WorldWideScience

Sample records for anthropogenic pollutants combine

  1. Hyperspectral observation of anthropogenic and biogenic pollution in coastal zone

    Science.gov (United States)

    Lavrova, Olga; Loupian, Evgeny; Mityagina, Marina; Uvarov, Ivan

    The work presents results of anthropogenic and biogenic pollution detection in coastal zones of the Black and Caspian Seas based on satellite hyperspetral data provided by the Hyperion and HICO instruments. Techniques developed on the basis of the analysis of spectral characteristics calculated in special points were employed to address the following problems: (a) assessment of the blooming intensity of cyanobacteria and their distribution in bays of western Crimea and discrimination between anthropogenic pollutant discharge events and algae bloom; (b) detection of anthropogenic pollution in Crimean lakes utilized as industrial liquid discharge reservoirs; (c) detection of oil pollution in areas of shelf oil production in the Caspian Sea. Information values of different spectral bands and their composites were estimated in connection with the retrieval of the main sea water components: phytoplankton, suspended matter and colored organic matter, and also various anthropogenic pollutants, including oil. Software tools for thematic hyperspectral data processing in application to the investigation of sea coastal zones and internal water bodies were developed on the basis of the See the Sea geoportal created by the Space Research Institute RAS. The geoportal is focused on the study of processes in the world ocean with the emphasis on the advantages of satellite systems of observation. The tools that were introduced into the portal allow joint analysis of quasi-simultaneous satellite data, in particular data from the Hyperion, HICO, OLI Landsat-8, ETM Landsat-7 and TM Landsat-5 instruments. Results of analysis attempts combining data from different sensors are discussed. Their strong and weak points are highlighted. The study was completed with partial financial support from The Russian Foundation for Basic Research grants # 14-05-00520-a and 13-07-12017.

  2. Screening of anthropogenic compounds in polluted sediments and soils

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Leeuw, J.W. de; Leer, E.W.B. de; Schuyl, P.J.W.

    1986-01-01

    The use of flash evaporation and pyrolysis gas chromatography- mass spectrometry as a fast screening procedure for anthropogenic substances In environmental samples is demonstrated by the analysis of polluted soil and sediment samples. Polycyclic aromatic hydrocarbons, haloorganics,

  3. Heavy metals anthropogenic pollutants in Austria

    International Nuclear Information System (INIS)

    Anderl, M.; Gager, M.; Gugele, B.; Huttunen, K.; Kurzweil, A.; Poupa, S.; Ritter, M.; Wappel, D.; Wieser, M.

    2004-01-01

    Several heavy metals from anthropogenic sources are emitted in the atmosphere damaging the air quality and the human health, besides they accumulate on the soil and lately are transmitted into the human food chain. Therefore at international level there is a concern to reduce them. Austrian heavy metals emissions (cadmium, mercury and lead) during 1990-2002 are given including an analysis of causes and sources. Lead is the main pollutant and the main sector responsible is the industry. 5 figs. (nevyjel)

  4. Anthropogenic impact and lead pollution throughout the Holocene in Southern Iberia.

    Science.gov (United States)

    García-Alix, A; Jimenez-Espejo, F J; Lozano, J A; Jiménez-Moreno, G; Martinez-Ruiz, F; García Sanjuán, L; Aranda Jiménez, G; García Alfonso, E; Ruiz-Puertas, G; Anderson, R Scott

    2013-04-01

    Present day lead pollution is an environmental hazard of global proportions. A correct determination of natural lead levels is very important in order to evaluate anthropogenic lead contributions. In this paper, the anthropogenic signature of early metallurgy in Southern Iberia during the Holocene, more specifically during the Late Prehistory, was assessed by mean of a multiproxy approach: comparison of atmospheric lead pollution, fire regimes, deforestation, mass sediment transport, and archeological data. Although the onset of metallurgy in Southern Iberia is a matter of controversy, here we show the oldest lead pollution record from Western Europe in a continuous paleoenvironmental sequence, which suggests clear lead pollution caused by metallurgical activities since ~3900 cal BP (Early Bronze Age). This lead pollution was especially important during Late Bronze and Early Iron ages. At the same time, since ~4000 cal BP, an increase in fire activity is observed in this area, which is also coupled with deforestation and increased erosion rates. This study also shows that the lead pollution record locally reached near present-day values many times in the past, suggesting intensive use and manipulation of lead during those periods in this area. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Radiative absorption enhancement of dust mixed with anthropogenic pollution over East Asia

    Directory of Open Access Journals (Sweden)

    P. Tian

    2018-06-01

    Full Text Available The particle mixing state plays a significant yet poorly quantified role in aerosol radiative forcing, especially for the mixing of dust (mineral absorbing and anthropogenic pollution (black carbon absorbing over East Asia. We have investigated the absorption enhancement of mixed-type aerosols over East Asia by using the Aerosol Robotic Network observations and radiative transfer model calculations. The mixed-type aerosols exhibit significantly enhanced absorbing ability than the corresponding unmixed dust and anthropogenic aerosols, as revealed in the spectral behavior of absorbing aerosol optical depth, single scattering albedo, and imaginary refractive index. The aerosol radiative efficiencies for the dust, mixed-type, and anthropogenic aerosols are −101.0, −112.9, and −98.3 Wm−2 τ−1 at the bottom of the atmosphere (BOA; −42.3, −22.5, and −39.8 Wm−2 τ−1 at the top of the atmosphere (TOA; and 58.7, 90.3, and 58.5 Wm−2 τ−1 in the atmosphere (ATM, respectively. The BOA cooling and ATM heating efficiencies of the mixed-type aerosols are significantly higher than those of the unmixed aerosol types over the East Asia region, resulting in atmospheric stabilization. In addition, the mixed-type aerosols correspond to a lower TOA cooling efficiency, indicating that the cooling effect by the corresponding individual aerosol components is partially counteracted. We conclude that the interaction between dust and anthropogenic pollution not only represents a viable aerosol formation pathway but also results in unfavorable dispersion conditions, both exacerbating the regional air pollution in East Asia. Our results highlight the necessity to accurately account for the mixing state of aerosols in atmospheric models over East Asia in order to better understand the formation mechanism for regional air pollution and to assess its impacts on human health, weather, and climate.

  6. Real-time observational evidence of changing Asian dust morphology with the mixing of heavy anthropogenic pollution

    Science.gov (United States)

    Pan, X.; Uno, I.; Wang, Z.; Nishizawa, T.; Sugimoto, N.; Yamamoto, S.; Kobayashi, H.; Sun, Y.; Fu, P.; Tang, X.; Wang, Z.

