WorldWideScience

Sample records for anti hiv-1 activity

  1. Anti-HIV-1 Activities of 4 Telomerase Restrictors

    Institute of Scientific and Technical Information of China (English)

    YU Xin; WANG Jinghui; de Giuli Morghen; Radaelli A; Zanotto C; Beggio P

    2007-01-01

    MTT Cell Proliferation Assay was used to optimize the concentration of Telomerase Restrictors(TRs) with minimum toxicity to the selected cells. FACSort flow cytometer and Innotest P24 HIV(Human immunodeficiency Virus) antigen mAb ELISA Kit were used to investigate the anti-HIV-1 activities of TRs. The results showed that TRs had low cytotoxicity to the PBMC (Peripheral Blood mononuclear cells) and CEM/GFP if the concentration of TRs was at 50 μmol/L or below, and the supernatant from PBMC pretreated with SHIV and TR1-001 /TR1-002 could not infect the PBMC, while can infect the C8166 with reduced infectivity, which suggested that the TRs may be one of the novel resources for screening anti-HIV-1 agents.

  2. Anti-HIV-1 activity of flavonoid myricetin on HIV-1 infection in a dual-chamber in vitro model.

    Directory of Open Access Journals (Sweden)

    Silvana Pasetto

    Full Text Available HIV infection by sexual transmission remains an enormous global health concern. More than 1 million new infections among women occur annually. Microbicides represent a promising prevention strategy that women can easily control. Among emerging therapies, natural small molecules such as flavonoids are an important source of new active substances. In this study we report the in vitro cytotoxicity and anti-HIV-1 and microbicide activity of the following flavonoids: Myricetin, Quercetin and Pinocembrin. Cytotoxicity tests were conducted on TZM-bl, HeLa, PBMC, and H9 cell cultures using 0.01-100 µM concentrations. Myricetin presented the lowest toxic effect, with Quercetin and Pinocembrin relatively more toxic. The anti-HIV-1 activity was tested with TZM-bl cell plus HIV-1 BaL (R5 tropic, H9 and PBMC cells plus HIV-1 MN (X4 tropic, and the dual tropic (X4R5 HIV-1 89.6. All flavonoids showed anti-HIV activity, although Myricetin was more effective than Quercetin or Pinocembrin. In TZM-bl cells, Myricetin inhibited ≥90% of HIV-1 BaL infection. The results were confirmed by quantification of HIV-1 p24 antigen in supernatant from H9 and PBMC cells following flavonoid treatment. In H9 and PBMC cells infected by HIV-1 MN and HIV-1 89.6, Myricetin showed more than 80% anti-HIV activity. Quercetin and Pinocembrin presented modest anti-HIV activity in all experiments. Myricetin activity was tested against HIV-RT and inhibited the enzyme by 49%. Microbicide activities were evaluated using a dual-chamber female genital tract model. In the in vitro microbicide activity model, Myricetin showed promising results against different strains of HIV-1 while also showing insignificant cytotoxic effects. Further studies of Myricetin should be performed to identify its molecular targets in order to provide a solid biological foundation for translational research.

  3. In vitro anti-HIV-1 activity of fucoidan from Sargassum swartzii.

    Science.gov (United States)

    Dinesh, Subramaniam; Menon, Thangam; Hanna, Luke E; Suresh, V; Sathuvan, M; Manikannan, M

    2016-01-01

    Sargassum swartzii, a marine brown algae with wide range of biological properties belongs to the family Sargassaceae. Bioactive fucoidan fractions (CFF, FF1 and FF2) were isolated from S. swartzii and characterized by linear gradient anion-exchange chromatography and FT-IR. The characterized fucoidan fractions contained mainly sugars, sulfate and uronic acid. In the present study, anti-HIV-1 property of the fucoidan fractions was investigated. Fraction FF2 was found to exhibit significant anti-HIV-1 activity at concentrations of 1.56 and 6.25 μg/ml as observed by >50% reduction in HIV-1 p24 antigen levels and reverse transcriptase activity. Fucoidan fractions have no cytotoxic effects on PBMCs at the concentration range of 1.56-1000 μg/ml. These results suggest that fucoidan fractions could have inhibitory activity against HIV and has potential as an anti-HIV-1 agent.

  4. Anti-HIV-1 activity of propolis in CD4(+) lymphocyte and microglial cell cultures.

    Science.gov (United States)

    Gekker, Genya; Hu, Shuxian; Spivak, Marla; Lokensgard, James R; Peterson, Phillip K

    2005-11-14

    An urgent need for additional agents to treat human immunodeficiency virus type 1 (HIV-1) infection led us to assess the anti-HIV-1 activity of the natural product propolis in CD4(+) lymphocytes and microglial cell cultures. Propolis inhibited viral expression in a concentration-dependent manner (maximal suppression of 85 and 98% was observed at 66.6 microg/ml propolis in CD4(+) and microglial cell cultures, respectively). Similar anti-HIV-1 activity was observed with propolis samples from several geographic regions. The mechanism of propolis antiviral property in CD4(+) lymphocytes appeared to involve, in part, inhibition of viral entry. While propolis had an additive antiviral effect on the reverse transcriptase inhibitor zidovudine, it had no noticeable effect on the protease inhibitor indinavir. The results of this in vitro study support the need for clinical trials of propolis or one or more of its components in the treatment of HIV-1 infection.

  5. Role of seminal plasma in the anti-HIV-1 activity of candidate microbicides

    Directory of Open Access Journals (Sweden)

    Li Yun-Yao

    2006-10-01

    Full Text Available Abstract Background Evaluation of microbicides for prevention of HIV-1 infection in macaque models for vaginal infection has indicated that the concentrations of active compounds needed for protection by far exceed levels sufficient for complete inhibition of infection in vitro. These experiments were done in the absence of seminal plasma (SP, a vehicle for sexual transmission of the virus. To gain insight into the possible effect of SP on the performance of selected microbicides, their anti-HIV-1 activity in the presence, and absence of SP, was determined. Methods The inhibitory activity of compounds against the X4 virus, HIV-1 IIIB, and the R5 virus, HIV-1 BaL was determined using TZM-bl indicator cells and quantitated by measuring β-galactosidase induced by infection. The virucidal properties of cellulose acetate 1,2-benzene-dicarboxylate (CAP, the only microbicide provided in water insoluble, micronized form, in the presence of SP was measured. Results The HIV-1 inhibitory activity of the polymeric microbicides, poly(naphthalene sulfonate, cellulose sulfate, carrageenan, CAP (in soluble form and polystyrene sulfonate, respectively, was considerably (range ≈ 4 to ≈ 73-fold diminished in the presence of SP (33.3%. Formulations of micronized CAP, providing an acidic buffering system even in the presence of an SP volume excess, effectively inactivated HIV-1 infectivity. Conclusion The data presented here suggest that the in vivo efficacy of polymeric microbicides, acting as HIV-1 entry inhibitors, might become at least partly compromised by the inevitable presence of SP. These possible disadvantages could be overcome by combining the respective polymers with acidic pH buffering systems (built-in for formulations of micronized CAP or with other anti-HIV-1 compounds, the activity of which is not affected by SP, e.g. reverse transcriptase and zinc finger inhibitors.

  6. Anti-HIV-1 integrase and anti-allergic activities of Bauhinia strychnifolia

    Directory of Open Access Journals (Sweden)

    Kingkan Bunluepuech

    2013-12-01

    Full Text Available A stem ethanol extract of Bauhinia strychnifolia and its compounds were investigated for their anti-HIV-1 integrase (IN and anti-allergic activities. From bioassay-guided isolation, five compounds including quercetin (1, 3,5,7,3',5' pentahydroxyflavanonol-3-O-α-L-rhamnopyranoside (2, 3,5,7-trihydroxychromone-3-α-L-rhamnopyranoside (3 and a mixture of β-sitosterol (4 and stigmasterol (5 were isolated. Of the tested samples, compound 1 (quercetin showed the highest activity against HIV-1 IN with an IC50 value of 15.2 µM, followed by 3 (3,5,7-trihydroxychromone-3-α-L-rhamnopyranoside, 4+5 (mixture of β-sitosterol and stigmasterol and 2 (3,5,7,3',5'-pentahydroxyflavanonol-3-O-α-L-rhamnopyranoside with % inhibition of 28.2, 26.2 and 6.7 at 100 µM, respectively. With regard to anti-allergic activity, quercetin (1 possessed the highest anti-allergic activity with an IC50 of 8.1 µM, followed by 3 (3,5,7-trihydroxychromone-3-α-L-rhamnopyranoside and 4+5 (mixture of β-sitosterol and stigmasterol with IC50 values of 52.1 and 77.5 µM, respectively. Whereas compound 2 (3,5,7,3',5'-pentahydroxyflavanonol-3-O-α-L-rhamnopyranoside was inactive. The present study is the first report of chemical constituents and biological activities of Bauhinia strychnifolia.

  7. Semi-synthesis of oxygenated dolabellane diterpenes with highly in vitro anti-HIV-1 activity.

    Science.gov (United States)

    Pardo-Vargas, Alonso; Ramos, Freddy A; Cirne-Santos, Claudio Cesar; Stephens, Paulo Roberto; Paixão, Izabel Christina Palmer; Teixeira, Valeria Laneuville; Castellanos, Leonardo

    2014-09-15

    Research on dolabellane diterpenes of brown algae Dictyota spp. has shown that these diterpenoids have strong anti-HIV-1 activity, but there are not data about antiviral activity of dolabellane diterpenes isolated from octocorals, which are antipodes of those isolated from the brown algae. Dolabellanes 13-keto-1(R),11(S)-dolabella-3(E),7(E),12(18)-triene (1) and β-Araneosene (2) were isolated from the Caribbean octocoral Eunicea laciniata, and both showed low anti-HIV-1 activity and low toxicity. Since it was shown that oxygenated dolabellanes from algae have better anti-HIV-1 activity, in this work some derivatives of the main dolabellane of E. laciniata1 were obtained by epoxidation (3), epoxide opening (4), and allylic oxidation (5). The derivatives showed significant improvement in the anti-HIV-1potency (100-fold), being compounds 3 and 5 the most active ones. Their high antiviral activities, along with their low cytotoxicity, make them promissory antiviral compounds; and it is worth noting that the absolute configuration at the ring junction in the dolabellane skeleton does not seem to be determinant in the antiviral potency of these diterpeneoids.

  8. Hydroxytyrosol: a new class of microbicide displaying broad anti-HIV-1 activity

    Science.gov (United States)

    Bedoya, Luis M.; Beltrán, Manuela; Obregón-Calderón, Patricia; García-Pérez, Javier; de la Torre, Humberto E.; González, Nuria; Pérez-Olmeda, Mayte; Auñón, David; Capa, Laura; Gómez-Acebo, Eduardo; Alcamí, José

    2016-01-01

    Objective: To investigate the toxicity and activity against HIV of 5-hydroxytyrosol as a potential microbicide. Design: The anti-HIV-1 activity of 5-hydroxytyrosol, a polyphenolic compound, was tested against wild-type HIV-1 and viral clones resistant to nucleoside reverse transcriptase inhibitors (NRTIs), non-nucleoside reverse transcriptase inhibitors (NNRTIs), protease inhibitors and integrase inhibitors. In addition to its activity against founder viruses, different viral subtypes and potential synergy with tenofovir disoproxil fumarate, lamivudine and emtricitabine was also tested. 5-Hydroxytyrosol toxicity was evaluated in vivo in rabbit vaginal mucosa. Methods: We have cloned pol gene from drug-resistant HIV-1 isolated from infected patients and env gene from Fiebeg III/IV patients or A, C, D, E, F and G subtypes in the NL4.3-Ren backbone. 5-Hydroxytyrosol anti-HIV-1 activity was evaluated in infections of MT-2, U87-CCR5 or peripheral blood mononuclear cells preactivated with phytohemagglutinin + interleukin-2 with viruses obtained through 293T transfections. Inhibitory concentration 50% and cytotoxic concentration 50% were calculated. Synergy was analysed according to Chou and Talalay method. In-vivo toxicity was evaluated for 14 days in rabbit vaginal mucosa. Results: 5-Hydroxytyrosol inhibited HIV-1 infections of recombinant or wild-type viruses in all the target cells tested. Moreover, 5-hydroxytyrosol showed similar inhibitory concentration 50% values for infections with NRTIs, NNRTIs, protease inhibitors and INIs resistant viruses; founder viruses and all the subtypes tested. Combination of 5-hydroxytyrosol with tenofovir was found to be synergistic, whereas it was additive with lamivudine and emtricitabine. In-vivo toxicity of 5-hydroxytyrosol was very low even at the highest tested doses. Conclusion: 5-Hydroxytyrosol displayed a broad anti-HIV-1 activity in different cells systems in the absent of in-vivo toxicity, therefore supporting its

  9. 7,8-secolignans from Schisandra neglecta and their anti-HIV-1 activities

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Xuemei; Mu, Huaixue; Hu, Qiufen, E-mail: huqiufena@yahoo.com.cn [Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan University of Nationalities (China); Wang, Ruirui; Yang, Liumeng; Zheng, Yongtang [Kunming Institute of Zoology, Chinese Academy of Sciences (China); Sun, Handong; Xiao, Weilie, E-mail: xwl@mail.kib.ac.cn [State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming (China)

    2012-10-15

    Four new 7,8-secolignans (neglectahenols A-D), together with two known 7,8-secolignans, were isolated from leaves and stems of Schisandra neglecta. The structures were elucidated by spectroscopic methods, including extensive one and two dimension NMR (nuclear magnetic resonance) techniques. 7,8-Secolignans and neglectahenols A-D were also tested for their anti-HIV-1 (human immunodeficiency virus type 1) activities, and all of them showed modest activities. (author)

  10. Synthesis, Antimicrobial, and Anti-HIV1 Activity of Quinazoline-4(3H-one Derivatives

    Directory of Open Access Journals (Sweden)

    K. Vijayakumar

    2013-01-01

    Full Text Available The present investigation aims to synthesize 11 compounds of quinazoline-1 derivatives and to test their antimicrobial and anti-HIV1 activities. A quick-witted method was developed for the synthesis of novel substituted quinazolinone derivatives by summarizing diverse diamines with benzoxazine reactions, and it demonstrated the benefits of typical reactions, handy operation, and outstanding product yields. These compounds were confirmed by elemental analysis, I R, 1H NMR, 13C NMR, and mass spectra. Then antimicrobial and anti-HIV1 activities of the compounds were tested in-vitro. It was found that compounds 7–11 possessed a wide range of anti microbial and anti-HIV1 activity.

  11. Epitope Mapping of Ibalizumab, a Humanized Anti-CD4 Monoclonal Antibody with Anti-HIV-1 Activity in Infected Patients▿

    OpenAIRE

    Song, Ruijiang; Franco, David; Kao, Chia-Ying; Yu, Faye; Huang, Yaoxing; Ho, David D.

    2010-01-01

    Ibalizumab is a humanized monoclonal antibody that binds human CD4, the primary receptor for human immunodeficiency virus type 1 (HIV-1). With its unique specificity for domain 2 of CD4, this antibody potently and broadly blocks HIV-1 infection in vitro by inhibiting a postbinding step required for viral entry but without interfering with major histocompatibility complex class II (MHC-II)-mediated immune function. In clinical trials, ibalizumab has demonstrated anti-HIV-1 activity in patients...

  12. QSAR study for anti-HIV-1 activities of HEPT derivatives using MLR and PLS

    Directory of Open Access Journals (Sweden)

    Ivan Daniela

    2013-01-01

    Full Text Available A QSAR study using Multiple Linear Regression (MLR and a Partial Least Squares (PLS methodology was performed for a series of 127 derivatives of 1-(2-hydroxy-ethoxymethyl]-6-(phenylthio-timine (HEPT, a potent inhibitor of the of the human immunodeficiency virus type 1, HIV-1 reverse transcriptase (RT. To explore the relationship between a pool of HEPT derivative descriptors (as independent variables and anti-HIV-1 activity expressed as log (1/EC50, as dependent variable MLR and PLS methods have been employed. Using Dragon descriptors, the present study aims to develop a predictive and robust QSAR model for predicting anti-HIV activity of the HEPT derivatives for better understanding the molecular features of these compounds important for their biological activity. According to the squared correlation coefficients, which had values between 0.826 and 0.809 for the MLR and PLS methods, the results demonstrate almost identical qualities and good predictive ability for both MLR and PLS models. After dividing the dataset into training and test sets, the model predictability was tested by several parameters, including the Golbraikh-Tropsha external criteria and the goodness of fit tested with the Y-randomization test. [Acknowledgements. This project was financially supported by Project 1.1 and 1.2 of the Institute of Chemistry of the Romanian Academy. STATISTICA, MobyDigs and SIMCA-P+ acquisition was funded by Ministerul Educatiei, Cercetarii si Tineretului - Autoritatea Nationala pentru Cercetare Stiintifica (MedC-ANCS, contract grant number: 71GR/2006

  13. Anti-HIV-1 activity of anionic polymers: a comparative study of candidate microbicides

    Directory of Open Access Journals (Sweden)

    Li Yun-Yao

    2002-11-01

    Full Text Available Abstract Background Cellulose acetate phthalate (CAP in soluble form blocks coreceptor binding sites on the virus envelope glycoprotein gp120 and elicits gp41 six-helix bundle formation, processes involved in virus inactivation. CAP is not soluble at pH Methods Enzyme linked immunosorbent assays (ELISA were used to (1 study HIV-1 IIIB and BaL binding to micronized CAP; (2 detect virus disintegration; and (3 measure gp41 six-helix bundle formation. Cells containing integrated HIV-1 LTR linked to the β-gal gene and expressing CD4 and coreceptors CXCR4 or CCR5 were used to measure virus infectivity. Results 1 HIV-1 IIIB and BaL, respectively, effectively bound to micronized CAP. 2 The interaction between HIV-1 and micronized CAP led to: (a gp41 six-helix bundle formation; (b virus disintegration and shedding of envelope glycoproteins; and (c rapid loss of infectivity. Polymers other than CAP, except Carbomer 974P, elicited gp41 six-helix bundle formation in HIV-1 IIIB but only poly(napthalene sulfonate, in addition to CAP, had this effect on HIV-1 BaL. These polymers differed with respect to their virucidal activities, the differences being more pronounced for HIV-1 BaL. Conclusions Micronized CAP is the only candidate topical microbicide with the capacity to remove rapidly by adsorption from physiological fluids HIV-1 of both the X4 and R5 biotypes and is likely to prevent virus contact with target cells. The interaction between micronized CAP and HIV-1 leads to rapid virus inactivation. Among other anionic polymers, cellulose sulfate, BufferGel and aryl sulfonates appear most effective in this respect.

  14. A naturally occurring Vif mutant (I107T) attenuates anti-APOBEC3G activity and HIV-1 replication.

    Science.gov (United States)

    Peng, Jinyu; Ao, Zhujun; Matthews, Chris; Wang, Xiaoxia; Ramdahin, Sue; Chen, Xi; Li, Junhua; Chen, Liyu; He, Jianmei; Ball, Blake; Fowke, Keith; Plummer, Frank; Embree, Joanne; Yao, Xiaojian

    2013-08-23

    The human immunodeficiency virus type 1 (HIV-1) Vif protein counteracts the antiviral activity of the apolipoprotein B mRNA editing enzyme catalytic polypeptide-like 3 (APOBEC3) family of proteins by targeting the proteins for degradation through the ubiquitin-proteasome pathway. Previous mutagenic studies have shown that multiple domains of Vif are required for interacting with APOBEC3G proteins and the proteasome pathway. However, very few mutagenesis and functional analyses of patient-derived Vif proteins have been conducted. In this study, we amplified and cloned the HIV-1 vif genes from the peripheral blood mononuclear cells (PBMCs) of five HIV-1-infected individuals in Nairobi and further tested the impact of the genes on anti-A3G activity and HIV-1 replication. The gene sequence analysis revealed high genetic variation of vif genes from different HIV-1-infected individuals. Interestingly, the Vif proteins derived from two of the three long-term survivors (LTSs) displayed a significantly impaired ability to mediate the degradation of A3G. In particular, a single amino acid change (I107T) in one of the non-functional LTS Vif variants, which has not been previously identified in the Los Alamos databases of vif sequences, was found to be responsible for the lack of anti-A3G activity. Further study demonstrated that HIV-1 carrying an I107T Vif mutation displayed significantly reduced fitness in A3G(+) T cells and PBMCs. Moreover, co-infecting A3G(+) T cells with both the wild-type and I107T Vif viruses resulted in decreased viral replication. Overall, the results of this study indicate that the HIV-1 Vif residue I107 is important for its anti-APOBEC3G activity and viral replication, which may have implications for viral fitness in vivo.

  15. Anti-HIV-1 activity and structure-activity relationship of pyranocoumarin analogs%吡喃香豆素衍生物对HIV-1的抑制作用及其构效关系

    Institute of Scientific and Technical Information of China (English)

    董飚; 马涛; 章天; 周春梅; 刘刚; 王琳; 陶佩珍; 张兴权

    2011-01-01

    The purpose of this study is to find out anti-HIV-1 reverse transcriptase (RT)/protease (PR) activity and inhibition of virus replication in cell cultures of novel coumarin analogs and determine their structure-activity relationship. Coumarin derivatives have been demonstrated to inhibit the activity of HIV-1 RT/PR in cell free system. It also shows inhibition effects to HIV-1 replication in cell culture. Based on the Chinese traditional pharmacological characteristics and protein three dimension computer aided design, analogs of tetracyclic dipyranocoumarin were synthesized from natural leading compounds. We studied the relationship of antiviral effects and chemical structures via HIV-1 PR/RT enzyme models and cell culture model system. Seven compounds were designed and tested. Several compounds showed anti-HIV-1 activity in varying degrees, especially V0201 showed much higher anti-HIV-1 activity with 3.56 and 0.78 μmol·L-1 of IC50 against HIV-1 PR/RT and 0.036 μmol·L-1 against HIV-1 replication in PBMC cultures. V0201 with a novel structure may be a new leading compound. These new compounds are valuable for development of new anti-HIV drugs in the future.%研究香豆素衍生物对人类免疫缺陷病毒l型逆转录酶(HIV-1 RT)、蛋白酶(HIV-1 PR)和细胞内复制的抑制作用及其构效关系.不同香豆素衍生物具有抑制HIV-1 RT、HIV-1 PR活性,且在细胞内显示出抑制HIV-1复制的作用已见报道.本课题根据国内传统药学的特点,考察以天然产物为先导化合物、结合HIV-1蛋白酶三维结构计算机辅助药物设计、合成的四环双吡喃香豆素及其类似物.以HIV-1 RT及HIV-1 PR以及细胞内病毒复制为靶点,利用酶学模型和细胞培养模型进行药物筛选及其构效关系研究,设计合成的7个化合物的药效学实验结果显示.部分化合物显示了不同程度的抗HIV-1活性.其中V0201作用最强,它对HIV-1 PR和HIV-1 RT的IC50分别为3.56和0.78 μmol·L-1;

  16. Is wetter better? An evaluation of over-the-counter personal lubricants for safety and anti-HIV-1 activity.

    Directory of Open Access Journals (Sweden)

    Charlene S Dezzutti

    Full Text Available Because lubricants may decrease trauma during coitus, it is hypothesized that they could aid in the prevention of HIV acquisition. Therefore, safety and anti-HIV-1 activity of over-the-counter (OTC aqueous- (n = 10, lipid- (n = 2, and silicone-based (n = 2 products were tested. The rheological properties of the lipid-based lubricants precluded testing with the exception of explant safety testing. Six aqueous-based gels were hyperosmolar, two were nearly iso-osmolar, and two were hypo-osmolar. Evaluation of the panel of products showed Gynol II (a spermicidal gel containing 2% nonoxynol-9, KY Jelly, and Replens were toxic to Lactobacillus. Two nearly iso-osmolar aqueous- and both silicone-based gels were not toxic toward epithelial cell lines or ectocervical or colorectal explant tissues. Hyperosmolar lubricants demonstrated reduction of tissue viability and epithelial fracture/sloughing while the nearly iso-osmolar and silicon-based lubricants showed no significant changes in tissue viability or epithelial modifications. While most of the lubricants had no measurable anti-HIV-1 activity, three lubricants which retained cell viability did demonstrate modest anti-HIV-1 activity in vitro. To determine if this would result in protection of mucosal tissue or conversely determine if the epithelial damage associated with the hyperosmolar lubricants increased HIV-1 infection ex vivo, ectocervical tissue was exposed to selected lubricants and then challenged with HIV-1. None of the lubricants that had a moderate to high therapeutic index protected the mucosal tissue. These results show hyperosmolar lubricant gels were associated with cellular toxicity and epithelial damage while showing no anti-viral activity. The two iso-osmolar lubricants, Good Clean Love and PRÉ, and both silicone-based lubricants, Female Condom 2 lubricant and Wet Platinum, were the safest in our testing algorithm.

  17. Is wetter better? An evaluation of over-the-counter personal lubricants for safety and anti-HIV-1 activity.

    Science.gov (United States)

    Dezzutti, Charlene S; Brown, Elizabeth R; Moncla, Bernard; Russo, Julie; Cost, Marilyn; Wang, Lin; Uranker, Kevin; Kunjara Na Ayudhya, Ratiya P; Pryke, Kara; Pickett, Jim; Leblanc, Marc-André; Rohan, Lisa C

    2012-01-01

    Because lubricants may decrease trauma during coitus, it is hypothesized that they could aid in the prevention of HIV acquisition. Therefore, safety and anti-HIV-1 activity of over-the-counter (OTC) aqueous- (n = 10), lipid- (n = 2), and silicone-based (n = 2) products were tested. The rheological properties of the lipid-based lubricants precluded testing with the exception of explant safety testing. Six aqueous-based gels were hyperosmolar, two were nearly iso-osmolar, and two were hypo-osmolar. Evaluation of the panel of products showed Gynol II (a spermicidal gel containing 2% nonoxynol-9), KY Jelly, and Replens were toxic to Lactobacillus. Two nearly iso-osmolar aqueous- and both silicone-based gels were not toxic toward epithelial cell lines or ectocervical or colorectal explant tissues. Hyperosmolar lubricants demonstrated reduction of tissue viability and epithelial fracture/sloughing while the nearly iso-osmolar and silicon-based lubricants showed no significant changes in tissue viability or epithelial modifications. While most of the lubricants had no measurable anti-HIV-1 activity, three lubricants which retained cell viability did demonstrate modest anti-HIV-1 activity in vitro. To determine if this would result in protection of mucosal tissue or conversely determine if the epithelial damage associated with the hyperosmolar lubricants increased HIV-1 infection ex vivo, ectocervical tissue was exposed to selected lubricants and then challenged with HIV-1. None of the lubricants that had a moderate to high therapeutic index protected the mucosal tissue. These results show hyperosmolar lubricant gels were associated with cellular toxicity and epithelial damage while showing no anti-viral activity. The two iso-osmolar lubricants, Good Clean Love and PRÉ, and both silicone-based lubricants, Female Condom 2 lubricant and Wet Platinum, were the safest in our testing algorithm.

  18. Anti-HIV-1 integrase activity of medicinal plants used as self medication by AIDS patients

    Directory of Open Access Journals (Sweden)

    Sopa Kummee

    2006-07-01

    Full Text Available The extracts of selected medicinal plants used as self medication by AIDS patients were investigated for their inhibitory activities against HIV-1 integrase (HIV-1 IN using the multiplate integration assay (MIA. Of these, the water extract of Eclipta prostrata (whole plant exhibited the most potent inhibitory activity with an IC50 value of 4.8 μg/ml, followed by the methanol extract of Eclipta prostrata (whole plant, IC50 = 21.1 μg/ ml, the water extract of Barleria lupulina (stem, IC50 = 26.4 μg/ml, the chloroform extract of Barleria lupulina (stem, IC50 = 33.0 μg/ml, the methanol extract of Barleria lupulina (stem, IC50 = 38.2 μg/ml and the chloroform extract of Piper betle (leaf, IC50 = 39.3 μg/ml, respectively.

  19. Aaptamine Derivatives with Antifungal and Anti-HIV-1 Activities from the South China Sea Sponge Aaptos aaptos

    Directory of Open Access Journals (Sweden)

    Hao-Bing Yu

    2014-12-01

    Full Text Available Five new alkaloids of aaptamine family, compounds (1–5 and three known derivatives (6–8, have been isolated from the South China Sea sponge Aaptos aaptos. The structures of all compounds were unambiguously elucidated by spectroscopic analyses, as well as by comparison with the literature data. Compounds 1–2 are characterized with triazapyrene lactam skeleton, whereas compounds 4–5 share an imidazole-fused aaptamine moiety. These compounds were evaluated in antifungal and anti-HIV-1 assays. Compounds 3, 7, and 8 showed antifungal activity against six fungi, with MIC values in the range of 4 to 64 μg/mL. Compounds 7–8 exhibited anti-HIV-1 activity, with inhibitory rates of 88.0% and 72.3%, respectively, at a concentration of 10 μM.

  20. In vitro anti-HIV-1 activities of kaempferol and kaempferol-7-O-glucoside isolated from Securigera securidaca.

    Science.gov (United States)

    Behbahani, M; Sayedipour, S; Pourazar, A; Shanehsazzadeh, M

    2014-01-01

    Previously, we reported that the kaempferol and kaempferol-7-O-glucoside isolated from Securigera securidaca showed potent anti-HSV activity. In the present study the anti-HIV-1 activities of kaempferol and kaempferol-7-O-glucoside are investigated at different concentrations (100, 50, 25 and 10 μg/ml) using HIV-1 p24 Antigen kit. Real-time Polymerase chain reaction (RT-PCR) assay was also used for quantification of full range of virus load observed in treated and untreated cells. According to the results of RT- PCR, tested compounds at a concentration of 100 μg/ml exerted potent inhibitory effect. Time of drug addition experiments demonstrated that these compounds exerted their inhibitory effects on the early stage of HIV infection. The results also showed potent anti-HIV-1 reverse transcriptase activity. Antiviral activity of kaempferol-7-O-glucoside was more pronounced than that of kaempferol. These findings demonstrate that kaempferol-7-O-glucoside could be considered as a new potential drug candidate for the treatment of HIV infection which requires further assessments.

  1. Identification of a Small Molecular Anti - HIV - 1 Compound that Interferes with Formation of the Fusion - active gp41 Core

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The human immunodeficiency virus type 1 (HIV - 1 ) envelope glycoprotein gp41 plays a critical role in the fusion of viral and target cell membranes. The gp41 extracellular domain, which contains fusion peptide (FP), N - and C - terminal hydrophobic heptad repeats (NHR and CHR, respectively). Peptides derived from NHR and CHR regions,designated N- and C- peptides, respectively, can interact with each other to form a six - stranded coiled - coil domain, representing the fusion-active gp41 core. Our previous studies demonstrated that the C- peptides have potent inhibitory activity against HIV- 1 infection.These peptides inhibit HIV- 1 -mediated membrane fusion by binding to NHR regions for preventing the formation of fusion- active gp41 core. One of the C - peptides, T - 20, which is in the phase Ⅲ clinical trails, is expected to become the first peptide HIV fusion inhibitory drug in the near future. However, this peptide HIV fusion inhibitor lacks oral availability and is sensitive to the proteolytic digestion.Therefore, it is essential to develop small molecular non -peptide HIV fusion inhibitors having similar mechanism of action as the C- peptides. We have established an ELISA- based screening assay using a unique monoclonal antibody, NC- 1, which can specifically bind to a conformational epitope on the gp41 core domain. Using this screening assay, we have identified a small molecular anti- HIV- 1 compound,named ADS-Jl, which inhibits HIV- 1- mediated membrane fusion by blocking the interaction between the NHR and CHR regions to form the fusion - active gp41 core. This compound will be used as a lead to design and develop novel HIV fusion inhibitors as new drugs for the treatment of HIV infection and/or AIDS.

  2. Anti-HIV-1 activity of myo-inositol hexaphosphoric acid (IP6) and myo-inositol hexasulfate(IS6).

    Science.gov (United States)

    Otake, T; Mori, H; Morimoto, M; Miyano, K; Ueba, N; Oishi, I; Kunita, N; Kurimura, T

    1999-01-01

    It is known that polysulfates have some anti-HIV-1 activity. We investigated the anti-HIV-1 activity of myo-inositol hexaphosphoric acid (IP6) and myo-inositol hexasulfate(IS6), low molecular weight carbohydrates. IP6 and IS6 inhibited the replication of HIV-1 in a T cell line as well as that of a freshly isolated strain in peripheral blood mononuclear cells. Neither substance inhibited HIV-1-induced giant cell formation, but addition of IS6 when infecting cells with HIV-1 inhibited the replication of HIV-1. Neither substance inhibited HIV-1 reverse transcriptase activity in vitro and no influence on late stage replication was noted. Although the mechanisms of IP6 and IS6 action remain unclear, it can be speculated that they act on HIV-1 early replicative stage. Although it is not possible to develop IP6 and IS6 themselves as anti-AIDS drugs, studies of these anti-HIV agents might be expected to provide seed for eventual production of superior drugs for AIDS treatment.

  3. Lignosulfonic acid exhibits broadly anti-HIV-1 activity--potential as a microbicide candidate for the prevention of HIV-1 sexual transmission.

    Directory of Open Access Journals (Sweden)

    Min Qiu

    Full Text Available Some secondary metabolites from plants show to have potent inhibitory activities against microbial pathogens, such as human immunodeficiency virus (HIV, herpes simplex virus (HSV, Treponema pallidum, Neisseria gonorrhoeae, etc. Here we report that lignosulfonic acid (LSA, a polymeric lignin derivative, exhibits potent and broad activity against HIV-1 isolates of diverse subtypes including two North America strains and a number of Chinese clinical isolates values ranging from 21.4 to 633 nM. Distinct from other polyanions, LSA functions as an entry inhibitor with multiple targets on viral gp120 as well as on host receptor CD4 and co-receptors CCR5/CXCR4. LSA blocks viral entry as determined by time-of-drug addiction and cell-cell fusion assays. Moreover, LSA inhibits CD4-gp120 interaction by blocking the binding of antibodies specific for CD4-binding sites (CD4bs and for the V3 loop of gp120. Similarly, LSA interacts with CCR5 and CXCR4 via its inhibition of specific anti-CCR5 and anti-CXCR4 antibodies, respectively. Interestingly, the combination of LSA with AZT and Nevirapine exhibits synergism in viral inhibition. For the purpose of microbicide development, LSA displays low in vitro cytotoxicity to human genital tract epithelial cells, does not stimulate NF-κB activation and has no significant up-regulation of IL-1α/β and IL-8 as compared with N-9. Lastly, LSA shows no adverse effect on the epithelial integrity and the junctional protein expression. Taken together, our findings suggest that LSA can be a potential candidate for tropical microbicide.

  4. Picomolar dichotomous activity of gnidimacrin against HIV-1.

    Directory of Open Access Journals (Sweden)

    Li Huang

    Full Text Available Highly active antiretroviral therapy (HAART has offered a promising approach for controlling HIV-1 replication in infected individuals. However, with HARRT, HIV-1 is suppressed rather than eradicated due to persistence of HIV-1 in latent viral reservoirs. Thus, purging the virus from latent reservoirs is an important strategy toward eradicating HIV-1 infection. In this study, we discovered that the daphnane diterpene gnidimacrin, which was previously reported to have potent anti-cancer cell activity, activated HIV-1 replication and killed persistently-infected cells at picomolar concentrations. In addition to its potential to purge HIV-1 from latently infected cells, gnidimacrin potently inhibited a panel of HIV-1 R5 virus infection of peripheral blood mononuclear cells (PBMCs at an average concentration lower than 10 pM. In contrast, gnidimacrin only partially inhibited HIV-1 ×4 virus infection of PBMCs. The strong anti-HIV-1 R5 virus activity of gnidimacrin was correlated with its effect on down-regulation of the HIV-1 coreceptor CCR5. The anti-R5 virus activity of gnidimacrin was completely abrogated by a selective protein kinase C beta inhibitor enzastaurin, which suggests that protein kinase C beta plays a key role in the potent anti-HIV-1 activity of gnidimacrin in PBMCs. In summary, these results suggest that gnidimacrin could activate latent HIV-1, specifically kill HIV-1 persistently infected cells, and inhibit R5 viruses at picomolar concentrations.

  5. Picomolar dichotomous activity of gnidimacrin against HIV-1.

    Science.gov (United States)

    Huang, Li; Ho, Phong; Yu, Jie; Zhu, Lei; Lee, Kuo-Hsiung; Chen, Chin-Ho

    2011-01-01

    Highly active antiretroviral therapy (HAART) has offered a promising approach for controlling HIV-1 replication in infected individuals. However, with HARRT, HIV-1 is suppressed rather than eradicated due to persistence of HIV-1 in latent viral reservoirs. Thus, purging the virus from latent reservoirs is an important strategy toward eradicating HIV-1 infection. In this study, we discovered that the daphnane diterpene gnidimacrin, which was previously reported to have potent anti-cancer cell activity, activated HIV-1 replication and killed persistently-infected cells at picomolar concentrations. In addition to its potential to purge HIV-1 from latently infected cells, gnidimacrin potently inhibited a panel of HIV-1 R5 virus infection of peripheral blood mononuclear cells (PBMCs) at an average concentration lower than 10 pM. In contrast, gnidimacrin only partially inhibited HIV-1 ×4 virus infection of PBMCs. The strong anti-HIV-1 R5 virus activity of gnidimacrin was correlated with its effect on down-regulation of the HIV-1 coreceptor CCR5. The anti-R5 virus activity of gnidimacrin was completely abrogated by a selective protein kinase C beta inhibitor enzastaurin, which suggests that protein kinase C beta plays a key role in the potent anti-HIV-1 activity of gnidimacrin in PBMCs. In summary, these results suggest that gnidimacrin could activate latent HIV-1, specifically kill HIV-1 persistently infected cells, and inhibit R5 viruses at picomolar concentrations.

  6. The C-terminal sequence of IFITM1 regulates its anti-HIV-1 activity.

    Directory of Open Access Journals (Sweden)

    Rui Jia

    Full Text Available The interferon-inducible transmembrane (IFITM proteins inhibit a wide range of viruses. We previously reported the inhibition of human immunodeficiency virus type 1 (HIV-1 strain BH10 by human IFITM1, 2 and 3. It is unknown whether other HIV-1 strains are similarly inhibited by IFITMs and whether there exists viral countermeasure to overcome IFITM inhibition. We report here that the HIV-1 NL4-3 strain (HIV-1NL4-3 is not restricted by IFITM1 and its viral envelope glycoprotein is partly responsible for this insensitivity. However, HIV-1NL4-3 is profoundly inhibited by an IFITM1 mutant, known as Δ(117-125, which is deleted of 9 amino acids at the C-terminus. In contrast to the wild type IFITM1, which does not affect HIV-1 entry, the Δ(117-125 mutant diminishes HIV-1NL4-3 entry by 3-fold. This inhibition correlates with the predominant localization of Δ(117-125 to the plasma membrane where HIV-1 entry occurs. In spite of strong conservation of IFITM1 among most species, mouse IFITM1 is 19 amino acids shorter at its C-terminus as compared to human IFITM1 and, like the human IFITM1 mutant Δ(117-125, mouse IFITM1 also inhibits HIV-1 entry. This is the first report illustrating the role of viral envelope protein in overcoming IFITM1 restriction. The results also demonstrate the importance of the C-terminal region of IFITM1 in modulating the antiviral function through controlling protein subcellular localization.

  7. Novel Synthesis and Anti-HIV-1 Activity of 2-Arylthio-6-benzyl-2,3-dihydro-1H-pyrimidin-4-ones (Aryl S-DABOs)

    DEFF Research Database (Denmark)

    Aly, Youssef L.; Pedersen, Erik Bjerreg.; La Colla, Paolo;

    2007-01-01

    The synthesis and the anti-HIV-1 activity of a series of 2-arylthio-6-benzyl-2,3-dihydro-1H-pyrimidin-4-ones (aryl S-DABOs) are reported. These compounds were synthesized via a coupling reaction of the corresponding 6-benzyl-2-thiouracils with aryl iodides in the presence of neocuproine hydrate......, copper(I) iodide, and sodium tert-butoxide. Target compounds showed moderate activity against HIV-1....

  8. Symmetrical 1-pyrrolidineacetamide showing anti-HIV activity through a new binding site on HIV-1 integrase

    Institute of Scientific and Technical Information of China (English)

    Li DU; Ya-xue ZHAO; Liu-meng YANG; Yong-tang ZHENG; Yun TANG; Xu SHEN; Hua-liang JIANG

    2008-01-01

    Aim:To characterize the functional and pharmacological features of a symmetrical 1-pyrrolidineacetamide,N,N'-(methylene-di-4,1-phenylene) bis-1-pyrrolidineacetamide,as a new anti-HIV compound which could competitively inhibit HIV-1 integrase (IN) binding to viral DNA.Methods:A surface plasma resonance (SPR)-based competitive assay was employed to determine the compound's inhibitory activity,and the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide cell assay was used to qualify the antiviral activity.The potential binding sites were predicted by molecular modeling and determined by site-directed mutagenesis and a SPR binding assay.Results:l-pyrrolidineacetamide,N,N'-(methylene-di-4,1-phenylene) bis-1-pyrrolidineacetamide could competitively inhibit IN binding to viral DNA with a 50% inhibitory concentration (IC50) value of 7.29±0.68 μmol/L as investigated by SPR-based investigation.Another antiretroviral activity assay showed that this compound exhibited inhibition against HⅣ-Ⅰ(ⅢB) replication with a 50% effective concentration (EC50) value of 40.54 μmol/L in C8166 cells,and cytotoxicity with a cytotoxic concentration value of 173.84 μmol/L in mock-infected C8166 cells.Molecular docking predicted 3 potential residues as 1-pyrrolidineacetamide,N,N'-(methylene-di-4,1-phenylene)bis-1-pyrrolidineacetamide binding sites.The importance of 3 key amino acid residues (Lys103,Lys173,and Thr174) involved in the binding was further identified by site-directed mutagenesis and a SPR binding assay.Conclusion:This present work identified a new anti-HIV compound through a new IN-binding site which is expected to supply new potential drug-binding site information for HIV-1 integrase inhibitor discovery and development.

  9. Epitope Mapping of Ibalizumab, a Humanized Anti-CD4 Monoclonal Antibody with Anti-HIV-1 Activity in Infected Patients▿

    Science.gov (United States)

    Song, Ruijiang; Franco, David; Kao, Chia-Ying; Yu, Faye; Huang, Yaoxing; Ho, David D.

    2010-01-01

    Ibalizumab is a humanized monoclonal antibody that binds human CD4, the primary receptor for human immunodeficiency virus type 1 (HIV-1). With its unique specificity for domain 2 of CD4, this antibody potently and broadly blocks HIV-1 infection in vitro by inhibiting a postbinding step required for viral entry but without interfering with major histocompatibility complex class II (MHC-II)-mediated immune function. In clinical trials, ibalizumab has demonstrated anti-HIV-1 activity in patients without causing immunosuppression. Thus, a characterization of the ibalizumab epitope was conducted in an attempt to gain insight into the underlying mechanism of its antiviral activity as well as its safety profile. By studying mouse/human chimeric CD4 molecules and site-directed point mutants of CD4, amino acids L96, P121, P122, and Q163 in domain 2 were found to be important for ibalizumab binding, with E77 and S79 in domain 1 also contributing. All these residues appear to cluster on the interface between domains 1 and 2 of human CD4 on a surface opposite the site where gp120 and the MHC-II molecule bind on domain 1. Separately, the epitope of M-T441, a weakly neutralizing mouse monoclonal antibody that competes with ibalizumab, was localized entirely within domain 2 on residues 123 to 125 and 138 to 140. The results reported herein not only provide an appreciation for why ibalizumab has not had significant adverse immunological consequences in infected patients to date but also raise possible steric hindrance mechanisms by which this antibody blocks HIV-1 entry into a CD4-positive cell. PMID:20463063

  10. Epitope mapping of ibalizumab, a humanized anti-CD4 monoclonal antibody with anti-HIV-1 activity in infected patients.

    Science.gov (United States)

    Song, Ruijiang; Franco, David; Kao, Chia-Ying; Yu, Faye; Huang, Yaoxing; Ho, David D

    2010-07-01

    Ibalizumab is a humanized monoclonal antibody that binds human CD4, the primary receptor for human immunodeficiency virus type 1 (HIV-1). With its unique specificity for domain 2 of CD4, this antibody potently and broadly blocks HIV-1 infection in vitro by inhibiting a postbinding step required for viral entry but without interfering with major histocompatibility complex class II (MHC-II)-mediated immune function. In clinical trials, ibalizumab has demonstrated anti-HIV-1 activity in patients without causing immunosuppression. Thus, a characterization of the ibalizumab epitope was conducted in an attempt to gain insight into the underlying mechanism of its antiviral activity as well as its safety profile. By studying mouse/human chimeric CD4 molecules and site-directed point mutants of CD4, amino acids L96, P121, P122, and Q163 in domain 2 were found to be important for ibalizumab binding, with E77 and S79 in domain 1 also contributing. All these residues appear to cluster on the interface between domains 1 and 2 of human CD4 on a surface opposite the site where gp120 and the MHC-II molecule bind on domain 1. Separately, the epitope of M-T441, a weakly neutralizing mouse monoclonal antibody that competes with ibalizumab, was localized entirely within domain 2 on residues 123 to 125 and 138 to 140. The results reported herein not only provide an appreciation for why ibalizumab has not had significant adverse immunological consequences in infected patients to date but also raise possible steric hindrance mechanisms by which this antibody blocks HIV-1 entry into a CD4-positive cell.

  11. Molecular Mechanisms in Activation of Latent HIV-1

    NARCIS (Netherlands)

    H. Rafati (Haleh)

    2014-01-01

    markdownabstract__Abstract__ Finding a cure for the human immunodeficiency virus type 1 (HIV-1) is extremely challenging. Development of highly active anti-retroviral therapy (HAART), transformed HIV-1 infection from an acute syndrome into chronic disease. Although using HAART results in suppressio

  12. Synthesis and Anti-HIV-1 Activity Evaluation for Novel 3a,6a-Dihydro-1H-pyrrolo[3,4-c]pyrazole-4,6-dione Derivatives

    Directory of Open Access Journals (Sweden)

    Guan-Nan Liu

    2016-09-01

    Full Text Available The search for new molecular constructs that resemble the critical two-metal binding pharmacophore and the halo-substituted phenyl functionality required for HIV-1 integrase (IN inhibition represents a vibrant area of research within drug discovery. As reported herein, we have modified our recently disclosed 1-[2-(4-fluorophenylethyl]-pyrrole-2,5-dione scaffolds to design 35 novel compounds with improved biological activities against HIV-1. These new compounds show single-digit micromolar antiviral potencies against HIV-1 and low toxicity. Among of them, compound 9g and 15i had potent anti-HIV-1 activities (EC50 < 5 μM and excellent therapeutic index (TI, CC50/EC50 > 100. These two compounds have potential as lead compounds for further optimization into clinical anti-HIV-1 agents.

  13. Developments of indoles as anti-HIV-1 inhibitors.

    Science.gov (United States)

    Xu, Hui; Lv, Min

    2009-01-01

    Since the first case of acquired immunodeficiency syndrome (AIDS) was reported in 1981, AIDS has always been a global health threat and the leading cause of deaths due to the rapid emergence of drug-resistance and unwanted metabolic side effects. Every day in 2007 an estimated 6850 people were newly infected with human immunodeficiency virus (HIV). Over the past 28 years the rapid worldwide spread of AIDS has prompted an intense research effort to discover compounds that could effectively inhibit HIV. The development of new, selective and safe inhibitors for the treatment of HIV, therefore, still remains a high priority for medical research. To the best of our knowledge, the indole derivatives have been considered as one class of promising HIV-1 inhibitors, such as delavirdine approved by the Food and Drug Administration (FDA) in 1997 for use in combination with other antiretrovirals in adults with HIV infection. In this review we focus on the synthesis and anti-HIV-1 activity of indole derivatives, in the meantime, the structure-activity relationship (SAR) for some derivatives are also surveyed. It will pave the way for the design of indole derivatives as anti-HIV-1 drugs in the future.

  14. Mangiferin, an Anti-HIV-1 Agent Targeting Protease and Effective against Resistant Strains

    OpenAIRE

    Rui-Rui Wang; Yue-Dong Gao; Chun-Hui Ma; Xing-Jie Zhang; Cheng-Gang Huang; Jing-Fei Huang; Yong-Tang Zheng

    2011-01-01

    The anti-HIV-1 activity of mangiferin was evaluated. Mangiferin can inhibit HIV-1ⅢB induced syncytium formation at non-cytotoxic concentrations, with a 50% effective concentration (EC50) at 16.90 μM and a therapeutic index (TI) above 140. Mangiferin also showed good activities in other laboratory-derived strains, clinically isolated strains and resistant HIV-1 strains. Mechanism studies revealed that mangiferin might inhibit the HIV-1 protease, but is still effective against HIV peptidic prot...

  15. Antiretroviral (HIV-1) activity of azulene derivatives.

    Science.gov (United States)

    Peet, Julia; Selyutina, Anastasia; Bredihhin, Aleksei

    2016-04-15

    The antiretroviral activity of azulene derivatives was detected for the first time. A series of eighteen diversely substituted azulenes was synthesized and tested in vitro using HIV-1 based virus-like particles (VLPs) and infectious HIV-1 virus in U2OS and TZM-bl cell lines. Among the compounds tested, the 2-hydroxyazulenes demonstrated the most significant activity by inhibiting HIV-1 replication with IC50 of 2-10 and 8-20 μM for the VLPs and the infectious virus, respectively. These results indicate that azulene derivatives may be potentially useful candidates for the development of antiretroviral agents.

  16. The anti-inflammatory activity of curcumin protects the genital mucosal epithelial barrier from disruption and blocks replication of HIV-1 and HSV-2.

    Directory of Open Access Journals (Sweden)

    Victor H Ferreira

    Full Text Available Inflammation is a known mechanism that facilitates HIV acquisition and the spread of infection. In this study, we evaluated whether curcumin, a potent and safe anti-inflammatory compound, could be used to abrogate inflammatory processes that facilitate HIV-1 acquisition in the female genital tract (FGT and contribute to HIV amplification. Primary, human genital epithelial cells (GECs were pretreated with curcumin and exposed to HIV-1 or HIV glycoprotein 120 (gp120, both of which have been shown to disrupt epithelial tight junction proteins, including ZO-1 and occludin. Pre-treatment with curcumin prevented disruption of the mucosal barrier by maintaining ZO-1 and occludin expression and maintained trans-epithelial electric resistance across the genital epithelium. Curcumin pre-treatment also abrogated the gp120-mediated upregulation of the proinflammatory cytokines tumor necrosis factor-α and interleukin (IL-6, which mediate barrier disruption, as well as the chemokines IL-8, RANTES and interferon gamma-induced protein-10 (IP-10, which are capable of recruiting HIV target cells to the FGT. GECs treated with curcumin and exposed to the sexually transmitted co-infecting microbes HSV-1, HSV-2 and Neisseria gonorrhoeae were unable to elicit innate inflammatory responses that indirectly induced activation of the HIV promoter and curcumin blocked Toll-like receptor (TLR-mediated induction of HIV replication in chronically infected T-cells. Finally, curcumin treatment resulted in significantly decreased HIV-1 and HSV-2 replication in chronically infected T-cells and primary GECs, respectively. All together, our results suggest that the use of anti-inflammatory compounds such as curcumin may offer a viable alternative for the prevention and/or control of HIV replication in the FGT.

  17. HIV-1 infection of in vitro cultured human monocytes: early events and influence of anti HIV-1 antibodies

    DEFF Research Database (Denmark)

    Arendrup, M; Olofsson, S; Nielsen, Jens Ole;

    1994-01-01

    on this infection. Depending on the period of in vitro cultivation and the virus isolate used different patterns of susceptibility were detected. One week old monocyte/M phi s were highly susceptible to HIV-1 infection, in contrast to monocyte/M phi s cultured 4 weeks. The infection by virus isolated immediately...... to CD4 and that post binding events may be common to the infection of lymphocytes. Anti HIV-1 sera showed neutralizing activity against heterologous and even autologous escape virus. This finding, together with the observation that monocytes and M phi s are infected in vivo, suggests that protection...

  18. Gnidimacrin, a Potent Anti-HIV Diterpene, Can Eliminate Latent HIV-1 Ex Vivo by Activation of Protein Kinase C β.

    Science.gov (United States)

    Lai, Weihong; Huang, Li; Zhu, Lei; Ferrari, Guido; Chan, Cliburn; Li, Wei; Lee, Kuo-Hsiung; Chen, Chin-Ho

    2015-11-12

    HIV-1-latency-reversing agents, such as histone deacetylase inhibitors (HDACIs), were ineffective in reducing latent HIV-1 reservoirs ex vivo using CD4 cells from patients as a model. This deficiency poses a challenge to current pharmacological approaches for HIV-1 eradication. The results of this study indicated that gnidimacrin (GM) was able to markedly reduce the latent HIV-1 DNA level and the frequency of latently infected cells in an ex vivo model using patients peripheral blood mononuclear cells. GM induced approximately 10-fold more HIV-1 production than the HDACI SAHA or romidepsin, which may be responsible for the effectiveness of GM in reducing latent HIV-1 levels. GM achieved these effects at low picomolar concentrations by selective activation of protein kinase C βI and βII. Notably, GM was able to reduce the frequency of HIV-1 latently infected cells at concentrations without global T cell activation or stimulating inflammatory cytokine production. GM merits further development as a clinical trial candidate for latent HIV-1 eradication.

  19. HIV-1 infection of in vitro cultured human monocytes: early events and influence of anti HIV-1 antibodies

    DEFF Research Database (Denmark)

    Arendrup, M; Olofsson, S; Nielsen, Jens Ole;

    1994-01-01

    To characterize the role of the humoral immune response on HIV-1 infection of monocytes and macrophages (M phi s) we examined the susceptibility of in vitro cultured monocyte/M phi s to various HIV-1 isolates and the influence of heterologous and particularly autologous anti HIV-1 sera on this in...

  20. The influence of charge clustering on the anti-HIV-1 activity and in vivo distribution of negatively charged albumins

    NARCIS (Netherlands)

    Beljaars, Leonie; Floris, René; Berkhout, Ben; Smit, Catharina; Meijer, Dirk K F; Molema, Grietje

    2002-01-01

    The substitution of human serum albumin with negatively charged molecules, such as succinic acid (Suc-HSA) or aconitic acid (Aco-HSA), resulted in proteins with potent anti-HIV activities, by binding to viral gp120 (V3 loop). The aim of the present study was to investigate whether the distribution o

  1. Rational design, synthesis, anti-HIV-1 RT and antimicrobial activity of novel 3-(6-methoxy-3,4-dihydroquinolin-1(2H)-yl)-1-(piperazin-1-yl)propan-1-one derivatives.

    Science.gov (United States)

    Chander, Subhash; Wang, Ping; Ashok, Penta; Yang, Liu-Meng; Zheng, Yong-Tang; Murugesan, Sankaranarayanan

    2016-08-01

    In the present study, fifteen novel 3-(6-methoxy-3,4-dihydroquinolin-1(2H)-yl)-1-(piperazin-1-yl)propan-1-one (6a-o) derivatives were designed as inhibitor of HIV-1 RT using ligand based drug design approach and in-silico evaluated for drug-likeness properties. Designed compounds were synthesized, characterized and in-vitro evaluated for RT inhibitory activity against wild HIV-1 RT strain. Among the tested compounds, four compounds (6a, 6b, 6j and 6o) exhibited significant inhibition of HIV-1 RT (IC50⩽10μg/ml). All synthesized compounds were also evaluated for anti-HIV-1 activity as well as cytotoxicity on T lymphocytes, in which compounds 6b and 6l exhibited significant anti-HIV activity (EC50 values 4.72 and 5.45μg/ml respectively) with good safety index. Four compounds (6a, 6b, 6j and 6o) found significantly active against HIV-1 RT in the in-vitro assay were in-silico evaluated against two mutant RT strains as well as one wild strain. Further, titled compounds were evaluated for in-vitro antibacterial (Escherichia coli, Pseudomonas putida, Staphylococcus aureus and Bacillus cereus) and antifungal (Candida albicans and Aspergillus niger) activities.

  2. Pharmacokinetics and anti-HIV-1 efficacy of negatively charged human serum albumins in mice

    NARCIS (Netherlands)

    Kuipers, M E; Swart, P J; Schutten, M; Smit, C; Proost, J H; Osterhaus, A D; Meijer, D K

    1997-01-01

    Negatively charged albumins (NCAs, with the prototypes succinylated human serum albumin (Suc-HSA) and aconitylated human serum albumin (Aco-HSA)), modified proteins with a potent anti-human immunodeficiency virus type 1 (anti-HIV-1) activity in vitro, were studied for their pharmacokinetic behaviour

  3. The effect of HIV-1 Vif polymorphisms on A3G anti-viral activity in an in vivo mouse model.

    Science.gov (United States)

    Cadena, Cristhian; Stavrou, Spyridon; Manzoni, Tomaz; Iyer, Shilpa S; Bibollet-Ruche, Frederic; Zhang, Weiyu; Hahn, Beatrice H; Browne, Edward P; Ross, Susan R

    2016-06-30

    Humans encode seven APOBEC3 proteins (A-H), with A3G, 3F and 3H as the major factors restricting HIV-1 replication. HIV-1, however, encodes Vif, which counteracts A3 proteins by chaperoning them to the proteasome where they are degraded. Vif polymorphisms found in HIV-1s isolated from infected patients have varying anti-A3G potency when assayed in vitro, but there are few studies demonstrating this in in vivo models. Here, we created Friend murine leukemia viruses encoding vif alleles that were previously shown to differentially neutralize A3G in cell culture or that were originally found in primary HIV-1 isolates. Infection of transgenic mice expressing different levels of human A3G showed that these naturally occurring Vif variants differed in their ability to counteract A3G during in vivo infection, although the effects on viral replication were not identical to those seen in cultured cells. We also found that the polymorphic Vifs that attenuated viral replication reverted to wild type only in A3G transgenic mice. Finally, we found that the level of A3G-mediated deamination was inversely correlated with the level of viral replication. This animal model should be useful for studying the functional significance of naturally occurring vif polymorphisms, as well as viral evolution in the presence of A3G.

  4. Aqueous extracts from peppermint, sage and lemon balm leaves display potent anti-HIV-1 activity by increasing the virion density

    Directory of Open Access Journals (Sweden)

    Baumann Ingo

    2008-03-01

    Full Text Available Abstract Background Aqueous extracts from leaves of well known species of the Lamiaceae family were examined for their potency to inhibit infection by human immunodeficiency virus type 1 (HIV-1. Results Extracts from lemon balm (Melissa officinalis L., peppermint (Mentha × piperita L., and sage (Salvia officinalis L. exhibited a high and concentration-dependent activity against the infection of HIV-1 in T-cell lines, primary macrophages, and in ex vivo tonsil histocultures with 50% inhibitory concentrations as low as 0.004%. The aqueous Lamiaceae extracts did not or only at very high concentrations interfere with cell viability. Mechanistically, extract exposure of free virions potently and rapidly inhibited infection, while exposure of surface-bound virions or target cells alone had virtually no antiviral effect. In line with this observation, a virion-fusion assay demonstrated that HIV-1 entry was drastically impaired following treatment of particles with Lamiaceae extracts, and the magnitude of this effect at the early stage of infection correlated with the inhibitory potency on HIV-1 replication. Extracts were active against virions carrying diverse envelopes (X4 and R5 HIV-1, vesicular stomatitis virus, ecotropic murine leukemia virus, but not against a non-enveloped adenovirus. Following exposure to Lamiaceae extracts, the stability of virions as well as virion-associated levels of envelope glycoprotein and processed Gag protein were unaffected, while, surprisingly, sucrose-density equilibrium gradient analyses disclosed a marked increase of virion density. Conclusion Aqueous extracts from Lamiaceae can drastically and rapidly reduce the infectivity of HIV-1 virions at non-cytotoxic concentrations. An extract-induced enhancement of the virion's density prior to its surface engagement appears to be the most likely mode of action. By harbouring also a strong activity against herpes simplex virus type 2, these extracts may provide a basis

  5. Anti-HIV-1 activities of the extracts from the medicinal plant Linum grandiflorum Desf

    DEFF Research Database (Denmark)

    Mohammed, Magdy M. D.; Christensen, Lars Porskjær; Ibrahim, Nabaweya A.;

    2009-01-01

    As part of our screening of anti-AIDS agents from natural sources e.g. Ixora undulata, Paulownia tomentosa, Fortunella margarita, Aegle marmelos and Erythrina abyssinica, the different organic and aqueous extracts of Linum grandiflorum leaves and seeds were evaluated in vitro by the microculture ...

  6. An important role for type Ⅲ interferon(IFN-lambda) in anti-HIV activity%新型干扰素——IFN-λ抗HIV-1感染

    Institute of Scientific and Technical Information of China (English)

    赵颖岚; 孙黎; 王旭; 侯炜; 霍文哲

    2009-01-01

    Objective To examine whether IFN-λ has the ability to inhibit HIV-1 infection of blood monocyte-derived macrophages and its mechanism(s). Methods Macrophages were pretreated with IFN-λ/ IFN-λ2 for 24 h before infected by HIV-1 R5 strains (Bal, Jago, and JRFL). And then the culture supernatants were detected HIV-1 reverse transcription (RT) activity and p24 protein expression by HIV-1 BT assay and ELISA. The expressions of IFN-λ receptor, CD4, CCRS, CXCR4 were evaluated by real-time PCR. Results Both IFN-λ1 and IFN-λ2, when added to macrophage cultures, inhibited HIV-1 infection and replication. This IFN-λ-mediated anti-HIV-I activity is broad, as IFN-λ could inhibit infection by both laboratory-adapted and clinical strains of HIV-1. Investigations of mechanism(s) responsible for the IFN-λ action showed that although IFN-λ had little effect on HIV-1 entry receptor CD4 and co-receptor CCR5 and CXCR4 expression, IFN-λ inhibited HIV-I infection of macrophages through connecting with IFN-λ recep-tor. Conclusion IFN-λ could inhibit HIV-I replication in macrophages. These findings indicate that IFN-λ may have a therapeutic value in the treatment of HIV-1 infection.%目的 研究干扰素λ(IFN-λ)是否对HIV-1感染人臣噬细胞有抑制作用,并对可能介导IFN-λ抗HIV-1作用的受体和辅助受体表达水平进行研究,初步探讨其抗HIV-1感染的机制.方法 HIV-1毒株感染人巨噬细胞前用IFN-λ处理细胞24 h,感染后第4天、第8天以及第12天分别检测感染细胞上清中HIV-1逆转录酶(RT)活性和p24蛋白水平,并用实时定量PCR检测细胞上IFN-λ受体、CD4、CCR5、CXCR4的表达.结果 IFN-λ对HIV-1感染人巨噬细胞具有明显抑制作用,且此作用与其剂量及作用时间呈正相关.但IFN-λ对CD4、CCR5、CXCR4的表达影响无统计学意义.结论 IFN-λ能有效抑制HIV-1感染人口噬细胞,并证实这一作用是通过其受体发挥功能的.但IFN-λ介导的抗HIV-1

  7. Synthesis and Anti-HIV-1 Activity of New MKC-442 Analogues with an Alkynyl-Substituted 6-Benzyl Group

    DEFF Research Database (Denmark)

    Aly, Youssef L.; Pedersen, Erik Bjerreg.; La Colla, Paolo;

    2007-01-01

    Synthesis and antiviral activities are reported of a series of 6-(3-alkynyl benzyl)-substituted analogues of MKC-442 (6-benzyl-1-(ethoxymethyl)-5-isopropyluracil), a highly potent agent against HIV. The 3-alkynyl group is assumed to give a better stacking of the substituted benzyl group to revers...

  8. Anti-HIV-1 Activity Prediction of Novel Gp41 Inhibitors Using Structure-Based Virtual Screening and Molecular Dynamics Simulation.

    Science.gov (United States)

    Sepehri, Saghi; Saghaie, Lotfollah; Fassihi, Afshin

    2016-10-12

    The fusion of viral and host cell membranes is mediated using gp41 subunit of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein. As the HIV-1 enters the host cells, the two helical regions (HR1 and HR2) in the ectodomain of gp41 form a six-helix bundle, which carries the target and viral cell membranes to close proximity. Steps of this process serve as attractive targets for developing HIV-1 fusion inhibitors. Identification of some novel HIV fusion inhibitors with the goal of blocking the formation of the six-helix bundle was accomplished by computer-aided drug design techniques. A virtual screening strategy was employed to recognize small molecules presumably able to bind the gp41 at the internal interface of the NHR helices at the core native viral six-helix. This study was carried out in two stages. In the first stage, a library of more than seven thousand compounds was collected from ZINC, PubChem and BindingDB databases and protein data bank. Key contacts of known inhibitors with gp41 binding site residues were considered as the collecting criteria. In the second stage series of filtering processes were performed on this library in subsequent steps to find the potential gp41 inhibitors. The filtering criteria included pharmacokinetic and ADMET properties as well as in silico anti-HIV-1 prediction. Molecular docking simulation was carried out to identify interactions of the filtered molecules with the key residues in the gp41 binding site. Finally, molecular dynamics simulation indicates the superior inhibitory ability of three selected compounds over the known gp41inhibitor, NB-64.

  9. Mangiferin, an Anti-HIV-1 Agent Targeting Protease and Effective against Resistant Strains

    Directory of Open Access Journals (Sweden)

    Rui-Rui Wang

    2011-05-01

    Full Text Available The anti-HIV-1 activity of mangiferin was evaluated. Mangiferin can inhibit HIV-1ⅢB induced syncytium formation at non-cytotoxic concentrations, with a 50% effective concentration (EC50 at 16.90 μM and a therapeutic index (TI above 140. Mangiferin also showed good activities in other laboratory-derived strains, clinically isolated strains and resistant HIV-1 strains. Mechanism studies revealed that mangiferin might inhibit the HIV-1 protease, but is still effective against HIV peptidic protease inhibitor resistant strains. A combination of docking and pharmacophore methods clarified possible binding modes of mangiferin in the HIV-1 protease. The pharmacophore model of mangiferin consists of two hydrogen bond donors and two hydrogen bond acceptors. Compared to pharmacophore features found in commercially available drugs, three pharmacophoric elements matched well and one novel pharmacophore element was observed. Moreover, molecular docking analysis demonstrated that the pharmacophoric elements play important roles in binding HIV-1 protease. Mangiferin is a novel nonpeptidic protease inhibitor with an original structure that represents an effective drug development strategy for combating drug resistance.

  10. Inhibitory effect of aqueous dandelion extract on HIV-1 replication and reverse transcriptase activity

    Directory of Open Access Journals (Sweden)

    Han Huamin

    2011-11-01

    Full Text Available Abstract Background Acquired immunodeficiency syndrome (AIDS, which is caused by the human immunodeficiency virus (HIV, is an immunosuppressive disease that results in life-threatening opportunistic infections. The general problems in current therapy include the constant emergence of drug-resistant HIV strains, adverse side effects and the unavailability of treatments in developing countries. Natural products from herbs with the abilities to inhibit HIV-1 life cycle at different stages, have served as excellent sources of new anti-HIV-1 drugs. In this study, we aimed to investigate the anti-HIV-1 activity of aqueous dandelion extract. Methods The pseudotyped HIV-1 virus has been utilized to explore the anti-HIV-1 activity of dandelion, the level of HIV-1 replication was assessed by the percentage of GFP-positive cells. The inhibitory effect of the dandelion extract on reverse transcriptase activity was assessed by the reverse transcriptase assay kit. Results Compared to control values obtained from cells infected without treatment, the level of HIV-1 replication and reverse transcriptase activity were decreased in a dose-dependent manner. The data suggest that dandelion extract has a potent inhibitory activity against HIV-1 replication and reverse transcriptase activity. The identification of HIV-1 antiviral compounds from Taraxacum officinale should be pursued. Conclusions The dandelion extract showed strong activity against HIV-1 RT and inhibited both the HIV-1 vector and the hybrid-MoMuLV/MoMuSV retrovirus replication. These findings provide additional support for the potential therapeutic efficacy of Taraxacum officinale. Extracts from this plant may be regarded as another starting point for the development of an antiretroviral therapy with fewer side effects.

  11. Broad activation of latent HIV-1 in vivo

    DEFF Research Database (Denmark)

    Barton, Kirston; Hiener, Bonnie; Winckelmann, Anni;

    2016-01-01

    The 'shock and kill' approach to cure human immunodeficiency virus (HIV) includes transcriptional induction of latent HIV-1 proviruses using latency-reversing agents (LRAs) with targeted immunotherapy to purge infected cells. The administration of LRAs (panobinostat or vorinostat) to HIV-1-infected...... individuals on antiretroviral therapy induces a significant increase in cell-associated unspliced (CA-US) HIV-1 RNA from CD4(+) T cells. However, it is important to discern whether the increases in CA-US HIV-1 RNA are due to limited or broad activation of HIV-1 proviruses. Here we use single-genome sequencing...... to find that the RNA transcripts observed following LRA administration are genetically diverse, indicating activation of transcription from an extensive range of proviruses. Defective sequences are more frequently found in CA HIV-1 RNA than in HIV-1 DNA, which has implications for developing an accurate...

  12. Anti-HIV-1 activity of salivary MUC5B and MUC7 mucins from HIV patients with different CD4 counts

    Directory of Open Access Journals (Sweden)

    Roux Paul

    2010-10-01

    Full Text Available Abstract Background We have previously shown that MUC5B and MUC7 mucins from saliva of HIV negative individuals inhibit HIV-1 activity by 100% in an in vitro assay. The purpose of this subsequent study was to investigate whether MUC5B and MUC7 from saliva of HIV patients or with full blown AIDS had a similar inhibitory activity against the virus. Methods Salivary MUC5B and MUC7 from HIV patients with different CD4 counts ( 400 were incubated with HIV-1 prior to infection of the human T lymphoblastoid cell line (CEM SS cells. Cells were then cultured and viral replication was measured by a qualitative p24 antigen assay. The size, charge and immunoreactivity of mucins from HIV negative and positive individuals was also analysed by SDS-PAGE, Western blot and ELISA respectively. Results It was shown that irrespective of their CD4 counts both MUC5B and MUC7 from HIV patients, unlike the MUC5B and MUC7 from HIV negative individuals, did not inhibit HIV-1 activity. Size, charge and immunoreactivity differences between the mucins from HIV negative and positive individuals and among the mucins from HIV patients of different CD4 count was observed by SDS-PAGE, Western blot and ELISA. Conclusions Purified salivary mucins from HIV positive patients do not inhibit the AIDS virus in an in vitro assay. Although the reason for the inability of mucins from infected individuals to inhibit the virus is not known, it is likely that there is an alteration of the glycosylation pattern, and therefore of charge of mucin, in HIV positive patients. The ability to inhibit the virus by aggregation by sugar chains is thus diminished.

  13. A Cinnamon-Derived Procyanidin Compound Displays Anti-HIV-1 Activity by Blocking Heparan Sulfate- and Co-Receptor- Binding Sites on gp120 and Reverses T Cell Exhaustion via Impeding Tim-3 and PD-1 Upregulation

    Science.gov (United States)

    Connell, Bridgette Janine; Chang, Sui-Yuan; Prakash, Ekambaranellore; Yousfi, Rahima; Mohan, Viswaraman; Posch, Wilfried; Wilflingseder, Doris; Moog, Christiane; Kodama, Eiichi N.; Clayette, Pascal; Lortat-Jacob, Hugues

    2016-01-01

    Amongst the many strategies aiming at inhibiting HIV-1 infection, blocking viral entry has been recently recognized as a very promising approach. Using diverse in vitro models and a broad range of HIV-1 primary patient isolates, we report here that IND02, a type A procyanidin polyphenol extracted from cinnamon, that features trimeric and pentameric forms displays an anti-HIV-1 activity against CXCR4 and CCR5 viruses with 1–7 μM ED50 for the trimer. Competition experiments, using a surface plasmon resonance-based binding assay, revealed that IND02 inhibited envelope binding to CD4 and heparan sulphate (HS) as well as to an antibody (mAb 17b) directed against the gp120 co-receptor binding site with an IC50 in the low μM range. IND02 has thus the remarkable property of simultaneously blocking gp120 binding to its major host cell surface counterparts. Additionally, the IND02-trimer impeded up-regulation of the inhibitory receptors Tim-3 and PD-1 on CD4+ and CD8+ cells, thereby demonstrating its beneficial effect by limiting T cell exhaustion. Among naturally derived products significantly inhibiting HIV-1, the IND02-trimer is the first component demonstrating an entry inhibition property through binding to the viral envelope glycoprotein. These data suggest that cinnamon, a widely consumed spice, could represent a novel and promising candidate for a cost-effective, natural entry inhibitor for HIV-1 which can also down-modulate T cell exhaustion markers Tim-3 and PD-1. PMID:27788205

  14. Anti-HIV-1 response elicited in rabbits by anti-idiotype monoclonal antibodies mimicking the CD4-binding site.

    Directory of Open Access Journals (Sweden)

    Roberto Burioni

    Full Text Available Antibodies against conserved epitopes on HIV-1 envelope glycoproteins (Env, such as the gp120 CD4-binding site (CD4bs, could contribute to protection against HIV-1. Env-based immunogens inducing such a response could be a major component of future anti-HIV-1 strategies. In this proof-of-concept study we describe the generation of two anti-idiotype (AI murine antibodies mimicking the CD4bs epitope. Sera were collected from long-term non-progressor patients to obtain CD4bs-directed IgG, through sequential purification steps. The purified IgG were then used as Fab fragments to immunize mice for hybridoma generation. Two hybridomas (P1 and P2, reacting only against the CD4bs-directed IgG, were identified and characterized. The P1 and P2 antibodies were shown to recognize the idiotype of the broadly neutralizing anti-CD4bs human mAb b12. Both P1 and P2 Fabs were able to induce a strong anti-gp120 response in rabbits. Moreover, the rabbits' sera were shown to neutralize two sensitive tier 1 strains of HIV-1 in an Env-pseudotype neutralization assay. In particular, 3/5 rabbits in the P1 group and 1/5 in the P2 group showed greater than 80% neutralizing activity against the HXB2 pseudovirus. Two rabbits also neutralized the pseudovirus HIV-MN. Overall, these data describe the first anti-idiotypic vaccine approach performed to generate antibodies to the CD4bs of the HIV-1 gp120. Although future studies will be necessary to improve strength and breadth of the elicited neutralizing response, this proof-of-concept study documents that immunogens designed on the idiotype of broadly neutralizing Abs are feasible and could help in the design of future anti-HIV strategies.

  15. Anti-HIV-1 activity of cellulose acetate phthalate: Synergy with soluble CD4 and induction of "dead-end" gp41 six-helix bundles

    Directory of Open Access Journals (Sweden)

    Li Yun-Yao

    2002-04-01

    Full Text Available Abstract Background Cellulose acetate phthalate (CAP, a promising candidate microbicide for prevention of sexual transmission of the human immunodeficiency virus type 1 (HIV-1 and other sexually transmitted disease (STD pathogens, was shown to inactivate HIV-1 and to block the coreceptor binding site on the virus envelope glycoprotein gp120. It did not interfere with virus binding to CD4. Since CD4 is the primary cellular receptor for HIV-1, it was of interest to study CAP binding to HIV-1 complexes with soluble CD4 (sCD4 and its consequences, including changes in the conformation of the envelope glycoprotein gp41 within virus particles. Methods Enzyme-linked immunosorbent assays (ELISA were used to study CAP binding to HIV-1-sCD4 complexes and to detect gp41 six-helix bundles accessible on virus particles using antibodies specific for the α-helical core domain of gp41. Results 1 Pretreatment of HIV-1 with sCD4 augments subsequent binding of CAP; 2 there is synergism between CAP and sCD4 for inhibition of HIV-1 infection; 3 treatment of HIV-1 with CAP induced the formation of gp41 six-helix bundles. Conclusions CAP and sCD4 bind to distinct sites on HIV-1 IIIB and BaL virions and their simultaneous binding has profound effects on virus structure and infectivity. The formation of gp41 six-helical bundles, induced by CAP, is known to render the virus incompetent for fusion with target cells thus preventing infection.

