LGD1069. Runx2 is a DNA-binding transcription factor which plays a master role in tumor-induced angiogenesis and cancer cells metastasis by interaction with the TGF-β/Smad pathway of transcriptional modulators. Our results suggested that LGD1069 may impair angiogenic and metastatic potential induced by tumor cells through suppressing expression of Runx2 directly on human endothelial cells, which may point out new pathway through which LGD1069 display anti-angiogenic properties, and provide new molecular evidence to support LGD1069 as a potent anti-metastatic agent in cancer therapy

  16. Emerging targeted therapies for melanoma.

    Science.gov (United States)

    Johnson, Douglas B; Pollack, Megan H; Sosman, Jeffrey A

    2016-06-01

    Melanoma is an aggressive cutaneous malignancy associated with poor response to traditional therapies. Recent regulatory approval for immune checkpoint inhibitors and agents targeting mutated BRAF has led to a tremendous expansion of effective treatment options for patients with advanced melanoma. Unfortunately, primary or acquired resistance develops in most patients, highlighting the need for additional therapies. Numerous genetic and other molecular features of this disease may provide effective targets for therapy development. This article reviews available melanoma treatments, including immune and molecularly-targeted therapies. We then discuss agents in development, with a focus on targeted (rather than immune) therapies. In particular, we discuss agents that block mitogen-activated protein kinase (MAPK) signaling, as well as other emerging approaches such as antibody-drug conjugates, cell-cycle targeting, and novel genetically-informed clinical trials. Despite the incredible advances in melanoma therapeutics over the last several years, a clear need to develop more effective therapies remains. Molecularly-targeted therapy approaches will likely remain a cornerstone of melanoma treatment in parallel to immune therapy strategies.

  17. Tasquinimod (ABR-215050, a quinoline-3-carboxamide anti-angiogenic agent, modulates the expression of thrombospondin-1 in human prostate tumors

    Directory of Open Access Journals (Sweden)

    Isaacs John T

    2010-05-01

    Full Text Available Abstract Background The orally active quinoline-3-carboxamide tasquinimod [ABR-215050; CAS number 254964-60-8, which currently is in a phase II-clinical trial in patients against metastatic prostate cancer, exhibits anti-tumor activity via inhibition of tumor angiogenesis in human and rodent tumors. To further explore the mode of action of tasquinimod, in vitro and in vivo experiments with gene microarray analysis were performed using LNCaP prostate tumor cells. The array data were validated by real-time semiquantitative reversed transcriptase polymerase chain reaction (sqRT-PCR and protein expression techniques. Results One of the most significant differentially expressed genes both in vitro and in vivo after exposure to tasquinimod, was thrombospondin-1 (TSP1. The up-regulation of TSP1 mRNA in LNCaP tumor cells both in vitro and in vivo correlated with an increased expression and extra cellular secretion of TSP1 protein. When nude mice bearing CWR-22RH human prostate tumors were treated with oral tasquinimod, there was a profound growth inhibition, associated with an up-regulation of TSP1 and a down- regulation of HIF-1 alpha protein, androgen receptor protein (AR and glucose transporter-1 protein within the tumor tissue. Changes in TSP1 expression were paralleled by an anti-angiogenic response, as documented by decreased or unchanged tumor tissue levels of VEGF (a HIF-1 alpha down stream target in the tumors from tasquinimod treated mice. Conclusions We conclude that tasquinimod-induced up-regulation of TSP1 is part of a mechanism involving down-regulation of HIF1α and VEGF, which in turn leads to reduced angiogenesis via inhibition of the "angiogenic switch", that could explain tasquinimods therapeutic potential.

  18. Targeted radionuclide therapy

    African Journals Online (AJOL)

    but negative for a Ga-68-DOTATATE PET/. CT.[7]. Accumulated evidence from clinical experience indicates that partial and complete responses may be achieved in almost 50% of patients, and that the duration of the therapy response is more than 40 months.[8] The patients' self-assessed quality of life also improves signi ...

  19. Molecular Targets for Targeted Radionuclide Therapy

    International Nuclear Information System (INIS)

    Mather, S.J.

    2009-01-01

    Molecular targeted radionuclide cancer therapy is becoming of increasing importance, especially for disseminated diseases. Systemic chemotherapies often lack selectivity while targeted radionuclide therapy has important advantages as the radioactive cytotoxic unit of the targeting vector is specifically directed to the cancer, sparing normal tissues. The principle strategy to improve cancer selectivity is to couple therapeutic agents to tumour-targeting vectors. In targeted radionuclide therapy (TRT), the cytotoxic portion of the conjugates normally contains a therapeutic radiometal immobilised by a bifunctional chelator. The aim is therefore to use as ligand-targeted therapeutics vectors coupled to Auger-, alpha- and/or beta-emitting radionuclides. An advantage of using radiation instead of chemotherapeutics as the cytotoxic agent is the so called 'crossfire effect'. This allows sterilisation of tumour cells that are not directly targeted due to heterogeneity in target molecule expression or inhomogeneous vector delivery. However, before the targeting ligands can be selected, the target molecule on the tumour has to be selected. It should be uniquely expressed, or at least highly overexpressed, on or in the target cells relative to normal tissues. The target should be easily accessible for ligand delivery and should not be shed or down- regulated after ligand binding. An important property of a receptor (or antigen) is its potential to be internalized upon binding of the ligand. This provides an active uptake mechanism and allows the therapeutic agent to be trapped within the tumour cells. Molecular targets of current interest include: Receptors: G-protein coupled receptors are overexpressed on many major human tumours. The prototype of these receptors are somatostatin receptors which show very high density in neuroendocrine tumours, but there are many other most interesting receptors to be applied for TRT. The targeting ligands for these receptors are

  20. Anti-angiogenic effect of Nelumbo nucifera leaf extracts in human umbilical vein endothelial cells with antioxidant potential.

    Directory of Open Access Journals (Sweden)

    Jong Suk Lee

    Full Text Available Nelumbo nucifera Gaertn (Nymphaeaceae has long been used as a traditional herb in Chinese, Japanese, Indian, and Korean medicinal practices since prehistoric times and flourishes today as the primary form of medicine. This study reports for the first time the potent ability of N. nucifera leaf extracts to inhibit vascular endothelial growth factor (VEGF-induced angiogenesis in vitro and in vivo, as well as their antioxidant efficacy in various scavenging models and an analysis of their chemical composition. In vivo anti-angiogenic activity was evaluated in a chick chorioallantoic membrane (CAM model using fertilized chicken eggs, in human umbilical vein endothelial cells (HUVECs by using cell viability, cell proliferation and tube formation assays, and by determining intracellular reactive oxygen species (ROS in vitro. The antioxidant efficacy of N. nucifera leaf extracts was determined in various scavenging models, including total phenolic and flavonoid content. The chemical composition of N. nucifera leaf extracts was determined by GC-MS analysis, which revealed the presence of different phytochemicals. The IC50 values for the DPPH radical scavenging activities of water and methanol extracts were found to be 1699.47 and 514.36 μg ml(-1, and their total phenolic and flavonoid contents were 85.01 ± 2.32 and 147.63 ± 2.23 mg GAE g dry mass(-1 and 35.38 ± 1.32 and 41.86 ± 1.07 mg QA g dry mass(-1, respectively. N. nucifera leaf extracts (10-100 μg ml(-1 exhibited significant dose-dependent inhibition of VEGF-induced angiogenesis, as well as VEGF-induced proliferation and tube formation in HUVECs. In this study, N. nucifera leaf extracts displayed potent antioxidant and inhibitory effects on VEGF-induced angiogenesis. N. nucifera exerted an inhibitory effect on VEGF-induced proliferation and tube formation, as well as CAM angiogenesis in vivo. Moreover, N. nucifera leaf extracts significantly blocked VEGF-induced ROS production in HUVECs

  1. Anti-angiogenic effect of Nelumbo nucifera leaf extracts in human umbilical vein endothelial cells with antioxidant potential.

    Science.gov (United States)

    Lee, Jong Suk; Shukla, Shruti; Kim, Jung-Ae; Kim, Myunghee

    2015-01-01

    Nelumbo nucifera Gaertn (Nymphaeaceae) has long been used as a traditional herb in Chinese, Japanese, Indian, and Korean medicinal practices since prehistoric times and flourishes today as the primary form of medicine. This study reports for the first time the potent ability of N. nucifera leaf extracts to inhibit vascular endothelial growth factor (VEGF)-induced angiogenesis in vitro and in vivo, as well as their antioxidant efficacy in various scavenging models and an analysis of their chemical composition. In vivo anti-angiogenic activity was evaluated in a chick chorioallantoic membrane (CAM) model using fertilized chicken eggs, in human umbilical vein endothelial cells (HUVECs) by using cell viability, cell proliferation and tube formation assays, and by determining intracellular reactive oxygen species (ROS) in vitro. The antioxidant efficacy of N. nucifera leaf extracts was determined in various scavenging models, including total phenolic and flavonoid content. The chemical composition of N. nucifera leaf extracts was determined by GC-MS analysis, which revealed the presence of different phytochemicals. The IC50 values for the DPPH radical scavenging activities of water and methanol extracts were found to be 1699.47 and 514.36 μg ml(-1), and their total phenolic and flavonoid contents were 85.01 ± 2.32 and 147.63 ± 2.23 mg GAE g dry mass(-1) and 35.38 ± 1.32 and 41.86 ± 1.07 mg QA g dry mass(-1), respectively. N. nucifera leaf extracts (10-100 μg ml(-1)) exhibited significant dose-dependent inhibition of VEGF-induced angiogenesis, as well as VEGF-induced proliferation and tube formation in HUVECs. In this study, N. nucifera leaf extracts displayed potent antioxidant and inhibitory effects on VEGF-induced angiogenesis. N. nucifera exerted an inhibitory effect on VEGF-induced proliferation and tube formation, as well as CAM angiogenesis in vivo. Moreover, N. nucifera leaf extracts significantly blocked VEGF-induced ROS production in HUVECs, confirming

  2. Targeted therapy for sarcomas

    Directory of Open Access Journals (Sweden)

    Forscher C

    2014-03-01

    Full Text Available Charles Forscher,1 Monica Mita,2 Robert Figlin3 1Sarcoma Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; 2Experimental Therapeutics Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; 3Academic Development Program, Samuel Oschin Comprehensive Cancer Institute, and Division of Hematology/Oncology, Cedars-Sinai Medical Center, Los Angeles, CA, USA Abstract: Sarcomas are tumors of mesenchymal origin that make up approximately 1% of human cancers. They may arise as primary tumors in either bone or soft tissue, with approximately 11,280 soft tissue tumors and 2,650 bone tumors diagnosed each year in the United States. There are at least 50 different subtypes of soft tissue sarcoma, with new ones described with ever-increasing frequency. One way to look at sarcomas is to divide them into categories on the basis of their genetic make-up. One group of sarcomas has an identifiable, relatively simple genetic signature, such as the X:18 translocation seen in synovial sarcoma or the 11:22 translocation seen in Ewing's sarcoma. These specific abnormalities often lead to the presence of fusion proteins, such as EWS-FLI1 in Ewing's sarcoma, which are helpful as diagnostic tools and may become therapeutic targets in the future. Another group of sarcomas is characterized by complex genetic abnormalities as seen in leiomyosarcoma, osteosarcoma, and undifferentiated sarcoma. It is important to keep these distinctions in mind when contemplating the development of targeted agents for sarcomas. Different abnormalities in sarcoma could be divided by tumor subtype or by the molecular or pathway abnormality. However, some existing drugs or drugs in development may interfere with or alter more than one of the presented pathways. Keywords: sarcoma, targeted agents, tyrosine kinase inhibitors, mTor inhibition

  3. THE ABERRANT PROMOTER HYPERMETHYLATION PATTERN OF THE ANTI - ANGIOGENIC TSP1 GENE IN EPITHELIAL OVARIAN CARCINOMA: AN INDIAN STUDY

    Directory of Open Access Journals (Sweden)

    Ramesh

    2015-06-01

    Full Text Available PURPOSE: The promoter hypermethylation patterns of Thrombospodin - 1 gene in 50 EOC patients were studied and the methylation pattern was correlated with various clinic pathological parameters. METHODS: The promoter hypermethylation pattern of the TSP - 1 gene was assessed using nested PCR and Methylation specific PCR. STATISTICAL ANALYSIS: All the available data was statistically analyzed using the Chi square test or Fisher Exact Test on the SPSS software version 22.0 and a value <0.0 5 was considered statistically significant. RESULTS: Forty of the fifty ovarian carcinoma samples reported positive for methylation corresponding to a methylation frequency of 80%. A methylation frequency of 89.2%, 83.3% and 42.8% was observed in malignant , Low malignant potential (borderline and benign sample cohorts. CONCLUSION: From the results drawn from this study, it clearly shows that the anti angiogenic protein TSP - 1 is extensively hypermethylated in ovarian carcinoma and that it accumulates over t he progression of the disease from benign to malignant. As previous reports suggest that there is no evidence of mutation of this gene, promoter hypermethylation may be a crucial factor for the down regulation of the gene. Further by clubbing together the promoter hypermethylation pattern of TSP - 1 gene with hypermethylation patterns of other TSG may provide a better insight into the application of using methylation profiles of TSG as a biomarker in the detection of ovarian carcinoma.

  4. Contribution of tumor endothelial cells to drug resistance: anti-angiogenic tyrosine kinase inhibitors act as p-glycoprotein antagonists.

    Science.gov (United States)

    Bani, MariaRosa; Decio, Alessandra; Giavazzi, Raffaella; Ghilardi, Carmen

    2017-05-01

    Tumor endothelial cells (TEC) differ from the normal counterpart, in both gene expression and functionality. TEC may acquire drug resistance, a characteristic that is maintained in vitro. There is evidence that TEC are more resistant to chemotherapeutic drugs, substrates of ATP-binding cassette (ABC) transporters. TEC express p-glycoprotein (encoded by ABCB1), while no difference in other ABC transporters was revealed compared to normal endothelia. A class of tyrosine kinase inhibitors (TKI), used as angiostatic compounds, interferes with the ATPase activity of p-glycoprotein, thus impairing its functionality. The exposure of ovarian adenocarcinoma TEC to the TKIs sunitinib or sorafenib was found to abrogate resistance (proliferation and motility) to doxorubicin and paclitaxel in vitro, increasing intracellular drug accumulation. A similar effect has been reported by the p-glycoprotein inhibitor verapamil. No beneficial effect was observed in combination with cytotoxic drugs that are not p-glycoprotein substrates. The current paper reviews the mechanisms of TEC chemoresistance and shows the role of p-glycoprotein in mediating such resistance. Inhibition of p-glycoprotein by anti-angiogenic TKI might contribute to the beneficial effect of these small molecules, when combined with chemotherapy, in counteracting acquired drug resistance.

  5. Coordination of lapachol to bismuth(III) improves its anti-inflammatory and anti-angiogenic activities.

    Science.gov (United States)

    Parrilha, Gabrieli L; Vieira, Rafael P; Campos, Paula P; Silva, Grácia Divina F; Duarte, Lucienir P; Andrade, Silvia P; Beraldo, Heloisa

    2012-02-01

    Complex [Bi(Lp)(2)]Cl was obtained with 4-hydroxy-3-(3-methylbut-2-enyl)naphthalene-1,2-dione, "lapachol" (HLp). Lapachol, [Bi(Lp)(2)]Cl and BiCl(3) were evaluated in a murine model of inflammatory angiogenesis induced by subcutaneous implantation of polyether polyurethane sponge discs. Intraperitoneal (i.p.) administration of lapachol or [Bi(Lp)(2)]Cl reduced the hemoglobin content in the implants suggesting that reduction of neo-vascularization was caused by lapachol. In the per os treatment only [Bi(Lp)(2)]Cl decreased the hemoglobin content in the implants. Likewise, N-acetylglucosaminidase (NAG) activity decreased in the implants of the groups i.p. treated with lapachol and [Bi(Lp)(2)]Cl while in the per os treatment inhibition was observed only for [Bi(Lp)(2)]Cl. Histological analysis showed that the components of the fibro-vascular tissue (vascularization and inflammatory cell population) were decreased in lapachol- and complex-treated groups. Our results suggest that both lapachol and [Bi(Lp)(2)]Cl exhibit anti-angiogenic and anti-inflammatory activities which have been attributed to the presence of the lapachol ligand. However, coordination to bismuth(III) could be an interesting strategy for improvement of lapachol's therapeutic properties.

  6. The imbalance in expression of angiogenic and anti-angiogenic factors as candidate predictive biomarker in preeclampsia

    Directory of Open Access Journals (Sweden)

    Pooneh Nikuei

    2015-07-01

    Full Text Available Preeclampsia is an important pregnancy disorder with serious maternal and fetal complications which its etiology has not been completely understood yet. Early diagnosis and management of disease could reduce its potential side effects. The vascular endothelial growth factor (VEGF family including VEGF-A is the most potent endothelial growth factor which induces angiogenesis and endothelial cell proliferation and has basic role in vasculogenesis. VEGF and its tyrosine kinase receptors (Flt1 and KDR are major factors for fetal and placental angiogenic development. Finding mechanisms involved in expression of angiogenic factors may lead to new prognostic and therapeutic points in management of preeclampsia. Recent researches, has shown capability of some anti-angiogenic factors as potential candidate to be used as early predictors for preeclampsia. Soluble fms-like tyrosin kinase-1 (sFlt1 is a truncated splice variant of the membrane-bound VEGF receptor Flt1, that is produced by the placenta and it can bind to angiogenic growth factors and neutraliz, their effects. It is also observed that the ratio of sFlt1 to placental growth factor is valuable as prognostic marker. In this review, VEGF family member’s role in angiogenesis is evaluated as biomarkers to be used for prediction of preeclampsia.

  7. Zinc-chelation contributes to the anti-angiogenic effect of ellagic acid on inhibiting MMP-2 activity, cell migration and tube formation.

    Directory of Open Access Journals (Sweden)

    Sheng-Teng Huang

    Full Text Available BACKGROUND: Ellagic acid (EA, a dietary polyphenolic compound, has been demonstrated to exert anti-angiogenic effect but the detailed mechanism is not yet fully understood. The aim of this study was to investigate whether the zinc chelating activity of EA contributed to its anti-angiogenic effect. METHODS AND PRINCIPAL FINDINGS: The matrix metalloproteinases-2 (MMP-2 activity, a zinc-required reaction, was directly inhibited by EA as examined by gelatin zymography, which was reversed dose-dependently by adding zinc chloride. In addition, EA was demonstrated to inhibit the secretion of MMP-2 from human umbilical vein endothelial cells (HUVECs as analyzed by Western blot method, which was also reversed by the addition of zinc chloride. Reversion-inducing cysteine-rich protein with Kazal motifs (RECK, known to down-regulate the MMP-2 activity, was induced by EA at both the mRNA and protein levels which was correlated well with the inhibition of MMP-2 activity. Interestingly, zinc chloride could also abolish the increase of EA-induced RECK expression. The anti-angiogenic effect of EA was further confirmed to inhibit matrix-induced tube formation of endothelial cells. The migration of endothelial cells as analyzed by transwell filter assay was suppressed markedly by EA dose-dependently as well. Zinc chloride could reverse these two effects of EA also in a dose-dependent manner. Since magnesium chloride or calcium chloride could not reverse the inhibitory effect of EA, zinc was found to be involved in tube formation and migration of vascular endothelial cells. CONCLUSIONS/SIGNIFICANCE: Together these results demonstrated that the zinc chelation of EA is involved in its anti-angiogenic effects by inhibiting MMP-2 activity, tube formation and cell migration of vascular endothelial cells. The role of zinc was confirmed to be important in the process of angiogenesis.

  8. Mechanistic Insights into the Anti-angiogenic Activity of Trypanosoma cruzi Protein 21 and its Potential Impact on the Onset of Chagasic Cardiomyopathy

    OpenAIRE

    Samuel Cota Teixeira; Daiana Silva Lopes; Sarah Natalie Cirilo Gimenes; Thaise Lara Teixeira; Marcelo Santos da Silva; Rebecca Tavares e Silva Brígido; Felipe Andrés Cordero da Luz; Aline Alves da Silva; Makswell Almeida Silva; Pilar Veras Florentino; Paula Cristina Brígido Tavares; Marlus Alves dos Santos; Veridiana de Melo Rodrigues Ávila; Marcelo José Barbosa Silva; Maria Carolina Elias

    2017-01-01

    Chronic chagasic cardiomyopathy (CCC) is arguably the most important form of the Chagas Disease, caused by the intracellular protozoan Trypanosoma cruzi; it is estimated that 10?30% of chronic patients develop this clinical manifestation. The most common and severe form of CCC can be related to ventricular abnormalities, such as heart failure, arrhythmias, heart blocks, thromboembolic events and sudden death. Therefore, in this study, we proposed to evaluate the anti-angiogenic activity of a ...

  9. Tumor Oxygen Dynamics as a Prognostic Indicator of Effective Antiangiogenic Therapy

    National Research Council Canada - National Science Library

    Zhao, Dawen

    2003-01-01

    ...: so called angiogenesis. One major goal of this project is to fully understand and precisely assess the dynamic changes in blood perfusion and oxygenation, both during normal growth and following anti-angiogenic therapy...

  10. Tumor Oxygen Dynamics as a Prognostic Indicator of Effective Antiangiogenic Therapy

    National Research Council Canada - National Science Library

    Zhao, Dawen

    2002-01-01

    ...: so called angiogenesis. One major goal of this project is to fully understand and precisely assess the dynamic changes in blood perfusion and oxygenation, both during normal growth and following anti-angiogenic therapy...

  11. Targeting angiogenesis-dependent calcified neoplasms using combined polymer therapeutics.

    Directory of Open Access Journals (Sweden)

    Ehud Segal

    Full Text Available There is an immense clinical need for novel therapeutics for the treatment of angiogenesis-dependent calcified neoplasms such as osteosarcomas and bone metastases. We developed a new therapeutic strategy to target bone metastases and calcified neoplasms using combined polymer-bound angiogenesis inhibitors. Using an advanced "living polymerization" technique, the reversible addition-fragmentation chain transfer (RAFT, we conjugated the aminobisphosphonate alendronate (ALN, and the potent anti-angiogenic agent TNP-470 with N-(2-hydroxypropylmethacrylamide (HPMA copolymer through a Glycine-Glycine-Proline-Norleucine linker, cleaved by cathepsin K, a cysteine protease overexpressed at resorption sites in bone tissues. In this approach, dual targeting is achieved. Passive accumulation is possible due to the increase in molecular weight following polymer conjugation of the drugs, thus extravasating from the tumor leaky vessels and not from normal healthy vessels. Active targeting to the calcified tissues is achieved by ALN's affinity to bone mineral.The anti-angiogenic and antitumor potency of HPMA copolymer-ALN-TNP-470 conjugate was evaluated both in vitro and in vivo. We show that free and conjugated ALN-TNP-470 have synergistic anti-angiogenic and antitumor activity by inhibiting proliferation, migration and capillary-like tube formation of endothelial and human osteosarcoma cells in vitro. Evaluation of anti-angiogenic, antitumor activity and body distribution of HPMA copolymer-ALN-TNP-470 conjugate was performed on severe combined immunodeficiency (SCID male mice inoculated with mCherry-labeled MG-63-Ras human osteosarcoma and by modified Miles permeability assay. Our targeted bi-specific conjugate reduced VEGF-induced vascular hyperpermeability by 92% and remarkably inhibited osteosarcoma growth in mice by 96%.This is the first report to describe a new concept of a narrowly-dispersed combined polymer therapeutic designed to target both tumor and

  12. Exploring targeted therapies in oncology

    NARCIS (Netherlands)

    Mom, Constantijne Helene

    2007-01-01

    Targeted therapy in oncology is treatment directed at specific biological pathways and processes that play a critical role in carcinogenesis. Increased knowledge regarding the molecular changes underlying tumor progression and metastatis has resulted in the development of agents that are designed to

  13. Tenascin-C Orchestrates Glioblastoma Angiogenesis by Modulation of Pro- and Anti-angiogenic Signaling.

    Science.gov (United States)

    Rupp, Tristan; Langlois, Benoit; Koczorowska, Maria M; Radwanska, Agata; Sun, Zhen; Hussenet, Thomas; Lefebvre, Olivier; Murdamoothoo, Devadarssen; Arnold, Christiane; Klein, Annick; Biniossek, Martin L; Hyenne, Vincent; Naudin, Elise; Velazquez-Quesada, Ines; Schilling, Oliver; Van Obberghen-Schilling, Ellen; Orend, Gertraud

    2016-12-06

    High expression of the extracellular matrix component tenascin-C in the tumor microenvironment correlates with decreased patient survival. Tenascin-C promotes cancer progression and a disrupted tumor vasculature through an unclear mechanism. Here, we examine the angiomodulatory role of tenascin-C. We find that direct contact of endothelial cells with tenascin-C disrupts actin polymerization, resulting in cytoplasmic retention of the transcriptional coactivator YAP. Tenascin-C also downregulates YAP pro-angiogenic target genes, thus reducing endothelial cell survival, proliferation, and tubulogenesis. Glioblastoma cells exposed to tenascin-C secrete pro-angiogenic factors that promote endothelial cell survival and tubulogenesis. Proteomic analysis of their secretome reveals a signature, including ephrin-B2, that predicts decreased survival of glioma patients. We find that ephrin-B2 is an important pro-angiogenic tenascin-C effector. Thus, we demonstrate dual activities for tenascin-C in glioblastoma angiogenesis and uncover potential targeting and prediction opportunities. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  14. Nanoceria: a rare-earth nanoparticle as a novel anti-angiogenic therapeutic agent in ovarian cancer.

    Science.gov (United States)

    Giri, Shailendra; Karakoti, Ajay; Graham, Rondell P; Maguire, Jacie L; Reilly, Christopher M; Seal, Sudipta; Rattan, Ramandeep; Shridhar, Viji

    2013-01-01

    Ovarian cancer (OvCa) is the fifth most common cause of death from all cancers among women in United Sates and the leading cause of death from gynecological malignancies. While most OvCa patients initially respond to surgical debulking and chemotherapy, 75% of patients later succumb to the disease. Thus, there is an urgent need to test novel therapeutic agents to counteract the high mortality rate associated with OvCa. In this context, we have developed and engineered Nanoceria (NCe), nanoparticles of cerium oxide, possessing anti-oxidant properties, to be used as a therapeutic agent in OvCa. We show for the first time that NCe significantly inhibited production of reactive oxygen species (ROS) in A2780 cells, attenuated growth factor (SDF1, HB-EGF, VEGF(165) and HGF) mediated cell migration and invasion of SKOV3 cells, without affecting the cell proliferation. NCe treatment also inhibited VEGF(165) induced proliferation, capillary tube formation, activation of VEGFR2 and MMP2 in human umbilical vascular endothelial cells (HUVEC). NCe (0.1 mg/kg body weigh) treatment of A2780 ovarian cancer cells injected intra-peritoneally in nude mice showed significant reduction (p<0.002) in tumor growth accompanied by decreased tumor cell proliferation as evident from reduced tumor size and Ki67 staining. Accumulation of NCe was found in tumors isolated from treated group using transmission electron microscopy (TEM) and inductively coupled plasma mass spectroscopy (ICP-MS). Reduction of the tumor mass was accompanied by attenuation of angiogenesis, as observed by reduced CD31 staining and specific apoptosis of vascular endothelial cells. Collectively, these results indicate that cerium oxide based NCe is a novel nanoparticle that can potentially be used as an anti-angiogenic therapeutic agent in ovarian cancer.

  15. Nanoceria: a rare-earth nanoparticle as a novel anti-angiogenic therapeutic agent in ovarian cancer.

    Directory of Open Access Journals (Sweden)

    Shailendra Giri

    Full Text Available Ovarian cancer (OvCa is the fifth most common cause of death from all cancers among women in United Sates and the leading cause of death from gynecological malignancies. While most OvCa patients initially respond to surgical debulking and chemotherapy, 75% of patients later succumb to the disease. Thus, there is an urgent need to test novel therapeutic agents to counteract the high mortality rate associated with OvCa. In this context, we have developed and engineered Nanoceria (NCe, nanoparticles of cerium oxide, possessing anti-oxidant properties, to be used as a therapeutic agent in OvCa. We show for the first time that NCe significantly inhibited production of reactive oxygen species (ROS in A2780 cells, attenuated growth factor (SDF1, HB-EGF, VEGF(165 and HGF mediated cell migration and invasion of SKOV3 cells, without affecting the cell proliferation. NCe treatment also inhibited VEGF(165 induced proliferation, capillary tube formation, activation of VEGFR2 and MMP2 in human umbilical vascular endothelial cells (HUVEC. NCe (0.1 mg/kg body weigh treatment of A2780 ovarian cancer cells injected intra-peritoneally in nude mice showed significant reduction (p<0.002 in tumor growth accompanied by decreased tumor cell proliferation as evident from reduced tumor size and Ki67 staining. Accumulation of NCe was found in tumors isolated from treated group using transmission electron microscopy (TEM and inductively coupled plasma mass spectroscopy (ICP-MS. Reduction of the tumor mass was accompanied by attenuation of angiogenesis, as observed by reduced CD31 staining and specific apoptosis of vascular endothelial cells. Collectively, these results indicate that cerium oxide based NCe is a novel nanoparticle that can potentially be used as an anti-angiogenic therapeutic agent in ovarian cancer.

  16. Comparison of the crystal structures of the potent anticancer and anti-angiogenic agent regorafenib and its monohydrate.

    Science.gov (United States)

    Sun, Meng Ying; Wu, Su Xiang; Zhou, Xin Bo; Gu, Jian Ming; Hu, Xiu Rong

    2016-04-01

    Regorafenib {systematic name: 4-[4-({[4-chloro-3-(trifluoromethy)phenyl]carbamoyl}amino)-3-fluorophenoxy]-1-methylpyridine-2-carboxamide}, C21H15ClF4N4O3, is a potent anticancer and anti-angiogenic agent that possesses various activities on the VEGFR, PDGFR, raf and/or flt-3 kinase signaling molecules. The compound has been crystallized as polymorphic form I and as the monohydrate, C21H15ClF4N4O3·H2O. The regorafenib molecule consists of biarylurea and pyridine-2-carboxamide units linked by an ether group. A comparison of both forms shows that they differ in the relative orientation of the biarylurea and pyridine-2-carboxamide units, due to different rotations around the ether group, as measured by the C-O-C bond angles [119.5 (3)° in regorafenib and 116.10 (15)° in the monohydrate]. Meanwhile, the conformational differences are reflected in different hydrogen-bond networks. Polymorphic form I contains two intermolecular N-H...O hydrogen bonds, which link the regorafenib molecules into an infinite molecular chain along the b axis. In the monohydrate, the presence of the solvent water molecule results in more abundant hydrogen bonds. The water molecules act as donors and acceptors, forming N-H...O and O-H...O hydrogen-bond interactions. Thus, R4(2)(28) ring motifs are formed, which are fused to form continuous spiral ring motifs along the a axis. The (trifluoromethyl)phenyl rings protrude on the outside of these motifs and interdigitate with those of adjacent ring motifs, thereby forming columns populated by halogen atoms.

  17. Metabolic impact of anti-angiogenic agents on U87 glioma cells.

    Directory of Open Access Journals (Sweden)

    Tanja Mesti

    Full Text Available BACKGROUND: Glioma cells not only secrete high levels of vascular endothelial growth factor (VEGF but also express VEGF receptors (VEGFR, supporting the existence of an autocrine loop. The direct impact on glioma cells metabolism of drugs targeting the VEGF pathway, such as Bevacizumab (Bev or VEGFR Tyrosine Kinase Inhibitor (TKI, is poorly known. MATERIAL AND METHODS: U87 cells were treated with Bev or SU1498, a selective VEGFR2 TKI. VEGFR expression was checked with FACS flow cytometry and Quantitative Real-Time PCR. VEGF secretion into the medium was assessed with an ELISA kit. Metabolomic studies on cells were performed using High Resolution Magic Angle Spinning Spectroscopy (HR-MAS. RESULTS: U87 cells secreted VEGF and expressed low level of VEGFR2, but no detectable VEGFR1. Exposure to SU1498, but not Bev, significantly impacted cell proliferation and apoptosis. Metabolomic studies with HR MAS showed that Bev had no significant effect on cell metabolism, while SU1498 induced a marked increase in lipids and a decrease in glycerophosphocholine. Accordingly, accumulation of lipid droplets was seen in the cytoplasm of SU1498-treated U87 cells. CONCLUSION: Although both drugs target the VEGF pathway, only SU1498 showed a clear impact on cell proliferation, cell morphology and metabolism. Bevacizumab is thus less likely to modify glioma cells phenotype due to a direct therapeutic pressure on the VEGF autocrine loop. In patients treated with VEGFR TKI, monitoring lipids with magnetic resonance spectroscopic (MRS might be a valuable marker to assess drug cytotoxicity.

  18. Targeted Therapies in Endometrial Cancer

    Directory of Open Access Journals (Sweden)

    Selen Dogan

    2014-04-01

    Full Text Available Endometrial cancer is the most common genital cancer in developed world. It is generally diagnosed in early stage and it has a favorable prognosis. However, advanced staged disease and recurrences are difficult to manage. There are some common genetic alterations related to endometrial carcinogenesis in similar fashion to other cancers. Personalized medicine, which means selection of best suited treatment for an individual, has gain attention in clinical care of patients in recent years. Targeted therapies were developed as a part of personalized or %u201Ctailored%u201D medicine and specifically acts on a target or biologic pathway. There are quite a number of molecular alteration points in endometrial cancer such as PTEN tumor suppressor genes, DNA mismatch repair genes, PI3K/AKT/mTOR pathway and p53 oncogene which all might be potential candidates for tailored targeted therapy. In recent years targeted therapies has clinical application in ovarian cancer patients and in near future with the advent of new agents these %u201Ctailored%u201D drugs will be in market for routine clinical practice in endometrial cancer patients, in primary disease and recurrences as well.

  19. Targeted Radionuclide Therapy of Human Tumors

    OpenAIRE

    Gudkov, Sergey V.; Shilyagina, Natalya Yu.; Vodeneev, Vladimir A.; Zvyagin, Andrei V.

    2015-01-01

    Targeted radionuclide therapy is one of the most intensively developing directions of nuclear medicine. Unlike conventional external beam therapy, the targeted radionuclide therapy causes less collateral damage to normal tissues and allows targeted drug delivery to a clinically diagnosed neoplastic malformations, as well as metastasized cells and cellular clusters, thus providing systemic therapy of cancer. The methods of targeted radionuclide therapy are based on the use of molecular carrier...

  20. Gene Therapy Targeting HIV Entry

    Directory of Open Access Journals (Sweden)

    Chuka Didigu

    2014-03-01

    Full Text Available Despite the unquestionable success of antiretroviral therapy (ART in the treatment of HIV infection, the cost, need for daily adherence, and HIV-associated morbidities that persist despite ART all underscore the need to develop a cure for HIV. The cure achieved following an allogeneic hematopoietic stem cell transplant (HSCT using HIV-resistant cells, and more recently, the report of short-term but sustained, ART-free control of HIV replication following allogeneic HSCT, using HIV susceptible cells, have served to both reignite interest in HIV cure research, and suggest potential mechanisms for a cure. In this review, we highlight some of the obstacles facing HIV cure research today, and explore the roles of gene therapy targeting HIV entry, and allogeneic stem cell transplantation in the development of strategies to cure HIV infection.

  1. Endothelial cell-derived angiopoietin-2 is a therapeutic target in treatment-naive and bevacizumab-resistant glioblastoma.

    Science.gov (United States)

    Scholz, Alexander; Harter, Patrick N; Cremer, Sebastian; Yalcin, Burak H; Gurnik, Stefanie; Yamaji, Maiko; Di Tacchio, Mariangela; Sommer, Kathleen; Baumgarten, Peter; Bähr, Oliver; Steinbach, Joachim P; Trojan, Jörg; Glas, Martin; Herrlinger, Ulrich; Krex, Dietmar; Meinhardt, Matthias; Weyerbrock, Astrid; Timmer, Marco; Goldbrunner, Roland; Deckert, Martina; Braun, Christian; Schittenhelm, Jens; Frueh, Jochen T; Ullrich, Evelyn; Mittelbronn, Michel; Plate, Karl H; Reiss, Yvonne

    2016-01-01

    Glioblastoma multiforme (GBM) is treated by surgical resection followed by radiochemotherapy. Bevacizumab is commonly deployed for anti-angiogenic therapy of recurrent GBM; however, innate immune cells have been identified as instigators of resistance to bevacizumab treatment. We identified angiopoietin-2 (Ang-2) as a potential target in both naive and bevacizumab-treated glioblastoma. Ang-2 expression was absent in normal human brain endothelium, while the highest Ang-2 levels were observed in bevacizumab-treated GBM. In a murine GBM model, VEGF blockade resulted in endothelial upregulation of Ang-2, whereas the combined inhibition of VEGF and Ang-2 leads to extended survival, decreased vascular permeability, depletion of tumor-associated macrophages, improved pericyte coverage, and increased numbers of intratumoral T lymphocytes. CD206(+) (M2-like) macrophages were identified as potential novel targets following anti-angiogenic therapy. Our findings imply a novel role for endothelial cells in therapy resistance and identify endothelial cell/myeloid cell crosstalk mediated by Ang-2 as a potential resistance mechanism. Therefore, combining VEGF blockade with inhibition of Ang-2 may potentially overcome resistance to bevacizumab therapy. © 2015 The Authors. Published under the terms of the CC BY 4.0 license.

  2. Targeted drugs in radiation therapy

    International Nuclear Information System (INIS)

    Favaudon, V.; Hennequin, C.; Hennequin, C.

    2004-01-01

    New drugs aiming at the development of targeted therapies have been assayed in combination with ionizing radiation over the past few years. The rationale of this concept comes from the fact that the cytotoxic potential of targeted drugs is limited, thus requiring concomitant association with a cytotoxic agent for the eradication of tumor cells. Conversely a low level of cumulative toxicity is expected from targeted drugs. Most targeted drugs act through inhibition of post-translational modifications of proteins, such as dimerization of growth factor receptors, prenylation reactions, or phosphorylation of tyrosine or serine-threonine residues. Many systems involving the proteasome, neo-angiogenesis promoters, TGF-β, cyclooxygenase or the transcription factor NF-κB, are currently under investigation in hopes they will allow a control of cell proliferation, apoptosis, cell cycle progression, tumor angiogenesis and inflammation. A few drugs have demonstrated an antitumor potential in particular phenotypes. In most instances, however, radiation-drug interactions proved to be strictly additive in terms of cell growth inhibition or induced cell death. Strong potentiation of the response to radiotherapy is expected to require interaction with DNA repair mechanisms. (authors)

  3. Targeted Therapy in Systemic Sclerosis

    Directory of Open Access Journals (Sweden)

    Murray Baron

    2016-10-01

    Full Text Available Targeted therapies use an understanding of the pathophysiology of a disease in an individual patient. Although targeted therapy for systemic sclerosis (SSc, scleroderma has not yet reached the level of patient-specific treatments, recent developments in the understanding of the global pathophysiology of the disease have led to new treatments based on the cells and pathways that have been shown to be involved in the disease pathogenesis. The presence of a B cell signature in skin biopsies has led to the trial of rituximab, an anti-CD20 antibody, in SSc. The well-known properties of transforming growth factor (TGF-β in promoting collagen synthesis and secretion has led to a small trial of fresolimumab, a human IgG4 monoclonal antibody capable of neutralizing TGF-β. Evidence supporting important roles for interleukin-6 in the pathogenesis of SSc have led to a large trial of tocilizumab in SSc. Soluble guanylate cyclase (sGC is an enzyme that catalyzes the production of cyclic guanosine monophosphate (cGMP upon binding of nitric oxide (NO to the sGC molecule. Processes such as cell growth and proliferation are regulated by cGMP. Evidence that sGC may play a role in SSc has led to a trial of riociguat, a molecule that sensitizes sGC to endogenous NO. Tyrosine kinases (TKs are involved in a wide variety of physiologic and pathological processes including vascular remodeling and fibrogenesis such as occurs in SSc. This has led to a trial of nintedanib, a next-generation tyrosine-kinase (TK inhibitor which targets multiple TKs, in SSc.

  4. Vixapatin (VP12, a C-Type Lectin-Protein from Vipera xantina palestinae Venom: Characterization as a Novel Anti-angiogenic Compound

    Directory of Open Access Journals (Sweden)

    Philip Lazarovici

    2012-10-01

    Full Text Available A C-type lectin-like protein (CTL, originally identified as VP12 and lately named Vixapatin, was isolated and characterized from Israeli viper Vipera xantina palestinae snake venom. This CTL was characterized as a selective α2β1 integrin inhibitor with anti-melanoma metastatic activity. The major aim of the present study was to prove the possibility that this protein is also a potent novel anti-angiogenic compound. Using an adhesion assay, we demonstrated that Vixapatin selectively and potently inhibited the α2 mediated adhesion of K562 over-expressing cells, with IC50 of 3 nM. 3 nM Vixapatin blocked proliferation of human dermal microvascular endothelial cells (HDMEC; 25 nM inhibited collagen I induced migration of human fibrosarcoma HT-1080 cells; and 50 nM rat C6 glioma and human breast carcinoma MDA-MB-231 cells. 1 µM Vixapatin reduced HDMEC tube formation by 75% in a Matrigel assay. Furthermore, 1 µM Vixapatin decreased by 70% bFGF-induced physiological angiogenesis, and by 94% C6 glioma-induced pathological angiogenesis, in shell-less embryonic quail chorioallantoic membrane assay. Vixapatin’s ability to inhibit all steps of the angiogenesis process suggest that it is a novel pharmacological tool for studying α2β1 integrin mediated angiogenesis and a lead compound for the development of a novel anti-angiogenic/angiostatic/anti-cancer drug.

  5. Targeting SRPK1 to control VEGF-mediated tumour angiogenesis in metastatic melanoma.

    Science.gov (United States)

    Gammons, M V; Lucas, R; Dean, R; Coupland, S E; Oltean, S; Bates, D O

    2014-07-29

    Current therapies for metastatic melanoma are targeted either at cancer mutations driving growth (e.g., vemurafenib) or immune-based therapies (e.g., ipilimumab). Tumour progression also requires angiogenesis, which is regulated by VEGF-A, itself alternatively spliced to form two families of isoforms, pro- and anti-angiogenic. Metastatic melanoma is associated with a splicing switch to pro-angiogenic VEGF-A, previously shown to be regulated by SRSF1 phosphorylation by SRPK1. Here, we show a novel approach to preventing angiogenesis-targeting splicing factor kinases that are highly expressed in melanomas. We used RT-PCR, western blotting and immunohistochemistry to investigate SRPK1, SRSF1 and VEGF expression in tumour cells, and in vivo xenograft assays to investigate SRPK1 knockdown and inhibition in vivo. In both uveal and cutaneous melanoma cell lines, SRPK1 was highly expressed, and inhibition of SRPK1 by knockdown or with pharmacological inhibitors reduced pro-angiogenic VEGF expression maintaining the production of anti-angiogenic VEGF isoforms. Both pharmacological SRPK1 inhibitors and SRPK1 knockdown reduced growth of human melanomas in vivo, but neither affected cell proliferation in vitro. These results suggest that selective blocking of pro-angiogenic isoforms by inhibiting splice-site selection with SRPK1 inhibitors reduces melanoma growth. SRPK1 inhibitors may be used as therapeutic agents.

  6. Targeted Gene Therapy for Breast Cancer

    Science.gov (United States)

    1999-08-01

    or immunotoxin therapy, natural vector-host tropisms must be altered. Recent improvements in monoclonal antibody (mAb) engineering have expanded the...endocytosis. To achieve targeted gene therapy or immunotoxin therapy, natural vector-host tropisms must be altered. Recent improvements in monoclonal...trafficking of monoclonal antibody- antigen to an endolysosomal pathway is important. After altering targeting specificities, prokaryotic and plant

  7. Targeted Radionuclide Therapy of Human Tumors

    Directory of Open Access Journals (Sweden)

    Sergey V. Gudkov

    2015-12-01

    Full Text Available Targeted radionuclide therapy is one of the most intensively developing directions of nuclear medicine. Unlike conventional external beam therapy, the targeted radionuclide therapy causes less collateral damage to normal tissues and allows targeted drug delivery to a clinically diagnosed neoplastic malformations, as well as metastasized cells and cellular clusters, thus providing systemic therapy of cancer. The methods of targeted radionuclide therapy are based on the use of molecular carriers of radionuclides with high affinity to antigens on the surface of tumor cells. The potential of targeted radionuclide therapy has markedly grown nowadays due to the expanded knowledge base in cancer biology, bioengineering, and radiochemistry. In this review, progress in the radionuclide therapy of hematological malignancies and approaches for treatment of solid tumors is addressed.

  8. Gene therapy and radionuclides targeting therapy in mammary carcinoma

    International Nuclear Information System (INIS)

    Song Jinhua

    2003-01-01

    Breast carcinoma's gene therapy is a hotspot in study of the tumor's therapy in the recent years. Currently the major therapy methods that in the experimentative and primary clinical application phases include immunological gene therapy, multidrug resistance gene therapy, antisense oligonucleotide therapy and suicide gene therapy. The gene targeting brachytherapy, which is combined with gene therapy and radiotherapy has enhanced the killer effects of the suicide gene and nuclide in tumor cells. That has break a new path in tumor's gene therapy. The further study in this field will step up it's space to the clinical application

  9. K20E, an oxidative-coupling compound of methyl caffeate, exhibits anti-angiogenic activities through down-regulations of VEGF and VEGF receptor-2

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Chun-Hsu [Department of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan (China); Lin, Wen-Hsin; Chien, Yi-Chung; Liu, Fon-Chang; Sheu, Ming-Jyh [School of Pharmacy, China Medical University, Taichung 40402, Taiwan (China); Kuo, Yueh-Hsiung, E-mail: kuoyh@mail.cmu.edu.tw [Tsuzuki Institute for Traditional Medicine, China Medical University, Taichung 40402, Taiwan (China); Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan (China); Department of Biotechnology, Asia University, Taichung 41354, Taiwan (China); Wu, Chieh-Hsi, E-mail: chhswu@tmu.edu.tw [Department of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan (China); School of Pharmacy, China Medical University, Taichung 40402, Taiwan (China); Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan (China)

    2015-01-15

    Anti-angiogenesis is one of the most popular clinical interventions for cancer chemotherapy. A series of synthesized derivative of methyl caffeate were used to evaluate the anti-angiogenic activity and to investigate possible pharmacological mechanisms in the present study. The most potent anti-angiogenic compound was evaluated in the experiments of murine allograft tumor model and Matrigel plug assay as well as cell models in the human umbilical vascular endothelial cells (HUVECs) and the LLC1 lung cancer cells. Our results suggested that K20E suppressed the tumor growth in the allograft tumor model and exhibited anti-angiogenic activity in Matrigel plug assay. Besides, HUVEC viability was found to be significantly reduced by arresting cell cycle at G{sub 2}/M phase and apoptosis. Cell migration, invasion, and tube formation of the HUVECs were also markedly suppressed by K20E treatment. K20E largely down-regulated the intracellular and secreted vascular endothelial growth factor (VEGF) in the LLC1 cancer cells. Besides, VEGF receptor-2 (VEGFR-2) and its downstream signaling cascades (AKT-mTOR and MEK1/2-ERK1/2) as well as gelatinases were all evidently reduced in the HUVECs treated with K20E. Inversely, K20E can up-regulate the expression levels of p53 and p21 proteins in the HUVECs. Based on these results, our study suggested that K20E possessed inhibiting angiogenesis through regulation of VEGF/VEGFR-2 and its downstream signaling cascades in the vascular endothelial cells (VECs). - Highlights: • K20E is an oxidative-coupling compound of methyl caffeate. • K20E exhibits anti-tumor and anti-angiogenesis effects. • K20E suppresses the expressions of VEGF and VEGF receptor-2 (VEGFR-2) proteins. • K20E deactivates VEGFR-2-mediated downstream signaling pathways to inhibit angiogenesis. • K20E up-regulates p53-p21 pathway to induce apoptosis and cell arrest at G2/M phase.

  10. Size-controlled, dual-ligand modified liposomes that target the tumor vasculature show promise for use in drug-resistant cancer therapy.

    Science.gov (United States)

    Takara, Kazuhiro; Hatakeyama, Hiroto; Kibria, Golam; Ohga, Noritaka; Hida, Kyoko; Harashima, Hideyoshi

    2012-08-20

    Anti-angiogenic therapy is a potential chemotherapeutic strategy for the treatment of drug resistant cancers. However, a method for delivering such drugs to tumor endothelial cells remains to be a major impediment to the success of anti-angiogenesis therapy. We designed liposomes (LPs) with controlled diameter of around 300 nm, and modified them with a specific ligand and a cell penetrating peptide (CPP) (a dual-ligand LP) for targeting CD13-expressing neovasculature in a renal cell carcinoma (RCC). We modified the LPs with an NGR motif peptide on the top of poly(ethylene glycol) and tetra-arginine (R4) on the surface of the liposome membrane as a specific and CPP ligand, respectively. The large size prevented extravasation of the dual-ligand LP, which allowed it to associate with target vasculature. While a single modification with either the specific or CPP ligand showed no increase in targetability, the dual-ligand enhanced the amount of delivered liposomes after systemic administration to OS-RC-2 xenograft mice. The anti-tumor activity of a dual-ligand LP encapsulating doxorubicin was evaluated and the results were compared with Doxil, which is clinically used to target tumor cells. Even though Doxil showed no anti-tumor activity, the dual-ligand LP suppressed tumor growth because the disruption of tumor vessels was efficiently induced. The comparison showed that tumor endothelial cells (TECs) were more sensitive to doxorubicin by 2 orders than RCC tumor cells, and the disruption of tumor vessels was efficiently induced. Collectively, the dual-ligand LP is promising carrier for the treatment of drug resistant RCC via the disruption of TECs. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Bioengineering Strategies for Designing Targeted Cancer Therapies

    Science.gov (United States)

    Wen, Xuejun

    2014-01-01

    The goals of bioengineering strategies for targeted cancer therapies are (1) to deliver a high dose of an anticancer drug directly to a cancer tumor, (2) to enhance drug uptake by malignant cells, and (3) to minimize drug uptake by nonmalignant cells. Effective cancer-targeting therapies will require both passive- and active targeting strategies and a thorough understanding of physiologic barriers to targeted drug delivery. Designing a targeted therapy includes the selection and optimization of a nanoparticle delivery vehicle for passive accumulation in tumors, a targeting moiety for active receptor-mediated uptake, and stimuli-responsive polymers for control of drug release. The future direction of cancer targeting is a combinatorial approach, in which targeting therapies are designed to use multiple targeting strategies. The combinatorial approach will enable combination therapy for delivery of multiple drugs and dual ligand targeting to improve targeting specificity. Targeted cancer treatments in development and the new combinatorial approaches show promise for improving targeted anticancer drug delivery and improving treatment outcomes. PMID:23768509

  12. Targeted alpha therapy for cancer

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Barry J [Centre for Experimental Radiation Oncology, St George Cancer Care Centre, Gray St, Kogarah 2217, NSW (Australia); Raja, Chand [Centre for Experimental Radiation Oncology, St George Cancer Care Centre, Gray St, Kogarah 2217, NSW (Australia); Rizvi, Syed [Centre for Experimental Radiation Oncology, St George Cancer Care Centre, Gray St, Kogarah 2217, NSW (Australia); Li Yong [Centre for Experimental Radiation Oncology, St George Cancer Care Centre, Gray St, Kogarah 2217, NSW (Australia); Tsui, Wendy [Centre for Experimental Radiation Oncology, St George Cancer Care Centre, Gray St, Kogarah 2217, NSW (Australia); Zhang, David [Centre for Experimental Radiation Oncology, St George Cancer Care Centre, Gray St, Kogarah 2217, NSW (Australia); Song, Emma [Centre for Experimental Radiation Oncology, St George Cancer Care Centre, Gray St, Kogarah 2217, NSW (Australia); Qu, C F [Centre for Experimental Radiation Oncology, St George Cancer Care Centre, Gray St, Kogarah 2217, NSW (Australia); Kearsley, John [Centre for Experimental Radiation Oncology, St George Cancer Care Centre, Gray St, Kogarah 2217, NSW (Australia); Graham, Peter [Centre for Experimental Radiation Oncology, St George Cancer Care Centre, Gray St, Kogarah 2217, NSW (Australia); Thompson, John [Sydney Melanoma Unit, Royal Prince Alfred Hospital, Camperdown 2050 NSW (Australia)

    2004-08-21

    Targeted alpha therapy (TAT) offers the potential to inhibit the growth of micrometastases by selectively killing isolated and preangiogenic clusters of cancer cells. The practicality and efficacy of TAT is tested by in vitro and in vivo studies in melanoma, leukaemia, colorectal, breast and prostate cancers, and by a phase 1 trial of intralesional TAT for melanoma. The alpha-emitting radioisotope used is Bi-213, which is eluted from the Ac-225 generator and chelated to a cancer specific monoclonal antibody (mab) or protein (e.g. plasminogen activator inhibitor-2 PAI2) to form the alpha-conjugate (AC). Stable alpha-ACs have been produced which have been tested for specificity and cytotoxicity in vitro against melanoma (9.2.27 mab), leukaemia (WM60), colorectal (C30.6), breast (PAI2, herceptin), ovarian (PAI2, herceptin, C595), prostate (PAI2, J591) and pancreatic (PAI2, C595) cancers. Subcutaneous inoculation of 1-1.5 million human cancer cells into the flanks of nude mice causes tumours to grow in all mice. Tumour growth is compared for untreated controls, nonspecific AC and specific AC, for local (subcutaneous) and systemic (tail vein or intraperitoneal) injection models. The {sup 213}Bi-9.2.27 AC is injected into secondary skin melanomas in stage 4 patients in a dose escalation study to determine the effective tolerance dose, and to measure kinematics to obtain the equivalent dose to organs. In vitro studies show that TAT is one to two orders of magnitude more cytotoxic to targeted cells than non-specific ACs, specific beta emitting conjugates or free isotopes. In vivo local TAT at 2 days post-inoculation completely prevents tumour formation for all cancers tested so far. Intra-lesional TAT can completely regress advanced sc melanoma but is less successful for breast and prostate cancers. Systemic TAT inhibits the growth of sc melanoma xenografts and gives almost complete control of breast and prostate cancer tumour growth. Intralesional doses up to 450 {mu

  13. The PR-1 domain accounts for the anti-angiogenic activity of a cysteine-rich secretory protein member from the buccal glands of Lampetra japonica.

    Science.gov (United States)

    Duan, Dandan; Wang, Hongyan; Zhou, Rong; Jiang, Qi; Xiao, Rong

    2018-02-01

    Previous studies have shown that cysteine-rich buccal gland protein (CRBGP) from buccal glands of Lampetra japonica could suppress angiogenesis in chick chorioallantoic membrane models. As CRBGP is composed of a pathogenesis-related group 1 (PR-1) domain and a cysteine-rich domain (CRD), which domain accounts for the effects of CRBGP on anti-angiogenesis? In the present study, recombinant PR-1 and CRD (rL-PR-1 and rL-CRD) were obtained. MTT assays showed rL-PR-1 inhibited the proliferation of HUVECs significantly in a dose-dependent manner with an IC 50 of 2μM, while rL-CRD had no obviously inhibitory effect on the proliferation of HUVECs, suggested that PR-1 is the main function domain on the anti-angiogenic activity of CRBGP. Similar to CRBGP, rL-PR-1 induced apoptosis in HUVECs in a mitochondrial-dependent pathway by affecting the level of BAX, BCL2 and caspase 3. Also, the cytotoxic property of rL-PR-1 might be one of the factors which suppressed the proliferation of HUVECs. Furthermore, rL-PR-1 blocked the adhesion, migration, invasion and tube formation of HUVECs by disturbing the cytoskeleton arrangement and down-regulating the level of matrix metallo-peptidase 2. In summary, rL-PR-1 has the anti-angiogenic activity which would provide the information on the functions and mechanisms of cysteine-rich secretory protein family members. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Selective inhibition of retinal angiogenesis by targeting PI3 kinase.