    2017-12-01

    Natural mineral dust and heavy anthropogenic pollution and its complex interactions cause significant environmental problems in East Asia. Due to restrictions of observing technique, real-time morphological change in Asian dust particles owing to coating process of anthropogenic pollutants is still statistically unclear. Here, we first used a newly developed, single-particle polarization detector and quantitatively investigate the evolution of the polarization property of backscattering light reflected from dust particle as they were mixing with anthropogenic pollutants in North China. The decrease in observed depolarization ratio is mainly attributed to the decrease of aspect ratio of the dust particles as a result of continuous coating processes. Hygroscopic growth of Calcium nitrate (Ca(NO3)2) on the surface of the dust particles played a vital role, particularly when they are stagnant in the polluted region with high RH conditions. Reliable statistics highlight the significant importance of internally mixed, `quasi-spherical' Asian dust particles, which markedly act as cloud condensation nuclei and exert regional climate change.

  7. Spatial and temporal variability in desert dust and anthropogenic pollution in Iraq, 1997-2010.

    Science.gov (United States)

    Chudnovsky, A Alexandra; Koutrakis, Petros; Kostinski, Alex; Proctor, Susan P; Garshick, Eric

    2017-01-01

    Satellite imaging has emerged as a method for monitoring regional air pollution and detecting areas of high dust concentrations. Unlike ground observations, continuous data monitoring is available with global coverage of terrestrial and atmospheric components. In this study we test the utility of different sources of satellite data to assess air pollution concentrations in Iraq. SeaWiFS and MODIS Deep Blue (DB) aerosol optical depth (AOD) products were evaluated and used to characterize the spatial and temporal pollution levels from the late 1990s through 2010. The AOD and Ångström exponent (an indicator of particle size, since smaller Ångström exponent values reflect a source that includes larger particles) were correlated on 50 × 50 km spatial resolution. Generally, AOD and Ångström exponent were inversely correlated, suggesting a significant contribution of coarse particles from dust storms to AOD maxima. Although the majority of grid cells exhibited this trend, a weaker relationship in other locations suggested an additional contribution of fine particles from anthropogenic sources. Tropospheric NO 2 densities from the OMI satellite were elevated over cities, also consistent with a contribution from anthropogenic sources. Our analysis demonstrates the use of satellite imaging data to estimate relative pollution levels and source contributions in areas of the world where direct measurements are not available. The authors demonstrated how satellite data can be used to characterize exposures to dust and to anthropogenic pollution for future health related studies. This approach is of a great potential to investigate the associations between subject-specific exposures to different pollution sources and their health effects in inaccessible regions and areas where ground monitoring is unavailable.

  8. Dynamics of pollutant indicators during flood events in a small river under strong anthropogenic pressures

    Science.gov (United States)

    Brion, Natacha; Carbonnel, Vincent; Elskens, Marc; Claeys, Philippe; Verbanck, Michel A.

    2017-04-01

    In densely populated regions, human activities profoundly modify natural water circulation as well as water quality, with increased hydrological risks (floods, droughts,…) and chemical hazards (untreated sewage releases, industrial pollution,…) as consequence. In order to assess water and pollutants dynamics and their mass-balance in strongly modified river system, it is important to take into account high flow events as a significant fraction of water and pollutants loads may occur during these short events which are generally underrepresented in classical mass balance studies. A good example of strongly modified river systems is the Zenne river in and around the city of Brussels (Belgium).The Zenne River (Belgium) is a rather small but dynamic rain fed river (about 10 m3/s in average) that is under the influence of strong contrasting anthropogenic pressures along its stretch. While the upstream part of its basin is rather characterized by agricultural land-use, urban and industrial areas dominate the downstream part. In particular, the city of Brussels (1.1M inhabitants) discharges in the Zenne River amounts of wastewater that are large compared to the natural riverine flow. In order to assess water and pollutants dynamics and their mass-balance in the Zenne hydrographic network, we followed water flows and concentrations of several water quality tracers during several flood episodes with an hourly frequency and at different locations along the stretch of the River. These parameters were chosen as indicators of a whole range of pollutions and anthropogenic activities. Knowledge of the high-frequency pollutants dynamics during floods is required for establishing accurate mass-balances of these elements. We thus report here the dynamics of selected parameters during entire flood events, from the baseline to the decreasing phase and at hourly frequency. Dynamics at contrasting locations, in agricultural or urban environments are compared. In particular, the

  9. Anthropogenic impacts on global organic river pollution

    NARCIS (Netherlands)

    Wen, Y.

    2017-01-01

    Organic pollution of rivers by wastewater discharge from human activities negatively impacts people and ecosystems. Without treatment, pollution control relies on a combination of natural degradation and dilution by natural runoff to reduce downstream effects. To implement integrated water

  10. Groundwater quality deterioration as a result of anthropogenic organic air pollution

    International Nuclear Information System (INIS)

    Renner, I.; Schleyer, R.; Muehlhausen, D.

    1990-01-01

    For monitoring the atmospherical depositions of organic materials in soil and in particular groundwater, we measured in rain water, soil seepage water and groundwater from four measuring stations in hessian forest areas the AOX sum parameter (organic halogen compounds which can be adsorbed) and numerous single compounds, above all chlorinated hydrocarbons. Anthropogenic organic pollutants are found in all precipitations. Their concentrations are clearly increased as compared to the open land. Of special importance are the atmospherical reaction products of the primary emissions, for example trichloroacetic acid. In analogy to inorganic pollutants, organic pollutant depositions affect above all poorly protected water-bearing strata with thin topsoil layers with a low capacity for adsorption and buffering. Harmful concentrations may be reached here in some cases. (orig.) [de

  11. Spatial and temporal variability in desert dust and anthropogenic pollution in Iraq, 1997–2010

    Science.gov (United States)

    Chudnovsky, A. Alexandra; Koutrakis, Petros; Kostinski, Alex; Proctor, Susan P.; Garshick, Eric

    2016-01-01

    Satellite imaging has emerged as a method for monitoring regional air pollution and detecting areas of high dust concentrations. Unlike ground observations, continuous data monitoring is available with global coverage of terrestrial and atmospheric components. In this study we test the utility of different sources of satellite data to assess air pollution concentrations in Iraq. SeaWiFS and MODIS Deep Blue (DB) aerosol optical depth (AOD) products were evaluated and used to characterize the spatial and temporal pollution levels from the late 1990s through 2010. The AOD and Ångström exponent (an indicator of particle size, since smaller Ångström exponent values reflect a source that includes larger particles) were correlated on 50 × 50 km spatial resolution. Generally, AOD and Ångström exponent were inversely correlated, suggesting a significant contribution of coarse particles from dust storms to AOD maxima. Although the majority of grid cells exhibited this trend, a weaker relationship in other locations suggested an additional contribution of fine particles from anthropogenic sources. Tropospheric NO2 densities from the OMI satellite were elevated over cities, also consistent with a contribution from anthropogenic sources. Our analysis demonstrates the use of satellite imaging data to estimate relative pollution levels and source contributions in areas of the world where direct measurements are not available. Implications The authors demonstrated how satellite data can be used to characterize exposures to dust and to anthropogenic pollution for future health related studies. This approach is of a great potential to investigate the associations between subject-specific exposures to different pollution sources and their health effects in inaccessible regions and areas where ground monitoring is unavailable. PMID:28001122