  16. Ectopic expression of anti-HIV-1 shRNAs protects CD8{sup +} T cells modified with CD4ζ CAR from HIV-1 infection and alleviates impairment of cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Kamata, Masakazu, E-mail: masa3k@ucla.edu [Division of Hematology-Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States); Kim, Patrick Y. [Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States); Ng, Hwee L. [Division of Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States); Ringpis, Gene-Errol E.; Kranz, Emiko; Chan, Joshua; O' Connor, Sean [Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States); Yang, Otto O. [Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States); Division of Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States); UCLA AIDS Institute, Los Angeles, CA (United States); AIDS Healthcare Foundation, Los Angeles, CA (United States); Chen, Irvin S.Y. [Division of Hematology-Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States); Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States); UCLA AIDS Institute, Los Angeles, CA (United States)

    2015-07-31

    Chimeric antigen receptors (CARs) are artificially engineered receptors that confer a desired specificity to immune effector T cells. As an HIV-1-specific CAR, CD4ζ CAR has been extensively tested in vitro as well as in clinical trials. T cells modified with this CAR mediated highly potent anti-HIV-1 activities in vitro and were well-tolerated in vivo, but exerted limited effects on viral load and reservoir size due to poor survival and/or functionality of the transduced cells in patients. We hypothesize that ectopic expression of CD4ζ on CD8{sup +} T cells renders them susceptible to HIV-1 infection, resulting in poor survival of those cells. To test this possibility, highly purified CD8{sup +} T cells were genetically modified with a CD4ζ-encoding lentiviral vector and infected with HIV-1. CD8{sup +} T cells were vulnerable to HIV-1 infection upon expression of CD4ζ as evidenced by elevated levels of p24{sup Gag} in cells and culture supernatants. Concurrently, the number of CD4ζ-modified CD8{sup +} T cells was reduced relative to control cells upon HIV-1 infection. To protect these cells from HIV-1 infection, we co-expressed two anti-HIV-1 shRNAs previously developed by our group together with CD4ζ. This combination vector was able to suppress HIV-1 infection without impairing HIV-1-dependent effector activities of CD4ζ. In addition, the number of CD4ζ-modified CD8{sup +} T cells maintained similar levels to that of the control even under HIV-1 infection. These results suggest that protecting CD4ζ-modified CD8{sup +} T cells from HIV-1 infection is required for prolonged HIV-1-specific immune surveillance. - Highlights: • Ectopic expression of CD4ζ CAR in CD8{sup +} T cells renders them susceptible to HIV-1 infection. • Co-expression of two anti-HIV-1 shRNAs protects CD4ζ CAR-modified CD8{sup +} T cells from HIV-1 infection. • Protecting CD4ζ CAR-modified CD8{sup +} T cells from HIV-1 infection suppresses its cytopathic effect.

  17. HIV-1 activates macrophages independent of Toll-like receptors.

    Directory of Open Access Journals (Sweden)

    Joseph N Brown

    Full Text Available BACKGROUND: Macrophages provide an interface between innate and adaptive immunity and are important long-lived reservoirs for Human Immunodeficiency Virus Type-1 (HIV-1. Multiple genetic networks involved in regulating signal transduction cascades and immune responses in macrophages are coordinately modulated by HIV-1 infection. METHODOLOGY/PRINCIPAL FINDINGS: To evaluate complex interrelated processes and to assemble an integrated view of activated signaling networks, a systems biology strategy was applied to genomic and proteomic responses by primary human macrophages over the course of HIV-1 infection. Macrophage responses, including cell cycle, calcium, apoptosis, mitogen-activated protein kinases (MAPK, and cytokines/chemokines, to HIV-1 were temporally regulated, in the absence of cell proliferation. In contrast, Toll-like receptor (TLR pathways remained unaltered by HIV-1, although TLRs 3, 4, 7, and 8 were expressed and responded to ligand stimulation in macrophages. HIV-1 failed to activate phosphorylation of IRAK-1 or IRF-3, modulate intracellular protein levels of Mx1, an interferon-stimulated gene, or stimulate secretion of TNF, IL-1beta, or IL-6. Activation of pathways other than TLR was inadequate to stimulate, via cross-talk mechanisms through molecular hubs, the production of proinflammatory cytokines typical of a TLR response. HIV-1 sensitized macrophage responses to TLR ligands, and the magnitude of viral priming was related to virus replication. CONCLUSIONS/SIGNIFICANCE: HIV-1 induced a primed, proinflammatory state, M1(HIV, which increased the responsiveness of macrophages to TLR ligands. HIV-1 might passively evade pattern recognition, actively inhibit or suppress recognition and signaling, or require dynamic interactions between macrophages and other cells, such as lymphocytes or endothelial cells. HIV-1 evasion of TLR recognition and simultaneous priming of macrophages may represent a strategy for viral survival, contribute

  18. Cloaked similarity between HIV-1 and SARS-CoV suggests an anti-SARS strategy

    Directory of Open Access Journals (Sweden)

    Kliger Yossef

    2003-09-01

    Full Text Available Abstract Background Severe acute respiratory syndrome (SARS is a febrile respiratory illness. The disease has been etiologically linked to a novel coronavirus that has been named the SARS-associated coronavirus (SARS-CoV, whose genome was recently sequenced. Since it is a member of the Coronaviridae, its spike protein (S2 is believed to play a central role in viral entry by facilitating fusion between the viral and host cell membranes. The protein responsible for viral-induced membrane fusion of HIV-1 (gp41 differs in length, and has no sequence homology with S2. Results Sequence analysis reveals that the two viral proteins share the sequence motifs that construct their active conformation. These include (1 an N-terminal leucine/isoleucine zipper-like sequence, and (2 a C-terminal heptad repeat located upstream of (3 an aromatic residue-rich region juxtaposed to the (4 transmembrane segment. Conclusions This study points to a similar mode of action for the two viral proteins, suggesting that anti-viral strategy that targets the viral-induced membrane fusion step can be adopted from HIV-1 to SARS-CoV. Recently the FDA approved Enfuvirtide, a synthetic peptide corresponding to the C-terminal heptad repeat of HIV-1 gp41, as an anti-AIDS agent. Enfuvirtide and C34, another anti HIV-1 peptide, exert their inhibitory activity by binding to a leucine/isoleucine zipper-like sequence in gp41, thus inhibiting a conformational change of gp41 required for its activation. We suggest that peptides corresponding to the C-terminal heptad repeat of the S2 protein may serve as inhibitors for SARS-CoV entry.

  19. Natural Plant Alkaloid (Emetine Inhibits HIV-1 Replication by Interfering with Reverse Transcriptase Activity

    Directory of Open Access Journals (Sweden)

    Ana Luiza Chaves Valadão

    2015-06-01

    Full Text Available Ipecac alkaloids are secondary metabolites produced in the medicinal plant Psychotria ipecacuanha. Emetine is the main alkaloid of ipecac and one of the active compounds in syrup of Ipecac with emetic property. Here we evaluated emetine’s potential as an antiviral agent against Human Immunodeficiency Virus. We performed in vitro Reverse Transcriptase (RT Assay and Natural Endogenous Reverse Transcriptase Activity Assay (NERT to evaluate HIV RT inhibition. Emetine molecular docking on HIV-1 RT was also analyzed. Phenotypic assays were performed in non-lymphocytic and in Peripheral Blood Mononuclear Cells (PBMC with HIV-1 wild-type and HIV-harboring RT-resistant mutation to Nucleoside Reverse Transcriptase Inhibitors (M184V. Our results showed that HIV-1 RT was blocked in the presence of emetine in both models: in vitro reactions with isolated HIV-1 RT and intravirion, measured by NERT. Emetine revealed a strong potential of inhibiting HIV-1 replication in both cellular models, reaching 80% of reduction in HIV-1 infection, with low cytotoxic effect. Emetine also blocked HIV-1 infection of RT M184V mutant. These results suggest that emetine is able to penetrate in intact HIV particles, and bind and block reverse transcription reaction, suggesting that it can be used as anti-HIV microbicide. Taken together, our findings provide additional pharmacological information on the potential therapeutic effects of emetine.

  20. Synthesis and anti-HIV-1 activity of 1-substiuted 6-(3-cyanobenzoyl) and [(3-cyanophenyl)fluoromethyl]-5-ethyl-uracils

    DEFF Research Database (Denmark)

    Loksha, Yasser M; Pedersen, Erik B; Loddo, Roberta;

    2009-01-01

    1-Substiuted 6-(3-cyanobenzoyl) and [(3-cyanophenyl)fluoromethyl]-5-ethyl-uracils were synthesized and evaluated in cell-based assays against HIV-1 wild-type and its clinically relevant non-nucleoside reverse transcriptase inhibitor (NNRTI)-resistant mutants. Some of the synthesized compounds sho...

  1. Oxaliplatin antagonizes HIV-1 latency by activating NF-κB without causing global T cell activation

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaoli; Liu, Sijie; Wang, Pengfei; Qu, Xiying; Wang, Xiaohui; Zeng, Hanxian [State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433 (China); Chen, Huabiao [Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139 (United States); Zhu, Huanzhang, E-mail: hzzhu@fudan.edu.cn [State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433 (China)

    2014-07-18

    Highlights: • The chemotherapeutic drug oxaliplatin reactivates latent HIV-1 in this cell line model of HIV-1 latency. • Reactivation is synergized when oxaliplatin is used in combination with valproic acid. • Oxaliplatin reactivates latent HIV-1 through activation of NF-kB and does not induce T cell activation. - Abstract: Reactivation of latent HIV-1 is a promising strategy for the clearance of the viral reservoirs. Because of the limitations of current agents, identification of new latency activators is urgently required. Using an established model of HIV-1 latency, we examined the effect of Oxaliplatin on latent HIV-1 reactivation. We showed that Oxaliplatin, alone or in combination with valproic acid (VPA), was able to reactivate HIV-1 without inducing global T cell activation. We also provided evidence that Oxaliplatin reactivated HIV-1 expression by inducing nuclear factor kappa B (NF-κB) nuclear translocation. Our results indicated that Oxaliplatin could be a potential drug candidate for anti-latency therapies.

  2. A multi-scale mathematical modeling framework to investigate anti-viral therapeutic opportunities in targeting HIV-1 accessory proteins.

    Science.gov (United States)

    Suryawanshi, Gajendra W; Hoffmann, Alexander

    2015-12-07

    Human immunodeficiency virus-1 (HIV-1) employs accessory proteins to evade innate immune responses by neutralizing the anti-viral activity of host restriction factors. Apolipoprotein B mRNA-editing enzyme 3G (APOBEC3G, A3G) and bone marrow stromal cell antigen 2 (BST2) are host resistance factors that potentially inhibit HIV-1 infection. BST2 reduces viral production by tethering budding HIV-1 particles to virus producing cells, while A3G inhibits the reverse transcription (RT) process and induces viral genome hypermutation through cytidine deamination, generating fewer replication competent progeny virus. Two HIV-1 proteins counter these cellular restriction factors: Vpu, which reduces surface BST2, and Vif, which degrades cellular A3G. The contest between these host and viral proteins influences whether HIV-1 infection is established and progresses towards AIDS. In this work, we present an age-structured multi-scale viral dynamics model of in vivo HIV-1 infection. We integrated the intracellular dynamics of anti-viral activity of the host factors and their neutralization by HIV-1 accessory proteins into the virus/cell population dynamics model. We calculate the basic reproductive ratio (Ro) as a function of host-viral protein interaction coefficients, and numerically simulated the multi-scale model to understand HIV-1 dynamics following host factor-induced perturbations. We found that reducing the influence of Vpu triggers a drop in Ro, revealing the impact of BST2 on viral infection control. Reducing Vif׳s effect reveals the restrictive efficacy of A3G in blocking RT and in inducing lethal hypermutations, however, neither of these factors alone is sufficient to fully restrict HIV-1 infection. Interestingly, our model further predicts that BST2 and A3G function synergistically, and delineates their relative contribution in limiting HIV-1 infection and disease progression. We provide a robust modeling framework for devising novel combination therapies that target

  3. Evaluation of anti-HIV-1 mutagenic nucleoside analogues.

    Science.gov (United States)

    Vivet-Boudou, Valérie; Isel, Catherine; El Safadi, Yazan; Smyth, Redmond P; Laumond, Géraldine; Moog, Christiane; Paillart, Jean-Christophe; Marquet, Roland

    2015-01-02

    Because of their high mutation rates, RNA viruses and retroviruses replicate close to the threshold of viability. Their existence as quasi-species has pioneered the concept of "lethal mutagenesis" that prompted us to synthesize pyrimidine nucleoside analogues with antiviral activity in cell culture consistent with an accumulation of deleterious mutations in the HIV-1 genome. However, testing all potentially mutagenic compounds in cell-based assays is tedious and costly. Here, we describe two simple in vitro biophysical/biochemical assays that allow prediction of the mutagenic potential of deoxyribonucleoside analogues. The first assay compares the thermal stabilities of matched and mismatched base pairs in DNA duplexes containing or not the nucleoside analogues as follows. A promising candidate should display a small destabilization of the matched base pair compared with the natural nucleoside and the smallest gap possible between the stabilities of the matched and mismatched base pairs. From this assay, we predicted that two of our compounds, 5-hydroxymethyl-2'-deoxyuridine and 5-hydroxymethyl-2'-deoxycytidine, should be mutagenic. The second in vitro reverse transcription assay assesses DNA synthesis opposite nucleoside analogues inserted into a template strand and subsequent extension of the newly synthesized base pairs. Once again, only 5-hydroxymethyl-2'-deoxyuridine and 5-hydroxymethyl-2'-deoxycytidine are predicted to be efficient mutagens. The predictive potential of our fast and easy first line screens was confirmed by detailed analysis of the mutation spectrum induced by the compounds in cell culture because only compounds 5-hydroxymethyl-2'-deoxyuridine and 5-hydroxymethyl-2'-deoxycytidine were found to increase the mutation frequency by 3.1- and 3.4-fold, respectively.

  4. Docking of anti-HIV-1 oxoquinoline-acylhydrazone derivatives as potential HSV-1 DNA polymerase inhibitors

    Science.gov (United States)

    Yoneda, Julliane Diniz; Albuquerque, Magaly Girão; Leal, Kátia Zaccur; Santos, Fernanda da Costa; Batalha, Pedro Netto; Brozeguini, Leonardo; Seidl, Peter R.; de Alencastro, Ricardo Bicca; Cunha, Anna Cláudia; de Souza, Maria Cecília B. V.; Ferreira, Vitor F.; Giongo, Viveca A.; Cirne-Santos, Cláudio; Paixão, Izabel C. P.

    2014-09-01

    Although there are many antiviral drugs available for the treatment of herpes simplex virus (HSV) infections, still the synthesis of new anti-HSV candidates is an important strategy to be pursued, due to the emergency of resistant HSV strains mainly in human immunodeficiency virus (HIV) co-infected patients. Some 1,4-dihydro-4-oxoquinolines, such as PNU-183792 (1), show a broad spectrum antiviral activity against human herpes viruses, inhibiting the viral DNA polymerase (POL) without affecting the human POLs. Thus, on an ongoing antiviral research project, our group has synthesized ribonucleosides containing the 1,4-dihydro-4-oxoquinoline (quinolone) heterocyclic moiety, such as the 6-Cl derivative (2), which is a dual antiviral agent (HSV-1 and HIV-1). Molecular dynamics simulations of the complexes of 1 and 2 with the HSV-1 POL suggest that structural modifications of 2 should increase its experimental anti-HSV-1 activity, since its ribosyl and carboxyl groups are highly hydrophilic to interact with a hydrophobic pocket of this enzyme. Therefore, in this work, comparative molecular docking simulations of 1 and three new synthesized oxoquinoline-acylhydrazone HIV-1 inhibitors (3-5), which do not contain those hydrophilic groups, were carried out, in order to access these modifications in the proposition of new potential anti-HSV-1 agents, but maintaining the anti-HIV-1 activity. Among the docked compounds, the oxoquinoline-acylhydrazone 3 is the best candidate for an anti-HSV-1 agent, and, in addition, it showed anti-HIV-1 activity (EC50 = 3.4 ± 0.3 μM). Compounds 2 and 3 were used as templates in the design of four new oxoquinoline-acylhydrazones (6-9) as potential anti-HSV-1 agents to increase the antiviral activity of 2. Among the docked compounds, oxoquinoline-acylhydrazone 7 was selected as the best candidate for further development of dual anti-HIV/HSV activity.

  5. Cross-neutralizing activity of human anti-V3 monoclonal antibodies derived from non-B clade HIV-1 infected individuals.

    Science.gov (United States)

    Andrabi, Raiees; Williams, Constance; Wang, Xiao-Hong; Li, Liuzhe; Choudhary, Alok K; Wig, Naveet; Biswas, Ashutosh; Luthra, Kalpana; Nadas, Arthur; Seaman, Michael S; Nyambi, Phillipe; Zolla-Pazner, Susan; Gorny, Miroslaw K

    2013-05-10

    One approach to the development of an HIV vaccine is to design a protein template which can present gp120 epitopes inducing cross-neutralizing antibodies. To select a V3 sequence for immunogen design, we compared the neutralizing activities of 18 anti-V3 monoclonal antibodies (mAbs) derived from Cameroonian and Indian individuals infected with clade AG and C, respectively. It was found that V3 mAbs from the Cameroonian patients were significantly more cross-neutralizing than those from India. Interestingly, superior neutralizing activity of Cameroonian mAbs was also observed among the nine VH5-51/VL lambda genes encoding V3 mAbs which mediate a similar mode of recognition. This correlated with higher relative binding affinity to a variety of gp120s and increased mutation rates in V3 mAbs from Cameroon. These results suggest that clade C V3 is probably weakly immunogenic and that the V3 sequence of CRF02_AG viruses can serve as a plausible template for vaccine immunogen design.

  6. HIV-1 Tat RNA silencing suppressor activity is conserved across kingdoms and counteracts translational repression of HIV-1.

    Science.gov (United States)

    Qian, Shuiming; Zhong, Xuehua; Yu, Lianbo; Ding, Biao; de Haan, Peter; Boris-Lawrie, Kathleen

    2009-01-13

    The RNA silencing pathway is an intracellular innate response to virus infections and retro-transposons. Many plant viruses counter this host restriction by RNA silencing suppressor (RSS) activity of a double-stranded RNA-binding protein, e.g., tomato bushy stunt virus P19. Here, we demonstrate P19 and HIV-1 Tat function across the plant and animal kingdoms and suppress a common step in RNA silencing that is downstream of small RNA maturation. Our experiments reveal that RNA silencing in HIV-1 infected human cells severely attenuates the translational output of the unspliced HIV-1 gag mRNA, and possibly all HIV-1 transcripts. The attenuation in gag mRNA translation is exacerbated by K51A substitution in the Tat double-stranded RNA-binding domain. Tat, plant virus RSS, or Dicer downregulation rescues robust gag translation and bolsters HIV-1 virion production. The reversal of HIV-1 translation repression by plant RSS supports the recent finding in Arabidopsis that plant miRNAs operate by translational inhibition. Our results identify common features between RNA silencing suppression of plant and animal viruses. We suggest that RNA silencing-mediated translation repression plays a strategic role in determining the viral set-point in a newly HIV-1-infected patient.

  7. Ligand-Based Virtual Screening in a Search for Novel Anti-HIV-1 Chemotypes.

    Science.gov (United States)

    Kurczyk, Agata; Warszycki, Dawid; Musiol, Robert; Kafel, Rafał; Bojarski, Andrzej J; Polanski, Jaroslaw

    2015-10-26

    In a search for new anti-HIV-1 chemotypes, we developed a multistep ligand-based virtual screening (VS) protocol combining machine learning (ML) methods with the privileged structures (PS) concept. In its learning step, the VS protocol was based on HIV integrase (IN) inhibitors fetched from the ChEMBL database. The performances of various ML methods and PS weighting scheme were evaluated and applied as VS filtering criteria. Finally, a database of 1.5 million commercially available compounds was virtually screened using a multistep ligand-based cascade, and 13 selected unique structures were tested by measuring the inhibition of HIV replication in infected cells. This approach resulted in the discovery of two novel chemotypes with moderate antiretroviral activity, that, together with their topological diversity, make them good candidates as lead structures for future optimization.

  8. Synthesis and Anti-HIV-1 Evaluation of New Sonogashira-Modified Emivirine (MKC-442) Analogues

    DEFF Research Database (Denmark)

    Danel, Krzystof; Jørgensen, Per Trolle; La Colla, Paolo;

    2009-01-01

    with higher activity against HIV-1-resistant mutants. The syntheses involved Pd-catalyzed C,C-coupling reactions, addition of disulfides, and click chemistry on the terminal C C bond as well as addition of bromine to the so formed internal C C bonds. Sonogashira coupling were performed with silyl......The MKC-442 analogue 6-(3,5-dimethylbenzyl)-5-ethyluracil substituted with a (propargyloxo)methyl group at N(1) has previously been found highly active against HIV-1. The C C bond in the substituent at N(1) is here utilized in a series of chemical reactions in order to develop new agents...... effective compound against problematic HIV-1 mutants. The general observation in the present work is that a combination of alkyne and aryl in the substituent at N(1) leads to highly active compounds against HIV-1...

  9. Silibinin inhibits HIV-1 infection by reducing cellular activation and proliferation.

    Directory of Open Access Journals (Sweden)

    Janela McClure

    Full Text Available Purified silymarin-derived natural products from the milk thistle plant (Silybum marianum block hepatitis C virus (HCV infection and inhibit T cell proliferation in vitro. An intravenous formulation of silibinin (SIL, a major component of silymarin, displays anti-HCV effects in humans and also inhibits T-cell proliferation in vitro. We show that SIL inhibited replication of HIV-1 in TZM-bl cells, PBMCs, and CEM cells in vitro. SIL suppression of HIV-1 coincided with dose-dependent reductions in actively proliferating CD19+, CD4+, and CD8+ cells, resulting in fewer CD4+ T cells expressing the HIV-1 co-receptors CXCR4 and CCR5. SIL inhibition of T-cell growth was not due to cytotoxicity measured by cell cycle arrest, apoptosis, or necrosis. SIL also blocked induction of the activation markers CD38, HLA-DR, Ki67, and CCR5 on CD4+ T cells. The data suggest that SIL attenuated cellular functions involved in T-cell activation, proliferation, and HIV-1 infection. Silymarin-derived compounds provide cytoprotection by suppressing virus infection, immune activation, and inflammation, and as such may be relevant for both HIV mono-infected and HIV/HCV co-infected subjects.

  10. Silibinin inhibits HIV-1 infection by reducing cellular activation and proliferation.

    Science.gov (United States)

    McClure, Janela; Lovelace, Erica S; Elahi, Shokrollah; Maurice, Nicholas J; Wagoner, Jessica; Dragavon, Joan; Mittler, John E; Kraft, Zane; Stamatatos, Leonidas; Stamatatos, Leonidis; Horton, Helen; De Rosa, Stephen C; Coombs, Robert W; Polyak, Stephen J

    2012-01-01

    Purified silymarin-derived natural products from the milk thistle plant (Silybum marianum) block hepatitis C virus (HCV) infection and inhibit T cell proliferation in vitro. An intravenous formulation of silibinin (SIL), a major component of silymarin, displays anti-HCV effects in humans and also inhibits T-cell proliferation in vitro. We show that SIL inhibited replication of HIV-1 in TZM-bl cells, PBMCs, and CEM cells in vitro. SIL suppression of HIV-1 coincided with dose-dependent reductions in actively proliferating CD19+, CD4+, and CD8+ cells, resulting in fewer CD4+ T cells expressing the HIV-1 co-receptors CXCR4 and CCR5. SIL inhibition of T-cell growth was not due to cytotoxicity measured by cell cycle arrest, apoptosis, or necrosis. SIL also blocked induction of the activation markers CD38, HLA-DR, Ki67, and CCR5 on CD4+ T cells. The data suggest that SIL attenuated cellular functions involved in T-cell activation, proliferation, and HIV-1 infection. Silymarin-derived compounds provide cytoprotection by suppressing virus infection, immune activation, and inflammation, and as such may be relevant for both HIV mono-infected and HIV/HCV co-infected subjects.

  11. Innate immune activation in primary HIV-1 infection.

    Science.gov (United States)

    Chang, J Judy; Altfeld, Marcus

    2010-10-15

    There is growing evidence that highlights the role of the immune response during acute human immunodeficiency virus type 1 (HIV-1) infection in the control or development of disease. The adaptive immune responses do not appear until after HIV-1 infection is already well established, so the role of earlier and faster-responding innate immunity needs to be more closely scrutinized. In particular, 2 aspects of innate immunity for which there are growing research developments will be examined in this review: the actions of type I interferons and natural killer cells. These two components of the innate immune response contribute to viral control both by killing infected cells and by modulating other immune cells that develop. However, the role of interferon α in immune activation is a double-edged sword, causing recruitment of adaptive immune cells that can assist in viral control but concurrently contributing to immune activation-dependent disease progression. Understanding the complexity of how innate responses affect the outcome of HIV-1 infection will help in the development of vaccines that can use innate immunity to enhance viral control with minimal pathogenesis.

  12. New anti-HIV-1, antimalarial, and antifungal compounds from Terminalia bellerica

    DEFF Research Database (Denmark)

    Valsaraj, R; Pushpangadan, P; Smitt, U W;

    1997-01-01

    A bioactivity-guided fractionation of an extract of Terminalia bellerica fruit rind led to the isolation of two new lignans named termilignan (1) and thannilignan (2), together with 7-hydroxy-3',4'-(methylenedioxy)flavan (3) and anolignan B (4). All four compounds possessed demonstrable anti-HIV-1...

  13. Frequency of class I anti-HLA alloantibodies in patients infected by HIV-1

    Directory of Open Access Journals (Sweden)

    Elza Regina Manzolli Leite

    2010-02-01

    Full Text Available The aim of this study was to evaluate the presence of class I anti-HLA alloantibodies in patients infected by HIV-1 and relate it with the different clinical courses of the disease. Blood samples were collected in EDTA tubes from 145 individuals. HIV-1 infection was confirmed by ELISA test. The presence of class I anti-HLA alloantibodies and HLA allele's were determined. Clinical evolution was set as fast (3 years. Class I anti-HLA alloantibodies presence was lower in healthy individuals than in those infected by HIV-1 (4.2% against 32.4%. However, an equal distribution of these alloantibodies was found among the individuals infected, independent on the clinical evolution. Thus, class I anti-HLA alloantibodies was not a determinant factor for patient worsening.O objetivo deste estudo foi avaliar a presença de aloanticorpos anti-HLA classe I em pacientes infectados pelo HIV-1 e relacioná-la aos diferentes cursos clínicos da doença. Amostras de sangue de 145 indivíduos HIV positivo foram coletadas em tubos com EDTA. A infecção pelo HIV-1 foi confirmada por teste ELISA e a presença de aloanticorpos anti-HLA classe I determinada em seguida. A evolução clínica foi definida como rápida (3 anos. A presença de aloanticorpos anti-HLA classe I foi menor em indivíduos saudáveis em relação aos infectados pelo HIV-1 (4,2% contra 32,4%. Porém, a distribuição destes aloanticorpos entre os indivíduos infectados foi igual, independente da evolução clínica. Deste modo, a presença de aloanticorpos anti-HLA classe I não é um fator determinante na piora clínica do paciente.

  14. An anti-HIV microbicide engineered in commensal bacteria: secretion of HIV-1 fusion inhibitors by lactobacilli

    NARCIS (Netherlands)

    Pusch, O.; Kalyanaraman, R.; Tucker, L.D.; Wells, J.; Rmanratnam, B.; Boden, D.

    2006-01-01

    Objectives: To engineer Lactobacillus spp. to secrete HIV-1 fusion inhibitors with potent neutralizing activity against primary HIV-1 isolates. Methods: HIV-1 fusion inhibitors (FI-1, FI-2, and FI-3) were introduced into the previously developed shuttle vector pTSV2 and transformed in L. plantarum a

  15. Hydrophobic Core Flexibility Modulates Enzyme Activity in HIV-1 Protease

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, Seema; Cai, Yufeng; Nalam, Madhavi N.L.; Bolon, Daniel N.A.; Schiffer, Celia A. (UMASS, MED)

    2012-09-11

    Human immunodeficiency virus Type-1 (HIV-1) protease is crucial for viral maturation and infectivity. Studies of protease dynamics suggest that the rearrangement of the hydrophobic core is essential for enzyme activity. Many mutations in the hydrophobic core are also associated with drug resistance and may modulate the core flexibility. To test the role of flexibility in protease activity, pairs of cysteines were introduced at the interfaces of flexible regions remote from the active site. Disulfide bond formation was confirmed by crystal structures and by alkylation of free cysteines and mass spectrometry. Oxidized and reduced crystal structures of these variants show the overall structure of the protease is retained. However, cross-linking the cysteines led to drastic loss in enzyme activity, which was regained upon reducing the disulfide cross-links. Molecular dynamics simulations showed that altered dynamics propagated throughout the enzyme from the engineered disulfide. Thus, altered flexibility within the hydrophobic core can modulate HIV-1 protease activity, supporting the hypothesis that drug resistant mutations distal from the active site can alter the balance between substrate turnover and inhibitor binding by modulating enzyme activity.

  16. In Vivo Molecular Dissection of the Effects of HIV-1 in Active Tuberculosis.

    Directory of Open Access Journals (Sweden)

    Lucy C K Bell

    2016-03-01

    Full Text Available Increased risk of tuberculosis (TB associated with HIV-1 infection is primarily attributed to deficient T helper (Th1 immune responses, but most people with active TB have robust Th1 responses, indicating that these are not sufficient to protect against disease. Recent findings suggest that favourable outcomes following Mycobacterium tuberculosis infection arise from finely balanced inflammatory and regulatory pathways, achieving pathogen control without immunopathology. We hypothesised that HIV-1 and antiretroviral therapy (ART exert widespread changes to cell mediated immunity, which may compromise the optimal host protective response to TB and provide novel insights into the correlates of immune protection and pathogenesis. We sought to define these effects in patients with active TB by transcriptional profiling of tuberculin skin tests (TST to make comprehensive molecular level assessments of in vivo human immune responses at the site of a standardised mycobacterial challenge. We showed that the TST transcriptome accurately reflects the molecular pathology at the site of human pulmonary TB, and used this approach to investigate immune dysregulation in HIV-1/TB co-infected patients with distinct clinical phenotypes associated with TST reactivity or anergy and unmasking TB immune reconstitution inflammatory syndrome (IRIS after initiation of ART. HIV-1 infected patients with positive TSTs exhibited preserved Th1 responses but deficient immunoregulatory IL10-inducible responses. Those with clinically negative TSTs revealed profound anergy of innate as well as adaptive immune responses, except for preservation of type 1 interferon activity, implicated in impaired anti-mycobacterial immunity. Patients with unmasking TB IRIS showed recovery of Th1 immunity to normal levels, but exaggerated Th2-associated responses specifically. These mechanisms of immune dysregulation were localised to the tissue microenvironment and not evident in peripheral

  17. Structural mechanism of trimeric HIV-1 envelope glycoprotein activation.

    Directory of Open Access Journals (Sweden)

    Erin E H Tran

    Full Text Available HIV-1 infection begins with the binding of trimeric viral envelope glycoproteins (Env to CD4 and a co-receptor on target T-cells. Understanding how these ligands influence the structure of Env is of fundamental interest for HIV vaccine development. Using cryo-electron microscopy, we describe the contrasting structural outcomes of trimeric Env binding to soluble CD4, to the broadly neutralizing, CD4-binding site antibodies VRC01, VRC03 and b12, or to the monoclonal antibody 17b, a co-receptor mimic. Binding of trimeric HIV-1 BaL Env to either soluble CD4 or 17b alone, is sufficient to trigger formation of the open quaternary conformation of Env. In contrast, VRC01 locks Env in the closed state, while b12 binding requires a partial opening in the quaternary structure of trimeric Env. Our results show that, despite general similarities in regions of the HIV-1 gp120 polypeptide that contact CD4, VRC01, VRC03 and b12, there are important differences in quaternary structures of the complexes these ligands form on native trimeric Env, and potentially explain differences in the neutralizing breadth and potency of antibodies with similar specificities. From cryo-electron microscopic analysis at ∼9 Å resolution of a cleaved, soluble version of trimeric Env, we show that a structural signature of the open Env conformation is a three-helix motif composed of α-helical segments derived from highly conserved, non-glycosylated N-terminal regions of the gp41 trimer. The three N-terminal gp41 helices in this novel, activated Env conformation are held apart by their interactions with the rest of Env, and are less compactly packed than in the post-fusion, six-helix bundle state. These findings suggest a new structural template for designing immunogens that can elicit antibodies targeting HIV at a vulnerable, pre-entry stage.

  18. Therapeutic doses of irradiation activate viral transcription and induce apoptosis in HIV-1 infected cells

    Energy Technology Data Exchange (ETDEWEB)

    Iordanskiy, Sergey [School of Systems Biology, Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110 (United States); Van Duyne, Rachel [School of Systems Biology, Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110 (United States); Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702 (United States); Sampey, Gavin C; Woodson, Caitlin M; Fry, Kelsi; Saifuddin, Mohammed; Guo, Jia; Wu, Yuntao [School of Systems Biology, Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110 (United States); Romerio, Fabio [Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201 (United States); Kashanchi, Fatah, E-mail: fkashanc@gmu.edu [School of Systems Biology, Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110 (United States)

    2015-11-15

    The highly active antiretroviral therapy reduces HIV-1 RNA in plasma to undetectable levels. However, the virus continues to persist in the long-lived resting CD4{sup +} T cells, macrophages and astrocytes which form a viral reservoir in infected individuals. Reactivation of viral transcription is critical since the host immune response in combination with antiretroviral therapy may eradicate the virus. Using the chronically HIV-1 infected T lymphoblastoid and monocytic cell lines, primary quiescent CD4{sup +} T cells and humanized mice infected with dual-tropic HIV-1 89.6, we examined the effect of various X-ray irradiation (IR) doses (used for HIV-related lymphoma treatment and lower doses) on HIV-1 transcription and viability of infected cells. Treatment of both T cells and monocytes with IR, a well-defined stress signal, led to increase of HIV-1 transcription, as evidenced by the presence of RNA polymerase II and reduction of HDAC1 and methyl transferase SUV39H1 on the HIV-1 promoter. This correlated with the increased GFP signal and elevated level of intracellular HIV-1 RNA in the IR-treated quiescent CD4{sup +} T cells infected with GFP-encoding HIV-1. Exposition of latently HIV-1infected monocytes treated with PKC agonist bryostatin 1 to IR enhanced transcription activation effect of this latency-reversing agent. Increased HIV-1 replication after IR correlated with higher cell death: the level of phosphorylated Ser46 in p53, responsible for apoptosis induction, was markedly higher in the HIV-1 infected cells following IR treatment. Exposure of HIV-1 infected humanized mice with undetectable viral RNA level to IR resulted in a significant increase of HIV-1 RNA in plasma, lung and brain tissues. Collectively, these data point to the use of low to moderate dose of IR alone or in combination with HIV-1 transcription activators as a potential application for the “Shock and Kill” strategy for latently HIV-1 infected cells. - Highlights: • X-ray irradiation

  19. Anti-gp120 minibody gene transfer to female genital epithelial cells protects against HIV-1 virus challenge in vitro.

    Directory of Open Access Journals (Sweden)

    Ussama M Abdel-Motal

    Full Text Available BACKGROUND: Although cervico-vaginal epithelial cells of the female lower genital tract provide the initial defense system against HIV-1 infection, the protection is sometimes incomplete. Thus, enhancing anti-HIV-1 humoral immunity at the mucosal cell surface by local expression of anti-HIV-1 broadly neutralizing antibodies (BnAb that block HIV-1 entry would provide an important new intervention that could slow the spread of HIV/AIDS. METHODS AND FINDINGS: This study tested the hypothesis that adeno-associated virus (AAV-BnAb gene transfer to cervico-vaginal epithelial cells will lead to protection against HIV-1. Accordingly, a recombinant AAV vector that encodes human b12 anti-HIV gp120 BnAb as a single-chain variable fragment Fc fusion (scFvFc, or "minibody" was constructed. The secreted b12 minibody was shown to be biologically functional in binding to virus envelope protein, neutralizing HIV-1 and importantly, blocking transfer and infectivity of HIV-1(bal in an organotypic human vaginal epithelial cell (VEC model. Furthermore, cervico-vaginal epithelial stem cells were found to be efficiently transduced by the optimal AAV serotype mediated expression of GFP. CONCLUSION: This study provides the foundation for a novel microbicide strategy to protect against sexual transmission of HIV-1 by AAV transfer of broadly neutralizing antibody genes to cervico-vaginal epithelial stem cells that could replenish b12 BnAb secreting cells through multiple menstrual cycles.

  20. Production and characterization of human anti-V3 monoclonal antibodies from the cells of HIV-1 infected Indian donors

    Directory of Open Access Journals (Sweden)

    Andrabi Raiees

    2012-09-01

    Full Text Available Abstract Background Analysis of human monoclonal antibodies (mAbs developed from HIV-1 infected donors have enormously contributed to the identification of neutralization sensitive epitopes on the HIV-1 envelope glycoprotein. The third variable region (V3 is a crucial target on gp120, primarily due to its involvement in co-receptor (CXCR4 or CCR5 binding and presence of epitopes recognized by broadly neutralizing antibodies. Methods Thirty-three HIV-1 seropositive drug naive patients (18 males and 15 females within the age range of 20–57 years (median = 33 years were recruited in this study for mAb production. The mAbs were selected from EBV transformed cultures with conformationally constrained Cholera-toxin-B containing V3C (V3C-CTB fusion protein. We tested the mAbs for their binding with HIV-1 derived proteins and peptides by ELISA and for neutralization against HIV-1 viruses by TZM-bl assays. Results We isolated three anti-V3 mAbs, 277, 903 and 904 from the cells of different individuals. The ELISA binding revealed a subtype-C and subtype-A specific binding of antibody 277 and 903 while mAb 904 exhibited cross reactivity also with subtype-B V3. Epitope mapping of mAbs with overlapping V3 peptides showed exclusive binding to V3 crown. The antibodies displayed high and low neutralizing activity against 2/5 tier 1 and 1/6 tier 2 viruses respectively. Overall, we observed a resistance of the tier 2 viruses to neutralization by the anti-V3 mAbs, despite the exposure of the epitopes recognized by these antibodies on two representative native viruses (Du156.12 and JRFL, suggesting that the affinity of mAb might equally be crucial for neutralization, as the epitope recognition. Conclusions Our study suggests that the anti-V3 antibodies derived from subtype-C infected Indian patients display neutralization potential against tier 1 viruses while such activity may be limited against more resistant tier 2 viruses. Defining the fine epitope

  1. The Presence and Anti-HIV-1 Function of Tenascin C in Breast Milk and Genital Fluids.

    Directory of Open Access Journals (Sweden)

    Robin G Mansour

    Full Text Available Tenascin-C (TNC is a newly identified innate HIV-1-neutralizing protein present in breast milk, yet its presence and potential HIV-inhibitory function in other mucosal fluids is unknown. In this study, we identified TNC as a component of semen and cervical fluid of HIV-1-infected and uninfected individuals, although it is present at a significantly lower concentration and frequency compared to that of colostrum and mature breast milk, potentially due to genital fluid protease degradation. However, TNC was able to neutralize HIV-1 after exposure to low pH, suggesting that TNC could be active at low pH in the vaginal compartment. As mucosal fluids are complex and contain a number of proteins known to interact with the HIV-1 envelope, we further studied the relationship between the concentration of TNC and neutralizing activity in breast milk. The amount of TNC correlated only weakly with the overall innate HIV-1-neutralizing activity of breast milk of uninfected women and negatively correlated with neutralizing activity in milk of HIV-1 infected women, indicating that the amount of TNC in mucosal fluids is not adequate to impede HIV-1 transmission. Moreover, the presence of polyclonal IgG from milk of HIV-1 infected women, but not other HIV-1 envelope-binding milk proteins or monoclonal antibodies, blocked the neutralizing activity of TNC. Finally, as exogenous administration of TNC would be necessary for it to mediate measurable HIV-1 neutralizing activity in mucosal compartments, we established that recombinantly produced TNC has neutralizing activity against transmitted/founder HIV-1 strains that mimic that of purified TNC. Thus, we conclude that endogenous TNC concentration in mucosal fluids is likely inadequate to block HIV-1 transmission to uninfected individuals.

  2. Tat RNA silencing suppressor activity contributes to perturbation of lymphocyte miRNA by HIV-1

    Directory of Open Access Journals (Sweden)

    Yu Lianbo

    2011-05-01

    Full Text Available Abstract Background MicroRNA (miRNA-mediated RNA silencing is integral to virtually every cellular process including cell cycle progression and response to virus infection. The interplay between RNA silencing and HIV-1 is multifaceted, and accumulating evidence posits a strike-counterstrike interface that alters the cellular environment to favor virus replication. For instance, miRNA-mediated RNA silencing of HIV-1 translation is antagonized by HIV-1 Tat RNA silencing suppressor activity. The activity of HIV-1 accessory proteins Vpr/Vif delays cell cycle progression, which is a process prominently modulated by miRNA. The expression profile of cellular miRNA is altered by HIV-1 infection in both cultured cells and clinical samples. The open question stands of what, if any, is the contribution of Tat RNA silencing suppressor activity or Vpr/Vif activity to the perturbation of cellular miRNA by HIV-1. Results Herein, we compared the perturbation of miRNA expression profiles of lymphocytes infected with HIV-1NL4-3 or derivative strains that are deficient in Tat RNA silencing suppressor activity (Tat K51A substitution or ablated of the vpr/vif open reading frames. Microarrays recapitulated the perturbation of the cellular miRNA profile by HIV-1 infection. The miRNA expression trends overlapped ~50% with published microarray results on clinical samples from HIV-1 infected patients. Moreover, the number of miRNA perturbed by HIV-1 was largely similar despite ablation of Tat RSS activity and Vpr/Vif; however, the Tat RSS mutation lessened HIV-1 downregulation of twenty-two miRNAs. Conclusions Our study identified miRNA expression changes attributable to Tat RSS activity in HIV-1NL4-3. The results accomplish a necessary step in the process to understand the interface of HIV-1 with host RNA silencing activity. The overlap in miRNA expression trends observed between HIV-1 infected CEMx174 lymphocytes and primary cells supports the utility of cultured

  3. Synthesis and anti-HIV-1 VIF activities of novel ethyl 7-benzoylindolizine-1-carboxylate derivatives%新型7-苯甲酰基中氮茚-1-羧酸乙酯类化合物的合成及HIV-1病毒感染因子抑制活性研究

    Institute of Scientific and Technical Information of China (English)

    顾海东; 黄文林; 夏杰; 左陶; 张亮仁; 于湘晖

    2012-01-01

    VIF is one of the six accessory proteins of HTV-1,which plays an important role in surviving and remaining infectious in the body. VEC-5 is a novel HTV-1 VIF inhibitor. We made structural modifications on VEC-5 to improve the water solubility, and to explore the structure-activity relationships. Starting from isonicotinic acid via Friedel-Crafts reaction, 1,3-dipolar cycloaddition reaction and amidation,totally 30 ethyl 7-benzoylindolizine-l-carboxylate derivatives were synthesized and all of them were not reported yet, and their structures were confirmed by MS, 1H-NMR and 13C-NMR. The in vitro inhibitory activity of the synthesized compounds was evaluated via fluorescent screening method. All of the tested compounds show diverse inhibitory activity,among which the compounds 30,31,36 and 37 have the inhibitory activity equivalent to VEC-5. The distance between the indolizine and aromatic ring is very important. Three or four atomic length distance between indolizine and aromatic ring can produce the best inhibitory activity.%目的 设计合成7-苯甲酰基中氮茚-1-羧酸乙酯类化合物,并对其抗HIV-1活性进行初步研究.方法 以异烟酸、溴乙酸苄酯、丙炔酸乙酯为原料,经取代、Friedel-Crafts反应、1,3-偶极环加成反应、水解、缩合得到目标化合物;采用荧光筛选方法对目标化合物抗HIV-1病毒感染因子(viral infectivity factor,VIF)活性进行评价.结果 共合成30个未经文献报道的新化合物,其结构经1H-NMR、13 C-NMR、HRMS确证;活性结果表明,化合物30、31、36、37等4个化合物抗HIV-1活性与先导化合物相当.结论 7-苯甲酰基中氮茚-1-羧酸乙酯类化合物作为HIV-1 VIF复合物抑制剂,中氮茚环与取代芳环之间含3~4个原子长度为保持活性所必须,进一步的构效关系值得继续研究.

  4. Co-receptor Binding Site Antibodies Enable CD4-Mimetics to Expose Conserved Anti-cluster A ADCC Epitopes on HIV-1 Envelope Glycoproteins

    Directory of Open Access Journals (Sweden)

    Jonathan Richard

    2016-10-01

    Full Text Available Human immunodeficiency virus type 1 (HIV-1 has evolved a sophisticated strategy to conceal conserved epitopes of its envelope glycoproteins (Env recognized by antibody-dependent cellular cytotoxicity (ADCC-mediating antibodies. These antibodies, which are present in the sera of most HIV-1-infected individuals, preferentially recognize Env in its CD4-bound conformation. Accordingly, recent studies showed that small CD4-mimetics (CD4mc able to “push” Env into this conformation sensitize HIV-1-infected cells to ADCC mediated by HIV+ sera. Here we test whether CD4mc also expose epitopes recognized by anti-cluster A monoclonal antibodies such as A32, thought to be responsible for the majority of ADCC activity present in HIV+ sera and linked to decreased HIV-1 transmission in the RV144 trial. We made the surprising observation that CD4mc are unable to enhance recognition of HIV-1-infected cells by this family of antibodies in the absence of antibodies such as 17b, which binds a highly conserved CD4-induced epitope overlapping the co-receptor binding site (CoRBS. Our results indicate that CD4mc initially open the trimeric Env enough to allow the binding of CoRBS antibodies but not anti-cluster A antibodies. CoRBS antibody binding further opens the trimeric Env, allowing anti-cluster A antibody interaction and sensitization of infected cells to ADCC. Therefore, ADCC responses mediated by cluster A antibodies in HIV-positive sera involve a sequential opening of the Env trimer on the surface of HIV-1-infected cells. The understanding of the conformational changes required to expose these vulnerable Env epitopes might be important in the design of new strategies aimed at fighting HIV-1.

  5. Innate Immune Activation in Primary HIV-1 Infection

    OpenAIRE

    Chang, J. Judy; Altfeld, Marcus

    2010-01-01

    There is growing evidence highlighting the role of the immune response during acute HIV-1 infection on the control or development of disease. The adaptive immune responses do not appear until after the HIV-1 infection is already well established and as such the role of the earlier and faster responding innate immunity needs to be more closely scrutinized. In particular, two aspects of the innate immunity with growing developments will be examined in this review; type I IFNs and NK cells. Both...

  6. Absolute configuration of anti-HIV-1 agent (-)-concentricolide: total synthesis of (+)-(R)-concentricolide.

    Science.gov (United States)

    Chang, Chih-Wei; Chein, Rong-Jie

    2011-05-20

    The first enantioselective total synthesis of (+)-(R)-concentricolide, the enantiomer of an anti-HIV-1 agent isolated from Daldinia concentrica, from 2-iodophenol in 7 steps reveals the (S)-configuration for the natural form of the furanophthalide. The key features include an anionic ortho-Fries rearrangement to furnish 3-iodosalicylamide, facile construction of the benzofuran system employing the tandem Sonogashira coupling annulation reaction, directed ortho metalation to introduce a propanoyl group, as well as CBS reduction, establishing the stereocenter enantioselectively.

  7. Synthesis and antiviral activity of new dimeric inhibitors against HIV-1

    DEFF Research Database (Denmark)

    Danel, Krzysztof; Larsen, Louise M.; Pedersen, Erik Bjerreg.;

    2008-01-01

    by Sonogashira reaction, ‘click' chemistry or Pd-catalyzed oxidative coupling. The iodo precursor 5 turned out as a potent compound against wild type and mutated HIV-1 virus. All dimeric compounds showed lower activity against HIV-1 than MKC-442, except the asymmetric dimer of AZT and 1a which showed an activity...

  8. Potent Intratype Neutralizing Activity Distinguishes Human Immunodeficiency Virus Type 2 (HIV-2) from HIV-1

    OpenAIRE

    Özkaya Şahin, Gülşen; Holmgren, Birgitta; da Silva, Zacarias; Nielsen, Jens; Nowroozalizadeh, Salma; Esbjörnsson, Joakim; Månsson, Fredrik; Andersson, Sören; Norrgren, Hans; Aaby, Peter; Jansson, Marianne; Fenyö, Eva Maria

    2012-01-01

    HIV-2 has a lower pathogenicity and transmission rate than HIV-1. Neutralizing antibodies could be contributing to these observations. Here we explored side by side the potency and breadth of intratype and intertype neutralizing activity (NAc) in plasma of 20 HIV-1-, 20 HIV-2-, and 11 dually HIV-1/2 (HIV-D)-seropositive individuals from Guinea-Bissau, West Africa. Panels of primary isolates, five HIV-1 and five HIV-2 isolates, were tested in a plaque reduction assay using U87.CD4-CCR5 cells a...

  9. Integrase and integration: biochemical activities of HIV-1 integrase

    Directory of Open Access Journals (Sweden)

    Deprez Eric

    2008-12-01

    Full Text Available Abstract Integration of retroviral DNA is an obligatory step of retrovirus replication because proviral DNA is the template for productive infection. Integrase, a retroviral enzyme, catalyses integration. The process of integration can be divided into two sequential reactions. The first one, named 3'-processing, corresponds to a specific endonucleolytic reaction which prepares the viral DNA extremities to be competent for the subsequent covalent insertion, named strand transfer, into the host cell genome by a trans-esterification reaction. Recently, a novel specific activity of the full length integrase was reported, in vitro, by our group for two retroviral integrases (HIV-1 and PFV-1. This activity of internal cleavage occurs at a specific palindromic sequence mimicking the LTR-LTR junction described into the 2-LTR circles which are peculiar viral DNA forms found during viral infection. Moreover, recent studies demonstrated the existence of a weak palindromic consensus found at the integration sites. Taken together, these data underline the propensity of retroviral integrases for binding symmetrical sequences and give perspectives for targeting specific sequences used for gene therapy.

  10. Nef alleles from all major HIV-1 clades activate Src-family kinases and enhance HIV-1 replication in an inhibitor-sensitive manner.

    Directory of Open Access Journals (Sweden)

    Purushottam S Narute

    Full Text Available The HIV-1 accessory factor Nef is essential for high-titer viral replication and AIDS progression. Nef function requires interaction with many host cell proteins, including specific members of the Src kinase family. Here we explored whether Src-family kinase activation is a conserved property of Nef alleles from a wide range of primary HIV-1 isolates and their sensitivity to selective pharmacological inhibitors. Representative Nef proteins from the major HIV-1 subtypes A1, A2, B, C, F1, F2, G, H, J and K strongly activated Hck and Lyn as well as c-Src to a lesser extent, demonstrating for the first time that Src-family kinase activation is a highly conserved property of primary M-group HIV-1 Nef isolates. Recently, we identified 4-amino substituted diphenylfuropyrimidines (DFPs that selectively inhibit Nef-dependent activation of Src-family kinases as well as HIV replication. To determine whether DFP compounds exhibit broad-spectrum Nef-dependent antiretroviral activity against HIV-1, we first constructed chimeric forms of the HIV-1 strain NL4-3 expressing each of the primary Nef alleles. The infectivity and replication of these Nef chimeras was indistinguishable from that of wild-type virus in two distinct cell lines (U87MG astroglial cells and CEM-T4 lymphoblasts. Importantly, the 4-aminopropanol and 4-aminobutanol derivatives of DFP potently inhibited the replication of all chimeric forms of HIV-1 in both U87MG and CEM-T4 cells in a Nef-dependent manner. The antiretroviral effects of these compounds correlated with inhibition of Nef-dependent activation of endogenous Src-family kinases in the HIV-infected cells. Our results demonstrate that the activation of Hck, Lyn and c-Src by Nef is highly conserved among all major clades of HIV-1 and that selective targeting of this pathway uniformly inhibits HIV-1 replication.

  11. Design, synthesis and biological activity of aromatic diketone derivatives as HIV-1 integrase inhibitors.

    Science.gov (United States)

    Hu, Liming; Li, Zhipeng; Wang, Zhanyang; Liu, Gengxin; He, Xianzhuo; Wang, Xiaoli; Zeng, Chengchu

    2015-01-01

    A series of aromatic diketone derivatives were designed and synthesized as potential HIV-1 integrase (IN) inhibitors and evaluated to determine their ability to inhibit the strand transfer process of HIV-1 integrase. The results indicate that (Z)-1-(3-acetyl-2-hydroxy-4,6-dimethoxyphenyl)-3-hydroxy-3-(substituted)phenylprop-2-en-1-one (5a-5d) can moderately inhibit HIV-1 integrase. The cyclization and condensation products (6a-6c and 7e-7f) of compounds 5a-5d show poor inhibitory activity against HIV-1 integrase. The molecular docking results indicate that the different types of compounds act on HIV-1 integrase in different ways, and these results can explain the differences in the inhibitory activities.

  12. Innate immunity and chronic immune activation in HCV/HIV-1 co-infection.

    Science.gov (United States)

    Gonzalez, Veronica D; Landay, Alan L; Sandberg, Johan K

    2010-04-01

    Innate immune responses are critical in the defense against viral infections. NK cells, myeloid and plasmacytoid dendritic cells, and invariant CD1d-restricted NKT cells mediate both effector and regulatory functions in this early immune response. In chronic uncontrolled viral infections such as HCV and HIV-1, these essential immune functions are compromised and can become a double edged sword contributing to the immunopathogenesis of viral disease. In particular, recent findings indicate that innate immune responses play a central role in the chronic immune activation which is a primary driver of HIV-1 disease progression. HCV/HIV-1 co-infection is affecting millions of people and is associated with faster viral disease progression. Here, we review the role of innate immunity and chronic immune activation in HCV and HIV-1 infection, and discuss how mechanisms of innate immunity may influence protection as well as immunopathogenesis in the HCV/HIV-1 co-infected human host.

  13. A novel strategy for efficient production of anti-V3 human scFvs against HIV-1 clade C

    Directory of Open Access Journals (Sweden)

    Kumar Rajesh

    2012-11-01

    Full Text Available Abstract Background Production of human monoclonal antibodies that exhibit broadly neutralizing activity is needed for preventing HIV-1 infection, however only a few such antibodies have been generated till date. Isolation of antibodies by the hybridoma technology is a cumbersome process with fewer yields. Further, the loss of unstable or slowly growing clones which may have unique binding specificities often occurs during cloning and propagation and the strongly positive clones are often lost. This has been avoided by the process described in this paper, wherein, by combining the strategy of EBV transformation and recombinant DNA technology, we constructed human single chain variable fragments (scFvs against the third variable region (V3 of the clade C HIV-1 envelope. Results An antigen specific phage library of 7000 clones was constructed from the enriched V3- positive antibody secreting EBV transformed cells. By ligation of the digested scFv DNA into phagemid vector and bio panning against the HIV-1 consensus C and B V3 peptides followed by random selection of 40 clones, we identified 15 clones that showed V3 reactivity in phage ELISA. DNA fingerprinting analysis and sequencing showed that 13 out of the 15 clones were distinct. Expression of the positive clones was tested by SDS-PAGE and Western blot. All the 13 anti-V3 scFvs showed cross-reactivity against both the clade C and B V3 peptides and did not show any reactivity against other unrelated peptides in ELISA. Preliminary neutralization assays indicated varying degrees of neutralization of clade C and B viruses. EBV transformation, followed by antigen selection of lines to identify specific binders, enabled the selection of phage from un-cloned lines for scFv generation, thus avoiding the problems of hybridoma technology. Moreover, as the clones were pretested for antigen binding, a comparatively small library sufficed for the selection of a considerable number of unique antigen binding

  14. Quantitative Structure-activity Relationship of TIBO HIV-1 Inhibitors

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-Hong; ZHANG Rui-Zhou; CHENG Xin-Lu; YANG Xiang-Dong

    2007-01-01

    Density functional theory (DFT) was used to calculate a set of molecular descriptors (properties) for 14 TIBO derivatives with anti-HIV activity. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) were employed in order to reduce dimensionality and investigate which subset of variables should be more effective for classifying TIBO derivatives according to their degree of anti-HIV activity. The PCA showed that the EHOMO, μ, LogP, QA, QB and MR variables are responsible for the separation between compounds with higher and lower anti-HIV activity. The HCA results are similar to those obtained with PCA. By using the chemometric results, four synthetic compounds were analyzed through PCA and HCA and three of them are proposed as active molecules against HIV, which is consistent with the results of clinic experiments. The methodologies of PCA and HCA provide a reliable rule for classifying new TIBO derivatives with anti-HIV activity. The model obtained showed not only statistical significance but also predictive ability.

  15. Antiviral activity of α-helical stapled peptides designed from the HIV-1 capsid dimerization domain

    Directory of Open Access Journals (Sweden)

    Cowburn David

    2011-05-01

    Full Text Available Abstract Background The C-terminal domain (CTD of HIV-1 capsid (CA, like full-length CA, forms dimers in solution and CTD dimerization is a major driving force in Gag assembly and maturation. Mutations of the residues at the CTD dimer interface impair virus assembly and render the virus non-infectious. Therefore, the CTD represents a potential target for designing anti-HIV-1 drugs. Results Due to the pivotal role of the dimer interface, we reasoned that peptides from the α-helical region of the dimer interface might be effective as decoys to prevent CTD dimer formation. However, these small peptides do not have any structure in solution and they do not penetrate cells. Therefore, we used the hydrocarbon stapling technique to stabilize the α-helical structure and confirmed by confocal microscopy that this modification also made these peptides cell-penetrating. We also confirmed by using isothermal titration calorimetry (ITC, sedimentation equilibrium and NMR that these peptides indeed disrupt dimer formation. In in vitro assembly assays, the peptides inhibited mature-like virus particle formation and specifically inhibited HIV-1 production in cell-based assays. These peptides also showed potent antiviral activity against a large panel of laboratory-adapted and primary isolates, including viral strains resistant to inhibitors of reverse transcriptase and protease. Conclusions These preliminary data serve as the foundation for designing small, stable, α-helical peptides and small-molecule inhibitors targeted against the CTD dimer interface. The observation that relatively weak CA binders, such as NYAD-201 and NYAD-202, showed specificity and are able to disrupt the CTD dimer is encouraging for further exploration of a much broader class of antiviral compounds targeting CA. We cannot exclude the possibility that the CA-based peptides described here could elicit additional effects on virus replication not directly linked to their ability to bind

  16. Novel 3′-Processing Integrase Activity Assay by Real-Time PCR for Screening and Identification of HIV-1 Integrase Inhibitors

    Directory of Open Access Journals (Sweden)

    Supachai Sakkhachornphop

    2015-01-01

    Full Text Available The 3′-end processing (3′P of each viral long terminal repeat (LTR during human immunodeficiency virus type-1 (HIV-1 integration is a vital step in the HIV life cycle. Blocking the 3′P using 3′P inhibitor has recently become an attractive strategy for HIV-1 therapeutic intervention. Recently, we have developed a novel real-time PCR based assay for the detection of 3′P activity in vitro. The methodology usually involves biotinylated HIV-1 LTR, HIV-1 integrase (IN, and specific primers and probe. In this novel assay, we designed the HIV-1 LTR substrate based on a sequence with a homology to HIV-1 LTR labeled at its 3′ end with biotin on the sense strand. Two nucleotides at the 3′ end were subsequently removed by IN activity. Only two nucleotides labeled biotin were captured on an avidin-coated tube; therefore, inhibiting the binding of primers and probe results in late signals in the real-time PCR. This novel assay has successfully detected both the 3′P activity of HIV-1 IN and the anti-IN activity by Raltegravir and sodium azide agent. This real-time PCR assay has been shown to be effective and inexpensive for a high-throughput screening of novel IN inhibitors.

  17. High levels of anti-Nef antibodies may prevent AIDS disease progression in vertically HIV-1-infected infants

    Directory of Open Access Journals (Sweden)

    Guillermo Corró

    2014-02-01

    Full Text Available Introduction: HIV-1-associated CD4+ T-cell depletion is a consequence of uninfected cell death. Nef is one of the viral factors that trigger apoptosis on bystander cells, though the plasma Nef levels do not correlate with Th lymphocytes counts. The aim of our study was to evaluate whether anti-Nef antibodies were involved in paediatric AIDS development and whether they can prevent the CD4+ T-cell depletion in vertically infected children. Methods: Two hundred and seventy three HIV-1 vertically infected children seen at Garrahan Paediatric Hospital were randomly included in the study, adding 13 selected cases: seven LTNP (long-term non-progressors and six RP (rapid progressors children (ntotal=286. Specific anti-HIV-1-Nef antibodies were titrated by indirect ELISA and compared between groups. The plasma blocking effect on Nef-dependent cytotoxicity was evaluated in Jurkat cells using recombinant Nef as apoptotic stimulus and patient plasmas as blockers, measuring the apoptotic levels using Annexin-V stain and flow cytometry. Results: Only 63.4% of the patients had specific anti-Nef antibodies, and the levels of anti-Nef antibodies found in the selected LTNPs plasmas were always significantly higher (p=1.55×10−4 than those in RPs or general HIV-1+ paediatric populations. The LTNPs’ plasma had a strong inhibitory effect on Nef-dependent cytotoxicity even at high dilutions, while RP plasmas had little or no effect on Nef-induced apoptosis. Discussion and conclusions: High anti-Nef antibody levels are associated and predict slow or non-progression to AIDS in vertically HIV-1-infected children. They could be an efficient tool in preventing Nef-associated bystander effect, preserving CD4+ T-cells and the immune function in the context of paediatric HIV-1 infection.

  18. Fluorine Substituted 1,2,4-Triazinones as Potential Anti-HIV-1 and CDK2 Inhibitors

    Directory of Open Access Journals (Sweden)

    Mohammed S. I. Makki

    2014-01-01

    Full Text Available Fluorine substituted 1,2,4-triazinones have been synthesized via alkylation, amination, and/or oxidation of 6-(2-amino-5-fluorophenyl-3-thioxo-3,4-dihydro-1,2,4-triazin-5(2H-one 1 and 4-fluoro-N-(4-fluoro-2-(5-oxo-3-thioxo-2,3,4,5-tetrahydro-1,2,4-triazin-6-ylphenylbenzamide 5 as possible anti-HIV-1 and CDK2 inhibitors. Alkylation on positions 2 and 4 in 1,2,4-triazinone gave compounds 6–8. Further modification was performed by selective alkylation and amination on position 3 to form compounds 9–15. However oxidation of 5 yielded compounds 16–18. Structures of the target compounds have been established by spectral analysis data. Five compounds (5, 11, 14, 16, and 17 have shown very good anti-HIV activity in MT-4 cells. Similarly, five compounds (1, 3, and 14–16 have exhibited very significant CDK2 inhibition activity. Compounds 14 and 16 were found to have dual anti-HIV and anticancer activities.

  19. Sequential Immunization Elicits Broadly Neutralizing Anti-HIV-1 Antibodies in Ig Knockin Mice.

    Science.gov (United States)

    Escolano, Amelia; Steichen, Jon M; Dosenovic, Pia; Kulp, Daniel W; Golijanin, Jovana; Sok, Devin; Freund, Natalia T; Gitlin, Alexander D; Oliveira, Thiago; Araki, Tatsuya; Lowe, Sarina; Chen, Spencer T; Heinemann, Jennifer; Yao, Kai-Hui; Georgeson, Erik; Saye-Francisco, Karen L; Gazumyan, Anna; Adachi, Yumiko; Kubitz, Michael; Burton, Dennis R; Schief, William R; Nussenzweig, Michel C

    2016-09-08

    A vaccine that elicits broadly neutralizing antibodies (bNAbs) against HIV-1 is likely to be protective, but this has not been achieved. To explore immunization regimens that might elicit bNAbs, we produced and immunized mice expressing the predicted germline PGT121, a bNAb specific for the V3-loop and surrounding glycans on the HIV-1 spike. Priming with an epitope-modified immunogen designed to activate germline antibody-expressing B cells, followed by ELISA-guided boosting with a sequence of directional immunogens, native-like trimers with decreasing epitope modification, elicited heterologous tier-2-neutralizing responses. In contrast, repeated immunization with the priming immunogen did not. Antibody cloning confirmed elicitation of high levels of somatic mutation and tier-2-neutralizing antibodies resembling the authentic human bNAb. Our data establish that sequential immunization with specifically designed immunogens can induce high levels of somatic mutation and shepherd antibody maturation to produce bNAbs from their inferred germline precursors.

  20. IL-15 promotes activation and expansion of CD8+ T cells in HIV-1 infection

    Science.gov (United States)

    Younes, Souheil-Antoine; Freeman, Michael L.; Mudd, Joseph C.; Shive, Carey L.; Reynaldi, Arnold; Estes, Jacob D.; Deleage, Claire; Lucero, Carissa; Anderson, Jodi; Schacker, Timothy W.; Davenport, Miles P.; McCune, Joseph M.; Hunt, Peter W.; Lee, Sulggi A.; Debernardo, Robert L.; Jacobson, Jeffrey M.; Canaday, David H.; Sekaly, Rafick-Pierre; Sieg, Scott F.; Lederman, Michael M.

    2016-01-01

    In HIV-1–infected patients, increased numbers of circulating CD8+ T cells are linked to increased risk of morbidity and mortality. Here, we identified a bystander mechanism that promotes CD8 T cell activation and expansion in untreated HIV-1–infected patients. Compared with healthy controls, untreated HIV-1–infected patients have an increased population of proliferating, granzyme B+, CD8+ T cells in circulation. Vβ expression and deep sequencing of CDR3 revealed that in untreated HIV-1 infection, cycling memory CD8 T cells possess a broad T cell repertoire that reflects the repertoire of the resting population. This suggests that cycling is driven by bystander activation, rather than specific antigen exposure. Treatment of peripheral blood mononuclear cells with IL-15 induced a cycling, granzyme B+ phenotype in CD8+ T cells. Moreover, elevated IL-15 expression in the lymph nodes of untreated HIV-1–infected patients correlated with circulating CD8+ T cell counts and was normalized in these patients following antiretroviral therapy. Together, these results suggest that IL-15 drives bystander activation of CD8+ T cells, which predicts disease progression in untreated HIV-1–infected patients and suggests that elevated IL-15 may also drive CD8+ T cell expansion that is linked to increased morbidity and mortality in treated patients. PMID:27322062

  1. HIV-1Vif与人APOBEC3G为靶点的抗HIV-1药物的研究方法%Research methods of antiHIV-1 inhibitors targeting at Vif-APOBEC3G axis

    Institute of Scientific and Technical Information of China (English)

    乔新华; 张文俊; 李泽琳; 曾毅

    2011-01-01

    The mammalian APOBEC3G protein( apolipoprotein B mRNA-editing enzyme catalytic polypeptide 3 protein G,APOBEC3G) is an important component of the cellular innate immune response to retroviral infection. APOBEC3G can extinguish HIV-1 ( human immunodeficiency virus type 1 ) infectivity by its incorporation into virus particles and subsequent cytosine deaminase activity to block replication of HIV-1. HIV-1 Vif ( viral infectivity factor) suppresses various APOBEC3 proteins through a common mechanism which induces the degradation of target proteins. Therefore, the interrelation of Vif-APOBEC3G has been extensively studied, which represents attractive targets for the development of novel inhibitors. We summarize the papers in which the detection technique and methords have been developed to assay the anti-HIV activity and its mechanism, such as western-blotting, co-immunoprecipitation,pulse-chase experiments,bioluminescence resonance energy transfer, biomolecular interaction analysis. This review is towards developing therapeutics aimed at the Vif -APOBEC3G axis.%人载脂蛋白B mRNA编辑酶催化多肽样蛋白3G(apolipoprotein B mRNA-editing enzyme catalytic polypeptide 3 protein G,APOBEC3G)是宿主的抗HIV-1(human immunodeficiency virus type Ⅰ)因子,而HIV-1辅助蛋白--病毒感染因子Vif(viral infectivity factor)可通过介导蛋白酶体途径降解APOBEC3G,因此针对APOBEC3G及HIV-1Vif进行抑制剂设计已经成为抗HIV-1药物研究新的方向之一,相应用于研究Vif-APOBEC3G相互作用的方法也越来越多,如免疫印迹、免疫杂交、脉冲追踪试验、生物发光共振能量转移检测、BIAcore检测等.作者将目前用于以Vif-APOBEC3G为靶点的药物的筛选及作用机制的研究方法进行了综述,为基于此的研究提供了策略.

  2. Epigenetic modulations in activated cells early after HIV-1 infection and their possible functional consequences.

    Directory of Open Access Journals (Sweden)

    Juliana T Maricato

    Full Text Available Epigenetic modifications refer to a number of biological processes which alter the structure of chromatin and its transcriptional activity such as DNA methylation and histone post-translational processing. Studies have tried to elucidate how the viral genome and its products are affected by epigenetic modifications imposed by cell machinery and how it affects the ability of the virus to either, replicate and produce a viable progeny or be driven to latency. The purpose of this study was to evaluate epigenetic modifications in PBMCs and CD4+ cells after HIV-1 infection analyzing three approaches: (i global DNA- methylation; (ii qPCR array and (iii western blot. HIV-1 infection led to methylation increases in the cellular DNA regardless the activation status of PBMCs. The analysis of H3K9me3 and H3K27me3 suggested a trend towards transcriptional repression in activated cells after HIV-1 infection. Using a qPCR array, we detected genes related to epigenetic processes highly modulated in activated HIV-1 infected cells. SETDB2 and RSK2 transcripts showed highest up-regulation levels. SETDB2 signaling is related to transcriptional silencing while RSK2 is related to either silencing or activation of gene expression depending on the signaling pathway triggered down-stream. In addition, activated cells infected by HIV-1 showed lower CD69 expression and a decrease of IL-2, IFN-γ and metabolism-related factors transcripts indicating a possible functional consequence towards global transcriptional repression found in HIV-1 infected cells. Conversely, based on epigenetic markers studied here, non-stimulated cells infected by HIV-1, showed signs of global transcriptional activation. Our results suggest that HIV-1 infection exerts epigenetic modulations in activated cells that may lead these cells to transcriptional repression with important functional consequences. Moreover, non-stimulated cells seem to increase gene transcription after HIV-1 infection

  3. Treatment of primary HIV-1 infection with cyclosporin A coupled with highly active antiretroviral therapy

    Science.gov (United States)

    Rizzardi, G. Paolo; Harari, Alexandre; Capiluppi, Brunella; Tambussi, Giuseppe; Ellefsen, Kim; Ciuffreda, Donatella; Champagne, Patrick; Bart, Pierre-Alexandre; Chave, Jean-Philippe; Lazzarin, Adriano; Pantaleo, Giuseppe

    2002-01-01

    Primary HIV-1 infection causes extensive immune activation, during which CD4+ T cell activation supports massive HIV-1 production. We tested the safety and the immune-modulating effects of combining cyclosporin A (CsA) treatment with highly active antiretroviral therapy (HAART) during primary HIV-1 infection. Nine adults with primary HIV-1 infection were treated with CsA along with HAART. At week 8, all patients discontinued CsA but maintained HAART. Viral replication was suppressed to a comparable extent in the CsA + HAART cohort and in 29 control patients whose primary infection was treated with HAART alone. CsA restored normal CD4+ T cell levels, both in terms of percentage and absolute numbers. The increase in CD4+ T cells was apparent within a week and persisted throughout the study period. CsA was not detrimental to virus-specific CD8+ or CD4+ T cell responses. At week 48, the proportion of IFN-γ–secreting CD4+ and CD4+CCR7– T cells was significantly higher in the CsA + HAART cohort than in the HAART-alone cohort. In conclusion, rapid shutdown of T cell activation in the early phases of primary HIV-1 infection can have long-term beneficial effects and establish a more favorable immunologic set-point. Appropriate, immune-based therapeutic interventions may represent a valuable complement to HAART for treating HIV infection. PMID:11877476

  4. Inhibition of ecto-ATPase activities impairs HIV-1 infection of macrophages.

    Science.gov (United States)

    Schachter, Julieta; Delgado, Kelly Valcárcel; Barreto-de-Souza, Victor; Bou-Habib, Dumith Chequer; Persechini, Pedro Muanis; Meyer-Fernandes, José Roberto

    2015-05-01

    Nucleotides and nucleosides are secreted into extracellular media at different concentrations as a consequence of different physiologic and pathological conditions. Ecto-nucleotidases, enzymes present on the surface of most cells, hydrolyze these extracellular nucleotides and reduce the concentration of them, thus affecting the activation of different nucleotide and nucleoside receptors. Also, ecto-nucleotidases are present in a number of microorganisms and play important roles in host-pathogen interactions. Here, we characterized the ecto-ATPase activities present on the surface of HIV-1 particle and human macrophages as well. We found that the kinetic properties of HIV-1 and macrophage ecto-ATPases are similar, suggesting that the enzyme is the same. This ecto-ATPase activity was increased in macrophages infected in vitro with HIV-1. Using three different non-related ecto-ATPase inhibitors-POM-1, ARL67156 and BG0-we showed that the inhibition of these macrophage and viral ecto-ATPase activities impairs HIV-1 infection. In addition, we also found that elevated extracellular concentrations of ATP inhibit HIV-1 production by infected macrophages.

  5. Activity of superior interferon α against HIV-1 in severe combined immunodeficient mice reconstituted with human peripheral blood leukocytes

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wei; TONG Xiao; Tadashi Nakasone; YUE Xue-tian; Naoki Yamamoto; LIU Xin-yuan; YANG Rong-ge

    2011-01-01

    Background Interferon (IFN) can inhibit human immunodeficiency virus type 1 (HIV-1) replication in vitro and in clinic.However, IFN therapy for HIV infection was limited by its moderate antiviral efficacy and its frequent adverse effects. In the present study we evaluated the anti-HIV efficacy of a novel synthesized superior interferon α (slFNα).Methods We performed in vitro experiments with HIV-1 IIB infected MT4 cells, and evaluated in vivo anti-HIV efficacy of slFNα in severe combined immunodeficient (SClD) mice reconstituted with human peripheral blood leukocytes (hu-PBL-SClD mice).Results We found that the 50% effective concentrations (EC5o) of slFNα against the replication of HIV-1 in MT4 cells was 0.06 ng/ml, representing stronger antiviral activity than interferon-α in vitro. In the hu-PBL-SCID mice, a dose-dependent protection pattern was observed: with 0.45 μg and 1.35 μg slFNα daily treatments, parts of SCID mice were protected from HIV infection, whereas 2.25 μg sIFNα daily treatments resulted in a terminally complete protection.Conclusions slFNα shows good anti-HIV activity both in vitro and in SCID mice, may be a promising anti-HIV agent deserving clinical investigation, especially considering the potential of IFN-α to inhibit HIV replication in patients infected with drug-resistant variants or co-infected with hepatitis C virus (HCV).

  6. The Efficacy of an anti-CD4 Monoclonal Antibody for HIV-1 Treatment

    OpenAIRE

    Fessel, W. Jeffrey; Anderson, Brooke; Follansbee, Stephen E.; Winters, Mark A.; Lewis, Stanley; Weinheimer, Steven; Christos J Petropoulos; Shafer, Robert W.

    2011-01-01

    The availability of 24 antiretroviral (ARV) drugs within six distinct drug classes has transformed HIV-1 infection (AIDS) into a treatable chronic disease. However, the ability of HIV-1 to develop resistance to multiple classes continues to present challenges to the treatment of many ARV treatment-experienced patients. In this case report, we describe the response to ibalizumab, an investigational CD4-binding monoclonal antibody (mAb), in a patient with advanced immunodeficiency and high-leve...

  7. 含双环哌啶结构HIV-1抑制剂的设计合成及生物活性研究%Design, synthesis and biological activity of bicyclic piperidine-based HIV-1 inhibitors

    Institute of Scientific and Technical Information of China (English)

    毛文祥; 董铭心; 朱卫国; 姜世勃; 戴秋云

    2011-01-01

    目的 设计合成一系列具有新型结构特征的双环哌啶类C-C族趋化因子受体5(CCR5)抑制剂并测定其抗HIV-1活性.方法 以HIV-1辅助受体CCR5抑制剂Vicriviroc的结构为模板,通过改变左侧哌嗪结构、取代基位置等方法设计并合成一系列新化合物.并利用MS及1H-NMR谱对这些化合物进行结构表征.结果 与结论合成了15个新结构化合物,活性测试结果表明,该系列化合物具有较强的抗HIV-1 R5病毒株的活性(IC50=1.20~66.24μmol·L-1).当R1为芳基结构且两个氮原子满足标准的丙二胺结构时,化合物的活性更好.%CCR5 is a major co-receptor for HIV-1 entry into human cells and is also a good target for antiHIV-1 drug design. Based on the chemical structure of Vicriviroc, a CCR5 antagonist, a series of new compounds were designed by changing its piperazine loop and other group substitutions. In the present study,15 bicyclic piperidine-based compounds were synthesized using a convergent synthetic route, and the structures of the target compounds were confirmed by MS and 1H-NMR. The synthetic routes were as follows:N-Bocpiperidine-4-carboxylic acid, N-Boc-pyrro-3-carboxylic acid and N-Boc-ethylenediamine were coupled with theamine derivatives to give the corresponding compounds 1a- 1d,2a- 2c,3a- 3c,4-piperidinone hydrochloride reacted with 2,6-dimethylbenzoyl chloride,2,6-dichlorobenzoyl chloride and 2,4,6-trimethyl-5-pyrimidine carbonyl chloride to obtain the compounds 4a -4c. Then 4a -4c was reacted with 1a - 1d,2a -2c ,3a - 3c to give the target compounds I 1 - I 15. Furthermore, the antiviral activity and cell cytotoxicity of these compounds were evaluated with HIV-1 R5 strain in vitro. The results showed that all the target compounds exhibited potent antiviral activity against HIV-1 R5 strain( IC50 = 1.20 -66. 24 μmol· L-1 ). Preliminary analysis of the structure-activity relationship showed that some compounds with an aryl group and the 1,3-diamino

  8. The NRTIs Lamivudine, Stavudine and Zidovudine Have Reduced HIV-1 Inhibitory Activity in Astrocytes

    Science.gov (United States)

    Gray, Lachlan R.; Tachedjian, Gilda; Ellett, Anne M.; Roche, Michael J.; Cheng, Wan-Jung; Guillemin, Gilles J.; Brew, Bruce J.; Turville, Stuart G.; Wesselingh, Steve L.; Gorry, Paul R.; Churchill, Melissa J.