    Directory of Open Access Journals (Sweden)

    Yolanda Alvarez

    Full Text Available Ocular neovascularisation is a pathological hallmark of some forms of debilitating blindness including diabetic retinopathy, age related macular degeneration and retinopathy of prematurity. Current therapies for delaying unwanted ocular angiogenesis include laser surgery or molecular inhibition of the pro-angiogenic factor VEGF. However, targeting of angiogenic pathways other than, or in combination to VEGF, may lead to more effective and safer inhibitors of intraocular angiogenesis. In a small chemical screen using zebrafish, we identify LY294002 as an effective and selective inhibitor of both developmental and ectopic hyaloid angiogenesis in the eye. LY294002, a PI3 kinase inhibitor, exerts its anti-angiogenic effect in a dose-dependent manner, without perturbing existing vessels. Significantly, LY294002 delivered by intraocular injection, significantly inhibits ocular angiogenesis without systemic side-effects and without diminishing visual function. Thus, targeting of PI3 kinase pathways has the potential to effectively and safely treat neovascularisation in eye disease.

  15. Novel Targeted Therapies for Inflammatory Breast Cancer

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-16-1-0461 TITLE: Novel Targeted Therapies for Inflammatory Breast Cancer PRINCIPAL INVESTIGATOR: Jose Silva CONTRACTING...CONTRACT NUMBER Novel Targeted Therapies for Inflammatory Breast Cancer 5b. GRANT NUMBER W81XWH-16-1-0461 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) l 5d...NOTES 14. ABSTRACT Inflammatory breast cancer (IBC, ~5% of all breast cancers ) is the most lethal form of breast cancer , presenting a 5- year

  16. Microbiota-Targeted Therapies: An Ecological Perspective

    OpenAIRE

    Lemon, Katherine P.; Armitage, Gary C.; Relman, David A.; Fischbach, Michael A.

    2012-01-01

    The connection between disease and the disruption of homeostatic interactions between the host and its microbiota is now well established. Drug developers and clinicians are starting to rely more heavily on therapies that directly target the microbiota and on the ecology of the microbiota to understand the outcomes of these treatments. The effects of those microbiota-targeted therapies that alter community composition range in scale from eliminating individual strains of a single species (for...

  17. Phosphorylated human prolactin (S179D-hPRL) is a potent anti-angiogenic hormone in vitro and in vivo

    International Nuclear Information System (INIS)

    Ueda, Eric Kinnosuke Martins

    2006-01-01

    S179D-prolactin (hPRL) is an experimentally useful mimic of naturally phosphorylated human prolactin. S179D-hPRL, but not unmodified PRL, was found to be anti-angiogenic in both the chorioallantoic membrane and corneal assays. Further investigation using human endothelial in vitro models showed reduced cell number, reduced tubule formation in Matrigel, and reduced migration and invasion, as a function of treatment with S179D-hPRL. Analysis of growth factors in human endothelial cells in response to S179D-hPRL showed a decreased expression or release of endogenous PRL, heme-oxygenase-1, basic fibroblast growth factor (bFGF), angio genin, epidermal growth factor and vascular endothelial growth factor and an increased expression of inhibitors of matrix metallo proteases. S179D-hPRL also blocked signaling from bFGF in these cells. We conclude that this molecular mimic of a pituitary hormone is a potent anti-angiogenic protein, partly as a result of its ability to reduce utilization of several well-established endothelial autocrine growth loops, partly by its ability to block signaling from bFGF and partly because of its ability to decrease endothelial migration. We also examined the influence of S179D-hPRL on apoptosis in human endothelial cells, using procaspase-8 as a marker of the extrinsic pathway, and cytochrome C release as a marker of the intrinsic pathway. Both pathways converge at caspase-3, which cleaves DNA fragmentation factor (DFF45). A 3-day incubation with 50 ng/ml S179D-hPRL quadrupled the early apoptotic cells; this effect was doubled at 100 ng/ml and maximal at 500 ng/ml. DFF45 and pro-caspase 8 cleavage were detectable at 100 ng/ml. Cytochrome C, however, was unaffected until 500 ng/ml. p21 increased at 100 ng/ml, whereas a change in p53 activity required both triple the time and 500 ng/ml. p21 promoter activity was maximal at 50 ng/ml, whereas 500 ng/ml were required to see a significant change in the Bax promoter (a measure of p53 activity). As

  18. Targeted therapy and its availability in Serbia

    Directory of Open Access Journals (Sweden)

    Kovačević Aleksandra M.

    2014-01-01

    Full Text Available Targeted therapy has made a significant breakthrough for the treatment of different kind of severe diseases, mostly oncological and autoimmune ones. Biological or biotech products, as well as small synthetic molecules, like family of tyrosine kinase inhibitors, have already expressed their efficacy in several important indications. Their availability on the market and reimbursement possibility is of great importance, especially for the patients needed to be on lifelong therapies. Targeted therapy enhanced progression free and overall survival in many conditions, but also a number of these therapies produced important and severe side effects. Considering the fact that targeted therapy is on the global market relatively shortly, there is necessity for prolonged therapy monitoring: for further effectiveness assessment, for safety profile and long term health consequences establishment. Reimbursed targeted therapy proved its benefits that overweight risks, but still remains extremely high costs problem for its application. For an upper middle income country like Serbia, with significantly lower health care expenditures per capita than in other well developed countries, the availability of this expensive therapy is not yet gratifying.

  19. Peptide-Targeted Radionuclide Therapy for Melanoma

    Science.gov (United States)

    Miao, Yubin; Quinn, Thomas P.

    2011-01-01

    Melanocortin-1 receptor (MC1-R) and melanin are two attractive melanoma-specific targets for peptide-targeted radionuclide therapy for melanoma. Radiolabeled peptides targeting MC1-R/melanin can selectively and specifically target cytotoxic radiation generated from therapeutic radionuclides to melanoma cells for cell killing, while sparing the normal tissues and organs. This review highlights the recent advances of peptide-targeted radionuclide therapy of melanoma targeting MC1R and melanin. The promising therapeutic efficacies of 188Re-(Arg11)CCMSH (188Re-[Cys3,4,10, d-Phe7, Arg11]-α-MSH3-13), 177Lu- and 212Pb-labeled DOTA-Re(Arg11)CCMSH (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-[ReO-(Cys3,4,10, d-Phe7, Arg11)]-α-MSH3-13) and 188Re-HYNIC-4B4 (188Re-hydrazinonicotinamide-Tyr-Glu-Arg-Lys-Phe-Trp-His-Gly-Arg-His) in preclinical melanoma-bearing models demonstrate an optimistic outlook for peptide-targeted radionuclide therapy for melanoma. Peptide-targeted radionuclide therapy for melanoma will likely contribute in an adjuvant setting, once the primary tumor has been surgically removed, to treat metastatic deposits and for treatment of end-stage disease. The lack of effective treatments for metastatic melanoma and end stage disease underscores the necessity to develop and implement new treatment strategies, such as peptide-targeted radionuclide therapy. PMID:18387816

  20. Chemotherapy and molecular target therapy combined with radiation therapy

    International Nuclear Information System (INIS)

    Akimoto, Tetsuo

    2012-01-01

    Combined chemotherapy and radiation therapy has been established as standard treatment approach for locally advanced head and neck cancer, esophageal cancer and so on through randomized clinical trials. However, radiation-related morbidity such as acute toxicity also increased as treatment intensity has increased. In underlining mechanism for enhancement of normal tissue reaction in chemo-radiation therapy, chemotherapy enhanced radiosensitivity of normal tissues in addition to cancer cells. Molecular target-based drugs combined with radiation therapy have been expected as promising approach that makes it possible to achieve cancer-specific enhancement of radiosensitivity, and clinical trials using combined modalities have been performed to evaluate the feasibility and efficacy of this approach. In order to obtain maximum radiotherapeutic gain, a detailed understanding of the mechanism underlying the interaction between radiation and Molecular target-based drugs is indispensable. Among molecular target-based drugs, inhibitors targeting epidermal growth factor receptor (EGFR) and its signal transduction pathways have been vigorously investigated, and mechanisms regarding the radiosensitizing effect have been getting clear. In addition, the results of randomized clinical trials demonstrated that radiation therapy combined with cetuximab resulted in improvement of overall and disease-specific survival rate compared with radiation therapy in locally advanced head and neck cancer. In this review, clinical usefulness of chemo-radiation therapy and potential molecular targets for potentiation of radiation-induced cell killing are summarized. (author)

  1. Green Synthesis of Silver Nanoparticles using Achillea biebersteinii Flower Extract and Its Anti-Angiogenic Properties in the Rat Aortic Ring Model

    Directory of Open Access Journals (Sweden)

    Javad Baharara

    2014-04-01

    Full Text Available Silver nanoparticles display unique physical and biological properties which have attracted intensive research interest because of their important medical applications. In this study silver nanoparticles (Ab.Ag-NPs were synthesized for biomedical applications using a completely green biosynthetic method using Achillea biebersteinii flowers extract. The structure and properties of Ab.Ag-NPs were investigated using UV-visible spectroscopic techniques, transmission electron microscopy (TEM, zeta potential and energy dispersive X-ray spectrometers (EDS. The UV-visible spectroscopic analysis showed the absorbance peak at 460 nm, which indicates the synthesis of silver nanoparticles. The average particle diameter as determined by TEM was found to be 12 ± 2 nm. The zeta potential analysis indicated that Ab.Ag-NPs have good stability EDX analysis also exhibits presentation of silver element. As angiogenesis is an important phenomenon and as growth factors imbalance in this process causes the acceleration of several diseases including cancer, the anti-angiogenic properties of Ab.Ag-NPs were evaluated using the rat aortic ring model. The results showed that Ab.Ag-NPs (200 μg/mL lead to a 50% reduction in the length and number of vessel-like structures. The synthesized silver nanoparticles from the Achillea biebersteinii flowers extract, which do not involve any harmful chemicals were well-dispersed and stabilized through this green method and showed potential therapeutic benefits against angiogenesis.

  2. Will nanotechnology influence targeted cancer therapy?

    Science.gov (United States)

    Grimm, Jan; Scheinberg, David A

    2011-04-01

    The rapid development of techniques that enable synthesis (and manipulation) of matter on the nanometer scale and the development of new nanomaterials will play a large role in disease diagnosis and treatment, specifically in targeted cancer therapy. Targeted nanocarriers are an intriguing means to selectively deliver high concentrations of cytotoxic agents or imaging labels directly to the cancer site. Often, solubility issues and an unfavorable biodistribution can result in a suboptimal response of novel agents even though they are very potent. New nanoparticulate formulations allow simultaneous imaging and therapy ("theranostics"), which can provide a realistic means for the clinical implementation of such otherwise suboptimal formulations. In this review, we did not attempt to provide a complete overview of the rapidly enlarging field of nanotechnology in cancer; rather, we presented properties specific to nanoparticles and examples of their uses, which show their importance for targeted cancer therapy. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Metastasis Targeted Therapies in Renal Cell Cancer

    OpenAIRE

    K. Fehmi Narter; Bora Özveren

    2018-01-01

    Metastatic renal cell cancer is a malignant disease and its treatment has been not been described clearly yet. These patients are generally symptomatic and resistant to current treatment modalities. Radiotherapy, chemotherapy, and hormonal therapy are not curative in many of these patients. A multimodal approach consisting of cytoreductive nephrectomy, systemic therapy (immunotherapy or targeted molecules), and metastasectomy has been shown to be hopeful in prolonging the survival and improvi...

  4. Evaluation of high frequency ultrasound methods and contrast agents for characterising tumor response to anti-angiogenic treatment

    Energy Technology Data Exchange (ETDEWEB)

    Rix, Anne, E-mail: arix@ukaachen.de [Department of Experimental Molecular Imaging, Pauwelsstrasse 30, 52074 Aachen, RWTH-Aachen University, Aachen (Germany); Lederle, Wiltrud, E-mail: wlederle@ukaachen.de [Department of Experimental Molecular Imaging, Pauwelsstrasse 30, 52074 Aachen, RWTH-Aachen University, Aachen (Germany); Siepmann, Monica, E-mail: monica.siepmann@rub.de [Department of Medical Engineering, Universitätstraße 150, 44780 Bochum, Ruhr-University Bochum, Bochum (Germany); Fokong, Stanley, E-mail: sfokong@ukaachen.de [Department of Experimental Molecular Imaging, Pauwelsstrasse 30, 52074 Aachen, RWTH-Aachen University, Aachen (Germany); Behrendt, Florian F., E-mail: fbehrendt@ukaachen.de [Department of Nuclear Medicine, Pauwelsstrasse 30, 52074 Aachen, RWTH-Aachen University, Aachen (Germany); Bzyl, Jessica, E-mail: jbzyl@ukaachen.de [Department of Experimental Molecular Imaging, Pauwelsstrasse 30, 52074 Aachen, RWTH-Aachen University, Aachen (Germany); Grouls, Christoph, E-mail: cgrouls@ukaachen.de [Department of Experimental Molecular Imaging, Pauwelsstrasse 30, 52074 Aachen, RWTH-Aachen University, Aachen (Germany); Kiessling, Fabian, E-mail: fkiessling@ukaachen.de [Department of Experimental Molecular Imaging, Pauwelsstrasse 30, 52074 Aachen, RWTH-Aachen University, Aachen (Germany); Palmowski, Moritz, E-mail: mpalmowski@ukaachen.de [Department of Experimental Molecular Imaging, Pauwelsstrasse 30, 52074 Aachen, RWTH-Aachen University, Aachen (Germany); Department of Nuclear Medicine, Pauwelsstrasse 30, 52074 Aachen, RWTH-Aachen University, Aachen (Germany)

    2012-10-15

    Purpose: To compare non-enhanced and contrast-enhanced high-frequency 3D Doppler ultrasound with contrast-enhanced 2D and 3D B-mode imaging for assessing tumor vascularity during antiangiogenic treatment using soft-shell and hard-shell microbubbles. Materials and methods: Antiangiogenic therapy effects (SU11248) on vascularity of subcutaneous epidermoid-carcinoma xenografts (A431) in female CD1 nude mice were investigated longitudinally using non-enhanced and contrast-enhanced 3D Doppler at 25 MHz. Additionally, contrast-enhanced 2D and 3D B-mode scans were performed by injecting hard-shell (poly-butyl-cyanoacrylate-based) and soft-shell (phospholipid-based) microbubbles. Suitability of both contrast agents for high frequency imaging and the sensitivity of the different ultrasound methods to assess early antiangiogenic therapy effects were investigated. Ultrasound data were validated by immunohistology. Results: Hard-shell microbubbles induced higher signal intensity changes in tumors than soft-shell microbubbles in 2D B-mode measurements (424 ± 7 vs. 169 ± 8 A.U.; p < 0.01). In 3D measurements, signals of soft-shell microbubbles were hardly above the background (5.48 ± 4.57 vs. 3.86 ± 2.92 A.U.), while signals from hard-shell microbubbles were sufficiently high (30.5 ± 8.06 A.U). Using hard-shell microbubbles 2D and 3D B-mode imaging depicted a significant decrease in tumor vascularity during antiangiogenic therapy from day 1 on. Using soft-shell microbubbles significant therapy effects were observed at day 4 after therapy in 2D B-mode imaging but could not be detected in the 3D mode. With non-enhanced and contrast-enhanced Doppler imaging significant differences between treated and untreated tumors were found from day 2 on. Conclusion: Hard-shell microbubble-enhanced 2D and 3D B-mode ultrasound achieved highest sensitivity for assessing therapy effects on tumor vascularisation and were superior to B-mode ultrasound with soft-shell microbubbles and to Doppler

  5. Targeting Apoptosis Signaling Pathways for Anticancer Therapy

    International Nuclear Information System (INIS)

    Fulda, Simone

    2011-01-01

    Treatment approaches for cancer, for example chemotherapy, radiotherapy, or immunotherapy, primarily act by inducing cell death in cancer cells. Consequently, the inability to trigger cell death pathways or alternatively, evasion of cancer cells to the induction of cell death pathways can result in resistance of cancers to current treatment protocols. Therefore, in order to overcome treatment resistance a better understanding of the underlying mechanisms that regulate cell death and survival pathways in cancers and in response to cancer therapy is necessary to develop molecular-targeted therapies. This strategy should lead to more effective and individualized treatment strategies that selectively target deregulated signaling pathways in a tumor type- and patient-specific manner.

  6. Strategies for targeted antimicrobial photodynamic therapy

    Science.gov (United States)

    Verma, Sarika; Sallum, Ulysses; Zheng, Xiang; Hasan, Tayyaba

    2009-06-01

    The photophysics and mechanisms of cell killing by photodynamic therapy (PDT) have been extensively studied in recent years, and PDT has received regulatory approval for the treatment of a number of diseases worldwide. As the application of this treatment modality expands with regard to both anatomical sites and diseases, it is important to develop strategies for enhancing PDT outcomes. Our group has focused on developing targeting strategies to enhance PDT for both cancerous as well as anti-microbial applications. In this article, we will discuss photosensitizer modification and conjugation strategies for targeted antimicrobial photodynamic therapy.

  7. Target marketing strategies for occupational therapy entrepreneurs.

    Science.gov (United States)

    Kautzmann, L N; Kautzmann, F N; Navarro, F H

    1989-01-01

    Understanding marketing techniques is one of the skills needed by successful entre renews. Target marketing is an effective method for occupational therapy entrepreneurs to use in determining when and where to enter the marketplace. The two components of target marketing, market segmentation and the development of marketing mix strategies for each identified market segment, are described. The Profife of Attitudes Toward Health Care (PATH) method of psychographic market segmentation of health care consumers is presented. Occupational therapy marketing mix strategies for each PATH consumer group are delineated and compatible groupings of market segments are suggested.

  8. Synthesis and anti-angiogenic effect of conjugates between serum albumin and non-steroidal anti-inflammatory drugs

    DEFF Research Database (Denmark)

    Kjær, Birgitte; Struve, Casper; Friis, Tina

    2010-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) inhibit tumor growth and angiogenesis. Covalent linkage of naproxen to human serum albumin (HSA) has been shown to target it efficiently to the liver and this may potentially be exploited for liver-selective inhibition of angiogenesis. With the aim...

  9. Targeting Herpetic Keratitis by Gene Therapy

    Directory of Open Access Journals (Sweden)

    Hossein Mostafa Elbadawy

    2012-01-01

    Full Text Available Ocular gene therapy is rapidly becoming a reality. By November 2012, approximately 28 clinical trials were approved to assess novel gene therapy agents. Viral infections such as herpetic keratitis caused by herpes simplex virus 1 (HSV-1 can cause serious complications that may lead to blindness. Recurrence of the disease is likely and cornea transplantation, therefore, might not be the ideal therapeutic solution. This paper will focus on the current situation of ocular gene therapy research against herpetic keratitis, including the use of viral and nonviral vectors, routes of delivery of therapeutic genes, new techniques, and key research strategies. Whereas the correction of inherited diseases was the initial goal of the field of gene therapy, here we discuss transgene expression, gene replacement, silencing, or clipping. Gene therapy of herpetic keratitis previously reported in the literature is screened emphasizing candidate gene therapy targets. Commonly adopted strategies are discussed to assess the relative advantages of the protective therapy using antiviral drugs and the common gene therapy against long-term HSV-1 ocular infections signs, inflammation and neovascularization. Successful gene therapy can provide innovative physiological and pharmaceutical solutions against herpetic keratitis.

  10. Novel targeted therapies for inflammatory bowel disease

    DEFF Research Database (Denmark)

    Coskun, Mehmet; Vermeire, Severine; Nielsen, Ole Haagen

    2017-01-01

    Our growing understanding of the immunopathogenesis of inflammatory bowel disease (IBD) has opened new avenues for developing targeted therapies. These advances in treatment options targeting different mechanisms of action offer new hope for personalized management. In this review we highlight...... to intestinal sites of inflammation (e.g., sphingosine 1-phosphate receptor modulators). We also provide an update on the current status in clinical development of these new classes of therapeutics....

  11. Research progess on treatment of cancer with targeted radionuclide therapy

    International Nuclear Information System (INIS)

    Luo Jiawen; Zhang Caixia

    2008-01-01

    The new development and situation of targeted radionuclide therapy in oncology is described, which include radioimmunotherapy, peptide receptor radionuclide therapy, gene therapy and radionuclide labled chemotherapeutics therapy. The application research on labled carrier of those therapy is emphasized. Meanwhile, the research progess of indomethacin and its combined with targeted radionuclide therapy is also described. (authors)

  12. HL-217, a new topical anti-angiogenic agent, inhibits retinal vascular leakage and pathogenic subretinal neovascularization in Vldlr−/− mice

    International Nuclear Information System (INIS)

    Kim, Junghyun; Kim, Chan-Sik; Jo, Kyuhyung; Cho, Yun-Seok; Kim, Hyun-Gyu; Lee, Geun-Hyeog; Lee, Yun Mi; Sohn, Eunjin; Kim, Jin Sook

    2015-01-01

    Highlights: • HL-217 is a new synthetic topical anti-angiogenic agent. • HL-217 attenuated subretinal neovascularization in Vldlr −/− mice. • HL-217 blocked the binding of PDGF-BB to PDGFRβ. - Abstract: HL-217 is a new synthetic angiogenesis inhibitor. Platelet derived growth factor (PDGF) is a vasoactive factor and has been implicated in proliferative retinopathies. In this study, we examined the mechanism of action and efficacy of topical application of HL-217 on subretinal neovascularization in very low-density lipoprotein receptor knockout (Vldlr −/− ) mice. In three-week-old male Vldlr −/− mice, HL-217 (1.5 or 3 mg/ml) was administered twice per day for 4 weeks by topical eye drop instillation. Neovascular areas were then measured. We used a protein array to evaluate the expression levels of angiogenic factors. The inhibitory effect of HL-217 on the PDGF-BB/PDGFRβ interaction was evaluated in vitro. The neovascular area in the Vldlr −/− mice was significantly reduced by HL-217. Additionally, HL-217 decreased the expression levels of PDGF-BB protein and VEGF mRNA. Moreover, HL-217 dose-dependently inhibited the PDGF-BB/PDGFRβ interaction (IC 50 = 38.9 ± 0.7 μM). These results suggest that HL-217 is a potent inhibitor of PDGF-BB. HL-217, when applied topically, is an effective inhibitor of subretinal neovascularization due to its ability to inhibit the pro-angiogenic effects of PDGF-BB

  13. HL-217, a new topical anti-angiogenic agent, inhibits retinal vascular leakage and pathogenic subretinal neovascularization in Vldlr{sup −/−} mice

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Junghyun; Kim, Chan-Sik; Jo, Kyuhyung [Korean Medicine Based Herbal Drug Development Group, Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon (Korea, Republic of); Cho, Yun-Seok; Kim, Hyun-Gyu; Lee, Geun-Hyeog [Research and Development Center, Hanlim Pharm. Co. Ltd., 1656-10, Seocho-dong, Seocho-gu, Seoul (Korea, Republic of); Lee, Yun Mi; Sohn, Eunjin [Korean Medicine Based Herbal Drug Development Group, Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon (Korea, Republic of); Kim, Jin Sook, E-mail: jskim@kiom.re.kr [Korean Medicine Based Herbal Drug Development Group, Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon (Korea, Republic of)

    2015-01-02

    Highlights: • HL-217 is a new synthetic topical anti-angiogenic agent. • HL-217 attenuated subretinal neovascularization in Vldlr{sup −/−} mice. • HL-217 blocked the binding of PDGF-BB to PDGFRβ. - Abstract: HL-217 is a new synthetic angiogenesis inhibitor. Platelet derived growth factor (PDGF) is a vasoactive factor and has been implicated in proliferative retinopathies. In this study, we examined the mechanism of action and efficacy of topical application of HL-217 on subretinal neovascularization in very low-density lipoprotein receptor knockout (Vldlr{sup −/−}) mice. In three-week-old male Vldlr{sup −/−} mice, HL-217 (1.5 or 3 mg/ml) was administered twice per day for 4 weeks by topical eye drop instillation. Neovascular areas were then measured. We used a protein array to evaluate the expression levels of angiogenic factors. The inhibitory effect of HL-217 on the PDGF-BB/PDGFRβ interaction was evaluated in vitro. The neovascular area in the Vldlr{sup −/−} mice was significantly reduced by HL-217. Additionally, HL-217 decreased the expression levels of PDGF-BB protein and VEGF mRNA. Moreover, HL-217 dose-dependently inhibited the PDGF-BB/PDGFRβ interaction (IC{sub 50} = 38.9 ± 0.7 μM). These results suggest that HL-217 is a potent inhibitor of PDGF-BB. HL-217, when applied topically, is an effective inhibitor of subretinal neovascularization due to its ability to inhibit the pro-angiogenic effects of PDGF-BB.

  14. Motuporamines, anti-invasion and anti-angiogenic alkaloids from the marine sponge Xestospongia exigua (Kirkpatrick): isolation, structure elucidation, analogue synthesis, and conformational analysis.

    Science.gov (United States)

    Williams, David E; Craig, Kyle S; Patrick, Brian; McHardy, Lianne M; van Soest, Rob; Roberge, Michel; Andersen, Raymond J

    2002-01-11

    Extracts of the sponge Xestospongia exigua collected in Papua New Guinea were positive in a new assay for anti-invasion activity. Bioassay-guided fractionation led to the identification of the three known motuporamines A (1), B (2), and C (3) along with the new motuporamines D (4), E (5), and F (6) and a mixture of G, H, and I (15). Motuporamines A (1), B (2), and C (3) and the mixture of G, H, and I (15) were responsible for the anti-invasion activity of the crude extract. Motuporamine C (3) has also been found to be anti-angiogenic. A series of analogues of the motuporamines have been synthesized and evaluated for anti-invasive activity. These SAR results revealed that a saturated 15-membered cyclic amine fused to the natural motuporamine diamine side chain (13) represented the optimal structure for anti-invasive activity in this family. Single-crystal X-ray diffraction analysis of one of the analogues 20 showed that in the solid state its 16-membered macrocyclic amine fragment adopted the [4444] quadrangular conformation predicted by calculations to be the lowest energy conformation for the corresponding cycloalkane, cyclohexadecane. These data along with literature X-ray data and conformational analysis for derivatives of azacyclotridecane have been used as precedents for predicting the lowest energy ring conformations of other motuporamines. The SAR data from the natural and synthetic motuporamines have been combined with the conformational analyses to provide an outline of the functionality and shape required for activity in this family of alkaloids and to design a new analogue 49 that showed good anti-invasion activity.

  15. Targeted therapies in pulmonary arterial hypertension.

    Science.gov (United States)

    Montani, David; Chaumais, Marie-Camille; Guignabert, Christophe; Günther, Sven; Girerd, Barbara; Jaïs, Xavier; Algalarrondo, Vincent; Price, Laura C; Savale, Laurent; Sitbon, Olivier; Simonneau, Gérald; Humbert, Marc

    2014-02-01

    Pulmonary arterial hypertension (PAH) is a rare disorder characterized by progressive obliteration of small pulmonary arteries that leads to elevated pulmonary arterial pressure and right heart failure. During the last decades, an improved understanding of the pathophysiology of the disease has resulted in the development of effective therapies targeting endothelial dysfunction (epoprostenol and derivatives, endothelin receptor antagonists and phosphodiesterase type 5 inhibitors). These drugs allow clinical, functional and hemodynamic improvement. Even though, no cure exists for PAH and prognosis remains poor. Recently, several additional pathways have been suggested to be involved in the pathogenesis of PAH, and may represent innovative therapies. In this summary, we review conventional therapy, pharmacological agents currently available for the treatment of PAH and the benefit/risk ratio of potential future therapies. © 2013 Elsevier Inc. All rights reserved.

  16. Targeted radionuclide therapies for pancreatic cancer.

    Science.gov (United States)

    Shah, M; Da Silva, R; Gravekamp, C; Libutti, S K; Abraham, T; Dadachova, E

    2015-08-01

    Pancreatic malignancies, the fourth leading cause of cancer deaths, have an aggressive behavior with poor prognosis, resulting in a 5-year survival rate of only 4%. It is typically a silent malignancy until patients develop metastatic disease. Targeted radionuclide therapies of cancer such as radiolabeled peptides, which bind to the receptors overexpressed by cancer cells and radiolabeled antibodies to tumor-specific antigens provide a viable alternative to chemotherapy and external beam radiation of metastatic cancers. Multiple clinical trials of targeted radionuclide therapy of pancreatic cancer have been performed in the last decade and demonstrated safety and potential efficacy of radionuclide therapy for treatment of this formidable disease. Although a lot of progress has been made in treatment of pancreatic neuroendocrine tumors with radiolabeled (90)Y and (177)Lu somatostatin peptide analogs, pancreatic adenocarcinomas remain a major challenge. Novel approaches such as peptides and antibodies radiolabeled with alpha emitters, pre-targeting, bispecific antibodies and biological therapy based on the radioactive tumorlytic bacteria might offer a potential breakthrough in treatment of pancreatic adenocarcinomas.

  17. Targeted radionuclide therapy--an overview.

    Science.gov (United States)

    Dash, Ashutosh; Knapp, F F Russ; Pillai, M R A

    2013-09-01

    Radionuclide therapy (RNT) based on the concept of delivering cytotoxic levels of radiation to disease sites is one of the rapidly growing fields of nuclear medicine. Unlike conventional external beam therapy, RNT targets diseases at the cellular level rather than on a gross anatomical level. This concept is a blend of a tracer moiety that mediates a site specific accumulation followed by induction of cytotoxicity with the short-range biological effectiveness of particulate radiations. Knowledge of the biochemical reactions taking place at cellular levels has stimulated the development of sophisticated molecular carriers, catalyzing a shift towards using more specific targeting radiolabelled agents. There is also improved understanding of factors of importance for choice of appropriate radionuclides based on availability, the types of emissions, linear energy transfer (LET), and physical half-life. This article discusses the applications of radionuclide therapy for treatment of cancer as well as other diseases. The primary objective of this review is to provide an overview on the role of radionuclide therapy in the treatment of different diseases such as polycythaemia, thyroid malignancies, metastatic bone pain, radiation synovectomy, hepatocellular carcinoma (HCC), neuroendocrine tumors (NETs), non-Hodgkin's lymphoma (NHL) and others. In addition, recent developments on the systematic approach in designing treatment regimens as well as recent progress, challenges and future perspectives are discussed. An examination of the progress of radionuclide therapy indicates that although a rapid stride has been made for treating hematological tumors, the development for treating solid tumors has, so far, been limited. However, the emergence of novel tumor-specific targeting agents coupled with successful characterization of new target structures would be expected to pave the way for future treatment for such tumors.

  18. Targeted Alpha Therapy: From Alpha to Omega

    International Nuclear Information System (INIS)

    Allen, Barry J; Clarke, Raymond; Huang Chenyu

    2013-01-01

    This review covers the broad spectrum of Targeted Alpha Therapy (TAT) research in Australia; from in vitro and in vivo studies to clinical trials. The principle of tumour anti-vascular alpha therapy (TAVAT) is discussed in terms of its validation by Monte Carlo calculations of vascular models and the potential role of biological dosimetry is examined. Summmary of this review is as follows: 1. The essence of TAT 2. Therapeutic objectives 3. TAVAT and Monte Carlo microdosimetry 4. Biological dosimetry 5. Preclinical studies 6. Clinical trials 7. What next? 8. Obstacles. (author)

  19. Targeting the tumor microenvironment for cancer therapy.

    Science.gov (United States)

    Sounni, Nor Eddine; Noel, Agnès

    2013-01-01

    With the emergence of the tumor microenvironment as an essential ingredient of cancer malignancy, therapies targeting the host compartment of tumors have begun to be designed and applied in the clinic. The malignant features of cancer cells cannot be manifested without an important interplay between cancer cells and their local environment. The tumor infiltrate composed of immune cells, angiogenic vascular cells, lymphatic endothelial cells, and cancer-associated fibroblastic cells contributes actively to cancer progression. The ability to change these surroundings is an important property by which tumor cells are able to acquire some of the hallmark functions necessary for tumor growth and metastatic dissemination. Thus in the clinical setting the targeting of the tumor microenvironment to encapsulate or destroy cancer cells in their local environment has become mandatory. The variety of stromal cells, the complexity of the molecular components of the tumor stroma, and the similarity with normal tissue present huge challenges for therapies targeting the tumor microenvironment. These issues and their interplay are addressed in this review. After a decade of intensive clinical trials targeting cellular components of the tumor microenvironment, more recent investigations have shed light on the important role in cancer progression played by the noncellular stromal compartment composed of the extracellular matrix. A better understanding of how the tumor environment affects cancer progression should provide new targets for the isolation and destruction of cancer cells via interference with the complex crosstalk established between cancer cells, host cells, and their surrounding extracellular matrix. © 2012 American Association for Clinical Chemistry

  20. Targeted therapy using nanotechnology: focus on cancer.

    Science.gov (United States)

    Sanna, Vanna; Pala, Nicolino; Sechi, Mario

    2014-01-01

    Recent advances in nanotechnology and biotechnology have contributed to the development of engineered nanoscale materials as innovative prototypes to be used for biomedical applications and optimized therapy. Due to their unique features, including a large surface area, structural properties, and a long circulation time in blood compared with small molecules, a plethora of nanomaterials has been developed, with the potential to revolutionize the diagnosis and treatment of several diseases, in particular by improving the sensitivity and recognition ability of imaging contrast agents and by selectively directing bioactive agents to biological targets. Focusing on cancer, promising nanoprototypes have been designed to overcome the lack of specificity of conventional chemotherapeutic agents, as well as for early detection of precancerous and malignant lesions. However, several obstacles, including difficulty in achieving the optimal combination of physicochemical parameters for tumor targeting, evading particle clearance mechanisms, and controlling drug release, prevent the translation of nanomedicines into therapy. In spite of this, recent efforts have been focused on developing functionalized nanoparticles for delivery of therapeutic agents to specific molecular targets overexpressed on different cancer cells. In particular, the combination of targeted and controlled-release polymer nanotechnologies has resulted in a new programmable nanotherapeutic formulation of docetaxel, namely BIND-014, which recently entered Phase II clinical testing for patients with solid tumors. BIND-014 has been developed to overcome the limitations facing delivery of nanoparticles to many neoplasms, and represents a validated example of targeted nanosystems with the optimal biophysicochemical properties needed for successful tumor eradication.

  1. Targets for molecular therapy of skin cancer.

    Science.gov (United States)

    Green, Cheryl L; Khavari, Paul A

    2004-02-01

    Cancers of the skin encompass the first and second most common neoplasms in the United States, epidermal basal cell carcinoma (BCC) and squamous cell carcinoma (SCC), respectively, as well as the melanocytic malignancy, malignant melanoma (MM). Recently identified alterations in the function of specific genes in these cancers provide new potential therapeutic targets. These alterations affect conserved regulators of cellular proliferation and viability, including the Sonic Hedgehog, Ras/Raf, ARF/p53, p16(INK4A)/CDK4/Rb and NF-kappaB pathways. New modalities designed to target these specific proteins may represent promising approaches to therapy of human skin cancers.

  2. Targeted alpha therapy: Applications and current status

    Energy Technology Data Exchange (ETDEWEB)

    Bruchertseifer, Frank, E-mail: frank.bruchertseifer@ec.europa.eu [European Commission, Joint Research Centre, Karlsruhe (Germany)

    2017-07-01

    Full text: The field of targeted alpha therapy has been developed rapidly in the last decade. Besides {sup 223}Ra, {sup 211}At and {sup 212}Pb/{sup 212}Bi the alpha emitters {sup 225}Ac and {sup 213}Bi are promising therapeutic radionuclides for application in targeted alpha therapy of cancer and infectious diseases. The presentation will give a short overview about the current clinical treatments with alpha emitting radionuclides and will place an emphasis on the most promising clinical testing of peptides and antibodies labelled with {sup 225}Ac and {sup 213}Bi for treatment of metastatic castration-resistant prostate cancer patients with glioma and glioblastoma multiform, PSMA-positive tumor phenotype and bladder carcinoma in situ. (author)

  3. Targeting calcium signaling in cancer therapy

    Directory of Open Access Journals (Sweden)

    Chaochu Cui

    2017-01-01

    Full Text Available The intracellular calcium ions (Ca2+ act as second messenger to regulate gene transcription, cell proliferation, migration and death. Accumulating evidences have demonstrated that intracellular Ca2+ homeostasis is altered in cancer cells and the alteration is involved in tumor initiation, angiogenesis, progression and metastasis. Targeting derailed Ca2+ signaling for cancer therapy has become an emerging research area. This review summarizes some important Ca2+ channels, transporters and Ca2+-ATPases, which have been reported to be altered in human cancer patients. It discusses the current research effort toward evaluation of the blockers, inhibitors or regulators for Ca2+ channels/transporters or Ca2+-ATPase pumps as anti-cancer drugs. This review is also aimed to stimulate interest in, and support for research into the understanding of cellular mechanisms underlying the regulation of Ca2+ signaling in different cancer cells, and to search for novel therapies to cure these malignancies by targeting Ca2+ channels or transporters.

  4. Introduction to radiobiology of targeted radionuclide therapy

    Directory of Open Access Journals (Sweden)

    Jean-Pierre ePOUGET

    2015-03-01

    Full Text Available During the last decades, new radionuclide-based targeted therapies have emerged as efficient tools for cancer treatment. Targeted radionuclide therapies (TRT are based on a multidisciplinary approach that involves the cooperation of specialists in several research fields. Among them, radiobiologists investigate the biological effects of ionizing radiation, specifically the molecular and cellular mechanisms involved in the radiation response. Most of the knowledge about radiation effects concerns external beam radiation therapy (EBRT and radiobiology has then strongly contributed to the development of this therapeutic approach. Similarly, radiobiology and dosimetry are also assumed to be ways for improving TRT, in particular in the therapy of solid tumors which are radioresistant. However, extrapolation of EBRT radiobiology to TRT is not straightforward. Indeed, the specific physical characteristics of TRT (heterogeneous and mixed irradiation, protracted exposure and low absorbed dose rate differ from those of conventional EBRT (homogeneous irradiation, short exposure and high absorbed dose rate, and consequently the response of irradiated tissues might be different. Therefore, specific TRT radiobiology needs to be explored. Determining dose-effect correlation is also a prerequisite for rigorous preclinical radiobiology studies because dosimetry provides the necessary referential to all TRT situations. It is required too for developing patient-tailored TRT in the clinic in order to estimate the best dose for tumor control, while protecting the healthy tissues, thereby improving therapeutic efficacy. Finally, it will allow to determine the relative contribution of targeted effects (assumed to be dose-related and non-targeted effects (assumed to be non-dose-related of ionizing radiation. However, conversely to EBRT where it is routinely used, dosimetry is still challenging in TRT. Therefore, it constitutes with radiobiology, one of the main

  5. Targeted Radiation Therapy for Cancer Initiative

    Science.gov (United States)

    2017-11-01

    CONTRACTING ORGANIZATION: The Geneva Foundation , Tacoma, WA 98402 REPORT DATE: November 2017 TYPE OF REPORT: Final PREPARED FOR: U.S. Army Medical...ADDRESS. 1. REPORT DATE November 2017 2. REPORT TYPE Final 3. DATES COVERED 08/04/2008 - 08/03/2017 4. TITLE AND SUBTITLE Targeted Radiation Therapy...REPORT NUMBER The Geneva Foundation 917 Pacific Ave, Suite 600 Tacoma, WA 98402 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR

  6. Molecular neuroendocrine targets for obesity therapy.

    Science.gov (United States)

    de Kloet, Annette D; Woods, Stephen C

    2010-10-01

    Although energy balance is tightly regulated in order to maintain a specific level of adiposity, the incidence of obesity continues to increase. Consequently, it is essential that effective therapeutics for the treatment and prevention of obesity be developed. This review provides a brief update on some recent advances in the characterization of neuroendocrine targets for obesity therapy. During the review period, considerable progress occurred in the understanding of previously described neuroendocrine regulators of energy balance, and several novel targets have been identified. Moreover, the understanding of the neural circuitry and molecular mechanisms of the neuroendocrine regulation of energy homeostasis has been expanded. Energy balance is maintained by neuroendocrine signals arising from many tissues including the gastrointestinal tract and adipose tissue. These signals are integral to the cessation of meals and to the ability of the brain to monitor energy status and respond accordingly. Many current targets for obesity therapy are based on manipulating the activity of these signals and their receptors; however, to date, clinical-weight loss based on this strategy has been minimal and alternative approaches such as combinatorial therapies are emerging.

  7. Targeted Therapy in Nonmelanoma Skin Cancers

    Directory of Open Access Journals (Sweden)

    Giulia Spallone

    2011-05-01

    Full Text Available Nonmelanoma skin cancer (NMSC is the most prevalent cancer in light-skinned populations, and includes mainly Basal Cell Carcinomas (BCC, representing around 75% of NMSC and Squamous Cell Carcinomas (SCC. The incidence of these tumors is continuously growing. It was found that the overall number of procedures for NMSC in US rose by 76%, from 1,158,298 in 1992 to 2,048,517 in 2006. Although mortality from NMSC tends to be very low, clearly the morbidity related to these skin cancers is very high. Treatment options for NMSC include both surgical and nonsurgical interventions. Surgery was considered the gold standard therapy, however, advancements in the knowledge of pathogenic mechanisms of NMSCs led to the identification of key targets for drug intervention and to the consequent development of several targeted therapies. These represent the future in treatment of these common forms of cancer ensuring a high cure rate, preservation of the maximal amount of normal surrounding tissue and optimal cosmetic outcome. Here, we will review recent advancements in NMSC targeted therapies focusing on BCC and SCC.

  8. Targeted Therapy in Nonmelanoma Skin Cancers

    Energy Technology Data Exchange (ETDEWEB)

    Spallone, Giulia; Botti, Elisabetta; Costanzo, Antonio, E-mail: antonio.costanzo@uniroma2.it [Department of Dermatology, University of Rome “Tor Vergata”, Via Montpellier 1, 00199, Rome (Italy)

    2011-05-03

    Nonmelanoma skin cancer (NMSC) is the most prevalent cancer in light-skinned populations, and includes mainly Basal Cell Carcinomas (BCC), representing around 75% of NMSC and Squamous Cell Carcinomas (SCC). The incidence of these tumors is continuously growing. It was found that the overall number of procedures for NMSC in US rose by 76%, from 1,158,298 in 1992 to 2,048,517 in 2006. Although mortality from NMSC tends to be very low, clearly the morbidity related to these skin cancers is very high. Treatment options for NMSC include both surgical and nonsurgical interventions. Surgery was considered the gold standard therapy, however, advancements in the knowledge of pathogenic mechanisms of NMSCs led to the identification of key targets for drug intervention and to the consequent development of several targeted therapies. These represent the future in treatment of these common forms of cancer ensuring a high cure rate, preservation of the maximal amount of normal surrounding tissue and optimal cosmetic outcome. Here, we will review recent advancements in NMSC targeted therapies focusing on BCC and SCC.

  9. Microbiota-Targeted Therapies: An Ecological Perspective

    Science.gov (United States)

    Lemon, Katherine P.; Armitage, Gary C.; Relman, David A.; Fischbach, Michael A.

    2017-01-01

    The connection between disease and the disruption of homeostatic interactions between the host and its microbiota is now well established. Drug developers and clinicians are starting to rely more heavily on therapies that directly target the microbiota and on the ecology of the microbiota to understand the outcomes of these treatments. The effects of those microbiota-targeted therapies that alter community composition range in scale from eliminating individual strains of a single species (for example, with antibacterial conjugate vaccines) to replacing the entire community with a new intact microbiota (for example, by fecal transplantation). Secondary infections linked to antibiotic use provide a cautionary tale of the unintended consequences of perturbing a microbial species network and highlight the need for new narrow-spectrum antibiotics with rapid companion diagnostics. Insights into microbial ecology will also benefit the development of probiotics, whose therapeutic prospects will depend on rigorous clinical testing. Future probiotics may take the form of a consortium of long-term community residents: “a fecal transplant in a capsule.” The efficacy of microbiota-targeted therapies will need to be assessed using new diagnostic tools that measure community function rather than composition, including the temporal response of a microbial community to a defined perturbation such as an antibiotic or probiotic. PMID:22674555

  10. [Resistance to target-based therapy and its circumvention].

    Science.gov (United States)

    Nishio, Kazuto

    2004-07-01

    Intrinsic and acquired resistance to molecular target therapy critically limits the outcome of cancer treatments. Target levels including quantitative and gene alteration should be determinants for the resistance. Downstream of the target molecules, drug metabolism, and drug transport influences the tumor sensitivity to molecular target therapy. The mechanisms of resistance to antibody therapy have not been fully clarified. Correlative clinical studies using these biomarkers of resistance are extremely important for circumvention of clinical resistance to target based therapy.

  11. Synthesis of Specific Nanoparticles for Targeting and Imaging Tumor Angiogenesis Using Electron-Beam Irradiation

    International Nuclear Information System (INIS)

    Rizza, G.; Deshayes, S.; Maurizot, V.; Clochard, M.-C.; Berthelot, T.; Baudin, C.; Déléris, G.

    2010-01-01

    We have succeeded to synthesize PVDF nanoparticles by nanoemulsion polymerization and their functionalization with a peptide that presents an anti-angiogenic activity. Resulted nanoparticles present a radius of 60 nm. From FESEM images and light scattering measurements, we deduced that they were spherical and monodisperse. The alkyl radicals induced from electron beam irradiation combine immediately with the oxygen to form peroxide radicals. Because of a high specific area and small crystallite size, the radical decay with time is evidenced from EPR measurements. Despite this radical decay, electron beam irradiation allows us to graft PAA by radical polymerization onto freshly irradiated PVDF nanoparticles and then to immobilize CBO-P11 by click chemistry via a spacer arm. Evidences of grafting were shown using HRMAS NMR and MALDI-TOF mass spectrometry. Nanoparticles functionalized with an angiogenesis-targeting agent are an attractive option for anti-tumor therapy

  12. Targeting vascular NADPH oxidase 1 blocks tumor angiogenesis through a PPARα mediated mechanism.

    Directory of Open Access Journals (Sweden)

    Sarah Garrido-Urbani

    Full Text Available Reactive oxygen species, ROS, are regulators of endothelial cell migration, proliferation and survival, events critically involved in angiogenesis. Different isoforms of ROS-generating NOX enzymes are expressed in the vasculature and provide distinct signaling cues through differential localization and activation. We show that mice deficient in NOX1, but not NOX2 or NOX4, have impaired angiogenesis. NOX1 expression and activity is increased in primary mouse and human endothelial cells upon angiogenic stimulation. NOX1 silencing decreases endothelial cell migration and tube-like structure formation, through the inhibition of PPARα, a regulator of NF-κB. Administration of a novel NOX-specific inhibitor reduced angiogenesis and tumor growth in vivo in a PPARα dependent manner. In conclusion, vascular NOX1 is a critical mediator of angiogenesis and an attractive target for anti-angiogenic therapies.

  13. Targeted therapy for biliary tract cancers.

    Science.gov (United States)

    Faris, Jason E; Zhu, Andrew X

    2012-07-01

    Biliary tract cancers (BTCs) are a heterogeneous group of malignancies, with a historically poor prognosis as a whole. Until recently, the development of effective therapeutics was hampered by the relatively low incidence, heterogeneity in patients and tumors, and correspondingly poor clinical trial enrollments. With the publication of the landmark phase III ABC-02 trial demonstrating the superiority of gemcitabine and cisplatin combination chemotherapy, the landscape changed for the development of new agents. Despite this progress, there are currently no approved targeted agents for BTC. This review will focus on recent developments in targeted therapeutics, directed against several key signaling pathways in BTC, including epidermal growth factor receptor, angiogenesis, and the mitogen-activated protein kinase pathway. Data from recent phase I and II trials will be discussed, along with a preview of upcoming trials involving targeted therapies.

  14. Radiation therapy following targeted therapy in oligometastatic renal cell carcinoma.

    Science.gov (United States)

    Gravis, Gwenaelle; Faure, Marjorie; Rybikowski, Stanislas; Dermeche, Slimane; Tyran, Marguerite; Calderon, Benoit; Thomassin, Jeanne; Walz, Jochen; Salem, Naji

    2015-11-01

    Up to 40% of patients with renal cell carcinoma (RCC) with initially localized disease eventually develop metastasis following nephrectomy. The current standard of care for metastatic RCC (mRCC) is targeted therapy. However, complete response remains rare. A state of oligometastatic disease may exist, in which metastases are present in a limited number of locations; such cases may benefit from metastasis-directed local therapy, based on the evidence supporting resection of limited-volume metastases, allowing for improved disease control. We retrospectively analyzed 7 cases of response of RCC metastases, in patients treated with targeted therapies followed by radiation therapy (RT) of residual metastatic lesions in Paoli-Calmettes Institute (Marseille, France). We analyzed disease response rates, response to sequential strategy, relapse at the irradiated locations and disease evolution. The median follow-up was 34.1 months (range, 19.2-54.5 months). No progression at the irradiated sites was observed. A total of 5 patients had stable disease at the irradiated locations at the last follow-up; 3 remained in complete remission at the assessment, and 2 were stable. Excellent local response and clinical benefit may be achieved without added toxicity. In conclusion, sequential therapeutic strategies with RT following systemic treatment using sunitinib appear to be highly effective in patients with progressive mRCC and prompt the conduction of further confirmatory trials.

  15. Novel targeted therapies in chordoma: an update.

    Science.gov (United States)

    Di Maio, Salvatore; Yip, Stephen; Al Zhrani, Gmaan A; Alotaibi, Fahad E; Al Turki, Abdulrahman; Kong, Esther; Rostomily, Robert C

    2015-01-01

    Chordomas are rare, locally aggressive skull base neoplasms known for local recurrence and not-infrequent treatment failure. Current evidence supports the role of maximal safe surgical resection. In addition to open skull-base approaches, the endoscopic endonasal approach to clival chordomas has been reported with favorable albeit early results. Adjuvant radiation is prescribed following complete resection, alternatively for gross residual disease or at the time of recurrence. The modalities of adjuvant radiation therapy reported vary widely and include proton-beam, carbon-ion, fractionated photon radiotherapy, and photon and gamma-knife radiosurgery. As of now, no direct comparison is available, and high-level evidence demonstrating superiority of one modality over another is lacking. While systemic therapies have yet to form part of any first-line therapy for chordomas, a number of targeted agents have been evaluated to date that inhibit specific molecules and their respective pathways known to be implicated in chordomas. These include EGFR (erlotinib, gefitinib, lapatinib), PDGFR (imatinib), mTOR (rapamycin), and VEGF (bevacizumab). This article provides an update of the current multimodality treatment of cranial base chordomas, with an emphasis on how current understanding of molecular pathogenesis provides a framework for the development of novel targeted approaches.

  16. Engineering liposomal nanoparticles for targeted gene therapy.

    Science.gov (United States)

    Zylberberg, C; Gaskill, K; Pasley, S; Matosevic, S

    2017-08-01

    Recent mechanistic studies have attempted to deepen our understanding of the process by which liposome-mediated delivery of genetic material occurs. Understanding the interactions between lipid nanoparticles and cells is still largely elusive. Liposome-mediated delivery of genetic material faces systemic obstacles alongside entry into the cell, endosomal escape, lysosomal degradation and nuclear uptake. Rational design approaches for targeted delivery have been developed to reduce off-target effects and enhance transfection. These strategies, which have included the modification of lipid nanoparticles with target-specific ligands to enhance intracellular uptake, have shown significant promise at the proof-of-concept stage. Control of physical and chemical specifications of liposome composition, which includes lipid-to-DNA charge, size, presence of ester bonds, chain length and nature of ligand complexation, is integral to the performance of targeted liposomes as genetic delivery agents. Clinical advances are expected to rely on such systems in the therapeutic application of liposome nanoparticle-based gene therapy. Here, we discuss the latest breakthroughs in the development of targeted liposome-based agents for the delivery of genetic material, paying particular attention to new ligand and cationic lipid design as well as recent in vivo advances.

  17. Targeting AAC-11 in cancer therapy.

    Science.gov (United States)

    Faye, Audrey; Poyet, Jean-Luc

    2010-01-01

    Since its discovery in 1997, the antiapoptotic factor AAC-11 has rapidly gained attention due to its potential use in cancer therapy. Indeed, most cancer cells express elevated levels of AAC-11, which is now known to be involved in both tumor cells growth as well as sensitivity to chemotherapeutic drugs. In this review, we examine the most recent evidence about the role of AAC-11 in cancer biology and the therapeutic perspectives associated with its specific targeting. For that purpose, literature dealing with AAC-11 in the PubMed database was reviewed from 1997 up to date. AAC-11 is an antiapoptotic gene that has the potential to be a target for anti-cancer therapy, and warrants further investigation. As its expression seems to predict unfavorable prognosis, at least in some cancers, it also may become a potent prognostic marker. Blocking AAC-11 function in cancer for therapeutic purposes might be of great interest. The recent report of efficient AAC-11 inhibiting peptides that sensitize tumor cells to chemotherapeutic drugs has raise the exciting notion that AAC-11 might be a druggable target and fueled the search for new therapeutic agents that could block AAC-11 function.

  18. Targeting WNT Signaling for Multifaceted Glioblastoma Therapy

    Directory of Open Access Journals (Sweden)

    Matthew McCord

    2017-10-01

    Full Text Available The WNT signaling pathway has been of great interest to developmental biologists for decades and has more recently become a central topic for study in cancer biology. It is vital for cell growth and regulation of embryogenesis in many organ systems, particularly the CNS and its associated vasculature. We summarize the role of WNT in CNS development and describe how WNT signaling makes key contributions to malignant glioma stemness, invasiveness, therapeutic resistance, and angiogenesis. The role of WNT in these mechanisms, along with creation and maintainance of the blood-brain barrier (BBB, points to the potential of WNT as a multi-faceted target in malignant glioma therapy.

  19. Targeting embryonic signaling pathways in cancer therapy.

    Science.gov (United States)

    Harris, Pamela Jo; Speranza, Giovanna; Dansky Ullmann, Claudio

    2012-01-01

    The embryonic signaling pathways (ESP), Hedgehog, Notch and Wnt, are critical for the regulation of normal stem cells and cellular development processes. They are also activated in the majority of cancers. ESP are operational in putative cancer stem cells (CSC), which drive initial tumorigenesis and sustain cancer progression and recurrence in non-CSC bulk subpopulations. ESP represent novel therapeutic targets. A variety of inhibitors and targeting strategies are being developed. This review discusses the rationale for targeting ESP for cancer treatment, as well as specific inhibitors under development; mainly focusing on those approaching clinical use and the challenges that lie ahead. The data sources utilized are several database search engines (PubMed, Google, Clinicaltrials.gov), and the authors' involvement in the field. CSC research is rapidly evolving. Expectations regarding their therapeutic targeting are rising quickly. Further definition of what constitutes a true CSC, proper validation of CSC markers, a better understanding of cross-talk among ESP and other pathways, and interactions with tumor non-CSC and the tumor microenvironment are needed. The appropriate patient population, the right clinical setting and combination strategies to test these therapies, as well as the proper pharmacodynamic markers to measure, need to be further established.

  20. Advances in the targeted therapy of liposarcoma

    Directory of Open Access Journals (Sweden)

    Guan Z

    2015-01-01

    Full Text Available Zhonghai Guan,1 Xiongfei Yu,1 Haohao Wang,1 Haiyong Wang,1 Jing Zhang,1 Guangliang Li,2 Jiang Cao,3 Lisong Teng1 1Department of Surgical Oncology, First Affiliated Hospital, College of Medicine, Zhejiang University, 2Department of Medicine Oncology, Zhejiang Cancer Hospital, 3Clinical Research Center, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China Abstract: Liposarcoma (LPS is the most common type of soft-tissue sarcoma. Complete surgical resection is the only curative means for localized disease; however, both radiation and conventional cytotoxic chemotherapy remain controversial for metastatic or unresectable disease. An increasing number of trials with novel targeted therapy of LPS have provided encouraging data during recent years. This review will provide an overview of the advances in our understanding of LPS and summarize the results of recent trials with novel therapies targeting different genetic and molecular aberrations for different subtypes of LPS. Keywords: well-/dedifferentiated, myxoid/round cell, pleomorphic, soft-tissue sarcoma

  1. Human IgG1 antibodies suppress angiogenesis in a target-independent manner

    NARCIS (Netherlands)

    Bogdanovich, Sasha; Kim, Younghee; Mizutani, Takeshi; Yasuma, Reo; Tudisco, Laura; Cicatiello, Valeria; Bastos-Carvalho, Ana; Kerur, Nagaraj; Hirano, Yoshio; Baffi, Judit Z; Tarallo, Valeria; Li, Shengjian; Yasuma, Tetsuhiro; Arpitha, Parthasarathy; Fowler, Benjamin J; Wright, Charles B; Apicella, Ivana; Greco, Adelaide; Brunetti, Arturo; Ruvo, Menotti; Sandomenico, Annamaria; Nozaki, Miho; Ijima, Ryo; Kaneko, Hiroki; Ogura, Yuichiro; Terasaki, Hiroko; Ambati, Balamurali K; Leusen, Jeanette HW; Langdon, Wallace Y; Clark, Michael R; Armour, Kathryn L; Bruhns, Pierre; Verbeek, J Sjef; Gelfand, Bradley D; De Falco, Sandro; Ambati, Jayakrishna

    2016-01-01

    Aberrant angiogenesis is implicated in diseases affecting nearly 10% of the world's population. The most widely used anti-angiogenic drug is bevacizumab, a humanized IgG1 monoclonal antibody that targets human VEGFA. Although bevacizumab does not recognize mouse Vegfa, it inhibits angiogenesis in

  2. Benchmarks for targeted alpha therapy for cancer

    International Nuclear Information System (INIS)

    Allen, J.B.