  12. Global gray water footprint and water pollution levels related to anthropogenic nitrogen loads to fresh water

    NARCIS (Netherlands)

    Mekonnen, Mesfin; Hoekstra, Arjen Ysbert

    2015-01-01

    This is the first global assessment of nitrogen-related water pollution in river basins with a specification of the pollution by economic sector, and by crop for the agricultural sector. At a spatial resolution of 5 by 5 arc minute, we estimate anthropogenic nitrogen (N) loads to freshwater,

  13. Characterization of anthropogenic sediment particles after a transboundary water pollution of river Tisza using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Osan, Janos E-mail: osan@sunserv.kfki.hu; Toeroek, Szabina; Alfoeldy, Balint; Falkenberg, Gerald

    2004-05-21

    At the beginning of 2000, a major mining accident occurred in the Romanian part of the Tisza catchment area due to tailings dam failure releasing huge amounts of heavy metals to the river. Sediment samples were taken from the main riverbed at six sites in Hungary, on March 16, 2000. The objective of this work was to characterize the anthropogenic particles in river sediment previously selected by single-particle electron probe X-ray microanalysis (EPMA). The trace element composition, heterogeneity and heavy metal speciation of individual particles was studied using synchrotron radiation-based microbeam X-ray emission and absorption methods. Particles were selected only from samples regarded as polluted sediment. White-beam micro X-ray fluorescence ({mu}-XRF) allowed the quantitative determination of heavy metals such as cadmium in individual particles. The maximum observed concentration of cadmium (>700 {mu}g/g) indicates that this highly toxic heavy metal is concentrated in individual anthropogenic particles. Using the combination of micro X-ray absorption near-edge structure and target-transformation principle component analysis, quantitative chemical speciation of copper and zinc was feasible on individual sediment particles. Heavy metals in most of the particles released from the pollution site remained in the sulfide form resulting in a limited mobility of these metals. Based on the information obtained using microanalytical methods, the estimation of the environmental mobility of heavy metals connected to microparticles becomes possible.

  14. The dependence of the fluorescent parameters of the Caspiy microseaweed from the anthropogenous pollution

    Directory of Open Access Journals (Sweden)

    M. Yu. Aliyeva

    2008-01-01

    Full Text Available Anthropogenic pollution becomes the essential factor, reducing photosynthetic efficiency of microalgae of Caspian sea. Methods of registration of chlorophyll fluorescence can be used for detection of toxic action of heavy metals on microalgae.

  15. Combined effects of night warming and light pollution on predator-prey interactions.

    Science.gov (United States)

    Miller, Colleen R; Barton, Brandon T; Zhu, Likai; Radeloff, Volker C; Oliver, Kerry M; Harmon, Jason P; Ives, Anthony R

    2017-10-11

    Interactions between multiple anthropogenic environmental changes can drive non-additive effects in ecological systems, and the non-additive effects can in turn be amplified or dampened by spatial covariation among environmental changes. We investigated the combined effects of night-time warming and light pollution on pea aphids and two predatory ladybeetle species. As expected, neither night-time warming nor light pollution changed the suppression of aphids by the ladybeetle species that forages effectively in darkness. However, for the more-visual predator, warming and light had non-additive effects in which together they caused much lower aphid abundances. These results are particularly relevant for agriculture near urban areas that experience both light pollution and warming from urban heat islands. Because warming and light pollution can have non-additive effects, predicting their possible combined consequences over broad spatial scales requires knowing how they co-occur. We found that night-time temperature change since 1949 covaried positively with light pollution, which has the potential to increase their non-additive effects on pea aphid control by 70% in US alfalfa. Our results highlight the importance of non-additive effects of multiple environmental factors on species and food webs, especially when these factors co-occur. © 2017 The Author(s).

  16. Climatic changes and anthropogenic pollution as evidenced by two Alpine lacustrine records, Switzerland.

    Science.gov (United States)

    Thevenon, Florian; Poté, John; Guédron, Stéphane; Adatte, Thierry; Chiaradia, Massimo; Loizeau, Jean-Luc; Spangenberg, Jorge; Anselmetti, Flavio S.

    2010-05-01

    This study aims to provide high-resolution records of climatic changes and human impacts on two different Alpine environments: Lake Lucerne is a large (114 km2) lake located at 434 m asl in Central Switzerland, whereas Meidsee is a small (industrial history and the last millennia were sampled with a resolution of 1 cm, and investigated for organic (13δC, 15δN, C/N) and/or inorganic (δ13C, δ18O) matter contents, and elemental composition (REE compositions, trace elements, and heavy metals). Both sites exhibit 1) rapid hydrological changes related to variations in winter precipitations, and 2) increases in atmospheric pollution due to human activities. Lead enrichment factors combined to changes in lead isotopic composition (206Pb/207Pb ratio) are used to distinguish natural from anthropogenic sources. The greatest mercury and lead atmospheric emissions occurred during the twentieth century, resulting from the extensive combustion of fossil coal and petroleum in Europe. Although the highest heavy metals fluxes are synchronous with major anthropogenic changes (e.g. Roman mining, industrial revolution), proxies show that in absence of such events, the heavy metals deposition in the sedimentary records is primarily influenced by sedimentological processes linked to climate variations (i.e. runoff and erosion processes).

  17. The health status of adolescents living at mid-latitude or in the European North in relation to anthropogenic pollution

    Directory of Open Access Journals (Sweden)

    D. A. Kuznetsova

    2016-01-01

    Full Text Available The distribution of health groups among 14-year-old adolescents (n = 707 living since birth under the conditions of mid-latitudes (the towns of Kirov and Yaransk and in the European North (the town of Ukhta and the settlement of Sedyu was compared to determine the impact of anthropogenic pollution at different latitudes on this indicator. It was shown that the conditions of the European North in the absence of anthropogenic pollution failed to affect the number of 14-year-old boys and girls having health groups I, II, III, IV, and V. Anthropogenic pollution was found to decline the number of health group I adolescents living in the European North, without influencing this indicator in those dwelling at mid-latitudes, but, in spite of the latitude of their residence, to increase that of persons with health group II, without having an impact on the number of persons with health groups III, IV, and V.

