WorldWideScience

Sample records for anti hiv-1 activity

  1. Anti-HIV-1 activity of flavonoid myricetin on HIV-1 infection in a dual-chamber in vitro model.

    Directory of Open Access Journals (Sweden)

    Silvana Pasetto

    Full Text Available HIV infection by sexual transmission remains an enormous global health concern. More than 1 million new infections among women occur annually. Microbicides represent a promising prevention strategy that women can easily control. Among emerging therapies, natural small molecules such as flavonoids are an important source of new active substances. In this study we report the in vitro cytotoxicity and anti-HIV-1 and microbicide activity of the following flavonoids: Myricetin, Quercetin and Pinocembrin. Cytotoxicity tests were conducted on TZM-bl, HeLa, PBMC, and H9 cell cultures using 0.01-100 µM concentrations. Myricetin presented the lowest toxic effect, with Quercetin and Pinocembrin relatively more toxic. The anti-HIV-1 activity was tested with TZM-bl cell plus HIV-1 BaL (R5 tropic, H9 and PBMC cells plus HIV-1 MN (X4 tropic, and the dual tropic (X4R5 HIV-1 89.6. All flavonoids showed anti-HIV activity, although Myricetin was more effective than Quercetin or Pinocembrin. In TZM-bl cells, Myricetin inhibited ≥90% of HIV-1 BaL infection. The results were confirmed by quantification of HIV-1 p24 antigen in supernatant from H9 and PBMC cells following flavonoid treatment. In H9 and PBMC cells infected by HIV-1 MN and HIV-1 89.6, Myricetin showed more than 80% anti-HIV activity. Quercetin and Pinocembrin presented modest anti-HIV activity in all experiments. Myricetin activity was tested against HIV-RT and inhibited the enzyme by 49%. Microbicide activities were evaluated using a dual-chamber female genital tract model. In the in vitro microbicide activity model, Myricetin showed promising results against different strains of HIV-1 while also showing insignificant cytotoxic effects. Further studies of Myricetin should be performed to identify its molecular targets in order to provide a solid biological foundation for translational research.

  2. A therapeutic HIV-1 vaccine enhances anti-HIV-1 immune responses in patients under highly active antiretroviral therapy.

    Science.gov (United States)

    Tung, Frank Y; Tung, Jack K; Pallikkuth, Suresh; Pahwa, Savita; Fischl, Margaret A

    2016-04-27

    HIV-1 specific cellular immunity plays an important role in controlling viral replication. In this first-in-human therapeutic vaccination study, a replication-defective HIV-1 vaccine (HIVAX) was tested in HIV-1 infected participants undergoing highly active antiretroviral therapy (HAART) to enhance anti-HIV immunity (Clinicaltrials.gov, identifier NCT01428596). A010 was a randomized, placebo-controlled trial to evaluate the safety and the immunogenicity of a replication defective HIV-1 vaccine (HIVAX) given as a subcutaneous injection to HIV-1 infected participants who were receiving HAART with HIV-1 viral load 500 cells/mm(3). HIV-1 specific immune responses were monitored by INF-γ enzyme linked immunospot (Elispot) and intracellular cytokine staining (ICS) assay after vaccination. Following the randomized placebo-controlled vaccination phase, subjects who received HIVAX vaccine and who met eligibility underwent a 12-week analytical antiretroviral treatment interruption (ATI). Viral load was monitored throughout the study. HIVAX was well tolerated in trial participants. Transient grade 1 to 2 (mild to moderate) injection site reactions occurred in 8 of 10 vaccinated participants. HIVAX was immunogenic in all vaccinated participants. The functionality of T cells was significantly enhanced after vaccination. Median viral load (3.45 log10 copies/ml, range of 96-12,830 copies/ml) at the end of the 12-week treatment interruption in HIVAX vaccinated group was significantly lower than the pre-treatment levels. Three vaccinated participants extended ATI for up to 2 years with stable CD4 cells and low viral loads. HIVAX vaccine is generally safe, elicits strong anti-HIV-1 immune responses, and may play an important role in controlling viral load during treatment interruption in HIV-1 infected participants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Anti-HIV-1 activity of eight monofloral Iranian honey types.

    Science.gov (United States)

    Behbahani, Mandana

    2014-01-01

    Monofloral Iranian honeys from eight floral sources were analyzed to determine their anti-HIV-1 activities as well as their effects on lymphocyte proliferation. The Peripheral Blood Mononuclear Cells (PBMCs) used in this study were prepared from five healthy volunteers who were seronegative for HIV, HCV, HBV and TB. The anti-HIV-1 activity of eight different honeys was performed by quantitative polymerase chain reaction (PCR) assay and high pure viral nucleic acid kit. The results demonstrated that monofloral honeys from Petro selinum sativum, Nigella sativa, Citrus sinensis, Zataria multiflora, Citrus aurantium and Zizyphus mauritiana flowers had potent anti-HIV-1 activity with half maximal effective concentration (EC50) values of 37.5, 88, 70, 88, 105 and 5 µg/ml respectively. However, monofloral Iranian honeys from Astragalus gummifer and Chamaemelum nobile flowers had weak anti-HIV-1 activity. The frequency and intensity of CD4 expression on PBMCs increased in the presence of all honey types. CD19 marker were also increased after the treatment with monofloral honeys from Z. multiflora and N. sativa. The anti-HIV-1 agent in monofloral honeys from P. sativum, N. sativa, Z. multiflora and Z. mauritiana flowers was detected by spectroscopic analysis as methylglyoxal. Time of drug addition studies demonstrated that the inhibitory effect of methylglyoxal is higher on the late stage of HIV-1 infection. The result demonstrated that methylglyoxal isolated from monofloral honey types is a good candidate for preclinical evaluation of anti-HIV-1 therapies.

  4. Anti-HIV-1 activity of eight monofloral Iranian honey types.

    Directory of Open Access Journals (Sweden)

    Mandana Behbahani

    Full Text Available Monofloral Iranian honeys from eight floral sources were analyzed to determine their anti-HIV-1 activities as well as their effects on lymphocyte proliferation. The Peripheral Blood Mononuclear Cells (PBMCs used in this study were prepared from five healthy volunteers who were seronegative for HIV, HCV, HBV and TB. The anti-HIV-1 activity of eight different honeys was performed by quantitative polymerase chain reaction (PCR assay and high pure viral nucleic acid kit. The results demonstrated that monofloral honeys from Petro selinum sativum, Nigella sativa, Citrus sinensis, Zataria multiflora, Citrus aurantium and Zizyphus mauritiana flowers had potent anti-HIV-1 activity with half maximal effective concentration (EC50 values of 37.5, 88, 70, 88, 105 and 5 µg/ml respectively. However, monofloral Iranian honeys from Astragalus gummifer and Chamaemelum nobile flowers had weak anti-HIV-1 activity. The frequency and intensity of CD4 expression on PBMCs increased in the presence of all honey types. CD19 marker were also increased after the treatment with monofloral honeys from Z. multiflora and N. sativa. The anti-HIV-1 agent in monofloral honeys from P. sativum, N. sativa, Z. multiflora and Z. mauritiana flowers was detected by spectroscopic analysis as methylglyoxal. Time of drug addition studies demonstrated that the inhibitory effect of methylglyoxal is higher on the late stage of HIV-1 infection. The result demonstrated that methylglyoxal isolated from monofloral honey types is a good candidate for preclinical evaluation of anti-HIV-1 therapies.

  5. In vitro anti-HIV-1 activity of the aqueous extract of Asterina pectinifera.

    Science.gov (United States)

    Karadeniz, Fatih; Karagozlu, Mustafa Zafer; Kong, Chang-Suk; Kim, Se-Kwon

    2011-03-01

    An aqueous extract of starfish, Asterina pectinifera, was investigated for its anti-HIV-1 efficiency in vitro on human T-cell lines. A. pectinifera significantly maintained the viability of HIV-infected cells as much as 86% of the untreated infected control cells at the non-toxic concentrations (0.05~4 mg/mL) in CEM-SS cells. Anti-HIV-1 activity of A. pectinifera extract was further supported by quantification of syncytia formation, reverse transcriptase activity and Western blot analysis in C8166, CEM-SS and H9 cells, respectively. Current results demonstrated a notable inhibition of HIV-1 induced syncytia formation and HIV-1 reverse transcriptase activity assay with EC50 of 0.71 mg/mL and 0.65 mg/mL, respectively. Moreover, A. pectinifera extract treatment decreased the production of p24 protein and gene expression of HIV-1 viral infection factor in a dose-dependent manner according to immunoblot and reverse transcription polymerase chain reaction analysis. In the light of current study, it can be concluded that A. pectinifera contains highly potential anti-HIV-1 components and a further investigation for active compound isolation is urged.

  6. Anti-HIV-1 activity of a new scorpion venom peptide derivative Kn2-7.

    Directory of Open Access Journals (Sweden)

    Yaoqing Chen

    Full Text Available For over 30 years, HIV/AIDS has wreaked havoc in the world. In the absence of an effective vaccine for HIV, development of new anti-HIV agents is urgently needed. We previously identified the antiviral activities of the scorpion-venom-peptide-derived mucroporin-M1 for three RNA viruses (measles viruses, SARS-CoV, and H5N1. In this investigation, a panel of scorpion venom peptides and their derivatives were designed and chosen for assessment of their anti-HIV activities. A new scorpion venom peptide derivative Kn2-7 was identified as the most potent anti-HIV-1 peptide by screening assays with an EC(50 value of 2.76 µg/ml (1.65 µM and showed low cytotoxicity to host cells with a selective index (SI of 13.93. Kn2-7 could inhibit all members of a standard reference panel of HIV-1 subtype B pseudotyped virus (PV with CCR5-tropic and CXCR4-tropic NL4-3 PV strain. Furthermore, it also inhibited a CXCR4-tropic replication-competent strain of HIV-1 subtype B virus. Binding assay of Kn2-7 to HIV-1 PV by Octet Red system suggested the anti-HIV-1 activity was correlated with a direct interaction between Kn2-7 and HIV-1 envelope. These results demonstrated that peptide Kn2-7 could inhibit HIV-1 by direct interaction with viral particle and may become a promising candidate compound for further development of microbicide against HIV-1.

  7. Role of seminal plasma in the anti-HIV-1 activity of candidate microbicides

    Directory of Open Access Journals (Sweden)

    Li Yun-Yao

    2006-10-01

    Full Text Available Abstract Background Evaluation of microbicides for prevention of HIV-1 infection in macaque models for vaginal infection has indicated that the concentrations of active compounds needed for protection by far exceed levels sufficient for complete inhibition of infection in vitro. These experiments were done in the absence of seminal plasma (SP, a vehicle for sexual transmission of the virus. To gain insight into the possible effect of SP on the performance of selected microbicides, their anti-HIV-1 activity in the presence, and absence of SP, was determined. Methods The inhibitory activity of compounds against the X4 virus, HIV-1 IIIB, and the R5 virus, HIV-1 BaL was determined using TZM-bl indicator cells and quantitated by measuring β-galactosidase induced by infection. The virucidal properties of cellulose acetate 1,2-benzene-dicarboxylate (CAP, the only microbicide provided in water insoluble, micronized form, in the presence of SP was measured. Results The HIV-1 inhibitory activity of the polymeric microbicides, poly(naphthalene sulfonate, cellulose sulfate, carrageenan, CAP (in soluble form and polystyrene sulfonate, respectively, was considerably (range ≈ 4 to ≈ 73-fold diminished in the presence of SP (33.3%. Formulations of micronized CAP, providing an acidic buffering system even in the presence of an SP volume excess, effectively inactivated HIV-1 infectivity. Conclusion The data presented here suggest that the in vivo efficacy of polymeric microbicides, acting as HIV-1 entry inhibitors, might become at least partly compromised by the inevitable presence of SP. These possible disadvantages could be overcome by combining the respective polymers with acidic pH buffering systems (built-in for formulations of micronized CAP or with other anti-HIV-1 compounds, the activity of which is not affected by SP, e.g. reverse transcriptase and zinc finger inhibitors.

  8. Inhibition of HIV-1 enzymes, antioxidant and anti-inflammatory activities of Plectranthus barbatus.

    Science.gov (United States)

    Kapewangolo, Petrina; Hussein, Ahmed A; Meyer, Debra

    2013-08-26

    Plectranthus barbatus is widely used in African countries as an herbal remedy to manage HIV/AIDS and related conditions. To investigate the HIV-1 inhibitory, anti-inflammatory and antioxidant properties of P. barbatus and thereby provide empirical evidence for the apparent anecdotal success of the extracts. Ethanolic extract of P. barbatus's leaves was screened against two HIV-1 enzymes: protease (PR) and reverse transcriptase (RT). Cytotoxicity of the extract was determined through measuring tetrazolium dye uptake of peripheral blood mononuclear cells (PBMCs) and the TZM-bl cell line. Confirmatory assays for cytotoxicity were performed using flow cytometry and real-time cell electronic sensing (RT-CES). The free radical scavenging activity of the extract was investigated with 2,2-diphenyl-1-picrylhydrazyl while the anti-inflammatory properties of the plant extract were investigated using a Th1/Th2/Th17 cytometric bead array technique. P. barbatus extract inhibited HIV-1PR and the 50% inhibitory concentration (IC50) was 62.0 µg/ml. The extract demonstrated poor inhibition of HIV-1 RT. Cytotoxicity testing presented CC50 values of 83.7 and 50.4 µg/ml in PBMCs and TZM-bl respectively. In addition, the extract stimulated proliferation in HIV negative and positive PBMCs treated. RT-CES also registered substantial TZM-bl proliferation after extract treatment. The extract exhibited strong antioxidant activity with an IC50 of 16 µg/ml and reduced the production of pro-inflammatory cytokines indicating anti-inflammatory potential. This is the first demonstration of the in vitro anti HIV-1 potential of P. barbatus including direct activity as well as through the stimulation of protective immune and inflammation responses. The low cytotoxicity of the extract is also in agreement with the vast anecdotal use of this plant in treating various ailments with no reported side-effects. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  9. 7,8-secolignans from Schisandra neglecta and their anti-HIV-1 activities

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Xuemei; Mu, Huaixue; Hu, Qiufen, E-mail: huqiufena@yahoo.com.cn [Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan University of Nationalities (China); Wang, Ruirui; Yang, Liumeng; Zheng, Yongtang [Kunming Institute of Zoology, Chinese Academy of Sciences (China); Sun, Handong; Xiao, Weilie, E-mail: xwl@mail.kib.ac.cn [State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming (China)

    2012-10-15

    Four new 7,8-secolignans (neglectahenols A-D), together with two known 7,8-secolignans, were isolated from leaves and stems of Schisandra neglecta. The structures were elucidated by spectroscopic methods, including extensive one and two dimension NMR (nuclear magnetic resonance) techniques. 7,8-Secolignans and neglectahenols A-D were also tested for their anti-HIV-1 (human immunodeficiency virus type 1) activities, and all of them showed modest activities. (author)

  10. The anti-HIV activity of ADS-J1 targets the HIV-1 gp120

    International Nuclear Information System (INIS)

    Armand-Ugon, Mercedes; Clotet-Codina, Imma; Tintori, Cristina; Manetti, Fabrizio; Clotet, Bonaventura; Botta, Maurizio; Este, Jose A.

    2005-01-01

    Recent data suggest that heparin sulfates may bind to a CD4 induced epitope in the HIV-1 gp120 that constitutes the coreceptor binding site. We have studied the mechanism of action of ADS-J1, a non-peptidic compound selected by docking analysis to interact with gp41 and to interfere with the formation of N-36/C-34 complexes in sandwich ELISA experiments. We show that ADS-J1 blocked the binding of wild-type HIV-1 NL4-3 strain to MT-4 cells but not virus-cell binding of a polyanion-resistant virus. However, ADS-J1 blocked the replication of polyanion-resistant, T-20- and C34-resistant HIV-1, suggesting a second mechanism of action. Development of resistance to ADS-J1 on the polyanion-resistant HIV-1 led to mutations in gp120 coreceptor binding site and not in gp41. Time of addition experiments confirmed that ADS-J1, but not polyanions such as dextran sulfate or AR177, worked at a step that mimics the activity of an HIV coreceptor antagonist but prior to gp41-dependent fusion. We conclude that ADS-J1 may bind to the HIV coreceptor binding site as its mechanism of anti-HIV activity

  11. Anti-HIV-1 protease activities of crude extracts of some Garcinia ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-03-22

    Mar 22, 2010 ... indicated significant HIV-1 protease inhibition (Chen et al., 1996). Garcinia livingstoneii has been reported to produce gutifferone A, being an anti-HIV ..... Abe F, Estrada MJ, Soler C, Chilpa RR. (2004). HIV-1 inhibitory compounds from Calophyllum brasiliense leaves. Biol. Pharm. Bull. 27: 1471-1475.

  12. Molecular cloning and anti-HIV-1 activities of APOBEC3s from northern pig-tailed macaques (Macaca leonina).

    Science.gov (United States)

    Zhang, Xiao-Liang; Song, Jia-Hao; Pang, Wei; Zheng, Yong-Tang

    2016-07-18

    Northern pig-tailed macaques (NPMs, Macaca leonina) are susceptible to HIV-1 infection largely due to the loss of HIV-1-restricting factor TRIM5α. However, great impediments still exist in the persistent replication of HIV-1 in vivo, suggesting some viral restriction factors are reserved in this host. The APOBEC3 proteins have demonstrated a capacity to restrict HIV-1 replication, but their inhibitory effects in NPMs remain elusive. In this study, we cloned the NPM A3A-A3H genes, and determined by BLAST searching that their coding sequences (CDSs) showed 99% identity to the corresponding counterparts from rhesus and southern pig-tailed macaques. We further analyzed the anti-HIV-1 activities of the A3A-A3H genes, and found that A3G and A3F had the greatest anti-HIV-1 activity compared with that of other members. The results of this study indicate that A3G and A3F might play critical roles in limiting HIV-1 replication in NPMs in vivo. Furthermore, this research provides valuable information for the optimization of monkey models of HIV-1 infection.

  13. Anti-HIV-1 activity of anionic polymers: a comparative study of candidate microbicides

    Directory of Open Access Journals (Sweden)

    Li Yun-Yao

    2002-11-01

    Full Text Available Abstract Background Cellulose acetate phthalate (CAP in soluble form blocks coreceptor binding sites on the virus envelope glycoprotein gp120 and elicits gp41 six-helix bundle formation, processes involved in virus inactivation. CAP is not soluble at pH Methods Enzyme linked immunosorbent assays (ELISA were used to (1 study HIV-1 IIIB and BaL binding to micronized CAP; (2 detect virus disintegration; and (3 measure gp41 six-helix bundle formation. Cells containing integrated HIV-1 LTR linked to the β-gal gene and expressing CD4 and coreceptors CXCR4 or CCR5 were used to measure virus infectivity. Results 1 HIV-1 IIIB and BaL, respectively, effectively bound to micronized CAP. 2 The interaction between HIV-1 and micronized CAP led to: (a gp41 six-helix bundle formation; (b virus disintegration and shedding of envelope glycoproteins; and (c rapid loss of infectivity. Polymers other than CAP, except Carbomer 974P, elicited gp41 six-helix bundle formation in HIV-1 IIIB but only poly(napthalene sulfonate, in addition to CAP, had this effect on HIV-1 BaL. These polymers differed with respect to their virucidal activities, the differences being more pronounced for HIV-1 BaL. Conclusions Micronized CAP is the only candidate topical microbicide with the capacity to remove rapidly by adsorption from physiological fluids HIV-1 of both the X4 and R5 biotypes and is likely to prevent virus contact with target cells. The interaction between micronized CAP and HIV-1 leads to rapid virus inactivation. Among other anionic polymers, cellulose sulfate, BufferGel and aryl sulfonates appear most effective in this respect.

  14. Anti-HIV-1 activity of combinations and covalent conjugates of negatively charged human serum albumins (NCAs) and AZT

    NARCIS (Netherlands)

    Kuipers, M.E; Swart, P.J; Witvrouw, M; Esté, J.A; Reymen, D; De Clercq, E; Meijer, D.K F

    1999-01-01

    Negatively charged albumins (NCAs, with the prototypes Suc-HSA and Aco-HSA), modified proteins with a potent anti-HIV-1 activity in the nanomolar concentration range, were studied for several aspects of their antiviral mechanism. In addition we investigated the antiviral activity of combinations and

  15. Design of a novel cyclotide-based CXCR4 antagonist with anti-human immunodeficiency virus (HIV)-1 activity

    Science.gov (United States)

    Aboye, Teshome L.; Ha, Helen; Majumber, Subhabrata; Christ, Frauke; Debyser, Zeger; Shekhtman, Alexander; Neamati, Nouri; Camarero, Julio A.

    2012-01-01

    Herein, we report for the first time the design and synthesis of a novel cyclotide able to efficiently inhibit HIV-1 viral replication by selectively targeting cytokine receptor CXCR4. This was accomplished by grafting a series of topologically modified CVX15 based peptides onto the loop 6 of cyclotide MCoTI-I. The most active compound produced in this study was a potent CXCR4 antagonist (EC50 ≈ 20 nM) and an efficient HIV-1 cell-entry blocker (EC50 ≈ 2 nM). This cyclotide also showed high stability in human serum thereby providing a promising lead compound for the design of a novel type of peptide-based anti-cancer and anti-HIV-1 therapeutics. PMID:23151033

  16. Diarylpyrimidine-dihydrobenzyloxopyrimidine hybrids: new, wide-spectrum anti-HIV-1 agents active at (sub)-nanomolar level.

    Science.gov (United States)

    Rotili, Dante; Tarantino, Domenico; Artico, Marino; Nawrozkij, Maxim B; Gonzalez-Ortega, Emmanuel; Clotet, Bonaventura; Samuele, Alberta; Esté, José A; Maga, Giovanni; Mai, Antonello

    2011-04-28

    Here, we describe a novel small series of non-nucleoside reverse transcriptase inhibitors (NNRTIs) that combine peculiar structural features of diarylpyrimidines (DAPYs) and dihydro-alkoxy-benzyl-oxopyrimidines (DABOs). These DAPY-DABO hybrids (1-4) showed a characteristic SAR profile and a nanomolar anti-HIV-1 activity at both enzymatic and cellular level. In particular, the two compounds 4d and 2d, with a (sub)nanomolar activity against wild-type and clinically relevant HIV-1 mutant strains, were selected as lead compounds for next optimization studies.

  17. Anti-HIV-1 activity and structure-activity-relationship study of a fucosylated glycosaminoglycan from an echinoderm by targeting the conserved CD4 induced epitope.

    Science.gov (United States)

    Lian, Wu; Wu, Mingyi; Huang, Ning; Gao, Na; Xiao, Chuang; Li, Zi; Zhang, Zhigang; Zheng, Yongtang; Peng, Wenlie; Zhao, Jinhua

    2013-10-01

    Fucosylated glycosaminoglycan (FG) is a novel glycosaminoglycan with a chondroitin sulfate-like backbone and fucose sulfate branches. The aim of this study is to investigate the mechanism and structure-activity relationships (SAR) of FG for combating HIV-1 infection. Anti-HIV activities of FGs were assessed by a cytopathic effect assay and an HIV-1 p24 detection assay. The biomolecule interactions were explored via biolayer interferometry technology. The SAR was established by comparing its anti-HIV-1 activities, conserved CD4 induced (CD4i) epitope-dependent interactions and anticoagulant activities. FG efficiently and selectively inhibited the X4- and R5X4-tropic HIV-1 infections in C8166 cells with little cytotoxicity against C8166 cells and PBMCs. Our data indicated that FG bound to gp120 with nanomolar affinity and may interact with CD4i of gp120. Additionally, the CD4i binding affinity of FG was higher than that of dextran sulfate. SAR studies suggested that the unique sulfated fucose branches account for the anti-HIV-1 activity. The molecular size and present carboxyl groups of FG may also play important roles in various activities. Notably, several FG derivatives showed higher anti-HIV-1 activities and much lower anticoagulant activities than those of heparin. FG exhibits strong activity against X4- and R5X4-tropic HIV-1 infections. The mechanism may be related to targeting CD4i of gp120, which results in inhibition of HIV-1 entry. The carboxyl group substituted derivatives of FG (8.5-12.8kDa), might display high anti-HIV-1 activity and low anticoagulant activity. Our data supports further the investigation of FG derivatives as novel HIV-1 entry inhibitors targeting CD4i. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Aaptamine Derivatives with Antifungal and Anti-HIV-1 Activities from the South China Sea Sponge Aaptos aaptos

    Directory of Open Access Journals (Sweden)

    Hao-Bing Yu

    2014-12-01

    Full Text Available Five new alkaloids of aaptamine family, compounds (1–5 and three known derivatives (6–8, have been isolated from the South China Sea sponge Aaptos aaptos. The structures of all compounds were unambiguously elucidated by spectroscopic analyses, as well as by comparison with the literature data. Compounds 1–2 are characterized with triazapyrene lactam skeleton, whereas compounds 4–5 share an imidazole-fused aaptamine moiety. These compounds were evaluated in antifungal and anti-HIV-1 assays. Compounds 3, 7, and 8 showed antifungal activity against six fungi, with MIC values in the range of 4 to 64 μg/mL. Compounds 7–8 exhibited anti-HIV-1 activity, with inhibitory rates of 88.0% and 72.3%, respectively, at a concentration of 10 μM.

  19. Enhanced anti-HIV-1 activity of G-quadruplexes comprising locked nucleic acids and intercalating nucleic acids

    DEFF Research Database (Denmark)

    Pedersen, Erik Bjerregaard; Nielsen, Jakob Toudahl; Nielsen, Claus

    2011-01-01

    Two G-quadruplex forming sequences, 50-TGGGAG and the 17-mer sequence T30177, which exhibit anti-HIV-1 activity on cell lines, were modified using either locked nucleic acids (LNA) or via insertions of (R)-1-O-(pyren-1-ylmethyl)glycerol (intercalating nucleic acid, INA) or (R)-1-O-[4-(1-pyrenylet......Two G-quadruplex forming sequences, 50-TGGGAG and the 17-mer sequence T30177, which exhibit anti-HIV-1 activity on cell lines, were modified using either locked nucleic acids (LNA) or via insertions of (R)-1-O-(pyren-1-ylmethyl)glycerol (intercalating nucleic acid, INA) or (R)-1-O-[4......-(1-pyrenylethynyl)phenylmethyl]glycerol (twisted intercalating nucleic acid, TINA). Incorporation of LNA or INA/TINA monomers provide as much as 8-fold improvement of anti-HIV-1 activity. We demonstrate for the first time a detailed analysis of the effect the incorporation of INA/TINA monomers in quadruplex forming...... of the antiviral QFOs in the present study formed more thermally stable G-quadruplexes and also high-order G-quadruplex structures which might be responsible for the increased antiviral activity observed....

  20. Evaluation of anti-HIV-1 activity of a new iridoid glycoside isolated from Avicenna marina, in vitro.

    Science.gov (United States)

    Behbahani, Mandana

    2014-11-01

    This study was carried out to check the efficacy of methanol seed extract of Avicenna marina and its column chromatographic fractions on Peripheral Blood Mono nuclear Cells (PBMCs) toxicity and HIV-1 replication. The anti-HIV-1 activities of crude methanol extract and its fractions were performed by use of real-time polymerase chain reaction (PCR) assay and HIV-1 p24 antigen kit. A time of drug addiction approach was also done to identify target of anti-HIV compound. The activity of the extracts on CD4, CD3, CD19 and CD45 expression in lymphocytes population was performed by use of flow cytometry. The most active anti-HIV agent was detected by spectroscopic analysis as 2'-O-(4-methoxycinnamoyl) mussaenosidic acid. The apparent effective concentrations for 50% virus replication (EC50) of methanol extract and iridoid glycoside were 45 and 0.1 μg/ml respectively. The iridoid glycoside also did not have any observable effect on the proportion of CD4, CD3, CD19 and CD45 cells or on the intensity of their expressions on PBMCs. In addition, the expression level of C-C chemokine receptor type 5 (CCR5) and chemokine receptor type 4 (CXCR4) on CD4(+) T cells were decreased in cells treated with this iridoid glycoside. The reduction of these two HIV coreceptors and the result of time of addition study demonstrated that this iridoid glycoside restricts HIV-1 replication on the early stage of HIV infection. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Anti-HIV-1 protease activities of crude extracts of some Garcinia ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-03-22

    Mar 22, 2010 ... the life cycle of the virus is the HIV-1 protease (PR) which process viral proteins into functional enzymes and structural proteins. HIV-1 PR plays a key role in the maturity and infectivity of the virus hence it has become an important target in HIV drug development (Kohl et al., 1988). HIV-1. PR function as a ...

  2. Lignosulfonic acid exhibits broadly anti-HIV-1 activity--potential as a microbicide candidate for the prevention of HIV-1 sexual transmission.

    Directory of Open Access Journals (Sweden)

    Min Qiu

    Full Text Available Some secondary metabolites from plants show to have potent inhibitory activities against microbial pathogens, such as human immunodeficiency virus (HIV, herpes simplex virus (HSV, Treponema pallidum, Neisseria gonorrhoeae, etc. Here we report that lignosulfonic acid (LSA, a polymeric lignin derivative, exhibits potent and broad activity against HIV-1 isolates of diverse subtypes including two North America strains and a number of Chinese clinical isolates values ranging from 21.4 to 633 nM. Distinct from other polyanions, LSA functions as an entry inhibitor with multiple targets on viral gp120 as well as on host receptor CD4 and co-receptors CCR5/CXCR4. LSA blocks viral entry as determined by time-of-drug addiction and cell-cell fusion assays. Moreover, LSA inhibits CD4-gp120 interaction by blocking the binding of antibodies specific for CD4-binding sites (CD4bs and for the V3 loop of gp120. Similarly, LSA interacts with CCR5 and CXCR4 via its inhibition of specific anti-CCR5 and anti-CXCR4 antibodies, respectively. Interestingly, the combination of LSA with AZT and Nevirapine exhibits synergism in viral inhibition. For the purpose of microbicide development, LSA displays low in vitro cytotoxicity to human genital tract epithelial cells, does not stimulate NF-κB activation and has no significant up-regulation of IL-1α/β and IL-8 as compared with N-9. Lastly, LSA shows no adverse effect on the epithelial integrity and the junctional protein expression. Taken together, our findings suggest that LSA can be a potential candidate for tropical microbicide.

  3. A duodenally absorbable CXC chemokine receptor 4 antagonist, KRH-1636, exhibits a potent and selective anti-HIV-1 activity

    Science.gov (United States)

    Ichiyama, Kozi; Yokoyama-Kumakura, Sei; Tanaka, Yuetsu; Tanaka, Reiko; Hirose, Kunitaka; Bannai, Kenji; Edamatsu, Takeo; Yanaka, Mikiro; Niitani, Yoshiaki; Miyano-Kurosaki, Naoko; Takaku, Hiroshi; Koyanagi, Yoshio; Yamamoto, Naoki

    2003-01-01

    A low molecular weight nonpeptide compound, KRH-1636, efficiently blocked replication of various T cell line-tropic (X4) HIV type 1 (HIV-1) in MT-4 cells and peripheral blood mononuclear cells through the inhibition of viral entry and membrane fusion via the CXC chemokine receptor (CXCR)4 coreceptor but not via CC chemokine receptor 5. It also inhibited binding of the CXC chemokine, stromal cell-derived factor 1α, to CXCR4 specifically and subsequent signal transduction. KRH-1636 prevented monoclonal antibodies from binding to CXCR4 without down-modulation of the coreceptor. The inhibitory effect against X4 viral replication by KRH-1636 was clearly reproduced in the human peripheral blood lymphocyte/severe combined immunodeficiency mouse system. Furthermore, this compound was absorbed into the blood after intraduodenal administration as judged by anti-HIV-1 activity and liquid chromatography MS in the plasma. Thus, KRH-1636 seems to be a promising agent for the treatment of HIV-1 infection. PMID:12642669

  4. The C-terminal sequence of IFITM1 regulates its anti-HIV-1 activity.

    Directory of Open Access Journals (Sweden)

    Rui Jia

    Full Text Available The interferon-inducible transmembrane (IFITM proteins inhibit a wide range of viruses. We previously reported the inhibition of human immunodeficiency virus type 1 (HIV-1 strain BH10 by human IFITM1, 2 and 3. It is unknown whether other HIV-1 strains are similarly inhibited by IFITMs and whether there exists viral countermeasure to overcome IFITM inhibition. We report here that the HIV-1 NL4-3 strain (HIV-1NL4-3 is not restricted by IFITM1 and its viral envelope glycoprotein is partly responsible for this insensitivity. However, HIV-1NL4-3 is profoundly inhibited by an IFITM1 mutant, known as Δ(117-125, which is deleted of 9 amino acids at the C-terminus. In contrast to the wild type IFITM1, which does not affect HIV-1 entry, the Δ(117-125 mutant diminishes HIV-1NL4-3 entry by 3-fold. This inhibition correlates with the predominant localization of Δ(117-125 to the plasma membrane where HIV-1 entry occurs. In spite of strong conservation of IFITM1 among most species, mouse IFITM1 is 19 amino acids shorter at its C-terminus as compared to human IFITM1 and, like the human IFITM1 mutant Δ(117-125, mouse IFITM1 also inhibits HIV-1 entry. This is the first report illustrating the role of viral envelope protein in overcoming IFITM1 restriction. The results also demonstrate the importance of the C-terminal region of IFITM1 in modulating the antiviral function through controlling protein subcellular localization.

  5. Slaying the Trojan horse: natural killer cells exhibit robust anti-HIV-1 antibody-dependent activation and cytolysis against allogeneic T cells.

    Science.gov (United States)

    Gooneratne, Shayarana L; Richard, Jonathan; Lee, Wen Shi; Finzi, Andrés; Kent, Stephen J; Parsons, Matthew S

    2015-01-01

    Many attempts to design prophylactic human immunodeficiency virus type 1 (HIV-1) vaccines have focused on the induction of neutralizing antibodies (Abs) that block infection by free virions. Despite the focus on viral particles, virus-infected cells, which can be found within mucosal secretions, are more infectious than free virus both in vitro and in vivo. Furthermore, assessment of human transmission couples suggests infected seminal lymphocytes might be responsible for a proportion of HIV-1 transmissions. Although vaccines that induce neutralizing Abs are sought, only some broadly neutralizing Abs efficiently block cell-to-cell transmission of HIV-1. As HIV-1 vaccines need to elicit immune responses capable of controlling both free and cell-associated virus, we evaluated the potential of natural killer (NK) cells to respond in an Ab-dependent manner to allogeneic T cells bearing HIV-1 antigens. This study presents data measuring Ab-dependent anti-HIV-1 NK cell responses to primary and transformed allogeneic T-cell targets. We found that NK cells are robustly activated in an anti-HIV-1 Ab-dependent manner against allogeneic targets and that tested target cells are subject to Ab-dependent cytolysis. Furthermore, the educated KIR3DL1(+) NK cell subset from HLA-Bw4(+) individuals exhibits an activation advantage over the KIR3DL1(-) subset that contains both NK cells educated through other receptor/ligand combinations and uneducated NK cells. These results are intriguing and important for understanding the regulation of Ab-dependent NK cell responses and are potentially valuable for designing Ab-dependent therapies and/or vaccines. NK cell-mediated anti-HIV-1 antibody-dependent functions have been associated with protection from infection and disease progression; however, their role in protecting from infection with allogeneic cells infected with HIV-1 is unknown. We found that HIV-1-specific ADCC antibodies bound to allogeneic cells infected with HIV-1 or coated

  6. New findings on the d(TGGGAG) sequence: Surprising anti-HIV-1 activity.

    Science.gov (United States)

    Romanucci, Valeria; Zarrelli, Armando; Liekens, Sandra; Noppen, Sam; Pannecouque, Christophe; Di Fabio, Giovanni

    2018-02-10

    The biological relevance of tetramolecular G-quadruplexes especially as anti-HIV agents has been extensively reported in the literature over the last years. In the light of our recent results regarding the slow G-quadruplex folding kinetics of ODNs based on d(TGGGAG) sequence, here we report a systematic anti-HIV screening to investigate the impact of the G-quadruplex folding on their anti-HIV activity. In particular, varying the single stranded concentrations of ODNs, it has been tested a pool of ODN sample solutions with different G-quadruplex concentrations. The anti-HIV assays have been designed favouring the limited kinetics involved in the tetramolecular G4-association based on the d(TGGGAG) sequence. Aiming to determine the stoichiometry of G-quadruplex structures in the same experimental conditions of the anti-HIV assays, a native gel electrophoresis was performed. The gel confirmed the G-quadruplex formation for almost all sample solutions while showing the formation of high order G4 structures for the more concentrated ODNs solutions. The most significant result is the discovery of a potent anti-HIV activity of the G-quadruplex formed by the natural d(TGGGAG) sequence (IC 50  = 14 nM) that, until now, has been reported to be completely inactive against HIV infection. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  7. Anti-HIV-1 activities of the extracts from the medicinal plant Linum grandiflorum Desf

    DEFF Research Database (Denmark)

    Mohammed, Magdy M. D.; Christensen, Lars Porskjær; Ibrahim, Nabaweya A.

    2009-01-01

    As part of our screening of anti-AIDS agents from natural sources e.g. Ixora undulata, Paulownia tomentosa, Fortunella margarita, Aegle marmelos and Erythrina abyssinica, the different organic and aqueous extracts of Linum grandiflorum leaves and seeds were evaluated in vitro by the microculture ...

  8. HIV-1 infection of in vitro cultured human monocytes: early events and influence of anti HIV-1 antibodies

    DEFF Research Database (Denmark)

    Arendrup, M; Olofsson, S; Nielsen, Jens Ole

    1994-01-01

    To characterize the role of the humoral immune response on HIV-1 infection of monocytes and macrophages (M phi s) we examined the susceptibility of in vitro cultured monocyte/M phi s to various HIV-1 isolates and the influence of heterologous and particularly autologous anti HIV-1 sera on this in......To characterize the role of the humoral immune response on HIV-1 infection of monocytes and macrophages (M phi s) we examined the susceptibility of in vitro cultured monocyte/M phi s to various HIV-1 isolates and the influence of heterologous and particularly autologous anti HIV-1 sera...... on this infection. Depending on the period of in vitro cultivation and the virus isolate used different patterns of susceptibility were detected. One week old monocyte/M phi s were highly susceptible to HIV-1 infection, in contrast to monocyte/M phi s cultured 4 weeks. The infection by virus isolated immediately...... to CD4 and that post binding events may be common to the infection of lymphocytes. Anti HIV-1 sera showed neutralizing activity against heterologous and even autologous escape virus. This finding, together with the observation that monocytes and M phi s are infected in vivo, suggests that protection...

  9. Synthesis and Anti-HIV-1 Activity of New MKC-442 Analogues with an Alkynyl-Substituted 6-Benzyl Group

    DEFF Research Database (Denmark)

    Aly, Youssef L.; Pedersen, Erik Bjerreg.; La Colla, Paolo

    2007-01-01

    Synthesis and antiviral activities are reported of a series of 6-(3-alkynyl benzyl)-substituted analogues of MKC-442 (6-benzyl-1-(ethoxymethyl)-5-isopropyluracil), a highly potent agent against HIV. The 3-alkynyl group is assumed to give a better stacking of the substituted benzyl group to reverse...... transcriptase (RT) and this was believed to improve antiviral activity against HIV-1. The bromo derivatives, 5-alkyl-6-(3-bromo-benzyl)-1-ethoxymethyl derivatives 7a, b and 5-alkyl-6-(3-bromobenzyl)-1-allyloxymethyl derivatives 9a, b, showed activity against HIV on the same level as their corresponding...

  10. Molecular Mechanisms in Activation of Latent HIV-1

    NARCIS (Netherlands)

    H. Rafati (Haleh)

    2014-01-01

    markdownabstract__Abstract__ Finding a cure for the human immunodeficiency virus type 1 (HIV-1) is extremely challenging. Development of highly active anti-retroviral therapy (HAART), transformed HIV-1 infection from an acute syndrome into chronic disease. Although using HAART results in

  11. Neutralizing Activity of Broadly Neutralizing Anti-HIV-1 Antibodies against Clade B Clinical Isolates Produced in Peripheral Blood Mononuclear Cells.

    Science.gov (United States)

    Cohen, Yehuda Z; Lorenzi, Julio C C; Seaman, Michael S; Nogueira, Lilian; Schoofs, Till; Krassnig, Lisa; Butler, Allison; Millard, Katrina; Fitzsimons, Tomas; Daniell, Xiaoju; Dizon, Juan P; Shimeliovich, Irina; Montefiori, David C; Caskey, Marina; Nussenzweig, Michel C

    2018-03-01

    HIV-1 epidemic. Antibodies with exceptional neutralizing activity against HIV-1 may provide several advantages to traditional HIV drugs, including an improved side-effect profile, a reduced dosing frequency, and immune enhancement. The activity of these antibodies has been established in vitro by utilizing HIV-1 Env-pseudotyped viruses derived from circulating viruses but produced in 293T cells by pairing Env proteins with a backbone vector. We tested PBMC-produced circulating viruses against five anti-HIV-1 antibodies currently in clinical development. We found that the activity of these antibodies against PBMC isolates is significantly less than that against 293T Env-pseudotyped viruses. This decline varied among the antibodies tested, with some demonstrating moderate reductions in activity and others showing an almost 100-fold reduction. As the development of these antibodies progresses, it will be critical to determine how the results of different in vitro tests correspond to performance in the clinic. Copyright © 2018 Cohen et al.

  12. Latent HIV-1 is activated by exosomes from cells infected with either replication-competent or defective HIV-1.

    Science.gov (United States)

    Arenaccio, Claudia; Anticoli, Simona; Manfredi, Francesco; Chiozzini, Chiara; Olivetta, Eleonora; Federico, Maurizio

    2015-10-26

    Completion of HIV life cycle in CD4(+) T lymphocytes needs cell activation. We recently reported that treatment of resting CD4(+) T lymphocytes with exosomes produced by HIV-1 infected cells induces cell activation and susceptibility to HIV replication. Here, we present data regarding the effects of these exosomes on cells latently infected with HIV-1. HIV-1 latently infecting U937-derived U1 cells was activated upon challenge with exosomes purified from the supernatant of U937 cells chronically infected with HIV-1. This effect was no more detectable when exosomes from cells infected with HIV-1 strains either nef-deleted or expressing a functionally defective Nef were used, indicating that Nef is the viral determinant of exosome-induced HIV-1 activation. Treatment with either TAPI-2, i.e., a specific inhibitor of the pro-TNFα-processing ADAM17 enzyme, or anti-TNFα Abs abolished HIV-1 activation. Hence, similar to what previously demonstrated for the exosome-mediated activation of uninfected CD4(+) T lymphocytes, the Nef-ADAM17-TNFα axis is part of the mechanism of latent HIV-1 activation. It is noteworthy that these observations have been reproduced using: (1) primary CD4(+) T lymphocytes latently infected with HIV-1; (2) exosomes from both primary CD4(+) T lymphocytes and macrophages acutely infected with HIV-1; (3) co-cultures of HIV-1 acutely infected CD4(+) T lymphocytes and autologous lymphocytes latently infected with HIV-1, and (4) exosomes from cells expressing a defective HIV-1. Our results strongly suggest that latent HIV-1 can be activated by TNFα released by cells upon ingestion of exosomes released by infected cells, and that this effect depends on the activity of exosome-associated ADAM17. These pieces of evidence shed new light on the mechanism of HIV reactivation in latent reservoirs, and might also be relevant to design new therapeutic interventions focused on HIV eradication.

  13. Structure-Based Design of a Small Molecule CD4-Antagonist with Broad Spectrum Anti-HIV-1 Activity.

    Science.gov (United States)

    Curreli, Francesca; Kwon, Young Do; Zhang, Hongtao; Scacalossi, Daniel; Belov, Dmitry S; Tikhonov, Artur A; Andreev, Ivan A; Altieri, Andrea; Kurkin, Alexander V; Kwong, Peter D; Debnath, Asim K

    2015-09-10

    Earlier we reported the discovery and design of NBD-556 and their analogs which demonstrated their potential as HIV-1 entry inhibitors. However, progress in developing these inhibitors has been stymied by their CD4-agonist properties, an unfavorable trait for use as drug. Here, we demonstrate the successful conversion of a full CD4-agonist (NBD-556) through a partial CD4-agonist (NBD-09027), to a full CD4-antagonist (NBD-11021) by structure-based modification of the critical oxalamide midregion, previously thought to be intolerant of modification. NBD-11021 showed unprecedented neutralization breath for this class of inhibitors, with pan-neutralization against a panel of 56 Env-pseudotyped HIV-1 representing diverse subtypes of clinical isolates (IC50 as low as 270 nM). The cocrystal structure of NBD-11021 complexed to a monomeric HIV-1 gp120 core revealed its detail binding characteristics. The study is expected to provide a framework for further development of NBD series as HIV-1 entry inhibitors for clinical application against AIDS.

  14. The anti-HIV-1 effect of scutellarin

    International Nuclear Information System (INIS)

    Zhang Gaohong; Wang Qian; Chen Jijun; Zhang Xuemei; Tam, S.-C.; Zheng Yongtang

    2005-01-01

    Scutellarin was purified from the plant Erigeron breviscapus (Vant.) Hand.-Mazz. The activity against 3 strains of human immunodeficiency virus (HIV) was determined in vitro in this study. These were laboratory-derived virus (HIV-1 IIIB ), drug-resistant virus (HIV-1 74V ), and low-passage clinical isolated virus (HIV-1 KM018 ). From syncytia inhibition study, the EC 50 of scutellarin against HIV-1 IIIB direct infection in C8166 cells was 26 μM with a therapeutic index of 36. When the mode of infection changed from acute infection to cell-to-cell infection, this compound became even more potent and the EC 50 reduced to 15 μM. This suggested that cell fusion might be affected by this compound. By comparing the inhibitory effects on p24 antigen, scutellarin was also found to be active against HIV-1 74V (EC 50 253 μM) and HIV-1 KM018 (EC 50 136 μM) infection with significant difference in potency. The mechanism of its action was also explored in this study. At a concentration of 433 μM, scutellarin inhibited 48% of the cell free recombinant HIV-1 RT activity. It also caused 82% inhibition of HIV-1 particle attachment and 45% inhibition of fusion at the concentrations of 54 μM. In summary, scutellarin was found to inhibit several strains of HIV-1 replication with different potencies. It appeared to inhibit HIV-1 RT activity, HIV-1 particle attachment and cell fusion. These are essential activities for viral transmission and replication

  15. SAMHD1 degradation enhances active suppression of dendritic cell maturation by HIV-1

    NARCIS (Netherlands)

    Hertoghs, Nina; van der Aar, Angelic M. G.; Setiawan, Laurentia C.; Kootstra, Neeltje A.; Gringhuis, Sonja I.; Geijtenbeek, Teunis B. H.

    2015-01-01

    A hallmark of HIV-1 infection is the lack of sterilizing immunity. Dendritic cells (DCs) are crucial in the induction of immunity, and lack of DC activation might underlie the absence of an effective anti-HIV-1 response. We have investigated how HIV-1 infection affects maturation of DCs. Our data

  16. CXCR4-derived synthetic peptides inducing anti-HIV-1 antibodies.

    Science.gov (United States)

    Hashimoto, Chie; Nomura, Wataru; Narumi, Tetsuo; Fujino, Masayuki; Nakahara, Toru; Yamamoto, Naoki; Murakami, Tsutomu; Tamamura, Hirokazu

    2013-11-15

    Despite almost 30 years since the identification of the human immunodeficiency virus type I (HIV-1), development of effective AIDS vaccines has been hindered by the high mutability of HIV-1. The HIV-1 co-receptors CCR5 and CXCR4 are genetically stable, but viral proteins may mutate rapidly during the course of infection. CXCR4 is a seven transmembrane G protein-coupled receptor, possessing an N-terminal region (NT) and three extracellular loops (ECL1-3). Previous studies have shown that the CXCR4-ED-derived peptides inhibit the entry of HIV-1 by interacting with gp120, an HIV-1 envelope glycoprotein. In the present study, antigenicity of CXCR4-derived peptides has been investigated and the anti-HIV-1 effects of induced antisera have been assessed. It was found that CXCR4-ED-derived antigen molecules immunize mice, showing that the linear peptides have higher antigenicity than the cyclic peptides. The L1- and L2-induced antisera inhibited the HIV-1 entry significantly, while anti-N1 antibodies have no inhibitory activity. This study produced promising examples for the design of AIDS vaccines which target the human protein and can overcome mutability of HIV-1. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. The macrophage in HIV-1 infection: From activation to deactivation?

    Directory of Open Access Journals (Sweden)

    Varin Audrey

    2010-04-01

    Full Text Available Abstract Macrophages play a crucial role in innate and adaptative immunity in response to microorganisms and are an important cellular target during HIV-1 infection. Recently, the heterogeneity of the macrophage population has been highlighted. Classically activated or type 1 macrophages (M1 induced in particular by IFN-γ display a pro-inflammatory profile. The alternatively activated or type 2 macrophages (M2 induced by Th-2 cytokines, such as IL-4 and IL-13 express anti-inflammatory and tissue repair properties. Finally IL-10 has been described as the prototypic cytokine involved in the deactivation of macrophages (dM. Since the capacity of macrophages to support productive HIV-1 infection is known to be modulated by cytokines, this review shows how modulation of macrophage activation by cytokines impacts the capacity to support productive HIV-1 infection. Based on the activation status of macrophages we propose a model starting with M1 classically activated macrophages with accelerated formation of viral reservoirs in a context of Th1 and proinflammatory cytokines. Then IL-4/IL-13 alternatively activated M2 macrophages will enter into the game that will stop the expansion of the HIV-1 reservoir. Finally IL-10 deactivation of macrophages will lead to immune failure observed at the very late stages of the HIV-1 disease.

  18. 5-Modified-2'-dU and 2'-dC as mutagenic anti HIV-1 proliferation agents: synthesis and activity.

    Science.gov (United States)

    El Safadi, Yazan; Paillart, Jean-Christophe; Laumond, Géraldine; Aubertin, Anne-Marie; Burger, Alain; Marquet, Roland; Vivet-Boudou, Valérie

    2010-02-25

    With the goal of limiting HIV-1 proliferation by increasing the mutation rate of the viral genome, we synthesized a series of pyrimidine nucleoside analogues modified in position 5 of the aglycone moiety but unmodified on the sugar part. The synthetic strategies allow us to prepare the targeted compounds directly from commercially available nucleosides. All compounds were tested for their ability to reduce HIV-1 proliferation in cell culture. Two of them (5-hydroxymethyl-2'-dU (1c) and 5-hydroxymethyl-2'-dC (2c)) displayed a moderate antiviral activity in single passage experiments. The same two compounds plus two additional ones (5-carbamoyl-2'-dU (1a) and 5-carbamoylmethyl-2'-dU (1b)) were potent inhibitors of HIV-1 RT activity in serial passage assays, in which they induced a progressive loss of HIV-1 replication. In addition, viruses collected after seven passages in the presence of 1c and 2c replicated very poorly after withdrawal of these compounds, consistent with the accumulation of deleterious mutations in the HIV-1 genome.

  19. Pharmacokinetics and anti-HIV-1 efficacy of negatively charged human serum albumins in mice

    NARCIS (Netherlands)

    Kuipers, M E; Swart, P J; Schutten, Martin; Smit, C; Proost, J H; Osterhaus, A D; Meijer, D K

    Negatively charged albumins (NCAs, with the prototypes succinylated human serum albumin (Suc-HSA) and aconitylated human serum albumin (Aco-HSA)), modified proteins with a potent anti-human immunodeficiency virus type 1 (anti-HIV-1) activity in vitro, were studied for their pharmacokinetic behaviour

  20. HIV-1 infection of in vitro cultured human monocytes: early events and influence of anti HIV-1 antibodies

    DEFF Research Database (Denmark)

    Arendrup, M; Olofsson, S; Nielsen, Jens Ole

    1994-01-01

    To characterize the role of the humoral immune response on HIV-1 infection of monocytes and macrophages (M phi s) we examined the susceptibility of in vitro cultured monocyte/M phi s to various HIV-1 isolates and the influence of heterologous and particularly autologous anti HIV-1 sera...... on this infection. Depending on the period of in vitro cultivation and the virus isolate used different patterns of susceptibility were detected. One week old monocyte/M phi s were highly susceptible to HIV-1 infection, in contrast to monocyte/M phi s cultured 4 weeks. The infection by virus isolated immediately...

  1. Inhibitory effect of aqueous dandelion extract on HIV-1 replication and reverse transcriptase activity

    Science.gov (United States)

    2011-01-01

    Background Acquired immunodeficiency syndrome (AIDS), which is caused by the human immunodeficiency virus (HIV), is an immunosuppressive disease that results in life-threatening opportunistic infections. The general problems in current therapy include the constant emergence of drug-resistant HIV strains, adverse side effects and the unavailability of treatments in developing countries. Natural products from herbs with the abilities to inhibit HIV-1 life cycle at different stages, have served as excellent sources of new anti-HIV-1 drugs. In this study, we aimed to investigate the anti-HIV-1 activity of aqueous dandelion extract. Methods The pseudotyped HIV-1 virus has been utilized to explore the anti-HIV-1 activity of dandelion, the level of HIV-1 replication was assessed by the percentage of GFP-positive cells. The inhibitory effect of the dandelion extract on reverse transcriptase activity was assessed by the reverse transcriptase assay kit. Results Compared to control values obtained from cells infected without treatment, the level of HIV-1 replication and reverse transcriptase activity were decreased in a dose-dependent manner. The data suggest that dandelion extract has a potent inhibitory activity against HIV-1 replication and reverse transcriptase activity. The identification of HIV-1 antiviral compounds from Taraxacum officinale should be pursued. Conclusions The dandelion extract showed strong activity against HIV-1 RT and inhibited both the HIV-1 vector and the hybrid-MoMuLV/MoMuSV retrovirus replication. These findings provide additional support for the potential therapeutic efficacy of Taraxacum officinale. Extracts from this plant may be regarded as another starting point for the development of an antiretroviral therapy with fewer side effects. PMID:22078030

  2. Inhibitory effect of aqueous dandelion extract on HIV-1 replication and reverse transcriptase activity

    Directory of Open Access Journals (Sweden)

    Han Huamin

    2011-11-01

    Full Text Available Abstract Background Acquired immunodeficiency syndrome (AIDS, which is caused by the human immunodeficiency virus (HIV, is an immunosuppressive disease that results in life-threatening opportunistic infections. The general problems in current therapy include the constant emergence of drug-resistant HIV strains, adverse side effects and the unavailability of treatments in developing countries. Natural products from herbs with the abilities to inhibit HIV-1 life cycle at different stages, have served as excellent sources of new anti-HIV-1 drugs. In this study, we aimed to investigate the anti-HIV-1 activity of aqueous dandelion extract. Methods The pseudotyped HIV-1 virus has been utilized to explore the anti-HIV-1 activity of dandelion, the level of HIV-1 replication was assessed by the percentage of GFP-positive cells. The inhibitory effect of the dandelion extract on reverse transcriptase activity was assessed by the reverse transcriptase assay kit. Results Compared to control values obtained from cells infected without treatment, the level of HIV-1 replication and reverse transcriptase activity were decreased in a dose-dependent manner. The data suggest that dandelion extract has a potent inhibitory activity against HIV-1 replication and reverse transcriptase activity. The identification of HIV-1 antiviral compounds from Taraxacum officinale should be pursued. Conclusions The dandelion extract showed strong activity against HIV-1 RT and inhibited both the HIV-1 vector and the hybrid-MoMuLV/MoMuSV retrovirus replication. These findings provide additional support for the potential therapeutic efficacy of Taraxacum officinale. Extracts from this plant may be regarded as another starting point for the development of an antiretroviral therapy with fewer side effects.

  3. An anti-HIV-1 gp120 antibody expressed as an endocytotic transmembrane protein mediates internalization of HIV-1

    International Nuclear Information System (INIS)

    Tan, Yee-Joo; Lim, S.-P.; Ting, Anthony E.; Goh, Phuay-Yee; Tan, Y.H.; Lim, Seng Gee; Hong Wanjin

    2003-01-01

    In this study, we used HIV-1 as a model to demonstrate a novel approach for receptor-independent cell entry of virus. The heavy chain of an anti-HIV-1 gp120 antibody was engineered with endocytotic and transmembrane motifs from either the cation-independent mannose 6-phospate receptor or the low-density lipoprotein receptor. Flow cytometry and immunofluorescence studies showed that the chimeric antibodies were expressed on the cell surface and can undergo rapid internalization. Furthermore, one of the chimeric antibodies was able to bind and internalize HIV-1. Using a luciferase reporter HIV-1, we further showed that internalized viruses could undergo replication. Therefore, we have demonstrated a proof-of-principle of a novel method that can be used to internalize virus into cells, without prior knowledge of the cellular receptor for the virus. We propose that this approach would be particularly useful for studying viruses whose cellular receptor(s) is not known

  4. A Cinnamon-Derived Procyanidin Compound Displays Anti-HIV-1 Activity by Blocking Heparan Sulfate- and Co-Receptor- Binding Sites on gp120 and Reverses T Cell Exhaustion via Impeding Tim-3 and PD-1 Upregulation.

    Directory of Open Access Journals (Sweden)

    Bridgette Janine Connell

    Full Text Available Amongst the many strategies aiming at inhibiting HIV-1 infection, blocking viral entry has been recently recognized as a very promising approach. Using diverse in vitro models and a broad range of HIV-1 primary patient isolates, we report here that IND02, a type A procyanidin polyphenol extracted from cinnamon, that features trimeric and pentameric forms displays an anti-HIV-1 activity against CXCR4 and CCR5 viruses with 1-7 μM ED50 for the trimer. Competition experiments, using a surface plasmon resonance-based binding assay, revealed that IND02 inhibited envelope binding to CD4 and heparan sulphate (HS as well as to an antibody (mAb 17b directed against the gp120 co-receptor binding site with an IC50 in the low μM range. IND02 has thus the remarkable property of simultaneously blocking gp120 binding to its major host cell surface counterparts. Additionally, the IND02-trimer impeded up-regulation of the inhibitory receptors Tim-3 and PD-1 on CD4+ and CD8+ cells, thereby demonstrating its beneficial effect by limiting T cell exhaustion. Among naturally derived products significantly inhibiting HIV-1, the IND02-trimer is the first component demonstrating an entry inhibition property through binding to the viral envelope glycoprotein. These data suggest that cinnamon, a widely consumed spice, could represent a novel and promising candidate for a cost-effective, natural entry inhibitor for HIV-1 which can also down-modulate T cell exhaustion markers Tim-3 and PD-1.

  5. Cytotoxic and anti-HIV-1 caged xanthones from the resin and fruits of Garcinia hanburyi.

    Science.gov (United States)

    Reutrakul, Vichai; Anantachoke, Natthinee; Pohmakotr, Manat; Jaipetch, Thaworn; Sophasan, Samaisukh; Yoosook, Chalobon; Kasisit, Jittra; Napaswat, Chanita; Santisuk, Thawatchai; Tuchinda, Patoomratana

    2007-01-01

    Three new caged xanthones, 7-methoxydesoxymorellin (1), 2-isoprenylforbesione (2) and 8,8a-epoxymorellic acid (3), together with nine known caged xanthones were isolated from the EtOAc extracts of resin and fruits of Garcinia hanburyi. The structures were determined by spectroscopic methods. Most of the isolated compounds showed significant cytotoxicities against a panel of mammalian cancer cell lines. Compound 3, together with the known compounds desoxymorellin, morellic acid, gambogic acid, hanburin, forbesione and dihydroisomorellin, exhibited anti-HIV-1 activity in the reverse transcriptase (RT) assay while the known compounds desoxygambogenin and dihydroisomorellin were found moderately active in the syncytium assay. This work represents the first report on the anti-HIV-1 activities of caged xanthones.

  6. Anti-HIV-1 activity of cellulose acetate phthalate: synergy with soluble CD4 and induction of "dead-end" gp41 six-helix bundles.

    Science.gov (United States)

    Neurath, A Robert; Strick, Nathan; Jiang, Shibo; Li, Yun-Yao; Debnath, Asim K

    2002-04-30

    Cellulose acetate phthalate (CAP), a promising candidate microbicide for prevention of sexual transmission of the human immunodeficiency virus type 1 (HIV-1) and other sexually transmitted disease (STD) pathogens, was shown to inactivate HIV-1 and to block the coreceptor binding site on the virus envelope glycoprotein gp120. It did not interfere with virus binding to CD4. Since CD4 is the primary cellular receptor for HIV-1, it was of interest to study CAP binding to HIV-1 complexes with soluble CD4 (sCD4) and its consequences, including changes in the conformation of the envelope glycoprotein gp41 within virus particles. Enzyme-linked immunosorbent assays (ELISA) were used to study CAP binding to HIV-1-sCD4 complexes and to detect gp41 six-helix bundles accessible on virus particles using antibodies specific for the alpha-helical core domain of gp41. 1) Pretreatment of HIV-1 with sCD4 augments subsequent binding of CAP; 2) there is synergism between CAP and sCD4 for inhibition of HIV-1 infection; 3) treatment of HIV-1 with CAP induced the formation of gp41 six-helix bundles. CAP and sCD4 bind to distinct sites on HIV-1 IIIB and BaL virions and their simultaneous binding has profound effects on virus structure and infectivity. The formation of gp41 six-helical bundles, induced by CAP, is known to render the virus incompetent for fusion with target cells thus preventing infection.

  7. Anti-HIV-1 activity of cellulose acetate phthalate: Synergy with soluble CD4 and induction of "dead-end" gp41 six-helix bundles

    Directory of Open Access Journals (Sweden)

    Li Yun-Yao

    2002-04-01

    Full Text Available Abstract Background Cellulose acetate phthalate (CAP, a promising candidate microbicide for prevention of sexual transmission of the human immunodeficiency virus type 1 (HIV-1 and other sexually transmitted disease (STD pathogens, was shown to inactivate HIV-1 and to block the coreceptor binding site on the virus envelope glycoprotein gp120. It did not interfere with virus binding to CD4. Since CD4 is the primary cellular receptor for HIV-1, it was of interest to study CAP binding to HIV-1 complexes with soluble CD4 (sCD4 and its consequences, including changes in the conformation of the envelope glycoprotein gp41 within virus particles. Methods Enzyme-linked immunosorbent assays (ELISA were used to study CAP binding to HIV-1-sCD4 complexes and to detect gp41 six-helix bundles accessible on virus particles using antibodies specific for the α-helical core domain of gp41. Results 1 Pretreatment of HIV-1 with sCD4 augments subsequent binding of CAP; 2 there is synergism between CAP and sCD4 for inhibition of HIV-1 infection; 3 treatment of HIV-1 with CAP induced the formation of gp41 six-helix bundles. Conclusions CAP and sCD4 bind to distinct sites on HIV-1 IIIB and BaL virions and their simultaneous binding has profound effects on virus structure and infectivity. The formation of gp41 six-helical bundles, induced by CAP, is known to render the virus incompetent for fusion with target cells thus preventing infection.

  8. Creation of chimeric human/rabbit APOBEC1 with HIV-1 restriction and DNA mutation activities

    Science.gov (United States)

    Ikeda, Terumasa; Ong, Eugene Boon Beng; Watanabe, Nobumoto; Sakaguchi, Nobuo; Maeda, Kazuhiko; Koito, Atsushi

    2016-01-01

    APOBEC1 (A1) proteins from lagomorphs and rodents have deaminase-dependent restriction activity against HIV-1, whereas human A1 exerts a negligible effect. To investigate these differences in the restriction of HIV-1 by A1 proteins, a series of chimeric proteins combining rabbit and human A1s was constructed. Homology models of the A1s indicated that their activities derive from functional domains that likely act in tandem through a dimeric interface. The C-terminal region containing the leucine-rich motif and the dimerization domains of rabbit A1 is important for its anti-HIV-1 activity. The A1 chimeras with strong anti-HIV-1 activity were incorporated into virions more efficiently than those without anti-HIV-1 activity, and exhibited potent DNA-mutator activity. Therefore, the C-terminal region of rabbit A1 is involved in both its packaging into the HIV-1 virion and its deamination activity against both viral cDNA and genomic RNA. This study identifies the novel molecular mechanism underlying the target specificity of A1.

  9. Cloaked similarity between HIV-1 and SARS-CoV suggests an anti-SARS strategy

    Directory of Open Access Journals (Sweden)

    Kliger Yossef

    2003-09-01

    Full Text Available Abstract Background Severe acute respiratory syndrome (SARS is a febrile respiratory illness. The disease has been etiologically linked to a novel coronavirus that has been named the SARS-associated coronavirus (SARS-CoV, whose genome was recently sequenced. Since it is a member of the Coronaviridae, its spike protein (S2 is believed to play a central role in viral entry by facilitating fusion between the viral and host cell membranes. The protein responsible for viral-induced membrane fusion of HIV-1 (gp41 differs in length, and has no sequence homology with S2. Results Sequence analysis reveals that the two viral proteins share the sequence motifs that construct their active conformation. These include (1 an N-terminal leucine/isoleucine zipper-like sequence, and (2 a C-terminal heptad repeat located upstream of (3 an aromatic residue-rich region juxtaposed to the (4 transmembrane segment. Conclusions This study points to a similar mode of action for the two viral proteins, suggesting that anti-viral strategy that targets the viral-induced membrane fusion step can be adopted from HIV-1 to SARS-CoV. Recently the FDA approved Enfuvirtide, a synthetic peptide corresponding to the C-terminal heptad repeat of HIV-1 gp41, as an anti-AIDS agent. Enfuvirtide and C34, another anti HIV-1 peptide, exert their inhibitory activity by binding to a leucine/isoleucine zipper-like sequence in gp41, thus inhibiting a conformational change of gp41 required for its activation. We suggest that peptides corresponding to the C-terminal heptad repeat of the S2 protein may serve as inhibitors for SARS-CoV entry.

  10. Alterations in HIV-1 LTR promoter activity during AIDS progression

    International Nuclear Information System (INIS)

    Hiebenthal-Millow, Kirsten; Greenough, Thomas C.; Bretttler, Doreen B.; Schindler, Michael; Wildum, Steffen; Sullivan, John L.; Kirchhoff, Frank

    2003-01-01

    HIV-1 variants evolving in AIDS patients frequently show increased replicative capacity compared to those present during early asymptomatic infection. It is known that late stage HIV-1 variants often show an expanded coreceptor tropism and altered Nef function. In the present study we investigated whether enhanced HIV-1 LTR promoter activity might also evolve during disease progression. Our results demonstrate increased LTR promoter activity after AIDS progression in 3 of 12 HIV-1-infected individuals studied. Further analysis revealed that multiple alterations in the U3 core-enhancer and in the transactivation-response (TAR) region seem to be responsible for the enhanced functional activity. Our findings show that in a subset of HIV-1-infected individuals enhanced LTR transcription contributes to the increased replicative potential of late stage virus isolates and might accelerate disease progression

  11. Ectopic expression of anti-HIV-1 shRNAs protects CD8{sup +} T cells modified with CD4ζ CAR from HIV-1 infection and alleviates impairment of cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Kamata, Masakazu, E-mail: masa3k@ucla.edu [Division of Hematology-Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States); Kim, Patrick Y. [Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States); Ng, Hwee L. [Division of Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States); Ringpis, Gene-Errol E.; Kranz, Emiko; Chan, Joshua; O' Connor, Sean [Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States); Yang, Otto O. [Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States); Division of Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States); UCLA AIDS Institute, Los Angeles, CA (United States); AIDS Healthcare Foundation, Los Angeles, CA (United States); Chen, Irvin S.Y. [Division of Hematology-Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States); Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA (United States); UCLA AIDS Institute, Los Angeles, CA (United States)

    2015-07-31

    Chimeric antigen receptors (CARs) are artificially engineered receptors that confer a desired specificity to immune effector T cells. As an HIV-1-specific CAR, CD4ζ CAR has been extensively tested in vitro as well as in clinical trials. T cells modified with this CAR mediated highly potent anti-HIV-1 activities in vitro and were well-tolerated in vivo, but exerted limited effects on viral load and reservoir size due to poor survival and/or functionality of the transduced cells in patients. We hypothesize that ectopic expression of CD4ζ on CD8{sup +} T cells renders them susceptible to HIV-1 infection, resulting in poor survival of those cells. To test this possibility, highly purified CD8{sup +} T cells were genetically modified with a CD4ζ-encoding lentiviral vector and infected with HIV-1. CD8{sup +} T cells were vulnerable to HIV-1 infection upon expression of CD4ζ as evidenced by elevated levels of p24{sup Gag} in cells and culture supernatants. Concurrently, the number of CD4ζ-modified CD8{sup +} T cells was reduced relative to control cells upon HIV-1 infection. To protect these cells from HIV-1 infection, we co-expressed two anti-HIV-1 shRNAs previously developed by our group together with CD4ζ. This combination vector was able to suppress HIV-1 infection without impairing HIV-1-dependent effector activities of CD4ζ. In addition, the number of CD4ζ-modified CD8{sup +} T cells maintained similar levels to that of the control even under HIV-1 infection. These results suggest that protecting CD4ζ-modified CD8{sup +} T cells from HIV-1 infection is required for prolonged HIV-1-specific immune surveillance. - Highlights: • Ectopic expression of CD4ζ CAR in CD8{sup +} T cells renders them susceptible to HIV-1 infection. • Co-expression of two anti-HIV-1 shRNAs protects CD4ζ CAR-modified CD8{sup +} T cells from HIV-1 infection. • Protecting CD4ζ CAR-modified CD8{sup +} T cells from HIV-1 infection suppresses its cytopathic effect.

  12. Ectopic expression of anti-HIV-1 shRNAs protects CD8+ T cells modified with CD4ζ CAR from HIV-1 infection and alleviates impairment of cell proliferation

    International Nuclear Information System (INIS)

    Kamata, Masakazu; Kim, Patrick Y.; Ng, Hwee L.; Ringpis, Gene-Errol E.; Kranz, Emiko; Chan, Joshua; O'Connor, Sean; Yang, Otto O.; Chen, Irvin S.Y.

    2015-01-01

    Chimeric antigen receptors (CARs) are artificially engineered receptors that confer a desired specificity to immune effector T cells. As an HIV-1-specific CAR, CD4ζ CAR has been extensively tested in vitro as well as in clinical trials. T cells modified with this CAR mediated highly potent anti-HIV-1 activities in vitro and were well-tolerated in vivo, but exerted limited effects on viral load and reservoir size due to poor survival and/or functionality of the transduced cells in patients. We hypothesize that ectopic expression of CD4ζ on CD8 + T cells renders them susceptible to HIV-1 infection, resulting in poor survival of those cells. To test this possibility, highly purified CD8 + T cells were genetically modified with a CD4ζ-encoding lentiviral vector and infected with HIV-1. CD8 + T cells were vulnerable to HIV-1 infection upon expression of CD4ζ as evidenced by elevated levels of p24 Gag in cells and culture supernatants. Concurrently, the number of CD4ζ-modified CD8 + T cells was reduced relative to control cells upon HIV-1 infection. To protect these cells from HIV-1 infection, we co-expressed two anti-HIV-1 shRNAs previously developed by our group together with CD4ζ. This combination vector was able to suppress HIV-1 infection without impairing HIV-1-dependent effector activities of CD4ζ. In addition, the number of CD4ζ-modified CD8 + T cells maintained similar levels to that of the control even under HIV-1 infection. These results suggest that protecting CD4ζ-modified CD8 + T cells from HIV-1 infection is required for prolonged HIV-1-specific immune surveillance. - Highlights: • Ectopic expression of CD4ζ CAR in CD8 + T cells renders them susceptible to HIV-1 infection. • Co-expression of two anti-HIV-1 shRNAs protects CD4ζ CAR-modified CD8 + T cells from HIV-1 infection. • Protecting CD4ζ CAR-modified CD8 + T cells from HIV-1 infection suppresses its cytopathic effect

  13. HIV-1 activates macrophages independent of Toll-like receptors.

    Directory of Open Access Journals (Sweden)

    Joseph N Brown

    Full Text Available Macrophages provide an interface between innate and adaptive immunity and are important long-lived reservoirs for Human Immunodeficiency Virus Type-1 (HIV-1. Multiple genetic networks involved in regulating signal transduction cascades and immune responses in macrophages are coordinately modulated by HIV-1 infection.To evaluate complex interrelated processes and to assemble an integrated view of activated signaling networks, a systems biology strategy was applied to genomic and proteomic responses by primary human macrophages over the course of HIV-1 infection. Macrophage responses, including cell cycle, calcium, apoptosis, mitogen-activated protein kinases (MAPK, and cytokines/chemokines, to HIV-1 were temporally regulated, in the absence of cell proliferation. In contrast, Toll-like receptor (TLR pathways remained unaltered by HIV-1, although TLRs 3, 4, 7, and 8 were expressed and responded to ligand stimulation in macrophages. HIV-1 failed to activate phosphorylation of IRAK-1 or IRF-3, modulate intracellular protein levels of Mx1, an interferon-stimulated gene, or stimulate secretion of TNF, IL-1beta, or IL-6. Activation of pathways other than TLR was inadequate to stimulate, via cross-talk mechanisms through molecular hubs, the production of proinflammatory cytokines typical of a TLR response. HIV-1 sensitized macrophage responses to TLR ligands, and the magnitude of viral priming was related to virus replication.HIV-1 induced a primed, proinflammatory state, M1(HIV, which increased the responsiveness of macrophages to TLR ligands. HIV-1 might passively evade pattern recognition, actively inhibit or suppress recognition and signaling, or require dynamic interactions between macrophages and other cells, such as lymphocytes or endothelial cells. HIV-1 evasion of TLR recognition and simultaneous priming of macrophages may represent a strategy for viral survival, contribute to immune pathogenesis, and provide important targets for therapeutic

  14. Synthesis and anti-HIV-1 activity of 1-substiuted 6-(3-cyanobenzoyl) and [(3-cyanophenyl)fluoromethyl]-5-ethyl-uracils

    DEFF Research Database (Denmark)

    Loksha, Yasser M; Pedersen, Erik B; Loddo, Roberta

    2009-01-01

    1-Substiuted 6-(3-cyanobenzoyl) and [(3-cyanophenyl)fluoromethyl]-5-ethyl-uracils were synthesized and evaluated in cell-based assays against HIV-1 wild-type and its clinically relevant non-nucleoside reverse transcriptase inhibitor (NNRTI)-resistant mutants. Some of the synthesized compounds...

  15. Hybrid Spreading Mechanisms and T Cell Activation Shape the Dynamics of HIV-1 Infection

    Science.gov (United States)

    Zhang, Changwang; Zhou, Shi; Groppelli, Elisabetta; Pellegrino, Pierre; Williams, Ian; Borrow, Persephone; Chain, Benjamin M.; Jolly, Clare

    2015-01-01

    HIV-1 can disseminate between susceptible cells by two mechanisms: cell-free infection following fluid-phase diffusion of virions and by highly-efficient direct cell-to-cell transmission at immune cell contacts. The contribution of this hybrid spreading mechanism, which is also a characteristic of some important computer worm outbreaks, to HIV-1 progression in vivo remains unknown. Here we present a new mathematical model that explicitly incorporates the ability of HIV-1 to use hybrid spreading mechanisms and evaluate the consequences for HIV-1 pathogenenesis. The model captures the major phases of the HIV-1 infection course of a cohort of treatment naive patients and also accurately predicts the results of the Short Pulse Anti-Retroviral Therapy at Seroconversion (SPARTAC) trial. Using this model we find that hybrid spreading is critical to seed and establish infection, and that cell-to-cell spread and increased CD4+ T cell activation are important for HIV-1 progression. Notably, the model predicts that cell-to-cell spread becomes increasingly effective as infection progresses and thus may present a considerable treatment barrier. Deriving predictions of various treatments’ influence on HIV-1 progression highlights the importance of earlier intervention and suggests that treatments effectively targeting cell-to-cell HIV-1 spread can delay progression to AIDS. This study suggests that hybrid spreading is a fundamental feature of HIV infection, and provides the mathematical framework incorporating this feature with which to evaluate future therapeutic strategies. PMID:25837979

  16. Photo-translocation of anti-HIV-1 drugs into TZM-bl cells

    CSIR Research Space (South Africa)

    Khanyile, T

    2013-04-01

    Full Text Available Targeted drug delivery into HIV-1 infected cells offers a reduction in toxicity and side effect. Using a femtosecond (fs) laser of different beam shapes anti-HIV-1 drugs are efficiently delivered into TZM-bl cells....