    2011-01-01

    Full text: Targeted alpha therapy (TAT) needs to achieve certain benchmarks if t is to find its way into the clinic. This paper reviews the status of benchmarks for dose normalisation, microdosimetry, response of micrometastases to therapy, maximum tolerance doses and adequate supplies of alpha emitting radioisotopes. In comparing dose effect for different alpha immunoconjugates (IC), patients and diseases, it is appropriate to normalise dose according to specific factors that affect the efficacy of the treatment. Body weight and body surface area are two commonly used criteria. However, more advanced criteria are required, such as the volume of distribution. Alpha dosimetry presents a special challenge in clinical trials. Monte Carlo calculations can be used to determine specific energies, but these need validation. This problem could be resolved with micronuclei biological dosimetry and mutagenesis studies of radiation Jam age. While macroscopic disease can be monitored, the impact of therapy on subclinical microscopic disease is a real problem. Magnetic cell separation of cancer cells in the blood with magnetic microspheres coated with the targeting monoclonal antibody could provide the response data. Alpha therapy needs first to establish maximum tolerance doses for practical acceptance. This has been determined with 213Bi-IC for acute myelogenous leukaemia at ∼ I mCi/kg. The maximum tolerance dose has not yet been established for metastatic melanoma, but the efficacious dose for some melanomas is less than 0.3 mCi/kg and for intra-cavity therapy of GBM it is ∼ 0.14 mCi/kg for 211 At-Ie. In the case of Ra-223 for bone cancer, the emission of four alphas with a total energy of 27 MeV results in very high cytotoxicity and an effective dose of only ∼ 5 μCi/kg. The limited supplies of Ac-225 available after separation from Th-229 are adequate for clinical trials. However, should TAT become a clinical procedure, then new supplies must be found. Accelerator

  3. Targeted Therapy for Biliary Tract Cancer

    International Nuclear Information System (INIS)

    Furuse, Junji; Okusaka, Takuji

    2011-01-01

    It is necessary to establish effective chemotherapy to improve the survival of patients with biliary tract cancer, because most of these patients are unsuitable candidates for surgery, and even patients undergoing curative surgery often have recurrence. Recently, the combination of cisplatin plus gemcitabine was reported to show survival benefits over gemcitabine alone in randomized clinical trials conducted in the United Kingdom and Japan. Thus, the combination of cisplatin plus gemcitabine is now recognized as the standard therapy for unresectable biliary tract cancer. One of the next issues that need to be addressed is whether molecular targeted agents might also be effective against biliary tract cancer. Although some targeted agents have been investigated as monotherapy for first-line chemotherapy, none were found to exert satisfactory efficacy. On the other hand, monoclonal antibodies such as bevacizumab and cetuximab have also been investigated in combination with a gemcitabine-based regimen and have been demonstrated to show promising activity. Furthermore, clinical trials using new targeted agents for biliary tract cancer are also proposed. This cancer is a relatively rare and heterogeneous tumor consisting of cholangiocarcinoma and gallbladder carcinoma. Therefore, a large randomized clinical trial is necessary to confirm the efficacy of chemotherapy, and international collaboration is important

  4. Targeting DNA Replication Stress for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Jun Zhang

    2016-08-01

    Full Text Available The human cellular genome is under constant stress from extrinsic and intrinsic factors, which can lead to DNA damage and defective replication. In normal cells, DNA damage response (DDR mediated by various checkpoints will either activate the DNA repair system or induce cellular apoptosis/senescence, therefore maintaining overall genomic integrity. Cancer cells, however, due to constitutive growth signaling and defective DDR, may exhibit “replication stress” —a phenomenon unique to cancer cells that is described as the perturbation of error-free DNA replication and slow-down of DNA synthesis. Although replication stress has been proven to induce genomic instability and tumorigenesis, recent studies have counterintuitively shown that enhancing replicative stress through further loosening of the remaining checkpoints in cancer cells to induce their catastrophic failure of proliferation may provide an alternative therapeutic approach. In this review, we discuss the rationale to enhance replicative stress in cancer cells, past approaches using traditional radiation and chemotherapy, and emerging approaches targeting the signaling cascades induced by DNA damage. We also summarize current clinical trials exploring these strategies and propose future research directions including the use of combination therapies, and the identification of potential new targets and biomarkers to track and predict treatment responses to targeting DNA replication stress.

  5. Targeted Therapy for Biliary Tract Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Furuse, Junji, E-mail: jfuruse@ks.kyorin-u.ac.jp [Department of Internal Medicine, Medical Oncology, Kyorin University School of Medicine, 6-20-2, Shinkawa, Mitaka, Tokyo, 181-8611 (Japan); Okusaka, Takuji [Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan)

    2011-05-03

    It is necessary to establish effective chemotherapy to improve the survival of patients with biliary tract cancer, because most of these patients are unsuitable candidates for surgery, and even patients undergoing curative surgery often have recurrence. Recently, the combination of cisplatin plus gemcitabine was reported to show survival benefits over gemcitabine alone in randomized clinical trials conducted in the United Kingdom and Japan. Thus, the combination of cisplatin plus gemcitabine is now recognized as the standard therapy for unresectable biliary tract cancer. One of the next issues that need to be addressed is whether molecular targeted agents might also be effective against biliary tract cancer. Although some targeted agents have been investigated as monotherapy for first-line chemotherapy, none were found to exert satisfactory efficacy. On the other hand, monoclonal antibodies such as bevacizumab and cetuximab have also been investigated in combination with a gemcitabine-based regimen and have been demonstrated to show promising activity. Furthermore, clinical trials using new targeted agents for biliary tract cancer are also proposed. This cancer is a relatively rare and heterogeneous tumor consisting of cholangiocarcinoma and gallbladder carcinoma. Therefore, a large randomized clinical trial is necessary to confirm the efficacy of chemotherapy, and international collaboration is important.

  6. Alpha-v Integrin Targeted PET Imaging of Breast Cancer Angiogenesis and Low-Dose Metronomic Anti-Angiogenic Chemotherapy Efficacy

    National Research Council Canada - National Science Library

    Chen, Xiaoyuan

    2007-01-01

    ...) To demonstrate the feasibility of PET/18F-RGD to image breast tumor growth spread and angiogenesis as well as quantifying alpha v-integrin expression level during breast tumor neovascularization over time. (3...

  7. Alpha-V Integrin Targeted PET Imagining of Breast Cancer Angiogenesis and Lose-Dose Metronomic Anti-Angiogenic Chemotherapy Efficacy

    National Research Council Canada - National Science Library

    Chen, Xiaoyuan

    2005-01-01

    ...) To demonstrate the feasibility of PET/18F-RGD to image breast tumor growth, spread, and angiogenesis as well as quantifying av-integrin expression level during breast tumor neovascularization overtime. (3...

  8. Alpha-v Integrin Targeted PET Imaging of Breast Cancer Angiogenesis and Low-Dose Metronomic Anti-Angiogenic Chemotherapy Efficacy

    National Research Council Canada - National Science Library

    Chen, Xiaoyuan

    2006-01-01

    ...) To demonstrate the feasibility of PET/18F-RGD to image breast tumor growth spread and angiogenesis as well as quantifying alpha-v integrin expression level during breast tumor neovascularization over time. (3...

  9. Alpha-v Integrin Targeted PET Imaging of Breast Cancer Angiogenesis and Low-Dose Metronomic Anti-Angiogenic Chemotherapy Efficacy

    Science.gov (United States)

    2008-08-01

    Paclitaxel (Taxol, PTX), a complex taxane diterpene , was originally isolated from Taxus brevifolia as a potent anti- tumor agent [1]. It binds and stabilizes...bleaching to obtain the decolorized samples. Chemiluminescence was reduced by the addition of glacial acetic acid . Hionic-Fluor liquid scintillation...formulations: preparation and characterization of taxol-containing liposomes. Pharm Res 1994;11:889–96. 11. Bartoli MH, Boitard M, Fessi H, Beriel H

  10. Novel targeted therapies in chordoma: an update

    Directory of Open Access Journals (Sweden)

    Di Maio S

    2015-05-01

    Full Text Available Salvatore Di Maio,1 Stephen Yip,2 Gmaan A Al Zhrani,3,4 Fahad E Alotaibi,3,4 Abdulrahman Al Turki,3,4 Esther Kong,2 Robert C Rostomily5 1Division of Neurosurgery, Jewish General Hospital, McGill University, Montreal, QC, 2Department of Pathology and Laboratory Medicine, Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada; 3National Neuroscience Institute, Department of Neurosurgery, King Fahad Medical City, Riyadh, Saudi Arabia; 4Department of Neurology and Neurosurgery, The Montreal Neurological Institute and Hospital, McGill University Health Centre, Montreal, QC, Canada; 5Department of Neurological Surgery, University of Washington, University of Washington Medical Center, Seattle, WA, USA Abstract: Chordomas are rare, locally aggressive skull base neoplasms known for local recurrence and not-infrequent treatment failure. Current evidence supports the role of maximal safe surgical resection. In addition to open skull-base approaches, the endoscopic endonasal approach to clival chordomas has been reported with favorable albeit early results. Adjuvant radiation is prescribed following complete resection, alternatively for gross residual disease or at the time of recurrence. The modalities of adjuvant radiation therapy reported vary widely and include proton-beam, carbon-ion, fractionated photon radiotherapy, and photon and gamma-knife radiosurgery. As of now, no direct comparison is available, and high-level evidence demonstrating superiority of one modality over another is lacking. While systemic therapies have yet to form part of any first-line therapy for chordomas, a number of targeted agents have been evaluated to date that inhibit specific molecules and their respective pathways known to be implicated in chordomas. These include EGFR (erlotinib, gefitinib, lapatinib, PDGFR (imatinib, mTOR (rapamycin, and VEGF (bevacizumab. This article provides an update of the current multimodality treatment of cranial base

  11. Resistance to HER2-targeted therapy

    Directory of Open Access Journals (Sweden)

    Reza Valadan

    2013-02-01

    Full Text Available Production and approval of trastuzumab (Herceptin® for the treatment of metastatic breast cancer (MBC was a millstone in antibody-based targeted therapy in the cancer treatment. However, despite the early success in the clinical trials, trastuzumab failed to appreciate the initial attraction due to development of resistance to the drug. The majority of patients who benefit from the drug acquire resistance to it and experience tumor recurrence within 1 year. Several molecular and cellular mechanisms underlying the resistance to trastuzumab have been proposed. In this review, first, we provide a brief history leading to production of trastuzumab. Also we consider the cellular and molecular antitumor effects of trastuzumab and then, we discuss the mechanisms underlying trastuzumab resistance in four levels.

  12. Molecular targeted therapy for hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    SHEN Yinan

    2015-01-01

    Full Text Available Hepatocellular carcinoma (HCC is the most common malignancy in the liver, for which surgical operation remains the primary treatment. However, the surgical treatment is associated with low resection rate and high recurrence rate, which drive studies on the molecule mechanism of initiation, metastasis, and invasion of HCC, in order to develop more effective early diagnosis and treatment methods. By reviewing related literature, this article summarizes the major signaling pathways related to HCC, such as the PI3K/AKT/mTOR signaling pathway, RAS/RAF/MEK/ERK signaling pathway, and VEGF/VEGFR, PDGFR, and FGFR signaling pathway. New advances in the corresponding molecular targeted therapy for HCC are described, and the perspectives on future direction of relevant research are discussed.

  13. Gene transfer technology and genetic radioisotope targeting therapy

    International Nuclear Information System (INIS)

    Wang Jiaqiong; Wang Zizheng

    2004-01-01

    With deeper cognition about mechanisms of disease at the cellular and molecular level, gene therapy has become one of the most important research fields in medical molecular biology at present. Gene transfer technology plays an important role during the course of gene therapy, and further improvement should be made about vectors carrying target gene sequences. Also, gene survey is needed during gene therapy, and gene imaging is the most effective method. The combination of gene therapy and targeted radiotherapy, that is, 'Genetic Radioisotope Targeting Therapy', will be a novel approach to tumor gene therapy

  14. RLIP76 Targeted Therapy for Kidney Cancer.

    Science.gov (United States)

    Singhal, Sharad S; Singhal, Jyotsana; Figarola, James; Horne, David; Awasthi, Sanjay

    2015-10-01

    Despite recent improvements in chemotherapeutic approaches to treating kidney cancer, this malignancy remains deadly if not found and removed at an early stage of the disease. Kidney cancer is highly drug-resistant, which may at least partially result from high expression of transporter proteins in the cell membranes of kidney cells. Although these transporter proteins can contribute to drug-resistance, targeting proteins from the ATP-binding cassette transporter family has not been effective in reversing drug-resistance in kidney cancer. Recent studies have identified RLIP76 as a key stress-defense protein that protects normal cells from damage caused by stress conditions, including heat, ultra-violet light, X-irradiation, and oxidant/electrophilic toxic chemicals, and is crucial for protecting cancer cells from apoptosis. RLIP76 is the predominant glutathione-electrophile-conjugate (GS-E) transporter in cells, and inhibiting it with antibodies or through siRNA or antisense causes apoptosis in many cancer cell types. To date, blocking of RLIP76, either alone or in combination with chemotherapeutic drugs, as a therapeutic strategy for kidney cancer has not yet been evaluated in human clinical trials, although there is considerable potential for RLIP76 to be developed as a therapeutic agent for kidney cancer. In the present review, we discuss the mechanisms underlying apoptosis caused by RLIP76 depletion, the role of RLIP76 in clathrin-dependent endocytosis deficiency, and the feasibility of RLIP76-targeted therapy for kidney cancer.

  15. Therapies targeting inflammation after stent implantation.

    Science.gov (United States)

    Okura, Hiroyuki; Takagi, Tsutomu; Yoshida, Kiyoshi

    2013-07-01

    Since the introduction of coronary vessel scaffold by metallic stent, percutaneous coronary intervention has become widely performed all over the world. Although drug-eluting stent technology has further decrease the incidence of in-stent restenosis, there still remaining issues related to stent implantation. Vessel inflammation is one of the causes that may be related to stent restenosis as well as stent thrombosis. Therefore, systemic therapies targeting inflammation emerged as adjunctive pharmacological intervention to improve outcome. Statins, corticosteroids, antiplatelets, and immunosuppresive or anti-cancer drugs are reported to favorably impact outcome after bare-metal stent implantation. In type 2 diabetic patients, pioglitazone may be the most promising drug that can lower neointimal proliferation and, as a result, lower incidence of restenosis and target lesion revascularization. On the other hand, several new stent platforms that might decrease inflammatory response after drug-eluting stent implantation have been introduced. Because durable polymer used in the first generation drug-eluting stents are recognized to be responsible for unfavorable vessel response, biocompatible or bioabsorbable polymer has been introduce and already used clinically. Furthermore, polymer-free drug-eluting stent and bioresorbable scaffold are under investigation. Although vessel inflammation may be reduced by using these new drug-eluting stents or scaffold, long-term impact needs to be investigated further.

  16. Targeted Gene Therapy of Cancer: Second Amendment toward Holistic Therapy.

    Science.gov (United States)

    Barar, Jaleh; Omidi, Yadollah

    2013-01-01

    It seems solid tumors are developing smart organs with specialized cells creating specified bio-territory, the so called "tumor microenvironment (TME)", in which there is reciprocal crosstalk among cancer cells, immune system cells and stromal cells. TME as an intricate milieu also consists of cancer stem cells (CSCs) that can resist against chemotherapies. In solid tumors, metabolism and vascularization appears to be aberrant and tumor interstitial fluid (TIF) functions as physiologic barrier. Thus, chemotherapy, immunotherapy and gene therapy often fail to provide cogent clinical outcomes. It looms that it is the time to accept the fact that initiation of cancer could be generation of another form of life that involves a cluster of thousands of genes, while we have failed to observe all aspects of it. Hence, the current treatment modalities need to be re-visited to cover all key aspects of disease using combination therapy based on the condition of patients. Perhaps personalized cluster of genes need to be simultaneously targeted.

  17. Targeted Gene Therapy of Cancer: Second Amendment toward Holistic Therapy

    Directory of Open Access Journals (Sweden)

    Jaleh Barar

    2013-02-01

    Full Text Available It seems solid tumors are developing smart organs with specialized cells creating specified bio-territory, the so called “tumor microenvironment (TME”, in which there is reciprocal crosstalk among cancer cells, immune system cells and stromal cells. TME as an intricate milieu also consists of cancer stem cells (CSCs that can resist against chemotherapies. In solid tumors, metabolism and vascularization appears to be aberrant and tumor interstitial fluid (TIF functions as physiologic barrier. Thus, chemotherapy, immunotherapy and gene therapy often fail to provide cogent clinical outcomes. It looms that it is the time to accept the fact that initiation of cancer could be generation of another form of life that involves a cluster of thousands of genes, while we have failed to observe all aspects of it. Hence, the current treatment modalities need to be re-visited to cover all key aspects of disease using combination therapy based on the condition of patients. Perhaps personalized cluster of genes need to be simultaneously targeted.

  18. The anti-angiogenic herbal extract from Melissa officinalis inhibits adipogenesis in 3T3-L1 adipocytes and suppresses adipocyte hypertrophy in high fat diet-induced obese C57BL/6J mice.

    Science.gov (United States)

    Woo, Sangee; Yoon, Miso; Kim, Jeongjun; Hong, Yeonhee; Kim, Min-Young; Shin, Soon Shik; Yoon, Michung

    2016-02-03

    Melissa officinalis L. (Labiatae; lemon balm) has been used traditionally and contemporarily as an anti-stress herb. Current hypotheses suggest that not only chronic stress promotes angiogenesis, but angiogenesis also modulates adipogenesis and obesity. Because the herbal extract ALS-L1023 from M. officinalis L. (Labiatae; lemon balm) has an anti-angiogenic activity, we hypothesized that ALS-L1023 could inhibit adipogenesis and adipocyte hypertrophy. ALS-L1023 was prepared by a two-step organic solvent fractionation from M. officinalis. The effects of ALS-L1023 on adipogenesis in 3T3-L1 adipocytes and adipocyte hypertrophy in high fat diet (HFD)-fed obese mice were measured using in vivo and in vitro approaches. ALS-L1023 inhibited angiogenesis in a dose-dependent manner in the HUVEC tube formation assay in vitro. Treatment of cells with ALS-L1023 inhibited lipid accumulation and adipocyte-specific gene expression caused by troglitazone or MDI differentiation mix. ALS-L1023 reduced mRNA expression of angiogenic factors (VEGF-A and FGF-2) and MMPs (MMP-2 and MMP-9) in differentiated cells. In contrast, mRNA levels of angiogenic inhibitors (TSP-1, TIMP-1, and TIMP-2) increased. Protease activity, as measured by zymography, showed that activity of MMP-2 and MMP-9 decreased in ALS-L1023-treated cells. ALS-L1023 also inhibited MMP-2 and MMP-9 reporter gene expression in the presence of the MMP inducer phorbol 12-myristate 13-acetate. An in vivo study showed that ALS-L1023 not only decreased adipose tissue mass and adipocyte size, but also reduced mRNA levels of adipose tissue angiogenic factors and MMPs in HFD-fed obese mice. These results suggest that the anti-angiogenic herbal extract ALS-L1023 suppresses adipogenesis and adipocyte hypertrophy, and this effect may be mediated by inhibiting angiogenesis and MMP activities. Thus, by curbing adipogenesis, anti-angiogenic ALS-L1023 yields a possible therapeutic choice for the prevention and treatment of human obesity and

  19. Clinical targeting recombinant immunotoxins for cancer therapy

    Directory of Open Access Journals (Sweden)

    Li M

    2017-07-01

    Full Text Available Meng Li,1,* Zeng-Shan Liu,1,* Xi-Lin Liu,1,* Qi Hui,2,* Shi-Ying Lu,1 Lin-Lin Qu,1 Yan-Song Li,1 Yu Zhou,1 Hong-Lin Ren,1 Pan Hu1 1Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, China-Japan Union Hospital, The First Hospital, Jilin University, Changchun, 2School of Pharmacy, Wenzhou Medical University, Wenzhou, People’s Republic of China *These authors contributed equally to this work Abstract: Recombinant immunotoxins (RITs are proteins that contain a toxin fused to an antibody or small molecules and are constructed by the genetic engineering technique. RITs can bind to and be internalized by cells and kill cancerous or non-cancerous cells by inhibiting protein synthesis. A wide variety of RITs have been tested against different cancers in cell culture, xenograft models, and human patients during the past several decades. RITs have shown activity in therapy of several kinds of cancers, but different levels of side effects, mainly related to vascular leak syndrome, were also observed in the treated patients. High immunogenicity of RITs limited their long-term or repeat applications in clinical cases. Recent advances in the design of immunotoxins, such as humanization of antibody fragment, PEGylation, and modification of human B- and T-cell epitopes, are overcoming the above mentioned problems, which predict the use of these immunotoxins as a potential therapeutic method to treat cancer patients. Keywords: targeted therapy, hematologic malignancies, solid tumors, vascular leak syndrome, immunogenicity 

  20. Engineered Autologous Stromal Cells for the Delivery of Kringle 5, A Potent Endothelial Cell Specific Inhibitor, for Anti-Angiogenic Breast Cancer Therapy

    National Research Council Canada - National Science Library

    Perri, Sabrina R

    2005-01-01

    .... To test this hypothesis, we have developed a K5-expressing retroviral vector, gene-modified murine DA3 mammary cells to produce soluble human K5 protein and characterized the anti-tumor potency...

  1. Engineered Autologous Stromal Cells for the Delivery of Kringle 5, a Potent Endothelial Cell Specific Inhibitor for Anti-Angiogenic Breast Cancer Therapy

    National Research Council Canada - National Science Library

    Perri, Sabrina R

    2006-01-01

    .... To determine whether K5 possesses immune proinflammatory properties, we investigated the effects of K5 in an immune competent model of breast cancer and observed that tumor rejection is substantially...

  2. Inhibition of Nitric Oxide Synthase Through Depletion of Its Cofactor Tetrahydrobiopterin as a Novel Strategy for Breast Cancer Anti-Angiogenic Therapy

    Science.gov (United States)

    2004-09-01

    disorders (amyotrophic lateral sclerosis, Parkinson disease, Alzheimer disease), stroke, spinal cord injury, and senescence [1]. ROS and cancer. ROS have...Cao R, Cao Y. Suppression of angiogenesis, tumor growth, and wound healing by resveratrol, a natural compound in red wine and grapes. Faseb J2001;15

  3. Targeted cancer therapy; nanotechnology approaches for overcoming drug resistance.

    Science.gov (United States)

    Gao, Yan; Shen, Jacson K; Milane, Lara; Hornicek, Francis J; Amiji, Mansoor M; Duan, Zhenfeng

    2015-01-01

    Recent advances in cancer molecular biology have resulted in parallel and unprecedented progress in the development of targeted cancer therapy. Targeted therapy can provide higher efficacy and lower toxicity than conventional chemotherapy for cancer. However, like traditional chemotherapy, molecularly targeted cancer therapy also faces the challenge of drug resistance. Multiple mechanisms are responsible for chemotherapy resistance in tumors, including over-expression of efflux transporters, somatic alterations of drug targets, deregulation of apoptosis, and numerous pharmacokinetic issues. Nanotechnology based approaches are proving to be efficacious in overcoming drug resistance in cancer. Combination of targeted therapies with nanotechnology approaches is a promising strategy to overcome targeted therapy drug resistance in cancer treatment. This review discusses the mechanisms of targeted drug resistance in cancer and discusses nanotechnology approaches to circumvent this resistance.

  4. [Resistances to targeted therapies and strategy for following therapeutic lines in metastatic NSCLC].

    Science.gov (United States)

    Brosseau, Solenn; Oulkhouir, Youssef; Naltet, Charles; Zalcman, Gérard

    2015-06-01

    EGFR, ALK, ROS1 Tyrosine Kinase Inhibitors (TKis) have changed natural history of 12 to 15% of patients with metastatic Non-Small Cell Lung Cancer (NSCLC) and molecular alterations (mutations or translocations) in these genes. Median Progression Free Survival (PFS) of these patients has increased from 12 months with a platinum-based chemotherapy associated with bevacizumab, to 18 months with TKIs, overall survival reaching several years in these patients. However, rare primary resistance have been described in less than 10% of patients with EGFR or ALK-mutated cancer, whereas secondary resistance occur systematically. New generations TKIs are currently in clinical development, which are active on tumor clones harboring a resistance mutation, and some of them diffuse perfectly well into brain, a classical sanctuary for metastasis. Strategies are developed to delay secondary resistance apparition, to prolong PFS, and then overall survival. These strategies use combinations, as soon as first linesetting, of TKIs with either an anti-angiogenic drug (bevacizumab), or with an immunological checkpoint inhibitors, or with Heat-Shock Protein (Hsp) inhibitors. In order to delay acquired resistance to EGFR TKIs, the French Intergroup (IFCT) has launched a combination trial of EGFR TKIs with an anti-estrogen (fulvestrant) in postmenopausal women, whereas other trials associate EGFR TKIs with EFGR monoclonal antibody cetuximab, or with a monoclonal antibody targeting c-met. Copyright © 2015 Société Françise du Cancer. Publié par Elsevier Masson SAS. Tous droits réservés. Published by Elsevier Masson SAS. All rights reserved.

  5. Molecular targeting of gene therapy and radiotherapy

    International Nuclear Information System (INIS)

    Weichselbaum, R.R.; Kufe, D.W.; Advani, S.J.; Roizman, B.

    2001-01-01

    The full promise of gene therapy has been limited by the lack of specificity of vectors for tumor tissue as well as the lack of antitumor efficacy of transgenes encoded by gene delivery systems. In this paper we review our studies investigating two modifications of gene therapy combined with radiotherapy. The first investigations described include studies of radiation inducible gene therapy. In this paradigm, radio-inducible DNA sequences from the CarG elements of the Egr-1 promoter are cloned upstream of a cDNA encoding TNFa. The therapeutic gene (TNFa) is induced by radiation within the tumor microenvironment. In the second paradigm, genetically engineered herpes simplex virus (HSV-1) is induced by ionizing radiation to proliferate within the tumor volume. These modifications of radiotherapy and gene therapy may enhance the efficacy of both treatments

  6. Metabolic therapy: a new paradigm for managing malignant brain cancer.

    Science.gov (United States)

    Seyfried, Thomas N; Flores, Roberto; Poff, Angela M; D'Agostino, Dominic P; Mukherjee, Purna

    2015-01-28

    Little progress has been made in the long-term management of glioblastoma multiforme (GBM), considered among the most lethal of brain cancers. Cytotoxic chemotherapy, steroids, and high-dose radiation are generally used as the standard of care for GBM. These procedures can create a tumor microenvironment rich in glucose and glutamine. Glucose and glutamine are suggested to facilitate tumor progression. Recent evidence suggests that many GBMs are infected with cytomegalovirus, which could further enhance glucose and glutamine metabolism in the tumor cells. Emerging evidence also suggests that neoplastic macrophages/microglia, arising through possible fusion hybridization, can comprise an invasive cell subpopulation within GBM. Glucose and glutamine are major fuels for myeloid cells, as well as for the more rapidly proliferating cancer stem cells. Therapies that increase inflammation and energy metabolites in the GBM microenvironment can enhance tumor progression. In contrast to current GBM therapies, metabolic therapy is designed to target the metabolic malady common to all tumor cells (aerobic fermentation), while enhancing the health and vitality of normal brain cells and the entire body. The calorie restricted ketogenic diet (KD-R) is an anti-angiogenic, anti-inflammatory and pro-apoptotic metabolic therapy that also reduces fermentable fuels in the tumor microenvironment. Metabolic therapy, as an alternative to the standard of care, has the potential to improve outcome for patients with GBM and other malignant brain cancers. Copyright © 2014. Published by Elsevier Ireland Ltd.

  7. Inflammation as target in cancer therapy.

    Czech Academy of Sciences Publication Activity Database

    Marelli, G.; Sica, A.; Vannucci, Luca; Allavena, P.

    2017-01-01

    Roč. 35, August 2017 (2017), s. 57-65 ISSN 1471-4892 Institutional support: RVO:61388971 Keywords : cancer therapy * cancer-promoting inflammation * Tumour-Associated Macrophages Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 5.363, year: 2016

  8. Immunoprotective therapy with targeted anticancer drugs

    Czech Academy of Sciences Publication Activity Database

    Říhová, Blanka; Strohalm, Jiří; Hoste, K.; Jelínková, Markéta; Hovorka, Ondřej; Kovář, Marek; Plocová, Daniela; Šírová, Milada; Šťastný, Marek; Ulbrich, Karel

    2001-01-01

    Roč. 172, - (2001), s. 21-28 ISSN 1022-1360 R&D Projects: GA ČR GV307/96/K226; GA MZd NC5050 Institutional research plan: CEZ:AV0Z5020903 Keywords : doxorubicin * mitomycin * immunoprotective therapy Subject RIV: EC - Immunology Impact factor: 0.634, year: 2001

  9. Hitting the target with antithrombotic therapy.

    Science.gov (United States)

    Fritsma, Margaret G; Rodak, Bernadette F

    2007-05-01

    Thrombus treatment and prevention can be regulated by a number of intravenous or subcutaneous drugs, as well as oral warfarin. Many therapies require laboratory monitoring for efficacy and for detection of dangerous sequelae, such as bleeding, thrombosis, or heparin induced thrombocytopenia.

  10. Targeting a Novel Vector for Breast Cancer Gene Therapy

    National Research Council Canada - National Science Library

    Bzik, David

    2002-01-01

    .... The primary purpose and scope of this IDEA award project is to experimentally examine approaches to safely target the Toxoplasma gondii parasite gene therapy vector to breast cancer tissue using...

  11. Sorafenib after combination therapy with gemcitabine plus doxorubicine in patients with sarcomatoid renal cell Carcinoma: a prospective evaluation

    Directory of Open Access Journals (Sweden)

    Staehler M

    2010-07-01

    Full Text Available Abstract Background Sarcomatoid renal cell cancer (RCC is a distinct histological variant of RCC that is associated with rapid progression and a poor prognosis. The optimal treatment for patients with sarcomatoid RCC remains to be defined. Gemcitabine plus doxorubicine (GD has shown some efficacy, however durability of response is limited. We carried out a prospective, open-label study to investigate the efficacy and safety of sorafenib in patients after GD failure in sarcomatoid RCC. Methods Fifteen patients with pure sarcomatoid RCC and objective progressive disease were treated with GD (gemcitabine 1500 mg/m2, doxorubicine 50 mg/m2 administered by weekly intravenous infusion until progression of disease. Subsequently 9 patients were switched to sorafenib (400 mg twice daily. Tumor response was measured by physical examination and computerized tomography scans and evaluated according to Response Evaluation Criteria in Solid Tumors criteria. Results Median time to progression (TTP under GD was 6.6 months (range 0.8 - 8 months. During GD treatment there were no remissions and 6 patients died from progressive disease. Median TTP for the 9 patients switched to sorafenib was 10.9 months (range 0.6 - 25.5 months. During sorafenib therapy one patient had a partial remission lasting for 3 months and 4 patients experienced stable disease with a duration of 3 to 9 months. Four patients immediately progressed on sorafenib treatment but had a slower dynamic of tumor progression than under GD. Dosing in both treatment phases was generally well tolerated with manageable toxicities and no requirement for dose reduction. Conclusions Chemotherapy with GD was ineffective in our patients with pure sarcomatoid RCC. Subsequent anti-angiogenic treatment using the multi-tyrosine kinase inhibitor sorafenib resulted in additional progression-free survival in 5 of 9 patients. Further evaluation of targeted anti-angiogenic agents for the treatment of sarcomatoid RCC is

  12. Gene-Specific Demethylation as Targeted Therapy in MDS

    Science.gov (United States)

    2017-07-01

    AWARD NUMBER: W81XWH-15-1-0161 TITLE: Gene-Specific Demethylation as Targeted Therapy in MDS PRINCIPAL INVESTIGATOR: Daniel G. Tenen, M.D...15JUN2016-14JUN2017 4. TITLE AND SUBTITLE Gene-Specific Demethylation as Targeted Therapy in MDS 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM... magnetic beads capture all newly synthesized transcripts. To compare the transcriptional profiles under these conditions with our previous results, we

  13. Targeting Epigenetics Therapy for Estrogen Receptor-Negative Breast Cancers

    Science.gov (United States)

    2015-10-01

    AWARD NUMBER: W81XWH-13-1-0400 TITLE: Targeting Epigenetics Therapy for Estrogen Receptor-Negative Breast Cancers PRINCIPAL INVESTIGATOR...Targeting Epigenetics Therapy for Estrogen Receptor-Negative Breast Cancers 5b. GRANT NUMBER W81XWH-13-1-0400 5c. PROGRAM ELEMENT NUMBER 6...negative breast cancer, epigenetics , nuclear hormone receptor, estrogen Overall Project Summary Flavin-dependent, lysine-specific protein

  14. Prostate Cancer Clinical Consortium Clinical Research Site: Targeted Therapies

    Science.gov (United States)

    2017-10-01

    relevance to targeted therapies. Our overarching goal is to more effectively bring novel agents and new biomarker driven trials directly to patients...direct relevance to targeted therapies. Our overarching goal is to more effectively bring novel agents and new biomarker driven trials directly to...al: Functional characterization of circulating tumor cells with a prostate-cancer-specific microfluidic device . PLoS One 7:e35976, 2012 21

  15. Setting the target for pemphigus vulgaris therapy

    Science.gov (United States)

    Ellebrecht, Christoph T.

    2017-01-01

    Despite the rising incidence of autoimmunity, therapeutic options for patients with autoimmune disease still rely on decades-old immunosuppressive strategies that risk severe and potentially fatal complications. Thus, novel therapeutic approaches for autoimmune diseases are greatly needed in order to minimize treatment-related toxicity. Such strategies would ideally target only the autoreactive immune components to preserve beneficial immunity. Here, we review how several decades of basic, translational, and clinical research on the immunology of pemphigus vulgaris (PV), an autoantibody-mediated skin disease, have enabled the development of targeted immunotherapeutic strategies. We discuss research to elucidate the pathophysiology of PV and how the knowledge afforded by these studies has led to the preclinical and clinical testing of targeted approaches to neutralize autoantibodies, to induce antigen-specific tolerance, and to specifically eliminate autoreactive B cells in PV. PMID:28289723

  16. Research progress in targeted therapy for liver cancer stem cells

    Directory of Open Access Journals (Sweden)

    SHAO Ping

    2015-11-01

    Full Text Available Liver cancer is a malignant tumor. The current operation or chemoradiotherapy cannot achieve a satisfactory effect, and relapse and metastasis are always big problems in the treatment of liver cancer. According to the recent theory of liver cancer stem cells, the genesis, development, relapse, metastasis, and prognosis of liver cancer are all related to liver cancer stem cells. If the liver cancer stem cells are treated by targeted therapy, which would reduce the number of or destroy the stem cells, the relapse, metastasis, and drug resistance after tumor resection may be reduced or eliminated. The progress in targeted therapy for liver cancer stem cells is reviewed here. Although there are many types of targeted therapies for liver cancer stem cells, it is still a key problem that the targeting is not strong enough, which needs to be solved urgently. Whether the dual- or multi-targeting would solve this problem still needs to be confirmed by further experimental studies.

  17. Molecularly characterized solvent extracts and saponins from Polygonum hydropiper L show high anti-angiogenic, anti-tumor, brine shrimp and fibroblast NIH/3T3 cell line cytotoxicity

    Directory of Open Access Journals (Sweden)

    Muhammad eAyaz

    2016-03-01

    Full Text Available Polygonum hydropiper is used as anti-cancer and anti-rheumatic agent in folk medicine. This study was designed to investigate the anti-angiogenic, anti-tumor and cytotoxic potentials of different solvent extracts and isolated saponins. Samples were analyzed using GC, GC-MS to identify major and bioactive compounds. Quantitation of antiangiogenesis for the plant's samples including methanolic extract (Ph.Cr, its subsequent fractions; n-hexane (Ph.Hex, chloroform (Ph.Chf, ethyl acetate (Ph.EtAc, n-Butanol (Ph.Bt, aqueous (Ph.Aq, saponins (Ph.Sp were performed using the chick embryo chorioallantoic membrane (CAM assay. Potato disc anti-tumor assay was performed on Agrobacterium tumefaciens containing tumor inducing plasmid. Cytotoxicity was performed on Artemia salina and mouse embryonic fibroblast NIH/3T3 cell line using brine shrimps and MTT cells viability assays. The GC-MS analysis of Ph.Cr, Ph.Hex, Ph.Chf, Ph.Bt and Ph.EtAc identified 126, 124, 153, 131 and 164 compounds respectively. In anti-angiogenic assay, Ph.Chf, Ph.Sp, Ph.EtAc and Ph.Cr exhibited highest activity with IC50 of 28.65, 19.21, 88.75 and 461.53 µg/ml respectively. In anti-tumor assay, Ph.Sp, Ph.Chf, Ph.EtAc and Ph.Cr were most potent with IC50 of 18.39, 73.81, 217.19 and 342.53 µg/ml respectively. In MTT cells viability assay, Ph.Chf, Ph.EtAc, Ph.Sp were most active causing 79.00, 72.50 and 71.50% cytotoxicity respectively at 1000 µg/ml with the LD50 of 140, 160 and 175 µg/ml respectively. In overall study, Ph.Chf and Ph.Sp have shown overwhelming results which signifies their potentials as sources of therapeutic agents against cancer.

  18. Future targets for immune therapy in colitis?

    DEFF Research Database (Denmark)

    Kristensen, Nanna Ny; Claesson, M H

    2008-01-01

    cells to the inflamed bowel of IBD patients, making the chemokine/receptor system appealing as new therapeutic targets to sustain remission in these patients. In the severe combined immunodeficiency transfer model of colitis, which histopathologically resembles human IBD, low numbers of CD4+CD25- T...

  19. Understanding Resistance to Targeted Anticancer Therapies

    NARCIS (Netherlands)

    Sun, C.

    2015-01-01

    Cancer therapeutic regimens are gradually changing from using relatively unspecific cytotoxic agents to selective, pathway-centered approaches. The mechanistic rationale of targeted approaches is to destruct the tumor by blocking aberrant cell signaling, crucial for tumor maintenance and growth, but

  20. The combination of checkpoint immunotherapy and targeted therapy in cancer.

    Science.gov (United States)

    Karachaliou, Niki; Gonzalez-Cao, Maria; Sosa, Aaron; Berenguer, Jordi; Bracht, Jillian Wilhelmina Paulina; Ito, Masaoki; Rosell, Rafael

    2017-10-01

    The therapeutic possibilities for patients with metastatic melanoma have changed due to the development of targeted therapies that inhibit oncogenic signaling pathways as well as immune modulating therapies that unleash the patient antitumor immunity. These therapeutic changes have impressively increased the median overall survival of the patients. Considering the dramatic but transient responses that occur with targeted therapies for a subgroup of patients and the durable responses that can be achieved with immunotherapy in a subset of patients, a lot of effort is ongoing for the clinical development of combinations of these two therapeutic approaches. Herein we discuss the existing preclinical and clinical data for the combination of targeted therapies and immunotherapy focusing mainly on melanoma and non-small cell lung cancer (NSCLC).

  1. Targeting therapy-resistant cancer stem cells by hyperthermia

    DEFF Research Database (Denmark)

    Oei, A L; Vriend, L E M; Krawczyk, P M

    2017-01-01

    Eradication of all malignant cells is the ultimate but challenging goal of anti-cancer treatment; most traditional clinically-available approaches fail because there are cells in a tumour that either escape therapy or become therapy-resistant. A subpopulation of cancer cells, the cancer stem cells...... (CSCs), is considered to be of particular significance for tumour initiation, progression and metastasis. CSCs are considered in particular to be therapy-resistant and may drive disease recurrence, which positions CSCs in the focus of anti-cancer research, but successful CSC-targeting therapies...... are limited. Here, we argue that hyperthermia - a therapeutic approach based on local heating of a tumour - is potentially beneficial for targeting CSCs in solid tumours. First, hyperthermia has been described to target cells in hypoxic and nutrient-deprived tumour areas where CSCs reside and ionising...

  2. Hepatocarcinoma: from pathogenic mechanisms to target therapy

    Directory of Open Access Journals (Sweden)

    Luigi Manzione

    2011-12-01

    Full Text Available Hepatocellular carcinoma (HCC is among the most prevalent and lethal cancers worldwide. It is currently estimated that there are 14,000–18,000 new cases of hepatocellular carcinoma in the United States each year. It is often difficult to identify individuals at risk for HCC. The main associated diseases are chronic hepatitis B and chronic hepatitis C viral infections. While a significant number of potential mutations have been generated including p53 and Insulin-like Growth Factor, our understanding of the molecular mechanisms driving the genesis and progression of HCC remain limited. HCC screening is recommended in high-risk patients. High-risk patients include virtually all patients with cirrhosis and some HBV-infected patients irrespective of cirrhosis (>40 years in men and >50 years in women. A diagnostic approach to HCC has been developed incorporating serology, cytohistology, and radiological characteristics. A precise staging of the disease may help decide on prognosis as well as choice of therapy with the greatest survival potential. Liver transplantation, in theory, is the optimal therapeutic option for HCC; it simultaneously removes the tumor and underlying cirrhosis thus minimizing the risk of HCC recurrence. When it is impossible for this to be performed, percutaneous ablation, chemoembolization, chemotherapy and the newer molecular therapies can be used. Sorafenib is the only drug registered today for the treatment of advanced HCC.

  3. Design of a cryogenic deuterium gas target for neutron therapy

    International Nuclear Information System (INIS)

    Kuchnir, F.T.; Waterman, F.M.; Forsthoff, H.; Skaggs, L.S.; Vander Arend, P.C.; Stoy, S.

    1976-01-01

    A cryogenic deuterium gas target operating at 80 0 K and 10 atm pressure has been designed for use with a small cyclotron; the D(d,n) reaction is used to produce a neutron beam suitable for radiation therapy. The target is cooled by circulation of the gas in a closed loop between the target and an external heat exchanger immersed in liquid nitrogen

  4. New perspectives in glioblastoma antiangiogenic therapy

    Directory of Open Access Journals (Sweden)

    Alisa Madalina Popescu

    2015-12-01

    Full Text Available Glioblastoma (GB is highly vascularised tumour, known to exhibit enhanced infiltrative potential. One of the characteristics of glioblastoma is microvascular proliferation surrounding necrotic areas, as a response to a hypoxic environment, which in turn increases the expression of angiogenic factors and their signalling pathways (RAS/RAF/ERK/MAPK pathway, PI3K/Akt signalling pathway and WTN signalling cascade. Currently, a small number of anti-angiogenic drugs, extending glioblastoma patients survival, are available for clinical use. Most medications are ineffective in clinical therapy of glioblastoma due to acquired malignant cells or intrinsic resistance, angiogenic receptors cross-activation and redundant intracellular signalling, or the inability of the drug to cross the blood-brain barrier and to reach its target in vivo . Researchers have also observed that GB tumours are different in many aspects, even when they derive from the same tissue, which is the reason for personalised therapy. An understanding of the molecular mechanisms regulating glioblastoma angiogenesis and invasion may be important in the future development of curative therapeutic approaches for the treatment of this devastating disease.

  5. Biomarkers and Targeted Therapy in Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Fataneh Karandish

    2016-01-01

    Full Text Available Pancreatic ductal adenocarcinoma (PDAC constitutes 90% of pancreatic cancers. PDAC is a complex and devastating disease with only 1%–3% survival rate in five years after the second stage. Treatment of PDAC is complicated due to the tumor microenvironment, changing cell behaviors to the mesenchymal type, altered drug delivery, and drug resistance. Considering that pancreatic cancer shows early invasion and metastasis, critical research is needed to explore different aspects of the disease, such as elaboration of biomarkers, specific signaling pathways, and gene aberration. In this review, we highlight the biomarkers, the fundamental signaling pathways, and their importance in targeted drug delivery for pancreatic cancers.

  6. Targeting mitosis for anti-cancer therapy.

    Science.gov (United States)

    Sudakin, Valery; Yen, Timothy J

    2007-01-01

    Basic research that has focused on achieving a mechanistic understanding of mitosis has provided unprecedented molecular and biochemical insights into this highly complex phase of the cell cycle. The discovery process has uncovered an ever-expanding list of novel proteins that orchestrate and coordinate spindle formation and chromosome dynamics during mitosis. That many of these proteins appear to function solely in mitosis makes them ideal targets for the development of mitosis-specific cancer drugs. The clinical successes seen with anti-microtubule drugs such as taxanes and the vinca alkaloids have also encouraged the development of drugs that specifically target mitosis. Drugs that selectively inhibit mitotic kinesins involved in spindle and kinetochore functions, as well as kinases that regulate these activities, are currently in various stages of clinical trials. Our increased understanding of mitosis has also revealed that this process is targeted by inhibitors of farnesyl transferase, histone deacetylase, and Hsp90. Although these drugs were originally designed to block cell proliferation by inhibiting signaling pathways and altering gene expression, it is clear now that these drugs can also directly interfere with the mitotic process. The increased attention to mitosis as a chemotherapeutic target has also raised an important issue regarding the cellular determinants that specify drug sensitivity. One likely contribution is the mitotic checkpoint, a failsafe mechanism that delays mitotic exit so that cells whose chromosomes are not properly attached to the spindle have extra time to correct their errors. As the biochemical activity of the mitotic checkpoint is finite, cells cannot indefinitely sustain the delay, as in cases where cells are treated with anti-mitotic drugs. When the mitotic checkpoint activity is eventually lost, cells will exit mitosis and become aneuploid. While many of the aneuploid cells may die because of massive chromosome imbalance

  7. Radiolabelled peptides: New radiopharmaceuticals for targeted therapy

    International Nuclear Information System (INIS)

    Chinol, M.

    2001-01-01

    Radiolabelled peptides have been the focus of an increasing interest by the nuclear medicine community within the last few years. This has mainly been due to successful development of one of these peptides, somatostatin, as a tool to visualise various pathologic conditions known to express a high number of somatostatin receptors. Somatostatin receptors have been identified in different tumours such as neuroendocrine tumours, tumours of the central nervous system, breast, lung and lymphatic tissue. These observations served as the biomolecular basis for the clinical use of radiolabelled somatostatin analogs, which are at present of great interest for diagnostic and therapeutic applications. A promising somatostatin analogue, DOTA-D-Phe 1 -Ty 3 -octreotide, named DOTATOC, has shown favourable biodistribution and high affinity binding to SSTR2 and SSTR5, high hydrophilicity and ease of labelling and stability with 111 In and 90 Y. A clinical trial aimed at evaluating the biodistribution and dosimetry of DOTATOC radiolabelled with 111 In, in anticipation of therapy trials with 90 Y-DOTATOC in patients was undertaken. 111 In-DOTATOC showed favourable pharmacokinetics (fast blood clearance and urinary excretion) and biodistribution, and high affinity to tumours expressing somatostatin receptors (thus, a high residence time in tumour). These results are promising for therapy trials with 90 Y-DOTAOC, for which radiation dosimetry appears acceptable for normal organs (including the red marrow). Moreover, labelling conditions of DOTATOC with 90 Y has been optimised in order to achieve labelling yields of more than 98% and specific activities of greater than 60 GBq (1.6 Ci)/μmol. (author)

  8. Apoptosis and Molecular Targeting Therapy in Cancer

    Science.gov (United States)

    Hassan, Mohamed; Watari, Hidemichi; AbuAlmaaty, Ali; Ohba, Yusuke; Sakuragi, Noriaki

    2014-01-01

    Apoptosis is the programmed cell death which maintains the healthy survival/death balance in metazoan cells. Defect in apoptosis can cause cancer or autoimmunity, while enhanced apoptosis may cause degenerative diseases. The apoptotic signals contribute into safeguarding the genomic integrity while defective apoptosis may promote carcinogenesis. The apoptotic signals are complicated and they are regulated at several levels. The signals of carcinogenesis modulate the central control points of the apoptotic pathways, including inhibitor of apoptosis (IAP) proteins and FLICE-inhibitory protein (c-FLIP). The tumor cells may use some of several molecular mechanisms to suppress apoptosis and acquire resistance to apoptotic agents, for example, by the expression of antiapoptotic proteins such as Bcl-2 or by the downregulation or mutation of proapoptotic proteins such as BAX. In this review, we provide the main regulatory molecules that govern the main basic mechanisms, extrinsic and intrinsic, of apoptosis in normal cells. We discuss how carcinogenesis could be developed via defective apoptotic pathways or their convergence. We listed some molecules which could be targeted to stimulate apoptosis in different cancers. Together, we briefly discuss the development of some promising cancer treatment strategies which target apoptotic inhibitors including Bcl-2 family proteins, IAPs, and c-FLIP for apoptosis induction. PMID:25013758

  9. Targeted therapy for esophagogastric cancers: a review

    Directory of Open Access Journals (Sweden)

    Khattak MA

    2012-05-01

    Full Text Available Muhammad A Khattak,1 Hilary L Martin,2 Christos S Karapetis1,31Flinders Medical Centre, Adelaide, South Australia; 2Calvary Hospital, Adelaide, SA, Australia; 3Flinders University, Adelaide, SA, AustraliaAbstract: The incidence of esophagogastric cancers is increasing rapidly in the Western population. Despite better understanding of the biology and intense research in the treatment of these cancers, the long-term survival remains poor both in the locally advanced and metastatic settings. The addition of combined modality strategies has resulted in modest improvement in 5-year survival rates. A number of biologic agents targeting epidermal-derived growth factor receptor, vascular endothelial derived growth factor and its receptor, and mammalian target of rapamycin (mTOR are being currently evaluated in Phase II and III clinical trials. Some of these, like trastuzumab, cetuximab, and bevacizumab, have shown promising results. This review provides a brief overview of the recent developments in biologic agents for the treatment of esophagogastric cancers.Keywords: adenocarcinoma, squamous cell carcinoma, VEGF, trastuzumab, Her2- positive EGC

  10. Neoadjuvant targeted therapy in patients with renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    B. Ya. Alekseev

    2015-01-01

    Full Text Available Cytoreductive nephrectomy as an independent option in patients with metastatic renal cell carcinoma (mRCC cannot be considered as the only effective method, with rare exception, of a few patients with solitary metastases. Cytoreductive nephrectomy is now part of a multimodal approach encompassing surgical treatment and systemic drug therapy. Many retrospective and two prospective studies have demonstrated that it is expedient to perform cytoreductive nephrectomy. Immunotherapy should not be used as preoperatively in the era of cytokine therapy for mRCC due to that fact that it has no impact on primary tumor. In the current targeted therapy era, many investigators have concentrated attentionon the role of neoadjuvant targeted therapy for the treatment of patients with both localized and locally advanced mRCC. The potential benefits of neoadjuvant therapy for localized and locally advanced RCC include to make surgery easier and to increase the possibility of organsparing treatment, by decreasing the stage of primary tumor and the size of tumors. The possible potential advantages of neoadjuvant targeted therapy in patients with mRCC include prompt initiation of necessary systemic therapy; identification of patients with primary refractory tumors; and a preoperative reduction in the stage of primary tumor. Numerous retrospective and some prospective phase II studies have shown that neoadjuvant targeted therapy in patients with localized and locally advanced RCC is possible and tolerable and surgical treatment after neoadjuvant targeted therapy is safe and executable with a low incidence of complications. If neoadjuvant therapy is to be performed, it should be done within 2–4 months before surgery. Sorafenib and sunitinib are now most tested and suitable for neoadjuvant targeted therapy. Sorafenib is a more preferred drug due to its shorter half-life and accordingly to the possibility of discontinuing the drug immediately prior to

  11. Targets for adjunctive therapy in pneumococcal meningitis.

    Science.gov (United States)

    Barichello, Tatiana; Collodel, Allan; Generoso, Jaqueline S; Simões, Lutiana R; Moreira, Ana Paula; Ceretta, Renan A; Petronilho, Fabrícia; Quevedo, João

    2015-01-15

    Pneumococcal meningitis is a severe infectious disease of the central nervous system (CNS) and a significant cause of morbidity and mortality worldwide. The inflammatory reaction to the disease contributes to neuronal injury and involves the meninges, the subarachnoid space and the brain parenchymal vessels. Bacterial pathogens may reach the blood-brain barrier and be recognized by antigen-presenting cells through the binding of Toll-like receptors, triggering an inflammatory cascade. This in turn produces cytokines and chemokines, increases adhesion molecule expression and attracts leukocytes from the blood. This cascade leads to lipid peroxidation, mitochondrial damage and blood-brain barrier permeability. In spite of effective antibacterial treatments, approximately one third of survivors suffer from long-term sequelae, such as hearing loss, cerebral palsy, seizures, hydrocephaly or cognitive impairment. This review summarizes the information on targets of adjuvant treatments of acute pneumococcal meningitis. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Future targets for immune therapy in colitis?

    DEFF Research Database (Denmark)

    Kristensen, Nanna Ny; Claesson, M H

    2008-01-01

    the commensal intestinal bacterial flora, and that the CD4+ T cells dominate the adaptive immune response. Chemokines are small proteins involved in the guidance of migration of immune cells during normal homeostasis and inflammation. Chemokines have been shown to play a central role in recruiting inflammatory......Crohn's disease and Ulcerative Colitis, collectively termed inflammatory bowel disease (IBD), are chronic inflammatory disorders of the bowel. It is generally accepted that the pathology associated with IBD is characterized by a hyper-reactive immune response in the gut wall directed against...... cells to the inflamed bowel of IBD patients, making the chemokine/receptor system appealing as new therapeutic targets to sustain remission in these patients. In the severe combined immunodeficiency transfer model of colitis, which histopathologically resembles human IBD, low numbers of CD4+CD25- T...

  13. Targeted therapy in the treatment of malignant gliomas

    Directory of Open Access Journals (Sweden)

    Rimas V Lukas

    2009-05-01

    Full Text Available Rimas V Lukas1, Adrienne Boire2, M Kelly Nicholas1,2 1Department of Neurology; 2Department of Medicine, University of Chicago, Chicago, IL, USAAbstract: Malignant gliomas are invasive tumors with the potential to progress through current available therapies. These tumors are characterized by a number of abnormalities in molecular signaling that play roles in tumorigenesis, spread, and survival. These pathways are being actively investigated in both the pre-clinical and clinical settings as potential targets in the treatment of malignant gliomas. We will review many of the therapies that target the cancer cell, including the epidermal growth factor receptor, mammalian target of rapamycin, histone deacetylase, and farnesyl transferase. In addition, we will discuss strategies that target the extracellular matrix in which these cells reside as well as angiogenesis, a process emerging as central to tumor development and growth. Finally, we will briefly touch on the role of neural stem cells as both potential targets as well as delivery vectors for other therapies. Interdependence between these varied pathways, both in maintaining health and in causing disease, is clear. Thus, attempts to easily classify some targeted therapies are problematic.Keywords: glioma, EGFR, mTOR, HDAC, Ras, angiogenesis

  14. Recent advances in targeted drug therapy for hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    FAN Yongqiang

    2018-02-01

    Full Text Available More and more clinical trials have proved the efficacy of targeted drugs in the treatment of hepatocellular carcinoma (HCC. With the development of science and technology, more and more targeted drugs have appeared. In recent years, targeted drugs such as regorafenib and ramucirumab have shown great potential in related clinical trials. In addition, there are ongoing clinical trials for second-line candidate drugs, such as c-Met inhibitors tivantinib and cabozantinib and a VEGFR-2 inhibitor ramucirumab. This article summarizes the advances in targeted drug therapy for HCC and related trial data, which provides a reference for further clinical trials and treatment.

  15. Optic and otic side effects of molecular targeted therapies.

    Science.gov (United States)

    O'Leary, Colleen

    2014-08-01

    To discuss the optic and otic toxicities associated with molecular targeted therapies including description, presentation, grading, and management of these toxicities. PubMed, CINAHL, the Cochrane Library and nursing text books. Although targeted therapies often do not have the same systemic toxicities as chemotherapy, they have their own unique side effects. Optic and otic toxicities are seen with a variety of targeted therapies and, although these are not life-threatening toxicities, they do have the potential to severely impair a patient's quality of life. Baseline optic and otic assessments along with periodic assessments throughout treatment can lead to early recognition of problems with the eyes or ears. Recognition and treatment of these problems will help maintain the patient's quality of life. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Target volumes in gastric cancer radiation therapy

    International Nuclear Information System (INIS)

    Caudry, M.; Maire, J.P.; Ratoanina, J.L.; Escarmant, P.