  18. IDENTIFYING ANTHROPOGENIC METALLIC POLLUTANTS USING FREQUENCY DEPENDENT MAGNETIC SUSCEPTIBILITY MEASUREMENTS IN ABUJA METROPOLIS

    Directory of Open Access Journals (Sweden)

    Jatto S. Solomon

    2017-07-01

    Full Text Available Soil formed from lithological and weathering processes of parent rocks generally exhibit paramagnetic properties due to some minerals contained in the rocks and thus have significant value of magnetic susceptibility. This susceptibility arising from the influence of the parent rocks tend to mask anthropogenic grains pollutants released into the environment by human activities. Hence, it becomes difficult to identify the effect of the lithological and anthropogenic magnetic susceptibility in complex soil found in urban areas. The superparamagnetic effect of lithological soil, a single state domain and multi-domain state of anthropogenic grains can easily be investigated by frequency dependent measurements where readings between 0-2.0% indicates the absence of lithological influence, 2.0-8.0% indicates multi-domain grains or mixture of both single stage and multi-domian grains and 8.0-12% indicates the superparamagntic (SP grain from lithological origin. In this work frequency dependent measurements were carried out along 5 selected road networks within the 5 districts of Abuja phase 1. Measurements were also carried out in 379 random points at the surface and depth of 40.0cm to investigate the distribution of anthropogenic grains in Abuja metropolis using the Bartington susceptibility meter. Frequency dependent measurements along the selected road networks indicate0-3.0% immediately after the roads pavement to a distance of about 3.0m from the road, indicating that the magnetic susceptibility arise mostly form anthropogenic influence rather than lithological processes. At the distance of 3.0-8.0m, frequency dependent values of about 3.0-8.0% were recorded, indicating mixture of both superparamagnetic and multi-domain grains. Beyond the distance of 8.0m, the frequency dependent values are mostly above 8.0.0%, indicating virtually all SP grains. The spatial distribution frequency dependent surface map shows the presence of anthropogenic grains in

  19. Anthropogenic impact on environmental filamentous fungi communities along the Mediterranean littoral.

    Science.gov (United States)

    Al-Yasiri, Mohammed Hashim; Normand, Anne-Cécile; Mauffrey, Jean-François; Ranque, Stéphane

    2017-07-01

    We hypothesised that anthropogenic influences impact the filamentous fungi community structure and that particular species or species patterns might serve as markers to characterise ecosystems. This study aimed to describe the filamentous fungi community structure in various biotopes along the Mediterranean shore that were exposed to various levels of anthropogenic influence. We sampled filamentous fungi from yellow-legged gull faecal samples at five study sites along the Mediterranean littoral in southern France. The sites were characterised by variable anthropogenic influence, ranging from building rooftops in two cities to a natural reserve. The sites also included two suburban ecoclines, one of which was exposed to sewer pollution. Filamentous fungal colonies were quantified and identified via MALDI-TOF mass spectrometry. Interestingly, we found that both fungal diversity and abundance were low in urban areas compared with suburban ecocline or environments little affected by anthropogenic influence. Furthermore, some fungal species were clearly associated with particular environments. In particular, Mucor circinelloides was associated with a natural environment with little anthropogenic impact and distant from human settlements. Whereas, Scedosporium apiospermum was associated with an ecocline polluted by sewage. Our findings indicate that particular fungal species or species combination might be used as surrogate markers of ecosystems exposed to anthropogenic pollution. © 2017 Blackwell Verlag GmbH.

  20. Exploring Multiple Constraints of Anthropogenic Pollution

    Science.gov (United States)

    Arellano, A. F., Jr.; Tang, W.; Silva, S. J.; Raman, A.

    2017-12-01

    It is imperative that we provide more accurate and consistent analysis of anthropogenic pollution emissions at scales that is relevant to air quality, energy, and environmental policy. Here, we present three proof-of-concept studies that explore observational constraints from ground, aircraft, and satellite-derived measurements of atmospheric composition on bulk characteristics of anthropogenic combustion in megacities and fire regions. We focus on jointly analyzing co-emitted combustion products such as CO2, NO2, CO, SO2, and aerosols from GOSAT, OCO-2, OMI, MOPITT, and MODIS retrievals, in conjunction with USEPA AQS and NASA field campaigns. Each of these constituents exhibit distinct atmospheric signatures that depend on fuel type, combustion technology, process, practices and regulatory policies. Our results show that distinguishable patterns and relationships between the increases in concentrations across the megacity (or enhancements) due to emissions of these constituents enable us to: a) identify trends in combustion activity and efficiency, and b) reconcile discrepancies between state- to country-based emission inventories and modeled concentrations of these constituents. For example, the trends in enhancement ratios of these species reveal combustion emission pathways for China and United States that are not captured by current emission inventories and chemical reanalysis. Analysis of their joint distributions has considerable potential utility in current and future integrated constituent data assimilation and inverse modeling activities for monitoring, verifying, and reporting emissions, particularly for regions with few observations and limited information on local combustion processes. This work also motivates the need for continuous and preferably collocated satellite measurements of atmospheric composition, including CH4 and CO2, and studies related to improving the applicability and integration of these observations with ground- and aircraft- based

  1. Direct radiative effects by anthropogenic particles at a polluted site: Rome (Italy)

    International Nuclear Information System (INIS)

    Bergamo, A.; De Tomasi, F.; Perrone, M.R.

    2008-01-01

    The direct radiative effect (DRE) by all (anthropogenic plus natural) and anthropogenic aerosols is calculated at the solar (0.34 μm) and infrared (4-200 μm) spectral range to better address the annual cycle of the anthropogenic aerosols impact at a site (Rome, Italy) significantly affected by pollution. Aerosol optical and microphysical properties from 2003 AERONET Sun/sky-photometer measurements and solar albedos based on MODIS satellite sensor data constitute the necessary input to radiative transfer simulations. Clear- and all-sky conditions are investigated by adopting ISCCP monthly products for high-, mid-and low-cloud cover. It is shown that monthly mean values of aerosol optical depths by anthropogenic particles (AOD a ) are on average more than 50% of the corresponding all-aerosol-optical-depth (AOD) monthly means. In particular, the AOD a /AOD ratio that varies within the (0.51-0.83) on autumn-winter (A W, October-March), varies within the (0.50-0.71 range on spring-summer (S S, April-September) as a consequence of the larger contribution of natural particles on S S. The surface (sfc), all-sky DRE by anthropogenic particles that is negative all year round at solar wave-lengths, represents on average 60% and 51% of the all-sky sfc-DRE by all aerosols on A W and S S, respectively. The all-sky atmospheric forcing by anthropogenic particles (AF a ) that is positive all year round, is little dependent on seasons: it varies within the (1.0-4.1) W/m 2 and (2.0-4.2) W/m 2 range an A W and S S, respectively. Conversely, the all-sky A F by all aerosols is characterized by a marked seasonality. As a consequence, the atmospheric forcing by anthropogenic particles that on average is 50% of the A F value on A W, decreases down to 36% of the A F value on S S. Infrared aerosols DREs that are positive all year round are significantly smaller than the corresponding absolute values of solar DREs. Clouds decrease on average ToA- and sfc-DRE absolute values by anthropogenic

  2. Risk perception and access to environmental information in four areas in Italy affected by natural or anthropogenic pollution.