    2013-01-01

    HIV-1 establishes infection in astrocytes and macroage-lineage cells of the central nervous system (CNS). Certain antiretroviral drugs (ARVs) can penetrate the CNS, and are therefore often used in neurologically active combined antiretroviral therapy (Neuro-cART) regimens, but their relative activity in the different susceptible CNS cell populations is unknown. Here, we determined the HIV-1 inhibitory activity of CNS-penetrating ARVs in astrocytes and macrophage-lineage cells. Primary human fetal astrocytes (PFA) and the SVG human astrocyte cell line were used as in vitro models for astrocyte infection, and monocyte-derived macrophages (MDM) were used as an in vitro model for infection of macrophage-lineage cells. The CNS-penetrating ARVs tested were the nucleoside reverse transcriptase inhibitors (NRTIs) abacavir (ABC), lamivudine (3TC), stavudine (d4T) and zidovudine (ZDV), the non-NRTIs efavirenz (EFV), etravirine (ETR) and nevirapine (NVP), and the integrase inhibitor raltegravir (RAL). Drug inhibition assays were performed using single-round HIV-1 entry assays with luciferase viruses pseudotyped with HIV-1 YU-2 envelope or vesicular stomatitis virus G protein (VSV-G). All the ARVs tested could effectively inhibit HIV-1 infection in macrophages, with EC90s below concentrations known to be achievable in the cerebral spinal fluid (CSF). Most of the ARVs had similar potency in astrocytes, however the NRTIs 3TC, d4T and ZDV had insufficient HIV-1 inhibitory activity in astrocytes, with EC90s 12-, 187- and 110-fold greater than achievable CSF concentrations, respectively. Our data suggest that 3TC, d4T and ZDV may not adequately target astrocyte infection in vivo, which has potential implications for their inclusion in Neuro-cART regimens. PMID:23614033

  9. The NRTIs lamivudine, stavudine and zidovudine have reduced HIV-1 inhibitory activity in astrocytes.

    Directory of Open Access Journals (Sweden)

    Lachlan R Gray

    Full Text Available HIV-1 establishes infection in astrocytes and macroage-lineage cells of the central nervous system (CNS. Certain antiretroviral drugs (ARVs can penetrate the CNS, and are therefore often used in neurologically active combined antiretroviral therapy (Neuro-cART regimens, but their relative activity in the different susceptible CNS cell populations is unknown. Here, we determined the HIV-1 inhibitory activity of CNS-penetrating ARVs in astrocytes and macrophage-lineage cells. Primary human fetal astrocytes (PFA and the SVG human astrocyte cell line were used as in vitro models for astrocyte infection, and monocyte-derived macrophages (MDM were used as an in vitro model for infection of macrophage-lineage cells. The CNS-penetrating ARVs tested were the nucleoside reverse transcriptase inhibitors (NRTIs abacavir (ABC, lamivudine (3TC, stavudine (d4T and zidovudine (ZDV, the non-NRTIs efavirenz (EFV, etravirine (ETR and nevirapine (NVP, and the integrase inhibitor raltegravir (RAL. Drug inhibition assays were performed using single-round HIV-1 entry assays with luciferase viruses pseudotyped with HIV-1 YU-2 envelope or vesicular stomatitis virus G protein (VSV-G. All the ARVs tested could effectively inhibit HIV-1 infection in macrophages, with EC90s below concentrations known to be achievable in the cerebral spinal fluid (CSF. Most of the ARVs had similar potency in astrocytes, however the NRTIs 3TC, d4T and ZDV had insufficient HIV-1 inhibitory activity in astrocytes, with EC90s 12-, 187- and 110-fold greater than achievable CSF concentrations, respectively. Our data suggest that 3TC, d4T and ZDV may not adequately target astrocyte infection in vivo, which has potential implications for their inclusion in Neuro-cART regimens.

  10. Novel 2-Chloro-8-arylthiomethyldipyridodiazepinone Derivatives with Activity against HIV-1 Reverse Transcriptase

    Directory of Open Access Journals (Sweden)

    Supanna Techasakul

    2007-02-01

    Full Text Available Based on the molecular modeling analysis against Y181CHIV-1 RT, dipyridodiazepinone derivatives containing an unsubstituted lactamnitrogen and 2-chloro-8-arylthiomethyl were synthesized via an efficientroute. Some of them were evaluated for their antiviral activity against HIV-1RT subtype E and were found to exhibit virustatic activity comparable to some clinically usedtherapeutic agents.

  11. Structure-activity relationship studies on clinically relevant HIV-1 NNRTIs.

    Science.gov (United States)

    Rawal, R K; Murugesan, V; Katti, S B

    2012-01-01

    In addition to the nucleoside reverse transcriptase inhibitors (NRTIs), protease inhibitors (PIs) and integrase inhibitors (INIs), nonnucleoside reverse transcriptase inhibitors (NNRTIs) have contributed significantly in the treatment of HIV-1 infections. More than 60 structurally different classes of compounds have been identified as NNRTIs, which are specifically inhibiting HIV-1 reverse transcriptase (RT). Five NNRTIs (nevirapine, delavirdine, efavirenz, etravirine and rilpivirine) have been approved by US Food and Drug Administration (FDA) for clinical use. The NNRTIs bind with a specific 'pocket' site of HIV-1 RT (allosteric site) that is closely associated with the NRTI binding site. Due to mutations of the amino acid residues surrounding the NNRTI-binding site, NNRTIs are notorious for rapidly eliciting resistance. Though, the emergence of resistant HIV strains can be circumvented if the NNRTIs are used either alone or in combination with NRTIs (AZT, 3TC, ddI, ddC, TVD or d4T) and PIs (Indinavir, nelfinavir, saquinavir, ritonavir and lopinavir etc.) as shown by both a decrease in plasma HIV-1 RNA levels and increased CD4 T-cells. Here we are going to discuss recent advances in structure activity relationship studies on nevirapine, delavirdine, efavirenz, etravirine, rilpivirine and 4-thiazolidinones (privileged scaffold) HIV-1 NNRTIs.

  12. The impact of inflammation and immune activation on B cell differentiation during HIV-1 infection

    Directory of Open Access Journals (Sweden)

    Nicolas eRuffin

    2012-01-01

    Full Text Available HIV-1 infection is characterized by continuous antigenic stimulation, chronic immune activation and impaired survival of T and B cells. A decline of resting memory B cells has previously been reported to occur in both children and adults infected with HIV-1; these cells are responsible for mounting and maintaining an adequate serological response to antigens previously encountered in life through natural infection or vaccination. Further understanding of the mechanisms leading to impaired B cell differentiation and germinal center reaction might be essential to design new HIV vaccines and therapies that could improve humoral immune responses in HIV-1 infected individuals. In the present article we summarize the literature and present our view on critical mechanisms of B cell development which are impaired during HIV-1 infection. We also discuss the impact of microbial translocation, a driving force for persistent inflammation during HIV-1 infection, on survival of terminally differentiated B cells and how the altered expression of cytokines/chemokines pivotal for communication between T and B cells in lymphoid tissues may impair formation of memory B cells.

  13. Three-dimensional Quantitative Structure-activity Relationship Models of HIV-1 Integrase Inhibitors of DKAs

    Institute of Scientific and Technical Information of China (English)

    ZHANG Mei-Qing; ZHAO Wen-Na; LU Shao-Yong

    2012-01-01

    As one of the three viral encoded enzymes of HIV-1 infection, HIV-1 integrase has become an attractive drug target for the treatment. Diketoacid compounds (DKAs) are one kind of potent and selective inhibitors of HIV-1 IN. In the present work, two three-dimensional QSAR techniques (CoMFA and CoMSIA) were employed to correlate the molecular structure with the activity of inhibiting the strand transfer for 147 DKAs. The all-oritation search (AOS) and all-placement search (APS) were used to optimize the CoMFA model. The diketo and keto-enol tautomers of DKAs were also used to establish the CoMFA models. The results indicated that the enol was the dominant conformation in the HIV-1 IN and DKAs complexes. It can provide a new method and reference to identify the bioactive conformation of drugs by using QSAR analysis. The best CoMSIA model, with five fields combined, implied that the hydrophobic field is very important as well as the steric and electrostatic fields. All models indicated favorable internal validation. A comparative analysis with the three models demonstrated that the CoMFA model seems to be more predictive. The contour maps could afford steric, electrostatic, hydrophobic and H-bond information about the interaction of ligand-receptor complex visually. The models would give some useful guidelines for designing novel and potent HIV-1 integrase inhibitors.

  14. The impact of inflammation and immune activation on B cell differentiation during HIV-1 infection.

    Science.gov (United States)

    Ruffin, Nicolas; Thang, Pham Hong; Rethi, Bence; Nilsson, Anna; Chiodi, Francesca

    2011-01-01

    One important pathogenic feature of human immunodeficiency virus (HIV)-1 infection is chronic immune activation and impaired survival of T and B cells. A decline of resting memory B cells was reported to occur in both children and adults infected with HIV-1; these cells are responsible for maintaining an adequate serological response to antigens previously encountered in life through natural infection or vaccination. Further understanding of the mechanisms leading to impaired B cell differentiation and germinal center reaction might be essential to design new HIV vaccines and therapies that could improve humoral immune responses in HIV-1 infected individuals. In the present article we summarize the literature and present our view on critical mechanisms of B cell development impaired during HIV-1 infection. We also discuss the impact of microbial translocation, a driving force for persistent inflammation during HIV-1 infection, on survival of terminally differentiated B cells and how the altered expression of cytokines/chemokines pivotal for communication between T and B cells in lymphoid tissues may impair formation of memory B cells.

  15. New soluble-formazan assay for HIV-1 cytopathic effects: application to high-flux screening of synthetic and natural products for AIDS-antiviral activity.

    Science.gov (United States)

    Weislow, O S; Kiser, R; Fine, D L; Bader, J; Shoemaker, R H; Boyd, M R

    1989-04-19

    We have developed an effective and optimally safe microculture method for rapid and convenient assay of the in vitro cytopathic effects of human immunodeficiency virus (HIV-1) on human lymphoblastoid or other suitable host cells. The assay procedure is applicable to the evaluation of drug effects on in vitro infections induced directly in cultured host cells by cell-free HIV-1 or by coculture with H9 cells chronically infected with HIV-1. The assay uses a newly developed tetrazolium reagent that is metabolically reduced by viable cells to yield a soluble, colored formazan product measurable by conventional colorimetric techniques. This simple microassay minimizes the number of plate manipulations typically required with other assay methods and, coupled with computerized data collection and analysis, facilitates large-scale screening of agents for potential antiviral activity. To support and enhance the discovery of new anti-HIV-1 agents, the National Cancer Institute is offering investigators worldwide the opportunity to submit new candidate agents for anti-HIV-1 screening with this method.

  16. Selective histonedeacetylase inhibitor M344 intervenes in HIV-1 latency through increasing histone acetylation and activation of NF-kappaB.

    Directory of Open Access Journals (Sweden)

    Hao Ying

    Full Text Available BACKGROUND: Histone deacetylase (HDAC inhibitors present an exciting new approach to activate HIV production from latently infected cells to potentially enhance elimination of these cells and achieve a cure. M344, a novel HDAC inhibitor, shows robust activity in a variety of cancer cells and relatively low toxicity compared to trichostatin A (TSA. However, little is known about the effects and action mechanism of M344 in inducing HIV expression in latently infected cells. METHODOLOGY/PRINCIPAL FINDINGS: Using the Jurkat T cell model of HIV latency, we demonstrate that M344 effectively reactivates HIV-1 gene expression in latently infected cells. Moreover, M344-mediated activation of the latent HIV LTR can be strongly inhibited by a NF-κB inhibitor aspirin. We further show that M344 acts by increasing the acetylation of histone H3 and histone H4 at the nucleosome 1 (nuc-1 site of the HIV-1 long terminal repeat (LTR and by inducing NF-κB p65 nuclear translocation and direct RelA DNA binding at the nuc-1 region of the HIV-1 LTR. We also found that M344 synergized with prostratin to activate the HIV-1 LTR promoter in latently infected cells. CONCLUSIONS/SIGNIFICANCE: These results suggest the potential of M344 in anti-latency therapies and an important role for histone modifications and NF-κB transcription factors in regulating HIV-1 LTR gene expression.

  17. Anti-Human Immunodeficiency Virus Type 1 (HIV-1 ⅢB) Activity of Lectin from Sea Mussel Crenomytilus Grayanus%贻贝凝集素抗-HIV活性研究

    Institute of Scientific and Technical Information of China (English)

    李伟; 熊川男; 王建华; 郑永唐; 金桥; 佟长青; 曲敏; 刘洪伟; 汪秋宽

    2007-01-01

    分离提取海洋无脊椎动物贻贝(Crenomytilus grayanus)凝集素,考察其抗HIV活性.采用半乳糖-Sepharose 6B亲和层析和Sephacryl S-200层析分离提取贻贝凝集素(Crenomytilus grayanus lectin,CGL),以光镜检查合胞体抑制试验,以ELSA测定HIVp24抗原表达水平.从海洋无脊椎动物贻贝中分离出的凝集素(CGL),为N-乙酰半乳糖胺/半乳糖(GalNAc/Gal)特异性的凝集素.CGL在27.88mg·L-1浓度时,对HIV诱导细胞病变的抑制达50%;在45.70mg·L-1时,对HIV-1复制的抑制达50%;同时在35.12mg·L-1浓度时,对HIV感染细胞融合的阻断达50%.

  18. The Effect of Chloroquine on Immune Activation and Interferon Signatures Associated with HIV-1.

    Science.gov (United States)

    Jacobson, Jeffrey M; Bosinger, Steven E; Kang, Minhee; Belaunzaran-Zamudio, Pablo; Matining, Roy M; Wilson, Cara C; Flexner, Charles; Clagett, Brian; Plants, Jill; Read, Sarah; Purdue, Lynette; Myers, Laurie; Boone, Linda; Tebas, Pablo; Kumar, Princy; Clifford, David; Douek, Daniel; Silvestri, Guido; Landay, Alan L; Lederman, Michael M

    2016-07-01

    Immune activation associated with HIV-1 infection contributes to morbidity and mortality. We studied whether chloroquine, through Toll-like receptor (TLR) antagonist properties, could reduce immune activation thought to be driven by TLR ligands, such as gut-derived bacterial elements and HIV-1 RNAs. AIDS Clinical Trials Group A5258 was a randomized, double-blind, placebo-controlled study in 33 HIV-1-infected participants off antiretroviral therapy (ART) and 37 participants on ART. Study participants in each cohort were randomized 1:1 to receive chloroquine 250 mg orally for the first 12 weeks then cross over to placebo for 12 weeks or placebo first and then chloroquine. Combining the periods of chloroquine use in both arms of the on-ART cohort yielded a modest reduction in the proportions of CD8 T cells co-expressing CD38 and DR (median decrease = 3.0%, p = .003). The effect on immune activation in the off-ART cohort was likely confounded by increased plasma HIV-1 RNA during chloroquine administration (median 0.29 log10 increase, p < .001). Transcriptional analyses in the off-ART cohort showed decreased expression of interferon-stimulated genes in 5 of 10 chloroquine-treated participants and modest decreases in CD38 and CCR5 RNAs in all chloroquine-treated participants. Chloroquine modestly reduced immune activation in ART-treated HIV-infected participants. Clinical Trials Registry Number: NCT00819390.

  19. Rapid turnover of 2-LTR HIV-1 DNA during early stage of highly active antiretroviral therapy.

    Directory of Open Access Journals (Sweden)

    Weijun Zhu

    Full Text Available BACKGROUND: Despite prolonged treatment with highly active antiretroviral therapy (HAART, the infectious HIV-1 continues to replicate and resides latently in the resting memory CD4+ T lymphocytes, which blocks the eradication of HIV-1. The viral persistence of HIV-1 is mainly caused by its proviral DNA being either linear nonintegrated, circular nonintegrated, or integrated. Previous reports have largely focused on the dynamics of HIV-1 DNA from the samples collected with relatively long time intervals during the process of disease and HAART treatment, which may have missed the intricate changes during the intervals in early treatment. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we investigated the dynamics of HIV-1 DNA in patients during the early phase of HARRT treatment. Using optimized real time PCR, we observed significant changes in 2-LTR during the first 12-week of treatment, while total and integrated HIV-1 DNA remained stable. The doubling time and half-life of 2-LTR were not correlated with the baseline and the rate of changes in plasma viral load and various CD4+ T-cell populations. Longitudinal analyses on 2-LTR sequences and plasma lipopolysaccharide (LPS levels did not reveal any significant changes in the same treatment period. CONCLUSIONS/SIGNIFICANCE: Our study revealed the rapid changes in 2-LTR concentration in a relatively large number of patients during the early HAART treatment. The rapid changes indicate the rapid infusion and clearance of cells bearing 2-LTR in the peripheral blood. Those changes are not expected to be caused by the blocking of viral integration, as our study did not include the integrase inhibitor raltegravir. Our study helps better understand the dynamics of HIV-DNA and its potential role as a biomarker for the diseases and for the treatment efficacy of HAART.

  20. Ibalizumab: an anti-CD4 monoclonal antibody for the treatment of HIV-1 infection.

    Science.gov (United States)

    Bruno, Christopher J; Jacobson, Jeffrey M

    2010-09-01

    The majority of currently available agents for the treatment of HIV-1 infection act by targeting one of several intracellular steps in the viral life cycle. Despite improvements in efficacy and tolerability, the development of viral resistance to these agents is common and significant toxicity and adherence issues still occur. For this reason the development of safe, well tolerated antiviral agents that target a novel step in the viral life cycle remains important. Viral entry into host cells affords several potential extracellular targets for antiretroviral therapy. Ibalizumab, a humanized monoclonal antibody to CD4, the primary host cellular receptor for HIV-1 entry, has been shown to block HIV-1 entry in vitro. Early clinical trials have demonstrated significant antiviral efficacy with a >1 log(10) reduction in viral load when given as monotherapy. Its long half-life, which allows weekly dosing, and its administration as an intravenous infusion differentiate it from other currently available antiretroviral agents. These properties may prove useful in allowing improved drug delivery to patients who have had difficulty adhering to daily oral regimens. Its unique mode of action reduces the risk of cross-resistance with currently available antiretroviral agents, with the potential to expand the choices available to treat drug-resistant HIV-1.

  1. The efficacy of an anti-CD4 monoclonal antibody for HIV-1 treatment.

    Science.gov (United States)

    Fessel, W Jeffrey; Anderson, Brooke; Follansbee, Stephen E; Winters, Mark A; Lewis, Stanley T; Weinheimer, Steven P; Petropoulos, Christos J; Shafer, Robert W

    2011-12-01

    The availability of 24 antiretroviral (ARV) drugs within six distinct drug classes has transformed HIV-1 infection (AIDS) into a treatable chronic disease. However, the ability of HIV-1 to develop resistance to multiple classes continues to present challenges to the treatment of many ARV treatment-experienced patients. In this case report, we describe the response to ibalizumab, an investigational CD4-binding monoclonal antibody (mAb), in a patient with advanced immunodeficiency and high-level five-class antiretroviral resistance. After starting an ibalizumab-based salvage regimen, the patient had an approximately 4.0 log(10) reduction in viral load. An inadvertently missed infusion at week 32 led to the rapid loss of virologic response and decreased susceptibility to the remainder of the patient's salvage therapy regimen. Following the reinstitution of ibalizumab, phenotypic and genotypic resistance to ibalizumab was detected. Nonetheless, plasma HIV-1 RNA levels stabilized at ∼2.0 log(10) copies/ml below pre-ibalizumab levels. Continued ARV drug development may yield additional clinical and public health benefits. This report illustrates the promise of mAbs for HIV-1 therapy in highly treatment-experienced patients. Therapeutic mAbs may also have a role in pre-exposure prophylaxis in high-risk uninfected populations and may facilitate directly observed therapy (DOT) if two or more synergistic long acting agents become available.

  2. Plasmacytoid dendritic cells suppress HIV-1 replication but contribute to HIV-1 induced immunopathogenesis in humanized mice.

    Directory of Open Access Journals (Sweden)

    Guangming Li

    2014-07-01

    Full Text Available The role of plasmacytoid dendritic cells (pDC in human immunodeficiency virus type 1 (HIV-1 infection and pathogenesis remains unclear. HIV-1 infection in the humanized mouse model leads to persistent HIV-1 infection and immunopathogenesis, including type I interferons (IFN-I induction, immune-activation and depletion of human leukocytes, including CD4 T cells. We developed a monoclonal antibody that specifically depletes human pDC in all lymphoid organs in humanized mice. When pDC were depleted prior to HIV-1 infection, the induction of IFN-I and interferon-stimulated genes (ISGs were abolished during acute HIV-1 infection with either a highly pathogenic CCR5/CXCR4-dual tropic HIV-1 or a standard CCR5-tropic HIV-1 isolate. Consistent with the anti-viral role of IFN-I, HIV-1 replication was significantly up-regulated in pDC-depleted mice. Interestingly, the cell death induced by the highly pathogenic HIV-1 isolate was severely reduced in pDC-depleted mice. During chronic HIV-1 infection, depletion of pDC also severely reduced the induction of IFN-I and ISGs, associated with elevated HIV-1 replication. Surprisingly, HIV-1 induced depletion of human immune cells including T cells in lymphoid organs, but not the blood, was reduced in spite of the increased viral replication. The increased cell number in lymphoid organs was associated with a reduced level of HIV-induced cell death in human leukocytes including CD4 T cells. We conclude that pDC play opposing roles in suppressing HIV-1 replication and in promoting HIV-1 induced immunopathogenesis. These findings suggest that pDC-depletion and IFN-I blockade will provide novel strategies for treating those HIV-1 immune non-responsive patients with persistent immune activation despite effective anti-retrovirus treatment.

  3. The HIV-1 Nef protein and phagocyte NADPH oxidase activation

    DEFF Research Database (Denmark)

    Vilhardt, Frederik; Plastre, Olivier; Sawada, Makoto;

    2002-01-01

    -regulation of phagocyte NADPH oxidase subunits. Nef mutants lacking motifs involved in the interaction with Vav and PAK failed to reproduce the effects of wild type Nef, suggesting a role for the Vav/Rac/PAK signaling pathway. The following results suggest a key role for Rac in the priming effect of Nef. (i) Inactivation...... of Rac by Clostridium difficile toxin B abolished the Nef effect. (ii) The fraction of activated Rac1 was increased in Nef-transduced cells, and (iii) the dominant positive Rac1(V12) mutant mimicked the effect of Nef. These results are to our knowledge the first analysis of the effect of Rac activation...

  4. Rationally designed interfacial peptides are efficient in vitro inhibitors of HIV-1 capsid assembly with antiviral activity.

    Directory of Open Access Journals (Sweden)

    Rebeca Bocanegra

    Full Text Available Virus capsid assembly constitutes an attractive target for the development of antiviral therapies; a few experimental inhibitors of this process for HIV-1 and other viruses have been identified by screening compounds or by selection from chemical libraries. As a different, novel approach we have undertaken the rational design of peptides that could act as competitive assembly inhibitors by mimicking capsid structural elements involved in intersubunit interfaces. Several discrete interfaces involved in formation of the mature HIV-1 capsid through polymerization of the capsid protein CA were targeted. We had previously designed a peptide, CAC1, that represents CA helix 9 (a major part of the dimerization interface and binds the CA C-terminal domain in solution. Here we have mapped the binding site of CAC1, and shown that it substantially overlaps with the CA dimerization interface. We have also rationally modified CAC1 to increase its solubility and CA-binding affinity, and designed four additional peptides that represent CA helical segments involved in other CA interfaces. We found that peptides CAC1, its derivative CAC1M, and H8 (representing CA helix 8 were able to efficiently inhibit the in vitro assembly of the mature HIV-1 capsid. Cocktails of several peptides, including CAC1 or CAC1M plus H8 or CAI (a previously discovered inhibitor of CA polymerization, or CAC1M+H8+CAI, also abolished capsid assembly, even when every peptide was used at lower, sub-inhibitory doses. To provide a preliminary proof that these designed capsid assembly inhibitors could eventually serve as lead compounds for development of anti-HIV-1 agents, they were transported into cultured cells using a cell-penetrating peptide, and tested for antiviral activity. Peptide cocktails that drastically inhibited capsid assembly in vitro were also able to efficiently inhibit HIV-1 infection ex vivo. This study validates a novel, entirely rational approach for the design of capsid

  5. Isolation of anti-HIV-1 lignans from Larrea tridentata by counter-current chromatography.

    Science.gov (United States)

    Gnabre, J N; Ito, Y; Ma, Y; Huang, R C

    1996-01-08

    Several lignans, mostly new, were isolated from Larrea tridentata by assay-guided counter-current chromatography (CCC). Using the secreted alkaline phosphatase bioassay of HIV Tat transactivation and the two-phase hexane-ethyl acetate-methanol-water solvent system, two major components (Gr and Lo) were identified as anti-HIV active principles. The chemical structures of the constituents of Gr (G1-G4) and Lo (L1-L4) were determined by GC-MS and NMR. After optimization of isolation conditions, a large-scale isolation with the chloroform-methanol-water system yielded five constituents (FB1-FB5). The most predominant anti-HIV compound FB2 (denoted Malachi 4:5-6 or mal.4), which occurs in 0.23% yield, was separated from its FB1 isomer (0.13% yield). Compound FB4 and two tricyclic lignans (FB3 and FB5) were also isolated in a substantial amount for further testing of their anti-HIV activities. These compounds may represent a new class of anti-HIV agents with important clinical relevance.

  6. HIV-1 subtypes and mutations associated to antiretroviral drug resistance in human isolates from Central Brazil Subtipos e mutações associadas à resistência aos anti-retrovirais em isolados de HIV-1 do Distrito Federal

    Directory of Open Access Journals (Sweden)

    Daniela Marreco Cerqueira

    2004-09-01

    Full Text Available The detection of polymorphisms associated to HIV-1 drug-resistance and genetic subtypes is important for the control and treatment of HIV-1 disease. Drug pressure selects resistant variants that carry mutations in the viral reverse transcriptase (RT and protease (PR genes. For a contribution to the public health authorities in planning the availability of therapeutic treatment, we therefore described the genetic variability, the prevalence of mutations associated to drug resistance and the antiretroviral resistance profile in HIV-1 isolates from infected individuals in Central Brazil. Nineteen HIV-1 RNA samples from a Public Health Laboratory of the Federal District were reversely transcribed and cDNAs were amplified by nested PCR. One fragment of 297 bp coding the entire protease gene, and another of 647 bp, corresponding to the partial RT gene (codons 19-234, were obtained. Automated sequencing and BLAST analysis revealed the presence of 17 B and 2 F1 HIV-1 subtypes. The amino acid sequences were analyzed for the presence of resistance-associated mutations. A total of 6 PR mutations, 2 major and 4 accessory, and 8 RT mutations related to drug resistance were found. Our data suggest a high prevalence of HIV-1 B subtype in the studied population of Federal District as well as the presence of genetically-resistant strains in individuals failing treatment.A detecção de polimorfismos do HIV-1 que estejam associados à resistência às drogas anti-retrovirais e aos subtipos genéticos é importante para o controle e tratamento da infecção pelo HIV-1. A pressão exercida pela terapia anti-retroviral seleciona variantes resistentes com mutações nos genes virais da transcriptase reversa (RT e da protease (PR. Assim, visando contribuir com as autoridades de saúde pública na perspectiva de planejar a disponibilidade de um tratamento terapêutico, nós descrevemos a variabilidade genética e a prevalência de mutações associadas à resist

  7. Characterization of RNA binding and chaperoning activities of HIV-1 Vif protein. Importance of the C-terminal unstructured tail.

    Science.gov (United States)

    Sleiman, Dona; Bernacchi, Serena; Xavier Guerrero, Santiago; Brachet, Franck; Larue, Valéry; Paillart, Jean-Christophe; Tisne, Carine

    2014-01-01

    The viral infectivity factor (Vif) is essential for the productive infection and dissemination of HIV-1 in non-permissive cells, containing the cellular anti-HIV defense cytosine deaminases APOBEC3 (A3G and A3F). Vif neutralizes the antiviral activities of the APOBEC3G/F by diverse mechanisms including their degradation through the ubiquitin/proteasome pathway and their translational inhibition. In addition, Vif appears to be an active partner of the late steps of viral replication by interacting with Pr55(Gag), reverse transcriptase and genomic RNA. Here, we expressed and purified full-length and truncated Vif proteins, and analyzed their RNA binding and chaperone properties. First, we showed by CD and NMR spectroscopies that the N-terminal domain of Vif is highly structured in solution, whereas the C-terminal domain remains mainly unfolded. Both domains exhibited substantial RNA binding capacities with dissociation constants in the nanomolar range, whereas the basic unfolded C-terminal domain of Vif was responsible in part for its RNA chaperone activity. Second, we showed by NMR chemical shift mapping that Vif and NCp7 share the same binding sites on tRNA(Lys) 3, the primer of HIV-1 reverse transcriptase. Finally, our results indicate that Vif has potent RNA chaperone activity and provide direct evidence for an important role of the unstructured C-terminal domain of Vif in this capacity.

  8. An assay to monitor HIV-1 protease activity for the identification of novel inhibitors in T-cells.

    Directory of Open Access Journals (Sweden)

    Brett J Hilton

    Full Text Available The emergence of resistant HIV strains, together with the severe side-effects of existing drugs and lack of development of effective anti-HIV vaccines highlight the need for novel antivirals, as well as innovative methods to facilitate their discovery. Here, we have developed an assay in T-cells to monitor the proteolytic activity of the HIV-1 protease (PR. The assay is based on the inducible expression of HIV-1 PR fused within the Gal4 DNA-binding and transactivation domains. The fusion protein binds to the Gal4 responsive element and activates the downstream reporter, enhanced green fluorescent protein (eGFP gene only in the presence of an effective PR Inhibitor (PI. Thus, in this assay, eGFP acts as a biosensor of PR activity, making it ideal for flow cytometry based screening. Furthermore, the assay was developed using retroviral technology in T-cells, thus providing an ideal environment for the screening of potential novel PIs in a cell-type that represents the natural milieu of HIV infection. Clones with the highest sensitivity, and robust, reliable and reproducible reporter activity, were selected. The assay is easily adaptable to other PR variants, a multiplex platform, as well as to high-throughput plate reader based assays and will greatly facilitate the search for novel peptide and chemical compound based PIs in T-cells.

  9. Mutations at the CXCR4 interaction sites for AMD3100 influence anti-CXCR4 antibody binding and HIV-1 entry

    DEFF Research Database (Denmark)

    Hatse, Sigrid; Princen, Katrien; Vermeire, Kurt

    2003-01-01

    different anti-CXCR4 monoclonal antibodies as well as the infectivity of diverse human immunodeficiency virus type 1 (HIV-1) strains and clinical isolates. Mutation of Asp(262) strongly decreased the coreceptor efficiency of CXCR4 for wild-type but not for AMD3100-resistant HIV-1 NL4.3. Thus, resistance...... of HIV-1 NL4.3 to AMD3100 is associated with a decreased dependence of the viral gp120 on Asp(262) of CXCR4, pointing to a different mode of interaction of wild-type versus AMD3100-resistant virus with CXCR4....

  10. Prediction of activity for nonnucleoside inhibitors with HIV-1 reverse transcriptase based on Monte Carlo simulations.

    Science.gov (United States)

    Rizzo, Robert C; Udier-Blagović, Marina; Wang, De-Ping; Watkins, Edward K; Kroeger Smith, Marilyn B; Smith, Richard H; Tirado-Rives, Julian; Jorgensen, William L

    2002-07-04

    Results of Monte Carlo (MC) simulations for more than 200 nonnucleoside inhibitors of HIV-1 reverse transcriptase (NNRTIs) representing eight diverse chemotypes have been correlated with their anti-HIV activities in an effort to establish simulation protocols and methods that can be used in the development of more effective drugs. Each inhibitor was modeled in a complex with the protein and by itself in water, and potentially useful descriptors of binding affinity were collected during the MC simulations. A viable regression equation was obtained for each data set using an extended linear response approach, which yielded r(2) values between 0.54 and 0.85 and an average unsigned error of only 0.50 kcal/mol. The most common descriptors confirm that a good geometrical match between the inhibitor and the protein is important and that the net loss of hydrogen bonds with the inhibitor upon binding is unfavorable. Other physically reasonable descriptors of binding are needed on a chemotype case-by-case basis. By including descriptors in common from the individual fits, combination regressions that include multiple data sets were also developed. This procedure led to a refined "master" regression for 210 NNRTIs with an r(2) of 0.60 and a cross-validated q(2) of 0.55. The computed activities show an rms error of 0.86 kcal/mol in comparison with experiment and an average unsigned error of 0.69 kcal/mol. Encouraging results were obtained for the predictions of 27 NNRTIs, representing a new chemotype not included in the development of the regression model. Predictions for this test set using the master regression yielded a q(2) value of 0.51 and an average unsigned error of 0.67 kcal/mol. Finally, additional regression analysis reveals that use of ligand-only descriptors leads to models with much diminished predictive ability.

  11. An anti-CD45RO immunotoxin eliminates T cells latently infected with HIV-1 in vitro

    OpenAIRE

    McCoig, Cynthia; Dyke, Gregory; Chou, Chin-Sheng; Picker, Louis J.; Ramilo,Octavio; Vitetta, Ellen S.

    1999-01-01

    Despite the success of highly active antiretroviral therapy (HAART) in lowering circulating HIV-1 to undetectable levels in most infected individuals, several studies have documented the presence of a small reservoir of latently infected cells in HAART patients, the majority of which are CD45RO+ memory T cells. We previously have demonstrated that latently infected, replication-competent cells can be generated in vitro after eliminating CD25+ cells with an immunotoxin (IT). The present study ...

  12. Crystal structures of multidrug-resistant HIV-1 protease in complex with two potent anti-malarial compounds

    Energy Technology Data Exchange (ETDEWEB)

    Yedidi, Ravikiran S.; Liu, Zhigang; Wang, Yong; Brunzelle, Joseph S.; Kovari, Iulia A.; Woster, Patrick M.; Kovari, Ladislau C.; Gupta, Deepak (LECOM); (WSI); (NWU); (MUSC); (WSU)

    2012-06-19

    Two potent inhibitors (compounds 1 and 2) of malarial aspartyl protease, plasmepsin-II, were evaluated against wild type (NL4-3) and multidrug-resistant clinical isolate 769 (MDR) variants of human immunodeficiency virus type-1 (HIV-1) aspartyl protease. Enzyme inhibition assays showed that both 1 and 2 have better potency against NL4-3 than against MDR protease. Crystal structures of MDR protease in complex with 1 and 2 were solved and analyzed. Crystallographic analysis revealed that the MDR protease exhibits a typical wide-open conformation of the flaps (Gly48 to Gly52) causing an overall expansion in the active site cavity, which, in turn caused unstable binding of the inhibitors. Due to the expansion of the active site cavity, both compounds showed loss of direct contacts with the MDR protease compared to the docking models of NL4-3. Multiple water molecules showed a rich network of hydrogen bonds contributing to the stability of the ligand binding in the distorted binding pockets of the MDR protease in both crystal structures. Docking analysis of 1 and 2 showed a decrease in the binding affinity for both compounds against MDR supporting our structure-function studies. Thus, compounds 1 and 2 show promising inhibitory activity against HIV-1 protease variants and hence are good candidates for further development to enhance their potency against NL4-3 as well as MDR HIV-1 protease variants.

  13. 接受抗病毒治疗的AIDS患者HIV-1非核苷类逆转录酶抑制剂类耐药基因突变的选择动力学研究%Selective kinetics of HIV-1 non-nucleoside reverse transcriptase inhibitor drug resistanace-associated mutations in AIDS patients receiving highly active anti-retrovirul therapy

    Institute of Scientific and Technical Information of China (English)

    李珏; 王哲; 李敬云; 焦丽燕; 李韩平; 李林; 刘永健; 庄道民; 鲍作义; 刘思扬; 李宏

    2009-01-01

    目的 研究接受抗病毒治疗的AIDS患者非核苷类逆转录酶抑制剂(non-nucleosidereverse transcriptase inhibitor,NNRTI)类耐药基因突变分子进化特征.方法 从我国中部农村抗病毒治疗AIDS患者研究队列中选择4例服药依从性较好,治疗初期为野生型毒株,在治疗过程中逐渐产生NNRTI类耐药基因突变的患者为研究对象,对每位患者的4~5次随访血浆样本的逆转录酶(reverse transcriptase,RT)基因进行克隆测序分析,观察每个克隆的基因型耐药性特征.结果 共检测了855个克隆,得到4例患者历次克隆序列中带各种NNRTI类耐药基因突变的构成图谱:4例患者表现出不同的HIV-1 NNRTI类耐药突变途径,发现4条主要NNRTI类耐药基因突变演变途径:(1)G190A,常伴随F227L突变出现,在长期的治疗过程中还有继续累加P236V突变的趋势;(2)Y188C,多单独出现,有时与P236V等同时发生;(3)Y181C,多与V179D或K103N同时出现,不同的患者选择趋向不同;(4)K103N,多与Y181C或M230L突变联合出现.结论 总结出4例患者HIV-1 NNRTI类耐药基因突变的选择动力学特征.4例患者表现出不同的NNRTI类耐药基因突变演变途径,最先筛选出来的耐药突变往往能够成为最后的优势种.%Objective To elucidate the molecular evolutional characteristics of HIV-1 non-nucleoside reverse transcriptase inhibitor (NNRTI) drug resistance-associated mutations in AIDS patients receiving highly active antiretroviral therapy (HAART).Methods Four AIDS patients receiving HAART with good adherence within a HlV-1 drug resistance cohort from a rural region in central China were selected,who possessed susceptible virus at the beginning of treatment and gradually came to produce resistance to NNRTIs during the process of antiretroviral therapy (ART),reverse transcriptase (RT) genes from each patient's peripheral blood samples (from 3 to 30 months after withdrawal) were cloned and sequenced in succession

  14. Predefined GPGRAFY-Epitope-Specific Monoclonal Antibodies with Different Activities for Recognizing Native HIV-1 gp120

    Institute of Scientific and Technical Information of China (English)

    蓝灿辉; 田海军; 陈应华

    2004-01-01

    A seven-amino acid epitope GPGRAFY at the tip of the V3 loop in HIV-1 gp120 is the principal neutralizing epitope,and a subset of anti-V3 antibodies specific for this epitope shows a broad range of neutralizing activity.GPGRAFY-epitope-specific neutralizing antibodies were produced using predefined GPGRAFY-epitope-specific peptides instead of a natural or recombinant gp120 bearing this epitope.All six monoclonal antibodies (mAbs) could recognize the GPGRAFY-epitope on peptides and two of the antibodies,9D8 and 2D7,could recognize recombinant gp120 in enzymelinked immunosorkentassy (ELISA) assays.In the flow cytometry analysis,the mAbs 9D8 and 2D7 could bind to HIV-Env+ CHO-WT cells and the specific bindings could be inhibited by the GPGRAFY-epitope peptide,which suggests that these two mAbs could recognize the native envelope protein gp120 expressed on the cell membrane.However,in syncytium assays,none of the mAbs was capable of inhibiting HIV-Env-mediated cell membrane fusion.The different activities for recognizing native HIV-1 gp120 might be associated with different antibody affinities against the epitopes.The development of conformational mimics of the neutralization epitope in the gp120 V3 loop could elicit neutralizing mAbs with high affinity.

  15. Specific Elimination of Latently HIV-1 Infected Cells Using HIV-1 Protease-Sensitive Toxin Nanocapsules.

    Science.gov (United States)

    Wen, Jing; Yan, Ming; Liu, Yang; Li, Jie; Xie, Yiming; Lu, Yunfeng; Kamata, Masakazu; Chen, Irvin S Y

    2016-01-01

    Anti-retroviral drugs suppress HIV-1 plasma viremia to undetectable levels; however, latent HIV-1 persists in reservoirs within HIV-1-infected patients. The silent provirus can be activated through the use of drugs, including protein kinase C activators and histone deacetylase inhibitors. This "shock" approach is then followed by "kill" of the producing cells either through direct HIV-1-induced cell death or natural immune mechanisms. However, these mechanisms are relatively slow and effectiveness is unclear. Here, we develop an approach to specifically target and kill cells that are activated early in the process of virus production. We utilize a novel nanocapsule technology whereby the ricin A chain is encapsulated in an inactive form within a polymer shell. Specificity for release of the ricin A toxin is conferred by peptide crosslinkers that are sensitive to cleavage by HIV-1 protease. By using well-established latent infection models, J-Lat and U1 cells, we demonstrate that only within an HIV-1-producing cell expressing functional HIV-1 protease will the nanocapsule release its ricin A cargo, shutting down viral and cellular protein synthesis, and ultimately leading to rapid death of the producer cell. Thus, we provide proof of principle for a novel technology to kill HIV-1-producing cells without effects on non-target cells.

  16. Structure-activity relationships of novel HIV-1 gp41 fusion peptide CP32M%新型HIV-1gp41融合抑制剂CP32M的构效关系研究

    Institute of Scientific and Technical Information of China (English)

    王孝花; 成健伟; 朱卫国; 董铭心; 种辉辉; 何玉先; 戴秋云

    2012-01-01

    Objective To probe the effect of length, electric charge and fragment replacement of the key domain VEWNEMT and other residues in CP32M on its inhibitory activity to HIV-1 gp41 fusion. Methods Based on CP32M, a series of polypeptides of varied lengths and with electric charges and other functional fragments were designed and synthe-sized. The anti-HIV-1 activities were tested using HIV-1 ⅢB virus, and interaction with N36 was determined by circular di-chroism spectrum and size-exclusion HPLC. Results Truncation and partial residue replacement in the fragment VEWNEMT or introduction of i to i + 4 Glu-Lys ion pair interaction in the center or at C terminus of CP32M resulted in a decrease in the anti-HIV-1 activity of gp41 and the content of a-helix. The substitution of VEWNEMT by the fragment NEKDLLE derived from C terminus of C34 and a gpl20 binding peptide RINNIPWSEAM rescued the inhibitory activity. Conclusion VEWNEMT is the key fragment for CP32M, and residues VE and MT are crucial functional amino acids. The replacement of VEWNEMT by other functional domain retains high anti-HIV-1 activity and high content of helical structure, suggesting that this fragment contains a commons binding area.%目的 研究新型融合多肽CP32M中VEWNEMT序列的长短、残基的极性及其他部位残基的极性对其抑制gp41融合活性的影响.方法 在多肽CP32M的基础上,通过对前7个氨基酸序列进行截取、部分替换、全部替换及改变其他位置氨基酸残基的极性设计合成系列多肽,测定多肽抑制HIV-1融合活性.应用圆二色谱、分子排阻色谱测定多肽与N36的结合功能.结果 截取、替换氨基酸后的肽抑制gp41融合的活性都不同程度降低,与N36结合形成六束螺旋的能力减弱.在CP32M中部及C端I与I+4位置引入Lys增加Glu-Lys离子对作用后,肽活性降低.用C34的C端氨基酸序列NEKDLLE及可与gp120结合的序列RINNIPWSEAM置换QIWNNMT后,多肽仍有很高活性.结论 片

  17. Activation of HIV-1 from latent infection via synergy of RUNX1 inhibitor Ro5-3335 and SAHA.

    Directory of Open Access Journals (Sweden)

    Zachary Klase

    2014-03-01

    Full Text Available A major barrier to the elimination of HIV-1 infection is the presence of a pool of long-lived, latently infected CD4+ memory T-cells. The search for treatments to re-activate latent HIV to aid in clearance is hindered by the incomplete understanding of the mechanisms that lead to transcriptional silencing of viral gene expression in host cells. Here we identify a previously unknown role for RUNX1 in HIV-1 transcriptional latency. The RUNX proteins, in combination with the co-factor CBF-β, are critical transcriptional regulators in T-cells. RUNX1 strongly modulates CD4 expression and contributes to CD4+ T-cell function. We show that RUNX1 can bind DNA sequences within the HIV-1 LTR and that this binding represses transcription. Using patient samples we show a negative correlation between RUNX1 expression and viral load. Furthermore, we find that pharmacologic inhibition of RUNX1 by a small molecule inhibitor, Ro5-3335, synergizes with the histone deacetylase (HDAC inhibitor SAHA (Vorinostat to enhance the activation of latent HIV-1 in both cell lines and PBMCs from patients. Our findings indicate that RUNX1 and CBF-β cooperate in cells to modulate HIV-1 replication, identifying for the first time RUNX1 as a cellular factor involved in HIV-1 latency. This work highlights the therapeutic potential of inhibitors of RUNX1 to re-activate virus and aid in clearance of HIV-1.

  18. Activation of HIV-1 from latent infection via synergy of RUNX1 inhibitor Ro5-3335 and SAHA.

    Science.gov (United States)

    Klase, Zachary; Yedavalli, Venkat S R K; Houzet, Laurent; Perkins, Molly; Maldarelli, Frank; Brenchley, Jason; Strebel, Klaus; Liu, Paul; Jeang, Kuan-Teh

    2014-03-01

    A major barrier to the elimination of HIV-1 infection is the presence of a pool of long-lived, latently infected CD4+ memory T-cells. The search for treatments to re-activate latent HIV to aid in clearance is hindered by the incomplete understanding of the mechanisms that lead to transcriptional silencing of viral gene expression in host cells. Here we identify a previously unknown role for RUNX1 in HIV-1 transcriptional latency. The RUNX proteins, in combination with the co-factor CBF-β, are critical transcriptional regulators in T-cells. RUNX1 strongly modulates CD4 expression and contributes to CD4+ T-cell function. We show that RUNX1 can bind DNA sequences within the HIV-1 LTR and that this binding represses transcription. Using patient samples we show a negative correlation between RUNX1 expression and viral load. Furthermore, we find that pharmacologic inhibition of RUNX1 by a small molecule inhibitor, Ro5-3335, synergizes with the histone deacetylase (HDAC) inhibitor SAHA (Vorinostat) to enhance the activation of latent HIV-1 in both cell lines and PBMCs from patients. Our findings indicate that RUNX1 and CBF-β cooperate in cells to modulate HIV-1 replication, identifying for the first time RUNX1 as a cellular factor involved in HIV-1 latency. This work highlights the therapeutic potential of inhibitors of RUNX1 to re-activate virus and aid in clearance of HIV-1.

  19. HIV-1 Nef impairs key functional activities in human macrophages through CD36 downregulation.

    Directory of Open Access Journals (Sweden)

    Eleonora Olivetta

    Full Text Available Monocytes and macrophages utilize the class A and B scavenger receptors to recognize and perform phagocytosis of invading microbes before a pathogen-specific immune response is generated. HIV-1 Nef protein affects the innate immune system impairing oxidative burst response and phagocytic capacity of macrophages. Our data show that exogenous recombinant myristoylated Nef protein induces a marked CD36 downregulation in monocytes from Peripheral Blood Mononuclear Cells, in Monocyte-Derived Macrophages (MDMs differentiated by cytokines and in MDMs contained in a mixed culture obtained expanding PBMCs under Human Erythroid Massive Amplification condition. Under the latter culture condition we identify three main populations after 6 days of expansion: lymphocytes (37.8 ± 14.7%, erythroblasts (46.7±6.1% and MDMs (15.7 ± 7.5%. The Nef addition to the cell culture significantly downregulates CD36 expression in MDMs, but not in erythroid cells. Furthermore, CD36 inhibition is highly specific since it does not modify the expression levels of other MDM markers such as CD14, CD11c, CD86, CD68, CD206, Toll-like Receptor 2 and Toll-like Receptor 4. Similar results were obtained in MDMs infected with VSV-G pseudotyped HIV-1-expressing Nef. The reduced CD36 membrane expression is associated with decrease of correspondent CD36 mRNA transcript. Furthermore, Nef-induced CD36 downregulation is linked to both impaired scavenger activity with reduced capability to take up oxidized lipoproteins and to significant decreased phagocytosis of fluorescent beads and GFP-expressing Salmonella tiphymurium. In addition we observed that Nef induces TNF-α release in MDMs. Although these data suggest a possible involvement of TNF-α in mediating Nef activity, our results exclude a possible relationship between Nef-induced TNF-α release and Nef-mediated CD36 downregulation. The present work shows that HIV-1 Nef protein may have a role in the strategies elaborated by HIV-1 to

  20. Exhaustion of Activated CD8 T Cells Predicts Disease Progression in Primary HIV-1 Infection.

    Directory of Open Access Journals (Sweden)

    Matthias Hoffmann

    2016-07-01

    Full Text Available The rate at which HIV-1 infected individuals progress to AIDS is highly variable and impacted by T cell immunity. CD8 T cell inhibitory molecules are up-regulated in HIV-1 infection and associate with immune dysfunction. We evaluated participants (n = 122 recruited to the SPARTAC randomised clinical trial to determine whether CD8 T cell exhaustion markers PD-1, Lag-3 and Tim-3 were associated with immune activation and disease progression. Expression of PD-1, Tim-3, Lag-3 and CD38 on CD8 T cells from the closest pre-therapy time-point to seroconversion was measured by flow cytometry, and correlated with surrogate markers of HIV-1 disease (HIV-1 plasma viral load (pVL and CD4 T cell count and the trial endpoint (time to CD4 count <350 cells/μl or initiation of antiretroviral therapy. To explore the functional significance of these markers, co-expression of Eomes, T-bet and CD39 was assessed. Expression of PD-1 on CD8 and CD38 CD8 T cells correlated with pVL and CD4 count at baseline, and predicted time to the trial endpoint. Lag-3 expression was associated with pVL but not CD4 count. For all exhaustion markers, expression of CD38 on CD8 T cells increased the strength of associations. In Cox models, progression to the trial endpoint was most marked for PD-1/CD38 co-expressing cells, with evidence for a stronger effect within 12 weeks from confirmed diagnosis of PHI. The effect of PD-1 and Lag-3 expression on CD8 T cells retained statistical significance in Cox proportional hazards models including antiretroviral therapy and CD4 count, but not pVL as co-variants. Expression of 'exhaustion' or 'immune checkpoint' markers in early HIV-1 infection is associated with clinical progression and is impacted by immune activation and the duration of infection. New markers to identify exhausted T cells and novel interventions to reverse exhaustion may inform the development of novel immunotherapeutic approaches.

  1. Neurotoxic Activity of the HIV-1 Envelope Glycoprotein: Activation of Protein Kinase C in Rat Astrocytes

    Directory of Open Access Journals (Sweden)

    Isaac Adebayo

    2002-11-01

    Full Text Available Abstract: Envelope glycoprotein (gp120 of the human immunodeficiency virus type one (HIV-1, has adverse effects on glial cells and neurons. This study reports on the direct effect of recombinant gp120 (r-gp120 produced from different expression systems on protein kinase C, as a measure of relative neurotoxicity. Brain cells were grown in vitro from explants of the cerebral cortex of newborn rats, and recombinant gp120 preparations expressed in mammalian cell/vaccinia virus and insect cell/baculovirus systems were applied to astrocyte-enriched cultures. The gp120 preparations activated protein kinase C (PKC to similar levels in these cells. Mutant recombinant gp120 lacking the amino-terminal 29 amino acids produced from the mammalian and insect cells also activated PKC to similar levels as did the full-length protein. The recombinant proteins specifically activated PKC β and ζ, suggesting that they are able to induce both Ca2+-dependent and Ca2+-independent isoforms of this enzyme. Alteration of PKC activity in astrocytes by gp120 indicates its ability to modulate gene expression, which is associated with the neurotoxicity of this protein. Furthermore, the results suggest that the deletion of the first 29 residues of NH2-terminal end of the gp120 does not affect the functional activity of this protein with regard to modulation of signal transduction in astrocytes.

  2. Role of endolysosomes in HIV-1 Tat-induced neurotoxicity

    Directory of Open Access Journals (Sweden)

    Liang Hui

    2012-06-01

    Full Text Available Combined anti-retroviral therapeutic drugs effectively increase the lifespan of HIV-1-infected individuals who then have a higher prevalence of HAND (HIV-1 associated neurocognitive disorder. Soluble factors including HIV-1 proteins released from HIV-1-infected cells have been implicated in the pathogenesis of HAND, and particular attention has been paid to the HIV-1 Tat (transactivator of transcription protein because of its ability to directly excite neurons and cause neuronal cell death. Since HIV-1 Tat enters cells by receptor-mediated endocytosis and since endolysosomes play an important role in neuronal cell life and death, we tested here the hypothesis that HIV-1 Tat neurotoxicity is associated with changes in the endolysosome structure and function and also autophagy. Following the treatment of primary cultured rat hippocampal neurons with HIV-1 Tat or as controls mutant-Tat or PBS, neuronal viability was determined using a triple staining method. Preceding observations of HIV-1 Tat-induced neuronal cell death, we observed statistically significant changes in the structure and membrane integrity of endolysosomes, endolysosome pH and autophagy. As early as 24 h after HIV-1 Tat was applied to neurons, HIV-1 Tat accumulated in endolysosomes, endolysosome morphology was affected and their size increased, endolysosome membrane integrity was disrupted, endolysosome pH increased, specific activities of endolysosome enzymes decreased and autophagy was inhibited, as indicated by the significant changes in three markers for autophagy. In contrast, statistically significant levels of HIV-1 Tat-induced neuronal cell death were observed only after 48 h of HIV-1 Tat treatment. Our findings suggest that endolysosomes are involved in HIV-1 Tat-induced neurotoxicity and may represent a target for therapeutic intervention against HAND.

  3. Role of Endolysosomes in HIV-1 Tat-Induced Neurotoxicity

    Directory of Open Access Journals (Sweden)

    Liang Hui

    2012-05-01

    Full Text Available Combined anti-retroviral therapeutic drugs effectively increase the lifespan of HIV-1-infected individuals who then have a higher prevalence of HAND (HIV-1 associated neurocognitive disorder. Soluble factors including HIV-1 proteins released from HIV-1-infected cells have been implicated in the pathogenesis of HAND, and particular attention has been paid to the HIV-1 Tat (transactivator of transcription protein because of its ability to directly excite neurons and cause neuronal cell death. Since HIV-1 Tat enters cells by receptor-mediated endocytosis and since endolysosomes play an important role in neuronal cell life and death, we tested here the hypothesis that HIV-1 Tat neurotoxicity is associated with changes in the endolysosome structure and function and also autophagy. Following the treatment of primary cultured rat hippocampal neurons with HIV-1 Tat or as controls mutant-Tat or PBS, neuronal viability was determined using a triple staining method. Preceding observations of HIV-1 Tat-induced neuronal cell death, we observed statistically significant changes in the structure and membrane integrity of endolysosomes, endolysosome pH and autophagy. As early as 24 h after HIV-1 Tat was applied to neurons, HIV-1 Tat accumulated in endolysosomes, endolysosome morphology was affected and their size increased, endolysosome membrane integrity was disrupted, endolysosome pH increased, specific activities of endolysosome enzymes decreased and autophagy was inhibited, as indicated by the significant changes in three markers for autophagy. In contrast, statistically significant levels of HIV-1 Tat-induced neuronal cell death were observed only after 48 h of HIV-1 Tat treatment. Our findings suggest that endolysosomes are involved in HIV-1 Tat-induced neurotoxicity and may represent a target for therapeutic intervention against HAND.

  4. Ferrocenyl chalcone difluoridoborates inhibit HIV-1 integrase and display low activity towards cancer and endothelial cells.

    Science.gov (United States)

    Monserrat, Jean-Philippe; Al-Safi, Rasha I; Tiwari, Keshri Nath; Quentin, Lionel; Chabot, Guy G; Vessières, Anne; Jaouen, Gérard; Neamati, Nouri; Hillard, Elizabeth A

    2011-10-15

    We report here the discovery of a potent series of HIV-1 integrase (IN) inhibitors based on the ferrocenyl chalcone difluoridoborate structure. Ten new compounds have been synthesized and were generally found to have similar inhibitory activities against the IN 3' processing and strand transfer (ST) processes. IC(50) values were found to be in the low micromolar range, and significantly lower than those found for the non-coordinated ferrocenyl chalcones and other ferrocene molecules. The ferrocenyl chalcone difluoridoborates furthermore exhibited low cytotoxicity against cancer cells and low morphological activity against epithelial cells.

  5. Characteristics of HIV-1-specific CD8 T-cell responses and their role in loss of viremia in children chronically infected with HIV-1 undergoing highly active antiretroviral therapy

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zheng; ZHAO Qing-xia; FU Jun-liang; YAO Jin-xia; HE Yun; JIN Lei; WANG Fu-sheng

    2006-01-01

    Background Few studies have examined the properties of human immunodeficiency virus type 1 (HIV-1) epitope-specific cytotoxic T lymphocyte (CTL) responses in children. To address this issue, we characterized epitope-specific CTL responses and analyzed the determinants that may affect CTL responses before and after highly active antiretroviral therapy (HAART) in children with HIV-1 infection.Methods A total of 22 HIV-1-infected children and 23 uninfected healthy children as control were enrolled in the study. Circulating CD4 T cells and HIV-1 RNA load in plasma were routinely measured. Peripheral HIV-1-specific CTL frequency and HIV-1 epitope-specific, interferon-γ (IFN-γ)-producing T lymphocytes were measured using tetramer staining and enzyme-linked immunospot (ELISPOT) assay, respectively.Circulating dendritic cell (DC) subsets were monitored with FACS analysis.Results More than 80% of the children with HIV-1 infection exhibited a positive HIV-1-epitope-specific CTL response at baseline, but HIV-specific CTLs and IFN-γ-producing lymphocytes decreased in patients who responded to HAART in comparison with non-responders and HAART-naive children. The duration of virus suppression resulted from HAART was inversely correlated with CTL frequency. While in HAART-naive children, HIV-1-specific CTL frequency was positively correlated with myeloid DC (mDC) frequency,although the cause and effect relationship between the DCs and CTLs remains unknown.Conclusions HIV-1-epitope-specific CTL responses are dependent on antigenic stimulation. The impaired DC subsets in blood might result in a defect in DC-mediated T cell responses. These findings may provide insight into understanding the factors and related mechanisms that influence the outcome of HIV-1 carriers to HAART or future antiviral therapies.

  6. Analysis of HIV- type 1 protease and reverse transcriptase in Brazilian children failing highly active antiretroviral therapy (HAART Análise da protease e transcriptase reversa do HIV-1 em crianças com falha terapêutica em uso de terapia anti-retroviral altamente eficaz (HAART

    Directory of Open Access Journals (Sweden)

    Daisy Maria Machado

    2005-02-01

    Full Text Available The aim of this study was to evaluate the genotypic resistance profiles of HIV-1 in children failing highly active antiretroviral therapy (HAART. Forty-one children (median age = 67 months receiving HAART were submitted to genotypic testing when virological failure was detected. cDNA was extracted from PBMCs and amplified by nested PCR for the reverse transcriptase and protease regions of the pol gene. Drug resistance genotypes were determined from DNA sequencing. According to the genotypic analysis, 12/36 (33.3% and 6/36 (16.6% children showed resistance and possible resistance, respectively, to ZDV; 5/36 (14% and 4/36 (11.1%, respectively, showed resistance and possible resistance to ddI; 4/36 (11.1% showed resistance to 3TC and D4T; and 3/36 (8.3% showed resistance to Abacavir. A high percentage (54% of children exhibited mutations conferring resistance to NNRTI class drugs. Respective rates of resistance and possible resistance to PIs were: RTV (12.2%, 7.3%; APV (2.4%, 12.1%; SQV(0%, 12.1%; IDV (14.6%, 4.9%, NFV (22%, 4.9%, LPV/RTV (2.4%, 12.1%. Overall, 37/41 (90% children exhibited virus with mutations related to drug resistance, while 9% exhibited resistance to all three antiretroviral drug classes.O objetivo deste estudo foi avaliar o perfil de resistência genotípica do HIV-1 em crianças com falha terapêutica ao tratamento anti-retroviral (HAART. Quarenta e uma crianças (idade mediana = 67 meses em uso de HAART foram submetidas ao teste de genotipagem no momento da detecção de falha ao tratamento. Foi realizada extração de cDNA de células periféricas mononucleares e amplificação do mesmo (regiões da transcriptase reversa e protease do gene pol através de PCR-nested. O perfil genotípico foi determinado através do seqüenciamnto de nucleotídeos. De acordo com a análise genotípica, 12/36 (33,3% e 6/36 (16,6% crianças apresentaram, respectivamente, resistência e possível resistência ao AZT; 5/36 (14% e 4/36 (11

  7. Complement lysis activity in autologous plasma is associated with lower viral loads during the acute phase of HIV-1 infection.

    Directory of Open Access Journals (Sweden)

    Michael Huber

    2006-11-01

    Full Text Available BACKGROUND: To explore the possibility that antibody-mediated complement lysis contributes to viremia control in HIV-1 infection, we measured the activity of patient plasma in mediating complement lysis of autologous primary virus. METHODS AND FINDINGS: Sera from two groups of patients-25 with acute HIV-1 infection and 31 with chronic infection-were used in this study. We developed a novel real-time PCR-based assay strategy that allows reliable and sensitive quantification of virus lysis by complement. Plasma derived at the time of virus isolation induced complement lysis of the autologous virus isolate in the majority of patients. Overall lysis activity against the autologous virus and the heterologous primary virus strain JR-FL was higher at chronic disease stages than during the acute phase. Most strikingly, we found that plasma virus load levels during the acute but not the chronic infection phase correlated inversely with the autologous complement lysis activity. Antibody reactivity to the envelope (Env proteins gp120 and gp41 were positively correlated with the lysis activity against JR-FL, indicating that anti-Env responses mediated complement lysis. Neutralization and complement lysis activity against autologous viruses were not associated, suggesting that complement lysis is predominantly caused by non-neutralizing antibodies. CONCLUSIONS: Collectively our data provide evidence that antibody-mediated complement virion lysis develops rapidly and is effective early in the course of infection; thus it should be considered a parameter that, in concert with other immune functions, steers viremia control in vivo.

  8. Pre-clinical development as microbicide of zinc tetra-ascorbo-camphorate, a novel terpenoid derivative: Potent in vitro inhibitory activity against both R5- and X4-tropic HIV-1 strains without significant in vivo mucosal toxicity

    Directory of Open Access Journals (Sweden)

    Mannarini Aurèle

    2008-06-01

    Full Text Available Abstract Background Terpenoid derivatives originating from many plants species, are interesting compounds with numerous biological effects, such as anti-HIV-1 activity. The zinc tetra-ascorbo-camphorate complex (or "C14", a new monoterpenoid derivative was evaluated in vitro for its anti-HIV-1 activity on both R5- and X4-HIV-1 infection of primary target cells (macrophages, dendritic cells and T cells and on HIV-1 transfer from dendritic cells to T cells. Results The toxicity study was carried out in vitro and also with the New Zealand White rabbit vaginal irritation model. C14 was found to be no cytotoxic at high concentrations (CC50 > 10 μM and showed to be a potential HIV-1 inhibitor of infection of all the primary cells tested (EC50 = 1 μM. No significant changes could be observed in cervicovaginal tissue of rabbit exposed during 10 consecutive days to formulations containing up to 20 μM of C14. Conclusion Overall, these preclinical studies suggest that zinc tetra-ascorbo-camphorate derivative is suitable for further testing as a candidate microbicide to prevent male-to-female heterosexual acquisition of HIV-1.

  9. Abacavir, an anti-HIV-1 drug, targets TDP1-deficient adult T cell leukemia.

    Science.gov (United States)

    Tada, Kohei; Kobayashi, Masayuki; Takiuchi, Yoko; Iwai, Fumie; Sakamoto, Takashi; Nagata, Kayoko; Shinohara, Masanobu; Io, Katsuhiro; Shirakawa, Kotaro; Hishizawa, Masakatsu; Shindo, Keisuke; Kadowaki, Norimitsu; Hirota, Kouji; Yamamoto, Junpei; Iwai, Shigenori; Sasanuma, Hiroyuki; Takeda, Shunichi; Takaori-Kondo, Akifumi

    2015-04-01

    Adult T cell leukemia (ATL) is an aggressive T cell malignancy caused by human T cell leukemia virus type 1 (HTLV-1) and has a poor prognosis. We analyzed the cytotoxic effects of various nucleoside analog reverse transcriptase inhibitors (NRTIs) for HIV-1 on ATL cells and found that abacavir potently and selectively kills ATL cells. Although NRTIs have minimal genotoxicities on host cells, the therapeutic concentration of abacavir induced numerous DNA double-strand breaks (DSBs) in the chromosomal DNA of ATL cells. DSBs persisted over time in ATL cells but not in other cell lines, suggesting impaired DNA repair. We found that the reduced expression of tyrosyl-DNA phosphodiesterase 1 (TDP1), a repair enzyme, is attributable to the cytotoxic effect of abacavir on ATL cells. We also showed that TDP1 removes abacavir from DNA ends in vitro. These results suggest a model in which ATL cells with reduced TDP1 expression are unable to excise abacavir incorporated into genomic DNA, leading to irreparable DSBs. On the basis of the above mechanism, we propose abacavir as a promising chemotherapeutic agent for ATL.

  10. Inhibition of reverse transcriptase activity increases stability of the HIV-1 core.

    Science.gov (United States)

    Yang, Yang; Fricke, Thomas; Diaz-Griffero, Felipe

    2013-01-01

    Previous studies showed that HIV-1 reverse transcription occurs during or before uncoating, linking mechanistically reverse transcription with uncoating. Here we show that inhibition of reverse transcriptase (RT) during HIV-1 infection by pharmacologic or genetic means increased the stability of the HIV-1 core during infection. Interestingly, HIV-1 particles with increased core stability were resistant to the core-destabilizing effects of rhesus TRIM5α (TRIM5α(rh)). Collectively, this work implies that the surface of the HIV-1 core is dynamic and changes upon the ongoing processes within the core.

  11. A Conserved GPG-Motif in the HIV-1 Nef Core Is Required for Principal Nef-Activities.

    Directory of Open Access Journals (Sweden)

    Marta Martínez-Bonet

    Full Text Available To find out new determinants required for Nef activity we performed a functional alanine scanning analysis along a discrete but highly conserved region at the core of HIV-1 Nef. We identified the GPG-motif, located at the 121-137 region of HIV-1 NL4.3 Nef, as a novel protein signature strictly required for the p56Lck dependent Nef-induced CD4-downregulation in T-cells. Since the Nef-GPG motif was dispensable for CD4-downregulation in HeLa-CD4 cells, Nef/AP-1 interaction and Nef-dependent effects on Tf-R trafficking, the observed effects on CD4 downregulation cannot be attributed to structure constraints or to alterations on general protein trafficking. Besides, we found that the GPG-motif was also required for Nef-dependent inhibition of ring actin re-organization upon TCR triggering and MHCI downregulation, suggesting that the GPG-motif could actively cooperate with the Nef PxxP motif for these HIV-1 Nef-related effects. Finally, we observed that the Nef-GPG motif was required for optimal infectivity of those viruses produced in T-cells. According to these findings, we propose the conserved GPG-motif in HIV-1 Nef as functional region required for HIV-1 infectivity and therefore with a potential interest for the interference of Nef activity during HIV-1 infection.

  12. Systemic Immune Activation Profiles of HIV-1 Subtype C-Infected Children and Their Mothers

    Directory of Open Access Journals (Sweden)

    Tinyiko G. Makhubele

    2016-01-01

    Full Text Available Little is known about immune activation profiles of children infected with HIV-1 subtype C. The current study compared levels of selected circulating biomarkers of immune activation in HIV-1 subtype C-infected untreated mothers and their children with those of healthy controls. Multiplex bead array, ELISA, and immunonephelometric procedures were used to measure soluble CD14 (sCD14, beta-2 microglobulin (β2M, CRP, MIG, IP-10, and transforming growth factor beta 1 (TGF-β1. Levels of all 6 biomarkers were significantly elevated in the HIV-infected mothers and, with the exception of MIG, in their children (P<0.01–P<0.0001. The effects of antiretroviral therapy (ART and maternal smoking on these biomarkers were also assessed. With the exception of TGF-β1, which was unchanged in the children 12 months after therapy, initiation of ART was accompanied by decreases in the other biomarkers. Regression analysis revealed that although most biomarkers were apparently unaffected by smoking, exposure of children to maternal smoking was associated with a significant increase in IP-10. These findings demonstrate that biomarkers of immune activation are elevated in HIV-infected children pre-ART and decline, with the exception of TGF-β1, after therapy. Although preliminary, elevation of IP-10 in smoke-exposed infants is consistent with a higher level of immune activation in this group.

  13. Antiretroviral effect of lovastatin on HIV-1-infected individuals without highly active antiretroviral therapy (The LIVE study: a phase-II randomized clinical trial

    Directory of Open Access Journals (Sweden)

    Montoya Carlos J

    2009-06-01

    Full Text Available Abstract Background Highly active antiretroviral therapy produces a significant decrease in HIV-1 replication and allows an increase in the CD4 T-cell count, leading to a decrease in the incidence of opportunistic infections and mortality. However, the cost, side effects and complexity of antiretroviral regimens have underscored the immediate need for additional therapeutic approaches. Statins exert pleiotropic effects through a variety of mechanisms, among which there are several immunoregulatory effects, related and unrelated to their cholesterol-lowering activity that can be useful to control HIV-1 infection. Methods/design Randomized, double-blinded, placebo controlled, single-center, phase-II clinical trial. One hundred and ten chronically HIV-1-infected patients, older than 18 years and naïve for antirretroviral therapy (i.e., without prior or current management with antiretroviral drugs will be enrolled at the outpatient services from the most important centres for health insurance care in Medellin-Colombia. The interventions will be lovastatin (40 mg/day, orally, for 12 months; 55 patients or placebo (55 patients. Our primary aim will be to determine the effect of lovastatin on viral replication. The secondary aim will be to determine the effect of lovastatin on CD4+ T-cell count in peripheral blood. As tertiary aims we will explore differences in CD8+ T-cell count, expression of activation markers (CD38 and HLA-DR on CD4 and CD8 T cells, cholesterol metabolism, LFA-1/ICAM-1 function, Rho GTPases function and clinical evolution between treated and not treated HIV-1-infected individuals. Discussion Preliminary descriptive studies have suggested that statins (lovastatin may have anti HIV-1 activity and that their administration is safe, with the potential effect of controlling HIV-1 replication in chronically infected individuals who had not received antiretroviral medications. Considering that there is limited clinical data available on

  14. Randomized Phase I: Safety, Immunogenicity and Mucosal Antiviral Activity in Young Healthy Women Vaccinated with HIV-1 Gp41 P1 Peptide on Virosomes.

    Directory of Open Access Journals (Sweden)

    Geert Leroux-Roels

    Full Text Available UNLABELLED: Mucosal antibodies harboring various antiviral activities may best protect mucosal surfaces against early HIV-1 entry at mucosal sites and they should be ideally induced by prophylactic HIV-1 vaccines for optimal prevention of sexually transmitted HIV-1. A phase I, double-blind, randomized, placebo-controlled trial was conducted in twenty-four healthy HIV-uninfected young women. The study objectives were to assess the safety, tolerability and immunogenicity of virosomes harboring surface HIV-1 gp41-derived P1 lipidated peptides (MYM-V101. Participants received placebo or MYM-V101 vaccine at 10 μg/dose or 50 μg/dose intramuscularly at week 0 and 8, and intranasally at week 16 and 24. MYM-V101 was safe and well-tolerated at both doses administered by the intramuscular and intranasal routes, with the majority of subjects remaining free of local and general symptoms. P1-specific serum IgGs and IgAs were induced in all high dose recipients after the first injection. After the last vaccination, vaginal and rectal P1-specific IgGs could be detected in all high dose recipients. Approximately 63% and 43% of the low and high dose recipients were respectively tested positive for vaginal P1-IgAs, while 29% of the subjects from the high dose group tested positive for rectal IgAs. Serum samples had total specific IgG and IgA antibody concentrations ≥ 0.4 μg/mL, while mucosal samples were usually below 0.01 μg/mL. Vaginal secretions from MYM-V101 vaccinated subjects were inhibiting HIV-1 transcytosis but had no detectable neutralizing activity. P1-specific Th1 responses could not be detected on PBMC. This study demonstrates the excellent safety and tolerability of MYM-V101, eliciting systemic and mucosal antibodies in the majority of subjects. Vaccine-induced mucosal anti-gp41 antibodies toward conserved gp41 motifs were harboring HIV-1 transcytosis inhibition activity and may contribute to reduce sexually-transmitted HIV-1. TRIAL

  15. Natural mannosylation of HIV-1 gp120 imposes no immunoregulatory effects in primary human plasmacytoid dendritic cells

    NARCIS (Netherlands)

    Sondergaard, J.N.; Vinner, L.; Brix, S.

    2014-01-01

    Plasmacytoid dendritic cells (pDCs) play a vital role in activation of anti-HIV-1 immunity, and suppression of pDCs might mitigate immune responses against HIV-1. HIV-1 gp120 high-mannose has been attributed immunosuppressive roles in human myeloid DCs, but no receptors for high-mannose have so far

  16. The role of Vif oligomerization and RNA chaperone activity in HIV-1 replication.

    Science.gov (United States)

    Batisse, Julien; Guerrero, Santiago; Bernacchi, Serena; Sleiman, Dona; Gabus, Caroline; Darlix, Jean-Luc; Marquet, Roland; Tisné, Carine; Paillart, Jean-Christophe

    2012-11-01

    The viral infectivity factor (Vif) is essential for the productive infection and dissemination of HIV-1 in non-permissive cells that involve most natural HIV-1 target cells. Vif counteracts the packaging of two cellular cytidine deaminases named APOBEC3G (A3G) and A3F by diverse mechanisms including the recruitment of an E3 ubiquitin ligase complex and the proteasomal degradation of A3G/A3F, the inhibition of A3G mRNA translation or by a direct competition mechanism. In addition, Vif appears to be an active partner of the late steps of viral replication by participating in virus assembly and Gag processing, thus regulating the final stage of virion formation notably genomic RNA dimerization and by inhibiting the initiation of reverse transcription. Vif is a small pleiotropic protein with multiple domains, and recent studies highlighted the importance of Vif conformation and flexibility in counteracting A3G and in binding RNA. In this review, we will focus on the oligomerization and RNA chaperone properties of Vif and show that the intrinsic disordered nature of some Vif domains could play an important role in virus assembly and replication. Experimental evidence demonstrating the RNA chaperone activity of Vif will be presented.

  17. Impact of gender on response to highly active antiretroviral therapy in HIV-1 infected patients

    DEFF Research Database (Denmark)

    Thorsteinsson, Kristina; Ladelund, Steen; Jensen-Fangel, Søren;

    2012-01-01

    ABSTRACT: BACKGROUND: Impact of gender on time to initiation, response to and risk of modification of highly active antiretroviral therapy (HAART) in HIV-1 infected individuals is still controversial. METHODS: From a nationwide cohort of Danish HIV infected individuals we identified all heterosex......ABSTRACT: BACKGROUND: Impact of gender on time to initiation, response to and risk of modification of highly active antiretroviral therapy (HAART) in HIV-1 infected individuals is still controversial. METHODS: From a nationwide cohort of Danish HIV infected individuals we identified all...... counts (adjusted p=0.21). We observed no delay in time to initiation of HAART in women compared to men (HR 0.91, 95% CI 0.79-1.06). There were no gender differences in risk of treatment modification of the original HAART regimen during the first year of therapy for either toxicity (IRR 0.97 95% CI 0.......66-1.44) or other/unknown reasons (IRR 1.18 95% CI 0.76-1.82). Finally, CD4 counts and the risk of having a detectable viral load at 1, 3 and 6 years did not differ between genders. CONCLUSIONS: In a setting with free access to healthcare and HAART, gender does neither affect time from eligibility to HAART...