  17. Contribution of NK cell education to both direct and anti-HIV-1 antibody-dependent NK cell functions.

    Science.gov (United States)

    Kristensen, Anne B; Kent, Stephen J; Parsons, Matthew S

    2018-03-07

    Antibody Fc-dependent functions are linked to prevention and control of HIV-1 infection. Basic NK cell biology is likely key to understanding the contributions anti-HIV-1 antibody-dependent NK cell activation and cytolysis make to HIV-1 susceptibility and disease progression. The importance of NK cell education through inhibitory receptors specific for self-HLA-I in determining the potency of anti-HIV-1 antibody mediated NK cell activation and cytolysis is controversial. To address this issue more definitively we utilized HLA-I genotyping, flow cytometry staining panels and cytolysis assays to assess the functionality of educated and non-educated peripheral blood NK cells. We now demonstrate that educated NK cells are superior in terms of their capacity to become activated and/or mediate cytolysis following anti-HIV-1 antibody-dependent stimulation. The profiles of activation observed were similar to those observed upon direct stimulation of NK cells with HLA-I devoid target cells. Non-educated NK cells make significantly lower contributions to total NK cell activation than would be expected from their frequency within the total NK cell population (i.e., are hypofunctional) and educated NK cells make similar or higher contributions as their frequency in the total NK cell population. Finally, NK cells educated through at least one killer immunoglobulin-like receptor and NKG2A exhibited the most significant difference between actual and expected contribution to the total NK cell response, based on their frequency within the total NK cell population, suggesting summation of NK cell education through inhibitory receptors determines overall NK cell functionality. These observations have potential implications for understanding HIV-1 vaccine efficacy and disease progression. IMPORTANCE NK cells are major mediators of anti-HIV-1 antibody-dependent functions, including cytokine production and cytolysis. The mechanisms controlling the capacity of individual NK cells to

  18. Natural Plant Alkaloid (Emetine Inhibits HIV-1 Replication by Interfering with Reverse Transcriptase Activity

    Directory of Open Access Journals (Sweden)

    Ana Luiza Chaves Valadão

    2015-06-01

    Full Text Available Ipecac alkaloids are secondary metabolites produced in the medicinal plant Psychotria ipecacuanha. Emetine is the main alkaloid of ipecac and one of the active compounds in syrup of Ipecac with emetic property. Here we evaluated emetine’s potential as an antiviral agent against Human Immunodeficiency Virus. We performed in vitro Reverse Transcriptase (RT Assay and Natural Endogenous Reverse Transcriptase Activity Assay (NERT to evaluate HIV RT inhibition. Emetine molecular docking on HIV-1 RT was also analyzed. Phenotypic assays were performed in non-lymphocytic and in Peripheral Blood Mononuclear Cells (PBMC with HIV-1 wild-type and HIV-harboring RT-resistant mutation to Nucleoside Reverse Transcriptase Inhibitors (M184V. Our results showed that HIV-1 RT was blocked in the presence of emetine in both models: in vitro reactions with isolated HIV-1 RT and intravirion, measured by NERT. Emetine revealed a strong potential of inhibiting HIV-1 replication in both cellular models, reaching 80% of reduction in HIV-1 infection, with low cytotoxic effect. Emetine also blocked HIV-1 infection of RT M184V mutant. These results suggest that emetine is able to penetrate in intact HIV particles, and bind and block reverse transcription reaction, suggesting that it can be used as anti-HIV microbicide. Taken together, our findings provide additional pharmacological information on the potential therapeutic effects of emetine.

  19. CRISPR-mediated Activation of Latent HIV-1 Expression.

    Science.gov (United States)

    Limsirichai, Prajit; Gaj, Thomas; Schaffer, David V

    2016-03-01

    Complete eradication of HIV-1 infection is impeded by the existence of cells that harbor chromosomally integrated but transcriptionally inactive provirus. These cells can persist for years without producing viral progeny, rendering them refractory to immune surveillance and antiretroviral therapy and providing a permanent reservoir for the stochastic reactivation and reseeding of HIV-1. Strategies for purging this latent reservoir are thus needed to eradicate infection. Here, we show that engineered transcriptional activation systems based on CRISPR/Cas9 can be harnessed to activate viral gene expression in cell line models of HIV-1 latency. We further demonstrate that complementing Cas9 activators with latency-reversing compounds can enhance latent HIV-1 transcription and that epigenome modulation using CRISPR-based acetyltransferases can also promote viral gene activation. Collectively, these results demonstrate that CRISPR systems are potentially effective tools for inducing latent HIV-1 expression and that their use, in combination with antiretroviral therapy, could lead to improved therapies for HIV-1 infection.

  20. Computational analysis of anti-HIV-1 antibody neutralization panel data to identify potential functional epitope residues.

    Science.gov (United States)

    West, Anthony P; Scharf, Louise; Horwitz, Joshua; Klein, Florian; Nussenzweig, Michel C; Bjorkman, Pamela J

    2013-06-25

    Advances in single-cell antibody cloning methods have led to the identification of a variety of broadly neutralizing anti-HIV-1 antibodies. We developed a computational tool (Antibody Database) to help identify critical residues on the HIV-1 envelope protein whose natural variation affects antibody activity. Our simplifying assumption was that, for a given antibody, a significant portion of the dispersion of neutralization activity across a panel of HIV-1 strains is due to the amino acid identity or glycosylation state at a small number of specific sites, each acting independently. A model of an antibody's neutralization IC50 was developed in which each site contributes a term to the logarithm of the modeled IC50. The analysis program attempts to determine the set of rules that minimizes the sum of the residuals between observed and modeled IC50 values. The predictive quality of the identified rules may be assessed in part by whether there is support for rules within individual viral clades. As a test case, we analyzed antibody 8ANC195, an anti-glycoprotein gp120 antibody of unknown specificity. The model for this antibody indicated that several glycosylation sites were critical for neutralization. We evaluated this prediction by measuring neutralization potencies of 8ANC195 against HIV-1 in vitro and in an antibody therapy experiment in humanized mice. These experiments confirmed that 8ANC195 represents a distinct class of glycan-dependent anti-HIV-1 antibody and validated the utility of computational analysis of neutralization panel data.

  1. Evaluation of Anti-HIV-1 Mutagenic Nucleoside Analogues*

    Science.gov (United States)

    Vivet-Boudou, Valérie; Isel, Catherine; El Safadi, Yazan; Smyth, Redmond P.; Laumond, Géraldine; Moog, Christiane; Paillart, Jean-Christophe; Marquet, Roland

    2015-01-01

    Because of their high mutation rates, RNA viruses and retroviruses replicate close to the threshold of viability. Their existence as quasi-species has pioneered the concept of “lethal mutagenesis” that prompted us to synthesize pyrimidine nucleoside analogues with antiviral activity in cell culture consistent with an accumulation of deleterious mutations in the HIV-1 genome. However, testing all potentially mutagenic compounds in cell-based assays is tedious and costly. Here, we describe two simple in vitro biophysical/biochemical assays that allow prediction of the mutagenic potential of deoxyribonucleoside analogues. The first assay compares the thermal stabilities of matched and mismatched base pairs in DNA duplexes containing or not the nucleoside analogues as follows. A promising candidate should display a small destabilization of the matched base pair compared with the natural nucleoside and the smallest gap possible between the stabilities of the matched and mismatched base pairs. From this assay, we predicted that two of our compounds, 5-hydroxymethyl-2′-deoxyuridine and 5-hydroxymethyl-2′-deoxycytidine, should be mutagenic. The second in vitro reverse transcription assay assesses DNA synthesis opposite nucleoside analogues inserted into a template strand and subsequent extension of the newly synthesized base pairs. Once again, only 5-hydroxymethyl-2′-deoxyuridine and 5-hydroxymethyl-2′-deoxycytidine are predicted to be efficient mutagens. The predictive potential of our fast and easy first line screens was confirmed by detailed analysis of the mutation spectrum induced by the compounds in cell culture because only compounds 5-hydroxymethyl-2′-deoxyuridine and 5-hydroxymethyl-2′-deoxycytidine were found to increase the mutation frequency by 3.1- and 3.4-fold, respectively. PMID:25398876

  2. Evaluation of anti-HIV-1 mutagenic nucleoside analogues.

    Science.gov (United States)

    Vivet-Boudou, Valérie; Isel, Catherine; El Safadi, Yazan; Smyth, Redmond P; Laumond, Géraldine; Moog, Christiane; Paillart, Jean-Christophe; Marquet, Roland

    2015-01-02

    Because of their high mutation rates, RNA viruses and retroviruses replicate close to the threshold of viability. Their existence as quasi-species has pioneered the concept of "lethal mutagenesis" that prompted us to synthesize pyrimidine nucleoside analogues with antiviral activity in cell culture consistent with an accumulation of deleterious mutations in the HIV-1 genome. However, testing all potentially mutagenic compounds in cell-based assays is tedious and costly. Here, we describe two simple in vitro biophysical/biochemical assays that allow prediction of the mutagenic potential of deoxyribonucleoside analogues. The first assay compares the thermal stabilities of matched and mismatched base pairs in DNA duplexes containing or not the nucleoside analogues as follows. A promising candidate should display a small destabilization of the matched base pair compared with the natural nucleoside and the smallest gap possible between the stabilities of the matched and mismatched base pairs. From this assay, we predicted that two of our compounds, 5-hydroxymethyl-2'-deoxyuridine and 5-hydroxymethyl-2'-deoxycytidine, should be mutagenic. The second in vitro reverse transcription assay assesses DNA synthesis opposite nucleoside analogues inserted into a template strand and subsequent extension of the newly synthesized base pairs. Once again, only 5-hydroxymethyl-2'-deoxyuridine and 5-hydroxymethyl-2'-deoxycytidine are predicted to be efficient mutagens. The predictive potential of our fast and easy first line screens was confirmed by detailed analysis of the mutation spectrum induced by the compounds in cell culture because only compounds 5-hydroxymethyl-2'-deoxyuridine and 5-hydroxymethyl-2'-deoxycytidine were found to increase the mutation frequency by 3.1- and 3.4-fold, respectively. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Comparative pharmacokinetic, immunologic and hematologic studies on the anti-HIV-1/2 compounds aconitylated and succinylated HSA

    NARCIS (Netherlands)

    Swart, P. J.; Beljaars, E.; Smit, C.; Pasma, A.; Schuitemaker, H.; Meijer, D. K.

    1996-01-01

    Charge modification by succinylation or cis-aconitylation of the terminal epsilon NH2 functions of the amino acid lysine in human serum albumin, resulted in polyanionic compounds with an anti-HIV-1 activity in the low nanomolar concentration range. After iv injections in rats of the negatively

  4. Assessment of cytokine values in serum by RT-PCR in HIV-1 infected individuals with and without highly active anti-retroviral therapy (HAART

    Directory of Open Access Journals (Sweden)

    DA Meira

    2008-01-01

    Full Text Available A cross-sectional study was performed on HIV-1 infected individuals with or without antiretroviral treatment (ARV in the AIDS Day Hospital, Botucatu Medical School, UNESP. Between August 2004 and October 2005, 73 HIV-1 infected individuals were divided into three groups: infected individuals with or without AIDS who had never received ARV (G1 = 15; patients on HAART that had had plasma HIV-1 RNA viral load (VL equal to or greater than 50 copies/mL (G2 = 27; and patients on HAART with undetectable VL for at least the past six months (G3 = 31. There was also an additional group that comprised blood donors without any sign of the disease and with negative HIV serum tests (G4 = 20, which was the control group. Serum cytokine levels (values in pg/mL were measured by enzyme-linked immunosorbent assay (ELISA and specific mRNA expression by reverse transcription polymerase chain reaction (RT-PCR. Both techniques were performed on the four groups for TNF-α, IL-2, INF-γ, IL-4 and IL-10. All patients were submitted to VL determination and CD4+ and CD8+T lymphocyte counts. The analysis of the results revealed a significant comparison among groups for both methods and an association between the latter (> 80% r² > 0.80. There was only one exception, in control individuals for IL-2 by ELISA. The cytokine profiles, in both methods, for the three patient groups, were mature Th-0. The behaviors of IL-2 and INF-γ required emphasis due to consequent expression of dominant Th profile. Both methods showed low IL-2 and high mean values of INF-γ in the three groups. Several authors have recently drawn attention to the substantial apoptosis of infected and non-infected CD4+T cells, mainly during primary infection, persisting only in those with INF-γ phenotype producer and not IL-2. HIV infected individuals submitted to HAART are expected to produce IL-2 in an attempt to present Th-1 profile, but in most cases this did not occur.

  5. Targeting TNF and TNF Receptor Pathway in HIV-1 Infection: from Immune Activation to Viral Reservoirs.

    Science.gov (United States)

    Pasquereau, Sébastien; Kumar, Amit; Herbein, Georges

    2017-03-30

    Several cellular functions such as apoptosis, cellular proliferation, inflammation, and immune regulation involve the tumor necrosis factor-α (TNF)/TNF receptor (TNFR) pathway. Human immunodeficiency virus 1 (HIV-1) interacts with the TNF/TNFR pathway. The activation of the TNF/TNFR pathway impacts HIV-1 replication, and the TNF/TNFR pathway is the target of HIV-1 proteins. A hallmark of HIV-1 infection is immune activation and inflammation with increased levels of TNF in the plasma and the tissues. Therefore, the control of the TNF/TNFR pathway by new therapeutic approaches could participate in the control of immune activation and impact both viral replication and viral persistence. In this review, we will describe the intricate interplay between HIV-1 proteins and TNF/TNFR signaling and how TNF/TNFR activation modulates HIV-1 replication and discuss new therapeutic approaches, especially anti-TNF therapy, that could control this pathway and ultimately favor the clearance of infected cells to cure HIV-infected patients.

  6. Docking of anti-HIV-1 oxoquinoline-acylhydrazone derivatives as potential HSV-1 DNA polymerase inhibitors

    Science.gov (United States)

    Yoneda, Julliane Diniz; Albuquerque, Magaly Girão; Leal, Kátia Zaccur; Santos, Fernanda da Costa; Batalha, Pedro Netto; Brozeguini, Leonardo; Seidl, Peter R.; de Alencastro, Ricardo Bicca; Cunha, Anna Cláudia; de Souza, Maria Cecília B. V.; Ferreira, Vitor F.; Giongo, Viveca A.; Cirne-Santos, Cláudio; Paixão, Izabel C. P.

    2014-09-01

    Although there are many antiviral drugs available for the treatment of herpes simplex virus (HSV) infections, still the synthesis of new anti-HSV candidates is an important strategy to be pursued, due to the emergency of resistant HSV strains mainly in human immunodeficiency virus (HIV) co-infected patients. Some 1,4-dihydro-4-oxoquinolines, such as PNU-183792 (1), show a broad spectrum antiviral activity against human herpes viruses, inhibiting the viral DNA polymerase (POL) without affecting the human POLs. Thus, on an ongoing antiviral research project, our group has synthesized ribonucleosides containing the 1,4-dihydro-4-oxoquinoline (quinolone) heterocyclic moiety, such as the 6-Cl derivative (2), which is a dual antiviral agent (HSV-1 and HIV-1). Molecular dynamics simulations of the complexes of 1 and 2 with the HSV-1 POL suggest that structural modifications of 2 should increase its experimental anti-HSV-1 activity, since its ribosyl and carboxyl groups are highly hydrophilic to interact with a hydrophobic pocket of this enzyme. Therefore, in this work, comparative molecular docking simulations of 1 and three new synthesized oxoquinoline-acylhydrazone HIV-1 inhibitors (3-5), which do not contain those hydrophilic groups, were carried out, in order to access these modifications in the proposition of new potential anti-HSV-1 agents, but maintaining the anti-HIV-1 activity. Among the docked compounds, the oxoquinoline-acylhydrazone 3 is the best candidate for an anti-HSV-1 agent, and, in addition, it showed anti-HIV-1 activity (EC50 = 3.4 ± 0.3 μM). Compounds 2 and 3 were used as templates in the design of four new oxoquinoline-acylhydrazones (6-9) as potential anti-HSV-1 agents to increase the antiviral activity of 2. Among the docked compounds, oxoquinoline-acylhydrazone 7 was selected as the best candidate for further development of dual anti-HIV/HSV activity.

  7. Anti-HIV-1 integrase compounds from Dioscorea bulbifera and molecular docking study.

    Science.gov (United States)

    Chaniad, Prapaporn; Wattanapiromsakul, Chatchai; Pianwanit, Somsak; Tewtrakul, Supinya

    2016-01-01

    Dioscorea bulbifera L. (Dioscoreaceae) has been used in a traditional Thai longevity medicine preparation. Isolation of inhibitors from natural products is a potential source for continuous development of new HIV-1 integrase (IN) inhibitors. The objective of this study is to isolate the compounds and evaluate their anti-HIV-1 IN activity, as well as to predict the potential interactions of the compounds with an IN. The ethyl acetate and water fractions (1-100 μg/mL) of Dioscorea bulbifera bulbils were isolated and tested for their anti-HIV-1 IN activity using the multiplate integration assay (MIA). The interactions of the active compounds with IN were investigated using a molecular docking method. The ethyl acetate and water fractions of Dioscorea bulbifera bulbils afforded seven compounds. Among these, allantoin (1), 2,4,3',5'-tetrahydroxybibenzyl (2), and 5,7,4'-trihydroxy-2-styrylchromone (5) were isolated for the first time from this plant. Myricetin (4) exhibited the most potent activity with an IC50 value of 3.15 μM, followed by 2,4,6,7-tetrahydroxy-9,10-dihydrophenanthrene (3, IC50 value= 14.20 μM), quercetin-3-O-β-D-glucopyranoside (6, IC50 value = 19.39 μM) and quercetin-3-O-β-D-galactopyranoside (7, IC50 value = 21.80 μM). Potential interactions of the active compounds (3, 4, 6, and 7) with the IN active site were additionally investigated. Compound 4 showed the best binding affinity to IN and formed strong interactions with various amino acid residues. These compounds interacted with Asp64, Thr66, His67, Glu92, Asp116, Gln148, Glu152, Asn155, and Lys159, which are involved in both the 3'-processing and strand transfer reactions of IN. In particular, galloyl, catechol, and sugar moieties were successful inhibitors for HIV-1 IN.

  8. Frequency of class I anti-HLA alloantibodies in patients infected by HIV-1

    OpenAIRE

    Leite, Elza Regina Manzolli; Lima, Oswaldo Luiz Luz; Leite, Fábio Renato Manzolli; Costa, Paulo Inácio da

    2010-01-01

    The aim of this study was to evaluate the presence of class I anti-HLA alloantibodies in patients infected by HIV-1 and relate it with the different clinical courses of the disease. Blood samples were collected in EDTA tubes from 145 individuals. HIV-1 infection was confirmed by ELISA test. The presence of class I anti-HLA alloantibodies and HLA allele's were determined. Clinical evolution was set as fast (3 years). Class I anti-HLA alloantibodies presence was lower in healthy individuals tha...

  9. Mechanism of action and resistant profile of anti-HIV-1 coumarin derivatives.

    Science.gov (United States)

    Huang, Li; Yuan, Xiong; Yu, Donglei; Lee, K H; Chen, Chin Ho

    2005-02-20

    Dicamphanoyl khellactone (DCK) is a coumarin derivative that can potently inhibit HIV-1 replication. DCK does not inhibit RNA-dependent DNA synthesis. However, an HIV reverse transcriptase (RT) inhibitor-resistant strain, HIV-1/RTMDR1, is resistant to DCK. Thus, it is possible that HIV-1 RT is the target of DCK. To test this possibility, DCK-resistant viruses were selected in the presence of DCK. Our results indicate that a single amino acid mutation, E138K in HIV-1 RT, is sufficient to confer DCK resistance. Interestingly, a DCK derivative, 3'R,4'R-Di-O-(-)-camphanoyl-2-ethyl-2',2'-dimethyldihydropyrano[2,3-f]chromone (DCP8), is effective against HIV-1/RTMDR1. However, the DCK-escape virus carrying the E138K mutation remains resistant to DCP8. Since DCK did not inhibit the RNA-dependent DNA polymerase activity of HIV-1 RT when using poly-rA or poly-rC as template, we evaluated the effect of DCK on the DNA-dependent DNA polymerase activity of HIV-1 RT. Our results indicate that DCK can inhibit the DNA-dependent DNA polymerase activity of HIV-1 RT. In conclusion, DCK is a unique HIV-1 RT inhibitor that inhibits the DNA-dependent DNA polymerase activity. In contrast, DCK did not significantly affect the RNA-dependent DNA polymerase activity when poly-rA or poly-rC was used as templates. An E138K mutation in the non-nucleoside RT inhibitors (NNRTIs) binding pocket of HIV-1 RT confers resistance to DCK and its chromone derivative, DCP8.

  10. Fullerene Derivatives Strongly Inhibit HIV-1 Replication by Affecting Virus Maturation without Impairing Protease Activity.

    Science.gov (United States)

    Martinez, Zachary S; Castro, Edison; Seong, Chang-Soo; Cerón, Maira R; Echegoyen, Luis; Llano, Manuel

    2016-10-01

    Three compounds (1, 2, and 3) previously reported to inhibit HIV-1 replication and/or in vitro activity of reverse transcriptase were studied, but only fullerene derivatives 1 and 2 showed strong antiviral activity on the replication of HIV-1 in human CD4(+) T cells. However, these compounds did not inhibit infection by single-round infection vesicular stomatitis virus glycoprotein G (VSV-G)-pseudotyped viruses, indicating no effect on the early steps of the viral life cycle. In contrast, analysis of single-round infection VSV-G-pseudotyped HIV-1 produced in the presence of compound 1 or 2 showed a complete lack of infectivity in human CD4(+) T cells, suggesting that the late stages of the HIV-1 life cycle were affected. Quantification of virion-associated viral RNA and p24 indicates that RNA packaging and viral production were unremarkable in these viruses. However, Gag and Gag-Pol processing was affected, as evidenced by immunoblot analysis with an anti-p24 antibody and the measurement of virion-associated reverse transcriptase activity, ratifying the effect of the fullerene derivatives on virion maturation of the HIV-1 life cycle. Surprisingly, fullerenes 1 and 2 did not inhibit HIV-1 protease in an in vitro assay at the doses that potently blocked viral infectivity, suggesting a protease-independent mechanism of action. Highlighting the potential therapeutic relevance of fullerene derivatives, these compounds block infection by HIV-1 resistant to protease and maturation inhibitors. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  11. New anti-HIV-1, antimalarial, and antifungal compounds from Terminalia bellerica

    DEFF Research Database (Denmark)

    Valsaraj, R.; Pushpangadan, P.; Wagner Smitt, U.

    1997-01-01

    A bioactivity-guided fractionation of an extract of Terminalia bellerica fruit rind led to the isolation of two new lignans named termilignan (1) and thannilignan (2), together with 7-hydroxy-3',4'-(methylenedioxy)flavan (3) and anolignan B (4). All four compounds possessed demonstrable anti-HIV-1...

  12. An improved microtiter assay for evaluating anti-HIV-1 neutralizing antibodies from sera or plasma

    Directory of Open Access Journals (Sweden)

    Chen Yunyun

    2003-12-01

    Full Text Available Abstract Background The anti-HIV-1 neutralizing antibody assay is widely used in AIDS vaccine research and other experimental and clinical studies. The vital dye staining method applied in the detection of anti-HIV-1 neutralizing antibody has been used in many laboratories. However, the unknown factor(s in sera or plasma affected cell growth and caused protection when the tested sera or plasma was continuously maintained in cell culture. In addition, the poor solubility of neutral red in medium (such as RPMI-1640 also limited the use of this assay. Methods In this study, human T cell line C8166 was used as host cells, and 3-(4,5-Dimethyl-2-thiazolyl-2,5-diphenyl-2H-tetrazolium bromide (MTT instead of neutral red was used as vital dye. In order to avoid the effect of the unknown factor(s, the tested sera or plasma was removed by a washout procedure after initial 3–6 h culture in the assay. Result This new assay eliminated the effect of the tested sera or plasma on cell growth, improved the reliability of detection of anti-HIV-1 neutralizing antibody, and showed excellent agreement with the p24 antigen method. Conclusion The results suggest that the improved assay is relatively simple, highly duplicable, cost-effective, and well reliable for evaluating anti-HIV-1 neutralizing antibodies from sera or plasma.

  13. Designed transcription activator-like effector proteins efficiently induced the expression of latent HIV-1 in latently infected cells.

    Science.gov (United States)

    Wang, Xiaohui; Wang, Pengfei; Fu, Zheng; Ji, Haiyan; Qu, Xiying; Zeng, Hanxian; Zhu, Xiaoli; Deng, Junxiao; Lu, Panpan; Zha, Shijun; Song, Zhishuo; Zhu, Huanzhang

    2015-01-01

    HIV latency is the foremost barrier to clearing HIV infection from patients. Reactivation of latent HIV-1 represents a promising strategy to deplete these viral reservoirs. Here, we report a novel approach to reactivate latent HIV-1 provirus using artificially designed transcription activator-like effector (TALE) fusion proteins containing a DNA-binding domain specifically targeting the HIV-1 promoter and the herpes simplex virus-based transcriptional activator VP64 domain. We engineered four TALE genes (TALE1-4) encoding TALE proteins, each specifically targeting different 20-bp DNA sequences within the HIV-1 promoter, and we constructed four TALE-VP64 expression vectors corresponding to TALE1-4. We found that TALE1-VP64 effectively reactivated HIV-1 gene expression in latently infected C11 and A10.6 cells. We further confirmed that TALE1-VP64 reactivated latent HIV-1 via specific binding to the HIV-LTR promoter. Moreover, we also found that TALE1-VP64 did not affect cell proliferation or cell cycle distribution. Taken together, our data demonstrated that TALE1-VP64 can specifically and effectively reactivate latent HIV-1 transcription, suggesting that this strategy may provide a novel approach for anti-HIV-1 latency therapy in the future.

  14. Frequency of class I anti-HLA alloantibodies in patients infected by HIV-1

    Directory of Open Access Journals (Sweden)

    Elza Regina Manzolli Leite

    2010-02-01

    Full Text Available The aim of this study was to evaluate the presence of class I anti-HLA alloantibodies in patients infected by HIV-1 and relate it with the different clinical courses of the disease. Blood samples were collected in EDTA tubes from 145 individuals. HIV-1 infection was confirmed by ELISA test. The presence of class I anti-HLA alloantibodies and HLA allele's were determined. Clinical evolution was set as fast (3 years. Class I anti-HLA alloantibodies presence was lower in healthy individuals than in those infected by HIV-1 (4.2% against 32.4%. However, an equal distribution of these alloantibodies was found among the individuals infected, independent on the clinical evolution. Thus, class I anti-HLA alloantibodies was not a determinant factor for patient worsening.O objetivo deste estudo foi avaliar a presença de aloanticorpos anti-HLA classe I em pacientes infectados pelo HIV-1 e relacioná-la aos diferentes cursos clínicos da doença. Amostras de sangue de 145 indivíduos HIV positivo foram coletadas em tubos com EDTA. A infecção pelo HIV-1 foi confirmada por teste ELISA e a presença de aloanticorpos anti-HLA classe I determinada em seguida. A evolução clínica foi definida como rápida (3 anos. A presença de aloanticorpos anti-HLA classe I foi menor em indivíduos saudáveis em relação aos infectados pelo HIV-1 (4,2% contra 32,4%. Porém, a distribuição destes aloanticorpos entre os indivíduos infectados foi igual, independente da evolução clínica. Deste modo, a presença de aloanticorpos anti-HLA classe I não é um fator determinante na piora clínica do paciente.

  15. Synthesis and Anti-HIV-1 Evaluation of New Sonogashira-Modified Emivirine (MKC-442) Analogues

    DEFF Research Database (Denmark)

    Danel, Krzystof; Jørgensen, Per Trolle; La Colla, Paolo

    2009-01-01

    The MKC-442 analogue 6-(3,5-dimethylbenzyl)-5-ethyluracil substituted with a (propargyloxo)methyl group at N(1) has previously been found highly active against HIV-1. The C C bond in the substituent at N(1) is here utilized in a series of chemical reactions in order to develop new agents...... with higher activity against HIV-1-resistant mutants. The syntheses involved Pd-catalyzed C,C-coupling reactions, addition of disulfides, and click chemistry on the terminal C C bond as well as addition of bromine to the so formed internal C C bonds. Sonogashira coupling were performed with silyl...

  16. In Vivo Molecular Dissection of the Effects of HIV-1 in Active Tuberculosis.

    Directory of Open Access Journals (Sweden)

    Lucy C K Bell

    2016-03-01

    Full Text Available Increased risk of tuberculosis (TB associated with HIV-1 infection is primarily attributed to deficient T helper (Th1 immune responses, but most people with active TB have robust Th1 responses, indicating that these are not sufficient to protect against disease. Recent findings suggest that favourable outcomes following Mycobacterium tuberculosis infection arise from finely balanced inflammatory and regulatory pathways, achieving pathogen control without immunopathology. We hypothesised that HIV-1 and antiretroviral therapy (ART exert widespread changes to cell mediated immunity, which may compromise the optimal host protective response to TB and provide novel insights into the correlates of immune protection and pathogenesis. We sought to define these effects in patients with active TB by transcriptional profiling of tuberculin skin tests (TST to make comprehensive molecular level assessments of in vivo human immune responses at the site of a standardised mycobacterial challenge. We showed that the TST transcriptome accurately reflects the molecular pathology at the site of human pulmonary TB, and used this approach to investigate immune dysregulation in HIV-1/TB co-infected patients with distinct clinical phenotypes associated with TST reactivity or anergy and unmasking TB immune reconstitution inflammatory syndrome (IRIS after initiation of ART. HIV-1 infected patients with positive TSTs exhibited preserved Th1 responses but deficient immunoregulatory IL10-inducible responses. Those with clinically negative TSTs revealed profound anergy of innate as well as adaptive immune responses, except for preservation of type 1 interferon activity, implicated in impaired anti-mycobacterial immunity. Patients with unmasking TB IRIS showed recovery of Th1 immunity to normal levels, but exaggerated Th2-associated responses specifically. These mechanisms of immune dysregulation were localised to the tissue microenvironment and not evident in peripheral

  17. Anti-HIV-1 cycloartanes from leaves and twigs of Gardenia thailandica.

    Science.gov (United States)

    Tuchinda, Patoomratana; Saiai, Aroonchai; Pohmakotr, Manat; Yoosook, Chalobon; Kasisit, Jittra; Napaswat, Chanita; Santisuk, Thawatchai; Reutrakul, Vichai

    2004-04-01

    Thailandiol ( 1), gardenolic acid A ( 2), quadrangularic acid E ( 3) and 3beta-hydroxy-5alpha-cycloart-24(31)-en-28-oic acid ( 4) have been isolated from the leaves and twigs of Gardenia thailandica Tirveng (order: Rubiales; family: Rubiaceae). In addition, 5-hydroxy-7,2',3',4',5',6'-hexamethoxyflavone ( 5), 5,7-dihydroxy-2',3', 4',5',6'-pentamethoxyflavone ( 6), 5-hydroxy-7,2',3',4',5'-pentamethoxyflavone ( 7) and 5,7-dihydroxy-2',3',4',5'-tetramethoxyflavone ( 8) were also isolated from the same source. The structures were elucidated by spectroscopic methods. Crude extracts and compounds 1 - 4 displayed anti-HIV-1 activities as determined by using the (Delta)(Tat/Rev)MC99 virus and 1A2 cell line system. The EC (50) values determined by the syncytium assay ranged from < 7.8 to 110 microg/mL. They also exhibited moderate to high activities in reverse transcriptase (RT) assay; the IC (50) values of compounds 1 - 4, ranged from < 22.5 to 156.8 microg/mL.

  18. HIV-1 Viral Protein R Activates NLRP3 Inflammasome in Microglia: implications for HIV-1 Associated Neuroinflammation.

    Science.gov (United States)

    Mamik, Manmeet K; Hui, Elizabeth; Branton, William G; McKenzie, Brienne A; Chisholm, Jesse; Cohen, Eric A; Power, Christopher

    2017-06-01

    Human Immunodeficiency virus (HIV) enters the brain soon after seroconversion and induces chronic neuroinflammation by infecting and activating brain macrophages. Inflammasomes are cytosolic protein complexes that mediate caspase-1 activation and ensuing cleavage and release of IL-1β and -18 by macrophages. Our group recently showed that HIV-1 infection of human microglia induced inflammasome activation in NLRP3-dependent manner. The HIV-1 viral protein R (Vpr) is an accessory protein that is released from HIV-infected cells, although its effects on neuroinflammation are undefined. Infection of human microglia with Vpr-deficient HIV-1 resulted in reduced caspase-1 activation and IL-1β production, compared to cells infected with a Vpr-encoding HIV-1 virus. Vpr was detected at low nanomolar concentrations in cerebrospinal fluid from HIV-infected patients and in supernatants from HIV-infected primary human microglia. Exposure of human macrophages to Vpr caused caspase-1 cleavage and IL-1β release with reduced cell viability, which was dependent on NLRP3 expression. Increased NLRP3, caspase-1, and IL-1β expression was evident in HIV-1 Vpr transgenic mice compared to wild-type littermates, following systemic immune stimulation. Treatment with the caspase-1 inhibitor, VX-765, suppressed NLRP3 expression with reduced IL-1β expression and associated neuroinflammation. Neurobehavioral deficits showed improvement in Vpr transgenic animals treated with VX-765. Thus, Vpr-induced NLRP3 inflammasome activation, which contributed to neuroinflammation and was abrogated by caspase-1 inhibition. This study provides a new therapeutic perspective for HIV-associated neuropsychiatric disease.

  19. HIV-1 infection of macrophages is dependent on evasion of innate immune cellular activation.

    Science.gov (United States)

    Tsang, Jhen; Chain, Benjamin M; Miller, Robert F; Webb, Benjamin L J; Barclay, Wendy; Towers, Greg J; Katz, David R; Noursadeghi, Mahdad

    2009-11-13

    The cellular innate immune response to HIV-1 is poorly characterized. In view of HIV-1 tropism for macrophages, which can be activated via pattern recognition receptors to trigger antimicrobial defences, we investigated innate immune responses to HIV-1 by monocyte-derived macrophages. In a model of productive HIV-1 infection, cellular innate immune responses to HIV-1 were investigated, at the level of transcription factor activation, specific gene expression and genome-wide transcriptional profiling. In addition, the viral determinants of macrophage responses and the physiological effect of innate immune cellular activation on HIV-1 replication were assessed. Productive HIV-1 infection did not activate nuclear factor-kappaB and interferon regulatory factor 3 transcription factors or interferon gene expression (IFN) and caused remarkably small changes to the host-cell transcriptome, with no evidence of inflammatory or IFN signatures. Evasion of IFN induction was not dependent on HIV-1 envelope-mediated cellular entry, inhibition by accessory proteins or reverse transcription of ssRNA that may reduce innate immune cellular activation by viral RNA. Furthermore, IFNbeta priming did not sensitize responses to HIV-1. Importantly, exogenous IFNbeta or stimulation with the RNA analogue poly I:C to simulate innate immune activation invoked HIV-1 restriction. We conclude that macrophages lack functional pattern recognition receptors for this virus and that HIV-1 tropism for macrophages helps to establish a foothold in the host without triggering innate immune cellular activation, which would otherwise block viral infection effectively.

  20. Isolated HIV-1 core is active for reverse transcription

    Directory of Open Access Journals (Sweden)

    Harrich David

    2007-10-01

    Full Text Available Abstract Whether purified HIV-1 virion cores are capable of reverse transcription or require uncoating to be activated is currently controversial. To address this question we purified cores from a virus culture and tested for the ability to generate authentic reverse transcription products. A dense fraction (approximately 1.28 g/ml prepared without detergent, possibly derived from disrupted virions, was found to naturally occur as a minor sub-fraction in our preparations. Core-like particles were identified in this active fraction by electron microscopy. We are the first to report the detection of authentic strong-stop, first-strand transfer and full-length minus strand products in this core fraction without requirement for an uncoating activity.

  1. DNA topoisomerase IIα inhibitory and anti-HIV-1 flavones from leaves and twigs of Gardenia carinata.

    Science.gov (United States)

    Kongkum, Naowarat; Tuchinda, Patoomratana; Pohmakotr, Manat; Reutrakul, Vichai; Piyachaturawat, Pawinee; Jariyawat, Surawat; Suksen, Kanoknetr; Yoosook, Chalobon; Kasisit, Jitra; Napaswad, Chanita

    2012-03-01

    Four new flavones, 5,2'-dihydroxy-7,3',4',5'-tetramethoxyflavone (1), 5,2',5'-trihydroxy-7,3',4'-trimethoxyflavone (2), 5,7,2',5'-tetrahydroxy-6,3',4'-trimethoxyflavone (3) and 5,2',5'-trihydroxy-6,7,3',4'-tetramethoxyflavone (4), along with the known 5,3'-dihydroxy-6,7,4',5'-tetramethoxyflavone (5), 5,7,3',5'-tetrahydroxy-6,4'-dimethoxyflavone (6), syringaldehyde, vanillic acid and scopoletin were isolated from the leaves and twigs of Gardenia carinata (Rubiaceae). Their structures were determined by spectroscopic methods. Flavone 2 exhibited cytotoxic activity against P-388 and MCF-7 cell lines, while 3, 5 and 6 were active only in P-388 cell line. All active compounds were found to inhibit DNA topoisomerase IIα activity, which may be responsible for the observed cytotoxicity. Flavones 1-3, 5 and 6 also exhibited anti-HIV-1 activity in the anti-syncytium assay using (∆Tat/rev)MC99 virus and 1A2 cell line system; 2 was most potent. Only flavones 1 and 6 showed considerably activity against HIV-1 reverse transcriptase. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Therapeutic doses of irradiation activate viral transcription and induce apoptosis in HIV-1 infected cells

    International Nuclear Information System (INIS)

    Iordanskiy, Sergey; Van Duyne, Rachel; Sampey, Gavin C; Woodson, Caitlin M; Fry, Kelsi; Saifuddin, Mohammed; Guo, Jia; Wu, Yuntao; Romerio, Fabio; Kashanchi, Fatah

    2015-01-01

    The highly active antiretroviral therapy reduces HIV-1 RNA in plasma to undetectable levels. However, the virus continues to persist in the long-lived resting CD4 + T cells, macrophages and astrocytes which form a viral reservoir in infected individuals. Reactivation of viral transcription is critical since the host immune response in combination with antiretroviral therapy may eradicate the virus. Using the chronically HIV-1 infected T lymphoblastoid and monocytic cell lines, primary quiescent CD4 + T cells and humanized mice infected with dual-tropic HIV-1 89.6, we examined the effect of various X-ray irradiation (IR) doses (used for HIV-related lymphoma treatment and lower doses) on HIV-1 transcription and viability of infected cells. Treatment of both T cells and monocytes with IR, a well-defined stress signal, led to increase of HIV-1 transcription, as evidenced by the presence of RNA polymerase II and reduction of HDAC1 and methyl transferase SUV39H1 on the HIV-1 promoter. This correlated with the increased GFP signal and elevated level of intracellular HIV-1 RNA in the IR-treated quiescent CD4 + T cells infected with GFP-encoding HIV-1. Exposition of latently HIV-1infected monocytes treated with PKC agonist bryostatin 1 to IR enhanced transcription activation effect of this latency-reversing agent. Increased HIV-1 replication after IR correlated with higher cell death: the level of phosphorylated Ser46 in p53, responsible for apoptosis induction, was markedly higher in the HIV-1 infected cells following IR treatment. Exposure of HIV-1 infected humanized mice with undetectable viral RNA level to IR resulted in a significant increase of HIV-1 RNA in plasma, lung and brain tissues. Collectively, these data point to the use of low to moderate dose of IR alone or in combination with HIV-1 transcription activators as a potential application for the “Shock and Kill” strategy for latently HIV-1 infected cells. - Highlights: • X-ray irradiation (IR) increases

  3. Therapeutic doses of irradiation activate viral transcription and induce apoptosis in HIV-1 infected cells

    Energy Technology Data Exchange (ETDEWEB)

    Iordanskiy, Sergey [School of Systems Biology, Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110 (United States); Van Duyne, Rachel [School of Systems Biology, Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110 (United States); Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702 (United States); Sampey, Gavin C; Woodson, Caitlin M; Fry, Kelsi; Saifuddin, Mohammed; Guo, Jia; Wu, Yuntao [School of Systems Biology, Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110 (United States); Romerio, Fabio [Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201 (United States); Kashanchi, Fatah, E-mail: fkashanc@gmu.edu [School of Systems Biology, Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110 (United States)

    2015-11-15

    The highly active antiretroviral therapy reduces HIV-1 RNA in plasma to undetectable levels. However, the virus continues to persist in the long-lived resting CD4{sup +} T cells, macrophages and astrocytes which form a viral reservoir in infected individuals. Reactivation of viral transcription is critical since the host immune response in combination with antiretroviral therapy may eradicate the virus. Using the chronically HIV-1 infected T lymphoblastoid and monocytic cell lines, primary quiescent CD4{sup +} T cells and humanized mice infected with dual-tropic HIV-1 89.6, we examined the effect of various X-ray irradiation (IR) doses (used for HIV-related lymphoma treatment and lower doses) on HIV-1 transcription and viability of infected cells. Treatment of both T cells and monocytes with IR, a well-defined stress signal, led to increase of HIV-1 transcription, as evidenced by the presence of RNA polymerase II and reduction of HDAC1 and methyl transferase SUV39H1 on the HIV-1 promoter. This correlated with the increased GFP signal and elevated level of intracellular HIV-1 RNA in the IR-treated quiescent CD4{sup +} T cells infected with GFP-encoding HIV-1. Exposition of latently HIV-1infected monocytes treated with PKC agonist bryostatin 1 to IR enhanced transcription activation effect of this latency-reversing agent. Increased HIV-1 replication after IR correlated with higher cell death: the level of phosphorylated Ser46 in p53, responsible for apoptosis induction, was markedly higher in the HIV-1 infected cells following IR treatment. Exposure of HIV-1 infected humanized mice with undetectable viral RNA level to IR resulted in a significant increase of HIV-1 RNA in plasma, lung and brain tissues. Collectively, these data point to the use of low to moderate dose of IR alone or in combination with HIV-1 transcription activators as a potential application for the “Shock and Kill” strategy for latently HIV-1 infected cells. - Highlights: • X-ray irradiation

  4. Identification of novel 2-benzoxazolinone derivatives with specific inhibitory activity against the HIV-1 nucleocapsid protein.

    Science.gov (United States)

    Gamba, Elia; Mori, Mattia; Kovalenko, Lesia; Giannini, Alessia; Sosic, Alice; Saladini, Francesco; Fabris, Dan; Mély, Yves; Gatto, Barbara; Botta, Maurizio

    2018-02-10

    In this report, we present a new benzoxazole derivative endowed with inhibitory activity against the HIV-1 nucleocapsid protein (NC). NC is a 55-residue basic protein with nucleic acid chaperone properties, which has emerged as a novel and potential pharmacological target against HIV-1. In the pursuit of novel NC-inhibitor chemotypes, we performed virtual screening and in vitro biological evaluation of a large library of chemical entities. We found that compounds sharing a benzoxazolinone moiety displayed putative inhibitory properties, which we further investigated by considering a series of chemical analogues. This approach provided valuable information on the structure-activity relationships of these compounds and, in the process, demonstrated that their anti-NC activity could be finely tuned by the addition of specific substituents to the initial benzoxazolinone scaffold. This study represents the starting point for the possible development of a new class of antiretroviral agents targeting the HIV-1 NC protein. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. The Presence and Anti-HIV-1 Function of Tenascin C in Breast Milk and Genital Fluids.

    Directory of Open Access Journals (Sweden)

    Robin G Mansour

    Full Text Available Tenascin-C (TNC is a newly identified innate HIV-1-neutralizing protein present in breast milk, yet its presence and potential HIV-inhibitory function in other mucosal fluids is unknown. In this study, we identified TNC as a component of semen and cervical fluid of HIV-1-infected and uninfected individuals, although it is present at a significantly lower concentration and frequency compared to that of colostrum and mature breast milk, potentially due to genital fluid protease degradation. However, TNC was able to neutralize HIV-1 after exposure to low pH, suggesting that TNC could be active at low pH in the vaginal compartment. As mucosal fluids are complex and contain a number of proteins known to interact with the HIV-1 envelope, we further studied the relationship between the concentration of TNC and neutralizing activity in breast milk. The amount of TNC correlated only weakly with the overall innate HIV-1-neutralizing activity of breast milk of uninfected women and negatively correlated with neutralizing activity in milk of HIV-1 infected women, indicating that the amount of TNC in mucosal fluids is not adequate to impede HIV-1 transmission. Moreover, the presence of polyclonal IgG from milk of HIV-1 infected women, but not other HIV-1 envelope-binding milk proteins or monoclonal antibodies, blocked the neutralizing activity of TNC. Finally, as exogenous administration of TNC would be necessary for it to mediate measurable HIV-1 neutralizing activity in mucosal compartments, we established that recombinantly produced TNC has neutralizing activity against transmitted/founder HIV-1 strains that mimic that of purified TNC. Thus, we conclude that endogenous TNC concentration in mucosal fluids is likely inadequate to block HIV-1 transmission to uninfected individuals.

  6. Fine epitope specificity of anti-erythropoietin antibodies reveals molecular mimicry with HIV-1 p17 protein: a pathogenetic mechanism for HIV-1-related anemia.

    Science.gov (United States)

    Tsiakalos, Aristotelis; Routsias, John G; Kordossis, Theodore; Moutsopoulos, Haralampos M; Tzioufas, Athanasios G; Sipsas, Nikolaos V

    2011-09-15

    Circulating autoantibodies to endogenous erythropoietin (anti-Epo) are detected in human immunodeficiency virus type 1 (HIV-1)-infected patients and represent a risk factor for anemia. The aim of this study was to map the B-cell epitopes on the Epo molecule. Serum samples from HIV-1-positive patients and healthy individuals were tested against overlapping peptides covering the entire sequence of Epo. Serum samples from anti-Epo-positive patients exhibited significant binding to Epo epitopes spanning the following sequences: amino acids 1-20 (Ep1), amino acids 54-72 (Ep5), and amino acids 147-166 (Ep12). Structural analysis of erythropoietin revealed that the immunodominant epitopes, Ep1 and Ep12, comprise the interaction interface with Epo receptor (EpoR). Autoantibodies binding to this specific region are anticipated to inhibit the Epo-EpoR interaction, resulting in blunted erythropoiesis; this phenomenon is indicated by the significantly higher Epo levels and lower hemoglobin levels of anti-Ep1-positive patients compared with anti-Ep1-negative individuals. The region corresponding to the Ep1 epitope exhibited a 63% sequence homology with the ³⁴LVCASRELERFAVNPGLLE⁵² fragment of the HIV-1 p17 matrix protein. These results suggest that the main body of anti-Epo is directed against a functional domain of Epo, and that the presence of anti-Epo can be considered to be a result of a molecular mimicry mechanism, which is caused by the similarity between the Ep1 region and the p17 protein.

  7. Synthesis and Anti-HIV-1 Evaluation of Some Novel MC-1220 Analogs as Non-Nucleoside Reverse Transcriptase Inhibitors

    DEFF Research Database (Denmark)

    Loksha, Yasser M; Pedersen, Erik B; Loddo, Roberta

    2016-01-01

    in methanol, alkylation, reduction, halogenation, and/or acidic hydrolysis. All synthesized compounds were evaluated for their activity against HIV-1. The most active compound in this study was compound 7, which showed activity against HIV-1 comparable to that of MC-1220. The only difference in structure...

  8. Design, synthesis and in-vitro evaluation of novel tetrahydroquinoline carbamates as HIV-1 RT inhibitor and their antifungal activity.

    Science.gov (United States)

    Chander, Subhash; Ashok, Penta; Zheng, Yong-Tang; Wang, Ping; Raja, Krishnamohan S; Taneja, Akash; Murugesan, Sankaranarayanan

    2016-02-01

    Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs) are vital class of drugs in treating HIV-1 infection, but drug resistance and toxicity drive the need for effective new inhibitors with potent antiviral activity, less toxicity and improved physicochemical properties. In the present study, twelve novel 1-(4-chlorophenyl)-2-(3,4-dihydroquinolin-1(2H)-yl)ethyl phenylcarbamate derivatives were designed as inhibitor of HIV-1 RT using the ligand based drug design approach and in-silico evaluated for drug-likeness properties. Designed compounds were synthesized, characterized and in-vitro evaluated for RT inhibitory activity against wild HIV-1 RT. Among these, four compounds (6b, 6i, 6j and 6l) exhibited significant inhibition of HIV-1 RT (IC50 ⩽ 20 μM). Among four compounds, most active compounds 6b and 6j inhibited the RT activity with IC50 8.12 and 5.42 μM respectively. Docking studies of compounds 6b and 6j were performed against wild HIV-1 RT in order to predict their putative binding mode with selected target. Further, cytotoxicity and anti-HIV activity of compounds 6b and 6j were evaluated on T lymphocytes (C8166 cells). All the synthesized compounds were also evaluated for antifungal activity against Candida albicans and Aspergillus niger fungal strains. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Tat RNA silencing suppressor activity contributes to perturbation of lymphocyte miRNA by HIV-1

    Directory of Open Access Journals (Sweden)

    Yu Lianbo

    2011-05-01

    Full Text Available Abstract Background MicroRNA (miRNA-mediated RNA silencing is integral to virtually every cellular process including cell cycle progression and response to virus infection. The interplay between RNA silencing and HIV-1 is multifaceted, and accumulating evidence posits a strike-counterstrike interface that alters the cellular environment to favor virus replication. For instance, miRNA-mediated RNA silencing of HIV-1 translation is antagonized by HIV-1 Tat RNA silencing suppressor activity. The activity of HIV-1 accessory proteins Vpr/Vif delays cell cycle progression, which is a process prominently modulated by miRNA. The expression profile of cellular miRNA is altered by HIV-1 infection in both cultured cells and clinical samples. The open question stands of what, if any, is the contribution of Tat RNA silencing suppressor activity or Vpr/Vif activity to the perturbation of cellular miRNA by HIV-1. Results Herein, we compared the perturbation of miRNA expression profiles of lymphocytes infected with HIV-1NL4-3 or derivative strains that are deficient in Tat RNA silencing suppressor activity (Tat K51A substitution or ablated of the vpr/vif open reading frames. Microarrays recapitulated the perturbation of the cellular miRNA profile by HIV-1 infection. The miRNA expression trends overlapped ~50% with published microarray results on clinical samples from HIV-1 infected patients. Moreover, the number of miRNA perturbed by HIV-1 was largely similar despite ablation of Tat RSS activity and Vpr/Vif; however, the Tat RSS mutation lessened HIV-1 downregulation of twenty-two miRNAs. Conclusions Our study identified miRNA expression changes attributable to Tat RSS activity in HIV-1NL4-3. The results accomplish a necessary step in the process to understand the interface of HIV-1 with host RNA silencing activity. The overlap in miRNA expression trends observed between HIV-1 infected CEMx174 lymphocytes and primary cells supports the utility of cultured

  10. D77, one benzoic acid derivative, functions as a novel anti-HIV-1 inhibitor targeting the interaction between integrase and cellular LEDGF/p75

    International Nuclear Information System (INIS)

    Du Li; Zhao Yaxue; Chen, Jing; Yang Liumeng; Zheng Yongtang; Tang Yun; Shen Xu; Jiang Hualiang

    2008-01-01

    Integration of viral-DNA into host chromosome mediated by the viral protein HIV-1 integrase (IN) is an essential step in the HIV-1 life cycle. In this process, Lens epithelium-derived growth factor (LEDGF/p75) is discovered to function as a cellular co-factor for integration. Since LEDGF/p75 plays an important role in HIV integration, disruption of the LEDGF/p75 interaction with IN has provided a special interest for anti-HIV agent discovery. In this work, we reported that a benzoic acid derivative, 4-[(5-bromo-4-{[2,4-dioxo-3-(2-oxo-2-phenylethyl) -1,3-thiazolidin-5-ylidene]methyl}-2-ethoxyphenoxy)methyl]benzoic acid (D77) could potently inhibit the IN-LEDGF/p75 interaction and affect the HIV-1 IN nuclear distribution thus exhibiting antiretroviral activity. Molecular docking with site-directed mutagenesis analysis and surface plasmon resonance (SPR) binding assays has clarified possible binding mode of D77 against HIV-1 integrase. As the firstly discovered small molecular compound targeting HIV-1 integrase interaction with LEDGF/p75, D77 might supply useful structural information for further anti-HIV agent discovery

  11. Integrase and integration: biochemical activities of HIV-1 integrase

    Directory of Open Access Journals (Sweden)

    Deprez Eric

    2008-12-01

    Full Text Available Abstract Integration of retroviral DNA is an obligatory step of retrovirus replication because proviral DNA is the template for productive infection. Integrase, a retroviral enzyme, catalyses integration. The process of integration can be divided into two sequential reactions. The first one, named 3'-processing, corresponds to a specific endonucleolytic reaction which prepares the viral DNA extremities to be competent for the subsequent covalent insertion, named strand transfer, into the host cell genome by a trans-esterification reaction. Recently, a novel specific activity of the full length integrase was reported, in vitro, by our group for two retroviral integrases (HIV-1 and PFV-1. This activity of internal cleavage occurs at a specific palindromic sequence mimicking the LTR-LTR junction described into the 2-LTR circles which are peculiar viral DNA forms found during viral infection. Moreover, recent studies demonstrated the existence of a weak palindromic consensus found at the integration sites. Taken together, these data underline the propensity of retroviral integrases for binding symmetrical sequences and give perspectives for targeting specific sequences used for gene therapy.

  12. The HIV-1 transcriptional activator Tat has potent nucleic acid chaperoning activities in vitro

    OpenAIRE

    Kuciak, Monika; Gabus, Caroline; Ivanyi-Nagy, Roland; Semrad, Katharina; Storchak, Roman; Chaloin, Olivier; Muller, Sylviane; Mély, Yves; Darlix, Jean-Luc

    2008-01-01

    The human immunodeficiency virus type 1 (HIV-1) is a primate lentivirus that causes the acquired immunodeficiency syndrome (AIDS). In addition to the virion structural proteins and enzyme precursors, that are Gag, Env and Pol, HIV-1 encodes several regulatory proteins, notably a small nuclear transcriptional activator named Tat. The Tat protein is absolutely required for virus replication since it controls proviral DNA transcription to generate the full-length viral mRNA. Tat can also regulat...

  13. Multi-target activity of Hemidesmus indicus decoction against innovative HIV-1 drug targets and characterization of Lupeol mode of action.

    Science.gov (United States)

    Esposito, Francesca; Mandrone, Manuela; Del Vecchio, Claudia; Carli, Ilaria; Distinto, Simona; Corona, Angela; Lianza, Mariacaterina; Piano, Dario; Tacchini, Massimo; Maccioni, Elias; Cottiglia, Filippo; Saccon, Elisa; Poli, Ferruccio; Parolin, Cristina; Tramontano, Enzo

    2017-08-31

    Despite the availability of several anti-retrovirals, there is still an urgent need for developing novel therapeutic strategies and finding new drugs against underexplored HIV-1 targets. Among them, there are the HIV-1 reverse transcriptase (RT)-associated ribonuclease H (RNase H) function and the cellular α-glucosidase, involved in the control mechanisms of N-linked glycoproteins formation in the endoplasmic reticulum. It is known that many natural compounds, such as pentacyclic triterpenes, are a promising class of HIV-1 inhibitors. Hence, here we tested the pentacyclic triterpene Lupeol, showing that it inhibits the HIV-1 RT-associated RNase H function. We then performed combination studies of Lupeol and the active site RNase H inhibitor RDS1759, and blind docking calculations, demonstrating that Lupeol binds to an HIV-1 RT allosteric pocket. On the bases of these results and searching for potential multitarget active drug supplement, we also investigated the anti-HIV-1 activity of Hemidesmus indicus, an Ayurveda medicinal plant containing Lupeol. Results supported the potential of this plant as a valuable multitarget active drug source. In fact, by virtue of its numerous active metabolites, H. indicus was able to inhibit not only the RT-associated RNase H function, but also the HIV-1 RT-associated RNA-dependent DNA polymerase activity and the cellular α-glucosidase. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. IL-15 promotes activation and expansion of CD8+ T cells in HIV-1 infection

    OpenAIRE

    Younes, Souheil-Antoine; Freeman, Michael L.; Mudd, Joseph C.; Shive, Carey L.; Reynaldi, Arnold; Panigrahi, Soumya; Estes, Jacob D.; Deleage, Claire; Lucero, Carissa; Anderson, Jodi; Schacker, Timothy W.; Davenport, Miles P.; McCune, Joseph M.; Hunt, Peter W.; Lee, Sulggi A.

    2016-01-01

    In HIV-1–infected patients, increased numbers of circulating CD8+ T cells are linked to increased risk of morbidity and mortality. Here, we identified a bystander mechanism that promotes CD8 T cell activation and expansion in untreated HIV-1–infected patients. Compared with healthy controls, untreated HIV-1–infected patients have an increased population of proliferating, granzyme B+, CD8+ T cells in circulation. Vβ expression and deep sequencing of CDR3 revealed that in untreated HIV-1 infect...

  15. Novel Bifunctional Quinolonyl Diketo Acid Derivatives as HIV-1 Integrase Inhibitors: Design, Synthesis, Biological Activities and Mechanism of Action

    Science.gov (United States)

    Di Santo, Roberto; Costi, Roberta; Roux, Alessandra; Artico, Marino; Lavecchia, Antonio; Marinelli, Luciana; Novellino, Ettore; Palmisano, Lucia; Andreotti, Mauro; Amici, Roberta; Galluzzo, Clementina Maria; Nencioni, Lucia; Palamara, Anna Teresa; Pommier, Yves; Marchand, Christophe

    2008-01-01

    The virally encoded integrase protein is an essential enzyme in the life cycle of the HIV-1 virus and represents an attractive and validated target in the development of therapeutics against HIV infection. Drugs that selectively inhibit this enzyme, when used in combination with inhibitors of reverse transcriptase and protease, are believed to be highly effective in suppressing the viral replication. Among the HIV-1 integrase inhibitors, the β-diketo acids (DKAs) represent a major lead for anti-HIV-1drug development. In this study, novel bifunctional quinolonyl diketo acid derivatives were designed, synthesized and tested for their inhibitory ability against HIV-1 integrase. The compounds are potent inhibitors of integrase activity. Particularly, derivative 8 is a potent IN inhibitor for both steps of the reaction (3′-processing and strand transfer) and exhibits both high antiviral activity against HIV-1 infected cells and low cytotoxicity. Molecular modeling studies provide a plausible mechanism of action, which is consistent with ligand SARs and enzyme photo-crosslinking experiments. PMID:16539381

  16. Qualitative and quantitative intravaginal targeting: key to anti-HIV-1 microbicide delivery from test tube to in vivo success.

    Science.gov (United States)

    Pillay, Viness; Mashingaidze, Felix; Choonara, Yahya E; Du Toit, Lisa C; Buchmann, Eckhart; Maharaj, Vinesh; Ndesendo, Valence M K; Kumar, Pradeep

    2012-06-01

    The past decade has seen several effective anti-HIV-1 agent discoveries, yet microbicides continue to disappoint clinically. Our review expounds the view that unsatisfactory microbicide failures may be a result of inefficient delivery systems employed. We hereby propose a thorough scientific qualitative and quantitative investigation of important aspects involved in HIV-1 transmission as a prerequisite for microbicide delivery. Intravaginal targeting of HIV-1 increases the chances of microbicide success, wherein vaginal microenvironmental factors including pH should be maintained at HIV-1 prohibitive acidic levels simultaneously to ward off other sexually transmitted diseases, which compromise vaginal epithelial barrier properties. Furthermore, choice of receptors to target both on HIV-1 and on target cells is vital in deterring transmission. Appropriate modeling of virus-target cell interactions as well as targeting early stages of the HIV-1 infection accompanied by computation and delivery of appropriate microbicide quantities could revolutionize microbicide research, ultimately delivering a female-controlled HIV-1 prevention modality appropriately. Copyright © 2012 Wiley Periodicals, Inc.

  17. A novel strategy for efficient production of anti-V3 human scFvs against HIV-1 clade C

    Directory of Open Access Journals (Sweden)

    Kumar Rajesh

    2012-11-01

    Full Text Available Abstract Background Production of human monoclonal antibodies that exhibit broadly neutralizing activity is needed for preventing HIV-1 infection, however only a few such antibodies have been generated till date. Isolation of antibodies by the hybridoma technology is a cumbersome process with fewer yields. Further, the loss of unstable or slowly growing clones which may have unique binding specificities often occurs during cloning and propagation and the strongly positive clones are often lost. This has been avoided by the process described in this paper, wherein, by combining the strategy of EBV transformation and recombinant DNA technology, we constructed human single chain variable fragments (scFvs against the third variable region (V3 of the clade C HIV-1 envelope. Results An antigen specific phage library of 7000 clones was constructed from the enriched V3- positive antibody secreting EBV transformed cells. By ligation of the digested scFv DNA into phagemid vector and bio panning against the HIV-1 consensus C and B V3 peptides followed by random selection of 40 clones, we identified 15 clones that showed V3 reactivity in phage ELISA. DNA fingerprinting analysis and sequencing showed that 13 out of the 15 clones were distinct. Expression of the positive clones was tested by SDS-PAGE and Western blot. All the 13 anti-V3 scFvs showed cross-reactivity against both the clade C and B V3 peptides and did not show any reactivity against other unrelated peptides in ELISA. Preliminary neutralization assays indicated varying degrees of neutralization of clade C and B viruses. EBV transformation, followed by antigen selection of lines to identify specific binders, enabled the selection of phage from un-cloned lines for scFv generation, thus avoiding the problems of hybridoma technology. Moreover, as the clones were pretested for antigen binding, a comparatively small library sufficed for the selection of a considerable number of unique antigen binding

  18. GRL-09510, a Unique P2-Crown-Tetrahydrofuranylurethane -Containing HIV-1 Protease Inhibitor, Maintains Its Favorable Antiviral Activity against Highly-Drug-Resistant HIV-1 Variants in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Amano, Masayuki; Miguel Salcedo-Gómez, Pedro; Yedidi, Ravikiran S.; Delino, Nicole S.; Nakata, Hirotomo; Venkateswara Rao, Kalapala; Ghosh, Arun K.; Mitsuya, Hiroaki

    2017-09-25

    We report that GRL-09510, a novel HIV-1 protease inhibitor (PI) containing a newly-generated P2-crown-tetrahydrofuranylurethane (Crwn-THF), a P2'-methoxybenzene, and a sulfonamide isostere, is highly active against laboratory and primary clinical HIV-1 isolates (EC50: 0.0014–0.0028 μM) with minimal cytotoxicity (CC50: 39.0 μM). Similarly, GRL-09510 efficiently blocked the replication of HIV-1NL4-3 variants, which were capable of propagating at high-concentrations of atazanavir, lopinavir, and amprenavir (APV). GRL-09510 was also potent against multi-drug-resistant clinical HIV-1 variants and HIV-2ROD. Under the selection condition, where HIV-1NL4-3 rapidly acquired significant resistance to APV, an integrase inhibitor raltegravir, and a GRL-09510 congener (GRL-09610), no variants highly resistant against GRL-09510 emerged over long-term in vitro passage of the virus. Crystallographic analysis demonstrated that the Crwn-THF moiety of GRL-09510 forms strong hydrogen-bond-interactions with HIV-1 protease (PR) active-site amino acids and is bulkier with a larger contact surface, making greater van der Waals contacts with PR than the bis-THF moiety of darunavir. The present data demonstrate that GRL-09510 has favorable features for treating patients infected with wild-type and/or multi-drug-resistant HIV-1 variants, that the newly generated P2-Crwn-THF moiety confers highly desirable anti-HIV-1 potency. The use of the novel Crwn-THF moiety sheds lights in the design of novel PIs.

  19. An anti-HIV microbicide engineered in commensal bacteria: secretion of HIV-1 fusion inhibitors by lactobacilli.

    Science.gov (United States)

    Pusch, Oliver; Kalyanaraman, Roopa; Tucker, Lynne D; Wells, Jerry M; Ramratnam, Bharat; Boden, Daniel

    2006-10-03

    To engineer Lactobacillus spp. to secrete HIV-1 fusion inhibitors with potent neutralizing activity against primary HIV-1 isolates. HIV-1 fusion inhibitors (FI-1, FI-2, and FI-3) were introduced into the previously developed shuttle vector pTSV2 and transformed in L. plantarum and L. gasseri. The signal peptide Usp45 from L. lactis was used to achieve high secretion efficiency of peptides into the bacterial supernatant. The antiviral activity of lactobacillus-derived HIV-1 fusion inhibitors was tested against a panel of primary HIV-1 isolates and a chimeric simian/HIV (SHIV-162P3) using the TZM infection assay. TZM-bl cells are engineered HeLa cells that express CD4, CCR5, and CXCR4 and contain integrated reporter genes for firefly luciferase and beta-galactosidase under the control of an HIV-1 long terminal repeat. The amount of secreted fusion inhibitor FI-3 was determined by Western blot analysis and the antiviral specificity verified by antibody-mediated depletion of peptide FI-3 and HIV-1 infection with VSV-G envelope pseudotyped virions. Viral infectivity of primary HIV-1 isolates and SHIV-162P3 was neutralized by up to 98% and 72%, respectively, by 10% (v/v) lactobacillus supernatant containing fusion inhibitor FI-3. The antiviral activity of the lactobacillus-derived fusion inhibitor FI-3 was clearly shown to be attributable to the secreted fusion inhibitor peptide. The development of recombinant lactobacilli expressing HIV-1 fusion inhibitors with potent neutralizing activity represents an important step toward the development of a live microbial (topical) microbicide against HIV-1 transmission.

  20. Inhibition of the DNA polymerase and RNase H activities of HIV-1 reverse transcriptase and HIV-1 replication by Brasenia schreberi (Junsai) and Petasites japonicus (Fuki) components.

    Science.gov (United States)

    Hisayoshi, Tetsuro; Shinomura, Mayu; Yokokawa, Kanta; Kuze, Ikumi; Konishi, Atsushi; Kawaji, Kumi; Kodama, Eiichi N; Hata, Keishi; Takahashi, Saori; Nirasawa, Satoru; Sakuda, Shohei; Yasukawa, Kiyoshi

    2015-07-01

    Human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) possesses two distinct enzymatic activities: those of RNA- and DNA-dependent DNA polymerases and RNase H. In the current HIV-1 therapy, all HIV-1 RT inhibitors inhibit the activity of DNA polymerase, but not that of RNase H. We previously reported that ethanol and water extracts of Brasenia schreberi (Junsai) inhibited the DNA polymerase activity of HIV-1 RT [Hisayoshi et al. (2014) J Biol Macromol 14:59-65]. In this study, we screened 43 edible plants and found that ethanol and water extracts of Brasenia schreberi and water extract of Petasites japonicus strongly inhibit not only the activity of DNA polymerase to incorporate dTTP into poly(rA)-p(dT)15 but also the activity of RNase H to hydrolyze the RNA strand of an RNA/DNA hybrid. In addition, these three extracts inhibit HIV-1 replication in human cells, with EC50 values of 1-2 µg/ml. These results suggest that Brasenia schreberi and Petasites japonicus contain substances that block HIV-1 replication by inhibiting the DNA polymerase activity and/or RNase H activity of HIV-1 RT.

  1. Macropinocytosis and TAK1 mediate anti-inflammatory to pro-inflammatory macrophage differentiation by HIV-1 Nef.

    Science.gov (United States)

    Hashimoto, M; Nasser, H; Chihara, T; Suzu, S

    2014-05-29

    Macrophages (MΦ) are functionally classified into two types, anti-inflammatory M2 and pro-inflammatory M1. Importantly, we recently revealed that soluble HIV-1 proteins, particularly the pathogenetic protein Nef, preferentially activate M2-MΦ and drive them towards an M1-like MΦ, which might explain the sustained immune activation seen in HIV-1-infected patients. Here, we show that the preferential effect of Nef on M2-MΦ is mediated by TAK1 (TGF-β-activated kinase 1) and macropinocytosis. As with MAP kinases and NF-κB pathway, Nef markedly activated TAK1 in M-CSF-derived M2-MΦ but not in GM-CSF-derived M1-MΦ. Two Nef mutants, which were unable to activate MAP kinases and NF-κB pathway, failed to activate TAK1. Indeed, the TAK1 inhibitor 5Z-7-oxozeaenol as well as the ectopic expression of a dominant-negative mutant of TAK1 or TRAF2, an upstream molecule of TAK1, inhibited Nef-induced signaling activation and M1-like phenotypic differentiation of M2-MΦ. Meanwhile, the preferential effect of Nef on M2-MΦ correlated with the fact the Nef entered M2-MΦ more efficiently than M1-MΦ. Importantly, the macropinosome formation inhibitor EIPA completely blocked the internalization of Nef into M2-MΦ. Because the macropinocytosis activity of M2-MΦ was higher than that of M1-MΦ, our findings indicate that Nef enters M2-MΦ efficiently by exploiting their higher macropinocytosis activity and drives them towards M1-like MΦ by activating TAK1.

  2. Fluorine Substituted 1,2,4-Triazinones as Potential Anti-HIV-1 and CDK2 Inhibitors

    Directory of Open Access Journals (Sweden)

    Mohammed S. I. Makki

    2014-01-01

    Full Text Available Fluorine substituted 1,2,4-triazinones have been synthesized via alkylation, amination, and/or oxidation of 6-(2-amino-5-fluorophenyl-3-thioxo-3,4-dihydro-1,2,4-triazin-5(2H-one 1 and 4-fluoro-N-(4-fluoro-2-(5-oxo-3-thioxo-2,3,4,5-tetrahydro-1,2,4-triazin-6-ylphenylbenzamide 5 as possible anti-HIV-1 and CDK2 inhibitors. Alkylation on positions 2 and 4 in 1,2,4-triazinone gave compounds 6–8. Further modification was performed by selective alkylation and amination on position 3 to form compounds 9–15. However oxidation of 5 yielded compounds 16–18. Structures of the target compounds have been established by spectral analysis data. Five compounds (5, 11, 14, 16, and 17 have shown very good anti-HIV activity in MT-4 cells. Similarly, five compounds (1, 3, and 14–16 have exhibited very significant CDK2 inhibition activity. Compounds 14 and 16 were found to have dual anti-HIV and anticancer activities.

  3. Antiviral activity of α-helical stapled peptides designed from the HIV-1 capsid dimerization domain

    Directory of Open Access Journals (Sweden)

    Cowburn David

    2011-05-01

    Full Text Available Abstract Background The C-terminal domain (CTD of HIV-1 capsid (CA, like full-length CA, forms dimers in solution and CTD dimerization is a major driving force in Gag assembly and maturation. Mutations of the residues at the CTD dimer interface impair virus assembly and render the virus non-infectious. Therefore, the CTD represents a potential target for designing anti-HIV-1 drugs. Results Due to the pivotal role of the dimer interface, we reasoned that peptides from the α-helical region of the dimer interface might be effective as decoys to prevent CTD dimer formation. However, these small peptides do not have any structure in solution and they do not penetrate cells. Therefore, we used the hydrocarbon stapling technique to stabilize the α-helical structure and confirmed by confocal microscopy that this modification also made these peptides cell-penetrating. We also confirmed by using isothermal titration calorimetry (ITC, sedimentation equilibrium and NMR that these peptides indeed disrupt dimer formation. In in vitro assembly assays, the peptides inhibited mature-like virus particle formation and specifically inhibited HIV-1 production in cell-based assays. These peptides also showed potent antiviral activity against a large panel of laboratory-adapted and primary isolates, including viral strains resistant to inhibitors of reverse transcriptase and protease. Conclusions These preliminary data serve as the foundation for designing small, stable, α-helical peptides and small-molecule inhibitors targeted against the CTD dimer interface. The observation that relatively weak CA binders, such as NYAD-201 and NYAD-202, showed specificity and are able to disrupt the CTD dimer is encouraging for further exploration of a much broader class of antiviral compounds targeting CA. We cannot exclude the possibility that the CA-based peptides described here could elicit additional effects on virus replication not directly linked to their ability to bind

  4. In vitro antiviral characteristics of HIV-1 attachment inhibitor BMS-626529, the active component of the prodrug BMS-663068.

    Science.gov (United States)

    Nowicka-Sans, Beata; Gong, Yi-Fei; McAuliffe, Brian; Dicker, Ira; Ho, Hsu-Tso; Zhou, Nannan; Eggers, Betsy; Lin, Pin-Fang; Ray, Neelanjana; Wind-Rotolo, Megan; Zhu, Li; Majumdar, Antara; Stock, David; Lataillade, Max; Hanna, George J; Matiskella, John D; Ueda, Yasutsugu; Wang, Tao; Kadow, John F; Meanwell, Nicholas A; Krystal, Mark

    2012-07-01

    BMS-663068 is the phosphonooxymethyl prodrug of BMS-626529, a novel small-molecule attachment inhibitor that targets HIV-1 gp120 and prevents its binding to CD4(+) T cells. The activity of BMS-626529 is virus dependent, due to heterogeneity within gp120. In order to better understand the anti-HIV-1 spectrum of BMS-626529 against HIV-1, in vitro activities against a wide variety of laboratory strains and clinical isolates were determined. BMS-626529 had half-maximal effective concentration (EC(50)) values of 6 log(10), with half-maximal effective concentration values in the low pM range against the most susceptible viruses. The in vitro antiviral activity of BMS-626529 was generally not associated with either tropism or subtype, with few exceptions. Measurement of the binding affinity of BMS-626529 for purified gp120 suggests that a contributory factor to its inhibitory potency may be a relatively long dissociative half-life. Finally, in two-drug combination studies, BMS-626529 demonstrated additive or synergistic interactions with antiretroviral drugs of different mechanistic classes. These results suggest that BMS-626529 should be active against the majority of HIV-1 viruses and support the continued clinical development of the compound.

  5. Prevalence of Drug Resistance Associated Mutations Among the Anti Retroviral Therapy Exposed HIV-1 Infected Individuals in Manipur, Northeast India.

    Science.gov (United States)

    Lakhikumar Sharma, Adhikarimayum; Ramsing Singh, Thiyam; Ranjana Devi, Khuraijam; Shanjukumar Singh, Lisam

    2016-01-01

    Manipur is one of the highest HIV prevalence states of India because of its geographical location at the international border near the golden triangle of South-East Asia, but no study on drug resistance associated mutations (DRAMs) has been reported yet. A population-based study on DRAMs of HIV-1 among the anti-retroviral therapy (ART) exposed HIV-1 infected individuals of Manipur was conducted. 110 HIV-1 positive individuals who had initially exposed to first line anti-HIV drugs were recruited for the surveillance of DRAMs. Reverse transcriptase and protease genes of HIV-1 were amplified, sequenced and analyzed. Significant prevalence of DRAMs of HIV-1 was found among the ART exposed HIV-1 infected individuals of Manipur. The results revealed that 37%, 29% and 7% individuals harbor HIV-1 strains mutated at the target sites of nonnucleoside reverse transcriptase inhibitors, nucleoside reverse transcriptase inhibitors and protease inhibitors respectively. Predominant DRAMs at RT genes were M184V, T215Y, M41L and V108I and H221Y while at PR genes were M46I and I47V. Among the high risk groups, intravenous drug users have the highest number of DRAMs followed by heterosexual individuals. Analysis of viral subtype based on pol gene revealed 83% subtype C, 11.8% recombinant forms and 5.2% subtype B. DRAMs at the target sites of reverse transcriptase inhibitors are high and these were found to have developed resistance to the primary ART drugs that are used in Manipur. The findings of this study will help the clinicians to guide patients during the course of ART treatment regimes.