    Science.gov (United States)

    Coi, A; Minichilli, F; Bustaffa, E; Carone, S; Santoro, M; Bianchi, F; Cori, L

    2016-10-01

    A human biomonitoring (HBM) survey in four areas affected by natural or anthropogenic arsenic pollution was conducted in Italy within the framework of the SEpiAs project. A questionnaire, including the exploration of risk perception (RP) regarding environmental hazards and access to and trust in information, was administered to 282 subjects stratified by area, gender and age. The survey was designed to investigate how populations living in polluted areas could adopt prevention-oriented habits, fostered by the awareness of existing risks and, in addition, how increased knowledge of RP and information flows could support researchers in identifying recommendations, and presenting and disseminating HBM results. This study characterizes the four areas in terms of RP and access to and trust in environmental information, and provides insights into the influence of RP and environmental information on food consumption. For the data analysis, a combined random forest (RF) and logistic regression approach was carried out. RF was applied to the variables derived from the questionnaire in order to identify the most important in terms of the aims defined. Associations were then tested using Fisher's exact test and assessed with logistic regression in order to adjust for confounders. Results showed that the perception of and personal exposure to atmospheric and water pollution, hazardous industries and waste, hazardous material transportation and waste was higher in geographical areas characterized by anthropogenic pollution. Citizens living in industrial areas appeared to be aware of environmental risks and had more confidence in environmental non-governmental organizations (NGOs) than in public authorities. In addition, they reported an insufficient circulation of information. Concerning the influence of RP and environmental information on food consumption, a high perception of personal exposure to atmospheric pollution and hazardous industries was associated with a lower

  3. Combined proteomic and metallomic analyses in Scrobicularia plana clams to assess environmental pollution of estuarine ecosystems.

    Science.gov (United States)

    González-Domínguez, Raúl; Santos, Hugo Miguel; Bebianno, Maria João; García-Barrera, Tamara; Gómez-Ariza, José Luis; Capelo, José Luis

    2016-12-15

    Estuaries are very important ecosystems with great ecological and economic value, but usually highly impacted by anthropogenic pressure. Thus, the assessment of pollution levels in these habitats is critical in order to evaluate their environmental quality. In this work, we combined complementary metallomic and proteomic approaches with the aim to monitor the effects of environmental pollution on Scrobicularia plana clams captured in three estuarine systems from the south coast of Portugal; Arade estuary, Ria Formosa and Guadiana estuary. Multi-elemental profiling of digestive glands was carried out to evaluate the differential pollution levels in the three study areas. Then, proteomic analysis by means of two-dimensional gel electrophoresis and mass spectrometry revealed twenty-one differential proteins, which could be associated with multiple toxicological mechanisms induced in environmentally stressed organisms. Accordingly, it could be concluded that the combination of different omic approaches presents a great potential in environmental research. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Anthropogenic Air Pollution Observed Near Dust Source Regions in Northwestern China During Springtime 2008

    Science.gov (United States)

    Li, Can; Tsay, Si-Chee; Fu, Joshua S.; Dickerson, Russell R.; Ji, Qiang; Bell, Shaun W.; Gao, Yang; Zhang, Wu; Huang, Jianping; Li, Zhanqing; hide

    2010-01-01

    Trace gases and aerosols were measured in Zhangye (39.082degN, 100.276degE, 1460 m a.s. 1.), a rural site near the Gobi deserts in northwestern China during spring 2008. Primary trace gases (CO:265 ppb; SO2:3.4 ppb; NO(*y): 4.2 ppb; hereafter results given as means of hourly data) in the area were lower than in eastern China, but still indicative of marked anthropogenic emissions. Sizable aerosol mass concentration (153 micro-g/cu m) and light scattering (159/Mm at 500 nm) were largely attributable to dust emissions, and aerosol light absorption (10.3/Mm at 500 nm) was dominated by anthropogenic pollution. Distinct diurnal variations in meteorology and pollution were induced by the local valley terrain. Strong daytime northwest valley wind cleaned out pollution and was replaced by southeast mountain wind that allowed pollutants to build up overnight. In the afternoon, aerosols had single scattering albedo (SSA, 500 mn) of 0.95 and were mainly of supermicron particles, presumably dust, while at night smaller particles and SSA of 0.89-0.91 were related to Pollution. The diverse local emission sources were characterized: the CO/SO2, CO/NO(y), NO(y)/SO2 (by moles), and BC/CO (by mass) ratios for small point sources such as factories were 24.6-54.2, 25.8-35.9, 0.79-1.31, and 4.1-6.1 x 10(exp -3), respectively, compared to the corresponding inventory ratios of 43.7-71.9, 23.7-25.7, 1.84-2.79, and 3.4-4.0 x 10(exp -3) for the industrial sector in the area. The mixing between dust and pollution can be ubiquitous in this region. During a dust storm shown as an example, pollutants were observed to mix with dust, causing discernible changes in both SSA and aerosol size distribution. Further interaction between dust and pollutants during transport may modify the properties of dust particles that are critical for their large-scale impact on radiation, clouds, and global biogeochemical cycles.

  5. Two-step extraction method for lead isotope fractionation to reveal anthropogenic lead pollution.

    Science.gov (United States)

    Katahira, Kenshi; Moriwaki, Hiroshi; Kamura, Kazuo; Yamazaki, Hideo

    2018-05-28

    This study developed the 2-step extraction method which eluted the Pb adsorbing on the surface of sediments in the first solution by aqua regia and extracted the Pb absorbed inside particles into the second solution by mixed acid of nitric acid, hydrofluoric acid and hydrogen peroxide solution. We applied the method to sediments in the enclosed water area and found out that the isotope ratios of Pb in the second solution represented those of natural origin. This advantage of the method makes it possible to distinguish the Pb between natural origin and anthropogenic source on the basis of the isotope ratios. The results showed that the method was useful to discuss the Pb sources and that anthropogenic Pb in the sediment samples analysed was mainly derived from China because of transboundary air pollution.