  18. Pharmacokinetics of sifuvirtide, a novel anti-HIV-1 peptide, in monkeys and its inhibitory concentration in vitro

    Institute of Scientific and Technical Information of China (English)

    Shu-jia DAI; Qing LIANG; Gui-fang DOU; Xiao-hong QIAN; Hai-feng SONG; Zhong-ming TANG; De-sheng LIU; Xiu-wen LIU; Liu-meng YANG; Yong-tang ZHENG

    2005-01-01

    Aim: To study the pharmacokinetics of sifuvirtide, a novel anti-human immunodeficiency virus (HIV) peptide, in monkeys and to compare the inhibitory concentrations of sifuvirtide and enfuvirtide on HIV-1-infected-cell fusion. Methods: Monkeys received 1.2 mg/kg iv or sc of sifuvirtide. An on-line solid-phase extraction procedure combined with liquid chromatography tandem mass spectrometry (SPELC/MS/MS) was established and applied to determine the concentration of sifuvirtide in monkey plasma. A four-127I iodinated peptide was used as an internal standard. Fifty percent inhibitory concentration (IC50) of sifuvirtide on cell fusion was determined by co-cultivation assay. Results: The assay was validated with good precision and accuracy. The calibration curve for sifuvirtide in plasma was linear over a range of 4.88-5000 μg/L, with correlation coefficients above 0.9923.After iv or sc administration, the observed peak concentrations of sifuvirtide were 10 626±2 886 μg/L and 528± 191 μg/L, and the terminal elimination half-lives (T1/2)were 6.3±0.9 h and 5.5±1.0 h, respectively. After sc, Tmax was 0.25-2 h, and the absolute bioavailability was 49%± 13%. Sifuvirtide inhibited the syncytium formation between HIV- 1 chronically infected cells and uninfected cells with an IC50 of 0.33 μg/L. Conclusion: An on-line SPE-LC/MS/MS approach was established for peptide pharmacokinetic studies. Sifuvirtide was rapidly absorbed subcutaneously into the blood circulation. The T1/2 of sifuvirtide was remarkably longer than that of its analog, enfuvirtide, reported in healthy monkeys and it conferred a long-term plasma concentration level which was higher than its IC50 in vitro.

  19. The role of G protein gene GNB3 C825T Polymorphism in HIV-1 acquisition, progression and immune activation

    Directory of Open Access Journals (Sweden)

    Juno Jennifer

    2012-01-01

    Full Text Available Abstract Background The GNB3 C825T polymorphism is associated with increased G protein-mediated signal transduction, SDF-1α-mediated lymphocyte chemotaxis, accelerated HIV-1 progression, and altered responses to antiretroviral therapy among Caucasian subjects. The GNB3 825T allele is highly prevalent in African populations, and as such any impact on HIV-1 acquisition or progression rates could have a dramatic impact. This study examines the association of the 825T polymorphism with HIV-1 acquisition, disease progression and immune activation in two African cohorts. GNB3 825 genotyping was performed for enrolees in both a commercial sex worker cohort and a perinatal HIV transmission (PHT cohort in Nairobi, Kenya. Ex vivo immune activation was quantified by flow cytometry, and plasma chemokine levels were assessed by cytokine bead array. Results GNB3 genotype was not associated with sexual or vertical HIV-1 acquisition within these cohorts. Within the Pumwani cohort, GNB3 genotype did not affect HIV-1 disease progression among seroconverters or among HIV-1-positive individuals after adjustment for baseline CD4 count. Maternal CD4 decline and viral load increase in the PHT cohort did not differ between genotypes. Multi-parametric flow cytometry assessment of T cell activation (CD69, HLA-DR, CD38 and Treg frequency (CD25+FOXP3+ found no differences between genotype groups. Plasma SDF-1α, MIP-1β and TRAIL levels quantified by cytokine bead array were also similar between groups. Conclusions In contrast to previous reports, we were unable to provide evidence to suggest that the GNB3 C825T polymorphism affects HIV-1 acquisition or disease progression within African populations. Ex vivo immune activation and plasma chemokine levels were similarly unaffected by GNB3 genotype in both HIV-1-negative and HIV-1-positive individuals. The paucity of studies investigating the impact of GNB3 polymorphism among African populations and the lack of mechanistic

  20. Longitudinal comparison between plasma and seminal HIV-1 viral loads during antiretroviral treatment Comparação longitudinal entre cargas virais seminais e plasmáticas do HIV-1 durante terapia anti-retroviral

    Directory of Open Access Journals (Sweden)

    Lauro Ferreira da Silva Pinto Neto

    2003-12-01

    Full Text Available This study was designed to investigate the impact of anti-retroviral therapy on both plasma and seminal HIV-1 viral loads and the correlation between viral loads in these compartments after treatment. Viral load, CD4+ and CD8+ T-cell counts were evaluated in paired plasma and semen samples from 36 antiretroviral therapy-naïve patients at baseline and on days 45, 90, and 180 of treatment. Slopes for blood and seminal viral loads in all treated patients were similar (p = 0.21. Median HIV-1 RNA titers in plasma and semen at baseline were 4.95 log10 and 4.48 log10 copies/ml, respectively. After 180 days of therapy, the median viral load declined to 3.15 log10 copies/ml (plasma and 3.2 log10 copies/ml (semen. At this timepoint 22 patients presented HIV-1 viral load below 400 copies/ml in either plasma or semen, but only 9 had viral loads below 400 copies/ml in both compartments.Este estudo foi desenhado para investigar o impacto do tratamento com anti-retrovirais na evolução das cargas virais plasmáticas e seminais do HIV-1. A carga viral do HIV-1 e a contagem de linfócitos T CD4+ e CD8+ foi determinada em amostras pareadas de sangue e sêmen de 36 pacientes virgem de tratamento nos dias 0, 45, 90 e 180 após o início da terapia. As curvas de declínio das cargas virais plasmática e seminal foram semelhantes (p= 0.21. As medianas da carga viral plasmática e seminal no pré-tratamento (dia 0 foram 4.95 e 4.48 log10 cópias/ml, respectivamente. Seis meses após o início da terapia, a mediana da carga viral plasmática era 3.15 log10 cópias/ml e a seminal 3.2 log10 cópias/ml. Neste mesmo periodo, 22 pacientes apresentavam carga viral abaixo de 400 cópias/ml no plasma e/ou sêmen, enquanto apenas 9 pacientes apresentavam carga viral abaixo do limite de detecção nos dois compartimentos.

  1. Activation and inflammation markers in HIV-1-infected patients in dependency of treatment strategies

    Directory of Open Access Journals (Sweden)

    R Ehret

    2012-11-01

    Full Text Available Purpose of the study: HIV-1-infected patients have elevated levels of immune activation and systemic inflammatory markers which are partially strong predictors of disease progression or are associated with increased cardiovascular risk. The dependency of anti-retroviral treatment (ART, the usage of NNRTI or PI-based and the application of non-nuc regimens is analysed here on the basis of a dataset (Chronic Inflammation Dependency on TREatment: CIDRE cohort from 1500 patients in Berlin. Methods: In a retrospective analysis we compared relative CD4+ cell counts, viral load, relative CD8+CD38+DR-and CD3+DR+cells, concentration of high-sensitivity C-reactive protein (hsCRP and interleukin-6 (IL-6 in therapy-naïve or treated patients dependent on usage or non-usage of NUCs, PI or NNRTI. Statistics were performed with R (R Core Team; 2012; R: A language and environment for statistical computing using Wilcoxon rank sum test in two-sided analysis. Summary of results: As to expect, ART-naïve patients (n=190 had significantly higher viral loads and lower CD4+cell counts (p: both<0.05 and showed higher activation levels than treated patient (CD8+CD38+DR- and CD3+DR+both<0.05. But no significant difference was calculated for hsCRP or IL-6. Nuc-sparing regimen (n=46 did not show any distinction compared to nuc-containing therapies (n=1249 for the analysed parameters. Significant differences were detected for PI-regimen (n=711 with lower CD4+ cell counts and higher activation (CD8+38+DR-, CD3+DR+ and IL-6 (p: all<0.05 but not for hsCRP (p=0.39. The opposite was true for NNRTI-based therapies (n=445 with higher CD4+ cell percentages and lower activation and inflammation markers (p: all<0.05 and as well no difference in hsCRP (p=0.97 compared with all other treated patients. Conclusions: The lack of differences between therapy-naïve patients and patients on ART for inflammation markers may be due to the relative good immunological state of the first group

  2. RNAP II processivity is a limiting step for HIV-1 transcription independent of orientation to and activity of endogenous neighboring promoters.

    Science.gov (United States)

    Kaczmarek Michaels, Katarzyna; Wolschendorf, Frank; Schiralli Lester, Gillian M; Natarajan, Malini; Kutsch, Olaf; Henderson, Andrew J

    2015-12-01

    Since HIV-1 has a propensity to integrate into actively expressed genes, transcriptional interference from neighboring host promoters has been proposed to contribute to the establishment and maintenance HIV-1 latency. To gain insights into how endogenous promoters influence HIV-1 transcription we utilized a set of inducible T cell lines and characterized whether there were correlations between expression of endogenous genes, provirus and long terminal repeat architecture. We show that neighboring promoters are active but have minimal impact on HIV-1 transcription, in particular, expression of the endogenous gene did not prevent expression of HIV-1 following induction of latent provirus. We also demonstrate that releasing paused RNAP II by diminishing negative elongation factor (NELF) is sufficient to reactivate transcriptionally repressed HIV-1 provirus regardless of the integration site and orientation of the provirus suggesting that NELF-mediated RNAP II pausing is a common mechanism of maintaining HIV-1 latency.

  3. Distinct determinants in HIV-1 Vif and human APOBEC3 proteins are required for the suppression of diverse host anti-viral proteins.

    Directory of Open Access Journals (Sweden)

    Wenyan Zhang

    Full Text Available BACKGROUND: APOBEC3G (A3G and related cytidine deaminases of the APOBEC3 family of proteins are potent inhibitors of many retroviruses, including HIV-1. Formation of infectious HIV-1 requires the suppression of multiple cytidine deaminases by Vif. HIV-1 Vif suppresses various APOBEC3 proteins through the common mechanism of recruiting the Cullin5-ElonginB-ElonginC E3 ubiquitin ligase to induce target protein polyubiquitination and proteasome-mediated degradation. The domains in Vif and various APOBEC3 proteins required for APOBEC3 recognition and degradation have not been fully characterized. METHODS AND FINDINGS: In the present study, we have demonstrated that the regions of APOBEC3F (A3F that are required for its HIV-1-mediated binding and degradation are distinct from those reported for A3G. We found that the C-terminal cytidine deaminase domain (C-CDD of A3F alone is sufficient for its interaction with HIV-1 Vif and its Vif-mediated degradation. We also observed that the domains of HIV-1 Vif that are uniquely required for its functional interaction with full-length A3F are also required for the degradation of the C-CDD of A3F; in contrast, those Vif domains that are uniquely required for functional interaction with A3G are not required for the degradation of the C-CDD of A3F. Interestingly, the HIV-1 Vif domains required for the degradation of A3F are also required for the degradation of A3C and A3DE. On the other hand, the Vif domains uniquely required for the degradation of A3G are dispensable for the degradation of cytidine deaminases A3C and A3DE. CONCLUSIONS: Our data suggest that distinct regions of A3F and A3G are targeted by HIV-1 Vif molecules. However, HIV-1 Vif suppresses A3F, A3C, and A3DE through similar recognition determinants, which are conserved among Vif molecules from diverse HIV-1 strains. Mapping these determinants may be useful for the design of novel anti-HIV inhibitors.

  4. Serum neutralizing activities from a Beijing homosexual male cohort infected with different subtypes of HIV-1 in China.

    Directory of Open Access Journals (Sweden)

    Mingshun Zhang

    Full Text Available Protective antibodies play a critical role in an effective HIV vaccine; however, eliciting antibodies to block infection by viruses from diverse genetic subtypes remains a major challenge. As the world's most populous country, China has been under the threat of at least three major subtypes of circulating HIV-1 viruses. Understanding the cross reactivity and specificities of serum antibody responses that mediate broad neutralization of the virus in HIV-1 infected Chinese patients will provide valuable information for the design of vaccines to prevent HIV-1 transmission in China. Sera from a cohort of homosexual men, who have been managed by a major HIV clinical center in Beijing, China, were analyzed for cross-sectional neutralizing activities against pseudotyped viruses expressing Env antigens of the major subtype viruses (AE, BC and B subtypes circulating in China. Neutralizing activities in infected patients' blood were most capable of neutralizing viruses in the homologous subtype; however, a subset of blood samples was able to achieve broad neutralizing activities across different subtypes. Such cross neutralizing activity took 1-2 years to develop and CD4 binding site antibodies were critical components in these blood samples. Our study confirmed the presence of broadly neutralizing sera in China's HIV-1 patient population. Understanding the specificity and breadth of these neutralizing activities can guide efforts for the development of HIV vaccines against major HIV-1 viruses in China.

  5. Involvement of Sp1 in Butyric Acid-Induced HIV-1 Gene Expression

    Directory of Open Access Journals (Sweden)

    Kenichi Imai

    2015-09-01

    Full Text Available Background/Aims: The ability of human immunodeficiency virus-1(HIV-1 to establish latent infection and its re-activation is considered critical for progression of HIV-1 infection. We previously reported that a bacterial metabolite butyric acid, acting as a potent inhibitor of histone deacetylases (HDACs, could lead to induction of HIV-1 transcription; however, the molecular mechanism remains unclear. The aim of this study was to investigate the effect of butyric acid on HIV-1 gene expression. Methods: Butyric acid-mediated HIV-1 gene expression was determined by luciferase assay and Chromatin immunoprecipitation assay. Western blot analysis and ELISA were used for the detection of HIV-1. Results: We found that Sp1 binding sites within the HIV-1 promoter are primarily involved in butyric acid-mediated HIV-1 activation. In fact, Sp1 knockdown by small interfering RNA and the Sp1 inhibitor mithramycin A abolished the effect of butyric acid. We also observed that cAMP response element-binding-binding protein (CBP was required for butyric acid-induced HIV-1 activation. Conclusions: These results suggest that butyric acid stimulates HIV-1 promoter through inhibition of the Sp1-associated HDAC activity and recruitment of CBP to the HIV-1 LTR. Our findings suggest that Sp1 should be considered as one of therapeutic targets in anti-viral therapy against HIV-1 infection aggravated by butyric acid-producing bacteria.

  6. CRF01_AE-specific neutralizing activity observed in plasma derived from HIV-1-infected Thai patients residing in northern Thailand: comparison of neutralizing breadth and potency between plasma derived from rapid and slow progressors.

    Directory of Open Access Journals (Sweden)

    Sompong Sapsutthipas

    Full Text Available BACKGROUND: Development of a protective vaccine against human immunodeficiency virus type 1 (HIV-1 is an important subject in the field of medical sciences; however, it has not yet been achieved. Potent and broadly neutralizing antibodies are found in the plasma of some HIV-1-infected patients, whereas such antibody responses have failed to be induced by currently used vaccine antigens. In order to develop effective vaccine antigens, it is important to reveal the molecular mechanism of how strong humoral immune responses are induced in infected patients. As part of such studies, we examined the correlation between the anti-HIV-1 neutralizing antibody response and disease progression. METHODOLOGY/PRINCIPAL FINDINGS: We evaluated the anti-HIV-1 neutralizing activity of plasma derived from 33 rapid and 34 slow progressors residing in northern Thailand. The level of neutralizing activity varied considerably among plasmas, and no statistically significant differences in the potency and breadth of neutralizing activities were observed overall between plasma derived from rapid and slow progressors; however, plasma of 4 slow progressors showed neutralizing activity against all target viruses, whereas none of the plasma of rapid progressors showed such neutralizing activity. In addition, 21% and 9% of plasmas derived from slow and rapid progressors inhibited the replication of more than 80% of CRF01_AE Env-recombinant viruses tested, respectively. Neutralization of subtype B and C Env-recombinant viruses by the selected plasma was also examined; however, these plasma samples inhibited the replication of only a few viruses tested. CONCLUSIONS/SIGNIFICANCE: Although no statistically significant differences were observed in the potency and breadth of anti-HIV-1 neutralizing activities between plasma derived from rapid and slow progressors, several plasma samples derived from slow progressors neutralized CRF01_AE Env-recombinant viruses more frequently than

  7. Circulating Biomarkers of Immune Activation Distinguish Viral Suppression from Nonsuppression in HAART-Treated Patients with Advanced HIV-1 Subtype C Infection

    Directory of Open Access Journals (Sweden)

    Glen Malherbe

    2014-01-01

    Full Text Available Few studies have examined immune activation profiles in patients with advanced HIV-1 subtype C infection or assessed their potential to predict responsiveness to HAART. BioPlex, ELISA, and nephelometric procedures were used to measure plasma levels of inflammatory biomarkers in HIV-1 subtype C-infected patients sampled before and after 6 months of successful HAART (n=20; in patients failing HAART (n=30; and in uninfected controls (n=8. Prior to HAART, CXCL9, CXCL10, β2M, sTNF-R1, TGF-β1, IFN-γ, IL-6, TNF, and sCD14 were significantly elevated in HIV-1-infected patients compared to controls (P<0.01. All of these markers, with the exception of sTNF-R1, were also elevated in patients failing HAART (P<0.05. The persistently elevated levels of CXCL9, CXCL10, and β2M in patients failing therapy in the setting of a marked reduction in these markers in patients on successful HAART suggest that they may be useful not only to monitor immune activation during HAART, but also to distinguish between good and poor responders. In the case of sCD14 and TGF-β1, the levels of these biomarkers remained persistently elevated despite HAART-induced virological suppression, a finding that is consistent with ongoing monocyte-macrophage activation, underscoring a potential role for adjuvant anti-inflammatory therapy.

  8. A role for microRNA-155 modulation in the anti-HIV-1 effects of Toll-like receptor 3 stimulation in macrophages.

    Directory of Open Access Journals (Sweden)

    Gokul Swaminathan

    2012-09-01

    reporter assay suggested they are authentic miR-155 targets. Our findings provide evidence that miR-155 exerts an anti-HIV-1 effect by targeting several HIV-1 dependency factors involved in post-entry, pre-integration events, leading to severely diminished HIV-1 infection.

  9. A role for microRNA-155 modulation in the anti-HIV-1 effects of Toll-like receptor 3 stimulation in macrophages.

    Science.gov (United States)

    Swaminathan, Gokul; Rossi, Fiorella; Sierra, Luz-Jeannette; Gupta, Archana; Navas-Martín, Sonia; Martín-García, Julio

    2012-09-01

    assay suggested they are authentic miR-155 targets. Our findings provide evidence that miR-155 exerts an anti-HIV-1 effect by targeting several HIV-1 dependency factors involved in post-entry, pre-integration events, leading to severely diminished HIV-1 infection.

  10. Exosomes from HIV-1-infected Cells Stimulate Production of Pro-inflammatory Cytokines through Trans-activating Response (TAR) RNA.

    Science.gov (United States)

    Sampey, Gavin C; Saifuddin, Mohammed; Schwab, Angela; Barclay, Robert; Punya, Shreya; Chung, Myung-Chul; Hakami, Ramin M; Zadeh, Mohammad Asad; Lepene, Benjamin; Klase, Zachary A; El-Hage, Nazira; Young, Mary; Iordanskiy, Sergey; Kashanchi, Fatah

    2016-01-15

    HIV-1 infection results in a chronic illness because long-term highly active antiretroviral therapy can lower viral titers to an undetectable level. However, discontinuation of therapy rapidly increases virus burden. Moreover, patients under highly active antiretroviral therapy frequently develop various metabolic disorders, neurocognitive abnormalities, and cardiovascular diseases. We have previously shown that exosomes containing trans-activating response (TAR) element RNA enhance susceptibility of undifferentiated naive cells to HIV-1 infection. This study indicates that exosomes from HIV-1-infected primary cells are highly abundant with TAR RNA as detected by RT-real time PCR. Interestingly, up to a million copies of TAR RNA/μl were also detected in the serum from HIV-1-infected humanized mice suggesting that TAR RNA may be stable in vivo. Incubation of exosomes from HIV-1-infected cells with primary macrophages resulted in a dramatic increase of proinflammatory cytokines, IL-6 and TNF-β, indicating that exosomes containing TAR RNA could play a direct role in control of cytokine gene expression. The intact TAR molecule was able to bind to PKR and TLR3 effectively, whereas the 5' and 3' stems (TAR microRNAs) bound best to TLR7 and -8 and none to PKR. Binding of TAR to PKR did not result in its phosphorylation, and therefore, TAR may be a dominant negative decoy molecule in cells. The TLR binding through either TAR RNA or TAR microRNA potentially can activate the NF-κB pathway and regulate cytokine expression. Collectively, these results imply that exosomes containing TAR RNA could directly affect the proinflammatory cytokine gene expression and may explain a possible mechanism of inflammation observed in HIV-1-infected patients under cART.

  11. Targeted HIV-1 Latency Reversal Using CRISPR/Cas9-Derived Transcriptional Activator Systems.

    Directory of Open Access Journals (Sweden)

    Julia K Bialek

    Full Text Available CRISPR/Cas9 technology is currently considered the most advanced tool for targeted genome engineering. Its sequence-dependent specificity has been explored for locus-directed transcriptional modulation. Such modulation, in particular transcriptional activation, has been proposed as key approach to overcome silencing of dormant HIV provirus in latently infected cellular reservoirs. Currently available agents for provirus activation, so-called latency reversing agents (LRAs, act indirectly through cellular pathways to induce viral transcription. However, their clinical performance remains suboptimal, possibly because reservoirs have diverse cellular identities and/or proviral DNA is intractable to the induced pathways. We have explored two CRISPR/Cas9-derived activator systems as targeted approaches to induce dormant HIV-1 proviral DNA. These systems recruit multiple transcriptional activation domains to the HIV 5' long terminal repeat (LTR, for which we have identified an optimal target region within the LTR U3 sequence. Using this target region, we demonstrate transcriptional activation of proviral genomes via the synergistic activation mediator complex in various in culture model systems for HIV latency. Observed levels of induction are comparable or indeed higher than treatment with established LRAs. Importantly, activation is complete, leading to production of infective viral particles. Our data demonstrate that CRISPR/Cas9-derived technologies can be applied to counteract HIV latency and may therefore represent promising novel approaches in the quest for HIV elimination.

  12. Similar Neutralizing Activity in the HIV-1 Infected Long Term Non-progressors(LTNPs) and Typical Progressors(TPs)

    Institute of Scientific and Technical Information of China (English)

    Zheng Wang; Si-yang Liu; Lin Li; Tian-yi Li; Jing-yun Li; Li-li Chen; Yong-jian Liu; Han-ping Li; Zuo-yi Bao; Xiao-lin Wang; Dao-min Zhuang

    2012-01-01

    Neutralizing antibodies are considered to be an important protective parameter used in HIV-l vaccine evaluation.However,the exact role that neutralizing antibodies plays in controlling the disease progression of HIV-1 infected peoples is still undetermined.In this paper,we compared the protective function of the neutralizing antibody response in the plasma from LTNP and TP against clade B and clade C pseudoviruses.No difference in the neutralizing activities between the plasma from LTNP and TP was found,which was consistent with the most recent reports.In addition,no correlations between the titer or breadth and CD4+ or viral load in HIV-1 infected individuals were found.The protective roles played by neutralizing antibodies in controlling disease progression of HIV-1 infected people need to be considered in a new viewpoint.

  13. Soluble urokinase receptor levels in plasma during 5 years of highly active antiretroviral therapy in HIV-1-infected patients

    DEFF Research Database (Denmark)

    Ostrowski, Sisse R; Katzenstein, Terese L; Piironen, Timo;

    2004-01-01

    High blood levels of the soluble urokinase receptor (suPAR) strongly predict increased mortality in human immunodeficiency virus-1 (HIV-1)-infected patients. This study investigated the plasma concentration of suPAR in 29 treatment-naive HIV-1-infected patients during 5 years treatment with highly...... active antiretroviral therapy (HAART). Plasma suPAR decreased after introducing HAART, most pronounced during the first treatment year. The change in plasma suPAR was independent of changes in viral replication and CD4+ cells but it was strongly correlated with plasma levels of the soluble TNF receptor...... is linked to inflammation in untreated as well as HAART-treated HIV-1-infected patients....

  14. HIV-1 Tat primes and activates microglial NLRP3 inflammasome-mediated neuroinflammation.

    Science.gov (United States)

    Chivero, Ernest T; Guo, Ming-Lei; Periyasamy, Palsamy; Liao, Ke; Callen, Shannon E; Buch, Shilpa

    2017-03-07

    Neuroinflammation associated with HIV-1 infection is a problem affecting ∼50% of HIV-infected individuals. NLRP3 inflammasome has been implicated in HIV-induced microglial activation, but the mechanism(s) remain unclear. Since HIV-Tat continues to be present despite antiretroviral therapy and activates NF-kB, we hypothesized that Tat could prime the NLRP3 inflammasome. We found a dose- and time-dependent induction of NLRP3 expression in microglia exposed to Tat compared with control. Tat exposure also time-dependently increased the mature caspase-1 and IL-1β levels and enhanced the IL-1β secretion. These in vitro findings were validated in archival brain tissues from SIV-infected and uninfected rhesus macaques. Further validation of NLRP3 priming in-vivo involved administration of LPS to HIV-1 transgenic (Tg) rats followed by assessment of IL-1β mRNA expression and inflammasome activation (ASC oligomers and mature IL-1β). Intriguingly, LPS potentiated upregulation of IL-1β mRNA and inflammasome activation in HIV-Tg rats compared with the wild type controls. Interestingly, we found an inverse relationship in the expression of NLRP3 and its negative regulator, miR-223, suggesting a miR-223-mediated mechanism for Tat-induced NLRP3 priming. Furthermore, blockade of NLRP3 resulted in decreased IL-1β secretion. Collectively, these findings suggest a novel role of Tat in priming and activating the NLRP3 inflammasome. Thus, NLRP3 can be envisioned as a therapeutic target for ameliorating Tat-mediated neuroinflammation.Significance StatementDespite successful suppression of viremia with increased longevity in the era of cART, chronic inflammation with underlying neurocognitive impairment continues to afflict almost 50% of infected individuals. Viral, bacterial and cellular products have all been implicated in promoting the chronic inflammation found in these individuals. Understanding the molecular mechanism(s) by which viral proteins such as HIV Tat can activate

  15. Galantamine and nicotine have a synergistic effect on inhibition of microglial activation induced by HIV-1 gp120.

    Science.gov (United States)

    Giunta, B; Ehrhart, J; Townsend, K; Sun, N; Vendrame, M; Shytle, D; Tan, J; Fernandez, F

    2004-08-30

    Chronic brain inflammation is the common final pathway in the majority of neurodegenerative diseases and central to this phenomenon is the immunological activation of brain mononuclear phagocyte cells, called microglia. This inflammatory mechanism is a central component of HIV-associated dementia (HAD). In the healthy state, there are endogenous signals from neurons and astrocytes, which limit excessive central nervous system (CNS) inflammation. However, the signals controlling this process have not been fully elucidated. Studies on the peripheral nervous system suggest that a cholinergic anti-inflammatory pathway regulates systemic inflammatory response by way of acetylcholine acting at the alpha7 nicotinic acetylcholine receptor (alpha7nAChR) found on blood-borne macrophages. Recent data from our laboratory indicates that cultured microglial cells also express this same receptor and that microglial anti-inflammatory properties are mediated through it and the p44/42 mitogen-activated protein kinase (MAPK) system. Here we report for the first time the creation of an in vitro model of HAD composed of cultured microglial cells synergistically activated by the addition of IFN-gamma and the HIV-1 coat glycoprotein, gp120. Furthermore, this activation, as measured by TNF-alpha and nitric oxide (NO) release, is synergistically attenuated through the alpha7 nAChR and p44/42 MAPK system by pretreatment with nicotine, and the cholinesterase inhibitor, galantamine. Our findings suggest a novel therapeutic combination to treat or prevent the onset of HAD through this modulation of the microglia inflammatory mechanism.

  16. Identification of peptides from human pathogens able to cross-activate an HIV-1-gag-specific CD4+ T cell clone.

    Science.gov (United States)

    Venturini, Sara; Allicotti, Gina; Zhao, Yindong; Simon, Richard; Burton, Dennis R; Pinilla, Clemencia; Poignard, Pascal

    2006-01-01

    Antigen recognition by T cells is degenerate both at the MHC and the TCR level. In this study, we analyzed the cross-reactivity of a human HIV-1 gag p24-specific CD4(+) T cell clone obtained from an HIV-1-seronegative donor using a positional scanning synthetic combinatorial peptide library (PS-SCL)-based biometrical analysis. A number of decapeptides able to activate the HIV-1 gag-specific clone were identified and shown to correspond to sequences found in other human pathogens. Two of these peptides activated the T cell clone with the same stimulatory potency as the original HIV-1 gag p24 peptide. These findings show that an HIV-1-specific human T helper clone can react efficiently with peptides from other pathogens and suggest that cellular immune responses identified as being specific for one human pathogen (HIV-1) could arise from exposure to other pathogens.

  17. A novel ribonuclease with potent HIV-1 reverse transcriptase inhibitory activity from cultured mushroom Schizophyllum commune.

    Science.gov (United States)

    Zhao, Yong-Chang; Zhang, Guo-Qing; Ng, Tzi-Bun; Wang, He-Xiang

    2011-10-01

    A 20-kDa ribonuclease (RNase) was purified from fresh fruiting bodies of cultured Schizophyllum commune mushrooms. The RNase was not adsorbed on Affi-gel blue gel but adsorbed on DEAE-cellulose and CM-cellulose. It exhibited maximal RNase activity at pH 6.0 and 70°C. It demonstrated the highest ribonucleolytic activity toward poly (U) (379.5 μ/mg), the second highest activity toward poly (C) (244.7 μ/mg), less activity toward poly (A) (167.4 μ/mg), and much weaker activity toward poly (G) (114.5 μ/mg). The RNase inhibited HIV-1 reverse transcriptase with an IC(50) of 65 μM. No effect on [(3)H-methyl]-thymidine uptake by lymphoma MBL2 cells and leukemia L1210 cells was observed at 100 μM concentration of the RNase. A comparison of RNases from S. commune and Volvariella volvacea revealed that they demonstrated some similarities in N-terminal amino acid sequence, optimum pH and polyhomoribonucleotide specificity. However, some differences in chromatographic behavior and molecular mass were observed.

  18. HIV-1 Nef enhances dendritic cell-mediated viral transmission to CD4+ T cells and promotes T-cell activation.

    Directory of Open Access Journals (Sweden)

    Corine St Gelais

    Full Text Available HIV-1 Nef enhances dendritic cell (DC-mediated viral transmission to CD4(+ T cells, but the underlying mechanism is not fully understood. It is also unknown whether HIV-1 infected DCs play a role in activating CD4(+ T cells and enhancing DC-mediated viral transmission. Here we investigated the role of HIV-1 Nef in DC-mediated viral transmission and HIV-1 infection of primary CD4(+ T cells using wild-type HIV-1 and Nef-mutated viruses. We show that HIV-1 Nef facilitated DC-mediated viral transmission to activated CD4(+ T cells. HIV-1 expressing wild-type Nef enhanced the activation and proliferation of primary resting CD4(+ T cells. However, when co-cultured with HIV-1-infected autologous DCs, there was no significant trend for infection- or Nef-dependent proliferation of resting CD4(+ T cells. Our results suggest an important role of Nef in DC-mediated transmission of HIV-1 to activated CD4(+ T cells and in the activation and proliferation of resting CD4(+ T cells, which likely contribute to viral pathogenesis.

  19. HIV-1 structural proteins serve as PAMPs for TLR2 heterodimers significantly increasing infection and innate immune activation

    Directory of Open Access Journals (Sweden)

    Kenneth Lee Rosenthal

    2015-08-01

    Full Text Available Immune activation is critical to HIV infection and pathogenesis; however, our understanding of HIV innate immune activation remains incomplete. Recently we demonstrated that soluble TLR2 (sTLR2 physically inhibited HIV-induced, NFκB activation and inflammation, as well as HIV-1 infection. In light of these findings, we hypothesized that HIV-1 structural proteins may serve as pathogen-associated molecular patterns (PAMPs for cellular TLR2 heterodimers. These studies made use of primary human T cells and TZMbl cells stably transformed to express TLR2 (TZMbl-2. Our results demonstrated that cells expressing TLR2 showed significantly increased proviral DNA compared to cells lacking TLR2, and mechanistically this may be due to a TLR2-mediated increased CCR5 expression. Importantly, we show that HIV-1 structural proteins, p17, p24, and gp41 act as viral PAMPs signalling through TLR2 and its heterodimers leading to significantly increased immune activation via the NFκB signaling pathway. Using co-immunoprecipitation and a dot blot method, we demonstrated direct protein interactions between these viral PAMPs and TLR2, while only p17 and gp41 bound to TLR1. Specifically, TLR2/1 heterodimer recognized p17 and gp41, while p24 lead to immune activation through TLR2/6. These results were confirmed using TLR2/1 siRNA knock down assays which ablated p17 and gp41-induced cellular activation and through studies of HEK293 cells expressing selected TLRs. Interestingly, our results show in the absence of TLR6, p24 bound to TLR2 and blocked p17 and gp41-induced activation, thus providing a novel mechanism by which HIV-1 can manipulate innate sensing. Taken together, our results identified, for the first time, novel HIV-1 PAMPs that play a role in TLR2-mediated cellular activation and increased proviral DNA. These findings have important implications for our fundamental understanding of HIV-1 immune activation and pathogenesis, as well as HIV-1 vaccine development.

  20. Randomized phase I: safety, immunogenicity and mucosal antiviral activity in young healthy women vaccinated with HIV-1 Gp41 P1 peptide on virosomes

    OpenAIRE

    Geert Leroux-Roels; Cathy Maes; Frédéric Clement; Frank van Engelenburg; Marieke van den Dobbelsteen; Michael Adler; Mario Amacker; Lucia Lopalco; Morgane Bomsel; Anick Chalifour; Sylvain Fleury

    2013-01-01

    UNLABELLED: Mucosal antibodies harboring various antiviral activities may best protect mucosal surfaces against early HIV-1 entry at mucosal sites and they should be ideally induced by prophylactic HIV-1 vaccines for optimal prevention of sexually transmitted HIV-1. A phase I, double-blind, randomized, placebo-controlled trial was conducted in twenty-four healthy HIV-uninfected young women. The study objectives were to assess the safety, tolerability and immunogenicity of virosomes harboring ...

  1. Identification of Env-specific Monoclonal Antibodies from Chinese HIV-1 Infected Person by B cell Activation and RT-PCR Cloning%利用B细胞培养和RT-PCR技术从我国HIV-1感染者中筛选膜蛋白特异性单克隆抗体的初步研究

    Institute of Scientific and Technical Information of China (English)

    汪慧敏; 管永军; 曾毅; 徐柯; 余双庆; 丁林林; 罗海艳; Robin Flinko; George K lewis; 冯霞; 邵继荣

    2012-01-01

    To obtain protective human monoclonal antibody from HIV-1 infected person, we adapted a technology for isolating antigen specific monoclonal antibody from human memory B cells through in vitro B cell activation coupled with RT-PCT and expression cloning. Human B cells were purified by negative sorting from PBMCs of HIV-1 infected individuals and memory B cells were further enriched using anti-CD27 microbeads. Two hundred memory B cells per well were cultured in 96-well round-bottom plates with feeder cells in medium containing EBV and CpG. Env-specific antibodies in supernatants were screened by ELISA after 1~2 weeks' culture. Cells from positive wells of Env-specific antibody were harvested and total RNA was isolated. Human VH and Vκ or VX genes were amplified by RT-PCR and cloned into IgG1 and κ or γ expressing vectors. Functional VH and Vk or VX were identified by cotransfecting 293T cells with individual heavy chain and light chain clones followed by analysis of culture supernatants by ELISA for Env-specific antibodies. Finally, corresponding mAb was produced by transient transfection of 293T cells with the identified VH and V κ/γ pair and purified by protein A affinity chromatography. Purified monocolonal antibodies were used for HIV-1 specific antibody-dependent cell-mediated cytotoxicity (ADCC) and neutralizing activity assay. Four monocolonal Env-specific antibodies were isolated from one HIV-1 subtype B' infected individual. Two of them showed strong ADCC activity and one showed weak neutralizing activity against HIV-1. Its further studies on their application in therapeutic or prophylactic vaccines against HIV-1 should be grounded.%本研究通过采集1型人类免疫缺陷病毒(Human immunodeficiency virus-1,HIV-1)感染者抗凝全血,分离出外周血单个核细胞,然后用磁珠分选纯化记忆性B细胞和体外活化记忆性B细胞,促使其分泌抗体,用ELISA法识别阳性B细胞克隆,并提取阳性B细胞

  2. HIV-1 Tat Inhibits Autotaxin Lysophospholipase D Activity and Modulates Oligodendrocyte Differentiation

    Science.gov (United States)

    Wheeler, Natalie A.; Fuss, Babette; Knapp, Pamela E.

    2016-01-01

    White matter injury has been frequently reported in HIV+ patients. Previous studies showed that HIV-1 Tat (transactivator of transcription), a viral protein that is produced and secreted by HIV-infected cells, is toxic to young, immature oligodendrocytes (OLGs). Adding Tat to the culture medium reduced the viability of immature OLGs, and the surviving OLGs exhibited reduced process networks. OLGs produce and secrete autotaxin (ATX), an ecto-enzyme containing a lysophospholipase D (lysoPLD) activity that converts lysophosphatidylcholine (LPC) to lysophosphatidic acid (LPA), a lipid signaling molecule that stimulates OLG differentiation. We hypothesized that Tat affects OLG development by interfering with the ATX-LPA signaling pathway. Our data show that Tat treatment leads to changes in the expression of OLG differentiation genes and the area of OLG process networks, both of which can be rescued by LPA. Tat-treated OLGs showed no change in LPA receptor expression but significantly decreased extracellular ATX levels and lysoPLD activity. In Tat transgenic mice, expression of Tat in vivo leads to decreased OLG ATX secretion. Furthermore, co-immunoprecipitation experiments revealed a potential physical interaction between Tat and ATX. Together, these data strongly suggest two functional implications of Tat blocking ATX’s lysoPLD activity. On one hand, it attenuates OLG differentiation, and on the other hand it interferes with the protective effects of LPA on OLG process morphology. PMID:27659560

  3. Acute plasma biomarkers of T cell activation set-point levels and of disease progression in HIV-1 infection.

    Directory of Open Access Journals (Sweden)

    Anne-Sophie Liovat

    Full Text Available T cell activation levels, viral load and CD4(+ T cell counts at early stages of HIV-1 infection are predictive of the rate of progression towards AIDS. We evaluated whether the inflammatory profile during primary HIV-1 infection is predictive of the virological and immunological set-points and of disease progression. We quantified 28 plasma proteins during acute and post-acute HIV-1 infection in individuals with known disease progression profiles. Forty-six untreated patients, enrolled during primary HIV-1 infection, were categorized into rapid progressors, progressors and slow progressors according to their spontaneous progression profile over 42 months of follow-up. Already during primary infection, rapid progressors showed a higher number of increased plasma proteins than progressors or slow progressors. The plasma levels of TGF-β1 and IL-18 in primary HIV-1 infection were both positively associated with T cell activation level at set-point (6 months after acute infection and together able to predict 74% of the T cell activation variation at set-point. Plasma IP-10 was positively and negatively associated with, respectively, T cell activation and CD4(+ T cell counts at set-point and capable to predict 30% of the CD4(+ T cell count variation at set-point. Moreover, plasma IP-10 levels during primary infection were predictive of rapid progression. In primary infection, IP-10 was an even better predictor of rapid disease progression than viremia or CD4(+ T cell levels at this time point. The superior predictive capacity of IP-10 was confirmed in an independent group of 88 HIV-1 infected individuals. Altogether, this study shows that the inflammatory profile in primary HIV-1 infection is associated with T cell activation levels and CD4(+ T cell counts at set-point. Plasma IP-10 levels were of strong predictive value for rapid disease progression. The data suggest IP-10 being an earlier marker of disease progression than CD4(+ T cell counts or

  4. Species-specific activity of HIV-1 Vpu and positive selection of tetherin transmembrane domain variants.

    Directory of Open Access Journals (Sweden)

    Matthew W McNatt

    2009-02-01

    Full Text Available Tetherin/BST-2/CD317 is a recently identified antiviral protein that blocks the release of nascent retrovirus, and other virus, particles from infected cells. An HIV-1 accessory protein, Vpu, acts as an antagonist of tetherin. Here, we show that positive selection is evident in primate tetherin sequences and that HIV-1 Vpu appears to have specifically adapted to antagonize variants of tetherin found in humans and chimpanzees. Tetherin variants found in rhesus macaques (rh, African green monkeys (agm and mice were able to inhibit HIV-1 particle release, but were resistant to antagonism by HIV-1 Vpu. Notably, reciprocal exchange of transmembrane domains between human and monkey tetherins conferred sensitivity and resistance to Vpu, identifying this protein domain as a critical determinant of Vpu function. Indeed, differences between hu-tetherin and rh-tetherin at several positions in the transmembrane domain affected sensitivity to antagonism by Vpu. Two alterations in the hu-tetherin transmembrane domain, that correspond to differences found in rh- and agm-tetherin proteins, were sufficient to render hu-tetherin completely resistant to HIV-1 Vpu. Interestingly, transmembrane and cytoplasmic domain sequences in primate tetherins exhibit variation at numerous codons that is likely the result of positive selection, and some of these changes coincide with determinants of HIV-1 Vpu sensitivity. Overall, these data indicate that tetherin could impose a barrier to viral zoonosis as a consequence of positive selection that has been driven by ancient viral antagonists, and that the HIV-1 Vpu protein has specialized to target the transmembrane domains found in human/chimpanzee tetherin proteins.

  5. Species-specific activity of HIV-1 Vpu and positive selection of tetherin transmembrane domain variants.

    Science.gov (United States)

    McNatt, Matthew W; Zang, Trinity; Hatziioannou, Theodora; Bartlett, Mackenzie; Fofana, Ismael Ben; Johnson, Welkin E; Neil, Stuart J D; Bieniasz, Paul D

    2009-02-01

    Tetherin/BST-2/CD317 is a recently identified antiviral protein that blocks the release of nascent retrovirus, and other virus, particles from infected cells. An HIV-1 accessory protein, Vpu, acts as an antagonist of tetherin. Here, we show that positive selection is evident in primate tetherin sequences and that HIV-1 Vpu appears to have specifically adapted to antagonize variants of tetherin found in humans and chimpanzees. Tetherin variants found in rhesus macaques (rh), African green monkeys (agm) and mice were able to inhibit HIV-1 particle release, but were resistant to antagonism by HIV-1 Vpu. Notably, reciprocal exchange of transmembrane domains between human and monkey tetherins conferred sensitivity and resistance to Vpu, identifying this protein domain as a critical determinant of Vpu function. Indeed, differences between hu-tetherin and rh-tetherin at several positions in the transmembrane domain affected sensitivity to antagonism by Vpu. Two alterations in the hu-tetherin transmembrane domain, that correspond to differences found in rh- and agm-tetherin proteins, were sufficient to render hu-tetherin completely resistant to HIV-1 Vpu. Interestingly, transmembrane and cytoplasmic domain sequences in primate tetherins exhibit variation at numerous codons that is likely the result of positive selection, and some of these changes coincide with determinants of HIV-1 Vpu sensitivity. Overall, these data indicate that tetherin could impose a barrier to viral zoonosis as a consequence of positive selection that has been driven by ancient viral antagonists, and that the HIV-1 Vpu protein has specialized to target the transmembrane domains found in human/chimpanzee tetherin proteins.

  6. Effect of antiretroviral drugs on maternal CD4 lymphocyte counts, HIV-1 RNA levels, and anthropometric parameters of their neonates Efeito das drogas anti-retrovirais sobre os valores dos linfócitos TCD4, RNA do HIV-1 e parâmetros antropométricos de neonatos de gestantes portadoras do HIV-1

    Directory of Open Access Journals (Sweden)

    Patrícia El Beitune

    2005-06-01

    Full Text Available PURPOSE: To study the effect of antiretroviral drugs administered during pregnancy on CD4 lymphocyte counts and HIV-1 RNA levels of pregnant women and on the anthropometric parameters of their neonates. METHODS: A prospective study was conducted on 57 pregnant women and their neonates divided into 3 groups: ZDV Group, HIV-infected mothers taking zidovudine (n = 20; triple therapy (TT Group, mothers taking zidovudine + lamivudine + nelfinavir (n = 25, and Control Group, normal women (n = 12. CD4 lymphocyte counts and HIV-1 RNA levels of pregnant women were analyzed during two periods of pregnancy. The perinatal prognosis took into account preterm rates, birth weight, intrauterine growth restriction, perinatal death, and vertical transmission of HIV-1. Data were analyzed statistically using the nonparametric chi-square, Mann-Whitney, Friedman, Kruskal-Wallis, and Wilcoxon matched pairs tests, with the level of significance set at P OBJETIVOS: Estudar o efeito das drogas anti-retrovirais sobre a quantificação dos linfócitos TCD4 e RNA do HIV-1 de gestantes portadoras do HIV-1 e parâmetros antropométricos de seus neonatos. MÉTODOS: Estudo prospectivo avaliando 57 gestantes e seus neonatos em três grupos: Grupo AZT, gestantes portadoras do HIV utilizando zidovudina (n=20; Grupo TT, mães utilizando zidovudina+lamivudina+nelfinavir (n=25, e Grupo Controle, mulheres saudáveis (n=12. A quantificação dos linfócitos TCD4 e RNA do HIV-1 de gestantes portadoras do HIV foi analisada em dois períodos durante a gestação. O prognóstico perinatal levou em consideração as taxas de pré-termos, restrição de crescimento intra-útero, mortalidade perinatal e transmissão vertical do HIV-1. Os dados foram analisados utilizando-se testes não paramétricos de qui-quadrado, Mann-Whitney, Friedman, Kruskal-Wallys e Wilcoxon para amostras pareadas, considerando-se significativos valores associados a p<0,05. RESULTADOS: Observou-se homogeneidade entre

  7. Cerebrospinal fluid neopterin: an informative biomarker of central nervous system immune activation in HIV-1 infection

    Directory of Open Access Journals (Sweden)

    Bestetti Arabella

    2010-06-01

    Full Text Available Abstract HIV-1 invades the central nervous system (CNS in the context of acute infection, persists thereafter in the absence of treatment, and leads to chronic intrathecal immunoactivation that can be measured by the macrophage activation marker, neopterin, in cerebrospinal fluid (CSF. In this review we describe our experience with CSF neopterin measurements in 382 untreated HIV-infected patients across the spectrum of immunosuppression and HIV-related neurological diseases, in 73 untreated AIDS patients with opportunistic CNS infections, and in 233 treated patients. In untreated patients, CSF neopterin concentrations are almost always elevated and increase progressively as immunosuppression worsens and blood CD4 cell counts fall. However, patients with HIV dementia exhibit particularly high CSF neopterin concentrations, above those of patients without neurological disease, though patients with CNS opportunistic infections, including CMV encephalitis and cryptococcal meningitis, also exhibit high levels of CSF neopterin. Combination antiretroviral therapy, with its potent effect on CNS HIV infection and CSF HIV RNA, mitigates both intrathecal immunoactivation and lowers CSF neopterin. However, despite suppression of plasma and CSF HIV RNA to below the detection limits of clinical assays ( Although nonspecific, CSF neopterin can serve as a useful biomarker in the diagnosis of HIV dementia in the setting of confounding conditions, in monitoring the CNS inflammatory effects of antiretroviral treatment, and give valuable information to the cause of ongoing brain injury.

  8. HIV-1 Tat activates neuronal ryanodine receptors with rapid induction of the unfolded protein response and mitochondrial hyperpolarization.

    Directory of Open Access Journals (Sweden)

    John P Norman

    Full Text Available Neurologic disease caused by human immunodeficiency virus type 1 (HIV-1 is ultimately refractory to highly active antiretroviral therapy (HAART because of failure of complete virus eradication in the central nervous system (CNS, and disruption of normal neural signaling events by virally induced chronic neuroinflammation. We have previously reported that HIV-1 Tat can induce mitochondrial hyperpolarization in cortical neurons, thus compromising the ability of the neuron to buffer calcium and sustain energy production for normal synaptic communication. In this report, we demonstrate that Tat induces rapid loss of ER calcium mediated by the ryanodine receptor (RyR, followed by the unfolded protein response (UPR and pathologic dilatation of the ER in cortical neurons in vitro. RyR antagonism attenuated both Tat-mediated mitochondrial hyperpolarization and UPR induction. Delivery of Tat to murine CNS in vivo also leads to long-lasting pathologic ER dilatation and mitochondrial morphologic abnormalities. Finally, we performed ultrastructural studies that demonstrated mitochondria with abnormal morphology and dilated endoplasmic reticulum (ER in brain tissue of patients with HIV-1 inflammation and neurodegeneration. Collectively, these data suggest that abnormal RyR signaling mediates the neuronal UPR with failure of mitochondrial energy metabolism, and is a critical locus for the neuropathogenesis of HIV-1 in the CNS.

  9. Strategic addition of an N-linked glycan to a monoclonal antibody improves its HIV-1-neutralizing activity.

    Science.gov (United States)

    Song, Ruijiang; Oren, Deena A; Franco, David; Seaman, Michael S; Ho, David D

    2013-11-01

    Ibalizumab is a humanized monoclonal antibody that binds human CD4--a key receptor for HIV--and blocks HIV-1 infection. However, HIV-1 strains with mutations resulting in loss of an N-linked glycan from the V5 loop of the envelope glycoprotein gp120 are resistant to ibalizumab. Previous structural analysis suggests that this glycan fills a void between the gp120 V5 loop and the ibalizumab light chain, perhaps causing steric hindrance that disrupts viral entry. If this void contributes to HIV-1 resistance to ibalizumab, we reasoned that 'refilling' it by engineering an N-linked glycan into the ibalizumab light chain at a position spatially proximal to gp120 V5 may restore susceptibility to ibalizumab. Indeed, one such ibalizumab variant neutralized 100% of 118 diverse HIV-1 strains tested in vitro, including 10 strains resistant to parental ibalizumab. These findings demonstrate that the strategic placement of a glycan in the variable region of a monoclonal antibody can substantially enhance its activity.

  10. Cocaine promotes both initiation and elongation phase of HIV-1 transcription by activating NF-κB and MSK1 and inducing selective epigenetic modifications at HIV-1 LTR

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, Geetaram; Farley, Kalamo [Division of Infectious Diseases, Department of Medicine, George Washington University, Washington, DC (United States); El-Hage, Nazira [Virginia Commonwealth University, Richmond, VA (United States); Aiamkitsumrit, Benjamas; Fassnacht, Ryan [Division of Infectious Diseases, Department of Medicine, George Washington University, Washington, DC (United States); Kashanchi, Fatah [George Mason University, Manassas, VA (United States); Ochem, Alex [ICGEB, Wernher and Beit Building, Anzio Road, Observatory, 7925 Cape Town (South Africa); Simon, Gary L. [Division of Infectious Diseases, Department of Medicine, George Washington University, Washington, DC (United States); Karn, Jonathan [Case Western Reserve University, Cleveland, OH (United States); Hauser, Kurt F. [Virginia Commonwealth University, Richmond, VA (United States); Tyagi, Mudit, E-mail: tmudit@email.gwu.edu [Division of Infectious Diseases, Department of Medicine, George Washington University, Washington, DC (United States); Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, DC 20037 (United States)

    2015-09-15

    Cocaine accelerates human immunodeficiency virus (HIV-1) replication by altering specific cell-signaling and epigenetic pathways. We have elucidated the underlying molecular mechanisms through which cocaine exerts its effect in myeloid cells, a major target of HIV-1 in central nervous system (CNS). We demonstrate that cocaine treatment promotes HIV-1 gene expression by activating both nuclear factor-kappa B (NF-ĸB) and mitogen- and stress-activated kinase 1 (MSK1). MSK1 subsequently catalyzes the phosphorylation of histone H3 at serine 10, and p65 subunit of NF-ĸB at 276th serine residue. These modifications enhance the interaction of NF-ĸB with P300 and promote the recruitment of the positive transcription elongation factor b (P-TEFb) to the HIV-1 LTR, supporting the development of an open/relaxed chromatin configuration, and facilitating the initiation and elongation phases of HIV-1 transcription. Results are also confirmed in primary monocyte derived macrophages (MDM). Overall, our study provides detailed insights into cocaine-driven HIV-1 transcription and replication. - Highlights: • Cocaine induces the initiation phase of HIV transcription by activating NF-ĸB. • Cocaine induced NF-ĸB phosphorylation promotes its interaction with P300. • Cocaine enhances the elongation phase of HIV transcription by stimulating MSK1. • Cocaine activated MSK1 catalyzes the phosphorylation of histone H3 at its Ser10. • Cocaine induced H3S10 phosphorylation facilitates the recruitment of P-TEFb at LTR.

  11. High levels of T lymphocyte activation in Leishmania-HIV-1 co-infected individuals despite low HIV viral load

    Directory of Open Access Journals (Sweden)

    Grinsztejn Beatriz

    2010-12-01

    Full Text Available Abstract Background Concomitant infections may influence HIV progression by causing chronic activation leading to decline in T-cell function. In the Americas, visceral (AVL and tegumentary leishmaniasis (ATL have emerged as important opportunistic infections in HIV-AIDS patients and both of those diseases have been implicated as potentially important co-factors in disease progression. We investigated whether leishmaniasis increases lymphocyte activation in HIV-1 co-infected patients. This might contribute to impaired cellular immune function. Methods To address this issue we analyzed CD4+ T absolute counts and the proportion of CD8+ T cells expressing CD38 in Leishmania/HIV co-infected patients that recovered after anti-leishmanial therapy. Results We found that, despite clinical remission of leishmaniasis, AVL co-infected patients presented a more severe immunossupression as suggested by CD4+ T cell counts under 200 cells/mm3, differing from ATL/HIV-AIDS cases that tends to show higher lymphocytes levels (over 350 cells/mm3. Furthermore, five out of nine, AVL/HIV-AIDS presented low CD4+ T cell counts in spite of low or undetectable viral load. Expression of CD38 on CD8+ T lymphocytes was significantly higher in AVL or ATL/HIV-AIDS cases compared to HIV/AIDS patients without leishmaniasis or healthy subjects. Conclusions Leishmania infection can increase the degree of immune system activation in individuals concomitantly infected with HIV. In addition, AVL/HIV-AIDS patients can present low CD4+ T cell counts and higher proportion of activated T lymphocytes even when HIV viral load is suppressed under HAART. This fact can cause a misinterpretation of these laboratorial markers in co-infected patients.

  12. Synthesis and evaluation of orally active small molecule HIV-1 Nef antagonists.

    Science.gov (United States)

    Emert-Sedlak, Lori A; Loughran, H Marie; Shi, Haibin; Kulp, John L; Shu, Sherry T; Zhao, Jielu; Day, Billy W; Wrobel, Jay E; Reitz, Allen B; Smithgall, Thomas E

    2016-03-01

    The HIV-1 Nef accessory factor enhances viral replication and promotes immune system evasion of HIV-infected cells, making it an attractive target for drug discovery. Recently we described a novel class of diphenylpyrazolodiazene compounds that bind directly to Nef in vitro and inhibit Nef-dependent HIV-1 infectivity and replication in cell culture. However, these first-generation Nef antagonists have several structural liabilities, including an azo linkage that led to poor oral bioavailability. The azo group was therefore replaced with either a one- or two-carbon linker. The resulting set of non-azo analogs retained nanomolar binding affinity for Nef by surface plasmon resonance, while inhibiting HIV-1 replication with micromolar potency in cell-based assays without cytotoxicity. Computational docking studies show that these non-azo analogs occupy the same predicted binding site within the HIV-1 Nef dimer interface as the original azo compound. Computational methods also identified a hot spot for inhibitor binding within this site that is defined by conserved HIV-1 Nef residues Asp108, Leu112, and Pro122. Pharmacokinetic evaluation of the non-azo B9 analogs in mice showed that replacement of the azo linkage dramatically enhanced oral bioavailability without substantially affecting plasma half-life or clearance. The improved oral bioavailability of non-azo diphenylpyrazolo Nef antagonists provides a starting point for further drug lead optimization in support of future efficacy testing in animal models of HIV/AIDS.

  13. Sargassum fusiforme fraction is a potent and specific inhibitor of HIV-1 fusion and reverse transcriptase

    Directory of Open Access Journals (Sweden)

    Thornber Carol

    2008-01-01

    Full Text Available Abstract Sargassum fusiforme (Harvey Setchell has been shown to be a highly effective inhibitor of HIV-1 infection. To identify its mechanism of action, we performed bioactivity-guided fractionation on Sargassum fusiforme mixture. Here, we report isolation of a bioactive fraction SP4-2 (S. fusiforme, which at 8 μg/ml inhibited HIV-1 infection by 86.9%, with IC50 value of 3.7 μg. That represents 230-fold enhancement of antiretroviral potency as compared to the whole extract. Inhibition was mediated against both CXCR4 (X4 and CCR5 (R5 tropic HIV-1. Specifically, 10 μg/ml SP4-2 blocked HIV-1 fusion and entry by 53%. This effect was reversed by interaction of SP4-2 with sCD4, suggesting that S. fusiforme inhibits HIV-1 infection by blocking CD4 receptor, which also explained observed inhibition of both X4 and R5-tropic HIV-1. SP4-2 also inhibited HIV-1 replication after virus entry, by directly inhibiting HIV-1 reverse transcriptase (RT in a dose dependent manner by up to 79%. We conclude that the SP4-2 fraction contains at least two distinct and biologically active molecules, one that inhibits HIV-1 fusion by interacting with CD4 receptor, and another that directly inhibits HIV-1 RT. We propose that S. fusiforme is a lead candidate for anti-HIV-1 drug development.

  14. Molecular recognition of CCR5 by an HIV-1 gp120 V3 loop.

    Science.gov (United States)

    Tamamis, Phanourios; Floudas, Christodoulos A

    2014-01-01

    The binding of protein HIV-1 gp120 to coreceptors CCR5 or CXCR4 is a key step of the HIV-1 entry to the host cell, and is predominantly mediated through the V3 loop fragment of HIV-1 gp120. In the present work, we delineate the molecular recognition of chemokine receptor CCR5 by a dual tropic HIV-1 gp120 V3 loop, using a comprehensive set of computational tools predominantly based on molecular dynamics simulations and free energy calculations. We report, what is to our knowledge, the first complete HIV-1 gp120 V3 loop : CCR5 complex structure, which includes the whole V3 loop and the N-terminus of CCR5, and exhibits exceptional agreement with previous experimental findings. The computationally derived structure sheds light into the functional role of HIV-1 gp120 V3 loop and CCR5 residues associated with the HIV-1 coreceptor activity, and provides insights into the HIV-1 coreceptor selectivity and the blocking mechanism of HIV-1 gp120 by maraviroc. By comparing the binding of the specific dual tropic HIV-1 gp120 V3 loop with CCR5 and CXCR4, we observe that the HIV-1 gp120 V3 loop residues 13-21, which include the tip, share nearly identical structural and energetic properties in complex with both coreceptors. This result paves the way for the design of dual CCR5/CXCR4 targeted peptides as novel potential anti-AIDS therapeutics.

  15. Sargassum fusiforme fraction is a potent and specific inhibitor of HIV-1 fusion and reverse transcriptase.

    Science.gov (United States)

    Paskaleva, Elena E; Lin, Xudong; Duus, Karen; McSharry, James J; Veille, Jean-Claude L; Thornber, Carol; Liu, Yanze; Lee, David Yu-Wei; Canki, Mario

    2008-01-15

    Sargassum fusiforme (Harvey) Setchell has been shown to be a highly effective inhibitor of HIV-1 infection. To identify its mechanism of action, we performed bioactivity-guided fractionation on Sargassum fusiforme mixture. Here, we report isolation of a bioactive fraction SP4-2 (S. fusiforme), which at 8 mug/ml inhibited HIV-1 infection by 86.9%, with IC50 value of 3.7 mug. That represents 230-fold enhancement of antiretroviral potency as compared to the whole extract. Inhibition was mediated against both CXCR4 (X4) and CCR5 (R5) tropic HIV-1. Specifically, 10 mug/ml SP4-2 blocked HIV-1 fusion and entry by 53%. This effect was reversed by interaction of SP4-2 with sCD4, suggesting that S. fusiforme inhibits HIV-1 infection by blocking CD4 receptor, which also explained observed inhibition of both X4 and R5-tropic HIV-1. SP4-2 also inhibited HIV-1 replication after virus entry, by directly inhibiting HIV-1 reverse transcriptase (RT) in a dose dependent manner by up to 79%. We conclude that the SP4-2 fraction contains at least two distinct and biologically active molecules, one that inhibits HIV-1 fusion by interacting with CD4 receptor, and another that directly inhibits HIV-1 RT. We propose that S. fusiforme is a lead candidate for anti-HIV-1 drug development.

  16. Treatment intensification does not reduce residual HIV-1 viremia in patients on highly active antiretroviral therapy.

    Science.gov (United States)

    Dinoso, J B; Kim, S Y; Wiegand, A M; Palmer, S E; Gange, S J; Cranmer, L; O'Shea, A; Callender, M; Spivak, A; Brennan, T; Kearney, M F; Proschan, M A; Mican, J M; Rehm, C A; Coffin, J M; Mellors, J W; Siliciano, R F; Maldarelli, F

    2009-06-09

    In HIV-1-infected individuals on currently recommended antiretroviral therapy (ART), viremia is reduced to controversy over whether the residual viremia results from ongoing cycles of viral replication. To address this question, we conducted 2 prospective studies to assess the effect of ART intensification with an additional potent drug on residual viremia in 9 HIV-1-infected individuals on successful ART. By using an HIV-1 RNA assay with single-copy sensitivity, we found that levels of viremia were not reduced by ART intensification with any of 3 different antiretroviral drugs (efavirenz, lopinavir/ritonavir, or atazanavir/ritonavir). The lack of response was not associated with the presence of drug-resistant virus or suboptimal drug concentrations. Our results suggest that residual viremia is not the product of ongoing, complete cycles of viral replication, but rather of virus output from stable reservoirs of infection.

  17. HIV-1 Vif adaptation to human APOBEC3H haplotypes.

    Science.gov (United States)

    Ooms, Marcel; Brayton, Bonnie; Letko, Michael; Maio, Susan M; Pilcher, Christopher D; Hecht, Frederick M; Barbour, Jason D; Simon, Viviana

    2013-10-16

    Several human APOBEC3 deaminases can inhibit HIV-1 replication in vitro. HIV-1 Vif counteracts this restriction by targeting APOBEC3 for proteasomal degradation. Human APOBEC3H (A3H) is highly polymorphic, with natural variants differing considerably in anti-HIV-1 activity in vitro. To examine HIV-1 adaptation to variation in A3H activity in a natural infection context, we determined the A3H haplotypes and Vif sequences from 76 recently infected HIV-1 patients. We detected A3H-specific Vif changes suggesting viral adaptation. The patient-derived Vif sequences were used to engineer viruses that specifically differed in their ability to counteract A3H. Replication of these Vif-variant viruses in primary T cells naturally expressing active or inactive A3H haplotypes showed that endogenously expressed A3H restricts HIV-1 replication. Proviral DNA from A3H-restricted viruses showed high levels of G-to-A mutations in an A3H-specific GA dinucleotide context. Taken together, our data validate A3H expressed at endogenous levels as a bona fide HIV-1 restriction factor.

  18. Genetic variation of the HIV-1 integrase region in newly diagnosed anti-retroviral drug-naïve patients with HIV/AIDS in Korea.

    Science.gov (United States)

    Kim, J-Y; Kim, E-J; Choi, J-Y; Kwon, O-K; Kim, G J; Choi, S Y; Kim, S S

    2011-08-01

    The survival time of HIV/AIDS patients in Korea has increased since HAART (highly active anti-retroviral therapy) was introduced. However, the occurrence of drug-resistant strains requires new anti-retroviral drugs, one of which, an integrase inhibitor (INI), was approved by the US Food and Drug Administration (FDA) in 2007. INIs have been used for therapy in many countries and are about to be employed in Korea. Therefore, it is important to identify basic mutant variants prior to the introduction of INIs in order to estimate their efficacy. To monitor potential drug-resistant INI mutations in Korean HIV/AIDS patients, the polymorphism of the int gene was investigated together with the pol gene using a genotypic assay for 75 randomly selected Korean HIV-1 patients newly diagnosed in 2007. The drug-resistant mutation sequences were analysed using the Stanford HIV DB and the International AIDS Society resistance testing-USA panel (IAS-USA). Seventy strains of Korean subtype B were compared with foreign subtype-B strains, and there were no significantly different variants of the int gene region in the study population. Major mutation sites in the integrase (E92Q, F121Y, G140A/S, Y143C/R, Q148H/R/K and N155H) were not detected, and only a few minor mutation sites (L74M, V151I, E157Q, V165I, I203M, S230N and D232N) were identified in 21 strains (28%). Resistance due to mutations in the pol gene was observed in a single strain (1.3%) resistant to protease inhibitors (PIs) and in four strains (5.3%) resistant to reverse transcriptase inhibitors (RTIs). In summary, this demonstrates that INIs will be susceptible to drug naïve HIV/AIDS patients in Korea.

  19. The HIV-1 Vpu protein induces apoptosis in Drosophila via activation of JNK signaling.

    Directory of Open Access Journals (Sweden)

    Christelle Marchal

    Full Text Available The genome of the human immunodeficiency virus type 1 (HIV-1 encodes the canonical retroviral proteins, as well as additional accessory proteins that enhance the expression of viral genes, the infectivity of the virus and the production of virions. The accessory Viral Protein U (Vpu, in particular, enhances viral particle production, while also promoting apoptosis of HIV-infected human T lymphocytes. Some Vpu effects rely on its interaction with the ubiquitin-proteasome protein degradation system, but the mechanisms responsible for its pro-apoptotic effects in vivo are complex and remain largely to be elucidated.We took advantage of the Drosophila model to study the effects of Vpu activity in vivo. Expression of Vpu in the developing Drosophila wing provoked tissue loss due to caspase-dependent apoptosis. Moreover, Vpu induced expression of the pro-apoptotic gene reaper, known to down-regulate Inhibitor of Apoptosis Proteins (IAPs which are caspase-antagonizing E3 ubiquitin ligases. Indeed, Vpu also reduced accumulation of Drosophila IAP1 (DIAP1. Though our results demonstrate a physical interaction between Vpu and the proteasome-addressing SLIMB/β-TrCP protein, as in mammals, both SLIMB/βTrCP-dependent and -independent Vpu effects were observed in the Drosophila wing. Lastly, the pro-apoptotic effect of Vpu in this tissue was abrogated upon inactivation of the c-Jun N-terminal Kinase (JNK pathway. Our results in the fly thus provide the first functional evidence linking Vpu pro-apoptotic effects to activation of the conserved JNK pathway.

  20. The HIV-1 Vpu protein induces apoptosis in Drosophila via activation of JNK signaling.

    Science.gov (United States)

    Marchal, Christelle; Vinatier, Gérald; Sanial, Matthieu; Plessis, Anne; Pret, Anne-Marie; Limbourg-Bouchon, Bernadette; Théodore, Laurent; Netter, Sophie

    2012-01-01

    The genome of the human immunodeficiency virus type 1 (HIV-1) encodes the canonical retroviral proteins, as well as additional accessory proteins that enhance the expression of viral genes, the infectivity of the virus and the production of virions. The accessory Viral Protein U (Vpu), in particular, enhances viral particle production, while also promoting apoptosis of HIV-infected human T lymphocytes. Some Vpu effects rely on its interaction with the ubiquitin-proteasome protein degradation system, but the mechanisms responsible for its pro-apoptotic effects in vivo are complex and remain largely to be elucidated.We took advantage of the Drosophila model to study the effects of Vpu activity in vivo. Expression of Vpu in the developing Drosophila wing provoked tissue loss due to caspase-dependent apoptosis. Moreover, Vpu induced expression of the pro-apoptotic gene reaper, known to down-regulate Inhibitor of Apoptosis Proteins (IAPs) which are caspase-antagonizing E3 ubiquitin ligases. Indeed, Vpu also reduced accumulation of Drosophila IAP1 (DIAP1). Though our results demonstrate a physical interaction between Vpu and the proteasome-addressing SLIMB/β-TrCP protein, as in mammals, both SLIMB/βTrCP-dependent and -independent Vpu effects were observed in the Drosophila wing. Lastly, the pro-apoptotic effect of Vpu in this tissue was abrogated upon inactivation of the c-Jun N-terminal Kinase (JNK) pathway. Our results in the fly thus provide the first functional evidence linking Vpu pro-apoptotic effects to activation of the conserved JNK pathway.

  1. Impaired NK Cell Activation and Chemotaxis toward Dendritic Cells Exposed to Complement-Opsonized HIV-1

    Science.gov (United States)

    Ellegård, Rada; Crisci, Elisa; Andersson, Jonas; Shankar, Esaki M.; Nyström, Sofia; Hinkula, Jorma

    2015-01-01

    Mucosa resident dendritic cells (DCs) may represent one of the first immune cells that HIV-1 encounters during sexual transmission. The virions in body fluids can be opsonized with complement factors because of HIV-mediated triggering of the complement cascade, and this appears to influence numerous aspects of the immune defense targeting the virus. One key attribute of host defense is the ability to attract immune cells to the site of infection. In this study, we investigated whether the opsonization of HIV with complement (C-HIV) or a mixture of complement and Abs (CI-HIV) affected the cytokine and chemokine responses generated by DCs, as well as their ability to attract other immune cells. We found that the expression levels of CXCL8, CXCL10, CCL3, and CCL17 were lowered after exposure to either C-HIV or CI-HIV relative to free HIV (F-HIV). DCs exposed to F-HIV induced higher cell migration, consisting mainly of NK cells, compared with opsonized virus, and the chemotaxis of NK cells was dependent on CCL3 and CXCL10. NK cell exposure to supernatants derived from HIV-exposed DCs showed that F-HIV induced phenotypic activation (e.g., increased levels of TIM3, CD69, and CD25) and effector function (e.g., production of IFNγ and killing of target cells) in NK cells, whereas C-HIV and CI-HIV did not. The impairment of NK cell recruitment by DCs exposed to complement-opsonized HIV and the lack of NK activation may contribute to the failure of innate immune responses to control HIV at the site of initial mucosa infection. PMID:26157174

  2. Phosphorylation of SAMHD1 by Cyclin A2/CDK1 Regulates Its Restriction Activity toward HIV-1

    Directory of Open Access Journals (Sweden)

    Alexandra Cribier

    2013-04-01

    Full Text Available SAMHD1 restricts HIV-1 replication in myeloid and quiescent CD4+ T cells. Here, we show that SAMHD1 restriction activity is regulated by phosphorylation. SAMHD1 interacts with cyclin A2/cdk1 only in cycling cells. Cyclin A2/CDK1 phosphorylates SAMHD1 at the Threonine 592 residue both in vitro and in vivo. Phosphorylation of SAMHD1 Thr592 correlates with loss of its ability to restrict HIV-1. Indeed, while PMA treatment of proliferating THP1 cells results in reduced Thr592 phosphorylation, activation of resting peripheral blood mononuclear cells (PBMCs and purified quiescent CD4+ T cells results in increased phosphorylation of SAMHD1 Thr592. Interestingly, we found that treatment of cells by type 1 interferon reduced Thr592 phosphorylation, reinforcing the link between the phosphorylation of SAMHD1 and its antiviral activity. Unlike wild-type SAMHD1, a phosphorylation-defective mutant was able to restrict HIV-1 replication in both PMA-treated and untreated cells. Our results uncover the phosphorylation of SAMHD1 at Thr592 by cyclin A2/CDK1 as a key regulatory mechanism of its antiviral activity.

  3. Thiolated pyrimidine nucleotides may interfere thiol groups concentrated at lipid rafts of HIV-1 infected cells.

    Science.gov (United States)

    Kanizsai, Szilvia; Ongrádi, Joseph; Aradi, János; Nagy, Károly

    2014-12-01

    Upon HIV infection, cells become activated and cell surface thiols are present in increased number. Earlier we demonstrated in vitro anti-HIV effect of thiolated pyrimidine nucleotide UD29, which interferes thiol function. To further analyse the redox processes required for HIV-1 entry and infection, toxicity assays were performed using HIV-1 infected monolayer HeLaCD4-LTR/ β-gal cells and suspension H9 T cells treated with several thiolated nucleotide derivatives of UD29. Selective cytotoxicity of thiolated pyrimidines on HIV-1 infected cells were observed. Results indicate that thiolated pyrimidine derivates may interfere with -SH (thiol) groups concentrated in lipid rafts of cell membrane and interacts HIV-1 infected (activated) cells resulting in a selective cytotoxicity of HIV-1 infected cells, and reducing HIV-1 entry.

  4. Specifically modified Env immunogens activate B-cell precursors of broadly neutralizing HIV-1 antibodies in transgenic mice.

    Science.gov (United States)

    McGuire, Andrew T; Gray, Matthew D; Dosenovic, Pia; Gitlin, Alexander D; Freund, Natalia T; Petersen, John; Correnti, Colin; Johnsen, William; Kegel, Robert; Stuart, Andrew B; Glenn, Jolene; Seaman, Michael S; Schief, William R; Strong, Roland K; Nussenzweig, Michel C; Stamatatos, Leonidas

    2016-02-24

    VRC01-class broadly neutralizing HIV-1 antibodies protect animals from experimental infection and could contribute to an effective vaccine response. Their predicted germline forms (gl) bind Env inefficiently, which may explain why they are not elicited by HIV-1 Env-immunization. Here we show that an optimized Env immunogen can engage multiple glVRC01-class antibodies. Furthermore, this immunogen activates naive B cells expressing the human germline heavy chain of 3BNC60, paired with endogenous mouse light chains in vivo. To address whether it activates B cells expressing the fully humanized gl3BNC60 B-cell receptor (BCR), we immunized mice carrying both the heavy and light chains of gl3BNC60. B cells expressing this BCR display an autoreactive phenotype and fail to respond efficiently to soluble forms of the optimized immunogen, unless it is highly multimerized. Thus, specifically designed Env immunogens can activate naive B cells expressing human BCRs corresponding to precursors of broadly neutralizing HIV-1 antibodies even when the B cells display an autoreactive phenotype.

  5. Immune Activation at Sites of HIV/TB Co-Infection Contributes to the Pathogenesis of HIV-1 Disease

    Science.gov (United States)

    Meng, Qinglai; Sayin, Ismail; Canaday, David H.; Mayanja-Kizza, Harriet; Baseke, Joy; Toossi, Zahra

    2016-01-01

    Systemic immune activation is critical to the pathogenesis of HIV-1 disease, and is accentuated in HIV/TB co-infected patients. The contribution of immune activation at sites of HIV/TB co-infection to viral activity, CD4 T cell count, and productive HIV-1 infection remain unclear. In this study, we measured markers of immune activation both in pleural fluid and plasma, and in T cells in pleural fluid mononuclear cell (PFMC) and peripheral blood mononuclear cell (PBMC) in HIV/TB co-infected subjects. The relationship between soluble and T cell activation markers with viral load in pleural fluid and blood CD4 T cell count were assessed. The T cell phenotype and activation status of HIV-1 p24 + T cells in PFMC and PBMC from HIV/TB patients were determined. We found that T cell and macrophage-specific and non-specific soluble markers of immune activation, sCD27, sCD163, IL1Ra, and sCD14, were higher in pleural fluid as compared to plasma from HIV/TB co-infected subjects, and higher as compared to pleural fluid from TB mono-infected subjects. Intestinal fatty acid-binding protein, a marker of intestinal tract damage, in plasma from HIV/TB co-infected patients was not different than that in HIV+ subjects. Expression of HLADR and CD38 double positive (HLADR/CD38) on CD4 T cells, and CD69+ on CD8 T cells correlated with pleural fluid viral load, and inversely with blood CD4 T cell count. Higher expression of HLADR/CD38 and CCR5 on CD4 T cells, and HLADR/CD38 and CD69 on CD8 T cells in PFMC were limited to effector memory populations. HIV-1 p24+ CD8 negative (includes CD4 + and double negative T cells) effector memory T cells in PFMC had higher expression of HLADR/CD38, Ki67, and CCR5 compared to HIV-1 p24- CD8 negative PFMC. Cumulatively, these data indicate that sites of HIV/TB co-infection are the source of intense immune activation. PMID:27870882

  6. Crystal structure of the DNA cytosine deaminase APOBEC3F: the catalytically active and HIV-1 Vif-binding domain.

    Science.gov (United States)

    Bohn, Markus-Frederik; Shandilya, Shivender M D; Albin, John S; Kouno, Takahide; Anderson, Brett D; McDougle, Rebecca M; Carpenter, Michael A; Rathore, Anurag; Evans, Leah; Davis, Ahkillah N; Zhang, Jingying; Lu, Yongjian; Somasundaran, Mohan; Matsuo, Hiroshi; Harris, Reuben S; Schiffer, Celia A

    2013-06-04

    Human APOBEC3F is an antiretroviral single-strand DNA cytosine deaminase, susceptible to degradation by the HIV-1 protein Vif. In this study the crystal structure of the HIV Vif binding, catalytically active, C-terminal domain of APOBEC3F (A3F-CTD) was determined. The A3F-CTD shares structural motifs with portions of APOBEC3G-CTD, APOBEC3C, and APOBEC2. Residues identified to be critical for Vif-dependent degradation of APOBEC3F all fit within a predominantly negatively charged contiguous region on the surface of A3F-CTD. Specific sequence motifs, previously shown to play a role in Vif susceptibility and virion encapsidation, are conserved across APOBEC3s and between APOBEC3s and HIV-1 Vif. In this structure these motifs pack against each other at intermolecular interfaces, providing potential insights both into APOBEC3 oligomerization and Vif interactions.