  6. HIV-1 Promotes the Degradation of Components of the Type 1 IFN JAK/STAT Pathway and Blocks Anti-viral ISG Induction.

    Science.gov (United States)

    Gargan, Siobhan; Ahmed, Suaad; Mahony, Rebecca; Bannan, Ciaran; Napoletano, Silvia; O'Farrelly, Cliona; Borrow, Persephone; Bergin, Colm; Stevenson, Nigel J

    2018-04-01

    Anti-retroviral therapy successfully suppresses HIV-1 infection, but fails to provide a cure. During infection Type 1 IFNs normally play an essential role in viral clearance, but in vivo IFN-α only has a modest impact on HIV-1 infection, suggesting its possible targeting by HIV. Here, we report that the HIV protein, Vif, inhibits effective IFN-α signalling via degradation of essential JAK/STAT pathway components. We found that STAT1 and STAT3 are specifically reduced in HEK293T cells expressing Vif and that full length, infectious HIV-1 IIIB strain promotes their degradation in a Vif-dependent manner. HIV-1 IIIB infection of myeloid ThP-1 cells also reduced the IFN-α-mediated induction of the anti-viral gene, ISG15, but not MxA, revealing a functional consequence of this HIV-1-mediated immune evasion strategy. Interestingly, while total STAT levels were not reduced upon in vitro IIIB infection of primary human PBMCs, IFN-α-mediated phosphorylation of STAT1 and STAT3 and ISG induction were starkly reduced, with removal of Vif (IIIBΔVif), partially restoring pSTATs, ISG15 and MxB induction. Similarly, pSTAT1 and pSTAT3 expression and IFN-α-induced ISG15 were reduced in PBMCs from HIV-infected patients, compared to healthy controls. Furthermore, IFN-α pre-treatment of a CEM T lymphoblast cells significantly inhibited HIV infection/replication (measured by cellular p24), only in the absence of Vif (IIIBΔVif), but was unable to suppress full length IIIB infection. When analysing the mechanism by which Vif might target the JAK/STAT pathway, we found Vif interacts with both STAT1 and STAT3, (but not STAT2), and its expression promotes ubiquitination and MG132-sensitive, proteosomal degradation of both proteins. Vif's Elongin-Cullin-SOCS-box binding motif enables the formation of an active E3 ligase complex, which we found to be required for Vif's degradation of STAT1 and STAT3. In fact, the E3 ligase scaffold proteins, Cul5 and Rbx2, were also found to be

  7. Resistance of Subtype C HIV-1 Strains to Anti-V3 Loop Antibodies

    Directory of Open Access Journals (Sweden)

    David Almond

    2012-01-01

    Full Text Available HIV-1’s subtype C V3 loop consensus sequence exhibits increased resistance to anti-V3 antibody-mediated neutralization as compared to the subtype B consensus sequence. The dynamic 3D structure of the consensus C V3 loop crown, visualized by ab initio folding, suggested that the resistance derives from structural rigidity and non-β-strand secondary protein structure in the N-terminal strand of the β-hairpin of the V3 loop crown, which is where most known anti-V3 loop antibodies bind. The observation of either rigidity or non-β-strand structure in this region correlated with observed resistance to antibody-mediated neutralization in a series of chimeric pseudovirus (psV mutants. The results suggest the presence of an epitope-independent, neutralization-relevant structural difference in the antibody-targeted region of the V3 loop crown between subtype C and subtype B, a difference that we hypothesize may contribute to the divergent pattern of global spread between these subtypes. As antibodies to a variable loop were recently identified as an inverse correlate of risk for HIV infection, the structure-function relationships discussed in this study may have relevance to HIV vaccine research.

  8. Sequential Immunization Elicits Broadly Neutralizing Anti-HIV-1 Antibodies in Ig Knockin Mice.

    Science.gov (United States)

    Escolano, Amelia; Steichen, Jon M; Dosenovic, Pia; Kulp, Daniel W; Golijanin, Jovana; Sok, Devin; Freund, Natalia T; Gitlin, Alexander D; Oliveira, Thiago; Araki, Tatsuya; Lowe, Sarina; Chen, Spencer T; Heinemann, Jennifer; Yao, Kai-Hui; Georgeson, Erik; Saye-Francisco, Karen L; Gazumyan, Anna; Adachi, Yumiko; Kubitz, Michael; Burton, Dennis R; Schief, William R; Nussenzweig, Michel C

    2016-09-08

    A vaccine that elicits broadly neutralizing antibodies (bNAbs) against HIV-1 is likely to be protective, but this has not been achieved. To explore immunization regimens that might elicit bNAbs, we produced and immunized mice expressing the predicted germline PGT121, a bNAb specific for the V3-loop and surrounding glycans on the HIV-1 spike. Priming with an epitope-modified immunogen designed to activate germline antibody-expressing B cells, followed by ELISA-guided boosting with a sequence of directional immunogens, native-like trimers with decreasing epitope modification, elicited heterologous tier-2-neutralizing responses. In contrast, repeated immunization with the priming immunogen did not. Antibody cloning confirmed elicitation of high levels of somatic mutation and tier-2-neutralizing antibodies resembling the authentic human bNAb. Our data establish that sequential immunization with specifically designed immunogens can induce high levels of somatic mutation and shepherd antibody maturation to produce bNAbs from their inferred germline precursors. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Novel 3′-Processing Integrase Activity Assay by Real-Time PCR for Screening and Identification of HIV-1 Integrase Inhibitors

    Directory of Open Access Journals (Sweden)

    Supachai Sakkhachornphop

    2015-01-01

    Full Text Available The 3′-end processing (3′P of each viral long terminal repeat (LTR during human immunodeficiency virus type-1 (HIV-1 integration is a vital step in the HIV life cycle. Blocking the 3′P using 3′P inhibitor has recently become an attractive strategy for HIV-1 therapeutic intervention. Recently, we have developed a novel real-time PCR based assay for the detection of 3′P activity in vitro. The methodology usually involves biotinylated HIV-1 LTR, HIV-1 integrase (IN, and specific primers and probe. In this novel assay, we designed the HIV-1 LTR substrate based on a sequence with a homology to HIV-1 LTR labeled at its 3′ end with biotin on the sense strand. Two nucleotides at the 3′ end were subsequently removed by IN activity. Only two nucleotides labeled biotin were captured on an avidin-coated tube; therefore, inhibiting the binding of primers and probe results in late signals in the real-time PCR. This novel assay has successfully detected both the 3′P activity of HIV-1 IN and the anti-IN activity by Raltegravir and sodium azide agent. This real-time PCR assay has been shown to be effective and inexpensive for a high-throughput screening of novel IN inhibitors.

  10. DNA vaccine molecular adjuvants SP-D-BAFF and SP-D-APRIL enhance anti-gp120 immune response and increase HIV-1 neutralizing antibody titers.

    Science.gov (United States)

    Gupta, Sachin; Clark, Emily S; Termini, James M; Boucher, Justin; Kanagavelu, Saravana; LeBranche, Celia C; Abraham, Sakhi; Montefiori, David C; Khan, Wasif N; Stone, Geoffrey W

    2015-04-01

    Broadly neutralizing antibodies (bNAbs) specific for conserved epitopes on the HIV-1 envelope (Env) are believed to be essential for protection against multiple HIV-1 clades. However, vaccines capable of stimulating the production of bNAbs remain a major challenge. Given that polyreactivity and autoreactivity are considered important characteristics of anti-HIV bNAbs, we designed an HIV vaccine incorporating the molecular adjuvants BAFF (B cell activating factor) and APRIL (a proliferation-inducing ligand) with the potential to facilitate the maturation of polyreactive and autoreactive B cells as well as to enhance the affinity and/or avidity of Env-specific antibodies. We designed recombinant DNA plasmids encoding soluble multitrimers of BAFF and APRIL using surfactant protein D as a scaffold, and we vaccinated mice with these molecular adjuvants using DNA and DNA-protein vaccination strategies. We found that immunization of mice with a DNA vaccine encoding BAFF or APRIL multitrimers, together with interleukin 12 (IL-12) and membrane-bound HIV-1 Env gp140, induced neutralizing antibodies against tier 1 and tier 2 (vaccine strain) viruses. The APRIL-containing vaccine was particularly effective at generating tier 2 neutralizing antibodies following a protein boost. These BAFF and APRIL effects coincided with an enhanced germinal center (GC) reaction, increased anti-gp120 antibody-secreting cells, and increased anti-gp120 functional avidity. Notably, BAFF and APRIL did not cause indiscriminate B cell expansion or an increase in total IgG. We propose that BAFF and APRIL multitrimers are promising molecular adjuvants for vaccines designed to induce bNAbs against HIV-1. Recent identification of antibodies that neutralize most HIV-1 strains has revived hopes and efforts to create novel vaccines that can effectively stimulate HIV-1 neutralizing antibodies. However, the multiple immune evasion properties of HIV have hampered these efforts. These include the instability of

  11. Pegylated IFN-α-induced NK cell activation is associated with HIV-1 DNA decline in ART-treated HIV-1/HCV co-infected patients.

    Science.gov (United States)

    Hua, Stéphane; Vigano, Selena; Tse, Samantha; Zhengyu, Ouyang; Harrington, Sean; Negron, Jordi; Garcia-Broncano, Pilar; Marchetti, Giulia; Genebat, Miguel; Leal, Manuel; Resino, Salvador; Ruiz-Mateos, Ezequiel; Lichterfeld, Mathias; Yu, Xu G

    2017-12-20

    IFN-α can potently reduce HIV-1 replication in tissue culture and animal models, but may also modulate residual viral reservoirs that persist despite suppressive antiretroviral combination therapy. However, mechanisms leading to viral reservoir reduction during IFN-α treatment are unclear. We analyzed HIV-1 gag DNA levels in CD4 T cells by digital droplet PCR and CD8 T and NK cell phenotypes by flow cytometry in a cohort of ART-treated HIV-1/HCV co-infected patients (n=67) undergoing treatment for Hepatitis C infection with pegylated IFN-α and Ribavirin for an average of 11 months. We observed that IFN-α treatment induced a significant decrease in CD4 T cells counts (p<0.0001), in CD4 T cell-associated HIV-1 DNA copies (p=0.002) and in HIV-1 DNA copies per microliter of blood (p<0.0001) in our study patients. Notably, HIV-1 DNA levels were unrelated to HIV-1-specific CD8 T cells responses. In contrast, proportions of total NK cells, of CD56brightCD16- NK cells and of CD56brightCD16+ NK cells were significantly correlated with reduced levels of CD4 T cell-associated HIV-1 DNA during IFN-α treatment, especially when co-expressing the activation markers NKG2D and NKp30. These data suggest that the reduction of viral reservoir cells during treatment with IFN-α is primarily attributable to antiviral activities of NK cells.

  12. Novel structurally related compounds reactivate latent HIV-1 in a bcl-2-transduced primary CD4+ T cell model without inducing global T cell activation.

    Science.gov (United States)

    Xing, Sifei; Bhat, Shridhar; Shroff, Neeta S; Zhang, Hao; Lopez, Joseph A; Margolick, Joseph B; Liu, Jun O; Siliciano, Robert F

    2012-02-01

    The latent reservoir of HIV-1 in resting memory CD4+ T cells is a major barrier to curing HIV-1 infection. Eradication strategies involve reactivation of this latent reservoir; however, agents that reactivate latent HIV-1 through non-specific T cell activation are toxic. Using latently infected Bcl-2-transduced primary CD4+ T cells, we screened the MicroSource Spectrum library for compounds that reactivate latent HIV-1 without global T cell activation. Based on the structures of the initial hits, we assembled ∼50 derivatives from commercial sources and mostly by synthesis. The dose-response relationships of these derivatives were established in a primary cell model. Activities were confirmed with another model of latency (J-Lat). Cellular toxicity and cytokine secretion were tested using freshly isolated human CD4+ T cells. We identified two classes of quinolines that reactivate latent HIV-1. Class I compounds are the Mannich adducts of 5-chloroquinolin-8-ol. Class II compounds are quinolin-8-yl carbamates. Most EC(50) values were in the 0.5-10 μM range. HIV-1 reactivation ranged from 25% to 70% for anti-CD3+ anti-CD28 co-stimulation. All quinolin-8-ol derivatives that reactivate latent HIV-1 follow Lipinski's Rule of Five, and most follow the stricter rule of three for leads. After 48 h of treatment, none of the analogues induced detectable cytokine secretion in primary resting CD4+ T cells. We discovered a group of quinolin-8-ol derivatives that can induce latent HIV-1 in a primary cell model without causing global T cell activation. This work expands the number of latency-reversing agents and provides new possible scaffolds for further drug development research.

  13. Digoxin reveals a functional connection between HIV-1 integration preference and T-cell activation.

    Directory of Open Access Journals (Sweden)

    Alexander Zhyvoloup

    2017-07-01

    Full Text Available HIV-1 integrates more frequently into transcribed genes, however the biological significance of HIV-1 integration targeting has remained elusive. Using a selective high-throughput chemical screen, we discovered that the cardiac glycoside digoxin inhibits wild-type HIV-1 infection more potently than HIV-1 bearing a single point mutation (N74D in the capsid protein. We confirmed that digoxin repressed viral gene expression by targeting the cellular Na+/K+ ATPase, but this did not explain its selectivity. Parallel RNAseq and integration mapping in infected cells demonstrated that digoxin inhibited expression of genes involved in T-cell activation and cell metabolism. Analysis of >400,000 unique integration sites showed that WT virus integrated more frequently than N74D mutant within or near genes susceptible to repression by digoxin and involved in T-cell activation and cell metabolism. Two main gene networks down-regulated by the drug were CD40L and CD38. Blocking CD40L by neutralizing antibodies selectively inhibited WT virus infection, phenocopying digoxin. Thus the selectivity of digoxin depends on a combination of integration targeting and repression of specific gene networks. The drug unmasked a functional connection between HIV-1 integration and T-cell activation. Our results suggest that HIV-1 evolved integration site selection to couple its early gene expression with the status of target CD4+ T-cells, which may affect latency and viral reactivation.

  14. Qualitative and quantitative intravaginal targeting: Key to anti-HIV-1 microbicide delivery from test tube to in vivo success

    CSIR Research Space (South Africa)

    Pillay, V

    2012-06-01

    Full Text Available MASHINGAIDZE,1 YAHYA E. CHOONARA,1 LISA C. DU TOIT,1 ECKHART BUCHMANN,2 VINESH MAHARAJ,3 VALENCE M. K. NDESENDO,4 PRADEEP KUMAR1 1Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Parktown, 2193..., Pretoria, South Africa 4School of Pharmacy and Pharmaceutical Sciences, St. John?s University of Tanzania, Dodoma, Tanzania ABSTRACT: The past decade has seen several effective anti-HIV-1 agent discoveries, yet microbicides continue to disappoint...

  15. Epigenetic modulations in activated cells early after HIV-1 infection and their possible functional consequences.

    Directory of Open Access Journals (Sweden)

    Juliana T Maricato

    Full Text Available Epigenetic modifications refer to a number of biological processes which alter the structure of chromatin and its transcriptional activity such as DNA methylation and histone post-translational processing. Studies have tried to elucidate how the viral genome and its products are affected by epigenetic modifications imposed by cell machinery and how it affects the ability of the virus to either, replicate and produce a viable progeny or be driven to latency. The purpose of this study was to evaluate epigenetic modifications in PBMCs and CD4+ cells after HIV-1 infection analyzing three approaches: (i global DNA- methylation; (ii qPCR array and (iii western blot. HIV-1 infection led to methylation increases in the cellular DNA regardless the activation status of PBMCs. The analysis of H3K9me3 and H3K27me3 suggested a trend towards transcriptional repression in activated cells after HIV-1 infection. Using a qPCR array, we detected genes related to epigenetic processes highly modulated in activated HIV-1 infected cells. SETDB2 and RSK2 transcripts showed highest up-regulation levels. SETDB2 signaling is related to transcriptional silencing while RSK2 is related to either silencing or activation of gene expression depending on the signaling pathway triggered down-stream. In addition, activated cells infected by HIV-1 showed lower CD69 expression and a decrease of IL-2, IFN-γ and metabolism-related factors transcripts indicating a possible functional consequence towards global transcriptional repression found in HIV-1 infected cells. Conversely, based on epigenetic markers studied here, non-stimulated cells infected by HIV-1, showed signs of global transcriptional activation. Our results suggest that HIV-1 infection exerts epigenetic modulations in activated cells that may lead these cells to transcriptional repression with important functional consequences. Moreover, non-stimulated cells seem to increase gene transcription after HIV-1 infection

  16. Epigenetic modulations in activated cells early after HIV-1 infection and their possible functional consequences.

    Science.gov (United States)

    Maricato, Juliana T; Furtado, Maria N; Takenaka, Maisa C; Nunes, Edsel R M; Fincatti, Patricia; Meliso, Fabiana M; da Silva, Ismael D C G; Jasiulionis, Miriam G; Cecília de Araripe Sucupira, Maria; Diaz, Ricardo Sobhie; Janini, Luiz M R

    2015-01-01

    Epigenetic modifications refer to a number of biological processes which alter the structure of chromatin and its transcriptional activity such as DNA methylation and histone post-translational processing. Studies have tried to elucidate how the viral genome and its products are affected by epigenetic modifications imposed by cell machinery and how it affects the ability of the virus to either, replicate and produce a viable progeny or be driven to latency. The purpose of this study was to evaluate epigenetic modifications in PBMCs and CD4+ cells after HIV-1 infection analyzing three approaches: (i) global DNA- methylation; (ii) qPCR array and (iii) western blot. HIV-1 infection led to methylation increases in the cellular DNA regardless the activation status of PBMCs. The analysis of H3K9me3 and H3K27me3 suggested a trend towards transcriptional repression in activated cells after HIV-1 infection. Using a qPCR array, we detected genes related to epigenetic processes highly modulated in activated HIV-1 infected cells. SETDB2 and RSK2 transcripts showed highest up-regulation levels. SETDB2 signaling is related to transcriptional silencing while RSK2 is related to either silencing or activation of gene expression depending on the signaling pathway triggered down-stream. In addition, activated cells infected by HIV-1 showed lower CD69 expression and a decrease of IL-2, IFN-γ and metabolism-related factors transcripts indicating a possible functional consequence towards global transcriptional repression found in HIV-1 infected cells. Conversely, based on epigenetic markers studied here, non-stimulated cells infected by HIV-1, showed signs of global transcriptional activation. Our results suggest that HIV-1 infection exerts epigenetic modulations in activated cells that may lead these cells to transcriptional repression with important functional consequences. Moreover, non-stimulated cells seem to increase gene transcription after HIV-1 infection. Based on these

  17. Derivation of infectious HIV-1 molecular clones with LTR mutations: sensitivity to the CD8+ cell noncytotoxic anti-HIV response

    NARCIS (Netherlands)

    Bonneau, Kyle R.; Ng, Sharon; Foster, Hillary; Choi, Kelly B.; Berkhout, Ben; Rabson, Arnold; Mackewicz, Carl E.; Levy, Jay A.

    2008-01-01

    CD8(+) cells from healthy, asymptomatic HIV-1-infected individuals can inhibit HIV-1 replication in naturally or acutely infected CD4(+) cells in the absence of cell killing. This CD8(+) cell noncytotoxic anti-HIV response (CNAR) is mediated by a soluble CD8(+) cell antiviral factor (CAF). CNAR/CAF

  18. Synergistic activation of HIV-1 expression by deacetylase inhibitors and prostratin: implications for treatment of latent infection.

    Directory of Open Access Journals (Sweden)

    Sophie Reuse

    2009-06-01

    Full Text Available The persistence of transcriptionally silent but replication-competent HIV-1 reservoirs in Highly Active Anti-Retroviral Therapy (HAART-treated infected individuals, represents a major hurdle to virus eradication. Activation of HIV-1 gene expression in these cells together with an efficient HAART has been proposed as an adjuvant therapy aimed at decreasing the pool of latent viral reservoirs. Using the latently-infected U1 monocytic cell line and latently-infected J-Lat T-cell clones, we here demonstrated a strong synergistic activation of HIV-1 production by clinically used histone deacetylase inhibitors (HDACIs combined with prostratin, a non-tumor-promoting nuclear factor (NF- kappaB inducer. In J-Lat cells, we showed that this synergism was due, at least partially, to the synergistic recruitment of unresponsive cells into the expressing cell population. A combination of prostratin+HDACI synergistically activated the 5' Long Terminal Repeat (5'LTR from HIV-1 Major group subtypes representing the most prevalent viral genetic forms, as shown by transient transfection reporter assays. Mechanistically, HDACIs increased prostratin-induced DNA-binding activity of nuclear NF-kappaB and degradation of cytoplasmic NF-kappaB inhibitor, IkappaBalpha . Moreover, the combined treatment prostratin+HDACI caused a more pronounced nucleosomal remodeling in the U1 viral promoter region than the treatments with the compounds alone. This more pronounced remodeling correlated with a synergistic reactivation of HIV-1 transcription following the combined treatment prostratin+HDACI, as demonstrated by measuring recruitment of RNA polymerase II to the 5'LTR and both initiated and elongated transcripts. The physiological relevance of the prostratin+HDACI synergism was shown in CD8(+-depleted peripheral blood mononuclear cells from HAART-treated patients with undetectable viral load. Moreover, this combined treatment reactivated viral replication in resting CD4(+ T

  19. Inhibition of ecto-ATPase activities impairs HIV-1 infection of macrophages.

    Science.gov (United States)

    Schachter, Julieta; Delgado, Kelly Valcárcel; Barreto-de-Souza, Victor; Bou-Habib, Dumith Chequer; Persechini, Pedro Muanis; Meyer-Fernandes, José Roberto

    2015-05-01

    Nucleotides and nucleosides are secreted into extracellular media at different concentrations as a consequence of different physiologic and pathological conditions. Ecto-nucleotidases, enzymes present on the surface of most cells, hydrolyze these extracellular nucleotides and reduce the concentration of them, thus affecting the activation of different nucleotide and nucleoside receptors. Also, ecto-nucleotidases are present in a number of microorganisms and play important roles in host-pathogen interactions. Here, we characterized the ecto-ATPase activities present on the surface of HIV-1 particle and human macrophages as well. We found that the kinetic properties of HIV-1 and macrophage ecto-ATPases are similar, suggesting that the enzyme is the same. This ecto-ATPase activity was increased in macrophages infected in vitro with HIV-1. Using three different non-related ecto-ATPase inhibitors-POM-1, ARL67156 and BG0-we showed that the inhibition of these macrophage and viral ecto-ATPase activities impairs HIV-1 infection. In addition, we also found that elevated extracellular concentrations of ATP inhibit HIV-1 production by infected macrophages. Copyright © 2014 Elsevier GmbH. All rights reserved.

  20. Immune activation and CD8+ T-cell differentiation towards senescence in HIV-1 infection.

    Directory of Open Access Journals (Sweden)

    Laura Papagno

    2004-02-01

    Full Text Available Progress in the fight against the HIV/AIDS epidemic is hindered by our failure to elucidate the precise reasons for the onset of immunodeficiency in HIV-1 infection. Increasing evidence suggests that elevated immune activation is associated with poor outcome in HIV-1 pathogenesis. However, the basis of this association remains unclear. Through ex vivo analysis of virus-specific CD8(+ T-cells and the use of an in vitro model of naïve CD8(+ T-cell priming, we show that the activation level and the differentiation state of T-cells are closely related. Acute HIV-1 infection induces massive activation of CD8(+ T-cells, affecting many cell populations, not only those specific for HIV-1, which results in further differentiation of these cells. HIV disease progression correlates with increased proportions of highly differentiated CD8(+ T-cells, which exhibit characteristics of replicative senescence and probably indicate a decline in T-cell competence of the infected person. The differentiation of CD8(+ and CD4(+ T-cells towards a state of replicative senescence is a natural process. It can be driven by excessive levels of immune stimulation. This may be part of the mechanism through which HIV-1-mediated immune activation exhausts the capacity of the immune system.

  1. Dendritic cell type-specific HIV-1 activation in effector T cells: implications for latent HIV-1 reservoir establishment

    NARCIS (Netherlands)

    van der Sluis, Renée M.; van Capel, Toni M. M.; Speijer, Dave; Sanders, Rogier W.; Berkhout, Ben; de Jong, Esther C.; Jeeninga, Rienk E.; van Montfort, Thijs

    2015-01-01

    Latent HIV type I (HIV-1) infections can frequently occur in short-lived proliferating effector T lymphocytes. These latently infected cells could revert into resting T lymphocytes and thereby contribute to the establishment of the long-lived viral reservoir. Monocyte-derived dendritic cells can

  2. Periglaucines A-D, anti-HBV and -HIV-1 alkaloids from Pericampylus glaucus.

    Science.gov (United States)

    Yan, Meng-Hong; Cheng, Pi; Jiang, Zhi-Yong; Ma, Yun-Bao; Zhang, Xue-Mei; Zhang, Feng-Xue; Yang, Liu-Meng; Zheng, Yong-Tang; Chen, Ji-Jun

    2008-05-01

    Four new hasubanane-type alkaloids, periglaucines A-D (1-4), and three known alkaloids, norruffscine (5), (-)-8-oxotetrahydropalmatine (6), and (-)-8-oxocanadine (7), were isolated from the aerial parts of Pericampylus glaucus. Their structures were elucidated on the basis of extensive NMR and EIMS data, and that of periglaucine A (1) was confirmed by single-crystal X-ray diffraction. Alkaloids 1-4 inhibited hepatitis B virus (HBV) surface antigen (HBsAg) secretion in Hep G2.2.15 cells. (-)-8-Oxotetrahydropalmatine (6) possessed a high selectivity index (SI = 22.4) for HBsAg secretion of the Hep G2.2.15 cell line with an IC(50) value of 0.14 mM. Norruffscine (5) and (-)-8-oxotetrahydropalmatine (6) exhibited inhibitory activity against human immunodeficiency virus (HIV-1) with EC(50) values of 10.9 and 14.1 microM in C8166 cells (SI = 45.7 and 18.8), respectively.

  3. eCD4-Ig promotes ADCC activity of sera from HIV-1-infected patients.

    Directory of Open Access Journals (Sweden)

    Meredith E Davis-Gardner

    2017-12-01

    Full Text Available Antibody-dependent cell-mediated cytotoxity (ADCC can eliminate HIV-1 infected cells, and may help reduce the reservoir of latent virus in infected patients. Sera of HIV-1 positive individuals include a number of antibodies that recognize epitopes usually occluded on HIV-1 envelope glycoprotein (Env trimers. We have recently described eCD4-Ig, a potent and exceptionally broad inhibitor of HIV-1 entry that can be used to protect rhesus macaques from multiple high-dose challenges with simian-human immunodeficiency virus AD8 (SHIV-AD8. Here we show that eCD4-Ig bearing an IgG1 Fc domain (eCD4-IgG1 can mediate efficient ADCC activity against HIV-1 isolates with differing tropisms, and that it does so at least 10-fold more efficiently than CD4-Ig, even when more CD4-Ig molecules bound cell surface-expressed Env. An ADCC-inactive IgG2 form of eCD4-Ig (eCD4-IgG2 exposes V3-loop and CD4-induced epitopes on cell-expressed trimers, and renders HIV-1-infected cells susceptible to ADCC mediated by antibodies of these classes. Moreover, eCD4-IgG2, but not IgG2 forms of the broadly neutralizing antibodies VRC01 and 10-1074, enhances the ADCC activities of serum antibodies from patients by 100-fold, and significantly enhanced killing of two latently infected T-cell lines reactivated by vorinostat or TNFα. Thus eCD4-Ig is qualitatively different from CD4-Ig or neutralizing antibodies in its ability to mediate ADCC, and it may be uniquely useful in treating HIV-1 infection or reducing the reservoir of latently infected cells.

  4. Glycosyl-Phosphatidylinositol-Anchored Anti-HIV Env Single-Chain Variable Fragments Interfere with HIV-1 Env Processing and Viral Infectivity.

    Science.gov (United States)

    Misra, Anisha; Gleeson, Emile; Wang, Weiming; Ye, Chaobaihui; Zhou, Paul; Kimata, Jason T

    2018-04-01

    In previous studies, we demonstrated that single-chain variable fragments (scFvs) from anti-human immunodeficiency virus (HIV) Env monoclonal antibodies act as entry inhibitors when tethered to the surface of target cells by a glycosyl-phosphatidylinositol (GPI) anchor. Interestingly, even if a virus escapes inhibition at entry, its replication is ultimately controlled. We hypothesized that in addition to functioning as entry inhibitors, anti-HIV GPI-scFvs may also interact with Env in an infected cell, thereby interfering with the infectivity of newly produced virions. Here, we show that expression of the anti-HIV Env GPI-scFvs in virus-producing cells reduced the release of HIV from cells 5- to 22-fold, and infectivity of the virions that were released was inhibited by 74% to 99%. Additionally, anti-HIV Env GPI-scFv X5 inhibited virion production and infectivity after latency reactivation and blocked transmitter/founder virus production and infectivity in primary CD4 + T cells. In contrast, simian immunodeficiency virus (SIV) production and infectivity were not affected by the anti-HIV Env GPI-scFvs. Loss of infectivity of HIV was associated with a reduction in the amount of virion-associated Env gp120. Interestingly, an analysis of Env expression in cell lysates demonstrated that the anti-Env GPI-scFvs interfered with processing of Env gp160 precursors in cells. These data indicate that GPI-scFvs can inhibit Env processing and function, thereby restricting production and infectivity of newly synthesized HIV. Anti-Env GPI-scFvs therefore appear to be unique anti-HIV molecules as they derive their potent inhibitory activity by interfering with both early (receptor binding/entry) and late (Env processing and incorporation into virions) stages of the HIV life cycle. IMPORTANCE The restoration of immune function and persistence of CD4 + T cells in HIV-1-infected individuals without antiretroviral therapy requires a way to increase resistance of CD4 + T cells to

  5. Novel 2-Chloro-8-arylthiomethyldipyridodiazepinone Derivatives with Activity against HIV-1 Reverse Transcriptase

    Directory of Open Access Journals (Sweden)

    Supanna Techasakul

    2007-02-01

    Full Text Available Based on the molecular modeling analysis against Y181CHIV-1 RT, dipyridodiazepinone derivatives containing an unsubstituted lactamnitrogen and 2-chloro-8-arylthiomethyl were synthesized via an efficientroute. Some of them were evaluated for their antiviral activity against HIV-1RT subtype E and were found to exhibit virustatic activity comparable to some clinically usedtherapeutic agents.

  6. The impact of inflammation and immune activation on B cell differentiation during HIV-1 infection

    Directory of Open Access Journals (Sweden)

    Nicolas eRuffin

    2012-01-01

    Full Text Available HIV-1 infection is characterized by continuous antigenic stimulation, chronic immune activation and impaired survival of T and B cells. A decline of resting memory B cells has previously been reported to occur in both children and adults infected with HIV-1; these cells are responsible for mounting and maintaining an adequate serological response to antigens previously encountered in life through natural infection or vaccination. Further understanding of the mechanisms leading to impaired B cell differentiation and germinal center reaction might be essential to design new HIV vaccines and therapies that could improve humoral immune responses in HIV-1 infected individuals. In the present article we summarize the literature and present our view on critical mechanisms of B cell development which are impaired during HIV-1 infection. We also discuss the impact of microbial translocation, a driving force for persistent inflammation during HIV-1 infection, on survival of terminally differentiated B cells and how the altered expression of cytokines/chemokines pivotal for communication between T and B cells in lymphoid tissues may impair formation of memory B cells.

  7. Expansion of HIV-1 screening and anti-retroviral treatment programs ...

    African Journals Online (AJOL)

    Objective: To report the expansion of HIV-1 screening, enrollment in an ART program, and treatment outcomes over twelve months among HIV-positive patients at a nonprofit, non-governmental faith-based clinic providing free and holistic care in Jos City, Plateau State, Nigeria. Design: This was a retrospective analysis of ...

  8. Isolation of anti-HIV-1 lignans from Larrea tridentata by counter-current chromatography.

    Science.gov (United States)

    Gnabre, J N; Ito, Y; Ma, Y; Huang, R C

    1996-01-08

    Several lignans, mostly new, were isolated from Larrea tridentata by assay-guided counter-current chromatography (CCC). Using the secreted alkaline phosphatase bioassay of HIV Tat transactivation and the two-phase hexane-ethyl acetate-methanol-water solvent system, two major components (Gr and Lo) were identified as anti-HIV active principles. The chemical structures of the constituents of Gr (G1-G4) and Lo (L1-L4) were determined by GC-MS and NMR. After optimization of isolation conditions, a large-scale isolation with the chloroform-methanol-water system yielded five constituents (FB1-FB5). The most predominant anti-HIV compound FB2 (denoted Malachi 4:5-6 or mal.4), which occurs in 0.23% yield, was separated from its FB1 isomer (0.13% yield). Compound FB4 and two tricyclic lignans (FB3 and FB5) were also isolated in a substantial amount for further testing of their anti-HIV activities. These compounds may represent a new class of anti-HIV agents with important clinical relevance.

  9. Synergistic reactivation of latent HIV-1 provirus by PKA activator dibutyryl-cAMP in combination with an HDAC inhibitor.

    Science.gov (United States)

    Lim, Hoyong; Kim, Kyung-Chang; Son, Junseock; Shin, Younghyun; Yoon, Cheol-Hee; Kang, Chun; Choi, Byeong-Sun

    2017-01-02

    HIV-1 reservoirs remain a major barrier to HIV-1 eradication. Although combination antiretroviral therapy (cART) can successfully reduce viral replication, it cannot reactivate HIV-1 provirus in this reservoir. Therefore, HIV-1 provirus reactivation strategies by cell activation or epigenetic modification are proposed for the eradication of HIV-1 reservoirs. Although treatment with the protein kinase A (PKA) activator cyclic AMP (cAMP) or epigenetic modifying agents such as histone deacetylase inhibitors (HDACi) alone can induce HIV-1 reactivation in latently infected cells, the synergism of these agents has not been fully evaluated. In the present study, we observed that treatment with 500μM of dibutyryl-cAMP, 1μM of vorinostat, or 1μM of trichostatin A alone effectively reactivated HIV-1 in both ACH2 and NCHA1 cells latently infected with HIV-1 without cytotoxicity. In addition, treatment with the PKA inhibitor KT5720 reduced the increased HIV-1 p24 level in the supernatant of these cells. After dibutyryl-cAMP treatment, we found an increased level of the PKA substrate phosphorylated cyclic AMP response element-binding protein. When we treated cells with a combination of dibutyryl-cAMP and vorinostat or trichostatin A, the levels of HIV-1 p24 in the supernatant and levels of intracellular HIV-1 p24 were dramatically increased in both ACH2 and NCHA1 cells compared with those treated with a single agent. These results suggest that combined treatment with a PKA activator and an HDACi is effective for reactivating HIV-1 in latently infected cells, and may be an important approach to eradicate HIV-1 reservoirs. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Effects of new quinizarin derivatives on both HCV NS5B RNA polymerase and HIV-1 reverse transcriptase associated ribonuclease H activities.

    Science.gov (United States)

    Tramontano, E; Kharlamova, T; Zinzula, L; Esposito, F

    2011-10-01

    Human immunodeficiency virus 1 (HIV-1) and Hepatitis C virus (HCV) affect 60 and 170 million infected individuals worldwide, respectively, and co-infection by both pathogens is often observed. This represents a serious public health problem that requires the identification of new drugs targeting essential phases of the life cycle of these two viruses. In this report, the synthesis and inhibitory activity of quinizarin derivatives towards both HCV NS5B polymerase and HIV-1 reverse transcriptase associated functions are reported. Our results demonstrate that anthraquinone derivatives are promising anti-polymerase viral inhibitors.

  11. The HIV-1 Nef protein and phagocyte NADPH oxidase activation

    DEFF Research Database (Denmark)

    Vilhardt, Frederik; Plastre, Olivier; Sawada, Makoto

    2002-01-01

    of Rac by Clostridium difficile toxin B abolished the Nef effect. (ii) The fraction of activated Rac1 was increased in Nef-transduced cells, and (iii) the dominant positive Rac1(V12) mutant mimicked the effect of Nef. These results are to our knowledge the first analysis of the effect of Rac activation...

  12. Kinase control prevents HIV-1 reactivation in spite of high levels of induced NF-κB activity.

    Science.gov (United States)

    Wolschendorf, Frank; Bosque, Alberto; Shishido, Takao; Duverger, Alexandra; Jones, Jennifer; Planelles, Vicente; Kutsch, Olaf

    2012-04-01

    Despite its clinical importance, the molecular biology of HIV-1 latency control is at best partially understood, and the literature remains conflicting. The most recent description that latent HIV-1 is integrated into actively expressed host genes has further confounded the situation. This lack of molecular understanding complicates our efforts to identify therapeutic compounds or strategies that could reactivate latent HIV-1 infection in patients, a prerequisite for the eradication of HIV-1 infection. Currently, many therapeutic development efforts operate under the assumption that a restrictive histone code could govern latent infection and that either dissipation of the histone-based restrictions or NF-κB activation could be sufficient to trigger HIV-1 reactivation. We here present data that suggest an additional, higher level of molecular control. During a high-content drug screening effort, we identified AS601245 as a potent inhibitor of HIV-1 reactivation in latently infected primary T cells and T cell lines. In either system, AS601245 inhibited HIV-1 reactivation despite high levels of induced NF-κB activation. This finding suggests the presence of a gatekeeper kinase activity that controls latent HIV-1 infection even in the presence of high levels of NF-κB activity. Potential therapeutic stimuli that do not target this gatekeeper kinase will likely fail to trigger efficient system-wide HIV-1 reactivation.

  13. Rapid turnover of 2-LTR HIV-1 DNA during early stage of highly active antiretroviral therapy.

    Directory of Open Access Journals (Sweden)

    Weijun Zhu

    Full Text Available BACKGROUND: Despite prolonged treatment with highly active antiretroviral therapy (HAART, the infectious HIV-1 continues to replicate and resides latently in the resting memory CD4+ T lymphocytes, which blocks the eradication of HIV-1. The viral persistence of HIV-1 is mainly caused by its proviral DNA being either linear nonintegrated, circular nonintegrated, or integrated. Previous reports have largely focused on the dynamics of HIV-1 DNA from the samples collected with relatively long time intervals during the process of disease and HAART treatment, which may have missed the intricate changes during the intervals in early treatment. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we investigated the dynamics of HIV-1 DNA in patients during the early phase of HARRT treatment. Using optimized real time PCR, we observed significant changes in 2-LTR during the first 12-week of treatment, while total and integrated HIV-1 DNA remained stable. The doubling time and half-life of 2-LTR were not correlated with the baseline and the rate of changes in plasma viral load and various CD4+ T-cell populations. Longitudinal analyses on 2-LTR sequences and plasma lipopolysaccharide (LPS levels did not reveal any significant changes in the same treatment period. CONCLUSIONS/SIGNIFICANCE: Our study revealed the rapid changes in 2-LTR concentration in a relatively large number of patients during the early HAART treatment. The rapid changes indicate the rapid infusion and clearance of cells bearing 2-LTR in the peripheral blood. Those changes are not expected to be caused by the blocking of viral integration, as our study did not include the integrase inhibitor raltegravir. Our study helps better understand the dynamics of HIV-DNA and its potential role as a biomarker for the diseases and for the treatment efficacy of HAART.

  14. Anti-HIV-1 B cell responses are dependent on B cell precursor frequency and antigen-binding affinity.

    Science.gov (United States)

    Dosenovic, Pia; Kara, Ervin E; Pettersson, Anna-Klara; McGuire, Andrew T; Gray, Matthew; Hartweger, Harald; Thientosapol, Eddy S; Stamatatos, Leonidas; Nussenzweig, Michel C

    2018-04-16

    The discovery that humans can produce potent broadly neutralizing antibodies (bNAbs) to several different epitopes on the HIV-1 spike has reinvigorated efforts to develop an antibody-based HIV-1 vaccine. Antibody cloning from single cells revealed that nearly all bNAbs show unusual features that could help explain why it has not been possible to elicit them by traditional vaccination and instead would require a sequence of different immunogens. This idea is supported by experiments with genetically modified immunoglobulin (Ig) knock-in mice. Sequential immunization with a series of specifically designed immunogens was required to shepherd the development of bNAbs. However, knock-in mice contain superphysiologic numbers of bNAb precursor-expressing B cells, and therefore how these results can be translated to a more physiologic setting remains to be determined. Here we make use of adoptive transfer experiments using knock-in B cells that carry a synthetic intermediate in the pathway to anti-HIV-1 bNAb development to examine how the relationship between B cell receptor affinity and precursor frequency affects germinal center (GC) B cell recruitment and clonal expansion. Immunization with soluble HIV-1 antigens can recruit bNAb precursor B cells to the GC when there are as few as 10 such cells per mouse. However, at low precursor frequencies, the extent of clonal expansion is directly proportional to the affinity of the antigen for the B cell receptor, and recruitment to GCs is variable and dependent on recirculation.

  15. The HIV-1 transcriptional activator Tat has potent nucleic acid chaperoning activities in vitro

    Science.gov (United States)

    Kuciak, Monika; Gabus, Caroline; Ivanyi-Nagy, Roland; Semrad, Katharina; Storchak, Roman; Chaloin, Olivier; Muller, Sylviane; Mély, Yves; Darlix, Jean-Luc

    2008-01-01

    The human immunodeficiency virus type 1 (HIV-1) is a primate lentivirus that causes the acquired immunodeficiency syndrome (AIDS). In addition to the virion structural proteins and enzyme precursors, that are Gag, Env and Pol, HIV-1 encodes several regulatory proteins, notably a small nuclear transcriptional activator named Tat. The Tat protein is absolutely required for virus replication since it controls proviral DNA transcription to generate the full-length viral mRNA. Tat can also regulate mRNA capping and splicing and was recently found to interfere with the cellular mi- and siRNA machinery. Because of its extensive interplay with nucleic acids, and its basic and disordered nature we speculated that Tat had nucleic acid-chaperoning properties. This prompted us to examine in vitro the nucleic acid-chaperoning activities of Tat and Tat peptides made by chemical synthesis. Here we report that Tat has potent nucleic acid-chaperoning activities according to the standard DNA annealing, DNA and RNA strand exchange, RNA ribozyme cleavage and trans-splicing assays. The active Tat(44–61) peptide identified here corresponds to the smallest known sequence with DNA/RNA chaperoning properties. PMID:18442994

  16. Structure-activity relationships of a novel capsid targeted inhibitor of HIV-1 replication.

    Science.gov (United States)

    Kortagere, Sandhya; Xu, Jimmy P; Mankowski, Marie K; Ptak, Roger G; Cocklin, Simon

    2014-11-24

    Despite the considerable successes of highly active antiretroviral therapy (HAART) for the treatment of HIV/AIDS, cumulative drug toxicities and the development of multidrug-resistant virus necessitate the search for new classes of antiretroviral agents with novel modes of action. The HIV-1 capsid (CA) protein has been structurally and functionally characterized as a druggable target. We have recently designed a novel small molecule inhibitor I-XW-053 using the hybrid structure based method to block the interface between CA N-terminal domains (NTD-NTD interface) with micromolar affinity. In an effort to optimize and improve the efficacy of I-XW-053, we have developed the structure activity relationship of I-XW-053 compound series using ligand efficiency methods. Fifty-six analogues of I-XW-053 were designed that could be subclassified into four different core domains based on their ligand efficiency values computed as the ratio of binding efficiency (BEI) and surface efficiency (SEI) indices. Compound 34 belonging to subcore-3 showed an 11-fold improvement over I-XW-053 in blocking HIV-1 replication in primary human peripheral blood mononuclear cells (PBMCs). Surface plasmon resonance experiments confirmed the binding of compound 34 to purified HIV-1 CA protein. Molecular docking studies on compound 34 and I-XW-053 to HIV-1 CA protein suggested that they both bind to NTD-NTD interface region but with different binding modes, which was further validated using site-directed mutagenesis studies.

  17. Safety, Tolerability and Mechanisms of Antiretroviral Activity of Peginterferon alfa-2a in HIV-1-Mono-infected Subjects: A Phase II Clinical Trial

    Science.gov (United States)

    Asmuth, David M; Murphy, Robert L; Rosenkranz, Susan L; Lertora, Juan J L; Kottilil, Shyam; Cramer, Yoninah; Chan, Ellen S; Schooley, Robert T; Rinaldo, Charles R; Thielman, Nathan; Li, Xiao-Dong; Wahl, Sharon M; Shore, Jessica; Janik, Jennifer; Lempicki, Richard A; Simpson, Yaa; Pollard, Richard B

    2010-01-01

    Background The antiviral activity of pegylated interferon-alpha-2a has not been studied in untreated HIV-1-infected subjects without chronic hepatitis C virus (HCV) infection. Methods Untreated HIV-1-infected volunteers without HCV received weekly pegylated interferon alfa-2a (180 μg) for twelve weeks. Changes in HIV-1 RNA (pVL), CD4+ T-cell counts, pharmacokinetics, pharmacodynamic measurements of 2’,5’ oligoadenylate synthetase (OAS) activity, and induction of interferon inducible genes (IFIG) were measured. Nonparametric statistical analysis was performed. Results Eleven subjects completed 12 weeks of therapy. Median pVL decline and change in CD4 T-cell counts at week 12 were 0.61 log10 cp/mL [90% CI:0.20,1.18] and −44 (− 95, 85) cells/mm3, respectively. There was no correlation between pVL declines and concurrent pegylated interferon plasma concentrations. However, subjects with larger increases in OAS exhibited greater decreases in pVL at weeks 1 and 2 (estimated Spearman correlations -0.75 [-0.93,-0.28]) and -0.61 [-0.87,-0.09], respectively). Subjects with higher baseline IFIG levels had smaller week 12 declines in pVL (0.66[0.06,0.91]), while those with larger IFIG induction exhibited larger declines in pVL (-0.74 [-0.93,-0.21]). Conclusion Pegylated interferon alfa-2a was well tolerated and had significant anti-HIV-1 activity in HIV-1-monoinfected patients. The anti-HIV-1 effect correlated with OAS protein (weeks 1 and 2) and IFIG induction (week 12), but not with pegylated interferon concentrations. PMID:20420510

  18. Interferon-α is the primary plasma type-I IFN in HIV-1 infection and correlates with immune activation and disease markers.

    Directory of Open Access Journals (Sweden)

    Gareth A D Hardy

    Full Text Available Type-I interferon (IFN-I has been increasingly implicated in HIV-1 pathogenesis. Various studies have shown elevated IFN-I and an IFN-I-induced gene and protein expression signature in HIV-1 infection, yet the elevated IFN-I species has not been conclusively identified, its source remains obscure and its role in driving HIV-1 pathogenesis is controversial. We assessed IFN-I species in plasma by ELISAs and bioassay, and we investigated potential sources of IFN-I in blood and lymph node tissue by qRT-PCR. Furthermore, we measured the effect of therapeutic administration of IFNα in HCV-infected subjects to model the effect of IFNα on chronic immune activation. IFN-I bioactivity was significantly increased in plasma of untreated HIV-1-infected subjects relative to uninfected subjects (p = 0.012, and IFNα was the predominant IFN-I subtype correlating with IFN-I bioactivity (r = 0.658, p<0.001. IFNα was not detectable in plasma of subjects receiving anti-retroviral therapy. Elevated expression of IFNα mRNA was limited to lymph node tissue cells, suggesting that peripheral blood leukocytes are not a major source of IFNα in untreated chronic HIV-1 infection. Plasma IFN-I levels correlated inversely with CD4 T cell count (p = 0.003 and positively with levels of plasma HIV-1 RNA and CD38 expression on CD8 T cells (p = 0.009. In hepatitis C virus-infected subjects, treatment with IFN-I and ribavirin increased expression of CD38 on CD8 T cells (p = 0.003. These studies identify IFNα derived from lymph nodes, rather than blood leukocytes, as a possible source of the IFN-I signature that contributes to immune activation in HIV-1 infection.

  19. HIV-1 subtypes and mutations associated to antiretroviral drug resistance in human isolates from Central Brazil Subtipos e mutações associadas à resistência aos anti-retrovirais em isolados de HIV-1 do Distrito Federal

    Directory of Open Access Journals (Sweden)

    Daniela Marreco Cerqueira

    2004-09-01

    Full Text Available The detection of polymorphisms associated to HIV-1 drug-resistance and genetic subtypes is important for the control and treatment of HIV-1 disease. Drug pressure selects resistant variants that carry mutations in the viral reverse transcriptase (RT and protease (PR genes. For a contribution to the public health authorities in planning the availability of therapeutic treatment, we therefore described the genetic variability, the prevalence of mutations associated to drug resistance and the antiretroviral resistance profile in HIV-1 isolates from infected individuals in Central Brazil. Nineteen HIV-1 RNA samples from a Public Health Laboratory of the Federal District were reversely transcribed and cDNAs were amplified by nested PCR. One fragment of 297 bp coding the entire protease gene, and another of 647 bp, corresponding to the partial RT gene (codons 19-234, were obtained. Automated sequencing and BLAST analysis revealed the presence of 17 B and 2 F1 HIV-1 subtypes. The amino acid sequences were analyzed for the presence of resistance-associated mutations. A total of 6 PR mutations, 2 major and 4 accessory, and 8 RT mutations related to drug resistance were found. Our data suggest a high prevalence of HIV-1 B subtype in the studied population of Federal District as well as the presence of genetically-resistant strains in individuals failing treatment.A detecção de polimorfismos do HIV-1 que estejam associados à resistência às drogas anti-retrovirais e aos subtipos genéticos é importante para o controle e tratamento da infecção pelo HIV-1. A pressão exercida pela terapia anti-retroviral seleciona variantes resistentes com mutações nos genes virais da transcriptase reversa (RT e da protease (PR. Assim, visando contribuir com as autoridades de saúde pública na perspectiva de planejar a disponibilidade de um tratamento terapêutico, nós descrevemos a variabilidade genética e a prevalência de mutações associadas à resist

  20. An assay to monitor HIV-1 protease activity for the identification of novel inhibitors in T-cells.

    Directory of Open Access Journals (Sweden)

    Brett J Hilton

    Full Text Available The emergence of resistant HIV strains, together with the severe side-effects of existing drugs and lack of development of effective anti-HIV vaccines highlight the need for novel antivirals, as well as innovative methods to facilitate their discovery. Here, we have developed an assay in T-cells to monitor the proteolytic activity of the HIV-1 protease (PR. The assay is based on the inducible expression of HIV-1 PR fused within the Gal4 DNA-binding and transactivation domains. The fusion protein binds to the Gal4 responsive element and activates the downstream reporter, enhanced green fluorescent protein (eGFP gene only in the presence of an effective PR Inhibitor (PI. Thus, in this assay, eGFP acts as a biosensor of PR activity, making it ideal for flow cytometry based screening. Furthermore, the assay was developed using retroviral technology in T-cells, thus providing an ideal environment for the screening of potential novel PIs in a cell-type that represents the natural milieu of HIV infection. Clones with the highest sensitivity, and robust, reliable and reproducible reporter activity, were selected. The assay is easily adaptable to other PR variants, a multiplex platform, as well as to high-throughput plate reader based assays and will greatly facilitate the search for novel peptide and chemical compound based PIs in T-cells.

  1. Antiviral Activity of Bictegravir and Cabotegravir against Integrase Inhibitor-Resistant SIVmac239 and HIV-1.

    Science.gov (United States)

    Hassounah, Said A; Alikhani, Ahmad; Oliveira, Maureen; Bharaj, Simrat; Ibanescu, Ruxandra-Ilinca; Osman, Nathan; Xu, Hong-Tao; Brenner, Bluma G; Mesplède, Thibault; Wainberg, Mark A

    2017-12-01

    Animal models are essential to study novel antiretroviral drugs, resistance-associated mutations (RAMs), and treatment strategies. Bictegravir (BIC) is a novel potent integrase strand transfer inhibitor (INSTI) that has shown promising results against HIV-1 infection in vitro and in vivo and against clinical isolates with resistance against INSTIs. BIC has a higher genetic barrier to the development of resistance than two clinically approved INSTIs, termed raltegravir and elvitegravir. Another clinically approved INSTI, dolutegravir (DTG) also possesses a high genetic barrier to resistance, while a fourth compound, termed cabotegravir (CAB), is currently in late phases of clinical development. Here we report the susceptibilities of simian immunodeficiency virus (SIV) and HIV-1 integrase (IN) mutants containing various RAMs to BIC, CAB, and DTG. BIC potently inhibited SIV and HIV-1 in single cycle infection with 50% effective concentrations (EC 50 s) in the low nM range. In single cycle SIV infections, none of the E92Q, T97A, Y143R, or N155H substitutions had a significant effect on susceptibility to BIC (≤4-fold increase in EC 50 ), whereas G118R and R263K conferred ∼14-fold and ∼6-fold increases in EC 50 , respectively. In both single and multiple rounds of HIV-1 infections, BIC remained active against the Y143R, N155H, R263K, R263K/M50I, and R263K/E138K mutants (≤4-fold increase in EC 50 ). In multiple rounds of infection, the G140S/Q148H combination of substitutions decreased HIV-1 susceptibility to BIC 4.8-fold compared to 16.8- and 7.4-fold for CAB and DTG, respectively. BIC possesses an excellent resistance profile in regard to HIV and SIV and could be useful in nonhuman primate models of HIV infection. Copyright © 2017 American Society for Microbiology.

  2. Plasmacytoid dendritic cells suppress HIV-1 replication but contribute to HIV-1 induced immunopathogenesis in humanized mice.

    Directory of Open Access Journals (Sweden)

    Guangming Li

    2014-07-01

    Full Text Available The role of plasmacytoid dendritic cells (pDC in human immunodeficiency virus type 1 (HIV-1 infection and pathogenesis remains unclear. HIV-1 infection in the humanized mouse model leads to persistent HIV-1 infection and immunopathogenesis, including type I interferons (IFN-I induction, immune-activation and depletion of human leukocytes, including CD4 T cells. We developed a monoclonal antibody that specifically depletes human pDC in all lymphoid organs in humanized mice. When pDC were depleted prior to HIV-1 infection, the induction of IFN-I and interferon-stimulated genes (ISGs were abolished during acute HIV-1 infection with either a highly pathogenic CCR5/CXCR4-dual tropic HIV-1 or a standard CCR5-tropic HIV-1 isolate. Consistent with the anti-viral role of IFN-I, HIV-1 replication was significantly up-regulated in pDC-depleted mice. Interestingly, the cell death induced by the highly pathogenic HIV-1 isolate was severely reduced in pDC-depleted mice. During chronic HIV-1 infection, depletion of pDC also severely reduced the induction of IFN-I and ISGs, associated with elevated HIV-1 replication. Surprisingly, HIV-1 induced depletion of human immune cells including T cells in lymphoid organs, but not the blood, was reduced in spite of the increased viral replication. The increased cell number in lymphoid organs was associated with a reduced level of HIV-induced cell death in human leukocytes including CD4 T cells. We conclude that pDC play opposing roles in suppressing HIV-1 replication and in promoting HIV-1 induced immunopathogenesis. These findings suggest that pDC-depletion and IFN-I blockade will provide novel strategies for treating those HIV-1 immune non-responsive patients with persistent immune activation despite effective anti-retrovirus treatment.

  3. Antiviral Activity, Pharmacokinetics, and Safety of BMS-488043, a Novel Oral Small-Molecule HIV-1 Attachment Inhibitor, in HIV-1-Infected Subjects ▿

    Science.gov (United States)

    Hanna, George J.; Lalezari, Jacob; Hellinger, James A.; Wohl, David A.; Nettles, Richard; Persson, Anna; Krystal, Mark; Lin, Pinfang; Colonno, Richard; Grasela, Dennis M.

    2011-01-01

    BMS-488043 is a novel and unique oral small-molecule inhibitor of the attachment of human immunodeficiency virus type 1 (HIV-1) to CD4+ lymphocytes. The antiviral activity, pharmacokinetics, viral susceptibility, and safety of BMS-488043 were evaluated in an 8-day monotherapy trial. Thirty HIV-1-infected study subjects were randomly assigned to sequential, safety-guided dose panels of 800 and 1,800 mg BMS-488043 or a matched placebo in a 4:1 ratio, and the drug was administered every 12 h with a high-fat meal for 7 days and on the morning of day 8. Dose-related, albeit less-than-dose-proportional, increases in plasma BMS-488043 concentrations were observed. Mean plasma HIV-1 RNA decreases from the baseline for the BMS-488043 800- and 1,800-mg dose groups on day 8 were 0.72 and 0.96 log10 copies/ml, respectively, compared with 0.02 log10 copies/ml for the placebo group. A lower baseline BMS-488043 50% effective concentration (EC50) in the active-treatment groups was predictive of a greater antiviral response. Although absolute drug exposure was not associated with an antiviral response, the trough concentration (Ctrough), adjusted by the baseline EC50 (Ctrough/EC50), was associated with antiviral activity. During dosing, four subjects experienced >10-fold reductions in viral susceptibility to BMS-488043, providing further support of the direct antiviral mechanism of BMS-488043. BMS-488043 was generally safe and well tolerated. These results suggest that further development of this novel class of oral HIV-1 attachment inhibitors is warranted. PMID:21078951

  4. HIV-1 transgenic rat CD4+ T cells develop decreased CD28 responsiveness and suboptimal Lck tyrosine dephosphorylation following activation

    International Nuclear Information System (INIS)

    Yadav, Anjana; Pati, Shibani; Nyugen, Anhthu; Barabitskaja, Oxana; Mondal, Prosanta; Anderson, Michael; Gallo, Robert C.; Huso, David L.; Reid, William

    2006-01-01

    Impaired CD4+ T cell responses, resulting in dysregulated T-helper 1 (Th1) effector and memory responses, are a common result of HIV-1 infection. These defects are often preceded by decreased expression and function of the α/β T cell receptor (TCR)-CD3 complex and of co-stimulatory molecules including CD28, resulting in altered T cell proliferation, cytokine secretion and cell survival. We have previously shown that HIV Tg rats have defective development of T cell effector function and generation of specific effector/memory T cell subsets. Here we identify abnormalities in activated HIV-1 Tg rat CD4+ T cells that include decreased pY505 dephosphorylation of Lck (required for Lck activation), decreased CD28 function, reduced expression of the anti-apoptotic molecule Bcl-xL, decreased secretion of the mitogenic lympokine interleukin-2 (IL-2) and increased activation induced apoptosis. These events likely lead to defects in antigen-specific signaling and may help explain the disruption of Th1 responses and the generation of specific effector/memory subsets in transgenic CD4+ T cells

  5. Oocyte activation and latent HIV-1 reactivation: AMPK as a common mechanism of action linking the beginnings of life and the potential eradication of HIV-1.

    Science.gov (United States)

    Finley, Jahahreeh

    2016-08-01

    In all mammalian species studied to date, the initiation of oocyte activation is orchestrated through alterations in intracellular calcium (Ca(2+)) signaling. Upon sperm binding to the oocyte plasma membrane, a sperm-associated phospholipase C (PLC) isoform, PLC zeta (PLCζ), is released into the oocyte cytoplasm. PLCζ hydrolyzes phosphatidylinositol 4,5-bisphosphate (PIP2) to produce diacylglycerol (DAG), which activates protein kinase C (PKC), and inositol 1,4,5-trisphosphate (IP3), which induces the release of Ca(2+) from endoplasmic reticulum (ER) Ca(2+) stores. Subsequent Ca(2+) oscillations are generated that drive oocyte activation to completion. Ca(2+) ionophores such as ionomycin have been successfully used to induce artificial human oocyte activation, facilitating fertilization during intra-cytoplasmic sperm injection (ICSI) procedures. Early studies have also demonstrated that the PKC activator phorbol 12-myristate 13-acetate (PMA) acts synergistically with Ca(2+) ionophores to induce parthenogenetic activation of mouse oocytes. Interestingly, the Ca(2+)-induced signaling cascade characterizing sperm or chemically-induced oocyte activation, i.e. the "shock and live" approach, bears a striking resemblance to the reactivation of latently infected HIV-1 viral reservoirs via the so called "shock and kill" approach, a method currently being pursued to eradicate HIV-1 from infected individuals. PMA and ionomycin combined, used as positive controls in HIV-1 latency reversal studies, have been shown to be extremely efficient in reactivating latent HIV-1 in CD4(+) memory T cells by inducing T cell activation. Similar to oocyte activation, T cell activation by PMA and ionomycin induces an increase in intracellular Ca(2+) concentrations and activation of DAG, PKC, and downstream Ca(2+)-dependent signaling pathways necessary for proviral transcription. Interestingly, AMPK, a master regulator of cell metabolism that is activated thorough the induction of cellular

  6. [Identification of Env-specific monoclonal antibodies from Chinese HIV-1 infected person by B cell activation and RT-PCR cloning].

    Science.gov (United States)

    Wang, Hui-Min; Xu, Ke; Yu, Shuang-Qing; Ding, Lin-Lin; Luo, Hai-Yan; Flinko, Robin; Lewis, George K; Feng, Xia; Shao, Ji-Rong; Guan, Yong-Jun; Zeng, Yi

    2012-06-01

    To obtain protective human monoclonal antibody from HIV-1 infected person, we adapted a technology for isolating antigen specific monoclonal antibody from human memory B cells through in vitro B cell activation coupled with RT-PCT and expression cloning. Human B cells were purified by negative sorting from PBMCs of HIV-1 infected individuals and memory B cells were further enriched using anti-CD27 microbeads. Two hundred memory B cells per well were cultured in 96-well round-bottom plates Env-specific antibodies in supernatants were with feeder cells in medium containing EBV and CpG. screened by ELISA after 1-2 weeks' culture. Cells from positive wells of Env-specific antibody were harvested and total RNA was isolated. Human VH and Vkappa or Vlambda genes were amplified by RT-PCR and cloned into IgG1 and kappa or lambda expressing vectors. Functional VH and Vkappa or Vlambda were identified by cotransfecting 293T cells with individual heavy chain and light chain clones followed by analysis of culture supernatants by ELISA for Env-specific antibodies. Finally, corresponding mAb was produced by transient transfection of 293T cells with the identified VH and Vkappa/lambda pair and purified by protein A affinity chromatography. Purified monocolonal antibodies were used for HIV-1 specific antibody-dependent cell-mediated cytotoxicity (ADCC) and neutralizing activity assay. Four monocolonal Env-specific antibodies were isolated from one HIV-1 subtype B' infected individual. Two of them showed strong ADCC activity and one showed weak neutralizing activity against HIV-1. Its further studies on their application in therapeutic or prophylactic vaccines against HIV-1 should be grounded.

  7. Specific reactivation of latent HIV-1 with designer zinc-finger transcription factors targeting the HIV-1 5'-LTR promoter.

    Science.gov (United States)

    Wang, P; Qu, X; Wang, X; Zhu, X; Zeng, H; Chen, H; Zhu, H

    2014-05-01

    HIV-1 latency remains the primary obstacle to the eradication of this virus. The current latency-reversing agents cannot effectively and specifically eliminate latent HIV-1 reservoirs. Therefore, better approaches are urgently needed. In this study, we describe a novel strategy to reactivate latent HIV-1 using zinc-finger transcription factors composed of designer zinc-finger proteins and the transcriptional activation domain VP64. For the first time, we demonstrate that ZF-VP64 with HIV-1 long terminal repeat (LTR) promoter-specific affinity could significantly reactivate HIV-1 expression from latently infected cells without altering cell proliferation or cell cycle progression. We also provide evidence that the reactivation of HIV-1 by ZF-VP64 occurs through specific binding to the 5'-LTR promoter. Our results demonstrate the potential of this novel approach for anti-HIV-1 latency therapy.

  8. Discovery of TSAO derivatives with an unusual HIV-1 activity/resistance profile.

    Science.gov (United States)

    de Castro, Sonia; García-Aparicio, Carlos; Van Laethem, Kristel; Gago, Federico; Lobatón, Esther; De Clercq, Erik; Balzarini, Jan; Camarasa, María-José; Velázquez, Sonsoles

    2006-08-01

    The very first TSAO derivative that lacks the 4''-amino group at the 3'-spiro moiety (compound 3) has been prepared and the effect of this modification on the activity/resistance profile has been evaluated. This molecule proved HIV-1 specific (NNRTI-characteristic). A mixture of wild-type and V106V/A or L234L/I mutations were found in the RT of some, but not all compound 3-resistant virus strains. Compound 3 does not select for the TSAO-specific E138K mutation in the RT. However, the compound markedly lost its antiviral potential against a variety of virus strains that contain NNRTI-characteristic mutations in RT including E138K. The deaminated TSAO compound must fit differently in the HIV-1 RT enzyme than its prototype TSAO-m(3)T.

  9. Design, Synthesis, and Biological Evaluation of 1-(thiophen-2-yl)-9H-pyrido[3,4-b]indole Derivatives as Anti-HIV-1 Agents.

    Science.gov (United States)

    Ashok, Penta; Lu, Cui-Lin; Chander, Subhash; Zheng, Yong-Tang; Murugesan, Sankarnarayanan

    2015-06-01

    A novel series of 1-(thiophen-2-yl)-9H-pyrido [3,4-b]indole derivatives were synthesized using DL-tryptophan as starting material. All the compounds were characterized by spectral analysis such as (1) H NMR, Mass, IR, elemental analysis and evaluated for inhibitory potency against HIV-1 replication. Among the reported analogues, compound 7g exhibited significant anti-HIV activity with EC(50) 0.53 μm and selectivity index 483; compounds 7e, 7i, and 7o displayed moderate activity with EC(50) 3.8, 3.8, and 2.8 μm and selectivity index >105, >105, and 3.85, respectively. Interestingly, compound 7g inhibited p24 antigen expression in acute HIV-1(IIIB) infected cell line C8166 with EC50 1.1 μm. In this study, we also reported the Lipinski rule of 5 parameters, predicted toxicity profile, drug-likeness, and drug score of the synthesized analogues. © 2014 John Wiley & Sons A/S.

  10. Carbohydrate-functionalized nanovaccines preserve HIV-1 antigen stability and activate antigen presenting cells

    Science.gov (United States)

    Vela Ramirez, J.E.; Roychoudhury, R.; Habte, H.H.; Cho, M. W.; Pohl, N. L. B.; Narasimhan, B.

    2015-01-01

    The functionalization of polymeric nanoparticles with ligands that target specific receptors on immune cells offers the opportunity to tailor adjuvant properties by conferring pathogen mimicking attributes to the particles. Polyanhydride nanoparticles are promising vaccine adjuvants with desirable characteristics such as immunomodulation, sustained antigen release, activation of antigen presenting cells, and stabilization of protein antigens. These capabilities can be exploited to design nanovaccines against viral pathogens, such as HIV-1, due to the important role of dendritic cells and macrophages in viral spread. In this work, an optimized process was developed for carbohydrate functionalization of HIV-1 antigen-loaded polyanhydride nanoparticles. The carbohydrate-functionalized nanoparticles preserved antigenic properties upon release and also enabled sustained antigen release kinetics. Particle internalization was observed to be chemistry-dependent with positively charged nanoparticles being taken up more efficiently by dendritic cells. Up-regulation of the activation makers CD40 and CD206 was demonstrated with carboxymethyl-α-d-mannopyranosyl-(1,2)-d-mannopyranoside functionalized nanoparticles. The secretion of the cytokines IL-6 and TNF-α was shown to be chemistry-dependent upon stimulation with carbohydrate-functionalized nanoparticles. These results offer important new insights upon the interactions between carbohydrate-functionalized nanoparticles and antigen presenting cells and provide foundational information for the rational design of targeted nanovaccines against HIV-1. PMID:25068589

  11. Indolyl aryl sulfones (IASs): development of highly potent NNRTIs active against wt-HIV-1 and clinically relevant drug resistant mutants.

    Science.gov (United States)

    Silvestri, Romano; Artico, Marino

    2005-01-01

    Indolyl aryl sulfones (IASs) are a potent class of NNRTIs developed from L-737,126, a lead agent discovered by Merck AG. IAS derivatives are endowed with inhibitory activities against wt HIV-1 in the low nanomolar concentration range. Introduction of two methyl groups at positions 3 and 5 of the phenyl ring of the aryl sulfonyl moiety furnished IAS derivatives such as 5-chloro- or 5-bromo-3-[(3,5-dimethylphenyl)sulfonyl]indole-2-carboxyamide, which showed very potent and selective anti-HIV-1 activity against some mutants carrying NNRTI resistant mutations at positions 103 and 181 of the reverse transcriptase. IAS derivatives bearing 2-hydroxyethylcarboxyamide or 2-hydroxyethylcarboxyhydrazide groups at position 2 of the indole nucleus were more active than L-737,126 against the K103N-Y181C double mutant. A great improvement of antiviral activity against wt HIV-1 and resistant mutants was obtained by coupling 1-3 simple amino acids, such as glycine and alanine, in sequence, with the 3-[(3,5-dimethylphenyl)sulfonyl]-1H-indole-2-carbonyl moiety. The transformation of the chain terminus into amide or hydrazide, produced short peptides with high selectivity and potent activity against wt HIV-1, and the viral mutants Y181C, K103N-Y181C and EFV(R). IAS having two halogen atoms at the indole showed potent inhibitory activity against the Y181C and the EFV(R) resistant mutant strains. In particular, the introduction of a fluorine atom at position 4 of the indole ring notably contributed to improve the antiviral activities against both wt and the related resistant mutants. 5-Nitro-IASs were highly active against wt HIV-1 and exhibited low cytotoxicity. Experimental data highlighted the class IAS derivatives as promising candidates for clinical trials.

  12. APOBEC3G inhibits HIV-1 RNA elongation by inactivating the viral trans-activation response element.

    Science.gov (United States)

    Nowarski, Roni; Prabhu, Ponnandy; Kenig, Edan; Smith, Yoav; Britan-Rosich, Elena; Kotler, Moshe

    2014-07-29

    Deamination of cytidine residues in viral DNA is a major mechanism by which APOBEC3G (A3G) inhibits vif-deficient human immunodeficiency virus type 1 (HIV-1) replication. dC-to-dU transition following RNase-H activity leads to viral cDNA degradation, production of non-functional proteins, formation of undesired stop codons and decreased viral protein synthesis. Here, we demonstrate that A3G provides an additional layer of defense against HIV-1 infection dependent on inhibition of proviral transcription. HIV-1 transcription elongation is regulated by the trans-activation response (TAR) element, a short stem-loop RNA structure required for elongation factors binding. Vif-deficient HIV-1-infected cells accumulate short viral transcripts and produce lower amounts of full-length HIV-1 transcripts due to A3G deamination of the TAR apical loop cytidine, highlighting the requirement for TAR loop integrity in HIV-1 transcription. We further show that free single-stranded DNA (ssDNA) termini are not essential for A3G activity and a gap of CCC motif blocked with juxtaposed DNA or RNA on either or 3'+5' ends is sufficient for A3G deamination. These results identify A3G as an efficient mutator and that deamination of (-)SSDNA results in an early block of HIV-1 transcription. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. HIV-1 viral rebound dynamics after a single treatment interruption depends on time of initiation of highly active antiretroviral therapy

    NARCIS (Netherlands)

    Steingrover, Radjin; Pogány, Katalyn; Fernandez Garcia, Evian; Jurriaans, Suzanne; Brinkman, Kees; Schuitemaker, Hanneke; Miedema, Frank; Lange, Joep M. A.; Prins, Jan M.

    2008-01-01

    OBJECTIVE: An important pending question is whether temporary highly active antiretroviral therapy during primary HIV infection can influence viral rebound dynamics and the subsequently established viral setpoint, through preservation and enhancement of HIV-1-specific immune responses, or through

  14. Ferrocenyl chalcone difluoridoborates inhibit HIV-1 integrase and display low activity towards cancer and endothelial cells.

    Science.gov (United States)

    Monserrat, Jean-Philippe; Al-Safi, Rasha I; Tiwari, Keshri Nath; Quentin, Lionel; Chabot, Guy G; Vessières, Anne; Jaouen, Gérard; Neamati, Nouri; Hillard, Elizabeth A

    2011-10-15

    We report here the discovery of a potent series of HIV-1 integrase (IN) inhibitors based on the ferrocenyl chalcone difluoridoborate structure. Ten new compounds have been synthesized and were generally found to have similar inhibitory activities against the IN 3' processing and strand transfer (ST) processes. IC(50) values were found to be in the low micromolar range, and significantly lower than those found for the non-coordinated ferrocenyl chalcones and other ferrocene molecules. The ferrocenyl chalcone difluoridoborates furthermore exhibited low cytotoxicity against cancer cells and low morphological activity against epithelial cells. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Antiviral activities of extracts of Euphorbia hirta L. against HIV-1, HIV-2 and SIVmac251.

    Science.gov (United States)

    Gyuris, Agnes; Szlávik, László; Minárovits, János; Vasas, Andrea; Molnár, Joseph; Hohmann, Judit

    2009-01-01

    The antiretroviral activities of extracts of Euphorbia hirta were investigated in vitro on the MT4 human T lymphocyte cell line. The cytotoxicities of the extracts were tested by means of the MTT cell proliferation assay, and then the direct effects of the aqueous extract on HIV-1, HIV-2 and SIV(mac251) reverse transcriptase (RT) activity were determined. A dose-dependent inhibition of RT activity was observed for all three viruses. The HIV-1 inhibitory potency of E. hirta was studied further, and the activities of the aqueous and 50% methanolic extracts were compared. The 50% methanolic extract was found to exert a higher antiretroviral effect than that of the aqueous extract. The 50% MeOH extract was subjected to liquid-liquid partition with dichloromethane, ethyl acetate and water. Only the remaining aqueous phase exhibited significant antiviral activity; all the lipophilic extracts appeared to be inactive. After removal of the tannins from the aqueous extract, the viral replication inhibitory effect was markedly decreased, and it was therefore concluded that tannins are most probably responsible for the high antiretroviral activity.

  16. Complement lysis activity in autologous plasma is associated with lower viral loads during the acute phase of HIV-1 infection.

    Directory of Open Access Journals (Sweden)

    Michael Huber

    2006-11-01

    Full Text Available BACKGROUND: To explore the possibility that antibody-mediated complement lysis contributes to viremia control in HIV-1 infection, we measured the activity of patient plasma in mediating complement lysis of autologous primary virus. METHODS AND FINDINGS: Sera from two groups of patients-25 with acute HIV-1 infection and 31 with chronic infection-were used in this study. We developed a novel real-time PCR-based assay strategy that allows reliable and sensitive quantification of virus lysis by complement. Plasma derived at the time of virus isolation induced complement lysis of the autologous virus isolate in the majority of patients. Overall lysis activity against the autologous virus and the heterologous primary virus strain JR-FL was higher at chronic disease stages than during the acute phase. Most strikingly, we found that plasma virus load levels during the acute but not the chronic infection phase correlated inversely with the autologous complement lysis activity. Antibody reactivity to the envelope (Env proteins gp120 and gp41 were positively correlated with the lysis activity against JR-FL, indicating that anti-Env responses mediated complement lysis. Neutralization and complement lysis activity against autologous viruses were not associated, suggesting that complement lysis is predominantly caused by non-neutralizing antibodies. CONCLUSIONS: Collectively our data provide evidence that antibody-mediated complement virion lysis develops rapidly and is effective early in the course of infection; thus it should be considered a parameter that, in concert with other immune functions, steers viremia control in vivo.

  17. HIV-1 protease inhibitory substances from Cassia garrettiana

    Directory of Open Access Journals (Sweden)

    Jindaporn Puripattanvong

    2007-01-01

    Full Text Available Cassia garrettiana Craib, a Thai medicinal plant locally known as Samae-sarn, was investigated for its active constituents against HIV-1 protease (HIV-1 PR. Bioassay-guided fractionation of the heart woodof this plant led to the isolation of a stilbene derivative (1, piceatannol and an anthraquinone derivative (2, chrysophanol. Piceatannol exhibited appreciable inhibitory effect against HIV-1 PR with an IC50 value of25.4 μg/ml, whereas that of chrysophanol was 73.5 μg/ml. In addition, other two stilbenoids together with three anthraquinone derivatives were also investigated for their anti-HIV-1 PR activities. The resultindicated that resveratrol possessed anti-HIV-1 PR activity with an IC50 value of 85.0 μg/ml, whereas other stilbenoid (oxyresveratrol and anthraquinone derivatives (emodin, aloe-emodin, rhein were inactive (IC50 > 100 μg/ml.

  18. Blood donors with indeterminate anti-p24gag reactivity in HIV-1 western blot: absence of infectivity to transfused patients and in virus culture

    NARCIS (Netherlands)

    van der Poel, C. L.; Lelie, P. N.; Reesink, H. W.; van Exel-Oehlers, P. J.; Tersmette, M.; van den Akker, R.; Gonzalves, M.; Huisman, J. G.