    2001-01-01

    The spread of gastric adenocarcinoma may follow three main patterns: hemato-genic, lymphatic and intraperitoneal. A GTV should be considered in preoperative or exclusive radiation therapy. After non-radical surgery, a 'residual GTV' will be defined with the help of the surgeon. The CTV encompasses three intricated volumes. a) A 'tumor bed' volume. After radical surgery, local recurrences appear as frequent as distant metastases. The risk depends upon the depth of parietal invasion and the nodal status. Parietal infiltration may extend beyond macroscopic limits of the tumor, especially in dinitis plastica. Therefore this volume will include: the tumor and the remaining stomach or their 'bed of resection', a part of the transverse colon, the duodenum, the pancreas and the troncus of the portal vein. In postoperative RT, this CTV also includes the jejuno-gastric or jejuno-esophageal anastomosis. b) A peritoneal volume. For practical purposes, two degrees of spread must be considered: (1) contiguous microscopic extension from deeply invasive T3 and T4 tumors, that remain amenable to local sterilization with doses of 45-50 Gy, delivered in a CTV including the peritoneal cavity at the level of the gastric bed, and under the parietal incision; (2) true 'peritoneal carcinomatosis', with widespread seeds, where chemotherapy (systemic or intraperitoneal) is more appropriate. c) A lymphatic volume including the lymph node groups 1 to 16 of the Japanese classification. This volume must encompass the hepatic pedicle and the splenic hilum. In proximal tumors, it is possible to restrict the lover part of the CTV to the lymphatic volume, and therefore to avoid irradiation of large intestinal and renal volumes. In distal and proximal tumors, involvement of resection margins is of poor prognosis -a radiation boost must be delivered at this level. The CTV in tumors of the cardia should encompass the lover part of the thoracic esophagus and the corresponding posterior mediastinum. In

  17. Photosensitizer-gold nanorod composite for targeted multimodal therapy.

    Science.gov (United States)

    Wang, Jian; You, Mingxu; Zhu, Guizhi; Shukoor, Mohammed Ibrahim; Chen, Zhuo; Zhao, Zilong; Altman, Meghan B; Yuan, Quan; Zhu, Zhi; Chen, Yan; Huang, Cheng Zhi; Tan, Weihong

    2013-11-11

    In this work, a DNA inter-strand replacement strategy for therapeutic activity is successfully designed for multimodal therapy. In this multimodal therapy, chlorin e6 (Ce6) photosensitizer molecules are used for photodynamic therapy (PDT), while aptamer-AuNRs, are used for selective binding to target cancer cells and for photothermal therapy (PTT) with near infrared laser irradiation. Aptamer Sgc8, which specifically targets leukemia T cells, is conjugated to an AuNR by a thiol-Au covalent bond and then hybridized with a Ce6-labeled photosensitizer/reporter to form a DNA double helix. When target cancer cells are absent, Ce6 is quenched and shows no PDT effect. However, when target cancer cells are present, the aptamer changes structure to release Ce6 to produce singlet oxygen for PDT upon light irradiation. Importantly, by combining photosensitizer and photothermal agents, PTT/PDT dual therapy supplies a more effective therapeutic outcome than either therapeutic modality alone. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Metastatic gastric cancer – focus on targeted therapies

    Directory of Open Access Journals (Sweden)

    Meza-Junco J

    2012-06-01

    Full Text Available Judith Meza-Junco, Michael B SawyerDepartment of Oncology, Cross Cancer Institute, Edmonton, Alberta, CanadaAbstract: Gastric cancer (GC is currently the second leading cause of cancer death worldwide; unfortunately, most patients will present with locally advanced or metastatic disease. Despite recent progress in diagnosis, surgery, chemotherapy, and radiotherapy, prognosis remains poor. A better understanding of GC biology and signaling pathways is expected to improve GC therapy, and the integration of targeted therapies has recently become possible and appears to be promising. This article focuses on anti-Her-2 therapy, specifically trastuzumab, as well as other epidermal growth factor receptor antagonists such as cetuximab, panitumub, matuzumab, nimotzumab, gefitinib, and erlotinib. Additionally, drugs that target angiogenesis pathways are also under investigation, particulary bevacizumab, ramucirumab, sorafenib, sunitinib, and cediranib. Other targeted agents in preclinical or early clinical development include mTOR inhibitors, anti c-MET, polo-like kinase 1 inhibitors, anti-insulin-like growth factor, anti-heat shock proteins, and small molecules targeting Hedgehog signaling.Keywords: gastric cancer, targeted therapy, antiangiogenesis drugs, anti-EGFR drugs

  19. Inducement of radionuclides targeting therapy by gene transfection

    International Nuclear Information System (INIS)

    Luo Quanyong

    2001-01-01

    The author presents an overview of gene transfection methods to genetically induce tumor cells to express enhanced levels of cell surface antigens and receptors to intake radiolabeled antibody and peptide targeting and thus increase their therapeutic effect in radiotherapy. The current research include inducement of radioimmunotherapy through CEA gene transfection, inducement of iodine-131 therapy by sodium iodide symporter gene transfection and inducement of MIBG therapy by noradrenaline transporter gene transfection. These studies raise the prospect that gene-therapy techniques could be used to enable the treatment of a wide range of tumors with radiopharmaceuticals of established clinical acceptability

  20. Targeting Angiogenesis and Tumor Microenvironment in Metastatic Colorectal Cancer: Role of Aflibercept

    Directory of Open Access Journals (Sweden)

    Guido Giordano

    2014-01-01

    Full Text Available In the last decades, we have progressively observed an improvement in therapeutic options for metastatic colorectal cancer (mCRC treatment with a progressive prolongation of survival. mCRC prognosis still remains poor with low percentage of 5-year survival. Targeted agents have improved results obtained with standard chemotherapy. Angiogenesis plays a crucial role in colorectal cancer growth, proliferation, and metastasization and it has been investigated as a potential target for mCRC treatment. Accordingly, novel antiangiogenic targeted agents bevacizumab, regorafenib, and aflibercept have been approved for mCRC treatment as the result of several phase III randomized trials. The development of a tumor permissive microenvironment via the aberrant expression by tumor cells of paracrine factors alters the tumor-stroma interactions inducing an expansion of proangiogenic signals. Recently, the VELOUR study showed that addition of aflibercept to FOLFIRI regimen as a second-line therapy for mCRC improved significantly OS, PFS, and RR. This molecule represents a valid second-line therapeutic option and its peculiar ability to interfere with placental growth factor (PlGF/vascular endothelial growth factor receptor 1 (VEGFR1 axis makes it effective in targeting angiogenesis, inflammatory cells and in overcoming resistances to anti-angiogenic first-line treatment. Here, we discuss about Aflibercept peculiar ability to interfere with tumor microenvironment and angiogenic pathway.

  1. Emerging importance of dietary phytochemicals in fight against cancer: Role in targeting cancer stem cells.

    Science.gov (United States)

    Singh, Amit Kumar; Sharma, Neelesh; Ghosh, Mrinmoy; Park, Yang Ho; Jeong, Dong Kee

    2017-11-02

    Recent years have seen an unpretending increase in research using dietary phytochemicals for targeting cancer and cancer stem cells (CSCs) due to the limited efficacy of conventional chemotherapy and radiotherapy and numerous associated side effects. A large number of dietary phytochemicals using traditional recommendation and experimental approaches have been demonstrated to have anti-proliferative, anti-metastatic, reactive oxygen species (ROS) inducing, anti-angiogenic, pro-apoptotic effects and efficacy in targeting cellular molecules and pathways implicated in malignancy. Researchers have shown the knack of phytochemicals in interfering with the CSCs self-renewal process. Thus, dietary phytochemicals can play a significant role in the cancer therapy owing to the plethora of targets without toxicity. In this review, we have discussed about the basic knowledge of CSCs, their identification, characterization, mechanism of self-renewal pathways (Wnt/β-catenin, Hedgehog, and Notch), features that help in the survival of CSCs and use of phytochemicals to replace chemotherapy. Applications of phytochemicals including curcumin, epigallocatechin-3-gallate (EGCG), resveratrol, lycopene, and sulforaphane for their effect on targeting cancer and in particular CSCs along with their molecular mechanisms responsible for pharmacological action are also discussed.

  2. Individualized therapies in colorectal cancer: KRAS as a marker for response to EGFR-targeted therapy

    Directory of Open Access Journals (Sweden)

    Li Kuiyuan

    2009-04-01

    Full Text Available Abstract Individualized therapies that are tailored to a patient's genetic composition will be of tremendous value for treatment of cancer. Recently, Kirsten ras (KRAS status has emerged as a predictor of response to epidermal growth factor receptor (EGFR targeted therapies. In this article, we will discuss targeted therapies for colorectal cancers (CRC based on EGFR signaling pathway and review published data about the potential usefulness of KRAS as a biological marker for response to these therapies. Results from relevant studies published since 2005 and unpublished results presented at national meetings were retrieved and summarized. These studies reflected response (or lack of response to EGFR-targeted therapies in patients with metastatic CRC as a function of KRAS status. It has become clear that patients with colorectal cancer whose tumor has an activating mutation in KRAS do not respond to monoclonal antibody therapies targeting EGFR. It should now become a standard practice that any patients being considered for EGFR targeted therapies have their tumors tested for KRAS status and only those with wild-type KRAS being offered such therapies.

  3. Targeted therapies for diarrhea-predominant irritable bowel syndrome

    OpenAIRE

    Olden, Kevin W

    2012-01-01

    Kevin W OldenDepartment of Medicine, St Joseph's Hospital and Medical Center, Phoenix, AZ, USAAbstract: Irritable bowel syndrome (IBS) causes gastrointestinal symptoms such as abdominal pain, bloating, and bowel pattern abnormalities, which compromise patients' daily functioning. Common therapies address one or two IBS symptoms, while others offer wider symptom control, presumably by targeting pathophysiologic mechanisms of IBS. The aim of this targeted literature review was t...

  4. VEGF Spliced Variants: Possible Role of Anti-Angiogenesis Therapy

    Directory of Open Access Journals (Sweden)

    Caroline Hilmi

    2012-01-01

    Full Text Available Angiogenesis has been targeted in retinopathies, psoriasis, and a variety of cancers (colon, breast, lung, and kidney. Among these tumour types, clear cell renal cell carcinomas (RCCs are the most vascularized tumours due to mutations of the von Hippel Lindau gene resulting in HIF-1 alpha stabilisation and overexpression of Vascular Endothelial Growth Factor (VEGF. Surgical nephrectomy remains the most efficient curative treatment for patients with noninvasive disease, while VEGF targeting has resulted in varying degrees of success for treating metastatic disease. VEGF pre-mRNA undergoes alternative splicing generating pro-angiogenic isoforms. However, the recent identification of novel splice variants of VEGF with anti-angiogenic properties has provided some insight for the lack of current treatment efficacy. Here we discuss an explanation for the relapse to anti-angiogenesis treatment as being due to either an initial or acquired resistance to the therapy. We also discuss targeting angiogenesis via SR (serine/arginine-rich proteins implicated in VEGF splicing.

  5. Prospects in folate receptor-targeted radionuclide therapy

    Directory of Open Access Journals (Sweden)

    Cristina eMüller

    2013-09-01

    Full Text Available Targeted radionuclide therapy is based on systemic application of particle-emitting radiopharmaceuticals which are directed towards a specific tumor-associated target. Accumulation of the radiopharmaceutical in targeted cancer cells results in high doses of absorbed radiation energy whereas toxicity to non-targeted healthy tissue is limited. This strategy has found widespread application in the palliative treatment of neuroendocrine tumors using somatostatin-based radiopeptides. The folate receptor (FR has been identified as a target associated with a variety of frequent tumor types (e.g. ovarian, lung, brain, renal and colorectal cancer. In healthy organs and tissue FR-expression is restricted to only a few sites such as for instance the kidneys. This demonstrates why FR-targeting is an attractive strategy for the development of new therapy concepts. Due to its high FR-binding affinity (KD < 10-9 M the vitamin folic acid has emerged as an almost ideal targeting agent. Therefore, a variety of folic acid radioconjugates for nuclear imaging have been developed. However, in spite of the large number of cancer patients who could benefit of a folate-based radionuclide therapy, a therapeutic concept with folate radioconjugates has not yet been envisaged for clinical application. The reason is the generally high accumulation of folate radioconjugates in the kidneys where emission of particle-radiation may result in damage to the renal tissue. Therefore, the design of more sophisticated folate radioconjugates providing improved tissue distribution profiles are needed.This review article summarizes recent developments with regard to a therapeutic application of folate radioconjugates. A new construct of a folate radioconjugate and an application protocol which makes use of a pharmacological interaction allowed the first preclinical therapy experiments with radiofolates. These results raise hope for future application of such new concepts also in the

  6. Targeted Radionuclide Therapy: Practical Applications and Future Prospects

    Directory of Open Access Journals (Sweden)

    Katherine Zukotynski

    2016-01-01

    Full Text Available In recent years, there has been a proliferation in the development of targeted radionuclide cancer therapy. It is now possible to use baseline clinical and imaging assessments to determine the most effective therapy and to tailor this therapy during the course of treatment based on radiation dosimetry and tumor response. Although this personalized approach to medicine has the advantage of maximizing therapeutic effect while limiting toxicity, it can be challenging to implement and expensive. Further, in order to use targeted radionuclide therapy effectively, there is a need for multidisciplinary awareness, education, and collaboration across the scientific, industrial, and medical communities. Even more important, there is a growing understanding that combining radiopharmaceuticals with conventional treatment such as chemotherapy and external beam radiotherapy may limit patient morbidity while improving survival. Developments in radiopharmaceuticals as biomarkers capable of predicting therapeutic response and targeting disease are playing a central role in medical research. Adoption of a practical approach to manufacturing and delivering radiopharmaceuticals, assessing patient eligibility, optimizing post-therapy follow-up, and addressing reimbursement issues will be essential for their success.

  7. Targeted therapies for malignant gliomas: novel agents, same barrier

    NARCIS (Netherlands)

    Lin, F.

    2013-01-01

    Malignant gliomas are common and devastating brain malignancies. Despite this extensive treatment the mean overall survival is still only 14.6 months and more effective treatments are urgently needed. Targeted therapy holds the promise for the new generation of chemotherapy due to the selectively

  8. Nanobody-photosensitizer conjugates for targeted photodynamic therapy

    NARCIS (Netherlands)

    Heukers, Raimond; van Bergen en Henegouwen, P; Oliveira, Sabrina

    2014-01-01

    Photodynamic therapy (PDT) induces cell death through light activation of a photosensitizer (PS). Targeted delivery of PS via monoclonal antibodies has improved tumor selectivity. However, these conjugates have long half-lives, leading to relatively long photosensitivity in patients. In an attempt

  9. Revealing targeted therapy for human cancer by gene module maps

    NARCIS (Netherlands)

    Wong, David J.; Nuyten, Dimitry S. A.; Regev, Aviv; Lin, Meihong; Adler, Adam S.; Segal, Eran; van de Vijver, Marc J.; Chang, Howard Y.

    2008-01-01

    A major goal of cancer research is to match specific therapies to molecular targets in cancer. Genome-scale expression profiling has identified new subtypes of cancer based on consistent patterns of variation in gene expression, leading to improved prognostic predictions. However, how these new

  10. Auger radiation targeted into DNA: a therapy perspective.

    Science.gov (United States)

    Buchegger, Franz; Perillo-Adamer, Florence; Dupertuis, Yves M; Delaloye, Angelika Bischof

    2006-11-01

    Auger electron emitters that can be targeted into DNA of tumour cells represent an attractive systemic radiation therapy goal. In the situation of DNA-associated decay, the high linear energy transfer (LET) of Auger electrons gives a high relative biological efficacy similar to that of alpha particles. In contrast to alpha radiation, however, Auger radiation is of low toxicity when decaying outside the cell nucleus, as in cytoplasm or outside cells during blood transport. The challenge for such therapies is the requirement to target a high percentage of all cancer cells. An overview of Auger radiation therapy approaches of the past decade shows several research directions and various targeting vehicles. The latter include hormones, peptides, halogenated nucleotides, oligonucleotides and internalising antibodies. Here, we will discuss the basic principles of Auger electron therapy as compared with vector-guided alpha and beta radiation. We also review some radioprotection issues and briefly present the main advantages and disadvantages of the different targeting modalities that are under investigation.

  11. Histone lysine demethylases as targets for anticancer therapy

    DEFF Research Database (Denmark)

    Højfeldt, Jonas W; Agger, Karl; Helin, Kristian

    2013-01-01

    interesting drug targets. The successful introduction of DNA methylation and histone deacetylase (HDAC) inhibitors for the treatment of specific subtypes of cancer has paved the way for the use of epigenetic therapy. Here, we highlight key biological findings demonstrating the roles of members of the histone...

  12. Auger radiation targeted into DNA: a therapy perspective

    International Nuclear Information System (INIS)

    Buchegger, Franz; Perillo-Adamer, Florence; Bischof Delaloye, Angelika; Dupertuis, Yves M.

    2006-01-01

    Auger electron emitters that can be targeted into DNA of tumour cells represent an attractive systemic radiation therapy goal. In the situation of DNA-associated decay, the high linear energy transfer (LET) of Auger electrons gives a high relative biological efficacy similar to that of α particles. In contrast to α radiation, however, Auger radiation is of low toxicity when decaying outside the cell nucleus, as in cytoplasm or outside cells during blood transport. The challenge for such therapies is the requirement to target a high percentage of all cancer cells. An overview of Auger radiation therapy approaches of the past decade shows several research directions and various targeting vehicles. The latter include hormones, peptides, halogenated nucleotides, oligonucleotides and internalising antibodies. Here, we will discuss the basic principles of Auger electron therapy as compared with vector-guided α and β radiation. We also review some radioprotection issues and briefly present the main advantages and disadvantages of the different targeting modalities that are under investigation. (orig.)

  13. Targeted therapies in the treatment of urothelial cancers.

    Science.gov (United States)

    Aragon-Ching, Jeanny B; Trump, Donald L

    2017-07-01

    Progress has been slow in systemic management of locally advanced and metastatic bladder cancer over the past 20 years. However, the recent approval of immunotherapy with atezolizumab and nivolumab for second-line salvage therapy may usher in an era of more rapid improvement. Systemic treatment is suboptimal and is an area of substantial unmet medical need. The recent findings from The Cancer Genome Atlas project revealed promising pathways that may be amenable to targeted therapies. Promising results with treatment using vascular endothelial growth factor inhibitors such as ramucirumab, sunitinib or bevacizumab, and human epidermal growth factor receptor 2 targeted therapies, epidermal growth factor receptor inhibitors, and fibroblast growth factor receptor inhibitors, are undergoing clinical trials and are discussed later. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Pancreatic Cancer Gene Therapy: From Molecular Targets to Delivery Systems

    Energy Technology Data Exchange (ETDEWEB)

    Fillat, Cristina, E-mail: cristina.fillat@crg.es; Jose, Anabel; Ros, Xavier Bofill-De; Mato-Berciano, Ana; Maliandi, Maria Victoria; Sobrevals, Luciano [Programa Gens i Malaltia, Centre de Regulació Genòmica-CRG, UPF, Parc de Recerca Biomedica de Barcelona-PRBB and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona (Spain)

    2011-01-18

    The continuous identification of molecular changes deregulating critical pathways in pancreatic tumor cells provides us with a large number of novel candidates to engineer gene-targeted approaches for pancreatic cancer treatment. Targets—both protein coding and non-coding—are being exploited in gene therapy to influence the deregulated pathways to facilitate cytotoxicity, enhance the immune response or sensitize to current treatments. Delivery vehicles based on viral or non-viral systems as well as cellular vectors with tumor homing characteristics are a critical part of the design of gene therapy strategies. The different behavior of tumoral versus non-tumoral cells inspires vector engineering with the generation of tumor selective products that can prevent potential toxic-associated effects. In the current review, a detailed analysis of the different targets, the delivery vectors, the preclinical approaches and a descriptive update on the conducted clinical trials are presented. Moreover, future possibilities in pancreatic cancer treatment by gene therapy strategies are discussed.

  15. Why Targeted Therapies are Necessary for Systemic Lupus Erythematosus

    Science.gov (United States)

    Durcan, Laura; Petri, Michelle

    2016-01-01

    Systemic lupus erythematosus (SLE) continues to have important morbidity and accelerated mortality despite therapeutic advances. Targeted therapies offer the possibility of improved efficacy with fewer side-effects. Current management strategies rely heavily on non-specific immunosuppressive agents. Prednisone, in particular, is responsible for a considerable burden of later organ damage. There are a multitude of diverse mechanisms of disease activity, immunogenic abnormalities and clinical manifestations to take into consideration in SLE. Many targeted agents with robust mechanistic pre-clinical data and promising early phase studies have ultimately been disappointing in phase III randomized controlled studies. Recent efforts have focused on B cell therapies, in particular given the success of belimumab in clinical trials, with limited success. We remain optimistic regarding other specific therapies being evaluated including interferon alpha blockade. It is likely that in SLE, given the heterogeneity of the population involved, precision medicine is needed, rather than expecting that any single biologic will be universally effective. PMID:27497251

  16. Amphiphilic Silane Modified Multifunctional Nanoparticles for Magnetically Targeted Photodynamic Therapy.

    Science.gov (United States)

    Sun, Xueke; Dong, Biao; Xu, Hongwei; Xu, Shihan; Zhang, Xinran; Lin, Yanxia; Xu, Lin; Bai, Xue; Zhang, Shuang; Song, Hongwei

    2017-04-05

    Efficient targeting is a major challenge in practical photodynamic therapy (PDT). Though the "enhanced permeability and retention" (EPR) effect is a widely used tumor targeting method, magnetic targeting strategy is more promising considering the issue of high targeting efficiency and reducing concentration-dependent toxicity. Herein, magnetic targeting and highly effective Fe 3 O 4 @Ce6/C6@silane NPs are reported as a class of precisely controlled photosensitizers (PS) for PDT. On the basis of the amphiphilic silane encapsulation, PS chlorin e6 (Ce6) and Coumarin 6 (C6) as well as Fe 3 O 4 NPs were coloaded into the inside hydrophobic environment of amphiphilic silane, forming a theranostic agent for dual-mode imaging guided and magnetic targeting enhanced in vivo PDT agent. To solve the problem of over-irradiation, the coloaded design of C6 and Ce6 molecules can afford the real time PDT monitoring by ratio emissions with same excitation wavelength. When Fe 3 O 4 @Ce6/C6@silane and Ce6/C6@silane NPs are compared in in vitro and in vivo experiments, the introduction of Fe 3 O 4 in the composite does not affect the PDT efficiency, whereas, in contrast, it brings MRI imaging and magnetic targeting functions. Fe 3 O 4 @Ce6/C6@silane injection followed with magnetic field (MF) and light irradiation is important in generating an effective PDT process, showing great potential in tumor therapy.

  17. Multimodal imaging of gliomas in the context of evolving cellular and molecular therapies.

    Science.gov (United States)

    Keunen, Olivier; Taxt, Torfinn; Grüner, Renate; Lund-Johansen, Morten; Tonn, Joerg-Christian; Pavlin, Tina; Bjerkvig, Rolf; Niclou, Simone P; Thorsen, Frits

    2014-09-30

    The vast majority of malignant gliomas relapse after surgery and standard radio-chemotherapy. Novel molecular and cellular therapies are thus being developed, targeting specific aspects of tumor growth. While histopathology remains the gold standard for tumor classification, neuroimaging has over the years taken a central role in the diagnosis and treatment follow up of brain tumors. It is used to detect and localize lesions, define the target area for biopsies, plan surgical and radiation interventions and assess tumor progression and treatment outcome. In recent years the application of novel drugs including anti-angiogenic agents that affect the tumor vasculature, has drastically modulated the outcome of brain tumor imaging. To properly evaluate the effects of emerging experimental therapies and successfully support treatment decisions, neuroimaging will have to evolve. Multi-modal imaging systems with existing and new contrast agents, molecular tracers, technological advances and advanced data analysis can all contribute to the establishment of disease relevant biomarkers that will improve disease management and patient care. In this review, we address the challenges of glioma imaging in the context of novel molecular and cellular therapies, and take a prospective look at emerging experimental and pre-clinical imaging techniques that bear the promise of meeting these challenges. Copyright © 2014. Published by Elsevier B.V.

  18. Arming viruses in multi-mechanistic oncolytic viral therapy: current research and future developments, with emphasis on poxviruses

    Directory of Open Access Journals (Sweden)

    Sampath P

    2013-12-01

    Full Text Available Padma Sampath, Steve H ThorneDepartment of Surgery, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USAAbstract: The field of oncolytic virology has made great strides in recent years. However, one key finding has been that the use of viral agents that replicate selectively in tumors is usually insufficient to achieve anything beyond small and transient responses. Instead, like most cancer therapies, oncolytic viruses are most effective in combination with other therapies, which is where they have proven therapeutic effects in clinical and preclinical studies. In cases of some of the smaller RNA viruses, effects can only be achieved through combination regimens with chemotherapy, radiotherapy, or targeted conventional therapies. However, larger DNA viruses are able to express one or more transgenes; thus, therapeutic mechanisms can be built into the viral vector itself. The incorporated approaches into arming oncolytic viruses through transgene expression will be the main focus of this review, including use of immune activators, prodrug converting enzymes, anti-angiogenic factors, and targeting of the stroma. This will focus on poxviruses as model systems with large cloning capacities, which have routinely been used as transgene expression vectors in different settings, including vaccine and oncolytic viral therapy.Keywords: vaccinia, poxvirus, immunotherapy, angiogenesis, prodrug

  19. Chromatin-regulating proteins as targets for cancer therapy

    International Nuclear Information System (INIS)

    Oike, Takahiro; Ogiwara, Hideaki; Kohno, Takashi; Amornwichet, Napapat; Nakano, Takashi

    2014-01-01

    Chromatin-regulating proteins represent a large class of novel targets for cancer therapy. In the context of radiotherapy, acetylation and deacetylation of histones by histone acetyltransferases (HATs) and histone deacetylases (HDACs) play important roles in the repair of DNA double-strand breaks generated by ionizing irradiation, and are therefore attractive targets for radiosensitization. Small-molecule inhibitors of HATs (garcinol, anacardic acid and curcumin) and HDACs (vorinostat, sodium butyrate and valproic acid) have been shown to sensitize cancer cells to ionizing irradiation in preclinical models, and some of these molecules are being tested in clinical trials, either alone or in combination with radiotherapy. Meanwhile, recent large-scale genome analyses have identified frequent mutations in genes encoding chromatin-regulating proteins, especially in those encoding subunits of the SWI/SNF chromatin-remodeling complex, in various human cancers. These observations have driven researchers toward development of targeted therapies against cancers carrying these mutations. DOT1L inhibition in MLL-rearranged leukemia, EZH2 inhibition in EZH2-mutant or MLL-rearranged hematologic malignancies and SNF5-deficient tumors, BRD4 inhibition in various hematologic malignancies, and BRM inhibition in BRG1-deficient tumors have demonstrated promising anti-tumor effects in preclinical models, and these strategies are currently awaiting clinical application. Overall, the data collected so far suggest that targeting chromatin-regulating proteins is a promising strategy for tomorrow's cancer therapy, including radiotherapy and molecularly targeted chemotherapy. (author)

  20. RNA-Targeted Therapies and Amyotrophic Lateral Sclerosis

    Directory of Open Access Journals (Sweden)

    Stéphane Mathis

    2018-01-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is a fatal motor disease in adults. Its pathophysiology remains mysterious, but tremendous advances have been made with the discovery of the most frequent mutations of its more common familial form linked to the C9ORF72 gene. Although most cases are still considered sporadic, these genetic mutations have revealed the role of RNA production, processing and transport in ALS, and may be important players in all ALS forms. There are no disease-modifying treatments for adult human neurodegenerative diseases, including ALS. As in spinal muscular atrophy, RNA-targeted therapies have been proposed as potential strategies for treating this neurodegenerative disorder. Successes achieved in various animal models of ALS have proven that RNA therapies are both safe and effective. With careful consideration of the applicability of such therapies in humans, it is possible to anticipate ongoing in vivo research and clinical trial development of RNA therapies for treating ALS.

  1. Differentiation and definition of vascular-targeted therapies.

    Science.gov (United States)

    Siemann, Dietmar W; Bibby, Michael C; Dark, Graham G; Dicker, Adam P; Eskens, Ferry A L M; Horsman, Michael R; Marmé, Dieter; Lorusso, Patricia M

    2005-01-15

    The therapeutic potential of targeting the tumor vascular supply is now widely recognized. Intense research and development activity has resulted in a variety of investigational agents, a number of which are currently in clinical development. As these novel agents are quite distinct from the cytotoxic drugs conventionally used in the treatment of solid tumors, it will be particularly important to ensure early differentiation of these vascular-targeted therapies in order to encourage widespread understanding of their potential benefits and application in the clinic. Two distinct groups of vascular-targeted therapies have evolved: antiangiogenic agents and vascular-disrupting approaches. These differ in three key respects: their physiologic target, the type or extent of disease that is likely to be susceptible, and the treatment scheduling. Inhibitors of angiogenesis interfere with new vessel formation and therefore have a preventative action, require chronic administration, and are likely to be of particular benefit in early-stage or asymptomatic metastatic disease. Vascular-disrupting agents target the established tumor blood vessels, resulting in tumor ischemia and necrosis. These agents are therefore given acutely, show more immediate effects, and may have particular efficacy against advanced disease. It is essential that these agents can be readily distinguished from conventional therapies and that an understanding of key differences between the two types of vascular-targeted therapies is fostered. Here, a simple taxonomy and nomenclature is proposed in anticipation that the therapeutic potential of this novel class can be realized as these approaches advance in clinical settings and a new anticancer strategy becomes available in the clinic.

  2. Radionuclide Therapy a Targeted Internal Radiotherapy Method Currently Growing

    International Nuclear Information System (INIS)

    Kebbou, Mohammed

    2010-01-01

    Full text: The internal radionuclide therapy is a therapeutic means intended to deliver adequate radiation doses to the target and as low as possible dose to non targeted tissues. Iodine 131 is the oldest element used in benign and malignant thyroid diseases due to its uptake by thyroid cells. Iodine 131 follows the same metabolic pathway than natural iodine. The metabolic process of organification begins after transfer of iodide (negative ion) inside the cell by the Nis symporter (Na+/I-). Iodine 131 being a mixed emitter beta and gamma, its therapeutic action is due to the beta particles whereas the gamma rays allow its localization by external detectors. Other proceedings of targeting were then developed, using labelled agents such as peptides, ligands targeting receptors or antibodies targeting specific antigens. The MIBG labelled with iodine 131 was introduced for the treatment of tumours up taking this agent. The somatostatin (sms) analogues are used for the treatment of the endocrine tumours expressing the sms receptor. Antigen expressed by lymphomas or other tumours have been targeted using specific antibodies or their conjugates. The same agents can be labelled by radionuclides with low dose rates, to study the quality of uptake before considering the treatment. The internal radionuclide therapy requires good radiation protection measures. Dosimetry procedures allow better management of this therapeutic method. The fields of application are widely spreading currently. In oncology, radionuclide therapies include curative and palliative procedures. In addition to beta emitters, the use of alpha emitters is expected to grow due to dosimetric reasons. Also, new agents and combination with other therapeutic procedures are under development. High cost of the majority of radionuclide therapies constitutes currently the principal limitation of their growth in several developing countries [fr

  3. Targeting Hyaluronic Acid Family for Cancer Chemoprevention and Therapy

    Science.gov (United States)

    Lokeshwar, Vinata B.; Mirza, Summan; Jordan, Andre

    2016-01-01

    Hyaluronic acid or hyaluronan (HA) is perhaps one of the most uncomplicated large polymers that regulates several normal physiological processes and, at the same time, contributes to the manifestation of a variety of chronic and acute diseases, including cancer. Members of the HA signaling pathway (HA synthases, HA receptors, and HYAL-1 hyaluronidase) have been experimentally shown to promote tumor growth, metastasis, and angiogenesis, and hence each of them is a potential target for cancer therapy. Furthermore, as these members are also overexpressed in a variety of carcinomas, targeting of the HA family is clinically relevant. A variety of targeted approaches have been developed to target various HA family members, including small-molecule inhibitors and antibody and vaccine therapies. These treatment approaches inhibit HA-mediated intracellular signaling that promotes tumor cell proliferation, motility, and invasion, as well as induction of endothelial cell functions. Being nontoxic, nonimmunogenic, and versatile for modifications, HA has been used in nanoparticle preparations for the targeted delivery of chemotherapy drugs and other anticancer compounds to tumor cells through interaction with cell-surface HA receptors. This review discusses basic and clinical translational aspects of targeting each HA family member and respective treatment approaches that have been described in the literature. PMID:25081525

  4. Preeclampsia - will orphan drug status facilitate innovative biological therapies?

    Science.gov (United States)

    Hahn, Sinuhe

    2015-01-01

    It is generally accepted that the development of novel therapies to treat pregnancy-related disorders, such as preeclampsia, is hampered by the paucity of research funding. Hence, it is with great interest to become aware of at least three novel therapeutic approaches for the treatment of this disorder: exploiting either the anticoagulant activity of antithrombin, the free radical scavenging activity of alpha-1-microglobulin, or the regenerative capacity of placenta-derived mesenchymal stem cells. As these projects are being carried out by small biotech enterprises, the question arises of how they are able to fund such undertakings. A novel strategy adopted by two of these companies is that they successfully petitioned US and EU agencies in order that preeclampsia is accepted in the register of rare or orphan diseases. This provides a number of benefits including market exclusivity, assistance with clinical trials, and dedicated funding schemes. Other strategies to supplement meager research funds, especially to test novel approaches, could be crowdfunding, a venture that relies on intimate interaction with advocacy groups. In other words, preeclampsia meets Facebook. Perhaps similar strategies can be adopted to examine novel therapies targeting either the imbalance in pro- or anti-angiogenic growth factors, complement activation, reduced levels of placenta protein 13, or excessive neutrophil activation evident in preeclampsia.

  5. Preeclampsia – Will Orphan Drug Status Facilitate Innovative Biological Therapies?

    Science.gov (United States)

    Hahn, Sinuhe

    2015-01-01

    It is generally accepted that the development of novel therapies to treat pregnancy-related disorders, such as preeclampsia, is hampered by the paucity of research funding. Hence, it is with great interest to become aware of at least three novel therapeutic approaches for the treatment of this disorder: exploiting either the anticoagulant activity of antithrombin, the free radical scavenging activity of alpha-1-microglobulin, or the regenerative capacity of placenta-derived mesenchymal stem cells. As these projects are being carried out by small biotech enterprises, the question arises of how they are able to fund such undertakings. A novel strategy adopted by two of these companies is that they successfully petitioned US and EU agencies in order that preeclampsia is accepted in the register of rare or orphan diseases. This provides a number of benefits including market exclusivity, assistance with clinical trials, and dedicated funding schemes. Other strategies to supplement meager research funds, especially to test novel approaches, could be crowdfunding, a venture that relies on intimate interaction with advocacy groups. In other words, preeclampsia meets Facebook. Perhaps similar strategies can be adopted to examine novel therapies targeting either the imbalance in pro- or anti-angiogenic growth factors, complement activation, reduced levels of placenta protein 13, or excessive neutrophil activation evident in preeclampsia. PMID:25767802

  6. Targeted Cytotoxic Therapy Kills Persisting HIV Infected Cells During ART

    Science.gov (United States)

    Denton, Paul W.; Long, Julie M.; Wietgrefe, Stephen W.; Sykes, Craig; Spagnuolo, Rae Ann; Snyder, Olivia D.; Perkey, Katherine; Archin, Nancie M.; Choudhary, Shailesh K.; Yang, Kuo; Hudgens, Michael G.; Pastan, Ira; Haase, Ashley T.; Kashuba, Angela D.; Berger, Edward A.; Margolis, David M.; Garcia, J. Victor

    2014-01-01

    Antiretroviral therapy (ART) can reduce HIV levels in plasma to undetectable levels, but rather little is known about the effects of ART outside of the peripheral blood regarding persistent virus production in tissue reservoirs. Understanding the dynamics of ART-induced reductions in viral RNA (vRNA) levels throughout the body is important for the development of strategies to eradicate infectious HIV from patients. Essential to a successful eradication therapy is a component capable of killing persisting HIV infected cells during ART. Therefore, we determined the in vivo efficacy of a targeted cytotoxic therapy to kill infected cells that persist despite long-term ART. For this purpose, we first characterized the impact of ART on HIV RNA levels in multiple organs of bone marrow-liver-thymus (BLT) humanized mice and found that antiretroviral drug penetration and activity was sufficient to reduce, but not eliminate, HIV production in each tissue tested. For targeted cytotoxic killing of these persistent vRNA+ cells, we treated BLT mice undergoing ART with an HIV-specific immunotoxin. We found that compared to ART alone, this agent profoundly depleted productively infected cells systemically. These results offer proof-of-concept that targeted cytotoxic therapies can be effective components of HIV eradication strategies. PMID:24415939

  7. Targeting tumors with nanobodies for cancer imaging and therapy.

    Science.gov (United States)

    Oliveira, Sabrina; Heukers, Raimond; Sornkom, Jirawas; Kok, Robbert J; van Bergen En Henegouwen, Paul M P

    2013-12-28

    The use of monoclonal antibodies has revolutionized both cancer therapy and cancer imaging. Antibodies have been used to directly inhibit tumor cell proliferation or to target drugs to tumors. Also in molecular imaging, monoclonal antibodies have found their way to the clinic. Nevertheless, distribution within tumors is hampered by their size, leading to insufficient efficacy of cancer treatment and irregular imaging. An attractive alternative for monoclonal antibodies are nanobodies or VHHs. These are the variable domain of heavy-chain antibodies from animals from the Camelidae family that were first discovered in 1993. Stimulated by the ease of nanobody selection, production, and low immunogenicity potential, a number of nanobodies specific to different disease-related targets have been developed. For cancer therapy, nanobodies have been employed as antagonistic drugs, and more recently, as targeting moieties of effector-domaINS and of drug delivery systems. In parallel, nanobodies have also been employed for molecular imaging with modalities such as nuclear and optical imaging. In this review, we discuss recent developments in the application of nanobodies as targeting moieties in cancer therapy and cancer imaging. With such a wide range of successful applications, nanobodies have become much more than simple antagonists. © 2013.

  8. Targeted Cancer Therapy with Tumor Necrosis Factor-Alpha

    Directory of Open Access Journals (Sweden)

    Weibo Cai Ph.D.

    2008-01-01

    Full Text Available Tumor necrosis factor-alpha (TNF-α, a member of the TNF superfamily, was the first cytokine to be evaluated for cancer biotherapy. However, the clinical use of TNF-α is severely limited by its toxicity. Currently, TNF-α is administered only through locoregional drug delivery systems such as isolated limb perfusion and isolated hepatic perfusion. To reduce the systemic toxicity of TNF-α, various strategies have been explored over the last several decades. This review summarizes current state-of-the-art targeted cancer therapy using TNF-α. Passive targeting, cell-based therapy, gene therapy with inducible or tissue-specific promoters, targeted polymer-DNA complexes, tumor pre-targeting, antibody-TNF-α conjugate, scFv/TNF-α fusion proteins, and peptide/TNF-α fusion proteins have all been investigated to combat cancer. Many of these agents are already in advanced clinical trials. Molecular imaging, which can significantly speed up the drug development process, and nanomedicine, which can integrate both imaging and therapeutic components, has the potential to revolutionize future cancer patient management. Cooperative efforts from scientists within multiple disciplines, as well as close partnerships among many organizations/entities, are needed to quickly translate novel TNF-α-based therapeutics into clinical investigation.

  9. Management of hypertension in 2017: targets and therapies.

    Science.gov (United States)

    Ahluwalia, Monica; Bangalore, Sripal

    2017-07-01

    Approximately one-fourth of the adult population is diagnosed with hypertension, which has been associated with increased cardiovascular morbidity and mortality including cardiovascular death, myocardial infarction, heart failure and stroke. Early detection and treatment is key and can lead to a significant reduction in cardiovascular morbidity and mortality. In this review, we discuss the management and treatment strategies in patients with hypertension in the current era. Blood pressure (BP) targets will be reviewed in accordance with the recent literature and current guidelines. There is a controversy about lower BP target in patients with coronary artery disease with some studies showing a J-curve relationship but a recent randomized trial (SPRINT) showing a benefit, albeit with controversy as to how BP was measured in the trial. Nevertheless, lower BP targets come with a price of needing more medication (thus impacting cost and compliance) and increases in medication-related adverse effects. There is a growing recognition that angiotensin-converting enzyme inhibitors or angiotensin receptor blockers, calcium antagonists or thiazide diuretics can be used a first-line therapy for hypertension. Evidence also supports the use of combination drug therapy as opposed to monotherapy for more synergistic effect on lowering of BP, offsetting side effects and for improved adherence to a drug regimen. Overall, we aim to review BP targets and medical therapies for hypertension in the current era, recognizing varying clinical characteristics such as comorbidities and patient-risk profile.

  10. Financial relationships in economic analyses of targeted therapies in oncology.

    Science.gov (United States)

    Valachis, Antonis; Polyzos, Nikolaos P; Nearchou, Andreas; Lind, Pehr; Mauri, Davide

    2012-04-20

    A potential financial relationship between investigators and pharmaceutical manufacturers has been associated with an increased likelihood of reporting favorable conclusions about a sponsor's proprietary agent in pharmacoeconomic studies. The purpose of this study is to investigate whether there is an association between financial relationships and outcome in economic analyses of new targeted therapies in oncology. We searched PubMed (last update June 2011) for economic analyses of targeted therapies (including monoclonal antibodies, tyrosine-kinase inhibitors, and mammalian target of rapamycin inhibitors) in oncology. The trials were qualitatively rated regarding the cost assessment as favorable, neutral, or unfavorable on the basis of prespecified criteria. Overall, 81 eligible studies were identified. Economic analyses that were funded by pharmaceutical companies were more likely to report favorable qualitative cost estimates (28 [82%] of 34 v 21 [45%] of 47; P = .003). The presence of an author affiliated with manufacturer was not associated with study outcome. Furthermore, if only studies including a conflict of interest statement were included (66 of 81), studies that reported any financial relationship with manufacturers (author affiliation and/or funding and/or other financial relationship) were more likely to report favorable results of targeted therapies compared with studies without financial relationship (32 [71%] of 45 v nine [43%] of 21; P = .025). Our study reveals a potential threat for industry-related bias in economic analyses of targeted therapies in oncology in favor of analyses with financial relationships between authors and manufacturers. A more balanced funding of economic analyses from other sources may allow greater confidence in the interpretation of their results.

  11. Cancer gene therapy targeting angiogenesis: An updated Review

    Science.gov (United States)

    Liu, Ching-Chiu; Shen, Zan; Kung, Hsiang-Fu; Lin, Marie CM

    2006-01-01

    Since the relationship between angiogenesis and tumor growth was established by Folkman in 1971, scientists have made efforts exploring the possibilities in treating cancer by targeting angiogenesis. Inhibition of angiogenesis growth factors and administration of angiogenesis inhibitors are the basics of anti-angiogenesis therapy. Transfer of anti-angiogenesis genes has received attention recently not only because of the advancement of recombinant vectors, but also because of the localized and sustained expression of therapeutic gene product inside the tumor after gene transfer. This review provides the up-to-date information about the strategies and the vectors studied in the field of anti-angiogenesis cancer gene therapy. PMID:17109514

  12. Targeting Siah2 as Novel Therapy for Metastatic Prostate Cancer

    Science.gov (United States)

    2017-12-01

    AWARD NUMBER: W81XWH-14-1-0553 TITLE: Targeting Siah2 as Novel Therapy for Metastatic Prostate Cancer PRINCIPAL INVESTIGATOR: Martin Gleave...Siah2 as Novel Therapy for Metastatic Prostate Cancer 5b. GRANT NUMBER W81XWH-14-1-0553 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Martin Gleave 5d...goal of this project was to develop a novel means to inhibit prostate cancer development and progression. The development of Siah1/2 inhibitors to the

  13. Targeted Alpha Therapy Approach to the Management of Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Ross C. Smith

    2011-04-01

    Full Text Available Evidence for the efficacy of targeted alpha therapy for the control of pancreatic cancer in preclinical models is reviewed. Results are given for in vitro pancreatic cancer cells and clusters and micro-metastatic cancer lesions in vivo. Two complementary targeting vectors are examined. These are the C595 monoclonal antibody that targets the MUC1 antigen and the PAI2 ligand that targets the uPA receptor. The expression of the tumor-associated antigen MUC-1 and the uPA receptor on three pancreatic cancer cell lines is reported for cell clusters, human mouse xenografts and lymph node metastases, as well as for human pancreatic cancer tissues, using immuno-histochemistry, confocal microscopy and flow cytometry. The targeting vectors C595 and PAI2 were labeled with the alpha emitting radioisotope 213Bi using the chelators cDTPA and CHX-A″ to form the alpha-conjugates (AC. Cell clusters were incubated with the AC and examined at 48 hours. Apoptosis was documented using the TUNEL assay. In vivo, the anti-proliferative effect for tumors was tested at two days post-subcutaneous cell inoculation. Mice were injected with different concentrations of AC by local or systemic administration. Changes in tumor progression were assessed by tumor size. MUC-1 and uPA are strongly expressed on CFPAC-1, PANC-1 and moderate expression was found CAPAN-1 cell clusters and tumor xenografts. The ACs can target pancreatic cells and regress cell clusters (~100 µm diameter, causing apoptosis in some 70–90 % of cells. At two days post-cell inoculation in mice, a single local injection of 74 MBq/kg of AC causes complete inhibition of tumor growth. Systemic injections of 111, 222 and 333 MBq/kg of alpha-conjugate caused significant tumor growth delay in a dose dependent manner after 16 weeks, compared with the non-specific control at 333 MBq/kg. Cytotoxicity was assessed by the MTS and TUNEL assays. The C595 and PAI2-alpha conjugates are indicated for the treatment of

  14. Targeted Alpha Therapy Approach to the Management of Pancreatic Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Barry J., E-mail: barry.allen@sesiahs.health.nsw.gov.au; Abbas Rizvi, Syed M.; Qu, Chang F. [Centre for Experimental Radiation Oncology, St George Cancer Care Centre, Gray St, Kogarah, 2217 (Australia); Smith, Ross C. [Cancer Surgery Laboratory, Northern Clinical School, University of Sydney, Kolling Institute, Royal North Shore Hospital, St. Leonards, NSW 2065 (Australia)

    2011-04-01

    Evidence for the efficacy of targeted alpha therapy for the control of pancreatic cancer in preclinical models is reviewed. Results are given for in vitro pancreatic cancer cells and clusters and micro-metastatic cancer lesions in vivo. Two complementary targeting vectors are examined. These are the C595 monoclonal antibody that targets the MUC1 antigen and the PAI2 ligand that targets the uPA receptor. The expression of the tumor-associated antigen MUC-1 and the uPA receptor on three pancreatic cancer cell lines is reported for cell clusters, human mouse xenografts and lymph node metastases, as well as for human pancreatic cancer tissues, using immuno-histochemistry, confocal microscopy and flow cytometry. The targeting vectors C595 and PAI2 were labeled with the alpha emitting radioisotope {sup 213}Bi using the chelators cDTPA and CHX-A″ to form the alpha-conjugates (AC). Cell clusters were incubated with the AC and examined at 48 hours. Apoptosis was documented using the TUNEL assay. In vivo, the anti-proliferative effect for tumors was tested at two days post-subcutaneous cell inoculation. Mice were injected with different concentrations of AC by local or systemic administration. Changes in tumor progression were assessed by tumor size. MUC-1 and uPA are strongly expressed on CFPAC-1, PANC-1 and moderate expression was found CAPAN-1 cell clusters and tumor xenografts. The ACs can target pancreatic cells and regress cell clusters (∼100 μm diameter), causing apoptosis in some 70–90 % of cells. At two days post-cell inoculation in mice, a single local injection of 74 MBq/kg of AC causes complete inhibition of tumor growth. Systemic injections of 111, 222 and 333 MBq/kg of alpha-conjugate caused significant tumor growth delay in a dose dependent manner after 16 weeks, compared with the non-specific control at 333 MBq/kg. Cytotoxicity was assessed by the MTS and TUNEL assays. The C595 and PAI2-alpha conjugates are indicated for the treatment of micro

  15. Molecular Targeted Approaches to Cancer Therapy and Prevention Using Chalcones

    Science.gov (United States)

    Jandial, Danielle D.; Blair, Christopher A.; Zhang, Saiyang; Krill, Lauren S.; Zhang, Yan-Bing; Zi, Xiaolin

    2014-01-01

    There is an emerging paradigm shift in oncology that seeks to emphasize molecularly targeted approaches for cancer prevention and therapy. Chalcones (1,3-diphenyl-2-propen-1-ones), naturally-occurring compounds with widespread distribution in spices, tea, beer, fruits and vegetables, consist of open-chain flavonoids in which the two aromatic rings are joined by a three-carbon α, β-unsaturated carbonyl system. Due to their structural diversity, relative ease of chemical manipulation and reaction of α, β-unsaturated carbonyl moiety with cysteine residues in proteins, some lead chalcones from both natural products and synthesis have been identified in a variety of screening assays for modulating important pathways or molecular targets in cancers. These pathways and targets that are affected by chalcones include MDM2/p53, tubulin, proteasome, NF-kappa B, TRIAL/death receptors and mitochondria mediated apoptotic pathways, cell cycle, STAT3, AP-1, NRF2, AR, ER, PPAR-γ and β-catenin/Wnt. Compared to current cancer targeted therapeutic drugs, chalcones have the advantages of being inexpensive, easily available and less toxic; the ease of synthesis of chalcones from substituted benzaldehydes and acetophenones also makes them an attractive drug scaffold. Therefore, this review is focused on molecular targets of chalcones and their potential implications in cancer prevention and therapy. PMID:24467530

  16. [Targeted radionuclide therapy for castration-resistant prostate cancer].

    Science.gov (United States)

    Nakamura, Katsumasa; Ohga, Saiji; Sasaki, Tomonari; Baba, Shingo; Honda, Hiroshi

    2014-12-01

    Although patients with castration-resistant prostate cancer frequently have metastases to the bone, they have a relatively favorable prognosis. Therefore, it is important to keep or improve the level of patient's quality of life. The use of strontium-89 for the management of the pain from bone metastasis was approved in 2007 in Japan. A new bone-targeting radiopharmaceuticals using radium-223 is also promising, because a randomized trial showed an overall survival advantage of radium-223 in prostate patients with bone metastases. In this review, we summarize the role of targeted radionuclide therapy for castration-resistant prostate cancer, focusing on strontium-89 and radium-223.

  17. Epithelioid Sarcoma: Opportunities for Biology-driven Targeted Therapy

    Directory of Open Access Journals (Sweden)

    Jonathan eNoujaim

    2015-08-01

    Full Text Available Epithelioid sarcoma is a soft tissue sarcoma of children and young adults for which the preferred treatment for localised disease is wide surgical resection. Medical management is to a great extent undefined, and therefore for patients with regional and distal metastases, the development of targeted therapies is greatly desired. In this review we will summarize clinically-relevant biomarkers (e.g., SMARCB1, CA125, dysadherin and others with respect to targeted therapeutic opportunities. We will also examine the role of EGFR, mTOR and polykinase inhibitors (e.g., sunitinib in the management of local and disseminated disease. Towards building a consortium of pharmaceutical, academic and non-profit collaborators, we will discuss the state of resources for investigating epithelioid sarcoma with respect to cell line resources, tissue banks, and registries so that a roadmap can be developed towards effective biology-driven therapies.

  18. Cancer Nanomedicine: From Targeted Delivery to Combination Therapy

    Science.gov (United States)

    Xu, Xiaoyang; Ho, William; Zhang, Xueqing; Bertrand, Nicolas; Farokhzad, Omid

    2015-01-01

    The advent of nanomedicine marks an unparalleled opportunity to advance the treatment of a variety of diseases, including cancer. The unique properties of nanoparticles, such as large surface-to volume ratio, small size, the ability to encapsulate a variety of drugs, and tunable surface chemistry, gives them many advantages over their bulk counterparts. This includes multivalent surface modification with targeting ligands, efficient navigation of the complex in vivo environment, increased intracellular trafficking, and sustained release of drug payload. These advantages make nanoparticles a mode of treatment potentially superior to conventional cancer therapies. This article highlights the most recent developments in cancer treatment using nanoparticles as drug-delivery vehicles, including promising opportunities in targeted and combination therapy. PMID:25656384

  19. Transcriptionally targeted gene therapy to detect and treat cancer

    OpenAIRE

    Wu, Lily; Johnson, Mai; Sato, Makoto

    2003-01-01

    The greatest challenge in cancer treatment is to achieve the highest levels of specificity and efficacy. Cancer gene therapy could be designed specifically to express therapeutic genes to induce cancer cell destruction. Cancer-specific promoters are useful tools to accomplish targeted expression; however, high levels of gene expression are needed to achieve therapeutic efficacy. Incorporating an imaging reporter gene in tandem with the therapeutic gene will allow tangible proof of principle t...

  20. Targeted therapies for diarrhea-predominant irritable bowel syndrome

    Directory of Open Access Journals (Sweden)

    Olden KW

    2012-05-01

    Full Text Available Kevin W OldenDepartment of Medicine, St Joseph's Hospital and Medical Center, Phoenix, AZ, USAAbstract: Irritable bowel syndrome (IBS causes gastrointestinal symptoms such as abdominal pain, bloating, and bowel pattern abnormalities, which compromise patients' daily functioning. Common therapies address one or two IBS symptoms, while others offer wider symptom control, presumably by targeting pathophysiologic mechanisms of IBS. The aim of this targeted literature review was to capture clinical trial reports of agents receiving the highest recommendation (Grade 1 for treatment of IBS from the 2009 American College of Gastroenterology IBS Task Force, with an emphasis on diarrhea-predominant IBS. Literature searches in PubMed captured articles detailing randomized placebo-controlled trials in IBS/diarrhea-predominant IBS for agents receiving Grade I (strong 2009 American College of Gastroenterology IBS Task Force recommendations: tricyclic antidepressants, nonabsorbable antibiotics, and the 5-HT3 receptor antagonist alosetron. Studies specific for constipation-predominant IBS were excluded. Tricyclic antidepressants appear to improve global IBS symptoms but have variable effects on abdominal pain and uncertain tolerability; effects on stool consistency, frequency, and urgency were not adequately assessed. Nonabsorbable antibiotics show positive effects on global symptoms, abdominal pain, bloating, and stool consistency but may be most efficacious in patients with altered intestinal microbiota. Alosetron improves global symptoms and abdominal pain and normalizes bowel irregularities, including stool frequency, consistency, and fecal urgency. Both the nonabsorbable antibiotic rifaximin and the 5-HT3 receptor antagonist alosetron improve quality of life. Targeted therapies provide more complete relief of IBS symptoms than conventional agents. Familiarization with the quantity and quality of evidence of effectiveness can facilitate more individualized

  1. Molecular Targeted Approaches to Cancer Therapy and Prevention Using Chalcones

    OpenAIRE

    Jandial, Danielle D.; Blair, Christopher A.; Zhang, Saiyang; Krill, Lauren S.; Zhang, Yan-Bing; Zi, Xiaolin

    2014-01-01

    There is an emerging paradigm shift in oncology that seeks to emphasize molecularly targeted approaches for cancer prevention and therapy. Chalcones (1,3-diphenyl-2-propen-1-ones), naturally-occurring compounds with widespread distribution in spices, tea, beer, fruits and vegetables, consist of open-chain flavonoids in which the two aromatic rings are joined by a three-carbon α, β-unsaturated carbonyl system. Due to their structural diversity, relative ease of chemical manipulation and reacti...

  2. Specifically targeted gene therapy for small-cell lung cancer

    DEFF Research Database (Denmark)

    Christensen, C.L.; Zandi, R.; Gjetting, T.

    2009-01-01

    Small-cell lung cancer (SCLC) is a highly malignant disease with poor prognosis. Hence, there is great demand for new therapies that can replace or supplement the current available treatment regimes. Gene therapy constitutes a promising strategy and relies on the principle of introducing exogenous....... This review describes and discusses the current status of the application of gene therapy in relation to SCLC Udgivelsesdato: 2009/4...... DNA into malignant cells causing them to die. Since SCLC is a highly disseminated malignancy, the gene therapeutic agent must be administered systemically, obligating a high level of targeting of tumor tissue and the use of delivery vehicles designed for systemic circulation of the therapeutic DNA...