  7. Binding of human prothymosin alpha to the leucine-motif/activation domains of HTLV-I Rex and HIV-1 Rev.

    Science.gov (United States)

    Kubota, S; Adachi, Y; Copeland, T D; Oroszlan, S

    1995-10-01

    Rex of human T-cell leukemia virus type I (HTLV-I) and Rev of human immunodeficiency virus 1 (HIV-1) are post-transcriptional regulators of viral gene expression. By means of affinity chromatography, we purified an 18-kDa cellular protein that bound to the conserved leucine-motif/activation domain of HTLV-I Rex or HIV-1 Rev. The protein that was purified through a Rev-affinity column was found to bind to Rex immunoprecipitated with anti-Rex IgG from an HTLV-I-producing cell line. We analyzed the purified approximately 18-kDa protein biochemically and identified it as prothymosin alpha. The binding activity of prothymosin alpha to Rev or Rex was completely abolished when the epsilon-amino groups of its lysine residues were chemically modified by N-succinimidyl-3-(4-hydroxy-3,5-diodo- phenyl)propionate. The functional relationship between the nuclear protein prothymosin alpha and Rex-Rev is discussed.

  8. Acute hepatitis B virus infection with simultaneous high HBsAg and high anti-HBs signals in a previously HBV vaccinated HIV-1 positive patient.

    Science.gov (United States)

    van Dommelen, Laura; Verbon, Annelies; van Doorn, H Rogier; Goossens, Valère J

    2010-03-01

    We present a case of a clinical manifest hepatitis B virus infection and a potentially misleading HBV serological profile in an HIV-1 positive patient despite previous HBV vaccination. The patient presented with an acute hepatitis B and there was no indication of chronic HBV infection or the presence of a mutation in the 'a' determinant. Remarkably, simultaneously with high HBV surface antigen and HBV viral load, high anti-HBs antibodies were present. If, due to previous HBV vaccination only anti-HBs was tested in this patient, the result of the high anti-HBs antibodies could be very misleading and offering a false sense of security. Our findings contribute to the ongoing discussion on how to assess HBV specific immunological memory and determining the role of HBV booster vaccinations in immunocompromised individuals.

  9. Neutralization potential of the plasma of HIV-1 infected Indian patients in the context of anti-V3 antibody content and antiretroviral therapy. [corrected].

    Science.gov (United States)

    Choudhary, Alok Kumar; Andrabi, Raiees; Prakash, Somi Sankaran; Kumar, Rajesh; Choudhury, Shubhasree Dutta; Wig, Naveet; Biswas, Ashutosh; Hazarika, Anjali; Luthra, Kalpana

    2012-02-01

    We assessed the anti-V3 antibody content and viral neutralization potential of the plasma of 63 HIV-1-infected patients (antiretroviral naïve=39, treated=24) against four primary isolates (PIs) of clade C and a tier 1 clade B isolate SF162. Depletion and inhibition of anti-V3 antibodies in the plasma of five patients with high titers of anti-V3 antibodies led to modest change in the neutralization percentage against two PIs (range 0-21%). The plasma of antiretroviral-treated patients exhibited higher neutralization potential than that of the drug-naïve plasmas against the four PIs tested which was further evidenced by a follow-up study.

  10. Pandemic HIV-1 Vpu overcomes intrinsic herd immunity mediated by tetherin.

    Science.gov (United States)

    Iwami, Shingo; Sato, Kei; Morita, Satoru; Inaba, Hisashi; Kobayashi, Tomoko; Takeuchi, Junko S; Kimura, Yuichi; Misawa, Naoko; Ren, Fengrong; Iwasa, Yoh; Aihara, Kazuyuki; Koyanagi, Yoshio

    2015-07-17

    Among the four groups of HIV-1 (M, N, O, and P), HIV-1M alone is pandemic and has rapidly expanded across the world. However, why HIV-1M has caused a devastating pandemic while the other groups remain contained is unclear. Interestingly, only HIV-1M Vpu, a viral protein, can robustly counteract human tetherin, which tethers budding virions. Therefore, we hypothesize that this property of HIV-1M Vpu facilitates human-to-human viral transmission. Adopting a multilayered experimental-mathematical approach, we demonstrate that HIV-1M Vpu confers a 2.38-fold increase in the prevalence of HIV-1 transmission. When Vpu activity is lost, protected human populations emerge (i.e., intrinsic herd immunity develops) through the anti-viral effect of tetherin. We also reveal that all Vpus of transmitted/founder HIV-1M viruses maintain anti-tetherin activity. These findings indicate that tetherin plays the role of a host restriction factor, providing 'intrinsic herd immunity', whereas Vpu has evolved in HIV-1M as a tetherin antagonist.

  11. Structural basis of clade-specific HIV-1 neutralization by humanized anti-V3 monoclonal antibody KD-247.

    Science.gov (United States)

    Kirby, Karen A; Ong, Yee Tsuey; Hachiya, Atsuko; Laughlin, Thomas G; Chiang, Leslie A; Pan, Yun; Moran, Jennifer L; Marchand, Bruno; Singh, Kamalendra; Gallazzi, Fabio; Quinn, Thomas P; Yoshimura, Kazuhisa; Murakami, Toshio; Matsushita, Shuzo; Sarafianos, Stefan G

    2015-01-01

    Humanized monoclonal antibody KD-247 targets the Gly(312)-Pro(313)-Gly(314)-Arg(315) arch of the third hypervariable (V3) loop of the HIV-1 surface glycoprotein. It potently neutralizes many HIV-1 clade B isolates, but not of other clades. To understand the molecular basis of this specificity, we solved a high-resolution (1.55 Å) crystal structure of the KD-247 antigen binding fragment and examined the potential interactions with various V3 loop targets. Unlike most antibodies, KD-247 appears to interact with its target primarily through light chain residues. Several of these interactions involve Arg(315) of the V3 loop. To evaluate the role of light chain residues in the recognition of the V3 loop, we generated 20 variants of KD-247 single-chain variable fragments with mutations in the antigen-binding site. Purified proteins were assessed for V3 loop binding using AlphaScreen technology and for HIV-1 neutralization. Our data revealed that recognition of the clade-specificity defining residue Arg(315) of the V3 loop is based on a network of interactions that involve Tyr(L32), Tyr(L92), and Asn(L27d) that directly interact with Arg(315), thus elucidating the molecular interactions of KD-247 with its V3 loop target.

  12. Curcumin derivatives as HIV-1 protease inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Sui, Z.; Li, J.; Craik, C.S.; Ortiz de Montellano, P.R. [Univ. of California, San Francisco, CA (United States)

    1993-12-31

    Curcumin, a non-toxic natural compound from Curcuma longa, has been found to be an HIV-1 protease inhibitor. Some of its derivatives were synthesized and their inhibitory activity against the HIV-1 protease was tested. Curcumin analogues containing boron enhanced the inhibitory activity. At least of the the synthesized compounds irreversibly inhibits the HIV-1 protease.

  13. Gut Dendritic Cell Activation Links an Altered Colonic Microbiome to Mucosal and Systemic T Cell Activation in Untreated HIV-1 infection

    Science.gov (United States)

    Dillon, SM; Lee, EJ; Kotter, CV; Austin, GL; Gianella, S; Siewe, B; Smith, DM; Landay, AL; McManus, MC; Robertson, CE; Frank, DN; McCarter, MD; Wilson, CC

    2015-01-01

    HIV-1-associated disruption of intestinal homeostasis is a major factor contributing to chronic immune activation and inflammation. Dendritic cells (DCs) are crucial in maintaining intestinal homeostasis, but the impact of HIV-1 infection on intestinal DC number and function has not been extensively studied. We compared the frequency and activation/maturation status of colonic myeloid DC (mDC) subsets (CD1c+ and CD1cneg) and plasmacytoid DCs in untreated HIV-1-infected subjects with uninfected controls. Colonic mDCs in HIV-1-infected subjects had increased CD40 but decreased CD83 expression, and CD40 expression on CD1c+ mDCs positively correlated with mucosal HIV-1 viral load, with mucosal and systemic cytokine production, and with frequencies of activated colon and blood T cells. Percent of CD83+CD1c+ mDCs negatively correlated with frequencies of IFN-γ-producing colon CD4+ and CD8+ T cells. CD40 expression on CD1c+ mDCs positively associated with abundance of high prevalence mucosal Prevotella copri and P. stercorea, but negatively associated with a number of low prevalence mucosal species including Rumminococcus bromii. CD1c+ mDC cytokine production was greater in response to in vitro stimulation with Prevotella species relative to R. bromii. These findings suggest that during HIV infection, colonic mDCs become activated upon exposure to mucosal pathobiont bacteria leading to mucosal and systemic immune activation. PMID:25921339

  14. Purinergic Receptors: Key Mediators of HIV-1 infection and inflammation

    Directory of Open Access Journals (Sweden)

    Talia H Swartz

    2015-11-01

    Full Text Available Human immunodeficiency virus (HIV-1 causes a chronic infection that afflicts more than 38 million individuals worldwide. While the infection can be suppressed with potent anti-retroviral therapies, individuals infected with HIV have elevated levels of inflammation as indicated by increased T cell activation, soluble biomarkers, and associated morbidity and mortality. A single mechanism linking HIV pathogenesis to this inflammation has yet to be identified. Purinergic receptors are known to mediate inflammation and have been shown to be required for HIV-1 infection at the level of HIV-1 membrane fusion. Here we review the literature on the role of purinergic receptors in HIV-1 infection and associated inflammation and describe a role for these receptors as potential therapeutic targets.

  15. Synthesis, antiinflammatory and HIV-1 integrase inhibitory activities of 1,2-bis[5-thiazolyl]ethane-1,2-dione derivatives

    Directory of Open Access Journals (Sweden)

    Franklin P

    2009-01-01

    Full Text Available Based on principles of pharmacophore delineation and drug designing, compounds containing diketofunctionallity namely 1,2-bis[5-thiazolyl]ethane-1,2-diones were designed and synthesized as antiinflammatory agents. The compounds were evaluated in carrageenan-induced rat-paw edema method. G-3, G-6, G-17, G-20, G-23, G-22, L-708 and 906 showed good antiinflammatory activity. In addition as diketo functionality containing compounds are reported to have HIV-1 integrase inhibitory property, and these compounds contains diketo functionality, so these compounds were screened in assay for HIV-1 integrase inhibition. Few compounds showed weak HIV-1 integrase Inhibitory activity.

  16. The microvesicle component of HIV-1 inocula modulates dendritic cell infection and maturation and enhances adhesion to and activation of T lymphocytes.

    Directory of Open Access Journals (Sweden)

    Sarah K Mercier

    2013-10-01

    Full Text Available HIV-1 is taken up by immature monocyte derived dendritic cells (iMDDCs into tetraspanin rich caves from which the virus can either be transferred to T lymphocytes or enter into endosomes resulting in degradation. HIV-1 binding and fusion with the DC membrane results in low level de novo infection that can also be transferred to T lymphocytes at a later stage. We have previously reported that HIV-1 can induce partial maturation of iMDDCs at both stages of trafficking. Here we show that CD45⁺ microvesicles (MV which contaminate purified HIV-1 inocula due to similar size and density, affect DC maturation, de novo HIV-1 infection and transfer to T lymphocytes. Comparing iMDDCs infected with CD45-depleted HIV-1BaL or matched non-depleted preparations, the presence of CD45⁺ MVs was shown to enhance DC maturation and ICAM-1 (CD54 expression, which is involved in DC∶T lymphocyte interactions, while restricting HIV-1 infection of MDDCs. Furthermore, in the DC culture HIV-1 infected (p24⁺ MDDCs were more mature than bystander cells. Depletion of MVs from the HIV-1 inoculum markedly inhibited DC∶T lymphocyte clustering and the induction of alloproliferation as well as limiting HIV-1 transfer from DCs to T lymphocytes. The effects of MV depletion on these functions were reversed by the re-addition of purified MVs from activated but not non-activated SUPT1.CCR5-CL.30 or primary T cells. Analysis of the protein complement of these MVs and of these HIV-1 inocula before and after MV depletion showed that Heat Shock Proteins (HSPs and nef were the likely DC maturation candidates. Recombinant HSP90α and β and nef all induced DC maturation and ICAM-1 expression, greater when combined. These results suggest that MVs contaminating HIV-1 released from infected T lymphocytes may be biologically important, especially in enhancing T cell activation, during uptake by DCs in vitro and in vivo, particularly as MVs have been detected in the circulation of HIV-1

  17. ASK1 restores the antiviral activity of APOBEC3G by disrupting HIV-1 Vif-mediated counteraction.

    Science.gov (United States)

    Miyakawa, Kei; Matsunaga, Satoko; Kanou, Kazuhiko; Matsuzawa, Atsushi; Morishita, Ryo; Kudoh, Ayumi; Shindo, Keisuke; Yokoyama, Masaru; Sato, Hironori; Kimura, Hirokazu; Tamura, Tomohiko; Yamamoto, Naoki; Ichijo, Hidenori; Takaori-Kondo, Akifumi; Ryo, Akihide

    2015-04-22

    APOBEC3G (A3G) is an innate antiviral restriction factor that strongly inhibits the replication of human immunodeficiency virus type 1 (HIV-1). An HIV-1 accessory protein, Vif, hijacks the host ubiquitin-proteasome system to execute A3G degradation. Identification of the host pathways that obstruct the action of Vif could provide a new strategy for blocking viral replication. We demonstrate here that the host protein ASK1 (apoptosis signal-regulating kinase 1) interferes with the counteraction by Vif and revitalizes A3G-mediated viral restriction. ASK1 binds the BC-box of Vif, thereby disrupting the assembly of the Vif-ubiquitin ligase complex. Consequently, ASK1 stabilizes A3G and promotes its incorporation into viral particles, ultimately reducing viral infectivity. Furthermore, treatment with the antiretroviral drug AZT (zidovudine) induces ASK1 expression and restores the antiviral activity of A3G in HIV-1-infected cells. This study thus demonstrates a distinct function of ASK1 in restoring the host antiviral system that can be enhanced by AZT treatment.

  18. HIV-1 and IL-1β regulate astrocytic CD38 through mitogen-activated protein kinases and nuclear factor-κB signaling mechanisms

    Directory of Open Access Journals (Sweden)

    Mamik Manmeet K

    2011-10-01

    Full Text Available Abstract Background Infection with human immunodeficiency virus type-1 (HIV-1 leads to some form of HIV-1-associated neurocognitive disorders (HAND in approximately half of the cases. The mechanisms by which astrocytes contribute to HIV-1-associated dementia (HAD, the most severe form of HAND, still remain unresolved. HIV-1-encephalitis (HIVE, a pathological correlate of HAD, affects an estimated 9-11% of the HIV-1-infected population. Our laboratory has previously demonstrated that HIVE brain tissues show significant upregulation of CD38, an enzyme involved in calcium signaling, in astrocytes. We also reported an increase in CD38 expression in interleukin (IL-1β-activated astrocytes. In the present investigation, we studied regulatory mechanisms of CD38 gene expression in astrocytes activated with HIV-1-relevant stimuli. We also investigated the role of mitogen-activated protein kinases (MAPKs and nuclear factor (NF-κB in astrocyte CD38 regulation. Methods Cultured human astrocytes were transfected with HIV-1YU-2 proviral clone and levels of CD38 mRNA and protein were measured by real-time PCR gene expression assay, western blot analysis and immunostaining. Astrocyte activation by viral transfection was determined by analyzing proinflammatory chemokine levels using ELISA. To evaluate the roles of MAPKs and NF-κB in CD38 regulation, astrocytes were treated with MAPK inhibitors (SB203580, SP600125, U0126, NF-κB interfering peptide (SN50 or transfected with dominant negative IκBα mutant (IκBαM prior to IL-1β activation. CD38 gene expression and CD38 ADP-ribosyl cyclase activity assays were performed to analyze alterations in CD38 levels and function, respectively. Results HIV-1YU-2-transfection significantly increased CD38 mRNA and protein expression in astrocytes (p YU-2-transfected astrocytes significantly increased HIV-1 gene expression (p Conclusion The present findings demonstrate a direct involvement of HIV-1 and virus

  19. Anticancer molecule AS1411 exhibits low nanomolar antiviral activity against HIV-1.

    Science.gov (United States)

    Métifiot, Mathieu; Amrane, Samir; Mergny, Jean-Louis; Andreola, Marie-Line

    2015-11-01

    During clinical trials, a number of fully characterized molecules are dropped along the way because they do not provide enough benefit for the patient. Some of them show limited side effects and might be of great use for other applications. AS1411 is a nucleolin-targeting aptamer that underwent phase II clinical trials as anticancer agent. Here, we show that AS1411 exhibits extremely potent antiviral activity and is therefore an attractive new lead as anti-HIV agent.

  20. Activity of the HIV-1 Attachment Inhibitor BMS-626529, the Active Component of the Prodrug BMS-663068, against CD4-Independent Viruses and HIV-1 Envelopes Resistant to Other Entry Inhibitors

    OpenAIRE

    Li, Zhufang; Zhou, Nannan; Sun, Yongnian; Ray, Neelanjana; Lataillade, Max; Hanna, George J.; Krystal, Mark

    2013-01-01

    BMS-626529 is a novel small-molecule HIV-1 attachment inhibitor active against both CCR5- and CXCR4-tropic viruses. BMS-626529 functions by preventing gp120 from binding to CD4. A prodrug of this compound, BMS-663068, is currently in clinical development. As a theoretical resistance pathway to BMS-663068 could be the development of a CD4-independent phenotype, we examined the activity of BMS-626529 against CD4-independent viruses and investigated whether resistance to BMS-626529 could be asso...

  1. Features of Recently Transmitted HIV-1 Clade C Viruses that Impact Antibody Recognition: Implications for Active and Passive Immunization.

    Directory of Open Access Journals (Sweden)

    Cecilia Rademeyer

    2016-07-01

    Full Text Available The development of biomedical interventions to reduce acquisition of HIV-1 infection remains a global priority, however their potential effectiveness is challenged by very high HIV-1 envelope diversity. Two large prophylactic trials in high incidence, clade C epidemic regions in southern Africa are imminent; passive administration of the monoclonal antibody VRC01, and active immunization with a clade C modified RV144-like vaccines. We have created a large representative panel of C clade viruses to enable assessment of antibody responses to vaccines and natural infection in Southern Africa, and we investigated the genotypic and neutralization properties of recently transmitted clade C viruses to determine how viral diversity impacted antibody recognition. We further explore the implications of these findings for the potential effectiveness of these trials. A panel of 200 HIV-1 Envelope pseudoviruses was constructed from clade C viruses collected within the first 100 days following infection. Viruses collected pre-seroconversion were significantly more resistant to serum neutralization compared to post-seroconversion viruses (p = 0.001. Over 13 years of the study as the epidemic matured, HIV-1 diversified (p = 0.0009 and became more neutralization resistant to monoclonal antibodies VRC01, PG9 and 4E10. When tested at therapeutic levels (10ug/ml, VRC01 only neutralized 80% of viruses in the panel, although it did exhibit potent neutralization activity against sensitive viruses (IC50 titres of 0.42 μg/ml. The Gp120 amino acid similarity between the clade C panel and candidate C-clade vaccine protein boosts (Ce1086 and TV1 was 77%, which is 8% more distant than between CRF01_AE viruses and the RV144 CRF01_AE immunogen. Furthermore, two vaccine signature sites, K169 in V2 and I307 in V3, associated with reduced infection risk in RV144, occurred less frequently in clade C panel viruses than in CRF01_AE viruses from Thailand. Increased resistance of

  2. Features of Recently Transmitted HIV-1 Clade C Viruses that Impact Antibody Recognition: Implications for Active and Passive Immunization

    Science.gov (United States)

    Rademeyer, Cecilia; Korber, Bette; Seaman, Michael S.; Giorgi, Elena E.; Thebus, Ruwayhida; Robles, Alexander; Sheward, Daniel J.; Wagh, Kshitij; Carey, Brittany R.; Gao, Hongmei; Greene, Kelli M.; Tang, Haili; Marais, Jinny C.; Diphoko, Thabo E.; Hraber, Peter; Tumba, Nancy; Moore, Penny L.; Gray, Glenda E.; Kublin, James; McElrath, M. Juliana; Vermeulen, Marion; Middelkoop, Keren; Bekker, Linda-Gail; Hoelscher, Michael; Maboko, Leonard; Makhema, Joseph; Robb, Merlin L.; Abdool Karim, Salim; Abdool Karim, Quarraisha; Kim, Jerome H.; Hahn, Beatrice H.; Gao, Feng; Swanstrom, Ronald; Morris, Lynn; Montefiori, David C.; Williamson, Carolyn

    2016-01-01

    The development of biomedical interventions to reduce acquisition of HIV-1 infection remains a global priority, however their potential effectiveness is challenged by very high HIV-1 envelope diversity. Two large prophylactic trials in high incidence, clade C epidemic regions in southern Africa are imminent; passive administration of the monoclonal antibody VRC01, and active immunization with a clade C modified RV144-like vaccines. We have created a large representative panel of C clade viruses to enable assessment of antibody responses to vaccines and natural infection in Southern Africa, and we investigated the genotypic and neutralization properties of recently transmitted clade C viruses to determine how viral diversity impacted antibody recognition. We further explore the implications of these findings for the potential effectiveness of these trials. A panel of 200 HIV-1 Envelope pseudoviruses was constructed from clade C viruses collected within the first 100 days following infection. Viruses collected pre-seroconversion were significantly more resistant to serum neutralization compared to post-seroconversion viruses (p = 0.001). Over 13 years of the study as the epidemic matured, HIV-1 diversified (p = 0.0009) and became more neutralization resistant to monoclonal antibodies VRC01, PG9 and 4E10. When tested at therapeutic levels (10ug/ml), VRC01 only neutralized 80% of viruses in the panel, although it did exhibit potent neutralization activity against sensitive viruses (IC50 titres of 0.42 μg/ml). The Gp120 amino acid similarity between the clade C panel and candidate C-clade vaccine protein boosts (Ce1086 and TV1) was 77%, which is 8% more distant than between CRF01_AE viruses and the RV144 CRF01_AE immunogen. Furthermore, two vaccine signature sites, K169 in V2 and I307 in V3, associated with reduced infection risk in RV144, occurred less frequently in clade C panel viruses than in CRF01_AE viruses from Thailand. Increased resistance of pre

  3. Reactivation of latently infected HIV-1 viral reservoirs and correction of aberrant alternative splicing in the LMNA gene via AMPK activation: Common mechanism of action linking HIV-1 latency and Hutchinson-Gilford progeria syndrome.

    Science.gov (United States)

    Finley, Jahahreeh

    2015-09-01

    Although the use of antiretroviral therapy (ART) has proven highly effective in controlling and suppressing HIV-1 replication, the persistence of latent but replication-competent proviruses in a small subset of CD4(+) memory T cells presents significant challenges to viral eradication from infected individuals. Attempts to eliminate latent reservoirs are epitomized by the 'shock and kill' approach, a strategy involving the combinatorial usage of compounds that influence epigenetic modulation and initiation of proviral transcription. However, efficient regulation of viral pre-mRNA splicing through manipulation of host cell splicing machinery is also indispensible for HIV-1 replication. Interestingly, aberrant alternative splicing of the LMNA gene via the usage of a cryptic splice site has been shown to be the cause of most cases of Hutchinson-Gilford progeria syndrome (HGPS), a rare genetic condition characterized by an accelerated aging phenotype due to the accumulation of a truncated form of lamin A known as progerin. Recent evidence has shown that inhibition of the splicing factors ASF/SF2 (or SRSF1) and SRp55 (or SRSF6) leads to a reduction or an increase in progerin at both the mRNA and protein levels, respectively, thus altering the LMNA pre-mRNA splicing ratio. It is also well-established that during the latter stages of HIV-1 infection, an increase in the production and nuclear export of unspliced viral mRNA is indispensible for efficient HIV-1 replication and that the presence of ASF/SF2 leads to excessive viral pre-mRNA splicing and a reduction of unspliced mRNA, while the presence of SRp55 inhibits viral pre-mRNA splicing and aids in the generation and translation of unspliced HIV-1 mRNAs. The splicing-factor associated protein and putative mitochondrial chaperone p32 has also been shown to inhibit ASF/SF2, increase unspliced HIV-1 viral mRNA, and enhance mitochondrial DNA replication and oxidative phosphorylation. It is our hypothesis that activation of

  4. HIV-1 integrase inhibitory activity of endophytic fungi from five species of medicinal Dendrobium%五种药用石斛内生真菌抑制HIV-1整合酶活性研究

    Institute of Scientific and Technical Information of China (English)

    祁婧; 张大为; 陈娟; 康永; 郭顺星

    2013-01-01

    目的 评价5种药用石斛内生真菌发酵产物抑制HIV-1整合酶的活性.方法 将分离自石斛的202株内生真菌提取物共404个采用高通量ELISA法评价其抑制HIV-l整合酶活性;对抑制活性大于100%的样品进行量效关系考察并进行体外抑制肿瘤细胞活性筛选.结果 筛选得到19个对HIV-l整合酶抑制活性大于80%的样品,其中样品5119F、5297F、5097F、5140J和5211F的抑制率分别达到117.96%、113.53%、108.62%、103.74%和109.02%,其对应的IC50值分别为0.02024、0.003125、0.00862、0.01007 和 0.01192 mg/ml.结论石斛属药用植物内生真菌是一个潜在的、丰富的用于筛选HIV-1整合酶抑制剂的资源库,值得进一步研究和开发.%Objective To evaluate the HIV integrase inhibitory activity of endophvtic fungi in five species of medicinal Dendrobium.Methods The HIV-1 integrase inhibitory activity was detected with high-throughput ELISA.The samples that displayed more than 100% inhibitory effect for HIV-1 integrase were selected for dose-response experiments and anticancer activity screening.Results Among all the tested samples,19 samples inhibited the HIV-1 integrase activity by more than 80%.Specially,the samples 5119F,5297F,5097F,5140J and 5211F inhibited the enzyme activity by 117.96%,113.53%,108.62%,103.74% and 109.02% respectively.The IC50 of the five samples was 0.02024,0.003125,0.00862,0.01007 and 0.01192 mg/ml respectively.Conclusion Endophytic fungi of medicinal Dendrobium are potential and abundant reservoir for the screening of HIV-1 integrase inhibitors and are worthy of further study.

  5. Activity of the HIV-1 attachment inhibitor BMS-626529, the active component of the prodrug BMS-663068, against CD4-independent viruses and HIV-1 envelopes resistant to other entry inhibitors.

    Science.gov (United States)

    Li, Zhufang; Zhou, Nannan; Sun, Yongnian; Ray, Neelanjana; Lataillade, Max; Hanna, George J; Krystal, Mark

    2013-09-01

    BMS-626529 is a novel small-molecule HIV-1 attachment inhibitor active against both CCR5- and CXCR4-tropic viruses. BMS-626529 functions by preventing gp120 from binding to CD4. A prodrug of this compound, BMS-663068, is currently in clinical development. As a theoretical resistance pathway to BMS-663068 could be the development of a CD4-independent phenotype, we examined the activity of BMS-626529 against CD4-independent viruses and investigated whether resistance to BMS-626529 could be associated with a CD4-independent phenotype. Finally, we evaluated whether cross-resistance exists between BMS-626529 and other HIV-1 entry inhibitors. Two laboratory-derived envelopes with a CD4-independent phenotype (one CXCR4 tropic and one CCR5 tropic), five envelopes from clinical isolates with preexisting BMS-626529 resistance, and several site-specific mutant BMS-626529-resistant envelopes were examined for their dependence on CD4 for infectivity or susceptibility to BMS-626529. Viruses resistant to other entry inhibitors (enfuvirtide, maraviroc, and ibalizumab) were also examined for susceptibility to BMS-626529. Both CD4-independent laboratory isolates retained sensitivity to BMS-626529 in CD4(-) cells, while HIV-1 envelopes from viruses resistant to BMS-626529 exhibited no evidence of a CD4-independent phenotype. BMS-626529 also exhibited inhibitory activity against ibalizumab- and enfuvirtide-resistant envelopes. While there appeared to be some association between maraviroc resistance and reduced susceptibility to BMS-626529, an absolute correlation cannot be presumed, since some CCR5-tropic maraviroc-resistant envelopes remained sensitive to BMS-626529. Clinical use of the prodrug BMS-663068 is unlikely to promote resistance via generation of CD4-independent virus. No cross-resistance between BMS-626529 and other HIV entry inhibitors was observed, which could allow for sequential or concurrent use with different classes of entry inhibitors.

  6. Phosphoramidate derivatives of acyclovir: synthesis and antiviral activity in HIV-1 and HSV-1 models in vitro.

    Science.gov (United States)

    Zakirova, Natalia F; Shipitsyn, Alexander V; Jasko, Maxim V; Prokofjeva, Maria M; Andronova, Valeria L; Galegov, Georgiy A; Prassolov, Vladimir S; Kochetkov, Sergey N

    2012-10-01

    The antiviral activity against HIV and HSV and the chemical stability of ACV phosphoramidate derivatives were studied. The phosphoramidates of ACV demonstrated moderate activity. The best compound appeared to be 9-(2-hydroxymethyl)guanine phosphoromonomorpholidate (7), which inhibited virus replication in pseudo-HIV-1 particles by 50% at 50 μM. It also inhibited replication of wild-type HSV-1 (9.7 μM) as well as an acyclovir-resistant strain (25 μM). None of the synthesised compounds showed any cytotoxicity.

  7. Prime-boost immunization of rabbits with HIV-1 gp120 elicits potent neutralization activity against a primary viral isolate.

    Directory of Open Access Journals (Sweden)

    Kristin M Narayan

    Full Text Available Development of a vaccine for HIV-1 requires a detailed understanding of the neutralizing antibody responses that can be experimentally elicited to difficult-to-neutralize primary isolates. Rabbits were immunized with the gp120 subunit of HIV-1 JR-CSF envelope (Env using a DNA-prime protein-boost regimen. We analyzed five sera that showed potent autologous neutralizing activity (IC50s at ∼10(3 to 10(4 serum dilution against pseudoviruses containing Env from the primary isolate JR-CSF but not from the related isolate JR-FL. Pseudoviruses were created by exchanging each variable and constant domain of JR-CSF gp120 with that of JR-FL or with mutations in putative N-glycosylation sites. The sera contained different neutralizing activities dependent on C3 and V5, C3 and V4, or V4 regions located on the glycan-rich outer domain of gp120. All sera showed enhanced neutralizing activity toward an Env variant that lacked a glycosylation site in V4. The JR-CSF gp120 epitopes recognized by the sera are generally distinct from those of several well characterized mAbs (targeting conserved sites on Env or other type-specific responses (targeting V1, V2, or V3 variable regions. The activity of one serum requires specific glycans that are also important for 2G12 neutralization and this serum blocked the binding of 2G12 to gp120. Our findings show that different fine specificities can achieve potent neutralization of HIV-1, yet this strong activity does not result in improved breadth.

  8. The root extract of the medicinal plant Pelargonium sidoides is a potent HIV-1 attachment inhibitor.

    Directory of Open Access Journals (Sweden)

    Markus Helfer

    Full Text Available Global HIV-1 treatment would benefit greatly from safe herbal medicines with scientifically validated novel anti-HIV-1 activities. The root extract from the medicinal plant Pelargonium sidoides (PS is licensed in Germany as the herbal medicine EPs®7630, with numerous clinical trials supporting its safety in humans. Here we provide evidence from multiple cell culture experiments that PS extract displays potent anti-HIV-1 activity. We show that PS extract protects peripheral blood mononuclear cells and macrophages from infection with various X4 and R5 tropic HIV-1 strains, including clinical isolates. Functional studies revealed that the extract from PS has a novel mode-of-action. It interferes directly with viral infectivity and blocks the attachment of HIV-1 particles to target cells, protecting them from virus entry. Analysis of the chemical footprint of anti-HIV activity indicates that HIV-1 inhibition is mediated by multiple polyphenolic compounds with low cytotoxicity and can be separated from other extract components with higher cytotoxicity. Based on our data and its excellent safety profile, we propose that PS extract represents a lead candidate for the development of a scientifically validated herbal medicine for anti-HIV-1 therapy with a mode-of-action different from and complementary to current single-molecule drugs.

  9. The root extract of the medicinal plant Pelargonium sidoides is a potent HIV-1 attachment inhibitor.

    Science.gov (United States)

    Helfer, Markus; Koppensteiner, Herwig; Schneider, Martha; Rebensburg, Stephanie; Forcisi, Sara; Müller, Constanze; Schmitt-Kopplin, Philippe; Schindler, Michael; Brack-Werner, Ruth

    2014-01-01

    Global HIV-1 treatment would benefit greatly from safe herbal medicines with scientifically validated novel anti-HIV-1 activities. The root extract from the medicinal plant Pelargonium sidoides (PS) is licensed in Germany as the herbal medicine EPs®7630, with numerous clinical trials supporting its safety in humans. Here we provide evidence from multiple cell culture experiments that PS extract displays potent anti-HIV-1 activity. We show that PS extract protects peripheral blood mononuclear cells and macrophages from infection with various X4 and R5 tropic HIV-1 strains, including clinical isolates. Functional studies revealed that the extract from PS has a novel mode-of-action. It interferes directly with viral infectivity and blocks the attachment of HIV-1 particles to target cells, protecting them from virus entry. Analysis of the chemical footprint of anti-HIV activity indicates that HIV-1 inhibition is mediated by multiple polyphenolic compounds with low cytotoxicity and can be separated from other extract components with higher cytotoxicity. Based on our data and its excellent safety profile, we propose that PS extract represents a lead candidate for the development of a scientifically validated herbal medicine for anti-HIV-1 therapy with a mode-of-action different from and complementary to current single-molecule drugs.

  10. Hyperthermia stimulates HIV-1 replication.

    Directory of Open Access Journals (Sweden)

    Ferdinand Roesch

    Full Text Available HIV-infected individuals may experience fever episodes. Fever is an elevation of the body temperature accompanied by inflammation. It is usually beneficial for the host through enhancement of immunological defenses. In cultures, transient non-physiological heat shock (42-45°C and Heat Shock Proteins (HSPs modulate HIV-1 replication, through poorly defined mechanisms. The effect of physiological hyperthermia (38-40°C on HIV-1 infection has not been extensively investigated. Here, we show that culturing primary CD4+ T lymphocytes and cell lines at a fever-like temperature (39.5°C increased the efficiency of HIV-1 replication by 2 to 7 fold. Hyperthermia did not facilitate viral entry nor reverse transcription, but increased Tat transactivation of the LTR viral promoter. Hyperthermia also boosted HIV-1 reactivation in a model of latently-infected cells. By imaging HIV-1 transcription, we further show that Hsp90 co-localized with actively transcribing provirus, and this phenomenon was enhanced at 39.5°C. The Hsp90 inhibitor 17-AAG abrogated the increase of HIV-1 replication in hyperthermic cells. Altogether, our results indicate that fever may directly stimulate HIV-1 replication, in a process involving Hsp90 and facilitation of Tat-mediated LTR activity.

  11. Retinoblastoma protein induction by HIV viremia or CCR5 in monocytes exposed to HIV-1 mediates protection from activation-induced apoptosis: ex vivo and in vitro study.

    Science.gov (United States)

    Gekonge, Bethsebah; Raymond, Andrea D; Yin, Xiangfan; Kostman, Jay; Mounzer, Karam; Collman, Ronald G; Showe, Louise; Montaner, Luis J

    2012-08-01

    We have previously described an antiapoptotic steady-state gene expression profile in circulating human monocytes from asymptomatic viremic HIV(+) donors, but the mechanism associated with this apoptosis resistance remains to be fully elucidated. Here, we show that Rb1 activation is a dominant feature of apoptosis resistance in monocytes exposed to HIV-1 in vivo (as measured ex vivo) and in vitro. Monocytes from asymptomatic viremic HIV(+) individuals show a positive correlation between levels of hypophosphorylated (active) Rb1 and VL in conjunction with increases in other p53-inducible proteins associated with antiapoptosis regulation, such as p21 and PAI-1 (SERPINE1), when compared with circulating monocytes from uninfected donors. Monocytes exposed in vitro to HIV-1 R5 isolates but not X4 isolates showed lower caspase-3 activation after apoptosis induction, indicating a role for the CCR5 signaling pathway. Moreover, monocytes exposed to R5 HIV-1 or MIP-1 β induced Rb1 and p21 expression and an accumulation of autophagy markers, LC3 and Beclin. The inhibition of Rb1 activity in HIV-1 R5 viral-exposed monocytes using siRNA led to increased apoptosis sensitivity, thereby confirming a central role for Rb1 in the antiapoptotic phenotype. Our data identify Rb1 induction in chronic asymptomatic HIV-1 infection as a mediator of apoptosis resistance in monocytes in association with protective autophagy and contributing to monocyte survival during immune activation and/or HIV-1 viremia.

  12. Chimeric HIV-1 envelope glycoproteins with potent intrinsic granulocyte-macrophage colony-stimulating factor (GM-CSF activity.

    Directory of Open Access Journals (Sweden)

    Gözde Isik

    Full Text Available HIV-1 acquisition can be prevented by broadly neutralizing antibodies (BrNAbs that target the envelope glycoprotein complex (Env. An ideal vaccine should therefore be able to induce BrNAbs that can provide immunity over a prolonged period of time, but the low intrinsic immunogenicity of HIV-1 Env makes the elicitation of such BrNAbs challenging. Co-stimulatory molecules can increase the immunogenicity of Env and we have engineered a soluble chimeric Env trimer with an embedded granulocyte-macrophage colony-stimulating factor (GM-CSF domain. This chimeric molecule induced enhanced B and helper T cell responses in mice compared to Env without GM-CSF. We studied whether we could optimize the activity of the embedded GM-CSF as well as the antigenic structure of the Env component of the chimeric molecule. We assessed the effect of truncating GM-CSF, removing glycosylation-sites in GM-CSF, and adjusting the linker length between GM-CSF and Env. One of our designed Env(GM-CSF chimeras improved GM-CSF-dependent cell proliferation by 6-fold, reaching the same activity as soluble recombinant GM-CSF. In addition, we incorporated GM-CSF into a cleavable Env trimer and found that insertion of GM-CSF did not compromise Env cleavage, while Env cleavage did not compromise GM-CSF activity. Importantly, these optimized Env(GM-CSF proteins were able to differentiate human monocytes into cells with a macrophage-like phenotype. Chimeric Env(GM-CSF should be useful for improving humoral immunity against HIV-1 and these studies should inform the design of other chimeric proteins.

  13. Antiviral activity of derivatized dextrans on HIV-1 infection of primary macrophages and blood lymphocytes.

    Science.gov (United States)

    Seddiki, N; Mbemba, E; Letourneur, D; Ylisastigui, L; Benjouad, A; Saffar, L; Gluckman, J C; Jozefonvicz, J; Gattegno, L

    1997-11-28

    The present study demonstrates at the molecular level that dextran derivatives carboxymethyl dextran benzylamine (CMDB) and carboxymethyl dextran benzylamine sulfonate (CMDBS), characterized by a statistical distribution of anionic carboxylic groups, hydrophobic benzylamide units, and/or sulfonate moieties, interact with HIV-1 LAI gp120 and V3 consensus clades B domain. Only limited interaction was observed with carboxy-methyl dextran (CMD) or dextran (D) under the same conditions. CMDBS and CMDB (1 microM) strongly inhibited HIV-1 infection of primary macrophages and primary CD4+ lymphocytes by macrophage-tropic and T lymphocyte-tropic strains, respectively, while D or CMD had more limited effects on M-tropic infection of primary macrophages and exert no inhibitory effect on M- or T-tropic infection of primary lymphocytes. CMDBS and CMDB (1 microM) had limited but significant effect on oligomerized soluble recombinant gp120 binding to primary macrophages while they clearly inhibit (> 50%) such binding to primary lymphocytes. In conclusion, the inhibitory effect of CMDB and the CMDBS, is observed for HIV M- and T-tropic strain infections of primary lymphocytes and macrophages which indicates that these compounds interfere with steps of HIV replicative cycle which neither depend on the virus nor on the cell.

  14. Phospholipase D1 Couples CD4+ T Cell Activation to c-Myc-Dependent Deoxyribonucleotide Pool Expansion and HIV-1 Replication.

    Directory of Open Access Journals (Sweden)

    Harry E Taylor

    2015-05-01

    Full Text Available Quiescent CD4+ T cells restrict human immunodeficiency virus type 1 (HIV-1 infection at early steps of virus replication. Low levels of both deoxyribonucleotide triphosphates (dNTPs and the biosynthetic enzymes required for their de novo synthesis provide one barrier to infection. CD4+ T cell activation induces metabolic reprogramming that reverses this block and facilitates HIV-1 replication. Here, we show that phospholipase D1 (PLD1 links T cell activation signals to increased HIV-1 permissivity by triggering a c-Myc-dependent transcriptional program that coordinates glucose uptake and nucleotide biosynthesis. Decreasing PLD1 activity pharmacologically or by RNA interference diminished c-Myc-dependent expression during T cell activation at the RNA and protein levels. PLD1 inhibition of HIV-1 infection was partially rescued by adding exogenous deoxyribonucleosides that bypass the need for de novo dNTP synthesis. Moreover, the data indicate that low dNTP levels that impact HIV-1 restriction involve decreased synthesis, and not only increased catabolism of these nucleotides. These findings uncover a unique mechanism of action for PLD1 inhibitors and support their further development as part of a therapeutic combination for HIV-1 and other viral infections dependent on host nucleotide biosynthesis.

  15. Acquisition of HIV-1 resistance in T lymphocytes using an ACA-specific E. coli mRNA interferase.

    Science.gov (United States)

    Chono, Hideto; Matsumoto, Kazuya; Tsuda, Hiroshi; Saito, Naoki; Lee, Karim; Kim, Sujeong; Shibata, Hiroaki; Ageyama, Naohide; Terao, Keiji; Yasutomi, Yasuhiro; Mineno, Junichi; Kim, Sunyoung; Inouye, Masayori; Kato, Ikunoshin

    2011-01-01

    Transcriptional activation of gene expression directed by the long terminal repeat (LTR) of HIV-1 requires both the transactivation response element (TAR) and Tat protein. HIV-1 mutants lacking a functional tat gene are not able to proliferate. Here we take a genetic approach to suppress HIV-1 replication based on Tat-dependent production of MazF, an ACA-specific endoribonuclease (mRNA interferase) from Escherichia coli. When induced, MazF is known to cause Bak- and NBK-dependent apoptotic cell death in mammalian cells. We first constructed a retroviral vector, in which the mazF (ACA-less) gene was inserted under the control of the HIV-1 LTR, which was then transduced into CD4+ T-lymphoid CEM-SS cells in such a way that, upon HIV-1 infection, the mazF gene is induced to destroy the infecting HIV-1 mRNA, preventing HIV-1 replication. Indeed, when the transduced cells were infected with HIV-1 IIIB, the viral replication was effectively inhibited, as HIV-1 IIIB p24 could not be detected in the culture medium. Consistently, not only cell growth but also the CD4 level was not affected by the infection. These results suggest that the HIV-1-LTR-regulated mazF gene was effectively induced upon HIV-1 IIIB infection, which is sufficient enough to destroy the viral mRNA from the infected HIV-1 IIIB to completely block viral proliferation in the cells, but not to affect normal cell growth. These results indicate that the T cells transduced with the HIV-1-LTR-regulated mazF gene acquire HIV-1 resistance, providing an intriguing potential for the use of the HIV-1-LTR-regulated mazF gene in anti-HIV gene therapy.

  16. A cell-penetrating antibody fragment against HIV-1 Rev has high antiviral activity: characterization of the paratope.

    Science.gov (United States)

    Zhuang, Xiaolei; Stahl, Stephen J; Watts, Norman R; DiMattia, Michael A; Steven, Alasdair C; Wingfield, Paul T

    2014-07-18

    The HIV-1 protein Rev oligomerizes on viral transcripts and directs their nuclear export. Previously, a Fab against Rev generated by phage display was used to crystallize and solve the structure of the Rev oligomerization domain. Here we have investigated the capability of this Fab to block Rev oligomerization and inhibit HIV-1 replication. The Fab itself did not have antiviral activity, but when a Tat-derived cell-penetrating peptide was appended, the resulting molecule (FabRev1-Tat) was strongly inhibitory of three different CCR5-tropic HIV-1 isolates (IC50 = 0.09-0.44 μg/ml), as assessed by suppression of reverse transcriptase activity in infected peripheral blood mononuclear cells, and had low cell toxicity (TC50 > 100 μg/ml). FabRev1-Tat was taken up by both peripheral blood mononuclear and HEK293T cells, appearing in both the cytoplasm and nucleus, as shown by immunofluorescence confocal laser scanning microscopy. Computational alanine scanning was used to identify key residues in the complementarity-determining regions to guide mutagenesis experiments. Residues in the light chain CDR3 (LCDR3) were assessed to be important. Residues in LCDR3 were mutated, and LCDR3-Tyr(92) was found to be critical for binding to Rev, as judged by surface plasmon resonance and electron microscopy. Peptides corresponding to all six CDR regions were synthesized and tested for Rev binding. None of the linear peptides had significant affinity for Rev, but four of the amide-cyclic forms did. Especially cyclic-LCDR3 (LGGYPAASYRTA) had high affinity for Rev and was able to effectively depolymerize Rev filaments, as shown by both surface plasmon resonance and electron microscopy.

  17. A SHORT-TERM STUDY OF THE SAFETY, PHARMACOKINETICS, AND EFFICACY OF RITONAVIR, AN INHIBITOR OF HIV-1 PROTEASE

    NARCIS (Netherlands)

    DANNER, SA; CARR, A; LEONARD, JM; LEHMAN, LM; GUDIOL, F; GONZALES, J; RAVENTOS, A; RUBIO, R; BOUZA, E; PINTADO, Olga; AGUADO, AG; DELOMAS, JG; DELGADO, R; BORLEFFS, JCC; HSU, A; VALDES, JM; BOUCHER, CAB; COOPER, DA; GIMENO, C; CLOTET, B; TOR, J; FERRER, E; MARTINEZ, PL; MORENO, S; ZANCADA, G; ALCAMI, J; NORIEGA, AR; PULIDO, F; GLASSMAN, HN

    1995-01-01

    Background. Reverse-transcriptase inhibitors have only moderate clinical efficacy against the human immunodeficiency virus type 1 (HIV-1). Ritonavir is an inhibitor of HIV-1 pretease with potent in vitro anti-HIV properties and good oral bioavailability. Methods. We evaluated the antiviral activity

  18. 以 gp41为靶点的 HIV-1肽类融合抑制剂研究进展%Advancement on the study of peptides fusion inhibitors anti HIV-1 targeting gp41

    Institute of Scientific and Technical Information of China (English)

    许燕珍; 吴文言

    2016-01-01

    gp41是 HIV-1表面的一种包膜糖蛋白,介导病毒粒子与宿主细胞的细胞膜发生膜融合从而使病毒进入靶细胞,在 HIV-1感染和传播的过程中起关键作用。以 gp41为靶点的融合抑制剂不失为一种新型的抗 HIV-1药物之选,其中2003年多肽类融合抑制剂 T-20的上市,使得多肽融合抑制剂成为备受关注的研究热点。本文就 gp41的结构、融合机制以及肽类融合抑制剂的研究进展进行了综述。%The transmembrane glycoprotein gp41 of HIV-1 plays a key role in HIV-1 infection and transmission,mediating the fusion of virus and target cell membranes. Developing various peptides and peptidomimetics used as fusion inhibitors have be-came an attractive research area since the first peptide fusion inhibitor(T-20)targeting HIV-1 gp41 approved by FDA in 2003. This review summarizes the structure and fusion mechanism of gp41 and the recent progresses in the design and development of novel peptides and peptidominetics used as HIV-1 fusion inhibitors.

  19. B-oligomer of pertussis toxin inhibits HIV-1 LTR-driven transcription through suppression of NF-kappaB p65 subunit activity.

    Science.gov (United States)

    Iordanskiy, Sergey; Iordanskaya, Tatyana; Quivy, Vincent; Van Lint, Carine; Bukrinsky, Michael

    2002-10-10

    The binding subunit of pertussis toxin (PTX-B) has been shown recently to inhibit the entry and postentry events in HIV-1 replication in primary T lymphocytes and monocyte-derived macrophages. While the effect of PTX-B on HIV-1 entry was shown to involve CCR5 desensitization, the mechanism of postentry inhibition remained unclear. In T lymphocytes, PTX-B affected transcription or stability of Tat-stimulated HIV-1 mRNAs. In this study, we sought to identify the mechanism of postentry inhibition of HIV-1 replication by PTX-B in U-937 promonocytic cells. We demonstrate that in these cells PTX-B inhibits expression of luciferase reporter gene controlled by the HIV-1 LTR promoter. This effect is Tat-independent and is not restricted to the HIV-1 LTR promoter. Instead, PTX-B activity is mediated through suppression of the cellular transcription factor, NF-kappaB. PTX-B inhibits phosphorylation and nuclear translocation of the p65 subunit of NF-kappaB. This effect is independent of the cytoplasmic NF-kappaB inhibitor, IkappaBalpha, as PTX-B stimulates phosphorylation and subsequent degradation of this protein. The suppressive activity of PTX-B on NF-kappaB p65 phosphorylation and nuclear translocation is delayed, suggesting that PTX-B signaling might initiate synthesis and cytoplasmic accumulation of a p65 phosphorylation inhibitor.

  20. 新疆紫草提取物抗HIV-1体外活性研究(Ⅱ)%Activity of extracts from Arnebia Euchroma (Royle) Johnst. to HIV-1 key enzymes in vitro.

    Institute of Scientific and Technical Information of China (English)

    买尔旦·马合木提; 古丽仙·胡加; 秦冬梅

    2009-01-01

    目的:研究新疆紫草水溶性组分Ⅰ、Ⅱ、Ⅲ、Ⅳ对HIV-1 3个关键酶的体外活性.方法: 分别选用HIV-1整合酶(HIV-1 ingrase,HIV-1 IN),HIV-1蛋白酶 (HIV-1 protease ,HIV-1 PR) ,HIV-1逆转录酶(HIV-1 reverse transcriptase,HIV-1 RT)体外药效筛选模型,观察组分Ⅰ、Ⅱ、Ⅲ和Ⅳ对以上酶的抑制作用.结果: 新疆紫草水溶性组分Ⅰ、Ⅱ、Ⅲ和Ⅳ对HIV-1 IN具有一定的抑制活性,50%有效浓度(EC50)分别为2.21、 14.71、5.71和66.08 μg/ml.组分Ⅰ对HIV-1 RT的抑制活性小,EC50为5.63 μg/ml.结论: 新疆紫草水溶性提取物对HIV-1 IN具有抑制活性,对HIV-1 PR均无抑制活性.

  1. A novel trifunctional IgG-like bispecific antibody to inhibit HIV-1 infection and enhance lysis of HIV by targeting activation of complement

    Directory of Open Access Journals (Sweden)

    Tomlinson Stephen

    2010-06-01

    Full Text Available Abstract Background The complement system is not only a key component of innate immunity but also provides a first line of defense against invading pathogens, especially for viral pathogens. Human immunodeficiency virus (HIV, however, possesses several mechanisms to evade complement-mediated lysis (CoML and exploit the complement system to enhance viral infectivity. Responsible for this intrinsic resistance against complement-mediated virolysis are complement regulatory membrane proteins derived from the host cell that inherently downregulates complement activation at several stages of the cascade. In addition, HIV is protected from complement-mediated lysis by binding soluble factor H (fH through the viral envelope proteins, gp120 and gp41. Whereas inhibition of complement activity is the desired outcome in the vast majority of therapeutic approaches, there is a broader potential for complement-mediated inhibition of HIV by complement local stimulation. Presentation of the hypothesis Our previous studies have proven that the complement-mediated antibody-dependent enhancement of HIV infection is mediated by the association of complement receptor type 2 bound to the C3 fragment and deposited on the surface of HIV virions. Thus, we hypothesize that another new activator of complement, consisting of two dsFv (against gp120 and against C3d respectively linked to a complement-activating human IgG1 Fc domain ((anti-gp120 × anti-C3d-Fc, can not only target and amplify complement activation on HIV virions for enhancing the efficiency of HIV lysis, but also reduce the infectivity of HIV through blocking the gp120 and C3d on the surface of HIV. Testing the hypothesis Our hypothesis was tested using cell-free HIV-1 virions cultivated in vitro and assessment of virus opsonization was performed by incubating appropriate dilutions of virus with medium containing normal human serum and purified (anti-gp120 × anti-C3d-Fc proteins. As a control group, viruses

  2. HIV-1-infected and immune-activated macrophages induce astrocytic differentiation of human cortical neural progenitor cells via the STAT3 pathway.

    Directory of Open Access Journals (Sweden)

    Hui Peng

    Full Text Available Diminished adult neurogenesis is considered a potential mechanism in the pathogenesis of HIV-1-associated dementia (HAD. In HAD, HIV-1-infected and immune-activated brain mononuclear phagocytes (MP; perivascular macrophages and microglia drive central nervous system (CNS inflammation and may alter normal neurogenesis. We previously demonstrated HIV-1-infected and lipopolysaccharide (LPS activated monocyte-derived macrophages (MDM inhibit human neural progenitor cell (NPC neurogenesis, while enhancing astrogliogenesis through the secretion of the inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α, in vitro and in vivo. Here we further test the hypothesis that HIV-1-infected/activated MDM promote NPC astrogliogenesis via activation of the transcription factor signal transducer and activator of transcription 3 (STAT3, a critical factor for astrogliogenesis. Our results show that LPS-activated MDM-conditioned medium (LPS-MCM and HIV-infected/LPS-activated MDM-conditioned medium (LPS+HIV-MCM induced Janus kinase 1 (Jak1 and STAT3 activation. Induction of the Jak-STAT3 activation correlated with increased glia fibrillary acidic protein (GFAP expression, demonstrating an induction of astrogliogenesis. Moreover, STAT3-targeting siRNA (siSTAT3 decreased MCM-induced STAT3 activation and NPC astrogliogenesis. Furthermore, inflammatory cytokines (including IL-6, IL-1β and TNF-α produced by LPS-activated and/or HIV-1-infected MDM may contribute to MCM-induced STAT3 activation and astrocytic differentiation. These observations were confirmed in severe combined immunodeficient (SCID mice with HIV-1 encephalitis (HIVE. In HIVE mice, siRNA control (without target sequence, sicon pre-transfected NPCs injected with HIV-1-infected MDM showed more astrocytic differentiation and less neuronal differentiation of NPCs as compared to NPC injection alone. siSTAT3 abrogated HIV-1-infected MDM-induced astrogliogenesis of injected NPCs. Collectively, these

  3. Plasma levels of soluble CD27: a simple marker to monitor immune activation during potent antiretroviral therapy in HIV-1-infected subjects

    Science.gov (United States)

    DE MILITO, A; ALEMAN, S; MARENZI, R; SÖNNERBORG, A; FUCHS, D; ZAZZI, M; CHIODI, F

    2002-01-01

    Plasma levels of soluble CD27 (sCD27) are elevated in diseases characterized by T cell activation and are used as a marker of immune activation. We assessed the usefulness of determining plasma sCD27 as a marker for monitoring immune activation in HIV-1-infected patients treated with highly active antiretroviral therapy (HAART). A first cross-sectional examination of 68 HIV-1-infected and 18 normal subjects showed high levels of sCD27 in HIV-1 infection; plasma sCD27 was correlated to HIV-1 viraemia and inversely correlated to CD4+ T cell count. Twenty-six HIV-1-infected patients undergoing HAART were studied at baseline and after 6, 12, 18 and 24 months of therapy. Seven additional patients under HAART were analysed at baseline, during and after interruption of therapy. In the total population, HAART induced a significant and progressive reduction, but not a normalization, of plasma levels of sCD27 after 24 months. A full normalization of plasma sCD27 was observed in the virological responders (undetectable HIV-1 RNA at months 18 and 24) and also in patients with moderate immunodeficiency at baseline (CD4+ T cell count >200 cells/mm3). Changes in plasma neopterin paralleled the changes in sCD27 but only baseline sCD27 levels were predictive of a greater increase in CD4+ T cell count during the follow-up. Discontinuation of therapy resulted in a rapid increase of sCD27 plasma levels associated with viraemia rebound and drop in CD4+ T cell count. Our findings suggest that plasma sCD27 may represent an alternative and simple marker to monitor immune activation during potent antiretroviral therapy. HIV-1-induced immune activation can be normalized by HAART in successfully treated patients where the disease is not advanced. PMID:11966765

  4. Pharmacodynamic activity of Dapivirine and Maraviroc single entity and combination topical gels for HIV-1 prevention

    Science.gov (United States)

    Dezzutti, Charlene S.; Yandura, Sarah; Wang, Lin; Moncla, Bernard; Teeple, Elizabeth A.; Devlin, Brid; Nuttall, Jeremy; Brown, Elizabeth R.; Rohan, Lisa C.

    2015-01-01

    Purpose Dapivirine (DPV), a non-nucleoside reverse transcriptase inhibitor, and maraviroc (MVC), a CCR5 antagonist, were formulated into aqueous gels designed to prevent mucosal HIV transmission. Methods 0.05% DPV, 0.1% MVC, 0.05% DPV/0.1% MVC and placebo gels were evaluated for pH, viscosity, osmolality, and in vitro release. In vitro assays and mucosal tissues were used to evaluate anti-HIV activity. Viability (Lactobacilli only) and epithelial integrity in cell lines and mucosal tissues defined safety. Results The gels were acidic and viscous. DPV gel had an osmolality of 893 mOsm/kg while the other gels had an osmolality of <100 mOsm/kg. MVC release was similar from the single and combination gels (~5 μg/cm2/min1/2), while DPV release was 10-fold less from the single as compared to the combination gel (0.4331 μg/cm2/min1/2). Titrations of the gels showed 10-fold more drug was needed to protect ectocervical than colonic tissue. The combination gel showed ~10- and 100-fold improved activity as compared to DPV and MVC gel, respectively. All gels were safe. Conclusions The DPV/MVC gel showed a benefit blocking HIV infection of mucosal tissue compared to the single entity gels. Combination products with drugs affecting unique steps in the viral replication cycle would be advantageous for HIV prevention. PMID:26078001

  5. Chronic immune activation in HIV-1 infection contributes to reduced interferon alpha production via enhanced CD40:CD40 ligand interaction.

    Directory of Open Access Journals (Sweden)

    Norbert Donhauser

    Full Text Available Although a signature of increased interferon (IFN-alpha production is observed in HIV-1 infection, the response of circulating plasmacytoid dendritic cells (PDC to Toll-like receptor ligand stimulation is substantially impaired. This functional PDC deficit, which we specifically observed in HIV-1 infected individuals with less than 500 CD4+ T cells/µl, is not well understood. We provide evidence that the peripheral IFN-alpha production in HIV-1 infection is actively suppressed by the enhanced interaction of CD40 ligand (CD40L, a member of the tumor necrosis factor family, and its receptor CD40, which are both upregulated upon immune activation. Plasma levels of soluble CD40L were significantly higher in untreated HIV-1 infected individuals (n = 52 than in subjects on long-term antiretroviral therapy (n = 62, p<0.03 and in uninfected control donors (n = 16, p<0.001. Concomitantly, cell-associated CD40L and the expression of the receptor CD40 on the PDC were significantly upregulated in HIV-1 infection (p<0.05. Soluble and cell-associated CD40L inhibited the PDC-derived IFN-alpha production by CpG oligodeoxynucleotides dose-dependently. This suppressive effect was observed at much lower, physiological CD40L concentrations in peripheral blood mononuclear cells (PBMC of HIV-1 infected individuals compared to controls (p<0.05. The CpG-induced IFN-alpha production in PBMC of HIV-1 infected donors was directly correlated with PDC and CD4+ T cell counts, and inversely correlated with the viral loads (p<0.001. In HIV-1 infected donors with less than 500 CD4+ T cells/µl, the CpG-induced IFN-alpha production was significantly correlated with the percentage of CD40-expressing PDC and the level of CD40 expression on these cells (p<0.05, whereas CD40L plasma levels played a minor role. In addition, low-dose CD40L contributed to the enhanced production of interleukin 6 and 8 in PBMC of HIV-1 infected donors compared to controls. Our data support

  6. Immune evasion activities of accessory proteins Vpu, Nef and Vif are conserved in acute and chronic HIV-1 infection.

    Science.gov (United States)

    Mlcochova, Petra; Apolonia, Luis; Kluge, Silvia F; Sridharan, Aishwarya; Kirchhoff, Frank; Malim, Michael H; Sauter, Daniel; Gupta, Ravindra K

    2015-08-01

    Heterosexual HIV-1 transmission has been identified as a genetic bottleneck and a single transmitted/founder (T/F) variant with reduced sensitivity to type I interferon initiates productive infection in most cases. We hypothesized that particularly active accessory protein(s) may confer T/F viruses with a selective advantage in establishing HIV infection. Thus, we tested vpu, vif and nef alleles from six T/F and six chronic (CC) viruses in assays for 9 immune evasion activities involving the counteraction of interferon-stimulated genes and modulation of ligands known to activate innate immune cells. All functions were highly conserved with no significant differences between T/F and CC viruses, suggesting that these accessory protein functions are important throughout the course of infection.

  7. Different pattern of immunoglobulin gene usage by HIV-1 compared to non-HIV-1 antibodies derived from the same infected subject.

    Directory of Open Access Journals (Sweden)

    Liuzhe Li

    Full Text Available A biased usage of immunoglobulin (Ig genes is observed in human anti-HIV-1 monoclonal antibodies (mAbs resulting probably from compensation to reduced usage of the VH3 family genes, while the other alternative suggests that this bias usage is due to antigen requirements. If the antigen structure is responsible for the preferential usage of particular Ig genes, it may have certain implications for HIV vaccine development by the targeting of particular Ig gene-encoded B cell receptors to induce neutralizing anti-HIV-1 antibodies. To address this issue, we have produced HIV-1 specific and non-HIV-1 mAbs from an infected individual and analyzed the Ig gene usage. Green-fluorescence labeled virus-like particles (VLP expressing HIV-1 envelope (Env proteins of JRFL and BaL and control VLPs (without Env were used to select single B cells for the production of 68 recombinant mAbs. Ten of these mAbs were HIV-1 Env specific with neutralizing activity against V3 and the CD4 binding site, as well as non-neutralizing mAbs to gp41. The remaining 58 mAbs were non-HIV-1 Env mAbs with undefined specificities. Analysis revealed that biased usage of Ig genes was restricted only to anti-HIV-1 but not to non-HIV-1 mAbs. The VH1 family genes were dominantly used, followed by VH3, VH4, and VH5 among anti-HIV-1 mAbs, while non-HIV-1 specific mAbs preferentially used VH3 family genes, followed by VH4, VH1 and VH5 families in a pattern identical to Abs derived from healthy individuals. This observation suggests that the biased usage of Ig genes by anti-HIV-1 mAbs is driven by structural requirements of the virus antigens rather than by compensation to any depletion of VH3 B cells due to autoreactive mechanisms, according to the gp120 superantigen hypothesis.

  8. Binding of HIV-1 virions to α4β7 expressing cells and impact of antagonizing α4β7 on HIV-1 infection of primary CD4+ T cells

    Institute of Scientific and Technical Information of China (English)

    Chang; Li; Wei; Jin; Tao; Du; Biao; Wu; Yalan; Liu; Robin; J; Shattock; Qinxue; Hu

    2014-01-01

    HIV-1 envelope glycoprotein is reported to interact with α4β7, an integrin mediating the homing of lymphocytes to gut-associated lymphoid tissue, but the significance of α4β7 in HIV-1 infection remains controversial. Here, using HIV-1 strain Ba L, the gp120 of which was previously shown to be capable of interacting with α4β7, we demonstrated that α4β7 can mediate the binding of whole HIV-1 virions to α4β7-expressing transfectants. We further constructed a cell line stably expressing α4β7 and confirmed the α4β7-mediated HIV-1 binding. In primary lymphocytes with activated α4β7 expression, we also observed significant virus binding which can be inhibited by an anti-α4β7 antibody. Moreover, we investigated the impact of antagonizing α4β7 on HIV-1 infection of primary CD4+ T cells. In α4β7-activated CD4+ T cells, both anti-α4β7 antibodies and introduction of shorthairpin RNAs specifically targeting α4β7 resulted in a decreased HIV-1 infection. Our findings indicate that α4β7 may serve as an attachment factor at least for some HIV-1 strains. The established approach provides a promising means for the investigation of other viral strains to understand the potential roles of α4β7 in HIV-1 infection.

  9. Antimycobacterial and HIV-1 Reverse Transcriptase Activity of Julianaceae and Clusiaceae Plant Species from Mexico

    Science.gov (United States)

    Gómez-Cansino, Rocio; Espitia-Pinzón, Clara Inés; Campos-Lara, María Guadalupe; Guzmán-Gutiérrez, Silvia Laura; Segura-Salinas, Erika; Echeverría-Valencia, Gabriela; Torras-Claveria, Laura; Cuevas-Figueroa, Xochitl Marisol; Reyes-Chilpa, Ricardo

    2015-01-01

    The extracts of 14 Julianaceae and 5 Clusiaceae species growing in Mexico were tested in vitro (50 µg/mL) against Mycobacterium tuberculosis H37Rv and HIV reverse transcriptase (HIV-RT). The Julianaceae bark and leaf extracts inhibited M. tuberculosis (>84.67%) and HIV-RT (58.3% and >67.6%), respectively. The IC50 values for six selected extracts and their cytotoxicity (50 µg/mL) to human macrophages were then determined. Amphipterygium glaucum, A. molle, and A. simplicifolium fairly inhibited M. tuberculosis with IC50 of 1.87–2.35 µg/mL; but their IC50 against HIV-RT was 59.25–97.83 µg/mL. Calophyllum brasiliense, Vismia baccifera, and Vismia mexicana effect on M. tuberculosis was noteworthy (IC50 3.02–3.64 µg/mL) and also inhibited RT-HIV (IC50 26.24–35.17 µg/mL). These 6 extracts (50 µg/mL) presented low toxicity to macrophages (<23.8%). The HPLC profiles of A. glaucum, A. molle, and A. simplicifolium indicated that their antimycobacterial activity cannot be related to masticadienonic, 3α, or 3β-hydromasticadienonic acids, suggesting that other compounds may be responsible for the observed activity or this might be a synergy result. The anti-HIV-RT and antimycobacterial activities induced by C. brasiliense can be attributed to the content of calanolides A, B, as well as soulatrolide. PMID:25983849

  10. Antimycobacterial and HIV-1 Reverse Transcriptase Activity of Julianaceae and Clusiaceae Plant Species from Mexico

    Directory of Open Access Journals (Sweden)

    Rocio Gómez-Cansino

    2015-01-01

    Full Text Available The extracts of 14 Julianaceae and 5 Clusiaceae species growing in Mexico were tested in vitro (50 µg/mL against Mycobacterium tuberculosis H37Rv and HIV reverse transcriptase (HIV-RT. The Julianaceae bark and leaf extracts inhibited M. tuberculosis (>84.67% and HIV-RT (58.3% and >67.6%, respectively. The IC50 values for six selected extracts and their cytotoxicity (50 µg/mL to human macrophages were then determined. Amphipterygium glaucum, A. molle, and A. simplicifolium fairly inhibited M. tuberculosis with IC50 of 1.87–2.35 µg/mL; but their IC50 against HIV-RT was 59.25–97.83 µg/mL. Calophyllum brasiliense, Vismia baccifera, and Vismia mexicana effect on M. tuberculosis was noteworthy (IC50 3.02–3.64 µg/mL and also inhibited RT-HIV (IC50 26.24–35.17 µg/mL. These 6 extracts (50 µg/mL presented low toxicity to macrophages (<23.8%. The HPLC profiles of A. glaucum, A. molle, and A. simplicifolium indicated that their antimycobacterial activity cannot be related to masticadienonic, 3α, or 3β-hydromasticadienonic acids, suggesting that other compounds may be responsible for the observed activity or this might be a synergy result. The anti-HIV-RT and antimycobacterial activities induced by C. brasiliense can be attributed to the content of calanolides A, B, as well as soulatrolide.

  11. CD4+CD25+CD127 regulatory cells play multiple roles in maintaining HIV-1 p24 production in patients on long-term treatment: HIV-1 p24-producing cells and suppression of anti-HIV immunity

    Directory of Open Access Journals (Sweden)

    Yan-Mei Jiao

    2015-08-01

    Conclusions: CD4+CD25+CD127 regulatory cells play multiple roles in maintaining HIV-1 p24 production in long-term ART patients. Treg cells may be a target for eliminating the latent HIV reservoir after effective long-term ART.

  12. Small Molecule Inhibitors of BAF; A Promising Family of Compounds in HIV-1 Latency Reversal

    Directory of Open Access Journals (Sweden)

    Mateusz Stoszko

    2016-01-01

    Full Text Available Persistence of latently infected cells in presence of Anti-Retroviral Therapy presents the main obstacle to HIV-1 eradication. Much effort is thus placed on identification of compounds capable of HIV-1 latency reversal in order to render infected cells susceptible to viral cytopathic effects and immune clearance. We identified the BAF chromatin remodeling complex as a key player required for maintenance of HIV-1 latency, highlighting its potential as a molecular target for inhibition in latency reversal. Here, we screened a recently identified panel of small molecule inhibitors of BAF (BAFi's for potential to activate latent HIV-1. Latency reversal was strongly induced by BAFi's Caffeic Acid Phenethyl Ester and Pyrimethamine, two molecules previously characterized for clinical application. BAFi's reversed HIV-1 latency in cell line based latency models, in two ex vivo infected primary cell models of latency, as well as in HIV-1 infected patient's CD4+ T cells, without inducing T cell proliferation or activation. BAFi-induced HIV-1 latency reversal was synergistically enhanced upon PKC pathway activation and HDAC-inhibition. Therefore BAFi's constitute a promising family of molecules for inclusion in therapeutic combinatorial HIV-1 latency reversal.

  13. P-glycoprotein (ABCB1) activity decreases raltegravir disposition in primary CD4+P-gphigh cells and correlates with HIV-1 viral load

    Science.gov (United States)

    Minuesa, Gerard; Arimany-Nardi, Cristina; Erkizia, Itziar; Cedeño, Samandhy; Moltó, José; Clotet, Bonaventura; Pastor-Anglada, Marçal; Martinez-Picado, Javier

    2016-01-01

    Objectives To evaluate the role of P-glycoprotein (P-gp) and multidrug-resistant-protein 1 (MRP1) on raltegravir intracellular drug disposition in CD4+ T cells, investigate the effect of HIV-1 infection on P-gp expression and correlate HIV-1 viraemia with P-gp activity in primary CD4+ T cell subsets. Methods The cellular accumulation ratio of [3H]raltegravir was quantified in CD4+ T cell lines overexpressing either P-gp (CEM-P-gp) or MRP1 (CEM-MRP1) and in primary CD3+CD4+ T cells with high (P-gphigh) and low P-gp activity (P-gplow); inhibition of efflux transporters was confirmed by the intracellular retention of calcein-AM. The correlation of P-gp activity with HIV-1 viraemia was assessed in naive and memory T cell subsets from 21 HIV-1-infected treatment-naive subjects. Results [3H]Raltegravir cellular accumulation ratio decreased in CEM-P-gp cells (P < 0.0001). XR9051 (a P-gp inhibitor) and HIV-1 PIs reversed this phenomenon. Primary CD4+P-gphigh cells accumulated less raltegravir (38.4% ± 9.6%) than P-gplow cells, whereas XR9051 also reversed this effect. In vitro HIV-1 infection of PBMCs and stimulation of CD4+ T cells increased P-gp mRNA and P-gp activity, respectively, while primary CD4+P-gphigh T cells sustained a higher HIV-1 replication than P-gplow cells. A significant correlation between HIV-1 viraemia and P-gp activity was found in different CD4+ T cell subsets, particularly memory CD4+ T cells (r = 0.792, P < 0.0001). Conclusions Raltegravir is a substrate of P-gp in CD4+ T cells. Primary CD4+P-gphigh T cells eliminate intracellular raltegravir more readily than P-gplow cells and HIV-1 viraemia correlates with P-gp overall activity. Specific CD4+P-gphigh T cell subsets could facilitate the persistence of viral replication in vivo and ultimately promote the appearance of drug resistance. PMID:27334660

  14. Anti-HIV activity of Indian medicinal plants.

    Science.gov (United States)

    Sabde, Sudeep; Bodiwala, Hardik S; Karmase, Aniket; Deshpande, Preeti J; Kaur, Amandeep; Ahmed, Nafees; Chauthe, Siddheshwar K; Brahmbhatt, Keyur G; Phadke, Rasika U; Mitra, Debashis; Bhutani, Kamlesh Kumar; Singh, Inder Pal

    2011-07-01

    Acquired immunodeficiency syndrome patients face great socio-economic difficulties in obtaining treatment. There is an urgent need for new, safe, and cheap anti-HIV agents. Traditional medicinal plants are a valuable source of novel anti-HIV agents and may offer alternatives to expensive medicines in future. Various medicinal plants or plant-derived natural products have shown strong anti-HIV activity and are under various stages of clinical development in different parts of the world. The present study was directed towards assessment of anti-HIV activity of various extracts prepared from Indian medicinal plants. The plants were chosen on the basis of similarity of chemical constituents with reported anti-HIV compounds or on the basis of their traditional usage as immunomodulators. Different extracts were prepared by Soxhlet extraction and liquid-liquid partitioning. Ninety-two extracts were prepared from 23 plants. Anti-HIV activity was measured in a human CD4+ T-cell line, CEM-GFP cells infected with HIV-1NL4.3. Nine extracts of 8 different plants significantly reduced viral production in CEM-GFP cells infected with HIV-1NL4.3. Aegle marmelos, Argemone mexicana, Asparagus racemosus, Coleus forskohlii, and Rubia cordifolia demonstrated promising anti-HIV potential and were investigated for their active principles.

  15. 2´,3´-Dialdehyde of ATP, ADP, and adenosine inhibit HIV-1 reverse transcriptase and HIV-1 replication.

    Science.gov (United States)

    Schachter, Julieta; Valadao, Ana Luiza Chaves; Aguiar, Renato Santana; Barreto-de-Souza, Victor; Rossi, Atila Duque; Arantes, Pablo Ricardo; Verli, Hugo; Quintana, Paula Gabriela; Heise, Norton; Tanuri, Amilcar; Bou-Habib, Dumith Chequer; Persechini, Pedro Muanis

    2014-01-01

    The 2´3´-dialdehyde of ATP or oxidized ATP (oATP) is a compound known for specifically making covalent bonds with the nucleotide-binding site of several ATP-binding enzymes and receptors. We investigated the effects of oATP and other oxidized purines on HIV-1 infection and we found that this compound inhibits HIV-1 and SIV infection by blocking early steps of virus replication. oATP, oxidized ADP (oADP), and oxidized Adenosine (oADO) impact the natural activity of endogenous reverse transcriptase enzyme (RT) in cell free virus particles and are able to inhibit viral replication in different cell types when added to the cell cultures either before or after infection. We used UFLC-UV to show that both oADO and oATP can be detected in the cell after being added in the extracellular medium. oATP also suppresses RT activity and replication of the HIV-1 resistant variants M184V and T215Y. We conclude that oATP, oADP and oADO display anti HIV-1 activity that is at in least in part due to inhibitory activity on HIV-1 RT.

  16. Differential effect of CLK SR Kinases on HIV-1 gene expression: potential novel targets for therapy

    Directory of Open Access Journals (Sweden)

    Dobson Wendy

    2011-06-01

    Full Text Available Abstract Background RNA processing plays a critical role in the replication of HIV-1, regulated in part through the action of host SR proteins. To explore the impact of modulating SR protein activity on virus replication, the effect of increasing or inhibiting the activity of the Cdc2-like kinase (CLK family of SR protein kinases on HIV-1 expression and RNA processing was examined. Results Despite their high homology, increasing individual CLK expression had distinct effects on HIV-1, CLK1 enhancing Gag production while CLK2 inhibited the virus. Parallel studies on the anti-HIV-1 activity of CLK inhibitors revealed a similar discrepant effect on HIV-1 expression. TG003, an inhibitor of CLK1, 2 and 4, had no effect on viral Gag synthesis while chlorhexidine, a CLK2, 3 and 4 inhibitor, blocked virus production. Chlorhexidine treatment altered viral RNA processing, decreasing levels of unspliced and single spliced viral RNAs, and reduced Rev accumulation. Subsequent experiments in the context of HIV-1 replication in PBMCs confirmed the capacity of chlorhexidine to suppress virus replication. Conclusions Together, these findings establish that HIV-1 RNA processing can be targeted to suppress virus replication as demonstrated by manipulating individual CLK function and identified chlorhexidine as a lead compound in the development of novel anti-viral therapies.