    1989-01-01

    During a follow-up period of 23-40 months, 7 regular blood donors had persistently, and 4 had intermittently indeterminate anti-p24gag reactivity in human immunodeficiency virus (HIV)-1 Western Blot. Serological testing and viral cultures revealed that these donors had no signs of infection for

  19. Plasma plasminogen activator inhibitor-1 predicts myocardial infarction in HIV-1-infected individuals

    DEFF Research Database (Denmark)

    Knudsen, Andreas; Katzenstein, Terese L; Benfield, Thomas

    2014-01-01

    of antiretroviral therapy, sex, smoking and no known cardiovascular disease. Levels of high-sensitivity C-reactive protein, soluble endothelial selectin, soluble vascular cell adhesion molecule, soluble intercellular adhesion molecule, matrix metalloprotease 9, myeloperoxidase, and plasminogen activator inhibitor 1...... levels of PAI-1 were associated with risk of first-time MI in HIV-1-infected individuals independently of cardiovascular risk factors, HIV parameters and antiretroviral therapy. Therefore PAI-1 may be used for risk stratification and prediction of CHD, but further studies are needed....

  20. Foamy virus vectors expressing anti-HIV transgenes efficiently block HIV-1 replication.

    Science.gov (United States)

    Taylor, Jason A; Vojtech, Lucia; Bahner, Ingrid; Kohn, Donald B; Laer, Dorothee Von; Russell, David W; Richard, Robert E

    2008-01-01

    Gene therapy has the potential to control human immunodeficiency virus (HIV) in patients who do not respond to traditional antiviral therapy. In this study, we tested foamy virus (FV) vectors expressing three anti-HIV transgenes, both individually and in a combination vector. The transgenes tested in this study are RevM10, a dominant negative version of the viral rev protein, Sh1, a short hairpin RNA directed against a conserved overlapping sequence of tat and rev, and membrane-associated C46 (maC46), a membrane-attached peptide that blocks HIV cell entry. FV vectors efficiently transduce hematopoietic stem cells and, unlike lentivirus (LV) vectors, do not share viral proteins with HIV. The titers of the FV vectors described in this study were not affected by anti-HIV transgenes. On a direct comparison of FV vectors expressing the individual transgenes, entry inhibition using the maC46 transgene was found to be the most effective at blocking HIV replication. A clinically relevant FV vector expressing three anti-HIV transgenes effectively blocked HIV infection in primary macrophages derived from transduced, peripheral blood CD34-selected cells and in a cell line used for propagating HIV, CEMx174. These results suggest that there are potential benefits of using FV vectors in HIV gene therapy.

  1. Inhibition of Reverse Transcriptase Activity Increases Stability of the HIV-1 Core

    Science.gov (United States)

    Yang, Yang; Fricke, Thomas

    2013-01-01

    Previous studies showed that HIV-1 reverse transcription occurs during or before uncoating, linking mechanistically reverse transcription with uncoating. Here we show that inhibition of reverse transcriptase (RT) during HIV-1 infection by pharmacologic or genetic means increased the stability of the HIV-1 core during infection. Interestingly, HIV-1 particles with increased core stability were resistant to the core-destabilizing effects of rhesus TRIM5α (TRIM5αrh). Collectively, this work implies that the surface of the HIV-1 core is dynamic and changes upon the ongoing processes within the core. PMID:23077298

  2. Nucleic acid amplification of HIV-1 integrase sequence subtypes CRF01_AE and B for development of HIV anti-integrase drug resistance genotyping assay

    Science.gov (United States)

    Adlar, F. R.; Bela, B.

    2017-08-01

    To anticipate the potential use of anti-integrase drugs in Indonesia for treatment of HIV-1 infection, the development of a drug resistance genotyping assay for anti-integrase is crucial in identifying the genetic drug resistance profile of Indonesian HIV-1 strains. This experiment aimed to amplify a target region in the integrase gene of Indonesian HIV-1 subtypes CRF01_AE and B that contain genetic mutations known to confer resistance to anti-integrase drug. Eleven archived plasma samples from individuals living with HIV-1 were obtained from the Virology and Cancer Pathobiology Research Center for Health Service (VCPRC FKUI-RSCM) laboratory. One of the plasma samples contained HIV-1 subtype B, and the remaining plasma samples contained subtype CRF01_AE. The target regions for all samples were amplified through RT-PCR, with an annealing temperature of 55 °C, using the primer pair AE_POL 4086F and AE_POL 5232R that were designed by VCPRC FKUI-RSCM. The results of this experiment show that 18.2% (2/11) of the samples were successfully amplified using the one-step RT-PCR. While the primer pair was effective in amplifying the target region in the integrase gene sequence for subtype B (100%; 1/1), it had a low efficacy (10%, 1/10) for subtype CRF01_AE. In conclusion, the primer pair can be used to amplify the target region in Indonesian HIV-1 strain subtypes CRF01_AE and B. However, optimization of the PCR condition and an increased number of samples would help to determine an accurate representation of the efficacy of the primer pair.

  3. Role of Endolysosomes in HIV-1 Tat-Induced Neurotoxicity

    Directory of Open Access Journals (Sweden)

    Liang Hui

    2012-05-01

    Full Text Available Combined anti-retroviral therapeutic drugs effectively increase the lifespan of HIV-1-infected individuals who then have a higher prevalence of HAND (HIV-1 associated neurocognitive disorder. Soluble factors including HIV-1 proteins released from HIV-1-infected cells have been implicated in the pathogenesis of HAND, and particular attention has been paid to the HIV-1 Tat (transactivator of transcription protein because of its ability to directly excite neurons and cause neuronal cell death. Since HIV-1 Tat enters cells by receptor-mediated endocytosis and since endolysosomes play an important role in neuronal cell life and death, we tested here the hypothesis that HIV-1 Tat neurotoxicity is associated with changes in the endolysosome structure and function and also autophagy. Following the treatment of primary cultured rat hippocampal neurons with HIV-1 Tat or as controls mutant-Tat or PBS, neuronal viability was determined using a triple staining method. Preceding observations of HIV-1 Tat-induced neuronal cell death, we observed statistically significant changes in the structure and membrane integrity of endolysosomes, endolysosome pH and autophagy. As early as 24 h after HIV-1 Tat was applied to neurons, HIV-1 Tat accumulated in endolysosomes, endolysosome morphology was affected and their size increased, endolysosome membrane integrity was disrupted, endolysosome pH increased, specific activities of endolysosome enzymes decreased and autophagy was inhibited, as indicated by the significant changes in three markers for autophagy. In contrast, statistically significant levels of HIV-1 Tat-induced neuronal cell death were observed only after 48 h of HIV-1 Tat treatment. Our findings suggest that endolysosomes are involved in HIV-1 Tat-induced neurotoxicity and may represent a target for therapeutic intervention against HAND.

  4. A Conserved GPG-Motif in the HIV-1 Nef Core Is Required for Principal Nef-Activities.

    Directory of Open Access Journals (Sweden)

    Marta Martínez-Bonet

    Full Text Available To find out new determinants required for Nef activity we performed a functional alanine scanning analysis along a discrete but highly conserved region at the core of HIV-1 Nef. We identified the GPG-motif, located at the 121-137 region of HIV-1 NL4.3 Nef, as a novel protein signature strictly required for the p56Lck dependent Nef-induced CD4-downregulation in T-cells. Since the Nef-GPG motif was dispensable for CD4-downregulation in HeLa-CD4 cells, Nef/AP-1 interaction and Nef-dependent effects on Tf-R trafficking, the observed effects on CD4 downregulation cannot be attributed to structure constraints or to alterations on general protein trafficking. Besides, we found that the GPG-motif was also required for Nef-dependent inhibition of ring actin re-organization upon TCR triggering and MHCI downregulation, suggesting that the GPG-motif could actively cooperate with the Nef PxxP motif for these HIV-1 Nef-related effects. Finally, we observed that the Nef-GPG motif was required for optimal infectivity of those viruses produced in T-cells. According to these findings, we propose the conserved GPG-motif in HIV-1 Nef as functional region required for HIV-1 infectivity and therefore with a potential interest for the interference of Nef activity during HIV-1 infection.

  5. Release of Soluble Ligands for the Activating NKG2D Receptor: One More Immune Evasion Strategy Evolved by HIV-1 ?

    Science.gov (United States)

    Giuliani, Erica; Vassena, Lia; Cerboni, Cristina; Doria, Margherita

    2016-01-01

    Increasing lines of evidence indicate that NKG2D, an activating receptor of natural killer (NK) and CD8(+) T cells, plays an important role in immune responses against HIV-1. Through its ability to recognize a diverse array of ligands (NKG2DLs) induced by cell 'stress' such as viral infection, NKG2D delivers activating and co-stimulatory signals resulting in cytotoxicity and release of cytokines. Therefore, HIV-1 and other viruses have evolved clever mechanisms to counteract NKG2D-dependent immune responses. While, on one hand, the HIV-1 Vpr protein up-regulates NKG2DLs expression by activating the DNA damage response (DDR) pathway, other viral proteins (Nef and Vif) have developed the capacity to reduce NKG2DLs expression levels. In addition, recent evidences suggest that HIV-1-infected CD4(+) T cells may release NKG2DLs, particularly MICA, in soluble form, a phenomenon that has the potential to down-modulate NKG2D on circulating lymphocytes and allow evasion of NKG2D-mediated immune responses. Indeed, despite controversial, lower NKG2D expression was found on both NK and CD8(+) T cells in HIV-1-infected patients. This review discusses recent advances in the understanding of how HIV-1 affects the NKG2D/NKG2DLs system, with a special focus on virus-induced release of soluble NKG2DLs and its functional implications for the immune surveillance of the infected host.

  6. Antiretroviral effect of lovastatin on HIV-1-infected individuals without highly active antiretroviral therapy (The LIVE study: a phase-II randomized clinical trial

    Directory of Open Access Journals (Sweden)

    Montoya Carlos J

    2009-06-01

    Full Text Available Abstract Background Highly active antiretroviral therapy produces a significant decrease in HIV-1 replication and allows an increase in the CD4 T-cell count, leading to a decrease in the incidence of opportunistic infections and mortality. However, the cost, side effects and complexity of antiretroviral regimens have underscored the immediate need for additional therapeutic approaches. Statins exert pleiotropic effects through a variety of mechanisms, among which there are several immunoregulatory effects, related and unrelated to their cholesterol-lowering activity that can be useful to control HIV-1 infection. Methods/design Randomized, double-blinded, placebo controlled, single-center, phase-II clinical trial. One hundred and ten chronically HIV-1-infected patients, older than 18 years and naïve for antirretroviral therapy (i.e., without prior or current management with antiretroviral drugs will be enrolled at the outpatient services from the most important centres for health insurance care in Medellin-Colombia. The interventions will be lovastatin (40 mg/day, orally, for 12 months; 55 patients or placebo (55 patients. Our primary aim will be to determine the effect of lovastatin on viral replication. The secondary aim will be to determine the effect of lovastatin on CD4+ T-cell count in peripheral blood. As tertiary aims we will explore differences in CD8+ T-cell count, expression of activation markers (CD38 and HLA-DR on CD4 and CD8 T cells, cholesterol metabolism, LFA-1/ICAM-1 function, Rho GTPases function and clinical evolution between treated and not treated HIV-1-infected individuals. Discussion Preliminary descriptive studies have suggested that statins (lovastatin may have anti HIV-1 activity and that their administration is safe, with the potential effect of controlling HIV-1 replication in chronically infected individuals who had not received antiretroviral medications. Considering that there is limited clinical data available on

  7. HIV-1 Env and Nef Cooperatively Contribute to Plasmacytoid Dendritic Cell Activation via CD4-Dependent Mechanisms.

    Science.gov (United States)

    Reszka-Blanco, Natalia J; Sivaraman, Vijay; Zhang, Liguo; Su, Lishan

    2015-08-01

    Plasmacytoid dendritic cells (pDCs) are the major source of type I IFN (IFN-I) in response to human immunodeficiency virus type 1 (HIV-1) infection. pDCs are rapidly activated during HIV-1 infection and are implicated in reducing the early viral load, as well as contributing to HIV-1-induced pathogenesis. However, most cell-free HIV-1 isolates are inefficient in activating human pDCs, and the mechanisms of HIV-1 recognition by pDCs and pDC activation are not clearly defined. In this study, we report that two genetically similar HIV-1 variants (R3A and R3B) isolated from a rapid progressor differentially activated pDCs to produce alpha interferon (IFN-α). The highly pathogenic R3A efficiently activated pDCs to induce robust IFN-α production, while the less pathogenic R3B did not. The viral determinant for efficient pDC activation was mapped to the V1V2 region of R3A Env, which also correlated with enhanced CD4 binding activity. Furthermore, we showed that the Nef protein was also required for the activation of pDCs by R3A. Analysis of a panel of R3A Nef functional mutants demonstrated that Nef domains involved in CD4 downregulation were necessary for R3A to activate pDCs. Our data indicate that R3A-induced pDC activation depends on (i) the high affinity of R3A Env for binding the CD4 receptor and (ii) Nef activity, which is involved in CD4 downregulation. Our findings provide new insights into the mechanism by which HIV-1 induces IFN-α in pDCs, which contributes to pathogenesis. Plasmacytoid dendritic cells (pDCs) are the major type I interferon (IFN-I)-producing cells, and IFN-I actually contributes to pathogenesis during chronic viral infections. How HIV-1 activates pDCs and the roles of pDCs/IFN-I in HIV-1 pathogenesis remain unclear. We report here that the highly pathogenic HIV R3A efficiently activated pDCs to induce IFN-α production, while most HIV-1 isolates are inefficient in activating pDCs. We have discovered that R3A-induced pDC activation depends on

  8. Longitudinal comparison between plasma and seminal HIV-1 viral loads during antiretroviral treatment Comparação longitudinal entre cargas virais seminais e plasmáticas do HIV-1 durante terapia anti-retroviral

    Directory of Open Access Journals (Sweden)

    Lauro Ferreira da Silva Pinto Neto

    2003-12-01

    Full Text Available This study was designed to investigate the impact of anti-retroviral therapy on both plasma and seminal HIV-1 viral loads and the correlation between viral loads in these compartments after treatment. Viral load, CD4+ and CD8+ T-cell counts were evaluated in paired plasma and semen samples from 36 antiretroviral therapy-naïve patients at baseline and on days 45, 90, and 180 of treatment. Slopes for blood and seminal viral loads in all treated patients were similar (p = 0.21. Median HIV-1 RNA titers in plasma and semen at baseline were 4.95 log10 and 4.48 log10 copies/ml, respectively. After 180 days of therapy, the median viral load declined to 3.15 log10 copies/ml (plasma and 3.2 log10 copies/ml (semen. At this timepoint 22 patients presented HIV-1 viral load below 400 copies/ml in either plasma or semen, but only 9 had viral loads below 400 copies/ml in both compartments.Este estudo foi desenhado para investigar o impacto do tratamento com anti-retrovirais na evolução das cargas virais plasmáticas e seminais do HIV-1. A carga viral do HIV-1 e a contagem de linfócitos T CD4+ e CD8+ foi determinada em amostras pareadas de sangue e sêmen de 36 pacientes virgem de tratamento nos dias 0, 45, 90 e 180 após o início da terapia. As curvas de declínio das cargas virais plasmática e seminal foram semelhantes (p= 0.21. As medianas da carga viral plasmática e seminal no pré-tratamento (dia 0 foram 4.95 e 4.48 log10 cópias/ml, respectivamente. Seis meses após o início da terapia, a mediana da carga viral plasmática era 3.15 log10 cópias/ml e a seminal 3.2 log10 cópias/ml. Neste mesmo periodo, 22 pacientes apresentavam carga viral abaixo de 400 cópias/ml no plasma e/ou sêmen, enquanto apenas 9 pacientes apresentavam carga viral abaixo do limite de detecção nos dois compartimentos.

  9. Elicitation of Both Anti HIV-1 Env Humoral and Cellular Immunities by Replicating Vaccinia Prime Sendai Virus Boost Regimen and Boosting by CD40Lm

    Science.gov (United States)

    Zhang, Xianfeng; Sobue, Tomoyoshi; Isshiki, Mao; Makino, Shun-ichi; Inoue, Makoto; Kato, Kazunori; Shioda, Tatsuo; Ohashi, Takashi; Sato, Hirotaka; Komano, Jun; Hanabusa, Hideji; Shida, Hisatoshi

    2012-01-01

    For protection from HIV-1 infection, a vaccine should elicit both humoral and cell-mediated immune responses. A novel vaccine regimen and adjuvant that induce high levels of HIV-1 Env-specific T cell and antibody (Ab) responses was developed in this study. The prime-boost regimen that used combinations of replication-competent vaccinia LC16m8Δ (m8Δ) and Sendai virus (SeV) vectors expressing HIV-1 Env efficiently produced both Env-specific CD8+ T cells and anti-Env antibodies, including neutralizing antibodies (nAbs). These results sharply contrast with vaccine regimens that prime with an Env expressing plasmid and boost with the m8Δ or SeV vector that mainly elicited cellular immunities. Moreover, co-priming with combinations of m8Δs expressing Env or a membrane-bound human CD40 ligand mutant (CD40Lm) enhanced Env-specific CD8+ T cell production, but not anti-Env antibody production. In contrast, priming with an m8Δ that coexpresses CD40Lm and Env elicited more anti-Env Abs with higher avidity, but did not promote T cell responses. These results suggest that the m8Δ prime/SeV boost regimen in conjunction with CD40Lm expression could be used as an immunization platform for driving both potent cellular and humoral immunities against pathogens such as HIV-1. PMID:23236521

  10. Distinct determinants in HIV-1 Vif and human APOBEC3 proteins are required for the suppression of diverse host anti-viral proteins.

    Directory of Open Access Journals (Sweden)

    Wenyan Zhang

    Full Text Available APOBEC3G (A3G and related cytidine deaminases of the APOBEC3 family of proteins are potent inhibitors of many retroviruses, including HIV-1. Formation of infectious HIV-1 requires the suppression of multiple cytidine deaminases by Vif. HIV-1 Vif suppresses various APOBEC3 proteins through the common mechanism of recruiting the Cullin5-ElonginB-ElonginC E3 ubiquitin ligase to induce target protein polyubiquitination and proteasome-mediated degradation. The domains in Vif and various APOBEC3 proteins required for APOBEC3 recognition and degradation have not been fully characterized.In the present study, we have demonstrated that the regions of APOBEC3F (A3F that are required for its HIV-1-mediated binding and degradation are distinct from those reported for A3G. We found that the C-terminal cytidine deaminase domain (C-CDD of A3F alone is sufficient for its interaction with HIV-1 Vif and its Vif-mediated degradation. We also observed that the domains of HIV-1 Vif that are uniquely required for its functional interaction with full-length A3F are also required for the degradation of the C-CDD of A3F; in contrast, those Vif domains that are uniquely required for functional interaction with A3G are not required for the degradation of the C-CDD of A3F. Interestingly, the HIV-1 Vif domains required for the degradation of A3F are also required for the degradation of A3C and A3DE. On the other hand, the Vif domains uniquely required for the degradation of A3G are dispensable for the degradation of cytidine deaminases A3C and A3DE.Our data suggest that distinct regions of A3F and A3G are targeted by HIV-1 Vif molecules. However, HIV-1 Vif suppresses A3F, A3C, and A3DE through similar recognition determinants, which are conserved among Vif molecules from diverse HIV-1 strains. Mapping these determinants may be useful for the design of novel anti-HIV inhibitors.

  11. Mutations at the CXCR4 interaction sites for AMD3100 influence anti-CXCR4 antibody binding and HIV-1 entry

    DEFF Research Database (Denmark)

    Hatse, Sigrid; Princen, Katrien; Vermeire, Kurt

    2003-01-01

    The interaction of the CXCR4 antagonist AMD3100 with its target is greatly influenced by specific aspartate residues in the receptor protein, including Asp(171) and Asp(262). We have now found that aspartate-to-asparagine substitutions at these positions differentially affect the binding of four...... different anti-CXCR4 monoclonal antibodies as well as the infectivity of diverse human immunodeficiency virus type 1 (HIV-1) strains and clinical isolates. Mutation of Asp(262) strongly decreased the coreceptor efficiency of CXCR4 for wild-type but not for AMD3100-resistant HIV-1 NL4.3. Thus, resistance...... of HIV-1 NL4.3 to AMD3100 is associated with a decreased dependence of the viral gp120 on Asp(262) of CXCR4, pointing to a different mode of interaction of wild-type versus AMD3100-resistant virus with CXCR4....

  12. Safety, tolerability, and mechanisms of antiretroviral activity of pegylated interferon Alfa-2a in HIV-1-monoinfected participants: a phase II clinical trial.

    Science.gov (United States)

    Asmuth, David M; Murphy, Robert L; Rosenkranz, Susan L; Lertora, Juan J L; Kottilil, Shyam; Cramer, Yoninah; Chan, Ellen S; Schooley, Robert T; Rinaldo, Charles R; Thielman, Nathan; Li, Xiao-Dong; Wahl, Sharon M; Shore, Jessica; Janik, Jennifer; Lempicki, Richard A; Simpson, Yaa; Pollard, Richard B

    2010-06-01

    To our knowledge, the antiviral activity of pegylated interferon alfa-2a has not been studied in participants with untreated human immunodeficiency virus type 1 (HIV-1) infection but without chronic hepatitis C virus (HCV) infection. Untreated HIV-1-infected volunteers without HCV infection received 180 microg of pegylated interferon alfa-2a weekly for 12 weeks. Changes in plasma HIV-1 RNA load, CD4(+) T cell counts, pharmacokinetics, pharmacodynamic measurements of 2',5'-oligoadenylate synthetase (OAS) activity, and induction levels of interferon-inducible genes (IFIGs) were measured. Nonparametric statistical analysis was performed. Eleven participants completed 12 weeks of therapy. The median plasma viral load decrease and change in CD4(+) T cell counts at week 12 were 0.61 log(10) copies/mL (90% confidence interval [CI], 0.20-1.18 log(10) copies/mL) and -44 cells/microL (90% CI, -95 to 85 cells/microL), respectively. There was no correlation between plasma viral load decreases and concurrent pegylated interferon plasma concentrations. However, participants with larger increases in OAS level exhibited greater decreases in plasma viral load at weeks 1 and 2 (r = -0.75 [90% CI, -0.93 to -0.28] and r = -0.61 [90% CI, -0.87 to -0.09], respectively; estimated Spearman rank correlation). Participants with higher baseline IFIG levels had smaller week 12 decreases in plasma viral load (0.66 log(10) copies/mL [90% CI, 0.06-0.91 log(10) copies/mL]), whereas those with larger IFIG induction levels exhibited larger decreases in plasma viral load (-0.74 log(10) copies/mL [90% CI, -0.93 to -0.21 log(10) copies/mL]). Pegylated interferon alfa-2a was well tolerated and exhibited statistically significant anti-HIV-1 activity in HIV-1-monoinfected patients. The anti-HIV-1 effect correlated with OAS protein levels (weeks 1 and 2) and IFIG induction levels (week 12) but not with pegylated interferon concentrations.

  13. 5-Alkyl-6-benzyl-2-(2-oxo-2-phenylethylsulfanyl)pyrimidin-4(3H)-ones, a series of anti-HIV-1 agents of the dihydro-alkoxy-benzyl-oxopyrimidine family with peculiar structure-activity relationship profile.

    Science.gov (United States)

    Nawrozkij, Maxim B; Rotili, Dante; Tarantino, Domenico; Botta, Giorgia; Eremiychuk, Alexandre S; Musmuca, Ira; Ragno, Rino; Samuele, Alberta; Zanoli, Samantha; Armand-Ugón, Mercedes; Clotet-Codina, Imma; Novakov, Ivan A; Orlinson, Boris S; Maga, Giovanni; Esté, José A; Artico, Marino; Mai, Antonello

    2008-08-14

    A series of dihydro-alkylthio-benzyl-oxopyrimidines (S-DABOs) bearing a 2-aryl-2-oxoethylsulfanyl chain at pyrimidine C2, an alkyl group at C5, and a 2,6-dichloro-, 2-chloro-6-fluoro-, and 2,6-difluoro-benzyl substitution at C6 (oxophenethyl- S-DABOs, 6-8) is here described. The new compounds showed low micromolar to low nanomolar (in one case subnanomolar) inhibitory activity against wt HIV-1. Against clinically relevant HIV-1 mutants (K103N, Y181C, and Y188L) as well as in enzyme (wt and K103N, Y181I, and L100I mutated RTs) assays, compounds carrying an ethyl/ iso-propyl group at C5 and a 2,6-dichloro-/2-chloro-6-fluoro-benzyl moiety at C6 were the most potent derivatives, also characterized by low fold resistance ratio. Interestingly, the structure-activity relationship (SAR) data drawn from this DABO series are more related to HEPT than to DABO derivatives. These findings were at least in part rationalized by the description of a fair superimposition between the 6-8 and TNK-651 (a HEPT analogue) binding modes in both WT and Y181C RTs.

  14. Structure of an anti-HIV-1 hammerhead ribozyme complex with a 17-mer DNA substrate analog of HIV-1 gag RNA and a mechanism for the cleavage reaction: 750 MHz NMR and computer experiments

    Science.gov (United States)

    Ojha, R. P.; Dhingra, M. M.; Sarma, M. H.; Myer, Y. P.; Setlik, R. F.; Shibata, M.; Kazim, A. L.; Ornstein, R. L.; Rein, R.; Turner, C. J.; hide

    1997-01-01

    between the anti HIV-1 gag ribozyme and its abortive DNA substrate manifests in the detection of a continuous track of A.T base pairs; this suggests that the interaction between the ribozyme and its DNA substrate is stronger than the one observed in the case of the free ribozyme where the bases in stem I and stem III regions interact strongly with the ribozyme core region (Sarma, R. H., et al. FEBS Letters 375, 317-23, 1995). The complex formation provides certain guidelines in the design of suitable therapeutic ribozymes. If the residues in the ribozyme stem regions interact with the conserved core, it may either prevent or interfere with the formation of a catalytically active tertiary structure.

  15. Serum neutralizing activities from a Beijing homosexual male cohort infected with different subtypes of HIV-1 in China.

    Directory of Open Access Journals (Sweden)

    Mingshun Zhang

    Full Text Available Protective antibodies play a critical role in an effective HIV vaccine; however, eliciting antibodies to block infection by viruses from diverse genetic subtypes remains a major challenge. As the world's most populous country, China has been under the threat of at least three major subtypes of circulating HIV-1 viruses. Understanding the cross reactivity and specificities of serum antibody responses that mediate broad neutralization of the virus in HIV-1 infected Chinese patients will provide valuable information for the design of vaccines to prevent HIV-1 transmission in China. Sera from a cohort of homosexual men, who have been managed by a major HIV clinical center in Beijing, China, were analyzed for cross-sectional neutralizing activities against pseudotyped viruses expressing Env antigens of the major subtype viruses (AE, BC and B subtypes circulating in China. Neutralizing activities in infected patients' blood were most capable of neutralizing viruses in the homologous subtype; however, a subset of blood samples was able to achieve broad neutralizing activities across different subtypes. Such cross neutralizing activity took 1-2 years to develop and CD4 binding site antibodies were critical components in these blood samples. Our study confirmed the presence of broadly neutralizing sera in China's HIV-1 patient population. Understanding the specificity and breadth of these neutralizing activities can guide efforts for the development of HIV vaccines against major HIV-1 viruses in China.

  16. Mechanism of anti-HIV activity of succinylated human serum albumin

    NARCIS (Netherlands)

    Kuipers, ME; Berg, HVD; Swart, PJ; Laman, Jon; Meijer, DKF; Kopelman, MHGM; Huisman, H

    1999-01-01

    In the present study, we described the interaction of succinylated human serum albumin (Suc-HSA), a negatively charged anti-HIV-1 active protein, with HIV-1 gp120 and in detail with the third variable domain of gp120 (V3 loop). To this end, different assay formats were tested in which gp120- and

  17. First Phase I human clinical trial of a killed whole-HIV-1 vaccine: demonstration of its safety and enhancement of anti-HIV antibody responses.

    Science.gov (United States)

    Choi, Eunsil; Michalski, Chad J; Choo, Seung Ho; Kim, Gyoung Nyoun; Banasikowska, Elizabeth; Lee, Sangkyun; Wu, Kunyu; An, Hwa-Yong; Mills, Anthony; Schneider, Stefan; Bredeek, U Fritz; Coulston, Daniel R; Ding, Shilei; Finzi, Andrés; Tian, Meijuan; Klein, Katja; Arts, Eric J; Mann, Jamie F S; Gao, Yong; Kang, C Yong

    2016-11-28

    Vaccination with inactivated (killed) whole-virus particles has been used to prevent a wide range of viral diseases. However, for an HIV vaccine this approach has been largely negated due to inherent safety concerns, despite the ability of killed whole-virus vaccines to generate a strong, predominantly antibody-mediated immune response in vivo. HIV-1 Clade B NL4-3 was genetically modified by deleting the nef and vpu genes and substituting the coding sequence for the Env signal peptide with that of honeybee melittin signal peptide to produce a less virulent and more replication efficient virus. This genetically modified virus (gmHIV-1 NL4-3 ) was inactivated and formulated as a killed whole-HIV vaccine, and then used for a Phase I human clinical trial (Trial Registration: Clinical Trials NCT01546818). The gmHIV-1 NL4-3 was propagated in the A3.01 human T cell line followed by virus purification and inactivation with aldrithiol-2 and γ-irradiation. Thirty-three HIV-1 positive volunteers receiving cART were recruited for this observer-blinded, placebo-controlled Phase I human clinical trial to assess the safety and immunogenicity. Genetically modified and killed whole-HIV-1 vaccine, SAV001, was well tolerated with no serious adverse events. HIV-1 NL4-3 -specific PCR showed neither evidence of vaccine virus replication in the vaccine virus-infected human T lymphocytes in vitro nor in the participating volunteers receiving SAV001 vaccine. Furthermore, SAV001 with adjuvant significantly increased the pre-existing antibody response to HIV-1 proteins. Antibodies in the plasma of vaccinees were also found to recognize HIV-1 envelope protein on the surface of infected cells as well as showing an enhancement of broadly neutralizing antibodies inhibiting tier I and II of HIV-1 B, D, and A subtypes. The killed whole-HIV vaccine, SAV001, is safe and triggers anti-HIV immune responses. It remains to be determined through an appropriate trial whether this immune response prevents

  18. Dendritic cell immunoreceptor is a new target for anti-AIDS drug development: identification of DCIR/HIV-1 inhibitors.

    Directory of Open Access Journals (Sweden)

    Alexandra A Lambert

    Full Text Available The HIV-1 pandemic continues to expand while no effective vaccine or cure is yet available. Existing therapies have managed to limit mortality and control viral proliferation, but are associated with side effects, do not cure the disease and are subject to development of resistance. Finding new therapeutic targets and drugs is therefore crucial. We have previously shown that the dendritic cell immunoreceptor (DCIR, a C-type lectin receptor expressed on dendritic cells (DCs, acts as an attachment factor for HIV-1 to DCs and contributes to HIV-1 transmission to CD4(+ T lymphocytes (CD4TL. Directly involved in HIV-1 infection, DCIR is expressed in apoptotic or infected CD4TL and promotes trans-infection to bystander cells. Here we report the 3D modelling of the extracellular domain of DCIR. Based on this structure, two surface accessible pockets containing the carbohydrate recognition domain and the EPS binding motif, respectively, were targeted for screening of chemicals that will disrupt normal interaction with HIV-1 particle. Preliminary screening using Raji-CD4-DCIR cells allowed identification of two inhibitors that decreased HIV-1 attachment and propagation. The impact of these inhibitors on infection of DCs and CD4TL was evaluated as well. The results of this study thus identify novel molecules capable of blocking HIV-1 transmission by DCs and CD4TL.

  19. The MSHA strain of Pseudomonas aeruginosa activated TLR pathway and enhanced HIV-1 DNA vaccine immunoreactivity.

    Directory of Open Access Journals (Sweden)

    Jue Hou

    Full Text Available The mannose-sensitive hemagglutination pilus strain of Pseudomonas aeruginosa (PA-MSHA has been shown to trigger naïve immune responses through the activation of monocytes, macrophages, natural killer cells (NK cells and antigen presenting cells (APCs. Based on the hypothesis that PA-MSHA activates natural immunity through the Toll-like receptor (TLR pathway, we scanned several critical TLR pathway molecules in mouse splenocytes using high-throughput real-time QRT-PCR and co-stimulatory molecule in bone marrow-derived dendritic cells (BMDCs following in vitro stimulation by PA-MSHA. PA-MSHA enabled activation of the TLR pathway mediated by NF-κB and JNK signaling in splenocytes, and the co-stimulatory molecule CD86 was up-regulated in BMDCs. We then assessed the adjuvant effect of PA-MSHA for HIV-1 DNA vaccines. In comparison to DNA inoculation alone, co-inoculation with low dosage of PA-MSHA enhanced specific immunoreactivity against HIV-1 Env in both cellular and humoral responses, and promoted antibody avidity maturation. However, high doses of adjuvant resulted in an immunosuppressive effect; a two- or three-inoculation regimen yielded low antibody responses and the two-inoculation regimen exhibited only a slight cellular immunity response. To our knowledge, this is the first report demonstrating the utility of PA-MSHA as an adjuvant to a DNA vaccine. Further research is needed to investigate the exact mechanisms through which PA-MSHA achieves its adjuvant effects on innate immune responses, especially on dendritic cells.

  20. A trypsin inhibitor from rambutan seeds with antitumor, anti-HIV-1 reverse transcriptase, and nitric oxide-inducing properties.

    Science.gov (United States)

    Fang, Evandro Fei; Ng, Tzi Bun

    2015-04-01

    Nephelium lappaceum L., commonly known as "rambutan," is a typical tropical tree and is well known for its juicy and sweet fruit which has an exotic flavor. Chemical studies on rambutan have led to the identification of various components such as monoterpene lactones and volatile compounds. Here, a 22.5-kDa trypsin inhibitor (N . lappaceum trypsin inhibitor (NLTI)) was isolated from fresh rambutan seeds using liquid chromatographical techniques. NLTI reduced the proteolytic activities of both trypsin and α-chymotrypsin. Dithiothreitol reduced the trypsin inhibitory activity of NLTI at a concentration of 1 mM, indicating that an intact disulfide bond is essential to the activity. NLTI inhibited HIV-1 reverse transcriptase with an IC50 of 0.73 μM. In addition, NLTI manifested a time- and dose-dependent inhibitory effect on growth in many tumor cells. NLTI is one of the few trypsin inhibitors with nitric oxide-inducing activity and may find application in tumor therapy.

  1. A cell-free enzymatic activity assay for the evaluation of HIV-1 drug resistance to protease inhibitors

    Directory of Open Access Journals (Sweden)

    Satoko eMatsunaga

    2015-10-01

    Full Text Available Due to their high frequency of genomic mutations, human retroviruses often develop resistance to antiretroviral drugs. The emergence of drug-resistant human immunodeficiency virus type 1 (HIV-1 is a significant obstacle to the effective long-term treatment of HIV infection. The development of a rapid and versatile drug-susceptibility assay would enable acquisition of phenotypic information and facilitate determination of the appropriate choice of antiretroviral agents. In this study, we developed a novel in vitro method, termed the Cell-Free Drug Susceptibility Assay (CFDSA, for monitoring phenotypic information regarding the drug resistance of HIV-1 protease (PR. The CFDSA utilizes a wheat germ cell-free protein production system to synthesize enzymatically active HIV-1 PRs directly from PCR products amplified from HIV-1 molecular clones or clinical isolates in a rapid one-step procedure. Enzymatic activity of PRs can be readily measured by AlphaScreen (Amplified Luminescent Proximity Homogeneous Assay Screen in the presence or absence of clinically used protease inhibitors (PIs. CFDSA measurement of drug resistance was based on the fold resistance to the half-maximal inhibitory concentration (IC50 of various protease inhibitors (PIs. The CFDSA could serve as a non-infectious, rapid, accessible, and reliable alternative to infectious cell-based phenotypic assays for evaluation of PI-resistant HIV-1.

  2. D316 is critical for the enzymatic activity and HIV-1 restriction potential of human and rhesus APOBEC3B

    OpenAIRE

    McDougle, Rebecca M.; Hultquist, Judd F.; Stabell, Alex C.; Sawyer, Sara L.; Harris, Reuben S.

    2013-01-01

    APOBEC3B is one of seven human APOBEC3 DNA cytosine deaminases that function to inhibit the replication and persistence of retroelements and retroviruses. Human APOBEC3B restricts the replication of HIV-1 in HEK293 cells, while our laboratory clone of rhesus macaque APOBEC3B did not. We mapped the restriction determinant to a single amino acid difference that alters enzymatic activity. Human APOBEC3B D316 is catalytically active and capable of restricting HIV-1 while rhesus APOBEC3B N316 is n...

  3. Targeted HIV-1 Latency Reversal Using CRISPR/Cas9-Derived Transcriptional Activator Systems.

    Directory of Open Access Journals (Sweden)

    Julia K Bialek

    Full Text Available CRISPR/Cas9 technology is currently considered the most advanced tool for targeted genome engineering. Its sequence-dependent specificity has been explored for locus-directed transcriptional modulation. Such modulation, in particular transcriptional activation, has been proposed as key approach to overcome silencing of dormant HIV provirus in latently infected cellular reservoirs. Currently available agents for provirus activation, so-called latency reversing agents (LRAs, act indirectly through cellular pathways to induce viral transcription. However, their clinical performance remains suboptimal, possibly because reservoirs have diverse cellular identities and/or proviral DNA is intractable to the induced pathways. We have explored two CRISPR/Cas9-derived activator systems as targeted approaches to induce dormant HIV-1 proviral DNA. These systems recruit multiple transcriptional activation domains to the HIV 5' long terminal repeat (LTR, for which we have identified an optimal target region within the LTR U3 sequence. Using this target region, we demonstrate transcriptional activation of proviral genomes via the synergistic activation mediator complex in various in culture model systems for HIV latency. Observed levels of induction are comparable or indeed higher than treatment with established LRAs. Importantly, activation is complete, leading to production of infective viral particles. Our data demonstrate that CRISPR/Cas9-derived technologies can be applied to counteract HIV latency and may therefore represent promising novel approaches in the quest for HIV elimination.

  4. Cocaine promotes both initiation and elongation phase of HIV-1 transcription by activating NF-κB and MSK1 and inducing selective epigenetic modifications at HIV-1 LTR

    Science.gov (United States)

    Sahu, Geetaram; Farley, Kalamo; El-Hage, Nazira; Aiamkitsumrit, Benjamas; Fassnacht, Ryan; Kashanchi, Fatah; Ochem, Alex; Simon, Gary L.; Karn, Jonathan; Hauser, Kurt F.; Tyagi, Mudit

    2015-01-01

    Cocaine accelerates human immunodeficiency virus (HIV-1) replication by altering specific cell-signaling and epigenetic pathways. We have elucidated the underlying molecular mechanisms through which cocaine exerts its effect in myeloid cells, a major target of HIV-1 in central nervous system (CNS). We demonstrate that cocaine treatment promotes HIV-1 gene expression by activating both nuclear factor-kappa B (NF-κB) and mitogen- and stress-activated kinase 1 (MSK1). MSK1 subsequently catalyzes the phosphorylation of histone H3 at serine 10, and p65 subunit of NF-κB at 276th serine residue. These modifications enhance the interaction of NF-κB with P300 and promote the recruitment of the positive transcription elongation factor b (P-TEFb) to the HIV-1 LTR, supporting the development of an open/relaxed chromatin configuration, and facilitating the initiation and elongation phases of HIV-1 transcription. Results are also confirmed in primary monocyte derived macrophages (MDM). Overall, our study provides detailed insights into cocaine-driven HIV-1 transcription and replication. PMID:25980739

  5. Triterpenoids from Ocimum labiatum Activates Latent HIV-1 Expression In Vitro: Potential for Use in Adjuvant Therapy.

    Science.gov (United States)

    Kapewangolo, Petrina; Omolo, Justin J; Fonteh, Pascaline; Kandawa-Schulz, Martha; Meyer, Debra

    2017-10-13

    Latent HIV reservoirs in infected individuals prevent current treatment from eradicating infection. Treatment strategies against latency involve adjuvants for viral reactivation which exposes viral particles to antiretroviral drugs. In this study, the effect of novel triterpenoids isolated from Ocimum labiatum on HIV-1 expression was measured through HIV-1 p24 antigen capture in the U1 latency model of HIV-1 infection and in peripheral blood mononuclear cells (PBMCs) of infected patients on combination antiretroviral therapy (cART). The mechanism of viral reactivation was determined through the compound's effect on cytokine production, histone deacetylase (HDAC) inhibition, and protein kinase C (PKC) activation. Cytotoxicity of the triterpenoids was determined using a tetrazolium dye and flow cytometry. The isolated triterpene isomers, 3-hydroxy-4,6 a ,6 b ,11,12,14 b -hexamethyl-1,2,3,4,6,6 a ,6 b ,7,8,8 a ,9,10,11,12,12 a ,14,14 a ,14 b -octadecahydropicene-4,8 a -dicarboxylic acid (HHODC), significantly ( p HIV-1 expression in a dose-dependent manner in U1 cells at non-cytotoxic concentrations. HHODC also induced viral expression in PBMCs of HIV-1 infected patients on cART. In addition, the compound up-regulated the production of interleukin (IL)-2, IL-6, tumour necrosis factor (TNF)-α, and interferon (IFN)-γ but had no effect on HDAC and PKC activity, suggesting cytokine upregulation as being involved in latency activation. The observed in vitro reactivation of HIV-1 introduces the adjuvant potential of HHODC for the first time here.

  6. Triterpenoids from Ocimum labiatum Activates Latent HIV-1 Expression In Vitro: Potential for Use in Adjuvant Therapy

    Directory of Open Access Journals (Sweden)

    Petrina Kapewangolo

    2017-10-01

    Full Text Available Latent HIV reservoirs in infected individuals prevent current treatment from eradicating infection. Treatment strategies against latency involve adjuvants for viral reactivation which exposes viral particles to antiretroviral drugs. In this study, the effect of novel triterpenoids isolated from Ocimum labiatum on HIV-1 expression was measured through HIV-1 p24 antigen capture in the U1 latency model of HIV-1 infection and in peripheral blood mononuclear cells (PBMCs of infected patients on combination antiretroviral therapy (cART. The mechanism of viral reactivation was determined through the compound’s effect on cytokine production, histone deacetylase (HDAC inhibition, and protein kinase C (PKC activation. Cytotoxicity of the triterpenoids was determined using a tetrazolium dye and flow cytometry. The isolated triterpene isomers, 3-hydroxy-4,6a,6b,11,12,14b-hexamethyl-1,2,3,4,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-octadecahydropicene-4,8a-dicarboxylic acid (HHODC, significantly (p < 0.05 induced HIV-1 expression in a dose-dependent manner in U1 cells at non-cytotoxic concentrations. HHODC also induced viral expression in PBMCs of HIV-1 infected patients on cART. In addition, the compound up-regulated the production of interleukin (IL-2, IL-6, tumour necrosis factor (TNF-α, and interferon (IFN-γ but had no effect on HDAC and PKC activity, suggesting cytokine upregulation as being involved in latency activation. The observed in vitro reactivation of HIV-1 introduces the adjuvant potential of HHODC for the first time here.

  7. Impact of monotherapy on HIV-1 reservoir, immune activation, and co-infection with Epstein-Barr virus.

    Directory of Open Access Journals (Sweden)

    Maria Raffaella Petrara

    Full Text Available Although monotherapy (mART effectiveness in maintaining viral suppression and CD4 cell count has been extensively examined in HIV-1-infected patients, its impact on HIV-1 reservoir, immune activation, microbial translocation and co-infection with Epstein-Barr Virus (EBV is unclear.This retrospective study involved 32 patients who switched to mART; patients were studied at baseline, 48 and 96 weeks after mART initiation. Thirty-two patients who continued combined antiretroviral therapy (cART over the same period of time were included in the study. Markers of HIV-1 reservoir (HIV-1 DNA and intracellular HIV-1 RNA were quantified by real-time PCR. Markers of T-(CD3+CD8+CD38+ and B-(CD19+CD80/86+ and CD19+CD10-CD21lowCD27+ cell activation were evaluated by flow cytometry. Plasma levels of microbial translocation markers were quantified by real-time PCR (16S ribosomal DNA and mitochondrial [mt]DNA or by ELISA (LPS and sCD14. EBV was typed and quantified by multiplex real-time PCR.At baseline, no differences were found between mART and cART groups. Three (10% mART-treated patients had a virological failure vs none in the cART group. Levels of HIV-1 DNA, intracellular HIV-1 RNA and EBV-DNA remained stable in the mART group, while decreased significantly in the cART group. Percentages of T- and B-activated cells significantly increased in the mART-treated patients, while remained at low levels in the cART-treated ones (p = 0.014 and p<0.001, respectively. Notably, levels of mtDNA remained stable in the cART group, but significantly rose in the mART one (p<0.001.Long-term mART is associated with higher levels of T- and B-cell activation and, conversely to cART, does not reduce the size of HIV-1 reservoir and EBV co-infection.

  8. Glycosylphosphatidylinositol-Anchored Anti-HIV scFv Efficiently Protects CD4 T Cells from HIV-1 Infection and Deletion in hu-PBL Mice.

    Science.gov (United States)

    Ye, Chaobaihui; Wang, Weiming; Cheng, Liang; Li, Guangming; Wen, Michael; Wang, Qi; Zhang, Qing; Li, Dan; Zhou, Paul; Su, Lishan

    2017-02-01

    Despite success in viral inhibition and CD4 T cell recovery by highly active antiretroviral treatment (HAART), HIV-1 is still not curable due to the persistence of the HIV-1 reservoir during treatment. One patient with acute myeloid leukemia who received allogeneic hematopoietic stem cell transplantation from a homozygous CCR5 Δ32 donor has had no detectable viremia for 9 years after HAART cessation. This case has inspired a field of HIV-1 cure research focusing on engineering HIV-1 resistance in permissive cells. Here, we employed a glycosylphosphatidylinositol (GPI)-scFv X5 approach to confer resistance of human primary CD4 T cells to HIV-1. We showed that primary CD4 T cells expressing GPI-scFv X5 were resistant to CCR5 (R5)-, CXCR4 (X4)-, and dual-tropic HIV-1 and had a survival advantage compared to control cells ex vivo In a hu-PBL mouse study, GPI-scFv X5-transduced CD4 T cells were selected in peripheral blood and lymphoid tissues upon HIV-1 infection. Finally, GPI-scFv X5-transduced CD4 T cells, after being cotransfused with HIV-infected cells, showed significantly reduced viral loads and viral RNA copy numbers relative to CD4 cells in hu-PBL mice compared to mice with GPI-scFv AB65-transduced CD4 T cells. We conclude that GPI-scFv X5-modified CD4 T cells could potentially be used as a genetic intervention against both R5- and X4-tropic HIV-1 infections. Blocking of HIV-1 entry is one of most promising approaches for therapy. Genetic disruption of the HIV-1 coreceptor CCR5 by nucleases in T cells is under 2 clinical trials and leads to reduced viremia in patients. However, the emergence of viruses using the CXCR4 coreceptor is a concern for therapies applying single-coreceptor disruption. Here, we report that HIV-1-permissive CD4 T cells engineered with GPI-scFv X5 are resistant to R5-, X4-, or dual-tropic virus infection ex vivo In a preclinical study using hu-PBL mice, we show that CD4 T cells were protected and that GPI-scFv X5-transduced cells were

  9. HIV-1 Tat Inhibits Autotaxin Lysophospholipase D Activity and Modulates Oligodendrocyte Differentiation

    Science.gov (United States)

    Wheeler, Natalie A.; Fuss, Babette; Knapp, Pamela E.

    2016-01-01

    White matter injury has been frequently reported in HIV+ patients. Previous studies showed that HIV-1 Tat (transactivator of transcription), a viral protein that is produced and secreted by HIV-infected cells, is toxic to young, immature oligodendrocytes (OLGs). Adding Tat to the culture medium reduced the viability of immature OLGs, and the surviving OLGs exhibited reduced process networks. OLGs produce and secrete autotaxin (ATX), an ecto-enzyme containing a lysophospholipase D (lysoPLD) activity that converts lysophosphatidylcholine (LPC) to lysophosphatidic acid (LPA), a lipid signaling molecule that stimulates OLG differentiation. We hypothesized that Tat affects OLG development by interfering with the ATX-LPA signaling pathway. Our data show that Tat treatment leads to changes in the expression of OLG differentiation genes and the area of OLG process networks, both of which can be rescued by LPA. Tat-treated OLGs showed no change in LPA receptor expression but significantly decreased extracellular ATX levels and lysoPLD activity. In Tat transgenic mice, expression of Tat in vivo leads to decreased OLG ATX secretion. Furthermore, co-immunoprecipitation experiments revealed a potential physical interaction between Tat and ATX. Together, these data strongly suggest two functional implications of Tat blocking ATX’s lysoPLD activity. On one hand, it attenuates OLG differentiation, and on the other hand it interferes with the protective effects of LPA on OLG process morphology. PMID:27659560

  10. Potent and Targeted Activation of Latent HIV-1 Using the CRISPR/dCas9 Activator Complex.

    Science.gov (United States)

    Saayman, Sheena M; Lazar, Daniel C; Scott, Tristan A; Hart, Jonathan R; Takahashi, Mayumi; Burnett, John C; Planelles, Vicente; Morris, Kevin V; Weinberg, Marc S

    2016-03-01

    HIV-1 provirus integration results in a persistent latently infected reservoir that is recalcitrant to combined antiretroviral therapy (cART) with lifelong treatment being the only option. The "shock and kill" strategy aims to eradicate latent HIV by reactivating proviral gene expression in the context of cART treatment. Gene-specific transcriptional activation can be achieved using the RNA-guided CRISPR-Cas9 system comprising single guide RNAs (sgRNAs) with a nuclease-deficient Cas9 mutant (dCas9) fused to the VP64 transactivation domain (dCas9-VP64). We engineered this system to target 23 sites within the long terminal repeat promoter of HIV-1 and identified a "hotspot" for activation within the viral enhancer sequence. Activating sgRNAs transcriptionally modulated the latent proviral genome across multiple different in vitro latency cell models including T cells comprising a clonally integrated mCherry-IRES-Tat (LChIT) latency system. We detected consistent and effective activation of latent virus mediated by activator sgRNAs, whereas latency reversal agents produced variable activation responses. Transcriptomic analysis revealed dCas9-VP64/sgRNAs to be highly specific, while the well-characterized chemical activator TNFα induced widespread gene dysregulation. CRISPR-mediated gene activation represents a novel system which provides enhanced efficiency and specificity in a targeted latency reactivation strategy and represents a promising approach to a "functional cure" of HIV/AIDS.

  11. Discontinuation of prophylaxis for Pneumocystis carinii pneumonia in HIV-1-infected patients treated with highly active antiretroviral therapy

    NARCIS (Netherlands)

    Schneider, MME; Borleffs, JCC; Stolk, RP; Jaspers, CAJJ; Hoepelman, AIM

    1999-01-01

    Background Prophylactic drugs for Pneumocystis carinii pneumonia (PCP) are strongly recommended for HIV-1-infected patients with CD4 cell counts of less than 200 cells/mu L. Because of the highly active antiretroviral therapy (HAART) currently available, we speculated that prophylaxis can be

  12. Plasma levels of intact and cleaved urokinase receptor decrease in HIV-1-infected patients initiating highly active antiretroviral therapy

    DEFF Research Database (Denmark)

    Ostrowski, S R; Katzenstein, T L; Pedersen, M

    2006-01-01

    Elevated blood levels of soluble urokinase receptor (suPAR) measured by ELISA decrease in human immunodeficiency virus-1 (HIV-1)-infected patients initiating highly active antiretroviral therapy (HAART). As the suPAR ELISA measures both three- and two-domain suPAR [suPAR(I-III), suPAR(II-III)] an...

  13. Antigen-driven CD4+ T cell and HIV-1 dynamics: residual viral replication under highly active antiretroviral therapy

    NARCIS (Netherlands)

    Ferguson, N. M.; DeWolf, F.; Ghani, A. C.; Fraser, C.; Donnelly, C. A.; Reiss, P.; Lange, J. M.; Danner, S. A.; Garnett, G. P.; Goudsmit, J.; Anderson, R. M.

    1999-01-01

    Antigen-induced stimulation of the immune system can generate heterogeneity in CD4+ T cell division rates capable of explaining the temporal patterns seen in the decay of HIV-1 plasma RNA levels during highly active antiretroviral therapy. Posttreatment increases in peripheral CD4+ T cell counts are

  14. HIV-1 vaccine-induced C1 and V2 Env-specific antibodies synergize for increased antiviral activities.

    Science.gov (United States)

    Pollara, Justin; Bonsignori, Mattia; Moody, M Anthony; Liu, Pinghuang; Alam, S Munir; Hwang, Kwan-Ki; Gurley, Thaddeus C; Kozink, Daniel M; Armand, Lawrence C; Marshall, Dawn J; Whitesides, John F; Kaewkungwal, Jaranit; Nitayaphan, Sorachai; Pitisuttithum, Punnee; Rerks-Ngarm, Supachai; Robb, Merlin L; O'Connell, Robert J; Kim, Jerome H; Michael, Nelson L; Montefiori, David C; Tomaras, Georgia D; Liao, Hua-Xin; Haynes, Barton F; Ferrari, Guido

    2014-07-01

    The RV144 ALVAC/AIDSVax HIV-1 vaccine clinical trial showed an estimated vaccine efficacy of 31.2%. Viral genetic analysis identified a vaccine-induced site of immune pressure in the HIV-1 envelope (Env) variable region 2 (V2) focused on residue 169, which is included in the epitope recognized by vaccinee-derived V2 monoclonal antibodies. The ALVAC/AIDSVax vaccine induced antibody-dependent cellular cytotoxicity (ADCC) against the Env V2 and constant 1 (C1) regions. In the presence of low IgA Env antibody levels, plasma levels of ADCC activity correlated with lower risk of infection. In this study, we demonstrate that C1 and V2 monoclonal antibodies isolated from RV144 vaccinees synergized for neutralization, infectious virus capture, and ADCC. Importantly, synergy increased the HIV-1 ADCC activity of V2 monoclonal antibody CH58 at concentrations similar to that observed in plasma of RV144 vaccinees. These findings raise the hypothesis that synergy among vaccine-induced antibodies with different epitope specificities contributes to HIV-1 antiviral antibody responses and is important to induce for reduction in the risk of HIV-1 transmission. Importance: The Thai RV144 ALVAC/AIDSVax prime-boost vaccine efficacy trial represents the only example of HIV-1 vaccine efficacy in humans to date. Studies aimed at identifying immune correlates involved in the modest vaccine-mediated protection identified HIV-1 envelope (Env) variable region 2-binding antibodies as inversely correlated with infection risk, and genetic analysis identified a site of immune pressure within the region recognized by these antibodies. Despite this evidence, the antiviral mechanisms by which variable region 2-specific antibodies may have contributed to lower rates of infection remain unclear. In this study, we demonstrate that vaccine-induced HIV-1 envelope variable region 2 and constant region 1 antibodies synergize for recognition of virus-infected cells, infectious virion capture, virus

  15. CD4+ T-cell counts and plasma HIV-1 RNA levels beyond 5 years of highly active antiretroviral therapy.

    Science.gov (United States)

    Li, Xiuhong; Margolick, Joseph B; Jamieson, Beth D; Rinaldo, Charles R; Phair, John P; Jacobson, Lisa P

    2011-08-15

    The heterogeneity of CD4 T-cell counts and HIV-1 RNA at 5-12 years after the initiation of highly active antiretroviral therapy (HAART) remains largely uncharacterized. In the Multicenter AIDS Cohort Study, 614 men who initiated HAART contributed data 5-12 years subsequently. Multivariate regression was used to evaluate the predictors of CD4 counts and HIV-1 RNA levels. At 5 to 12 years post-HAART, the median CD4 T-cell count was 586 (interquartile range, 421-791) cells per microliter and 78% of the HIV-1 RNA measurements were undetectable. Higher CD4 T-cell counts 5-12 years post HAART were predicted by higher CD4 T-cell counts and higher total lymphocyte count pre HAART, lack of hepatitis B or C virus coinfections, and greater CD4 T-cell change and suppressed HIV-1 RNA in the first 5 years after starting HAART. Men who were 50 years and older with 351-500 CD4 cells per microliter at HAART initiation had adjusted mean CD4 T-cell count of 643 cells per microliter at 10-12 years post HAART, which was similar to the adjusted mean CD4 T-cell count (670 cells/μL, P = 0.45) in this period for younger men starting HAART with lower CD4 T-cell counts. HIV-1 RNA suppression in the first 5 years post HAART predicted subsequent viral suppression. Immunological and virological responses in the first 5 years post HAART predicted subsequent CD4 T-cell counts and HIV-1 RNA levels. The association between age and subsequent CD4 T-cell count supports incorporating age in the guidelines for use of HAART.

  16. Synthesis and biological application of a new heterodinucleotide with both anti-HSV and anti-HIV activity.

    Science.gov (United States)

    Franchetti, P; Abu Sheikha, G; Cappellacci, L; Grifantini, M; Balestra, E; Perno, C F; Brandi, G; Rossi, L; Magnani, M

    1999-01-01

    A new antiviral drug with both anti-HSV and anti-HIV activity was synthesized by coupling Acyclovir and the acyclic nucleoside phosphonate (R)PMPA. The heterodinucleotide ACVpPMPA encapsulated into autologous erythrocytes was added to human macrophages providing an effective in vitro protection from HSV-1 and HIV-1 replication.

  17. Effect of antiretroviral drugs on maternal CD4 lymphocyte counts, HIV-1 RNA levels, and anthropometric parameters of their neonates Efeito das drogas anti-retrovirais sobre os valores dos linfócitos TCD4, RNA do HIV-1 e parâmetros antropométricos de neonatos de gestantes portadoras do HIV-1

    Directory of Open Access Journals (Sweden)

    Patrícia El Beitune

    2005-06-01

    Full Text Available PURPOSE: To study the effect of antiretroviral drugs administered during pregnancy on CD4 lymphocyte counts and HIV-1 RNA levels of pregnant women and on the anthropometric parameters of their neonates. METHODS: A prospective study was conducted on 57 pregnant women and their neonates divided into 3 groups: ZDV Group, HIV-infected mothers taking zidovudine (n = 20; triple therapy (TT Group, mothers taking zidovudine + lamivudine + nelfinavir (n = 25, and Control Group, normal women (n = 12. CD4 lymphocyte counts and HIV-1 RNA levels of pregnant women were analyzed during two periods of pregnancy. The perinatal prognosis took into account preterm rates, birth weight, intrauterine growth restriction, perinatal death, and vertical transmission of HIV-1. Data were analyzed statistically using the nonparametric chi-square, Mann-Whitney, Friedman, Kruskal-Wallis, and Wilcoxon matched pairs tests, with the level of significance set at P OBJETIVOS: Estudar o efeito das drogas anti-retrovirais sobre a quantificação dos linfócitos TCD4 e RNA do HIV-1 de gestantes portadoras do HIV-1 e parâmetros antropométricos de seus neonatos. MÉTODOS: Estudo prospectivo avaliando 57 gestantes e seus neonatos em três grupos: Grupo AZT, gestantes portadoras do HIV utilizando zidovudina (n=20; Grupo TT, mães utilizando zidovudina+lamivudina+nelfinavir (n=25, e Grupo Controle, mulheres saudáveis (n=12. A quantificação dos linfócitos TCD4 e RNA do HIV-1 de gestantes portadoras do HIV foi analisada em dois períodos durante a gestação. O prognóstico perinatal levou em consideração as taxas de pré-termos, restrição de crescimento intra-útero, mortalidade perinatal e transmissão vertical do HIV-1. Os dados foram analisados utilizando-se testes não paramétricos de qui-quadrado, Mann-Whitney, Friedman, Kruskal-Wallys e Wilcoxon para amostras pareadas, considerando-se significativos valores associados a p<0,05. RESULTADOS: Observou-se homogeneidade entre

  18. A Modified P1 Moiety Enhances In Vitro Antiviral Activity against Various Multidrug-Resistant HIV-1 Variants and In Vitro Central Nervous System Penetration Properties of a Novel Nonpeptidic Protease Inhibitor, GRL-10413.

    Science.gov (United States)

    Amano, Masayuki; Salcedo-Gómez, Pedro Miguel; Zhao, Rui; Yedidi, Ravikiran S; Das, Debananda; Bulut, Haydar; Delino, Nicole S; Sheri, Venkata Reddy; Ghosh, Arun K; Mitsuya, Hiroaki

    2016-12-01

    We report here that GRL-10413, a novel nonpeptidic HIV-1 protease inhibitor (PI) containing a modified P1 moiety and a hydroxyethylamine sulfonamide isostere, is highly active against laboratory HIV-1 strains and primary clinical isolates (50% effective concentration [EC 50 ] of 0.00035 to 0.0018 μM), with minimal cytotoxicity (50% cytotoxic concentration [CC 50 ] = 35.7 μM). GRL-10413 blocked the infectivity and replication of HIV-1 NL4-3 variants selected by use of atazanavir, lopinavir, or amprenavir (APV) at concentrations of up to 5 μM (EC 50 = 0.0021 to 0.0023 μM). GRL-10413 also maintained its strong antiviral activity against multidrug-resistant clinical HIV-1 variants isolated from patients who no longer responded to various antiviral regimens after long-term antiretroviral therapy. The development of resistance against GRL-10413 was significantly delayed compared to that against APV. In addition, GRL-10413 showed favorable central nervous system (CNS) penetration properties as assessed with an in vitro blood-brain barrier (BBB) reconstruction system. Analysis of the crystal structure of HIV-1 protease in complex with GRL-10413 demonstrated that the modified P1 moiety of GRL-10413 has a greater hydrophobic surface area and makes greater van der Waals contacts with active site amino acids of protease than in the case of darunavir. Moreover, the chlorine substituent in the P1 moiety interacts with protease in two distinct configurations. The present data demonstrate that GRL-10413 has desirable features for treating patients infected with wild-type and/or multidrug-resistant HIV-1 variants, with favorable CNS penetration capability, and that the newly modified P1 moiety may confer desirable features in designing novel anti-HIV-1 PIs. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  19. Sonographically measured perirenal fat thickness: an early predictor of atherosclerosis in HIV-1-infected patients receiving highly active antiretroviral therapy?

    Science.gov (United States)

    Grima, Pierfrancesco; Guido, Marcello; Zizza, Antonella; Chiavaroli, Roberto

    2010-05-01

    The aim of our study was to evaluate whether perirenal fat thickness (PRFT), a parameter of central obesity, is related to carotid intima-media thickness (IMT), an index of atherosclerosis in human immunodeficiency virus (HIV)-1-infected patients. We enrolled 70 consecutive HIV-1-infected patients receiving highly active antiretroviral therapy for more than 12 months, in a prospective cohort study. Sonographically measured PRFT and carotid IMT, as well as serum metabolic parameters, were evaluated. PRFT and IMT were measured using 3.75-MHz convex and 7.5-MHz linear probes, respectively. The mean PRFT and IMT in HIV-1-infected patients with visceral obesity was significantly greater than those in patients without it (p or= 0.9 mm (sensitivity 83.3%, specificity 83.9%). Subjects with visceral obesity had a progressively increasing carotid IMT on the 12-month measurement (p < 0.05). Our data demonstrated that PRFT measurement could be used as an early predictor of IMT increase in HIV-1-infected patients receiving highly active antiretroviral therapy.

  20. Anti-HIV-1 and cytotoxicity of a new dimeric thiazepine alkaloid isolated from Ixora undulata Roxb. leaves

    DEFF Research Database (Denmark)

    Mohammed, Magdy M.D.; Mohamed, Khaled M.

    2017-01-01

    The crude alkaloidal extract of Ixora undulata Roxb. leaves recorded a cytotoxicity of IC50 = 125 µg/mL against EL4 and revealed a reduction with CC50 = 47 µg/mL in the viability of MT-4 cells, beside a 50% protection with EC50 > 47 µg/mL against HIV-1IIIB. Bioassay guided fractionation of the cr...

  1. High levels of T lymphocyte activation in Leishmania-HIV-1 co-infected individuals despite low HIV viral load

    Directory of Open Access Journals (Sweden)

    Grinsztejn Beatriz

    2010-12-01

    Full Text Available Abstract Background Concomitant infections may influence HIV progression by causing chronic activation leading to decline in T-cell function. In the Americas, visceral (AVL and tegumentary leishmaniasis (ATL have emerged as important opportunistic infections in HIV-AIDS patients and both of those diseases have been implicated as potentially important co-factors in disease progression. We investigated whether leishmaniasis increases lymphocyte activation in HIV-1 co-infected patients. This might contribute to impaired cellular immune function. Methods To address this issue we analyzed CD4+ T absolute counts and the proportion of CD8+ T cells expressing CD38 in Leishmania/HIV co-infected patients that recovered after anti-leishmanial therapy. Results We found that, despite clinical remission of leishmaniasis, AVL co-infected patients presented a more severe immunossupression as suggested by CD4+ T cell counts under 200 cells/mm3, differing from ATL/HIV-AIDS cases that tends to show higher lymphocytes levels (over 350 cells/mm3. Furthermore, five out of nine, AVL/HIV-AIDS presented low CD4+ T cell counts in spite of low or undetectable viral load. Expression of CD38 on CD8+ T lymphocytes was significantly higher in AVL or ATL/HIV-AIDS cases compared to HIV/AIDS patients without leishmaniasis or healthy subjects. Conclusions Leishmania infection can increase the degree of immune system activation in individuals concomitantly infected with HIV. In addition, AVL/HIV-AIDS patients can present low CD4+ T cell counts and higher proportion of activated T lymphocytes even when HIV viral load is suppressed under HAART. This fact can cause a misinterpretation of these laboratorial markers in co-infected patients.

  2. Impact of gender on response to highly active antiretroviral therapy in HIV-1 infected patients

    DEFF Research Database (Denmark)

    Thorsteinsson, Kristina; Ladelund, Steen; Jensen-Fangel, Søren

    2012-01-01

    ABSTRACT: BACKGROUND: Impact of gender on time to initiation, response to and risk of modification of highly active antiretroviral therapy (HAART) in HIV-1 infected individuals is still controversial. METHODS: From a nationwide cohort of Danish HIV infected individuals we identified all...... counts (adjusted p=0.21). We observed no delay in time to initiation of HAART in women compared to men (HR 0.91, 95% CI 0.79-1.06). There were no gender differences in risk of treatment modification of the original HAART regimen during the first year of therapy for either toxicity (IRR 0.97 95% CI 0.......66-1.44) or other/unknown reasons (IRR 1.18 95% CI 0.76-1.82). Finally, CD4 counts and the risk of having a detectable viral load at 1, 3 and 6 years did not differ between genders. CONCLUSIONS: In a setting with free access to healthcare and HAART, gender does neither affect time from eligibility to HAART...

  3. HIV-1 Tat activates neuronal ryanodine receptors with rapid induction of the unfolded protein response and mitochondrial hyperpolarization.

    Directory of Open Access Journals (Sweden)

    John P Norman

    Full Text Available Neurologic disease caused by human immunodeficiency virus type 1 (HIV-1 is ultimately refractory to highly active antiretroviral therapy (HAART because of failure of complete virus eradication in the central nervous system (CNS, and disruption of normal neural signaling events by virally induced chronic neuroinflammation. We have previously reported that HIV-1 Tat can induce mitochondrial hyperpolarization in cortical neurons, thus compromising the ability of the neuron to buffer calcium and sustain energy production for normal synaptic communication. In this report, we demonstrate that Tat induces rapid loss of ER calcium mediated by the ryanodine receptor (RyR, followed by the unfolded protein response (UPR and pathologic dilatation of the ER in cortical neurons in vitro. RyR antagonism attenuated both Tat-mediated mitochondrial hyperpolarization and UPR induction. Delivery of Tat to murine CNS in vivo also leads to long-lasting pathologic ER dilatation and mitochondrial morphologic abnormalities. Finally, we performed ultrastructural studies that demonstrated mitochondria with abnormal morphology and dilated endoplasmic reticulum (ER in brain tissue of patients with HIV-1 inflammation and neurodegeneration. Collectively, these data suggest that abnormal RyR signaling mediates the neuronal UPR with failure of mitochondrial energy metabolism, and is a critical locus for the neuropathogenesis of HIV-1 in the CNS.

  4. Could low level laser therapy and highly active antiretroviral therapy lead to complete eradication of HIV-1 in vitro?

    Science.gov (United States)

    Lugongolo, Masixole Yvonne; Manoto, Sello Lebohang; Ombinda-Lemboumba, Saturnin; Maaza, Malik; Mthunzi-Kufa, Patience

    2017-02-01

    Human immunodeficiency virus (HIV-1) infection remains a major health problem despite the use of highly active antiretroviral therapy (HAART), which has greatly reduced mortality rates. Due to the unavailability of an effective vaccine or a treatment that would completely eradicate the virus, the quest for new and combination therapies continues. In this study we explored the influence of Low Level Laser Therapy (LLLT) in HIV-1 infected and uninfected cells. Literature reports LLLT as widely used to treat different medical conditions such as diabetic wounds, sports injuries and others. The technique involves exposure of cells or tissue to low levels of red and near infrared laser light. Both HIV infected and uninfected cells were laser irradiated at a wavelength of 640 nm with fluencies ranging from 2 to 10 J/cm2 and cellular responses were assessed 24 hours post laser treatment. In our studies, laser therapy had no inhibitory effects in HIV-1 uninfected cells as was indicated by the cell morphology and proliferation results. However, laser irradiation enhanced cell apoptosis in HIV-1 infected cells as the laser fluencies increased. This led to further studies in which laser irradiation would be conducted in the presence of HAART to determine whether HAART would minimise the detrimental effects of laser irradiation in infected cells.

  5. Vitamin D supplementation decreases immune activation and exhaustion in HIV-1-infected youth.

    Science.gov (United States)

    Eckard, Allison Ross; O'Riordan, Mary Ann; Rosebush, Julia C; Lee, Seungeun Thera; Habib, Jakob G; Ruff, Joshua H; Labbato, Danielle; Daniels, Julie E; Uribe-Leitz, Monika; Tangpricha, Vin; Chahroudi, Ann; McComsey, Grace A

    2017-10-10

    Heightened immune activation and exhaustion drive HIV disease progression and co-morbidities. Vitamin D has pleiotropic immunomodulatory effects, but little is known about the effects of supplementation in HIV. Our study investigates changes in immune activation and exhaustion markers after 12 months of supplementation in virologically-suppressed HIV-infected youth with vitamin D insufficiency. This is a randomized, active-control, double-blind trial investigating with 3 different vitamin D 3 doses [18,000 (standard/active-control dose), 60,000 (moderate dose) and 120,000 IU/monthly (high dose)] in 8-26 year old HIV-infected youth on combination antiretroviral therapy with baseline serum 25-hydroxyvitamin D (25(OH)D) concentrations ≤30 ng/mL. Only subjects (N=51) who maintained an undetectable HIV-1 RNA over the 12-month study period were included in this analysis. Baseline serum 25(OH)D concentrations and immune activation/exhaustion markers were not different between groups. By 12 months, 25(OH)D increased significantly within each dosing group with the greatest increase and most sustained concentrations ≥30 ng/mL in the high-dose group. Overall, all measured markers decreased with CD4 activation (CD4+CD38+HLA-DR+), CD8 activation (CD8+CD38+HLA-DR+), CD4 exhaustion (CD4+CD38+HLA-DR+PD1+), and inflammatory monocytes (CD14+CD16+) reaching statistical significance. When analyzed separately, there were no significant decreases in the moderate- or standard-dose groups, but CD4 and CD8 activation and inflammatory monocytes decreased significantly in the high-dose group. Vitamin D supplementation decreased markers of T-cell activation/exhaustion and monocyte activation in HIV-infected youth, with subjects given the highest dose (120,000 IU/month) showing the greatest decreases. These data suggest that high-dose vitamin D supplementation may attenuate immune activation and exhaustion and serve as adjuvant therapy to antiretroviral therapy in HIV.

  6. Cocaine promotes both initiation and elongation phase of HIV-1 transcription by activating NF-κB and MSK1 and inducing selective epigenetic modifications at HIV-1 LTR

    International Nuclear Information System (INIS)

    Sahu, Geetaram; Farley, Kalamo; El-Hage, Nazira; Aiamkitsumrit, Benjamas; Fassnacht, Ryan; Kashanchi, Fatah; Ochem, Alex; Simon, Gary L.; Karn, Jonathan; Hauser, Kurt F.; Tyagi, Mudit

    2015-01-01

    Cocaine accelerates human immunodeficiency virus (HIV-1) replication by altering specific cell-signaling and epigenetic pathways. We have elucidated the underlying molecular mechanisms through which cocaine exerts its effect in myeloid cells, a major target of HIV-1 in central nervous system (CNS). We demonstrate that cocaine treatment promotes HIV-1 gene expression by activating both nuclear factor-kappa B (NF-ĸB) and mitogen- and stress-activated kinase 1 (MSK1). MSK1 subsequently catalyzes the phosphorylation of histone H3 at serine 10, and p65 subunit of NF-ĸB at 276th serine residue. These modifications enhance the interaction of NF-ĸB with P300 and promote the recruitment of the positive transcription elongation factor b (P-TEFb) to the HIV-1 LTR, supporting the development of an open/relaxed chromatin configuration, and facilitating the initiation and elongation phases of HIV-1 transcription. Results are also confirmed in primary monocyte derived macrophages (MDM). Overall, our study provides detailed insights into cocaine-driven HIV-1 transcription and replication. - Highlights: • Cocaine induces the initiation phase of HIV transcription by activating NF-ĸB. • Cocaine induced NF-ĸB phosphorylation promotes its interaction with P300. • Cocaine enhances the elongation phase of HIV transcription by stimulating MSK1. • Cocaine activated MSK1 catalyzes the phosphorylation of histone H3 at its Ser10. • Cocaine induced H3S10 phosphorylation facilitates the recruitment of P-TEFb at LTR

  7. Cocaine promotes both initiation and elongation phase of HIV-1 transcription by activating NF-κB and MSK1 and inducing selective epigenetic modifications at HIV-1 LTR

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, Geetaram; Farley, Kalamo [Division of Infectious Diseases, Department of Medicine, George Washington University, Washington, DC (United States); El-Hage, Nazira [Virginia Commonwealth University, Richmond, VA (United States); Aiamkitsumrit, Benjamas; Fassnacht, Ryan [Division of Infectious Diseases, Department of Medicine, George Washington University, Washington, DC (United States); Kashanchi, Fatah [George Mason University, Manassas, VA (United States); Ochem, Alex [ICGEB, Wernher and Beit Building, Anzio Road, Observatory, 7925 Cape Town (South Africa); Simon, Gary L. [Division of Infectious Diseases, Department of Medicine, George Washington University, Washington, DC (United States); Karn, Jonathan [Case Western Reserve University, Cleveland, OH (United States); Hauser, Kurt F. [Virginia Commonwealth University, Richmond, VA (United States); Tyagi, Mudit, E-mail: tmudit@email.gwu.edu [Division of Infectious Diseases, Department of Medicine, George Washington University, Washington, DC (United States); Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, DC 20037 (United States)

    2015-09-15

    Cocaine accelerates human immunodeficiency virus (HIV-1) replication by altering specific cell-signaling and epigenetic pathways. We have elucidated the underlying molecular mechanisms through which cocaine exerts its effect in myeloid cells, a major target of HIV-1 in central nervous system (CNS). We demonstrate that cocaine treatment promotes HIV-1 gene expression by activating both nuclear factor-kappa B (NF-ĸB) and mitogen- and stress-activated kinase 1 (MSK1). MSK1 subsequently catalyzes the phosphorylation of histone H3 at serine 10, and p65 subunit of NF-ĸB at 276th serine residue. These modifications enhance the interaction of NF-ĸB with P300 and promote the recruitment of the positive transcription elongation factor b (P-TEFb) to the HIV-1 LTR, supporting the development of an open/relaxed chromatin configuration, and facilitating the initiation and elongation phases of HIV-1 transcription. Results are also confirmed in primary monocyte derived macrophages (MDM). Overall, our study provides detailed insights into cocaine-driven HIV-1 transcription and replication. - Highlights: • Cocaine induces the initiation phase of HIV transcription by activating NF-ĸB. • Cocaine induced NF-ĸB phosphorylation promotes its interaction with P300. • Cocaine enhances the elongation phase of HIV transcription by stimulating MSK1. • Cocaine activated MSK1 catalyzes the phosphorylation of histone H3 at its Ser10. • Cocaine induced H3S10 phosphorylation facilitates the recruitment of P-TEFb at LTR.