  3. Adoptive T cell therapy targeting CD1 and MR1

    Directory of Open Access Journals (Sweden)

    Tingxi eGuo

    2015-05-01

    Full Text Available Adoptive T cell immunotherapy has demonstrated clinically relevant efficacy in treating malignant and infectious diseases. However, much of these therapies have been focused on enhancing, or generating de novo, effector functions of conventional T cells recognizing HLA molecules. Given the heterogeneity of HLA alleles, mismatched patients are ineligible for current HLA-restricted adoptive T cell therapies. CD1 and MR1 are class I-like monomorphic molecules and their restricted T cells possess unique T cell receptor specificity against entirely different classes of antigens. CD1 and MR1 molecules present lipid and vitamin B metabolite antigens, respectively, and offer a new front of targets for T cell therapies. This review will cover the recent progress in the basic research of CD1, MR1, and their restricted T cells that possess translational potential.

  4. New perspectives on targeted therapy in ovarian cancer

    Directory of Open Access Journals (Sweden)

    Coward JIG

    2015-02-01

    Full Text Available Jermaine IG Coward,1–3 Kathryn Middleton,1 Felicity Murphy1 1Mater Health Services, Raymond Terrace, South Brisbane, QLD, Australia; 2Inflammtion and Cancer Therapeutics Group, Mater Research, University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, QLD, Australia; 3School of Medicine, University of Queensland, Brisbane, QLD, Australia Abstract: Epithelial ovarian cancer remains the most lethal gynecologic malignancy. During the last 15 years, there has been only marginal improvement in 5 year overall survival. These daunting statistics are compounded by the fact that despite all subtypes exhibiting striking heterogeneity, their systemic management remains identical. Although changes to the scheduling and administration of chemotherapy have improved outcomes to a degree, a therapeutic ceiling is being reached with this approach, resulting in a number of trials investigating the efficacy of targeted therapies alongside standard treatment algorithms. Furthermore, there is an urge to develop subtype-specific studies in an attempt to improve outcomes, which currently remain poor. This review summarizes the key studies with antiangiogenic agents, poly(adenosine diphosphate [ADP]-ribose inhibitors, and epidermal growth factor receptor/human epidermal growth factor receptor family targeting, in addition to folate receptor antagonists and insulin growth factor receptor inhibitors. The efficacy of treatment paradigms used in non-ovarian malignancies for type I tumors is also highlighted, in addition to recent advances in appropriate patient stratification for targeted therapies in epithelial ovarian cancer. Keywords: antiangiogenic therapy, high-grade serous, low grade ovarian cancer, PARP inhibition, cancer-related inflammation

  5. Target Therapies for Uterine Carcinosarcomas: Current Evidence and Future Perspectives

    Directory of Open Access Journals (Sweden)

    Salvatore Giovanni Vitale

    2017-05-01

    Full Text Available Carcinosarcomas (CS in gynecology are very infrequent and represent only 2–5% of uterine cancers. Despite surgical cytoreduction and subsequent chemotherapy being the primary treatment for uterine CS, the overall five-year survival rate is 30 ± 9% and recurrence is extremely common (50–80%. Due to the poor prognosis of CS, new strategies have been developed in the last few decades, targeting known dysfunctional molecular pathways for immunotherapy. In this paper, we aimed to gather the available evidence on the latest therapies for the treatment of CS. We performed a systematic review using the terms “uterine carcinosarcoma”, “uterine Malignant Mixed Müllerian Tumors”, “target therapies”, “angiogenesis therapy”, “cancer stem cell therapy”, “prognostic biomarker”, and “novel antibody-drug”. Based on our results, the differential expression and accessibility of epithelial cell adhesion molecule-1 on metastatic/chemotherapy-resistant CS cells in comparison to normal tissues and Human Epidermal Growth Factor Receptor 2 (HER2 open up new possibilities in the field of target therapy. Nevertheless, future investigations are needed to clarify the impact of these new therapies on survival rate and medium-/long-term outcomes.

  6. Targeted Therapy for Medullary Thyroid Cancer: A Review

    Directory of Open Access Journals (Sweden)

    S. R. Priya

    2017-10-01

    Full Text Available Medullary thyroid cancers (MTCs constitute between 2 and 5% of all thyroid cancers. The 10-year overall survival (OS rate of patients with localized disease is around 95% while that of patients with regional stage disease is about 75%. Only 20% of patients with distant metastases at diagnosis survive 10 years which is significantly lower than for differentiated thyroid cancers. Cases with regional metastases at presentation have high recurrence rates. Adjuvant external radiation confers local control but not improved OS. The management of residual, recurrent, or metastatic disease till a few years ago was re-surgery with local measures such as radiation. Chemotherapy was used with marginal benefit. The development of targeted therapy has brought in a major advantage in management of such patients. Two drugs—vandetanib and cabozantinib—have been approved for use in progressive or metastatic MTC. In addition, several drugs acting on other steps of the molecular pathway are being investigated with promising results. Targeted radionuclide therapy also provides an effective treatment option with good quality of life. This review covers the rationale of targeted therapy for MTC, present treatment options, drugs and methods under investigation, as well as an outline of the adverse effects and their management.

  7. Rational design of non-resistant targeted cancer therapies

    Science.gov (United States)

    Martínez-Jiménez, Francisco; Overington, John P.; Al-Lazikani, Bissan; Marti-Renom, Marc A.

    2017-01-01

    Drug resistance is one of the major problems in targeted cancer therapy. A major cause of resistance is changes in the amino acids that form the drug-target binding site. Despite of the numerous efforts made to individually understand and overcome these mutations, there is a lack of comprehensive analysis of the mutational landscape that can prospectively estimate drug-resistance mutations. Here we describe and computationally validate a framework that combines the cancer-specific likelihood with the resistance impact to enable the detection of single point mutations with the highest chance to be responsible of resistance to a particular targeted cancer therapy. Moreover, for these treatment-threatening mutations, the model proposes alternative therapies overcoming the resistance. We exemplified the applicability of the model using EGFR-gefitinib treatment for Lung Adenocarcinoma (LUAD) and Lung Squamous Cell Cancer (LSCC) and the ERK2-VTX11e treatment for melanoma and colorectal cancer. Our model correctly identified the phenotype known resistance mutations, including the classic EGFR-T790M and the ERK2-P58L/S/T mutations. Moreover, the model predicted new previously undescribed mutations as potentially responsible of drug resistance. Finally, we provided a map of the predicted sensitivity of alternative ERK2 and EGFR inhibitors, with a particular highlight of two molecules with a low predicted resistance impact. PMID:28436422

  8. Multiplatform molecular profiling identifies potentially targetable biomarkers in malignant phyllodes tumors of the breast.

    Science.gov (United States)

    Gatalica, Zoran; Vranic, Semir; Ghazalpour, Anatole; Xiu, Joanne; Ocal, Idris Tolgay; McGill, John; Bender, Ryan P; Discianno, Erin; Schlum, Aaron; Sanati, Souzan; Palazzo, Juan; Reddy, Sandeep; Pockaj, Barbara

    2016-01-12

    Malignant phyllodes tumor is a rare breast malignancy with sarcomatous overgrowth and with limited effective treatment options for recurrent and metastatic cases. Recent clinical trials indicated a potential for anti-angiogenic, anti-EGFR and immunotherapeutic approaches for patients with sarcomas, which led us to investigate these and other targetable pathways in malignant phyllodes tumor of the breast. Thirty-six malignant phyllodes tumors (including 8 metastatic tumors with two cases having matched primary and metastatic tumors) were profiled using gene sequencing, gene copy number analysis, whole genome expression, and protein expression. Whole genome expression analysis demonstrated consistent over-expression of genes involved in angiogenesis including VEGFA, Angiopoietin-2, VCAM1, PDGFRA, and PTTG1. EGFR protein overexpression was observed in 26/27 (96%) of cases with amplification of the EGFR gene in 8/24 (33%) cases. Two EGFR mutations were identified including EGFRvIII and a presumed pathogenic V774M mutation, respectively. The most common pathogenic mutations included TP53 (50%) and PIK3CA (15%). Cases with matched primary and metastatic tumors harbored identical mutations in both sites (PIK3CA/KRAS and RB1 gene mutations, respectively). Tumor expression of PD-L1 immunoregulatory protein was observed in 3/22 (14%) of cases. Overexpression of molecular biomarkers of increased angiogenesis, EGFR and immune checkpoints provides novel targeted therapy options in malignant phyllodes tumors of the breast.

  9. A novel suicide gene therapy using iNOS

    International Nuclear Information System (INIS)

    Worthington, J.; Robson, T.; Barrett, E.; Adams, C.; Hirst, D.G.

    2003-01-01

    The role of NO in tumours is extremely complex; depending on the concentration it has major effects on vascular tone, endothelial proliferation, cell viability and radiosensitivity. As such, it is not surprising that its manipulation has been identified by many investigators as an exciting target for cancer therapy. The use of a gene therapy strategy utilising the iNOS gene to produce NO offers the potential for targeting NO production specifically within the tumour volume, combined with high NO-generating capacity. We have shown that iNOS gene therapy driven by a strong constitutive promoter (CMV) results in significant growth delay of the murine RIF-1 tumour in vivo. Due to the potent nature of NO any gene therapy strategy will require at lest one level of specificity. We have used the X-ray inducible WAF1/iNOS construct to confine NO generation to within the radiation field i.e. the tumour. A single injection of the X-ray inducible WAF1/iNOS construct followed, 16 h later, by an induction dose of 4 Gy X-rays resulted in significant enhancement of the cell killing effect of subsequent therapeutic doses of X-rays in the same tumour model. The effect was equivalent to a sensitiser enhancement ratio of ∼2.0, half the radiation dose being required to produce the biological effect when iNOS gene therapy was combined with radiation. Intra-tumoural injection of the WAF1/iNOS construct followed by 4 Gy X-rays also resulted in significant radiosensitisation in the HT29 xenograft model. We have so far demonstrated the cytotoxic and radiosensitising potential of iNOS gene therapy, however there are further benefits to the use of NO as an anti-cancer agent. These include anti-angiogenic effects and inhibition of tumour metastasis. Further studies will enable the design of a clinically appropriate protocol to be established

  10. Two novel approaches targeting cancer cell membrane for tumor therapy.

    Science.gov (United States)

    Feng, Yingzhu; Wang, Bochu; Cao, Yang; He, Rui

    2013-04-01

    Disruption of normal cell function by chemicals, UV radiation or viruses can cause various cancer. Drugs that have been developed for cancer therapy bind to various targets to correct disorder cell behavior, repair damaged DNA or promote cell apoptosis. However, there is rare study that focuses on cancer cell membrane as target. We propose two approaches for achieving our goal. One is to use phospholipase A2 (PLA2) to cleave phospholipid heads of the bilayer of cancer cells. Because PLA2 has unique Ca(2+) catalytic site and the pH of healthy tissue cells should be slightly alkaline at 7.2-7.5, it can be easily protected by CO3(2-) in the form of PLA2-CaCO3. While PLA2-CaCO3 accumulate in cancer cells in the acidic microenvironment of which the pH is below 7, it could be converted to active state (PLA2-Ca(2+)) which can intensively damage the cancer cell membrane. The other one is to use both monoclonal antibodies and dimethylsulfoxide (DMSO). The internalization of targeted cancer cell antibodies could change the curvature of cell membrane from order state to disorder state, therefore strong detergent DMSO can destroy cancer cells at extreme low concentration. These two approaches present no harm for normal cells, therefore, drugs targeted cancer cell membrane might become a new and high effective clinical cancer therapy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Current Molecular Targeted Therapies for Bone and Soft Tissue Sarcomas

    Directory of Open Access Journals (Sweden)

    Kenji Nakano

    2018-03-01

    Full Text Available Systemic treatment options for bone and soft tissue sarcomas remained unchanged until the 2000s. These cancers presented challenges in new drug development partly because of their rarity and heterogeneity. Many new molecular targeting drugs have been tried in the 2010s, and some were approved for bone and soft tissue sarcoma. As one of the first molecular targeted drugs approved for solid malignant tumors, imatinib’s approval as a treatment for gastrointestinal stromal tumors (GISTs has been a great achievement. Following imatinib, other tyrosine kinase inhibitors (TKIs have been approved for GISTs such as sunitinib and regorafenib, and pazopanib was approved for non-GIST soft tissue sarcomas. Olaratumab, the monoclonal antibody that targets platelet-derived growth factor receptor (PDGFR-α, was shown to extend the overall survival of soft tissue sarcoma patients and was approved in 2016 in the U.S. as a breakthrough therapy. For bone tumors, new drugs are limited to denosumab, a receptor activator of nuclear factor κB ligand (RANKL inhibitor, for treating giant cell tumors of bone. In this review, we explain and summarize the current molecular targeting therapies approved and in development for bone and soft tissue sarcomas.

  12. Anti-Angiogenic Action of Neutral Endopeptidase

    Science.gov (United States)

    2007-11-01

    of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services , Directorate for...Folkman, J., and Epstein, S. E. (1990) J. Clin. Investig. 85, 433–441 16. Hoffman, A. D., Engelstein, D., Bogenrieder, T., Papandreou, C. N., Steck- elman

  13. Evolutionary dynamics of cancer in response to targeted combination therapy

    Science.gov (United States)

    Bozic, Ivana; Reiter, Johannes G; Allen, Benjamin; Antal, Tibor; Chatterjee, Krishnendu; Shah, Preya; Moon, Yo Sup; Yaqubie, Amin; Kelly, Nicole; Le, Dung T; Lipson, Evan J; Chapman, Paul B; Diaz, Luis A; Vogelstein, Bert; Nowak, Martin A

    2013-01-01

    In solid tumors, targeted treatments can lead to dramatic regressions, but responses are often short-lived because resistant cancer cells arise. The major strategy proposed for overcoming resistance is combination therapy. We present a mathematical model describing the evolutionary dynamics of lesions in response to treatment. We first studied 20 melanoma patients receiving vemurafenib. We then applied our model to an independent set of pancreatic, colorectal, and melanoma cancer patients with metastatic disease. We find that dual therapy results in long-term disease control for most patients, if there are no single mutations that cause cross-resistance to both drugs; in patients with large disease burden, triple therapy is needed. We also find that simultaneous therapy with two drugs is much more effective than sequential therapy. Our results provide realistic expectations for the efficacy of new drug combinations and inform the design of trials for new cancer therapeutics. DOI: http://dx.doi.org/10.7554/eLife.00747.001 PMID:23805382

  14. [50 years of hepatology - from therapeutic nihilism to targeted therapies].

    Science.gov (United States)

    Manns, Michael P

    2013-04-01

    Over the past 50 years significant progress has been made in the whole field of hepatology. Part of this is translation of basic research (biochemistry, immunology, virology, molecular biology and others) into clinical hepatology. This enabled us to understand more about the pathogenesis of liver diseases and led to the discovery of the five major hepatotropic viruses, the identification of hepatocellular autoantigens, and to the development of specific therapies for chronic hepatitis B, C and D. In addition, the molecular basis of most genetic liver diseases has been identified. Significant progress was made in the development of medical therapies for various liver diseases with different underlying etiologies. Surgery significantly contributed to the progress in the management of liver diseases; examples are laparoscopic cholecystectomy and the development of liver transplantation. A multimodal therapeutic algorithm has been established for the therapy of hepatocelluar carcinoma (HCC); with Sorafenib "targeted therapy" has entered the area of HCC. The progress made over the last 50 years not only led to an aetiological differentiation of acute and chronic liver diseases but also to specific therapies based on the identification and understanding of the underlying etiology. © Georg Thieme Verlag KG Stuttgart · New York.

  15. Targeting SR-BI for cancer diagnostics, imaging and therapy

    Directory of Open Access Journals (Sweden)

    Maneesha Amrita Rajora

    2016-09-01

    Full Text Available Scavenger receptor class B type I (SR-BI plays an important role in trafficking cholesteryl esters between the core of high density lipoprotein and the liver. Interestingly, this integral membrane protein receptor is also implicated in the metabolism of cholesterol by cancer cells, whereby overexpression of SR-BI has been observed in a number of tumours and cancer cell lines, including breast and prostate cancers. Consequently, SR-BI has recently gained attention as a cancer biomarker and exciting target for the direct cytosolic delivery of therapeutic agents. This brief review highlights these key developments in SR-BI-targeted cancer therapies and imaging probes. Special attention is given to the exploration of high density lipoprotein nanomimetic platforms that take advantage of upregulated SR-BI expression to facilitate targeted drug-delivery and cancer diagnostics, and promising future directions in the development of these agents.

  16. In vivo anti-angiogenic effects further support the promise of the antineoplasic activity of methyl jasmonate Efeitos antiangiogênicos in vivo convalidam a atividade antineoplásica potencial do metiljasmonato

    Directory of Open Access Journals (Sweden)

    JEF. Pereira Lopes

    2010-05-01

    Full Text Available Molecular plant components have long been aimed at the angiogenesis and anti-angiogenesis pathways, and have been tested as sources for antineoplasic drugs with promising success. The present work deals with the anti-angiogenic effects of Methyl Jasmonate. Jasmonate derivatives were demonstrated to selectively damage the mitochondria of cancer cells. In vitro, 1-10 mM Methyl Jasmonate induced the cell death of the human umbilical vein endothelial cells (HUVEC and the Murine melanoma cells (B16F10, while micromolar concentrations were ineffective. In vivo, comparable concentrations were toxic and reduced the vessel density of the Chorioallantoic Membrane of the Chicken Embryo (CAM. However, 1-10 µM concentrations produced a complex effect. There was increased capillary budding, but the new vessels were leakier and less organised than corresponding controls. It is suggested that not only direct toxicity, but also the drug effects upon angiogenesis are relevant to the antineoplasic effects of Methyl Jasmonate.Moléculas de origem vegetal são, há muito, conhecidas como substâncias ativas sobre as vias de angiogênese e antiangiogênese e foram testadas como fonte de drogas antineoplásicas com sucesso promissor. Este trabalho trata dos efeitos antiangiogênicos do Metiljasmonato, um protótipo da família dos derivados do ácido jasmônico, que danificam seletivamente a mitocôndria de células neoplásicas. In vitro, metiljasmonato 1-10 mM promoveu a morte celular de células endoteliais humanas de cordão umbilical (HUVEC e de melanoma murino (B16F10; concentrações micromolares foram inócuas. In vivo, concentrações equivalentes foram tóxicas e reduziram a densidade de vasos em membranas corioalantoicas de embrião de galinha (CAM. Entretanto, concentrações entre 1-10 µM produziram um efeito complexo. Ocorreu aumento no brotamento capilar, mas os novos vasos apresentaram-se frágeis e menos organizados que os controles correspondentes

  17. A PSMA-targeted theranostic agent for photodynamic therapy.

    Science.gov (United States)

    Chen, Ying; Chatterjee, Samit; Lisok, Ala; Minn, Il; Pullambhatla, Mrudula; Wharram, Bryan; Wang, Yuchuan; Jin, Jiefu; Bhujwalla, Zaver M; Nimmagadda, Sridhar; Mease, Ronnie C; Pomper, Martin G

    2017-02-01

    Prostate-specific membrane antigen (PSMA) is over-expressed in the epithelium of prostate cancer and in the neovasculature of many non-prostate solid tumors. PSMA has been increasingly used as a target for cancer imaging and therapy. Here we describe a low-molecular-weight theranostic photosensitizer, YC-9, for PSMA-targeted optical imaging and photodynamic therapy (PDT). YC-9 was synthesized by conjugating IRDye700DX N-hydroxysuccinimide (NHS) ester with a PSMA targeting Lys-Glu urea through a lysine-suberate linker in suitable yield. Optical imaging in vivo demonstrated PSMA-specific tumor uptake of YC-9 with rapid clearance from non-target tissues. PSMA-specific cell kill was demonstrated with YC-9in vitro through PDT in PSMA + PC3-PIP and PSMA - PC3-flu cells. In vivo PDT in mice bearing PSMA + PC3-PIP tumors at 4h post-injection of YC-9 (A total of four PDT sessions were performed, 48h apart) resulted in significant tumor growth delay, while tumors in control groups continued to grow. PDT with YC-9 significantly increased the median survival of the PSMA + PC3-PIP tumor mice (56.5days) compared to control groups [23.5-30.0days, including untreated, light alone, YC-9 alone (without light) and non-targeted IRDye700DX PDT treatment groups], without noticeable toxicity at the doses used. This study proves in principle that YC-9 is a promising therapeutic agent for targeted PDT of PSMA-expressing tissues, such as prostate tumors, and may also be useful against non-prostate tumors by virtue of neovascular PSMA expression. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Targeted alpha anticancer therapies: update and future prospects

    Directory of Open Access Journals (Sweden)

    Allen BJ

    2014-11-01

    Full Text Available Barry J Allen,1,2 Chen-Yu Huang,3 Raymond A Clarke2 1Faculty of Physics, University of Sydney, Sydney, NSW, Australia; 2Faculty of Medicine, Ingham Institute, University of Western Sydney, Liverpool, NSW, Australia; 3Central Clinical School, University of Sydney, Sydney, NSW, AustraliaAbstract: Targeted alpha therapy (TAT is an emerging option for local and systemic cancer treatment. Preclinical research and clinical trials show that alpha-emitting radionuclides can kill targeted cancer cells while sparing normal cells, thus reducing toxicity. 223RaCl2 (Xofigo® is the first alpha emitting radioisotope to gain registration in the US for palliative therapy of prostate cancer bone metastases by indirect physiological targeting. The alpha emitting radioisotopes 211At, 213Bi, 225Ac and 227Th are being used to label targeting vectors such as monoclonal antibodies for specific cancer therapy indications. In this review, safety and tolerance aspects are considered with respect to microdosimetry, specific energy, Monte Carlo model calculations, biodosimetry, equivalent dose and mutagenesis. The clinical efficacy of TAT for solid tumors may also be enhanced by its capacity for tumor anti-vascular (TAVAT effects. This review emphasizes key aspects of TAT research with respect to the PAI2-uPAR complex and the monoclonal antibodies bevacizumab, C595 and J591. Clinical trial outcomes are reviewed for neuroendocrine tumors, leukemia, glioma, melanoma, non-Hodgkins lymphoma, and prostate bone metastases. Recommendations and future directions are proposed.Keywords: biodosimetry, microdosimetry, mutagenesis, PAI2, bevacizumab, C595, J591, tumors, cancer, metastases

  19. ETS-targeted therapy: can it substitute for MEK inhibitors?

    Science.gov (United States)

    Tetsu, Osamu; McCormick, Frank

    2017-12-01

    The RAS/MAPK pathway has been intensively studied in cancer. Constitutive activation of ERK1 and ERK2 is frequently found in cancer cells from a variety of tissues. In clinical practice and clinical trials, small molecules targeting receptor tyrosine kinases or components in the MAPK cascade are used for treatment. MEK1 and MEK2 are ideal targets because these enzymes are physiologically important and have narrow substrate specificities and distinctive structural characteristics. Despite success in pre-clinical testing, only two MEK inhibitors, trametinib and cobimetinib, have been approved, both for treatment of BRAF-mutant melanoma. Surprisingly, the efficacy of MEK inhibitors in other tumors has been disappointing. These facts suggest the need for a different approach. We here consider transcription factor ETS1 and ETS2 as alternate therapeutic targets because they are major MAPK downstream effectors. The lack of clinical efficacy of MEK inhibitors is attributed mostly to a subsequent loss of negative feedback regulation in the MAPK pathway. To overcome this obstacle, second-generation MEK inhibitors, so-called "feedback busters," have been developed. However, their efficacy is still unsatisfactory in the majority of cancers. To substitute ETS-targeted therapy, therapeutic strategies to modulate the transcription factor in cancer must be considered. Chemical targeting of ETS1 for proteolysis is a promising strategy; Src and USP9X inhibitors might achieve this by accelerating ETS1 protein turnover. Targeting the ETS1 interface might have great therapeutic value because ETS1 dimerizes itself or with other transcription factors to regulate target genes. In addition, transcriptional cofactors, including CBP/p300 and BRD4, represent intriguing targets for both ETS1 and ETS2. ETS-targeted therapy appears to be promising. However, it may have a potential problem. It might inhibit autoregulatory negative feedback loops in the MAPK pathway, with consequent resistance to

  20. Gene therapy to target ER stress in brain diseases.

    Science.gov (United States)

    Valenzuela, Vicente; Martínez, Gabriela; Duran-Aniotz, Claudia; Hetz, Claudio

    2016-10-01

    Gene therapy based on the use of Adeno-associated viruses (AAVs) is emerging as a safe and stable strategy to target molecular pathways involved in a variety of brain diseases. Endoplasmic reticulum (ER) stress is proposed as a transversal feature of most animal models and clinical samples from patients affected with neurodegenerative diseases. Manipulation of the unfolded protein response (UPR), a major homeostatic reaction under ER stress conditions, had proved beneficial in diverse models of neurodegeneration. Although increasing number of drugs are available to target ER stress, the use of small molecules to treat chronic brain diseases is challenging because of poor blood brain barrier permeability and undesirable side effects due to the role of the UPR in the physiology of peripheral organs. Gene therapy is currently considered a possible future alternative to circumvent these problems by the delivery of therapeutic agents to selective regions and cell types of the nervous system. Here we discuss current efforts to design gene therapy strategies to alleviate ER stress on a disease context. This article is part of a Special Issue entitled SI:ER stress. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Targeted therapy of brain metastases: latest evidence and clinical implications.

    Science.gov (United States)

    Di Lorenzo, Rodica; Ahluwalia, Manmeet S

    2017-12-01

    Brain metastases (BM) occur in 20-40% of patients with cancer and 60-75% of patients with BM become symptomatic. Due to an aging population and advances in the treatment of primary cancers, patients are living longer and are more likely to experience complications from BM. The diagnosis of BM drastically worsens long-term survival rates, with multiple metastases being a poor prognostic factor. Until recently, the mainstay of treatment consisted of stereotactic radiosurgery (SRS), surgical resection, whole brain radiation therapy (WBRT), or a combination of these modalities. Systemic chemotherapy has been felt largely ineffective in the treatment of BM due to the presence of the blood-brain barrier (BBB), which includes efflux pumps on brain capillaries. Over the past decade however, researchers have identified therapeutic agents that are able to cross the BBB. These findings could make a multimodality treatment approach possible, consisting of surgery, radiation, immunotherapy, and targeted therapy, which could lead to better disease control in this patient population and prolong survival. In this review, we discuss present evidence on available targeted therapies and their role in the treatment of BM from primary tumors with the highest prevalence of central nervous system (CNS) involvement, specifically non-small cell lung cancer (NSCLC), breast cancer melanoma, and renal cell carcinoma.

  2. Pancreatic Cancer Gene Therapy: From Molecular Targets to Delivery Systems

    Directory of Open Access Journals (Sweden)

    Maria Victoria Maliandi

    2011-01-01

    Full Text Available The continuous identification of molecular changes deregulating critical pathways in pancreatic tumor cells provides us with a large number of novel candidates to engineer gene-targeted approaches for pancreatic cancer treatment. Targets—both protein coding and non-coding—are being exploited in gene therapy to influence the deregulated pathways to facilitate cytotoxicity, enhance the immune response or sensitize to current treatments. Delivery vehicles based on viral or non-viral systems as well as cellular vectors with tumor homing characteristics are a critical part of the design of gene therapy strategies. The different behavior of tumoral versus non-tumoral cells inspires vector engineering with the generation of tumor selective products that can prevent potential toxic-associated effects. In the current review, a detailed analysis of the different targets, the delivery vectors, the preclinical approaches and a descriptive update on the conducted clinical trials are presented. Moreover, future possibilities in pancreatic cancer treatment by gene therapy strategies are discussed.

  3. Current Trends in Targeted Therapies for Glioblastoma Multiforme

    Directory of Open Access Journals (Sweden)

    Fumiharu Ohka

    2012-01-01

    Full Text Available Glioblastoma multiforme (GBM is one of the most frequently occurring tumors in the central nervous system and the most malignant tumor among gliomas. Despite aggressive treatment including surgery, adjuvant TMZ-based chemotherapy, and radiotherapy, GBM still has a dismal prognosis: the median survival is 14.6 months from diagnosis. To date, many studies report several determinants of resistance to this aggressive therapy: (1 O6-methylguanine-DNA methyltransferase (MGMT, (2 the complexity of several altered signaling pathways in GBM, (3 the existence of glioma stem-like cells (GSCs, and (4 the blood-brain barrier. Many studies aim to overcome these determinants of resistance to conventional therapy by using various approaches to improve the dismal prognosis of GBM such as modifying TMZ administration and combining TMZ with other agents, developing novel molecular-targeting agents, and novel strategies targeting GSCs. In this paper, we review up-to-date clinical trials of GBM treatments in order to overcome these 4 hurdles and to aim at more therapeutical effect than conventional therapies that are ongoing or are about to launch in clinical settings and discuss future perspectives.

  4. IGF1 Receptor Targeted Theranostic Nanoparticles for Targeted and Image-Guided Therapy of Pancreatic Cancer.

    Science.gov (United States)

    Zhou, Hongyu; Qian, Weiping; Uckun, Fatih M; Wang, Liya; Wang, Y Andrew; Chen, Hongyu; Kooby, David; Yu, Qian; Lipowska, Malgorzata; Staley, Charles A; Mao, Hui; Yang, Lily

    2015-08-25

    Overcoming resistance to chemotherapy is a major and unmet medical challenge in the treatment of pancreatic cancer. Poor drug delivery due to stromal barriers in the tumor microenvironment and aggressive tumor biology are additional impediments toward a more successful treatment of pancreatic cancer. In attempts to address these challenges, we developed IGF1 receptor (IGF1R)-directed, multifunctional theranostic nanoparticles for targeted delivery of therapeutic agents into IGF1R-expressing drug-resistant tumor cells and tumor-associated stromal cells. These nanoparticles were prepared by conjugating recombinant human IGF1 to magnetic iron oxide nanoparticles (IONPs) carrying the anthracycline doxorubicin (Dox) as the chemotherapeutic payload. Intravenously administered IGF1-IONPs exhibited excellent tumor targeting and penetration in an orthotopic patient-derived xenograft (PDX) model of pancreatic cancer featuring enriched tumor stroma and heterogeneous cancer cells. IGF1R-targeted therapy using the theranostic IGF1-IONP-Dox significantly inhibited the growth of pancreatic PDX tumors. The effects of the intratumoral nanoparticle delivery and therapeutic responses in the orthotopic pancreatic PDX tumors could be detected by magnetic resonance imaging (MRI) with IONP-induced contrasts. Histological analysis showed that IGF1R-targeted delivery of Dox significantly inhibited cell proliferation and induced apoptotic cell death of pancreatic cancer cells. Therefore, further development of IGF1R-targeted theranostic IONPs and MRI-guided cancer therapy as a precision nanomedicine may provide the basis for more effective treatment of pancreatic cancer.

  5. Advances of Molecular Subtype and Targeted Therapy of Lung Cancer

    Directory of Open Access Journals (Sweden)

    Lan SHAO

    2012-09-01

    Full Text Available The discovery of multiple molecular mechanisms underlying the development, progression, and prognosis of lung cancer, has created new opportunities for targeted therapy. Each subtype is associated with molecular tests that define the subtype and drugs that may have potential therapeutic effect on lung cancer. In 2004, mutations in the epidermal growth factor receptor (epidermal growth factor receptor, EGFR gene were discovered in non-small cell lung cancers (NSCLC, especially in adenocarcinomas. And they are strongly associated with sensitivity to EGFR-tyrosine kinase inhibitors (EGFR-TKIs. Moreover, in 2007 the existence of the echinoderm microtubule-associated protein-like 4-anaplastic lymphoma kinase (EML4-ALK fusion gene was discovered in NSCLC, and the same as EGFR-TKIs, ALK inhibitors are being found to be highly effective in lung cancers. At present, multiple molecular subtype of lung cancer and relevant targeted drugs are undering study. Here, we review the remarkable progress in molecular subtype of lung cancer and the related targeted therapy.

  6. Targeted α Therapies for the Treatment of Bone Metastases

    Directory of Open Access Journals (Sweden)

    Fable Zustovich

    2017-12-01

    Full Text Available The skeleton is the target tissue for many types of tumors, and, recently, the survival of patients with prostate cancer metastasis has been increased using α-emitting drugs known as targeted α therapies. The use of α-radiopharmaceuticals in medicine was hypothesized at the beginning of the nineteenth century after the observation that α-radionuclides were associated with high cell-killing energy and low tissue penetration in healthy tissues. In the prostate cancer (PC scenario, current research suggests that this class of radiopharmaceuticals has limited toxicity, and that the mechanism of action does not overlap with pre-existing drugs, allowing us to extend therapeutic armaments and address medical oncology towards personalized and precision medicine. Ongoing studies may extend these benefits also to bone metastases deriving from other neoplasms. The aim of this review is to summarize the current research on targeted α therapies and try to identify the right patient to be treated in the right time in order to integrate in these medications in the every-day clinical practice.

  7. Drug interactions with solid tumour-targeted therapies.

    Science.gov (United States)

    Thomas-Schoemann, Audrey; Blanchet, Benoit; Bardin, Christophe; Noé, Gaëlle; Boudou-Rouquette, Pascaline; Vidal, Michel; Goldwasser, François

    2014-01-01

    Drug interactions are an on-going concern in the treatment of cancer, especially when targeted therapies, such as tyrosine kinase inhibitors (TKI) or mammalian target of rapamycin (mTOR) inhibitors, are being used. The emergence of elderly patients and/or patients with both cancer and other chronic co-morbidities leads to polypharmacy. Therefore, the risk of drug-drug interactions (DDI) becomes a clinically relevant issue, all the more so as TKIs and mTOR inhibitors are essentially metabolised by cytochrome P450 enzymes. These DDIs can result in variability in anticancer drug exposure, thus favouring the selection of resistant cellular clones or the occurrence of toxicity. This review provides a comprehensive overview of DDIs that involve targeted therapies approved by the FDA for the treatment of solid tumours for more than 3 years (sorafenib, sunitinib, erlotinib, gefitinib, imatinib, lapatinib, everolimus, temsirolimus) and medicinal herb or drugs. This review also provides some guidelines to help oncologists and pharmacists in their clinical practice. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. Exploring targeted therapy of osteosarcoma using proteomics data

    Directory of Open Access Journals (Sweden)

    Chaiyawat P

    2017-02-01

    Full Text Available Parunya Chaiyawat,1 Jongkolnee Settakorn,2 Apiruk Sangsin,1 Pimpisa Teeyakasem,1 Jeerawan Klangjorhor,1 Aungsumalee Soongkhaw,2 Dumnoensun Pruksakorn1,3 1Orthopedic Laboratory and Research Netting Center, Department of Orthopedics, 2Department of Pathology, Faculty of Medicine, 3Excellence Center in Osteology Research and Training Center, Chiang Mai University, Chiang Mai, Thailand Abstract: Despite multimodal therapeutic treatments of osteosarcoma (OS, some patients develop resistance to currently available regimens and eventually end up with recurrent or metastatic outcomes. Many attempts have been made to discover effective drugs for improving outcome; however, due to the heterogeneity of the disease, new therapeutic options have not yet been identified. This study aims to explore potential targeted therapy related to protein profiles of OS. In this review of proteomics studies, we extracted data on differentially expressed proteins (DEPs from archived literature in PubMed and our in-house repository. The data were divided into three experimental groups, DEPs in 1 OS/OB: OS vs osteoblastic (OB cells, 2 metastasis: metastatic vs non-metastatic sublines plus fresh tissues from primary OS with and without pulmonary metastasis, and 3 chemoresistance: spheroid (higher chemoresistance vs monolayer cells plus fresh tissues from biopsies from good and poor responders. All up-regulated protein entities in the list of DEPs were sorted and cross-referenced with identifiers of targets of US Food and Drug Administration (FDA-approved agents and chemical inhibitors. We found that many targets of FDA-approved antineoplastic agents, mainly a group of epigenetic regulators, kinases, and proteasomes, were highly expressed in OS cells. Additionally, some overexpressed proteins were targets of FDA-approved non-cancer drugs, including immunosuppressive and antiarrhythmic drugs. The resulting list of chemical agents showed that some transferase enzyme inhibitors

  9. Towards a more specific therapy: targeting nonmelanoma skin cancer cells.

    Science.gov (United States)

    Szeimies, R M; Karrer, S

    2006-05-01

    Epithelial cancers of the skin, e.g. basal cell carcinoma and squamous cell carcinoma, are the most common tumours in humans with increasing incidence. Hence the development of new therapeutic strategies is of utmost interest. For many years the most often used conventional therapies for these diseases were surgical procedures such as curettage and electrodesiccation, excision or, with so far the best outcome in terms of remission rates, micrographic surgery. Other ablative treatment modalities are cryotherapy, radiation therapy or the use of lasers (Er:YAG, CO(2)). All those above-mentioned treatments have in common that they are quite unspecific and do not target the tumour itself or its environment, thus leading to unwanted effects in the surrounding tissue such as scar formation or other cosmetically disfiguring events. Therefore, the development of novel, more pathogenesis-based therapies such as the use of retinoids, cyclooxygenase inhibitors, topical immunomodulators, inhibitors of the sonic-hedgehog signalling pathway or photodynamic therapy are challenging new approaches.

  10. Exploring targeted therapy of osteosarcoma using proteomics data

    Science.gov (United States)

    Chaiyawat, Parunya; Settakorn, Jongkolnee; Sangsin, Apiruk; Teeyakasem, Pimpisa; Klangjorhor, Jeerawan; Soongkhaw, Aungsumalee; Pruksakorn, Dumnoensun

    2017-01-01

    Despite multimodal therapeutic treatments of osteosarcoma (OS), some patients develop resistance to currently available regimens and eventually end up with recurrent or metastatic outcomes. Many attempts have been made to discover effective drugs for improving outcome; however, due to the heterogeneity of the disease, new therapeutic options have not yet been identified. This study aims to explore potential targeted therapy related to protein profiles of OS. In this review of proteomics studies, we extracted data on differentially expressed proteins (DEPs) from archived literature in PubMed and our in-house repository. The data were divided into three experimental groups, DEPs in 1) OS/OB: OS vs osteoblastic (OB) cells, 2) metastasis: metastatic vs non-metastatic sublines plus fresh tissues from primary OS with and without pulmonary metastasis, and 3) chemoresistance: spheroid (higher chemoresistance) vs monolayer cells plus fresh tissues from biopsies from good and poor responders. All up-regulated protein entities in the list of DEPs were sorted and cross-referenced with identifiers of targets of US Food and Drug Administration (FDA)-approved agents and chemical inhibitors. We found that many targets of FDA-approved antineoplastic agents, mainly a group of epigenetic regulators, kinases, and proteasomes, were highly expressed in OS cells. Additionally, some overexpressed proteins were targets of FDA-approved non-cancer drugs, including immunosuppressive and antiarrhythmic drugs. The resulting list of chemical agents showed that some transferase enzyme inhibitors might have anticancer activity. We also explored common targets of OS/OB and metastasis groups, including amidophosphoribosyltransferase (PPAT), l-lactate dehydrogenase B chain (LDHB), and pyruvate kinase M2 (PKM2) as well as the common target of all categories, cathepsin D (CTSD). This study demonstrates the benefits of a text mining approach to exploring therapeutic targets related to protein expression

  11. Prostate cancer heterogeneity: Discovering novel molecular targets for therapy.

    Science.gov (United States)

    Ciccarese, Chiara; Massari, Francesco; Iacovelli, Roberto; Fiorentino, Michelangelo; Montironi, Rodolfo; Di Nunno, Vincenzo; Giunchi, Francesca; Brunelli, Matteo; Tortora, Giampaolo

    2017-03-01

    Prostate cancer (PCa) shows a broad spectrum of biological and clinical behavior, which represents the epiphenomenon of an extreme genetic heterogeneity. Recent genomic profiling studies have deeply improved the knowledge of the genomic landscape of localized and metastatic PCa. The AR and PI3K/Akt/mTOR signaling pathways are the two most frequently altered, representing therefore interestingly targets for therapy. Moreover, somatic or germline aberrations of DNA repair genes (DRGs) have been observed at high frequency, supporting the potential role of platinum derivatives and PARP inhibitors as effective therapeutic strategies. In the future, the identification of driver mutations present at a specific stage of the disease, the classification PCa based on specific molecular alterations, and the selection of the most appropriate therapy based on biomarkers predictors of response represent the foundations for an increasingly more accurate personalized medicine. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Denosumab for bone diseases: translating bone biology into targeted therapy.

    Science.gov (United States)

    Tsourdi, Elena; Rachner, Tilman D; Rauner, Martina; Hamann, Christine; Hofbauer, Lorenz C

    2011-12-01

    Signalling of receptor activator of nuclear factor-κB (RANK) ligand (RANKL) through RANK is a critical pathway to regulate the differentiation and activity of osteoclasts and, hence, a master regulator of bone resorption. Increased RANKL activity has been demonstrated in diseases characterised by excessive bone loss such as osteoporosis, rheumatoid arthritis and osteolytic bone metastases. The development and approval of denosumab, a fully MAB against RANKL, has heralded a new era in the treatment of bone diseases by providing a potent, targeted and reversible inhibitor of bone resorption. This article summarises the molecular and cellular biology of the RANKL/RANK system and critically reviews preclinical and clinical studies that have established denosumab as a promising novel therapy for metabolic and malignant bone diseases. We will discuss the potential indications for denosumab along with a critical review of safety and analyse its potential within the concert of established therapies.

  13. Targeted Radionuclide Therapy: An Evolution Toward Precision Cancer Treatment.

    Science.gov (United States)

    Jadvar, Hossein

    2017-08-01

    This article reviews recent developments in targeted radionuclide therapy (TRT) approaches directed to malignant liver lesions, bone metastases, neuroendocrine tumors, and castrate-resistant metastatic prostate cancer and discusses challenges and opportunities in this field. TRT has been employed since the first radioiodine thyroid treatment almost 75 years ago. Progress in the understanding of the complex underlying biology of cancer and advances in radiochemistry science, multimodal imaging techniques including the concept of "see and treat" within the framework of theranostics, and universal traction with the notion of precision medicine have all contributed to a resurgence of TRT.

  14. Target volumes in radiation therapy of childhood brain tumours

    International Nuclear Information System (INIS)

    Habrand, J.L.; Abdulkarim, B.; Beaudre, A.; El Khouri, M.; Kalifa, C.

    2001-01-01

    Pediatric tumors have enjoyed considerable improvements for the past 30 years. This is mainly due to the extensive use of combined therapeutical modalities in which chemotherapy plays a prominent role. In many children, local treatment including radiotherapy, can nowadays be adapted in terms of target volume and dose to the 'response' to an initial course of chemotherapy almost on a case by case basis. This makes precise recommendation on local therapy highly difficult in this age group. We will concentrate in this paper on brain tumors in which chemotherapy is of limited value and radiotherapy still plays a key-role. (authors)

  15. Novel drugs targeting Toll-like receptors for antiviral therapy.

    Science.gov (United States)

    Patel, Mira C; Shirey, Kari Ann; Pletneva, Lioubov M; Boukhvalova, Marina S; Garzino-Demo, Alfredo; Vogel, Stefanie N; Blanco, Jorge Cg

    2014-09-01

    Toll-like receptors (TLRs) are sentinel receptors of the host innate immune system that recognize conserved 'pathogen-associated molecular patterns' of invading microbes, including viruses. The activation of TLRs establishes antiviral innate immune responses and coordinates the development of long-lasting adaptive immunity in order to control viral pathogenesis. However, microbe-induced damage to host tissues may release 'danger-associated molecular patterns' that also activate TLRs, leading to an overexuberant inflammatory response and, ultimately, to tissue damage. Thus, TLRs have proven to be promising targets as therapeutics for the treatment of viral infections that result in inflammatory damage or as adjuvants in order to enhance the efficacy of vaccines. Here, we explore recent advances in TLR biology with a focus on novel drugs that target TLRs (agonists and antagonists) for antiviral therapy.

  16. Biomedical nanotechnology for molecular imaging, diagnostics, and targeted therapy.

    Science.gov (United States)

    Nie, Shuming

    2009-01-01

    Biomedical nanotechnology is a cross-disciplinary area of research in science, engineering and medicine with broad applications for molecular imaging, molecular diagnosis, and targeted therapy. The basic rationale is that nanometer-sized particles such as semiconductor quantum dots and iron oxide nanocrystals have optical, magnetic or structural properties that are not available from either molecules or bulk solids. When linked with biotargeting ligands such as monoclonal antibodies, peptides or small molecules, these nanoparticles can be used to target diseased cells and organs (such as malignant tumors and cardiovascular plaques) with high affinity and specificity. In the "mesoscopic" size range of 5-100 nm diameter, nanoparticles also have large surface areas and functional groups for conjugating to multiple diagnostic (e.g., optical, radioisotopic, or magnetic) and therapeutic (e.g., anticancer) agents.

  17. Asthma Endotypes and an Overview of Targeted Therapy for Asthma

    Directory of Open Access Journals (Sweden)

    Sarah Svenningsen

    2017-09-01

    Full Text Available Guidelines for the management of severe asthma do not emphasize the measurement of the inflammatory component of airway disease to indicate appropriate treatments or to monitor response to treatment. Inflammation is a central component of asthma and contributes to symptoms, physiological, and structural abnormalities. It can be assessed by a number of endotyping strategies based on “omics” technology such as proteomics, transcriptomics, and metabolomics. It can also be assessed using simple cellular responses by quantitative cytometry in sputum. Bronchitis may be eosinophilic, neutrophilic, mixed-granulocytic, or paucigranulocytic (eosinophils and neutrophils not elevated. Eosinophilic bronchitis is usually a Type 2 (T2-driven process and therefore a sputum eosinophilia of greater than 3% usually indicates a response to treatment with corticosteroids or novel therapies directed against T2 cytokines such as IL-4, IL-5, and IL-13. Neutrophilic bronchitis represents a non-T2-driven disease, which is generally a predictor of response to antibiotics and may be a predictor to therapies targeted at pathways that lead to neutrophil recruitment such as TNF, IL-1, IL-6, IL-8, IL-23, and IL-17. Paucigranulocytic disease may not warrant anti-inflammatory therapy. These patients, whose symptoms may be driven largely by airway hyper-responsiveness may benefit from smooth muscle-directed therapies such as bronchial thermoplasty or mast-cell directed therapies. This review will briefly summarize the current knowledge regarding “omics-based signatures” and cellular endotyping of severe asthma and give an overview of segmentation of asthma therapeutics guided by the endotype.

  18. C595 antibody: A potential vector for targeted alpha therapy

    International Nuclear Information System (INIS)

    Perkins, A.C.; Allen, B.J.

    2005-01-01

    Full text: Mucins are high molecular-weight heavily glycosylated glycoproteins with many oligosaccharide side-chains, linked to a protein backbone called apomucin. A total of 19 different mucin genes (MUC1-MUC4, MUC5B, MUC5AC, MUC6-MUC18) have been identified to date. Mucins are present on the surface of most epithelial cells and play a role in their protection and lubrication. In cancer cells the mucin molecule becomes altered, thus representing an important target for diagnosis and therapy. Urinary epithelial mucin1 (MUC1) is found to be frequently up-regulated and abnormally glycosylated in a number of common malignancies, including breast, bladder, colon, ovarian and gastric cancer. The monoclonal antibody C595 is an IgG3 murine MAb raised against the protein core of human MUC1. Epitope mapping has shown that C595 recognizes a tetrapeptide motif (RPAP) within the protein core of MUC1 mucin that contains a large domain of multiples of a highly conserved 20-amino-acid-repeat sequence (PDTRPAPGSTAPPAHGVTSA). This antibody has previously been radiolabelled with 99m Tc and 111 In and used for imaging a range of tumour types including ovary, breast and bladder. The antibody has also been radiolabelled with 67 Cu and 188 Re for the therapy of superficial bladder cancer. More recently we have investigated the pre-clinical use of the C595 antibody for targeted alpha therapy using 213 Bi which emits alpha particles with high linear energy transfer (LET), short range (80 m) radiation and has a short physical half-life of 45.6 minutes. Alpha particles are some 7300 times heavier than beta particles and in theory, following binding of an alpha immunocongugates to the target, a large fraction of the alpha particle energy is delivered to cancer cells, with minimal concomitant radiation of normal tissues. 213 Bi was produced from the 225 Ac/ 213 Bi generator. For antibody conjugation the chelator, cyclic diethylenetriaminepentacetic acid anhydride (DTPA) was used. Initial

  19. Targeted radionuclide therapy in combined-modality regimens.

    Science.gov (United States)

    Gill, Martin R; Falzone, Nadia; Du, Yong; Vallis, Katherine A

    2017-07-01

    Targeted radionuclide therapy (TRT) is a branch of cancer medicine concerned with the use of radioisotopes, radiolabelled molecules, nanoparticles, or microparticles that either naturally accumulate in or are designed to target tumours. TRT combines the specificity of molecular and sometimes physical targeting with the potent cytotoxicity of ionising radiation. Targeting vectors for TRT include antibodies, antibody fragments, proteins, peptides, and small molecules. The diversity of available carrier molecules, together with the large panel of suitable radioisotopes with unique physicochemical properties, allows vector-radionuclide pairings to be matched to the molecular, pathological, and physical characteristics of a tumour. Some pairings are designed for dual therapeutic and diagnostic applications. Use of TRT is increasing with the adoption into practice of radium-223 dichloride for the treatment of bone metastases and with the ongoing clinical development of, among others, 177 Lu-dodecanetetraacetic acid tyrosine-3-octreotate (DOTATATE) for the treatment of neuroendocrine tumours and 90 Y-microspheres for the treatment of hepatic tumours. The increasing use of TRT raises the question of how best to integrate TRT into multimodality protocols. Achievements in this area and the future prospects of TRT are evaluated in this Review. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Targeted Therapies for Brain Metastases from Breast Cancer

    Directory of Open Access Journals (Sweden)

    Vyshak Alva Venur

    2016-09-01

    Full Text Available The discovery of various driver pathways and targeted small molecule agents/antibodies have revolutionized the management of metastatic breast cancer. Currently, the major targets of clinical utility in breast cancer include the human epidermal growth factor receptor 2 (HER2 and epidermal growth factor receptor (EGFR, vascular endothelial growth factor (VEGF receptor, mechanistic target of rapamycin (mTOR pathway, and the cyclin-dependent kinase 4/6 (CDK-4/6 pathway. Brain metastasis, however, remains a thorn in the flesh, leading to morbidity, neuro-cognitive decline, and interruptions in the management of systemic disease. Approximately 20%–30% of patients with metastatic breast cancer develop brain metastases. Surgery, whole brain radiation therapy, and stereotactic radiosurgery are the traditional treatment options for patients with brain metastases. The therapeutic paradigm is changing due to better understanding of the blood brain barrier and the advent of tyrosine kinase inhibitors and monoclonal antibodies. Several of these agents are in clinical practice and several others are in early stage clinical trials. In this article, we will review the common targetable pathways in the management of breast cancer patients with brain metastases, and the current state of the clinical development of drugs against these pathways.

  1. Targeted cancer therapy through antibody fragments-decorated nanomedicines.

    Science.gov (United States)

    Alibakhshi, Abbas; Abarghooi Kahaki, Fatemeh; Ahangarzadeh, Shahrzad; Yaghoobi, Hajar; Yarian, Fatemeh; Arezumand, Roghaye; Ranjbari, Javad; Mokhtarzadeh, Ahad; de la Guardia, Miguel

    2017-12-28

    Active targeting in cancer nanomedicine, for improved delivery of agents and diagnose, has been reviewed as a successful way for facilitating active uptake of theranostic agents by the tumor cells. The application of a targeting moiety in the targeted carrier complexes can play an important role in differentiating between tumor and healthy tissues. The pharmaceutical carriers, as main part of complexes, can be polymeric nanoparticles, micelles, liposomes, nanogels and carbon nanotubes. The antibodies are among the natural ligands with highest affinity and specificity to target pharmaceutical nanoparticle conjugates. However, the limitations, such as size and long circulating half-lives, hinder reproducible manufacture in clinical studies. Therefore, novel approaches have moved towards minimizing and engineering conventional antibodies as fragments like scFv, Fab, nanobody, bispecific antibody, bifunctional antibody, diabody and minibody preserving their functional potential. Different formats of antibody fragments have been reviewed in this literature update, in terms of structure and function, as smart ligands in cancer diagnosis and therapy of tumor cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Severe gastrointestinal bleeding due to erlotinib and celecoxib therapy: additional effect?

    Directory of Open Access Journals (Sweden)

    Maddalena Zippi

    2016-08-01

    Full Text Available Non-small cell lung cancer (NSCLC is the leading cause of cancer-related dead worldwide and accounts for over 85% of all lung cancers. Furthermore, the majority of patients with NSCLC present with advanced, metastatic disease at the time of diagnosis. For most patients with non-small cell lung cancer, current treatments do not cure the cancer. Therefore, there is a great need for development of more effective therapies. The epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs like erlotinib and gefitinib have been recognized as an important molecular target in cancer therapy and they are approved for the treatment of refractory advanced NSCLC patients. EGFR TKIs are generally well tolerated. The two most common toxicities include dermatologic and gastrointestinal side effects. Cases of gastrointestinal perforation, some of which were fatal, have also been reported in patients receiving erlotinib. Patients at increased risk include those taking concomitant anti-angiogenic agents, corticosteroids, non-steroidal anti-inflammatory drugs, and/or taxane-based chemotherapy, or who have prior history of peptic ulceration or diverticular disease.

  3. Coupled cellular therapy and magnetic targeting for airway regeneration.

    Science.gov (United States)

    Ordidge, Katherine L; Gregori, Maria; Kalber, Tammy L; Lythgoe, Mark F; Janes, Sam M; Giangreco, Adam

    2014-06-01

    Airway diseases including COPD (chronic obstructive pulmonary disease), cystic fibrosis and lung cancer are leading causes of worldwide morbidity and mortality, with annual healthcare costs of billions of pounds. True regeneration of damaged airways offers the possibility of restoring lung function and protecting against airway transformation. Recently, advances in tissue engineering have allowed the development of cadaveric and biosynthetic airway grafts. Although these have produced encouraging results, the ability to achieve long-term functional airway regeneration remains a major challenge. To promote regeneration, exogenously delivered stem and progenitor cells are being trialled as cellular therapies. Unfortunately, current evidence suggests that only small numbers of exogenously delivered stem cells engraft within lungs, thereby limiting their utility for airway repair. In other organ systems, magnetic targeting has shown promise for improving long-term robust cell engraftment. This technique involves in vitro cell expansion, magnetic actuation and magnetically guided cell engraftment to sites of tissue damage. In the present paper, we discuss the utility of coupling stem cell-mediated cellular therapy with magnetic targeting for improving airway regeneration.

  4. Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy

    Directory of Open Access Journals (Sweden)

    Xiang-Hong Peng

    2008-10-01

    Full Text Available Xiang-Hong Peng1,4, Ximei Qian2,4, Hui Mao3,4, Andrew Y Wang5, Zhuo (Georgia Chen1,4, Shuming Nie2,4, Dong M Shin1,4*1Department of Medical Oncology/Hematology; 2Department of Biomedical Engineering; 3Department of Radiology; 4Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA; 5Ocean Nanotech, LLC, Fayetteville, AR, USAAbstract: Magnetic iron oxide (IO nanoparticles with a long blood retention time, biodegradability and low toxicity have emerged as one of the primary nanomaterials for biomedical applications in vitro and in vivo. IO nanoparticles have a large surface area and can be engineered to provide a large number of functional groups for cross-linking to tumor-targeting ligands such as monoclonal antibodies, peptides, or small molecules for diagnostic imaging or delivery of therapeutic agents. IO nanoparticles possess unique paramagnetic properties, which generate significant susceptibility effects resulting in strong T2 and T*2 contrast, as well as T1 effects at very low concentrations for magnetic resonance imaging (MRI, which is widely used for clinical oncology imaging. We review recent advances in the development of targeted IO nanoparticles for tumor imaging and therapy.Keywords: iron oxide nanoparticles, tumor imaging, MRI, therapy

  5. Models for discovery of targeted therapy in genetic epileptic encephalopathies.

    Science.gov (United States)

    Maljevic, Snezana; Reid, Christopher A; Petrou, Steven

    2017-10-01

    Epileptic encephalopathies are severe disorders emerging in the first days to years of life that commonly include refractory seizures, various types of movement disorders, and different levels of developmental delay. In recent years, many de novo occurring variants have been identified in individuals with these devastating disorders. To unravel disease mechanisms, the functional impact of detected variants associated with epileptic encephalopathies is investigated in a range of cellular and animal models. This review addresses efforts to advance and use such models to identify specific molecular and cellular targets for the development of novel therapies. We focus on ion channels as the best-studied group of epilepsy genes. Given the clinical and genetic heterogeneity of epileptic encephalopathy disorders, experimental models that can reflect this complexity are critical for the development of disease mechanisms-based targeted therapy. The convergence of technological advances in gene sequencing, stem cell biology, genome editing, and high throughput functional screening together with massive unmet clinical needs provides unprecedented opportunities and imperatives for precision medicine in epileptic encephalopathies. © 2017 International Society for Neurochemistry.