  17. Global HIV-1 transmitted drug resistance in the INSIGHT Strategic Timing of AntiRetroviral Treatment (START) trial

    DEFF Research Database (Denmark)

    Baxter, J D; Dunn, D; White, E;

    2015-01-01

    of resistance testing in START trial participants. METHODS: In the Strategic Timing of AntiRetroviral Treatment (START) trial, baseline genotypic resistance testing results were collected at study entry and analysed centrally to determine the prevalence of TDR in the study population. Resistance was based...

  18. Species-specific activity of SIV Nef and HIV-1 Vpu in overcoming restriction by tetherin/BST2.

    Directory of Open Access Journals (Sweden)

    Bin Jia

    2009-05-01

    Full Text Available Tetherin, also known as BST2, CD317 or HM1.24, was recently identified as an interferon-inducible host-cell factor that interferes with the detachment of virus particles from infected cells. HIV-1 overcomes this restriction by expressing an accessory protein, Vpu, which counteracts tetherin. Since lentiviruses of the SIV(smm/mac/HIV-2 lineage do not have a vpu gene, this activity has likely been assumed by other viral gene products. We found that deletion of the SIV(mac239 nef gene significantly impaired virus release in cells expressing rhesus macaque tetherin. Virus release could be restored by expressing Nef in trans. However, Nef was unable to facilitate virus release in the presence of human tetherin. Conversely, Vpu enhanced virus release in the presence of human tetherin, but not in the presence of rhesus tetherin. In accordance with the species-specificity of Nef in mediating virus release, SIV Nef downregulated cell-surface expression of rhesus tetherin, but did not downregulate human tetherin. The specificity of SIV Nef for rhesus tetherin mapped to four amino acids in the cytoplasmic domain of the molecule that are missing from human tetherin, whereas the specificity of Vpu for human tetherin mapped to amino acid differences in the transmembrane domain. Nef alleles of SIV(smm, HIV-2 and HIV-1 were also able to rescue virus release in the presence of both rhesus macaque and sooty mangabey tetherin, but were generally ineffective against human tetherin. Thus, the ability of Nef to antagonize tetherin from these Old World primates appears to be conserved among the primate lentiviruses. These results identify Nef as the viral gene product of SIV that opposes restriction by tetherin in rhesus macaques and sooty mangabeys, and reveal species-specificity in the activities of both Nef and Vpu in overcoming tetherin in their respective hosts.

  19. HIV-1 Protein Nef Inhibits Activity of ATP-binding Cassette Transporter A1 by Targeting Endoplasmic Reticulum Chaperone Calnexin*

    Science.gov (United States)

    Jennelle, Lucas; Hunegnaw, Ruth; Dubrovsky, Larisa; Pushkarsky, Tatiana; Fitzgerald, Michael L.; Sviridov, Dmitri; Popratiloff, Anastas; Brichacek, Beda; Bukrinsky, Michael

    2014-01-01

    HIV-infected patients are at increased risk of developing atherosclerosis, in part due to an altered high density lipoprotein profile exacerbated by down-modulation and impairment of ATP-binding cassette transporter A1 (ABCA1) activity by the HIV-1 protein Nef. However, the mechanisms of this Nef effect remain unknown. Here, we show that Nef interacts with an endoplasmic reticulum chaperone calnexin, which regulates folding and maturation of glycosylated proteins. Nef disrupted interaction between calnexin and ABCA1 but increased affinity and enhanced interaction of calnexin with HIV-1 gp160. The Nef mutant that did not bind to calnexin did not affect the calnexin-ABCA1 interaction. Interaction with calnexin was essential for functionality of ABCA1, as knockdown of calnexin blocked the ABCA1 exit from the endoplasmic reticulum, reduced ABCA1 abundance, and inhibited cholesterol efflux; the same effects were observed after Nef overexpression. However, the effects of calnexin knockdown and Nef on cholesterol efflux were not additive; in fact, the combined effect of these two factors together did not differ significantly from the effect of calnexin knockdown alone. Interestingly, gp160 and ABCA1 interacted with calnexin differently; although gp160 binding to calnexin was dependent on glycosylation, glycosylation was of little importance for the interaction between ABCA1 and calnexin. Thus, Nef regulates the activity of calnexin to stimulate its interaction with gp160 at the expense of ABCA1. This study identifies a mechanism for Nef-dependent inactivation of ABCA1 and dysregulation of cholesterol metabolism. PMID:25170080

  20. Recognition of membrane-bound fusion-peptide/MPER complexes by the HIV-1 neutralizing 2F5 antibody: implications for anti-2F5 immunogenicity.

    Directory of Open Access Journals (Sweden)

    Nerea Huarte

    Full Text Available The membrane proximal external region (MPER of the fusogenic HIV-1 glycoprotein-41 harbors the epitope sequence recognized by 2F5, a broadly neutralizing antibody isolated from an infected individual. Structural mimicry of the conserved MPER 2F5 epitope constitutes a pursued goal in the field of anti-HIV vaccine development. It has been proposed that 2F5 epitope folding into its native state is attained in the vicinity of the membrane interface and might involve interactions with other viral structures. Here we present results indicating that oligomeric complexes established between MPER and the conserved amino-terminal fusion peptide (FP can partition into lipid vesicles and be specifically bound by the 2F5 antibody at their surfaces. Cryo-transmission electron microscopy of liposomes doped with MPER:FP peptide mixtures provided the structural grounds for complex recognition by antibody at lipid bilayer surfaces. Supporting the immunogenicity of the membrane-bound complex, these MPER:FP peptide-vesicle formulations could trigger cross-reactive anti-MPER antibodies in rabbits. Thus, our observations suggest that contacts with N-terminal regions of gp41 may stabilize the 2F5 epitope as a membrane-surface antigen.

  1. Updates: Routine screening for antibodies to HIV-1, civilian applicants for U.S. military service and U.S. Armed Forces, active and reserve components.

    Science.gov (United States)

    2011-08-01

    During routine testing of civilian applicants for U.S. military service, the overall seroprevalence of antibodies to HIV-1 was lower in 2010 than in any year since 1990. Among members of the active components of the U.S. Army and Air Force, HIV-1 seroprevalences were higher in 2008-2010 than in recent prior years. Among members of the active components of the U.S. Navy and Marine Corps, the Marine Corps Reserve, and the Army National Guard, HIV-1 seroprevalences have slightly declined or remained relatively stable for at least ten years. In the reserve components of most of the service branches, it is difficult to discern long-term trends because of instability of seroprevalences observed in the relatively small numbers of reserve component members tested each year.

  2. Molecular recognition of CCR5 by an HIV-1 gp120 V3 loop.

    Directory of Open Access Journals (Sweden)

    Phanourios Tamamis

    Full Text Available The binding of protein HIV-1 gp120 to coreceptors CCR5 or CXCR4 is a key step of the HIV-1 entry to the host cell, and is predominantly mediated through the V3 loop fragment of HIV-1 gp120. In the present work, we delineate the molecular recognition of chemokine receptor CCR5 by a dual tropic HIV-1 gp120 V3 loop, using a comprehensive set of computational tools predominantly based on molecular dynamics simulations and free energy calculations. We report, what is to our knowledge, the first complete HIV-1 gp120 V3 loop : CCR5 complex structure, which includes the whole V3 loop and the N-terminus of CCR5, and exhibits exceptional agreement with previous experimental findings. The computationally derived structure sheds light into the functional role of HIV-1 gp120 V3 loop and CCR5 residues associated with the HIV-1 coreceptor activity, and provides insights into the HIV-1 coreceptor selectivity and the blocking mechanism of HIV-1 gp120 by maraviroc. By comparing the binding of the specific dual tropic HIV-1 gp120 V3 loop with CCR5 and CXCR4, we observe that the HIV-1 gp120 V3 loop residues 13-21, which include the tip, share nearly identical structural and energetic properties in complex with both coreceptors. This result paves the way for the design of dual CCR5/CXCR4 targeted peptides as novel potential anti-AIDS therapeutics.

  3. Diphtheria Antibodies and T lymphocyte Counts in Patients Infected with HIV-1

    Directory of Open Access Journals (Sweden)

    Francisco A. B. Speranza

    2012-09-01

    Full Text Available We assessed the IgG levels anti-diphtheria (D-Ab and T cell counts (CD4+ and CD8+ in HIV-1 infected subjects undergoing or not highly active antiretroviral therapy (HAART. Approximately 70% of all HIV-1 patients were unprotected against diphtheria. There were no differences in D-Ab according to CD4 counts. Untreated patients had higher D-Ab (geometric mean of 0.62 IU/ml than HAART-patients (geometric mean of 0.39 IU/ml. The data indicated the necessity of keeping all HIV-1 patients up-to-date with their vaccination.

  4. Activity of phosphino palladium(II) and platinum(II) complexes against HIV-1 and Mycobacterium tuberculosis.

    Science.gov (United States)

    Gama, Ntombenhle H; Elkhadir, Afag Y F; Gordhan, Bhavna G; Kana, Bavesh D; Darkwa, James; Meyer, Debra

    2016-08-01

    Treatment of human immunodeficiency virus (HIV) is currently complicated by increased prevalence of co-infection with Mycobacterium tuberculosis. The development of drug candidates that offer the simultaneous management of HIV and tuberculosis (TB) would be of great benefit in the holistic treatment of HIV/AIDS, especially in sub-Saharan Africa which has the highest global prevalence of HIV-TB coinfection. Bis(diphenylphosphino)-2-pyridylpalladium(II) chloride (1), bis(diphenylphosphino)-2-pyridylplatinum(II) chloride (2), bis(diphenylphosphino)-2-ethylpyridylpalladium(II) chloride (3) and bis(diphenylphosphino)-2-ethylpyridylplatinum(II) (4) were investigated for the inhibition of HIV-1 through interactions with the viral protease. The complexes were subsequently assessed for biological potency against Mycobacterium tuberculosis H37Rv by determining the minimal inhibitory concentration (MIC) using broth microdilution. Complex (3) showed the most significant and competitive inhibition of HIV-1 protease (p = 0.014 at 100 µM). Further studies on its in vitro effects on whole virus showed reduced viral infectivity by over 80 % at 63 µM (p < 0.05). In addition, the complex inhibited the growth of Mycobacterium tuberculosis at an MIC of 5 µM and was non-toxic to host cells at all active concentrations (assessed by tetrazolium dye and real time cell electronic sensing). In vitro evidence is provided here for the possibility of utilizing a single metal-based compound for the treatment of HIV/AIDS and TB.

  5. CCR5-Δ32 Heterozygosity, HIV-1 Reservoir Size, and Lymphocyte Activation in Individuals Receiving Long-term Suppressive Antiretroviral Therapy.

    Science.gov (United States)

    Henrich, Timothy J; Hanhauser, Emily; Harrison, Linda J; Palmer, Christine D; Romero-Tejeda, Marisol; Jost, Stephanie; Bosch, Ronald J; Kuritzkes, Daniel R

    2016-03-01

    We conducted a case-controlled study of the associations of CCR5-Δ32 heterozygosity with human immunodeficiency virus type 1 (HIV-1) reservoir size, lymphocyte activation, and CCR5 expression in 114 CCR5(Δ32/WT) and 177 wild-type CCR5 AIDS Clinical Trials Group participants receiving suppressive antiretroviral therapy. Overall, no significant differences were found between groups for any of these parameters. However, higher levels of CCR5 expression correlated with lower amounts of cell-associated HIV-1 RNA. The relationship between CCR5-Δ32 heterozygosity, CCR5 expression, and markers of HIV-1 persistence is likely to be complex and may be influenced by factors such as the duration of ART.

  6. Inhibition of the ribonuclease H activity of HIV-1 reverse transcriptase by GSK5750 correlates with slow enzyme-inhibitor dissociation.

    Science.gov (United States)

    Beilhartz, Greg L; Ngure, Marianne; Johns, Brian A; DeAnda, Felix; Gerondelis, Peter; Götte, Matthias

    2014-06-06

    Compounds that efficiently inhibit the ribonuclease (RNase) H activity of the human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) have yet to be developed. Here, we demonstrate that GSK5750, a 1-hydroxy-pyridopyrimidinone analog, binds to the enzyme with an equilibrium dissociation constant (K(d)) of ~400 nM. Inhibition of HIV-1 RNase H is specific, as DNA synthesis is not affected. Moreover, GSK5750 does not inhibit the activity of Escherichia coli RNase H. Order-of-addition experiments show that GSK5750 binds to the free enzyme in an Mg(2+)-dependent fashion. However, as reported for other active site inhibitors, binding of GSK5750 to a preformed enzyme-substrate complex is severely compromised. The bound nucleic acid prevents access to the RNase H active site, which represents a possible biochemical hurdle in the development of potent RNase H inhibitors. Previous studies suggested that formation of a complex with the prototypic RNase H inhibitor β-thujaplicinol is slow, and, once formed, it dissociates rapidly. This unfavorable kinetic behavior can limit the potency of RNase H active site inhibitors. Although the association kinetics of GSK5750 remains slow, our data show that this compound forms a long lasting complex with HIV-1 RT. We conclude that slow dissociation of the inhibitor and HIV-1 RT improves RNase H active site inhibitors and may circumvent the obstacle posed by the inability of these compounds to bind to a preformed enzyme-substrate complex.

  7. Conformational analysis on anti-HIV-1 peptide T22([Tyr5,12Lys7]-polyphemusinⅡ)

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The conformational scan of anti-HIV peptide T22 ([Tyr5,12, Lys7]-polyphemusin Ⅱ) backbone on a deformed potential energy surface (PES) was performed using the potential smoothing searching (PSS) protocol. All located minima were then transferred to the original PES using undeformed optimized potentials for liquid simulations (OPLS) potential function, and minimized by multi-conformer minimization (MCM). For solution-phase calculations, the GB/SA continuum model for water was used. This application of PSS integrated with MCM is proved a feasible method for solving the multiple-minimum problem in the conformational analysis of flexible molecules with cyclic structure.

  8. HIV-1 infection ex vivo accelerates measles virus infection by upregulating signaling lymphocytic activation molecule (SLAM) in CD4+ T cells.

    Science.gov (United States)

    Mitsuki, Yu-ya; Terahara, Kazutaka; Shibusawa, Kentaro; Yamamoto, Takuya; Tsuchiya, Takatsugu; Mizukoshi, Fuminori; Ishige, Masayuki; Okada, Seiji; Kobayashi, Kazuo; Morikawa, Yuko; Nakayama, Tetsuo; Takeda, Makoto; Yanagi, Yusuke; Tsunetsugu-Yokota, Yasuko

    2012-07-01

    Measles virus (MV) infection in children harboring human immunodeficiency virus type 1 (HIV-1) is often fatal, even in the presence of neutralizing antibodies; however, the underlying mechanisms are unclear. Therefore, the aim of the present study was to examine the interaction between HIV-1 and wild-type MV (MVwt) or an MV vaccine strain (MVvac) during dual infection. The results showed that the frequencies of MVwt- and MVvac-infected CD4(+) T cells within the resting peripheral blood mononuclear cells (PBMCs) were increased 3- to 4-fold after HIV-1 infection, and this was associated with a marked upregulation of signaling lymphocytic activation molecule (SLAM) expression on CD4(+) T cells but not on CD8(+) T cells. SLAM upregulation was induced by infection with a replication-competent HIV-1 isolate comprising both the X4 and R5 types and to a lesser extent by a pseudotyped HIV-1 infection. Notably, SLAM upregulation was observed in HIV-infected as well as -uninfected CD4(+) T cells and was abrogated by the removal of HLA-DR(+) cells from the PBMC culture. Furthermore, SLAM upregulation did not occur in uninfected PBMCs cultured together with HIV-infected PBMCs in compartments separated by a permeable membrane, indicating that no soluble factors were involved. Rather, CD4(+) T cell activation mediated through direct contact with dendritic cells via leukocyte function-associated molecule 1 (LFA-1)/intercellular adhesion molecule 1 (ICAM-1) and LFA-3/CD2 was critical. Thus, HIV-1 infection induces a high level of SLAM expression on CD4(+) T cells, which may enhance their susceptibility to MV and exacerbate measles in coinfected individuals.

  9. Strategic addition of an N-linked glycan to a monoclonal antibody improves its HIV-1-neutralizing activity

    OpenAIRE

    Song, Ruijiang; Oren, Deena A.; Franco, David; Seaman, Michael S; Ho, David D.

    2013-01-01

    Ibalizumab is a humanized monoclonal antibody that binds human CD4—a key receptor for HIV—and blocks HIV-1 infection. However, HIV-1 strains with mutations resulting in loss of an N-linked glycan from the V5 loop of the envelope protein gp120 are resistant to ibalizumab. Previous structural analysis suggests that this glycan fills a void between the gp120 V5 loop and the ibalizumab L chain, perhaps causing steric hindrance that disrupts viral entry. If this void contributes to HIV-1 resistanc...

  10. HIV-1 Vpr protein activates the NF-κB pathway to promote G2/M cell cycle arrest

    Institute of Scientific and Technical Information of China (English)

    Zhibin Liang; Ruikang Liu; Yongquan Lin; Chen Liang; Juan Tan; Wentao Qiao

    2015-01-01

    Viral protein R(Vpr) plays an important role in the replication and pathogenesis of Human immunodeficiency virus type 1(HIV-1). Some of the various functions attributed to Vpr, including the induction of G2/M cell cycle arrest, activating the NF-κB pathway, and promoting viral reverse transcription, might be interrelated. To test this hypothesis, a panel of Vpr mutants were investigated for their ability to induce G2/M arrest and to activate the NF-κB pathway. The results showed that the Vpr mutants that failed to activate NF-κB also lost the activity to induce G2/M arrest, which suggests that inducing G2/M arrest via Vpr depends at least partially on the activation of NF-κB. This latter possibility is supported by data showing that knocking down the key factors in the NF-κB pathway – p65, Rel B, IKKα, or IKKβ– partially rescued the G2/M arrest induced by Vpr.Our results suggest that the NF-κB pathway is probably involved in Vpr-induced G2/M cell cycle arrest.

  11. Active cAMP-dependent protein kinase incorporated within highly purified HIV-1 particles is required for viral infectivity and interacts with viral capsid protein.

    Science.gov (United States)

    Cartier, Christine; Hemonnot, Bénédicte; Gay, Bernard; Bardy, Martine; Sanchiz, Céline; Devaux, Christian; Briant, Laurence

    2003-09-12

    Host cell components, including protein kinases such as ERK-2/mitogen-activated protein kinase, incorporated within human immunodeficiency virus type 1 (HIV-1) virions play a pivotal role in the ability of HIV to infect and replicate in permissive cells. The present work provides evidence that the catalytic subunit of cAMP-dependent protein kinase (C-PKA) is packaged within HIV-1 virions as demonstrated using purified subtilisin-digested viral particles. Virus-associated C-PKA was shown to be enzymatically active and able to phosphorylate synthetic substrate in vitro. Suppression of virion-associated C-PKA activity by specific synthetic inhibitor had no apparent effect on viral precursor maturation and virus assembly. However, virus-associated C-PKA activity was demonstrated to regulate HIV-1 infectivity as assessed by single round infection assays performed by using viruses produced from cells expressing an inactive form of C-PKA. In addition, virus-associated C-PKA was found to co-precipitate with and to phosphorylate the CAp24gag protein. Altogether our results indicate that virus-associated C-PKA regulates HIV-1 infectivity, possibly by catalyzing phosphorylation of the viral CAp24gag protein.

  12. Genome-wide innate immune responses in HIV-1-infected macrophages are preserved despite attenuation of the NF-kappa B activation pathway.

    Science.gov (United States)

    Noursadeghi, Mahdad; Tsang, Jhen; Miller, Robert F; Straschewski, Sarah; Kellam, Paul; Chain, Benjamin M; Katz, David R

    2009-01-01

    Macrophages contribute to HIV-1 infection at many levels. They provide permissive cells at the site of inoculation, augment virus transfer to T cells, generate long-lived viral reservoirs, and cause bystander cell apoptosis. A body of evidence suggests that the role of macrophages in cellular host defense is also compromised by HIV-1 infection. In this respect, macrophages are potent cells of the innate immune system that initiate and regulate wide-ranging immunological responses. This study focuses on the effect of HIV-1 infection on innate immune responses by macrophages at the level of signal transduction, whole genome transcriptional profiling, and cytokine secretion. We show that in an ex vivo model, M-CSF-differentiated monocyte-derived macrophages uniformly infected with replicating CCR5-tropic HIV-1, without cytopathic effect, exhibit selective attenuation of the NF-kappaB activation pathway in response to TLR4 and TLR2 stimulation. However, functional annotation clustering analysis of genome-wide transcriptional responses to LPS stimulation suggests substantial preservation of gene expression changes at the systems level, with modest attenuation of a subset of up-regulated LPS-responsive genes, and no effect on a selection of inflammatory cytokine responses at the protein level. These results extend existing reports of inhibitory interactions between HIV-1 accessory proteins and NF-kappaB signaling pathways, and whole genome expression profiling provides comprehensive assessment of the consequent effects on immune response gene expression. Unexpectedly, our data suggest innate immune responses are broadly preserved with limited exceptions, and pave the way for further study of the complex relationship between HIV-1 and immunological pathways within macrophages.

  13. Production and purification of immunologically active core protein p24 from HIV-1 fused to ricin toxin B subunit in E. coli

    Directory of Open Access Journals (Sweden)

    Gómez-Lim Miguel A

    2009-02-01

    Full Text Available Abstract Background Gag protein from HIV-1 is a polyprotein of 55 kDa, which, during viral maturation, is cleaved to release matrix p17, core p24 and nucleocapsid proteins. The p24 antigen contains epitopes that prime helper CD4 T-cells, which have been demonstrated to be protective and it can elicit lymphocyte proliferation. Thus, p24 is likely to be an integral part of any multicomponent HIV vaccine. The availability of an optimal adjuvant and carrier to enhance antiviral responses may accelerate the development of a vaccine candidate against HIV. The aim of this study was to investigate the adjuvant-carrier properties of the B ricin subunit (RTB when fused to p24. Results A fusion between ricin toxin B subunit and p24 HIV (RTB/p24 was expressed in E. coli. Affinity chromatography was used for purification of p24 alone and RTB/p24 from cytosolic fractions. Biological activity of RTB/p24 was determined by ELISA and affinity chromatography using the artificial receptor glycoprotein asialofetuin. Both assays have demonstrated that RTB/p24 is able to interact with complex sugars, suggesting that the chimeric protein retains lectin activity. Also, RTB/p24 was demonstrated to be immunologically active in mice. Two weeks after intraperitoneal inoculation with RTB/p24 without an adjuvant, a strong anti-p24 immune response was detected. The levels of the antibodies were comparable to those found in mice immunized with p24 alone in the presence of Freund adjuvant. RTB/p24 inoculated intranasally in mice, also elicited significant immune responses to p24, although the response was not as strong as that obtained in mice immunized with p24 in the presence of the mucosal adjuvant cholera toxin. Conclusion In this work, we report the expression in E. coli of HIV-1 p24 fused to the subunit B of ricin toxin. The high levels of antibodies obtained after intranasal and intraperitoneal immunization of mice demonstrate the adjuvant-carrier properties of RTB when

  14. Genome-Wide Association Study Identifies Single Nucleotide Polymorphism in DYRK1A Associated with Replication of HIV-1 in Monocyte-Derived Macrophages

    NARCIS (Netherlands)

    Bol, S.M.; Moerland, P.D.; Limou, S.; van Remmerden, Y.; Coulonges, C.; Manen, D.; Herbeck, J.T.; Fellay, J.; Sieberer, M.; Sietzema, J.G.; van 't Slot, R.; Martinson, J.; Zagury, J.F.; Schuitemaker, H.; van 't Wout, A.B.

    2011-01-01

    Background: HIV-1 infected macrophages play an important role in rendering resting T cells permissive for infection, in spreading HIV-1 to T cells, and in the pathogenesis of AIDS dementia. During highly active anti-retroviral treatment (HAART), macrophages keep producing virus because tissue penetr

  15. A Modified P1 Moiety Enhances in vitro Antiviral Activity against Various Multi-Drug-Resistant HIV-1 Variants and in vitro CNS Penetration Properties of a Novel Nonpeptidic Protease Inhibitor, GRL-10413

    Energy Technology Data Exchange (ETDEWEB)

    Amano, Masayuki; Salcedo-Gómez, Pedro Miguel; Zhao, Rui; Yedidi, Ravikiran S.; Das, Debananda; Bulut, Haydar; Delino, Nicole S.; Sheri, Venkata Reddy; Ghosh, Arun K.; Mitsuya, Hiroaki (Kumamoto); (NIH); (Purdue)

    2016-09-12

    We here report that GRL-10413, a novel non-peptidic HIV-1 protease inhibitor (PI) containing a modified P1 moiety and a sulfonamide isostere, is highly active against laboratory HIV-1 strains and primary clinical isolates (EC50: 0.00035 - 0.0018 μM) with minimal cytotoxicity (CC50: 35.7 μM). GRL-10413 blocked the infectivity and replication of HIV-1NL4-3variants selected by up to 5 μM concentrations of atazanavir, lopinavir, or amprenavir (EC50: 0.0021 - 0.0023 μM). GRL-10413 also maintained its strong antiviral activity against multi-drug-resistant clinical HIV-1 variants isolated from patients, who no longer responded to various antiviral regimens after long-term antiretroviral therapy. The development of resistance against GRL-10413 was significantly delayed compared to that of APV. In addition, GRL-10413 showed a favorable central nervous system (CNS) penetration property as assessed with anin vitroblood brain barrier (BBB) reconstruction system. Analysis of the crystal structure of HIV-1 protease in complex with GRL-10413 demonstrated that the modified P1 moiety of GRL-10413 has a greater hydrophobic surface area and makes greater van der Waals contacts with active-site amino acids of protease than in the case of darunavir. Moreover, the chlorine substituent in the P1 moiety interacts with protease in two distinct configurations. The present data demonstrate that GRL-10413 has desirable features for treating patients infected with wild-type and/or multi-drug-resistant HIV-1 variants with favorable CNS-penetration capability and that the newly modified P1-moiety may confer desirable features in designing novel anti-HIV-1 PIs.

  16. 基于Vif-APOBEC3G相互作用的抗HIV-1药物研究%Anti-HIV-1 agents based on Vif-APOBEC3G interaction: research advances

    Institute of Scientific and Technical Information of China (English)

    张兴杰; 王睿睿; 郑永唐

    2010-01-01

    载脂蛋白B mRNA编辑酶催化多肽样蛋白3G(apolipoprotein B mRNA-editing enzyme catalyticpolypeptidelike 3G,APOBEC3G或A3G)是人体天然抗病毒分子,可以使病毒逆转录形成的cDNA的胞嘧啶(C)脱氨为尿嘧啶(U),产生鸟嘌呤(G)→腺嘌呤(A)超突变,导致病毒转录产物突变,从而达到抑制病毒复制的作用.HIV-1的辅助蛋白Vif,可与APOBEC3G相互作用并导致其被降解,使得这一天然抗病毒机制失效,进而增强了HIV的感染力.Vif与APOBEC3G这种相互作用为抗HIV药物提供了新靶点.针对Vif-APOBEC3G相互作用的抗HIV抑制剂已经成为研究热点.本文综述了Vif和APOBEC3G的结构、二者的相互作用,以及基于这一相互作用的抗HIV-1抑制剂研究进展.

  17. Suppression of Foxo1 activity and down-modulation of CD62L (L-selectin) in HIV-1 infected resting CD4 T cells.

    Science.gov (United States)

    Trinité, Benjamin; Chan, Chi N; Lee, Caroline S; Mahajan, Saurabh; Luo, Yang; Muesing, Mark A; Folkvord, Joy M; Pham, Michael; Connick, Elizabeth; Levy, David N

    2014-01-01

    HIV-1 hijacks and disrupts many processes in the cells it infects in order to suppress antiviral immunity and to facilitate its replication. Resting CD4 T cells are important early targets of HIV-1 infection in which HIV-1 must overcome intrinsic barriers to viral replication. Although resting CD4 T cells are refractory to infection in vitro, local environmental factors within lymphoid and mucosal tissues such as cytokines facilitate viral replication while maintaining the resting state. These factors can be utilized in vitro to study HIV-1 replication in resting CD4 T cells. In vivo, the migration of resting naïve and central memory T cells into lymphoid tissues is dependent upon expression of CD62L (L-selectin), a receptor that is subsequently down-modulated following T cell activation. CD62L gene transcription is maintained in resting T cells by Foxo1 and KLF2, transcription factors that maintain T cell quiescence and which regulate additional cellular processes including survival, migration, and differentiation. Here we report that HIV-1 down-modulates CD62L in productively infected naïve and memory resting CD4 T cells while suppressing Foxo1 activity and the expression of KLF2 mRNA. Partial T cell activation was further evident as an increase in CD69 expression. Several other Foxo1- and KLF2-regulated mRNA were increased or decreased in productively infected CD4 T cells, including IL-7rα, Myc, CCR5, Fam65b, S1P1 (EDG1), CD52, Cyclin D2 and p21CIP1, indicating a profound reprogramming of these cells. The Foxo1 inhibitor AS1842856 accelerated de novo viral gene expression and the sequella of infection, supporting the notion that HIV-1 suppression of Foxo1 activity may be a strategy to promote replication in resting CD4 T cells. As Foxo1 is an investigative cancer therapy target, the development of Foxo1 interventions may assist the quest to specifically suppress or activate HIV-1 replication in vivo.

  18. Suppression of Foxo1 activity and down-modulation of CD62L (L-selectin in HIV-1 infected resting CD4 T cells.

    Directory of Open Access Journals (Sweden)

    Benjamin Trinité

    Full Text Available HIV-1 hijacks and disrupts many processes in the cells it infects in order to suppress antiviral immunity and to facilitate its replication. Resting CD4 T cells are important early targets of HIV-1 infection in which HIV-1 must overcome intrinsic barriers to viral replication. Although resting CD4 T cells are refractory to infection in vitro, local environmental factors within lymphoid and mucosal tissues such as cytokines facilitate viral replication while maintaining the resting state. These factors can be utilized in vitro to study HIV-1 replication in resting CD4 T cells. In vivo, the migration of resting naïve and central memory T cells into lymphoid tissues is dependent upon expression of CD62L (L-selectin, a receptor that is subsequently down-modulated following T cell activation. CD62L gene transcription is maintained in resting T cells by Foxo1 and KLF2, transcription factors that maintain T cell quiescence and which regulate additional cellular processes including survival, migration, and differentiation. Here we report that HIV-1 down-modulates CD62L in productively infected naïve and memory resting CD4 T cells while suppressing Foxo1 activity and the expression of KLF2 mRNA. Partial T cell activation was further evident as an increase in CD69 expression. Several other Foxo1- and KLF2-regulated mRNA were increased or decreased in productively infected CD4 T cells, including IL-7rα, Myc, CCR5, Fam65b, S1P1 (EDG1, CD52, Cyclin D2 and p21CIP1, indicating a profound reprogramming of these cells. The Foxo1 inhibitor AS1842856 accelerated de novo viral gene expression and the sequella of infection, supporting the notion that HIV-1 suppression of Foxo1 activity may be a strategy to promote replication in resting CD4 T cells. As Foxo1 is an investigative cancer therapy target, the development of Foxo1 interventions may assist the quest to specifically suppress or activate HIV-1 replication in vivo.

  19. Psychoneuroimmunology and HIV-1.

    Science.gov (United States)

    Antoni, Michael H.; And Others

    1990-01-01

    Presents evidence describing benefits of behavioral interventions such as aerobic exercise training on both psychological and immunological functioning among high risk human immunodeficiency virus-Type 1 (HIV-1) seronegative and very early stage seropositive homosexual men. HIV-1 infection is cast as chronic disease for which early…

  20. Persistent Inflammation and Endothelial Activation in HIV-1 Infected Patients after 12 Years of Antiretroviral Therapy

    DEFF Research Database (Denmark)

    Rönsholt, Frederikke F; Ullum, Henrik; Katzenstein, Terese L;

    2013-01-01

    The study investigated markers of inflammation and endothelial activation in HIV infected patients after 12 years of successful combination antiretroviral treatment (cART).......The study investigated markers of inflammation and endothelial activation in HIV infected patients after 12 years of successful combination antiretroviral treatment (cART)....

  1. High-Density Array of Well-Ordered HIV-1 Spikes on Synthetic Liposomal Nanoparticles Efficiently Activate B Cells

    Directory of Open Access Journals (Sweden)

    Jidnyasa Ingale

    2016-05-01

    Full Text Available A major step toward an HIV-1 vaccine is an immunogen capable of inducing neutralizing antibodies. Envelope glycoprotein (Env mimetics, such as the NFL and SOSIP designs, generate native-like, well-ordered trimers and elicit tier 2 homologous neutralization (SOSIPs. We reasoned that the display of well-ordered trimers by high-density, particulate array would increase B cell activation compared to soluble trimers. Here, we present the design of liposomal nanoparticles displaying well-ordered Env spike trimers on their surface. Biophysical analysis, cryo- and negative stain electron microscopy, as well as binding analysis with a panel of broadly neutralizing antibodies confirm a high-density, well-ordered trimer particulate array. The Env-trimer-conjugated liposomes were superior to soluble trimers in activating B cells ex vivo and germinal center B cells in vivo. In addition, the trimer-conjugated liposomes elicited modest tier 2 homologous neutralizing antibodies. The trimer-conjugated liposomes represent a promising initial lead toward the development of more effective HIV vaccine immunogens.

  2. Identifying HIV-1 dual infections

    Directory of Open Access Journals (Sweden)

    Cornelissen Marion

    2007-09-01

    Full Text Available Abstract Transmission of human immunodeficiency virus (HIV is no exception to the phenomenon that a second, productive infection with another strain of the same virus is feasible. Experiments with RNA viruses have suggested that both coinfections (simultaneous infection with two strains of a virus and superinfections (second infection after a specific immune response to the first infecting strain has developed can result in increased fitness of the viral population. Concerns about dual infections with HIV are increasing. First, the frequent detection of superinfections seems to indicate that it will be difficult to develop a prophylactic vaccine. Second, HIV-1 superinfections have been associated with accelerated disease progression, although this is not true for all persons. In fact, superinfections have even been detected in persons controlling their HIV infections without antiretroviral therapy. Third, dual infections can give rise to recombinant viruses, which are increasingly found in the HIV-1 epidemic. Recombinants could have increased fitness over the parental strains, as in vitro models suggest, and could exhibit increased pathogenicity. Multiple drug resistant (MDR strains could recombine to produce a pan-resistant, transmittable virus. We will describe in this review what is presently known about super- and re-infection among ambient viral infections, as well as the first cases of HIV-1 superinfection, including HIV-1 triple infections. The clinical implications, the impact of the immune system, and the effect of anti-retroviral therapy will be covered, as will as the timing of HIV superinfection. The methods used to detect HIV-1 dual infections will be discussed in detail. To increase the likelihood of detecting a dual HIV-1 infection, pre-selection of patients can be done by serotyping, heteroduplex mobility assays (HMA, counting the degenerate base codes in the HIV-1 genotyping sequence, or surveying unexpected increases in the

  3. HIV-1 assembly in macrophages

    Directory of Open Access Journals (Sweden)

    Benaroch Philippe

    2010-04-01

    Full Text Available Abstract The molecular mechanisms involved in the assembly of newly synthesized Human Immunodeficiency Virus (HIV particles are poorly understood. Most of the work on HIV-1 assembly has been performed in T cells in which viral particle budding and assembly take place at the plasma membrane. In contrast, few studies have been performed on macrophages, the other major target of HIV-1. Infected macrophages represent a viral reservoir and probably play a key role in HIV-1 physiopathology. Indeed macrophages retain infectious particles for long periods of time, keeping them protected from anti-viral immune response or drug treatments. Here, we present an overview of what is known about HIV-1 assembly in macrophages as compared to T lymphocytes or cell lines. Early electron microscopy studies suggested that viral assembly takes place at the limiting membrane of an intracellular compartment in macrophages and not at the plasma membrane as in T cells. This was first considered as a late endosomal compartment in which viral budding seems to be similar to the process of vesicle release into multi-vesicular bodies. This view was notably supported by a large body of evidence involving the ESCRT (Endosomal Sorting Complex Required for Transport machinery in HIV-1 budding, the observation of viral budding profiles in such compartments by immuno-electron microscopy, and the presence of late endosomal markers associated with macrophage-derived virions. However, this model needs to be revisited as recent data indicate that the viral compartment has a neutral pH and can be connected to the plasma membrane via very thin micro-channels. To date, the exact nature and biogenesis of the HIV assembly compartment in macrophages remains elusive. Many cellular proteins potentially involved in the late phases of HIV-1 cycle have been identified; and, recently, the list has grown rapidly with the publication of four independent genome-wide screens. However, their respective

  4. Monitoring CD27 expression to evaluate Mycobacterium tuberculosis activity in HIV-1 infected individuals in vivo.

    Science.gov (United States)

    Schuetz, Alexandra; Haule, Antelmo; Reither, Klaus; Ngwenyama, Njabulo; Rachow, Andrea; Meyerhans, Andreas; Maboko, Leonard; Koup, Richard A; Hoelscher, Michael; Geldmacher, Christof

    2011-01-01

    The level of bacterial activity is only poorly defined during asymptomatic Mycobacterium tuberculosis (MTB) infection. The objective was to study the capacity of a new biomarker, the expression of the T cell maturation marker CD27 on MTB-specific CD4 T cells, to identify active tuberculosis (TB) disease in subjects from a MTB and HIV endemic region. The frequency and CD27 expression of circulating MTB-specific CD4 T cells was determined in 96 study participants after stimulation with purified protein derivative (PPD) using intracellular cytokine staining for IFNgamma (IFNγ). Subjects were then stratified by their TB and HIV status. Within PPD responders, a CD27(-) phenotype was associated with active TB in HIV(-) (p = 0.0003) and HIV(+) (p = 0.057) subjects, respectively. In addition, loss of CD27 expression preceded development of active TB in one HIV seroconverter. Interestingly, in contrast to HIV(-) subjects, MTB-specific CD4 T cell populations from HIV(+) TB-asymptomatic subjects were often dominated by CD27(-) cells. These data indicate that down-regulation of CD27 on MTB-specific CD4 T cell could be used as a biomarker of active TB, potentially preceding clinical TB disease. Furthermore, these data are consistent with the hypothesis that late, chronic HIV infection is frequently associated with increased mycobacterial activity in vivo. The analysis of T cell maturation and activation markers might thus be a useful tool to monitor TB disease progression.

  5. Monitoring CD27 expression to evaluate Mycobacterium tuberculosis activity in HIV-1 infected individuals in vivo.

    Directory of Open Access Journals (Sweden)

    Alexandra Schuetz

    Full Text Available The level of bacterial activity is only poorly defined during asymptomatic Mycobacterium tuberculosis (MTB infection. The objective was to study the capacity of a new biomarker, the expression of the T cell maturation marker CD27 on MTB-specific CD4 T cells, to identify active tuberculosis (TB disease in subjects from a MTB and HIV endemic region. The frequency and CD27 expression of circulating MTB-specific CD4 T cells was determined in 96 study participants after stimulation with purified protein derivative (PPD using intracellular cytokine staining for IFNgamma (IFNγ. Subjects were then stratified by their TB and HIV status. Within PPD responders, a CD27(- phenotype was associated with active TB in HIV(- (p = 0.0003 and HIV(+ (p = 0.057 subjects, respectively. In addition, loss of CD27 expression preceded development of active TB in one HIV seroconverter. Interestingly, in contrast to HIV(- subjects, MTB-specific CD4 T cell populations from HIV(+ TB-asymptomatic subjects were often dominated by CD27(- cells. These data indicate that down-regulation of CD27 on MTB-specific CD4 T cell could be used as a biomarker of active TB, potentially preceding clinical TB disease. Furthermore, these data are consistent with the hypothesis that late, chronic HIV infection is frequently associated with increased mycobacterial activity in vivo. The analysis of T cell maturation and activation markers might thus be a useful tool to monitor TB disease progression.

  6. Interaction between Tat and Drugs of Abuse during HIV-1 Infection and Central Nervous System Disease

    Directory of Open Access Journals (Sweden)

    Monique E Maubert

    2016-01-01

    Full Text Available In many individuals, drug abuse is intimately linked with HIV-1 infection. In addition to being associated with one-third of all HIV-1 infections in the United States, drug abuse also plays a role in disease progression and severity in HIV-1-infected patients, including adverse effects on the central nervous system (CNS. Specific systems within the brain are known to be damaged in HIV-1-infected individuals and this damage is similar to that observed in drug abuse. Even in the era of anti-retroviral therapy (ART, CNS pathogenesis occurs with HIV-1 infection, with a broad range of cognitive impairment observed, collectively referred to as HIV-1-associated neurocognitive disorders (HAND. A number of HIV-1 proteins (Tat, gp120, Nef, Vpr have been implicated in the etiology of pathogenesis and disease as a result of the biologic activity of the extracellular form of each of the proteins in a number of tissues, including the CNS, even in ART-suppressed patients. In this review, we have made Tat the center of attention for a number of reasons. First, it has been shown to be synthesized and secreted by HIV-1-infected cells in the CNS, despite the most effective suppression therapies available to date. Second, Tat has been shown to alter the functions of several host factors, disrupting the molecular and biochemical balance of numerous pathways contributing to cellular toxicity, dysfunction, and death. In addition, the advantages and disadvantages of ART suppression with regard to controlling the genesis and progression of neurocognitive impairment are currently under debate in the field and are yet to be fully determined. In this review, we discuss the individual and concerted contributions of HIV-1 Tat, drug abuse, and ART with respect to damage in the CNS, and how these factors contribute to the development of HAND in HIV-1-infected patients.

  7. Plasma plasminogen activator inhibitor-1 predicts myocardial infarction in HIV-1-infected individuals

    DEFF Research Database (Denmark)

    Knudsen, Andreas; Katzenstein, Terese L; Benfield, Thomas;

    2014-01-01

    of antiretroviral therapy, sex, smoking and no known cardiovascular disease. Levels of high-sensitivity C-reactive protein, soluble endothelial selectin, soluble vascular cell adhesion molecule, soluble intercellular adhesion molecule, matrix metalloprotease 9, myeloperoxidase, and plasminogen activator inhibitor 1...

  8. A Novel Class of HIV-1 Antiviral Agents Targeting HIV via a SUMOylation-Dependent Mechanism.

    Science.gov (United States)

    Madu, Ikenna G; Li, Shirley; Li, Baozong; Li, Haitang; Chang, Tammy; Li, Yi-Jia; Vega, Ramir; Rossi, John; Yee, Jiing-Kuan; Zaia, John; Chen, Yuan

    2015-12-08

    We have recently identified a chemotype of small ubiquitin-like modifier (SUMO)-specific protease (SENP) inhibitors. Prior to the discovery of their SENP inhibitory activity, these compounds were found to inhibit HIV replication, but with an unknown mechanism. In this study, we investigated the mechanism of how these compounds inhibit HIV-1. We found that they do not affect HIV-1 viral production, but significantly inhibited the infectivity of the virus. Interestingly, virions produced from cells treated with these compounds could gain entry and carry out reverse transcription, but could not efficiently integrate into the host genome. This phenotype is different from the virus produced from cells treated with the class of anti-HIV-1 agents that inhibit HIV protease. Upon removal of the SUMO modification sites in the HIV-1 integrase, the compound no longer alters viral infectivity, indicating that the effect is related to SUMOylation of the HIV integrase. This study identifies a novel mechanism for inhibiting HIV-1 integration and a new class of small molecules that inhibits HIV-1 via such mechanism that may contribute a new strategy for cure of HIV-1 by inhibiting the production of infectious virions upon activation from latency.

  9. Mycobacterial and HIV infections up-regulated human zinc finger protein 134, a novel positive regulator of HIV-1 LTR activity and viral propagation.

    Directory of Open Access Journals (Sweden)

    Ronald Benjamin

    Full Text Available BACKGROUND: Concurrent occurrence of HIV and Tuberculosis (TB infections influence the cellular environment of the host for synergistic existence. An elementary approach to understand such coalition at the molecular level is to understand the interactions of the host and the viral factors that subsequently effect viral replication. Long terminal repeats (LTR of HIV genome serve as a template for binding trans-acting viral and cellular factors that regulate its transcriptional activity, thereby, deciding the fate of HIV pathogenesis, making it an ideal system to explore the interplay between HIV and the host. METHODOLOGY/PRINCIPAL FINDINGS: In this study, using biotinylated full length HIV-1 LTR sequence as bait followed by MALDI analyses, we identified and further characterized human-Zinc-finger-protein-134 (hZNF-134 as a novel positive regulator of HIV-1 that promoted LTR-driven transcription and viral production. Over-expression of hZNF-134 promoted LTR driven luciferase activity and viral transcripts, resulting in increased virus production while siRNA mediated knockdown reduced both the viral transcripts and the viral titers, establishing hZNF-134 as a positive effector of HIV-1. HIV, Mycobacteria and HIV-TB co-infections increased hZNF-134 expressions in PBMCs, the impact being highest by mycobacteria. Corroborating these observations, primary TB patients (n = 22 recorded extraordinarily high transcript levels of hZNF-134 as compared to healthy controls (n = 16. CONCLUSIONS/SIGNIFICANCE: With these observations, it was concluded that hZNF-134, which promoted HIV-1 LTR activity acted as a positive regulator of HIV propagation in human host. High titers of hZNF-134 transcripts in TB patients suggest that up-regulation of such positive effectors of HIV-1 upon mycobacterial infection can be yet another mechanism by which mycobacteria assists HIV-1 propagation during HIV-TB co-infections. hZNF-134, an uncharacterized host protein, thus

  10. Persistent inflammation and endothelial activation in HIV-1 infected patients after 12 years of antiretroviral therapy.

    Directory of Open Access Journals (Sweden)

    Frederikke F Rönsholt

    Full Text Available OBJECTIVE: The study investigated markers of inflammation and endothelial activation in HIV infected patients after 12 years of successful combination antiretroviral treatment (cART. METHODS: Inflammation and endothelial activation were assessed by measuring levels of immunoglobulins, β2-microglobulin, interleukin (IL 8, tumor necrosis factor α (TNFα, vascular cell adhesion molecule-1 (sVCAM-1, intercellular adhesion molecule-1 (sICAM-1, sE-Selectin, and sP-Selectin. RESULTS: HIV infected patients had higher levels of β2-microglobulin, IL-8, TNFα, and sICAM-1 than uninfected controls, and HIV infected patients lacked correlation between platelet counts and sP-Selectin levels found in uninfected controls. CONCLUSION: Discrete signs of systemic and vascular inflammation persist even after very long term cART.

  11. Celastrol ameliorates HIV-1 Tat-induced inflammatory responses via NF-kappaB and AP-1 inhibition and heme oxygenase-1 induction in astrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Youn, Gi Soo; Kwon, Dong-Joo; Ju, Sung Mi [Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of); Rhim, Hyangshuk [Department of Biomedical Sciences, Department of Medical Life Sciences, College of Medicine, the Catholic University of Korea, Seoul 137-701 (Korea, Republic of); Bae, Yong Soo [Department of Biological Science, College of Natural Sciences, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Choi, Soo Young [Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of); Park, Jinseu, E-mail: jinpark@hallym.ac.kr [Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of)

    2014-10-01

    HIV-1 Tat causes extensive neuroinflammation that may progress to AIDS-related encephalitis and dementia. Celastrol possesses various biological activities such as anti-oxidant, anti-tumor, and anti-inflammatory activities. In this study, we investigated the modulatory effects of celastrol on HIV-1 Tat-induced inflammatory responses and the molecular mechanisms underlying its action in astrocytes. Pre-treatment of CRT-MG human astroglioma cells with celastrol significantly inhibited HIV-1 Tat-induced expression of ICAM-1/VCAM-1 and subsequent monocyte adhesiveness in CRT-MG cells. In addition, celastrol suppressed HIV-1 Tat-induced expression of pro-inflammatory chemokines, such as CXCL10, IL-8, and MCP-1. Celastrol decreased HIV-1 Tat-induced activation of JNK MAPK, AP-1, and NF-κB. Furthermore, celastrol induced mRNA and protein expression of HO-1 as well as Nrf2 activation. Blockage of HO-1 expression using siRNA reversed the inhibitory effect of celastrol on HIV-1 Tat-induced inflammatory responses. These results suggest that celastrol has regulatory effects on HIV-1 Tat-induced inflammatory responses by blocking the JNK MAPK-AP-1/NF-κB signaling pathways and inducing HO-1 expression in astrocytes. - Highlights: • Celastrol suppressed HIV-1 Tat-induced expression of pro-inflammatory genes. • Celastrol inhibited HIV-1 Tat -induced activation of JNK MAPK. • Celastrol inhibited HIV-1 Tat-induced activation of both NF-κB and AP-1. • Celastrol inhibited HIV-1 Tat-induced inflammatory responses via HO-1 induction.

  12. HbAHP-25, an In-Silico Designed Peptide, Inhibits HIV-1 Entry by Blocking gp120 Binding to CD4 Receptor.

    Directory of Open Access Journals (Sweden)

    Tahir Bashir

    Full Text Available Human Immunodeficiency Virus (HIV-1 poses a serious threat to the developing world and sexual transmission continues to be the major source of new infections. Therefore, the development of molecules, which prevent new HIV-1 infections, is highly warranted. In the present study, a panel of human hemoglobin (Hb-α subunit derived peptides and their analogues, with an ability to bind gp120, were designed in-silico and their anti-HIV-1 activity was evaluated. Of these peptides, HbAHP-25, an analogue of Hb-α derived peptide, demonstrated significant anti-HIV-1 activity. HbAHP-25 was found to be active against CCR5-tropic HIV-1 strains (ADA5 and BaL and CXCR4-tropic HIV-1 strains (IIIB and NL4-3. Surface plasmon resonance (SPR and ELISA revealed direct interaction between HbAHP-25 and HIV-1 envelope protein, gp120. The peptide prevented binding of CD4 to gp120 and blocked subsequent steps leading to entry and/or fusion or both. Anti-HIV activity of HbAHP-25 appeared to be specific as it failed to inhibit the entry of HIV-1 pseudotyped virus (HIV-1 VSV. Further, HbAHP-25 was found to be non-cytotoxic to TZM-bl cells, VK2/E6E7 cells, CEM-GFP cells and PBMCs, even at higher concentrations. Moreover, HbAHP-25 retained its anti-HIV activity in presence of seminal plasma and vaginal fluid. In brief, the study identified HbAHP-25, a novel anti-HIV peptide, which directly interacts with gp120 and thus has a potential to inhibit early stages of HIV-1 infection.

  13. Toxicity and in vitro activity of HIV-1 latency-reversing agents in primary CNS cells.

    Science.gov (United States)

    Gray, Lachlan R; On, Hung; Roberts, Emma; Lu, Hao K; Moso, Michael A; Raison, Jacqueline A; Papaioannou, Catherine; Cheng, Wan-Jung; Ellett, Anne M; Jacobson, Jonathan C; Purcell, Damian F J; Wesselingh, Steve L; Gorry, Paul R; Lewin, Sharon R; Churchill, Melissa J

    2016-08-01

    Despite the success of combination antiretroviral therapy (cART), HIV persists in long lived latently infected cells in the blood and tissue, and treatment is required lifelong. Recent clinical studies have trialed latency-reversing agents (LRA) as a method to eliminate latently infected cells; however, the effects of LRA on the central nervous system (CNS), a well-known site of virus persistence on cART, are unknown. In this study, we evaluated the toxicity and potency of a panel of commonly used and well-known LRA (panobinostat, romidepsin, vorinostat, chaetocin, disulfiram, hexamethylene bisacetamide [HMBA], and JQ-1) in primary fetal astrocytes (PFA) as well as monocyte-derived macrophages as a cellular model for brain perivascular macrophages. We show that most LRA are non-toxic in these cells at therapeutic concentrations. Additionally, romidepsin, JQ-1, and panobinostat were the most potent at inducing viral transcription, with greater magnitude observed in PFA. In contrast, vorinostat, chaetocin, disulfiram, and HMBA all demonstrated little or no induction of viral transcription. Together, these data suggest that some LRA could potentially activate transcription in latently infected cells in the CNS. We recommend that future trials of LRA also examine the effects of these agents on the CNS via examination of cerebrospinal fluid.

  14. HIV-1 Latency in Monocytes/Macrophages

    Directory of Open Access Journals (Sweden)

    Amit Kumar

    2014-04-01

    Full Text Available Human immunodeficiency virus type 1 (HIV-1 targets CD4+ T cells and cells of the monocyte/macrophage lineage. HIV pathogenesis is characterized by the depletion of T lymphocytes and by the presence of a population of cells in which latency has been established called the HIV-1 reservoir. Highly active antiretroviral therapy (HAART has significantly improved the life of HIV-1 infected patients. However, complete eradication of HIV-1 from infected individuals is not possible without targeting latent sources of infection. HIV-1 establishes latent infection in resting CD4+ T cells and findings indicate that latency can also be established in the cells of monocyte/macrophage lineage. Monocyte/macrophage lineage includes among others, monocytes, macrophages and brain resident macrophages. These cells are relatively more resistant to apoptosis induced by HIV-1, thus are important stable hideouts of the virus. Much effort has been made in the direction of eliminating HIV-1 resting CD4+ T-cell reservoirs. However, it is impossible to achieve a cure for HIV-1 without considering these neglected latent reservoirs, the cells of monocyte/macrophage lineage. In this review we will describe our current understanding of the mechanism of latency in monocyte/macrophage lineage and how such cells can be specifically eliminated from the infected host.

  15. Yeast genetic analysis reveals the involvement of chromatin reassembly factors in repressing HIV-1 basal transcription.

    Directory of Open Access Journals (Sweden)

    Manuela Vanti

    2009-01-01

    Full Text Available Rebound of HIV viremia after interruption of anti-retroviral therapy is due to the small population of CD4+ T cells that remain latently infected. HIV-1 transcription is the main process controlling post-integration latency. Regulation of HIV-1 transcription takes place at both initiation and elongation levels. Pausing of RNA polymerase II at the 5' end of HIV-1 transcribed region (5'HIV-TR, which is immediately downstream of the transcription start site, plays an important role in the regulation of viral expression. The activation of HIV-1 transcription correlates with the rearrangement of a positioned nucleosome located at this region. These two facts suggest that the 5'HIV-TR contributes to inhibit basal transcription of those HIV-1 proviruses that remain latently inactive. However, little is known about the cell elements mediating the repressive role of the 5'HIV-TR. We performed a genetic analysis of this phenomenon in Saccharomyces cerevisiae after reconstructing a minimal HIV-1 transcriptional system in this yeast. Unexpectedly, we found that the critical role played by the 5'HIV-TR in maintaining low levels of basal transcription in yeast is mediated by FACT, Spt6, and Chd1, proteins so far associated with chromatin assembly and disassembly during ongoing transcription. We confirmed that this group of factors plays a role in HIV-1 postintegration latency in human cells by depleting the corresponding human orthologs with shRNAs, both in HIV latently infected cell populations and in particular single-integration clones, including a latent clone with a provirus integrated in a highly transcribed gene. Our results indicate that chromatin reassembly factors participate in the establishment of the equilibrium between activation and repression of HIV-1 when it integrates into the human genome, and they open the possibility of considering these factors as therapeutic targets of HIV-1 latency.

  16. The HIV-1 p6/EIAV p9 docking site in Alix is autoinhibited as revealed by a conformation-sensitive anti-Alix monoclonal antibody.

    Science.gov (United States)

    Zhou, Xi; Pan, Shujuan; Sun, Le; Corvera, Joe; Lin, Sue-Hwa; Kuang, Jian

    2008-09-01

    Alix [ALG-2 (apoptosis-linked gene 2)-interacting protein X], a component of the endosomal sorting machinery, contains a three-dimensional docking site for HIV-1 p6(Gag) or EIAV (equine infectious anaemia virus) p9(Gag), and binding of the viral protein to this docking site allows the virus to hijack the host endosomal sorting machinery for budding from the plasma membrane. In the present study, we identified a monoclonal antibody that specifically recognizes the docking site for p6(Gag)/p9(Gag) and we used this antibody to probe the accessibility of the docking site in Alix. Our results show that the docking site is not available in cytosolic or recombinant Alix under native conditions and becomes available upon addition of the detergent Nonidet P40 or SDS. In HEK (human embryonic kidney)-293 cell lysates, an active p6(Gag)/p9(Gag) docking site is specifically available in Alix from the membrane fraction. The findings of the present study demonstrate that formation or exposure of the p6(Gag)/p9(Gag) docking site in Alix is a regulated event and that Alix association with the membrane may play a positive role in this process.

  17. Tenascin-C is an innate broad-spectrum, HIV-1–neutralizing protein in breast milk

    Science.gov (United States)

    Fouda, Genevieve G.; Jaeger, Frederick H.; Amos, Joshua D.; Ho, Carrie; Kunz, Erika L.; Anasti, Kara; Stamper, Lisa W.; Liebl, Brooke E.; Barbas, Kimberly H.; Ohashi, Tomoo; Moseley, Martin Arthur; Liao, Hua-Xin; Erickson, Harold P.; Alam, S. Munir; Permar, Sallie R.

    2013-01-01

    Achieving an AIDS-free generation will require elimination of postnatal transmission of HIV-1 while maintaining the nutritional and immunologic benefits of breastfeeding for infants in developing regions. Maternal/infant antiretroviral prophylaxis can reduce postnatal HIV-1 transmission, yet toxicities and the development of drug-resistant viral strains may limit the effectiveness of this strategy. Interestingly, in the absence of antiretroviral prophylaxis, greater than 90% of infants exposed to HIV-1 via breastfeeding remain uninfected, despite daily mucosal exposure to the virus for up to 2 y. Moreover, milk of uninfected women inherently neutralizes HIV-1 and prevents virus transmission in animal models, yet the factor(s) responsible for this anti-HIV activity is not well-defined. In this report, we identify a primary HIV-1–neutralizing protein in breast milk, Tenascin-C (TNC). TNC is an extracellular matrix protein important in fetal development and wound healing, yet its antimicrobial properties have not previously been established. Purified TNC captured and neutralized multiclade chronic and transmitted/founder HIV-1 variants, and depletion of TNC abolished the HIV-1–neutralizing activity of milk. TNC bound the HIV-1 Envelope protein at a site that is induced upon engagement of its primary receptor, CD4, and is blocked by V3 loop- (19B and F39F) and chemokine coreceptor binding site-directed (17B) monoclonal antibodies. Our results demonstrate the ability of an innate mucosal host protein found in milk to neutralize HIV-1 via binding to the chemokine coreceptor site, potentially explaining why the majority of HIV-1–exposed breastfed infants are protected against mucosal HIV-1 transmission. PMID:24145401

  18. QSAR studies on diarypyrimidines as inhibiting activity of HIV-1 virus wildtype%DAPY类化合物抑制野生型HIV-1活性的QSAR研究

    Institute of Scientific and Technical Information of China (English)

    石春雨; 聂长明; 刘慧杰; 宁左云

    2012-01-01

    Molecular mechanics and semi-empirical quantum RM1 methods were used to refine,optimize the geometry of 31 DAPY(diarylpyrimidine) derivatives and then extracted physicochemical properties parameters, molecular parameters,geometric parmeter from the geometric model along with combined indicator parameter to established the QSAR model for diarylpyrimidines against HIV-1 reverse tran-scriptase wild-type. Based on the multiple linear regression analysis,sorts of descriptors was invested and finally selected the dihedral (0) .molecular volume (V) and combined indicator parameters (I) to build a significant QSAR equation:It reveal that the hydrophobicity index logP is actually not important as preciously reported in the prediction of inhibition activity of DAPYs. Decrease the volume,increase the dihedral between the left phenyl ring and pyrimidine ring can enhance the activity of inhibition. The -CN group on the left phenyl ring is important for inhibiting activity. Ph,NO2 group at the Rl substitute can decrease the inhibiting activity rapidly.%应用分子力学、半经验量子化学RM1方法优化了32个抗野生型HIV-1病毒毒株的二芳基嘧啶类(DAPYs)化合物分子结构,从分子构象模型中提取了多种参数并结合疏水性参数与指示性参数建立QSAR多元线性回归方程.回归方程显示:分子体积V的增大会降低其抑制活性,而左苯环与嘧啶环间二面角θ增大可以提高抑制活性.同时指示性参数I表明左苯环CN基团加入可以明显增加抑制活性,嘧啶环上R1位置苯基与硝基的加入可以极大降低抑制活性.

  19. Fucoidans as Potential Inhibitors of HIV-1

    Science.gov (United States)

    Prokofjeva, Maria M.; Imbs, Tatyana I.; Shevchenko, Natalya M.; Spirin, Pavel V.; Horn, Stefan; Fehse, Boris; Zvyagintseva, Tatyana N.; Prassolov, Vladimir S.

    2013-01-01

    The antiviral activity of different structure fucoidans (α-l-fucans and galactofucans) was studied using two model viral systems based on a lentiviral vectors and a replication competent Moloney murine leukemia virus (Mo-MuLV). It was found that investigated fucoidans have no cytotoxic effects on Jurkat and SC-1cell at the concentration range of 0.001–100 µg/mL. Fucoidans with different efficiency suppressed transduction of Jurkat cell line by pseudo-HIV-1 particles carrying the envelope protein of HIV-1 and infection of SC-1 cells by Mo-MuLV. According to our data, all natural fucoidans can be considered as potential anti-HIV agents regardless of their carbohydrate backbone and degree of sulfating, since their activity is shown at low concentrations (0.001–0.05 µg/mL). High molecular weight fucoidans isolated from Saccharina cichorioides (1.3-α-l-fucan), and S. japonica (galactofucan) were the most effective inhibitors. PMID:23966033

  20. Fucoidans as Potential Inhibitors of HIV-1

    Directory of Open Access Journals (Sweden)

    Vladimir S. Prassolov

    2013-08-01

    Full Text Available The antiviral activity of different structure fucoidans (α-l-fucans and galactofucans was studied using two model viral systems based on a lentiviral vectors and a replication competent Moloney murine leukemia virus (Mo-MuLV. It was found that investigated fucoidans have no cytotoxic effects on Jurkat and SC-1cell at the concentration range of 0.001–100 µg/mL. Fucoidans with different efficiency suppressed transduction of Jurkat cell line by pseudo-HIV-1 particles carrying the envelope protein of HIV-1 and infection of SC-1 cells by Mo-MuLV. According to our data, all natural fucoidans can be considered as potential anti-HIV agents regardless of their carbohydrate backbone and degree of sulfating, since their activity is shown at low concentrations (0.001–0.05 µg/mL. High molecular weight fucoidans isolated from Saccharina cichorioides (1.3-α-l-fucan, and S. japonica (galactofucan were the most effective inhibitors.

  1. Fucoidans as potential inhibitors of HIV-1.

    Science.gov (United States)

    Prokofjeva, Maria M; Imbs, Tatyana I; Shevchenko, Natalya M; Spirin, Pavel V; Horn, Stefan; Fehse, Boris; Zvyagintseva, Tatyana N; Prassolov, Vladimir S

    2013-08-19

    The antiviral activity of different structure fucoidans (α-l-fucans and galactofucans) was studied using two model viral systems based on a lentiviral vectors and a replication competent Moloney murine leukemia virus (Mo-MuLV). It was found that investigated fucoidans have no cytotoxic effects on Jurkat and SC-1cell at the concentration range of 0.001-100 µg/mL. Fucoidans with different efficiency suppressed transduction of Jurkat cell line by pseudo-HIV-1 particles carrying the envelope protein of HIV-1 and infection of SC-1 cells by Mo-MuLV. According to our data, all natural fucoidans can be considered as potential anti-HIV agents regardless of their carbohydrate backbone and degree of sulfating, since their activity is shown at low concentrations (0.001-0.05 µg/mL). High molecular weight fucoidans isolated from Saccharina cichorioides (1.3-α-l-fucan), and S. japonica (galactofucan) were the most effective inhibitors.

  2. Effect of HIV-1-related protein expression on cardiac and skeletal muscles from transgenic rats

    Directory of Open Access Journals (Sweden)

    Guidot David M

    2008-04-01

    Full Text Available Abstract Background Human immunodeficiency virus type 1 (HIV-1 infection and the consequent acquired immunodeficiency syndrome (AIDS has protean manifestations, including muscle wasting and cardiomyopathy, which contribute to its high morbidity. The pathogenesis of these myopathies remains partially understood, and may include nutritional deficiencies, biochemical abnormalities, inflammation, and other mechanisms due to viral infection and replication. Growing evidence has suggested that HIV-1-related proteins expressed by the host in response to viral infection, including Tat and gp120, may also be involved in the pathophysiology of AIDS, particularly in cells or tissues that are not directly infected with HIV-1. To explore the potentially independent effects of HIV-1-related proteins on heart and skeletal muscles, we used a transgenic rat model that expresses several HIV-1-related proteins (e.g., Tat, gp120, and Nef. Outcome measures included basic heart and skeletal muscle morphology, glutathione metabolism and oxidative stress, and gene expressions of atrogin-1, muscle ring finger protein-1 (MuRF-1 and Transforming Growth Factor-β1 (TGFβ1, three factors associated with muscle catabolism. Results Consistent with HIV-1 associated myopathies in humans, HIV-1 transgenic rats had increased relative heart masses, decreased relative masses of soleus, plantaris and gastrocnemius muscles, and decreased total and myosin heavy chain type-specific plantaris muscle fiber areas. In both tissues, the levels of cystine (Cyss, the oxidized form of the anti-oxidant cysteine (Cys, and Cyss:Cys ratios were significantly elevated, and cardiac tissue from HIV-1 transgenic rats had altered glutathione metabolism, all reflective of significant oxidative stress. In HIV-1 transgenic rat hearts, MuRF-1 gene expression was increased. Further, HIV-1-related protein expression also increased atrogin-1 (~14- and ~3-fold and TGFβ1 (~5-fold and ~3-fold in heart and

  3. Hologram quantitative structure-activity relationship and comparative molecular field analysis studies within a series of tricyclic phthalimide HIV-1 integrase inhibitors.

    Science.gov (United States)

    Magalhães, Uiaran de Oliveira; Souza, Alessandra Mendonça Teles de; Albuquerque, Magaly Girão; Brito, Monique Araújo de; Bello, Murilo Lamim; Cabral, Lucio Mendes; Rodrigues, Carlos Rangel

    2013-01-01

    Acquired immunodeficiency syndrome is a public health problem worldwide caused by the Human immunodeficiency virus (HIV). Treatment with antiretroviral drugs is the best option for viral suppression, reducing morbidity and mortality. However, viral resistance in HIV-1 therapy has been reported. HIV-1 integrase (IN) is an essential enzyme for effective viral replication and an attractive target for the development of new inhibitors. In the study reported here, two- and three-dimensional quantitative structure-activity relationship (2D/3D-QSAR) studies, applying hologram quantitative structure-activity relationship (HQSAR) and comparative molecular field analysis (CoMFA) methods, respectively, were performed on a series of tricyclic phthalimide HIV-1 IN inhibitors. The best HQSAR model (q (2) = 0.802, r (2) = 0.972) was obtained using atoms, bonds, and connectivity as the fragment distinction, a fragment size of 2-5 atoms, hologram length of 61 bins, and six components. The best CoMFA model (q (2) = 0.748, r (2) = 0.974) was obtained with alignment of all atoms of the tricyclic phthalimide moiety (alignment II). The HQSAR contribution map identified that the carbonyl-hydroxy-aromatic nitrogen motif made a positive contribution to the activity of the compounds. Furthermore, CoMFA contour maps suggested that bulky groups in meta and para positions in the phenyl ring would increase the biological activity of this class. The conclusions of this work may lead to a better understanding of HIV-1 IN inhibition and contribute to the design of new and more potent derivatives.

  4. The amino-terminal domain of the CCR2 chemokine receptor acts as coreceptor for HIV-1 infection.

    Science.gov (United States)

    Frade, J M; Llorente, M; Mellado, M; Alcamí, J; Gutiérrez-Ramos, J C; Zaballos, A; Real, G; Martínez-A, C

    1997-08-01

    The chemokines are a homologous serum protein family characterized by their ability to induce activation of integrin adhesion molecules and leukocyte migration. Chemokines interact with their receptors, which are composed of a single-chain, seven-helix, membrane-spanning protein coupled to G proteins. Two CC chemokine receptors, CCR3 and CCR5, as well as the CXCR4 chemokine receptor, have been shown necessary for infection by several HIV-1 virus isolates. We studied the effect of the chemokine monocyte chemoattractant protein 1 (MCP-1) and of a panel of MCP-1 receptor (CCR2)-specific monoclonal antibodies (mAb) on the suppression of HIV-1 replication in peripheral blood mononuclear cells. We have compelling evidence that MCP-1 has potent HIV-1 suppressive activity when HIV-1-infected peripheral blood lymphocytes are used as target cells. Furthermore, mAb specific for the MCP-1R CCR2 which recognize the third extracellular CCR2 domain inhibit all MCP-1 activity and also block MCP-1 suppressive activity. Finally, a set of mAb specific for the CCR2 amino-terminal domain, one of which mimics MCP-1 activity, has a potent suppressive effect on HIV-1 replication in M- and T-tropic HIV-1 viral isolates. We conjecture a role for CCR2 as a coreceptor for HIV-1 infection and map the HIV-1 binding site to the amino-terminal part of this receptor. This concurs with results showing that the CCR5 amino terminus is relevant in HIV-1 infection, although chimeric fusion of various extracellular domains shows that other domains are also implicated. We discuss the importance of CCR2 structure relative to its coreceptor role and the role of anti-CCR2 receptor antibodies in the prevention of HIV-1 infection.

  5. Relative reactivity of HIV-1 polyclonal plasma antibodies directed to V3 and MPER regions suggests immunodominance of V3 over MPER and dependence of high anti-V3 antibody titers on virus persistence.

    Science.gov (United States)

    Andrabi, Raiees; Choudhary, Alok K; Bala, Manju; Kalra, Rajesh; Prakash, S S; Pandey, R M; Luthra, Kalpana

    2011-10-01

    Antibodies to two crucial regions, the third variable loop (V3) of gp120 and the membrane-proximal external region (MPER) of gp41 are important for HIV-1 neutralization. We here evaluated the relative binding of polyclonal plasma antibodies from 99 HIV-1-infected individuals from India to the consensus-C V3 and MPER peptides and observed immunodominance of V3 over MPER (p antibody correlates with clinical parameters. Our results revealed that anti-V3 antibody titers are significantly lower in patients on ART compared to drug-naive individuals (p antibodies are dependent on persistence of virus in circulation, while antibodies to MPER are probably not.

  6. Direct interaction of the human I-mfa domain-containing protein, HIC, with HIV-1 Tat results in cytoplasmic sequestration and control of Tat activity.

    Science.gov (United States)

    Gautier, Virginie W; Sheehy, Noreen; Duffy, Margaret; Hashimoto, Kenichi; Hall, William W

    2005-11-08

    The primary function of the HIV-1 regulatory protein Tat, activation of transcription from the viral LTR, is highly regulated by complex interactions between Tat and a number of host cell proteins. Tat nuclear import, a process mediated by importin beta, is a prerequisite for its activity. Here, we report and characterize the interaction of the human inhibitor of MyoD family domain-containing protein (I-mfa), HIC, with Tat at a biochemical and a functional level. This interaction was shown to occur in vivo and in vitro and to involve the nuclear localization signal and the transactivation responsive element-binding domains of Tat and the I-mfa domain of HIC. Coexpression of HIC and Tat resulted in the down-regulation of transactivation of the HIV-1 LTR, and colocalization studies revealed the cytoplasmic sequestration of Tat by HIC. Functionally this sequestration appears to be the underlying mechanism of LTR transcriptional repression by HIC and represents a unique mechanism for the control of Tat activity and regulation of HIV-1 replication.

  7. Aptamer-targeted RNAi for HIV-1 therapy.

    Science.gov (United States)

    Zhou, Jiehua; Rossi, John J

    2011-01-01

    The highly specific mechanism of RNA (RNAi) that inhibits the expression of disease genes is increasingly being harnessed to develop a new class of therapeutics for a wide variety of human maladies. The successful use of small interfering RNAs (siRNAs) for therapeutic purposes requires safe and efficient delivery to specific cells and tissues. Herein, we demonstrate novel cell type-specific dual inhibitory function anti-gp120 aptamer-siRNA delivery systems for HIV-1 therapy, in which both the aptamer and the siRNA portions have potent anti-HIV activities. The envelope glycoprotein is expressed on the surface of HIV-1 infected cells, allowing binding and internalization of the aptamer-siRNA chimeric molecules. The Dicer substrate siRNA delivered by the aptamers is functionally processed by Dicer, resulting in specific inhibition of HIV-1 replication and infectivity in cultured CEM T-cells and primary blood mononuclear cells. Our results provide a set of novel aptamer-targeted RNAi therapeutics to combat HIV and further validate the use of anti-gp120 aptamers for delivery of Dicer substrate siRNAs.

  8. Metabolic and immune activation effects of treatment interruption in chronic HIV-1 infection: implications for cardiovascular risk.

    Directory of Open Access Journals (Sweden)

    Pablo Tebas

    Full Text Available BACKGROUND: Concern about costs and antiretroviral therapy (ART-associated toxicities led to the consideration of CD4 driven strategies for the management of HIV. That approach was evaluated in the SMART trial that reported an unexpected increase of cardiovascular events after treatment interruption (TI. Our goal was to evaluate fasting metabolic changes associated with interruption of antiretroviral therapy and relate them to changes of immune activation markers and cardiovascular risk. METHODOLOGY: ACTG 5102 enrolled 47 HIV-1-infected subjects on stable ART, with or=500 cells/microL. Subjects were randomly assigned to continue ART for 18 weeks with or without 3 cycles of interleukin-2 (IL-2 (cycle = 4.5 million IU sc BID x 5 days every 8 weeks. After 18 weeks ART was discontinued in all subjects until the CD4 cell count dropped below 350 cells/microL. Glucose and lipid parameters were evaluated every 8 weeks initially and at weeks 2, 4, 8 and every 8 weeks after TI. Immune activation was evaluated by flow-cytometry and soluble TNFR2 levels. PRINCIPAL FINDINGS: By week 8 of TI, levels of total cholesterol (TC (median (Q1, Q3 (-0.73 (-1.19, -0.18 mmol/L, p<0.0001, LDL, HDL cholesterol (-0.36(-0.73,-0.03mmol/L, p = 0.0007 and -0.05(-0.26,0.03, p = 0.0033, respectively and triglycerides decreased (-0.40 (-0.84, 0.07 mmol/L, p = 0.005. However the TC/HDL ratio remained unchanged (-0.09 (-1.2, 0.5, p = 0.2. Glucose and insulin levels did not change (p = 0.6 and 0.8, respectively. After TI there was marked increase in immune activation (CD8+/HLA-DR+/CD38+ cells, 34% (13, 43, p<0.0001 and soluble TNFR2 (1089 ng/L (-189, 1655, p = 0.0008 coinciding with the rebound of HIV viremia. CONCLUSIONS: Our data suggests that interrupting antiretroviral therapy does not reduce cardiovascular disease (CVD risk, as the improvements in lipid parameters are modest and overshadowed by the decreased HDL levels. Increased immune cell activation and systemic

  9. Curcumin protects microglia and primary rat cortical neurons against HIV-1 gp120-mediated inflammation and apoptosis.

    Directory of Open Access Journals (Sweden)

    Luyan Guo

    Full Text Available Curcumin is a molecule found in turmeric root that has anti-inflammatory, antioxidant, and anti-tumor properties and has been widely used as both an herbal drug and a food additive to treat or prevent neurodegenerative diseases. To explore whether curcumin is able to ameliorate HIV-1-associated neurotoxicity, we treated a murine microglial cell line (N9 and primary rat cortical neurons with curcumin in the presence or absence of neurotoxic HIV-1 gp120 (V3 loop protein. We found that HIV-1 gp120 profoundly induced N9 cells to produce reactive oxygen species (ROS, tumor necrosis factor-α (TNF-α and monocyte chemoattractant protein-1 (MCP-1. HIV-1 gp120 also induced apoptosis of primary rat cortical neurons. Curcumin exerted a powerful inhibitory effect against HIV-1 gp120-induced neuronal damage, reducing the production of ROS, TNF-α and MCP-1 by N9 cells and inhibiting apoptosis of primary rat cortical neurons. Curcumin may exert its biological activities through inhibition of the delayed rectification and transient outward potassium (K(+ current, as curcumin effectively reduced HIV-1 gp120-mediated elevation of the delayed rectification and transient outward K(+ channel current in neurons. We conclude that HIV-1 gp120 increases ROS, TNF-α and MCP-1 production in microglia, and induces cortical neuron apoptosis by affecting the delayed rectification and transient outward K(+ channel current. Curcumin reduces production of ROS and inflammatory mediators in HIV-1-gp120-stimulated microglia, and protects cortical neurons against HIV-1-mediated apoptosis, most likely through inhibition of HIV-1 gp120-induced elevation of the delayed rectification and transient outward K(+ current.