  8. Acute hepatitis B virus infection with simultaneous high HBsAg and high anti-HBs signals in a previously HBV vaccinated HIV-1 positive patient.

    Science.gov (United States)

    van Dommelen, Laura; Verbon, Annelies; van Doorn, H Rogier; Goossens, Valère J

    2010-03-01

    We present a case of a clinical manifest hepatitis B virus infection and a potentially misleading HBV serological profile in an HIV-1 positive patient despite previous HBV vaccination. The patient presented with an acute hepatitis B and there was no indication of chronic HBV infection or the presence of a mutation in the 'a' determinant. Remarkably, simultaneously with high HBV surface antigen and HBV viral load, high anti-HBs antibodies were present. If, due to previous HBV vaccination only anti-HBs was tested in this patient, the result of the high anti-HBs antibodies could be very misleading and offering a false sense of security. Our findings contribute to the ongoing discussion on how to assess HBV specific immunological memory and determining the role of HBV booster vaccinations in immunocompromised individuals.

  9. Initiation of HIV-1 reverse transcription is regulated by a primer activation signal

    NARCIS (Netherlands)

    Beerens, N.; Groot, F.; Berkhout, B.

    2001-01-01

    Reverse transcription of the human immunodeficiency virus type 1 (HIV-1) RNA genome appears to be strictly regulated at the level of initiation. The primer binding site (PBS), at which the tRNA(3)(Lys) molecule anneals and reverse transcription is initiated, is present in a highly structured region

  10. Study of Structure-active Relationship for Inhibitors of HIV-1 Integrase LEDGF/p75 Interaction by Machine Learning Methods.

    Science.gov (United States)

    Li, Yang; Wu, Yanbin; Yan, Aixia

    2017-07-01

    HIV-1 integrase (IN) is a promising target for anti-AIDS therapy, and LEDGF/p75 is proved to enhance the HIV-1 integrase strand transfer activity in vitro. Blocking the interaction between IN and LEDGF/p75 is an effective way to inhibit HIV replication infection. In this work, 274 LEDGF/p75-IN inhibitors were collected as the dataset. Support Vector Machine (SVM), Decision Tree (DT), Function Tree (FT) and Random Forest (RF) were applied to build several computational models for predicting whether a compound is an active or weakly active LEDGF/p75-IN inhibitor. Each compound is represented by MACCS fingerprints and CORINA Symphony descriptors. The prediction accuracies for the test sets of all the models are over 70 %. The best model Model 3B built by FT obtained a prediction accuracy and a Matthews Correlation Coefficient (MCC) of 81.08 % and 0.62 on test set, respectively. We found that the hydrogen bond and hydrophobic interactions are important for the bioactivity of an inhibitor. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Structure?Activity Relationship Studies of Indole-Based Compounds as Small Molecule HIV-1 Fusion Inhibitors Targeting Glycoprotein 41

    OpenAIRE

    Zhou, Guangyan; Sofiyev, Vladimir; Kaur, Hardeep; Snyder, Beth A.; Mankowski, Marie K.; Hogan, Priscilla A.; Ptak, Roger G.; Gochin, Miriam

    2014-01-01

    We previously described indole-containing compounds with the potential to inhibit HIV-1 fusion by targeting the hydrophobic pocket of transmembrane glycoprotein gp41. Here we report optimization and structure?activity relationship studies on the basic scaffold, defining the role of shape, contact surface area, and molecular properties. Thirty new compounds were evaluated in binding, cell?cell fusion, and viral replication assays. Below a 1 ?M threshold, correlation between binding and biologi...

  12. Sargassum fusiforme fraction is a potent and specific inhibitor of HIV-1 fusion and reverse transcriptase

    Directory of Open Access Journals (Sweden)

    Thornber Carol

    2008-01-01

    Full Text Available Abstract Sargassum fusiforme (Harvey Setchell has been shown to be a highly effective inhibitor of HIV-1 infection. To identify its mechanism of action, we performed bioactivity-guided fractionation on Sargassum fusiforme mixture. Here, we report isolation of a bioactive fraction SP4-2 (S. fusiforme, which at 8 μg/ml inhibited HIV-1 infection by 86.9%, with IC50 value of 3.7 μg. That represents 230-fold enhancement of antiretroviral potency as compared to the whole extract. Inhibition was mediated against both CXCR4 (X4 and CCR5 (R5 tropic HIV-1. Specifically, 10 μg/ml SP4-2 blocked HIV-1 fusion and entry by 53%. This effect was reversed by interaction of SP4-2 with sCD4, suggesting that S. fusiforme inhibits HIV-1 infection by blocking CD4 receptor, which also explained observed inhibition of both X4 and R5-tropic HIV-1. SP4-2 also inhibited HIV-1 replication after virus entry, by directly inhibiting HIV-1 reverse transcriptase (RT in a dose dependent manner by up to 79%. We conclude that the SP4-2 fraction contains at least two distinct and biologically active molecules, one that inhibits HIV-1 fusion by interacting with CD4 receptor, and another that directly inhibits HIV-1 RT. We propose that S. fusiforme is a lead candidate for anti-HIV-1 drug development.

  13. Molecular recognition of CCR5 by an HIV-1 gp120 V3 loop.

    Science.gov (United States)

    Tamamis, Phanourios; Floudas, Christodoulos A

    2014-01-01

    The binding of protein HIV-1 gp120 to coreceptors CCR5 or CXCR4 is a key step of the HIV-1 entry to the host cell, and is predominantly mediated through the V3 loop fragment of HIV-1 gp120. In the present work, we delineate the molecular recognition of chemokine receptor CCR5 by a dual tropic HIV-1 gp120 V3 loop, using a comprehensive set of computational tools predominantly based on molecular dynamics simulations and free energy calculations. We report, what is to our knowledge, the first complete HIV-1 gp120 V3 loop : CCR5 complex structure, which includes the whole V3 loop and the N-terminus of CCR5, and exhibits exceptional agreement with previous experimental findings. The computationally derived structure sheds light into the functional role of HIV-1 gp120 V3 loop and CCR5 residues associated with the HIV-1 coreceptor activity, and provides insights into the HIV-1 coreceptor selectivity and the blocking mechanism of HIV-1 gp120 by maraviroc. By comparing the binding of the specific dual tropic HIV-1 gp120 V3 loop with CCR5 and CXCR4, we observe that the HIV-1 gp120 V3 loop residues 13-21, which include the tip, share nearly identical structural and energetic properties in complex with both coreceptors. This result paves the way for the design of dual CCR5/CXCR4 targeted peptides as novel potential anti-AIDS therapeutics.

  14. Specifically modified Env immunogens activate B-cell precursors of broadly neutralizing HIV-1 antibodies in transgenic mice

    Science.gov (United States)

    McGuire, Andrew T.; Gray, Matthew D.; Dosenovic, Pia; Gitlin, Alexander D.; Freund, Natalia T.; Petersen, John; Correnti, Colin; Johnsen, William; Kegel, Robert; Stuart, Andrew B.; Glenn, Jolene; Seaman, Michael S.; Schief, William R.; Strong, Roland K.; Nussenzweig, Michel C.; Stamatatos, Leonidas

    2016-01-01

    VRC01-class broadly neutralizing HIV-1 antibodies protect animals from experimental infection and could contribute to an effective vaccine response. Their predicted germline forms (gl) bind Env inefficiently, which may explain why they are not elicited by HIV-1 Env-immunization. Here we show that an optimized Env immunogen can engage multiple glVRC01-class antibodies. Furthermore, this immunogen activates naive B cells expressing the human germline heavy chain of 3BNC60, paired with endogenous mouse light chains in vivo. To address whether it activates B cells expressing the fully humanized gl3BNC60 B-cell receptor (BCR), we immunized mice carrying both the heavy and light chains of gl3BNC60. B cells expressing this BCR display an autoreactive phenotype and fail to respond efficiently to soluble forms of the optimized immunogen, unless it is highly multimerized. Thus, specifically designed Env immunogens can activate naive B cells expressing human BCRs corresponding to precursors of broadly neutralizing HIV-1 antibodies even when the B cells display an autoreactive phenotype. PMID:26907590

  15. Specifically modified Env immunogens activate B-cell precursors of broadly neutralizing HIV-1 antibodies in transgenic mice.

    Science.gov (United States)

    McGuire, Andrew T; Gray, Matthew D; Dosenovic, Pia; Gitlin, Alexander D; Freund, Natalia T; Petersen, John; Correnti, Colin; Johnsen, William; Kegel, Robert; Stuart, Andrew B; Glenn, Jolene; Seaman, Michael S; Schief, William R; Strong, Roland K; Nussenzweig, Michel C; Stamatatos, Leonidas

    2016-02-24

    VRC01-class broadly neutralizing HIV-1 antibodies protect animals from experimental infection and could contribute to an effective vaccine response. Their predicted germline forms (gl) bind Env inefficiently, which may explain why they are not elicited by HIV-1 Env-immunization. Here we show that an optimized Env immunogen can engage multiple glVRC01-class antibodies. Furthermore, this immunogen activates naive B cells expressing the human germline heavy chain of 3BNC60, paired with endogenous mouse light chains in vivo. To address whether it activates B cells expressing the fully humanized gl3BNC60 B-cell receptor (BCR), we immunized mice carrying both the heavy and light chains of gl3BNC60. B cells expressing this BCR display an autoreactive phenotype and fail to respond efficiently to soluble forms of the optimized immunogen, unless it is highly multimerized. Thus, specifically designed Env immunogens can activate naive B cells expressing human BCRs corresponding to precursors of broadly neutralizing HIV-1 antibodies even when the B cells display an autoreactive phenotype.

  16. Influence of Drug Resistance Mutations on the Activity of HIV-1 Subtypes A and B Integrases: a Comparative Study.

    Science.gov (United States)

    Shadrina, O A; Zatsepin, T S; Agapkina, Yu Yu; Isaguliants, M G; Gottikh, M B

    2015-01-01

    Integration of human immunodeficiency virus (HIV-1) DNA into the genome of an infected cell is one of the key steps in the viral replication cycle. The viral enzyme integrase (IN), which catalyzes the integration, is an attractive target for the development of new antiviral drugs. However, the HIV-1 therapy often results in the IN gene mutations inducing viral resistance to integration inhibitors. To assess the impact of drug resistance mutations on the activity of IN of HIV-1 subtype A strain FSU-A, which is dominant in Russia, variants of the consensus IN of this subtype containing the primary resistance mutations G118R and Q148K and secondary compensatory substitutions E138K and G140S were prepared and characterized. Comparative study of these enzymes with the corresponding mutants of IN of HIV-1 subtype B strains HXB-2 was performed. The mutation Q148K almost equally reduced the activity of integrases of both subtypes. Its negative effect was partially compensated by the secondary mutations E138K and G140S. Primary substitution G118R had different influence on the activity of proteins of the subtypes A and B, and the compensatory effect of the secondary substitution E138K also depended on the viral subtype. Comparison of the mutants resistance to the known strand transfer inhibitors raltegravir and elvitegravir, and a new inhibitor XZ-259 (a dihydro-1H-isoindol derivative), showed that integrases of both subtypes with the Q148K mutation were insensitive to raltegravir and elvitegravir but were effectively inhibited by XZ-259. The substitution G118R slightly reduced the efficiency of IN inhibition by raltegravir and elvitegravir and caused no resistance to XZ_259.

  17. Anti-tetherin activities in Vpu-expressing primate lentiviruses

    Directory of Open Access Journals (Sweden)

    Haworth Kevin G

    2010-02-01

    Full Text Available Abstract Background The anti-viral activity of the cellular restriction factor, BST-2/tetherin, was first observed as an ability to block the release of Vpu-minus HIV-1 from the surface of infected cells. However, tetherin restriction is also counteracted by primate lentiviruses that do not express a Vpu protein, where anti-tetherin functions are provided by either the Env protein (HIV-2, SIVtan or the Nef protein (SIVsm/mac and SIVagm. Within the primate lentiviruses, Vpu is also present in the genomes of SIVcpz and certain SIVsyk viruses. We asked whether, in these viruses, anti-tetherin activity was always a property of Vpu, or if it had selectively evolved in HIV-1 to perform this function. Results We found that despite the close relatedness of HIV-1 and SIVcpz, the chimpanzee viruses use Nef instead of Vpu to counteract tetherin. Furthermore, SIVcpz Nef proteins had activity against chimpanzee but not human tetherin. This specificity mapped to a short sequence that is present in the cytoplasmic tail of primate but not human tetherins, and this also accounts for the specificity of SIVsm/mac Nef for primate but not human tetherins. In contrast, Vpu proteins from four diverse members of the SIVsyk lineage all displayed an anti-tetherin activity that was active against macaque tetherin. Interestingly, Vpu from a SIVgsn isolate was also found to have activity against human tetherin. Conclusions Primate lentiviruses show a high degree of flexibility in their use of anti-tetherin factors, indicating a strong selective pressure to counteract tetherin restriction. The identification of an activity against human tetherin in SIVgsn Vpu suggests that the presence of Vpu in the ancestral SIVmus/mon/gsn virus believed to have contributed the 3' half of the HIV-1 genome may have played a role in the evolution of viruses that could counteract human tetherin and infect humans.

  18. Soluble urokinase receptor levels in plasma during 5 years of highly active antiretroviral therapy in HIV-1-infected patients

    DEFF Research Database (Denmark)

    Ostrowski, Sisse R; Katzenstein, Terese L; Piironen, Timo

    2004-01-01

    High blood levels of the soluble urokinase receptor (suPAR) strongly predict increased mortality in human immunodeficiency virus-1 (HIV-1)-infected patients. This study investigated the plasma concentration of suPAR in 29 treatment-naive HIV-1-infected patients during 5 years treatment with highly...... active antiretroviral therapy (HAART). Plasma suPAR decreased after introducing HAART, most pronounced during the first treatment year. The change in plasma suPAR was independent of changes in viral replication and CD4+ cells but it was strongly correlated with plasma levels of the soluble TNF receptor...... II. Compared with healthy individuals, plasma suPAR and sTN-FrII was increased in untreated patients. After initiating HAART, plasma sTNFrII remained increased whereas plasma suPAR decreased to a level comparable with healthy individuals. The present data indicate that the circulating suPAR level...

  19. Design, Synthesis and Structure-activity Studies of Rhodanine Derivatives as HIV-1 Integrase Inhibitors

    Directory of Open Access Journals (Sweden)

    Kavya Ramkumar

    2010-06-01

    Full Text Available Raltegravir was the first HIV-1 integrase inhibitor that gained FDA approval for use in the treatment of HIV-1 infection. Because of the emergence of IN inhibitor-resistant viral strains, there is a need to identify innovative second-generation IN inhibitors. Previously, we identified 2-thioxo-4-thiazolidinone (rhodanine-containing compounds as IN inhibitors. Herein, we report the design, synthesis and docking studies of a series of novel rhodanine derivatives as IN inhibitors. All these compounds were further tested against human apurinic/apyrimidinic endonuclease 1 (APE1 to determine their selectivity. Two compounds showed significant cytotoxicity in a panel of human cancer cell lines. Taken together, our results show that rhodanines are a promising class of compounds for developing drugs with antiviral and anticancer properties.

  20. Impact of Viral Activators and Epigenetic Regulators on HIV-1 LTRs Containing Naturally Occurring Single Nucleotide Polymorphisms

    Directory of Open Access Journals (Sweden)

    Sonia Shah

    2015-01-01

    Full Text Available Following human immunodeficiency virus type 1 (HIV-1 integration into host cell DNA, the viral promoter can become transcriptionally silent in the absence of appropriate signals and factors. HIV-1 gene expression is dependent on regulatory elements contained within the long terminal repeat (LTR that drive the synthesis of viral RNAs and proteins through interaction with multiple host and viral factors. Previous studies identified single nucleotide polymorphisms (SNPs within CCAAT/enhancer binding protein (C/EBP site I and Sp site III (3T, C-to-T change at position 3, and 5T, C-to-T change at position 5 of the binding site, respectively, when compared to the consensus B sequence that are low affinity binding sites and correlate with more advanced stages of HIV-1 disease. Stably transfected cell lines containing the wild type, 3T, 5T, and 3T5T LTRs were developed utilizing bone marrow progenitor, T, and monocytic cell lines to explore the LTR phenotypes associated with these genotypic changes from an integrated chromatin-based microenvironment. Results suggest that in nonexpressing cell clones LTR-driven gene expression occurs in a SNP-specific manner in response to LTR activation or treatment with trichostatin A treatment, indicating a possible cell type and SNP-specific mechanism behind the epigenetic control of LTR activation.

  1. Ion specific effects of alkali cations on the catalytic activity of HIV-1 protease

    Czech Academy of Sciences Publication Activity Database

    Pokorná, Jana; Heyda, J.; Konvalinka, Jan

    2013-01-01

    Roč. 160, č. 1 (2013), s. 359-370 ISSN 1359-6640 R&D Projects: GA ČR GBP208/12/G016; GA ČR GAP207/11/1798 Institutional support: RVO:61388963 Keywords : HIV -1 protease * ion-protein interaction * Hofmeister series * enzyme kinetics * molecular dynamics Subject RIV: CE - Biochemistry Impact factor: 4.194, year: 2013

  2. Gut dendritic cell activation links an altered colonic microbiome to mucosal and systemic T-cell activation in untreated HIV-1 infection.

    Science.gov (United States)

    Dillon, S M; Lee, E J; Kotter, C V; Austin, G L; Gianella, S; Siewe, B; Smith, D M; Landay, A L; McManus, M C; Robertson, C E; Frank, D N; McCarter, M D; Wilson, C C

    2016-01-01

    HIV-1-associated disruption of intestinal homeostasis is a major factor contributing to chronic immune activation and inflammation. Dendritic cells (DCs) are crucial in maintaining intestinal homeostasis, but the impact of HIV-1 infection on intestinal DC number and function has not been extensively studied. We compared the frequency and activation/maturation status of colonic myeloid DC (mDC) subsets (CD1c(+) and CD1c(neg)) and plasmacytoid DCs in untreated HIV-1-infected subjects with uninfected controls. Colonic mDCs in HIV-1-infected subjects had increased CD40 but decreased CD83 expression, and CD40 expression on CD1c(+) mDCs positively correlated with mucosal HIV-1 viral load, with mucosal and systemic cytokine production, and with frequencies of activated colon and blood T cells. Percentage of CD83(+)CD1c(+) mDCs negatively correlated with frequencies of interferon-γ-producing colon CD4(+) and CD8(+) T cells. CD40 expression on CD1c(+) mDCs positively associated with abundance of high prevalence mucosal Prevotella copri and Prevotella stercorea but negatively associated with a number of low prevalence mucosal species, including Rumminococcus bromii. CD1c(+) mDC cytokine production was greater in response to in vitro stimulation with Prevotella species relative to R. bromii. These findings suggest that, during HIV infection, colonic mDCs become activated upon exposure to mucosal pathobiont bacteria leading to mucosal and systemic immune activation.

  3. Gut Dendritic Cell Activation Links an Altered Colonic Microbiome to Mucosal and Systemic T Cell Activation in Untreated HIV-1 infection

    Science.gov (United States)

    Dillon, SM; Lee, EJ; Kotter, CV; Austin, GL; Gianella, S; Siewe, B; Smith, DM; Landay, AL; McManus, MC; Robertson, CE; Frank, DN; McCarter, MD; Wilson, CC

    2015-01-01

    HIV-1-associated disruption of intestinal homeostasis is a major factor contributing to chronic immune activation and inflammation. Dendritic cells (DCs) are crucial in maintaining intestinal homeostasis, but the impact of HIV-1 infection on intestinal DC number and function has not been extensively studied. We compared the frequency and activation/maturation status of colonic myeloid DC (mDC) subsets (CD1c+ and CD1cneg) and plasmacytoid DCs in untreated HIV-1-infected subjects with uninfected controls. Colonic mDCs in HIV-1-infected subjects had increased CD40 but decreased CD83 expression, and CD40 expression on CD1c+ mDCs positively correlated with mucosal HIV-1 viral load, with mucosal and systemic cytokine production, and with frequencies of activated colon and blood T cells. Percent of CD83+CD1c+ mDCs negatively correlated with frequencies of IFN-γ-producing colon CD4+ and CD8+ T cells. CD40 expression on CD1c+ mDCs positively associated with abundance of high prevalence mucosal Prevotella copri and P. stercorea, but negatively associated with a number of low prevalence mucosal species including Rumminococcus bromii. CD1c+ mDC cytokine production was greater in response to in vitro stimulation with Prevotella species relative to R. bromii. These findings suggest that during HIV infection, colonic mDCs become activated upon exposure to mucosal pathobiont bacteria leading to mucosal and systemic immune activation. PMID:25921339

  4. Extracellular histones identified in crocodile blood inhibit in-vitro HIV-1 infection.

    Science.gov (United States)

    Kozlowski, Hannah N; Lai, Eric T L; Havugimana, Pierre C; White, Carl; Emili, Andrew; Sakac, Darinka; Binnington, Beth; Neschadim, Anton; McCarthy, Stephen D S; Branch, Donald R

    2016-08-24

    It has been reported that crocodile blood contains potent antibacterial and antiviral properties. However, its effects on HIV-1 infection remain unknown. We obtained blood from saltwater crocodiles to examine whether serum or plasma could inhibit HIV-1 infection. We purified plasma fractions then used liquid chromatography-mass spectrometry to identify the inhibitory protein factor(s). We then analyzed the ability of recombinant proteins to recapitulate HIV-1 inhibition and determine their mechanism of action. Crocodylus porosus plasma was tested for inhibition of Jurkat T-cell HIV-1 infection. Inhibitor(s) were purified by reverse-phase chromatography then identified by protein liquid chromatography-mass spectrometry. Anti-HIV-1 activity of purified plasma or recombinant proteins were measured by p24 enzyme-linked immunosorbent assay and luciferase readouts, and mechanism of action was determined by measuring HIV-1 RNA, cDNA and transcription (using 1G5 cells). Crocodile plasma contains potent inhibitors of HIV-1IIIB infection, which were identified as histones. Recombinant human histones H1 and H2A significantly reduced HIV-1JR-FL infection (IC50 of 0.79 and 0.45 μmol/l, respectively), whereas H4 enhanced JR-FL luciferase activity. The inhibitory effects of crocodile plasma, recombinant H1 or recombinant H2A on HIV-1 infection were during or post-viral transcription. Circulating histones in crocodile blood, possibly released by neutrophil extracellular traps, are significant inhibitors of HIV-1 infection in-vitro. Extracellular recombinant histones have different effects on HIV-1 transcription and protein expression and are downregulated in HIV-1 patients. Circulating histones may be a novel resistance factor during HIV-1 infection, and peptide versions should be explored as future HIV-1 therapeutics that modulate viral transcription.

  5. Developing strategies for HIV-1 eradication

    Science.gov (United States)

    Durand, Christine M.; Blankson, Joel N.; Siliciano, Robert F.

    2014-01-01

    Highly active antiretroviral therapy (HAART) suppresses HIV-1 replication, transforming the outlook for infected patients. However, reservoirs of replication-competent forms of the virus persist during HAART, and when treatment is stopped, high rates of HIV-1 replication return. Recent insights into HIV-1 latency, as well as a report that HIV-1 infection was eradicated in one individual, have renewed interest in finding a cure for HIV-1 infection. Strategies for HIV-1 eradication include gene therapy and hematopoietic stem cell transplantation, stimulating host immunity to control HIV-1 replication, and targeting latent HIV-1 in resting memory CD4+ T cells. Future efforts should aim to provide better understanding of how to reconstitute the CD4+ T cell compartment with genetically engineered cells, exert immune control over HIV-1 replication, and identify and eliminate all viral reservoirs. PMID:22867874

  6. DB-02, a C-6-cyclohexylmethyl substituted pyrimidinone HIV-1 reverse transcriptase inhibitor with nanomolar activity, displays an improved sensitivity against K103N or Y181C than S-DABOs.

    Directory of Open Access Journals (Sweden)

    Xing-Jie Zhang

    Full Text Available 6-(cyclohexylmethyl-5-ethyl-2-((2-oxo-2-phenylethylthiopyrimidin-4(3H-one (DB-02 is a member of the newly reported synthetic anti-HIV-1 compounds dihydro-aryl/alkylsulfanyl-cyclohexylmethyl-oxopyrimidines, S-DACOs. In vitro anti-HIV-1 activity and resistance profile studies have suggested that DB-02 has very low cytotoxicity (CC50>1mM to cell lines and peripheral blood mononuclear cells (PBMCs. It displays potent anti-HIV-1 activity against laboratory adapted strains and primary isolated strains including different subtypes and tropism strains (EC50s range from 2.40 to 41.8 nM. Studies on site-directed mutagenesis, genotypic resistance profiles revealed that V106A was the major resistance contributor for the compound. Molecular docking analysis showed that DB-02 located in the hydrophobic pocket with interactions of Lys101, Val106, Leu234, His235. DB-02 also showed non-antagonistic effects to four approved antiretroviral drugs. All studies indicated that DB-02 would be a potential NNRTI with low cytotoxicity and improved activity.

  7. HIV-1 Env Glycoprotein Phenotype along with Immune Activation Determines CD4 T Cell Loss in HIV Patients.

    Science.gov (United States)

    Joshi, Anjali; Sedano, Melina; Beauchamp, Bethany; Punke, Erin B; Mulla, Zuber D; Meza, Armando; Alozie, Ogechika K; Mukherjee, Debabrata; Garg, Himanshu

    2016-02-15

    The mechanism behind the selective depletion of CD4(+) cells in HIV infections remains undetermined. Although HIV selectively infects CD4(+) cells, the relatively few infected cells in vivo cannot account for the extent of CD4(+) T cell depletion, suggesting indirect or bystander mechanisms. The role of virus replication, Env glycoprotein phenotype, and immune activation (IA) in this bystander phenomenon remains controversial. Using samples derived from HIV-infected patients, we demonstrate that, although IA in both CD4(+) and CD8(+) subsets correlates with CD4 decline, apoptosis in CD4(+) and not CD8(+) cells is associated with disease progression. Because HIV-1 Env glycoprotein has been implicated in bystander apoptosis, we cloned full-length Envs from plasma of viremic patients and tested their apoptosis-inducing potential (AIP). Interestingly, AIP of HIV-1 Env glycoproteins were found to correlate inversely with CD4:CD8 ratios, suggesting a role of Env phenotype in disease progression. In vitro mitogenic stimulation of PBMCs resulted in upregulation of IA markers but failed to alter the CD4:CD8 ratio. However, coculture of normal PBMCs with Env-expressing cells resulted in selective CD4 loss that was significantly enhanced by IA. Our study demonstrates that AIP of HIV-1 Env and IA collectively determine CD4 loss in HIV infection. Copyright © 2016 by The American Association of Immunologists, Inc.

  8. Severe gastrointestinal disease due to HIV-1-seronegative AIDS.

    Science.gov (United States)

    Mönkemüller, K; Fry, L C; Decker, J M; Rickes, S; Smith, P D

    2007-08-01

    An HIV-1 seronegative man presented with odynophagia, dysphagia, diarrhea, tenesmus and a 50-lb weight loss. A large esophageal ulcer and a rectal fissure were identified endoscopically. Stool samples and biopsy specimens from the esophageal ulcer, duodenum, colon and rectum were negative for pathogens. Seronegative AIDS was suspected, and high levels of HIV-1 mRNA (> 242,000 copies/mL) were detected. The esophageal ulcer responded to oral steroids and the HIV-1 infection to highly active anti-retroviral therapy (HAART). The virus isolated from the patient and an HIV-1 seropositive, asymptomatic, female sex worker with whom he had recently terminated a one-year heterosexual relationship showed sequence homology, indicating her as the source of his virus. The unusual presentation of severe gastrointestinal disease in an HIV-1 seronegative man with HIV-1 viremia underscores the importance of including AIDS in the differential diagnosis of wasting syndrome (i. e., B-type symptoms such as fever, night sweats, weight loss) in patients who are HIV-1 seronegative but at risk for AIDS.

  9. Elimination of cancer stem cells and reactivation of latent HIV-1 via AMPK activation: Common mechanism of action linking inhibition of tumorigenesis and the potential eradication of HIV-1.

    Science.gov (United States)

    Finley, Jahahreeh

    2017-07-01

    Although promising treatments are currently in development to slow disease progression and increase patient survival, cancer remains the second leading cause of death in the United States. Cancer treatment modalities commonly include chemoradiation and therapies that target components of aberrantly activated signaling pathways. However, treatment resistance is a common occurrence and recent evidence indicates that the existence of cancer stem cells (CSCs) may underlie the limited efficacy and inability of current treatments to effectuate a cure. CSCs, which are largely resistant to chemoradiation therapy, are a subpopulation of cancer cells that exhibit characteristics similar to embryonic stem cells (ESCs), including self-renewal, multi-lineage differentiation, and the ability to initiate tumorigenesis. Interestingly, intracellular mechanisms that sustain quiescence and promote self-renewal in adult stem cells (ASCs) and CSCs likely also function to maintain latency of HIV-1 in CD4 + memory T cells. Although antiretroviral therapy is highly effective in controlling HIV-1 replication, the persistence of latent but replication-competent proviruses necessitates the development of compounds that are capable of selectively reactivating the latent virus, a method known as the "shock and kill" approach. Homeostatic proliferation in central CD4 + memory T (T CM ) cells, a memory T cell subset that exhibits limited self-renewal and differentiation and is a primary reservoir for latent HIV-1, has been shown to reinforce and stabilize the latent reservoir in the absence of T cell activation and differentiation. HIV-1 has also been found to establish durable and long-lasting latency in a recently discovered subset of CD4 + T cells known as T memory stem (T SCM ) cells. T SCM cells, compared to T CM cells, exhibit stem cell properties that more closely match those of ESCs and ASCs, including self-renewal and differentiation into all memory T cell subsets. It is our hypothesis

  10. Monocyte-lymphocyte fusion induced by the HIV-1 envelope generates functional heterokaryons with an activated monocyte-like phenotype

    International Nuclear Information System (INIS)

    Martínez-Méndez, David; Rivera-Toledo, Evelyn; Ortega, Enrique; Licona-Limón, Ileana; Huerta, Leonor

    2017-01-01

    Enveloped viruses induce cell-cell fusion when infected cells expressing viral envelope proteins interact with target cells, or through the contact of cell-free viral particles with adjoining target cells. CD4 + T lymphocytes and cells from the monocyte-macrophage lineage express receptors for HIV envelope protein. We have previously reported that lymphoid Jurkat T cells expressing the HIV-1 envelope protein (Env) can fuse with THP-1 monocytic cells, forming heterokaryons with a predominantly myeloid phenotype. This study shows that the expression of monocytic markers in heterokaryons is stable, whereas the expression of lymphoid markers is mostly lost. Like THP-1 cells, heterokaryons exhibited FcγR-dependent phagocytic activity and showed an enhanced expression of the activation marker ICAM-1 upon stimulation with PMA. In addition, heterokaryons showed morphological changes compatible with maturation, and high expression of the differentiation marker CD11b in the absence of differentiation-inducing agents. No morphological change nor increase in CD11b expression were observed when an HIV-fusion inhibitor blocked fusion, or when THP-1 cells were cocultured with Jurkat cells expressing a non-fusogenic Env protein, showing that differentiation was not induced merely by cell-cell interaction but required cell-cell fusion. Inhibition of TLR2/TLR4 signaling by a TIRAP inhibitor greatly reduced the expression of CD11b in heterokaryons. Thus, lymphocyte-monocyte heterokaryons induced by HIV-1 Env are stable and functional, and fusion prompts a phenotype characteristic of activated monocytes via intracellular TLR2/TLR4 signaling. - Highlights: • Jurkat T cells expressing the HIV-1 envelope fuse with THP-1 monocytes. • Heterokaryons display a dominant myeloid phenotype and monocyte function. • Heterokaryons exhibit activation features in the absence of activation agents. • Activation is not due to cell-cell interaction but requires cell-cell fusion. • The

  11. Monocyte-lymphocyte fusion induced by the HIV-1 envelope generates functional heterokaryons with an activated monocyte-like phenotype

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-Méndez, David; Rivera-Toledo, Evelyn; Ortega, Enrique; Licona-Limón, Ileana; Huerta, Leonor, E-mail: leonorhh@biomedicas.unam.mx

    2017-03-01

    Enveloped viruses induce cell-cell fusion when infected cells expressing viral envelope proteins interact with target cells, or through the contact of cell-free viral particles with adjoining target cells. CD4{sup +} T lymphocytes and cells from the monocyte-macrophage lineage express receptors for HIV envelope protein. We have previously reported that lymphoid Jurkat T cells expressing the HIV-1 envelope protein (Env) can fuse with THP-1 monocytic cells, forming heterokaryons with a predominantly myeloid phenotype. This study shows that the expression of monocytic markers in heterokaryons is stable, whereas the expression of lymphoid markers is mostly lost. Like THP-1 cells, heterokaryons exhibited FcγR-dependent phagocytic activity and showed an enhanced expression of the activation marker ICAM-1 upon stimulation with PMA. In addition, heterokaryons showed morphological changes compatible with maturation, and high expression of the differentiation marker CD11b in the absence of differentiation-inducing agents. No morphological change nor increase in CD11b expression were observed when an HIV-fusion inhibitor blocked fusion, or when THP-1 cells were cocultured with Jurkat cells expressing a non-fusogenic Env protein, showing that differentiation was not induced merely by cell-cell interaction but required cell-cell fusion. Inhibition of TLR2/TLR4 signaling by a TIRAP inhibitor greatly reduced the expression of CD11b in heterokaryons. Thus, lymphocyte-monocyte heterokaryons induced by HIV-1 Env are stable and functional, and fusion prompts a phenotype characteristic of activated monocytes via intracellular TLR2/TLR4 signaling. - Highlights: • Jurkat T cells expressing the HIV-1 envelope fuse with THP-1 monocytes. • Heterokaryons display a dominant myeloid phenotype and monocyte function. • Heterokaryons exhibit activation features in the absence of activation agents. • Activation is not due to cell-cell interaction but requires cell-cell fusion. • The

  12. Purinergic Receptors: Key Mediators of HIV-1 infection and inflammation

    Directory of Open Access Journals (Sweden)

    Talia H Swartz

    2015-11-01

    Full Text Available Human immunodeficiency virus (HIV-1 causes a chronic infection that afflicts more than 38 million individuals worldwide. While the infection can be suppressed with potent anti-retroviral therapies, individuals infected with HIV have elevated levels of inflammation as indicated by increased T cell activation, soluble biomarkers, and associated morbidity and mortality. A single mechanism linking HIV pathogenesis to this inflammation has yet to be identified. Purinergic receptors are known to mediate inflammation and have been shown to be required for HIV-1 infection at the level of HIV-1 membrane fusion. Here we review the literature on the role of purinergic receptors in HIV-1 infection and associated inflammation and describe a role for these receptors as potential therapeutic targets.

  13. Features of Recently Transmitted HIV-1 Clade C Viruses that Impact Antibody Recognition: Implications for Active and Passive Immunization.

    Science.gov (United States)

    Rademeyer, Cecilia; Korber, Bette; Seaman, Michael S; Giorgi, Elena E; Thebus, Ruwayhida; Robles, Alexander; Sheward, Daniel J; Wagh, Kshitij; Garrity, Jetta; Carey, Brittany R; Gao, Hongmei; Greene, Kelli M; Tang, Haili; Bandawe, Gama P; Marais, Jinny C; Diphoko, Thabo E; Hraber, Peter; Tumba, Nancy; Moore, Penny L; Gray, Glenda E; Kublin, James; McElrath, M Juliana; Vermeulen, Marion; Middelkoop, Keren; Bekker, Linda-Gail; Hoelscher, Michael; Maboko, Leonard; Makhema, Joseph; Robb, Merlin L; Abdool Karim, Salim; Abdool Karim, Quarraisha; Kim, Jerome H; Hahn, Beatrice H; Gao, Feng; Swanstrom, Ronald; Morris, Lynn; Montefiori, David C; Williamson, Carolyn

    2016-07-01

    The development of biomedical interventions to reduce acquisition of HIV-1 infection remains a global priority, however their potential effectiveness is challenged by very high HIV-1 envelope diversity. Two large prophylactic trials in high incidence, clade C epidemic regions in southern Africa are imminent; passive administration of the monoclonal antibody VRC01, and active immunization with a clade C modified RV144-like vaccines. We have created a large representative panel of C clade viruses to enable assessment of antibody responses to vaccines and natural infection in Southern Africa, and we investigated the genotypic and neutralization properties of recently transmitted clade C viruses to determine how viral diversity impacted antibody recognition. We further explore the implications of these findings for the potential effectiveness of these trials. A panel of 200 HIV-1 Envelope pseudoviruses was constructed from clade C viruses collected within the first 100 days following infection. Viruses collected pre-seroconversion were significantly more resistant to serum neutralization compared to post-seroconversion viruses (p = 0.001). Over 13 years of the study as the epidemic matured, HIV-1 diversified (p = 0.0009) and became more neutralization resistant to monoclonal antibodies VRC01, PG9 and 4E10. When tested at therapeutic levels (10ug/ml), VRC01 only neutralized 80% of viruses in the panel, although it did exhibit potent neutralization activity against sensitive viruses (IC50 titres of 0.42 μg/ml). The Gp120 amino acid similarity between the clade C panel and candidate C-clade vaccine protein boosts (Ce1086 and TV1) was 77%, which is 8% more distant than between CRF01_AE viruses and the RV144 CRF01_AE immunogen. Furthermore, two vaccine signature sites, K169 in V2 and I307 in V3, associated with reduced infection risk in RV144, occurred less frequently in clade C panel viruses than in CRF01_AE viruses from Thailand. Increased resistance of pre

  14. HIV-1 induces cytoskeletal alterations and Rac1 activation during monocyte-blood-brain barrier interactions: modulatory role of CCR5.

    Science.gov (United States)

    Woollard, Shawna M; Li, Hong; Singh, Sangya; Yu, Fang; Kanmogne, Georgette D

    2014-02-26

    Most HIV strains that enter the brain are macrophage-tropic and use the CCR5 receptor to bind and infect target cells. Because the cytoskeleton is a network of protein filaments involved in cellular movement and migration, we investigated whether CCR5 and the cytoskeleton are involved in endothelial-mononuclear phagocytes interactions, adhesion, and HIV-1 infection. Using a cytoskeleton phospho-antibody microarray, we showed that after co-culture with human brain microvascular endothelial cells (HBMEC), HIV-1 infected monocytes increased expression and activation of cytoskeleton-associated proteins, including Rac1/cdc42 and cortactin, compared to non-infected monocytes co-cultured with HBMEC. Analysis of brain tissues from HIV-1-infected patients validated these findings, and showed transcriptional upregulation of Rac1 and cortactin, as well as increased activation of Rac1 in brain tissues of HIV-1-infected humans, compared to seronegative individuals and subjects with HIV-1-encephalitis. Confocal imaging showed that brain cells expressing phosphorylated Rac1 were mostly macrophages and blood vessels. CCR5 antagonists TAK-799 and maraviroc prevented HIV-induced upregulation and phosphorylation of cytoskeleton-associated proteins, prevented HIV-1 infection of macrophages, and diminished viral-induced adhesion of monocytes to HBMEC. Ingenuity pathway analysis suggests that during monocyte-endothelial interactions, HIV-1 alters protein expression and phosphorylation associated with integrin signaling, cellular morphology and cell movement, cellular assembly and organization, and post-translational modifications in monocytes. CCR5 antagonists prevented these HIV-1-induced alterations. HIV-1 activates cytoskeletal proteins during monocyte-endothelial interactions and increase transcription and activation of Rac1 in brain tissues. In addition to preventing macrophage infection, CCR5 antagonists could diminish viral-induced alteration and phosphorylation of cytoskeletal

  15. Curcumin derivatives as HIV-1 protease inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Sui, Z.; Li, J.; Craik, C.S.; Ortiz de Montellano, P.R. [Univ. of California, San Francisco, CA (United States)

    1993-12-31

    Curcumin, a non-toxic natural compound from Curcuma longa, has been found to be an HIV-1 protease inhibitor. Some of its derivatives were synthesized and their inhibitory activity against the HIV-1 protease was tested. Curcumin analogues containing boron enhanced the inhibitory activity. At least of the the synthesized compounds irreversibly inhibits the HIV-1 protease.

  16. Reactivation of latently infected HIV-1 viral reservoirs and correction of aberrant alternative splicing in the LMNA gene via AMPK activation: Common mechanism of action linking HIV-1 latency and Hutchinson-Gilford progeria syndrome.

    Science.gov (United States)

    Finley, Jahahreeh

    2015-09-01

    Although the use of antiretroviral therapy (ART) has proven highly effective in controlling and suppressing HIV-1 replication, the persistence of latent but replication-competent proviruses in a small subset of CD4(+) memory T cells presents significant challenges to viral eradication from infected individuals. Attempts to eliminate latent reservoirs are epitomized by the 'shock and kill' approach, a strategy involving the combinatorial usage of compounds that influence epigenetic modulation and initiation of proviral transcription. However, efficient regulation of viral pre-mRNA splicing through manipulation of host cell splicing machinery is also indispensible for HIV-1 replication. Interestingly, aberrant alternative splicing of the LMNA gene via the usage of a cryptic splice site has been shown to be the cause of most cases of Hutchinson-Gilford progeria syndrome (HGPS), a rare genetic condition characterized by an accelerated aging phenotype due to the accumulation of a truncated form of lamin A known as progerin. Recent evidence has shown that inhibition of the splicing factors ASF/SF2 (or SRSF1) and SRp55 (or SRSF6) leads to a reduction or an increase in progerin at both the mRNA and protein levels, respectively, thus altering the LMNA pre-mRNA splicing ratio. It is also well-established that during the latter stages of HIV-1 infection, an increase in the production and nuclear export of unspliced viral mRNA is indispensible for efficient HIV-1 replication and that the presence of ASF/SF2 leads to excessive viral pre-mRNA splicing and a reduction of unspliced mRNA, while the presence of SRp55 inhibits viral pre-mRNA splicing and aids in the generation and translation of unspliced HIV-1 mRNAs. The splicing-factor associated protein and putative mitochondrial chaperone p32 has also been shown to inhibit ASF/SF2, increase unspliced HIV-1 viral mRNA, and enhance mitochondrial DNA replication and oxidative phosphorylation. It is our hypothesis that activation of

  17. Activity of the HIV-1 attachment inhibitor BMS-626529, the active component of the prodrug BMS-663068, against CD4-independent viruses and HIV-1 envelopes resistant to other entry inhibitors.

    Science.gov (United States)

    Li, Zhufang; Zhou, Nannan; Sun, Yongnian; Ray, Neelanjana; Lataillade, Max; Hanna, George J; Krystal, Mark

    2013-09-01

    BMS-626529 is a novel small-molecule HIV-1 attachment inhibitor active against both CCR5- and CXCR4-tropic viruses. BMS-626529 functions by preventing gp120 from binding to CD4. A prodrug of this compound, BMS-663068, is currently in clinical development. As a theoretical resistance pathway to BMS-663068 could be the development of a CD4-independent phenotype, we examined the activity of BMS-626529 against CD4-independent viruses and investigated whether resistance to BMS-626529 could be associated with a CD4-independent phenotype. Finally, we evaluated whether cross-resistance exists between BMS-626529 and other HIV-1 entry inhibitors. Two laboratory-derived envelopes with a CD4-independent phenotype (one CXCR4 tropic and one CCR5 tropic), five envelopes from clinical isolates with preexisting BMS-626529 resistance, and several site-specific mutant BMS-626529-resistant envelopes were examined for their dependence on CD4 for infectivity or susceptibility to BMS-626529. Viruses resistant to other entry inhibitors (enfuvirtide, maraviroc, and ibalizumab) were also examined for susceptibility to BMS-626529. Both CD4-independent laboratory isolates retained sensitivity to BMS-626529 in CD4(-) cells, while HIV-1 envelopes from viruses resistant to BMS-626529 exhibited no evidence of a CD4-independent phenotype. BMS-626529 also exhibited inhibitory activity against ibalizumab- and enfuvirtide-resistant envelopes. While there appeared to be some association between maraviroc resistance and reduced susceptibility to BMS-626529, an absolute correlation cannot be presumed, since some CCR5-tropic maraviroc-resistant envelopes remained sensitive to BMS-626529. Clinical use of the prodrug BMS-663068 is unlikely to promote resistance via generation of CD4-independent virus. No cross-resistance between BMS-626529 and other HIV entry inhibitors was observed, which could allow for sequential or concurrent use with different classes of entry inhibitors.

  18. Computational model of the HIV-1 subtype A V3 loop: study on the conformational mobility for structure-based anti-AIDS drug design.

    Science.gov (United States)

    Andrianov, Alexander M; Anishchenko, Ivan V

    2009-10-01

    The V3 loop of the HIV-1gp120 glycoprotein presenting 35-residue-long, frequently glycosylated, highly variable, and disulfide bonded structure plays the central role in the virus biology and forms the principal target for neutralizing antibodies and the major viral determinant for co-receptor binding. Here we present the computer-aided studies on the 3D structure of the HIV-1 subtype A V3 loop (SA-V3 loop) in which its structurally inflexible regions and individual amino acids were identified and the structure-function analysis of V3 aimed at the informational support for anti-AIDS drug researches was put into practice. To this end, the following successive steps were carried out: (i) using the methods of comparative modeling and simulated annealing, the ensemble of the low-energy structures was generated for the consensus amino acid sequence of the SA-V3 loop and its most probable conformation was defined basing on the general criteria widely adopted as a measure of the quality of protein structures in terms of their 3D folds and local geometry; (ii) the elements of secondary V3 structures in the built conformations were characterized and careful analysis of the corresponding data arising from experimental observations for the V3 loops in various HIV-1 strains was made; (iii) to reveal common structural motifs in the HIV-1 V3 loops regardless of their sequence variability and medium inconstancy, the simulated structures were collated with each other as well as with those of V3 deciphered by NMR spectroscopy and X-ray studies for diverse virus isolates in different environments; (iv) with the object of delving into the conformational features of the SA-V3 loop, molecular dynamics trajectory was computed from its static 3D structure followed by determining the structurally rigid V3 segments and comparing the findings obtained with the ones derived hereinbefore; and (v) to evaluate the masking effect that can occur due to interaction of the SA-V3 loop with the two

  19. Surface plasmon resonance study on HIV-1 integrase strand transfer activity

    Czech Academy of Sciences Publication Activity Database

    Vaisocherová, Hana; Snášel, Jan; Špringer, Tomáš; Šípová, Hana; Rosenberg, Ivan; Štěpánek, J.; Homola, Jiří

    2009-01-01

    Roč. 393, č. 4 (2009), s. 1165-1172 ISSN 1618-2642 R&D Projects: GA ČR GA202/05/0628; GA AV ČR KAN200670701; GA ČR GP203/05/P557 Institutional research plan: CEZ:AV0Z20670512; CEZ:AV0Z40550506 Keywords : HIV -1 intergrase * surface plasmon resonance * label-free monitoring * ds- DNA Subject RIV: CC - Organic Chemistry Impact factor: 3.480, year: 2009

  20. Chinks in the armor of the HIV-1 Envelope glycan shield: Implications for immune escape from anti-glycan broadly neutralizing antibodies.

    Science.gov (United States)

    Moyo, Thandeka; Ferreira, Roux-Cil; Davids, Reyaaz; Sonday, Zarinah; Moore, Penny L; Travers, Simon A; Wood, Natasha T; Dorfman, Jeffrey R

    2017-01-15

    Glycans on HIV-1 Envelope serve multiple functions including blocking epitopes from antibodies. We show that removal of glycan 301, a major target of anti-V3/glycan antibodies, has substantially different effects in two viruses. While glycan 301 on Du156.12 blocks epitopes commonly recognized by sera from chronically HIV-1-infected individuals, it does not do so on CAP45.G3, suggesting that removing the 301 glycan has a smaller effect on the integrity of the glycan shield in CAP45.G3. Changes in sensitivity to broadly neutralizing monoclonal antibodies suggest that the interaction between glycan 301 and the CD4 binding site differ substantially between these 2 viruses. Molecular modeling suggests that removal of glycan 301 likely exposes a greater surface area of the V3 and C4 regions in Du156.12. Our data indicate that the contribution of the 301 glycan to resistance to common neutralizing antibodies varies between viruses, allowing for easier selection for its loss in some viruses. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Structure-activity relationship studies of indole-based compounds as small molecule HIV-1 fusion inhibitors targeting glycoprotein 41.

    Science.gov (United States)

    Zhou, Guangyan; Sofiyev, Vladimir; Kaur, Hardeep; Snyder, Beth A; Mankowski, Marie K; Hogan, Priscilla A; Ptak, Roger G; Gochin, Miriam

    2014-06-26

    We previously described indole-containing compounds with the potential to inhibit HIV-1 fusion by targeting the hydrophobic pocket of transmembrane glycoprotein gp41. Here we report optimization and structure-activity relationship studies on the basic scaffold, defining the role of shape, contact surface area, and molecular properties. Thirty new compounds were evaluated in binding, cell-cell fusion, and viral replication assays. Below a 1 μM threshold, correlation between binding and biological activity was diminished, indicating an amphipathic requirement for activity in cells. The most active inhibitor 6j exhibited 0.6 μM binding affinity and 0.2 μM EC50 against cell-cell fusion and live virus replication and was active against T20 resistant strains. Twenty-two compounds with the same connectivity displayed a consensus pose in docking calculations, with rank order matching the biological activity. The work provides insight into requirements for small molecule inhibition of HIV-1 fusion and demonstrates a potent low molecular weight fusion inhibitor.

  2. Structure–Activity Relationship Studies of Indole-Based Compounds as Small Molecule HIV-1 Fusion Inhibitors Targeting Glycoprotein 41

    Science.gov (United States)

    2015-01-01

    We previously described indole-containing compounds with the potential to inhibit HIV-1 fusion by targeting the hydrophobic pocket of transmembrane glycoprotein gp41. Here we report optimization and structure–activity relationship studies on the basic scaffold, defining the role of shape, contact surface area, and molecular properties. Thirty new compounds were evaluated in binding, cell–cell fusion, and viral replication assays. Below a 1 μM threshold, correlation between binding and biological activity was diminished, indicating an amphipathic requirement for activity in cells. The most active inhibitor 6j exhibited 0.6 μM binding affinity and 0.2 μM EC50 against cell–cell fusion and live virus replication and was active against T20 resistant strains. Twenty-two compounds with the same connectivity displayed a consensus pose in docking calculations, with rank order matching the biological activity. The work provides insight into requirements for small molecule inhibition of HIV-1 fusion and demonstrates a potent low molecular weight fusion inhibitor. PMID:24856833

  3. Anti-V3/Glycan and Anti-MPER Neutralizing Antibodies, but Not Anti-V2/Glycan Site Antibodies, Are Strongly Associated with Greater Anti-HIV-1 Neutralization Breadth and Potency.

    Science.gov (United States)

    Jacob, Rajesh Abraham; Moyo, Thandeka; Schomaker, Michael; Abrahams, Fatima; Grau Pujol, Berta; Dorfman, Jeffrey R

    2015-05-01

    The membrane-proximal external region (MPER), the V2/glycan site (initially defined by PG9 and PG16 antibodies), and the V3/glycans (initially defined by PGT121-128 antibodies) are targets of broadly neutralizing antibodies and potential targets for anti-HIV-1 antibody-based vaccines. Recent evidence shows that antibodies with moderate neutralization breadth are frequently attainable, with 50% of sera from chronically infected individuals neutralizing ≥ 50% of a large, diverse set of viruses. Nonetheless, there is little systematic information addressing which specificities are preferentially targeted among such commonly found, moderately broadly neutralizing sera. We explored associations between neutralization breadth and potency and the presence of neutralizing antibodies targeting the MPER, V2/glycan site, and V3/glycans in sera from 177 antiretroviral-naive HIV-1-infected (>1 year) individuals. Recognition of both MPER and V3/glycans was associated with increased breadth and potency. MPER-recognizing sera neutralized 4.62 more panel viruses than MPER-negative sera (95% prediction interval [95% PI], 4.41 to 5.20), and V3/glycan-recognizing sera neutralized 3.24 more panel viruses than V3/glycan-negative sera (95% PI, 3.15 to 3.52). In contrast, V2/glycan site-recognizing sera neutralized only 0.38 more panel viruses (95% PI, 0.20 to 0.45) than V2/glycan site-negative sera and no association between V2/glycan site recognition and breadth or potency was observed. Despite autoreactivity of many neutralizing antibodies recognizing MPER and V3/glycans, antibodies to these sites are major contributors to neutralization breadth and potency in this cohort. It may therefore be appropriate to focus on developing immunogens based upon the MPER and V3/glycans. Previous candidate HIV vaccines have failed either to induce wide-coverage neutralizing antibodies or to substantially protect vaccinees. Therefore, current efforts focus on novel approaches never before

  4. CRISPR/gRNA-directed synergistic activation mediator (SAM) induces specific, persistent and robust reactivation of the HIV-1 latent reservoirs.

    Science.gov (United States)

    Zhang, Yonggang; Yin, Chaoran; Zhang, Ting; Li, Fang; Yang, Wensheng; Kaminski, Rafal; Fagan, Philip Regis; Putatunda, Raj; Young, Won-Bin; Khalili, Kamel; Hu, Wenhui

    2015-11-05

    Current antiretroviral therapy does not eliminate the integrated and transcriptionally silent HIV-1 provirus in latently infected cells. Recently, a "shock and kill" strategy has been extensively explored to eradicate the HIV-1 latent reservoirs for a permanent cure of AIDS. The therapeutic efficacy of currently used agents remains disappointing because of low efficiency, non-specificity and cellular toxicity. Here we present a novel catalytically-deficient Cas9-synergistic activation mediator (dCas9-SAM) technology to selectively, potently and persistently reactivate the HIV-1 latent reservoirs. By screening 16 MS2-mediated single guide RNAs, we identified long terminal repeat (LTR)-L and O that surround the enhancer region (-165/-145 for L and -92/-112 for O) and induce robust reactivation of HIV-1 provirus in HIV-1 latent TZM-bI epithelial, Jurkat T lymphocytic and CHME5 microglial cells. This compulsory reactivation induced cellular suicide via toxic buildup of viral proteins within HIV-1 latent Jurkat T and CHME5 microglial cells. These results suggest that this highly effective and target-specific dCas9-SAM system can serve as a novel HIV-latency-reversing therapeutic tool for the permanent elimination of HIV-1 latent reservoirs.

  5. HIV-1 Nef-induced FasL induction and bystander killing requires p38 MAPK activation

    Science.gov (United States)

    Muthumani, Karuppiah; Choo, Andrew Y.; Hwang, Daniel S.; Premkumar, Arumugam; Dayes, Nathanael S.; Harris, Crafford; Green, Douglas R.; Wadsworth, Scott A.; Siekierka, John J.; Weiner, David B.

    2005-01-01

    The human immunodeficiency virus (HIV) has been reported to target noninfected CD4 and CD8 cells for destruction. This effect is manifested in part through up-regulation of the death receptor Fas ligand (FasL) by HIV-1 negative factor (Nef), leading to bystander damage. However, the signal transduction and transcriptional regulation of this process remains elusive. Here, we provide evidence that p38 mitogen-activated protein kinase (MAPK) is required for this process. Loss-of-function experiments through dominant-negative p38 isoform, p38 siRNA, and chemical inhibitors of p38 activation suggest that p38 is necessary for Nef-induced activator protein-1 (AP-1) activation, as inhibition leads to an attenuation of AP-1-dependent transcription. Furthermore, mutagenesis of the FasL promoter reveals that its AP-1 enhancer element is required for Nef-mediated transcriptional activation. Therefore, a linear pathway for Nef-induced FasL expression that encompasses p38 and AP-1 has been elucidated. Furthermore, chemical inhibition of the p38 pathway attenuates HIV-1-mediated bystander killing of CD8 cells in vitro. (Blood. 2005;106:2059-2068) PMID:15928037

  6. TRIM22 Inhibits HIV-1 Transcription Independently of Its E3 Ubiquitin Ligase Activity, Tat, and NF-κB-Responsive Long Terminal Repeat Elements▿

    Science.gov (United States)

    Kajaste-Rudnitski, Anna; Marelli, Sara S.; Pultrone, Cinzia; Pertel, Thomas; Uchil, Pradeep D.; Mechti, Nadir; Mothes, Walther; Poli, Guido; Luban, Jeremy; Vicenzi, Elisa

    2011-01-01

    Previous studies identified clones of the U937 promonocytic cell line that were either permissive or nonpermissive for human immunodeficiency virus type 1 (HIV-1) replication. These clones were investigated further in the search for host restriction factors that could explain their differential capacity to support HIV-1 replication. Among known HIV-1 restriction factors screened, tripartite motif-containing protein 22 (TRIM22) was the only factor constitutively expressed in nonpermissive and absent in permissive U937 cells. Stable TRIM22 knockdown (KD) rescued HIV-1 long-terminal-repeat (LTR)-driven transcription in KD-nonpermissive cells to the levels observed in permissive cells. Conversely, transduction-mediated expression of TRIM22 in permissive cells reduced LTR-driven luciferase expression by ∼7-fold, supporting a negative role of TRIM22 in HIV-1 transcription. This finding was further confirmed in the human T cell line A3.01 expressing TRIM22. Moreover, overexpression of TRIM22 in 293T cells significantly impaired basal and phorbol myristate acetate-ionomycin-induced HIV-1 LTR-driven gene expression, whereas inhibition of tumor necrosis factor alpha-induced viral transcription was a consequence of lower basal expression. In agreement, TRIM22 equally inhibited an LTR construct lacking the tandem NF-κB binding sites. In addition, TRIM22 did not affect Tat-mediated LTR transactivation. Finally, these effects were independent of TRIM22 E3 ubiquitin-ligase activity. In the context of replication-competent virus, significantly higher levels of HIV-1 production were observed in KD-nonpermissive versus control nonpermissive U937 cells after infection. In contrast, lower peak levels of HIV-1 replication characterized U937 and A3.01 cells expressing TRIM22 versus their control transduced counterpart. Thus, nuclear TRIM22 significantly impairs HIV-1 replication, likely by interfering with Tat- and NF-κB-independent LTR-driven transcription. PMID:21345949

  7. HIV-1 adenoviral vector vaccines expressing multi-trimeric BAFF and 4-1BBL enhance T cell mediated anti-viral immunity.

    Directory of Open Access Journals (Sweden)

    Saravana Kanagavelu

    Full Text Available Adenoviral vectored vaccines have shown considerable promise but could be improved by molecular adjuvants. Ligands in the TNF superfamily (TNFSF are potential adjuvants for adenoviral vector (Ad5 vaccines based on their central role in adaptive immunity. Many TNFSF ligands require aggregation beyond the trimeric state (multi-trimerization for optimal biological function. Here we describe Ad5 vaccines for HIV-1 Gag antigen (Ad5-Gag adjuvanted with the TNFSF ligands 4-1BBL, BAFF, GITRL and CD27L constructed as soluble multi-trimeric proteins via fusion to Surfactant Protein D (SP-D as a multimerization scaffold. Mice were vaccinated with Ad5-Gag combined with Ad5 expressing one of the SP-D-TNFSF constructs or single-chain IL-12p70 as adjuvant. To evaluate vaccine-induced protection, mice were challenged with vaccinia virus expressing Gag (vaccinia-Gag which is known to target the female genital tract, a major route of sexually acquired HIV-1 infection. In this system, SP-D-4-1BBL or SP-D-BAFF led to significantly reduced vaccinia-Gag replication when compared to Ad5-Gag alone. In contrast, IL-12p70, SP-D-CD27L and SP-D-GITRL were not protective. Histological examination following vaccinia-Gag challenge showed a dramatic lymphocytic infiltration into the uterus and ovaries of SP-D-4-1BBL and SP-D-BAFF-treated animals. By day 5 post challenge, proinflammatory cytokines in the tissue were reduced, consistent with the enhanced control over viral replication. Splenocytes had no specific immune markers that correlated with protection induced by SP-D-4-1BBL and SP-D-BAFF versus other groups. IL-12p70, despite lack of anti-viral efficacy, increased the total numbers of splenic dextramer positive CD8+ T cells, effector memory T cells, and effector Gag-specific CD8+ T cells, suggesting that these markers are poor predictors of anti-viral immunity in this model. In conclusion, soluble multi-trimeric 4-1BBL and BAFF adjuvants led to strong protection from

  8. D316 is critical for the enzymatic activity and HIV-1 restriction potential of human and rhesus APOBEC3B.

    Science.gov (United States)

    McDougle, Rebecca M; Hultquist, Judd F; Stabell, Alex C; Sawyer, Sara L; Harris, Reuben S

    2013-06-20

    APOBEC3B is one of seven human APOBEC3 DNA cytosine deaminases that function to inhibit the replication and persistence of retroelements and retroviruses. Human APOBEC3B restricts the replication of HIV-1 in HEK293 cells, while our laboratory clone of rhesus macaque APOBEC3B did not. We mapped the restriction determinant to a single amino acid difference that alters enzymatic activity. Human APOBEC3B D316 is catalytically active and capable of restricting HIV-1 while rhesus APOBEC3B N316 is not; swapping these residues alters the activity and restriction phenotypes respectively. Genotyping of primate center rhesus macaques revealed uniform homozygosity for aspartate at position 316. Considering the C-to-T nature of the underlying mutation, we suspect that our rhesus APOBEC3B cDNA was inactivated by its own gene product during subcloning in Escherichia coli. This region has been previously characterized for its role in substrate specificity, but these data indicate it also has a fundamental role in deaminase activity. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Hyperthermia stimulates HIV-1 replication.

    Directory of Open Access Journals (Sweden)

    Ferdinand Roesch

    Full Text Available HIV-infected individuals may experience fever episodes. Fever is an elevation of the body temperature accompanied by inflammation. It is usually beneficial for the host through enhancement of immunological defenses. In cultures, transient non-physiological heat shock (42-45°C and Heat Shock Proteins (HSPs modulate HIV-1 replication, through poorly defined mechanisms. The effect of physiological hyperthermia (38-40°C on HIV-1 infection has not been extensively investigated. Here, we show that culturing primary CD4+ T lymphocytes and cell lines at a fever-like temperature (39.5°C increased the efficiency of HIV-1 replication by 2 to 7 fold. Hyperthermia did not facilitate viral entry nor reverse transcription, but increased Tat transactivation of the LTR viral promoter. Hyperthermia also boosted HIV-1 reactivation in a model of latently-infected cells. By imaging HIV-1 transcription, we further show that Hsp90 co-localized with actively transcribing provirus, and this phenomenon was enhanced at 39.5°C. The Hsp90 inhibitor 17-AAG abrogated the increase of HIV-1 replication in hyperthermic cells. Altogether, our results indicate that fever may directly stimulate HIV-1 replication, in a process involving Hsp90 and facilitation of Tat-mediated LTR activity.

  10. Phospholipase D1 Couples CD4+ T Cell Activation to c-Myc-Dependent Deoxyribonucleotide Pool Expansion and HIV-1 Replication.

    Directory of Open Access Journals (Sweden)

    Harry E Taylor

    2015-05-01

    Full Text Available Quiescent CD4+ T cells restrict human immunodeficiency virus type 1 (HIV-1 infection at early steps of virus replication. Low levels of both deoxyribonucleotide triphosphates (dNTPs and the biosynthetic enzymes required for their de novo synthesis provide one barrier to infection. CD4+ T cell activation induces metabolic reprogramming that reverses this block and facilitates HIV-1 replication. Here, we show that phospholipase D1 (PLD1 links T cell activation signals to increased HIV-1 permissivity by triggering a c-Myc-dependent transcriptional program that coordinates glucose uptake and nucleotide biosynthesis. Decreasing PLD1 activity pharmacologically or by RNA interference diminished c-Myc-dependent expression during T cell activation at the RNA and protein levels. PLD1 inhibition of HIV-1 infection was partially rescued by adding exogenous deoxyribonucleosides that bypass the need for de novo dNTP synthesis. Moreover, the data indicate that low dNTP levels that impact HIV-1 restriction involve decreased synthesis, and not only increased catabolism of these nucleotides. These findings uncover a unique mechanism of action for PLD1 inhibitors and support their further development as part of a therapeutic combination for HIV-1 and other viral infections dependent on host nucleotide biosynthesis.

  11. Anti-HIV activity of extracts and compounds from marine algae.

    Science.gov (United States)

    Kim, Se-Kwon; Karadeniz, Fatih

    2011-01-01

    In recent years, elucidation of novel bioactive substances from different marine organisms is gaining importance rapidly not only from the research and publications but also from controlled clinical studies of natural product-derived substances. They offer important leads for the development of antiviral drugs against viral infections caused by human immunodeficiency virus type 1 (HIV-1). Regarding this issue, numerous anti-HIV-1 therapeutic agents from marine resources have been reported for their potential medicine/medical application as novel functional ingredients in anti-HIV therapy. In detail, marine macroalgae have attracted much of attention as a reliable source for potential anti-HIV compounds. Up to date, several types of compounds such as tannins, polysaccharides, lectins, and derivatives have been isolated, identified, and reported to possess significant anti-HIV-1 activity. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Receptor Activation of HIV-1 Env Leads to Asymmetric Exposure of the gp41 Trimer.

    Science.gov (United States)

    Khasnis, Mukta D; Halkidis, Konstantine; Bhardwaj, Anshul; Root, Michael J

    2016-12-01

    Structural rearrangements of HIV-1 glycoprotein Env promote viral entry through membrane fusion. Env is a symmetric homotrimer with each protomer composed of surface subunit gp120 and transmembrane subunit gp41. Cellular CD4- and chemokine receptor-binding to gp120 coordinate conformational changes in gp41, first to an extended prehairpin intermediate (PHI) and, ultimately, into a fusogenic trimer-of-hairpins (TOH). HIV-1 fusion inhibitors target gp41 in the PHI and block TOH formation. To characterize structural transformations into and through the PHI, we employed asymmetric Env trimers containing both high and low affinity binding sites for individual fusion inhibitors. Asymmetry was achieved using engineered Env heterotrimers composed of protomers deficient in either CD4- or chemokine receptor-binding. Linking receptor engagement to inhibitor affinity allowed us to assess conformational changes of individual Env protomers in the context of a functioning trimer. We found that the transition into the PHI could occur symmetrically or asymmetrically depending on the stoichiometry of CD4 binding. Sequential engagement of multiple CD4s promoted progressive exposure of individual fusion inhibitor binding sites in a CD4-dependent fashion. By contrast, engagement of only a single CD4 molecule led to a delayed, but symmetric, exposure of the gp41 trimer. This complex coupling between Env-CD4 interaction and gp41 exposure explained the multiphasic fusion-inhibitor titration observed for a mutant Env homotrimer with a naturally asymmetric gp41. Our results suggest that the spatial and temporal exposure of gp41 can proceed in a nonconcerted, asymmetric manner depending on the number of CD4s that engage the Env trimer. The findings have important implications for the mechanism of viral membrane fusion and the development of vaccine candidates designed to elicit neutralizing antibodies targeting gp41 in the PHI.

  13. Hepatitis B Virus Vaccination in HIV-1-Infected Young Adults: A Tool to Reduce the Size of HIV-1 Reservoirs?

    Science.gov (United States)

    Bekele, Yonas; Graham, Rebecka Lantto; Soeria-Atmadja, Sandra; Nasi, Aikaterini; Zazzi, Maurizio; Vicenti, Ilaria; Naver, Lars; Nilsson, Anna; Chiodi, Francesca

    2018-01-01

    During anti-retroviral therapy (ART) HIV-1 persists in cellular reservoirs, mostly represented by CD4+ memory T cells. Several approaches are currently being undertaken to develop a cure for HIV-1 infection through elimination (or reduction) of these reservoirs. Few studies have so far been conducted to assess the possibility of reducing the size of HIV-1 reservoirs through vaccination in virologically controlled HIV-1-infected children. We recently conducted a vaccination study with a combined hepatitis A virus (HAV) and hepatitis B virus (HBV) vaccine in 22 HIV-1-infected children. We assessed the size of the virus reservoir, measured as total HIV-1 DNA copies in blood cells, pre- and postvaccination. In addition, we investigated by immunostaining whether the frequencies of CD4+ and CD8+ T cells and parameters of immune activation and proliferation on these cells were modulated by vaccination. At 1 month from the last vaccination dose, we found that 20 out of 22 children mounted a serological response to HBV; a majority of children had antibodies against HAV at baseline. The number of HIV-1 DNA copies in blood at 1 month postvaccination was reduced in comparison to baseline although this reduction was not statistically significant. A significant reduction of HIV-1 DNA copies in blood following vaccination was found in 12 children. The frequencies of CD4+ (naïve, effector memory) and CD8+ (central memory) T-cell subpopulations changed following vaccinations and a reduction in the activation and proliferation pattern of these cells was also noticed. Multivariate linear regression analysis revealed that the frequency of CD8+ effector memory T cells prior to vaccination was strongly predictive of the reduction of HIV-1 DNA copies in blood following vaccination of the 22 HIV-1-infected children. The results of this study suggest a beneficial effect of vaccination to reduce the size of virus reservoir in HIV-1-infected children receiving ART. A reduced frequency of

  14. Polyclonal B cell differentiation and loss of gastrointestinal tract germinal centers in the earliest stages of HIV-1 infection.

    Directory of Open Access Journals (Sweden)

    Marc C Levesque

    2009-07-01

    Full Text Available The antibody response to HIV-1 does not appear in the plasma until approximately 2-5 weeks after transmission, and neutralizing antibodies to autologous HIV-1 generally do not become detectable until 12 weeks or more after transmission. Moreover, levels of HIV-1-specific antibodies decline on antiretroviral treatment. The mechanisms of this delay in the appearance of anti-HIV-1 antibodies and of their subsequent rapid decline are not known. While the effect of HIV-1 on depletion of gut CD4(+ T cells in acute HIV-1 infection is well described, we studied blood and tissue B cells soon after infection to determine the effect of early HIV-1 on these cells.In human participants, we analyzed B cells in blood as early as 17 days after HIV-1 infection, and in terminal ileum inductive and effector microenvironments beginning at 47 days after infection. We found that HIV-1 infection rapidly induced polyclonal activation and terminal differentiation of B cells in blood and in gut-associated lymphoid tissue (GALT B cells. The specificities of antibodies produced by GALT memory B cells in acute HIV-1 infection (AHI included not only HIV-1-specific antibodies, but also influenza-specific and autoreactive antibodies, indicating very early onset of HIV-1-induced polyclonal B cell activation. Follicular damage or germinal center loss in terminal ileum Peyer's patches was seen with 88% of follicles exhibiting B or T cell apoptosis and follicular lysis.Early induction of polyclonal B cell differentiation, coupled with follicular damage and germinal center loss soon after HIV-1 infection, may explain both the high rate of decline in HIV-1-induced antibody responses and the delay in plasma antibody responses to HIV-1. Please see later in the article for Editors' Summary.

  15. Spinoculation Triggers Dynamic Actin and Cofilin Activity That Facilitates HIV-1 Infection of Transformed and Resting CD4 T Cells▿

    Science.gov (United States)

    Guo, Jia; Wang, Weifeng; Yu, Dongyang; Wu, Yuntao

    2011-01-01

    Centrifugal inoculation, or spinoculation, is widely used in virology research to enhance viral infection. However, the mechanism remained obscure. Using HIV-1 infection of human T cells as a model, we demonstrate that spinoculation triggers dynamic actin and cofilin activity, probably resulting from cellular responses to centrifugal stress. This actin activity also leads to the upregulation of the HIV-1 receptor and coreceptor, CD4 and CXCR4, enhancing viral binding and entry. We also demonstrate that an actin inhibitor, jasplakinolide, diminishes spin-mediated enhancement. In addition, small interfering RNA (siRNA) knockdown of LIMK1, a cofilin kinase, decreases the enhancement. These results suggest that spin-mediated enhancement cannot be explained simply by a virus-concentrating effect; rather, it is coupled with spin-induced cytoskeletal dynamics that promote receptor mobilization, viral entry, and postentry processes. Our results highlight the importance of cofilin and a dynamic cytoskeleton for the initiation of viral infection. Our results also indicate that caution needs to be taken in data interpretation when cells are spinoculated; some of the spin-induced cellular permissiveness may be beyond the natural capacity of an infecting virus. PMID:21795326

  16. Human Paraoxonase-1 Activity Is Related to the Number of CD4+ T-Cells and Is Restored by Antiretroviral Therapy in HIV-1-Infected Individuals

    Directory of Open Access Journals (Sweden)

    Luciana Morganti Ferreira Maselli

    2014-01-01

    Full Text Available Background. Paraoxonase-1 (PON1 activity is suggested to be altered in individuals infected with human immunodeficiency virus type-1 (HIV-1. We investigated PON1 activity in individuals receiving different regimens of highly active antiretroviral therapy (HAART. Methods. PON1 activity was evaluated in 91 HIV-1 seronegative and 624 HIV-1 infected individuals (115 were not undergoing therapy (ART-naïve, and 509 were receiving HAART. HIV-1 infected individuals were treated with the following: efavirenz (EFV; n=195 or nevirapine (NVP; n=95 or lopinavir/ritonavir (LOP/r; n=219. Serum levels of total cholesterol (TC, HDL, and low-density lipoprotein (LDL fractions and the atherogenic indices (AI, TC : HDL, and LDL : HDL ratios were determined. Results. PON1 activity (U/L was lower in the ART-naïve group compared with the other groups. PON1 activity correlated with CD4+ T-cell number of ART-naïve group (r=0,121; P=0,014. The LOP/r group showed a reduction in HDL and an increase in AI (TC : HDL ratio in comparison with other groups. Conclusion. PON1 activity was reduced in untreated individuals, but not in individuals receiving HAART. PON1 activity correlated with the number of CD4+ T-cells. The findings suggest that the activity of PON1 is associated with the immune status of HIV-1 infected individuals.

  17. Specific Reactivation of Latent HIV-1 by dCas9-SunTag-VP64-mediated Guide RNA Targeting the HIV-1 Promoter.

    Science.gov (United States)

    Ji, Haiyan; Jiang, Zhengtao; Lu, Panpan; Ma, Li; Li, Chuan; Pan, Hanyu; Fu, Zheng; Qu, Xiying; Wang, Pengfei; Deng, Junxiao; Yang, Xinyi; Wang, Jianhua; Zhu, Huanzhang

    2016-03-01

    HIV-1 escapes antiretroviral agents by integrating into the host DNA and forming a latent transcriptionally silent HIV-1 provirus. Transcriptional activation is prerequisite for reactivation and the eradication of latent HIV-1 proviruses. dCas9-SunTag-VP64 transcriptional system has been reported that it can robustly activate the expression of an endogenous gene using a single guide RNA (sgRNA). Here, we systematically investigated the potential of dCas9-SunTag-VP64 with the designed sgRNAs for reactivating latent HIV-1. We found dCas9-SunTag-VP64 with sgRNA 4 or sgRNA 5 targeted from -164 to -146 or -124 to -106 bp upstream of the transcription start sites of HIV-1 could induce high expression of luciferase reporter gene after screening of sgRNAs targeting different regions of the HIV-1 promoter. Further, we confirmed that dCas9-SunTag-VP64 with sgRNA 4 or sgRNA 5 can effectively reactivate latent HIV-1 transcription in several latently infected human T-cell lines. Moreover, we confirmed that the reactivation of latent HIV-1 by dCas9-SunTag-VP64 with the designed sgRNA occurred through specific binding to the HIV-1 LTR promoter without genotoxicity and global T-cell activation. Taken together, our data demonstrated dCas9-SunTag-VP64 system can effectively and specifically reactivate latent HIV-1 transcription, suggesting that this strategy could offer a novel approach to anti-HIV-1 latency.