  6. Synergistic anti-tumor effects of bevacizumab and tumor targeted polymerized VEGF siRNA nanoparticles.

    Science.gov (United States)

    Kim, Myung Goo; Jo, Sung Duk; Yhee, Ji Young; Lee, Beom Suk; Lee, So Jin; Park, Sung Gurl; Kang, Sun-Woong; Kim, Sun Hwa; Jeong, Ji Hoon

    2017-07-15

    A variety of VEGF inhibitors have been reported to treat cancers by suppressing tumor angiogenesis. Bevacizumab, a monoclonal VEGF antibody, was the first FDA approved anti-angiogenic agent for cancer treatments. However, bevacizumab shows modest therapeutic efficiency and often cause resistant problem in significant populations of cancer patients. To solve these problem, we investigated the therapeutic efficacy of siRNA drugs targeting VEGF and combination of the RNAi drug with bevacizumab for cancer treatments. For efficient VEGF siRNA delivery, chemically polymerized siRNAs were complexed with thiolated-glycol chitosan (psi(VEGF)/tGC). The poly-VEGF siRNA and thiolated-glycol chitosan formed stable nanoparticles via electrostatic interaction and chemical crosslinking, and showed high accumulation in tumor tissues resulting in efficient gene silencing. Both VEGF siRNA nanoparticles and bevacizumab had efficient therapeutic effects in tumor xenograft mouse models. Interestingly, most pronounced therapeutic efficacy was observed when the two distinct VEGF inhibitors were treated in combination revealing synergistic effects. The results showed that the psi(VEGF)/tGC nanoparticle mediated knockdown of VEGF exerts anti-tumor effects and the combination treatments with bevacizumab can extend the treatments options to conventional bevacizumab treatments for cancer therapy. Copyright © 2017. Published by Elsevier Inc.

  7. New Targets for End-Stage Chronic Kidney Disease Therapy

    Directory of Open Access Journals (Sweden)

    Prakoura Niki

    2015-05-01

    Full Text Available Severe forms of chronic kidney disease can lead to a critical, end-stage condition, requiring renal replacement therapy, which may involve a form of dialysis or renal transplantation. Identification and characterization of novel markers and/or targets of therapy that could be applied in these critically ill patients remains the focus of the current research in the field of critical care medicine and has been the objective of our studies for some years past. To this end, we used models of renal vascular disease, Ang II, L-NAME or mice overexpressing renin, treated with AT1 antagonists at different stages of progression, to create cohorts of animals during progression, reversal or escape from therapy. Transcriptomic analysis and comparisons were performed and genes were selected according to the following criteria: a not previously described in the kidney, b highly upregulated during progression and returning to the normal levels during reversal, and c producing proteins that are either circulating or membrane receptors.

  8. Melanoma Therapy via Peptide-Targeted a-Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Yubin; Hylarides, Mark; Fisher, Darrell R.; Shelton, Tiffani; Moore, Herbert A.; Wester, Dennis W.; Fritzberg, Alan R.; Winkelmann, Christopher T.; Hoffman, Timothy J.; Quinn, Thomas P.

    2005-08-01

    Malignant melanoma is the most lethal form of skin cancer. Current chemotherapy and external beam radiation therapy regimens are ineffective agents against melanoma, as shown by a 10-year survival rate for patients with disseminated disease of approximately 5% (reference?). In this study, the unique combination of a melanoma targeting peptide and an in vivo generated a-particle emitting radioisotope was investigated for its melanoma therapy potential. Alpha-radiation is densely ionizing and energy is locally absorbed, resulting in high concentrations of destructive free radicals and irreparable DNA double strand breaks. This high linear-energy-transfer overcomes radiation resistant tumor cells and oxygen-enhancement effects. The melanoma targeting peptide DOTA-Re(Arg11)CCMSH was radiolabeled with 212Pb, the parent of 212Bi, which decays via alpha and beta decay. Biodistribution and therapy studies were performed in the B16/F1 melanoma bearing C57 mouse flank tumor model. 212Pb[DOTA]-R e(Arg11)CCMSH exhibited rapid tumor uptake and extended retention coupled with rapid whole body disappearance. Radiation dose delivered to the tumor was estimated to be 61 cGy/uCi 212Pb administered. Treatment of melanoma-bearing mice with 50, 100 and 200 uCi of 212Pb[DOTA]-Re(Arg11)CCMSH extended mean survival of mice to 22, 28, and 49.8 days, respectively, compared to the 14.6 day mean survival of the placebo control group. Forty-five percent of the mice receiving 200 uCi survived the study disease-free.

  9. Novel epigenetic target therapy for prostate cancer: a preclinical study.

    Directory of Open Access Journals (Sweden)

    Ilaria Naldi

    Full Text Available Epigenetic events are critical contributors to the pathogenesis of cancer, and targeting epigenetic mechanisms represents a novel strategy in anticancer therapy. Classic demethylating agents, such as 5-Aza-2'-deoxycytidine (Decitabine, hold the potential for reprograming somatic cancer cells demonstrating high therapeutic efficacy in haematological malignancies. On the other hand, epigenetic treatment of solid tumours often gives rise to undesired cytotoxic side effects. Appropriate delivery systems able to enrich Decitabine at the site of action and improve its bioavailability would reduce the incidence of toxicity on healthy tissues. In this work we provide preclinical evidences of a safe, versatile and efficient targeted epigenetic therapy to treat hormone sensitive (LNCap and hormone refractory (DU145 prostate cancers. A novel Decitabine formulation, based on the use of engineered erythrocyte (Erythro-Magneto-Hemagglutinin Virosomes, EMHVs drug delivery system (DDS carrying this drug, has been refined. Inside the EMHVs, the drug was shielded from the environment and phosphorylated in its active form. The novel magnetic EMHV DDS, endowed with fusogenic protein, improved the stability of the carried drug and exhibited a high efficiency in confining its delivery at the site of action in vivo by applying an external static magnetic field. Here we show that Decitabine loaded into EMHVs induces a significant tumour mass reduction in prostate cancer xenograft models at a concentration, which is seven hundred times lower than the therapeutic dose, suggesting an improved pharmacokinetics/pharmacodynamics of drug. These results are relevant for and discussed in light of developing personalised autologous therapies and innovative clinical approach for the treatment of solid tumours.

  10. Stem cells’ guided gene therapy of cancer: New frontier in personalized and targeted therapy

    Directory of Open Access Journals (Sweden)

    Mavroudi M

    2014-01-01

    Full Text Available Diagnosis and therapy of cancer remain to be the greatest challenges for all physicians working in clinical oncology and molecular medicine. The grim statistics speak for themselves with reports of 1,638,910 men and women diagnosed with cancer and nearly 577,190 patients passed away due to cancer in the USA in 2012. For practicing clinicians, who treat patients suffering from advanced cancers with contemporary systemic therapies, the main challenge is to attain therapeutic efficacy, while minimizing side effects. Unfortunately, all contemporary systemic therapies cause side effects. In treated patients, these side effects may range from nausea to damaged tissues. In cancer survivors, the iatrogenic outcomes of systemic therapies may include genomic mutations and their consequences. Therefore, there is an urgent need for personalized and targeted therapies. Recently, we reviewed the current status of suicide gene therapy for cancer. Herein, we discuss the novel strategy: genetically engineered stem guided gene therapy. Stem cells have the unique potential for self-renewal and differentiation. This potential is the primary reason for introducing them into medicine to regenerate injured or degenerated organs, as well as to rejuvenate aging tissues. Recent advances in genetic engineering and stem cell research have created the foundations for genetic engineering of stem cells as the vectors for delivery of therapeutic transgenes. Specifically in oncology, the stem cells are genetically engineered to deliver the cell suicide inducing genes selectively to the cancer cells. Expression of the transgenes kills the cancer cells, while leaving healthy cells unaffected. Herein, we present various strategies to bioengineer suicide inducing genes and stem cell vectors. Moreover, we review results of the main preclinical studies and clinical trials. However, the main risk for therapeutic use of stem cells is their cancerous transformation. Therefore, we

  11. Targeted therapies for diarrhea-predominant irritable bowel syndrome

    Science.gov (United States)

    Olden, Kevin W

    2012-01-01

    Irritable bowel syndrome (IBS) causes gastrointestinal symptoms such as abdominal pain, bloating, and bowel pattern abnormalities, which compromise patients’ daily functioning. Common therapies address one or two IBS symptoms, while others offer wider symptom control, presumably by targeting pathophysiologic mechanisms of IBS. The aim of this targeted literature review was to capture clinical trial reports of agents receiving the highest recommendation (Grade 1) for treatment of IBS from the 2009 American College of Gastroenterology IBS Task Force, with an emphasis on diarrhea-predominant IBS. Literature searches in PubMed captured articles detailing randomized placebo-controlled trials in IBS/diarrhea-predominant IBS for agents receiving Grade I (strong) 2009 American College of Gastroenterology IBS Task Force recommendations: tricyclic antidepressants, nonabsorbable antibiotics, and the 5-HT3 receptor antagonist alosetron. Studies specific for constipation-predominant IBS were excluded. Tricyclic antidepressants appear to improve global IBS symptoms but have variable effects on abdominal pain and uncertain tolerability; effects on stool consistency, frequency, and urgency were not adequately assessed. Nonabsorbable antibiotics show positive effects on global symptoms, abdominal pain, bloating, and stool consistency but may be most efficacious in patients with altered intestinal microbiota. Alosetron improves global symptoms and abdominal pain and normalizes bowel irregularities, including stool frequency, consistency, and fecal urgency. Both the nonabsorbable antibiotic rifaximin and the 5-HT3 receptor antagonist alosetron improve quality of life. Targeted therapies provide more complete relief of IBS symptoms than conventional agents. Familiarization with the quantity and quality of evidence of effectiveness can facilitate more individualized treatment plans for patients with this heterogeneous disorder. PMID:22754282

  12. Alopecia in patients treated with molecularly targeted anticancer therapies.

    Science.gov (United States)

    Belum, V R; Marulanda, K; Ensslin, C; Gorcey, L; Parikh, T; Wu, S; Busam, K J; Gerber, P A; Lacouture, M E

    2015-12-01

    The introduction of molecularly targeted anticancer therapies presents new challenges, among which dermatologic adverse events are noteworthy. Alopecia in particular is frequently reported, but the true incidence is not known. We sought to ascertain the incidence and risk of developing alopecia during treatment with approved inhibitors of oncogenic pathways and molecules [anaplastic lymphoma kinase, breakpoint cluster region-abelson, B-rapidly accelerated fibrosarcoma, Bruton's tyrosine kinase, cytotoxic T-lymphocyte antigen-4, epidermal growth factor receptor, human epidermal growth factor receptor-2, Janus kinase, MAPK/ERK (extracellular signal-regulated kinase) Kinase, mammalian target of rapamycin, smoothened, vascular endothelial growth factor, vascular endothelial growth factor receptor, platelet derived growth factor receptor; proteasomes; CD20, CD30, CD52]. Electronic database (PubMed, Web of Science) and ASCO meeting abstract searches were conducted to identify clinical trials reporting alopecia. Meta-analysis was conducted utilizing fixed- or random-effects models. The calculated overall incidence of all-grade alopecia was 14.7% [95% confidence interval (CI) 12.6% to 17.2%]-lowest with bortezomib, 2.2% (95% CI 0.4% to 10.9%), and highest with vismodegib, 56.9% (95% CI 50.5% to 63.1%). There was an increased risk of all-grade alopecia [relative risk (RR), 7.9 (95% CI 6.2-10.09, P ≤ 0.01)] compared with placebo, but when compared with chemotherapy, the risk was lower [RR, 0.32 (95% CI 0.2-0.55, P ≤ 0.01)]. Targeted therapies are associated with an increased risk of alopecia. © The Author 2015. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. Mitosis-targeting natural products for cancer prevention and therapy.

    Science.gov (United States)

    Rao, Chinthalapally V; Kurkjian, Carla D; Yamada, Hiroshi Y

    2012-12-01

    Mitosis is a complex process resulting in division of a cell into two daughter cells, and its failure often results in the death of the daughter cells (via apoptotic, necrotic, or proliferative/senescent death). Many chemicals that inhibit the mitotic process (anti-mitotic drugs) have proven effective for killing cancer cells in vitro and in clinical settings. Among the most studied anti-mitotic drugs are plant-origin natural products including taxanes (e.g. paclitaxel, docetaxel) and vinca alkaloids (e.g. vincristine, vinblastine), whose validated target is the spindle microtubules. With the success of these agents, efforts have been made to develop other spindle poisons as well as to improve efficacy of existing spindle poisons with structural modifications. Novel drugs and natural products that inhibit other proteins involved in mitosis (nonmicrotubule targets) have been sought in hopes of expanding available cancer-directed therapies. Recently, significant advances have been made in the understanding of mitotic mechanisms in tumor cells as well as in normal epithelial cells. These advances help us to identify and develop potential natural agents for the prevention and treatment of cancer. This review will focus on natural products that target mitotic process and/or proteins involved in mitotic progression.

  14. Optimization of a siRNA Carrier Modified with a pH-Sensitive Cationic Lipid and a Cyclic RGD Peptide for Efficiently Targeting Tumor Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Tomoya Hada

    2015-09-01

    Full Text Available In recent years, anti-angiogenic therapy has attracted much interest because it is a versatile approach to treating most types of tumors, and therefore would be expected to be applicable for various cancers. Severe adverse events in patients treated with currently available anti-angiogenic therapeutics have, however, been reported, and these are caused by their inhibitory effects in normal tissue. To achieve an efficient anti-angiogenic therapy with minimal toxicity, a drug delivery system (DDS specific to tumor endothelial cells (TECs is needed. Cyclic RGD (cRGD is a well-known ligand against αVβ3 integrin that is expressed at high levels in the cell surface of TECs. To address this issue, we previously developed a cyclic RGD-equipped liposomal DDS (RGD-MEND in which small interfering RNA (siRNA was encapsulated. However, in the previous study, details of the preparation steps were not thoroughly examined. In this paper, to produce the most efficient delivery of therapeutic TECs, we explored optimum preparation conditions and components of the RGD-MEND. The cellular uptake and silencing ability of the RGD-MEND were investigated as a function of ligand density, poly(ethyleneglycol linker length, and lipid composition. As a result, a knockdown efficiency that was five-fold higher than that of the previously reported one (ED50, from 4.0 to 0.75 mg/kg was achieved.

  15. Radioiodine Therapy in Differentiated Thyroid Cancer: The First Targeted Therapy in Oncology

    Directory of Open Access Journals (Sweden)

    June-Key Chung

    2014-09-01

    Full Text Available Iodide uptake across the membranes of thyroid follicular cells and cancer cells occurs through an active transport process mediated by the sodium-iodide symporter (NIS. The rat and human NIS-coding genes were cloned and identified in 1996. Evaluation of NIS gene and protein expression is critical for the management of thyroid cancer, and several approaches to increase NIS levels have been tried. Identification of the NIS gene has provided a means of expanding its role in radionuclide therapy and molecular target-specific theragnosis (therapy and diagnosis using the same molecular target. In this article, we describe the relationship between NIS expression and the thyroid carcinoma treatment using I-131 and alternative therapeutic approaches.

  16. Tumor angiogenesis--a new therapeutic target in gliomas

    DEFF Research Database (Denmark)

    Lund, E L; Spang-Thomsen, M; Skovgaard-Poulsen, H

    1998-01-01

    Tumor growth is critically dependent on angiogenesis, which is sprouting of new vessels from pre-existing vasculature. This process is regulated by inducers and inhibitors released from tumor cells, endothelial cells, and macrophages. Brain tumors, especially glioblastoma multiforme, have...... significant angiogenic activity primarily by the expression of the angiogenic factor VEGF Anti-angiogenic therapy represents a new promising therapeutic modality in solid tumors. Several agents are currently under evaluation in clinical trials. The present review describes the principal inducers...... and inhibitors of angiogenesis in tumors and summarizes what is known about their mechanisms of action in relation to CNS tumors. Potential areas for clinical use are also discussed....

  17. Interleukin-1 beta targeted therapy for type 2 diabetes

    DEFF Research Database (Denmark)

    Maedler, K.; Dharmadhikari, G.; Schumann, D.M.

    2009-01-01

    . It plays a role in various diseases, including autoimmune diseases such as rheumatoid arthritis, inflammatory bowel diseases and type 1 diabetes, as well as in diseases associated with metabolic syndrome such as atherosclerosis, chronic heart failure and type 2 diabetes. Macrophage are the primary source....... We highlight recent clinical studies and experiments in animals and isolated islets using IL-1beta as a potential target for the therapy of type 2 diabetes Udgivelsesdato: 2009/9....... Macrophage-derived IL-1beta production in insulin-sensitive organs, leads to progression of inflammation and induction of insulin resistance in obesity. We summarize the mechanisms involved in inflammation and specifically the IL-1beta signals that lead to the progression of insulin resistance and diabetes...

  18. Medullary Thyroid Carcinoma: Targeted Therapies and Future Directions

    Directory of Open Access Journals (Sweden)

    Scott N. Pinchot

    2009-01-01

    Full Text Available Medullary thyroid cancer (MTC is a rare neuroendocrine neoplasm that accounts for approximately 5% of all thyroid malignancies. The natural history of MTC is characterized by early lymph node and distant metastases, making complete surgical cure often impossible. Conventional chemotherapy and external beam radiation have been largely ineffective in altering the natural history of MTC. Therefore, there is a great need to develop novel therapeutic strategies to affect symptom control and reduce tumor burden in patients with widely disseminated disease. Here, we review several pathways which have been shown to be vital in MTC tumorigenesis and focus on the pathways of interest for which targeted drug therapies are currently being developed.

  19. Vibrio cholerae infection, novel drug targets and phage therapy.

    Science.gov (United States)

    Fazil, Mobashar Hussain Urf Turabe; Singh, Durg V

    2011-10-01

    Vibrio cholerae is the causative agent of the diarrheal disease cholera. Although antibiotic therapy shortens the duration of diarrhea, excessive use has contributed to the emergence of antibiotic resistance in V. cholerae. Mobile genetic elements have been shown to be largely responsible for the shift of drug resistance genes in bacteria, including some V. cholerae strains. Quorum sensing communication systems are used for interaction among bacteria and for sensing environmental signals. Sequence analysis of the ctxB gene of toxigenic V. cholerae strains demonstrated its presence in multiple cholera toxin genotypes. Moreover, bacteriophage that lyse the bacterium have been reported to modulate epidemics by decreasing the required infectious dose of the bacterium. In this article, we will briefly discuss the disease, its clinical manifestation, antimicrobial resistance and the novel approaches to locate drug targets to treat cholera.

  20. Physics at the biomolecular interface fundamentals for molecular targeted therapy

    CERN Document Server

    Fernández, Ariel

    2016-01-01

    This book focuses primarily on the role of interfacial forces in understanding biological phenomena at the molecular scale. By providing a suitable statistical mechanical apparatus to handle the biomolecular interface, the book becomes uniquely positioned to address core problems in molecular biophysics. It highlights the importance of interfacial tension in delineating a solution to the protein folding problem, in unravelling the physico-chemical basis of enzyme catalysis and protein associations, and in rationally designing molecular targeted therapies. Thus grounded in fundamental science, the book develops a powerful technological platform for drug discovery, while it is set to inspire scientists at any level in their careers determined to address the major challenges in molecular biophysics. The acknowledgment of how exquisitely the structure and dynamics of proteins and their aqueous environment are related attests to the overdue recognition that biomolecular phenomena cannot be effectively understood w...

  1. Structural and functional imaging for vascular targeted photodynamic therapy

    Science.gov (United States)

    Li, Buhong; Gu, Ying; Wilson, Brian C.

    2017-02-01

    Vascular targeted photodynamic therapy (V-PDT) has been widely used for the prevention or treatment of vascular-related diseases, such as localized prostate cancer, wet age-related macular degeneration, port wine stains, esophageal varices and bleeding gastrointestinal mucosal lesions. In this study, the fundamental mechanisms of vascular responses during and after V-PDT will be introduced. Based on the V-PDT treatment of blood vessels in dorsal skinfold window chamber model, the structural and functional imaging, which including white light microscopy, laser speckle imaging, singlet oxygen luminescence imaging, and fluorescence imaging for evaluating vascular damage will be presented, respectively. The results indicate that vessel constriction and blood flow dynamics could be considered as the crucial biomarkers for quantitative evaluation of vascular damage. In addition, future perspectives of non-invasive optical imaging for evaluating vascular damage of V-PDT will be discussed.

  2. Biologic Drugs: A New Target Therapy in COPD?

    Science.gov (United States)

    Yousuf, Ahmed; Brightling, Christopher E

    2018-04-23

    Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease associated with significant morbidity and mortality. Current diagnostic criteria based on the presence of fixed airflow obstruction and symptoms do not integrate the complex pathological changes occurring within the lung and they do not define different airway inflammatory patterns. The current management of COPD is based on 'one size fits all' approach and does not take the importance of heterogeneity in COPD population into account. The available treatments aim to alleviate symptoms and reduce exacerbation frequency but do not alter the course of the disease. Recent advances in molecular biology have furthered our understanding of inflammatory pathways in pathogenesis of COPD and have led to development of targeted therapies (biologics and small molecules) based on predefined biomarkers. Herein we shall review the trials of biologics in COPD and potential future drug developments in the field.

  3. Polo-like kinase 1 as target for cancer therapy

    Directory of Open Access Journals (Sweden)

    Weiß Lily

    2012-12-01

    Full Text Available Abstract Polo-like kinase 1 (Plk1 is an interesting molecule both as a biomarker and as a target for highly specific cancer therapy for several reasons. Firstly, it is over-expressed in many cancers and can serve as a biomarker to monitor treatment efficacy of Plk1 inhibitors. Furthermore, the Plk1 enzyme is expressed only in dividing cells and is a major regulator of the cell cycle. It controls entry into mitosis and regulates the spindle checkpoint. The expression of Plk1 in normal cells is not nearly as strong as that in cancer cells, which makes Plk1 a discriminating tartget for the development of cancer-specific small molecule drugs. RNA interference experiments in vitro and in vivo have indicated that downregulation of Plk1 expression represents an attractive concept for cancer therapy. Over the years, a number of Plk1 inhibitors have been discovered. Many of these inhibitors are substances that compete with ATP for the substrate binding site. The ATP-competitive inhibitor BI 6727 is currently being clinically tested in cancer patients. Another drug in development, poloxin, is the first Polo-box domain inhibitor of Plk1. This compound is a derivative of the natural product, thymoquinone, derived from Nigella sativa. A novel and promising strategy is to synthesize bifunctional inhibitors that combine the high binding affinity of ATP inhibitors with the specificity of competitive inhibitors.

  4. Molecular targeted treatment and radiation therapy for rectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Marquardt, Friederike; Roedel, Franz; Capalbo, Gianni; Weiss, Christian; Roedel, Claus [Dept. of Radiation Therapy, Univ. of Frankfurt/Main (Germany)

    2009-06-15

    Background: EGFR (epidermal growth factor receptor) and VEGF (vascular endothelial growth factor) inhibitors confer clinical benefit in metastatic colorectal cancer when combined with chemotherapy. An emerging strategy to improve outcomes in rectal cancer is to integrate biologically active, targeted agents as triple therapy into chemoradiation protocols. Material and methods: cetuximab and bevacizumab have now been incorporated into phase I-II studies of preoperative chemoradiation therapy (CRT) for rectal cancer. The rationale of these combinations, early efficacy and toxicity data, and possible molecular predictors for tumor response are reviewed. Computerized bibliographic searches of Pubmed were supplemented with hand searches of reference lists and abstracts of ASCO and ASTRO meetings. Results: the combination of cetuximab and CRT can be safely applied without dose compromises of the respective treatment components. Disappointingly low rates of pathologic complete remission have been noted in several phase II studies. The K-ras mutation status and the gene copy number of EGFR may predict tumor response. The toxicity pattern (radiation-induced enteritis, perforations) and surgical complications (wound healing, fistula, bleeding) observed in at least some of the clinical studies with bevacizumab and CRT warrant further investigations. Conclusion: longer follow-up (and, finally, randomized trials) is needed to draw any firm conclusions with respect to local and distant failure rates, and toxicity associated with these novel treatment approaches. (orig.)

  5. Autonomous targeting of infectious superspreaders using engineered transmissible therapies.

    Directory of Open Access Journals (Sweden)

    Vincent T Metzger

    2011-03-01

    Full Text Available Infectious disease treatments, both pharmaceutical and vaccine, face three universal challenges: the difficulty of targeting treatments to high-risk 'superspreader' populations who drive the great majority of disease spread, behavioral barriers in the host population (such as poor compliance and risk disinhibition, and the evolution of pathogen resistance. Here, we describe a proposed intervention that would overcome these challenges by capitalizing upon Therapeutic Interfering Particles (TIPs that are engineered to replicate conditionally in the presence of the pathogen and spread between individuals--analogous to 'transmissible immunization' that occurs with live-attenuated vaccines (but without the potential for reversion to virulence. Building on analyses of HIV field data from sub-Saharan Africa, we construct a multi-scale model, beginning at the single-cell level, to predict the effect of TIPs on individual patient viral loads and ultimately population-level disease prevalence. Our results show that a TIP, engineered with properties based on a recent HIV gene-therapy trial, could stably lower HIV/AIDS prevalence by ∼30-fold within 50 years and could complement current therapies. In contrast, optimistic antiretroviral therapy or vaccination campaigns alone could only lower HIV/AIDS prevalence by <2-fold over 50 years. The TIP's efficacy arises from its exploitation of the same risk factors as the pathogen, allowing it to autonomously penetrate superspreader populations, maintain efficacy despite behavioral disinhibition, and limit viral resistance. While demonstrated here for HIV, the TIP concept could apply broadly to many viral infectious diseases and would represent a new paradigm for disease control, away from pathogen eradication but toward robust disease suppression.

  6. Targeting DNA repair by coDbait enhances melanoma targeted radionuclide therapy.

    Science.gov (United States)

    Viallard, Claire; Chezal, Jean-Michel; Mishellany, Florence; Ranchon-Cole, Isabelle; Pereira, Bruno; Herbette, Aurélie; Besse, Sophie; Boudhraa, Zied; Jacquemot, Nathalie; Cayre, Anne; Miot-Noirault, Elisabeth; Sun, Jian-Sheng; Dutreix, Marie; Degoul, Françoise

    2016-03-15

    Radiolabelled melanin ligands offer an interesting strategy for the treatment of disseminated pigmented melanoma. One of these molecules, ICF01012 labelled with iodine 131, induced a significant slowing of melanoma growth. Here, we have explored the combination of [131I]ICF01012 with coDbait, a DNA repair inhibitor, to overcome melanoma radioresistance and increase targeted radionuclide therapy (TRT) efficacy. In human SK-Mel 3 melanoma xenograft, the addition of coDbait had a synergistic effect on tumor growth and median survival. The anti-tumor effect was additive in murine syngeneic B16Bl6 model whereas coDbait combination with [131I]ICF01012 did not increase TRT side effects in secondary pigmented tissues (e.g. hair follicles, eyes). Our results confirm that DNA lesions induced by TRT were not enhanced with coDbait association but, the presence of micronuclei and cell cycle blockade in tumor shows that coDbait acts by interrupting or delaying DNA repair. In this study, we demonstrate for the first time, the usefulness of DNA repair traps in the context of targeted radionuclide therapy.

  7. Dermatologic adverse events associated with chemotherapy and targeted anticancer therapy

    Directory of Open Access Journals (Sweden)

    Maria Kowalska

    2016-05-01

    Full Text Available Chemotherapeutic agents and drugs used for targeted tumor therapy often cause undesirable side effects of the skin which typically are toxic cutaneous reactions (toxicity grade 1 to 4. The first group of drugs that cause toxicities affecting the skin are inhibitors of epidermal growth factor receptor (EGFR. They cause a variety of skin changes (PRIDE syndrome, which are mainly manifested by papulopustular rash, also referred to as acneiform rash, occurring in 44–74% of patients. Another drug which causes cutaneous toxicities is inhibitor of CTLA4 (cytotoxic T lymphocyte-associated protein 4, which is represented by ipilimumab, used in the treatment of metastatic melanoma. The most common dermatological adverse event, observed in 40–64% of patients receiving ipilimumab, is generalized maculopapular rash with pruritus and dry skin, and in some cases vitiligo is also observed. BRAF and MEK inhibitors introduced for the treatment of advanced melanoma also cause skin rashes. BRAF inhibitors also affecting the proliferation of keratinocytes stimulate hypertrophic changes and cause the whole spectrum of lesions from benign and keratoacanthoma to squamous cell carcinoma. A hedgehog pathway inhibitor (vismodegib is used for the treatment of metastatic basal cell carcinoma. The most common adverse events it causes are reversible alopecia and dysgeusia, but it can also cause the development of keratoacanthoma and squamous cell carcinoma. Among the most common side effects of chemotherapy and targeted therapy are toxic changes within the hands and feet (hand-foot skin reaction – HFSR that early manifest as a neurological symptoms (numbness, paresthesia, and skin symptoms (erythematous swelling changes, blisters, hyperkeratosis occur later. Anti-cancer drugs can also cause serious skin diseases such as Stevens-Johnson syndrome (SJS, toxic epidermal necrolysis (TEN and DRESS (drug rash with eosinophilia and systemic symptoms, whose course and prognosis

  8. Mitosis-targeted anti-cancer therapies: where they stand.

    Science.gov (United States)

    Chan, K-S; Koh, C-G; Li, H-Y

    2012-10-18

    The strategy of clinically targeting cancerous cells at their most vulnerable state during mitosis has instigated numerous studies into the mitotic cell death (MCD) pathway. As the hallmark of cancer revolves around cell-cycle deregulation, it is not surprising that antimitotic therapies are effective against the abnormal proliferation of transformed cells. Moreover, these antimitotic drugs are also highly selective and sensitive. Despite the robust rate of discovery and the development of mitosis-selective inhibitors, the unpredictable complexities of the human body's response to these drugs still herald the biggest challenge towards clinical success. Undoubtedly, the need to bridge the gap between promising preclinical trials and effective translational bedside treatment prompts further investigations towards mapping out the mechanistic pathways of MCD, understanding how these drugs work as medicine in the body and more comprehensive target validations. In this review, current antimitotic agents are summarized with particular emphasis on the evaluation of their clinical efficacy as well as their limitations. In addition, we discuss the basis behind the lack of activity of these inhibitors in human trials and the potential and future directions of mitotic anticancer strategies.

  9. A ketogenic diet supplemented with medium-chain triglycerides enhances the anti-tumor and anti-angiogenic efficacy of chemotherapy on neuroblastoma xenografts in a CD1-nu mouse model.

    Science.gov (United States)

    Aminzadeh-Gohari, Sepideh; Feichtinger, René Günther; Vidali, Silvia; Locker, Felix; Rutherford, Tricia; O'Donnel, Maura; Stöger-Kleiber, Andrea; Mayr, Johannes Adalbert; Sperl, Wolfgang; Kofler, Barbara

    2017-09-12

    Neuroblastoma (NB) is a pediatric malignancy characterized by a marked reduction in aerobic energy metabolism. Recent preclinical data indicate that targeting this metabolic phenotype by a ketogenic diet (KD), especially in combination with calorie restriction, slows tumor growth and enhances metronomic cyclophosphamide (CP) therapy of NB xenografts. Because calorie restriction would be contraindicated in most cancer patients, the aim of the present study was to optimize the KD such that the tumors are sensitized to CP without the need of calorie restriction. In a NB xenograft model, metronomic CP was combined with KDs of different triglyceride compositions and fed to CD1-nu mice ad libitum . Metronomic CP in combination with a KD containing 8-carbon medium-chain triglycerides exerted a robust anti-tumor effect, suppressing growth and causing a significant reduction of tumor blood-vessel density and intratumoral hemorrhage, accompanied by activation of AMP-activated protein kinase in NB cells. Furthermore, the KDs caused a significant reduction in the serum levels of essential amino acids, but increased those of serine, glutamine and glycine. Our data suggest that targeting energy metabolism by a modified KD may be considered as part of a multimodal treatment regimen to improve the efficacy of classic anti-NB therapy.

  10. Triple-negative breast cancer: new perspectives for targeted therapies

    Directory of Open Access Journals (Sweden)

    Tomao F

    2015-01-01

    Full Text Available Federica Tomao,1 Anselmo Papa,2 Eleonora Zaccarelli,2 Luigi Rossi,2 Davide Caruso,2 Marina Minozzi,2 Patrizia Vici,3 Luigi Frati,4 Silverio Tomao21Department of Gynecology and Obstetrics, “Sapienza” University of Rome, Policlinico “Umberto I”, Rome, 2Department of Medico-Surgical Sciences and Biotechnologies, “Sapienza” University of Rome, Oncology Unit, Istituto Chirurgico Ortopedico Traumatologico, Latina, 3Division of Medical Oncology B, Regina Elena National Cancer Institute, Rome, Italy; 4Department of Molecular Medicine, “Sapienza” University of Rome, Policlinico “Umberto I”, Rome, ItalyAbstract: Breast cancer is a heterogeneous disease, encompassing a large number of entities showing different morphological features and having clinical behaviors. It has became apparent that this diversity may be justified by distinct patterns of genetic, epigenetic, and transcriptomic aberrations. The identification of gene-expression microarray-based characteristics has led to the identification of at least five breast cancer subgroups: luminal A, luminal B, normal breast-like, human epidermal growth factor receptor 2, and basal-like. Triple-negative breast cancer is a complex disease diagnosed by immunohistochemistry, and it is characterized by malignant cells not expressing estrogen receptors or progesterone receptors at all, and human epidermal growth factor receptor 2. Along with this knowledge, recent data show that triple-negative breast cancer has specific molecular features that could be possible targets for new biological targeted drugs. The aim of this article is to explore the use of new drugs in this particular setting, which is still associated with poor prognosis and high risk of distant recurrence and death.Keywords: basal-like breast cancer, estrogen–progesterone receptors, gene-expression microarray, human epidermal growth factor receptor 2, chemotherapy, target therapy

  11. New Trends in Cancer Therapy: Targeting Ion Channels and Transporters

    Directory of Open Access Journals (Sweden)

    Annarosa Arcangeli

    2010-04-01

    Full Text Available The expression and activity of different channel types mark and regulate specific stages of cancer establishment and progression. Blocking channel activity impairs the growth of some tumors, both in vitro and in vivo, which opens a new field for pharmaceutical research. However, ion channel blockers may produce serious side effects, such as cardiac arrhythmias. For instance, Kv11.1 (hERG1 channels are aberrantly expressed in several human cancers, in which they control different aspects of the neoplastic cell behaviour. hERG1 blockers tend to inhibit cancer growth. However they also retard the cardiac repolarization, thus lengthening the electrocardiographic QT interval, which can lead to life-threatening ventricular arrhythmias. Several possibilities exist to produce less harmful compounds, such as developing specific drugs that bind hERG1 channels in the open state or disassemble the ion channel/integrin complex which appears to be crucial in certain stages of neoplastic progression. The potential approaches to improve the efficacy and safety of ion channel targeting in oncology include: (1 targeting specific conformational channel states; (2 finding ever more specific inhibitors, including peptide toxins, for channel subtypes mainly expressed in well-identified tumors; (3 using specific ligands to convey traceable or cytotoxic compounds; (4 developing channel blocking antibodies; (5 designing new molecular tools to decrease channel expression in selected cancer types. Similar concepts apply to ion transporters such as the Na+/K+ pump and the Na+/H+ exchanger. Pharmacological targeting of these transporters is also currently being considered in anti-neoplastic therapy.

  12. Colorectal cancer heterogeneity and targeted therapy: a case for molecular disease subtypes

    NARCIS (Netherlands)

    Linnekamp, Janneke F.; Wang, Xin; Medema, Jan Paul; Vermeulen, Louis

    2015-01-01

    Personalized cancer medicine is becoming increasingly important in colorectal cancer treatment. Especially for targeted therapies, large variations between individual treatment responses exist. Predicting therapy response is of utmost significance, as it prevents overtreatment and adverse effects in

  13. TARGETED LEVOTHYROXINE THERAPY FOR TREATMENT OF CONGENITAL HYPOTHYROIDISM.

    Science.gov (United States)

    Schoelwer, Melissa J; Tu, Wanzhu; Zhou, Junyi; Eugster, Erica A

    2017-09-01

    The purpose of this study was to determine if infants with congenital hypothyroidism (CH) whose initial dose of levothyroxine (LT4) is based on thyroid gland anatomy require fewer dose adjustments in the first 6 months of life than those who were started empirically on LT4. Newborns with CH who had a thyroid ultrasound performed at diagnosis were eligible for this prospective, historical case-controlled study. The daily LT4 dose prescribed was based on results on the thyroid ultrasound as follows: 15 mcg/kg for athyreosis, 12 mcg/kg for a dysgenetic thyroid, and 10 mcg/kg for an anatomically normal gland. Routine labs according to standard guidelines were obtained, and the number of dose adjustments over the first 6 months of therapy was recorded. Each study participant was matched with 2 historical controls with CH based on sex and thyroid anatomy. Twenty-two subjects (10 with athyreosis, 4 with dysgenetic glands, and 8 with anatomically normal glands) were matched to 44 controls. There was no significant difference in the overall number of adjustments in the study group compared to controls (P = .74). However, there were significantly fewer adjustments made for undertreatment (P = .03) and significantly more adjustments made for overtreatment (P = .006) in subjects with athyreosis compared to controls. Targeted LT4 therapy does not appear to decrease the overall frequency of dose adjustments for infants with CH. However, 15 mcg/kg/day appears to exceed thyroid hormone requirements in infants with CH due to athyreosis. CH = congenital hypothyroidism LT4 = levothyroxine OT = overtreatment T4 = thyroxine TSH = thyroid-stimulating hormone UT = undertreatment.

  14. Real time laser speckle imaging monitoring vascular targeted photodynamic therapy

    Science.gov (United States)

    Goldschmidt, Ruth; Vyacheslav, Kalchenko; Scherz, Avigdor

    2017-02-01

    Laser speckle imaging is a technique that has been developed to non-invasively monitor in vivo blood flow dynamics and vascular structure, at high spatial and temporal resolution. It can record the full-field spatio-temporal characteristics of microcirculation and has therefore, often been used to study the blood flow in tumors after photodynamic therapy (PDT). Yet, there is a paucity of reports on real-time laser speckle imaging (RTLSI) during PDT. Vascular-targeted photodynamic therapy (VTP) with WST11, a water-soluble bacteriochlorophyll derivative, achieves tumor ablation through rapid occlusion of the tumor vasculature followed by a cascade of events that actively kill the tumor cells. WST11-VTP has been already approved for treatment of early/intermediate prostate cancer at a certain drug dose, time and intensity of illumination. Application to other cancers may require different light dosage. However, incomplete vascular occlusion at lower light dose may result in cancer cell survival and tumor relapse while excessive light dose may lead to toxicity of nearby healthy tissues. Here we provide evidence for the feasibility of concomitant RTLSI of the blood flow dynamics in the tumor and surrounding normal tissues during and after WST11-VTP. Fast decrease in the blood flow is followed by partial mild reperfusion and a complete flow arrest within the tumor by the end of illumination. While the primary occlusion of the tumor feeding arteries and draining veins agrees with previous data published by our group, the late effects underscore the significance of light dose control to minimize normal tissue impairment. In conclusion- RTSLI application should allow to optimize VTP efficacy vs toxicity in both the preclinical and clinical arenas.

  15. Tuning flux: autophagy as a target of heart disease therapy

    Science.gov (United States)

    Xie, Min; Morales, Cyndi R.; Lavandero, Sergio; Hill, Joseph A.

    2013-01-01

    Purpose of review Despite maximum medical and mechanical support therapy, heart failure remains a relentlessly progressive disorder with substantial morbidity and mortality. Autophagy, an evolutionarily conserved process of cellular cannibalization, has been implicated in virtually all forms of cardiovascular disease. Indeed, its role is context dependent, antagonizing or promoting disease depending on the circumstance. Here, we review current understanding of the role of autophagy in the pathogenesis of heart failure and explore this pathway as a target of therapeutic intervention. Recent findings In preclinical models of heart disease, cardiomyocyte autophagic flux is activated; indeed, its role in disease pathogenesis is the subject of intense investigation to define mechanism. Similarly, in failing human heart of a variety of etiologies, cardiomyocyte autophagic activity is upregulated, and therapy, such as with mechanical support systems, elicits declines in autophagy activity. However, when suppression of autophagy is complete, rapid and catastrophic cell death occurs, consistent with a model in which basal autophagic flux is required for proteostasis. Thus, a narrow zone of ‘optimal’ autophagy seems to exist. The challenge moving forward is to tune the stress-triggered autophagic response within that ‘sweet spot’ range for therapeutic benefit. Summary Whereas we have known for some years of the participation of lysosomal mechanisms in heart disease, it is only recently that upstream mechanisms (autophagy) are being explored. The challenge for the future is to dissect the underlying circuitry and titrate the response into an optimal, proteostasis-promoting range in hopes of mitigating the ever-expanding epidemic of heart failure. PMID:21415729

  16. A MSLN-targeted multifunctional nanoimmunoliposome for MRI and targeting therapy in pancreatic cancer

    Directory of Open Access Journals (Sweden)

    Deng L

    2012-09-01

    Full Text Available Li Deng,1,# Xingfa Ke,4,# Zhiying He,3,# Daoqiu Yang,5 Hai Gong,6 Yingying Zhang,1 Xiaolong Jing,4 Jianzhong Yao,2 Jianming Chen11Department of Pharmaceutics, 2Department of Medicinal Chemistry, School of Pharmacy, 3Department of Cell Biology, Second Military Medical University, Shanghai, People's Republic of China; 4Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fujian, People's Republic of China; 5Department of Dermatology, 107th Hospital of PLA, Yantai, People's Republic of China; 6Department of Radiation Oncology, General Hospital of Jinan Military Region, Jinan, People’s Republic of China#These authors contributed equally to this workAbstract: Pancreatic cancer is a highly lethal disease with a 5-year survival rate less than 5% due to the lack of an early diagnosis method and effective therapy. To provide a novel early diagnostic method and targeted therapy for pancreatic cancer, a multifunctional nanoimmunoliposome with high loading of ultrasmall superparamagnetic iron oxides (USPIOs and doxorubicin (DOX was prepared by transient binding and reverse-phase evaporation method, and was conjugated with anti-mesothelin monoclonal antibody by post-insertion method to target anti-mesothelin-overexpressed pancreatic cancer cells. The in vitro and in vivo properties of this anti-mesothelin antibody-conjugated PEGlyated liposomal DOX and USPIOs (M-PLDU; and PEGlyated nanoimmunoliposome without antibody conjugation [PLDU] were evaluated both in human pancreatic cancer cell line Panc-1 cell and in a pancreatic cancer xenograft animal model. Results showed that M-PLDUs were spherical and uniform with a diameter about ~180 nm, with a zeta potential of about −28~−30 mV, and had good efficacy encapsulating DOX and USPIOs. The in vitro study demonstrated that M-PLDUs possessed good magnetic resonance imaging (MRI capability with a transverse relaxivity (r2 of about 58.5 mM–1 • s–1. Confocal microscopy showed more

  17. Programmed photosensitizer conjugated supramolecular nanocarriers with dual targeting ability for enhanced photodynamic therapy.

    Science.gov (United States)

    Tong, Hongxin; Du, Jianwei; Li, Huan; Jin, Qiao; Wang, Youxiang; Ji, Jian

    2016-09-29

    A programmed supramolecular nanocarrier was developed for multistage targeted photodynamic therapy. This smart nanocarrier exhibited enhanced cellular uptake and controlled mitochondria targeting, as well as an excellent photodynamic therapeutic effect after light irradiation.

  18. Reactive Oxygen Species and Targeted Therapy for Pancreatic Cancer

    Science.gov (United States)

    2016-01-01

    Pancreatic cancer is the fourth leading cause of cancer-related death in the United States. Reactive oxygen species (ROS) are generally increased in pancreatic cancer cells compared with normal cells. ROS plays a vital role in various cellular biological activities including proliferation, growth, apoptosis, and invasion. Besides, ROS participates in tumor microenvironment orchestration. The role of ROS is a doubled-edged sword in pancreatic cancer. The dual roles of ROS depend on the concentration. ROS facilitates carcinogenesis and cancer progression with mild-to-moderate elevated levels, while excessive ROS damages cancer cells dramatically and leads to cell death. Based on the recent knowledge, either promoting ROS generation to increase the concentration of ROS with extremely high levels or enhancing ROS scavenging ability to decrease ROS levels may benefit the treatment of pancreatic cancer. However, when faced with oxidative stress, the antioxidant programs of cancer cells have been activated to help cancer cells to survive in the adverse condition. Furthermore, ROS signaling and antioxidant programs play the vital roles in the progression of pancreatic cancer and in the response to cancer treatment. Eventually, it may be the novel target for various strategies and drugs to modulate ROS levels in pancreatic cancer therapy. PMID:26881012

  19. Dupuytren's disease therapy: targeting the vicious cycle of myofibroblasts?

    Science.gov (United States)

    Musumeci, Maria; Vadalà, Gianluca; Russo, Fabrizio; Pelacchi, Federica; Lanotte, Angela; Denaro, Vincenzo

    2015-01-01

    Dupuytren's disease (DD) is a proliferative fibromatosis of the hand, which causes permanent flexion contracture of the digits and, ultimately, loss of function. The treatment of DD is complex and involves surgical and nonsurgical approaches, with the goal of removing the affected tissue. New biological targets are under investigation in order to develop innovative therapies. The etiology of DD is still unknown. Several authors who focused their studies on the genetics of DD recognized an inherited autosomal dominant pattern. Actually, DD is a multifactorial and complex disease. Myofibroblasts are thought to play a crucial role in its pathogenesis, although their origin is not clear. There is a general consensus that a better understanding of cellular and molecular mechanisms of DD will lead to the design of more specific and effective treatment alternatives. In this review, the authors hypothesize a new biological model for DD pathology, where myofibroblasts enhance the reservoir of the disease acting as if in a vicious cycle. This could help, ultimately, in identifying new therapeutic strategies to treat this common and disabling fibroproliferative disorder.

  20. Production of 177Lu for targeted radionuclide therapy: Available options

    International Nuclear Information System (INIS)

    Dah, Ashutosh; Pillai, Maroor Raghavan Ambikalmajan; Knapp, Furn F. Jr.

    2015-01-01

    This review provides a comprehensive summary of the production of 177 Lu to meet expected future research and clinical demands. Availability of options represents the cornerstone for sustainable growth for the routine production of adequate activity levels of 177 Lu having the required quality for preparation of a variety of 177 Lu-labeled radiopharmaceuticals. The tremendous prospects associated with production of 177 Lu for use in targeted radionuclide therapy (TRT) dictate that a holistic consideration should evaluate all governing factors that determine its success. While both “direct” and “indirect” reactor production routes offer the possibility for sustainable 177 Lu availability, there are several issues and challenges that must be considered to realize the full potential of these production strategies. This article presents a mini review on the latest developments, current status, key challenges and possibilities for the near future. A broad understanding and discussion of the issues associated with 177 Lu production and processing approaches would not only ensure sustained growth and future expansion for the availability and use of 177 Lu-labeled radiopharmaceuticals, but also help future developments

  1. Opportunity of interventional radiology: advantages and application of interventional technique in biological target therapy

    International Nuclear Information System (INIS)

    Teng Gaojun; Lu Qin

    2007-01-01

    Interventional techniques not only provide opportunity of treatment for many diseases, but also alter the traditional therapeutic pattern. With the new century of wide application of biological therapies, interventional technique also shows extensive roles. The current biological therapy, including gene therapy, cell transplantation therapy, immunobiologic molecule therapy containing cell factors, tumor antibody or vaccine, recombined proteins, radioactive-particles and targeting materials therapy, can be locally administrated by interventional techniques. The combination of targeting biological therapies and high-targeted interventional technique holds advantages of minimal invasion, accurate delivery, vigorous local effect, and less systemic adverse reactions. Authors believe that the biological therapy may arise a great opportunity for interventional radiology, therefore interventional colleagues should grasp firmly and promptly for the development and extension in this field. (authors)

  2. Suicide genes or p53 gene and p53 target genes as targets for cancer gene therapy by ionizing radiation

    International Nuclear Information System (INIS)

    Liu Bing; Chinese Academy of Sciences, Beijing; Zhang Hong

    2005-01-01

    Radiotherapy has some disadvantages due to the severe side-effect on the normal tissues at a curative dose of ionizing radiation (IR). Similarly, as a new developing approach, gene therapy also has some disadvantages, such as lack of specificity for tumors, limited expression of therapeutic gene, potential biological risk. To certain extent, above problems would be solved by the suicide genes or p53 gene and its target genes therapies targeted by ionizing radiation. This strategy not only makes up the disadvantage from radiotherapy or gene therapy alone, but also promotes success rate on the base of lower dose. By present, there have been several vectors measuring up to be reaching clinical trials. This review focused on the development of the cancer gene therapy through suicide genes or p53 and its target genes mediated by IR. (authors)

  3. Neoadjuvant therapy for locally advanced melanoma: new strategies with targeted therapies

    Directory of Open Access Journals (Sweden)

    La Greca M

    2014-06-01

    Full Text Available Michele La Greca,1 Giuseppe Grasso,2 Giovanna Antonelli,1 Alessia Erika Russo,1 Salvatore Bartolotta,3 Alessandro D’Angelo,1 Felice Vito Vitale,1 Francesco Ferraù1 1Medical Oncology Department, San Vincenzo Hospital, Taormina, Messina, Italy; 2Pathology Department, San Vincenzo Hospital, Taormina, Messina, Italy; 3Surgical Unit, Casa di Cura Gretter-Lucina, Catania, Catania, Italy Abstract: Neoadjuvant chemotherapy has been successfully tested in several bulky solid tumors, but it has not been utilized in advanced cutaneous melanoma, primarily because effective medical treatments for this disease have been lacking. However, with the development of new immunotherapies (monoclonal antibodies specific for cytotoxic T lymphocyte-associated antigen 4 [anti-CTLA-4] and programmed death protein-1 [anti-PD1] and small molecules interfering with intracellular pathways (anti-BRAF and mitogen-activated protein kinase kinase [anti- MEK] the use of this approach is becoming a viable treatment strategy for locally advanced melanoma. The neoadjuvant setting provides a double opportunity for a better knowledge of these drugs: a short-term evaluation of their intrinsic activity, and a deeper analysis of their action and resistance-induction mechanisms. BRAF inhibitors seem to be ideal candidates for the neoadjuvant setting, because of their prompt, repeatedly confirmed response in V600E BRAF-mutant metastatic melanoma. In this report we summarize studies focused on the neoadjuvant use of traditional medical treatments in advanced melanoma and anecdotal cases of this approach with the use of biologic therapies. Moreover, we discuss our experience with neoadjuvant targeted therapy as a priming for radical surgery in a patient with BRAF V600E mutation-positive advanced melanoma. Keywords: neoadjuvant setting, biologic, targeted therapy, vemurafenib, advanced melanoma

  4. Emerging targeted therapies for plaque psoriasis – impact of ixekizumab

    Directory of Open Access Journals (Sweden)

    Kazemi T

    2017-04-01

    Full Text Available Tiana Kazemi,1 Benjamin Farahnik,2 John Koo,3 Kourosh Beroukhim1 1University of California – Los Angeles, David Geffen School of Medicine, Los Angeles, CA, 2University of Vermont College of Medicine, Burlington, VT, 3University of California – San Francisco, Department of Dermatology, Psoriasis and Skin Treatment Center, San Francisco, CA, USA Background: Recent studies into the pathogenesis of psoriasis have identified the importance of interleukin 17 (IL-17 in disease activity and have thus provided a new target for biologic therapy. Ixekizumab, the most recent US Food and Drug Administration (FDA-approved anti-IL-17 biologic agent, appears to be a promising medication for patients suffering from moderate-to-severe plaque psoriasis. Methods: We reviewed the results of phase III trials for ixekizumab in order to assess the efficacy, safety, and impact on quality of life of this agent in the treatment of plaque psoriasis. Additionally, we compared these results to phase II and phase III trials for other biologic psoriasis medications including the anti-IL-23 agents tildrakizumab and guselkumab, the combined anti-IL-12 and anti-IL-23 agent ustekinumab, and the anti-IL-17 agents brodalumab and secukinumab. Results: Pooled results from individual studies demonstrate that among the most efficacious dosing regimens of these anti-interleukin therapies, ixekizumab achieves higher Psoriasis Area and Severity Index 75 rates and similar or higher static Physician Global Assessment 0-1 rates than the other anti-IL-17 and anti-IL-23 agents. The safety profile of ixekizumab is similar to these agents, with nasopharyngitis, upper respiratory infection, headache, arthralgia, and injection-site erythema as the most commonly reported adverse events. Conclusion: Ixekizumab is a highly efficacious, newly FDA-approved treatment for moderate-to-severe plaque psoriasis that demonstrates a robust clinical response, significant improvement in patient quality of

  5. Vascular-targeted therapies for Duchenne muscular dystrophy

    Science.gov (United States)

    2013-01-01

    -receptor type 1 (VEGFR-1 or Flt-1). The pro-angiogenic approaches also seem to be pro-myogenic and could resolve the age-related decline in satellite cell (SC) quantity seen in mdx models through expansion of the SC juxtavascular niche. Here we review these four vascular targeted treatment strategies for DMD and discuss mechanisms, proof of concept, and the potential for clinical relevance associated with each therapy. PMID:23618411

  6. New strategy of cancer therapy by targeting the hypoxic circumstances

    International Nuclear Information System (INIS)

    Yasui, Hironobu; Yamamori, Tohru; Meike, Shunsuke; Eitaki, Masato; Kuwabara, Mikinori; Inanami, Osamu; Iizuka, Daisuke

    2010-01-01

    Described are studies on the sensitization of tumor cells in hypoxic circumstances (known as radio-resistant cells) by authors' recent molecular targeting to adaptive response as well as by the usual agents like nitro-imidazole compounds, and on the intermittent hypoxia, a new topic in this field. The hypoxia-inducible factor-1 (HIF-1) is a transcriptional factor and has been known to activate its many downstream genes to cause adoptive response of hypoxic cells. Authors have studied the anti-tumor and radiation sensitizing effects of ethynyl-cytidine (EC) which is found to suppress RNA synthesis through cytidine kinase (CK) inhibition, and the compound is of specificity to tumor cells as they have 5-10 times higher CK activity than normal cells. Authors have also found that EC is of the sensitizing efficacy to normoxic and hypoxic cells by enhancing the radiation-induced apoptosis essentially through inhibition of HIF-1 expression. Intermittent hypoxia in the tumor which has characteristic abnormal vascular morphology and function, occurs by the transient reduction of blood flow and occlusion of vessels in the tissue within minute to hour time cycles. Little is known about the regional hypoxic region and its distribution in the tumor due to difficulty of their detection and quantification. For this, authors have measured the temporal changes of oxygen levels in the mouse tumor with triaryl methyl radical, an oxygen-sensitive contrast compound continuously injected, by microwave-pulsed electron spin resonance imaging (EPRI). By superimposing the EPRI and T2-weighted MRI, the oxymetric imaging is possible in the tumor, which reveals the difference of oxygen level variation depending on the cell type and tissue size. Findings in the field are expected to give important information for more effective cancer therapy and its prognostic prediction in future. (T.T.)

  7. Efficacy of HER2-targeted therapy in metastatic breast cancer. Monoclonal antibodies and tyrosine kinase inhibitors

    DEFF Research Database (Denmark)

    Nielsen, Dorte L; Kümler, Iben; Palshof, Jesper Andreas

    2013-01-01

    Therapies targeting the human epidermal growth factor receptor (HER) 2 are effective in metastatic breast cancer (MBC). We review the efficacy of HER2-directed therapies, focussing on monoclonal antibodies and tyrosine kinase inhibitors targeting HER2 that have been tested in phase II-III studies...