  6. Global premature mortality due to anthropogenic outdoor air pollution and the contribution of past climate change

    International Nuclear Information System (INIS)

    Silva, Raquel A; West, J Jason; Zhang Yuqiang; Anenberg, Susan C; Lamarque, Jean-François; Shindell, Drew T; Faluvegi, Greg; Collins, William J; Dalsoren, Stig; Skeie, Ragnhild; Folberth, Gerd; Rumbold, Steven; Horowitz, Larry W; Nagashima, Tatsuya; Naik, Vaishali; Sudo, Kengo; Takemura, Toshihiko; Bergmann, Daniel; Cameron-Smith, Philip; Cionni, Irene

    2013-01-01

    Increased concentrations of ozone and fine particulate matter (PM 2.5 ) since preindustrial times reflect increased emissions, but also contributions of past climate change. Here we use modeled concentrations from an ensemble of chemistry–climate models to estimate the global burden of anthropogenic outdoor air pollution on present-day premature human mortality, and the component of that burden attributable to past climate change. Using simulated concentrations for 2000 and 1850 and concentration–response functions (CRFs), we estimate that, at present, 470 000 (95% confidence interval, 140 000 to 900 000) premature respiratory deaths are associated globally and annually with anthropogenic ozone, and 2.1 (1.3 to 3.0) million deaths with anthropogenic PM 2.5 -related cardiopulmonary diseases (93%) and lung cancer (7%). These estimates are smaller than ones from previous studies because we use modeled 1850 air pollution rather than a counterfactual low concentration, and because of different emissions. Uncertainty in CRFs contributes more to overall uncertainty than the spread of model results. Mortality attributed to the effects of past climate change on air quality is considerably smaller than the global burden: 1500 (−20 000 to 27 000) deaths yr −1 due to ozone and 2200 (−350 000 to 140 000) due to PM 2.5 . The small multi-model means are coincidental, as there are larger ranges of results for individual models, reflected in the large uncertainties, with some models suggesting that past climate change has reduced air pollution mortality. (letter)

  7. Occurrence of THM and NDMA precursors in a watershed: Effect of seasons and anthropogenic pollution.

    Science.gov (United States)

    Aydin, Egemen; Yaman, Fatma Busra; Ates Genceli, Esra; Topuz, Emel; Erdim, Esra; Gurel, Melike; Ipek, Murat; Pehlivanoglu-Mantas, Elif

    2012-06-30

    In pristine watersheds, natural organic matter is the main source of disinfection by-product (DBP) precursors. However, the presence of point or non-point pollution sources in watersheds may lead to increased levels of DBP precursors which in turn form DBPs in the drinking water treatment plant upon chlorination or chloramination. In this study, water samples were collected from a lake used to obtain drinking water for Istanbul as well as its tributaries to investigate the presence of the precursors of two disinfection by-products, trihalomethanes (THM) and N-nitrosodimethylamine (NDMA). In addition, the effect of seasons and the possible relationships between these precursors and water quality parameters were evaluated. The concentrations of THM and NDMA precursors measured as total THM formation potential (TTHMFP) and NDMA formation potential (NDMAFP) ranged between 126 and 1523μg/L THM and NDMA, respectively. Such wide ranges imply that some of the tributaries are affected by anthropogenic pollution sources, which is also supported by high DOC, Cl(-) and NH(3) concentrations. No significant correlation was found between the water quality parameters and DBP formation potential, except for a weak correlation between NDMAFP and DOC concentrations. The effect of the sampling location was more pronounced than the seasonal variation due to anthropogenic pollution in some tributaries and no significant correlation was obtained between the seasons and water quality parameters. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Combined air and water pollution control system

    Science.gov (United States)

    Wolverton, Billy C. (Inventor); Jarrell, Lamont (Inventor)

    1990-01-01

    A bioaquatic air pollution control system for controlling both water and atmospheric pollution is disclosed. The pollution control system includes an exhaust for directing polluted gases out of a furnace and a fluid circulating system which circulates fluid, such as waste water, from a source, past the furnace where the fluid flow entrains the pollutants from the furnace. The combined fluid and pollutants are then directed through a rock/plant/microbial filtering system. A suction pump pumps the treated waste water from the filter system past the exhaust to again entrain more pollutants from the furnace where they are combined with the fluid (waste water) and directed to the filter system.

  9. A reactive transport model for mercury fate in soil--application to different anthropogenic pollution sources.

    Science.gov (United States)

    Leterme, Bertrand; Blanc, Philippe; Jacques, Diederik

    2014-11-01

    Soil systems are a common receptor of anthropogenic mercury (Hg) contamination. Soils play an important role in the containment or dispersion of pollution to surface water, groundwater or the atmosphere. A one-dimensional model for simulating Hg fate and transport for variably saturated and transient flow conditions is presented. The model is developed using the HP1 code, which couples HYDRUS-1D for the water flow and solute transport to PHREEQC for geochemical reactions. The main processes included are Hg aqueous speciation and complexation, sorption to soil organic matter, dissolution of cinnabar and liquid Hg, and Hg reduction and volatilization. Processes such as atmospheric wet and dry deposition, vegetation litter fall and uptake are neglected because they are less relevant in the case of high Hg concentrations resulting from anthropogenic activities. A test case is presented, assuming a hypothetical sandy soil profile and a simulation time frame of 50 years of daily atmospheric inputs. Mercury fate and transport are simulated for three different sources of Hg (cinnabar, residual liquid mercury or aqueous mercuric chloride), as well as for combinations of these sources. Results are presented and discussed with focus on Hg volatilization to the atmosphere, Hg leaching at the bottom of the soil profile and the remaining Hg in or below the initially contaminated soil layer. In the test case, Hg volatilization was negligible because the reduction of Hg(2+) to Hg(0) was inhibited by the low concentration of dissolved Hg. Hg leaching was mainly caused by complexation of Hg(2+) with thiol groups of dissolved organic matter, because in the geochemical model used, this reaction only had a higher equilibrium constant than the sorption reactions. Immobilization of Hg in the initially polluted horizon was enhanced by Hg(2+) sorption onto humic and fulvic acids (which are more abundant than thiols). Potential benefits of the model for risk management and remediation of

  10. Microbial responses of forest soil to moderate anthropogenic air pollution - a large scale field survey

    International Nuclear Information System (INIS)

    Vanhala, P.; Kiikkila, O.; Fritze, H.