  18. Antimycobacterial and HIV-1 Reverse Transcriptase Activity of Julianaceae and Clusiaceae Plant Species from Mexico

    Directory of Open Access Journals (Sweden)

    Rocio Gómez-Cansino

    2015-01-01

    Full Text Available The extracts of 14 Julianaceae and 5 Clusiaceae species growing in Mexico were tested in vitro (50 µg/mL against Mycobacterium tuberculosis H37Rv and HIV reverse transcriptase (HIV-RT. The Julianaceae bark and leaf extracts inhibited M. tuberculosis (>84.67% and HIV-RT (58.3% and >67.6%, respectively. The IC50 values for six selected extracts and their cytotoxicity (50 µg/mL to human macrophages were then determined. Amphipterygium glaucum, A. molle, and A. simplicifolium fairly inhibited M. tuberculosis with IC50 of 1.87–2.35 µg/mL; but their IC50 against HIV-RT was 59.25–97.83 µg/mL. Calophyllum brasiliense, Vismia baccifera, and Vismia mexicana effect on M. tuberculosis was noteworthy (IC50 3.02–3.64 µg/mL and also inhibited RT-HIV (IC50 26.24–35.17 µg/mL. These 6 extracts (50 µg/mL presented low toxicity to macrophages (<23.8%. The HPLC profiles of A. glaucum, A. molle, and A. simplicifolium indicated that their antimycobacterial activity cannot be related to masticadienonic, 3α, or 3β-hydromasticadienonic acids, suggesting that other compounds may be responsible for the observed activity or this might be a synergy result. The anti-HIV-RT and antimycobacterial activities induced by C. brasiliense can be attributed to the content of calanolides A, B, as well as soulatrolide.

  19. CD4+CD25+CD127 regulatory cells play multiple roles in maintaining HIV-1 p24 production in patients on long-term treatment: HIV-1 p24-producing cells and suppression of anti-HIV immunity

    Directory of Open Access Journals (Sweden)

    Yan-Mei Jiao

    2015-08-01

    Conclusions: CD4+CD25+CD127 regulatory cells play multiple roles in maintaining HIV-1 p24 production in long-term ART patients. Treg cells may be a target for eliminating the latent HIV reservoir after effective long-term ART.

  20. HIV-1-infected and immune-activated macrophages induce astrocytic differentiation of human cortical neural progenitor cells via the STAT3 pathway.

    Directory of Open Access Journals (Sweden)

    Hui Peng

    Full Text Available Diminished adult neurogenesis is considered a potential mechanism in the pathogenesis of HIV-1-associated dementia (HAD. In HAD, HIV-1-infected and immune-activated brain mononuclear phagocytes (MP; perivascular macrophages and microglia drive central nervous system (CNS inflammation and may alter normal neurogenesis. We previously demonstrated HIV-1-infected and lipopolysaccharide (LPS activated monocyte-derived macrophages (MDM inhibit human neural progenitor cell (NPC neurogenesis, while enhancing astrogliogenesis through the secretion of the inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α, in vitro and in vivo. Here we further test the hypothesis that HIV-1-infected/activated MDM promote NPC astrogliogenesis via activation of the transcription factor signal transducer and activator of transcription 3 (STAT3, a critical factor for astrogliogenesis. Our results show that LPS-activated MDM-conditioned medium (LPS-MCM and HIV-infected/LPS-activated MDM-conditioned medium (LPS+HIV-MCM induced Janus kinase 1 (Jak1 and STAT3 activation. Induction of the Jak-STAT3 activation correlated with increased glia fibrillary acidic protein (GFAP expression, demonstrating an induction of astrogliogenesis. Moreover, STAT3-targeting siRNA (siSTAT3 decreased MCM-induced STAT3 activation and NPC astrogliogenesis. Furthermore, inflammatory cytokines (including IL-6, IL-1β and TNF-α produced by LPS-activated and/or HIV-1-infected MDM may contribute to MCM-induced STAT3 activation and astrocytic differentiation. These observations were confirmed in severe combined immunodeficient (SCID mice with HIV-1 encephalitis (HIVE. In HIVE mice, siRNA control (without target sequence, sicon pre-transfected NPCs injected with HIV-1-infected MDM showed more astrocytic differentiation and less neuronal differentiation of NPCs as compared to NPC injection alone. siSTAT3 abrogated HIV-1-infected MDM-induced astrogliogenesis of injected NPCs. Collectively, these

  1. Immune evasion activities of accessory proteins Vpu, Nef and Vif are conserved in acute and chronic HIV-1 infection.

    Science.gov (United States)

    Mlcochova, Petra; Apolonia, Luis; Kluge, Silvia F; Sridharan, Aishwarya; Kirchhoff, Frank; Malim, Michael H; Sauter, Daniel; Gupta, Ravindra K

    2015-08-01

    Heterosexual HIV-1 transmission has been identified as a genetic bottleneck and a single transmitted/founder (T/F) variant with reduced sensitivity to type I interferon initiates productive infection in most cases. We hypothesized that particularly active accessory protein(s) may confer T/F viruses with a selective advantage in establishing HIV infection. Thus, we tested vpu, vif and nef alleles from six T/F and six chronic (CC) viruses in assays for 9 immune evasion activities involving the counteraction of interferon-stimulated genes and modulation of ligands known to activate innate immune cells. All functions were highly conserved with no significant differences between T/F and CC viruses, suggesting that these accessory protein functions are important throughout the course of infection. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  2. High prevalence of neutralizing activity against multiple unrelated human immunodeficiency virus type 1 (HIV-1) subtype B variants in sera from HIV-1 subtype B-infected individuals: evidence for subtype-specific rather than strain-specific neutralizing activity

    NARCIS (Netherlands)

    van Gils, Marit J.; Edo-Matas, Diana; Schweighardt, Becky; Wrin, Terri; Schuitemaker, Hanneke

    2010-01-01

    It is assumed that an effective human immunodeficiency virus type 1 (HIV-1) vaccine should be capable of eliciting neutralizing antibodies. However, even the best antibodies known to date lack neutralizing ability against a significant proportion of primary HIV-1 variants and, despite great efforts,

  3. Global HIV-1 transmitted drug resistance in the INSIGHT Strategic Timing of AntiRetroviral Treatment (START) trial

    DEFF Research Database (Denmark)

    Baxter, J D; Dunn, D; White, E

    2015-01-01

    of resistance testing in START trial participants. METHODS: In the Strategic Timing of AntiRetroviral Treatment (START) trial, baseline genotypic resistance testing results were collected at study entry and analysed centrally to determine the prevalence of TDR in the study population. Resistance was based...... on a modified 2009 World Health Organization definition to reflect newer resistance mutations. RESULTS: Baseline resistance testing was available in 1946 study participants. Higher rates of testing occurred in Europe (86.7%), the USA (81.3%) and Australia (89.9%) as compared with Asia (22.2%), South America (1...

  4. Development of a Novel Anti-HIV-1 Agent from within: Effect of Chimeric Vpr-Containing Protease Cleavage Site Residues on Virus Replication

    Science.gov (United States)

    Serio, D.; Rizvi, T. A.; Cartas, M.; Kalyanaraman, V. S.; Weber, I. T.; Koprowski, H.; Srinivasan, A.

    1997-04-01

    Effective antiviral agents will be of great value in controlling virus replication and delaying the onset of HIV-1-related disease symptoms. Current therapy involves the use of antiviral agents that target the enzymatic functions of the virus, resulting in the emergence of resistant viruses to these agents, thus lowering their effectiveness. To overcome this problem, we have considered the idea of developing novel agents from within HIV-1 as inhibitors of virus replication. The specificity of the Vpr protein for the HIV-1 virus particle makes it an attractive molecule for the development of antiviral agents targeting the events associated with virus maturation. We have generated chimeric Vpr proteins containing HIV-1-specific sequences added to the C terminus of Vpr. These sequences correspond to nine cleavage sites of the Gag and Gag-Pol precursors of HIV-1. The chimeric Vpr constructs were introduced into HIV-1 proviral DNA to assess their effect on virus infectivity using single- and multiple-round replication assays. The virus particles generated exhibited a variable replication pattern depending on the protease cleavage site used as a fusion partner. Interestingly, the chimeric Vpr containing the cleavage sequences from the junction of p24 and p2, 24/2, completely abolished virus infectivity. These results show that chimeric proteins generated from within HIV-1 have the ability to suppress HIV-1 replication and make ideal agents for gene therapy or intracellular immunization to treat HIV-1 infection.

  5. Combinations against combinations: associations of anti-HIV 1 reverse transcriptase drugs challenged by constellations of drug resistance mutations.

    Science.gov (United States)

    Maga, Giovanni; Spadari, Silvio

    2002-02-01

    The reverse transcriptase inhibitors still represent the majority of the clinically used anti-HIV drugs and constitute the main backbone of currently employed combinatorial regimens. A major obstacle to successfull chemotherapic eradication of HIV is the emergence of viral strains resistant to the drugs in use. Counteracting the emergence of resistance necessitates alternating the panel of agents employed. In order to rationally design alternative drug combinations, physicians not only must know the genotype of the emerging viral strains, but should also be able to correlate it with its resistant phenotype. However, resistant viral strains usually carry multiple mutations, whose reciprocal influences on the overall level of resistance are largely unknown. Moreover, the choice of agents to be combined must take in account drug-drug interactions and adverse metabolic effects. This review will outline the main pharmacological and clinical features of the currently utilised anti-reverse transcriptase drugs, as well as the correspondent resistance profiles selected during therapy. A major focus will be on the reciprocal influence of drug associations on their own metabolism as well as on the interacting effects of the selected combinations of drug resistance mutations.

  6. Different pattern of immunoglobulin gene usage by HIV-1 compared to non-HIV-1 antibodies derived from the same infected subject.

    Directory of Open Access Journals (Sweden)

    Liuzhe Li

    Full Text Available A biased usage of immunoglobulin (Ig genes is observed in human anti-HIV-1 monoclonal antibodies (mAbs resulting probably from compensation to reduced usage of the VH3 family genes, while the other alternative suggests that this bias usage is due to antigen requirements. If the antigen structure is responsible for the preferential usage of particular Ig genes, it may have certain implications for HIV vaccine development by the targeting of particular Ig gene-encoded B cell receptors to induce neutralizing anti-HIV-1 antibodies. To address this issue, we have produced HIV-1 specific and non-HIV-1 mAbs from an infected individual and analyzed the Ig gene usage. Green-fluorescence labeled virus-like particles (VLP expressing HIV-1 envelope (Env proteins of JRFL and BaL and control VLPs (without Env were used to select single B cells for the production of 68 recombinant mAbs. Ten of these mAbs were HIV-1 Env specific with neutralizing activity against V3 and the CD4 binding site, as well as non-neutralizing mAbs to gp41. The remaining 58 mAbs were non-HIV-1 Env mAbs with undefined specificities. Analysis revealed that biased usage of Ig genes was restricted only to anti-HIV-1 but not to non-HIV-1 mAbs. The VH1 family genes were dominantly used, followed by VH3, VH4, and VH5 among anti-HIV-1 mAbs, while non-HIV-1 specific mAbs preferentially used VH3 family genes, followed by VH4, VH1 and VH5 families in a pattern identical to Abs derived from healthy individuals. This observation suggests that the biased usage of Ig genes by anti-HIV-1 mAbs is driven by structural requirements of the virus antigens rather than by compensation to any depletion of VH3 B cells due to autoreactive mechanisms, according to the gp120 superantigen hypothesis.

  7. A flavonoid, luteolin, cripples HIV-1 by abrogation of tat function.

    Directory of Open Access Journals (Sweden)

    Rajeev Mehla

    Full Text Available Despite the effectiveness of combination antiretroviral treatment (cART against HIV-1, evidence indicates that residual infection persists in different cell types. Intensification of cART does not decrease the residual viral load or immune activation. cART restricts the synthesis of infectious virus but does not curtail HIV-1 transcription and translation from either the integrated or unintegrated viral genomes in infected cells. All treated patients with full viral suppression actually have low-level viremia. More than 60% of treated individuals also develop minor HIV-1 -associated neurocognitive deficits (HAND due to residual virus and immune activation. Thus, new therapeutic agents are needed to curtail HIV-1 transcription and residual virus. In this study, luteolin, a dietary supplement, profoundly reduced HIV-1 infection in reporter cells and primary lymphocytes. HIV-1inhibition by luteolin was independent of viral entry, as shown by the fact that wild-type and VSV-pseudotyped HIV-1 infections were similarly inhibited. Luteolin was unable to inhibit viral reverse transcription. Luteolin had antiviral activity in a latent HIV-1 reactivation model and effectively ablated both clade-B- and -C -Tat-driven LTR transactivation in reporter assays but had no effect on Tat expression and its sub-cellular localization. We conclude that luteolin confers anti-HIV-1 activity at the Tat functional level. Given its biosafety profile and ability to cross the blood-brain barrier, luteolin may serve as a base flavonoid to develop potent anti-HIV-1 derivatives to complement cART.

  8. Detection of anti-HIV-1 IgG antibodies in whole saliva by GACELISA and Western blot assays.

    Science.gov (United States)

    Matee, M I; Lyamuya, E F; Simon, E; Mbena, E C; Kagoma, C; Samaranayake, L P; Scheutz, F

    1996-05-01

    The present study, based on 158 HIV seropositives and 167 HIV seronegatives, demonstrates that saliva collected with the Omni-SAL device and tested with GACELISA (an IgG antibody capture ELISA) is an effective non-invasive alternative to serum for anti-HIV IgG antibody screening. The study also shows that a conventional serum Western blot kit can be used, with slight modifications, for confirmatory testing of saliva specimens. Collecting saliva with the Omni-SAL device had a very good acceptance rate among Tanzanian subjects, and although this diagnostic method is not yet known by the general public, 65% of the study participants preferred to give saliva instead of blood for HIV testing.

  9. Conditional trimerization and lytic activity of HIV-1 gp41 variants containing the membrane-associated segments.

    Science.gov (United States)

    Dai, Zhou; Tao, Yisong; Liu, Nina; Brenowitz, Michael D; Girvin, Mark E; Lai, Jonathan R

    2015-03-03

    Fusion of host and viral membranes is a critical step during infection by membrane-bound viruses. The HIV-1 glycoproteins gp120 (surface subunit) and gp41 (fusion subunit) represent the prototypic system for studying this process; in the prevailing model, the gp41 ectodomain forms a trimeric six-helix bundle that constitutes a critical intermediate and provides the energetic driving force for overcoming barriers associated with membrane fusion. However, most structural studies of gp41 variants have been performed either on ectodomain constructs lacking one or more of the membrane-associated segments (the fusion peptide, FP, the membrane-proximal external region, MPER, and the transmembrane domain, TM) or on variants consisting of these isolated segments alone without the ectodomain. Several recent reports have suggested that the HIV-1 ectodomain, as well as larger construct containing the membrane-bound segments, dissociates from a trimer to a monomer in detergent micelles. Here we compare the properties of a series of gp41 variants to delineate the roles of the ectodomain, FP, and MPER and TM, all in membrane-mimicking environments. We find that these proteins are prone to formation of a monomer in detergent micelles. In one case, we observed exclusive monomer formation at pH 4 but conditional trimerization at pH 7 even at low micromolar (∼5 μM) protein concentrations. Liposome release assays demonstrate that these gp41-related proteins have the capacity to induce content leakage but that this activity is also strongly modulated by pH with much higher activity at pH 4. Circular dichroism, nuclear magnetic resonance, and binding assays with antibodies specific to the MPER provide insight into the structural and functional roles of the FP, MPER, and TM and their effect on structure within the larger context of the fusion subunit.

  10. Species-specific activity of SIV Nef and HIV-1 Vpu in overcoming restriction by tetherin/BST2.

    Directory of Open Access Journals (Sweden)

    Bin Jia

    2009-05-01

    Full Text Available Tetherin, also known as BST2, CD317 or HM1.24, was recently identified as an interferon-inducible host-cell factor that interferes with the detachment of virus particles from infected cells. HIV-1 overcomes this restriction by expressing an accessory protein, Vpu, which counteracts tetherin. Since lentiviruses of the SIV(smm/mac/HIV-2 lineage do not have a vpu gene, this activity has likely been assumed by other viral gene products. We found that deletion of the SIV(mac239 nef gene significantly impaired virus release in cells expressing rhesus macaque tetherin. Virus release could be restored by expressing Nef in trans. However, Nef was unable to facilitate virus release in the presence of human tetherin. Conversely, Vpu enhanced virus release in the presence of human tetherin, but not in the presence of rhesus tetherin. In accordance with the species-specificity of Nef in mediating virus release, SIV Nef downregulated cell-surface expression of rhesus tetherin, but did not downregulate human tetherin. The specificity of SIV Nef for rhesus tetherin mapped to four amino acids in the cytoplasmic domain of the molecule that are missing from human tetherin, whereas the specificity of Vpu for human tetherin mapped to amino acid differences in the transmembrane domain. Nef alleles of SIV(smm, HIV-2 and HIV-1 were also able to rescue virus release in the presence of both rhesus macaque and sooty mangabey tetherin, but were generally ineffective against human tetherin. Thus, the ability of Nef to antagonize tetherin from these Old World primates appears to be conserved among the primate lentiviruses. These results identify Nef as the viral gene product of SIV that opposes restriction by tetherin in rhesus macaques and sooty mangabeys, and reveal species-specificity in the activities of both Nef and Vpu in overcoming tetherin in their respective hosts.

  11. Inhibition of HIV-1 reactivation by a telomerase-derived peptide in a HSP90-dependent manner.

    Science.gov (United States)

    Kim, Hong; Choi, Myung-Soo; Inn, Kyung-Soo; Kim, Bum-Joon

    2016-07-01

    A peptide vaccine designed to induce T-cell immunity to telomerase, GV1001, has been shown to modulate cellular signaling pathways and confer a direct anti-cancer effect through the interaction with heat shock protein (HSP) 90 and 70. Here, we have found that GV1001 can modulate transactivation protein-mediated human immunodeficiency virus (HIV)-1 transactivation in an HSP90-dependent manner. GV1001 treatment resulted in significant suppression of HIV-1 replication and rescue of infected cells from death by HIV-1. Transactivation of HIV-long terminal repeat (LTR) was inhibited by GV1001, indicating that GV1001 suppressed the transcription from proviral HIV DNA. The anti-HIV-1 activity of GV1001 was completely abrogated by an HSP90-neutralizing antibody, indicating that the antiviral activity depends on HSP90. Further mechanistic studies revealed that GV1001 suppresses basal NF-κB activation, which is required for HIV-1 LTR transactivation in an HSP90-dependent manner. Inhibition of LTR transactivation by GV1001 suggests its potential to suppress HIV-1 reactivation from latency. Indeed, PMA-mediated reactivation of HIV-1 from latent infected cells was suppressed by GV1001. The results suggest the potential therapeutic use of GV1001, a peptide proven to be safe for human use, as an anti-HIV-1 agent to suppress the reactivation from latently infected cells.

  12. Inhibitors of HIV-1 attachment: The discovery and structure-activity relationships of tetrahydroisoquinolines as replacements for the piperazine benzamide in the 3-glyoxylyl 6-azaindole pharmacophore.

    Science.gov (United States)

    Swidorski, Jacob J; Liu, Zheng; Yin, Zhiwei; Wang, Tao; Carini, David J; Rahematpura, Sandhya; Zheng, Ming; Johnson, Kim; Zhang, Sharon; Lin, Pin-Fang; Parker, Dawn D; Li, Wenying; Meanwell, Nicholas A; Hamann, Lawrence G; Regueiro-Ren, Alicia

    2016-01-01

    6,6-Fused ring systems including tetrahydroisoquinolines and tetrahydropyrido[3,4-d]pyrimidines have been explored as possible replacements for the piperazine benzamide portion of the HIV-1 attachment inhibitor BMS-663068. In initial studies, the tetrahydroisoquinoline compounds demonstrate sub-nanomolar activity in a HIV-1 pseudotype viral infection assay used as the initial screen for inhibitory activity. Analysis of SARs and approaches to optimization for an improved drug-like profile are examined herein. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Differential effect of CLK SR Kinases on HIV-1 gene expression: potential novel targets for therapy

    Directory of Open Access Journals (Sweden)

    Dobson Wendy

    2011-06-01

    Full Text Available Abstract Background RNA processing plays a critical role in the replication of HIV-1, regulated in part through the action of host SR proteins. To explore the impact of modulating SR protein activity on virus replication, the effect of increasing or inhibiting the activity of the Cdc2-like kinase (CLK family of SR protein kinases on HIV-1 expression and RNA processing was examined. Results Despite their high homology, increasing individual CLK expression had distinct effects on HIV-1, CLK1 enhancing Gag production while CLK2 inhibited the virus. Parallel studies on the anti-HIV-1 activity of CLK inhibitors revealed a similar discrepant effect on HIV-1 expression. TG003, an inhibitor of CLK1, 2 and 4, had no effect on viral Gag synthesis while chlorhexidine, a CLK2, 3 and 4 inhibitor, blocked virus production. Chlorhexidine treatment altered viral RNA processing, decreasing levels of unspliced and single spliced viral RNAs, and reduced Rev accumulation. Subsequent experiments in the context of HIV-1 replication in PBMCs confirmed the capacity of chlorhexidine to suppress virus replication. Conclusions Together, these findings establish that HIV-1 RNA processing can be targeted to suppress virus replication as demonstrated by manipulating individual CLK function and identified chlorhexidine as a lead compound in the development of novel anti-viral therapies.

  14. Reversible and efficient activation of HIV-1 cell entry by a tyrosine-sulfated peptide dissects endocytic entry and inhibitor mechanisms.

    Science.gov (United States)

    Platt, Emily J; Gomes, Michelle M; Kabat, David

    2014-04-01

    HIV-1 membranes contain gp120-gp41 trimers. Binding of gp120 to CD4 and a coreceptor (CCR5 or CXCR4) reduces the constraint on metastable gp41, enabling a series of conformational changes that cause membrane fusion. An analytic difficulty occurs because these steps occur slowly and asynchronously within cohorts of adsorbed virions. We previously isolated HIV-1JRCSF variants that efficiently use CCR5 mutants severely damaged in the tyrosine-sulfated amino terminus or extracellular loop 2. Surprisingly, both independent adaptations included gp120 mutations S298N, F313L, and N403S, supporting other evidence that they function by weakening gp120's grip on gp41 rather than by altering gp120 binding to specific CCR5 sites. Although several natural HIV-1 isolates reportedly use CCR5(Δ18) (CCR5 with a deletion of 18 N-terminal amino acids, including the tyrosine-sulfated region) when the soluble tyrosine-sulfated peptide is present, we show that HIV-1JRCSF with the adaptive mutations [HIV-1JRCSF(Ad)] functions approximately 100 times more efficiently and that coreceptor activation is reversible, enabling synchronous efficient entry control under physiological conditions. This system revealed that three-stranded gp41 folding intermediates susceptible to the inhibitor enfuvirtide form slowly and asynchronously on cell surface virions but resolve rapidly, with virions generally forming only one target. Adsorbed virions asynchronously and transiently become competent for entry at 37°C but are inactivated if the CCR5 peptide is absent during their window of opportunity. This competency is conferred by endocytosis, which results in inactivation if the peptide is absent. For both wild-type and adapted HIV-1 isolates, early gp41 refolding steps obligatorily occur on cell surfaces, whereas the final step(s) is endosomal. This system powerfully dissects HIV-1 entry and inhibitor mechanisms. We present a powerful means to reversibly and efficiently activate or terminate HIV-1 entry

  15. Reversible and Efficient Activation of HIV-1 Cell Entry by a Tyrosine-Sulfated Peptide Dissects Endocytic Entry and Inhibitor Mechanisms

    Science.gov (United States)

    Platt, Emily J.; Gomes, Michelle M.

    2014-01-01

    ABSTRACT HIV-1 membranes contain gp120-gp41 trimers. Binding of gp120 to CD4 and a coreceptor (CCR5 or CXCR4) reduces the constraint on metastable gp41, enabling a series of conformational changes that cause membrane fusion. An analytic difficulty occurs because these steps occur slowly and asynchronously within cohorts of adsorbed virions. We previously isolated HIV-1JRCSF variants that efficiently use CCR5 mutants severely damaged in the tyrosine-sulfated amino terminus or extracellular loop 2. Surprisingly, both independent adaptations included gp120 mutations S298N, F313L, and N403S, supporting other evidence that they function by weakening gp120's grip on gp41 rather than by altering gp120 binding to specific CCR5 sites. Although several natural HIV-1 isolates reportedly use CCR5(Δ18) (CCR5 with a deletion of 18 N-terminal amino acids, including the tyrosine-sulfated region) when the soluble tyrosine-sulfated peptide is present, we show that HIV-1JRCSF with the adaptive mutations [HIV-1JRCSF(Ad)] functions approximately 100 times more efficiently and that coreceptor activation is reversible, enabling synchronous efficient entry control under physiological conditions. This system revealed that three-stranded gp41 folding intermediates susceptible to the inhibitor enfuvirtide form slowly and asynchronously on cell surface virions but resolve rapidly, with virions generally forming only one target. Adsorbed virions asynchronously and transiently become competent for entry at 37°C but are inactivated if the CCR5 peptide is absent during their window of opportunity. This competency is conferred by endocytosis, which results in inactivation if the peptide is absent. For both wild-type and adapted HIV-1 isolates, early gp41 refolding steps obligatorily occur on cell surfaces, whereas the final step(s) is endosomal. This system powerfully dissects HIV-1 entry and inhibitor mechanisms. IMPORTANCE We present a powerful means to reversibly and efficiently activate or

  16. Natural mannosylation of HIV-1 gp120 imposes no immunoregulatory effects in primary human plasmacytoid dendritic cells

    DEFF Research Database (Denmark)

    Søndergaard, Jonas Nørskov; Vinner, Lasse; Pedersen, Susanne Brix

    2014-01-01

    Plasmacytoid dendritic cells (pDCs) play a vital role in activation of anti-HIV-1 immunity, and suppression of pDCs might mitigate immune responses against HIV-1. HIV-1 gp120 high-mannose has been attributed immunosuppressive roles in human myeloid DCs, but no receptors for high-mannose have so far...... with degree of mannosylation, however, subsequent reduction in the original mannosylation level had no effect on the pDC phenotype. Furthermore, two of the infectious HIV-1 strains induced profound necrosis in pDCs, also in a mannose-independent manner. We therefore conclude that natural mannosylation of HIV......-1 is not involved in HIV-1-mediated immune suppression of pDCs....

  17. Binding of HIV-1 gp120 to DC-SIGN Promotes ASK-1-Dependent Activation-Induced Apoptosis of Human Dendritic Cells

    Science.gov (United States)

    Chan, Vera S. F.; Chung, Nancy P. Y.; Wang, Shu-Rong; Li, Zhongye; Ma, Jing; Lin, Chia-Wei; Hsieh, Ya-Ju; Chang, Kao-Ping; Kung, Sui-Sum; Wu, Yi-Chia; Chu, Cheng-Wei; Tai, Hsiao-Ting; Gao, George F.; Zheng, Bojian; Yokoyama, Kazunari K.; Austyn, Jonathan M.; Lin, Chen-Lung S.

    2013-01-01

    During disease progression to AIDS, HIV-1 infected individuals become increasingly immunosuppressed and susceptible to opportunistic infections. It has also been demonstrated that multiple subsets of dendritic cells (DC), including DC-SIGN(+) cells, become significantly depleted in the blood and lymphoid tissues of AIDS patients, which may contribute to the failure in initiating effective host immune responses. The mechanism for DC depletion, however, is unclear. It is also known that vast quantities of viral envelope protein gp120 are shed from maturing HIV-1 virions and form circulating immune complexes in the serum of HIV-1-infected individuals, but the pathological role of gp120 in HIV-1 pathogenesis remains elusive. Here we describe a previously unrecognized mechanism of DC death in chronic HIV-1 infection, in which ligation of DC-SIGN by gp120 sensitizes DC to undergo accelerated apoptosis in response to a variety of activation stimuli. The cultured monocyte-derived DC and also freshly-isolated DC-SIGN(+) blood DC that were exposed to either cross-linked recombinant gp120 or immune-complex gp120 in HIV(+) serum underwent considerable apoptosis after CD40 ligation or exposure to bacterial lipopolysaccharide (LPS) or pro-inflammatory cytokines such as TNFα and IL-1β. Furthermore, circulating DC-SIGN(+) DC that were isolated directly from HIV-1(+) individuals had actually been pre-sensitized by serum gp120 for activation-induced exorbitant apoptosis. In all cases the DC apoptosis was substantially inhibited by DC-SIGN blockade. Finally, we showed that accelerated DC apoptosis was a direct consequence of excessive activation of the pro-apoptotic molecule ASK-1 and transfection of siRNA against ASK-1 significantly prevented the activation-induced excessive DC death. Our study discloses a previously unknown mechanism of immune modulation by envelope protein gp120, provides new insights into HIV immunopathogenesis, and suggests potential therapeutic approaches to

  18. Immunological and virological consequences of patient-directed antiretroviral therapy interruption during chronic HIV-1 infection.

    Science.gov (United States)

    Burton, C T; Nelson, M R; Hay, P; Gazzard, B G; Gotch, F M; Imami, N

    2005-11-01

    Increasing numbers of patients are choosing to interrupt highly active antiretroviral therapy (HAART). We describe the effect of patient-directed treatment interruption (PDTI) on plasma viral loads (pVL), proviral DNA (pDNA), lymphocyte subsets and immune responses in 24 chronically HIV-1 infected individuals. Patients were divided into group A with pVL > 50 copies/ml and group B with pVL anti-HIV-1 immune responses do not favour the auto-vaccination hypothesis.

  19. Diphtheria Antibodies and T lymphocyte Counts in Patients Infected with HIV-1

    Directory of Open Access Journals (Sweden)

    Francisco A. B. Speranza

    2012-09-01

    Full Text Available We assessed the IgG levels anti-diphtheria (D-Ab and T cell counts (CD4+ and CD8+ in HIV-1 infected subjects undergoing or not highly active antiretroviral therapy (HAART. Approximately 70% of all HIV-1 patients were unprotected against diphtheria. There were no differences in D-Ab according to CD4 counts. Untreated patients had higher D-Ab (geometric mean of 0.62 IU/ml than HAART-patients (geometric mean of 0.39 IU/ml. The data indicated the necessity of keeping all HIV-1 patients up-to-date with their vaccination.

  20. CCR5-Δ32 Heterozygosity, HIV-1 Reservoir Size, and Lymphocyte Activation in Individuals Receiving Long-term Suppressive Antiretroviral Therapy.

    Science.gov (United States)

    Henrich, Timothy J; Hanhauser, Emily; Harrison, Linda J; Palmer, Christine D; Romero-Tejeda, Marisol; Jost, Stephanie; Bosch, Ronald J; Kuritzkes, Daniel R

    2016-03-01

    We conducted a case-controlled study of the associations of CCR5-Δ32 heterozygosity with human immunodeficiency virus type 1 (HIV-1) reservoir size, lymphocyte activation, and CCR5 expression in 114 CCR5(Δ32/WT) and 177 wild-type CCR5 AIDS Clinical Trials Group participants receiving suppressive antiretroviral therapy. Overall, no significant differences were found between groups for any of these parameters. However, higher levels of CCR5 expression correlated with lower amounts of cell-associated HIV-1 RNA. The relationship between CCR5-Δ32 heterozygosity, CCR5 expression, and markers of HIV-1 persistence is likely to be complex and may be influenced by factors such as the duration of ART. © The Author 2015. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  1. HIV-1 Nef binds the DOCK2-ELMO1 complex to activate rac and inhibit lymphocyte chemotaxis.

    Directory of Open Access Journals (Sweden)

    Ajit Janardhan

    2004-01-01

    Full Text Available The infectious cycle of primate lentiviruses is intimately linked to interactions between cells of the immune system. Nef, a potent virulence factor, alters cellular environments to increase lentiviral replication in the host, yet the mechanisms underlying these effects have remained elusive. Since Nef likely functions as an adaptor protein, we exploited a proteomic approach to directly identify molecules that Nef targets to subvert the signaling machinery in T cells. We purified to near homogeneity a major Nef-associated protein complex from T cells and identified by mass spectroscopy its subunits as DOCK2-ELMO1, a key activator of Rac in antigen- and chemokine-initiated signaling pathways, and Rac. We show that Nef activates Rac in T cell lines and in primary T cells following infection with HIV-1 in the absence of antigenic stimuli. Nef activates Rac by binding the DOCK2-ELMO1 complex, and this interaction is linked to the abilities of Nef to inhibit chemotaxis and promote T cell activation. Our data indicate that Nef targets a critical switch that regulates Rac GTPases downstream of chemokine- and antigen-initiated signaling pathways. This interaction enables Nef to influence multiple aspects of T cell function and thus provides an important mechanism by which Nef impacts pathogenesis by primate lentiviruses.

  2. A CRISPR/Cas9 approach reveals that the polymerase activity of DNA polymerase β is dispensable for HIV-1 infection in dividing and nondividing cells.

    Science.gov (United States)

    Goetze, Russell W; Kim, Dong-Hyun; Schinazi, Raymond F; Kim, Baek

    2017-08-25

    Retrovirus integration into the host genome relies on several host enzymes, potentially including DNA polymerase β (Pol β). However, whether human Pol β is essential for lentivirus replication in human cells is unclear. Here, we abolished DNA polymerase β (Pol β) expression by targeting its DNA polymerase domain with CRISPR/Cas9 in human monocytic THP-1 cells to investigate the role of Pol β in HIV-1 transduction in both dividing and nondividing macrophage stages of THP-1 cells. Pol β-knock-out was confirmed by enhanced sensitivity to methyl methanesulfonate-induced DNA damage. Of note, nuclear extracts from Pol β-knock-out THP-1 cells prepared from both dividing and nondividing stages displayed significantly reduced capability to repair the gapped HIV-1 integration intermediate DNA substrate in a biochemical simulation. However, nuclear extract from both dividing and nondividing stages of the Pol β-KO cells had detectable gap repair activity, suggesting that other host DNA polymerases also repair gapped HIV-1 DNA, particularly in dividing cells. Next, when we compared transduction using HIV-1 and simian immunodeficiency virus in control and Pol β-KO cells, the loss of the Pol β expression did not affect transduction efficiency of these lentiviruses in both dividing and nondividing stages. Finally, the gap repair assay indicated that limited cellular dNTP pools, but not Pol β expression, are a primary factor for HIV-1 DNA gap repair, particularly in nondividing cells. These data support the idea that Pol β polymerase activity is dispensable for HIV-1 infection in both dividing and nondividing stages of human cells targeted by the virus. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Production and purification of immunologically active core protein p24 from HIV-1 fused to ricin toxin B subunit in E. coli

    Directory of Open Access Journals (Sweden)

    Gómez-Lim Miguel A

    2009-02-01

    Full Text Available Abstract Background Gag protein from HIV-1 is a polyprotein of 55 kDa, which, during viral maturation, is cleaved to release matrix p17, core p24 and nucleocapsid proteins. The p24 antigen contains epitopes that prime helper CD4 T-cells, which have been demonstrated to be protective and it can elicit lymphocyte proliferation. Thus, p24 is likely to be an integral part of any multicomponent HIV vaccine. The availability of an optimal adjuvant and carrier to enhance antiviral responses may accelerate the development of a vaccine candidate against HIV. The aim of this study was to investigate the adjuvant-carrier properties of the B ricin subunit (RTB when fused to p24. Results A fusion between ricin toxin B subunit and p24 HIV (RTB/p24 was expressed in E. coli. Affinity chromatography was used for purification of p24 alone and RTB/p24 from cytosolic fractions. Biological activity of RTB/p24 was determined by ELISA and affinity chromatography using the artificial receptor glycoprotein asialofetuin. Both assays have demonstrated that RTB/p24 is able to interact with complex sugars, suggesting that the chimeric protein retains lectin activity. Also, RTB/p24 was demonstrated to be immunologically active in mice. Two weeks after intraperitoneal inoculation with RTB/p24 without an adjuvant, a strong anti-p24 immune response was detected. The levels of the antibodies were comparable to those found in mice immunized with p24 alone in the presence of Freund adjuvant. RTB/p24 inoculated intranasally in mice, also elicited significant immune responses to p24, although the response was not as strong as that obtained in mice immunized with p24 in the presence of the mucosal adjuvant cholera toxin. Conclusion In this work, we report the expression in E. coli of HIV-1 p24 fused to the subunit B of ricin toxin. The high levels of antibodies obtained after intranasal and intraperitoneal immunization of mice demonstrate the adjuvant-carrier properties of RTB when

  4. Structural and Functional Analysis of HIV-1 Coreceptors: Roles of Charged Residues and Posttranslational Modifications on Coreceptor Activity

    National Research Council Canada - National Science Library

    Chabot, Donald

    2000-01-01

    .... To define these regions we have employed an alanine-scanning mutagenesis strategy of the extracellular domains of CXCR4 coupled with a highly sensitive reporter-gene assay for HIV-1 Env-mediated membrane fusion...

  5. Engineering Cellular Resistance to HIV-1 Infection In Vivo Using a Dual Therapeutic Lentiviral Vector

    Directory of Open Access Journals (Sweden)

    Bryan P Burke

    2015-01-01

    Full Text Available We described earlier a dual-combination anti-HIV type 1 (HIV-1 lentiviral vector (LVsh5/C46 that downregulates CCR5 expression of transduced cells via RNAi and inhibits HIV-1 fusion via cell surface expression of cell membrane-anchored C46 antiviral peptide. This combinatorial approach has two points of inhibition for R5-tropic HIV-1 and is also active against X4-tropic HIV-1. Here, we utilize the humanized bone marrow, liver, thymus (BLT mouse model to characterize the in vivo efficacy of LVsh5/C46 (Cal-1 vector to engineer cellular resistance to HIV-1 pathogenesis. Human CD34+ hematopoietic stem/progenitor cells (HSPC either nonmodified or transduced with LVsh5/C46 vector were transplanted to generate control and treatment groups, respectively. Control and experimental groups displayed similar engraftment and multilineage hematopoietic differentiation that included robust CD4+ T-cell development. Splenocytes isolated from the treatment group were resistant to both R5- and X4-tropic HIV-1 during ex vivo challenge experiments. Treatment group animals challenged with R5-tropic HIV-1 displayed significant protection of CD4+ T-cells and reduced viral load within peripheral blood and lymphoid tissues up to 14 weeks postinfection. Gene-marking and transgene expression were confirmed stable at 26 weeks post-transplantation. These data strongly support the use of LVsh5/C46 lentiviral vector in gene and cell therapeutic applications for inhibition of HIV-1 infection.

  6. Persistent Inflammation and Endothelial Activation in HIV-1 Infected Patients after 12 Years of Antiretroviral Therapy

    DEFF Research Database (Denmark)

    Rönsholt, Frederikke F; Ullum, Henrik; Katzenstein, Terese L

    2013-01-01

    The study investigated markers of inflammation and endothelial activation in HIV infected patients after 12 years of successful combination antiretroviral treatment (cART).......The study investigated markers of inflammation and endothelial activation in HIV infected patients after 12 years of successful combination antiretroviral treatment (cART)....

  7. Differential induction of anti-V3 crown antibodies with cradle- and ladle-binding modes in response to HIV-1 envelope vaccination.

    Science.gov (United States)

    Balasubramanian, Preetha; Kumar, Rajnish; Williams, Constance; Itri, Vincenza; Wang, Shixia; Lu, Shan; Hessell, Ann J; Haigwood, Nancy L; Sinangil, Faruk; Higgins, Keith W; Liu, Lily; Li, Liuzhe; Nyambi, Phillipe; Gorny, Miroslaw K; Totrov, Maxim; Nadas, Arthur; Kong, Xiang-Peng; Zolla-Pazner, Susan; Hioe, Catarina E

    2017-03-07

    The V3 loop in the HIV envelope gp120 is one of the immunogenic sites targeted by Abs. The V3 crown in particular has conserved structural elements recognized by cross-reactive neutralizing Abs, indicating its potential contribution in protection against HIV. Crystallographic analyses of anti-V3 crown mAbs in complex with the V3 peptides have revealed that these mAbs recognize the conserved sites on the V3 crown via two distinct strategies: a cradle-binding mode (V3C) and a ladle-binding (V3L) mode. However, almost all of the anti-V3 crown mAbs studied in the past were isolated from chronically HIV-infected individuals. The extents to which the two types of anti-V3 crown Abs are generated by vaccination are unknown. This study analyzed the prevalence of V3C-type and V3L-type Ab responses in HIV-infected individuals and in HIV envelope-immunized humans and animals using peptide mimotopes that distinguish the two Ab types. The results show that both V3L-type and V3C-type Abs were generated by the vast majority of chronically HIV-infected humans, although the V3L-type were more prevalent. In contrast, only one of the two V3 Ab types was elicited in vaccinated humans or animal models, irrespective of HIV-1 envelope clades, envelope constructs (oligomeric or monomeric), and protocols (DNA plus protein or protein alone) used for vaccinations. The V3C-type Abs were produced by vaccinated humans, macaques, and rabbits, whereas the V3L-type Abs were made by mice. The V3C-type and V3L-type Abs generated by the vaccinations were able to mediate virus neutralization. These data indicate the restricted repertoires and the species-specific differences in the functional V3-specific Ab responses induced by the HIV envelope vaccines. The study implies the need for improving immunogen designs and vaccination strategies to broaden the diversity of Abs in order to target the different conserved epitopes in the V3 loop and, by extension, in the entire HIV envelope. Published by

  8. Reactivation of latent HIV-1 provirus via targeting protein phosphatase-1.

    Science.gov (United States)

    Tyagi, Mudit; Iordanskiy, Sergey; Ammosova, Tatyana; Kumari, Namita; Smith, Kahli; Breuer, Denitra; Ilatovskiy, Andrey V; Kont, Yasemin Saygideğer; Ivanov, Andrey; Üren, Aykut; Kovalskyy, Dmytro; Petukhov, Michael; Kashanchi, Fatah; Nekhai, Sergei

    2015-07-16

    HIV-1 escapes antiretroviral drugs by integrating into the host DNA and forming a latent transcriptionally silent HIV-1 provirus. This provirus presents the major hurdle in HIV-1 eradication and cure. Transcriptional activation, which is prerequisite for reactivation and the eradication of latent proviruses, is impaired in latently infected T cells due to the lack of host transcription factors, primarily NF-κB and P-TEFb (CDK9/cyclin T1). We and others previously showed that protein phosphatase-1 (PP1) regulates HIV-1 transcription by modulating CDK9 phosphorylation. Recently we have developed a panel of small molecular compounds targeting a non-catalytic site of PP1. Here we generated a new class of sulfonamide-containing compounds that activated HIV-1 in acute and latently infected cells. Among the tested molecules, a small molecule activator of PP1 (SMAPP1) induced both HIV-1 replication and reactivation of latent HIV-1 in chronically infected cultured and primary cells. In vitro, SMAPP1 interacted with PP1 and increased PP1 activity toward a recombinant substrate. Treatment with SMAPP1 increased phosphorylation of CDK9's Ser90 and Thr186 residues, but not Ser175. Proteomic analysis showed upregulation of P-TEFb and PP1 related proteins, including PP1 regulatory subunit Sds22 in SMAPP1-treated T cells. Docking analysis identified a PP1 binding site for SMAPP1 located within the C-terminal binding pocket of PP1. We identified a novel class of PP1-targeting compounds that reactivate latent HIV-1 provirus by targeting PP1, increasing CDK9 phosphorylation and enhancing HIV transcription. This compound represents a novel candidate for anti-HIV-1 therapeutics aiming at eradication of latent HIV-1 reservoirs.

  9. Discontinuation of Pneumocystis carinii pneumonia prophylaxis after start of highly active antiretroviral therapy in HIV-1 infection. EuroSIDA Study Group

    NARCIS (Netherlands)

    Weverling, G. J.; Mocroft, A.; Ledergerber, B.; Kirk, O.; Gonzáles-Lahoz, J.; d'Arminio Monforte, A.; Proenca, R.; Phillips, A. N.; Lundgren, J. D.; Reiss, P.

    1999-01-01

    BACKGROUND: Highly active antiretroviral therapy (HAART) has improved rates of CD4-lymphocyte recovery and decreased the incidence of HIV-1-related morbidity and mortality. We assessed whether prophylaxis against Pneumocystis carinii pneumonia (PCP) can be safely discontinued after HAART is started.

  10. Bulk culture levels of specific cytotoxic T-cell activity against HIV-1 proteins are not associated with risk of death

    DEFF Research Database (Denmark)

    Aladdin, H; Ullum, H; Lepri, A Cozzi

    1999-01-01

    follow-up of 3.0 years. HIV-CTL activity was measured in a 4 h Cr* release assay using autologous target cells expressing HIV-1 BRU isolate gene products (gp-120, gag, pol, nef) and a bulk culture of autologous effector cells. The CD4 count was measured at enrolment and plasma HIV RNA was measured...

  11. The cost of a combination Anti-Retroviral Therapy (cART optimization pathway as maintenance therapy in HIV-1 infected patients

    Directory of Open Access Journals (Sweden)

    Roberto Ravasio

    2017-11-01

    CONCLUSIONS: From the Italian NHS’s perspective, the adoption of a specific cART optimization pathway represents a cost-saving option as maintenance antiretroviral therapy in HIV-1 infected patients.

  12. CD4+ T-cell counts and plasma HIV-1 RNA levels beyond 5 years of highly active antiretroviral therapy (HAART)

    Science.gov (United States)

    Li, Xiuhong; Margolick, Joseph; Jamieson, Beth; Rinaldo, Charles; Phair, John; Jacobson, Lisa

    2012-01-01

    Background The heterogeneity of CD4+ T-cell counts and HIV-1 RNA at 5-12 years after the initiation of highly active antiretroviral therapy (HAART) remains largely uncharacterized. Methods In the Multicenter AIDS Cohort Study, 614 men who initiated HAART contributed data 5-12 years subsequently. Multivariate regression was used to evaluate the predictors of CD4+ counts and HIV-1 RNA levels. Results At 5-12 years post-HAART, the median CD4+ T-cell count was 586 (inter quartile range (IQR): 421-791) cells/μl and 78% of the HIV-1 RNA measurements were undetectable. Higher CD4+ T-cell counts 5-12 years post-HAART were predicted by higher CD4+ T-cell counts and higher total lymphocyte count pre-HAART, lack of hepatitis B or C virus co-infections, and greater CD4+ T-cell change as well as suppressed HIV-1 RNA in the first 5 years after starting HAART. Older men (≥50 years) with 351-500 CD4+ cells/μl at HAART initiation had adjusted mean CD4+ T-cell count of 643 cells/μl at 10-12 years post-HAART, which was similar to the adjusted mean CD4+ T-cell count (670 cells/μl, p=0.45) in this period for younger men starting HAART with lower CD4+ T-cell counts. HIV-1 RNA suppression in the first 5 years post-HAART predicted subsequent viral suppression. Conclusion Immunological and virological responses in the first five years post-HAART predicted subsequent CD4+ T-cell counts and HIV-1 RNA levels. The association between age and subsequent CD4+ T-cell count supports incorporating age in guidelines for use of HAART. PMID:21602699

  13. Immunopathology as a result of highly active antiretroviral therapy in HIV-1-infected patients

    NARCIS (Netherlands)

    Foudraine, N. A.; Hovenkamp, E.; Notermans, D. W.; Meenhorst, P. L.; Klein, M. R.; Lange, J. M.; Miedema, F.; Reiss, P.

    1999-01-01

    OBJECTIVE: Unusual clinical inflammatory syndromes associated with underlying previously unrecognized opportunistic infections are increasingly being noted shortly after starting highly active antiretroviral therapy (HAART). This study examined the possible relationship between such unexpected

  14. Development of Tetravalent, Bispecific CCR5 Antibodies with Antiviral Activity against CCR5 Monoclonal Antibody-Resistant HIV-1 Strains▿

    Science.gov (United States)

    Schanzer, Jürgen; Jekle, Andreas; Nezu, Junichi; Lochner, Adriane; Croasdale, Rebecca; Dioszegi, Marianna; Zhang, Jun; Hoffmann, Eike; Dormeyer, Wilma; Stracke, Jan; Schäfer, Wolfgang; Ji, Changhua; Heilek, Gabrielle; Cammack, Nick; Brandt, Michael; Umana, Pablo; Brinkmann, Ulrich

    2011-01-01

    In this study, we describe novel tetravalent, bispecific antibody derivatives that bind two different epitopes on the HIV coreceptor CCR5. The basic protein formats that we applied were derived from Morrison-type bispecific antibodies: whole IgGs to which we connected single-chain antibodies (scFvs) via (Gly4Ser)n sequences at either the C or N terminus of the light chain or heavy chain. By design optimization, including disulfide stabilization of scFvs or introduction of 30-amino-acid linkers, stable molecules could be obtained in amounts that were within the same range as or no less than 4-fold lower than those observed with monoclonal antibodies in transient expression assays. In contrast to monospecific CCR5 antibodies, bispecific antibody derivatives block two alternative docking sites of CCR5-tropic HIV strains on the CCR5 coreceptor. Consequently, these molecules showed 18- to 57-fold increased antiviral activities compared to the parent antibodies. Most importantly, one prototypic tetravalent CCR5 antibody had antiviral activity against virus strains resistant to the single parental antibodies. In summary, physical linkage of two CCR5 antibodies targeting different epitopes on the HIV coreceptor CCR5 resulted in tetravalent, bispecific antibodies with enhanced antiviral potency against wild-type and CCR5 antibody-resistant HIV-1 strains. PMID:21300827

  15. Hierarchy Low CD4+/CD8+ T-Cell Counts and IFN-γ Responses in HIV-1+ Individuals Correlate with Active TB and/or M.tb Co-Infection.

    Science.gov (United States)

    Shao, Lingyun; Zhang, Xinyun; Gao, Yan; Xu, Yunya; Zhang, Shu; Yu, Shenglei; Weng, Xinhua; Shen, Hongbo; Chen, Zheng W; Jiang, Weimin; Zhang, Wenhong

    2016-01-01

    Detailed studies of correlation between HIV-M.tb co-infection and hierarchy declines of CD8+/CD4+ T-cell counts and IFN-γ responses have not been done. We conducted case-control studies to address this issue. 164 HIV-1-infected individuals comprised of HIV-1+ATB, HIV-1+LTB and HIV-1+TB- groups were evaluated. Immune phenotyping and complete blood count (CBC) were employed to measure CD4+ and CD8+ T-cell counts; T.SPOT.TB and intracellular cytokine staining (ICS) were utilized to detect ESAT6, CFP10 or PPD-specific IFN-γ responses. There were significant differences in median CD4+ T-cell counts between HIV-1+ATB (164/μL), HIV-1+LTB (447/μL) and HIV-1+TB- (329/μL) groups. Hierarchy low CD4+ T-cell counts (500/μL) were correlated significantly with active TB but not M.tb co-infection. Interestingly, hierarchy low CD8+ T-cell counts were not only associated significantly with active TB but also with M.tb co-infection (Pcounts and effector function in HIV-1-infected individuals are correlated with both M.tb co-infection and active TB. Hierarchy low CD4+ T-cell counts and Th1 effector function in HIV-1+ individuals are associated with increased frequencies of active TB, but not M.tb co-infection.

  16. Cyclin T1-dependent genes in activated CD4 T and macrophage cell lines appear enriched in HIV-1 co-factors.

    Directory of Open Access Journals (Sweden)

    Wendong Yu

    2008-09-01

    Full Text Available HIV-1 is dependent upon cellular co-factors to mediate its replication cycle in CD4(+ T cells and macrophages, the two major cell types infected by the virus in vivo. One critical co-factor is Cyclin T1, a subunit of a general RNA polymerase II elongation factor known as P-TEFb. Cyclin T1 is targeted directly by the viral Tat protein to activate proviral transcription. Cyclin T1 is up-regulated when resting CD4(+ T cells are activated and during macrophage differentiation or activation, conditions that are also necessary for high levels of HIV-1 replication. Because Cyclin T1 is a subunit of a transcription factor, the up-regulation of Cyclin T1 in these cells results in the induction of cellular genes, some of which might be HIV-1 co-factors. Using shRNA depletions of Cyclin T1 and transcriptional profiling, we identified 54 cellular mRNAs that appear to be Cyclin T1-dependent for their induction in activated CD4(+ T Jurkat T cells and during differentiation and activation of MM6 cells, a human monocytic cell line. The promoters for these Cyclin T1-dependent genes (CTDGs are over-represented in two transcription factor binding sites, SREBP1 and ARP1. Notably, 10 of these CTDGs have been reported to be involved in HIV-1 replication, a significant over-representation of such genes when compared to randomly generated lists of 54 genes (p value<0.00021. The results of siRNA depletion and dominant-negative protein experiments with two CTDGs identified here, CDK11 and Casein kinase 1 gamma 1, suggest that these genes are involved either directly or indirectly in HIV-1 replication. It is likely that the 54 CTDGs identified here include novel HIV-1 co-factors. The presence of CTDGs in the protein space that was available for HIV-1 to sample during its evolution and acquisition of Tat function may provide an explanation for why CTDGs are enriched in viral co-factors.

  17. A Modified P1 Moiety Enhances in vitro Antiviral Activity against Various Multi-Drug-Resistant HIV-1 Variants and in vitro CNS Penetration Properties of a Novel Nonpeptidic Protease Inhibitor, GRL-10413

    Energy Technology Data Exchange (ETDEWEB)

    Amano, Masayuki; Salcedo-Gómez, Pedro Miguel; Zhao, Rui; Yedidi, Ravikiran S.; Das, Debananda; Bulut, Haydar; Delino, Nicole S.; Sheri, Venkata Reddy; Ghosh, Arun K.; Mitsuya, Hiroaki (Kumamoto); (NIH); (Purdue)

    2016-09-12

    We here report that GRL-10413, a novel non-peptidic HIV-1 protease inhibitor (PI) containing a modified P1 moiety and a sulfonamide isostere, is highly active against laboratory HIV-1 strains and primary clinical isolates (EC50: 0.00035 - 0.0018 μM) with minimal cytotoxicity (CC50: 35.7 μM). GRL-10413 blocked the infectivity and replication of HIV-1NL4-3variants selected by up to 5 μM concentrations of atazanavir, lopinavir, or amprenavir (EC50: 0.0021 - 0.0023 μM). GRL-10413 also maintained its strong antiviral activity against multi-drug-resistant clinical HIV-1 variants isolated from patients, who no longer responded to various antiviral regimens after long-term antiretroviral therapy. The development of resistance against GRL-10413 was significantly delayed compared to that of APV. In addition, GRL-10413 showed a favorable central nervous system (CNS) penetration property as assessed with anin vitroblood brain barrier (BBB) reconstruction system. Analysis of the crystal structure of HIV-1 protease in complex with GRL-10413 demonstrated that the modified P1 moiety of GRL-10413 has a greater hydrophobic surface area and makes greater van der Waals contacts with active-site amino acids of protease than in the case of darunavir. Moreover, the chlorine substituent in the P1 moiety interacts with protease in two distinct configurations. The present data demonstrate that GRL-10413 has desirable features for treating patients infected with wild-type and/or multi-drug-resistant HIV-1 variants with favorable CNS-penetration capability and that the newly modified P1-moiety may confer desirable features in designing novel anti-HIV-1 PIs.

  18. Persistent inflammation and endothelial activation in HIV-1 infected patients after 12 years of antiretroviral therapy.

    Directory of Open Access Journals (Sweden)

    Frederikke F Rönsholt

    Full Text Available The study investigated markers of inflammation and endothelial activation in HIV infected patients after 12 years of successful combination antiretroviral treatment (cART.Inflammation and endothelial activation were assessed by measuring levels of immunoglobulins, β2-microglobulin, interleukin (IL 8, tumor necrosis factor α (TNFα, vascular cell adhesion molecule-1 (sVCAM-1, intercellular adhesion molecule-1 (sICAM-1, sE-Selectin, and sP-Selectin.HIV infected patients had higher levels of β2-microglobulin, IL-8, TNFα, and sICAM-1 than uninfected controls, and HIV infected patients lacked correlation between platelet counts and sP-Selectin levels found in uninfected controls.Discrete signs of systemic and vascular inflammation persist even after very long term cART.

  19. Genome-Wide Association Study Identifies Single Nucleotide Polymorphism in DYRK1A Associated with Replication of HIV-1 in Monocyte-Derived Macrophages

    NARCIS (Netherlands)

    Bol, Sebastiaan M.; Moerland, Perry D.; Limou, Sophie; van Remmerden, Yvonne; Coulonges, Cédric; van Manen, Daniëlle; Herbeck, Joshua T.; Fellay, Jacques; Sieberer, Margit; Sietzema, Jantine G.; van 't Slot, Ruben; Martinson, Jeremy; Zagury, Jean-François; Schuitemaker, Hanneke; van 't Wout, Angélique B.

    2011-01-01

    Background: HIV-1 infected macrophages play an important role in rendering resting T cells permissive for infection, in spreading HIV-1 to T cells, and in the pathogenesis of AIDS dementia. During highly active anti-retroviral treatment (HAART), macrophages keep producing virus because tissue

  20. HIV-1 envelope glycoprotein

    Science.gov (United States)

    Caulfield, Michael; Cupo, Albert; Dean, Hansi; Hoffenberg, Simon; King, C. Richter; Klasse, P. J.; Marozsan, Andre; Moore, John P.; Sanders, Rogier W.; Ward, Andrew; Wilson, Ian; Julien, Jean-Philippe

    2017-08-22

    The present application relates to novel HIV-1 envelope glycoproteins, which may be utilized as HIV-1 vaccine immunogens, and antigens for crystallization, electron microscopy and other biophysical, biochemical and immunological studies for the identification of broad neutralizing antibodies. The present invention encompasses the preparation and purification of immunogenic compositions, which are formulated into the vaccines of the present invention.

  1. Secondary structure in solution of two anti-HIV-1 hammerhead ribozymes as investigated by two-dimensional 1H 500 MHz NMR spectroscopy in water

    Science.gov (United States)

    Sarma, R. H.; Sarma, M. H.; Rein, R.; Shibata, M.; Setlik, R. S.; Ornstein, R. L.; Kazim, A. L.; Cairo, A.; Tomasi, T. B.

    1995-01-01

    Two hammerhead chimeric RNA/DNA ribozymes (HRz) were synthesized in pure form. Both were 30 nucleotides long, and the sequences were such that they could be targeted to cleave the HIV-1 gag RNA. Named HRz-W and HRz-M, the former had its invariable core region conserved, the latter had a uridine in the invariable region replaced by a guanine. Their secodary structures were determined by 2D NOESY 1H 500 MHz NMR spectroscopy in 90% water and 10% D2(0), following the imino protons. The data show that both HRz-M and HRz-W form identical secondary structures with stem regions consisting of continuous stacks of AT and GT pairs. An energy minimized computer model of this stem region is provided. The results suggest that the loss of catalytic activity that is known to result when an invariant core residue is replaced is not related to the secondary structure of the ribozymes in the absence of substrate.

  2. Synergistic Activation of Latent HIV-1 Expression by Novel Histone Deacetylase Inhibitors and Bryostatin-1.

    Science.gov (United States)

    Martínez-Bonet, Marta; Clemente, Maria Isabel; Serramía, Maria Jesús; Muñoz, Eduardo; Moreno, Santiago; Muñoz-Fernández, Maria Ángeles

    2015-11-13

    Viral reactivation from latently infected cells has become a promising therapeutic approach to eradicate HIV. Due to the complexity of the viral latency, combinations of efficient and available drugs targeting different pathways of latency are needed. In this work, we evaluated the effect of various combinations of bryostatin-1 (BRY) and novel histone deacetylase inhibitors (HDACIs) on HIV-reactivation and on cellular phenotype. The lymphocyte (J89GFP) or monocyte/macrophage (THP89GFP) latently infected cell lines were treated with BRY, panobinostat (PNB) and romidepsin (RMD) either alone or in combination. Thus, the effect on the viral reactivation was evaluated. We calculated the combination index for each drug combination; the BRY/HDACIs showed a synergistic HIV-reactivation profile in the majority of the combinations tested, whereas non-synergistic effects were observed when PNB was mixed with RMD. Indeed, the 75% effective concentrations of BRY, PNB and RMD were reduced in these combinations. Moreover, primary CD4 T cells treated with such drug combinations presented similar activation and proliferation profiles in comparison with single drug treated cells. Summing up, combinations between BRY, PNB and/or RMD presented a synergistic profile by inducing virus expression in HIV-latently infected cells, rendering these combinations an attractive novel and safe option for future clinical trials.

  3. CD4-induced activation in a soluble HIV-1 Env trimer.

    Science.gov (United States)

    Guttman, Miklos; Garcia, Natalie K; Cupo, Albert; Matsui, Tsutomu; Julien, Jean-Philippe; Sanders, Rogier W; Wilson, Ian A; Moore, John P; Lee, Kelly K

    2014-07-08

    The HIV envelope glycoprotein (Env) trimer undergoes receptor-induced conformational changes that drive fusion of the viral and cellular membranes. Env conformational changes have been observed using low-resolution electron microscopy, but only large-scale rearrangements have been visible. Here, we use hydrogen-deuterium exchange and oxidative labeling to gain a more precise understanding of the unliganded and CD4-bound forms of soluble Env trimers (SOSIP.664), including their glycan composition. CD4 activation induces the reorganization of bridging sheet elements, V1/V2 and V3, much of the gp120 inner domain, and the gp41 fusion subunit. Two CD4 binding site-targeted inhibitors have substantially different effects: NBD-556 partially mimics CD4-induced destabilization of the V1/V2 and V3 crown, whereas BMS-806 only affects regions around the gp120/gp41 interface. The structural information presented here increases our knowledge of CD4- and small molecule-induced conformational changes in Env and the allosteric pathways that lead to membrane fusion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Dendritic cells exposed to MVA-based HIV-1 vaccine induce highly functional HIV-1-specific CD8(+ T cell responses in HIV-1-infected individuals.

    Directory of Open Access Journals (Sweden)

    Núria Climent

    Full Text Available Currently, MVA virus vectors carrying HIV-1 genes are being developed as HIV-1/AIDS prophylactic/therapeutic vaccines. Nevertheless, little is known about the impact of these vectors on human dendritic cells (DC and their capacity to present HIV-1 antigens to human HIV-specific T cells. This study aimed to characterize the interaction of MVA and MVA expressing the HIV-1 genes Env-Gag-Pol-Nef of clade B (referred to as MVA-B in human monocyte-derived dendritic cells (MDDC and the subsequent processes of HIV-1 antigen presentation and activation of memory HIV-1-specific T lymphocytes. For these purposes, we performed ex vivo assays with MDDC and autologous lymphocytes from asymptomatic HIV-infected patients. Infection of MDDC with MVA-B or MVA, at the optimal dose of 0.3 PFU/MDDC, induced by itself a moderate degree of maturation of MDDC, involving secretion of cytokines and chemokines (IL1-ra, IL-7, TNF-α, IL-6, IL-12, IL-15, IL-8, MCP-1, MIP-1α, MIP-1β, RANTES, IP-10, MIG, and IFN-α. MDDC infected with MVA or MVA-B and following a period of 48 h or 72 h of maturation were able to migrate toward CCL19 or CCL21 chemokine gradients. MVA-B infection induced apoptosis of the infected cells and the resulting apoptotic bodies were engulfed by the uninfected MDDC, which cross-presented HIV-1 antigens to autologous CD8(+ T lymphocytes. MVA-B-infected MDDC co-cultured with autologous T lymphocytes induced a highly functional HIV-specific CD8(+ T cell response including proliferation, secretion of IFN-γ, IL-2, TNF-α, MIP-1β, MIP-1α, RANTES and IL-6, and strong cytotoxic activity against autologous HIV-1-infected CD4(+ T lymphocytes. These results evidence the adjuvant role of the vector itself (MVA and support the clinical development of prophylactic and therapeutic anti-HIV vaccines based on MVA-B.

  5. A primary cell model of HIV-1 latency that uses activation through the T cell receptor and return to quiescence to establish latent infection

    Science.gov (United States)

    Kim, Michelle; Hosmane, Nina N.; Bullen, C. Korin; Capoferri, Adam; Yang, Hung-Chih; Siliciano, Janet D.; Siliciano, Robert F.

    2015-01-01

    A mechanistic understanding of HIV-1 latency depends upon a model system that recapitulates the in vivo condition of latently infected, resting CD4+ T lymphocytes. Latency appears to be established after activated CD4+ T cells, the principal targets of HIV-1 infection, become productively infected and survive long enough to return to a resting memory state in which viral expression is inhibited by changes in the cellular environment. This protocol describes an ex vivo primary cell system that is generated under conditions that reflect the in vivo establishment of latency. Creation of these latency model cells takes 12 weeks and, once established, the cells can be maintained and used for several months. The resulting cell population contains both uninfected and latently infected cells. This primary cell model can be used to perform drug screens, study CTL responses to HIV-1, compare viral alleles, or to expand the ex vivo lifespan of cells from HIV-1 infected individuals for extended study. PMID:25375990

  6. The perlecan heparan sulfate proteoglycan mediates cellular uptake of HIV-1 Tat through a pathway responsible for biological activity

    International Nuclear Information System (INIS)

    Cell surface heparan sulfate proteoglycans (HSPGs) mediate internalization of HIV-1 Tat. Herein, we report that human WiDr cells, which express perlecan but no other HSPGs, can internalize 125 I-labeled Tat with minimal lysosomal degradation. Pre-treatment of cells with heparitinase almost completely abolished 125 I-Tat surface binding, while the use of an HIV-1 long terminal repeat (LTR) promoter-reporter construct demonstrated that transactivation was potently blocked by pretreatment of cells with heparitinase, indicating an essential role for perlecan in the biologic effects of Tat. We conclude that the perlecan mediates Tat uptake and is required for HIV-1 LTR-directed transactivation in this human cell type

  7. Rapid progressing allele HLA-B35 Px restricted anti-HIV-1 CD8+ T cells recognize vestigial CTL epitopes.

    Directory of Open Access Journals (Sweden)

    Christian B Willberg

    Full Text Available The HLA-B*35-Px allele has been associated with rapid disease progression in HIV-1 infection, in contrast to the HLA-B*35-Py allele.Immune responses to two HLA-B*35 restricted HIV-1 specific CTL epitopes and their variants were followed longitudinally during early HIV-1 infection in 16 HLA-B*35+ individuals. Subjects expressing HLA-B*35-Px alleles showed no difference in response to the consensus epitopes compared to individuals with HLA-B*35-Py alleles. Surprisingly, all the HLA-B*35-Px+ individuals responded to epitope-variants even in the absence of a consensus response. Sequencing of the viral population revealed no evidence of variant virus in any of the individuals.This demonstrates a novel phenomenon that distinguishes individuals with the HLA-B*35-Px rapid progressing allele and those with the HLA-B*35-Py slower progressing allele.

  8. Interaction between Tat and Drugs of Abuse during HIV-1 Infection and Central Nervous System Disease.

    Science.gov (United States)

    Maubert, Monique E; Pirrone, Vanessa; Rivera, Nina T; Wigdahl, Brian; Nonnemacher, Michael R

    2015-01-01

    In many individuals, drug abuse is intimately linked with HIV-1 infection. In addition to being associated with one-third of all HIV-1 infections in the United States, drug abuse also plays a role in disease progression and severity in HIV-1-infected patients, including adverse effects on the central nervous system (CNS). Specific systems within the brain are known to be damaged in HIV-1-infected individuals and this damage is similar to that observed in drug abuse. Even in the era of anti-retroviral therapy (ART), CNS pathogenesis occurs with HIV-1 infection, with a broad range of cognitive impairment observed, collectively referred to as HIV-1-associated neurocognitive disorders (HAND). A number of HIV-1 proteins (Tat, gp120, Nef, Vpr) have been implicated in the etiology of pathogenesis and disease as a result of the biologic activity of the extracellular form of each of the proteins in a number of tissues, including the CNS, even in ART-suppressed patients. In this review, we have made Tat the center of attention for a number of reasons. First, it has been shown to be synthesized and secreted by HIV-1-infected cells in the CNS, despite the most effective suppression therapies available to date. Second, Tat has been shown to alter the functions of several host factors, disrupting the molecular and biochemical balance of numerous pathways contributing to cellular toxicity, dysfunction, and death. In addition, the advantages and disadvantages of ART suppression with regard to controlling the genesis and progression of neurocognitive impairment are currently under debate in the field and are yet to be fully determined. In this review, we discuss the individual and concerted contributions of HIV-1 Tat, drug abuse, and ART with respect to damage in the CNS, and how these factors contribute to the development of HAND in HIV-1-infected patients.

  9. Sulfated Polysaccharides in Marine Sponges: Extraction Methods and Anti-HIV Activity

    Directory of Open Access Journals (Sweden)

    Ana I. S. Esteves

    2011-01-01

    Full Text Available The extraction, fractionation and HIV-1 inhibition potential of polysaccharides extracted from three species of marine sponges, Erylus discophorus, Cliona celata and Stelletta sp., collected in the Northeastern Atlantic, is presented in this work. The anti-HIV activity of 23 polysaccharide pellets and three crude extracts was tested. Crude extracts prepared from Erylus discophorus specimens were all highly active against HIV-1 (90 to 95% inhibition. Cliona celata pellets showed low polysaccharide content (bellow 38.5% and almost no anti-HIV activity (<10% inhibition. Stelletta sp. pellets, although quite rich in polysaccharide (up to 97.3%, showed only modest bioactivity (<36% HIV-1 inhibition. Erylus discophorus pellets were among the richest in terms of polysaccharide content (up to 98% and the most active against HIV-1 (up to 95% inhibition. Chromatographic fractionation of the polysaccharide pellet obtained from a specimen of Erylus discophorus (B161 yielded only modestly active fractions. However, we could infer that the active molecule is most probably a high molecular weight sulfated polysaccharide (>2000 kDa, whose mechanism is possibly preventing viral attachment and entry (fusion inhibitor.

  10. Human antibodies and fusion proteins as HIV-1 therapeutic | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    Available for licensing from the NCI are novel human anti-HIV-1 domain antibodies and their fusion proteins for anti-HIV-1 antibodies and anti-retroviral as therapeutics and/or preventatives for infection by different HIV-1 strains.

  11. Acute HIV-1 infection is associated with increased plasma levels of heme oxygenase-1 and presence of heme oxygenase-1-specific regulatory T cells.

    Science.gov (United States)

    Angin, Mathieu; Fathi, Anahita; King, Melanie; Ledoux, Mary B; Piechocka-Trocha, Alicja; Altfeld, Marcus; Addo, Marylyn M

    2017-03-13

    Heme oxygenase-1 (HO-1) is an inducible stress response protein with potent anti-inflammatory activity and recent data suggest a potentially beneficial role in HIV pathogenesis. We investigated the impact of HO-1 and a novel subset of HO-1-specific CD8 regulatory T cells on virus-specific T-cell immunity in HIV-1-infected individuals. HO-1 protein levels were quantified in plasma from individuals at different stages of HIV-1 disease and longitudinally following primary HIV infection. HO-1-specific CD8 T cells were investigated by flow cytometry using human leukocyte antigen (HLA) class I pentamers. Flow-sorted HO-1-specific CD8 T cells were cultured and tested for suppressive activity on HIV-1-specific cytotoxic T-cell clones clones. HO-1 gene expression was determined in sorted peripheral blood mononuclear cell (PBMC) subsets from individuals with acute HIV-1 infection. HO-1 plasma levels were significantly increased in HIV-1 infection, with the highest levels in individuals with acute HIV-1 infection, and gradually declined over time. The frequency of CD8 T cells specific for HO-1 was elevated in study participants with primary HIV-1 infection and flow-sorted HO-1-specific CD8 T cells were capable of suppressing HIV-1-specific lysis of cytotoxic T-cell clones clones. HO-1 gene expression was upregulated in multiple immune cell subsets during acute HIV-1 infection and HO-1 overexpression modulated anti-HIV immunity in vitro. Our data suggest that HO-1 is induced during acute HIV-1 infection, likely mediating anti-inflammatory effects and driving expansion of HO-1-specific CD8 regulatory T cells capable of suppressing HIV-1-specific immune responses in vitro. The investigation of HO-1 and the novel CD8 regulatory cell type described here provide further insight into immune regulation in HIV-1 infection and may hold potential for future immunotherapeutic intervention.

  12. Celastrol ameliorates HIV-1 Tat-induced inflammatory responses via NF-kappaB and AP-1 inhibition and heme oxygenase-1 induction in astrocytes

    International Nuclear Information System (INIS)

    Youn, Gi Soo; Kwon, Dong-Joo; Ju, Sung Mi; Rhim, Hyangshuk; Bae, Yong Soo; Choi, Soo Young; Park, Jinseu

    2014-01-01

    HIV-1 Tat causes extensive neuroinflammation that may progress to AIDS-related encephalitis and dementia. Celastrol possesses various biological activities such as anti-oxidant, anti-tumor, and anti-inflammatory activities. In this study, we investigated the modulatory effects of celastrol on HIV-1 Tat-induced inflammatory responses and the molecular mechanisms underlying its action in astrocytes. Pre-treatment of CRT-MG human astroglioma cells with celastrol significantly inhibited HIV-1 Tat-induced expression of ICAM-1/VCAM-1 and subsequent monocyte adhesiveness in CRT-MG cells. In addition, celastrol suppressed HIV-1 Tat-induced expression of pro-inflammatory chemokines, such as CXCL10, IL-8, and MCP-1. Celastrol decreased HIV-1 Tat-induced activation of JNK MAPK, AP-1, and NF-κB. Furthermore, celastrol induced mRNA and protein expression of HO-1 as well as Nrf2 activation. Blockage of HO-1 expression using siRNA reversed the inhibitory effect of celastrol on HIV-1 Tat-induced inflammatory responses. These results suggest that celastrol has regulatory effects on HIV-1 Tat-induced inflammatory responses by blocking the JNK MAPK-AP-1/NF-κB signaling pathways and inducing HO-1 expression in astrocytes. - Highlights: • Celastrol suppressed HIV-1 Tat-induced expression of pro-inflammatory genes. • Celastrol inhibited HIV-1 Tat -induced activation of JNK MAPK. • Celastrol inhibited HIV-1 Tat-induced activation of both NF-κB and AP-1. • Celastrol inhibited HIV-1 Tat-induced inflammatory responses via HO-1 induction

  13. Celastrol ameliorates HIV-1 Tat-induced inflammatory responses via NF-kappaB and AP-1 inhibition and heme oxygenase-1 induction in astrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Youn, Gi Soo; Kwon, Dong-Joo; Ju, Sung Mi [Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of); Rhim, Hyangshuk [Department of Biomedical Sciences, Department of Medical Life Sciences, College of Medicine, the Catholic University of Korea, Seoul 137-701 (Korea, Republic of); Bae, Yong Soo [Department of Biological Science, College of Natural Sciences, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Choi, Soo Young [Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of); Park, Jinseu, E-mail: jinpark@hallym.ac.kr [Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of)

    2014-10-01

    HIV-1 Tat causes extensive neuroinflammation that may progress to AIDS-related encephalitis and dementia. Celastrol possesses various biological activities such as anti-oxidant, anti-tumor, and anti-inflammatory activities. In this study, we investigated the modulatory effects of celastrol on HIV-1 Tat-induced inflammatory responses and the molecular mechanisms underlying its action in astrocytes. Pre-treatment of CRT-MG human astroglioma cells with celastrol significantly inhibited HIV-1 Tat-induced expression of ICAM-1/VCAM-1 and subsequent monocyte adhesiveness in CRT-MG cells. In addition, celastrol suppressed HIV-1 Tat-induced expression of pro-inflammatory chemokines, such as CXCL10, IL-8, and MCP-1. Celastrol decreased HIV-1 Tat-induced activation of JNK MAPK, AP-1, and NF-κB. Furthermore, celastrol induced mRNA and protein expression of HO-1 as well as Nrf2 activation. Blockage of HO-1 expression using siRNA reversed the inhibitory effect of celastrol on HIV-1 Tat-induced inflammatory responses. These results suggest that celastrol has regulatory effects on HIV-1 Tat-induced inflammatory responses by blocking the JNK MAPK-AP-1/NF-κB signaling pathways and inducing HO-1 expression in astrocytes. - Highlights: • Celastrol suppressed HIV-1 Tat-induced expression of pro-inflammatory genes. • Celastrol inhibited HIV-1 Tat -induced activation of JNK MAPK. • Celastrol inhibited HIV-1 Tat-induced activation of both NF-κB and AP-1. • Celastrol inhibited HIV-1 Tat-induced inflammatory responses via HO-1 induction.