  8. Recent advances in targeted radionuclide therapy in treatment of metastatic cancers

    International Nuclear Information System (INIS)

    Biersack, H.J.

    2014-01-01

    Since the early forties, Nuclear Medicine uses 'targeted radionuclide therapy' for treatment, when it was discovered that 131 I (radioiodine) is accumulated in thyroid tumours and their metastases. The examples of nuclear medicine viz. radioiodine therapy for thyroid cancer, for bone metastases in prostrate and breast cancer, in neuroendocrine tumors, selective internal radio therapy, antibody therapy of lymphoma, indicates its benefits. In the near future, some other ways of tumour treatment using PSMA and RGD have to prove their utility for targeted radionuclide therapy

  9. Current Status and Future Directions of Targeted Peptide Radionuclide Therapy

    International Nuclear Information System (INIS)

    Valkema, R.

    2009-01-01

    Current status: Peptide receptor radionuclide therapy (PRRT) is currently almost exclusively targeted at the somatostatin receptor (sst). Of the 5 receptor subtypes, sst2 is frequently very highly expressed at the cell surface of neuroendocrine tumors (NET). Octreotide is a small and stable derivative of native somatostatin, which can be very well labeled with therapeutic radionuclides such as the beta-emitters ''9''0Y, ''1''7''7Lu or the Auger emitter ''1''1''1In, chelated in DTPA or DOTA, linked to the peptide. All current therapeutic octreotide derivatives are agonists that are internalized in the cell. The affinity for the sst2 receptor is better for [DOTA,Tyr''3]octreotate than for [DOTA,Tyr''3]octreotide or [DTPA]octreotide. ''9''0Y is a pure beta-emitter, with a half-life of 2.7 days, a high energy of 2.270 MeV, and a maximum penetration in tissue of 12mm. ''1''7''7Lu with a half-life of 6.7 days emits a low abundance of gamma photons as well as beta particles of 497 keV, with a maximum tissue penetration of 2 mm. ''1''7''7Lu-[DOTA,Tyr''3]octreotate (Lu-DOTATE), ''9''0Y-[DOTA,Tyr''3]octreotate (Y-DOTATATE) and ''9''0Y-[DOTA,Tyr''3]octreotide (Y-DOTATOC) are today the most frequently used therapeutic radiopeptides. Main inclusion criteria: inoperable and/or metastatic NET, receptor-positivity in all known lesions demonstrated by sufficient uptake on ''1''1''1In-octreotide scintigraphy (intensity > liver parenchyma), life expectancy at least 3-6 months, sufficient bone marrow reserve (hemoglobin (HGB) ≥ 5 mmol/L, white blood cells (WBC) ≥ 2*10 9 /L, platelets (PLT) ≥ 75*10 12 /L), sufficient renal function (serum creatinine 40 mL/min), sufficient hepatic and cardiac reserve. Karnofski score ≥50. Efficacy: several groups have reported objective response rates (RECIST or WHO/SWOG; CT or MRI based). Complete remission (CR) is rarely seen, partial remission (PR; >50% shrinkage SWOG) in 7% - 37%, minor remission (MR, 25% - 50% shrinkage) in 13% - 17

  10. Risky business: target choice in adoptive cell therapy.

    Science.gov (United States)

    Morgan, Richard A

    2013-11-14

    In this issue of Blood, Casucci et al present an elegant study that describes a potential new target for adoptive cell transfer (ACT), in this case CD44 splice variant 6 (CD44v6), and detail why it may be a good target for ACT and how to manage expected off-tumor/on-target toxicities.

  11. Specifically targeted gene therapy for small-cell lung cancer

    DEFF Research Database (Denmark)

    Christensen, C.L.; Zandi, R.; Gjetting, T.

    2009-01-01

    Small-cell lung cancer (SCLC) is a highly malignant disease with poor prognosis. Hence, there is great demand for new therapies that can replace or supplement the current available treatment regimes. Gene therapy constitutes a promising strategy and relies on the principle of introducing exogenous...

  12. Polymeric micelles in anticancer therapy : Targeting, imaging and triggered release

    NARCIS (Netherlands)

    Oerlemans, Chris; Bult, Wouter; Bos, Mariska; Storm, Gert; Nijsen, J. Frank W.; Hennink, Wim E.

    2010-01-01

    Micelles are colloidal particles with a size around 5-100 nm which are currently under investigation as carriers for hydrophobic drugs in anticancer therapy. Currently, five micellar formulations for anticancer therapy are under clinical evaluation, of which Genexol-PM has been FDA approved for use

  13. Development of radiation-inducible promoters for use in nitric oxide synthase gene therapy of cancer

    International Nuclear Information System (INIS)

    Hirst, D.G.; Worthington, J.; Adams, C.; Robson, T.; Scott, S.D.

    2003-01-01

    Full text: The free radical nitric oxide (NO) at nM concentrations performs multiple signaling roles that are essential for survival. These processes are regulated via the enzymes nNOS and eNOS, but another isoform, inducible nitric oxide synthase (iNOS) is capable of generating much higher concentrations (mM) over longer periods, resulting in the generation of very toxic species such as peroxynitrite. At high concentrations NO has many of the characteristics of an ideal anticancer molecule: it is cytotoxic (pro-apoptotic via peroxynitrite), it is a potent chemical radiosensitizer, it is anti-angiogenic and anti-metastatic. Thus, we see iNOS gene therapy as a strategy for targeting the generation of high concentrations of NO to tumours for therapeutic benefit. iNOS gene therapy should be used in combination with radiotherapy; so it is logical that the use of a radiation-inducible promoter should be part of the targeting strategy. We have tested several candidate promoters in vitro and in vivo. The WAF1 promoter has many of the properties desirable for therapeutic use including: rapid 3-4 fold induction at X-ray doses of 2 and 4Gy and no significant leakiness. WAF1 also has the advantage of being inducible by hypoxia and by the final product, NO. We have also tested the synthetic CArG promoter and demonstrated that, in addition to a high level of radiation inducibility, it is also inducible by NO. We have also been able to demonstrate potent radiosensitization (SER 2.0-2.5) in tumour cells in vitro and in vivo using iNOS gene transfer with constitutive or radiation-inducible promoters. We have also tested the use of iNOS gene therapy in combination with cisplatin and shown significant enhancement

  14. Synergy between vascular targeting agents and antibody-directed therapy

    International Nuclear Information System (INIS)

    Pedley, R. Barbara; El-Emir, Ethaar; Flynn, Aiden A.; Boxer, Geoffrey M.; Dearling, Jason; Raleigh, James A.; Hill, Sally A.; Stuart, Sam; Motha, Reeya; Begent, Richard H.J.

    2002-01-01

    Purpose: Tumor heterogeneity necessitates the use of combined therapies. We have shown that combining antibody-directed therapy with antivascular agents converts a subcurative to a curative treatment. The purpose of this study was to investigate, by radioluminographic and microscopic techniques, the regional effects of the two complementary therapies. Methods and Materials: Nude mice bearing colorectal tumors were injected with 125 I-labeled anti-carcinoembryonic antigen antibody, and images were obtained for antibody distribution and modeling studies using radioluminography. For therapy studies, the mice were given radioimmunotherapy alone ( 131 I-A5B7 anti-carcinoembryonic antigen antibody), the antivascular agent combretastatin A-4 3-0-phosphate (200 mg/kg), or both. Extra mice were used to study the regional tumor effects of these therapies over time: relevant histochemical procedures were performed on tissue sections to obtain composite digital microscopic images of apoptosis, blood vessels, perfusion, hypoxia, and morphology. Results: Antibody distribution, modeling, and immunohistochemistry showed how radioimmunotherapy (7.4 MBq/40 μg antibody) effectively treated the outer, well-oxygenated tumor region only. Combretastatin A-4 3-0-phosphate treated the more hypoxic center, and in doing so altered the relationship between tumor parameters. Conclusion: The combined complementary therapies produced cures by destroying tumor regions with different pathophysiologies. Relating these regional therapeutic effects to the relevant tumor parameters microscopically allows optimization of therapy and improved translation to clinical trials

  15. Treatment outcome of radiation therapy and concurrent targeted molecular therapy in spinal metastasis from renal cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Joon; Kim, Kyung Hwan; Rhee, Woo Joong; Lee, Jeong Shin; Cho, Yeo Na; Koom, Woong Sub [Dept. of Radiation Oncology, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2016-06-15

    To evaluate the clinical outcomes of patients who underwent radiation therapy with or without targeted molecular therapy for the treatment of spinal metastasis from renal cell carcinoma (RCC). A total of 28 spinal metastatic lesions from RCC patients treated with radiotherapy between June 2009 and June 2015 were retrospectively reviewed. Thirteen lesions were treated concurrently with targeted molecular therapy (concurrent group) and 15 lesions were not (nonconcurrent group). Local control was defined as lack of radiographically evident local progression and neurological deterioration. At a median follow-up of 11 months (range, 2 to 58 months), the 1-year local progression-free rate (LPFR) was 67.0%. The patients with concurrent targeted molecular therapy showed significantly higher LPFR than those without (p = 0.019). After multivariate analysis, use of concurrent targeted molecular therapy showed a tendency towards improved LPFR (hazard ratio, 0.13; 95% confidence interval, 0.01 to 1.16). There was no difference in the incidence of systemic progression between concurrent and nonconcurrent groups. No grade ≥2 toxicities were observed during or after radiotherapy. Our study suggests the possibility that concurrent use of targeted molecular therapy during radiotherapy may improve LPFR. Further study with a large population is required to confirm these results.

  16. Targeted Therapies for Myeloma and Metastatic Bone Cancers

    National Research Council Canada - National Science Library

    Vail, Neal

    2008-01-01

    ... done. Quantified functional groups available for ligand conjugation using S35-labeled ligands. Developed alternative assay to confirm affinity of bone-targeting nanoparticles to hydroxyapatite substrates...

  17. Reduction sensitive nanosystems for tumor targeted imaging and therapy

    NARCIS (Netherlands)

    Zhu, Yaqin

    2017-01-01

    Nanomedicines based on biodegradable polymers for tumor imaging and therapy receive more and more attention due to their improved water solibility, bioavailability, and extended blood circulation times. Advanced polymer chemistry combined with a thorough understanding of the tumor microenvironment,

  18. Targeted Therapies in Hematology and Their Impact on Patient Care: Chronic and Acute Myeloid Leukemia

    Science.gov (United States)

    Cortes, Elias Jabbour Jorge; Ravandi, Farhad; O’Brien, Susan; Kantarjian, Hagop

    2014-01-01

    Advances in the genetic and molecular characterizations of leukemias have enhanced our capabilities to develop targeted therapies. The most dramatic examples of targeted therapy in cancer to date are the use of targeted BCR-ABL protein tyrosine kinase inhibitors (TKI) which has revolutionized the treatment of chronic myeloid leukemia (CML). Inhibition of the signaling activity of this kinase has proved to be a highly successful treatment target, transforming the prognosis of patients with CML. In contrast, acute myeloid leukemia (AML) is an extremely heterogeneous disease with outcomes that vary widely according to subtype of the disease. Targeted therapy with monoclonal antibodies and small molecule kinase inhibitors are promising strategies to help improve the cure rates in AML. In this review, we will highlight the results of recent clinical trials in which outcomes of CML and AML have been influenced significantly. Also, novel approaches to sequencing and combining available therapies will be covered. PMID:24246694

  19. IGF-IR targeted therapy: Past, present and future

    NARCIS (Netherlands)

    J.A.M.J.L. Janssen (Joseph); A.J. Varewijck (Aimee)

    2014-01-01

    textabstractThe IGF-I receptor (IGF-IR) has been studied as an anti-cancer target. However, monotherapy trials with IGF-IR targeted antibodies or with IGF-IR specific tyrosine kinase inhibitors have, overall, been very disappointing in the clinical setting. This review discusses potential reasons

  20. Inhalable magnetic nanoparticles for targeted hyperthermia in lung cancer therapy.

    Science.gov (United States)

    Sadhukha, Tanmoy; Wiedmann, Timothy S; Panyam, Jayanth

    2013-07-01

    Lung cancer (specifically, non-small cell lung cancer; NSCLC) is the leading cause of cancer-related deaths in the United States. Poor response rates and survival with current treatments clearly indicate the urgent need for developing an effective means to treat NSCLC. Magnetic hyperthermia is a non-invasive approach for tumor ablation, and is based on heat generation by magnetic materials, such as superparamagnetic iron oxide (SPIO) nanoparticles, when subjected to an alternating magnetic field. However, inadequate delivery of magnetic nanoparticles to tumor cells can result in sub-lethal temperature change and induce resistance while non-targeted delivery of these particles to the healthy tissues can result in toxicity. In our studies, we evaluated the effectiveness of tumor-targeted SPIO nanoparticles for magnetic hyperthermia of lung cancer. EGFR-targeted, inhalable SPIO nanoparticles were synthesized and characterized for targeting lung tumor cells as well as for magnetic hyperthermia-mediated antitumor efficacy in a mouse orthotopic model of NSCLC. Our results show that EGFR targeting enhances tumor retention of SPIO nanoparticles. Further, magnetic hyperthermia treatment using targeted SPIO nanoparticles resulted in significant inhibition of in vivo lung tumor growth. Overall, this work demonstrates the potential for developing an effective anticancer treatment modality for the treatment of NSCLC based on targeted magnetic hyperthermia. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Phosphorylated human prolactin (S179D-hPRL) is a potent anti-angiogenic hormone in vitro and in vivo; Prolactina humana pseudofosforilada (S179D-hPRL) e um potente fator anti-angiogenico in vitro e in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, Eric Kinnosuke Martins

    2006-07-01

    S179D-prolactin (hPRL) is an experimentally useful mimic of naturally phosphorylated human prolactin. S179D-hPRL, but not unmodified PRL, was found to be anti-angiogenic in both the chorioallantoic membrane and corneal assays. Further investigation using human endothelial in vitro models showed reduced cell number, reduced tubule formation in Matrigel, and reduced migration and invasion, as a function of treatment with S179D-hPRL. Analysis of growth factors in human endothelial cells in response to S179D-hPRL showed a decreased expression or release of endogenous PRL, heme-oxygenase-1, basic fibroblast growth factor (bFGF), angio genin, epidermal growth factor and vascular endothelial growth factor and an increased expression of inhibitors of matrix metallo proteases. S179D-hPRL also blocked signaling from bFGF in these cells. We conclude that this molecular mimic of a pituitary hormone is a potent anti-angiogenic protein, partly as a result of its ability to reduce utilization of several well-established endothelial autocrine growth loops, partly by its ability to block signaling from bFGF and partly because of its ability to decrease endothelial migration. We also examined the influence of S179D-hPRL on apoptosis in human endothelial cells, using procaspase-8 as a marker of the extrinsic pathway, and cytochrome C release as a marker of the intrinsic pathway. Both pathways converge at caspase-3, which cleaves DNA fragmentation factor (DFF45). A 3-day incubation with 50 ng/ml S179D-hPRL quadrupled the early apoptotic cells; this effect was doubled at 100 ng/ml and maximal at 500 ng/ml. DFF45 and pro-caspase 8 cleavage were detectable at 100 ng/ml. Cytochrome C, however, was unaffected until 500 ng/ml. p21 increased at 100 ng/ml, whereas a change in p53 activity required both triple the time and 500 ng/ml. p21 promoter activity was maximal at 50 ng/ml, whereas 500 ng/ml were required to see a significant change in the Bax promoter (a measure of p53 activity). As

  2. Refining Targeted Therapy Opportunities forBRAF-Mutant Melanoma.

    Science.gov (United States)

    Jenkins, Russell W; Barbie, David A

    2017-08-01

    Identifying molecular and cellular features associated with resistance to targeted BRAF/MAPK pathway inhibition may guide development of novel therapeutic approaches. Integrated, comparative analysis of genomic and functional data in sensitive and resistant cell lines unveils novel targetable regulators of resistance to MAPK pathway inhibition in melanoma. Cancer Discov; 7(8); 799-801. ©2017 AACR. See related article by Eskiocak et al., p. 832 . ©2017 American Association for Cancer Research.

  3. Gene therapy for meningioma: improved gene delivery with targeted adenoviruses

    NARCIS (Netherlands)

    Dirven, Clemens M. F.; Grill, Jacques; Lamfers, Martine L. M.; van der Valk, Paul; Leonhart, Angelique M.; van Beusechem, Victor W.; Haisma, Hidde J.; Pinedo, Herbert M.; Curiel, David T.; Vandertop, W. Peter; Gerritsen, Winald R.

    2002-01-01

    OBJECT: Due to their surgical inaccessibility or aggressive behavior, some meningiomas cannot be cured with current treatment strategies. Gene therapy is an emerging strategy for the treatment of brain tumors, which the authors investigated to determine whether adenoviruses could be used for gene

  4. Gene therapy for meningioma : improved gene delivery with targeted adenoviruses

    NARCIS (Netherlands)

    Dirven, CMF; Grill, J; Lamfers, MLM; Van der Valk, P; Leonhart, AM; Van Beusechem, VW; Haisma, HJ; Pinedo, HM; Curiel, DT; Vandertop, WP; Gerritsen, WR

    Object. Due to their surgical inaccessibility or aggressive behavior, some meningiomas cannot be cured with current treatment strategies. Gene therapy is an emerging strategy for the treatment of brain tumors, which the authors investigated to determine whether adenoviruses could be used for gene

  5. Apoptosis and cancer stem cells : Implications for apoptosis targeted therapy

    NARCIS (Netherlands)

    Kruyt, Frank A. E.; Schuringa, Jan Jacob

    2010-01-01

    Evidence is accumulating showing that cancer stem cells or tumor-initiating cells are key drivers of tumor formation and progression. Successful therapy must therefore eliminate these cells, which is hampered by their high resistance to commonly used treatment modalities. Thus far, only a limited

  6. Histone Modifications, Modifiers and Readers in Melanoma Resistance to Targeted and Immune Therapy

    Directory of Open Access Journals (Sweden)

    Stuart J Gallagher

    2015-09-01

    Full Text Available The treatment of melanoma has been revolutionized by new therapies targeting MAPK signaling or the immune system. Unfortunately these therapies are hindered by either primary resistance or the development of acquired resistance. Resistance mechanisms involving somatic mutations in genes associated with resistance have been identified in some cases of melanoma, however, the cause of resistance remains largely unexplained in other cases. The importance of epigenetic factors targeting histones and histone modifiers in driving the behavior of melanoma is only starting to be unraveled and provides significant opportunity to combat the problems of therapy resistance. There is also an increasing ability to target these epigenetic changes with new drugs that inhibit these modifications to either prevent or overcome resistance to both MAPK inhibitors and immunotherapy. This review focuses on changes in histones, histone reader proteins and histone positioning, which can mediate resistance to new therapeutics and that can be targeted for future therapies.

  7. Predictive markers of efficacy for an angiopoietin-2 targeting therapeutic in xenograft models.

    Directory of Open Access Journals (Sweden)

    Gallen Triana-Baltzer

    Full Text Available The clinical efficacy of anti-angiogenic therapies has been difficult to predict, and biomarkers that can predict responsiveness are sorely needed in this era of personalized medicine. CVX-060 is an angiopoietin-2 (Ang2 targeting therapeutic, consisting of two peptides that bind Ang2 with high affinity and specificity, covalently fused to a scaffold antibody. In order to optimize the use of this compound in the clinic the construction of a predictive model is described, based on the efficacy of CVX-060 in 13 cell line and 2 patient-derived xenograft models. Pretreatment size tumors from each of the models were profiled for the levels of 27 protein markers of angiogenesis, SNP haplotype in 5 angiogenesis genes, and somatic mutation status for 11 genes implicated in tumor growth and/or vascularization. CVX-060 efficacy was determined as tumor growth inhibition (TGI% at termination of each study. A predictive statistical model was constructed based on the correlation of these efficacy data with the marker profiles, and the model was subsequently tested by prospective analysis in 11 additional models. The results reveal a range of CVX-060 efficacy in xenograft models of diverse tissue types (0-64% TGI, median = 27% and define a subset of 3 proteins (Ang1, EGF, Emmprin, the levels of which may be predictive of TGI by Ang2 blockade. The direction of the associations is such that better efficacy correlates with high levels of target and low levels of compensatory/antagonizing molecules. This effort has revealed a set of candidate predictive markers for CVX-060 efficacy that will be further evaluated in ongoing clinical trials.

  8. Predictive markers of efficacy for an angiopoietin-2 targeting therapeutic in xenograft models.

    Science.gov (United States)

    Triana-Baltzer, Gallen; Pavlicek, Adam; Goulart, Ariadne; Huang, Hanhua; Pirie-Shepherd, Steven; Levin, Nancy

    2013-01-01

    The clinical efficacy of anti-angiogenic therapies has been difficult to predict, and biomarkers that can predict responsiveness are sorely needed in this era of personalized medicine. CVX-060 is an angiopoietin-2 (Ang2) targeting therapeutic, consisting of two peptides that bind Ang2 with high affinity and specificity, covalently fused to a scaffold antibody. In order to optimize the use of this compound in the clinic the construction of a predictive model is described, based on the efficacy of CVX-060 in 13 cell line and 2 patient-derived xenograft models. Pretreatment size tumors from each of the models were profiled for the levels of 27 protein markers of angiogenesis, SNP haplotype in 5 angiogenesis genes, and somatic mutation status for 11 genes implicated in tumor growth and/or vascularization. CVX-060 efficacy was determined as tumor growth inhibition (TGI%) at termination of each study. A predictive statistical model was constructed based on the correlation of these efficacy data with the marker profiles, and the model was subsequently tested by prospective analysis in 11 additional models. The results reveal a range of CVX-060 efficacy in xenograft models of diverse tissue types (0-64% TGI, median = 27%) and define a subset of 3 proteins (Ang1, EGF, Emmprin), the levels of which may be predictive of TGI by Ang2 blockade. The direction of the associations is such that better efficacy correlates with high levels of target and low levels of compensatory/antagonizing molecules. This effort has revealed a set of candidate predictive markers for CVX-060 efficacy that will be further evaluated in ongoing clinical trials.

  9. PP2A inhibition overcomes acquired resistance to HER2 targeted therapy

    OpenAIRE

    McDermott, Martina SJ; Browne, Brigid C; Conlon, Neil T; O’Brien, Neil A; Slamon, Dennis J; Henry, Michael; Meleady, Paula; Clynes, Martin; Dowling, Paul; Crown, John; O’Donovan, Norma

    2014-01-01

    Background: HER2 targeted therapies including trastuzumab and more recently lapatinib have significantly improved the prognosis for HER2 positive breast cancer patients. However, resistance to these agents is a significant clinical problem. Although several mechanisms have been proposed for resistance to trastuzumab, the mechanisms of lapatinib resistance remain largely unknown. In this study we generated new models of acquired resistance to HER2 targeted therapy and investigated ...

  10. Anti-claudin 18.2 antibody as new targeted therapy for advanced gastric cancer

    OpenAIRE

    Prabhsimranjot Singh; Sudhamshi Toom; Yiwu Huang

    2017-01-01

    Abstract Targeted therapy and immunotherapy have revolutionized treatment of various cancers in the past decade. Despite targeted therapy with trastuzumab in Her2-positive gastric cancer patients, survival has been dismal, mostly due to disease progression and toxicity related to the treatments. One area of active development is looking for ideal monoclonal antibodies (IMAB) specific to the proteins only on the tumor and hence avoiding unnecessary side effects. Claudin proteins with isoform 2...

  11. Targeting Trysin-Inflammation Axis for Pancreatitis Therapy in a Humanized Pancreatitis Model

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-15-1-0258 TITLE: Targeting trypsin-inflammation axis for pancreatitis therapy in a humanized pancreatitis model PRINCIPAL...From - To) 15 Sep 2016 – 14 Sep 2017 4. TITLE AND SUBTITLE Targeting trypsin-inflammation axis for pancreatitis therapy in a humanized pancreatitis ... pancreatitis especially due to alcohol and smoking goes onto chronic pancreatitis which, in turn, is a risk factor for pancreatic cancer. Because only a

  12. Cellular Energy Pathways as Novel Targets for the Therapy of Autosomal Dominant Polycystic Kidney Disease

    Science.gov (United States)

    2017-09-01

    AWARD NUMBER: W81XWH-15-1-0420 TITLE: Cellular Energy Pathways as Novel Targets for the Therapy of Autosomal Dominant Polycystic Kidney Disease...DATES COVERED 1 Sep 2016 - 31 Aug 2017 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Cellular Energy Pathways as Novel Targets for the Therapy of...and dysregulation of cellular energy metabolism. The enzyme AMPK regulates a number of cellular pathways, including these disease-causing features

  13. Advances of Molecular Targeted Therapy in Squamous Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Li MA

    2013-12-01

    Full Text Available Squamous cell lung cancer (SQCLC is one of the most prevalent subtypes of lung cancer worldwide, about 400,000 persons die from squamous-cell lung cancer around the world, and its pathogenesis is closely linked with tobacco exposure. Unfortunately, squamous-cell lung cancer patients do not benefit from major advances in the development of targeted therapeutics such as epidermal growth factor receptor (EGFR inhibitors or anaplastic lymphoma kinase (ALK inhibitors that show exquisite activity in lungadenocarcinomas with EGFR mutations or echinoderm microtubule associated protein like-4 (EML4-ALK fusions, respectively. Major efforts have been launched to characterize the genomes of squamous-cell lung cancers. Among the new results emanating from these efforts are amplifications of the fibroblast growth factor receptor 1 (FGFR1 gene, the discoidin domain receptor 2 (DDR2 gene mutation as potential novel targets for the treatment of SQCLCs. Researchers find that there are many specific molecular targeted genes in the genome of squamous-cell lung cancer patients. These changes play a vital role in cell cycle regulation, oxidative stress, cell apoptosis, squamous epithelium differentiation, may be the candidate targeted moleculars in SQCLCs. Here, we provide a review on these discoveries and their implications for clinical trials in squamous-cell lungcancer assessing the value of novel therapeutics addressing these targets.

  14. Graves' disease radioiodine-therapy: Choosing target absorbed doses for therapy planning

    Energy Technology Data Exchange (ETDEWEB)

    Willegaignon, J., E-mail: j.willegaignon@gmail.com; Sapienza, M. T.; Coura-Filho, G. B.; Buchpiguel, C. A. [Cancer Institute of São Paulo State (ICESP), Clinical Hospital, School of Medicine, University of São Paulo, São Paulo 01246-000 (Brazil); Nuclear Medicine Service, Department of Radiology, School of Medicine, University of São Paulo, Sao Paulo 01246-000 (Brazil); Watanabe, T. [Nuclear Medicine Service, Department of Radiology, School of Medicine, University of São Paulo, São Paulo 01246-000 (Brazil); Traino, A. C. [Unit of Medical Physics, Azienda Ospedaliero-Universitaria Pisana, Pisa 56126 (Italy)

    2014-01-15

    {sup ~} was determined by the integration of measured {sup 131}I activity in the thyroid gland and based on T{sub eff}, respectively. No statistically significant relationship was found between therapeutic response and patients’ age, administered {sup 131}I activity (MBq), 24-h thyroid {sup 131}I uptake (%) or T{sub eff} (p ≥ 0.064); nonetheless, a good relationship was found between the therapeutic response and m{sub th} (p ≤ 0.035). Conclusions: According to the results of this study, the most effective thyroid absorbed dose to be targeted in GD therapy should not be based on a fixed dose but rather should be individualized based on the patient'sm{sub th} and A{sup ~}. To achieve a therapeutic success (i.e., durable euthyroidism or hypothyroidism) rate of at least 95%, a thyroid absorbed dose of 200 or 330 Gy is required depending on the methodology used for estimating m{sub th} and A{sup ~}.

  15. Mechanisms of resistance to HER2 target therapy.

    Science.gov (United States)

    Tortora, Giampaolo

    2011-01-01

    In the past years, several agents targeting signaling proteins critical for breast cancer growth and dissemination entered clinical evaluation. They include drugs directed against the HER/ErbB family of receptor tyrosine kinases, especially HER2; several downstream signal transducers; and proteins involved in tumor angiogenesis and dissemination. Unfortunately, resistance to targeted agents is a quite common feature, and understanding of the molecular mechanisms predicting response or failure has become a crucial issue to optimize treatment and select patients who are the best candidates to respond. The neoadjuvant setting offers unique opportunities allowing tumor sampling and search for molecular determinants of response. A variety of tumor and host factors may account for the onset of resistance. Major progress has been made in the understanding of the mechanisms involved in the primary and acquired resistance to targeted agents, especially the anti-HER2 drugs, which play a pivotal role in the weaponry against breast cancer.

  16. Challenges and opportunities for converting renal cell carcinoma into a chronic disease with targeted therapies.

    Science.gov (United States)

    Gore, M E; Larkin, J M G

    2011-02-01

    Optimum efficacy is the primary goal for any cancer therapy, and entails controlling tumour growth and prolonging survival as far as possible. The prognosis for patients with metastatic renal cell carcinoma (mRCC) has greatly improved with the introduction of targeted therapies. This review examines the development and efficacy of targeted agents for the management of mRCC, the challenges offered by their rapid emergence, and discusses how mRCC treatment may evolve in the future. Improvements in progression-free survival and overall survival rates, observed with targeted agents, indicate that it may now be possible to change mRCC from a rapidly fatal and largely untreatable condition into a chronic disease. The major challenges to further advances in targeted therapy for mRCC include overcoming drug resistance, identifying the most effective sequence or combination of targeted agents, optimising clinical trial design and managing the cost of treatment.

  17. Effectiveness of Targeted Musical Therapy on Sleep Quality and Overcoming Insomnia in Seniors

    Directory of Open Access Journals (Sweden)

    Reza Mottaghi

    2016-07-01

    Conclusion: The present study showed that targeted music therapy can lead to the improvement in the overall sleep quality, daily functioning, and subjective sleep quality thereby resulting in a sharp decline in the number of sleep drugs in seniors with primary insomnia disorder. Therefore, it is highly recommended by the music therapy and mental health experts for overcoming the sleep problems in older adults.

  18. Advancing Treatment of Pituitary Adenomas through Targeted Molecular Therapies: The Acromegaly & Cushing Disease Paradigms

    Directory of Open Access Journals (Sweden)

    Michael Anthony Mooney

    2016-07-01

    Full Text Available The current treatment of pituitary adenomas requires a balance of conservative management, surgical resection, and in select tumor types, molecular therapy. Acromegaly treatment is an evolving field where our understanding of molecular targets and drug therapies has improved treatment options for patients with excess growth hormone levels. We highlight the use of molecular therapies in this disease process and advances in this field, which may represent a paradigm shift for the future of pituitary adenoma treatment.

  19. Advancing Treatment of Pituitary Adenomas through Targeted Molecular Therapies: The Acromegaly and Cushing Disease Paradigms.

    Science.gov (United States)

    Mooney, Michael A; Simon, Elias D; Little, Andrew S

    2016-01-01

    The current treatment of pituitary adenomas requires a balance of conservative management, surgical resection, and in select tumor types, molecular therapy. Acromegaly treatment is an evolving field where our understanding of molecular targets and drug therapies has improved treatment options for patients with excess growth hormone levels. We highlight the use of molecular therapies in this disease process and advances in this field, which may represent a paradigm shift for the future of pituitary adenoma treatment.

  20. Targeted Therapies in Non-Small Cell Lung Cancer?Beyond EGFR and ALK

    OpenAIRE

    Rothschild, Sacha I.

    2015-01-01

    Systemic therapy for non-small cell lung cancer (NSCLC) has undergone a dramatic paradigm shift over the past decade. Advances in our understanding of the underlying biology of NSCLC have revealed distinct molecular subtypes. A substantial proportion of NSCLC depends on oncogenic molecular aberrations (so-called “driver mutations”) for their malignant phenotype. Personalized therapy encompasses the strategy of matching these subtypes with effective targeted therapies. EGFR mutations and ALK t...

  1. Dominant mechanisms of primary resistance differ from dominant mechanisms of secondary resistance to targeted therapies.

    Science.gov (United States)

    Asić, Ksenija

    2016-01-01

    The effectiveness of targeted therapies is currently limited, as almost all patients eventually acquire resistance within year/year and a half from therapy initiation and a small subset of a patients fail to respond at all, demonstrating intrinsic resistance. The aim of this review was to determine the potential common features and differences between the mechanisms of intrinsic and acquired resistance to targeted therapies by analyzing established resistance-generating alterations for ten FDA-approved targeted drugs. The frequency of alterations underlying intrinsic and acquired resistance shows distinctive pattern, where dominant mechanisms of intrinsic resistance include aberrations of signals downstream or upstream of the targeted protein and dominant mechanisms of acquired resistance refer to lesions in the target itself or alterations of signals at target-level that can mimic or compensate for target function. It appears that during the evolution of acquired resistance, the tumor cell is inclined to preserve the same oncogene addiction on a targeted protein it had prior to drug administration. On the other hand, intrinsic resistance develops early in tumorogenesis and is based on randomly selected mutated signals between targeted and non-targeted signaling pathways, leading to the acquisition of cancer hallmarks. In general, there is an overlap between the mechanisms of intrinsic and acquired resistance, but the occurrence frequency and distribution of alterations underlying intrinsic and acquired resistance to targeted therapies are significantly different. Focus should be placed on different group of genes in pursuing predictive markers for intrinsic and acquired resistance to targeted therapies. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Targeting post-translational modifications of histones for cancer therapy.

    Science.gov (United States)

    Hsu, Y-C; Hsieh, Y-H; Liao, C-C; Chong, L-W; Lee, C-Y; Yu, Y-L; Chou, R-H

    2015-10-30

    Post-translational modifications (PTMs) on histones including acetylation, methylation, phosphorylation, citrullination, ubiquitination, ADP ribosylation, and sumoylation, play important roles in different biological events including chromatin dynamics, DNA replication, and transcriptional regulation. Aberrant histones PTMs leads to abnormal gene expression and uncontrolled cell proliferation, followed by development of cancers. Therefore, targeting the enzymes required for specific histone PTMs holds a lot of potential for cancer treatment. In this review article, we retrospect the latest studies in the regulations of acetylation, methylation, and phosphorylation of histones. We also summarize inhibitors/drugs that target these modifications for cancer treatment.

  3. Targeting dendritic cells in vivo for cancer therapy

    Directory of Open Access Journals (Sweden)

    Irina eCaminschi

    2012-02-01

    Full Text Available Monoclonal antibodies that recognise cell surface molecules have been used deliver antigenic cargo to dendritic cells (DC for induction of immune responses. The encouraging anti-tumour immunity elicited using this immunisation strategy suggests its suitability for clinical trials. This review discusses the complex network of DC, the functional specialisation of DC-subsets, the immunological outcomes of targeting different DC-subsets and their cell surface receptors, and the requirements for the induction of effective anti-tumour immunity. Finally, we review preclinical experiments and the progress towards targeting human DC in vivo.

  4. Quorum-Sensing Systems as Targets for Antivirulence Therapy.

    Science.gov (United States)

    Defoirdt, Tom

    2018-04-01

    The development of novel therapies to control diseases caused by antibiotic-resistant pathogens is one of the major challenges we are currently facing. Many important plant, animal, and human pathogens regulate virulence by quorum sensing, bacterial cell-to-cell communication with small signal molecules. Consequently, a significant research effort is being undertaken to identify and use quorum-sensing-interfering agents in order to control diseases caused by these pathogens. In this review, an overview of our current knowledge of quorum-sensing systems of Gram-negative model pathogens is presented as well as the link with virulence of these pathogens, and recent advances and challenges in the development of quorum-sensing-interfering therapies are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Bone-Targeted Imaging and Radionuclide Therapy in Prostate Cancer.

    Science.gov (United States)

    Iagaru, Andrei H; Mittra, Erik; Colletti, Patrick M; Jadvar, Hossein

    2016-10-01

    Although selective metabolic and receptor-based molecular agents will surely be included in the future of prostate cancer diagnosis and therapy, currently available inorganic compounds-such as 18 F-NaF for the diagnosis of bony disease and 223 RaCl 2 for the therapy of bone metastases-were recently shown to be superior to standard 99m Tc-phosphonates for diagnosis and 153 Sm-ethylenediaminetetramethylene phosphonate or 89 SrCl 2 for therapy. The advantages of 18 F-NaF include improved lesion detection and, when used in combination with CT, improved diagnostic confidence and specificity. In addition to being the first approved α-emitter, 223 RaCl 2 is the first radiopharmaceutical to show an increase in overall survival, a decrease in skeletal events, palliation of bone pain, and a low profile of adverse reactions (which are mild and manageable). The management of metastatic bone disease with 223 RaCl 2 is uniquely satisfying, as patients can be monitored directly during their monthly treatment visits. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  6. Traditional Chinese medicines (TCMs) for molecular targeted therapies of tumours.

    Science.gov (United States)

    Youns, Mahmoud; Hoheisel, Jörg D; Efferth, Thomas

    2010-03-01

    Scientific progress in genetics, cell and molecular biology has greatly ameliorated our comprehensive understanding of the molecular mechanisms of neoplastic transformation and progression. The rapidly advancing identification of molecular targets in human cancers during the last decade has provided an excellent starting point for the development of novel therapeutics. A huge variety of potential molecular targets have been identified, many of which are already in the market for therapeutic purposes. It is now becoming possible to target pathways and/or molecules that are crucial in maintaining the malignant phenotype. Traditional Chinese medicine (TCM) is often considered as alternative or complementary medicine. TCM represents a holistic approach and lacks high-quality scientific evidence on its effectiveness. Therefore, it is frequently regarded with some scepticism by western academic medicine. In this review, we report that application of modern technologies allowed identification of novel molecular targets modulating the anti-tumour activity of natural products derived from TCM. Moreover, we tried to cross the bridge between TCM and Western modern medicine to be able to implement them for the sake of cancer patients.

  7. Small molecules and targeted therapies in distant metastatic disease

    DEFF Research Database (Denmark)

    Hersey, P; Bastholt, L; Chiarion-Sileni, V

    2009-01-01

    with chemotherapy. Agents targeting mutant B-Raf (RAF265 and PLX4032), MEK (PD0325901, AZD6244), heat-shock protein 90 (tanespimycin), mTOR (everolimus, deforolimus, temsirolimus) and VEGFR (axitinib) showed some promise in earlier stages of clinical development. Receptor tyrosine-kinase inhibitors (imatinib...

  8. mTOR in squamous cell carcinoma of the oesophagus: a potential target for molecular therapy?

    NARCIS (Netherlands)

    Boone, J.; ten Kate, F. J. W.; Offerhaus, G. J. A.; van Diest, P. J.; Borel Rinkes, I. H. M.; van Hillegersberg, R.

    2008-01-01

    AIMS: The mammalian target of rapamycin (mTOR), an important regulator of protein translation and cell proliferation, is activated in various malignancies. In a randomised controlled trial of advanced renal cell carcinoma patients, targeted therapy to mTOR by means of rapamycin analogues has been

  9. Targeting the vasculature in hepatocellular carcinoma treatment: Starving versus normalizing blood supply

    Science.gov (United States)

    Liu, Ken; Zhang, Xiang; Xu, Weiqi; Chen, Jinbiao; Yu, Jun; Gamble, Jennifer R; McCaughan, Geoffrey W

    2017-01-01

    Traditional treatments for intermediate or advanced stage hepatocellular carcinoma (HCC) such as transarterial chemoembolization (TACE) and anti-angiogenesis therapies were developed to starve tumor blood supply. A new approach of normalizing structurally and functionally abnormal tumor vasculature is emerging. While TACE improves survival in selected patients, the resulting tumor hypoxia stimulates proliferation, angiogenesis, treatment resistance and metastasis, which limits its overall efficacy. Vessel normalization decreases hypoxia and improves anti-tumor immune infiltrate and drug delivery. Several pre-clinical agents aimed at normalizing tumor vasculature in HCC appear promising. Although anti-angiogenic agents with vessel normalizing potential have been trialed in advanced HCC with modest results, to date their primary intention had been to starve the tumor. Judicious use of anti-angiogenic therapies is required to achieve vessel normalization yet avoid excessive pruning of vessels. This balance, termed the normalization window, is yet uncharacterized in HCC. However, the optimal class, dose and schedule of vascular normalization agents, alone or in combination with other therapies needs to be explored further. PMID:28617447

  10. Gene therapy of cancer and development of therapeutic target gene

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Min; Kwon, Hee Chung

    1998-04-01

    We applied HSV-tk/GCV strategy to orthotopic rat hepatoma model and showed anticancer effects of hepatoma. The increased expression of Lac Z gene after adenovirus-mediated gene delivery throughout hepatic artery was thought that is increased the possibility of gene therapy for curing hepatoma. With the construction of kGLP-laboratory, it is possible to produce a good quantity and quality of adenovirus in lage-scale production and purification of adenovirus vector. Also, the analysis of hepatoma related genes by PCR-LOH could be used for the diagnosis of patients and the development of therapeutic gene.

  11. Gene therapy of cancer and development of therapeutic target gene

    International Nuclear Information System (INIS)

    Kim, Chang Min; Kwon, Hee Chung

    1998-04-01

    We applied HSV-tk/GCV strategy to orthotopic rat hepatoma model and showed anticancer effects of hepatoma. The increased expression of Lac Z gene after adenovirus-mediated gene delivery throughout hepatic artery was thought that is increased the possibility of gene therapy for curing hepatoma. With the construction of kGLP-laboratory, it is possible to produce a good quantity and quality of adenovirus in lage-scale production and purification of adenovirus vector. Also, the analysis of hepatoma related genes by PCR-LOH could be used for the diagnosis of patients and the development of therapeutic gene

  12. Advances in targeted and immunobased therapies for colorectal cancer in the genomic era

    Directory of Open Access Journals (Sweden)

    Seow HF

    2016-03-01

    Full Text Available Heng Fong Seow,1 Wai Kien Yip,1 Theodora Fifis2 1Immunology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia; 2Department of Surgery, University of Melbourne, Melbourne, Australia Abstract: Targeted therapies require information on specific defective signaling pathways or mutations. Advances in genomic technologies and cell biology have led to identification of new therapeutic targets associated with signal-transduction pathways. Survival times of patients with colorectal cancer (CRC can be extended with combinations of conventional cytotoxic agents and targeted therapies. Targeting EGFR- and VEGFR-signaling systems has been the major focus for treatment of metastatic CRC. However, there are still limitations in their clinical application, and new and better drug combinations are needed. This review provides information on EGFR and VEGF inhibitors, new therapeutic agents in the pipeline targeting EGFR and VEGFR pathways, and those targeting other signal-transduction pathways, such as MET, IGF1R, MEK, PI3K, Wnt, Notch, Hedgehog, and death-receptor signaling pathways for treatment of metastatic CRC. Additionally, multitargeted approaches in combination therapies targeting negative-feedback loops, compensatory networks, and cross talk between pathways are highlighted. Then, immunobased strategies to enhance antitumor immunity using specific monoclonal antibodies, such as the immune-checkpoint inhibitors anti-CTLA4 and anti-PD1, as well as the challenges that need to be overcome for increased efficacy of targeted therapies, including drug resistance, predictive markers of response, tumor subtypes, and cancer stem cells, are covered. The review concludes with a brief insight into the applications of next-generation sequencing, expression profiling for tumor subtyping, and the exciting progress made in in silico predictive analysis in the development of a prescription strategy for

  13. Target therapy in treatment of HER2-positive breast cancer

    Directory of Open Access Journals (Sweden)

    A. S. Belokhvostova

    2013-01-01

    Full Text Available The breast cancer (BC wins first place in structure of oncological incidence of the female population around the world. The special place is occupied by tumors with a superfluous expression of HER2 of a factor which is defined at 25–30 % of patients. Interest to suchpatients is defined by an aggressive course of disease, an early metastasis, resistance to chemo-and hormonotherapy. The main targeted drugs registered in the Russian Federation for treatment of HER2-positive BC is Trastuzumab (herceptin®. The presented review contains data of researches on application of a preparation of herceptin in various schemes of chemotherapy. Studying of a combination of trastuzumab with cytostatics, other targeted drugs proceeds at various stages of tumoral process.

  14. Targeting MYC in cancer therapy: RNA processing offers new opportunities

    Science.gov (United States)

    2016-01-01

    MYC is a transcription factor, which not only directly modulates multiple aspects of transcription and co‐transcriptional processing (e.g. RNA‐Polymerase II initiation, elongation, and mRNA capping), but also indirectly influences several steps of RNA metabolism, including both constitutive and alternative splicing, mRNA stability, and translation efficiency. As MYC is an oncoprotein whose expression is deregulated in multiple human cancers, identifying its critical downstream activities in tumors is of key importance for designing effective therapeutic strategies. With this knowledge and recent technological advances, we now have multiple angles to reach the goal of targeting MYC in tumors, ranging from the direct reduction of MYC levels, to the dampening of selected house‐keeping functions in MYC‐overexpressing cells, to more targeted approaches based on MYC‐induced secondary effects. PMID:26778668

  15. Targeting Transcription Elongation Machinery for Breast Cancer Therapy

    Science.gov (United States)

    2017-04-01

    Highway, Suite 1204, Arlington, VA 22202- 4302. Respondents should be aware that notwithstanding any other provision of law , no person shall be subject...breast cancer cell EMT. Through disrupting the negative P-TEFb complex, the 7SK snRNP, by targeted knockdown of HEXIM1 expression, we found that the KD...stemness regulators to accomplish the stated goals of the project in the next reporting period. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17

  16. Precision renal medicine: a roadmap towards targeted kidney fibrosis therapies

    OpenAIRE

    Zeisberg, Michael; Zeisberg, Elisabeth M.

    2015-01-01

    Based on extensive pre-clinical achievements over the past decades, it appears to be due time for a successful clinical translation in the renal fibrosis field—but what is the quickest road to get there? In light of the recent launch of the Precision Medicine Initiative and success of molecularly informed drugs in oncology, we here discuss what it may take to bring molecularly targeted anti-fibrotic to clinical use in chronic progressive kidney disease. peerReviewed

  17. Precision renal medicine: a roadmap towards targeted kidney fibrosis therapies.

    Science.gov (United States)

    Zeisberg, Michael; Zeisberg, Elisabeth M

    2015-01-01

    Based on extensive pre-clinical achievements over the past decades, it appears to be due time for a successful clinical translation in the renal fibrosis field-but what is the quickest road to get there? In light of the recent launch of the Precision Medicine Initiative and success of molecularly informed drugs in oncology, we here discuss what it may take to bring molecularly targeted anti-fibrotic to clinical use in chronic progressive kidney disease.

  18. Adverse Renal Effects of Novel Molecular Oncologic Targeted Therapies: A Narrative Review

    Directory of Open Access Journals (Sweden)

    Kenar D. Jhaveri

    2017-01-01

    Full Text Available Novel targeted anti-cancer therapies have resulted in improvement in patient survival compared to standard chemotherapy. Renal toxicities of targeted agents are increasingly being recognized. The incidence, severity, and pattern of renal toxicities may vary according to the respective target of the drug. Here we review the adverse renal effects associated with a selection of currently approved targeted cancer therapies, directed to EGFR, HER2, BRAF, MEK, ALK, PD1/PDL1, CTLA-4, and novel agents targeted to VEGF/R and TKIs. In summary, electrolyte disorders, renal impairment and hypertension are the most commonly reported events. Of the novel targeted agents, ipilumumab and cetuximab have the most nephrotoxic events reported. The early diagnosis and prompt recognition of these renal adverse events are essential for the general nephrologist taking care of these patients.

  19. Targeted therapy for orbital and periocular basal cell carcinoma and squamous cell carcinoma.

    Science.gov (United States)

    Yin, Vivian T; Pfeiffer, Margaret L; Esmaeli, Bita

    2013-01-01

    To review the literature on targeted therapy for orbital and periocular basal cell carcinoma (BCC) and cutaneous squamous cell carcinoma (SCC) and provide examples of patients recently treated with such therapy. The authors reviewed the literature on clinical results of targeted therapy and the molecular basis for targeted therapy in orbital and periocular BCC and cutaneous SCC. The authors also present representative cases from their practice. Mutation in the patched 1 gene (PTCH1) has been implicated in BCC, and overexpression of epidermal growth factor receptor (EGFR) has been shown in SCC. Vismodegib, an inhibitor of smoothened, which is activated upon binding of hedgehog to Ptc, has been shown to significantly decrease BCC tumor size or even produce complete resolution, especially in cases of basal cell nevus syndrome. Similarly, EGFR inhibitors have been shown to significantly decrease SCC tumor size in cases of locally advanced and metastatic disease. The authors describe successful outcomes after vismodegib treatment in a patient with basal cell nevus syndrome with numerous bulky lesions of the eyelid and periocular region and erlotinib (EGFR inhibitor) treatment in a patient with SCC who was deemed not to be a good surgical candidate because of advanced SCC of the orbit with metastasis to the regional lymph nodes, advanced age, and multiple medical comorbidities. Targeted therapy using hedgehog pathway and EGFR inhibitors shows significant promise in treatment of orbital and periocular BCC and cutaneous SCC, respectively. Such targeted therapy may be appropriate for patients who are not good candidates for surgery.

  20. Targeted alpha therapy using short-lived alpha-particles and the promise of nanobodies as targeting vehicle

    Science.gov (United States)

    Dekempeneer, Yana; Keyaerts, Marleen; Krasniqi, Ahmet; Puttemans, Janik; Muyldermans, Serge; Lahoutte, Tony; D’huyvetter, Matthias; Devoogdt, Nick

    2016-01-01

    ABSTRACT Introduction: The combination of a targeted biomolecule that specifically defines the target and a radionuclide that delivers a cytotoxic payload offers a specific way to destroy cancer cells. Targeted radionuclide therapy (TRNT) aims to deliver cytotoxic radiation to cancer cells and causes minimal toxicity to surrounding healthy tissues. Recent advances using α-particle radiation emphasizes their potential to generate radiation in a highly localized and toxic manner because of their high level of ionization and short range in tissue. Areas covered: We review the importance of targeted alpha therapy (TAT) and focus on nanobodies as potential beneficial vehicles. In recent years, nanobodies have been evaluated intensively as unique antigen-specific vehicles for molecular imaging and TRNT. Expert opinion: We expect that the efficient targeting capacity and fast clearance of nanobodies offer a high potential for TAT. More particularly, we argue that the nanobodies’ pharmacokinetic properties match perfectly with the interesting decay properties of the short-lived α-particle emitting radionuclides Astatine-211 and Bismuth-213 and offer an interesting treatment option particularly for micrometastatic cancer and residual disease. PMID:27145158

  1. Bevacizumab and osteonecrosis of the jaw: incidence and association with bisphosphonate therapy in three large prospective trials in advanced breast cancer.

    Science.gov (United States)

    Guarneri, Valentina; Miles, David; Robert, Nicholas; Diéras, Véronique; Glaspy, John; Smith, Ian; Thomssen, Christoph; Biganzoli, Laura; Taran, Tanya; Conte, PierFranco

    2010-07-01

    Long-term bisphosphonate therapy is associated with increased risk of osteonecrosis of the jaw (ONJ). In a retrospective analysis, a 16% ONJ incidence was reported in patients receiving bisphosphonates with anti-angiogenic therapy (bevacizumab or sunitinib) for bone metastases from breast, colon, or renal cell cancers. To assess ONJ incidence with bevacizumab, we analysed data from 3,560 patients receiving bevacizumab-containing therapy for locally recurrent or metastatic breast cancer (LR/MBC) in two double-blind, randomised trials (AVADO and RIBBON-1) and a large, non-randomised safety study (ATHENA). The overall incidence of ONJ with bevacizumab was 0.3% in the blinded phase of the two randomised trials and 0.4% in the single-arm study. There was a trend towards increased ONJ incidence in patients who received bisphosphonate therapy versus those with no bisphosphonate exposure (0.9 vs. 0.2%, respectively, in the pooled analysis of the randomised trials; 2.4 vs. 0%, respectively, in ATHENA). In conclusion, this is the largest analysis of ONJ in patients receiving bevacizumab for LR/MBC. The 0.3-0.4% incidence is considerably lower than previously suggested with anti-angiogenic therapy in a small retrospective analysis. The risk of ONJ appeared to be increased in patients exposed to bisphosphonates, a pattern consistent with observations before the introduction of anti-angiogenic therapy to breast cancer management. The 0.9-2.4% incidence seen in bisphosphonate-exposed patients receiving bevacizumab is within the 1-6% range reported for bisphosphonates alone. Good oral hygiene, dental examination, and avoidance of invasive dental procedures remain important in patients receiving bisphosphonates, irrespective of bevacizumab administration.

  2. Endoglin as a target of antitumor therapy 

    Directory of Open Access Journals (Sweden)

    Magdalena Jarosz

    2013-02-01

    Full Text Available Blood vascular supply significantly affects progression of tumor growth. Inhibition of endothelial cell proliferation by antiangiogenic drugs should lead to growth arrest of both primary tumors and metastases. During the course of lengthy therapy, endothelial cells may, however, become refractory to the action of antiangiogenic agents. Novel approaches to anticancer treatment should explore the issue of drug resistance shown by endothelial cells. One possible therapeutic solution might be tumor immunotherapy directed against antigens expressed on the surface of endothelial cells which co-form tumor blood vasculature. Such therapy is supposed to break immune tolerance to own antigens and to eliminate tumor blood vessel endothelial cells by activating cytotoxic T lymphocytes. This kind of response can be obtained against endoglin (CD105. Endoglin is overexpressed in proliferating endothelial cells which line tumor blood vessels. Presence of endoglin in solid tumor blood vessels has prognostic value in cancer treatment. CD105 is also expressed by certain cancer cells (prostate, melanoma and Ewing sarcoma. It appears that therapeutic strategies directed against endoglin allow several mechanisms of resistance to antiangiogenic drugs to be omitted. The therapeutic approach that we propose, i.e. a tumor blood vessel-destroying strategy combined with immunotherapy, may become an effective therapeutic tool. 

  3. Targeting epigenetic processes in photodynamic therapy-induced anticancer immunity

    Directory of Open Access Journals (Sweden)

    Malgorzata eWachowska

    2015-07-01

    Full Text Available Photodynamic therapy (PDT of cancer is an approved therapeutic procedure that generates oxidative stress leading to cell death of tumour and stromal cells. Cell death resulting from oxidative damage to intracellular components leads to the release of damage-associated molecular patterns (DAMPs that trigger robust inflammatory response and creates local conditions for effective sampling of tumour-associated antigens (TAA by antigen presenting cells. The latter can trigger development of TAA-specific adaptive immune response. However, due to a number of mechanisms, including epigenetic regulation of TAA expression, tumour cells evade immune recognition. Therefore, numerous approaches are being developed to combine PDT with immunotherapies to allow development of systemic immunity. In this review we describe immunoregulatory mechanisms of epigenetic treatments that were shown to restore the expression of epigenetically silenced or down-regulated major histocompatibility complex (MHC molecules as well as TAA. We also discuss the results of our recent studies showing that epigenetic treatments based on administration of methyltransferase inhibitors in combination with photodynamic therapy can release effective mechanisms leading to development of antitumour immunity and potentiated antitumour effects.

  4. Catching moving targets: cancer stem cell hierarchies, therapy-resistance & considerations for clinical intervention.

    LENUS (Irish Health Repository)

    Gasch, Claudia

    2017-01-01

    It is widely believed that targeting the tumour-initiating cancer stem cell (CSC) component of malignancy has great therapeutic potential, particularly in therapy-resistant disease. However, despite concerted efforts, CSC-targeting strategies have not been efficiently translated to the clinic. This is partly due to our incomplete understanding of the mechanisms underlying CSC therapy-resistance. In particular, the relationship between therapy-resistance and the organisation of CSCs as Stem-Progenitor-Differentiated cell hierarchies has not been widely studied. In this review we argue that modern clinical strategies should appreciate that the CSC hierarchy is a dynamic target that contains sensitive and resistant components and expresses a collection of therapy-resisting mechanisms. We propose that the CSC hierarchy at primary presentation changes in response to clinical intervention, resulting in a recurrent malignancy that should be targeted differently. As such, addressing the hierarchical organisation of CSCs into our bench-side theory should expedite translation of CSC-targeting to bed-side practice. In conclusion, we discuss strategies through which we can catch these moving clinical targets to specifically compromise therapy-resistant disease.