    1996-01-01

    There is a need to introduce soil microbiological methods into long term ecological monitoring programs. For this purpose we studied the impact of moderate anthropogenic air pollution in polluted and less polluted area districts, forest site types Calluna (CT), Vaccinium (VT) and Myrtillus (MT) and the amount of organic matter, measured as carbon content on the soil respiration activity and the ATP content. The main sources of local air pollutants (SO 2 and NO x ) in the polluted area district were from the capital region and an oil refinery. Humus (F/H-layer) and the underlying 0 to 5 cm mineral soil samples were collected from 193 study plots located in the 5300 km 2 study area. We found that the soil respiration rate in humus layer samples was lower in the polluted area district compared to the less polluted one (16.0 and 19.5μL CO 2 h -1 g -1 dw, respectively), but the difference occurred only in the dry, coarse-textured CT forest site type. The mineral soil respiration rate and the mineral soil and humus layer ATP content were not affected by the air pollution. Most of the variations of the biological variables were explained primarily by the soil carbon content, secondly by the forest site type and thirdly by the area division. 38 refs., 1 fig., 6 tabs

  11. The Egyptian Red Sea coastal microbiome: A study revealing differential microbial responses to diverse anthropogenic pollutants.

    Science.gov (United States)

    Mustafa, Ghada A; Abd-Elgawad, Amr; Ouf, Amged; Siam, Rania

    2016-07-01

    The Red Sea is considered one of the youngest oceanic systems, with unique physical, geochemical and biological characteristics. Tourism, industrialization, extensive fishing, oil processing and shipping are extensive sources of pollution in the Red Sea. We analyzed the geochemical characteristics and microbial community of sediments along the Egyptian coast of the Red Sea. Our sites mainly included 1) four ports used for shipping aluminum, ilmenite and phosphate; 2) a site previously reported to have suffered extensive oil spills; and 3) a site impacted by tourism. Two major datasets for the sediment of ten Red Sea coastal sites were generated; i) a chemical dataset included measurements of carbon, hydrogen, nitrogen and sulfur, metals and selected semi-volatile oil; and ii) a 16S rRNA Pyrotags bacterial metagenomic dataset. Based on the taxonomic assignments of the 16S rRNA Pyrotags to major bacterial groups, we report 30 taxa constituting an Egyptian Red Sea Coastal Microbiome. Bacteria that degrade hydrocarbons were predominant in the majority of the sites, particularly in two ports where they reached up to 76% of the total identified genera. In contrast, sulfate-reducing and sulfate-oxidizing bacteria dominated two lakes at the expense of other hydrocarbon metabolizers. Despite the reported "Egyptian Red Sea Coastal Microbiome," sites with similar anthropogenic pollutants showed unique microbial community abundances. This suggests that the abundance of a specific bacterial community is an evolutionary mechanism induced in response to selected anthropogenic pollutants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Assessment of the effect of anthropogenic pollution on the ecology of small shallow lakes using the palaeolimnological approach

    Directory of Open Access Journals (Sweden)

    Tiiu Koff

    2016-11-01

    Full Text Available Palaeolimnological techniques were utilized to determine the extent of the effect of anthropogenic pollutants or other environmental stressors on three lake ecosystems over the last 200 years. The ecology of the study sites has experienced significant changes due to various activities such as (1 extensive catchment drainage and using poisoning as a fish management measure, (2 seepage of urban waste water due to establishment and growth of a town and (3 artificial inflow of oil-shale mining waters. Sediment geochemical composition, fossil pigments and Cladocera remains from the sediment cores were analysed to demonstrate that sufficient information can be derived from sediments to permit a historical reconstruction. The integrated use of archival maps, historical records and lake monitoring data confirmed links to anthropogenic pollutants, primarily on the catchment level. The examples show how the sediment indicators provide unique insights into the causes and temporal dynamics of lake ecosystem changes relevant for environmental management decisions. This study demonstrates that palaeolimnology has great potential to assist in eutrophication assessment and management efforts in waterbodies.

  13. Anthropogenic flank attack on polar bears: Interacting consequences of climate warming and pollutant exposure

    Directory of Open Access Journals (Sweden)

    Bjørn Munro Jenssen

    2015-02-01

    Full Text Available Polar bears (Ursus maritimus are subjected to several anthropogenic threats, climate warming and exposure to pollutants being two of these. For polar bears, one of the main effects of climate warming is limited access to prey, due to loss of their sea ice habitat. This will result in prolonged fasting periods and emaciation and condition related negative effects on survival and reproduction success. Prolonged fasting will result in increases of the tissue concentrations of persistent organic pollutants (POPs in polar bears, and thus increase the probability for POP levels to exceed threshold levels for effects on health, and thus on reproductive success and survival. There are clear potentials for interactions between impacts of climate warming and impacts of pollutant exposure on polar bears. It is likely that that fasting-induced increases of POPs will add to mortality rates and decrease reproductive success beyond effects caused by loss of habitat alone. However, there is a lack of studies that have addressed this. Thus, there is a need to focus on population effects of POP exposure in polar bears, and to consider such effects in relation to the effects of climate induced habitat loss.

  14. Combination of aquatic species and safeners improves the remediation of copper polluted water.

    Science.gov (United States)

    Panfili, Ivan; Bartucca, Maria Luce; Ballerini, Eleonora; Del Buono, Daniele

    2017-12-01

    In the last decades, many anthropogenic activities have resulted in heavy metal contamination of freshwaters and surrounding environments. This poses serious threats to human health. Phytoremediation is a cost-effective technology which is useful for remediating polluted soils and water. Recently, the use of aquatic free-floating plants has been proposed to remediate polluted water. In this context, a study on the capacity of two aquatic plants, Lemna minor (duckweed) and Salvinia auriculata (salvinia), to remediate Cu +2 (Cu) polluted water was carried out. Initially, the species were exposed to different copper concentrations (1, 5, 10, 20 and 50μmolL -1 ) in order to assess Cu +2 toxicity to the plants. In addition, plants were treated with two safeners (benoxacor and dichlormid), with the aim of pointing out any safening effect of these compounds on the aquatic species. Toxicity tests showed that safened plants had a greater Cu resistance, especially at the higher Cu doses. Finally, unsafened and safened plants were tested in the decontamination of water polluted by copper (1.2mgL -1 ). In general, duckweed removed higher amounts of Cu from polluted water than salvinia, and, surprisingly, for both the species the safeners significantly increased the plants' capacity to remove the metal from the polluted waters. Lastly, an HPLC-based method was developed and standardized to monitor the residual amounts of the two safeners in the water. While dichlormid was completely absorbed by duckweed within few days after the treatments, some residual amounts of both safeners were found in salvinia vegetated water after two weeks. In conclusion, the results of this research show that the use of aquatic species in combination with safeners is an attractive and reliable tool to make plants more effective in phytoremediation of water polluted with metals (or other toxic compounds). Copyright © 2017 Elsevier B.V. All rights reserved.