  14. Cutting edge: Rapid recovery of NKT cells upon institution of highly active antiretroviral therapy for HIV-1 infection

    NARCIS (Netherlands)

    van der Vliet, Hans J. J.; van Vonderen, Marit G. A.; Molling, Johan W.; Bontkes, Hetty J.; Reijm, Martine; Reiss, Peter; van Agtmael, Michiel A.; Danner, Sven A.; van den Eertwegh, Alfons J. M.; von Blomberg, B. Mary E.; Scheper, Rik J.

    2006-01-01

    CD1d-restricted NKT cells play important regulatory roles in various immune responses and are rapidly and selectively depleted upon infection with HIV-1. The cause of this selective depletion is incompletely understood, although it is in part due to the high susceptibility of CD4+ NKT cells to

  15. War and peace between microbes: HIV-1 interactions with coinfecting viruses.

    Science.gov (United States)

    Lisco, Andrea; Vanpouille, Christophe; Margolis, Leonid

    2009-11-19

    HIV-1 disrupts the homeostatic equilibrium between the host and coinfecting microbes, facilitating reactivation of persistent viruses and invasion by new viruses. These viruses usually accelerate HIV disease but occasionally create conditions detrimental for HIV-1. Understanding these phenomena may lead to anti-HIV-1 strategies that specifically target interactions between HIV-1 and coinfecting viruses.

  16. Acute hepatitis B virus infection with simultaneous high HBsAg and high anti-HBs signals in a previously HBV vaccinated HIV-1 positive patient

    NARCIS (Netherlands)

    van Dommelen, Laura; Verbon, Annelies; van Doorn, H. Rogier; Goossens, Valère J.

    2010-01-01

    We present a case of a clinical manifest hepatitis B virus infection and a potentially misleading HBV serological profile in an HIV-1 positive patient despite previous HBV vaccination. The patient presented with an acute hepatitis B and there was no indication of chronic HBV infection or the

  17. HIV-1 subtype C unproductively infects human cardiomyocytes in vitro and induces apoptosis mitigated by an anti-Gp120 aptamer

    CSIR Research Space (South Africa)

    Rangel Lopes de Campos, W

    2014-10-01

    Full Text Available via the intrinsic or mitochondrial initiated pathway. CXCR4 receptor-using viruses were stronger inducers of apoptosis than CCR5 utilizing variants. Importantly, we discovered that HIV-1 induced apoptosis of cardiomyocytes was mitigated by UCLA1...

  18. Elucidating a Key Anti-HIV-1 and Cancer-Associated Axis: The Structure of CCL5 (Rantes) in Complex with CCR5

    Science.gov (United States)

    Tamamis, Phanourios; Floudas, Christodoulos A.

    2014-06-01

    CCL5 (RANTES) is an inflammatory chemokine which binds to chemokine receptor CCR5 and induces signaling. The CCL5:CCR5 associated chemotactic signaling is of critical biological importance and is a potential HIV-1 therapeutic axis. Several studies provided growing evidence for the expression of CCL5 and CCR5 in non-hematological malignancies. Therefore, the delineation of the CCL5:CCR5 complex structure can pave the way for novel CCR5-targeted drugs. We employed a computational protocol which is primarily based on free energy calculations and molecular dynamics simulations, and report, what is to our knowledge, the first computationally derived CCL5:CCR5 complex structure which is in excellent agreement with experimental findings and clarifies the functional role of CCL5 and CCR5 residues which are associated with binding and signaling. A wealth of polar and non-polar interactions contributes to the tight CCL5:CCR5 binding. The structure of an HIV-1 gp120 V3 loop in complex with CCR5 has recently been derived through a similar computational protocol. A comparison between the CCL5 : CCR5 and the HIV-1 gp120 V3 loop : CCR5 complex structures depicts that both the chemokine and the virus primarily interact with the same CCR5 residues. The present work provides insights into the blocking mechanism of HIV-1 by CCL5.

  19. Specific Interaction between eEF1A and HIV RT Is Critical for HIV-1 Reverse Transcription and a Potential Anti-HIV Target.

    Directory of Open Access Journals (Sweden)

    Dongsheng Li

    2015-12-01

    Full Text Available Reverse transcription is the central defining feature of HIV-1 replication. We previously reported that the cellular eukaryotic elongation factor 1 (eEF1 complex associates with the HIV-1 reverse transcription complex (RTC and the association is important for late steps of reverse transcription. Here we show that association between the eEF1 and RTC complexes occurs by a strong and direct interaction between the subunit eEF1A and reverse transcriptase (RT. Using biolayer interferometry and co-immunoprecipitation (co-IP assays, we show that association between the eEF1 and RTC complexes occurs by a strong (KD ~3-4 nM and direct interaction between eEF1A and reverse transcriptase (RT. Biolayer interferometry analysis of cell lysates with titrated levels of eEF1A indicates it is a predominant cellular RT binding protein. Both the RT thumb and connection domains are required for interaction with eEF1A. A single amino acid mutation, W252A, within the thumb domain impaired co-IP between eEF1A and RT, and also significantly reduced the efficiency of late reverse transcription and virus replication when incorporated into infectious HIV-1. Molecular modeling analysis indicated that interaction between W252 and L303 are important for RT structure, and their mutation to alanine did not impair heterodimerisation, but negatively impacted interaction with eEF1A. Didemnin B, which specifically binds eEF1A, potently inhibited HIV-1 reverse transcription by greater than 2 logs at subnanomolar concentrations, especially affecting reverse transcription late DNA synthesis. Analysis showed reduced levels of RTCs from HIV-1-infected HEK293T treated with didemnin B compared to untreated cells. Interestingly, HIV-1 with a W252A RT mutation was resistant to didemnin B negative effects showing that didemnin B affects HIV-1 by targeting the RT-eEF1A interaction. The combined evidence indicates a direct interaction between eEF1A and RT is crucial for HIV reverse

  20. Aggressive HIV-1?

    Science.gov (United States)

    Berkhout, Ben; de Ronde, Anthony; van der Hoek, Lia

    2005-02-28

    New York City health officials announced on February 11, 2005 that a patient rapidly developed full-blown AIDS shortly after being diagnosed with a rare, drug-resistant strain of HIV-1. The New York City Department of Health issued an alert to all hospitals and doctors and a press conference was held to announce the emergence of an aggressive HIV-1 strain that may be difficult to treat and that appears to trigger rapid progression to AIDS. Is the panic justified?

  1. T-Cell Receptor (TCR) Clonotype-Specific Differences in Inhibitory Activity of HIV-1 Cytotoxic T-Cell Clones Is Not Mediated by TCR Alone.

    Science.gov (United States)

    Flerin, Nina C; Chen, Huabiao; Glover, Tynisha D; Lamothe, Pedro A; Zheng, Jian Hua; Fang, Justin W; Ndhlovu, Zaza M; Newell, Evan W; Davis, Mark M; Walker, Bruce D; Goldstein, Harris

    2017-03-15

    Functional analysis of T-cell responses in HIV-infected individuals has indicated that virus-specific CD8 + T cells with superior antiviral efficacy are well represented in HIV-1 controllers but are rare or absent in HIV-1 progressors. To define the role of individual T-cell receptor (TCR) clonotypes in differential antiviral CD8 + T-cell function, we performed detailed functional and mass cytometric cluster analysis of multiple CD8 + T-cell clones recognizing the identical HLA-B*2705-restricted HIV-1 epitope KK10 (KRWIILGLNK). Effective and ineffective CD8 + T-cell clones segregated based on responses to HIV-1-infected and peptide-loaded target cells. Following cognate peptide stimulation, effective HIV-specific clones displayed significantly more rapid TCR signal propagation, more efficient initial lytic granule release, and more sustained nonlytic cytokine and chemokine secretion than ineffective clones. To evaluate the TCR clonotype contribution to CD8 + T-cell function, we cloned the TCR α and β chain genes from one effective and two ineffective CD8 + T-cell clones from an elite controller into TCR-expressing lentivectors. We show that Jurkat/MA cells and primary CD8 + T cells transduced with lentivirus expressing TCR from one of the ineffective clones exhibited a level of activation by cognate peptide and inhibition of in vitro HIV-1 infection, respectively, that were comparable to those of the effective clonotype. Taken together, these data suggest that the potent antiviral capacity of some HIV-specific CD8 + T cells is a consequence of factors in addition to TCR sequence that modulate functionality and contribute to the increased antiviral capacity of HIV-specific CD8 + T cells in elite controllers to inhibit HIV infection. IMPORTANCE The greater ex vivo antiviral inhibitory activity of CD8 + T cells from elite controllers than from HIV-1 progressors supports the crucial role of effective HIV-specific CD8 + T cells in controlling HIV-1 replication. The

  2. Rational design of highly potent HIV-1 fusion inhibitory proteins: Implication for developing antiviral therapeutics

    International Nuclear Information System (INIS)

    Ni Ling; Gao, George F.; Tien Po

    2005-01-01

    Recombinant protein containing one heptad-repeat 1 (HR1) segment and one HR2 segment of the HIV-1 gp41 (HR1-HR2) has been shown to fold into thermally stable six-helix bundle, representing the fusogenic core of gp41. In this study, we have used the fusogenic core as a scaffold to design HIV-1 fusion inhibitory proteins by linking another HR1 to the C terminus of HR1-HR2 (HR121) or additional HR2 to the N terminus of HR1-HR2 (HR212). Both recombinant proteins could be abundantly and solubly expressed and easily purified, exhibiting high stability and potent inhibitory activity on HIV-1 fusion with IC 50 values of 16.2 ± 2.8 and 2.8 ± 0.63 nM, respectively. These suggest that these rationally designed proteins can be further developed as novel anti-HIV-1 therapeutics

  3. HIV-1 Latency in Monocytes/Macrophages

    Directory of Open Access Journals (Sweden)

    Amit Kumar

    2014-04-01

    Full Text Available Human immunodeficiency virus type 1 (HIV-1 targets CD4+ T cells and cells of the monocyte/macrophage lineage. HIV pathogenesis is characterized by the depletion of T lymphocytes and by the presence of a population of cells in which latency has been established called the HIV-1 reservoir. Highly active antiretroviral therapy (HAART has significantly improved the life of HIV-1 infected patients. However, complete eradication of HIV-1 from infected individuals is not possible without targeting latent sources of infection. HIV-1 establishes latent infection in resting CD4+ T cells and findings indicate that latency can also be established in the cells of monocyte/macrophage lineage. Monocyte/macrophage lineage includes among others, monocytes, macrophages and brain resident macrophages. These cells are relatively more resistant to apoptosis induced by HIV-1, thus are important stable hideouts of the virus. Much effort has been made in the direction of eliminating HIV-1 resting CD4+ T-cell reservoirs. However, it is impossible to achieve a cure for HIV-1 without considering these neglected latent reservoirs, the cells of monocyte/macrophage lineage. In this review we will describe our current understanding of the mechanism of latency in monocyte/macrophage lineage and how such cells can be specifically eliminated from the infected host.

  4. [Tat-based cell-cell fusion method for screening HIV-1 fusion inhibitors].

    Science.gov (United States)

    Wang, Xiaoli; Yang, Yishu; Shen, Sisi; Wang, Xianliang; Feng, Tian; Hu, Qin; Zeng, Yi

    2018-03-25

    An HIV-1 cell-cell fusion system was developed to screen HIV-1 entry inhibitors that block cell-cell fusion. In this system, the pEGFP-Tat plasmid was constructed and cotransfected into effector cells (HEK-293T) with HIV-1 envelope plasmid. TZM-bl cell, a genetically engineered cell line that expresses CD4, CXCR4, CCR5 as well as Tat-inducible β-galactosidase and luciferase reporter gene, was used as target cell. Thus, the co-culture of target cells and effector cells allows the cell fusion via Env and the activity of the fusion inhibitor can be quantified by measuring the reporter protein expression. The experimental parameters were optimized and 11 anti-HIV-1 agents including CCR5 antagonist maraviroc, reverse transcription inhibitor zidovudine (AZT) and integrase inhibitor raltegravir were tested. The result showed that the system exhibited high specificity and sensitivity. Two of eight tested anti-HIV-1 agents were found to block the cell-cell fusion. The system is suitable for efficient screening of HIV-1 cell-cell fusion inhibitors.

  5. Impact of High-Dose Multi-Strain Probiotic Supplementation on Neurocognitive Performance and Central Nervous System Immune Activation of HIV-1 Infected Individuals

    Directory of Open Access Journals (Sweden)

    Giancarlo Ceccarelli

    2017-11-01

    Full Text Available Background: Gut microbiota has metabolic activity which influences mucosal homeostasis, local and systemic immune responses, and other anatomical systems (i.e., brain. The effects of dysbiosis are still poorly studied in Human Immunodeficiency Virus-1 (HIV-1 positive subjects and insufficient data are available on the impairment of the gut-brain axis, despite neurocognitive disorders being commonly diagnosed in these patients. This study evaluated the impact of a probiotic supplementation strategy on intrathecal immune activation and cognitive performance in combined antiretroviral therapy (cART treated HIV-1 infected subjects. Methods: Thirty-five HIV-1 infected individuals were included in this study. At baseline (T0 a battery of tests was administered, to evaluate neurocognitive function and a lumbar puncture was performed to determine neopterin concentration in cerebrospinal fluid (CSF, as a marker of Central Nervous System (CNS immune activation. Subsequently, a subgroup of participants underwent a 6-month course of multi-strain probiotics supplementation; this intervention group was evaluated, after probiotic treatment, with a second lumbar puncture and with repeated neurocognitive tests. Results: At T0, all participants showed impaired results in at least one neurocognitive test and elevated neopterin concentrations in CSF. After supplementation with probiotics (T6, the interventional group presented a significant decrease in neopterin concentration and a significant improvement in several neurocognitive tests. In contrast, no significant modifications were observed in the neurocognitive performance of controls between T0 and T6. The CNS Penetration Effectiveness Score of antiretroviral therapy did not show an influence from any of the investigated variables. Conclusions: Multi-strain probiotic supplementation seems to exert a positive effect on neuroinflammation and neurocognitive impairment in HIV-1 infected subjects, but large trials

  6. HIV-1 tat promotes integrin-mediated HIV transmission to dendritic cells by binding Env spikes and competes neutralization by anti-HIV antibodies.

    Directory of Open Access Journals (Sweden)

    Paolo Monini

    Full Text Available Use of Env in HIV vaccine development has been disappointing. Here we show that, in the presence of a biologically active Tat subunit vaccine, a trimeric Env protein prevents in monkeys virus spread from the portal of entry to regional lymph nodes. This appears to be due to specific interactions between Tat and Env spikes that form a novel virus entry complex favoring R5 or X4 virus entry and productive infection of dendritic cells (DCs via an integrin-mediated pathway. These Tat effects do not require Tat-transactivation activity and are blocked by anti-integrin antibodies (Abs. Productive DC infection promoted by Tat is associated with a highly efficient virus transmission to T cells. In the Tat/Env complex the cysteine-rich region of Tat engages the Env V3 loop, whereas the Tat RGD sequence remains free and directs the virus to integrins present on DCs. V2 loop deletion, which unshields the CCR5 binding region of Env, increases Tat/Env complex stability. Of note, binding of Tat to Env abolishes neutralization of Env entry or infection of DCs by anti-HIV sera lacking anti-Tat Abs, which are seldom present in natural infection. This is reversed, and neutralization further enhanced, by HIV sera containing anti-Tat Abs such as those from asymptomatic or Tat-vaccinated patients, or by sera from the Tat/Env vaccinated monkeys. Thus, both anti-Tat and anti-Env Abs are required for efficient HIV neutralization. These data suggest that the Tat/Env interaction increases HIV acquisition and spreading, as a mechanism evolved by the virus to escape anti-Env neutralizing Abs. This may explain the low effectiveness of Env-based vaccines, which are also unlikely to elicit Abs against new Env epitopes exposed by the Tat/Env interaction. As Tat also binds Envs from different clades, new vaccine strategies should exploit the Tat/Env interaction for both preventative and therapeutic interventions.

  7. HIV-1 Tat Promotes Integrin-Mediated HIV Transmission to Dendritic Cells by Binding Env Spikes and Competes Neutralization by Anti-HIV Antibodies

    Science.gov (United States)

    Monini, Paolo; Cafaro, Aurelio; Srivastava, Indresh K.; Moretti, Sonia; Sharma, Victoria A.; Andreini, Claudia; Chiozzini, Chiara; Ferrantelli, Flavia; Cossut, Maria R. Pavone.; Tripiciano, Antonella; Nappi, Filomena; Longo, Olimpia; Bellino, Stefania; Picconi, Orietta; Fanales-Belasio, Emanuele; Borsetti, Alessandra; Toschi, Elena; Schiavoni, Ilaria; Bacigalupo, Ilaria; Kan, Elaine; Sernicola, Leonardo; Maggiorella, Maria T.; Montin, Katy; Porcu, Marco; Leone, Patrizia; Leone, Pasqualina; Collacchi, Barbara; Palladino, Clelia; Ridolfi, Barbara; Falchi, Mario; Macchia, Iole; Ulmer, Jeffrey B.; Buttò, Stefano; Sgadari, Cecilia; Magnani, Mauro; Federico, Maurizio P. M.; Titti, Fausto; Banci, Lucia; Dallocchio, Franco; Rappuoli, Rino; Ensoli, Fabrizio; Barnett, Susan W.; Garaci, Enrico; Ensoli, Barbara

    2012-01-01

    Use of Env in HIV vaccine development has been disappointing. Here we show that, in the presence of a biologically active Tat subunit vaccine, a trimeric Env protein prevents in monkeys virus spread from the portal of entry to regional lymph nodes. This appears to be due to specific interactions between Tat and Env spikes that form a novel virus entry complex favoring R5 or X4 virus entry and productive infection of dendritic cells (DCs) via an integrin-mediated pathway. These Tat effects do not require Tat-transactivation activity and are blocked by anti-integrin antibodies (Abs). Productive DC infection promoted by Tat is associated with a highly efficient virus transmission to T cells. In the Tat/Env complex the cysteine-rich region of Tat engages the Env V3 loop, whereas the Tat RGD sequence remains free and directs the virus to integrins present on DCs. V2 loop deletion, which unshields the CCR5 binding region of Env, increases Tat/Env complex stability. Of note, binding of Tat to Env abolishes neutralization of Env entry or infection of DCs by anti-HIV sera lacking anti-Tat Abs, which are seldom present in natural infection. This is reversed, and neutralization further enhanced, by HIV sera containing anti-Tat Abs such as those from asymptomatic or Tat-vaccinated patients, or by sera from the Tat/Env vaccinated monkeys. Thus, both anti-Tat and anti-Env Abs are required for efficient HIV neutralization. These data suggest that the Tat/Env interaction increases HIV acquisition and spreading, as a mechanism evolved by the virus to escape anti-Env neutralizing Abs. This may explain the low effectiveness of Env-based vaccines, which are also unlikely to elicit Abs against new Env epitopes exposed by the Tat/Env interaction. As Tat also binds Envs from different clades, new vaccine strategies should exploit the Tat/Env interaction for both preventative and therapeutic interventions. PMID:23152803

  8. 2B4 expression on natural killer cells increases in HIV-1 infected patients followed prospectively during highly active antiretroviral therapy

    DEFF Research Database (Denmark)

    Ostrowski, S R; Ullum, H; Pedersen, Bente Klarlund

    2005-01-01

    by highly active antiretroviral therapy (HAART), low-level viraemia, proviral-DNA or immune activation in HIV-1 infected patients. A total of 101 HAART-treated HIV-1 infected patients with HIV-RNA copies/ml were followed prospectively for 24 months. HIV-RNA was investigated 3-monthly and 2B4...... expression on CD3- CD16+ NK cells and CD3+ CD8+ cells, proviral-DNA and plasma soluble tumour necrosis factor receptor (sTNFr)-II were investigated 6-monthly. For comparison, 2B4 expression was investigated in 20 healthy individuals. The concentration of 2B4+ NK cells was initially reduced in HIV-1 infected...... follow-up (both P DNA carrying cells and plasma sTNFrII were associated with reductions in the concentration of 2B4+ NK cells (all P HIV-RNA had no effect on 2B4 expression on NK cells or CD3+ CD8+ cells. These findings demonstrate that the concentration of 2B...

  9. Grape seed extract proanthocyanidins downregulate HIV- 1 entry coreceptors, CCR2b, CCR3 and CCR5 gene expression by normal peripheral blood mononuclear cells

    Directory of Open Access Journals (Sweden)

    MADHAVAN P NAIR

    2002-01-01

    Full Text Available Flavonoids and related polyphenols, in addition to their cardioprotective, anti-tumor, anti-inflammatory, anti-carcinogenic and anti-allergic activities, also possess promising anti-HIV effects. Recent studies documented that the ß-chemokine receptors, CCR2b, CCR3 and CCR5, and the alpha-chemokine receptors, CXCR1, CXCR2 and CXCR4 serve as entry coreceptors for HIV-1. Although flavonoids and polyphenolic compounds elicit anti-HIV effects such as inhibition of HIV-1 expression and virus replication, the molecular mechanisms underlying these effects remain to be clearly elucidated. We hypothesize that flavonoids exert their anti-HIV effects, possibly by interfering at the HIV co-receptor level. We investigated the effect of flavonoid constituents of a proprietary grape seed extract (GSE on the expression of HIV-1 coentry receptors by immunocompetent mononuclear leukocytes. Our results showed that GSE significantly downregulated the expression of the HIV-1 entry co-receptors, CCR2b , CCR3 and CCR5 in normal PBMC in a dose dependent manner. Further , GSE treated cultures showed significantly lower number of CCR3 positive cells as quantitated by flow cytometry analysis which supports RT-PCR gene expression data.Investigations of the mechanisms underlying the anti-HIV-1 effects of grape seed extracts may help to identify promising natural products useful in the prevention and /or amelioration of HIV-1 infection

  10. 8-Modified-2'-deoxyadenosine analogues induce delayed polymerization arrest during HIV-1 reverse transcription.

    Directory of Open Access Journals (Sweden)

    Valérie Vivet-Boudou

    Full Text Available The occurrence of resistant viruses to any of the anti-HIV-1 compounds used in the current therapies against AIDS underlies the urge for the development of new drug targets and/or new drugs acting through novel mechanisms. While all anti-HIV-1 nucleoside analogues in clinical use and in clinical trials rely on ribose modifications for activity, we designed nucleosides with a natural deoxyribose moiety and modifications of position 8 of the adenine base. Such modifications might induce a steric clash with helix αH in the thumb domain of the p66 subunit of HIV-1 RT at a distance from the catalytic site, causing delayed chain termination. Eleven new 2'-deoxyadenosine analogues modified on position 8 of the purine base were synthesized and tested in vitro and in cell-based assays. In this paper we demonstrate for the first time that chemical modifications on position 8 of 2'-deoxyadenosine induce delayed chain termination in vitro, and also inhibit DNA synthesis when incorporated in a DNA template strand. Furthermore, one of them had moderate anti-HIV-1 activity in cell-culture. Our results constitute a proof of concept indicating that modification on the base moiety of nucleosides can induce delayed polymerization arrest and inhibit HIV-1 replication.

  11. Effect of HIV-1-related protein expression on cardiac and skeletal muscles from transgenic rats

    Directory of Open Access Journals (Sweden)

    Guidot David M

    2008-04-01

    Full Text Available Abstract Background Human immunodeficiency virus type 1 (HIV-1 infection and the consequent acquired immunodeficiency syndrome (AIDS has protean manifestations, including muscle wasting and cardiomyopathy, which contribute to its high morbidity. The pathogenesis of these myopathies remains partially understood, and may include nutritional deficiencies, biochemical abnormalities, inflammation, and other mechanisms due to viral infection and replication. Growing evidence has suggested that HIV-1-related proteins expressed by the host in response to viral infection, including Tat and gp120, may also be involved in the pathophysiology of AIDS, particularly in cells or tissues that are not directly infected with HIV-1. To explore the potentially independent effects of HIV-1-related proteins on heart and skeletal muscles, we used a transgenic rat model that expresses several HIV-1-related proteins (e.g., Tat, gp120, and Nef. Outcome measures included basic heart and skeletal muscle morphology, glutathione metabolism and oxidative stress, and gene expressions of atrogin-1, muscle ring finger protein-1 (MuRF-1 and Transforming Growth Factor-β1 (TGFβ1, three factors associated with muscle catabolism. Results Consistent with HIV-1 associated myopathies in humans, HIV-1 transgenic rats had increased relative heart masses, decreased relative masses of soleus, plantaris and gastrocnemius muscles, and decreased total and myosin heavy chain type-specific plantaris muscle fiber areas. In both tissues, the levels of cystine (Cyss, the oxidized form of the anti-oxidant cysteine (Cys, and Cyss:Cys ratios were significantly elevated, and cardiac tissue from HIV-1 transgenic rats had altered glutathione metabolism, all reflective of significant oxidative stress. In HIV-1 transgenic rat hearts, MuRF-1 gene expression was increased. Further, HIV-1-related protein expression also increased atrogin-1 (~14- and ~3-fold and TGFβ1 (~5-fold and ~3-fold in heart and

  12. An anti-HIV-1 V3 loop antibody fully protects cross-clade and elicits T-cell immunity in macaques mucosally challenged with an R5 clade C SHIV.

    Directory of Open Access Journals (Sweden)

    Jennifer D Watkins

    2011-03-01

    Full Text Available Neutralizing antibodies have been shown to protect macaques against SHIV challenge. However, genetically diverse HIV-1 clades have evolved, and a key question left unanswered is whether neutralizing antibodies can confer cross-clade protection in vivo. The novel human monoclonal antibody HGN194 was isolated from an individual infected with an HIV-1 clade AG recombinant circulating recombinant form (CRF. HGN194 targets an epitope in the third hypervariable loop (V3 of HIV-1 gp120 and neutralizes a range of relatively neutralization-sensitive and resistant viruses. We evaluated the potential of HGN194 to protect infant rhesus monkeys against a SHIV encoding a primary CCR5-tropic HIV-1 clade C envelope. After high-dose mucosal challenge, all untreated controls became highly viremic while all HGN194-treated animals (50 mg/kg were completely protected. When HGN194 was given at 1 mg/kg, one out of two monkeys remained aviremic, whereas the other had delayed, lower peak viremia. Interestingly, all protected monkeys given high-dose HGN194 developed Gag-specific proliferative responses of both CD4+ and CD8+ T cells. To test whether generation of the latter involved cryptic infection, we ablated CD8+ cells after HGN194 clearance. No viremia was detected in any protected monkeys, thus ruling out virus reservoirs. Thus, induction of CD8 T-cell immunity may have resulted from transient "Hit and Run" infection or cross priming via Ag-Ab-mediated cross-presentation. Together, our data identified the HGN194 epitope as protective and provide proof-of-concept that this anti-V3 loop mAb can prevent infection with sterilizing immunity after challenge with virus of a different clade, implying that V3 is a potential vaccine target.

  13. Alkaloids from the Sponge Stylissa carteri Present Prospective Scaffolds for the Inhibition of Human Immunodeficiency Virus 1 (HIV-1)

    KAUST Repository

    O’Rourke, Aubrie

    2016-02-04

    The sponge Stylissa carteri is known to produce a number of secondary metabolites displaying anti-fouling, anti-inflammatory, and anti-cancer activity. However, the anti-viral potential of metabolites produced by S. carteri has not been extensively explored. In this study, an S. carteri extract was HPLC fractionated and a cell based assay was used to evaluate the effects of HPLC fractions on parameters of Human Immunodeficiency Virus (HIV-1) infection and cell viability. Candidate HIV-1 inhibitory fractions were then analyzed for the presence of potential HIV-1 inhibitory compounds by mass spectrometry, leading to the identification of three previously characterized compounds, i.e., debromohymenialdisine (DBH), hymenialdisine (HD), and oroidin. Commercially available purified versions of these molecules were re-tested to assess their antiviral potential in greater detail. Specifically, DBH and HD exhibit a 30%–40% inhibition of HIV-1 at 3.1 μM and 13 μM, respectively; however, both exhibited cytotoxicity. Conversely, oroidin displayed a 50% inhibition of viral replication at 50 μM with no associated toxicity. Additional experimentation using a biochemical assay revealed that oroidin inhibited the activity of the HIV-1 Reverse Transcriptase up to 90% at 25 μM. Taken together, the chemical search space was narrowed and previously isolated compounds with an unexplored anti-viral potential were found. Our results support exploration of marine natural products for anti-viral drug discovery.

  14. Lipid changes in Kenyan HIV-1-infected infants initiating highly active antiretroviral therapy by 1 year of age.

    Science.gov (United States)

    Langat, Agnes; Benki-Nugent, Sarah; Wamalwa, Dalton; Tapia, Ken; Ngugi, Evelyn; Diener, Lara; Richardson, Barbra A; Melvin, Ann; John-Stewart, Grace C

    2013-07-01

    Early highly active antiretroviral therapy (HAART) is recommended for HIV-1-infected infants. There are limited data on lipid changes during infant HAART. Nonfasting total (TC), low density lipoprotein (LDL) and high density lipoprotein (HDL) cholesterol and triglycerides (TG) were measured at 0, 6 and 12 months. Correlates of lipid levels and changes post-HAART were assessed using linear regression. Among 115 infants, pre-HAART median age was 3.8 months, CD4% was 19% and weight-for-age Z score was -2.42. Pre-HAART median lipid levels were: TC, 108.7 mg/dL; LDL, 42.5 mg/dL; HDL, 29.4 mg/dL and TG, 186.9 mg/dL. Few infants had abnormally high TC (6.2%) or LDL (5.6%), but many had low HDL (76.5%) or high TG (69.6%). Higher pre-HAART weight-for-age and height-for-age Z scores were each associated with higher pre-HAART TC (P = 0.04 and P = 0.01) and LDL (P = 0.02 and P = 0.008). From 0 to 6 months post-HAART, TC (P < 0.0001), LDL (P < 0.0001) and HDL (P < 0.0001) increased significantly, and 23.1% (P = 0.002), 14.0% (P = 0.2), 31.3% (P < 0.0001) and 50.8% (P = 0.2) of infants had abnormally high TC, high LDL, low HDL and high TG, respectively. Changes in TC and HDL were each associated with higher gain in weight-for-age Z score (P = 0.03 and P = 0.01) and height-for-age Z score (P = 0.01 and P = 0.007). Increased change in LDL was associated with higher gain in height-for-age Z score (P = 0.03). Infants on protease inhibitor-HAART had smaller HDL increase (P = 0.004). Infants had substantive increases in lipids, which correlated with growth. Increases in HDL were attenuated by protease inhibitor-HAART. It is important to determine clinical implications of these changes.

  15. Reactivation of Latent HIV-1 by Inhibition of BRD4

    OpenAIRE

    Zhu, Jian; Gaiha, Gaurav D.; John, Sinu P.; Pertel, Thomas; Chin, Christopher R.; Gao, Geng; Qu, Hongjing; Walker, Bruce D.; Elledge, Stephen J.; Brass, Abraham L.

    2012-01-01

    HIV-1 depends on many host factors for propagation. Other host factors, however, antagonize HIV-1 and may have profound effects on viral activation. Curing HIV-1 requires the reduction of latent viral reservoirs that remain in the face of antiretroviral therapy (ART). Using orthologous genetic screens, we identified bromodomain containing 4 (BRD4) as a negative regulator of HIV-1 replication. Antagonism of BRD4, via RNA interference or with a small molecule inhibitor, JQ1, both increased prov...

  16. Curcumin protects microglia and primary rat cortical neurons against HIV-1 gp120-mediated inflammation and apoptosis.

    Directory of Open Access Journals (Sweden)

    Luyan Guo

    Full Text Available Curcumin is a molecule found in turmeric root that has anti-inflammatory, antioxidant, and anti-tumor properties and has been widely used as both an herbal drug and a food additive to treat or prevent neurodegenerative diseases. To explore whether curcumin is able to ameliorate HIV-1-associated neurotoxicity, we treated a murine microglial cell line (N9 and primary rat cortical neurons with curcumin in the presence or absence of neurotoxic HIV-1 gp120 (V3 loop protein. We found that HIV-1 gp120 profoundly induced N9 cells to produce reactive oxygen species (ROS, tumor necrosis factor-α (TNF-α and monocyte chemoattractant protein-1 (MCP-1. HIV-1 gp120 also induced apoptosis of primary rat cortical neurons. Curcumin exerted a powerful inhibitory effect against HIV-1 gp120-induced neuronal damage, reducing the production of ROS, TNF-α and MCP-1 by N9 cells and inhibiting apoptosis of primary rat cortical neurons. Curcumin may exert its biological activities through inhibition of the delayed rectification and transient outward potassium (K(+ current, as curcumin effectively reduced HIV-1 gp120-mediated elevation of the delayed rectification and transient outward K(+ channel current in neurons. We conclude that HIV-1 gp120 increases ROS, TNF-α and MCP-1 production in microglia, and induces cortical neuron apoptosis by affecting the delayed rectification and transient outward K(+ channel current. Curcumin reduces production of ROS and inflammatory mediators in HIV-1-gp120-stimulated microglia, and protects cortical neurons against HIV-1-mediated apoptosis, most likely through inhibition of HIV-1 gp120-induced elevation of the delayed rectification and transient outward K(+ current.

  17. Innate immunity in HIV-1 infection: epithelial and non-specific host factors of mucosal immunity- a workshop report.

    Science.gov (United States)

    Nittayananta, W; Weinberg, A; Malamud, D; Moyes, D; Webster-Cyriaque, J; Ghosh, S

    2016-04-01

    The interplay between HIV-1 and epithelial cells represents a critical aspect in mucosal HIV-1 transmission. Epithelial cells lining the oral cavity cover subepithelial tissues, which contain virus-susceptible host cells including CD4(+) T lymphocytes, monocytes/macrophages, and dendritic cells. Oral epithelia are among the sites of first exposure to both cell-free and cell-associated virus HIV-1 through breast-feeding and oral-genital contact. However, oral mucosa is considered to be naturally resistant to HIV-1 transmission. Oral epithelial cells have been shown to play a crucial role in innate host defense. Nevertheless, it is not clear to what degree these local innate immune factors contribute to HIV-1 resistance of the oral mucosa. This review paper addressed the following issues that were discussed at the 7th World Workshop on Oral Health and Disease in AIDS held in Hyderabad, India, during November 6-9, 2014: (i) What is the fate of HIV-1 after interactions with oral epithelial cells?; (ii) What are the keratinocyte and other anti-HIV effector oral factors, and how do they contribute to mucosal protection?; (iii) How can HIV-1 interactions with oral epithelium affect activation and populations of local immune cells?; (iv) How can HIV-1 interactions alter functions of oral epithelial cells? © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Aggressive HIV-1?

    Directory of Open Access Journals (Sweden)

    van der Hoek Lia

    2005-02-01

    Full Text Available Abstract New York City health officials announced on February 11, 2005 that a patient rapidly developed full-blown AIDS shortly after being diagnosed with a rare, drug-resistant strain of HIV-1. The New York City Department of Health issued an alert to all hospitals and doctors and a press conference was held to announce the emergence of an aggressive HIV-1 strain that may be difficult to treat and that appears to trigger rapid progression to AIDS. Is the panic justified?

  19. HIV-1 reverse transcription.

    Science.gov (United States)

    Hu, Wei-Shau; Hughes, Stephen H

    2012-10-01

    Reverse transcription and integration are the defining features of the Retroviridae; the common name "retrovirus" derives from the fact that these viruses use a virally encoded enzyme, reverse transcriptase (RT), to convert their RNA genomes into DNA. Reverse transcription is an essential step in retroviral replication. This article presents an overview of reverse transcription, briefly describes the structure and function of RT, provides an introduction to some of the cellular and viral factors that can affect reverse transcription, and discusses fidelity and recombination, two processes in which reverse transcription plays an important role. In keeping with the theme of the collection, the emphasis is on HIV-1 and HIV-1 RT.

  20. DC-SIGN on B lymphocytes is required for transmission of HIV-1 to T lymphocytes.

    Directory of Open Access Journals (Sweden)

    Giovanna Rappocciolo

    2006-07-01

    Full Text Available Infection of T cells by HIV-1 can occur through binding of virus to dendritic cell (DC-specific ICAM-3 grabbing nonintegrin (DC-SIGN on dendritic cells and transfer of virus to CD4+ T cells. Here we show that a subset of B cells in the blood and tonsils of normal donors expressed DC-SIGN, and that this increased after stimulation in vitro with interleukin 4 and CD40 ligand, with enhanced expression of activation and co-stimulatory molecules CD23, CD58, CD80, and CD86, and CD22. The activated B cells captured and internalized X4 and R5 tropic strains of HIV-1, and mediated trans infection of T cells. Pretreatment of the B cells with anti-DC-SIGN monoclonal antibody blocked trans infection of T cells by both strains of HIV-1. These results indicate that DC-SIGN serves as a portal on B cells for HIV-1 infection of T cells in trans. Transmission of HIV-1 from B cells to T cells through this DC-SIGN pathway could be important in the pathogenesis of HIV-1 infection.

  1. Aqueous extracts of the marine brown alga Lobophora variegata inhibit HIV-1 infection at the level of virus entry into cells.

    Directory of Open Access Journals (Sweden)

    Stephan Kremb

    Full Text Available In recent years, marine algae have emerged as a rich and promising source of molecules with potent activities against various human pathogens. The widely distributed brown alga Lobophora variegata that is often associated with tropical coral reefs exerts strong antibacterial and antiprotozoal effects, but so far has not been associated with specific anti-viral activities. This study investigated potential HIV-1 inhibitory activity of L. variegata collected from different geographical regions, using a cell-based full replication HIV-1 reporter assay. Aqueous L. variegata extracts showed strong inhibitory effects on several HIV-1 strains, including drug-resistant and primary HIV-1 isolates, and protected even primary cells (PBMC from HIV-1-infection. Anti-viral potency was related to ecological factors and showed clear differences depending on light exposition or epiphyte growth. Assays addressing early events of the HIV-1 replication cycle indicated that L. variegata extracts inhibited entry of HIV-1 into cells at a pre-fusion step possibly by impeding mobility of virus particles. Further characterization of the aqueous extract demonstrated that even high doses had only moderate effects on viability of cultured and primary cells (PBMCs. Imaging-based techniques revealed extract effects on the plasma membrane and actin filaments as well as induction of apoptosis at concentrations exceeding EC50 of anti-HIV-1 activity by more than 400 fold. In summary, we show for the first time that L. variegata extracts inhibit HIV-1 entry, thereby suggesting this alga as promising source for the development of novel HIV-1 inhibitors.

  2. Aqueous Extracts of the Marine Brown Alga Lobophora variegata Inhibit HIV-1 Infection at the Level of Virus Entry into Cells

    KAUST Repository

    Kremb, Stephan

    2014-08-21

    In recent years, marine algae have emerged as a rich and promising source of molecules with potent activities against various human pathogens. The widely distributed brown alga Lobophora variegata that is often associated with tropical coral reefs exerts strong antibacterial and antiprotozoal effects, but so far has not been associated with specific anti-viral activities. This study investigated potential HIV-1 inhibitory activity of L. variegata collected from different geographical regions, using a cell-based full replication HIV-1 reporter assay. Aqueous L. variegata extracts showed strong inhibitory effects on several HIV-1 strains, including drug-resistant and primary HIV-1 isolates, and protected even primary cells (PBMC) from HIV-1-infection. Anti-viral potency was related to ecological factors and showed clear differences depending on light exposition or epiphyte growth. Assays addressing early events of the HIV-1 replication cycle indicated that L. variegata extracts inhibited entry of HIV-1 into cells at a pre-fusion step possibly by impeding mobility of virus particles. Further characterization of the aqueous extract demonstrated that even high doses had only moderate effects on viability of cultured and primary cells (PBMCs). Imaging-based techniques revealed extract effects on the plasma membrane and actin filaments as well as induction of apoptosis at concentrations exceeding EC50 of anti-HIV-1 activity by more than 400 fold. In summary, we show for the first time that L. variegata extracts inhibit HIV-1 entry, thereby suggesting this alga as promising source for the development of novel HIV-1 inhibitors.

  3. HIV-1 vaccines

    Science.gov (United States)

    Excler, Jean-Louis; Robb, Merlin L; Kim, Jerome H

    2014-01-01

    The development of a safe and effective preventive HIV-1 vaccine remains a public health priority. Despite scientific difficulties and disappointing results, HIV-1 vaccine clinical development has, for the first time, established proof-of-concept efficacy against HIV-1 acquisition and identified vaccine-associated immune correlates of risk. The correlate of risk analysis showed that IgG antibodies against the gp120 V2 loop correlated with decreased risk of HIV infection, while Env-specific IgA directly correlated with increased risk. The development of vaccine strategies such as improved envelope proteins formulated with potent adjuvants and DNA and vectors expressing mosaics, or conserved sequences, capable of eliciting greater breadth and depth of potentially relevant immune responses including neutralizing and non-neutralizing antibodies, CD4+ and CD8+ cell-mediated immune responses, mucosal immune responses, and immunological memory, is now proceeding quickly. Additional human efficacy trials combined with other prevention modalities along with sustained funding and international collaboration remain key to bring an HIV-1 vaccine to licensure. PMID:24637946

  4. Aggressive HIV-1?

    NARCIS (Netherlands)

    Berkhout, Ben; de Ronde, Anthony; van der Hoek, Lia

    2005-01-01

    New York City health officials announced on February 11, 2005 that a patient rapidly developed full-blown AIDS shortly after being diagnosed with a rare, drug-resistant strain of HIV-1. The New York City Department of Health issued an alert to all hospitals and doctors and a press conference was

  5. Investigation of the anti-inflammatory and anti- nociceptive activities ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-06-15

    Jun 15, 2009 ... (1998) Antinociceptive and anti-inflammatory effects of Sambucus ebulus rhizome extract in rats. J. Ethnopharmacol. 61: 229-235. Barros IMC, Lopes LDG, Borges MOR, Borges ACR, Ribeiro MNS,. Freire SMF (2006). Anti-inflammatory and anti-nociceptive activities of Pluchea quitic (D.C) ethanolic extract.

  6. Synergistic combinations of the CCR5 inhibitor VCH-286 with other classes of HIV-1 inhibitors.

    Science.gov (United States)

    Asin-Milan, Odalis; Sylla, Mohamed; El-Far, Mohamed; Belanger-Jasmin, Geneviève; Haidara, Alpha; Blackburn, Julie; Chamberland, Annie; Tremblay, Cécile L

    2014-12-01

    Here, we evaluated the in vitro anti-HIV-1 activity of the experimental CCR5 inhibitor VCH-286 as a single agent or in combination with various classes of HIV-1 inhibitors. Although VCH-286 used alone had highly inhibitory activity, paired combinations with different drug classes led to synergistic or additive interactions. However, combinations with other CCR5 inhibitors led to effects ranging from synergy to antagonism. We suggest that caution should be exercised when combining CCR5 inhibitors in vivo. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  7. Kinase control of latent HIV-1 infection: PIM-1 kinase as a major contributor to HIV-1 reactivation.

    Science.gov (United States)

    Duverger, Alexandra; Wolschendorf, Frank; Anderson, Joshua C; Wagner, Frederic; Bosque, Alberto; Shishido, Takao; Jones, Jennifer; Planelles, Vicente; Willey, Christopher; Cron, Randall Q; Kutsch, Olaf

    2014-01-01

    Despite the clinical relevance of latent HIV-1 infection as a block to HIV-1 eradication, the molecular biology of HIV-1 latency remains incompletely understood. We recently demonstrated the presence of a gatekeeper kinase function that controls latent HIV-1 infection. Using kinase array analysis, we here expand on this finding and demonstrate that the kinase activity profile of latently HIV-1-infected T cells is altered relative to that of uninfected T cells. A ranking of altered kinases generated from these kinome profile data predicted PIM-1 kinase as a key switch involved in HIV-1 latency control. Using genetic and pharmacologic perturbation strategies, we demonstrate that PIM-1 activity is indeed required for HIV-1 reactivation in T cell lines and primary CD4 T cells. The presented results thus confirm that kinases are key contributors to HIV-1 latency control. In addition, through mutational studies we link the inhibitory effect of PIM-1 inhibitor IV (PIMi IV) on HIV-1 reactivation to an AP-1 motif in the CD28-responsive element of the HIV-1 long terminal repeat (LTR). The results expand our conceptual understanding of the dynamic interactions of the host cell and the latent HIV-1 integration event and position kinome profiling as a research tool to reveal novel molecular mechanisms that can eventually be targeted to therapeutically trigger HIV-1 reactivation.

  8. Lentiviral Delivery of RNAi Effectors Against HIV-1

    NARCIS (Netherlands)

    Liu, Ying Poi; Berkhout, Ben

    2009-01-01

    RNA interference (RNAi) holds great promise as gene therapy approach against viral pathogens, including HIV-1. A specific anti-HIV-1 response can be induced via transfection of synthetic small interfering RNAs (siRNAs) or via intracellular transgene expression of short hairpin RNAs (shRNAs) or

  9. Inhibition of HIV-1 entry by extracts derived from traditional Chinese medicinal herbal plants

    Directory of Open Access Journals (Sweden)

    Song Xinming

    2009-08-01

    Full Text Available Abstract Background Highly active anti-retroviral therapy (HAART is the current HIV/AIDS treatment modality. Despite the fact that HAART is very effective in suppressing HIV-1 replication and reducing the mortality of HIV/AIDS patients, it has become increasingly clear that HAART does not offer an ultimate cure to HIV/AIDS. The high cost of the HAART regimen has impeded its delivery to over 90% of the HIV/AIDS population in the world. This reality has urgently called for the need to develop inexpensive alternative anti-HIV/AIDS therapy. This need has further manifested by recent clinical trial failures in anti-HIV-1 vaccines and microbicides. In the current study, we characterized a panel of extracts of traditional Chinese medicinal herbal plants for their activities against HIV-1 replication. Methods Crude and fractionated extracts were prepared from various parts of nine traditional Chinese medicinal herbal plants in Hainan Island, China. These extracts were first screened for their anti-HIV activity and cytotoxicity in human CD4+ Jurkat cells. Then, a single-round pseudotyped HIV-luciferase reporter virus system (HIV-Luc was used to identify potential anti-HIV mechanisms of these extracts. Results Two extracts, one from Euphorbiaceae, Trigonostema xyphophylloides (TXE and one from Dipterocarpaceae, Vatica astrotricha (VAD inhibited HIV-1 replication and syncytia formation in CD4+ Jurkat cells, and had little adverse effects on host cell proliferation and survival. TXE and VAD did not show any direct inhibitory effects on the HIV-1 RT enzymatic activity. Treatment of these two extracts during the infection significantly blocked infection of the reporter virus. However, pre-treatment of the reporter virus with the extracts and treatment of the extracts post-infection had little effects on the infectivity or gene expression of the reporter virus. Conclusion These results demonstrate that TXE and VAD inhibit HIV-1 replication likely by blocking

  10. CD4 and MHC-I Downregulation are Conserved in Primary HIV-1 Nef Alleles from Brain and Lymphoid Tissues, but Pak2 Activation is Highly Variable

    Science.gov (United States)

    Agopian, Kristin; Wei, Bangdong L.; Garcia, J. Victor; Gabuzda, Dana

    2007-01-01

    HIV-1 compartmentalization in the CNS has been demonstrated for gag, pol, and env, genes. However, little is known about tissue compartmentalization of nef genes and their functional characteristics in brain. We have cloned 97 nef genes and characterized 10 Nef proteins from autopsy brain and lymphoid tissues from 2 patients with AIDS and HIV-1-associated dementia. Distinct compartmentalization of brain versus lymphoid nef genes was demonstrated within each patient. CD4 and MHC-I downregulation were conserved in all tissue-derived Nefs. However, MHC-I downregulation by brain-derived Nefs was weaker than downregulation by lymphoid-derived Nefs. The motifs KEEE- or EKEE- at the PACS-1 binding site represented brain-specific signature patterns in these 2 patients and contributed to the reduced MHC-I downregulation activity of brain-derived Nefs from these patients. Pak2 association was highly variable in Nefs from both patients. Three of 10 tissue-derived Nefs coimmunoprecipitated activated Pak2, with strong association demonstrated for only 2 Nefs. The ability of Nef to associate with activated Pak2 did not correlate with brain or lymphoid tissue origin. Nef genes from viruses isolated from brain by coculture with PBMC were not closely related to sequences amplified directly from brain tissue, suggesting that viral selection or adaptation occurred during coculture. This study of tissue-derived HIV-1 Nefs demonstrates that CD4 and MHC-I downregulation are highly conserved Nef functions, while Pak2 association is variable in late stage AIDS patients. PMID:16979207

  11. A Novel Aspartic Protease with HIV-1 Reverse Transcriptase Inhibitory Activity from Fresh Fruiting Bodies of the Wild Mushroom Xylaria hypoxylon

    Directory of Open Access Journals (Sweden)

    Qing-Xiu Hu

    2012-01-01

    Full Text Available A novel aspartic protease with HIV-1 RT inhibitory activity was isolated and characterized from fruiting bodies of the wild mushroom Xylaria hypoxylon. The purification protocol comprised distilled water homogenization and extraction step, three ion exchange chromatographic steps (on DEAE-cellulose, Q-Sepharose, and CM-cellulose in succession, and final purification was by FPLC on Superdex 75. The protease was adsorbed on all the three ion exchangers. It was a monomeric protein with a molecular mass of 43 kDa as estimated by SDS-PAGE and FPLC. Its N-terminal amino acid sequence was HYTELLSQVV, which exhibited no sequence homology to other proteases reported. The activity of the protease was adversely affected by Pepstatin A, indicating that it is an aspartic protease. The protease activity was maximal or nearly so in the pH range 6–8 and in the temperature range 35–60°C. The purified enzyme exhibited HIV-1 RT inhibitory activity with an IC50 value of 8.3 μM, but was devoid of antifungal, ribonuclease, and hemagglutinating activities.

  12. Conserved hydrogen bonds and water molecules in MDR HIV-1 protease substrate complexes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhigang [Wayne State Univ., Detroit, MI (United States); Case Western Reserve Univ., Cleveland, OH (United States); Harbor Hospital Baltimore, MD (United States); Wang, Yong [Wayne State Univ., Detroit, MI (United States); Yedidi, Ravikiran S. [Wayne State Univ., Detroit, MI (United States); National Institutes of Health, Bethesda, MD (United States); Dewdney, Tamaria G. [Wayne State Univ., Detroit, MI (United States); Reiter, Samuel J. [Wayne State Univ., Detroit, MI (United States); Brunzelle, Joseph S. [Northwestern Univ. Feinberg School of Medicine, Chicago, IL (United States); Kovari, Iulia A. [Wayne State Univ., Detroit, MI (United States); Kovari, Ladislau C. [Wayne State Univ., Detroit, MI (United States)

    2012-12-19

    Success of highly active antiretroviral therapy (HAART) in anti-HIV therapy is severely compromised by the rapidly developing drug resistance. HIV-1 protease inhibitors, part of HAART, are losing their potency and efficacy in inhibiting the target. Multi-drug resistant (MDR) 769 HIV-1 protease (resistant mutations at residues 10, 36, 46, 54, 62, 63, 71, 82, 84, 90) was selected for the present study to understand the binding to its natural substrates. The nine crystal structures of MDR769 HIV-1 protease substrate hepta-peptide complexes were analyzed in order to reveal the conserved structural elements for the purpose of drug design against MDR HIV-1 protease. Our structural studies demonstrated that highly conserved hydrogen bonds between the protease and substrate peptides, together with the conserved crystallographic water molecules, played a crucial role in the substrate recognition, substrate stabilization and protease stabilization. Additionally, the absence of the key flap-ligand bridging water molecule might imply a different catalytic mechanism of MDR769 HIV-1 protease compared to that of wild type (WT) HIV-1 protease.

  13. Synthesis of a Vpr-Binding Derivative for Use as a Novel HIV-1 Inhibitor

    Science.gov (United States)

    Hagiwara, Kyoji; Ishii, Hideki; Murakami, Tomoyuki; Takeshima, Shin-nosuke; Chutiwitoonchai, Nopporn; Kodama, Eiichi N.; Kawaji, Kumi; Kondoh, Yasumitsu; Honda, Kaori; Osada, Hiroyuki; Tsunetsugu-Yokota, Yasuko; Suzuki, Masaaki; Aida, Yoko

    2015-01-01

    The emergence of multidrug-resistant viruses compromises the efficacy of anti-human immunodeficiency virus type 1 (HIV-1) therapy and limits treatment options. Therefore, new targets that can be used to develop novel antiviral agents need to be identified. We previously identified a potential parent compound, hematoxylin, which suppresses the nuclear import of HIV-1 via the Vpr-importin α interaction and inhibits HIV-1 replication in a Vpr-dependent manner by blocking nuclear import of the pre-integration complex. However, it was unstable. Here, we synthesized a stable derivative of hematoxylin that bound specifically and stably to Vpr and inhibited HIV-1 replication in macrophages. Furthermore, like hematoxylin, the derivative inhibited nuclear import of Vpr in an in vitro nuclear import assay, but had no effect on Vpr-induced G2/M phase cell cycle arrest or caspase activity. Interestingly, this derivative bound strongly to amino acid residues 54–74 within the C-terminal α-helical domain (αH3) of Vpr. These residues are highly conserved among different HIV strains, indicating that this region is a potential target for drug-resistant HIV-1 infection. Thus, we succeeded in developing a stable hematoxylin derivative that bound directly to Vpr, suggesting that specific inhibitors of the interaction between cells and viral accessory proteins may provide a new strategy for the treatment of HIV-1 infection. PMID:26701275

  14. Targeting Multidrug-resistant Staphylococci with an anti-rpoA Peptide Nucleic Acid Conjugated to the HIV-1 TAT Cell Penetrating Peptide

    Directory of Open Access Journals (Sweden)

    Mostafa FN Abushahba

    2016-01-01

    Full Text Available Staphylococcus aureus infections present a serious challenge to healthcare practitioners due to the emergence of resistance to numerous conventional antibiotics. Due to their unique mode of action, peptide nucleic acids are novel alternatives to traditional antibiotics to tackle the issue of bacterial multidrug resistance. In this study, we designed a peptide nucleic acid covalently conjugated to the HIV-TAT cell penetrating peptide (GRKKKRRQRRRYK in order to target the RNA polymerase α subunit gene (rpoA required for bacterial genes transcription. We explored the antimicrobial activity of the anti-rpoA construct (peptide nucleic acid-TAT against methicillin-resistant S. aureus, vancomycin-intermediate S. aureus, vancomycin-resistant S. aureus, linezolid-resistant S. aureus, and methicillin-resistant S. epidermidis in pure culture, infected mammalian cell culture, and in an in vivo Caenorhabditis elegans infection model. The anti-rpoA construct led to a concentration-dependent inhibition of bacterial growth (at micromolar concentrations in vitro and in both infected cell culture and in vivo in C. elegans. Moreover, rpoA gene silencing resulted in suppression of its message as well as reduced expression of two important methicillin-resistant S. aureus USA300 toxins (α-hemolysin and Panton-Valentine leukocidin. This study confirms that rpoA gene is a potential target for development of novel antisense therapeutics to treat infections caused by methicillin-resistant S. aureus.

  15. Punica granatum (Pomegranate juice provides an HIV-1 entry inhibitor and candidate topical microbicide

    Directory of Open Access Journals (Sweden)

    Li Yun-Yao

    2004-10-01

    Full Text Available Abstract Background For ≈ 24 years the AIDS pandemic has claimed ≈ 30 million lives, causing ≈ 14,000 new HIV-1 infections daily worldwide in 2003. About 80% of infections occur by heterosexual transmission. In the absence of vaccines, topical microbicides, expected to block virus transmission, offer hope for controlling the pandemic. Antiretroviral chemotherapeutics have decreased AIDS mortality in industrialized countries, but only minimally in developing countries. To prevent an analogous dichotomy, microbicides should be: acceptable; accessible; affordable; and accelerative in transition from development to marketing. Already marketed pharmaceutical excipients or foods, with established safety records and adequate anti-HIV-1 activity, may provide this option. Methods Fruit juices were screened for inhibitory activity against HIV-1 IIIB using CD4 and CXCR4 as cell receptors. The best juice was tested for inhibition of: (1 infection by HIV-1 BaL, utilizing CCR5 as the cellular coreceptor; and (2 binding of gp120 IIIB and gp120 BaL, respectively, to CXCR4 and CCR5. To remove most colored juice components, the adsorption of the effective ingredient(s to dispersible excipients and other foods was investigated. A selected complex was assayed for inhibition of infection by primary HIV-1 isolates. Results HIV-1 entry inhibitors from pomegranate juice adsorb onto corn starch. The resulting complex blocks virus binding to CD4 and CXCR4/CCR5 and inhibits infection by primary virus clades A to G and group O. Conclusion These results suggest the possibility of producing an anti-HIV-1 microbicide from inexpensive, widely available sources, whose safety has been established throughout centuries, provided that its quality is adequately standardized and monitored.

  16. Nup153 and Nup98 bind the HIV-1 core and contribute to the early steps of HIV-1 replication

    International Nuclear Information System (INIS)

    Di Nunzio, Francesca; Fricke, Thomas; Miccio, Annarita; Valle-Casuso, Jose Carlos; Perez, Patricio; Souque, Philippe; Rizzi, Ermanno; Severgnini, Marco; Mavilio, Fulvio; Charneau, Pierre; Diaz-Griffero, Felipe

    2013-01-01

    The early steps of HIV-1 replication involve the entry of HIV-1 into the nucleus, which is characterized by viral interactions with nuclear pore components. HIV-1 developed an evolutionary strategy to usurp the nuclear pore machinery and chromatin in order to integrate and efficiently express viral genes. In the current work, we studied the role of nucleoporins 153 and 98 (Nup153 and Nup98) in infection of human Jurkat lymphocytes by HIV-1. We showed that Nup153-depleted cells exhibited a defect in nuclear import, while depletion of Nup 98 caused a slight defect in HIV integration. To explore the biochemical viral determinants for the requirement of Nup153 and Nup98 during HIV-1 infection, we tested the ability of these nucleoporins to interact with HIV-1 cores. Our findings showed that both nucleoporins bind HIV-1 cores suggesting that this interaction is important for HIV-1 nuclear import and/or integration. Distribution analysis of integration sites in Nup153-depleted cells revealed a reduced tendency of HIV-1 to integrate in intragenic sites, which in part could account for the large infectivity defect observed in Nup153-depleted cells. Our work strongly supports a role for Nup153 in HIV-1 nuclear import and integration. - Highlights: ► We studied the role of Nup98 and Nup153 in HIV-1 infection. ► Nup98 binds the HIV-1 core and is involved in HIV-1 integration. ► Nup153 binds the HIV-1 core and is involved in HIV-1 nuclear import. ► Depletion of Nup153 decreased the integration of HIV-1 in transcriptionally active sites

  17. Nup153 and Nup98 bind the HIV-1 core and contribute to the early steps of HIV-1 replication

    Energy Technology Data Exchange (ETDEWEB)

    Di Nunzio, Francesca, E-mail: francesca.di-nunzio@pasteur.fr [Molecular Virology and Vaccinology unit, CNRS URA 3015, Department of Virology, Institut Pasteur, 25-28 rue du Dr. Roux, 75015 Paris (France); Fricke, Thomas [Department of Microbiology and Immunology, Albert Einstein College of Medicine Bronx, NY 10461 (United States); Miccio, Annarita [University of Modena e Reggio Emilia, Centro di Medicina Rigenerativa, Modena (Italy); Valle-Casuso, Jose Carlos; Perez, Patricio [Department of Microbiology and Immunology, Albert Einstein College of Medicine Bronx, NY 10461 (United States); Souque, Philippe [Molecular Virology and Vaccinology unit, CNRS URA 3015, Department of Virology, Institut Pasteur, 25-28 rue du Dr. Roux, 75015 Paris (France); Rizzi, Ermanno; Severgnini, Marco [Institute of Biomedical Technologies, CNR, Milano (Italy); Mavilio, Fulvio [University of Modena e Reggio Emilia, Centro di Medicina Rigenerativa, Modena (Italy); Genethon, Evry (France); Charneau, Pierre [Molecular Virology and Vaccinology unit, CNRS URA 3015, Department of Virology, Institut Pasteur, 25-28 rue du Dr. Roux, 75015 Paris (France); Diaz-Griffero, Felipe, E-mail: felipe.diaz-griffero@einstein.yu.edu [Department of Microbiology and Immunology, Albert Einstein College of Medicine Bronx, NY 10461 (United States)

    2013-05-25

    The early steps of HIV-1 replication involve the entry of HIV-1 into the nucleus, which is characterized by viral interactions with nuclear pore components. HIV-1 developed an evolutionary strategy to usurp the nuclear pore machinery and chromatin in order to integrate and efficiently express viral genes. In the current work, we studied the role of nucleoporins 153 and 98 (Nup153 and Nup98) in infection of human Jurkat lymphocytes by HIV-1. We showed that Nup153-depleted cells exhibited a defect in nuclear import, while depletion of Nup 98 caused a slight defect in HIV integration. To explore the biochemical viral determinants for the requirement of Nup153 and Nup98 during HIV-1 infection, we tested the ability of these nucleoporins to interact with HIV-1 cores. Our findings showed that both nucleoporins bind HIV-1 cores suggesting that this interaction is important for HIV-1 nuclear import and/or integration. Distribution analysis of integration sites in Nup153-depleted cells revealed a reduced tendency of HIV-1 to integrate in intragenic sites, which in part could account for the large infectivity defect observed in Nup153-depleted cells. Our work strongly supports a role for Nup153 in HIV-1 nuclear import and integration. - Highlights: ► We studied the role of Nup98 and Nup153 in HIV-1 infection. ► Nup98 binds the HIV-1 core and is involved in HIV-1 integration. ► Nup153 binds the HIV-1 core and is involved in HIV-1 nuclear import. ► Depletion of Nup153 decreased the integration of HIV-1 in transcriptionally active sites.

  18. Residual viraemia in HIV-1-infected patients with plasma viral load activation markers

    DEFF Research Database (Denmark)

    Ostrowski, S R; Katzenstein, T L; Pedersen, B K

    2008-01-01

    -count, CD4+HLA-DR+, CD8+HLA-DR+CD38+, CD4+CD45RA-CD45RO+, CD8+CD45RA-CD45RO+, CD4+CD45RA+CD62L+, CD8+CD45RA+CD62L+ T cells, IgG or IgM. In conclusion, RV was associated with increased blood levels of soluble immune activation markers in HAART-treated HIV-1-infected patients. The finding that RV...

  19. Molecular dynamics and MM/GBSA-integrated protocol probing the correlation between biological activities and binding free energies of HIV-1 TAR RNA inhibitors.

    Science.gov (United States)

    Peddi, Saikiran Reddy; Sivan, Sree Kanth; Manga, Vijjulatha

    2018-02-01

    The interaction of HIV-1 transactivator protein Tat with its cognate transactivation response (TAR) RNA has emerged as a promising target for developing antiviral compounds and treating HIV infection, since it is a crucial step for efficient transcription and replication. In the present study, molecular dynamics (MD) simulations and MM/GBSA calculations have been performed on a series of neamine derivatives in order to estimate appropriate MD simulation time for acceptable correlation between ΔG bind and experimental pIC 50 values. Initially, all inhibitors were docked into the active site of HIV-1 TAR RNA. Later to explore various conformations and examine the docking results, MD simulations were carried out. Finally, binding free energies were calculated using MM/GBSA method and were correlated with experimental pIC 50 values at different time scales (0-1 to 0-10 ns). From this study, it is clear that in case of neamine derivatives as simulation time increased the correlation between binding free energy and experimental pIC 50 values increased correspondingly. Therefore, the binding energies which can be interpreted at longer simulation times can be used to predict the bioactivity of new neamine derivatives. Moreover, in this work, we have identified some plausible critical nucleotide interactions with neamine derivatives that are responsible for potent inhibitory activity. Furthermore, we also provide some insights into a new class of oxadiazole-based back bone cyclic peptides designed by incorporating the structural features of neamine derivatives. On the whole, this approach can provide a valuable guidance for designing new potent inhibitors and modify the existing compounds targeting HIV-1 TAR RNA.

  20. Differential in vitro inhibitory activity against HIV-1 of alpha-(1-3- and alpha-(1-6-D-mannose specific plant lectins : Implication for microbicide development

    Directory of Open Access Journals (Sweden)

    Balzarini Jan

    2007-06-01

    Full Text Available Abstract Background Plant lectins such as Galanthus nivalis agglutinin (GNA and Hippeastrum hybrid agglutinin (HHA are natural proteins able to link mannose residues, and therefore inhibit HIV-target cell interactions. Plant lectins are candidate for microbicide development. Objective To evaluate the activity against HIV of the mannose-specific plant lectins HHA and GNA at the cellular membrane level of epithelial cells and monocyte-derived dendritic cells (MDDC, two potential target cells of HIV at the genital mucosal level. Methods The inhibitory effects of HHA and GNA were evaluated on HIV adsorption to genital epithelial HEC-1A cell line, on HIV transcytosis throughout a monolayer of polarized epithelial HEC-1A cells, on HIV adsorption to MDDC and on transfer of HIV from MDDC to autologous T lymphocytes. Results HHA faintly inhibited attachment to HEC-1A cells of the R5-tropic HIV-1Ba-L strain, in a dose-dependent manner, whereas GNA moderately inhibited HIV adsorption in the same context, but only at high drug doses. Only HHA, but not GNA, inhibited HIV-1JR-CSF transcytosis in a dose-dependent manner. By confocal microscopy, HHA, but not GNA, was adsorbed at the epithelial cell surface, suggesting that HHA interacts specifically with receptors mediating HIV-1 transcytosis. Both plant lectins partially inhibited HIV attachment to MDDC. HHA inhibited more efficiently the transfer of HIV from MDDC to T cell, than GNA. Both HHA and GNA lacked toxicity below 200 μg/ml irrespective the cellular system used and do not disturb the monolayer integrity of epithelial cells. Conclusion These observations demonstrate higher inhibitory activities of the lectin plant HHA by comparison to GNA, on HIV adsorption to HEC-1A cell line, HIV transcytosis through HEC-1A cell line monolayer, HIV adsorption to MDDC and HIV transfer from MDDC to T cells, highlighting the potential interest of HHA as effective microbicide against HIV.

  1. Structure-activity relationship of pyrrolyl diketo acid derivatives as dual inhibitors of HIV-1 integrase and reverse transcriptase ribonuclease H domain.

    Science.gov (United States)

    Cuzzucoli Crucitti, Giuliana; Métifiot, Mathieu; Pescatori, Luca; Messore, Antonella; Madia, Valentina Noemi; Pupo, Giovanni; Saccoliti, Francesco; Scipione, Luigi; Tortorella, Silvano; Esposito, Francesca; Corona, Angela; Cadeddu, Marta; Marchand, Christophe; Pommier, Yves; Tramontano, Enzo; Costi, Roberta; Di Santo, Roberto

    2015-02-26

    The development of HIV-1 dual inhibitors is a highly innovative approach aimed at reducing drug toxic side effects as well as therapeutic costs. HIV-1 integrase (IN) and reverse transcriptase-associated ribonuclease H (RNase H) are both selective targets for HIV-1 chemotherapy, and the identification of dual IN/RNase H inhibitors is an attractive strategy for new drug development. We newly synthesized pyrrolyl derivatives that exhibited good potency against IN and a moderate inhibition of the RNase H function of RT, confirming the possibility of developing dual HIV-1 IN/RNase H inhibitors and obtaining new information for the further development of more effective dual HIV-1 inhibitors.

  2. A recombinant vesicular stomatitis virus encoding CCR5-tropic HIV-1 receptors targets HIV-1-infected cells and controls HIV-1 infection.

    Science.gov (United States)

    Okuma, Kazu; Fukagawa, Koji; Kohma, Takuya; Takahama, Youichi; Hamaguchi, Yukio; Ito, Mamoru; Tanaka, Yuetsu; Buonocore, Linda; Rose, John K; Hamaguchi, Isao

    Anti-retroviral therapy is useful to treat human immunodeficiency virus type 1 (HIV-1)-infected individuals, but has some major problems, such as the generation of multidrug-resistant viruses. To develop a novel supplemental or alternative therapeutic for CCR5-tropic (R5) HIV-1 infection, we generated a recombinant vesicular stomatitis virus (rVSV) in which the gene encoding its envelope glycoprotein (G) was replaced with the genes encoding R5 HIV-1 receptors (human CD4 and CCR5), designated VSVΔG-CC5. Our present data demonstrate that this rVSV specifically infects cells that are transiently expressing R5 HIV-1 envelope glycoproteins, but does not infect those expressing CXCR4-tropic HIV-1 envelope glycoproteins. Notably, after a CD4 + CCR5 + T cell line or primary cells initially infected with R5 HIV-1 were inoculated with G-complemented VSVΔG-CC5, the rVSV significantly reduced the number of HIV-1-infected cells, probably through direct targeting of the rVSV and VSV-mediated cytolysis and/or through syncytium formation- or cell-cell fusion-dependent killing, and markedly inhibited HIV-1 production. Furthermore, G-complemented VSVΔG-CC5 also efficiently inhibited HIV-1 infection in R5 HIV-1-infected humanized immunodeficient mice. Taken together, our findings indicate that a cytolytic rVSV that targets and eliminates R5 HIV-1-infected cells potentially has therapeutic value for controlling R5 HIV-1 infection. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  3. Sulfated Polysaccharides in Marine Sponges: Extraction Methods and Anti-HIV Activity

    Science.gov (United States)

    Esteves, Ana I. S.; Nicolai, Marisa; Humanes, Madalena; Goncalves, Joao

    2011-01-01

    The extraction, fractionation and HIV-1 inhibition potential of polysaccharides extracted from three species of marine sponges, Erylus discophorus, Cliona celata and Stelletta sp., collected in the Northeastern Atlantic, is presented in this work. The anti-HIV activity of 23 polysaccharide pellets and three crude extracts was tested. Crude extracts prepared from Erylus discophorus specimens were all highly active against HIV-1 (90 to 95% inhibition). Cliona celata pellets showed low polysaccharide content (bellow 38.5%) and almost no anti-HIV activity (polysaccharide (up to 97.3%), showed only modest bioactivity (polysaccharide content (up to 98%) and the most active against HIV-1 (up to 95% inhibition). Chromatographic fractionation of the polysaccharide pellet obtained from a specimen of Erylus discophorus (B161) yielded only modestly active fractions. However, we could infer that the active molecule is most probably a high molecular weight sulfated polysaccharide (>2000 kDa), whose mechanism is possibly preventing viral attachment and entry (fusion inhibitor). PMID:21339952

  4. APOBEC3D and APOBEC3F potently promote HIV-1 diversification and evolution in humanized mouse model.

    Directory of Open Access Journals (Sweden)

    Kei Sato

    2014-10-01

    Full Text Available Several APOBEC3 proteins, particularly APOBEC3D, APOBEC3F, and APOBEC3G, induce G-to-A hypermutations in HIV-1 genome, and abrogate viral replication in experimental systems, but their relative contributions to controlling viral replication and viral genetic variation in vivo have not been elucidated. On the other hand, an HIV-1-encoded protein, Vif, can degrade these APOBEC3 proteins via a ubiquitin/proteasome pathway. Although APOBEC3 proteins have been widely considered as potent restriction factors against HIV-1, it remains unclear which endogenous APOBEC3 protein(s affect HIV-1 propagation in vivo. Here we use a humanized mouse model and HIV-1 with mutations in Vif motifs that are responsible for specific APOBEC3 interactions, DRMR/AAAA (4A or YRHHY/AAAAA (5A, and demonstrate that endogenous APOBEC3D/F and APOBEC3G exert strong anti-HIV-1 activity in vivo. We also show that the growth kinetics of 4A HIV-1 negatively correlated with the expression level of APOBEC3F. Moreover, single genome sequencing analyses of viral RNA in plasma of infected mice reveal that 4A HIV-1 is specifically and significantly diversified. Furthermore, a mutated virus that is capable of using both CCR5 and CXCR4 as entry coreceptor is specifically detected in 4A HIV-1-infected mice. Taken together, our results demonstrate that APOBEC3D/F and APOBEC3G fundamentally work as restriction factors against HIV-1 in vivo, but at the same time, that APOBEC3D and APOBEC3F are capable of promoting viral diversification and evolution in vivo.

  5. CCR5 inhibitors in HIV-1 therapy.

    Science.gov (United States)

    Dorr, Patrick; Perros, Manos

    2008-11-01

    The human immunodeficiency virus 1 (HIV-1) is the causative pathogen of AIDS, the world's biggest infectious disease killer. About 33 million people are infected worldwide, with 2.1 million deaths a year as a direct consequence. The devastating nature of AIDS has prompted widespread research, which has led to an extensive array of therapies to suppress viral replication and enable recovery of the immune system to prolong and improve patient life substantially. However, the genetic plasticity and replication rate of HIV-1 are considerable, which has lead to rapid drug resistance. This, together with the need for reducing drug side effects and increasing regimen compliance, has led researchers to identify antiretroviral drugs with new modes of action. This review describes the discovery and clinical development of CCR5 antagonists and the recent approval of maraviroc as a breakthrough in anti-HIV-1 therapy. CCR5 inhibitors target a human cofactor to disable HIV-1 entry into the cells, and thereby provide a new hurdle for the virus to overcome. The status and expert opinion of CCR5 antagonists for the treatment of HIV-1 infection are detailed.

  6. Maraviroc is associated with latent HIV-1 reactivation through NF-κB activation in resting CD4+ T cells from HIV-Infected Individuals on Suppressive Antiretroviral Therapy.

    Science.gov (United States)

    Madrid-Elena, Nadia; García-Bermejo, María Laura; Serrano-Villar, Sergio; Díaz-de Santiago, Alberto; Sastre, Beatriz; Gutiérrez, Carolina; Dronda, Fernando; Coronel Díaz, María; Domínguez, Ester; López-Huertas, María Rosa; Hernández-Novoa, Beatriz; Moreno, Santiago

    2018-02-14

    Maraviroc is a CCR5 antagonist used in the treatment of HIV-1 infection. We and others have suggested that maraviroc could reactivate latent HIV-1. To test the latency reversing potential of maraviroc and the mechanisms involved, we performed a phase-II, single-center, open-label study in which maraviroc was administered for 10 days to 20 HIV-1-infected individuals on suppressive antiretroviral therapy (Eudra CT: 2012-003215-66). All patients completed full maraviroc dosing and follow up. The primary endpoint was to study whether maraviroc may reactivate HIV-1 latency, eliciting signalling pathways involved in the viral reactivation. An increase in HIV-1 transcription in resting CD4 + T-cells, estimated by HIV-1 unspliced RNA, was observed. Moreover, activation of the NF-κB transcription factor was observed in these cells. In contrast, AP-1 and NFAT activity was not detected. To elucidate the mechanism of NF-κB activation by maraviroc, we have evaluated in HeLa P4 C5 cells, which stably express CCR5, if maraviroc could be acting as a partial CCR5-agonist, with no other mechanisms or pathways involved. Our results show that maraviroc can induce NF-κB activity and NF-κB target genes expression by CCR5 binding, since the use of TAK779, a CCR5 inhibitor, blocked NF-κB activation and functionality. Taken together, we show that maraviroc may have a role in the activation of latent virus transcription through the activation of NF-κB as a result of binding CCR5. Our results strongly support a novel use of maraviroc as a potential latency reversal agent in HIV-1-infected patients. IMPORTANCE HIV-1 persistence in a small pool of long-lived latently infected resting CD4 + T-cells is a major barrier to viral eradication in HIV-1-infected patients on antiretroviral therapy. A potential strategy to cure HIV-1-infection is the use of latency reversing agents to eliminate the reservoirs established in resting CD4 + T-cells. As no drug has been shown to be completely

  7. HIV-1 exploits CCR5 conformational heterogeneity to escape inhibition by chemokines.

    Science.gov (United States)

    Colin, Philippe; Bénureau, Yann; Staropoli, Isabelle; Wang, Yongjin; Gonzalez, Nuria; Alcami, Jose; Hartley, Oliver; Brelot, Anne; Arenzana-Seisdedos, Fernando; Lagane, Bernard

    2013-06-04

    CC chemokine receptor 5 (CCR5) is a receptor for chemokines and the coreceptor for R5 HIV-1 entry into CD4(+) T lymphocytes. Chemokines exert anti-HIV-1 activity in vitro, both by displacing the viral envelope glycoprotein gp120 from binding to CCR5 and by promoting CCR5 endocytosis, suggesting that they play a protective role in HIV infection. However, we showed here that different CCR5 conformations at the cell surface are differentially engaged by chemokines and gp120, making chemokines weaker inhibitors of HIV infection than would be expected from their binding affinity constants for CCR5. These distinct CCR5 conformations rely on CCR5 coupling to nucleotide-free G proteins ((NF)G proteins). Whereas native CCR5 chemokines bind with subnanomolar affinity to (NF)G protein-coupled CCR5, gp120/HIV-1 does not discriminate between (NF)G protein-coupled and uncoupled CCR5. Interestingly, the antiviral activity of chemokines is G protein independent, suggesting that "low-chemokine affinity" (NF)G protein-uncoupled conformations of CCR5 represent a portal for viral entry. Furthermore, chemokines are weak inducers of CCR5 endocytosis, as is revealed by EC50 values for chemokine-mediated endocytosis reflecting their low-affinity constant value for (NF)G protein-uncoupled CCR5. Abolishing CCR5 interaction with (NF)G proteins eliminates high-affinity binding of CCR5 chemokines but preserves receptor endocytosis, indicating that chemokines preferentially endocytose low-affinity receptors. Finally, we evidenced that chemokine analogs achieve highly potent HIV-1 inhibition due to high-affinity interactions with internalizing and/or gp120-binding receptors. These data are consistent with HIV-1 evading chemokine inhibition by exploiting CCR5 conformational heterogeneity, shed light into the inhibitory mechanisms of anti-HIV-1 chemokine analogs, and provide insights for the development of unique anti-HIV molecules.