  5. Nonalcoholic steatohepatitis: emerging targeted therapies to optimize treatment options

    Directory of Open Access Journals (Sweden)

    Milic S

    2015-08-01

    Full Text Available Sandra Milic,1 Ivana Mikolasevic,1,2 Irena Krznaric-Zrnic,1 Marija Stanic,3 Goran Poropat,1 Davor Stimac,1 Vera Vlahovic-Palcevski,4 Lidija Orlic2 1Department of Gastroenterology, UHC Rijeka, Rijeka, Croatia; 2Department of Nephrology, Dialysis and Kidney Transplantation, UHC Rijeka, Rijeka, Croatia; 3Department of Hematology, UHC Rijeka, Rijeka, Croatia; 4Department for Clinical Pharmacology, University of Rijeka Medical School, UHC Rijeka, Rijeka, Croatia Abstract: Diet and lifestyle changes have led to worldwide increases in the prevalences of obesity and metabolic syndrome, resulting in substantially greater incidence of nonalcoholic fatty liver disease (NAFLD. NAFLD is considered a hepatic manifestation of metabolic syndrome and is related to diabetes, insulin resistance, central obesity, hyperlipidemia, and hypertension. Nonalcoholic steatohepatitis (NASH is an entity that describes liver inflammation due to NAFLD. Growing evidence suggests that NAFLD is a multisystem disease with a clinical burden that is not only confined to liver-related morbidity and mortality, but that also affects several extra-hepatic organs and regulatory pathways. Thus, NAFLD is considered an important public health issue, but there is currently no effective therapy for all NAFLD patients in the general population. Studies seeking optimal therapy for NAFLD and NASH have not yet led to development of a universal protocol for treating this growing problem. Several pharmacological agents have been studied in an effort to improve insulin resistance and the proinflammatory mediators that may be responsible for NASH progression. Cardiovascular risk factors are highly prevalent among NASH patients, and the backbone of treatment regimens for these patients still comprises general lifestyle interventions, including dietary changes and increased physical activity. Vitamin E and thiazolidinedione derivatives are currently the most evidence-based therapeutic options, but only

  6. Targeting Transcription Elongation Machinery for Breast Cancer Therapy

    Science.gov (United States)

    2017-05-01

    normal growth conditions, more than half of nuclear P-TEFb are sequestered in a kinase-inactive complex called the 7SK snRNP that contains the 7SK snRNA... fusion partners (e.g. AFF1, AFF4, ELL1, ELL2, ENL and AF9) of the mixed lineage leukemia (MLL) protein and promotes transcription of MLL-target...LARP7 can also exist in other nuclear complexes and can potentially participate in other unrelated biological functions. It is thus essential to further

  7. Autophagy as an emerging therapy target for ovarian carcinoma

    Science.gov (United States)

    Zhan, Lei; Zhang, Yu; Wang, Wenyan; Song, Enxue; Fan, Yijun; Li, Jun; Wei, Bing

    2016-01-01

    Autophagy is a conserved cellular self-digestion pathway for maintenance of homeostasis under basal and stressed conditions. Autophagy plays pivotal roles in the pathogenesis of many diseases, such as aging-related diseases, autoimmune diseases, cardiovascular diseases, and cancers. Of special note is that accumulating data suggest an intimate relationship between autophagy and ovarian carcinoma. Autophagy is well identified to act as either as a tumor-suppressor or as a tumor-promoter in ovarian carcinoma. The exact function of autophagy in ovarian carcinoma is highly dependent on the circumstances of cancer including hypoxic, nutrient-deficient, chemotherapy and so on. However, the mechanism underlying autophagy associated with ovarian carcinoma remains elusive, the precise role of autophagy in ovarian carcinoma also remains undetermined. In this review, we tried to sum up and discuss recent research achievements of autophagy in ovarian cancer. Moreover, waves of novel therapies ways for ovarian carcinoma based on the functions of autophagy were collected. PMID:27825125

  8. Delineation of Supraclavicular Target Volumes in Breast Cancer Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Lindsay C. [Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (United States); Diehn, Felix E. [Department of Radiology, Mayo Clinic, Rochester, Minnesota (United States); Boughey, Judy C. [Department of Surgery, Mayo Clinic, Rochester, Minnesota (United States); Childs, Stephanie K.; Park, Sean S.; Yan, Elizabeth S.; Petersen, Ivy A. [Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (United States); Mutter, Robert W., E-mail: mutter.robert@mayo.edu [Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (United States)

    2015-07-01

    Purpose: To map the location of gross supraclavicular metastases in patients with breast cancer, in order to determine areas at highest risk of harboring subclinical disease. Methods and Materials: Patients with axial imaging of gross supraclavicular disease were identified from an institutional breast cancer registry. Locations of the metastatic lymph nodes were transferred onto representative axial computed tomography images of the supraclavicular region and compared with the Radiation Therapy Oncology Group (RTOG) breast cancer atlas for radiation therapy planning. Results: Sixty-two patients with 161 supraclavicular nodal metastases were eligible for study inclusion. At the time of diagnosis, 117 nodal metastases were present in 44 patients. Forty-four nodal metastases in 18 patients were detected at disease recurrence, 4 of whom had received prior radiation to the supraclavicular fossa. Of the 161 nodal metastases, 95 (59%) were within the RTOG consensus volume, 4 nodal metastases (2%) in 3 patients were marginally within the volume, and 62 nodal metastases (39%) in 30 patients were outside the volume. Supraclavicular disease outside the RTOG consensus volume was located in 3 regions: at the level of the cricoid and thyroid cartilage (superior to the RTOG volume), in the posterolateral supraclavicular fossa (posterolateral to the RTOG volume), and in the lateral low supraclavicular fossa (lateral to the RTOG volume). Only women with multiple supraclavicular metastases had nodal disease that extended superiorly to the level of the thyroid cartilage. Conclusions: For women with risk of harboring subclinical supraclavicular disease warranting the addition of supraclavicular radiation, coverage of the posterior triangle and the lateral low supraclavicular region should be considered. For women with known supraclavicular disease, extension of neck coverage superior to the cricoid cartilage may be warranted.

  9. TARGETED AND OFF-TARGET (BYSTANDER AND ABSCOPAL) EFFECTS OF RADIATION THERAPY: REDOX MECHANISMS AND RISK-BENEFIT ANALYSIS.

    Science.gov (United States)

    Pouget, Jean-Pierre; Georgakilas, Alexandros G; Ravanat, Jean-Luc

    2018-01-19

    Radiation therapy (from external beams to unsealed and sealed radionuclide sources) takes advantage of the detrimental effects of the clustered production of radicals and reactive oxygen species (ROS). Research has mainly focused on the interaction of radiation with water, which is the major constituent of living beings, and with nuclear DNA, which contains the genetic information. This led to the so-called "target" theory according to which cells have to be hit by ionizing particles to elicit an important biological response, including cell death. In cancer therapy, the Poisson law and linear quadratic mathematical models have been used to describe the probability of hits per cell as a function of the radiation dose. However, in the last twenty years, many studies have shown that radiation generates "danger" signals that propagate from irradiated to non-irradiated cells, leading to bystander and other off-target effects. Like for targeted effects, redox mechanisms play a key role also in off-target effects through transmission of ROS and reactive nitrogen species (RNS), but also of cytokines, ATP and extracellular DNA. Particularly, nuclear factor kappa B is essential for triggering self-sustained production of ROS and RNS, thus making the bystander response similar to inflammation. In some therapeutic situations, this phenomenon is associated with recruitment of immune cells that are involved in distant irradiation effects (called "away-from-target" i.e. abscopal effects). Determining the contribution of targeted and off-target effects in the clinic is still challenging. This has important consequences in radiotherapy, but also possibly in diagnostic procedures and in radiation protection.

  10. Targeting the Regulatory Machinery of BIM for Cancer Therapy

    Science.gov (United States)

    Harada, Hisashi; Grant, Steven

    2013-01-01

    BIM represents a BH3-only proapoptotic member of the BCL-2 family of apoptotic regulatory proteins. Recent evidence suggests that in addition to its involvement in normal homeostasis, BIM plays a critical role in tumor cell biology, including the regulation of tumorigenesis through activities as a tumor suppressor, tumor metastasis, and tumor cell survival. Consequently, BIM has become the focus of intense interest as a potential target for cancer chemotherapy. The control of BIM expression is complex, and involves multiple factors, including epigenetic events (i.e., promoter acetylation or methylation, miRNA), transcription factors, posttranscriptional regulation, and posttranslational modifications, most notably phosphorylation. Significantly, the expression of BIM by tumor cells has been shown to play an important role in determining the response of transformed cells to not only conventional cytotoxic agents, but also to a broad array of targeted agents that interrupt cell signaling and survival pathways. Furthermore, modifications in BIM expression may be exploited to improve the therapeutic activity and potentially the selectivity of such agents. It is likely that evolving insights into the factors that regulate BIM expression will ultimately lead to novel BIM-based therapeutic strategies in the future. PMID:22856430

  11. Radiolabeled Cetuximab Conjugates for EGFR Targeted Cancer Diagnostics and Therapy

    Directory of Open Access Journals (Sweden)

    Wiebke Sihver

    2014-03-01

    Full Text Available The epidermal growth factor receptor (EGFR has evolved over years into a main molecular target for the treatment of different cancer entities. In this regard, the anti-EGFR antibody cetuximab has been approved alone or in combination with: (a chemotherapy for treatment of colorectal and head and neck squamous cell carcinoma and (b with external radiotherapy for treatment of head and neck squamous cell carcinoma. The conjugation of radionuclides to cetuximab in combination with the specific targeting properties of this antibody might increase its therapeutic efficiency. This review article gives an overview of the preclinical studies that have been performed with radiolabeled cetuximab for imaging and/or treatment of different tumor models. A particularly promising approach seems to be the treatment with therapeutic radionuclide-labeled cetuximab in combination with external radiotherapy. Present data support an important impact of the tumor micromilieu on treatment response that needs to be further validated in patients. Another important challenge is the reduction of nonspecific uptake of the radioactive substance in metabolic organs like liver and radiosensitive organs like bone marrow and kidneys. Overall, the integration of diagnosis, treatment and monitoring as a theranostic approach appears to be a promising strategy for improvement of individualized cancer treatment.

  12. Tumor-targeted induction of oxystress for cancer therapy.

    Science.gov (United States)

    Fang, J; Nakamura, H; Iyer, A K

    2007-01-01

    Reactive oxygen species (ROS), such as superoxide anion radicals (O.-2) and hydrogen peroxide (H2O2) are potentially harmful by-products of normal cellular metabolism that directly affect cellular functions. ROS is generated by all aerobic organisms and it seems to be indispensable for signal transduction pathways that regulate cell growth and reduction-oxidation (redox) status. However, overproduction of these highly reactive oxygen metabolites can initiate lethal chain reactions, which involve oxidation and damage to structures that are crucial for cellular integrity and survival. In fact, many antitumor agents, such as vinblastine, cisplatin, mitomycin C, doxorubicin, camptothecin, inostamycin, neocarzinostatin and many others exhibit antitumor activity via ROS-dependent activation of apoptotic cell death, suggesting potential use of ROS as an antitumor principle. Thus, a unique anticancer strategy named "oxidation therapy" has been developed by inducing cytotoxic oxystress for cancer treatment. This goal could be achieved mainly by two methods, namely, (i) inducing the generation of ROS directly to solid tumors and (ii) inhibiting the antioxidative enzyme (defense) system of tumor cells. Since 1950s, many strategies have been employed based on the first method, namely, administration of ROS per se (e.g. H2O2) or ROS generating enzyme to tumor bearing animals. However no successful and practical results were obtained probably because of the lack of tumor selective ROS delivery and hence resulting in subsequent induction of severe side effects. To overcome these obstacles, we developed polyethylene glycol (PEG) conjugated O.-2 or H2O2-generating enzymes, xanthine oxidase (XO) and D-amino acid oxidase (DAO) (PEG-DAO) respectively. More recently, a pegylated (PEG) zinc protoporphyrin (PEG-ZnPP) and a highly water soluble micellar formulation of ZnPP based on amphiphilic styrene maleic acid (SMA) copolymer, SMA-ZnPP, are prepared, which are potent inhibitors of heme

  13. SKIN TOXICITY OF TARGETED THERAPY: VEMURAFENIB, FIRST EXPERIENCES FROM MONTENEGRO

    Directory of Open Access Journals (Sweden)

    Todorović Vladimir

    2015-07-01

    Full Text Available Introduction: Data on melanoma incidence and mortality in Montenegro is only partially complete. GLOBOCAN and EUCAN reports estimate melanoma incidence in Montenegro to be between 4.6-7.3 cases/100 000. At least 50% of all metastatic melanoma cell lines carry an activating mutation in the BRAF oncogene. The treatment of advanced melanoma with the selective BRAF inhibitors, such as vemurafenib demonstrated improvement in progression free interval and overall survival when compared to conventional chemotherapy treatment. Up to 95% of patients treated with vemurafenib experience skin toxicity. Material and methods: Five patients with metastatic melanoma have been treated with vemurafenib at the Clinic for Oncology and Radiotherapy Podgorica, Montenegro, during the period 2013-2014. They were treated with standard dose (960 mg twice a day, per os. Data about the occurrence and management of skin side-effects in these patients were retrospectively collected from medical charts. Severity of side-effects was graded using the National Cancer Institute's Common Terminology Criteria for Adverse Events, version 4.0. Results: In 2013, 41 new cases of melanoma were registered in Montenegro, 20 (48.7% male and 21 (51.3% female. In 2014, 49 new cases of melanoma were registered, 27 (55.1% male and 22 (44.9% female. Two out of five (40% vemurafenib treated patients experienced photosensitivity, three (60% had rash eruptions, four (80% developed alopecia, and two (40% had dry skin problems. Alteration in nevus color and size occurred in one (20% patient, and two (40% patients developed new pigmented lesions. Conclusion: Skin side effects associated with vemurafenib are plentiful, but generally manageable with supportive care measures. In our experience, majority of described side-effects were of grade 1 or 2, and none required dose modifications, or discontinuation of the therapy. Our experience suggests that patients taking BRAF inhibitors should have regular

  14. Autophagy as a target for cancer therapy: new developments

    International Nuclear Information System (INIS)

    Carew, Jennifer S; Kelly, Kevin R; Nawrocki, Steffan T

    2012-01-01

    Autophagy is an evolutionarily conserved lysosomal degradation pathway that eliminates cytosolic proteins, macromolecules, organelles, and protein aggregates. Activation of autophagy may function as a tumor suppressor by degrading defective organelles and other cellular components. However, this pathway may also be exploited by cancer cells to generate nutrients and energy during periods of starvation, hypoxia, and stress induced by chemotherapy. Therefore, induction of autophagy has emerged as a drug resistance mechanism that promotes cancer cell survival via self-digestion. Numerous preclinical studies have demonstrated that inhibition of autophagy enhances the activity of a broad array of anticancer agents. Thus, targeting autophagy may be a global anticancer strategy that may improve the efficacy of many standard of care agents. These results have led to multiple clinical trials to evaluate autophagy inhibition in combination with conventional chemotherapy. In this review, we summarize the anticancer agents that have been reported to modulate autophagy and discuss new developments in autophagy inhibition as an anticancer strategy

  15. Occupational therapy protocol for amputees with targeted muscle reinnervation.

    Science.gov (United States)

    Stubblefield, Kathy A; Miller, Laura A; Lipschutz, Robert D; Kuiken, Todd A

    2009-01-01

    Targeted muscle reinnervation (TMR) is a surgical intervention to improve the control of myoelectric prostheses in high-level upper-limb amputation. This article briefly describes the procedure and presents the protocol for postoperative, preprosthetic care. We also recommend a guide to patient training using standard-of-care prosthetic devices controlled by up to four intuitive, independent, and isolated myoelectric signals. We discuss the advantages of this new control paradigm and methods for optimizing clinical outcomes for patients with high-level upper-limb amputations. This material is based on more than 6 years of experience treating patients with TMR in a research setting. Detailed results of this research are reported elsewhere.

  16. Beyond typing and grading: target analysis in individualized therapy as a new challenge for tumour pathology.

    Science.gov (United States)

    Kreipe, Hans H; von Wasielewski, Reinhard

    2007-01-01

    In order to bring about its beneficial effects in oncology, targeted therapy depends on accurate target analysis. Whether cells of a tumour will be sensitive to a specific treatment is predicted by the detection of appropriate targets in cancer tissue by immunohistochemistry or molecular methods. In most instances this is performed by histopathologists. Reliability and reproducibility of tissue-based target analysis in histopathology require novel measures of quality assurance by internal and external controls. As a model for external quality assurance in targeted therapy an annual inter-laboratory trial has been set up in Germany applying tissue arrays with up to 60 mammary cancer samples which are tested by participants for expression of HER2/neu and steroid hormone receptors.

  17. Folate Receptor Targeted Alpha-Therapy Using Terbium-149

    Directory of Open Access Journals (Sweden)

    Cristina Müller

    2014-03-01

    Full Text Available Terbium-149 is among the most interesting therapeutic nuclides for medical applications. It decays by emission of short-range α-particles (Eα = 3.967 MeV with a half-life of 4.12 h. The goal of this study was to investigate the anticancer efficacy of a 149Tb-labeled DOTA-folate conjugate (cm09 using folate receptor (FR-positive cancer cells in vitro and in tumor-bearing mice. 149Tb was produced at the ISOLDE facility at CERN. Radiolabeling of cm09 with purified 149Tb resulted in a specific activity of ~1.2 MBq/nmol. In vitro assays performed with 149Tb-cm09 revealed a reduced KB cell viability in a FR-specific and activity concentration-dependent manner. Tumor-bearing mice were injected with saline only (group A or with 149Tb-cm09 (group B: 2.2 MBq; group C: 3.0 MBq. A significant tumor growth delay was found in treated animals resulting in an increased average survival time of mice which received 149Tb-cm09 (B: 30.5 d; C: 43 d compared to untreated controls (A: 21 d. Analysis of blood parameters revealed no signs of acute toxicity to the kidneys or liver in treated mice over the time of investigation. These results demonstrated the potential of folate-based α-radionuclide therapy in tumor-bearing mice.

  18. Combined regimen of photodynamic therapy mediated by Gallium phthalocyanine chloride and Metformin enhances anti-melanoma efficacy.

    Directory of Open Access Journals (Sweden)

    Diana Tudor

    Full Text Available Melanoma therapy is challenging, especially in advanced cases, due to multiple developed tumor defense mechanisms. Photodynamic therapy (PDT might represent an adjuvant treatment, because of its bimodal action: tumor destruction and immune system awakening. In this study, a combination of PDT mediated by a metal substituted phthalocyanine-Gallium phthalocyanine chloride (GaPc and Metformin was used against melanoma. The study aimed to: (1 find the anti-melanoma efficacy of GaPc-PDT, (2 assess possible beneficial effects of Metformin addition to PDT, (3 uncover some of the mechanisms underlining cell killing and anti-angiogenic effects.Two human lightly pigmented melanoma cell lines: WM35 and M1/15 subjected to previous Metformin exposure were treated by GaPc-PDT. Cell viability, death mechanism, cytoskeleton alterations, oxidative damage, were assessed by means of colorimetry, flowcytometry, confocal microscopy, spectrophotometry, ELISA, Western Blotting.GaPc proved an efficient photosensitizer. Metformin addition enhanced cell killing by mechanisms dependent on the cell line, namely apoptosis in the metastatic M1/15 and necrosis in the radial growth phase, WM35. Cell death mechanism relied on the inhibition of nuclear transcription factor (NF-κB activation and tumor necrosis factor (TNF-related apoptosis-inducing ligand (TRAIL sensitization, leading to TRAIL and TNF-α induced apoptosis. Metformin diminished the anti-angiogenic effect of PDT.Metformin addition to GaPc-PDT increased tumor cell killing through enhanced oxidative damage and induction of proapoptotic mechanisms, but altered PDT anti-angiogenic effects.Combination of Metformin and PDT might represent a solution to enhance the efficacy, leading to a potential adjuvant role of PDT in melanoma therapy.

  19. Erythrocyte membrane-coated gold nanocages for targeted photothermal and chemical cancer therapy

    Science.gov (United States)

    Zhu, Dao-Ming; Xie, Wei; Xiao, Yu-Sha; Suo, Meng; Zan, Ming-Hui; Liao, Qing-Quan; Hu, Xue-Jia; Chen, Li-Ben; Chen, Bei; Wu, Wen-Tao; Ji, Li-Wei; Huang, Hui-Ming; Guo, Shi-Shang; Zhao, Xing-Zhong; Liu, Quan-Yan; Liu, Wei

    2018-02-01

    Recently, red blood cell (RBC) membrane-coated nanoparticles have attracted much attention because of their excellent immune escapability; meanwhile, gold nanocages (AuNs) have been extensively used for cancer therapy due to their photothermal effect and drug delivery capability. The combination of the RBC membrane coating and AuNs may provide an effective approach for targeted cancer therapy. However, few reports have shown the utilization of combining these two technologies. Here, we design erythrocyte membrane-coated gold nanocages for targeted photothermal and chemical cancer therapy. First, anti-EpCam antibodies were used to modify the RBC membranes to target 4T1 cancer cells. Second, the antitumor drug paclitaxel (PTX) was encapsulated into AuNs. Then, the AuNs were coated with the modified RBC membranes. These new nanoparticles were termed EpCam-RPAuNs. We characterized the capability of the EpCam-RPAuNs for selective tumor targeting via exposure to near-infrared irradiation. The experimental results demonstrate that EpCam-RPAuNs can effectively generate hyperthermia and precisely deliver the antitumor drug PTX to targeted cells. We also validated the biocompatibility of the EpCam-RAuNs in vitro. By combining the molecularly modified targeting RBC membrane and AuNs, our approach provides a new way to design biomimetic nanoparticles to enhance the surface functionality of nanoparticles. We believe that EpCam-RPAuNs can be potentially applied for cancer diagnoses and therapies.

  20. Galactodendritic phthalocyanine targets carbohydrate-binding proteins enhancing photodynamic therapy.

    Directory of Open Access Journals (Sweden)

    Patrícia M R Pereira

    Full Text Available Photosensitizers (PSs are of crucial importance in the effectiveness of photodynamic therapy (PDT for cancer. Due to their high reactive oxygen species production and strong absorption in the wavelength range between 650 and 850 nm, where tissue light penetration is rather high, phthalocyanines (Pcs have been studied as PSs of excellence. In this work, we report the evaluation of a phthalocyanine surrounded by a carbohydrate shell of sixteen galactose units distributed in a dendritic manner (PcGal16 as a new and efficient third generation PSs for PDT against two bladder cancer cell lines, HT-1376 and UM-UC-3. Here, we define the role of galacto-dendritic units in promoting the uptake of a Pc through interaction with GLUT1 and galectin-1. The photoactivation of PcGal16 induces cell death by generating oxidative stress. Although PDT with PcGal16 induces an increase on the activity of antioxidant enzymes immediately after PDT, bladder cancer cells are unable to recover from the PDT-induced damage effects for at least 72 h after treatment. PcGal16 co-localization with galectin-1 and GLUT1 and/or generation of oxidative stress after PcGal16 photoactivation induces changes in the levels of these proteins. Knockdown of galectin-1 and GLUT1, via small interfering RNA (siRNA, in bladder cancer cells decreases intracellular uptake and phototoxicity of PcGal16. The results reported herein show PcGal16 as a promising therapeutic agent for the treatment of bladder cancer, which is the fifth most common type of cancer with the highest rate of recurrence of any cancer.

  1. Thrombotic Management of Antiphospholipid Syndrome: Towards Novel Targeted Therapies.

    Science.gov (United States)

    Islam, Md Asiful; Alam, Fahmida; Wong, Kah Keng; Kamal, Mohammad Amjad; Gan, Siew Hua

    2017-01-01

    Antiphospholipid syndrome (APS) is a systemic autoimmune disease characterized by thrombosis and/or pregnancy morbidity with persistent levels of antiphospholipid antibodies (aPLs). The development of thrombosis in APS is mediated by aPLs and contributes to the high mortality rate in APS patients. However, although APS has been reported for more than 30 years, there has been no optimal regimen for its prevention or for the management of thrombosis, mainly because the mainstay treatment strategies for managing APS are not targeted towards aPL-mediated thrombotic pathophysiology. Instead, the treatments commonly used are aimed at general thrombotic disorders. Warfarin is the most commonly used vitamin K antagonist (VKA), in addition to anti-platelet medications, such as aspirin and clopidogrel. Over the last decade, novel non-VKA oral anticoagulants, including rivaroxaban, apixaban and dabigatran, as well as immunomodulatory agents, such as rituximab, eculizumab, hydroxychloroquine, statins and sirolimus, have also been used. In this review, we discuss the current treatment strategies and future treatment outlook for thrombotic APS. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Motion monitoring for particle therapy of intrafractional moving targets

    Energy Technology Data Exchange (ETDEWEB)

    Steidl, Peter; Durante, Marco; Bert, Christoph [GSI, Darmstadt (Germany); Buerkelbach, Josef; Sroka-Perez, Gabriele [Universitaetsklinikum Heidelberg (Germany); Haberer, Thomas [Heidelberger Ionentherapiezentrum (HIT) (Germany)

    2010-07-01

    For radiotherapy of organs influenced by respiratory motion using a scanned particle beam rescanning, gating, and beam tracking have been proposed. For gating and especially for beam tracking a high tumor conformity of the applied dose distribution can be achieved. One requirement to reach this goal is precise and high-frequent motion monitoring. Precise data can be determined by X-ray fluoroscopy which results into radiation dose and should thus be minimized. High-frequent data can be acquired by external surrogates that e.g. measure the expansion of the chest. Precise data with a high sampling rate can be generated by combining surrogate and X-ray data in a correlation model. We performed measurements to study the correlation of internal target motion and external motion surrogates. MV-X-ray-fluoroscopy images (SIEMENS ARTISTE) were taken temporally correlated to two external signals (GateRT and ANZAI belt). We successfully checked functionality and accuracy of the system in initial phantom measurements using a sliding table. We currently start collection of clinical data. The contribution presents data from the accuracy study as well as the correlation analysis for the first patients.

  3. Sphingosine-1-Phosphate Transporters as Targets for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Masayuki Nagahashi

    2014-01-01

    Full Text Available Sphingosine-1-phosphate (S1P is a pleiotropic lipid mediator that regulates cell survival, migration, the recruitment of immune cells, angiogenesis, and lymphangiogenesis, all of which are involved in cancer progression. S1P is generated inside cancer cells by sphingosine kinases then exported outside of the cell into the tumor microenvironment where it binds to any of five G protein coupled receptors and proceeds to regulate a variety of functions. We have recently reported on the mechanisms underlying the “inside-out” signaling of S1P, its export through the plasma membrane, and its interaction with cell surface receptors. Membrane lipids, including S1P, do not spontaneously exchange through lipid bilayers since the polar head groups do not readily go through the hydrophobic interior of the plasma membrane. Instead, specific transporter proteins exist on the membrane to exchange these lipids. This review summarizes what is known regarding S1P transport through the cell membrane via ATP-binding cassette transporters and the spinster 2 transporter and discusses the roles for these transporters in cancer and in the tumor microenvironment. Based on our research and the emerging understanding of the role of S1P signaling in cancer and in the tumor microenvironment, S1P transporters and S1P signaling hold promise as new therapeutic targets for cancer drug development.

  4. Leukotrienes in Atherosclerosis: New Target Insights and Future Therapy Perspectives

    Directory of Open Access Journals (Sweden)

    Graziano Riccioni

    2009-01-01

    Full Text Available Atherosclerosis represents an important chronic inflammatory process associated with several pathophysiological reactions in the vascular wall. The arachidonic acid, released by phospholipase A2, is an important substrate for the production of a group of lipid mediators known as leukotrienes, which induce proinflammatory signaling through the activation of specific BLT and CysLT receptors. The interaction of these substances in the vascular wall determines important morphological alterations like the early lipid retention and the accumulation of foam cells, the development of intimal hyperplasia, and advanced atherosclerotic lesions, and it plays an important role in the rupture of atherosclerotic plaque. Many studies regarding myocardial ischemia and reperfusion show that leukotriene signaling may be involved in the development of ischemic injury. For these, reasons both leukotriene synthesis inhibitors and leukotriene receptor antagonists have been suggested for inducing beneficial effects at different stages of the atherosclerosis process and may represent a new therapeutic target in the treatment of atherosclerotic vessel diseases, in particular in acute coronary syndrome.

  5. Understanding the molecular target therapy and it's approved synchronous use with radiation therapy in current Indian oncology practice

    International Nuclear Information System (INIS)

    Gupta, Puneet; Dohhen, Umesh Kumar; Romana; Srivastava, Priyanka

    2012-01-01

    The molecular targeted drugs (MTD) are of two types; large and small. The large molecular targeted drugs (LMTD) cannot cross the cancer cell membrane whereas those that cross the cancer cell membrane are nicknamed small molecular target drugs (SMTD). India has availability of almost all MTD originals approved by USA Food and Drug administration. However a few LMTD like inj vectibix, inj Zevalin, Inj Bexar etc.; and SMTD like cap Tipifarnib approved for AML, are not available in India currently although approved and available in USA. The MTD may he used alone as singlet; along with chemotherapy as doublet or triplet; or along with radiation and chemotherapy combo (nicknamed chemo-radiation-bio therapy). The molecular target therapy approved by USA and/or European FDA and currently available in India and used along with radiation therapy with or without chemotherapy, indication wise are; Brain Tumor Inj Nimotuzumab (LMTD) and Inj bevacizumab (LMTD) in Glioblasoma Multiforme; for Carcinoma Head and neck Inj Cetuximab and Inj Nimotuzumab (LMTT), Tab Geftinib (SMTD). (author)

  6. Targeted cancer gene therapy : the flexibility of adenoviral gene therapy vectors

    NARCIS (Netherlands)

    Rots, MG; Curiel, DT; Gerritsen, WR; Haisma, HJ

    2003-01-01

    Recombinant adenoviral vectors are promising reagents for therapeutic interventions in humans, including gene therapy for biologically complex diseases like cancer and cardiovascular diseases. In this regard, the major advantage of adenoviral vectors is their superior in vivo gene transfer

  7. EGFR-Targeting as a Biological Therapy: Understanding Nimotuzumab's Clinical Effects

    International Nuclear Information System (INIS)

    Perez, Rolando; Moreno, Ernesto; Garrido, Greta; Crombet, Tania

    2011-01-01

    Current clinical trials of epidermal growth factor receptor (EGFR)-targeted therapies are mostly guided by a classical approach coming from the cytotoxic paradigm. The predominant view is that the efficacy of EGFR antagonists correlates with skin rash toxicity and induction of objective clinical response. Clinical benefit from EGFR-targeted therapies is well documented; however, chronic use in advanced cancer patients has been limited due to cumulative and chemotherapy-enhanced toxicity. Here we analyze different pieces of data from mechanistic and clinical studies with the anti-EGFR monoclonal antibody Nimotuzumab, which provides several clues to understand how this antibody may induce a biological control of tumor growth while keeping a low toxicity profile. Based on these results and the current state of the art on EGFR-targeted therapies, we discuss the need to evaluate new therapeutic approaches using anti-EGFR agents, which would have the potential of transforming advanced cancer into a long-term controlled chronic disease

  8. New section in journal of translational medicine: patient-targeted molecular therapies.

    Science.gov (United States)

    Bot, Adrian; Chiappelli, Francesco

    2012-05-15

    This Editorial announces a new section in the Journal of Translational Medicine: Patient-Targeted Molecular Therapies. This section is dedicated to the dissemination of targeted molecular therapies in context of patient-centered outcomes research and evidence-based clinical decisions. The focus on patient-targeted molecular therapies - spanning small molecules and biomolecules alike - stems from the unprecedented growth in this arena. This is consonant with the overall objective of the Journal of Translational Medicine, which seeks out to expand firmly to other vast areas of medicine in the domain of translational science, viewed here as the transaction between translational research and translational effectiveness. As we inaugurate this new section in Journal of Translational Medicine, with its mission described in detail in this Editorial, we invite interested scientists to submit their work for publication.

  9. Cancer stem cells, the ultimate targets in cancer therapy

    Directory of Open Access Journals (Sweden)

    Shabbir A

    2018-01-01

    Full Text Available Ahmed Shabbir,1 Tuba Esfandyari,2 Faris Farassati1,3,4 1Midwest Biomedical Research Foundation, Kansas City Veterans Affairs Medical Center, 2Department of Medicine, School of Medicine, The University of Kansas, 3Saint Luke’s Cancer Institute, 4Saint Luke’s Marion Bloch Neuroscience Institute, Saint Luke’s Health System, Kansas City, MO, USAThe concept of cancer stem cells (CSCs is currently of significant interest due to its important implications in our understanding of the tumor biology as well as development of novel cancer therapeutics. Tumors, in resemblance to normal organs, contain pluripotential cells that can generate their own kind as well as cells that can further differentiate. CSCs are thought to be highly resistant to the cytotoxic effects of conventional cancer therapy regimens,1 which leads to the rise of a refractory status in tumors.1,2 Therefore, CSCs can be considered as the main drivers of tumor integrity and function. This resembles the role of normal stem cells in tissue and organ development. Therapeutic assaults that eliminate differentiated cancer cells while leaving CSCs, therefore, are doomed to fail due to the resistance of CSCs and their ability to repopulate the tumor.3 This phenomenon is indeed observed in the clinic routinely. Clinical response to a chemotherapy regimen is reduced over time as the tumor enters a refractory stage induced by enrichment of CSCs in the tumor cell population. This is even observed in cells cultured from a patient at early stage of the disease, such as in colorectal cancer (SW480, ATCC CCL-228, and recurrence of the malignancy results in a wide-spread metastasis (SW620, ATCC CCL-227. The SW260 shows a significantly higher percentage of cells positive for CD133, a marker for CSCs (data from our team. Methods for the detection of CSCs include surface markers such as CD24, CD34, CD44, CD44, CD90, CD133, ABCB5, and EpCAM that have been shown to indicate CSC subpopulations in a range

  10. Laminin-332-integrin interaction: a target for cancer therapy?

    Science.gov (United States)

    Tsuruta, Daisuke; Kobayashi, Hiromi; Imanishi, Hisayoshi; Sugawara, Koji; Ishii, Masamitsu; Jones, Jonathan C R

    2008-01-01

    For many years, extracellular matrix (ECM) was considered to function as a tissue support and filler. However, we now know that ECM proteins control many cellular events through their interaction with cell-surface receptors and cytoplasmic signaling pathways. For example, they regulate cell proliferation, cell division, cell adhesion, cell migration, and apoptosis. We focus in this review on a laminin isoform, laminin-332 (formerly termed laminin-5), a major component of the basement membrane (BM) of skin and other epithelial tissues. It is composed of 3 subunits (alpha3beta3 and gamma3 and interacts with at least two integrin receptors expressed by epithelial cells (alpha3beta1 and alpha6beta4 integrin. Mutations in either laminin-332 or integrin alpha6beta4 result in junctional epidermolysis bullosa, a blistering skin disease, while targeting of laminin-332 by autoantibodies in cicatricial pemphigoid leads to dysadhesion of epithelial cells from their underlying connective tissue. Abnormal expression of laminin-332 and its integrin receptors is also a hallmark of certain tumor types and is believed to promote invasion of colon, breast and skin cancer cells. Moreover, there is emerging evidence that laminin-332 and its protease degradation products are not only found at the leading front of several tumors but also likely induce and/or promote tumor cell migration. Thus, in this review, we focus specifically on the role of laminin-332 and its integrin receptors in adhesion, proliferation, and migration/invasion of cancer cells. Finally, we discuss strategies for the development of laminin-332-based antagonists for the treatment of malignant tumors.

  11. Voltage-gated calcium channels: Novel targets for cancer therapy.

    Science.gov (United States)

    Phan, Nam Nhut; Wang, Chih-Yang; Chen, Chien-Fu; Sun, Zhengda; Lai, Ming-Derg; Lin, Yen-Chang

    2017-08-01

    Voltage-gated calcium channels (VGCCs) comprise five subtypes: The L-type; R-type; N-type; P/Q-type; and T-type, which are encoded by α 1 subunit genes. Calcium ion channels also have confirmed roles in cellular functions, including mitogenesis, proliferation, differentiation, apoptosis and metastasis. An association between VGCCs, a reduction in proliferation and an increase in apoptosis in prostate cancer cells has also been reported. Therefore, in the present study, the online clinical database Oncomine was used to identify the alterations in the mRNA expression level of VGCCs in 19 cancer subtypes. Overall, VGCC family genes exhibited under-expression in numerous types of cancer, including brain, breast, kidney and lung cancers. Notably, the majority of VGCC family members (CACNA1C, CACNA1D, CACNA1A, CACNA1B, CACNA1E, CACNA1H and CACNA1I) exhibited low expression in brain tumors, with mRNA expression levels in the top 1-9% of downregulated gene rankings. A total of 5 VGCC family members (CACNA1A, CACNA1B, CACNA1E, CACNA1G and CACNA1I) were under-expressed in breast cancer, with a gene ranking in the top 1-10% of the low-expressed genes compared with normal tissue. In kidney and lung cancers, CACNA1S, CACNA1C, CACNA1D, CACNA1A and CACNA1H exhibited low expression, with gene rankings in the top 1-8% of downregulated genes. In conclusion, the present findings may contribute to the development of new cancer treatment approaches by identifying target genes involved in specific types of cancer.

  12. Cell-type-specific, Aptamer-functionalized Agents for Targeted Disease Therapy

    Directory of Open Access Journals (Sweden)

    Jiehua Zhou

    2014-01-01

    Full Text Available One hundred years ago, Dr. Paul Ehrlich popularized the “magic bullet” concept for cancer therapy in which an ideal therapeutic agent would only kill the specific tumor cells it targeted. Since then, “targeted therapy” that specifically targets the molecular defects responsible for a patient's condition has become a long-standing goal for treating human disease. However, safe and efficient drug delivery during the treatment of cancer and infectious disease remains a major challenge for clinical translation and the development of new therapies. The advent of SELEX technology has inspired many groundbreaking studies that successfully adapted cell-specific aptamers for targeted delivery of active drug substances in both in vitro and in vivo models. By covalently linking or physically functionalizing the cell-specific aptamers with therapeutic agents, such as siRNA, microRNA, chemotherapeutics or toxins, or delivery vehicles, such as organic or inorganic nanocarriers, the targeted cells and tissues can be specifically recognized and the therapeutic compounds internalized, thereby improving the local concentration of the drug and its therapeutic efficacy. Currently, many cell-type-specific aptamers have been developed that can target distinct diseases or tissues in a cell-type-specific manner. In this review, we discuss recent advances in the use of cell-specific aptamers for targeted disease therapy, as well as conjugation strategies and challenges.

  13. A Partnership Training Program: Studying Targeted Drug Delivery Using Nanoparticles in Breast Cancer Diagnosis and Therapy

    Science.gov (United States)

    2012-10-01

    component Nanodelivery for Enhanced Internalization of Theranostics ; Click Therapy on Her2/neu Overexpressing Breast Cancer . Sudath Hapuarachchige...Delivery Using Nanoparticles In Breast Cancer Diagnosis and Therapy Paul C. Wang, Ph.D. Howard University Washington, DC 20059 15 September...as a targeting ligand has higher uptake in breast cancer cells and in tumor bearing animals. This year, there are 11 research projects utilizing the

  14. Mesenchymal Stem Cell-Based Tumor-Targeted Gene Therapy in Gastrointestinal Cancer

    OpenAIRE

    Bao, Qi; Zhao, Yue; Niess, Hanno; Conrad, Claudius; Schwarz, Bettina; Jauch, Karl-Walter; Huss, Ralf; Nelson, Peter J.; Bruns, Christiane J.

    2012-01-01

    Mesenchymal stem (or stromal) cells (MSCs) are nonhematopoietic progenitor cells that can be obtained from bone marrow aspirates or adipose tissue, expanded and genetically modified in vitro, and then used for cancer therapeutic strategies in vivo. Here, we review available data regarding the application of MSC-based tumor-targeted therapy in gastrointestinal cancer, provide an overview of the general history of MSC-based gene therapy in cancer research, and discuss potential problems associa...

  15. Immuno-Oncology-The Translational Runway for Gene Therapy: Gene Therapeutics to Address Multiple Immune Targets.

    Science.gov (United States)

    Weß, Ludger; Schnieders, Frank

    2017-12-01

    Cancer therapy is once again experiencing a paradigm shift. This shift is based on extensive clinical experience demonstrating that cancer cannot be successfully fought by addressing only single targets or pathways. Even the combination of several neo-antigens in cancer vaccines is not sufficient for successful, lasting tumor eradication. The focus has therefore shifted to the immune system's role in cancer and the striking abilities of cancer cells to manipulate and/or deactivate the immune system. Researchers and pharma companies have started to target the processes and cells known to support immune surveillance and the elimination of tumor cells. Immune processes, however, require novel concepts beyond the traditional "single-target-single drug" paradigm and need parallel targeting of diverse cells and mechanisms. This review gives a perspective on the role of gene therapy technologies in the evolving immuno-oncology space and identifies gene therapy as a major driver in the development and regulation of effective cancer immunotherapy. Present challenges and breakthroughs ranging from chimeric antigen receptor T-cell therapy, gene-modified oncolytic viruses, combination cancer vaccines, to RNA therapeutics are spotlighted. Gene therapy is recognized as the most prominent technology enabling effective immuno-oncology strategies.

  16. Adaptive radiation therapy for postprostatectomy patients using real-time electromagnetic target motion tracking during external beam radiation therapy.

    Science.gov (United States)

    Zhu, Mingyao; Bharat, Shyam; Michalski, Jeff M; Gay, Hiram A; Hou, Wei-Hsien; Parikh, Parag J

    2013-03-15

    Using real-time electromagnetic (EM) transponder tracking data recorded by the Calypso 4D Localization System, we report inter- and intrafractional target motion of the prostate bed, describe a strategy to evaluate treatment adequacy in postprostatectomy patients receiving intensity modulated radiation therapy (IMRT), and propose an adaptive workflow. Tracking data recorded by Calypso EM transponders was analyzed for postprostatectomy patients that underwent step-and-shoot IMRT. Rigid target motion parameters during beam delivery were calculated from recorded transponder positions in 16 patients with rigid transponder geometry. The delivered doses to the clinical target volume (CTV) were estimated from the planned dose matrix and the target motion for the first 3, 5, 10, and all fractions. Treatment adequacy was determined by comparing the delivered minimum dose (Dmin) with the planned Dmin to the CTV. Treatments were considered adequate if the delivered CTV Dmin is at least 95% of the planned CTV Dmin. Translational target motion was minimal for all 16 patients (mean: 0.02 cm; range: -0.12 cm to 0.07 cm). Rotational motion was patient-specific, and maximum pitch, yaw, and roll were 12.2, 4.1, and 10.5°, respectively. We observed inadequate treatments in 5 patients. In these treatments, we observed greater target rotations along with large distances between the CTV centroid and transponder centroid. The treatment adequacy from the initial 10 fractions successfully predicted the overall adequacy in 4 of 5 inadequate treatments and 10 of 11 adequate treatments. Target rotational motion could cause underdosage to partial volume of the postprostatectomy targets. Our adaptive treatment strategy is applicable to post-prostatectomy patients receiving IMRT to evaluate and improve radiation therapy delivery. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. EUS-guided fiducial placement before targeted radiation therapy for prostate cancer.

    Science.gov (United States)

    Yang, Julie; Abdel-Wahab, May; Ribeiro, Afonso

    2009-09-01

    Image-guided radiation therapy allows the delivery of precisely aimed radiation beams to tumors while minimizing radiation to adjacent normal tissue. This is particularly important in the prostate, a moving target whose positioning depends on the dynamics of its neighboring bladder and rectum. Targeted radiation therapy can be achieved by using implantable radiographic markers, or fiducials, which serve as reference points to accurately delineate tumors. To determine the feasibility and safety of placing fiducials in the prostate under linear array EUS guidance to facilitate targeted radiation therapy. Retrospective analysis of a prospective database. University of Miami Hospital and Clinics, a tertiary cancer referral center. Localized prostate cancer patients scheduled to undergo intensity-modulated radiation therapy. A total of 16 patients underwent EUS-guided fiducial placement to delineate the prostate before planned radiation therapy. Fiducial placement was successful in all patients (100%). A total of 71 gold markers were deployed in a 4-quadrant manner outlining the prostate. Seven of 16 patients had an additional fiducial placed to ensure adequate prostate delineation. Patients tolerated the procedure well with minimal discomfort. No complications developed from the procedure. Single-center experience, small sample size. EUS-guided placement of fiducials to facilitate image-guided radiation therapy for prostate cancer is a feasible alternative to transperineal or transrectal US approaches, thereby adding to the expanding list of indications for linear EUS. This procedure can be safely performed by endosonographers familiar with perirectal anatomy and transrectal FNA technique.

  18. New Peptide-Conjugated Chlorin-Type Photosensitizer Targeting Neuropilin-1 for Anti-Vascular Targeted Photodynamic Therapy.

    Science.gov (United States)

    Kamarulzaman, Ezatul Ezleen; Gazzali, Amirah Mohd; Acherar, Samir; Frochot, Céline; Barberi-Heyob, Muriel; Boura, Cédric; Chaimbault, Patrick; Sibille, Estelle; Wahab, Habibah A; Vanderesse, Régis

    2015-10-12

    Photodynamic therapy (PDT) is a cancer treatment modality that requires three components, namely light, dioxygen and a photosensitizing agent. After light excitation, the photosensitizer (PS) in its excited state transfers its energy to oxygen, which leads to photooxidation reactions. In order to improve the selectivity of the treatment, research has focused on the design of PS covalently attached to a tumor-targeting moiety. In this paper, we describe the synthesis and the physico-chemical and photophysical properties of six new peptide-conjugated photosensitizers designed for targeting the neuropilin-1 (NRP-1) receptor. We chose a TPC (5-(4-carboxyphenyl)-10,15, 20-triphenyl chlorine as photosensitizer, coupled via three different spacers (aminohexanoic acid, 1-amino-3,6-dioxaoctanoic acid, and 1-amino-9-aza-3,6,12,15-tetraoxa-10-on-heptadecanoic acid) to two different peptides (DKPPR and TKPRR). The affinity towards the NRP-1 receptor of the conjugated chlorins was evaluated along with in vitro and in vivo stability levels. The tissue concentration of the TPC-conjugates in animal model shows good distribution, especially for the DKPPR conjugates. The novel peptide-PS conjugates proposed in this study were proven to have potential to be further developed as future NRP-1 targeting photodynamic therapy agent.

  19. Magnetic chitosan nanoparticles as a drug delivery system for targeting photodynamic therapy

    International Nuclear Information System (INIS)

    Sun Yun; Chen Zhilong; Yang Xiaoxia; Huang Peng; Zhou Xinping; Du Xiaoxia

    2009-01-01

    Photodynamic therapy (PDT) has become an increasingly recognized alternative to cancer treatment in clinic. However, PDT therapy agents, namely photosensitizer (PS), are limited in application as a result of prolonged cutaneous photosensitivity, poor water solubility and inadequate selectivity, which are encountered by numerous chemical therapies. Magnetic chitosan nanoparticles provide excellent biocompatibility, biodegradability, non-toxicity and water solubility without compromising their magnetic targeting. Nevertheless, no previous attempt has been reported to develop an in vivo magnetic drug delivery system with chitosan nanoparticles for magnetic resonance imaging (MRI) monitored targeting photodynamic therapy. In this study, magnetic targeting chitosan nanoparticles (MTCNPs) were prepared and tailored as a drug delivery system and imaging agents for PS, designated as PHPP. Results showed that PHPP-MTCNPs could be used in MRI monitored targeting PDT with excellent targeting and imaging ability. Non-toxicity and high photodynamic efficacy on SW480 carcinoma cells both in vitro and in vivo were achieved with this method at the level of 0-100 μM. Notably, localization of nanoparticles in skin and hepatic tissue was significantly less than in tumor tissue, therefore photosensitivity and hepatotoxicity can be attenuated.

  20. Molecular targeted therapies in advanced or metastatic chordoma patients: facts and hypotheses.

    Science.gov (United States)

    Lebellec, Loïc; Aubert, Sébastien; Zaïri, Fahed; Ryckewaert, Thomas; Chauffert, Bruno; Penel, Nicolas

    2015-07-01

    Chordomas, derived from undifferentiated notochordal remnants, represent less than 4% of bone primary tumors. Despite surgery followed by radiotherapy, local and metastatic relapses are frequent. In case of locally advanced or metastatic chordomas, medical treatment is frequently discussed. While chemotherapy is ineffective, it would appear that some molecular targeted therapies, in particular imatinib, could slow down the tumor growth in case-reports, retrospective series, and phase I or II trials. Nineteen publications, between January 1990 and September 2014, have been found describing the activity of these targeted therapies. A systematic analysis of these publications shows that the best objective response with targeted therapies was stabilization in 52 to 69% of chordomas. Given the indolent course of advanced chordoma and because of the absence of randomized trial, the level of evidence to treat chordomas with molecular therapy is low (level III), whatever the drug. Furthermore, we could not draw firm conclusion on the activity of imatinib. Other putative targets have also been described. Therefore, further clinical trials are expected, especially with these targets. Nevertheless, it seems essential, in those future studies, to consider the naturally slow course of the disease. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Enzyme targeting strategies for prevention and treatment of cancer: Implications for cancer therapy.

    Science.gov (United States)

    Baig, Mohammad Hassan; Adil, Mohd; Khan, Rosina; Dhadi, Surendar; Ahmad, Khurshid; Rabbani, Gulam; Bashir, Tufail; Imran, Mohammad Azhar; Husain, Fohad Mabood; Lee, Eun Ju; Kamal, Mohammad Amjad; Choi, Inho

    2017-12-14

    Extensive growth of cancer in humans is a major cause of death. Numerous studies are being conducted to improve the early diagnosis, prevention, and treatment of cancer. Recent technological advancements in medical science and research indicate molecular target therapy holds much promise in cancer treatment. In the past, therapeutic and diagnostic targeting of non-glycolytic and glycolytic enzymes in cancer have been successful, and discoveries of biomarker enzymes in cancer hold promise for therapeutic treatments. In this review, we discuss the roles of several cancer-associated enzymes that could potentially act as therapeutic targets, and place special focus on non-glycolytic and glycolytic enzymes. This review indicates that the targeting of metabolic signaling offers a promising means of developing novel anti-cancer therapies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Folate-targeted docetaxel-lipid-based-nanosuspensions for active-targeted cancer therapy.

    Science.gov (United States)

    Wang, Lili; Li, Min; Zhang, Na

    2012-01-01

    The purpose of this study was to develop two novel drug delivery systems based on biodegradable docetaxel-lipid-based-nanosuspensions. The first one was poly(ethylene glycol)- modified docetaxel-lipid-based-nanosuspensions (pLNS). It was developed to increase the cycle time of the drug within the body and enhance the accumulation of the drug at the tumor site. The second one was targeted docetaxel-lipid-based-nanosuspensions (tLNS) using folate as the target ligand. The tLNS could target the tumor cells that overexpressed folate receptor (FR). The morphology, particle size, and zeta potential of pLNS and tLNS were characterized, respectively. The in vitro cytotoxicity evaluation of Duopafei(®), pLNS, and tLNS were performed in human hepatocellular liver carcinoma HepG2 (FR-) and B16 (FR+) cells, respectively. The in vivo antitumor efficacy and pharmacokinetics, as well as the drug tissue distribution, were evaluated in Kunming mice bearing B16 cells. The particle size of pLNS was 204.2 ± 6.18 nm and tLNS had a mean particle size of 220.6 ± 9.54 nm. Cytotoxicity of tLNS against B16 (FR+) cell lines was superior to pLNS (P < 0.05), while there was no significant difference in the half maximum inhibitory concentration values for HepG2 (FR-) cells between pLNS and tLNS. The results of the in vivo antitumor efficacy evaluation showed that tLNS exhibited higher antitumor efficacy by reducing tumor volume (P < 0.01) compared with Duopafei and pLNS, respectively. The results of the in vivo biodistribution study indicate that the better antitumor efficacy of tLNS was attributed to the increased accumulation of the drug in the tumor.

  3. Mesenchymal Stem Cell-Based Tumor-Targeted Gene Therapy in Gastrointestinal Cancer

    Science.gov (United States)

    Bao, Qi; Zhao, Yue; Niess, Hanno; Conrad, Claudius; Schwarz, Bettina; Jauch, Karl-Walter; Huss, Ralf; Nelson, Peter J.

    2012-01-01

    Mesenchymal stem (or stromal) cells (MSCs) are nonhematopoietic progenitor cells that can be obtained from bone marrow aspirates or adipose tissue, expanded and genetically modified in vitro, and then used for cancer therapeutic strategies in vivo. Here, we review available data regarding the application of MSC-based tumor-targeted therapy in gastrointestinal cancer, provide an overview of the general history of MSC-based gene therapy in cancer research, and discuss potential problems associated with the utility of MSC-based therapy such as biosafety, immunoprivilege, transfection methods, and distribution in the host. PMID:22530882

  4. Target volume delineation and treatment planning for particle therapy a practical guide

    CERN Document Server

    Leeman, Jonathan E; Cahlon, Oren; Sine, Kevin; Jiang, Guoliang; Lu, Jiade J; Both, Stefan

    2018-01-01

    This handbook is designed to enable radiation oncologists to treat patients appropriately and confidently by means of particle therapy. The orientation and purpose are entirely practical, in that the focus is on the physics essentials of delivery and treatment planning , illustration of the clinical target volume (CTV) and associated treatment planning for each major malignancy when using particle therapy, proton therapy in particular. Disease-specific chapters provide guidelines and concise knowledge on CTV selection and delineation and identify aspects that require the exercise of caution during treatment planning. The treatment planning techniques unique to proton therapy for each disease site are clearly described, covering beam orientation, matching/patching field techniques, robustness planning, robustness plan evaluation, etc. The published data on the use of particle therapy for a given disease site are also concisely reported. In addition to fully meeting the needs of radiation oncologists, this "kn...

  5. Aptamer conjugated paclitaxel and magnetic fluid loaded fluorescently tagged PLGA nanoparticles for targeted cancer therapy

    International Nuclear Information System (INIS)

    Aravind, Athulya; Nair, Remya; Raveendran, Sreejith; Veeranarayanan, Srivani; Nagaoka, Yutaka; Fukuda, Takahiro; Hasumura, Takahashi; Morimoto, Hisao; Yoshida, Yasuhiko; Maekawa, Toru; Sakthi Kumar, D.

    2013-01-01

    Controlled and targeted drug delivery is an essential criterion in cancer therapy to reduce the side effects caused by non-specific drug release and toxicity. Targeted chemotherapy, sustained drug release and optical imaging have been achieved using a multifunctional nanocarrier constructed from poly (D, L-lactide-co-glycolide) nanoparticles (PLGA NPs), an anticancer drug paclitaxel (PTX), a fluorescent dye Nile red (NR), magnetic fluid (MF) and aptamers (Apt, AS1411, anti-nucleolin aptamer). The magnetic fluid and paclitaxel loaded fluorescently labeled PLGA NPs (MF-PTX-NR-PLGA NPs) were synthesized by a single-emulsion technique/solvent evaporation method using a chemical cross linker bis (sulfosuccinimidyl) suberate (BS3) to enable binding of aptamer on to the surface of the nanoparticles. Targeting aptamers were then introduced to the particles through the reaction with the cross linker to target the nucleolin receptors over expressed on the cancer cell surface. Specific binding and uptake of the aptamer conjugated magnetic fluid loaded fluorescently tagged PLGA NPs (Apt-MF-NR-PLGA NPs) to the target cancer cells induced by aptamers was observed using confocal microscopy. Cytotoxicity assay conducted in two cell lines (L929 and MCF-7) confirmed that targeted MCF-7 cancer cells were killed while control cells were unharmed. In addition, aptamer mediated delivery resulting in enhanced binding and uptake to the target cancer cells exhibited increased therapeutic effect of the drug. Moreover, these aptamer conjugated magnetic polymer vehicles apart from actively transporting drugs into specifically targeted tumor regions can also be used to induce hyperthermia or for facilitating magnetic guiding of particles to the tumor regions. - Highlights: • Aptamer escorted, theranostic biodegradable PLGA carriers were developed. • Can target cancer cells, control drug release, image and magnetically guide. • Highly specific to the targeted cancer cells thus delivering

  6. ROR1 and ROR2 in Human Malignancies: Potentials for Targeted Therapy

    Directory of Open Access Journals (Sweden)

    Guilly eRebagay

    2012-04-01

    Full Text Available Targeted therapies require cellular protein expression that meets specific requirements that will maximize effectiveness, minimize off-target toxicities, and provide an opportunity for a therapeutic effect. The receptor tyrosine kinase-like orphan receptors (ROR are possible targets for therapy that may meet such requirements. RORs are transmembrane proteins that are part of the receptor tyrosine kinase (RTK family. The RORs have been shown to play a role in tumor-like behavior, such as cell migration and cell invasiveness and are normally not expressed in normal adult tissue. As part of the large effort in target discovery, ROR proteins have recently been found to be exp