  10. Evidence that levels of the dimeric cellular transcription factor CP2 play little role in the activation of the HIV-1 long terminal repeat in vivo or following superinfection with herpes simplex virus type 1.

    Science.gov (United States)

    Zhong, F; Swendeman, S L; Popik, W; Pitha, P M; Sheffery, M

    1994-08-19

    The dimeric transcription factor CP2 binds a sequence element found near the transcription start site of the human immunodeficiency virus (HIV-1) long terminal repeat. Several groups have suggested that cellular factors binding this element might play a role in modulating HIV-1 promoter activity in vivo. For example, induction of latent HIV-1 gene expression in response to superinfection by herpes simplex virus type 1 (HSV-1) or cytomegalovirus is thought to be mediated, in part, by factors binding the CP2 site. In this report we began to examine directly the relationship between CP2 and expression of the HIV-1 promoter. First, we tested what effect HSV-1 infection of T cells had on the cellular levels of CP2. The results showed that HSV-1 infection led to a significant reduction in the level of CP2 DNA binding activity and protein within 20 h. Next, we tested the effect of overexpressing either the wild-type factor or a dominant negative variant of CP2 on HIV-1 promoter activity in vivo. The results showed that CP2 had little effect or slightly repressed HIV-1 promoter activity in vivo. In addition, these expression constructs had little effect on the induction of HIV-1 promoter activity elicited by HSV-1 infection.

  11. Efficient Vpu-Mediated Tetherin Antagonism by an HIV-1 Group O Strain.

    Science.gov (United States)

    Mack, Katharina; Starz, Kathrin; Sauter, Daniel; Langer, Simon; Bibollet-Ruche, Frederic; Learn, Gerald H; Stürzel, Christina M; Leoz, Marie; Plantier, Jean-Christophe; Geyer, Matthias; Hahn, Beatrice H; Kirchhoff, Frank

    2017-03-15

    Simian immunodeficiency viruses (SIVs) use their Nef proteins to counteract the restriction factor tetherin. However, a deletion in human tetherin prevents antagonism by the Nef proteins of SIVcpz and SIVgor, which represent the ape precursors of human immunodeficiency virus type 1 (HIV-1). To promote virus release from infected cells, pandemic HIV-1 group M strains evolved Vpu as a tetherin antagonist, while the Nef protein of less widespread HIV-1 group O strains acquired the ability to target a region adjacent to this deletion. In this study, we identified an unusual HIV-1 group O strain (RBF206) that evolved Vpu as an effective antagonist of human tetherin. While both RBF206 Vpu and Nef exert anti-tetherin activity in transient-transfection assays, mainly Vpu promotes RBF206 release in infected CD4(+) T cells. Although mutations distinct from the adaptive changes observed in group M Vpus (M-Vpus) were critical for the acquisition of its anti-tetherin activity, RBF206 O-Vpu potently suppresses NF-κB activation and reduces CD4 cell surface expression. Interestingly, RBF206 Vpu counteracts tetherin in a largely species-independent manner, degrading both the long and short isoforms of human tetherin. Downmodulation of CD4, but not counteraction of tetherin, by RBF206 Vpu was dependent on the cellular ubiquitin ligase machinery. Our data present the first example of an HIV-1 group O Vpu that efficiently antagonizes human tetherin and suggest that counteraction by O-Nefs may be suboptimal.IMPORTANCE Previous studies showed that HIV-1 groups M and O evolved two alternative strategies to counteract the human ortholog of the restriction factor tetherin. While HIV-1 group M switched from Nef to Vpu due to a deletion in the cytoplasmic domain of human tetherin, HIV-1 group O, which lacks Vpu-mediated anti-tetherin activity, acquired a Nef protein that is able to target a region adjacent to the deletion. Here we report an unusual exception, identifying a strain of HIV-1

  12. Apoptotic killing of HIV-1-infected macrophages is subverted by the viral envelope glycoprotein.

    Directory of Open Access Journals (Sweden)

    Simon Swingler

    2007-09-01

    Full Text Available Viruses have evolved strategies to protect infected cells from apoptotic clearance. We present evidence that HIV-1 possesses a mechanism to protect infected macrophages from the apoptotic effects of the death ligand TRAIL (tumor necrosis factor-related apoptosis-inducing ligand. In HIV-1-infected macrophages, the viral envelope protein induced macrophage colony-stimulating factor (M-CSF. This pro-survival cytokine downregulated the TRAIL receptor TRAIL-R1/DR4 and upregulated the anti-apoptotic genes Bfl-1 and Mcl-1. Inhibition of M-CSF activity or silencing of Bfl-1 and Mcl-1 rendered infected macrophages highly susceptible to TRAIL. The anti-cancer agent Imatinib inhibited M-CSF receptor activation and restored the apoptotic sensitivity of HIV-1-infected macrophages, suggesting a novel strategy to curtail viral persistence in the macrophage reservoir.

  13. Relation of activation-induced deaminase (AID) expression with antibody response to A(H1N1)pdm09 vaccination in HIV-1 infected patients.

    Science.gov (United States)

    Cagigi, Alberto; Pensieroso, Simone; Ruffin, Nicolas; Sammicheli, Stefano; Thorstensson, Rigmor; Pan-Hammarström, Qiang; Hejdeman, Bo; Nilsson, Anna; Chiodi, Francesca

    2013-04-26

    The relevance of CD4+T-cells, viral load and age in the immunological response to influenza infection and vaccination in HIV-1 infected individuals has previously been pointed out. Our study aimed at assessing, in the setting of 2009 A(H1N1)pdm09 influenza vaccination, whether quantification of activation-induced deaminase (AID) expression in blood B-cells may provide additional indications for predicting antibody response to vaccination in HIV-1 infected patients with similar CD4+T-cell counts and age. Forty-seven healthy controls, 37 ART-treated and 17 treatment-naïve HIV-1 infected patients were enrolled in the study. Blood was collected prior to A(H1N1)pdm09 vaccination and at 1, 3 and 6 months after vaccination. Antibody titers to A(H1N1)pdm09 vaccine were measured by hemagglutination inhibition (HI) assay while the mRNA expression levels of AID were measured by quantitative real time PCR. Upon B-cell activation in vitro, AID increase correlated to antibody response to the A(H1N1)pdm09 vaccine at 1 month after vaccination in all individuals. In addition, the maximum expression levels of AID were significantly higher in those individuals who still carried protective levels of A(H1N1)pdm09 antibodies after 6 months from vaccination. No correlation was found between CD4+T-cell counts or age at vaccination or HIV-1 viral load and levels of A(H1N1)pdm09 antibodies. Assessing AID expression before vaccination may be an additional useful tool for defining a vaccination strategy in immune-compromised individuals at risk of immunization failure.

  14. Alkaloids from the Sponge Stylissa carteri Present Prospective Scaffolds for the Inhibition of Human Immunodeficiency Virus 1 (HIV-1)

    Science.gov (United States)

    O’Rourke, Aubrie; Kremb, Stephan; Bader, Theresa Maria; Helfer, Markus; Schmitt-Kopplin, Philippe; Gerwick, William H.; Brack-Werner, Ruth; Voolstra, Christian R.

    2016-01-01

    The sponge Stylissa carteri is known to produce a number of secondary metabolites displaying anti-fouling, anti-inflammatory, and anti-cancer activity. However, the anti-viral potential of metabolites produced by S. carteri has not been extensively explored. In this study, an S. carteri extract was HPLC fractionated and a cell based assay was used to evaluate the effects of HPLC fractions on parameters of Human Immunodeficiency Virus (HIV-1) infection and cell viability. Candidate HIV-1 inhibitory fractions were then analyzed for the presence of potential HIV-1 inhibitory compounds by mass spectrometry, leading to the identification of three previously characterized compounds, i.e., debromohymenialdisine (DBH), hymenialdisine (HD), and oroidin. Commercially available purified versions of these molecules were re-tested to assess their antiviral potential in greater detail. Specifically, DBH and HD exhibit a 30%–40% inhibition of HIV-1 at 3.1 μM and 13 μM, respectively; however, both exhibited cytotoxicity. Conversely, oroidin displayed a 50% inhibition of viral replication at 50 μM with no associated toxicity. Additional experimentation using a biochemical assay revealed that oroidin inhibited the activity of the HIV-1 Reverse Transcriptase up to 90% at 25 μM. Taken together, the chemical search space was narrowed and previously isolated compounds with an unexplored anti-viral potential were found. Our results support exploration of marine natural products for anti-viral drug discovery. PMID:26861355

  15. Alkaloids from the Sponge Stylissa carteri Present Prospective Scaffolds for the Inhibition of Human Immunodeficiency Virus 1 (HIV-1)

    KAUST Repository

    O’Rourke, Aubrie

    2016-02-04

    The sponge Stylissa carteri is known to produce a number of secondary metabolites displaying anti-fouling, anti-inflammatory, and anti-cancer activity. However, the anti-viral potential of metabolites produced by S. carteri has not been extensively explored. In this study, an S. carteri extract was HPLC fractionated and a cell based assay was used to evaluate the effects of HPLC fractions on parameters of Human Immunodeficiency Virus (HIV-1) infection and cell viability. Candidate HIV-1 inhibitory fractions were then analyzed for the presence of potential HIV-1 inhibitory compounds by mass spectrometry, leading to the identification of three previously characterized compounds, i.e., debromohymenialdisine (DBH), hymenialdisine (HD), and oroidin. Commercially available purified versions of these molecules were re-tested to assess their antiviral potential in greater detail. Specifically, DBH and HD exhibit a 30%–40% inhibition of HIV-1 at 3.1 μM and 13 μM, respectively; however, both exhibited cytotoxicity. Conversely, oroidin displayed a 50% inhibition of viral replication at 50 μM with no associated toxicity. Additional experimentation using a biochemical assay revealed that oroidin inhibited the activity of the HIV-1 Reverse Transcriptase up to 90% at 25 μM. Taken together, the chemical search space was narrowed and previously isolated compounds with an unexplored anti-viral potential were found. Our results support exploration of marine natural products for anti-viral drug discovery.

  16. Alkaloids from the Sponge Stylissa carteri Present Prospective Scaffolds for the Inhibition of Human Immunodeficiency Virus 1 (HIV-1

    Directory of Open Access Journals (Sweden)

    Aubrie O’Rourke

    2016-02-01

    Full Text Available The sponge Stylissa carteri is known to produce a number of secondary metabolites displaying anti-fouling, anti-inflammatory, and anti-cancer activity. However, the anti-viral potential of metabolites produced by S. carteri has not been extensively explored. In this study, an S. carteri extract was HPLC fractionated and a cell based assay was used to evaluate the effects of HPLC fractions on parameters of Human Immunodeficiency Virus (HIV-1 infection and cell viability. Candidate HIV-1 inhibitory fractions were then analyzed for the presence of potential HIV-1 inhibitory compounds by mass spectrometry, leading to the identification of three previously characterized compounds, i.e., debromohymenialdisine (DBH, hymenialdisine (HD, and oroidin. Commercially available purified versions of these molecules were re-tested to assess their antiviral potential in greater detail. Specifically, DBH and HD exhibit a 30%–40% inhibition of HIV-1 at 3.1 μM and 13 μM, respectively; however, both exhibited cytotoxicity. Conversely, oroidin displayed a 50% inhibition of viral replication at 50 μM with no associated toxicity. Additional experimentation using a biochemical assay revealed that oroidin inhibited the activity of the HIV-1 Reverse Transcriptase up to 90% at 25 μM. Taken together, the chemical search space was narrowed and previously isolated compounds with an unexplored anti-viral potential were found. Our results support exploration of marine natural products for anti-viral drug discovery.

  17. Elucidating a Key Anti-HIV-1 and Cancer-Associated Axis: The Structure of CCL5 (Rantes) in Complex with CCR5

    Science.gov (United States)

    Tamamis, Phanourios; Floudas, Christodoulos A.

    2014-06-01

    CCL5 (RANTES) is an inflammatory chemokine which binds to chemokine receptor CCR5 and induces signaling. The CCL5:CCR5 associated chemotactic signaling is of critical biological importance and is a potential HIV-1 therapeutic axis. Several studies provided growing evidence for the expression of CCL5 and CCR5 in non-hematological malignancies. Therefore, the delineation of the CCL5:CCR5 complex structure can pave the way for novel CCR5-targeted drugs. We employed a computational protocol which is primarily based on free energy calculations and molecular dynamics simulations, and report, what is to our knowledge, the first computationally derived CCL5:CCR5 complex structure which is in excellent agreement with experimental findings and clarifies the functional role of CCL5 and CCR5 residues which are associated with binding and signaling. A wealth of polar and non-polar interactions contributes to the tight CCL5:CCR5 binding. The structure of an HIV-1 gp120 V3 loop in complex with CCR5 has recently been derived through a similar computational protocol. A comparison between the CCL5 : CCR5 and the HIV-1 gp120 V3 loop : CCR5 complex structures depicts that both the chemokine and the virus primarily interact with the same CCR5 residues. The present work provides insights into the blocking mechanism of HIV-1 by CCL5.

  18. Identification of a human protein-derived HIV-1 fusion inhibitor targeting the gp41 fusion core structure.

    Directory of Open Access Journals (Sweden)

    Lijun Chao

    Full Text Available The HIV-1 envelope glycoprotein (Env gp41 plays a crucial role in the viral fusion process. The peptides derived from the C-terminal heptad repeat (CHR of gp41 are potent HIV fusion inhibitors. However, the activity of these anti-HIV-1 peptides in vivo may be attenuated by their induction of anti-gp41 antibodies. Thus, it is essential to identify antiviral peptides or proteins with low, or no, immunogenicity to humans. Here, we found that the C-terminal fragment (aa 462-521 of the human POB1 (the partner of RalBP1, designated C60, is an HIV-1 fusion inhibitor. It bound to N36, the peptide derived from the N-terminal heptad repeat (NHR of gp41, and to the six-helix bundle (6-HB formed by N36 and C34, a CHR-peptide, but it did not bind to C34. Unlike the CHR-peptides, C60 did not block gp41 6-HB formation. Rather, results suggest that C60 inhibits HIV-1 fusion by binding to the 6-HB, in particular, the residues in the gp41 NHR domain that are exposed on the surface of 6-HB. Since 6-HB plays a crucial role in the late stage of fusion between the viral envelope and endosomal membrane during the endocytic process of HIV-1, C60 may serve as a host restriction factor to suppress HIV-1 entry into CD4+ T lymphocytes. Taken together, it can be concluded from these results that C60 can be used as a lead for the development of anti-HIV-1 therapeutics or microbicides for the treatment and prevention of HIV-1 infection, as well as a molecular probe to study the fusogenic mechanism of HIV-1.

  19. Rationally Designed Interfacial Peptides Are Efficient In Vitro Inhibitors of HIV-1 Capsid Assembly with Antiviral Activity

    OpenAIRE

    Rebeca Bocanegra; María Nevot; Rosa Doménech; Inmaculada López; Olga Abián; Alicia Rodríguez-Huete; Cavasotto, Claudio N.; Adrián Velázquez-Campoy; Javier Gómez; Miguel Ángel Martínez; José Luis Neira; Mateu, Mauricio G.

    2011-01-01

    Virus capsid assembly constitutes an attractive target for the development of antiviral therapies; a few experimental inhibitors of this process for HIV-1 and other viruses have been identified by screening compounds or by selection from chemical libraries. As a different, novel approach we have undertaken the rational design of peptides that could act as competitive assembly inhibitors by mimicking capsid structural elements involved in intersubunit interfaces. Several discrete interfaces in...

  20. Sulfated Polysaccharides in Marine Sponges: Extraction Methods and Anti-HIV Activity

    Directory of Open Access Journals (Sweden)

    Ana I. S. Esteves

    2011-01-01

    Full Text Available The extraction, fractionation and HIV-1 inhibition potential of polysaccharides extracted from three species of marine sponges, Erylus discophorus, Cliona celata and Stelletta sp., collected in the Northeastern Atlantic, is presented in this work. The anti-HIV activity of 23 polysaccharide pellets and three crude extracts was tested. Crude extracts prepared from Erylus discophorus specimens were all highly active against HIV-1 (90 to 95% inhibition. Cliona celata pellets showed low polysaccharide content (bellow 38.5% and almost no anti-HIV activity (<10% inhibition. Stelletta sp. pellets, although quite rich in polysaccharide (up to 97.3%, showed only modest bioactivity (<36% HIV-1 inhibition. Erylus discophorus pellets were among the richest in terms of polysaccharide content (up to 98% and the most active against HIV-1 (up to 95% inhibition. Chromatographic fractionation of the polysaccharide pellet obtained from a specimen of Erylus discophorus (B161 yielded only modestly active fractions. However, we could infer that the active molecule is most probably a high molecular weight sulfated polysaccharide (>2000 kDa, whose mechanism is possibly preventing viral attachment and entry (fusion inhibitor.

  1. Residual viraemia in HIV-1-infected patients with plasma viral load activation markers

    DEFF Research Database (Denmark)

    Ostrowski, S R; Katzenstein, T L; Pedersen, B K;

    2008-01-01

    -count, CD4+HLA-DR+, CD8+HLA-DR+CD38+, CD4+CD45RA-CD45RO+, CD8+CD45RA-CD45RO+, CD4+CD45RA+CD62L+, CD8+CD45RA+CD62L+ T cells, IgG or IgM. In conclusion, RV was associated with increased blood levels of soluble immune activation markers in HAART-treated HIV-1-infected patients. The finding that RV......)-microglobulin (+22 nmol/l, P = 0.016) and time-points with PCR-RV were also associated with higher IgA (+0.82 micromol/l, P = 0.035) and CD8-count (+1.18-fold, P = 0.001). Patients with TMA-RV in the study-period had higher HIV-1 RNA pre-HAART (P = 0.032). RV was not associated with proviral-HIV-1-DNA, CD4...

  2. Aqueous Extracts of the Marine Brown Alga Lobophora variegata Inhibit HIV-1 Infection at the Level of Virus Entry into Cells

    KAUST Repository

    Kremb, Stephan

    2014-08-21

    In recent years, marine algae have emerged as a rich and promising source of molecules with potent activities against various human pathogens. The widely distributed brown alga Lobophora variegata that is often associated with tropical coral reefs exerts strong antibacterial and antiprotozoal effects, but so far has not been associated with specific anti-viral activities. This study investigated potential HIV-1 inhibitory activity of L. variegata collected from different geographical regions, using a cell-based full replication HIV-1 reporter assay. Aqueous L. variegata extracts showed strong inhibitory effects on several HIV-1 strains, including drug-resistant and primary HIV-1 isolates, and protected even primary cells (PBMC) from HIV-1-infection. Anti-viral potency was related to ecological factors and showed clear differences depending on light exposition or epiphyte growth. Assays addressing early events of the HIV-1 replication cycle indicated that L. variegata extracts inhibited entry of HIV-1 into cells at a pre-fusion step possibly by impeding mobility of virus particles. Further characterization of the aqueous extract demonstrated that even high doses had only moderate effects on viability of cultured and primary cells (PBMCs). Imaging-based techniques revealed extract effects on the plasma membrane and actin filaments as well as induction of apoptosis at concentrations exceeding EC50 of anti-HIV-1 activity by more than 400 fold. In summary, we show for the first time that L. variegata extracts inhibit HIV-1 entry, thereby suggesting this alga as promising source for the development of novel HIV-1 inhibitors.

  3. Antiretroviral therapy in HIV-1-infected individuals with CD4 count below 100 cells/mm3 results in differential recovery of monocyte activation.

    Science.gov (United States)

    Patro, Sean C; Azzoni, Livio; Joseph, Jocelin; Fair, Matthew G; Sierra-Madero, Juan G; Rassool, Mohammed S; Sanne, Ian; Montaner, Luis J

    2016-07-01

    Reversal of monocyte and macrophage activation and the relationship to viral suppression and T cell activation are unknown in patients with advanced HIV-1 infection, initiating antiretroviral therapy. This study aimed to determine whether reduction in biomarkers of monocyte and macrophage activation would be reduced in conjunction with viral suppression and resolution of T cell activation. Furthermore, we hypothesized that the addition of CCR5 antagonism (by maraviroc) would mediate greater reduction of monocyte/macrophage activation markers than suppressive antiretroviral therapy alone. In the CCR5 antagonism to decrease the incidence of immune reconstitution inflammatory syndrome study, antiretroviral therapy-naïve patients received maraviroc or placebo in addition to standard antiretroviral therapy. PBMCs and plasma from 65 patients were assessed during 24 wk of antiretroviral therapy for biomarkers of monocyte and macrophage activation. Markers of monocyte and macrophage activation were reduced significantly by 24 wk, including CD14(++)CD16(+) intermediate monocytes (P CCR5-positive monocytes in PBMC. HIV-1 suppression after 24 wk of antiretroviral therapy, with or without maraviroc, demonstrates robust recovery in monocyte subset activation markers, whereas soluble markers of activation demonstrate minimal decrease, qualitatively differentiating markers of monocyte/macrophage activation in advanced disease.

  4. Tannin inhibits HIV-1 entry by targeting gp41

    Institute of Scientific and Technical Information of China (English)

    Lin L(U); Shu-wen LIU; Shi-bo JIANG; Shu-guang WU

    2004-01-01

    AIM: To investigate the mechanism by which tannin inhibits HIV-1 entry into target cells. METHODS: The inhibitory activity of tannin on HIV-1 replication and entry was detected by p24 production and HIV-1-mediated cell fusion, respectively. The inhibitory activity on the gp41 six-helix bundle formation was determined by an improved sandwich ELISA. RESULTS: Tannins from different sources showed potent inhibitory activity on HIV-1 replication,HIV-1-mediated cell fusion, and the gp4 six-helix bundle formation. CONCLUSION: Tannin inhibits HIV-1 entry into target cells by interfering with the gp41 six-helix bundle formation, thus blocking HIV-1 fusion with the target cell.

  5. Cross-neutralizing anti-HIV-1 human single chain variable fragments(scFvs) against CD4 binding site and N332 glycan identified from a recombinant phage library

    Science.gov (United States)

    Khan, Lubina; Kumar, Rajesh; Thiruvengadam, Ramachandran; Parray, Hilal Ahmad; Makhdoomi, Muzamil Ashraf; Kumar, Sanjeev; Aggarwal, Heena; Mohata, Madhav; Hussain, Abdul Wahid; Das, Raksha; Varadarajan, Raghavan; Bhattacharya, Jayanta; Vajpayee, Madhu; Murugavel, K. G.; Solomon, Suniti; Sinha, Subrata; Luthra, Kalpana

    2017-01-01

    More than 50% of HIV-1 infection globally is caused by subtype_C viruses. Majority of the broadly neutralizing antibodies (bnAbs) targeting HIV-1 have been isolated from non-subtype_C infected donors. Mapping the epitope specificities of bnAbs provides useful information for vaccine design. Recombinant antibody technology enables generation of a large repertoire of monoclonals with diverse specificities. We constructed a phage recombinant single chain variable fragment (scFv) library with a diversity of 7.8 × 108 clones, using a novel strategy of pooling peripheral blood mononuclear cells (PBMCs) of six select HIV-1 chronically infected Indian donors whose plasma antibodies exhibited potent cross neutralization efficiency. The library was panned and screened by phage ELISA using trimeric recombinant proteins to identify viral envelope specific clones. Three scFv monoclonals D11, C11 and 1F6 selected from the library cross neutralized subtypes A, B and C viruses at concentrations ranging from 0.09 μg/mL to 100 μg/mL. The D11 and 1F6 scFvs competed with mAbs b12 and VRC01 demonstrating CD4bs specificity, while C11 demonstrated N332 specificity. This is the first study to identify cross neutralizing scFv monoclonals with CD4bs and N332 glycan specificities from India. Cross neutralizing anti-HIV-1 human scFv monoclonals can be potential candidates for passive immunotherapy and for guiding immunogen design. PMID:28332627

  6. An anti-HIV-1 V3 loop antibody fully protects cross-clade and elicits T-cell immunity in macaques mucosally challenged with an R5 clade C SHIV.

    Directory of Open Access Journals (Sweden)

    Jennifer D Watkins

    Full Text Available Neutralizing antibodies have been shown to protect macaques against SHIV challenge. However, genetically diverse HIV-1 clades have evolved, and a key question left unanswered is whether neutralizing antibodies can confer cross-clade protection in vivo. The novel human monoclonal antibody HGN194 was isolated from an individual infected with an HIV-1 clade AG recombinant circulating recombinant form (CRF. HGN194 targets an epitope in the third hypervariable loop (V3 of HIV-1 gp120 and neutralizes a range of relatively neutralization-sensitive and resistant viruses. We evaluated the potential of HGN194 to protect infant rhesus monkeys against a SHIV encoding a primary CCR5-tropic HIV-1 clade C envelope. After high-dose mucosal challenge, all untreated controls became highly viremic while all HGN194-treated animals (50 mg/kg were completely protected. When HGN194 was given at 1 mg/kg, one out of two monkeys remained aviremic, whereas the other had delayed, lower peak viremia. Interestingly, all protected monkeys given high-dose HGN194 developed Gag-specific proliferative responses of both CD4+ and CD8+ T cells. To test whether generation of the latter involved cryptic infection, we ablated CD8+ cells after HGN194 clearance. No viremia was detected in any protected monkeys, thus ruling out virus reservoirs. Thus, induction of CD8 T-cell immunity may have resulted from transient "Hit and Run" infection or cross priming via Ag-Ab-mediated cross-presentation. Together, our data identified the HGN194 epitope as protective and provide proof-of-concept that this anti-V3 loop mAb can prevent infection with sterilizing immunity after challenge with virus of a different clade, implying that V3 is a potential vaccine target.

  7. Nup153 and Nup98 bind the HIV-1 core and contribute to the early steps of HIV-1 replication

    Energy Technology Data Exchange (ETDEWEB)

    Di Nunzio, Francesca, E-mail: francesca.di-nunzio@pasteur.fr [Molecular Virology and Vaccinology unit, CNRS URA 3015, Department of Virology, Institut Pasteur, 25-28 rue du Dr. Roux, 75015 Paris (France); Fricke, Thomas [Department of Microbiology and Immunology, Albert Einstein College of Medicine Bronx, NY 10461 (United States); Miccio, Annarita [University of Modena e Reggio Emilia, Centro di Medicina Rigenerativa, Modena (Italy); Valle-Casuso, Jose Carlos; Perez, Patricio [Department of Microbiology and Immunology, Albert Einstein College of Medicine Bronx, NY 10461 (United States); Souque, Philippe [Molecular Virology and Vaccinology unit, CNRS URA 3015, Department of Virology, Institut Pasteur, 25-28 rue du Dr. Roux, 75015 Paris (France); Rizzi, Ermanno; Severgnini, Marco [Institute of Biomedical Technologies, CNR, Milano (Italy); Mavilio, Fulvio [University of Modena e Reggio Emilia, Centro di Medicina Rigenerativa, Modena (Italy); Genethon, Evry (France); Charneau, Pierre [Molecular Virology and Vaccinology unit, CNRS URA 3015, Department of Virology, Institut Pasteur, 25-28 rue du Dr. Roux, 75015 Paris (France); Diaz-Griffero, Felipe, E-mail: felipe.diaz-griffero@einstein.yu.edu [Department of Microbiology and Immunology, Albert Einstein College of Medicine Bronx, NY 10461 (United States)

    2013-05-25

    The early steps of HIV-1 replication involve the entry of HIV-1 into the nucleus, which is characterized by viral interactions with nuclear pore components. HIV-1 developed an evolutionary strategy to usurp the nuclear pore machinery and chromatin in order to integrate and efficiently express viral genes. In the current work, we studied the role of nucleoporins 153 and 98 (Nup153 and Nup98) in infection of human Jurkat lymphocytes by HIV-1. We showed that Nup153-depleted cells exhibited a defect in nuclear import, while depletion of Nup 98 caused a slight defect in HIV integration. To explore the biochemical viral determinants for the requirement of Nup153 and Nup98 during HIV-1 infection, we tested the ability of these nucleoporins to interact with HIV-1 cores. Our findings showed that both nucleoporins bind HIV-1 cores suggesting that this interaction is important for HIV-1 nuclear import and/or integration. Distribution analysis of integration sites in Nup153-depleted cells revealed a reduced tendency of HIV-1 to integrate in intragenic sites, which in part could account for the large infectivity defect observed in Nup153-depleted cells. Our work strongly supports a role for Nup153 in HIV-1 nuclear import and integration. - Highlights: ► We studied the role of Nup98 and Nup153 in HIV-1 infection. ► Nup98 binds the HIV-1 core and is involved in HIV-1 integration. ► Nup153 binds the HIV-1 core and is involved in HIV-1 nuclear import. ► Depletion of Nup153 decreased the integration of HIV-1 in transcriptionally active sites.

  8. Conserved hydrogen bonds and water molecules in MDR HIV-1 protease substrate complexes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhigang [Wayne State Univ., Detroit, MI (United States); Case Western Reserve Univ., Cleveland, OH (United States); Harbor Hospital Baltimore, MD (United States); Wang, Yong [Wayne State Univ., Detroit, MI (United States); Yedidi, Ravikiran S. [Wayne State Univ., Detroit, MI (United States); National Institutes of Health, Bethesda, MD (United States); Dewdney, Tamaria G. [Wayne State Univ., Detroit, MI (United States); Reiter, Samuel J. [Wayne State Univ., Detroit, MI (United States); Brunzelle, Joseph S. [Northwestern Univ. Feinberg School of Medicine, Chicago, IL (United States); Kovari, Iulia A. [Wayne State Univ., Detroit, MI (United States); Kovari, Ladislau C. [Wayne State Univ., Detroit, MI (United States)

    2012-12-19

    Success of highly active antiretroviral therapy (HAART) in anti-HIV therapy is severely compromised by the rapidly developing drug resistance. HIV-1 protease inhibitors, part of HAART, are losing their potency and efficacy in inhibiting the target. Multi-drug resistant (MDR) 769 HIV-1 protease (resistant mutations at residues 10, 36, 46, 54, 62, 63, 71, 82, 84, 90) was selected for the present study to understand the binding to its natural substrates. The nine crystal structures of MDR769 HIV-1 protease substrate hepta-peptide complexes were analyzed in order to reveal the conserved structural elements for the purpose of drug design against MDR HIV-1 protease. Our structural studies demonstrated that highly conserved hydrogen bonds between the protease and substrate peptides, together with the conserved crystallographic water molecules, played a crucial role in the substrate recognition, substrate stabilization and protease stabilization. Additionally, the absence of the key flap-ligand bridging water molecule might imply a different catalytic mechanism of MDR769 HIV-1 protease compared to that of wild type (WT) HIV-1 protease.

  9. Combined chronic blockade of hyper-active L-type calcium channels and NMDA receptors ameliorates HIV-1 associated hyper-excitability of mPFC pyramidal neurons.

    Science.gov (United States)

    Khodr, Christina E; Chen, Lihua; Dave, Sonya; Al-Harthi, Lena; Hu, Xiu-Ti

    2016-10-01

    Human Immunodeficiency Virus type 1 (HIV-1) infection induces neurological and neuropsychological deficits, which are associated with dysregulation of the medial prefrontal cortex (mPFC) and other vulnerable brain regions. We evaluated the impact of HIV infection in the mPFC and the therapeutic potential of targeting over-active voltage-gated L-type Ca(2+) channels (L-channel) and NMDA receptors (NMDAR), as modeled in HIV-1 transgenic (Tg) rats. Whole-cell patch-clamp recording was used to assess the membrane properties and voltage-sensitive Ca(2+) potentials (Ca(2+) influx) in mPFC pyramidal neurons. Neurons from HIV-1 Tg rats displayed reduced rheobase, spike amplitude and inwardly-rectifying K(+) influx, increased numbers of action potentials, and a trend of aberrant firing compared to those from non-Tg control rats. Neuronal hyper-excitation was associated with abnormally-enhanced Ca(2+) influx (independent of NMDAR), which was eliminated by acute L-channel blockade. Combined chronic blockade of over-active L-channels and NMDARs with open-channel blockers abolished HIV effects on spiking, aberrant firing and Ca(2+) potential half-amplitude duration, though not the reduced inward rectification. In contrast, individual chronic blockade of over-active L-channels or NMDARs did not alleviate HIV-induced mPFC hyper-excitability. These studies demonstrate that HIV alters mPFC neuronal activity by dysregulating membrane excitability and Ca(2+) influx through the L-channels. This renders these neurons more susceptible and vulnerable to excitatory stimuli, and could contribute to HIV-associated neuropathogenesis. Combined targeting of over-active L-channels/NMDARs alleviates HIV-induced dysfunction of mPFC pyramidal neurons, emphasizing a potential novel therapeutic strategy that may effectively decrease HIV-induced Ca(2+) dysregulation in the mPFC.

  10. Antibody 10-1074 suppresses viremia in HIV-1-infected individuals.

    Science.gov (United States)

    Caskey, Marina; Schoofs, Till; Gruell, Henning; Settler, Allison; Karagounis, Theodora; Kreider, Edward F; Murrell, Ben; Pfeifer, Nico; Nogueira, Lilian; Oliveira, Thiago Y; Learn, Gerald H; Cohen, Yehuda Z; Lehmann, Clara; Gillor, Daniel; Shimeliovich, Irina; Unson-O'Brien, Cecilia; Weiland, Daniela; Robles, Alexander; Kümmerle, Tim; Wyen, Christoph; Levin, Rebeka; Witmer-Pack, Maggi; Eren, Kemal; Ignacio, Caroline; Kiss, Szilard; West, Anthony P; Mouquet, Hugo; Zingman, Barry S; Gulick, Roy M; Keler, Tibor; Bjorkman, Pamela J; Seaman, Michael S; Hahn, Beatrice H; Fätkenheuer, Gerd; Schlesinger, Sarah J; Nussenzweig, Michel C; Klein, Florian

    2017-02-01

    Monoclonal antibody 10-1074 targets the V3 glycan supersite on the HIV-1 envelope (Env) protein. It is among the most potent anti-HIV-1 neutralizing antibodies isolated so far. Here we report on its safety and activity in 33 individuals who received a single intravenous infusion of the antibody. 10-1074 was well tolerated and had a half-life of 24.0 d in participants without HIV-1 infection and 12.8 d in individuals with HIV-1 infection. Thirteen individuals with viremia received the highest dose of 30 mg/kg 10-1074. Eleven of these participants were 10-1074-sensitive and showed a rapid decline in viremia by a mean of 1.52 log10 copies/ml. Virologic analysis revealed the emergence of multiple independent 10-1074-resistant viruses in the first weeks after infusion. Emerging escape variants were generally resistant to the related V3-specific antibody PGT121, but remained sensitive to antibodies targeting nonoverlapping epitopes, such as the anti-CD4-binding-site antibodies 3BNC117 and VRC01. The results demonstrate the safety and activity of 10-1074 in humans and support the idea that antibodies targeting the V3 glycan supersite might be useful for the treatment and prevention of HIV-1 infection.

  11. Physicochemical characterization of GBV-C E1 peptides as potential inhibitors of HIV-1 fusion peptide: interaction with model membranes.

    Science.gov (United States)

    Sánchez-Martín, Maria Jesús; Cruz, Antonio; Busquets, M Antònia; Haro, Isabel; Alsina, M Asunción; Pujol, Montserrat

    2012-10-15

    Four peptide sequences corresponding to the E1 protein of GBV-C: NCCAPEDIGFCLEGGCLV (P7), APEDIGFCLEGGCLVALG (P8), FCLEGGCLVALGCTICTD (P10) and QAGLAVRPGKSAAQLVGE (P18) were studied as they were capable of interfering with the HIV-1 fusion peptide (HIV-1 FP). In this work, the surface properties of the E1 peptide sequences are investigated and their physicochemical characterization is done by studying their interaction with model membranes; moreover, their mixtures with HIV-1 FP were also studied in order to observe whether they are capable to modify the HIV-1 FP interaction with model membranes as liposomes or monolayers. Physicochemical properties of peptides (pI and net charge) were predicted showing similarities between P7 and P8, and P10 and HIV-1 FP, whereas P18 appears to be very different from the rest. Circular dichroism experiments were carried out showing an increase of the percentage of α-helix of P7 and P8 when mixed with HIV-1 FP corroborating a conformational change that could be the cause of their inhibition ability. Penetration experiments show that all the peptides can spontaneously insert into phospholipid membranes. Analysis of compression isotherms indicates that the peptides interact with phospholipids and the E1 peptides modify the compression isotherms of HIV-1 FP, but there is one of the peptides that excelled as the best candidate for inhibiting the activity of HIV-1 FP, P7, and therefore, that could be potentially used in future anti-HIV-1 research.

  12. A computational analysis of the structural determinants of APOBEC3's catalytic activity and vulnerability to HIV-1 Vif.

    Science.gov (United States)

    Shandilya, Shivender M D; Bohn, Markus-Frederik; Schiffer, Celia A

    2014-12-01

    APOBEC3s (A3) are Zn(2+) dependent cytidine deaminases with diverse biological functions and implications for cancer and immunity. Four of the seven human A3s restrict HIV by 'hypermutating' the reverse-transcribed viral genomic DNA. HIV Virion Infectivity Factor (Vif) counters this restriction by targeting A3s to proteasomal degradation. However, there is no apparent correlation between catalytic activity, Vif binding, and sequence similarity between A3 domains. Our comparative structural analysis reveals features required for binding Vif and features influencing polynucleotide deaminase activity in A3 proteins. All Vif-binding A3s share a negatively charged surface region that includes residues previously implicated in binding the highly-positively charged Vif. Additionally, catalytically active A3s share a positively charged groove near the Zn(2+) coordinating active site, which may accommodate the negatively charged polynucleotide substrate. Our findings suggest surface electrostatics, as well as the spatial extent of substrate accommodating region, are critical determinants of substrate and Vif binding across A3 proteins with implications for anti-retroviral and anti-cancer therapeutic design.

  13. Oral pre-exposure prophylaxis by anti-retrovirals raltegravir and maraviroc protects against HIV-1 vaginal transmission in a humanized mouse model.

    Directory of Open Access Journals (Sweden)

    C Preston Neff

    Full Text Available Sexual HIV-1 transmission by vaginal route is the most predominant mode of viral transmission, resulting in millions of new infections every year. In the absence of an effective vaccine, there is an urgent need to develop other alternative methods of pre-exposure prophylaxis (PrEP. Many novel drugs that are currently approved for clinical use also show great potential to prevent viral sexual transmission when administered systemically. A small animal model that permits rapid preclinical evaluation of potential candidates for their systemic PrEP efficacy will greatly enhance progress in this area of investigation. We have previously shown that RAG-hu humanized mouse model permits HIV-1 mucosal transmission via both vaginal and rectal routes and displays CD4 T cell loss typical to that seen in the human. Thus far systemic PrEP studies have been primarily limited to RT inhibitors exemplified by tenofovir and emtricitabine. In these proof-of-concept studies we evaluated two new classes of clinically approved drugs with different modes of action namely, an integrase inhibitor raltegravir and a CCR5 inhibitor maraviroc as potential systemically administered chemo-prophylactics. Our results showed that oral administration of either of these drugs fully protects against vaginal HIV-1 challenge in the RAG-hu mouse model. Based on these results both these drugs show great promise for further development as orally administered PrEPs.

  14. Punica granatum (Pomegranate juice provides an HIV-1 entry inhibitor and candidate topical microbicide

    Directory of Open Access Journals (Sweden)

    Li Yun-Yao

    2004-10-01

    Full Text Available Abstract Background For ≈ 24 years the AIDS pandemic has claimed ≈ 30 million lives, causing ≈ 14,000 new HIV-1 infections daily worldwide in 2003. About 80% of infections occur by heterosexual transmission. In the absence of vaccines, topical microbicides, expected to block virus transmission, offer hope for controlling the pandemic. Antiretroviral chemotherapeutics have decreased AIDS mortality in industrialized countries, but only minimally in developing countries. To prevent an analogous dichotomy, microbicides should be: acceptable; accessible; affordable; and accelerative in transition from development to marketing. Already marketed pharmaceutical excipients or foods, with established safety records and adequate anti-HIV-1 activity, may provide this option. Methods Fruit juices were screened for inhibitory activity against HIV-1 IIIB using CD4 and CXCR4 as cell receptors. The best juice was tested for inhibition of: (1 infection by HIV-1 BaL, utilizing CCR5 as the cellular coreceptor; and (2 binding of gp120 IIIB and gp120 BaL, respectively, to CXCR4 and CCR5. To remove most colored juice components, the adsorption of the effective ingredient(s to dispersible excipients and other foods was investigated. A selected complex was assayed for inhibition of infection by primary HIV-1 isolates. Results HIV-1 entry inhibitors from pomegranate juice adsorb onto corn starch. The resulting complex blocks virus binding to CD4 and CXCR4/CCR5 and inhibits infection by primary virus clades A to G and group O. Conclusion These results suggest the possibility of producing an anti-HIV-1 microbicide from inexpensive, widely available sources, whose safety has been established throughout centuries, provided that its quality is adequately standardized and monitored.

  15. TRIM5 and the Regulation of HIV-1 Infectivity

    Directory of Open Access Journals (Sweden)

    Jeremy Luban

    2012-01-01

    Full Text Available The past ten years have seen an explosion of information concerning host restriction factors that inhibit the replication of HIV-1 and other retroviruses. Among these factors is TRIM5, an innate immune signaling molecule that recognizes the capsid lattice as soon as the retrovirion core is released into the cytoplasm of otherwise susceptible target cells. Recognition of the capsid lattice has several consequences that include multimerization of TRIM5 into a complementary lattice, premature uncoating of the virion core, and activation of TRIM5 E3 ubiquitin ligase activity. Unattached, K63-linked ubiquitin chains are generated that activate the TAK1 kinase complex and downstream inflammatory mediators. Polymorphisms in the capsid recognition domain of TRIM5 explain the observed species-specific differences among orthologues and the relatively weak anti-HIV-1 activity of human TRIM5. Better understanding of the complex interaction between TRIM5 and the retrovirus capsid lattice may someday lead to exploitation of this interaction for the development of potent HIV-1 inhibitors.

  16. APOBEC3D and APOBEC3F potently promote HIV-1 diversification and evolution in humanized mouse model.

    Directory of Open Access Journals (Sweden)

    Kei Sato

    2014-10-01

    Full Text Available Several APOBEC3 proteins, particularly APOBEC3D, APOBEC3F, and APOBEC3G, induce G-to-A hypermutations in HIV-1 genome, and abrogate viral replication in experimental systems, but their relative contributions to controlling viral replication and viral genetic variation in vivo have not been elucidated. On the other hand, an HIV-1-encoded protein, Vif, can degrade these APOBEC3 proteins via a ubiquitin/proteasome pathway. Although APOBEC3 proteins have been widely considered as potent restriction factors against HIV-1, it remains unclear which endogenous APOBEC3 protein(s affect HIV-1 propagation in vivo. Here we use a humanized mouse model and HIV-1 with mutations in Vif motifs that are responsible for specific APOBEC3 interactions, DRMR/AAAA (4A or YRHHY/AAAAA (5A, and demonstrate that endogenous APOBEC3D/F and APOBEC3G exert strong anti-HIV-1 activity in vivo. We also show that the growth kinetics of 4A HIV-1 negatively correlated with the expression level of APOBEC3F. Moreover, single genome sequencing analyses of viral RNA in plasma of infected mice reveal that 4A HIV-1 is specifically and significantly diversified. Furthermore, a mutated virus that is capable of using both CCR5 and CXCR4 as entry coreceptor is specifically detected in 4A HIV-1-infected mice. Taken together, our results demonstrate that APOBEC3D/F and APOBEC3G fundamentally work as restriction factors against HIV-1 in vivo, but at the same time, that APOBEC3D and APOBEC3F are capable of promoting viral diversification and evolution in vivo.

  17. Evolution of broadly cross-reactive HIV-1-neutralizing activity: therapy-associated decline, positive association with detectable viremia, and partial restoration of B-cell subpopulations.

    Science.gov (United States)

    Ferreira, Carolina B; Merino-Mansilla, Alberto; Llano, Anuska; Pérez, Ignacio; Crespo, Isabel; Llinas, Laia; Garcia, Felipe; Gatell, Jose M; Yuste, Eloisa; Sanchez-Merino, Victor

    2013-11-01

    Little is known about the stability of HIV-1 cross-neutralizing responses. Taking into account the fact that neutralization breadth has been positively associated with plasma viral load, there is no explanation for the presence of broadly neutralizing responses in a group of patients on treatment with undetectable viremia. In addition, the B-cell profile responsible for broadly cross-neutralizing responses is unknown. Here we studied the evolution of neutralizing responses and the B-cell subpopulation distribution in a group of patients with broadly cross-reactive HIV-1-neutralizing activity. We studied neutralization breadth evolution in a group of six previously identified broadly cross-neutralizing patients and six control patients during a 6-year period with a previously described minipanel of recombinant viruses from five different subtypes. B-cell subpopulation distribution during the study was also determined by multiparametric flow cytometry. Broadly cross-neutralizing activity was transient in four broad cross-neutralizers and stable, up to 4.6 years, in the other two. In four out of five broad cross-neutralizers who initiated treatment, a neutralization breadth loss occurred after viremia had been suppressed for as much as 20 months. B-cell subpopulation analyses revealed a significant increase in the frequency of naive B cells in broadly cross-reactive samples, compared with samples with less neutralization breadth (increased from 44% to 62%). We also observed a significant decrease in tissue-like and activated memory B cells (decreased from 19% to 12% and from 17% to 9%, respectively). Our data suggest that HIV-1 broadly cross-neutralizing activity is variable over time and associated with detectable viremia and partial B-cell restoration.

  18. Molecular Understanding of HIV-1 Latency

    Directory of Open Access Journals (Sweden)

    W. Abbas

    2012-01-01

    Full Text Available The introduction of highly active antiretroviral therapy (HAART has been an important breakthrough in the treatment of HIV-1 infection and has also a powerful tool to upset the equilibrium of viral production and HIV-1 pathogenesis. Despite the advent of potent combinations of this therapy, the long-lived HIV-1 reservoirs like cells from monocyte-macrophage lineage and resting memory CD4+ T cells which are established early during primary infection constitute a major obstacle to virus eradication. Further HAART interruption leads to immediate rebound viremia from latent reservoirs. This paper focuses on the essentials of the molecular mechanisms for the establishment of HIV-1 latency with special concern to present and future possible treatment strategies to completely purge and target viral persistence in the reservoirs.

  19. Broadly neutralizing antibodies: An approach to control HIV-1 infection.

    Science.gov (United States)

    Yaseen, Mahmoud Mohammad; Yaseen, Mohammad Mahmoud; Alqudah, Mohammad Ali

    2017-01-02

    Although available antiretroviral therapy (ART) has changed human immunodeficiency virus (HIV)-1 infection to a non-fatal chronic disease, the economic burden of lifelong therapy, severe adverse ART effects, daily ART adherence, and emergence of ART-resistant HIV-1 mutants require prospecting for alternative therapeutic modalities. Indeed, a growing body of evidence suggests that broadly neutralizing anti-HIV-1 antibodies (BNAbs) may offer one such feasible alternative. To evaluate their therapeutic potential in established HIV-1 infection, we sought to address recent advances in pre-clinical and clinical investigations in this area of HIV-1 research. In addition, we addressed the obstacles that may impede the success of such immunotherapeutic approach, suggested strategic solutions, and briefly compared this approach with the currently used ART to open new insights for potential future passive immunotherapy for HIV-1 infection.

  20. HIV-1 tat promotes integrin-mediated HIV transmission to dendritic cells by binding Env spikes and competes neutralization by anti-HIV antibodies.

    Directory of Open Access Journals (Sweden)

    Paolo Monini

    Full Text Available Use of Env in HIV vaccine development has been disappointing. Here we show that, in the presence of a biologically active Tat subunit vaccine, a trimeric Env protein prevents in monkeys virus spread from the portal of entry to regional lymph nodes. This appears to be due to specific interactions between Tat and Env spikes that form a novel virus entry complex favoring R5 or X4 virus entry and productive infection of dendritic cells (DCs via an integrin-mediated pathway. These Tat effects do not require Tat-transactivation activity and are blocked by anti-integrin antibodies (Abs. Productive DC infection promoted by Tat is associated with a highly efficient virus transmission to T cells. In the Tat/Env complex the cysteine-rich region of Tat engages the Env V3 loop, whereas the Tat RGD sequence remains free and directs the virus to integrins present on DCs. V2 loop deletion, which unshields the CCR5 binding region of Env, increases Tat/Env complex stability. Of note, binding of Tat to Env abolishes neutralization of Env entry or infection of DCs by anti-HIV sera lacking anti-Tat Abs, which are seldom present in natural infection. This is reversed, and neutralization further enhanced, by HIV sera containing anti-Tat Abs such as those from asymptomatic or Tat-vaccinated patients, or by sera from the Tat/Env vaccinated monkeys. Thus, both anti-Tat and anti-Env Abs are required for efficient HIV neutralization. These data suggest that the Tat/Env interaction increases HIV acquisition and spreading, as a mechanism evolved by the virus to escape anti-Env neutralizing Abs. This may explain the low effectiveness of Env-based vaccines, which are also unlikely to elicit Abs against new Env epitopes exposed by the Tat/Env interaction. As Tat also binds Envs from different clades, new vaccine strategies should exploit the Tat/Env interaction for both preventative and therapeutic interventions.

  1. SAMHD1 enhances nucleoside-analogue efficacy against HIV-1 in myeloid cells

    Science.gov (United States)

    Ordonez, Paula; Kunzelmann, Simone; Groom, Harriet C. T.; Yap, Melvyn W.; Weising, Simon; Meier, Chris; Bishop, Kate N.; Taylor, Ian A.; Stoye, Jonathan P.

    2017-01-01

    SAMHD1 is an intracellular enzyme that specifically degrades deoxynucleoside triphosphates into component nucleoside and inorganic triphosphate. In myeloid-derived dendritic cells and macrophages as well as resting T-cells, SAMHD1 blocks HIV-1 infection through this dNTP triphosphohydrolase activity by reducing the cellular dNTP pool to a level that cannot support productive reverse transcription. We now show that, in addition to this direct effect on virus replication, manipulating cellular SAMHD1 activity can significantly enhance or decrease the anti-HIV-1 efficacy of nucleotide analogue reverse transcription inhibitors presumably as a result of modulating dNTP pools that compete for recruitment by viral polymerases. Further, a variety of other nucleotide-based analogues, not normally considered antiretrovirals, such as the anti-herpes drugs Aciclovir and Ganciclovir and the anti-cancer drug Clofarabine are now revealed as potent anti-HIV-1 agents, under conditions of low dNTPs. This in turn suggests novel uses for nucleotide analogues to inhibit HIV-1 in differentiated cells low in dNTPs. PMID:28220857

  2. Signature biochemical properties of broadly cross-reactive HIV-1 neutralizing antibodies in human plasma.

    Science.gov (United States)

    Sajadi, Mohammad M; Lewis, George K; Seaman, Michael S; Guan, Yongjun; Redfield, Robert R; DeVico, Anthony L

    2012-05-01

    The common properties of broadly cross-reactive HIV-1 neutralization antibodies found in certain HIV-1-infected individuals holds significant value for understanding natural and vaccine-mediated anti-HIV immunity. Recent efforts have addressed this question by deriving neutralizing monoclonal anti-envelope antibodies from memory B cell pools of selected subjects. However, it has been more difficult to identify whether broadly neutralizing antibodies circulating in plasma possess shared characteristics among individuals. To address this question, we used affinity chromatography and isoelectric focusing to fractionate plasma immunoglobulin from 10 HIV-1-infected subjects (5 subjects with broad HIV-1 neutralizing activity and 5 controls). We find that plasma neutralizing activity typically partitions into at least two subsets of antibodies. Antibodies with restricted neutralization breadth have relatively neutral isoelectric points and preferentially bind to envelope monomers and trimers versus core antigens from which variable loops and other domains have been deleted. In comparison, broadly neutralizing antibodies account for a minor fraction of the total anti-envelope response. They are consistently distinguished by more basic isoelectric points and specificity for epitopes shared by monomeric gp120, gp120 core, or CD4-induced structures. Such biochemical properties might be exploited to reliably predict or produce broad anti-HIV immunity.

  3. A Novel Aspartic Protease with HIV-1 Reverse Transcriptase Inhibitory Activity from Fresh Fruiting Bodies of the Wild Mushroom Xylaria hypoxylon

    Directory of Open Access Journals (Sweden)

    Qing-Xiu Hu

    2012-01-01

    Full Text Available A novel aspartic protease with HIV-1 RT inhibitory activity was isolated and characterized from fruiting bodies of the wild mushroom Xylaria hypoxylon. The purification protocol comprised distilled water homogenization and extraction step, three ion exchange chromatographic steps (on DEAE-cellulose, Q-Sepharose, and CM-cellulose in succession, and final purification was by FPLC on Superdex 75. The protease was adsorbed on all the three ion exchangers. It was a monomeric protein with a molecular mass of 43 kDa as estimated by SDS-PAGE and FPLC. Its N-terminal amino acid sequence was HYTELLSQVV, which exhibited no sequence homology to other proteases reported. The activity of the protease was adversely affected by Pepstatin A, indicating that it is an aspartic protease. The protease activity was maximal or nearly so in the pH range 6–8 and in the temperature range 35–60°C. The purified enzyme exhibited HIV-1 RT inhibitory activity with an IC50 value of 8.3 μM, but was devoid of antifungal, ribonuclease, and hemagglutinating activities.

  4. Efficient Gene Transfer Mediated by HIV-1-based Defective Lentivector and Inhibition of HIV-1 Replication

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Lentiviral vectors have drawn considerable attention recently and show great promise to become important delivery vehicles for future gene transfer manipulation. In the present study we have optimized a protocol for preparation of human immunodeficiency virus type-1 (HIV-1)-based defective lentiviral vectors (DLV) and characterized these vectors in terms of their transduction of different cells. Transient co-transfection of 293T packaging cells with DNA plasmids encoding lentiviral vector constituents resulted in production of high-titer DLV (0.5-1.2 × 107IU/mL), which can be further concentrated over 100-fold through a single step ultracentrifugation. These vectors were capable of transducing a variety of cells from both primate and non-primate sources and high transduction efficiency was achieved using concentrated vectors. Assessment of potential generation of RCV revealed no detection of infection by infectious particles in DLV-transduced CEM, SupT-1 and MT-2 cells. Long-term culture of transduced cells showed a stable expression of transgenes without apparent alteration in cellular morphology and growth kinetics. Vector mobilization to untransduced cells mediated by wild-type HIV-1 infection was confirmed in this test. Challenge of transduced human T-lymphocytes with wild-type HIV-1 showed these cells are totally resistant to the viral infection. Considering the effective gene transfer and stable gene expression, safety and anti-HIV activity, these DLV vectors warrant further exploration for their potential use as a gene transfer vehicle in the development of gene therapy protocols.

  5. The naive CD4+ count in HIV-1-infected patients at time of initiation of highly active antiretroviral therapy is strongly associated with the level of immunological recovery

    DEFF Research Database (Denmark)

    Michael, OG; Kirk, O; Mathiesen, Lars Reinhardt

    2002-01-01

    Current antiretroviral therapy can induce considerable, sustained viral suppression followed by immunological recovery, in which naive CD4 + cells are important. Long-term immunological recovery was investigated during the first 3 y of highly active antiretroviral therapy (HAART) in 210 HIV-1...... was sustained. There was no association between plasma viral load and the increase in naive CD4 + cell count. Importantly, baseline naive CD4 + cell count was significantly associated with the change in naive CD4 + cell count, suggesting that the naive cell count at baseline does influence the immunological...

  6. Hologram quantitative structure–activity relationship and comparative molecular field analysis studies within a series of tricyclic phthalimide HIV-1 integrase inhibitors

    Directory of Open Access Journals (Sweden)

    Magalhães UO

    2013-09-01

    Full Text Available Uiaran de Oliveira Magalhães,1 Alessandra Mendonça Teles de Souza,1 Magaly Girão Albuquerque,2 Monique Araújo de Brito,3 Murilo Lamim Bello,1 Lucio Mendes Cabral,4 Carlos Rangel Rodrigues1 1Universidade Federal do Rio de Janeiro (UFRJ, Faculdade de Farmácia, Laboratório de Modelagem Molecular and QSAR (ModMolQSAR, Rio de Janeiro, RJ, Brazil; 2Universidade Federal do Rio de Janeiro (UFRJ, Instituto de Química, Laboratório de Modelagem Molecular (LabMMol, Rio de Janeiro, RJ, Brazil; 3Universidade Federal Fluminense (UFF, Faculdade de Farmácia, Laboratório de Química Medicinal Computacional (LabQMC, Niterói, RJ, Brazil; 4Universidade Federal do Rio de Janeiro (UFRJ, Faculdade de Farmácia, Laboratório de Tecnologia Farmacêutica Industrial (LabTIF, Rio de Janeiro, RJ, Brazil Abstract: Acquired immunodeficiency syndrome is a public health problem worldwide caused by the Human immunodeficiency virus (HIV. Treatment with antiretroviral drugs is the best option for viral suppression, reducing morbidity and mortality. However, viral resistance in HIV-1 therapy has been reported. HIV-1 integrase (IN is an essential enzyme for effective viral replication and an attractive target for the development of new inhibitors. In the study reported here, two- and three-dimensional quantitative structure–activity relationship (2D/3D-QSAR studies, applying hologram quantitative structure–activity relationship (HQSAR and comparative molecular field analysis (CoMFA methods, respectively, were performed on a series of tricyclic phthalimide HIV-1 IN inhibitors. The best HQSAR model (q2 = 0.802, r2 = 0.972 was obtained using atoms, bonds, and connectivity as the fragment distinction, a fragment size of 2–5 atoms, hologram length of 61 bins, and six components. The best CoMFA model (q2 = 0.748, r2 = 0.974 was obtained with alignment of all atoms of the tricyclic phthalimide moiety (alignment II. The HQSAR contribution map identified that the carbonyl

  7. Differential in vitro inhibitory activity against HIV-1 of alpha-(1-3- and alpha-(1-6-D-mannose specific plant lectins : Implication for microbicide development

    Directory of Open Access Journals (Sweden)

    Balzarini Jan

    2007-06-01

    Full Text Available Abstract Background Plant lectins such as Galanthus nivalis agglutinin (GNA and Hippeastrum hybrid agglutinin (HHA are natural proteins able to link mannose residues, and therefore inhibit HIV-target cell interactions. Plant lectins are candidate for microbicide development. Objective To evaluate the activity against HIV of the mannose-specific plant lectins HHA and GNA at the cellular membrane level of epithelial cells and monocyte-derived dendritic cells (MDDC, two potential target cells of HIV at the genital mucosal level. Methods The inhibitory effects of HHA and GNA were evaluated on HIV adsorption to genital epithelial HEC-1A cell line, on HIV transcytosis throughout a monolayer of polarized epithelial HEC-1A cells, on HIV adsorption to MDDC and on transfer of HIV from MDDC to autologous T lymphocytes. Results HHA faintly inhibited attachment to HEC-1A cells of the R5-tropic HIV-1Ba-L strain, in a dose-dependent manner, whereas GNA moderately inhibited HIV adsorption in the same context, but only at high drug doses. Only HHA, but not GNA, inhibited HIV-1JR-CSF transcytosis in a dose-dependent manner. By confocal microscopy, HHA, but not GNA, was adsorbed at the epithelial cell surface, suggesting that HHA interacts specifically with receptors mediating HIV-1 transcytosis. Both plant lectins partially inhibited HIV attachment to MDDC. HHA inhibited more efficiently the transfer of HIV from MDDC to T cell, than GNA. Both HHA and GNA lacked toxicity below 200 μg/ml irrespective the cellular system used and do not disturb the monolayer integrity of epithelial cells. Conclusion These observations demonstrate higher inhibitory activities of the lectin plant HHA by comparison to GNA, on HIV adsorption to HEC-1A cell line, HIV transcytosis through HEC-1A cell line monolayer, HIV adsorption to MDDC and HIV transfer from MDDC to T cells, highlighting the potential interest of HHA as effective microbicide against HIV.

  8. Activation of the DNA Damage Response Is a Conserved Function of HIV-1 and HIV-2 Vpr That Is Independent of SLX4 Recruitment

    Directory of Open Access Journals (Sweden)

    Oliver I. Fregoso

    2016-09-01

    Full Text Available There has been extraordinary progress in understanding the roles of lentiviral accessory proteins in antagonizing host antiviral defense proteins. However, the precise primary function of the accessory gene Vpr remains elusive. Here we suggest that engagement with the DNA damage response is an important function of primate lentiviral Vpr proteins because of its conserved function among diverse lentiviral lineages. In contrast, we show that, for HIV-1, HIV-2, and related Vpr isolates and orthologs, there is a lack of correlation between DNA damage response activation and interaction with the host SLX4 protein complex of structure specific endonucleases; some Vpr proteins are able to interact with SLX4, but the majority are not. Using the clustered regularly interspaced short palindromic repeat (CRISPR/Cas9 method to knock out SLX4, we formally showed that HIV-1 and HIV-2 Vpr orthologs can still activate the DNA damage response and cell cycle arrest in the absence of SLX4. Together, our data suggest that activation of the DNA damage response, but not SLX4 interaction, is conserved and therefore indicative of an important function of Vpr. Our data also indicate that Vpr activates the DNA damage response through an SLX4-independent mechanism that remains uncharacterized.

  9. The G-quadruplex-forming aptamer AS1411 potently inhibits HIV-1 attachment to the host cell.

    Science.gov (United States)

    Perrone, Rosalba; Butovskaya, Elena; Lago, Sara; Garzino-Demo, Alfredo; Pannecouque, Christophe; Palù, Giorgio; Richter, Sara N

    2016-04-01

    AS1411 is a G-rich aptamer that forms a stable G-quadruplex structure and displays antineoplastic properties both in vitro and in vivo. This oligonucleotide has undergone phase 2 clinical trials. The major molecular target of AS1411 is nucleolin (NCL), a multifunctional nucleolar protein also present in the cell membrane where it selectively mediates the binding and uptake of AS1411. Cell-surface NCL has been recognised as a low-affinity co-receptor for human immunodeficiency virus type 1 (HIV-1) anchorage on target cells. Here we assessed the anti-HIV-1 properties and underlying mechanism of action of AS1411. The antiviral activity of AS1411 was determined towards different HIV-1 strains, host cells and at various times post-infection. Acutely, persistently and latently infected cells were tested, including HIV-1-infected peripheral blood mononuclear cells from a healthy donor. Mechanistic studies to exclude modes of action other than virus binding via NCL were performed. AS1411 efficiently inhibited HIV-1 attachment/entry into the host cell. The aptamer displayed antiviral activity in the absence of cytotoxicity at the tested doses, therefore displaying a wide therapeutic window and favourable selectivity indexes. These findings, besides validating cell-surface-expressed NCL as an antiviral target, open the way for the possible use of AS1411 as a new potent and promisingly safe anti-HIV-1 agent.

  10. HIV-1 exploits CCR5 conformational heterogeneity to escape inhibition by chemokines.

    OpenAIRE

    2013-01-01

    International audience; CC chemokine receptor 5 (CCR5) is a receptor for chemokines and the coreceptor for R5 HIV-1 entry into CD4(+) T lymphocytes. Chemokines exert anti-HIV-1 activity in vitro, both by displacing the viral envelope glycoprotein gp120 from binding to CCR5 and by promoting CCR5 endocytosis, suggesting that they play a protective role in HIV infection. However, we showed here that different CCR5 conformations at the cell surface are differentially engaged by chemokines and gp1...

  11. Exosomes: Implications in HIV-1 Pathogenesis.

    Science.gov (United States)

    Madison, Marisa N; Okeoma, Chioma M

    2015-07-20

    Exosomes are membranous nanovesicles of endocytic origin that carry host and pathogen derived genomic, proteomic, and lipid cargos. Exosomes are secreted by most cell types into the extracellular milieu and are subsequently internalized by recipient cells. Upon internalization, exosomes condition recipient cells by donating their cargos and/or activating various signal transduction pathways, consequently regulating physiological and pathophysiological processes. The role of exosomes in viral pathogenesis, especially human immunodeficiency virus type 1 [HIV-1] is beginning to unravel. Recent research reports suggest that exosomes from various sources play important but different roles in the pathogenesis of HIV-1. From these reports, it appears that the source of exosomes is the defining factor for the exosomal effect on HIV-1. In this review, we will describe how HIV-1 infection is modulated by exosomes and in turn how exosomes are targeted by HIV-1 factors. Finally, we will discuss potentially emerging therapeutic options based on exosomal cargos that may have promise in preventing HIV-1 transmission.

  12. Exosomes: Implications in HIV-1 Pathogenesis

    Directory of Open Access Journals (Sweden)

    Marisa N. Madison

    2015-07-01

    Full Text Available Exosomes are membranous nanovesicles of endocytic origin that carry host and pathogen derived genomic, proteomic, and lipid cargos. Exosomes are secreted by most cell types into the extracellular milieu and are subsequently internalized by recipient cells. Upon internalization, exosomes condition recipient cells by donating their cargos and/or activating various signal transduction pathways, consequently regulating physiological and pathophysiological processes. The role of exosomes in viral pathogenesis, especially human immunodeficiency virus type 1 [HIV-1] is beginning to unravel. Recent research reports suggest that exosomes from various sources play important but different roles in the pathogenesis of HIV-1. From these reports, it appears that the source of exosomes is the defining factor for the exosomal effect on HIV-1. In this review, we will describe how HIV-1 infection is modulated by exosomes and in turn how exosomes are targeted by HIV-1 factors. Finally, we will discuss potentially emerging therapeutic options based on exosomal cargos that may have promise in preventing HIV-1 transmission.

  13. HIV-1 exploits CCR5 conformational heterogeneity to escape inhibition by chemokines.

    Science.gov (United States)

    Colin, Philippe; Bénureau, Yann; Staropoli, Isabelle; Wang, Yongjin; Gonzalez, Nuria; Alcami, Jose; Hartley, Oliver; Brelot, Anne; Arenzana-Seisdedos, Fernando; Lagane, Bernard

    2013-06-04

    CC chemokine receptor 5 (CCR5) is a receptor for chemokines and the coreceptor for R5 HIV-1 entry into CD4(+) T lymphocytes. Chemokines exert anti-HIV-1 activity in vitro, both by displacing the viral envelope glycoprotein gp120 from binding to CCR5 and by promoting CCR5 endocytosis, suggesting that they play a protective role in HIV infection. However, we showed here that different CCR5 conformations at the cell surface are differentially engaged by chemokines and gp120, making chemokines weaker inhibitors of HIV infection than would be expected from their binding affinity constants for CCR5. These distinct CCR5 conformations rely on CCR5 coupling to nucleotide-free G proteins ((NF)G proteins). Whereas native CCR5 chemokines bind with subnanomolar affinity to (NF)G protein-coupled CCR5, gp120/HIV-1 does not discriminate between (NF)G protein-coupled and uncoupled CCR5. Interestingly, the antiviral activity of chemokines is G protein independent, suggesting that "low-chemokine affinity" (NF)G protein-uncoupled conformations of CCR5 represent a portal for viral entry. Furthermore, chemokines are weak inducers of CCR5 endocytosis, as is revealed by EC50 values for chemokine-mediated endocytosis reflecting their low-affinity constant value for (NF)G protein-uncoupled CCR5. Abolishing CCR5 interaction with (NF)G proteins eliminates high-affinity binding of CCR5 chemokines but preserves receptor endocytosis, indicating that chemokines preferentially endocytose low-affinity receptors. Finally, we evidenced that chemokine analogs achieve highly potent HIV-1 inhibition due to high-affinity interactions with internalizing and/or gp120-binding receptors. These data are consistent with HIV-1 evading chemokine inhibition by exploiting CCR5 conformational heterogeneity, shed light into the inhibitory mechanisms of anti-HIV-1 chemokine analogs, and provide insights for the development of unique anti-HIV molecules.

  14. A novel ribonuclease with antiproliferative activity toward leukemia and lymphoma cells and HIV-1 reverse transcriptase inhibitory activity from the mushroom, Hohenbuehelia serotina.

    Science.gov (United States)

    Zhang, Rui; Zhao, Liyan; Wang, Hexiang; Ng, Tzi Bun

    2014-01-01

    In this study, a 27-kDa ribonuclease (RNase) was purified from the dried fruiting bodies of the mushroom, Hohenbuehelia serotina. The isolation protocol involved anion exchange chromatography, affinity chromatography, cation exchange chromatography and gel filtration in succession. The RNase was unadsorbed on DEAE-cellulose, but was adsorbed on Affi-gel blue gel and CM-cellulose. The N-terminal amino acid sequence was TVGGSLAEKGN which showed homology to other fungal RNases to a certain degree. The RNase exhibited maximal RNase activity at pH 5 and 80˚C. It demonstrated the highest ribonucleolytic activity toward poly(C), a relatively high activity toward poly(U), and a considerably weaker activity toward poly(A) and (G). The RNase inhibited human immunodeficiency virus type 1 (HIV-1) reverse transcriptase with an IC50 of 50 µM and reduced [3H-methyl]-thymidine uptake by L1210 leukemia cells and MBL2 lymphoma cells with an IC50 of 25 µM and 40 µM, respectively.

  15. HIV-1 Tat activates indoleamine 2,3 dioxygenase in murine organotypic hippocampal slice cultures in a p38 mitogen-activated protein kinase-dependent manner

    Directory of Open Access Journals (Sweden)

    Kelley Keith W

    2011-08-01

    Full Text Available Abstract Background We have established that activation of the tryptophan degrading enzyme indoleamine 2,3 dioxygenase (IDO mediates the switch from cytokine-induced sickness behavior to depressive-like behavior. Because human immunodeficiency virus type 1 (HIV-1 Tat protein causes depressive-like behavior in mice, we investigated its ability to activate IDO in organotypic hippocampal slice cultures (OHSCs derived from neonatal C57BL/6 mice. Methods Depressive-like behavior in C57BL/6J mice was assessed by the forced swim test. Expression of cytokines and IDO mRNA in OHSCs was measured by real-time RT-PCR and cytokine protein was measured by enzyme-linked immunosorbent assays (ELISAs. p38 MAPK phosphorylation was analyzed by western blot. Results Intracerebroventricular (i.c.v. administration of Tat (40 ng induced depressive-like behavior in the absence of sickness. Addition of Tat (40 ng/slice to the medium of OHSCs induced IDO steady-state mRNA that peaked at 6 h. This effect was potentiated by pretreatment with IFNγ. Tat also induced the synthesis and release of TNFα and IL-6 protein in the supernatant of the slices and increased expression of the inducible isoform of nitric oxide synthase (iNOS and the serotonin transporter (SERT. Tat had no effect on endogenous synthesis of IFNγ. To explore the mechanisms of Tat-induced IDO expression, slices were pretreated with the p38 mitogen-activated protein kinase (MAPK inhibitor SB 202190 for 30 min before Tat treatment. SB 202190 significantly decreased IDO expression induced by Tat, and this effect was accompanied by a reduction of Tat-induced expression of TNFα, IL-6, iNOS and SERT. Conclusion These data establish that Tat induces IDO expression via an IFNγ-independent mechanism that depends upon activation of p38 MAPK. Targeting IDO itself or the p38 MAPK signaling pathway could provide a novel therapy for comorbid depressive disorders in HIV-1-infected patients.

  16. Tetherin does not significantly restrict dendritic cell-mediated HIV-1 transmission and its expression is upregulated by newly synthesized HIV-1 Nef

    Directory of Open Access Journals (Sweden)

    Wu Li

    2011-04-01

    Full Text Available Abstract Background Dendritic cells (DCs are among the first cells to encounter HIV-1 and play important roles in viral transmission and pathogenesis. Immature DCs allow productive HIV-1 replication and long-term viral dissemination. The pro-inflammatory factor lipopolysaccharide (LPS induces DC maturation and enhances the efficiency of DC-mediated HIV-1 transmission. Type I interferon (IFN partially inhibits HIV-1 replication and cell-cell transmission in CD4+ T cells and macrophages. Tetherin is a type I IFN-inducible restriction factor that blocks HIV-1 release and modulates CD4+ T cell-mediated cell-to-cell transmission of HIV-1. However, the role of type I IFN and tetherin in HIV-1 infection of DCs and DC-mediated viral transmission remains unknown. Results We demonstrated that IFN-alpha (IFNα-induced mature DCs restricted HIV-1 replication and trans-infection of CD4+ T cells. Tetherin expression in monocyte-derived immature DCs was undetectable or very low. High levels of tetherin were transiently expressed in LPS- and IFNα-induced mature DCs, while HIV-1 localized into distinct patches in these DCs. Knockdown of induced tetherin in LPS- or IFNα-matured DCs modestly enhanced HIV-1 transmission to CD4+ T cells, but had no significant effect on wild-type HIV-1 replication in mature DCs. Intriguingly, we found that HIV-1 replication in immature DCs induced significant tetherin expression in a Nef-dependent manner. Conclusions The restriction of HIV-1 replication and transmission in IFNα-induced mature DCs indicates a potent anti-HIV-1 response; however, high levels of tetherin induced in mature DCs cannot significantly restrict wild-type HIV-1 release and DC-mediated HIV-1 transmission. Nef-dependent tetherin induction in HIV-1-infected immature DCs suggests an innate immune response of DCs to HIV-1 infection.

  17. Approaches for Identification of HIV-1 Entry Inhibitors Targeting gp41 Pocket

    Directory of Open Access Journals (Sweden)

    Asim K. Debnath

    2013-01-01

    Full Text Available The hydrophobic pocket in the HIV-1 gp41 N-terminal heptad repeat (NHR domain plays an important role in viral fusion and entry into the host cell, and serves as an attractive target for development of HIV-1 fusion/entry inhibitors. The peptide anti-HIV drug targeting gp41 NHR, T-20 (generic name: enfuvirtide; brand name: Fuzeon, was approved by the U.S. FDA in 2003 as the first HIV fusion/entry inhibitor for treatment of HIV/AIDS patients who fail to respond to the current antiretroviral drugs. However, because T20 lacks the pocket-binding domain (PBD, it exhibits low anti-HIV-1 activity and short half-life. Therefore, several next-generation HIV fusion inhibitory peptides with PBD have been developed. They possess longer half-life and more potent antiviral activity against a broad spectrum of HIV-1 strains, including the T-20-resistant variants. Nonetheless, the clinical application of these peptides is still limited by the lack of oral availability and the high cost of production. Thus, development of small molecule compounds targeting the gp41 pocket with oral availability has been promoted. This review describes the main approaches for identification of HIV fusion/entry inhibitors targeting the gp41 pocket and summarizes the latest progress in developing these inhibitors as a new class of anti-HIV drugs.

  18. The CD8-derived chemokine XCL1/lymphotactin is a conformation-dependent, broad-spectrum inhibitor of HIV-1.

    Directory of Open Access Journals (Sweden)

    Christina Guzzo

    Full Text Available CD8+ T cells play a key role in the in vivo control of HIV-1 replication via their cytolytic activity as well as their ability to secrete non-lytic soluble suppressive factors. Although the chemokines that naturally bind CCR5 (CCL3/MIP-1α, CCL4/MIP- 1β, CCL5/RANTES are major components of the CD8-derived anti-HIV activity, evidence indicates the existence of additional, still undefined, CD8-derived HIV-suppressive factors. Here, we report the characterization of a novel anti-HIV chemokine, XCL1/lymphotactin, a member of the C-chemokine family that is produced primarily by activated CD8+ T cells and behaves as a metamorphic protein, interconverting between two structurally distinct conformations (classic and alternative. We found that XCL1 inhibits a broad spectrum of HIV-1 isolates, irrespective of their coreceptor-usage phenotype. Experiments with stabilized variants of XCL1 demonstrated that HIV-1 inhibition requires access to the alternative, all-β conformation, which interacts with proteoglycans but does not bind/activate the specific XCR1 receptor, while the classic XCL1 conformation is inactive. HIV-1 inhibition by XCL1 was shown to occur at an early stage of infection, via blockade of viral attachment and entry into host cells. Analogous to the recently described anti-HIV effect of the CXC chemokine CXCL4/PF4, XCL1-mediated inhibition is associated with direct interaction of the chemokine with the HIV-1 envelope. These results may open new perspectives for understanding the mechanisms of HIV-1 control and reveal new molecular targets for the design of effective therapeutic and preventive strategies against HIV-1.