  8. Inhibition of HIV-1 infection in humanized mice and metabolic stability of protein phosphatase-1-targeting small molecule 1E7-03

    OpenAIRE

    Lin, Xionghao; Kumari, Namita; DeMarino, Catherine; Kont, Yasemin Saygideğer; Ammosova, Tatiana; Kulkarni, Amol; Jerebtsova, Marina; Vazquez-Meves, Guelaguetza; Ivanov, Andrey; Dmytro, Kovalskyy; Üren, Aykut; Kashanchi, Fatah; Nekhai, Sergei

    2017-01-01

    We recently identified the protein phosphatase-1 - targeting compound, 1E7-03 which inhibited HIV-1 in vitro. Here, we investigated the effect of 1E7-03 on HIV-1 infection in vivo by analyzing its metabolic stability and antiviral activity of 1E7-03 and its metabolites in HIV-1 infected NSG-humanized mice. 1E7-03 was degraded in serum and formed two major degradation products, DP1 and DP3, which bound protein phosphatase-1 in vitro. However, their anti-viral activities were significantly redu...

  9. Approaches for Identification of HIV-1 Entry Inhibitors Targeting gp41 Pocket

    Directory of Open Access Journals (Sweden)

    Asim K. Debnath

    2013-01-01

    Full Text Available The hydrophobic pocket in the HIV-1 gp41 N-terminal heptad repeat (NHR domain plays an important role in viral fusion and entry into the host cell, and serves as an attractive target for development of HIV-1 fusion/entry inhibitors. The peptide anti-HIV drug targeting gp41 NHR, T-20 (generic name: enfuvirtide; brand name: Fuzeon, was approved by the U.S. FDA in 2003 as the first HIV fusion/entry inhibitor for treatment of HIV/AIDS patients who fail to respond to the current antiretroviral drugs. However, because T20 lacks the pocket-binding domain (PBD, it exhibits low anti-HIV-1 activity and short half-life. Therefore, several next-generation HIV fusion inhibitory peptides with PBD have been developed. They possess longer half-life and more potent antiviral activity against a broad spectrum of HIV-1 strains, including the T-20-resistant variants. Nonetheless, the clinical application of these peptides is still limited by the lack of oral availability and the high cost of production. Thus, development of small molecule compounds targeting the gp41 pocket with oral availability has been promoted. This review describes the main approaches for identification of HIV fusion/entry inhibitors targeting the gp41 pocket and summarizes the latest progress in developing these inhibitors as a new class of anti-HIV drugs.

  10. The Effect of β-Carotene Supplementation on the Pharmacokinetics of Nelfinavir and Its Active Metabolite M8 in HIV-1-infected Patients

    Directory of Open Access Journals (Sweden)

    Humayoun Akhtar

    2012-01-01

    Full Text Available β-Carotene supplements are often taken by individuals living with HIV-1. Contradictory results from in vitro studies suggest that β-carotene may inhibit or induce cytochrome P450 enzymes and transporters. The study objective was to investigate the effect of β-carotene on the steady-state pharmacokinetics of nelfinavir and its active metabolite M8 in HIV-1 infected individuals. Twelve hour nelfinavir pharmacokinetic analysis was conducted at baseline and after 28 days of β-carotene supplementation (25,000 IU twice daily. Nelfinavir and M8 concentrations were measured with validated assays. Non-compartmental methods were used to calculate the pharmacokinetic parameters. Geometric mean ratios comparing day 28 to day 1 area under the plasma concentration-time curve (AUC0–12 h, maximum (Cmax and minimum (Cmin concentrations of nelfinavir and M8 are presented with 90% confidence intervals. Eleven subjects completed the study and were included in the analysis. There were no significant differences in nelfinavir AUC0–12 h and Cmin (−10%, +4% after β-carotene supplementation. The M8 Cmin was increased by 31% while the M8 AUC0–12 h and Cmax were unchanged. During the 28 day period, mean CD4+ % and CD4+:CD8+ ratio increased significantly (p < 0.01. β-carotene supplementation increased serum carotene levels but did not cause any clinically significant difference in the nelfinavir and M8 exposure.

  11. Molecular cloning, over expression, and activity studies of a peptidic HIV-1 protease inhibitor: designed synthetic gene to functional recombinant peptide.

    Science.gov (United States)

    Vathipadiekal, Vinod; Umasankar, Perunthottathu K; Patole, Milind S; Rao, Mala

    2010-01-01

    The aspartic protease inhibitor (ATBI) purified from a Bacillus sp. is a potent inhibitor of several proteases including recombinant HIV-1 protease, pepsin, and fungal aspartic protease. In this study, we report the cloning, and over expression of a synthetic gene coding for ATBI in Escherichia coli and establish a purification protocol. The ATBI molecule consists of eleven amino acids and is peptidic in nature. We used the peptide sequence data of ATBI to synthesize complementary oligonucleotides, which were annealed and subsequently cloned in-frame with the gene for glutathione-S-transferase (GST). The expression of the resulting fusion protein was induced in E. coli BL21-A1 cells using arabinose. The recombinant peptide was purified using a reduced glutathione column, and cleaved with Factor Xa to remove the GST tag. The resultant product was further purified to homogeneity using RP-HPLC. Mass spectroscopy analysis revealed that the purified peptide had a molecular weight of 1186Da which matches the theoretical molecular weight of the amino acids present in the synthetic gene. The recombinant peptide was found to be active in vitro against HIV-1 protease, pepsin, and fungal aspartic protease. The protocol described in this study may be used to clone pharmaceutically important peptide molecules.

  12. HIV-1 Tat Induces Unfolded Protein Response and Endoplasmic Reticulum Stress in Astrocytes and Causes Neurotoxicity through Glial Fibrillary Acidic Protein (GFAP) Activation and Aggregation.

    Science.gov (United States)

    Fan, Yan; He, Johnny J

    2016-10-21

    HIV-1 Tat is a major culprit for HIV/neuroAIDS. One of the consistent hallmarks of HIV/neuroAIDS is reactive astrocytes or astrocytosis, characterized by increased cytoplasmic accumulation of the intermediate filament glial fibrillary acidic protein (GFAP). We have shown that that Tat induces GFAP expression in astrocytes and that GFAP activation is indispensable for astrocyte-mediated Tat neurotoxicity. However, the underlying molecular mechanisms are not known. In this study, we showed that Tat expression or GFAP expression led to formation of GFAP aggregates and induction of unfolded protein response (UPR) and endoplasmic reticulum (ER) stress in astrocytes. In addition, we demonstrated that GFAP up-regulation and aggregation in astrocytes were necessary but also sufficient for UPR/ER stress induction in Tat-expressing astrocytes and for astrocyte-mediated Tat neurotoxicity. Importantly, we demonstrated that inhibition of Tat- or GFAP-induced UPR/ER stress by the chemical chaperone 4-phenylbutyrate significantly alleviated astrocyte-mediated Tat neurotoxicity in vitro and in the brain of Tat-expressing mice. Taken together, these results show that HIV-1 Tat expression leads to UPR/ER stress in astrocytes, which in turn contributes to astrocyte-mediated Tat neurotoxicity, and raise the possibility of developing HIV/neuroAIDS therapeutics targeted at UPR/ER stress. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. In silico Analyses of Subtype Specific HIV-1 Tat-TAR RNA Interaction Reveals the Structural Determinants for Viral Activity

    Directory of Open Access Journals (Sweden)

    Larance Ronsard

    2017-08-01

    Full Text Available HIV-1 Tat transactivates viral genes through strong interaction with TAR RNA. The stem-loop bulged region of TAR consisting of three nucleotides at the position 23–25 and the loop region consisting of six nucleotides at the position 30–35 are essential for viral transactivation. The arginine motif of Tat (five arginine residues on subtype TatC is critically important for TAR interaction. Any mutations in this motif could lead to reduce transactivation ability and pathogenesis. Here, we identified structurally important residues (arginine and lysine residues of Tat in this motif could bind to TAR via hydrogen bond interactions which is critical for transactivation. Natural mutant Ser46Phe in the core motif could likely led to conformational change resulting in more hydrogen bond interactions than the wild type Tat making it highly potent transactivator. Importantly, we report the possible probabilities of number of hydrogen bond interactions in the wild type Tat and the mutants with TAR complexes. This study revealed the differential transactivation of subtype B and C Tat could likely be due to the varying number of hydrogen bonds with TAR. Our data support that the N-terminal and the C-terminal domains of Tat is involved in the TAR interactions through hydrogen bonds which is important for transactivation. This study highlights the evolving pattern of structurally important determinants of Tat in the arginine motif for viral transactivation.

  14. Catalytic water co-existing with a product peptide in the active site of HIV-1 protease revealed by X-ray structure analysis.

    Directory of Open Access Journals (Sweden)

    Vishal Prashar

    Full Text Available BACKGROUND: It is known that HIV-1 protease is an important target for design of antiviral compounds in the treatment of Acquired Immuno Deficiency Syndrome (AIDS. In this context, understanding the catalytic mechanism of the enzyme is of crucial importance as transition state structure directs inhibitor design. Most mechanistic proposals invoke nucleophilic attack on the scissile peptide bond by a water molecule. But such a water molecule coexisting with any ligand in the active site has not been found so far in the crystal structures. PRINCIPAL FINDINGS: We report here the first observation of the coexistence in the active site, of a water molecule WAT1, along with the carboxyl terminal product (Q product peptide. The product peptide has been generated in situ through cleavage of the full-length substrate. The N-terminal product (P product has diffused out and is replaced by a set of water molecules while the Q product is still held in the active site through hydrogen bonds. The position of WAT1, which hydrogen bonds to both the catalytic aspartates, is different from when there is no substrate bound in the active site. We propose WAT1 to be the position from where catalytic water attacks the scissile peptide bond. Comparison of structures of HIV-1 protease complexed with the same oligopeptide substrate, but at pH 2.0 and at pH 7.0 shows interesting changes in the conformation and hydrogen bonding interactions from the catalytic aspartates. CONCLUSIONS/SIGNIFICANCE: The structure is suggestive of the repositioning, during substrate binding, of the catalytic water for activation and subsequent nucleophilic attack. The structure could be a snap shot of the enzyme active site primed for the next round of catalysis. This structure further suggests that to achieve the goal of designing inhibitors mimicking the transition-state, the hydrogen-bonding pattern between WAT1 and the enzyme should be replicated.

  15. Catalytic water co-existing with a product peptide in the active site of HIV-1 protease revealed by X-ray structure analysis.

    Science.gov (United States)

    Prashar, Vishal; Bihani, Subhash; Das, Amit; Ferrer, Jean-Luc; Hosur, Madhusoodan

    2009-11-17

    It is known that HIV-1 protease is an important target for design of antiviral compounds in the treatment of Acquired Immuno Deficiency Syndrome (AIDS). In this context, understanding the catalytic mechanism of the enzyme is of crucial importance as transition state structure directs inhibitor design. Most mechanistic proposals invoke nucleophilic attack on the scissile peptide bond by a water molecule. But such a water molecule coexisting with any ligand in the active site has not been found so far in the crystal structures. We report here the first observation of the coexistence in the active site, of a water molecule WAT1, along with the carboxyl terminal product (Q product) peptide. The product peptide has been generated in situ through cleavage of the full-length substrate. The N-terminal product (P product) has diffused out and is replaced by a set of water molecules while the Q product is still held in the active site through hydrogen bonds. The position of WAT1, which hydrogen bonds to both the catalytic aspartates, is different from when there is no substrate bound in the active site. We propose WAT1 to be the position from where catalytic water attacks the scissile peptide bond. Comparison of structures of HIV-1 protease complexed with the same oligopeptide substrate, but at pH 2.0 and at pH 7.0 shows interesting changes in the conformation and hydrogen bonding interactions from the catalytic aspartates. The structure is suggestive of the repositioning, during substrate binding, of the catalytic water for activation and subsequent nucleophilic attack. The structure could be a snap shot of the enzyme active site primed for the next round of catalysis. This structure further suggests that to achieve the goal of designing inhibitors mimicking the transition-state, the hydrogen-bonding pattern between WAT1 and the enzyme should be replicated.

  16. TRIM22 inhibits HIV-1 transcription independently of its E3 ubiquitin ligase activity, Tat, and NF-kappaB-responsive long terminal repeat elements.

    OpenAIRE

    Kajaste-Rudnitski Anna; Marelli Sara S; Pultrone Cinzia; Pertel Thomas; Uchil Pradeep D; Mechti Nadir; Mothes Walther; Poli Guido; Luban Jeremy; Vicenzi Elisa

    2011-01-01

    Previous studies identified clones of the U937 promonocytic cell line that were either permissive or nonpermissive for human immunodeficiency virus type 1 (HIV 1) replication. These clones were investigated further in the search for host restriction factors that could explain their differential capacity to support HIV 1 replication. Among known HIV 1 restriction factors screened tripartite motif containing protein 22 (TRIM22) was the only factor constitutively expressed in nonpermissive and a...

  17. TRIM22 Inhibits HIV-1 Transcription Independently of Its E3 Ubiquitin Ligase Activity, Tat, and NF-κB-Responsive Long Terminal Repeat Elements▿

    OpenAIRE

    Kajaste-Rudnitski, Anna; Marelli, Sara S.; Pultrone, Cinzia; Pertel, Thomas; Uchil, Pradeep D.; Mechti, Nadir; Mothes, Walther; Poli, Guido; Luban, Jeremy; Vicenzi, Elisa

    2011-01-01

    Previous studies identified clones of the U937 promonocytic cell line that were either permissive or nonpermissive for human immunodeficiency virus type 1 (HIV-1) replication. These clones were investigated further in the search for host restriction factors that could explain their differential capacity to support HIV-1 replication. Among known HIV-1 restriction factors screened, tripartite motif-containing protein 22 (TRIM22) was the only factor constitutively expressed in nonpermissive and ...

  18. Correlation of Increases in 1,25-Dihydroxyvitamin D During Vitamin D Therapy With Activation of CD4+ T Lymphocytes in HIV-1-Infected Males

    DEFF Research Database (Denmark)

    Bang, Ulrich; Kolte, Lilian; Hitz, Mette

    2012-01-01

    -hydroxyvitamin D, and parathyroid hormone were measured. Results: No significant changes of the studied T-lymphocyte subsets occurred in the treatment groups compared to the placebo group. Increases in 1,25-dihydroxyvitamin D were associated with increases in activated CD4+ T lymphocytes (P = .001) and Tregs (P......Background: In HIV-1-infected individuals, levels of CD4+ T lymphocytes are depleted and regulatory T-lymphocytes (Tregs) are elevated. In vitro studies have demonstrated effects of vitamin D on the growth and differentiation of these cells. We speculated whether supplementation with vitamin D.......5-1.0 µg calcitriol and 1200 IU (30 µg) cholecalciferol, (2) 1200 IU cholecalciferol, (3) placebo. Percentages of the following T-lymphocyte subsets were determined: naïve CD4+ and CD8+ cells, activated CD4+ and CD8+ cells, and CD3+CD4+CD25+CD127low Tregs. Furthermore 1,25-dihydroxyvitamin D, 25...

  19. Maraviroc (UK-427,857), a Potent, Orally Bioavailable, and Selective Small-Molecule Inhibitor of Chemokine Receptor CCR5 with Broad-Spectrum Anti-Human Immunodeficiency Virus Type 1 Activity

    OpenAIRE

    Dorr, Patrick; Westby, Mike; Dobbs, Susan; Griffin, Paul; Irvine, Becky; Macartney, Malcolm; Mori, Julie; Rickett, Graham; Smith-Burchnell, Caroline; Napier, Carolyn; Webster, Rob; Armour, Duncan; Price, David; Stammen, Blanda; Wood, Anthony

    2005-01-01

    Maraviroc (UK-427,857) is a selective CCR5 antagonist with potent anti-human immunodeficiency virus type 1 (HIV-1) activity and favorable pharmacological properties. Maraviroc is the product of a medicinal chemistry effort initiated following identification of an imidazopyridine CCR5 ligand from a high-throughput screen of the Pfizer compound file. Maraviroc demonstrated potent antiviral activity against all CCR5-tropic HIV-1 viruses tested, including 43 primary isolates from various clades a...

  20. A natural sulfated polysaccharide, calcium spirulan, isolated from Spirulina platensis: in vitro and ex vivo evaluation of anti-herpes simplex virus and anti-human immunodeficiency virus activities.

    Science.gov (United States)

    Hayashi, K; Hayashi, T; Kojima, I

    1996-10-10

    A sulfated polysaccharide named calcium spirulan (Ca-SP) has been isolated from a sea alga, Spirulina platensis, as an antiviral component. The anti-human immunodeficiency virus type 1 (HIV-1) and anti-herpes simplex virus type 1 (HSV-1) activities of Ca-SP were compared with those of dextran sulfate (DS) as a representative sulfated polysaccharide. Anti-HIV-1 activities of these agents were measured by three different assays: viability of acutely infected CD4-positive cells, or a cytopathology assay; determination of HIV-1 p24 antigen released into culture supernatants; and inhibition of HIV-induced syncytium formation. Anti-HSV-1 activity was assessed by plaque yield reduction. In addition, their effects on the blood coagulation processes and stability in the blood were evaluated. These data indicate that Ca-SP is a potent antiviral agent against both HIV-1 and HSV-1. Furthermore, Ca-SP is quite promising as an anti-HIV agent because even at low concentrations of Ca-SP an enhancement of virus-induced syncytium formation was not observed, as was observed in DS-treated cultures, Ca-SP had very low anticoagulant activity, and showed a much longer half-life in the blood of mice when compared with that of DS. Thus, Ca-SP can be a candidate agent for an anti-HIV therapeutic drug that might overcome the disadvantages observed in many sulfated polysaccharides. When the role of chelation of calcium ion with sulfate groups was examined by removing calcium or its replacement by sodium, the presence of calcium ion in the molecule was shown to be essential for the dose-dependent inhibition of cytopathic effect and syncytium formation induced by HIV-1.

  1. Identification of a D-amino acid decapeptide HIV-1 entry inhibitor

    International Nuclear Information System (INIS)

    Boggiano, Cesar; Jiang Shibo; Lu Hong; Zhao Qian; Liu Shuwen; Binley, James; Blondelle, Sylvie E.

    2006-01-01

    Entry of human immunodeficiency virus type 1 (HIV-1) virion into host cells involves three major steps, each being a potential target for the development of entry inhibitors: gp120 binding to CD4, gp120-CD4 complex interacting with a coreceptor, and gp41 refolding to form a six-helix bundle. Using a D-amino acid decapeptide combinatorial library, we identified peptide DC13 as having potent HIV-1 fusion inhibitory activity, and effectively inhibiting infection by several laboratory-adapted and primary HIV-1 strains. While DC13 did not block binding of gp120 to CD4, nor disrupt the gp41 six-helix bundle formation, it effectively blocked the binding of an anti-CXCR4 monoclonal antibody and chemokine SDF-1α to CXCR4-expressing cells. However, because R5-using primary viruses were also neutralized, the antiviral activity of DC13 implies additional mode(s) of action. These results suggest that DC13 is a useful HIV-1 coreceptor antagonist for CXCR4 and, due to its biostability and simplicity, may be of value for developing a new class of HIV-1 entry inhibitors

  2. Targeting spare CC chemokine receptor 5 (CCR5) as a principle to inhibit HIV-1 entry.

    Science.gov (United States)

    Jin, Jun; Colin, Philippe; Staropoli, Isabelle; Lima-Fernandes, Evelyne; Ferret, Cécile; Demir, Arzu; Rogée, Sophie; Hartley, Oliver; Randriamampita, Clotilde; Scott, Mark G H; Marullo, Stefano; Sauvonnet, Nathalie; Arenzana-Seisdedos, Fernando; Lagane, Bernard; Brelot, Anne

    2014-07-04

    CCR5 binds the chemokines CCL3, CCL4, and CCL5 and is the major coreceptor for HIV-1 entry into target cells. Chemokines are supposed to form a natural barrier against human immunodeficiency virus, type 1 (HIV-1) infection. However, we showed that their antiviral activity is limited by CCR5 adopting low-chemokine affinity conformations at the cell surface. Here, we investigated whether a pool of CCR5 that is not stabilized by chemokines could represent a target for inhibiting HIV infection. We exploited the characteristics of the chemokine analog PSC-RANTES (N-α-(n-nonanoyl)-des-Ser(1)-[l-thioprolyl(2), l-cyclohexylglycyl(3)]-RANTES(4-68)), which displays potent anti-HIV-1 activity. We show that native chemokines fail to prevent high-affinity binding of PSC-RANTES, analog-mediated calcium release (in desensitization assays), and analog-mediated CCR5 internalization. These results indicate that a pool of spare CCR5 may bind PSC-RANTES but not native chemokines. Improved recognition of CCR5 by PSC-RANTES may explain why the analog promotes higher amounts of β-arrestin 2·CCR5 complexes, thereby increasing CCR5 down-regulation and HIV-1 inhibition. Together, these results highlight that spare CCR5, which might permit HIV-1 to escape from chemokines, should be targeted for efficient viral blockade. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Antiviral activity against human immunodeficiency virus type 1 (HIV-1) and type 2 (HIV-2) of ethnobotanically selected Ethiopian medicinal plants.

    Science.gov (United States)

    Asres, K; Bucar, F; Kartnig, T; Witvrouw, M; Pannecouque, C; De Clercq, E

    2001-02-01

    Ethiopian medicinal plants used for the treatment of a variety of ailments including infectious diseases were screened for activity against human immunodeficiency virus type 1 (HIV-1) and type 2 (HIV-2). Seventy-one polar and nonpolar extracts derived from 21 plants belonging to 14 families were tested for inhibition of viral replication using HIV-1 (III(B)) and HIV-2 (ROD) strains. Selective inhibition of viral growth was assessed by the simultaneous determination of the in vitro cytotoxicity of each of the extracts against MT-4 cells. Six extracts made from the root bark of Bersama abyssinica Fresen, the leaves of Combretum paniculatum Vent., and Dodonaea angustifolia L.f., and the stem bark of Ximenia americana L. displayed antiviral activity at concentrations that were nontoxic to MT-4 cells. The highest selective inhibition of HIV-1 replication was observed with the acetone fraction of C. paniculatum and the methanol fraction of D. angustifolia which showed selectivity indices (ratio of 50% cytotoxic concentration to 50% effective antiviral concentration) of 6.4 and 4.9, and afforded cell protection of viral induced cytopathic effect of 100% and 99%, respectively, when compared with control samples. The greatest degree of antiviral activity against HIV-2 was achieved with the acetone extract of C. paniculatum (EC(50): 3 microg/mL), which also showed the highest selectivity index (32). The 50% cytotoxic concentration ranged from 0.5 microg/mL for the hexane extract of D. angustifolia L.f., the most cytotoxic of the extracts tested, to >250 microg/mL for some extracts such as the methanol fraction of Alcea rosea L., the least toxic tested. Only the polar extracts that were obtained by extraction with hydroalcohol, methanol or acetone exhibited inhibition of viral growth at subtoxic concentrations. The results obtained in this study enable the selection of extracts which show some specificity of action and support the further investigation of these extracts for

  4. Electrochemistry of deferiprone as an orally active iron chelator and HIV-1 replication inhibitor and its determination

    OpenAIRE

    Yadegari, H.; Jabbari, A.; Heli, H.; Moosavi-Movahedi, A. A.; Majdi, S.

    2008-01-01

    The electrochemical behavior of the anti-thalassemia and anti-HIV replication drug, deferiprone, was investigated by cyclic voltammetry (CV) at a platinum electrode. In an acetate buffer solution, pH = 4.0, two irreversible anodic peaks for deferiprone, with E(0)1 = 875 mV and E(0)2 = 1235 mV (vs. Ag/AgCl) appeared at a potential sweep rate of 50 mV s-1. Cyclic voltammetric study indicated that the oxidation process is irreversible and diffusion-controlled. The diffusion and the electron tran...

  5. Ridostin inhibits HIV-1 replication in the T lymphoblastoid cell line C8166. Possible role of altered cytokine production.

    Science.gov (United States)

    Scheglovitova, O; Ameglio, F; Trento, E; Ershov, F

    1995-09-01

    Altered cytokine production in human immunodeficiency virus 1 (HIV-1) infection is well documented and cytokine modulators are currently under investigation as possible therapeutic agents. We tested the ability of Ridostin (dsRNA preparation derived from S. cervisiae) to inhibit HIV-1 replication in acutely infected T lymphoblastoid C8166 cells. Ridostin inhibited HIV-1 replication in a concentration range that is 100-fold lower than the toxic concentration for these cells. C8166 cells spontaneously produced interferon (IFN) alpha and gamma, as well as tumor necrosis factor (TNF) alpha. Ridostin activated IFN alpha and suppressed TNF alpha and IFN gamma production by these cells. Monoclonal antibodies (MoAbs) to TNF alpha dose-dependently inhibited HIV-1 replication in these cells. Therefore it is possible that the observed anti-HIV activity of Ridostin in C8166 cells is partly mediated by altered cytokine production. Particularly, suppression of TNF alpha synthesis, that is known to activate HIV-1 replication in several model systems, can play a major role in the observed inhibition of HIV-1 replication.

  6. The naive CD4+ count in HIV-1-infected patients at time of initiation of highly active antiretroviral therapy is strongly associated with the level of immunological recovery

    DEFF Research Database (Denmark)

    Michael, OG; Kirk, O; Mathiesen, Lars Reinhardt

    2002-01-01

    Current antiretroviral therapy can induce considerable, sustained viral suppression followed by immunological recovery, in which naive CD4 + cells are important. Long-term immunological recovery was investigated during the first 3 y of highly active antiretroviral therapy (HAART) in 210 HIV-1......-infected patients. The focus was on the naive CD4 + cell time course and associations between naive CD4 + cell counts and established prognostic markers. Total and naive CD4 + cell counts were measured using flow cytometry. The HIV-RNA detection limit was 20 copies/ml. During 36 months of HAART, the total...... CD4 + count followed a triphasic pattern, reflecting an initial phase of rapid redistribution from lymphoid tissues, followed by a slow increase, partially due to an increase in naive CD4+ cell count. From Month 18 onwards, both naive and total CD4 + cell counts stabilized, although viral suppression...

  7. Molecular Docking Study of HIV-1 Protease with Triterpenoides Compounds from Plants and Mushroom

    Directory of Open Access Journals (Sweden)

    Mokhtar Nosrati

    2015-06-01

    Full Text Available Abstract Background: Because of the reported high ability of virulence and medicinal resistance of HIV-1 virus during the last decades, many investigations have been performed concerning discovery and the introduction of anti-HIV-1 drugs. The results of numerous researches have shown that drugs and protease inhibitory compounds mainly containing plant derivatives specially terpenoids may control HIV-1 infection very effectively. The aim of this research is the bioinformatical study of HIV-1 protease inhibition by standard drugs and triterpenoides from plant and mushroom. Materials and Methods: This is a descriptive-analytic study. In the present study , the structure of drugs, triterpene comounds, and HIV-1 protease enzyme was received from the databases such as Chem Spider, PubChem, Human Metabolome Database (HMDB, and Protein Data Bank (PDB. After that, molecular docking was performed by iGRMDOCK 2.1 software Results: The results confirmed that the interactions of the triterpene compounds like the standard drugs were in three safeguarded and catalytic areas including central domain, flap and carboxylic terminal domain specially amino acids Asp25, Asp27, Ala28, Asp29 and Asp30 in active sites of HIV-1 protease. Also, The study of the interactions of these areas showed that there is a direct correlation between the strength of the interactions and IC50 values of these compounds. Conclusion: Finally, with due attention to the high effectiveness and the proprietary function of triterpenoids, we can conclude that these compounds may be considered as effectire HIV-1 antiprotease drugs.

  8. Analysis of the effect of highly active antiretroviral therapy during acute HIV-1 infection on HIV-specific CD4 T cell functions

    NARCIS (Netherlands)

    Jansen, Christine A.; de Cuyper, Iris M.; Steingrover, Radjin; Jurriaans, Suzanne; Sankatsing, Sanjay U. C.; Prins, Jan M.; Lange, Joep M. A.; van Baarle, Debbie; Miedema, Frank

    2005-01-01

    Background: It has been reported that antiretroviral therapy (HAART) during acute HIV-1 infection may rescue HIV-1-specific CD4 T cell responses. Objective: To determine the duration of this preserved response by investigating the long-term effects of HAART during acute infection on HIV-specific CD4

  9. Selected Drugs with Reported Secondary Cell-Differentiating Capacity Prime Latent HIV-1 Infection for Reactivation

    OpenAIRE

    Shishido, Takao; Wolschendorf, Frank; Duverger, Alexandra; Wagner, Frederic; Kappes, John; Jones, Jennifer; Kutsch, Olaf

    2012-01-01

    Reactivation of latent HIV-1 infection is considered our best therapeutic means to eliminate the latent HIV-1 reservoir. Past therapeutic attempts to systemically trigger HIV-1 reactivation using single drugs were unsuccessful. We thus sought to identify drug combinations consisting of one component that would lower the HIV-1 reactivation threshold and a synergistic activator. With aclacinomycin and dactinomycin, we initially identified two FDA-approved drugs that primed latent HIV-1 infectio...

  10. Interleukin-18 stimulates HIV-1 replication in a T-cell line.

    Science.gov (United States)

    Klein, S A; Klebba, C; Kauschat, D; Pape, M; Ozmen, L; Hoelzer, D; Ottmann, O G; Kalina, U

    2000-03-01

    Interleukin-18 (IL-18) is a recently identified proinflammatory cytokine. Its ability to induce interferon-g suggests a potential virustatic effect. On the other hand, it stimulates NFkB - an activator of HIV replication. Recently, stimulation of HIV-1 in monocytic cells has been demonstrated. In the present study, the influence of IL-18 on HIV-1 replication in lymphatic cells was investigated. Hut78 cells were infected with HIV-1 in the presence of recombinant human IL-18 expressed either in E. coli or eucaryotically by baculovirus in Sf9 cells. HIV-1 replication was monitored by p24 ELISA and endpoint titration of culture supernatants on C8166 cells. The addition of IL-18 led to a 3- to 15-fold enhancement of HIV replication in Hut78 cells. By addition of neutralising monoclonal anti-IL-18 antibodies, this effect of IL-18 was reduced by 75%. Exposure of Hut78 to IL-18 prior to HIV infection could exclude the possibility that IL-18 promotes infection of cells. Taken together, these data provide direct evidence for an IL-18-mediated enhancement of HIV-1 replication in lymphatic cells.

  11. Identification of N-phenyl-N'-(2,2,6,6-tetramethyl-piperidin-4-yl)-oxalamides as a new class of HIV-1 entry inhibitors that prevent gp120 binding to CD4

    International Nuclear Information System (INIS)

    Zhao Qian; Ma Liying; Jiang Shibo; Lu Hong; Liu Shuwen; He Yuxian; Strick, Nathan; Neamati, Nouri; Debnath, Asim Kumar

    2005-01-01

    We have identified two N-phenyl-N'-(2,2,6,6-tetramethyl-piperidin-4-yl)-oxalamide analogs as a novel class of human immunodeficiency virus type 1 (HIV-1) entry inhibitors that block the gp120-CD4 interaction, using database screening techniques. The lead compounds, NBD-556 and NBD-557, are small molecule organic compounds with drug-like properties. These compounds showed potent cell fusion and virus-cell fusion inhibitory activity at low micromolar levels. A systematic study showed that these compounds target viral entry by inhibiting the binding of HIV-1 envelope glycoprotein gp120 to the cellular receptor CD4 but did not inhibit reverse transcriptase, integrase, or protease, indicating that they do not target the later stages of the HIV-1 life cycle to inhibit HIV-1 infection. These compounds were equally potent inhibitors of both X4 and R5 viruses tested in CXCR4 and CCR5 expressing cell lines, respectively, indicating that their anti-HIV-1 activity is not dependent on the coreceptor tropism of the virus. A surface plasmon resonance study, which measures binding affinity, clearly demonstrated that these compounds bind to unliganded HIV-1 gp120 but not to the cellular receptor CD4. NBD-556 and NBD-557 were active against HIV-1 laboratory-adapted strains including an AZT-resistant strain and HIV-1 primary isolates, indicating that these compounds can potentially be further modified to become potent HIV-1 entry inhibitors

  12. Altered immunological reactivity in HIV-1-exposed uninfected neonates.

    Science.gov (United States)

    Hygino, Joana; Lima, Patrícia G; Filho, Renato G S; Silva, Agostinho A L; Saramago, Carmen S M; Andrade, Regis M; Andrade, Daniel M; Andrade, Arnaldo F B; Brindeiro, Rodrigo; Tanuri, Amilcar; Bento, Cleonice A M

    2008-06-01

    This work aimed to evaluate immune events in HIV-1-exposed uninfected neonates born from mothers who control (G1) or not (G2) the plasma viral load, using unexposed neonates as controls. Cord blood from each neonate was collected, plasma and mononuclear cells were separated and the lymphoproliferation and cytokine pattern were evaluated. The results demonstrated that the in vitro lymphoproliferation induced by polyclonal activators was higher in the G2 neonates. Nevertheless, no cell culture responded to poll synthetic HIV-1 envelope peptides. The cytokine dosage in the plasma and supernatants of polyclonally-activated cultures demonstrated that, while IL-4 and IL-10 were the dominant cytokines produced in G1 and control groups, IFN-gamma and TNF-alpha were significantly higher in G2 neonates. Systemic levels of IL-10 observed among the G1 neonates were higher in those born from anti-retroviral treated mothers. In summary, our results indicate an altered immune responsiveness in neonates exposed in utero to HIV and support the role of maternal anti-retroviral treatment to attenuate it.

  13. Homeostatic proliferation fails to efficiently reactivate HIV-1 latently infected central memory CD4+ T cells.

    Directory of Open Access Journals (Sweden)

    Alberto Bosque

    2011-10-01

    Full Text Available Homeostatic proliferation ensures the longevity of central memory T-cells by inducing cell proliferation in the absence of cellular differentiation or activation. This process is governed mainly by IL-7. Central memory T-cells can also be stimulated via engagement of the T-cell receptor, leading to cell proliferation but also activation and differentiation. Using an in vitro model of HIV-1 latency, we have examined in detail the effects of homeostatic proliferation on latently infected central memory T cells. We have also used antigenic stimulation via anti-CD3/anti-CD28 antibodies and established a comparison with a homeostatic proliferation stimulus, to evaluate potential differences in how either treatment affects the dynamics of latent virus populations. First, we show that homeostatic proliferation, as induced by a combination of IL-2 plus IL-7, leads to partial reactivation of latent HIV-1 but is unable to reduce the size of the reservoir in vitro. Second, latently infected cells are able to homeostatically proliferate in the absence of viral reactivation or cell differentiation. These results indicate that IL-2 plus IL-7 may induce a detrimental effect by favoring the maintenance of the latent HIV-1 reservoir. On the other hand, antigenic stimulation efficiently reactivated latent HIV-1 in cultured central memory cells and led to depletion of the latently infected cells via virus-induced cell death.

  14. The MHC-II transactivator CIITA inhibits Tat function and HIV-1 replication in human myeloid cells.

    Science.gov (United States)

    Forlani, Greta; Turrini, Filippo; Ghezzi, Silvia; Tedeschi, Alessandra; Poli, Guido; Accolla, Roberto S; Tosi, Giovanna

    2016-04-18

    We previously demonstrated that the HLA class II transactivator CIITA inhibits HIV-1 replication in T cells by competing with the viral transactivator Tat for the binding to Cyclin T1 subunit of the P-TEFb complex. Here, we analyzed the anti-viral function of CIITA in myeloid cells, another relevant HIV-1 target cell type. We sinvestigated clones of the U937 promonocytic cell line, either permissive (Plus) or non-permissive (Minus) to HIV-1 replication. This different phenotype has been associated with the expression of TRIM22 in U937 Minus but not in Plus cells. U937 Plus cells stably expressing CIITA were generated and HLA-II positive clones were selected by cell sorting and cloning. HLA and CIITA proteins were analyzed by cytofluorometry and western blotting, respectively. HLA-II DR and CIITA mRNAs were quantified by qRT-PCR. Tat-dependent transactivation was assessed by performing the HIV-1 LTR luciferase gene reporter assay. Cells were infected with HIV-1 and viral replication was evaluated by measuring the RT activity in culture supernatants. CIITA was expressed only in HLA-II-positive U937 Minus cells, and this was strictly correlated with inhibition of Tat-dependent HIV-1 LTR transactivation in Minus but not in Plus cells. Overexpression of CIITA in Plus cells restored the suppression of Tat transactivation, confirming the inhibitory role of CIITA. Importantly, HIV-1 replication was significantly reduced in Plus-CIITA cells with respect to Plus parental cells. This effect was independent of TRIM22 as CIITA did not induce TRIM22 expression in Plus-CIITA cells. U937 Plus and Minus cells represent an interesting model to study the role of CIITA in HIV-1 restriction in the monocytic/macrophage cell lineage. The differential expression of CIITA in CIITA-negative Plus and CIITA-positive Minus cells correlated with their capacity to support or not HIV-1 replication, respectively. In Minus cells CIITA targeted the viral transactivator Tat to inhibit HIV-1

  15. Reactivation of Latent HIV-1 by Inhibition of BRD4

    Directory of Open Access Journals (Sweden)

    Jian Zhu

    2012-10-01

    Full Text Available HIV-1 depends on many host factors for propagation. Other host factors, however, antagonize HIV-1 and may have profound effects on viral activation. Curing HIV-1 requires the reduction of latent viral reservoirs that remain in the face of antiretroviral therapy. Using orthologous genetic screens, we identified bromodomain containing 4 (BRD4 as a negative regulator of HIV-1 replication. Antagonism of BRD4, via RNA interference or with a small molecule inhibitor, JQ1, both increased proviral transcriptional elongation and alleviated HIV-1 latency in cell-line models. In multiple instances, JQ1, when used in combination with the NF-κB activators Prostratin or PHA, enhanced the in vitro reactivation of latent HIV-1 in primary T cells. These data are consistent with a model wherein BRD4 competes with the virus for HIV-1 dependency factors (HDFs and suggests that combinatorial therapies that activate HDFs and antagonize HIV-1 competitive factors may be useful for curing HIV-1 infection.

  16. Reactivation of latent HIV-1 by inhibition of BRD4.

    Science.gov (United States)

    Zhu, Jian; Gaiha, Gaurav D; John, Sinu P; Pertel, Thomas; Chin, Christopher R; Gao, Geng; Qu, Hongjing; Walker, Bruce D; Elledge, Stephen J; Brass, Abraham L

    2012-10-25

    HIV-1 depends on many host factors for propagation. Other host factors, however, antagonize HIV-1 and may have profound effects on viral activation. Curing HIV-1 requires the reduction of latent viral reservoirs that remain in the face of antiretroviral therapy. Using orthologous genetic screens, we identified bromodomain containing 4 (BRD4) as a negative regulator of HIV-1 replication. Antagonism of BRD4, via RNA interference or with a small molecule inhibitor, JQ1, both increased proviral transcriptional elongation and alleviated HIV-1 latency in cell-line models. In multiple instances, JQ1, when used in combination with the NF-κB activators Prostratin or PHA, enhanced the in vitro reactivation of latent HIV-1 in primary T cells. These data are consistent with a model wherein BRD4 competes with the virus for HIV-1 dependency factors (HDFs) and suggests that combinatorial therapies that activate HDFs and antagonize HIV-1 competitive factors may be useful for curing HIV-1 infection. Copyright © 2012 The Authors. Published by Elsevier Inc. All rights reserved.

  17. TLR5 stimulation is sufficient to trigger reactivation of latent HIV-1 provirus in T lymphoid cells and activate virus gene expression in central memory CD4+ T cells.

    Science.gov (United States)

    Thibault, Sandra; Imbeault, Michaël; Tardif, Mélanie R; Tremblay, Michel J

    2009-06-20

    When effector CD4+ T cells carrying integrated HIV-1 proviruses revert back to a resting memory state, the virus can remain silent in those cells for years. Following re-exposure to the nominal antigen or in response to other stimuli (e.g. pro-inflammatory cytokines), these cells can begin to produce virus. Here we demonstrate that TLR5 stimulation induces activation of NF-kappaB and reactivate latent HIV-1 in CD4+ T lymphoid cells. Interestingly, we report also that TLR5 engagement leads to virus gene expression in quiescent central memory CD4+ T cells, a cell population recognized as a major reservoir in infected individuals. This study supports the hypothesis that translocation of microbes that can engage pathogen recognition receptors might play a dominant role in chronic immune activation seen in HIV-1-infected individuals and promote virus replication and dissemination.

  18. Vpr14-88-Apobec3G fusion protein is efficiently incorporated into Vif-positive HIV-1 particles and inhibits viral infection.

    Science.gov (United States)

    Ao, Zhujun; Yu, Zhe; Wang, Lina; Zheng, Yingfeng; Yao, Xiaojian

    2008-04-16

    . This study provides evidence for an effective strategy to modify a host protein with innate anti-HIV-1 activity and rescue its potent anti-HIV potential in the presence of Vif. Further characterization and optimization of this system may lead to the development of an effective therapeutic approach against HIV-1 infection.

  19. Inhibition of HIV-1 by curcumin A, a novel curcumin analog

    Science.gov (United States)

    Kumari, Namita; Kulkarni, Amol A; Lin, Xionghao; McLean, Charlee; Ammosova, Tatiana; Ivanov, Andrey; Hipolito, Maria; Nekhai, Sergei; Nwulia, Evaristus

    2015-01-01

    Despite the remarkable success of combination antiretroviral therapy at curtailing HIV progression, emergence of drug-resistant viruses, chronic low-grade inflammation, and adverse effects of combination antiretroviral therapy treatments, including metabolic disorders collectively present the impetus for development of newer and safer antiretroviral drugs. Curcumin, a phytochemical compound, was previously reported to have some in vitro anti-HIV and anti-inflammatory activities, but poor bioavailability has limited its clinical utility. To circumvent the bioavailability problem, we derivatized curcumin to sustain retro-aldol decomposition at physiological pH. The lead compound derived, curcumin A, showed increased stability, especially in murine serum where it was stable for up to 25 hours, as compared to curcumin that only had a half-life of 10 hours. Both curcumin and curcumin A showed similar inhibition of one round of HIV-1 infection in cultured lymphoblastoid (also called CEM) T cells (IC50=0.7 μM). But in primary peripheral blood mononuclear cells, curcumin A inhibited HIV-1 more potently (IC50=2 μM) compared to curcumin (IC50=12 μM). Analysis of specific steps of HIV-1 replication showed that curcumin A inhibited HIV-1 reverse transcription, but had no effect on HIV-1 long terminal repeat basal or Tat-induced transcription, or NF-κB-driven transcription at low concentrations that affected reverse transcription. Finally, we showed curcumin A induced expression of HO-1 and decreased cell cycle progression of T cells. Our findings thus indicate that altering the core structure of curcumin could yield more stable compounds with potent antiretroviral and anti-inflammatory activities. PMID:26366056

  20. Kaposi's-sarcoma-associated-herpesvirus-activated dendritic cells promote HIV-1 trans-infection and suppress CD4{sup +} T cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wan; Qin, Yan; Bai, Lei [Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, the Chinese Academy of Sciences, Shanghai (China); Graduate School of the Chinese Academy of Sciences, Beijing (China); Lan, Ke [Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, the Chinese Academy of Sciences, Shanghai (China); Wang, Jian-Hua, E-mail: Jh_wang@sibs.ac.cn [Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, the Chinese Academy of Sciences, Shanghai (China)

    2013-06-05

    Infection of Kaposi's sarcoma-associated herpesvirus (KSHV) is commonly occurred in AIDS patients. KSHV and HIV-1 act cooperatively in regulating infection with each other and in human carcinogenesis. Dendritic cells (DCs), as the pivotal cells in host immunity, may be modulated by both viruses, for immunoevasion and dissemination, therefore, the interaction between DCs and each virus has been a prior focus for pathogenesis elucidation. Here, we assessed the potential effect of KSHV on DC–HIV-1 interaction. We found that KSHV stimulation could promote maturation of monocyte-derived DCs (MDDCs) and impaired the ability of MDDCs to drive proliferation of resting CD4{sup +} T cells, demonstrating the immunosuppression induced by KSHV. More importantly, KSHV-stimulated MDDCs could capture more HIV-1 and efficiently transferred these infectious viruses to Hut/CCR5 T cell line. Our results reveal the novel modulation of DC-mediated HIV-1 dissemination by KSHV, and highlight the importance of studying DC–HIV-1 interaction to elucidate HIV/AIDS pathogenesis. - Highlights: ► KSHV impaired the ability of MDDCs to drive proliferation of resting CD4{sup +} T cells. ► KSHV stimulation matured MDDCs and enhanced HIV-1 endocytosis. ► KSHV stimulated MDDCs increased ICAM-1 expression and tighten contact with T cells. ► KSHV-stimulated MDDCs promoted HIV-1 trans-infection of CD4{sup +} T cells.

  1. Identification of an N-linked glycan in the V1-loop of HIV-1 gp120 influencing neutralization by anti-V3 antibodies and soluble CD4

    DEFF Research Database (Denmark)

    Gram, G J; Hemming, A; Bolmstedt, A

    1994-01-01

    Glycosylation is necessary for HIV-1 gp120 to attain a functional conformation, and individual N-linked glycans of gp120 are important, but not essential, for replication of HIV-1 in cell culture. We have constructed a mutant HIV-1 infectious clone lacking a signal for N-linked glycosylation...... in the V1-loop of HIV-1 gp120. Lack of an N-linked glycan was verified by a mobility enhancement of mutant gp120 in SDS-gel electrophoresis. The mutated virus showed no differences in either gp120 content per infectious unit or infectivity, indicating that the N-linked glycan was neither essential nor...

  2. Regulation of HIV-1 splicing

    NARCIS (Netherlands)

    Müller, N.

    2016-01-01

    Human immunodeficiency virus type-1 (HIV-1) produces a single primary RNA transcript. The full-length transcript functions as RNA genome that is packaged into virions and as mRNA for translation of the Gag and Pol proteins. HIV-1 RNA contains several splice donor (5’splice site; 5’ss) and splice

  3. From reactivation of latent HIV-1 to elimination of the latent reservoir: the presence of multiple barriers to viral eradication.

    Science.gov (United States)

    Shan, Liang; Siliciano, Robert F

    2013-06-01

    The discovery of a stable latent reservoir for HIV-1 in resting memory CD4(+) T cells provides a mechanism for lifelong persistence of HIV-1. The long-lived latently infected cells persist in spite of prolonged highly active antiretroviral therapy and present a major barrier to a cure of HIV-1 infection. In this review, we discuss the current understanding of HIV-1 persistence and latent viral infection in the context of effective antiretroviral therapy and the recent progress in purging latent viral reservoirs. Recent studies demonstrate that reactivation of latent HIV-1 is a promising strategy for the depletion of these viral reservoirs. A thorough evaluation of the anti-latency activity of drug candidates should include the measurement of changes in intracellular viral RNA, plasma virus levels, and the size of latent viral reservoirs, as well as potential adverse effects. Currently, there are several technical barriers to the evaluation of anti-latency drugs in vivo. We also discuss these challenging issues that remain unresolved. © 2013 WILEY Periodicals, Inc.

  4. Large-scale functional purification of recombinant HIV-1 capsid.

    Directory of Open Access Journals (Sweden)

    Magdeleine Hung

    Full Text Available During human immunodeficiency virus type-1 (HIV-1 virion maturation, capsid proteins undergo a major rearrangement to form a conical core that protects the viral nucleoprotein complexes. Mutations in the capsid sequence that alter the stability of the capsid core are deleterious to viral infectivity and replication. Recently, capsid assembly has become an attractive target for the development of a new generation of anti-retroviral agents. Drug screening efforts and subsequent structural and mechanistic studies require gram quantities of active, homogeneous and pure protein. Conventional means of laboratory purification of Escherichia coli expressed recombinant capsid protein rely on column chromatography steps that are not amenable to large-scale production. Here we present a function-based purification of wild-type and quadruple mutant capsid proteins, which relies on the inherent propensity of capsid protein to polymerize and depolymerize. This method does not require the packing of sizable chromatography columns and can generate double-digit gram quantities of functionally and biochemically well-behaved proteins with greater than 98% purity. We have used the purified capsid protein to characterize two known assembly inhibitors in our in-house developed polymerization assay and to measure their binding affinities. Our capsid purification procedure provides a robust method for purifying large quantities of a key protein in the HIV-1 life cycle, facilitating identification of the next generation anti-HIV agents.

  5. Anti-HIV activities of the compounds isolated from Polygonum cuspidatum and Polygonum multiflorum.

    Science.gov (United States)

    Lin, Hong-Wei; Sun, Ming-Xue; Wang, Yun-Hua; Yang, Liu-Meng; Yang, Ying-Ruo; Huang, Ning; Xuan, Li-Jiang; Xu, Ya-Ming; Bai, Dong-Lu; Zheng, Yong-Tang; Xiao, Kai

    2010-06-01

    The 70 % EtOH extract of Polygonum cuspidatum showed inhibitory action against HIV-1-induced syncytium formation at non-cytotoxic concentrations in vitro with a 50 % effective concentration (EC(50)) of 13.94 +/- 3.41 microg/mL. Through bioactivity-guided fractionation, 20 phenolic compounds, including eight stilbenoids, were isolated from the roots of Polygonum cuspidatum, and their anti-HIV-1 activities were evaluated. Results showed that compounds 1, 13, 14, and 16 demonstrated fairly strong antiviral activity against HIV-1-induced cytopathic effects in C8166 lymphocytes at non-cytotoxic concentrations, with EC (50) values of 4.37 +/- 1.96 microg/mL, 19.97 +/- 5.09, 14.4 +/- 1.34 microg/mL, and 11.29 +/- 6.26 microg/mL and therapeutic index (TI) values of 8.12, > 10.02, > 13.89, and > 17.71, respectively. Other compounds showed either weak or no effects. Compound 6 also showed weak inhibition (153.42 +/- 19.25 microg/mL); however, it possesses very good water solubility and showed almost no cytotoxicity (> 2000 microg/mL), therefore achieving a fairly good TI (13.04). The activities of the two compounds (3 and 18) from Polygonum multiflorum were also assayed. The relationship between molecular structures and their bioactivities was also discussed. Georg Thieme Verlag KG Stuttgart-New York.

  6. Drug-resistant molecular mechanism of CRF01_AE HIV-1 protease due to V82F mutation

    Science.gov (United States)

    Liu, Xiaoqing; Xiu, Zhilong; Hao, Ce

    2009-05-01

    Human immunodeficiency virus type 1 protease (HIV-1 PR) is one of the major targets of anti-AIDS drug discovery. The circulating recombinant form 01 A/E (CRF01_AE, abbreviated AE) subtype is one of the most common HIV-1 subtypes, which is infecting more humans and is expanding rapidly throughout the world. It is, therefore, necessary to develop inhibitors against subtype AE HIV-1 PR. In this work, we have performed computer simulation of subtype AE HIV-1 PR with the drugs lopinavir (LPV) and nelfinavir (NFV), and examined the mechanism of resistance of the V82F mutation of this protease against LPV both structurally and energetically. The V82F mutation at the active site results in a conformational change of 79's loop region and displacement of LPV from its proper binding site, and these changes lead to rotation of the side-chains of residues D25 and I50'. Consequently, the conformation of the binding cavity is deformed asymmetrically and some interactions between PR and LPV are destroyed. Additionally, by comparing the interactive mechanisms of LPV and NFV with HIV-1 PR we discovered that the presence of a dodecahydroisoquinoline ring at the P1' subsite, a [2-(2,6-dimethylphenoxy)acetyl]amino group at the P2' subsite, and an N2 atom at the P2 subsite could improve the binding affinity of the drug with AE HIV-1 PR. These findings are helpful for promising drug design.

  7. Virus-Like Particles Derived from HIV-1 for Delivery of Nuclear Proteins: Improvement of Production and Activity by Protein Engineering.

    Science.gov (United States)

    Robert, Marc-André; Lytvyn, Viktoria; Deforet, Francis; Gilbert, Rénald; Gaillet, Bruno

    2017-01-01

    Virus-like particles (VLPs) derived from retroviruses and lentiviruses can be used to deliver recombinant proteins without the fear of causing insertional mutagenesis to the host cell genome. In this study we evaluate the potential of an inducible lentiviral vector packaging cell line for VLP production. The Gag gene from HIV-1 was fused to a gene encoding a selected protein and it was transfected into the packaging cells. Three proteins served as model: the green fluorescent protein and two transcription factors-the cumate transactivator (cTA) of the inducible CR5 promoter and the human Krüppel-like factor 4 (KLF4). The sizes of the VLPs were 120-150 nm in diameter and they were resistant to freeze/thaw cycles. Protein delivery by the VLPs reached up to 100% efficacy in human cells and was well tolerated. Gag-cTA triggered up to 1100-fold gene activation of the reporter gene in comparison to the negative control. Protein engineering was required to detect Gag-KLF4 activity. Thus, insertion of the VP16 transactivation domain increased the activity of the VLPs by eightfold. An additional 2.4-fold enhancement was obtained by inserting nuclear export signal. In conclusion, our platform produced VLPs capable of efficient protein transfer, and it was shown that protein engineering can be used to improve the activity of the delivered proteins as well as VLP production.

  8. A simple, rapid, and sensitive system for the evaluation of anti-viral drugs in rats

    International Nuclear Information System (INIS)

    Li, Xiaoguang; Qian, Hua; Miyamoto, Fusako; Naito, Takeshi; Kawaji, Kumi; Kajiwara, Kazumi; Hattori, Toshio; Matsuoka, Masao; Watanabe, Kentaro; Oishi, Shinya; Fujii, Nobutaka

    2012-01-01

    Highlights: ► We established a novel, simple and rapid in vivo system for evaluation of anti-HIV-1 drugs with rats. ► The system may be applicable for other antiviral drugs, and/or useful for initial screening in vivo. ► In this system, TRI-1144 displayed the most potent anti-HIV-1 activity in vivo. -- Abstract: The lack of small animal models for the evaluation of anti-human immunodeficiency virus type 1 (HIV-1) agents hampers drug development. Here, we describe the establishment of a simple and rapid evaluation system in a rat model without animal infection facilities. After intraperitoneal administration of test drugs to rats, antiviral activity in the sera was examined by the MAGI assay. Recently developed inhibitors for HIV-1 entry, two CXCR4 antagonists, TF14016 and FC131, and four fusion inhibitors, T-20, T-20EK, SC29EK, and TRI-1144, were evaluated using HIV-1 IIIB and HIV-1 BaL as representative CXCR4- and CCR5-tropic HIV-1 strains, respectively. CXCR4 antagonists were shown to only possess anti-HIV-1 IIIB activity, whereas fusion inhibitors showed both anti-HIV-1 IIIB and anti-HIV-1 BaL activities in rat sera. These results indicate that test drugs were successfully processed into the rat sera and could be detected by the MAGI assay. In this system, TRI-1144 showed the most potent and sustained antiviral activity. Sera from animals not administered drugs showed substantial anti-HIV-1 activity, indicating that relatively high dose or activity of the test drugs might be needed. In conclusion, the novel rat system established here, “phenotypic drug evaluation”, may be applicable for the evaluation of various antiviral drugs in vivo.

  9. A simple, rapid, and sensitive system for the evaluation of anti-viral drugs in rats

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaoguang [Tohoku University Graduate School of Medicine, Department of Internal Medicine/Division of Emerging Infectious Diseases, Sendai 980-8575 (Japan); Department of Medical Microbiology, Harbin Medical University, Harbin 150086 (China); Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811 (Japan); Qian, Hua [Tohoku University Graduate School of Medicine, Department of Internal Medicine/Division of Emerging Infectious Diseases, Sendai 980-8575 (Japan); Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811 (Japan); Miyamoto, Fusako [Tohoku University Graduate School of Medicine, Department of Internal Medicine/Division of Emerging Infectious Diseases, Sendai 980-8575 (Japan); Naito, Takeshi [Laboratory of Virus Control, Institute for Virus Research, Kyoto University, 53 Kawaramachi, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Kawaji, Kumi [Tohoku University Graduate School of Medicine, Department of Internal Medicine/Division of Emerging Infectious Diseases, Sendai 980-8575 (Japan); Kajiwara, Kazumi [Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501 (Japan); JST Innovation Plaza Kyoto, Japan Science and Technology Agency, Nishigyo-ku, Kyoto 615-8245 (Japan); Hattori, Toshio [Tohoku University Graduate School of Medicine, Department of Internal Medicine/Division of Emerging Infectious Diseases, Sendai 980-8575 (Japan); Matsuoka, Masao [Laboratory of Virus Control, Institute for Virus Research, Kyoto University, 53 Kawaramachi, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Watanabe, Kentaro; Oishi, Shinya; Fujii, Nobutaka [Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501 (Japan); and others

    2012-07-27

    Highlights: Black-Right-Pointing-Pointer We established a novel, simple and rapid in vivo system for evaluation of anti-HIV-1 drugs with rats. Black-Right-Pointing-Pointer The system may be applicable for other antiviral drugs, and/or useful for initial screening in vivo. Black-Right-Pointing-Pointer In this system, TRI-1144 displayed the most potent anti-HIV-1 activity in vivo. -- Abstract: The lack of small animal models for the evaluation of anti-human immunodeficiency virus type 1 (HIV-1) agents hampers drug development. Here, we describe the establishment of a simple and rapid evaluation system in a rat model without animal infection facilities. After intraperitoneal administration of test drugs to rats, antiviral activity in the sera was examined by the MAGI assay. Recently developed inhibitors for HIV-1 entry, two CXCR4 antagonists, TF14016 and FC131, and four fusion inhibitors, T-20, T-20EK, SC29EK, and TRI-1144, were evaluated using HIV-1{sub IIIB} and HIV-1{sub BaL} as representative CXCR4- and CCR5-tropic HIV-1 strains, respectively. CXCR4 antagonists were shown to only possess anti-HIV-1{sub IIIB} activity, whereas fusion inhibitors showed both anti-HIV-1{sub IIIB} and anti-HIV-1{sub BaL} activities in rat sera. These results indicate that test drugs were successfully processed into the rat sera and could be detected by the MAGI assay. In this system, TRI-1144 showed the most potent and sustained antiviral activity. Sera from animals not administered drugs showed substantial anti-HIV-1 activity, indicating that relatively high dose or activity of the test drugs might be needed. In conclusion, the novel rat system established here, 'phenotypic drug evaluation', may be applicable for the evaluation of various antiviral drugs in vivo.

  10. Low-level viremia and proviral DNA impede immune reconstitution in HIV-1-infected patients receiving highly active antiretroviral therapy

    DEFF Research Database (Denmark)

    Ostrowski, Sisse R; Katzenstein, Terese L; Thim, Per T.

    2005-01-01

    Immunological and virological consequences of low-level viremia in human immunodeficiency virus (HIV) type 1-infected patients receiving highly active antiretroviral therapy (HAART) remain to be determined.......Immunological and virological consequences of low-level viremia in human immunodeficiency virus (HIV) type 1-infected patients receiving highly active antiretroviral therapy (HAART) remain to be determined....

  11. Structure-based design, synthesis, and biological evaluation of novel pyrrolyl aryl sulfones: HIV-1 non-nucleoside reverse transcriptase inhibitors active at nanomolar concentrations.

    Science.gov (United States)

    Artico, M; Silvestri, R; Pagnozzi, E; Bruno, B; Novellino, E; Greco, G; Massa, S; Ettorre, A; Loi, A G; Scintu, F; La Colla, P

    2000-05-04

    Pyrrolyl aryl sulfones (PASs) have been recently reported as a new class of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) inhibitors acting at the non-nucleoside binding site of this enzyme (Artico, M.; et al. J. Med. Chem. 1996, 39, 522-530). Compound 3, the most potent inhibitor within the series (EC(50) = 0.14 microM, IC(50) = 0.4 microM, and SI > 1429), was then selected as a lead compound for a synthetic project based on molecular modeling studies. Using the three-dimensional structure of RT cocrystallized with the alpha-APA derivative R95845, we derived a model of the RT/3 complex by taking into account previously developed structure-activity relationships. Inspection of this model and docking calculations on virtual compounds prompted the design of novel PAS derivatives and related analogues. Our computational approach proved to be effective in making qualitative predictions, that is in discriminating active versus inactive compounds. Among the compounds synthesized and tested, 20 was the most active one, with EC(50) = 0.045 microM, IC(50) = 0.05 microM, and SI = 5333. Compared with the lead 3, these values represent a 3- and 8-fold improvement in the cell-based and enzyme assays, respectively, together with the highest selectivity achieved so far in the PAS series.

  12. Receptor-targeted aptamer-siRNA conjugate-directed transcriptional regulation of HIV-1

    Science.gov (United States)

    Zhou, Jiehua; Lazar, Daniel; Li, Haitang; Xia, Xin; Satheesan, Sangeetha; Charlins, Paige; O'Mealy, Denis; Akkina, Ramesh; Saayman, Sheena; Weinberg, Marc S.; Rossi, John J.; Morris, Kevin V.

    2018-01-01

    Gene-based therapies represent a promising therapeutic paradigm for the treatment of HIV-1, as they have the potential to maintain sustained viral inhibition with reduced treatment interventions. Such an option may represent a long-term treatment alternative to highly active antiretroviral therapy. Methods: We previously described a therapeutic approach, referred to as transcriptional gene silencing (TGS), whereby small noncoding RNAs directly inhibit the transcriptional activity of HIV-1 by targeting sites within the viral promoter, specifically the 5' long terminal repeat (LTR). TGS differs from traditional RNA interference (RNAi) in that it is characterized by concomitant silent-state epigenetic marks on histones and DNA. To deliver TGS-inducing RNAs, we developed functional RNA conjugates based on the previously reported dual function of the gp120 (A-1) aptamer conjugated to 27-mer Dicer-substrate anti-HIV-1 siRNA (dsiRNA), LTR-362. Results: We demonstrate here that high levels of processed guide RNAs localize to the nucleus in infected T lymphoblastoid CEM cell line and primary human CD4+ T-cells. Treatment of the aptamer-siRNA conjugates induced TGS with an ~10-fold suppression of viral p24 levels as measured at day 12 post infection. To explore the silencing efficacy of aptamer-siRNA conjugates in vivo, HIV-1-infected humanized NOD/SCID/IL2 rγnull mice (hu-NSG) were treated with the aptamer-siRNA conjugates. Systemic delivery of the A-1-stick-LTR-362 27-mer siRNA conjugates suppressed HIV-1 infection and protected CD4+ T cell levels in viremia hu-NSG mice. Principle conclusions: Collectively these data suggest that the gp120 aptamer-dsiRNA conjugate design is suitable for systemic delivery of small RNAs that can be used to suppress HIV-1. PMID:29556342

  13. Anti-inflammatory and neuropharmacological activities of ...

    African Journals Online (AJOL)

    Anti-inflammatory and neuropharmacological activities of Caesalpinia pulcherrima leaves. U Bose, V Bala, AK Shill, AA Rahman. Abstract. The crude methanolic extracts of leaves of Caesalpinia pulcherrima were evaluated for its anti-inflammatory and neuropharmacological activities. When given orally to rats at dose of ...

  14. Cold denaturation of the HIV-1 protease monomer

    DEFF Research Database (Denmark)

    Rösner, Heike Ilona; Caldarini, Martina; Prestel, Andreas

    2017-01-01

    The HIV-1-protease is a complex protein which in its active form adopts a homodimer dominated by -sheet structures. We have discovered a cold-denatured state of the monomeric subunit of HIV-1-protease which is populated above 0ºC and therefore directly accessible to various spectroscopic...

  15. Anti-allergic, anti-pruritic, and anti-inflammatory activities of Centella asiatica extracts.

    Science.gov (United States)

    George, Mathew; Joseph, Lincy; Ramaswamy

    2009-07-03

    This study investigated antipruritic and anti-inflammatory effect of Centella asiatica extract in rats and anti-allergic in vitro using sheep (Capra hircus) serum method and compound 48/80 induced mast cell degranulation method, compared with standard drug ketotifen fumarate. In rats, extract of Centella asiatica administered orally was examined for anti-pruritic study and chlorpheniramine maleate was used as standard drug while carageenan paw induced inflammatory method was used for the antiinfammatory study. The results show that the extracts of Centella asiatica exhibited antiallergic, anti-pruritic and anti-inflammatory activities.

  16. Incidence, clinical presentation, and outcome of HIV-1-associated cryptococcal meningitis during the highly active antiretroviral therapy era

    DEFF Research Database (Denmark)

    Touma, Madeleine; Rasmussen, Line D; Martin-Iguacel, Raquel

    2017-01-01

    BACKGROUND: Human immunodeficiency virus (HIV) infection with advanced immunosuppression predisposes to cryptococcal meningitis (CM). We describe the incidence, clinical presentation, and outcome of CM in HIV-infected individuals during the highly active antiretroviral therapy (HAART) era. METHODS...

  17. Short Communication: Immune Activation Is Present in HIV-1-Exposed Seronegative Individuals and Is Independent of Microbial Translocation.

    Science.gov (United States)

    Saulle, Irma; Biasin, Mara; Gnudi, Federica; Rainone, Veronica; Ibba, Salomè Valentina; Lo Caputo, Sergio; Mazzotta, Francesco; Trabattoni, Daria; Clerici, Mario

    2016-02-01

    Analyses of immune activation in HIV-exposed seronegative individuals (HESN) yielded discrepant results. To clarify this issue we performed an extensive investigation of immune parameters in HESN and, in particular, we analyzed in these individuals the possible presence of microbial translocation, the most widely accepted reason driving immune activation in HIV-infected patients. Results showed that immune activation, a skewing of T lymphocyte maturation, and increased responsiveness to lipopolysaccharide (LPS) characterize the HESN phenotype; this is not driven by alterations of the gastrointestinal barrier and microbial translocation. The activation state seen in HESN may influence the induction of stronger adaptive antiviral immune responses and may represent a virus exposure-induced innate immune protective phenotype against HIV.

  18. Decreased Fc receptor expression on innate immune cells is associated with impaired antibody-mediated cellular phagocytic activity in chronically HIV-1 infected individuals.

    Science.gov (United States)

    Dugast, Anne-Sophie; Tonelli, Andrew; Berger, Christoph T; Ackerman, Margaret E; Sciaranghella, Gaia; Liu, Qingquan; Sips, Magdalena; Toth, Ildiko; Piechocka-Trocha, Alicja; Ghebremichael, Musie; Alter, Galit

    2011-07-05

    In addition to neutralization, antibodies mediate other antiviral activities including antibody-dependent cellular phagocytosis (ADCP), antibody-dependent cellular cytotoxicity (ADCC), as well as complement deposition. While it is established that progressive HIV infection is associated with reduced ADCC and ADCP, the underlying mechanism for this loss of function is unknown. Here we report considerable changes in FcR expression over the course of HIV infection on both mDCs and monocytes, including elevated FcγRI expression in acute HIV infection and reduced expression of FcγRII and FcγRIIIa in chronic HIV infection. Furthermore, selective blockade of FcγRII alone was associated with a loss in ADCP activity, suggesting that FcγRII plays a central role in modulating ADCP. Overall, HIV infection is associated with a number of changes in FcR expression on phagocytic cells that are associated with changes in their ability to respond to antibody-opsonized targets, potentially contributing to a failure in viral clearance in progressive HIV-1 infection. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Decreased Fc-Receptor expression on innate immune cells is associated with impaired antibody mediated cellular phagocytic activity in chronically HIV-1 infected individuals

    Science.gov (United States)

    Dugast, Anne-Sophie; Tonelli, Andrew; Berger, Christoph T.; Ackerman, Margaret E.; Sciaranghella, Gaia; Liu, Qingquan; Sips, Magdalena; Toth, Ildiko; Piechocka-Trocha, Alicja; Ghebremichael, Musie; Alter, Galit

    2011-01-01

    In addition to neutralization, antibodies mediate other antiviral activities including antibody-dependent cellular-phagocytosis (ADCP), antibody dependent cellular-cytotoxicity (ADCC), as well as complement deposition. While it is established that progressive HIV infection is associated with reduced ADCC and ADCP, the underlying mechanism for this loss of function is unknown. Here we report considerable changes in FcR expression over the course of HIV infection on both mDCs and monocytes, including elevated FcγRI expression in acute HIV infection and reduced expression of FcγRII and FcγRIIIa in chronic HIV infection. Furthermore, selective blockade of FcγRII alone was associated with a loss in ADCP activity, suggesting that FcγRII plays a central role in modulating ADCP. Overall, HIV infection is associated with a number of changes in FcR expression on phagocytic cells that are associated with changes in their ability to respond to antibody-opsonized targets, potentially contributing to a failure in viral clearance in progressive HIV-1 infection. PMID:21565376

  20. HIV-1 Vpr reactivates latent HIV-1 provirus by inducing depletion of class I HDACs on chromatin

    Science.gov (United States)

    Romani, Bizhan; Kamali Jamil, Razieh; Hamidi-Fard, Mojtaba; Rahimi, Pooneh; Momen, Seyed Bahman; Aghasadeghi, Mohammad Reza; Allahbakhshi, Elham

    2016-01-01

    HIV-1 Vpr is an accessory protein that induces proteasomal degradation of multiple proteins. We recently showed that Vpr targets class I HDACs on chromatin for proteasomal degradation. Here we show that Vpr induces degradation of HDAC1 and HDAC3 in HIV-1 latently infected J-Lat cells. Degradation of HDAC1 and HDAC3 was also observed on the HIV-1 LTR and as a result, markers of active transcription were recruited to the viral promoter and induced viral activation. Knockdown of HDAC1 and HDAC3 activated the latent HIV-1 provirus and complementation with HDAC3 inhibited Vpr-induced HIV-1 reactivation. Viral reactivation and degradation of HDAC1 and HDAC3 was conserved among Vpr proteins of HV-1 group M. Serum Vpr isolated from patients or the release of virion-incorporated Vpr from viral lysates also activated HIV-1 in latently infected cell lines and PBMCs from HIV-1 infected patients. Our results indicate that Vpr counteracts HIV-1 latency by inducing proteasomal degradation of HDAC1 and 3 leading to reactivation of the viral promoter. PMID:27550312

  1. Long-term highly active antiretroviral therapy in chronic HIV-1 infection: evidence for reconstitution of antiviral immunity

    NARCIS (Netherlands)

    Jansen, Christine A.; Piriou, Erwan; de Cuyper, Iris M.; van Dort, Karel; Lange, Joep M. A.; Miedema, Frank; van Baarle, Debbie

    2006-01-01

    In this study we investigated the long-term effect of highly active antiretroviral therapy (HAART) on HIV-specific CD4+ T-cell responses in comparison with virus-specific CD4+ T-cell responses against the persistent herpes viruses cytomegalovirus (CMV) and Epstein-Barr virus (EBV). To this end, HIV-

  2. Inhibition of HIV-1 infection in humanized mice and metabolic stability of protein phosphatase-1-targeting small molecule 1E7-03

    Science.gov (United States)

    Lin, Xionghao; Kumari, Namita; DeMarino, Catherine; Kont, Yasemin Saygideğer; Ammosova, Tatiana; Kulkarni, Amol; Jerebtsova, Marina; Vazquez-Meves, Guelaguetza; Ivanov, Andrey; Dmytro, Kovalskyy; Üren, Aykut; Kashanchi, Fatah; Nekhai, Sergei

    2017-01-01

    We recently identified the protein phosphatase-1 - targeting compound, 1E7-03 which inhibited HIV-1 in vitro. Here, we investigated the effect of 1E7-03 on HIV-1 infection in vivo by analyzing its metabolic stability and antiviral activity of 1E7-03 and its metabolites in HIV-1 infected NSG-humanized mice. 1E7-03 was degraded in serum and formed two major degradation products, DP1 and DP3, which bound protein phosphatase-1 in vitro. However, their anti-viral activities were significantly reduced due to inefficient cell permeability. In cultured cells, 1E7-03 reduced expression of several protein phosphatase-1 regulatory subunits including Sds22 as determined by a label free quantitative proteomics analysis. In HIV-1-infected humanized mice, 1E7-03 significantly reduced plasma HIV-1 RNA levels, similar to the previously described HIV-1 transcription inhibitor F07#13. We synthesized a DP1 analog, DP1-07 with a truncated side chain, which showed improved cell permeability and longer pharmacokinetic retention in mice. But DP1-07 was less efficient than 1E7-03 as a HIV-1 inhibitor both in vitro and in vivo, indicating that the full side chain of 1E7-03 was essential for its anti-HIV activity. Analysis of 1E7-03 stability in plasma and liver microsomes showed that the compound was stable in human, primate and ferret plasma but not in rodent plasma. However, 1E7-03 was not stable in human liver microsomes. Our findings suggest that 1E7-03 is a good candidate for future development of HIV-1 transcription inhibitors. Further structural modification and advanced formulations are needed to improve its metabolic stability and enhance its antiviral activity in non-human primate animals and humans. PMID:29100346

  3. The Antiviral Activity of Approved and Novel Drugs against HIV-1 Mutations Evaluated under the Consideration of Dose-Response Curve Slope.

    Directory of Open Access Journals (Sweden)

    Shuai Chang

    Full Text Available This study was designed to identify common HIV-1 mutation complexes affecting the slope of inhibition curve, and to propose a new parameter incorporating both the IC50 and the slope to evaluate phenotypic resistance.Utilizing site-directed mutagenesis, we constructed 22 HIV-1 common mutation complexes. IC50 and slope of 10 representative approved drugs and a novel agent against these mutations were measured to determine the resistance phenotypes. The values of new parameter incorporating both the IC50 and the slope of the inhibition curve were calculated, and the correlations between parameters were assessed.Depending on the class of drug, there were intrinsic differences in how the resistance mutations affected the drug parameters. All of the mutations resulted in large increases in the IC50s of nucleoside reverse transcriptase inhibitors. The effects of the mutations on the slope were the most apparent when examining their effects on the inhibition of non-nucleoside reverse transcriptase inhibitors and protease inhibitors. For example, some mutations, such as V82A, had no effect on IC50, but reduced the slope. We proposed a new concept, termed IIPatoxic, on the basis of IC50, slope and the maximum limiting concentrations of the drug. The IIPatoxic values of 10 approved dru