  19. APOBEC3G抗HIV-1的分子机制及Vif基因对其拮抗作用研究进展%Research and Development of Molecular Mechanism of APOBEC3G's Anti HIV-1 Effects and Vif's Antagonism to Them

    Institute of Scientific and Technical Information of China (English)

    屠燕捷

    2012-01-01

    The high pathogenic rate and high mortality rates of AIDS have caught more attention for recent three decades. The expectation is focused on HIV/AIDS prevention and great breakthrough in Traditional Chinese Medicine (TCM) research. This article introduced research and development of molecular mechanism of APOBEC3G's anti HIV-1 effects and the gene vif's antagonism to them. The goal is to discuss the significance of HIV gene therapy and the potential research direction of TCM for HIV treatment.%近30年,艾滋病的高致病率和高死亡率一直被医学界高度关注,期望通过中医药研究在艾滋病防治上寻求突破,从而引发了中医药研究与分子生物学研究交叉与结合.由于近10年HIV的分子生物学研究文献,发现HIV的辅助蛋白vif和APOBEC3G为当前艾滋病致病机制研究的热点.本文对HIV的辅助蛋白vif的生物学特性、APOBEC3G抗HIV-1的分子机制及vif与APOBEC3G相互作用的新近研究成果进行整理分析,探讨基于此进行HIV基因治疗的意义以及中医药治疗HIV可能的研究方向.

  20. The Effect of β-Carotene Supplementation on the Pharmacokinetics of Nelfinavir and Its Active Metabolite M8 in HIV-1-infected Patients

    Directory of Open Access Journals (Sweden)

    Humayoun Akhtar

    2012-01-01

    Full Text Available β-Carotene supplements are often taken by individuals living with HIV-1. Contradictory results from in vitro studies suggest that β-carotene may inhibit or induce cytochrome P450 enzymes and transporters. The study objective was to investigate the effect of β-carotene on the steady-state pharmacokinetics of nelfinavir and its active metabolite M8 in HIV-1 infected individuals. Twelve hour nelfinavir pharmacokinetic analysis was conducted at baseline and after 28 days of β-carotene supplementation (25,000 IU twice daily. Nelfinavir and M8 concentrations were measured with validated assays. Non-compartmental methods were used to calculate the pharmacokinetic parameters. Geometric mean ratios comparing day 28 to day 1 area under the plasma concentration-time curve (AUC0–12 h, maximum (Cmax and minimum (Cmin concentrations of nelfinavir and M8 are presented with 90% confidence intervals. Eleven subjects completed the study and were included in the analysis. There were no significant differences in nelfinavir AUC0–12 h and Cmin (−10%, +4% after β-carotene supplementation. The M8 Cmin was increased by 31% while the M8 AUC0–12 h and Cmax were unchanged. During the 28 day period, mean CD4+ % and CD4+:CD8+ ratio increased significantly (p < 0.01. β-carotene supplementation increased serum carotene levels but did not cause any clinically significant difference in the nelfinavir and M8 exposure.

  1. HIV-1 Entry Inhbitors: An Overview

    Science.gov (United States)

    Kuritzkes, Daniel R.

    2009-01-01

    Purpose of review This review provides an overview of HIV-1 entry inhibitors, with a focus on chemokine receptor antagonists. Recent findings Entry of HIV-1 into target cells is an ordered multi-step process involving attachment, co-receptor binding and fusion. Inhibitors of each step have been identified and shown to have antiviral activity in clinical trials. Phase 1-2 trials of monoclonal antibodies and small-molecule attachment inhibitors have demonstrated activity in HIV-1-infected subjects, but none has progressed to later phase clinical trials. The post-attachment inhibitor ibalizumab has shown activity in phase 1 and 2 trials; further studies are anticipated. The CCR5 antagonists maraviroc (now been approved for clinical use) and vicriviroc (in phase 3 trials) have shown significant benefit in controlled trials in treatment-experienced subjects; additional CCR5 antagonists are in various stages of clinical development. Targeting CXCR4 has proven to be more challenging. Although proof of concept has been demonstrated in phase 1-2 trials of two compounds, neither proved suitable for chronic administration. Little progress has been reported in developing longer acting or orally bioavailable fusion inhibitors. Summary ACCR5 antagonist and a fusion inhibitor are approved for use as HIV-1 entry inhibitors. Development of drugs targeting other steps in HIV-1 entry is ongoing. PMID:19339945

  2. A Novel Laccase with Potent Antiproliferative and HIV-1 Reverse Transcriptase Inhibitory Activities from Mycelia of Mushroom Coprinus comatus

    Directory of Open Access Journals (Sweden)

    Shuang Zhao

    2014-01-01

    Full Text Available A novel laccase was isolated and purified from fermentation mycelia of mushroom Coprinus comatus with an isolation procedure including three ion-exchange chromatography steps on DEAE-cellulose, CM-cellulose, and Q-Sepharose and one gel-filtration step by fast protein liquid chromatography on Superdex 75. The purified enzyme was a monomeric protein with a molecular weight of 64 kDa. It possessed a unique N-terminal amino acid sequence of AIGPVADLKV, which has considerably high sequence similarity with that of other fungal laccases, but is different from that of C. comatus laccases reported. The enzyme manifested an optimal pH value of 2.0 and an optimal temperature of 60°C using 2,2′-azinobis(3-ethylbenzothiazolone-6-sulfonic acid diammonium salt (ABTS as the substrate. The laccase displayed, at pH 2.0 and 37°C, Km values of 1.59 mM towards ABTS. It potently suppressed proliferation of tumor cell lines HepG2 and MCF7, and inhibited human immunodeficiency virus type 1 (HIV-1 reverse transcriptase (RT with an IC50 value of 3.46 μM, 4.95 μM, and 5.85 μM, respectively, signifying that it is an antipathogenic protein.

  3. Biological activity of sporolides A and B from Salinispora tropica: in silico target prediction using ligand-based pharmacophore mapping and in vitro activity validation on HIV-1 reverse transcriptase.

    Science.gov (United States)

    Dineshkumar, Kesavan; Aparna, Vasudevan; Madhuri, Kantilal Z; Hopper, Waheeta

    2014-03-01

    Sporolides A and B are novel polycyclic macrolides from the obligate marine actinomycetes, Salinispora tropica. The unique and novel structure of sporolides makes them interesting candidates for targeting diverse biological activities. Biological target prediction of sporolides was carried out using ligand-based pharmacophore screening against known inhibitors and drugs. Validation of pharmacophore screening was carried out for the identified hits. New biological targets predicted for sporolides using this method were HIV-1 reverse transcriptase, adenosine A3 receptor, endothelin receptor ET-A, oxytocin receptor, voltage-gated L-type calcium channel α-1C subunit/calcium channel α/Δ subunit 1. Drug-likeness properties were predicted for the selected compounds using QikProp module. Sporolides A and B showed maximum docking score with HIV-1 reverse transcriptase. Structural interaction fingerprints analysis indicated similar binding pattern of the sporolides with the HIV-1 reverse transcriptase. Sporolide B exhibited good inhibitory activity against HIV-1 reverse transcriptase in in vitro fluorescent assay.

  4. HIV-1 Group P is unable to antagonize human tetherin by Vpu, Env or Nef

    Directory of Open Access Journals (Sweden)

    Sauter Daniel

    2011-12-01

    Full Text Available Abstract Background A new subgroup of HIV-1, designated Group P, was recently detected in two unrelated patients of Cameroonian origin. HIV-1 Group P phylogenetically clusters with SIVgor suggesting that it is the result of a cross-species transmission from gorillas. Until today, HIV-1 Group P has only been detected in two patients, and its degree of adaptation to the human host is largely unknown. Previous data have shown that pandemic HIV-1 Group M, but not non-pandemic Group O or rare Group N viruses, efficiently antagonize the human orthologue of the restriction factor tetherin (BST-2, HM1.24, CD317 suggesting that primate lentiviruses may have to gain anti-tetherin activity for efficient spread in the human population. Thus far, three SIV/HIV gene products (vpu, nef and env are known to have the potential to counteract primate tetherin proteins, often in a species-specific manner. Here, we examined how long Group P may have been circulating in humans and determined its capability to antagonize human tetherin as an indicator of adaptation to humans. Results Our data suggest that HIV-1 Group P entered the human population between 1845 and 1989. Vpu, Env and Nef proteins from both Group P viruses failed to counteract human or gorilla tetherin to promote efficient release of HIV-1 virions, although both Group P Nef proteins moderately downmodulated gorilla tetherin from the cell surface. Notably, Vpu, Env and Nef alleles from the two HIV-1 P strains were all able to reduce CD4 cell surface expression. Conclusions Our analyses of the two reported HIV-1 Group P viruses suggest that zoonosis occurred in the last 170 years and further support that pandemic HIV-1 Group M strains are better adapted to humans than non-pandemic or rare Group O, N and P viruses. The inability to antagonize human tetherin may potentially explain the limited spread of HIV-1 Group P in the human population.

  5. HIV-1 p17 matrix protein interacts with heparan sulfate side chain of CD44v3, syndecan-2, and syndecan-4 proteoglycans expressed on human activated CD4+ T cells affecting tumor necrosis factor alpha and interleukin 2 production.

    Science.gov (United States)

    De Francesco, Maria A; Baronio, Manuela; Poiesi, Claudio

    2011-06-01

    HIV-1 p17 contains C- and N-terminal sequences with positively charged residues and a consensus cluster for heparin binding. We have previously demonstrated by affinity chromatography that HIV-1 p17 binds strongly to heparin-agarose at physiological pH and to human activated CD4(+) T cells. In this study we demonstrated that the viral protein binds to heparan sulfate side chains of syndecan-2, syndecan-4, and CD44v3 purified from HeLa cells and that these heparan sulfate proteoglycans (HSPGs) co-localize with HIV-1 p17 on activated human CD4(+) T cells by confocal fluorescence analysis. Moreover, we observed a stimulatory or inhibitory activity when CD4(+) T cells were activated with mitogens together with nanomolar or micromolar concentrations of the matrix protein.

  6. 禹白附提取物抗HIV病毒的实验研究%Experimental study on anti-HIV activities with extract from tuber of Typhonium giganteum

    Institute of Scientific and Technical Information of China (English)

    温瑞兴; 马洪涛; 王晓艳; 王霞; 杨怡妹; 王小利

    2009-01-01

    Objective To study the effect of anti-HIV-1 virus with extracts from the tuber of Typhonium giganteum.so as to discover new and high efficient anti-HIV-1 leading compounds from natural prod-ucts and Chinese materia medica.Methods Extract from the tuber of T.giganteum was isolated and purifled by the way of phytochemistry,such as column chromatography.Then anti-HIV-1 activities of the extracts were assessed by in vitro method,MT4 cells and HIVⅢB virus were used for the experiment.The results were judged by cytopathic effect(CPE)method and p24 antigen assay method.Mechanism studies were carried out bv BIA techniques(BIACORE~(R)3000 molecule coupled equipment).Results The extracts of T. giganteum showed potential anti-HIV-1 activities.Two of them showed gp-41 transmembrance protein and Vif protein expression inhibition,respectively.Conclusion These extracts in the tuber of T.giganteum might rewardingly contribute to anti-HIV-1 activities,which could be developed to be more efficient and less toxic leading compounds in the further.%目的 研究白附子提取物抗HIV-1的作用,寻找新型高效的抗HIV-1中药先导化合物.方法 采用植物化学技术对禹白附进行提取分离,再通过细胞生物学方法 [细胞病变观察法(CPE)法和MTT法]检验提取物的抗HIV-1作用,并结合作用靶点的研究对提取物的作用机制进行探讨.结果 发现禹白附提取物具有很好的抗HIV-1作用,筛选出3个抗HIV-1作用显著的有效部位,其中两个有效部位的作用靶点分别为HIV-1的gp-41跨膜蛋白和Vif表达蛋白.结论 禹白附提取物具有很强的抗HIV-1作用,为进一步寻找高效低毒的抗HIV-1先导化合物奠定了基础,值得进行深入研究.

  7. Identification of an N-linked glycan in the V1-loop of HIV-1 gp120 influencing neutralization by anti-V3 antibodies and soluble CD4

    DEFF Research Database (Denmark)

    Gram, G J; Hemming, A; Bolmstedt, A;

    1994-01-01

    Glycosylation is necessary for HIV-1 gp120 to attain a functional conformation, and individual N-linked glycans of gp120 are important, but not essential, for replication of HIV-1 in cell culture. We have constructed a mutant HIV-1 infectious clone lacking a signal for N-linked glycosylation in t...

  8. Vpr14-88-Apobec3G fusion protein is efficiently incorporated into Vif-positive HIV-1 particles and inhibits viral infection.

    Directory of Open Access Journals (Sweden)

    Zhujun Ao

    infectivity and spread of the virions among CD4(+ T cells. This study provides evidence for an effective strategy to modify a host protein with innate anti-HIV-1 activity and rescue its potent anti-HIV potential in the presence of Vif. Further characterization and optimization of this system may lead to the development of an effective therapeutic approach against HIV-1 infection.

  9. Screening of Fungi from Chinese Medical Plants for Anti-Human Immunodeficiency Virus Type 1 Activity

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In order to isolate anti-human immunodeficiency virus (HIV) agents from natural products, 97 ethanolic extracts of 90 fungi were tested for their inhibitory activity on HIV-1. Most of the extracts tested were relatively non-toxic to human lymphocytic MT-4 cells, but extracts of some fungi exhibited potent anti-HIV activity in an in vitro 3-(4,5-dimethyl-2 thiazoyl)-2,5-diphenyl-2H-tetrazolium bromide assay with a selectivity index greater than 3. Most fungi were isolated from Dendrobium sp. and Taxus sp.

  10. Methamphetamine Enhances HIV-1 Infectivity in Monocyte Derived Dendritic Cells

    OpenAIRE

    2008-01-01

    The US is currently experiencing an epidemic of methamphetamine (Meth) use as a recreational drug. Recent studies also show a high prevalence of HIV-1 infection among Meth users. We report that Meth enhances HIV-1 infectivity of dendritic cells as measured by multinuclear activation of a galactosidase indicator (MAGI) cell assay, p24 assay, and LTR-RU5 amplification. Meth induces increased HIV-1 infection in association with an increase in the HIV-1 coreceptors, CXCR4 and CCR5, and infection ...

  11. Association of single nucleotide polymorphisms of APOBEC3G with susceptibility to HIV-1 infection and disease progression among men engaging in homosexual activity in northern China.

    Science.gov (United States)

    Li, Qiuyan; Qiao, Yuandong; Zhang, Guangfa; He, Ning; Zhang, Xuelong; Jia, Xueyuan; Sun, Haiming; Wang, Chuntao; Xu, Lidan

    2017-01-01

    Men who have sex with men (MSM) are at high risk of HIV infection. The APOBEC3G (apolipoprotein B mRNA editing catalytic polypeptide 3G) protein is a component of innate antiviral immunity that inhibits HIV-1 replication. In the present study, a total of 483 HIV-1 seropositive men and 493 HIV-1 seronegative men were selected to investigate the association between single nucleotide polymorphisms (SNPs) of the APOBEC3G gene and susceptibility to HIV-1 infection and AIDS progression among MSM residing in northern China. Genotyping of four SNPs (rs5757465, rs3736685, rs8177832, and rs2899313) of the APOBEC3G was performed using the SNPscan™ Kit, while the rs2294367 polymorphism was genotyped using the SNaPshot multiplex system. Our results disclosed no association between the SNPs of APOBEC3G and susceptibility to HIV-1, or effects of these polymorphisms on the CD4(+) T cell count or clinical phase of disease. A meta-analysis of 1624 men with HIV-1 infection and 1523 controls suggested that the association between rs8177832 and susceptibility was not significant. However, we observed a trend towards association with HIV-1 infection for haplotype TTACA (p = 0.082). The potential role of variants of APOBEC3G in HIV-1/AIDS warrants further investigation.

  12. HIV-1 receptor binding site-directed antibodies using a VH1-2 gene segment orthologue are activated by Env trimer immunization.

    Directory of Open Access Journals (Sweden)

    Marjon Navis

    2014-08-01

    Full Text Available Broadly neutralizing antibodies (bNAbs isolated from chronically HIV-1 infected individuals reveal important information regarding how antibodies target conserved determinants of the envelope glycoprotein (Env spike such as the primary receptor CD4 binding site (CD4bs. Many CD4bs-directed bNAbs use the same heavy (H chain variable (V gene segment, VH1-2*02, suggesting that activation of B cells expressing this allele is linked to the generation of this type of Ab. Here, we identify the rhesus macaque VH1.23 gene segment to be the closest macaque orthologue to the human VH1-2 gene segment, with 92% homology to VH1-2*02. Of the three amino acids in the VH1-2*02 gene segment that define a motif for VRC01-like antibodies (W50, N58, flanking the HCDR2 region, and R71, the two identified macaque VH1.23 alleles described here encode two. We demonstrate that immunization with soluble Env trimers induced CD4bs-specific VH1.23-using Abs with restricted neutralization breadth. Through alanine scanning and structural studies of one such monoclonal Ab (MAb, GE356, we demonstrate that all three HCDRs are involved in neutralization. This contrasts to the highly potent CD4bs-directed VRC01 class of bNAb, which bind Env predominantly through the HCDR2. Also unlike VRC01, GE356 was minimally modified by somatic hypermutation, its light (L chain CDRs were of average lengths and it displayed a binding footprint proximal to the trimer axis. These results illustrate that the Env trimer immunogen used here activates B cells encoding a VH1-2 gene segment orthologue, but that the resulting Abs interact distinctly differently with the HIV-1 Env spike compared to VRC01.

  13. CCR5:抗HIV-1药物的新靶点%CCR5, a New Target of Anti-HIV Drugs

    Institute of Scientific and Technical Information of China (English)

    韩燕星; 蒋建东

    2003-01-01

    CCR5为细胞膜蛋白,属于G蛋白偶联受体家族的成员,是HIV-1入侵机体细胞的主要辅助受体之一.在过去的几年中,对CCR5的生物学特性以及在HIV感染过程中所起作用的研究取得了明显的进展,以CCR5为靶点的HIV受体拮抗剂倍受关注,主要有以下4种:(1)趋化因子衍生物;(2)低分子量非肽类;(3)单克隆抗体;(4)肽类化合物.本文综述了近年来CCR5和以其为靶点的HIV受体拮抗剂的研究进展.

  14. Design, synthesis and antiHIV activity of novel isatine-sulphonamides

    Directory of Open Access Journals (Sweden)

    Murugesh N

    2008-01-01

    Full Text Available A series of novel isatine-sulphonamide derivatives have been synthesized by combining isatin derivatives with sulphonamides. The structure of the synthesized compounds were elucidated by spectral analysis (IR, NMR and Mass. Investigation of anti-HIV activity was done against HIV-1(IIIB in MT-4 cells and HIV integrase inhibitory activity. 4-(1-acetyl-5-methyl-2-oxoindolin-3-ylideneamino-N-(4,6-dimethylpyrimidin-2-ylbenzenesulfonamide (SPIII-5ME-AC inhibits the HIV Integrase enzymatic activity as both over all and strand transfer reaction and 4-(1-benzoyl-5-chloro-2-oxoindolin-3-ylideneamino-N-(4,6-dimethylpyrimidin-2-ylbenzene sulfonamide (SPIII-5Cl-BZ exhibits 36 percent maximum protection against HIV-1 at sub toxic concentration.

  15. Altered immunological reactivity in HIV-1-exposed uninfected neonates.

    Science.gov (United States)

    Hygino, Joana; Lima, Patrícia G; Filho, Renato G S; Silva, Agostinho A L; Saramago, Carmen S M; Andrade, Regis M; Andrade, Daniel M; Andrade, Arnaldo F B; Brindeiro, Rodrigo; Tanuri, Amilcar; Bento, Cleonice A M

    2008-06-01

    This work aimed to evaluate immune events in HIV-1-exposed uninfected neonates born from mothers who control (G1) or not (G2) the plasma viral load, using unexposed neonates as controls. Cord blood from each neonate was collected, plasma and mononuclear cells were separated and the lymphoproliferation and cytokine pattern were evaluated. The results demonstrated that the in vitro lymphoproliferation induced by polyclonal activators was higher in the G2 neonates. Nevertheless, no cell culture responded to poll synthetic HIV-1 envelope peptides. The cytokine dosage in the plasma and supernatants of polyclonally-activated cultures demonstrated that, while IL-4 and IL-10 were the dominant cytokines produced in G1 and control groups, IFN-gamma and TNF-alpha were significantly higher in G2 neonates. Systemic levels of IL-10 observed among the G1 neonates were higher in those born from anti-retroviral treated mothers. In summary, our results indicate an altered immune responsiveness in neonates exposed in utero to HIV and support the role of maternal anti-retroviral treatment to attenuate it.

  16. Identification of effective subdominant anti-HIV-1 CD8+ T cells within entire post-infection and post-vaccination immune responses.

    Directory of Open Access Journals (Sweden)

    Gemma Hancock

    2015-02-01

    Full Text Available Defining the components of an HIV immunogen that could induce effective CD8+ T cell responses is critical to vaccine development. We addressed this question by investigating the viral targets of CD8+ T cells that potently inhibit HIV replication in vitro, as this is highly predictive of virus control in vivo. We observed broad and potent ex vivo CD8+ T cell-mediated viral inhibitory activity against a panel of HIV isolates among viremic controllers (VC, viral loads <5000 copies/ml, in contrast to unselected HIV-infected HIV Vaccine trials Network (HVTN participants. Viral inhibition of clade-matched HIV isolates was strongly correlated with the frequency of CD8+ T cells targeting vulnerable regions within Gag, Pol, Nef and Vif that had been identified in an independent study of nearly 1000 chronically infected individuals. These vulnerable and so-called "beneficial" regions were of low entropy overall, yet several were not predicted by stringent conservation algorithms. Consistent with this, stronger inhibition of clade-matched than mismatched viruses was observed in the majority of subjects, indicating better targeting of clade-specific than conserved epitopes. The magnitude of CD8+ T cell responses to beneficial regions, together with viral entropy and HLA class I genotype, explained up to 59% of the variation in viral inhibitory activity, with magnitude of the T cell response making the strongest unique contribution. However, beneficial regions were infrequently targeted by CD8+ T cells elicited by vaccines encoding full-length HIV proteins, when the latter were administered to healthy volunteers and HIV-positive ART-treated subjects, suggesting that immunodominance hierarchies undermine effective anti-HIV CD8+ T cell responses. Taken together, our data support HIV immunogen design that is based on systematic selection of empirically defined vulnerable regions within the viral proteome, with exclusion of immunodominant decoy epitopes that are

  17. Platelets and HIV-1 infection: old and new aspects.

    Science.gov (United States)

    Torre, Donato; Pugliese, Agostino

    2008-09-01

    In this review we summarize the data on interaction of platelets with HIV-1 infection. Thrombocytopenia is a common finding among HIV-1 infected patients; several combined factors contribute to low peripheral platelet counts, which are present during all the stages of the disease. In addition, a relationship between platelet count, plasma viral load and disease progression has been reported, and this shows the potential influence platelets may have on the natural history of HIV-1 disease. Several lines of evidence have shown that platelets are an integral part of inflammation, and can be also potent effector cells of innate immune response as well as of adaptive immunity. Thus, we rewieved the role of inflammatory cytokines, and chemokines as activators of platelets during HIV-1 infection. Moreover, platelets show a direct interaction with HIV-1 itself, through different pathogenic mechanisms as binding, engulfment, internalisation of HIV-1, playing a role in host defence during HIV-1 infection, by limiting viral spread and probably by inactivating viral particles. Platelets may also play an intriguing role on endothelial dysfunction present in HIV-1 infection, and this topic begins to receive systematic study, inasmuch as interaction between platelets and endothelial cells is important in the pathogenesis of atherosclerosis in HIV-1 infected patients, especially in those patients treated with antiretroviral drugs. Finally, this review attempts to better define the state of this emerging issue, to focus areas of potential clinical relevance, and to suggest several directions for future research.

  18. Phenotypic Knockout of HIV-1 Chemokine Coreceptor CXCR4 and CCR5 by Intrakines for Blocking HIV-1 Infection

    Institute of Scientific and Technical Information of China (English)

    张颖; 张岩; 王平忠; 王九平; 黄长形; 孙永涛; 白雪帆

    2004-01-01

    To investigate the phenotypic knockout of HIV-1 chemokine coreceptor CXCR4 and CCR5 by intrakines and its inhibitory effect on HIV-1 infection. Primary human PBLs were transduced with the recombinant vector pLNCX-R-K-S-K(△NGFR), followed by anti-NGFR/anti-IgG-magnetic bead method selection and FCM detection. The transduced PBLs were infected with DP1 HIV-1 virus thereafter envelope-mediated syncytium formation and p24 detection were carried out to study the blockage of HIV-1 infection by co-inactivation of CCR5 and CXCR4. pLNCX-R-K-S-K (△NGFR)-transduced PBILs were isolated with an anti-NGFR/anti-IgG-magnetic bead method. After isolation, about 70% of the PBLs were positive for the NGFR marker. When the transduced PBLs were infected with DP1 HIV-1 virus, envelop-mediated syncytium formation was almost completely inhibited by pLNCX-R-K-S-K(△NGFR) transfection. Also, p24 antigen was very low in the cultures of pLNCX-R-K-S-K (△NGFR) transduced PBLs. pLNCX-R-K-S-K(△NGFR) transduction inhibited the production of DP1 p24 antigen by 15%, 43% and 19% on days 4, 7 and 10 respectively. The lymphocytes with the phenotypic knockout of CCR5 and CXCR4 could protect primary human PBLs from DP1 HIV-1 virus infection.

  19. Bispecific antibodies directed to CD4 domain 2 and HIV envelope exhibit exceptional breadth and picomolar potency against HIV-1.

    Science.gov (United States)

    Pace, Craig S; Song, Ruijiang; Ochsenbauer, Christina; Andrews, Chasity D; Franco, David; Yu, Jian; Oren, Deena A; Seaman, Michael S; Ho, David D

    2013-08-13

    In the absence of an effective HIV-1 vaccine, passive immunization using broadly neutralizing Abs or Ab-like molecules could provide an alternative to the daily administration of oral antiretroviral agents that has recently shown promise as preexposure prophylaxis. Currently, no single broadly neutralizing Ab (bNAb) or combination of bNAbs neutralizes all HIV-1 strains at practically achievable concentrations in vivo. To address this problem, we created bispecific Abs that combine the HIV-1 inhibitory activity of ibalizumab (iMab), a humanized mAb directed to domain 2 of human CD4, with that of anti-gp120 bNAbs. These bispecific bNAbs (BibNAbs) exploit iMab's potent anti-HIV-1 activity and demonstrated clinical efficacy and safety to anchor and thereby concentrate a second broadly neutralizing agent at the site of viral entry. Two BibNabs, PG9-iMab and PG16-iMab, exhibit exceptional breadth and potency, neutralizing 100% of the 118 viruses tested at low picomolar concentrations, including viruses resistant to both parental mAbs. The enhanced potency of these BibNAbs was entirely dependent on CD4 anchoring, not on membrane anchoring per se, and required optimal Ab geometry and linker length. We propose that iMab-based BibNAbs, such as PG9-iMab and PG16-iMab, are promising candidates for passive immunization to prevent HIV-1 infection.

  20. HIV-1 gp120 signaling through TLR4 modulates innate immune activation in human macrophages and the biology of hepatic stellate cells.

    Science.gov (United States)

    Del Cornò, Manuela; Cappon, Andrea; Donninelli, Gloria; Varano, Barbara; Marra, Fabio; Gessani, Sandra

    2016-09-01

    Highly active antiretroviral therapy has significantly improved the prognosis of HIV-infected subjects. However, patients treated long term still manifest increased mortality and, even with undetectable plasma viremia, often experience persistent immune activation. Furthermore, liver-related mortality is now the most common cause of non-AIDS-related death in HIV-infected individuals on highly active antiretroviral therapy through accelerated fibrosis progression. TLRs are the first line of the host response to pathogens and play an important role in human host defense against viruses through sensing of viral structural proteins. Growing evidence points to TLR4 as a key player in chronic immune activation, HIV recognition/replication, and liver fibrosis progression, suggesting that HIV triggering of TLR4 may dictate some aspects of the multifaceted AIDS pathogenesis. In this study, we provide evidence for an interplay between host TLR4 and HIV-1 gp120 in human monocyte-derived macrophages and hepatic stellate cells, leading to intracellular pathways and biologic activities that mediate proinflammatory and profibrogenic signals. Finally, we hypothesize that CCR5 and TLR4 are likely part of a common receptor cluster, as the blocking of CCR5 by specific antagonists impairs the macrophage capacity to produce chemokines in response to LPS. Chronic immune activation and liver fibrosis remain important obstacles for highly active antiretroviral therapy success. Thus, the identification of gp120-TLR4 axis as a novel determinant of immune system and hepatic stellate cell biology opens new perspectives to the management of HIV infection and disease.

  1. Mechanism of action of the HIV-1 integrase inhibitory peptide LEDGF 361-370.

    Science.gov (United States)

    Hayouka, Zvi; Levin, Aviad; Maes, Michal; Hadas, Eran; Shalev, Deborah E; Volsky, David J; Loyter, Abraham; Friedler, Assaf

    2010-04-01

    The HIV-1 integrase protein (IN) mediates integration of the viral cDNA into the host genome and is a target for anti-HIV drugs. We have recently described a peptide derived from residues 361-370 of the IN cellular partner protein LEDGF/p75, which inhibited IN catalytic activity in vitro and HIV-1 replication in cells. Here we performed a comprehensive study of the LEDGF 361-370 mechanism of action in vitro, in cells and in vivo. Alanine scan, fluorescence anisotropy binding studies, homology modeling and NMR studies demonstrated that all residues in LEDGF 361-370 contribute to IN binding and inhibition. Kinetic studies in cells showed that LEDGF 361-370 specifically inhibited integration of viral cDNA. Thus, the full peptide was chosen for in vivo studies, in which it inhibited the production of HIV-1 RNA in mouse model. We conclude that the full LEDGF 361-370 peptide is a potent HIV-1 inhibitor and may be used for further development as an anti-HIV lead compound.

  2. Clinical experience of the 23-valent capsular polysaccharide pneumococcal vaccination in HIV-1-infected patients receiving highly active antiretroviral therapy: a prospective observational study.

    Science.gov (United States)

    Hung, Chien-Ching; Chen, Mao-Yuan; Hsieh, Szu-Min; Hsiao, Chin-Fu; Sheng, Wang-Hwei; Chang, Shan-Chwen

    2004-05-01

    To assess the impact of vaccination with 23-valent pneumococcal polysaccharide vaccine on the risks for development of pneumococcal disease, all-cause community-acquired pneumonia, HIV progression, and mortality and immunologic and virologic responses among HIV-1-infected patients treated with highly active antiretroviral therapy (HAART), we conducted a 2-year prospective observational cohort study at a university hospital in Taiwan. A total of 305 HIV-1-infected patients who received 23-valent pneumococcal vaccine (vaccinees) and 203 patients who did not (non-vaccinees) were prospectively observed between 1 June 2000 and 31 October 2002. Changes of CD4+ and plasma viral load (PVL) from baseline to week 4 of vaccination were assessed in 31 randomly selected vaccinees. The incidence of pneumococcal disease and bacteremia of vaccinees was 2.1 per 1000 patient-years (PY) (95% confidence interval (95% CI), 1.7-2.5 per 1000 PY) over the median observation of 641 days (range, 37-832 days) following vaccination while that of non-vaccinee was 21.8 per 1000 PY (95% CI, 20.1-23.7 per 1000 PY) and 7.3 per 1000 PY (95% CI, 7.0-7.6 per 1000 PY), respectively, over the observation of 500 days (range, 32-851 days), with an adjusted odds ratio (AOR) for developing pneumococcal disease of 0.085 (95% CI, 0.010-0.735) and for bacteremia of 0.22 (95% CI, 0.018-2.561). The median CD4+ count increased by 45 x 10(6) l(-1) (P = 0.01) and median PVL change was 0 log(10) copies/ml (range of decrease, -0.74 to 2.47 log(10) copies/ml) after 1 month of pneumococcal vaccination among the subgroup of 31 vaccinees receiving HAART. The median CD4+ count increase from baseline to the end of study was 149 x 10(6) l(-1) for vaccinees and 107 x 10(6) l(-1) for non-vaccinees (P = 0.21). The AOR of developing all-cause community-acquired pneumonia and new AIDS-defining opportunistic illnesses (OI) of vaccinees as compared to non-vaccinees was 1.876 (95% CI, 0.785-4.485) and 0.567 (95% CI, 0

  3. Kaposi's-sarcoma-associated-herpesvirus-activated dendritic cells promote HIV-1 trans-infection and suppress CD4{sup +} T cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wan; Qin, Yan; Bai, Lei [Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, the Chinese Academy of Sciences, Shanghai (China); Graduate School of the Chinese Academy of Sciences, Beijing (China); Lan, Ke [Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, the Chinese Academy of Sciences, Shanghai (China); Wang, Jian-Hua, E-mail: Jh_wang@sibs.ac.cn [Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, the Chinese Academy of Sciences, Shanghai (China)

    2013-06-05

    Infection of Kaposi's sarcoma-associated herpesvirus (KSHV) is commonly occurred in AIDS patients. KSHV and HIV-1 act cooperatively in regulating infection with each other and in human carcinogenesis. Dendritic cells (DCs), as the pivotal cells in host immunity, may be modulated by both viruses, for immunoevasion and dissemination, therefore, the interaction between DCs and each virus has been a prior focus for pathogenesis elucidation. Here, we assessed the potential effect of KSHV on DC–HIV-1 interaction. We found that KSHV stimulation could promote maturation of monocyte-derived DCs (MDDCs) and impaired the ability of MDDCs to drive proliferation of resting CD4{sup +} T cells, demonstrating the immunosuppression induced by KSHV. More importantly, KSHV-stimulated MDDCs could capture more HIV-1 and efficiently transferred these infectious viruses to Hut/CCR5 T cell line. Our results reveal the novel modulation of DC-mediated HIV-1 dissemination by KSHV, and highlight the importance of studying DC–HIV-1 interaction to elucidate HIV/AIDS pathogenesis. - Highlights: ► KSHV impaired the ability of MDDCs to drive proliferation of resting CD4{sup +} T cells. ► KSHV stimulation matured MDDCs and enhanced HIV-1 endocytosis. ► KSHV stimulated MDDCs increased ICAM-1 expression and tighten contact with T cells. ► KSHV-stimulated MDDCs promoted HIV-1 trans-infection of CD4{sup +} T cells.

  4. A Novel Lectin with Antiproliferative and HIV-1 Reverse Transcriptase Inhibitory Activities from Dried Fruiting Bodies of the Monkey Head Mushroom Hericium erinaceum

    Directory of Open Access Journals (Sweden)

    Yanrui Li

    2010-01-01

    Full Text Available A lectin designated as Hericium erinaceum agglutinin (HEA was isolated from dried fruiting bodies of the mushroom Hericium erinaceum with a chromatographic procedure which entailed DEAE-cellulose, CM-cellulose, Q-Sepharose, and FPLC Superdex 75. Its molecular mass was estimated to be 51 kDa and its N-terminal amino acid sequences was distinctly different from those of other isolated mushroom lectins. The hemagglutinating activity of HEA was inhibited at the minimum concentration of 12.5 mM by inulin. The lectin was stable at pH 1.9–12.1 and at temperatures up to 70∘C, but was inhibited by Hg2+, Cu2+, and Fe3+ ions. The lectin exhibited potent mitogenic activity toward mouse splenocytes, and demonstrated antiproliferative activity toward hepatoma (HepG2 and breast cancer (MCF7 cells with an IC50 of 56.1 M and 76.5 M, respectively. It manifested HIV-1 reverse transcriptase inhibitory activity with an IC50 of 31.7 M. The lectin exhibited potent mitogenic activity toward murine splenocytes but was devoid of antifungal activity.

  5. Large-scale functional purification of recombinant HIV-1 capsid.

    Directory of Open Access Journals (Sweden)

    Magdeleine Hung

    Full Text Available During human immunodeficiency virus type-1 (HIV-1 virion maturation, capsid proteins undergo a major rearrangement to form a conical core that protects the viral nucleoprotein complexes. Mutations in the capsid sequence that alter the stability of the capsid core are deleterious to viral infectivity and replication. Recently, capsid assembly has become an attractive target for the development of a new generation of anti-retroviral agents. Drug screening efforts and subsequent structural and mechanistic studies require gram quantities of active, homogeneous and pure protein. Conventional means of laboratory purification of Escherichia coli expressed recombinant capsid protein rely on column chromatography steps that are not amenable to large-scale production. Here we present a function-based purification of wild-type and quadruple mutant capsid proteins, which relies on the inherent propensity of capsid protein to polymerize and depolymerize. This method does not require the packing of sizable chromatography columns and can generate double-digit gram quantities of functionally and biochemically well-behaved proteins with greater than 98% purity. We have used the purified capsid protein to characterize two known assembly inhibitors in our in-house developed polymerization assay and to measure their binding affinities. Our capsid purification procedure provides a robust method for purifying large quantities of a key protein in the HIV-1 life cycle, facilitating identification of the next generation anti-HIV agents.

  6. Imperatorin inhibits HIV-1 replication through an Sp1-dependent pathway.

    Science.gov (United States)

    Sancho, Rocío; Márquez, Nieves; Gómez-Gonzalo, Marta; Calzado, Marco A; Bettoni, Giorgio; Coiras, Maria Teresa; Alcamí, José; López-Cabrera, Manuel; Appendino, Giovanni; Muñoz, Eduardo

    2004-09-03

    Coumarins and structurally related compounds have been recently shown to present anti-human immunodeficiency virus, type 1 (HIV-1) activity. Among them, the dietary furanocoumarin imperatorin is present in citrus fruits, in culinary herbs, and in some medicinal plants. In this study we report that imperatorin inhibits either vesicular stomatitis virus-pseudotyped or gp160-enveloped recombinant HIV-1 infection in several T cell lines and in HeLa cells. These recombinant viruses express luciferase as a marker of viral replication. Imperatorin did not inhibit the reverse transcription nor the integration steps in the viral cell cycle. Using several 5' long terminal repeat-HIV-1 constructs where critical response elements were either deleted or mutated, we found that the transcription factor Sp1 is critical for the inhibitory activity of imperatorin induced by both phorbol 12-myristate 13-acetate and HIV-1 Tat. Moreover in transient transfections imperatorin specifically inhibited phorbol 12-myristate 13-acetate-induced transcriptional activity of the Gal4-Sp1 fusion protein. Since Sp1 is also implicated in cell cycle progression we further studied the effect of imperatorin on cyclin D1 gene transcription and protein expression and in HeLa cell cycle progression. We found that imperatorin strongly inhibited cyclin D1 expression and arrested the cells at the G(1) phase of the cell cycle. These results highlight the potential of Sp1 transcription factor as a target for natural anti-HIV-1 compounds such as furanocoumarins that might have a potential therapeutic role in the management of AIDS.

  7. Virus-Like Particles Derived from HIV-1 for Delivery of Nuclear Proteins: Improvement of Production and Activity by Protein Engineering.

    Science.gov (United States)

    Robert, Marc-André; Lytvyn, Viktoria; Deforet, Francis; Gilbert, Rénald; Gaillet, Bruno

    2017-01-01

    Virus-like particles (VLPs) derived from retroviruses and lentiviruses can be used to deliver recombinant proteins without the fear of causing insertional mutagenesis to the host cell genome. In this study we evaluate the potential of an inducible lentiviral vector packaging cell line for VLP production. The Gag gene from HIV-1 was fused to a gene encoding a selected protein and it was transfected into the packaging cells. Three proteins served as model: the green fluorescent protein and two transcription factors-the cumate transactivator (cTA) of the inducible CR5 promoter and the human Krüppel-like factor 4 (KLF4). The sizes of the VLPs were 120-150 nm in diameter and they were resistant to freeze/thaw cycles. Protein delivery by the VLPs reached up to 100% efficacy in human cells and was well tolerated. Gag-cTA triggered up to 1100-fold gene activation of the reporter gene in comparison to the negative control. Protein engineering was required to detect Gag-KLF4 activity. Thus, insertion of the VP16 transactivation domain increased the activity of the VLPs by eightfold. An additional 2.4-fold enhancement was obtained by inserting nuclear export signal. In conclusion, our platform produced VLPs capable of efficient protein transfer, and it was shown that protein engineering can be used to improve the activity of the delivered proteins as well as VLP production.

  8. A simple, rapid, and sensitive system for the evaluation of anti-viral drugs in rats

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaoguang [Tohoku University Graduate School of Medicine, Department of Internal Medicine/Division of Emerging Infectious Diseases, Sendai 980-8575 (Japan); Department of Medical Microbiology, Harbin Medical University, Harbin 150086 (China); Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811 (Japan); Qian, Hua [Tohoku University Graduate School of Medicine, Department of Internal Medicine/Division of Emerging Infectious Diseases, Sendai 980-8575 (Japan); Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811 (Japan); Miyamoto, Fusako [Tohoku University Graduate School of Medicine, Department of Internal Medicine/Division of Emerging Infectious Diseases, Sendai 980-8575 (Japan); Naito, Takeshi [Laboratory of Virus Control, Institute for Virus Research, Kyoto University, 53 Kawaramachi, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Kawaji, Kumi [Tohoku University Graduate School of Medicine, Department of Internal Medicine/Division of Emerging Infectious Diseases, Sendai 980-8575 (Japan); Kajiwara, Kazumi [Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501 (Japan); JST Innovation Plaza Kyoto, Japan Science and Technology Agency, Nishigyo-ku, Kyoto 615-8245 (Japan); Hattori, Toshio [Tohoku University Graduate School of Medicine, Department of Internal Medicine/Division of Emerging Infectious Diseases, Sendai 980-8575 (Japan); Matsuoka, Masao [Laboratory of Virus Control, Institute for Virus Research, Kyoto University, 53 Kawaramachi, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Watanabe, Kentaro; Oishi, Shinya; Fujii, Nobutaka [Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501 (Japan); and others

    2012-07-27

    Highlights: Black-Right-Pointing-Pointer We established a novel, simple and rapid in vivo system for evaluation of anti-HIV-1 drugs with rats. Black-Right-Pointing-Pointer The system may be applicable for other antiviral drugs, and/or useful for initial screening in vivo. Black-Right-Pointing-Pointer In this system, TRI-1144 displayed the most potent anti-HIV-1 activity in vivo. -- Abstract: The lack of small animal models for the evaluation of anti-human immunodeficiency virus type 1 (HIV-1) agents hampers drug development. Here, we describe the establishment of a simple and rapid evaluation system in a rat model without animal infection facilities. After intraperitoneal administration of test drugs to rats, antiviral activity in the sera was examined by the MAGI assay. Recently developed inhibitors for HIV-1 entry, two CXCR4 antagonists, TF14016 and FC131, and four fusion inhibitors, T-20, T-20EK, SC29EK, and TRI-1144, were evaluated using HIV-1{sub IIIB} and HIV-1{sub BaL} as representative CXCR4- and CCR5-tropic HIV-1 strains, respectively. CXCR4 antagonists were shown to only possess anti-HIV-1{sub IIIB} activity, whereas fusion inhibitors showed both anti-HIV-1{sub IIIB} and anti-HIV-1{sub BaL} activities in rat sera. These results indicate that test drugs were successfully processed into the rat sera and could be detected by the MAGI assay. In this system, TRI-1144 showed the most potent and sustained antiviral activity. Sera from animals not administered drugs showed substantial anti-HIV-1 activity, indicating that relatively high dose or activity of the test drugs might be needed. In conclusion, the novel rat system established here, 'phenotypic drug evaluation', may be applicable for the evaluation of various antiviral drugs in vivo.

  9. Molecular modeling study on the allosteric inhibition mechanism of HIV-1 integrase by LEDGF/p75 binding site inhibitors.

    Directory of Open Access Journals (Sweden)

    Weiwei Xue

    Full Text Available HIV-1 integrase (IN is essential for the integration of viral DNA into the host genome and an attractive therapeutic target for developing antiretroviral inhibitors. LEDGINs are a class of allosteric inhibitors targeting LEDGF/p75 binding site of HIV-1 IN. Yet, the detailed binding mode and allosteric inhibition mechanism of LEDGINs to HIV-1 IN is only partially understood, which hinders the structure-based design of more potent anti-HIV agents. A molecular modeling study combining molecular docking, molecular dynamics simulation, and binding free energy calculation were performed to investigate the interaction details of HIV-1 IN catalytic core domain (CCD with two recently discovered LEDGINs BI-1001 and CX14442, as well as the LEDGF/p75 protein. Simulation results demonstrated the hydrophobic domain of BI-1001 and CX14442 engages one subunit of HIV-1 IN CCD dimer through hydrophobic interactions, and the hydrophilic group forms hydrogen bonds with HIV-1 IN CCD residues from other subunit. CX14442 has a larger tert-butyl group than the methyl of BI-1001, and forms better interactions with the highly hydrophobic binding pocket of HIV-1 IN CCD dimer interface, which can explain the stronger affinity of CX14442 than BI-1001. Analysis of the binding mode of LEDGF/p75 with HIV-1 IN CCD reveals that the LEDGF/p75 integrase binding domain residues Ile365, Asp366, Phe406 and Val408 have significant contributions to the binding of the LEDGF/p75 to HIV1-IN. Remarkably, we found that binding of BI-1001 and CX14442 to HIV-1 IN CCD induced the structural rearrangements of the 140 s loop and oration displacements of the side chains of the three conserved catalytic residues Asp64, Asp116, and Glu152 located at the active site. These results we obtained will be valuable not only for understanding the allosteric inhibition mechanism of LEDGINs but also for the rational design of allosteric inhibitors of HIV-1 IN targeting LEDGF/p75 binding site.

  10. Improvement in efficacy of DNA vaccine encoding HIV-1 Vif by LIGHT gene adjuvant.

    Science.gov (United States)

    Du, Jiani; Wu, Xiaoyu; Long, Fengying; Wen, Jiejun; Hao, Wenli; Chen, Ran; Kong, Xiaobo; Qian, Min; Jiang, Wenzheng

    2013-02-01

    DNA vaccine can induce the prolonged immune responses against the encoded antigen with the appropriate adjuvant. To study the immunogenicity of the HIV-1 vif DNA vaccine in inducing the humoral and cellular immune responses and the immunoadjuvant effect of LIGHT, which is a member of TNF superfamily and can stimulate the proliferation of naïve T cells as a co-stimulatory molecule, DNA vaccine plasmid pcDNA-Vif was constructed by inserting HIV-1 vif gene into the downstream of CMV promoter in eukaryotic expression vector pcDNA3.1(+). In vitro expression of HIV-1 Vif in pcDNA-Vif-transfected HeLa cells was confirmed in transcriptional and protein level by RT-PCR and Western blot, respectively. After BALB/c mice were injected muscularly with DNA vaccines for three times, the specific immune responses were analyzed. The data showed that anti-Vif antibody response, Vif-specific T cell proliferation, and CTL activities were induced in the mice that were inoculated with HIV-1 vif DNA vaccine plasmid. Interestingly, stronger humoral and cellular immune responses were detected in mice that were immunized with plasmid pcDNA-Vif and pcDNA-LIGHT together compared to the single immunization with plasmid pcDNA-Vif alone. Together, the results of the study suggest that candidate HIV-1 DNA vaccine can elicit HIV-1 Vif-specific immune responses in mice and that LIGHT plays the role of immunoadjuvant in co-immunization with DNA vaccine.

  11. HIV-1 integrase inhibitors are substrates for the multidrug transporter MDR1-P-glycoprotein

    Directory of Open Access Journals (Sweden)

    Cara Andrea

    2007-03-01

    Full Text Available Abstract Background The discovery of diketoacid-containing derivatives as inhibitors of HIV-1 Integrase (IN (IN inhibitors, IINs has played a major role in validating this enzyme as an important target for antiretroviral therapy. Since the in vivo efficacy depends on access of these drugs to intracellular sites where HIV-1 replicates, we determined whether the IINs are recognized by the multidrug transporter MDR1-P-glycoprotein (P-gp thereby reducing their intracellular accumulation. To address the effect of IINs on drug transport, nine quinolonyl diketo acid (DKA derivatives active on the HIV-1 IN strand transfer (ST step and with EC50 ranging from 1.83 to >50 μm in cell-based assays were tested for their in vitro interaction with P-gp in the CEM-MDR cell system. IINs were investigated for the inhibition and induction of the P-gp function and expression as well as for multidrug resistance (MDR reversing ability. Results The HIV-1 IINs act as genuine P-gp substrates by inhibiting doxorubicin efflux and inducing P-gp functional conformation changes as evaluated by the modulation of UIC2 mAb epitope. Further, IINs chemosensitize MDR cells to vinblastine and induce P-gp expression in drug sensitive revertants of CEM-MDR cells. Conclusion To our knowledge, this is the first demonstration that HIV-1 IINs are P-gp substrates. This biological property may influence the absorption, distribution and elimination of these novels anti HIV-1 compounds.

  12. Immunogenicity of a recombinant measles HIV-1 subtype C vaccine.

    Science.gov (United States)

    Stebbings, Richard; Li, Bo; Lorin, Clarisse; Koutsoukos, Marguerite; Février, Michèle; Mee, Edward T; Page, Mark; Almond, Neil; Tangy, Frédéric; Voss, Gérald

    2013-12-09

    The HIV epidemic is greatest in Sub-Saharan Africa and India where HIV-1 subtype C is predominant. To control the spread of HIV in these parts of the world a preventive HIV-1 subtype C vaccine is urgently required. Here we report the immunogenicity of a candidate HIV-1 subtype C vaccine delivered by a recombinant measles vector carrying an insert encoding HIV-1 subtype C Gag, RT and Nef (MV1-F4), in MHC-typed non-human primates. HIV-1 specific cytokine secreting CD4+ and CD8+ T cell responses were detected in 15 out of 16 vaccinees. These HIV-specific T cell responses persisted in lymphoid tissues. Anti-HIV-1 antibody responses were detected in 15 out of 16 vaccinees and titres were boosted by a second immunisation carried out 84 days later. These findings support further exploration of the MV1-F4 vector as a candidate HIV-1 subtype C vaccine or as part of a wider vaccine strategy.

  13. A novel HIV-1 restriction factor that is biologically distinct from APOBEC3 cytidine deaminases in a human T cell line CEM.NKR

    Directory of Open Access Journals (Sweden)

    Zhou Tao

    2009-04-01

    Full Text Available Abstract Background Isolation of novel retroviral restriction factors will open new avenues for anti-HIV/AIDS treatment. Although HIV-1 replication is restricted by APOBEC3G/APOBEC3F, TRIM5α, and CD317, none defend HIV-1 infection under natural conditions. Previously, we demonstrated a host factor from the human T cell line CEM.NKR that potently restricted wild-type HIV-1 replication. Interestingly, this restriction resembled the APOBEC3G/APOBEC3F pattern in that viral replication was inhibited from the second round of replication cycle at a post-entry step. Results Here, we further characterized this factor and found it distinguishable from the known anti-HIV APOBEC3 proteins. Although CEM.NKR cells expressed both APOBEC3G and APOBEC3F, their levels were at least 10 or 4-fold lower than those in H9 cells, and importantly, Vif effectively neutralized their activity. Among eight subclones isolated from CEM.NKR cells, one was relatively permissive, four were semi-permissive, and three were completely non-permissive for HIV-1 replication. When the levels of APOBEC3 expression were determined, all these clones retained similar low levels of APOBEC3DE, APOBEC3F, APOBEC3G and APOBEC3H expression, and no APOBEC3B expression was detected. Since the vif from SIVmac can effectively neutralize APOBEC3B and APOBEC3H, recombinant HIV-1 expressing this SIV gene were created. However, these viruses still failed to replicate in CEM.NKR cells. We also confirmed that HIV-1 restriction in CEM.NKR was not due to a loss of calnexin expression. Conclusion Taken together, these results not only demonstrate that all these aforementioned anti-HIV APOBEC3 proteins do not contribute to this HIV-1 restriction, but also shed light on a novel and potent HIV-1 inhibitor in CEM.NKR cells.

  14. Modulation of HIV-1 virulence via the host glucocorticoid receptor: towards further understanding the molecular mechanisms of HIV-1 pathogenesis.

    Science.gov (United States)

    Hapgood, Janet Patricia; Tomasicchio, Michele

    2010-07-01

    The glucocorticoid receptor (GR) is a steroid receptor that regulates diverse functions, which include the immune response. In humans, the GR acts via binding to cortisol, resulting in the transcriptional modulation of key host genes. Several lines of evidence suggest that the host GR could be a key protein exploited by HIV at multiple levels to ensure its pathogenic success. Endogenous and therapeutic glucocorticoids play important roles in patients with HIV due to their well-established effects on immune function. AIDS patients develop glucocorticoid hypersensitivity, consistent with a mechanism involving an HIV-1-induced increase in expression or activity of the GR. Both the HIV-1 accessory protein Vpr and the host GR affect transcription of viral proteins from the long terminal repeat (LTR) region of the HIV-1 promoter. In addition, Vpr modulates host GR function to affect transcription of host genes, most likely via direct interaction with the GR. Vpr appears to regulate GR function by acting as a co-activator for the GR. Since both the GR and Vpr are involved in apoptosis in T cells and dendritic cells, crosstalk between these proteins may also regulate apoptosis in these and other cells. Given that cortisol is not the only ligand that activates the GR, other endogenous as well as synthetic GR ligands such as progestins may also modulate HIV pathogenesis, in particular in the cervicovaginal environment. Investigating the molecular determinants, ligand-selectivity and role in HIV pathogenesis of the GR-Vpr interaction may lead to new strategies for development of anti-HIV drugs.

  15. Updates: Routine screening for antibodies to human immunodeficiency virus, type 1 (HIV-1), civilian applicants for U.S. military service and U.S. Armed Forces, active and reserve components.

    Science.gov (United States)

    2012-08-01

    During routine testing of civilian applicants for U.S. military service, the overall seroprevalence of antibodies to HIV-1 in 2011 was the second lowest of any year since 1990. Among members of the active components of the U.S. Army, HIV-1 seroprevalences were higher during 2008 to 2011 than in recent prior years. Among members of the active components of the U.S. Air Force, Navy and Marine Corps, the Marine Corps Reserve, and the Army National Guard, HIV-1 seroprevalences have slightly declined or remained relatively stable for at least ten years. In the reserve components of most service branches, it is difficult to discern long-term trends because of instability of seroprevalences in the relatively small numbers of reserve component members tested each year. Monitoring of HIV-1 seroprevalences can help target and focus prevention initiatives. The recent repeal of the Don't Ask Don't Tell policy has created opportunities for prevention messages targeted to men who have sex with men.

  16. Achieving HIV-1 Control through RNA-Directed Gene Regulation

    Directory of Open Access Journals (Sweden)

    Vera Klemm

    2016-12-01

    Full Text Available HIV-1 infection has been transformed by combined anti-retroviral therapy (ART, changing a universally fatal infection into a controllable infection. However, major obstacles for an HIV-1 cure exist. The HIV latent reservoir, which exists in resting CD4+ T cells, is not impacted by ART, and can reactivate when ART is interrupted or ceased. Additionally, multi-drug resistance can arise. One alternate approach to conventional HIV-1 drug treatment that is being explored involves gene therapies utilizing RNA-directed gene regulation. Commonly known as RNA interference (RNAi, short interfering RNA (siRNA induce gene silencing in conserved biological pathways, which require a high degree of sequence specificity. This review will provide an overview of the silencing pathways, the current RNAi technologies being developed for HIV-1 gene therapy, current clinical trials, and the challenges faced in progressing these treatments into clinical trials.

  17. HIV-1 subtypes in Yugoslavia.

    Science.gov (United States)

    Stanojevic, Maja; Papa, Anna; Papadimitriou, Evagelia; Zerjav, Sonja; Jevtovic, Djordje; Salemovic, Dubravka; Jovanovic, Tanja; Antoniadis, Antonis

    2002-05-01

    To gain insight concerning the genetic diversity of HIV-1 viruses associated with the HIV-1 epidemic in Yugoslavia, 45 specimens from HIV-1-infected individuals were classified into subtypes by sequence-based phylogenetic analysis of the polymerase (pol) region of the viral genome. Forty-one of 45 specimens (91.2%) were identified as pol subtype B, 2 of 45 as subtype C (4.4%), 1 of 45 as CRF01_AE (2.2%), and 1 as CRF02_AG recombinant (2.2%). Nucleotide divergence among subtype B sequences was 4.8%. Results of this study show that among HIV-1-infected patients in Yugoslavia subtype B predominates (91.5%), whereas non-B subtypes are present at a low percentage, mostly related to travel abroad.

  18. Impact of chemotherapy for HIV-1 related lymphoma on residual viremia and cellular HIV-1 DNA in patients on suppressive antiretroviral therapy.

    Science.gov (United States)

    Cillo, Anthony R; Krishnan, Supriya; McMahon, Deborah K; Mitsuyasu, Ronald T; Para, Michael F; Mellors, John W

    2014-01-01

    The first cure of HIV-1 infection was achieved through complex, multimodal therapy including myeloablative chemotherapy, total body irradiation, anti-thymocyte globulin, and allogeneic stem cell transplantation with a CCR5 delta32 homozygous donor. The contributions of each component of this therapy to HIV-1 eradication are unclear. To assess the impact of cytotoxic chemotherapy alone on HIV-1 persistence, we longitudinally evaluated low-level plasma viremia and HIV-1 DNA in PBMC from patients in the ACTG A5001/ALLRT cohort on suppressive antiretroviral therapy (ART) who underwent chemotherapy for HIV-1 related lymphoma without interrupting ART. Plasma HIV-1 RNA, total HIV-1 DNA and 2-LTR circles (2-LTRs) in PBMC were measured using sensitive qPCR assays. In the 9 patients who received moderately intensive chemotherapy for HIV-1 related lymphoma with uninterrupted ART, low-level plasma HIV-1 RNA did not change significantly with chemotherapy: median HIV-1 RNA was 1 copy/mL (interquartile range: 1.0 to 20) pre-chemotherapy versus 4 copies/mL (interquartile range: 1.0 to 7.0) post-chemotherapy. HIV-1 DNA levels also did not change significantly, with median pre-chemotherapy HIV-1 DNA of 355 copies/106 CD4+ cells versus 228 copies/106 CD4+ cells post-chemotherapy. 2-LTRs were detectable in 2 of 9 patients pre-chemotherapy and in 3 of 9 patients post-chemotherapy. In summary, moderately intensive chemotherapy for HIV-1 related lymphoma in the context of continuous ART did not have a prolonged impact on HIV-1 persistence. Clinical trials registration unique identifier: NCT00001137.

  19. Impact of chemotherapy for HIV-1 related lymphoma on residual viremia and cellular HIV-1 DNA in patients on suppressive antiretroviral therapy.

    Directory of Open Access Journals (Sweden)

    Anthony R Cillo

    Full Text Available The first cure of HIV-1 infection was achieved through complex, multimodal therapy including myeloablative chemotherapy, total body irradiation, anti-thymocyte globulin, and allogeneic stem cell transplantation with a CCR5 delta32 homozygous donor. The contributions of each component of this therapy to HIV-1 eradication are unclear. To assess the impact of cytotoxic chemotherapy alone on HIV-1 persistence, we longitudinally evaluated low-level plasma viremia and HIV-1 DNA in PBMC from patients in the ACTG A5001/ALLRT cohort on suppressive antiretroviral therapy (ART who underwent chemotherapy for HIV-1 related lymphoma without interrupting ART. Plasma HIV-1 RNA, total HIV-1 DNA and 2-LTR circles (2-LTRs in PBMC were measured using sensitive qPCR assays. In the 9 patients who received moderately intensive chemotherapy for HIV-1 related lymphoma with uninterrupted ART, low-level plasma HIV-1 RNA did not change significantly with chemotherapy: median HIV-1 RNA was 1 copy/mL (interquartile range: 1.0 to 20 pre-chemotherapy versus 4 copies/mL (interquartile range: 1.0 to 7.0 post-chemotherapy. HIV-1 DNA levels also did not change significantly, with median pre-chemotherapy HIV-1 DNA of 355 copies/106 CD4+ cells versus 228 copies/106 CD4+ cells post-chemotherapy. 2-LTRs were detectable in 2 of 9 patients pre-chemotherapy and in 3 of 9 patients post-chemotherapy. In summary, moderately intensive chemotherapy for HIV-1 related lymphoma in the context of continuous ART did not have a prolonged impact on HIV-1 persistence. Clinical trials registration unique identifier: NCT00001137.

  20. The Antiviral Activity of Approved and Novel Drugs against HIV-1 Mutations Evaluated under the Consideration of Dose-Response Curve Slope.

    Directory of Open Access Journals (Sweden)

    Shuai Chang

    Full Text Available This study was designed to identify common HIV-1 mutation complexes affecting the slope of inhibition curve, and to propose a new parameter incorporating both the IC50 and the slope to evaluate phenotypic resistance.Utilizing site-directed mutagenesis, we constructed 22 HIV-1 common mutation complexes. IC50 and slope of 10 representative approved drugs and a novel agent against these mutations were measured to determine the resistance phenotypes. The values of new parameter incorporating both the IC50 and the slope of the inhibition curve were calculated, and the correlations between parameters were assessed.Depending on the class of drug, there were intrinsic differences in how the resistance mutations affected the drug parameters. All of the mutations resulted in large increases in the IC50s of nucleoside reverse transcriptase inhibitors. The effects of the mutations on the slope were the most apparent when examining their effects on the inhibition of non-nucleoside reverse transcriptase inhibitors and protease inhibitors. For example, some mutations, such as V82A, had no effect on IC50, but reduced the slope. We proposed a new concept, termed IIPatoxic, on the basis of IC50, slope and the maximum limiting concentrations of the drug. The IIPatoxic values of 10 approved drugs and 1 novel agent were calculated, and were closely related to the IIPmax values (r > 0.95, p < 0.001.This study confirms that resistance mutations cannot be accurately assessed by IC50 alone, because it tends to underestimate the degree of resistance. The slope parameter is of very importance in the measurement of drug resistance and the effect can be applied to more complex patterns of resistance. This is the most apparent when testing the effects of the mutations on protease inhibitors activity. We also propose a new index, IIPatoxic, which incorporates both the IC50 and the slope. This new index could complement current IIP indices, thereby enabling predict the

  1. HIV-1 phylogenetic analysis shows HIV-1 transits through the meninges to brain and peripheral tissues.

    Science.gov (United States)

    Lamers, Susanna L; Gray, Rebecca R; Salemi, Marco; Huysentruyt, Leanne C; McGrath, Michael S

    2011-01-01

    Brain infection by the human immunodeficiency virus type 1 (HIV-1) has been investigated in many reports with a variety of conclusions concerning the time of entry and degree of viral compartmentalization. To address these diverse findings, we sequenced HIV-1 gp120 clones from a wide range of brain, peripheral and meningeal tissues from five patients who died from several HIV-1 associated disease pathologies. High-resolution phylogenetic analysis confirmed previous studies that showed a significant degree of compartmentalization in brain and peripheral tissue subpopulations. Some intermixing between the HIV-1 subpopulations was evident, especially in patients that died from pathologies other than HIV-associated dementia. Interestingly, the major tissue harboring virus from both the brain and peripheral tissues was the meninges. These results show that (1) HIV-1 is clearly capable of migrating out of the brain, (2) the meninges are the most likely primary transport tissues, and (3) infected brain macrophages comprise an important HIV reservoir during highly active antiretroviral therapy.

  2. The Effect of Root, Shoot and Seed Extracts of The Iranian Thymus L. (Family: Lamiaceae Species on HIV-1 Replication and CD4 Expression

    Directory of Open Access Journals (Sweden)

    Maryam Soleimani Farsani

    2016-07-01

    Full Text Available Objective The genus Thymus L. is a cushion plant that was previously used for the treatment of bronchitis and rheumatism. The present investigation was carried out to study the effects of root, shoot, leaf and seed extracts of five Thymus species and subspecies on peripheral blood mononuclear cells (PBMCs toxicity and HIV-1 replication. Materials and Methods In this experimental study, the activity of the Thymus extracts on HIV-1 replication and lymphocytes population were examined respectively using HIV-1 p24 Antigen kit and flow-cytometer. The Thymus species effect was investigated, including Thymus kotschyanus, Thymus vulgaris, Thymus carmanicus, Thymus daenensis subspecies lancifolius and Thymus daenensis subspecies daenensis. Results The effect of root methanol extracts of all species on PBMCs proliferation was significantly higher than the other extracts. The intensity of CD4, CD3 and CD45 were decreased in the presence of all root extracts. Although the average median fluorescence intensity (MFI values of CD19 were increased in the cells treated with these extracts. All methanol extracts showed anti-HIV-1 activity at high concentrations (200 and 500 µg/ml. Anti-HIV-1 activity of Thymus daenensis subspecies daenensis was significantly more than the other species. Conclusion These results demonstrated that root extracts of Thymus species might be a good candidate to investigate anti-HIV infection in vivo.

  3. Broad-spectrum inhibition of HIV-1 by a monoclonal antibody directed against a gp120-induced epitope of CD4.

    Directory of Open Access Journals (Sweden)

    Samuele E Burastero

    Full Text Available To penetrate susceptible cells, HIV-1 sequentially interacts with two highly conserved cellular receptors, CD4 and a chemokine receptor like CCR5 or CXCR4. Monoclonal antibodies (MAbs directed against such receptors are currently under clinical investigation as potential preventive or therapeutic agents. We immunized Balb/c mice with molecular complexes of the native, trimeric HIV-1 envelope (Env bound to a soluble form of the human CD4 receptor. Sera from immunized mice were found to contain gp120-CD4 complex-enhanced antibodies and showed broad-spectrum HIV-1-inhibitory activity. A proportion of MAbs derived from these mice preferentially recognized complex-enhanced epitopes. In particular, a CD4-specific MAb designated DB81 (IgG1Κ was found to preferentially bind to a complex-enhanced epitope on the D2 domain of human CD4. MAb DB81 also recognized chimpanzee CD4, but not baboon or macaque CD4, which exhibit sequence divergence in the D2 domain. Functionally, MAb DB81 displayed broad HIV-1-inhibitory activity, but it did not exert suppressive effects on T-cell activation in vitro. The variable regions of the heavy and light chains of MAb DB81 were sequenced. Due to its broad-spectrum anti-HIV-1 activity and lack of immunosuppressive effects, a humanized derivative of MAb DB81 could provide a useful complement to current preventive or therapeutic strategies against HIV-1.

  4. Purification and characterization of a protein with antifungal, antiproliferative, and HIV-1 reverse transcriptase inhibitory activities from small brown-eyed cowpea seeds.

    Science.gov (United States)

    Tian, Guo-Ting; Zhu, Meng Juan; Wu, Ying Ying; Liu, Qin; Wang, He Xiang; Ng, Tzi Bun

    2013-01-01

    A 36-kDa protein, with an N-terminal sequence highly homologous to polygalacturonase (PG) inhibiting proteins, was isolated from small brown-eyed cowpea seeds. The protein was unadsorbed on diethylaminoethyl cellulose but adsorbed on both Affi-gel blue gel and SP-sepharose. It inhibited mycelial growth in the fungus Mycosphaerella arachidicola with an half-maximal (50%) inhibitory concentration (IC50 ) of 3.3 µM. It reduced [methyl-(3) H] thymidine incorporation into MBL2 lymphoma and L1210 leukemia cells with an IC50 of 7.4 and 5.4 µM, respectively. It inhibited human immunodeficiency virus type 1 (HIV-1) reverse transcriptase with an IC50 of 12.9 µM. However, it did not inhibit PG. The potent antifungal and antitumor activities of the protein suggest that it can be developed into an antifungal agent for combating M. arachidicola invasion in crops and an agent for cancer therapy in humans.

  5. A Spirulina maxima-derived peptide inhibits HIV-1 infection in a human T cell line MT4

    Directory of Open Access Journals (Sweden)

    In-Seung Jang

    2016-11-01

    Full Text Available Abstract Human immunodeficiency virus (HIV is the causative agent of acquired immune deficiency syndrome (AIDS. Anti-HIV agents targeting various steps in HIV life cycle have been developed; however, so far, no effective drugs have been found. We show here that a peptide isolated from Spirulina maxima (SM-peptide inhibits HIV-1 infection in a human T cell line MT4. SM-peptide inhibited HIV-1IIIB-induced cell lysis with a half-maximal inhibitory concentration (IC50 of 0.691 mM, while its 50 % cytotoxic concentration (CC50 was greater than 1.457 mM. Furthermore, the SM-peptide inhibited the HIV-1 reverse transcriptase activity and p24 antigen production. This suggests that SM-peptide is a novel candidate peptide, which may be developed as a therapeutic agent for acquired immunodeficiency syndrome patients.

  6. CD4 and MHC class I down-modulation activities of nef alleles from brain- and lymphoid tissue-derived primary HIV-1 isolates

    Science.gov (United States)

    Gray, Lachlan R.; Gabuzda, Dana; Cowley, Daniel; Ellett, Anne; Chiavaroli, Lisa; Wesselingh, Steven L.; Churchill, Melissa J.; Gorry, Paul R.

    2015-01-01

    HIV-1 nef undergoes adaptive evolution in the CNS, reflecting altered requirements for HIV-1 replication in macrophages/microglia and brain-specific immune selection pressures. The role of Nef in HIV-1 neurotropism and the pathogenesis of HIV-associated dementia (HAD) is unclear. In this study, we characterized 82 nef alleles cloned from brain, CSF, spinal cord and blood/lymphoid tissue-derived HIV-1 isolates from 7 subjects with HAD. CNS isolate-derived nef alleles were genetically compartmentalized and had reduced sequence diversity compared to those from lymphoid tissue isolates. Defective nef alleles predominated in a brain-derived isolate from one of the 7 subjects (MACS2-br). The ability of Nef to down-modulate CD4 and MHC class 1 (MHC-1) was generally conserved among nef alleles from both CNS and lymphoid tissues. However, the potency of CD4 and MHC-1 down-modulation was variable, which was associated with sequence alterations known to influence these Nef functions. These results suggest that CD4 and MHC-1 down-modulation are highly conserved functions among nef alleles from CNS- and lymphoid tissue-derived HIV-1 isolates that may contribute to viral replication and escape from immune surveillance in the CNS. PMID:21165790

  7. MDM2 is a novel E3 ligase for HIV-1 Vif

    Directory of Open Access Journals (Sweden)

    Tomonaga Mitsunori

    2009-01-01

    Full Text Available Abstract The human immunodeficiency virus type 1 (HIV-1 Vif plays a crucial role in the viral life cycle by antagonizing a host restriction factor APOBEC3G (A3G. Vif interacts with A3G and induces its polyubiquitination and subsequent degradation via the formation of active ubiquitin ligase (E3 complex with Cullin5-ElonginB/C. Although Vif itself is also ubiquitinated and degraded rapidly in infected cells, precise roles and mechanisms of Vif ubiquitination are largely unknown. Here we report that MDM2, known as an E3 ligase for p53, is a novel E3 ligase for Vif and induces polyubiquitination and degradation of Vif. We also show the mechanisms by which MDM2 only targets Vif, but not A3G that binds to Vif. MDM2 reduces cellular Vif levels and reversely increases A3G levels, because the interaction between MDM2 and Vif precludes A3G from binding to Vif. Furthermore, we demonstrate that MDM2 negatively regulates HIV-1 replication in non-permissive target cells through Vif degradation. These data suggest that MDM2 is a regulator of HIV-1 replication and might be a novel therapeutic target for anti-HIV-1 drug.

  8. The APOBEC3C crystal structure and the interface for HIV-1 Vif binding.

    Science.gov (United States)

    Kitamura, Shingo; Ode, Hirotaka; Nakashima, Masaaki; Imahashi, Mayumi; Naganawa, Yuriko; Kurosawa, Teppei; Yokomaku, Yoshiyuki; Yamane, Takashi; Watanabe, Nobuhisa; Suzuki, Atsuo; Sugiura, Wataru; Iwatani, Yasumasa

    2012-10-01

    The human apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3, referred to as A3) proteins are cellular cytidine deaminases that potently restrict retrovirus replication. However, HIV-1 viral infectivity factor (Vif) counteracts the antiviral activity of most A3 proteins by targeting them for proteasomal degradation. To date, the structure of an A3 protein containing a Vif-binding interface has not been solved. Here, we report a high-resolution crystal structure of APOBEC3C and identify the HIV-1 Vif-interaction interface. Extensive structure-guided mutagenesis revealed the role of a shallow cavity composed of hydrophobic or negatively charged residues between the α2 and α3 helices. This region is distant from the DPD motif (residues 128-130) of APOBEC3G that participates in HIV-1 Vif interaction. These findings provide insight into Vif-A3 interactions and could lead to the development of new pharmacologic anti-HIV-1 compounds.

  9. Psoriasis patients are enriched for genetic variants that protect against HIV-1 disease.

    Directory of Open Access Journals (Sweden)

    Haoyan Chen

    2012-02-01

    Full Text Available An important paradigm in evolutionary genetics is that of a delicate balance between genetic variants that favorably boost host control of infection but which may unfavorably increase susceptibility to autoimmune disease. Here, we investigated whether patients with psoriasis, a common immune-mediated disease of the skin, are enriched for genetic variants that limit the ability of HIV-1 virus to replicate after infection. We analyzed the HLA class I and class II alleles of 1,727 Caucasian psoriasis cases and 3,581 controls and found that psoriasis patients are significantly more likely than controls to have gene variants that are protective against HIV-1 disease. This includes several HLA class I alleles associated with HIV-1 control; amino acid residues at HLA-B positions 67, 70, and 97 that mediate HIV-1 peptide binding; and the deletion polymorphism rs67384697 associated with high surface expression of HLA-C. We also found that the compound genotype KIR3DS1 plus HLA-B Bw4-80I, which respectively encode a natural killer cell activating receptor and its putative ligand, significantly increased psoriasis susceptibility. This compound genotype has also been associated with delay of progression to AIDS. Together, our results suggest that genetic variants that contribute to anti-viral immunity may predispose to the development of psoriasis.

  10. Unperturbed posttranscriptional regulatory Rev protein function and HIV-1 replication in astrocytes.

    Directory of Open Access Journals (Sweden)

    Ashok Chauhan

    Full Text Available Astrocytes protect neurons, but also evoke proinflammatory responses to injury and viral infections, including HIV. There is a prevailing notion that HIV-1 Rev protein function in astrocytes is perturbed, leading to restricted viral replication. In earlier studies, our finding of restricted viral entry into astrocytes led us to investigate whether there are any intracellular restrictions, including crippled Rev function, in astrocytes. Despite barely detectable levels of DDX3 (Rev-supporting RNA helicase and TRBP (anti-PKR in primary astrocytes compared to astrocytic cells, Rev function was unperturbed in wild-type, but not DDX3-ablated astrocytes. As in permissive cells, after HIV-1 entry bypass in astrocytes, viral-encoded Tat and Rev proteins had robust regulatory activities, leading to efficient viral replication. Productive HIV-1 infection in astrocytes persisted for several weeks. Our findings on HIV-1 entry bypass in astrocytes demonstrated that the intracellular environment is conducive to viral replication and that Tat and Rev functions are unperturbed.

  11. The Depsipeptide Romidepsin Reverses HIV-1 Latency In Vivo.

    Directory of Open Access Journals (Sweden)

    Ole S Søgaard

    2015-09-01

    Full Text Available Pharmacologically-induced activation of replication competent proviruses from latency in the presence of antiretroviral treatment (ART has been proposed as a step towards curing HIV-1 infection. However, until now, approaches to reverse HIV-1 latency in humans have yielded mixed results. Here, we report a proof-of-concept phase Ib/IIa trial where 6 aviremic HIV-1 infected adults received intravenous 5 mg/m2 romidepsin (Celgene once weekly for 3 weeks while maintaining ART. Lymphocyte histone H3 acetylation, a cellular measure of the pharmacodynamic response to romidepsin, increased rapidly (maximum fold range: 3.7–7.7 relative to baseline within the first hours following each romidepsin administration. Concurrently, HIV-1 transcription quantified as copies of cell-associated un-spliced HIV-1 RNA increased significantly from baseline during treatment (range of fold-increase: 2.4–5.0; p = 0.03. Plasma HIV-1 RNA increased from <20 copies/mL at baseline to readily quantifiable levels at multiple post-infusion time-points in 5 of 6 patients (range 46–103 copies/mL following the second infusion, p = 0.04. Importantly, romidepsin did not decrease the number of HIV-specific T cells or inhibit T cell cytokine production. Adverse events (all grade 1–2 were consistent with the known side effects of romidepsin. In conclusion, romidepsin safely induced HIV-1 transcription resulting in plasma HIV-1 RNA that was readily detected with standard commercial assays demonstrating that significant reversal of HIV-1 latency in vivo is possible without blunting T cell-mediated immune responses. These finding have major implications for future trials aiming to eradicate the HIV-1 reservoir.clinicaltrials.gov NTC02092116.

  12. Lignan, sesquilignans and dilignans, novel HIV-1 protease and cytopathic effect inhibitors purified from the rhizomes of Saururus chinensis.

    Science.gov (United States)

    Lee, Jisuk; Huh, Myoung Sook; Kim, Young Choong; Hattori, Masao; Otake, Toru

    2010-02-01

    Five lignans were isolated from the ethyl acetate extracts of Saururus chinensis rhizomes and evaluated for anti-HIV-1 activity