  15. The observed influence of local anthropogenic pollution on northern Alaskan cloud properties

    Science.gov (United States)

    Maahn, Maximilian; de Boer, Gijs; Creamean, Jessie M.; Feingold, Graham; McFarquhar, Greg M.; Wu, Wei; Mei, Fan

    2017-12-01

    Due to their importance for the radiation budget, liquid-containing clouds are a key component of the Arctic climate system. Depending on season, they can cool or warm the near-surface air. The radiative properties of these clouds depend strongly on cloud drop sizes, which are governed in part by the availability of cloud condensation nuclei. Here, we investigate how cloud drop sizes are modified in the presence of local emissions from industrial facilities at the North Slope of Alaska. For this, we use aircraft in situ observations of clouds and aerosols from the 5th Department of Energy Atmospheric Radiation Measurement (DOE ARM) Program's Airborne Carbon Measurements (ACME-V) campaign obtained in summer 2015. Comparison of observations from an area with petroleum extraction facilities (Oliktok Point) with data from a reference area relatively free of anthropogenic sources (Utqiaġvik/Barrow) represents an opportunity to quantify the impact of local industrial emissions on cloud properties. In the presence of local industrial emissions, the mean effective radii of cloud droplets are reduced from 12.2 to 9.4 µm, which leads to suppressed drizzle production and precipitation. At the same time, concentrations of refractory black carbon and condensation nuclei are enhanced below the clouds. These results demonstrate that the effects of anthropogenic pollution on local climate need to be considered when planning Arctic industrial infrastructure in a warming environment.

  16. Brazil-USA Collaborative Research: Modifications by Anthropogenic Pollution of the Natural Atmospheric Chemistry and Particle Microphysics of the Tropical Rain Forest During the GoAmazon Intensive Operating Periods (IOPs)

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, Jose-Luis [Univ. of Colorado, Boulder, CO (United States); Day, Douglas A. [Univ. of Colorado, Boulder, CO (United States); Martin, Scot T. [Univ. of Colorado, Boulder, CO (United States); Kim, Saewung [Univ. of Colorado, Boulder, CO (United States); Smith, James [Univ. of Colorado, Boulder, CO (United States); Souza, Rodrigo [Univ. of Colorado, Boulder, CO (United States); Barbosa, Henry [Univ. of Colorado, Boulder, CO (United States)

    2017-08-04

    Manaus, a city of nearly two million people, represents an isolated urban area having a distinct urban pollution plume within the otherwise pristine Amazon Basin. The plume has high concentrations of oxides of nitrogen and sulfur, carbon monoxide, particle concentrations, and soot, among other pollutants. Critically, the distinct plume in the setting of the surrounding tropical rain forest serves as a natural laboratory to allow direct comparisons between periods of pollution influence to those of pristine conditions. The funded activity of this report is related to the Brazil-USA collaborative project during the two Intensive Operating Periods (wet season, 1 Feb - 31 Mar 2014; dry season, 15 Aug - 15 Oct 2014) of GoAmazon2014/5. The project addresses key science questions regarding the modification of the natural atmospheric chemistry and particle microphysics of the forest by present and future anthropogenic pollution. The first objective of the project was to understand and quantify the interactions of biogenic and anthropogenic emissions with respect to the production of secondary organic material. In clean conditions in the Amazon basin, secondary organic material dominates the diameter distribution of the submicron particles. How and why is the diameter distribution shifted by pollution? The second objective followed from the first in that, although the diameter distribution is dominated by secondary organic material, the actual source of new particle production remains uncertain (i.e., the number concentration). The second objective was to test the hypothesis that new particles under natural conditions are produced as a result of evaporation of primary particles emitted by fungal spores as well as to investigate any shifts in this mechanism under pollution conditions, e.g., in consequence to the high concentrations of SO2 in the pollution plume. Combined, the number-diameter distribution is the key connection to upscaling to the effects of aerosol

  17. Anthropogenic pollutants affect ecosystem services of freshwater sediments. The need for a 'triad plus x' approach

    Energy Technology Data Exchange (ETDEWEB)

    Gerbersdorf, Sabine Ulrike; Wieprecht, Silke [Stuttgart Univ. (Germany). Dept. of Hydraulic Engineering and Water Resources Management; Hollert, Henner; Brinkmann, Markus [RWTH Aachen Univ. (Germany). Dept. of Ecosystem Analysis; Schuettrumpf, Holger [RWTH Aachen Univ. (Germany). Inst. of Hydraulic Engineering and Water Resources Management; Manz, Werner [Koblenz-Landau Univ., Koblenz (Germany). Inst. for Integrated Natural Sciences

    2011-09-15

    Purpose: Freshwater sediments and their attached microbial communities (biofilms) are essential features of rivers and lakes, providing valuable ecosystem services such as nutrient recycling or self-purification which extend beyond the aquatic environment. Anthropogenic pollutants, whether from the industrial era or as a result of our contemporary lifestyles, can negatively affect these functions with hitherto unknown consequences on ecology, the economy and human health. Thus far, the singular view of the involved disciplines such as ecotoxicology, environmental microbiology, hydrology and geomorphology has prevented a deeper understanding of this emerging issue. Main features: This paper discusses briefly the progressions and the state-of-the-art methods within the disciplines of concern related to contaminated sediments, ranging from ecotoxicological test systems, microbiological/molecular approaches to unravel changes of microbial ecosystems, up to the modelling of sediment transport and sorption/desorption of associated pollutants. The first bilateral research efforts on contaminated sediments include efforts to assess ecotoxicological sediment risk including sediment mobility (i.e. ecotoxicology and engineering), enhance bioremediation potential (i.e. microbiology and ecotoxicology) or to understand biostabilisation processes of sediments by microbial assemblages (i.e. microbiology and engineering). Conclusions and perspectives: In freshwater habitats, acute, chronic and mechanism-specific toxic effects on organisms, shifts in composition, structure and functionality of benthic microbial communities, as well as the obstruction of important ecosystem services by continuously discharged and long-deposited pollutants, should be related to the in situ sediment dynamics. To achieve an improved understanding of the ecology of freshwater sediments and the impairment of their important ecosystem functions by human-derived pollutants, we suggest a 'triad plus x

  18. Regional air pollution over Malaysia

    Science.gov (United States)

    Krysztofiak, G.; Catoire, V.; Dorf, M.; Grossmann, K.; Hamer, P. D.; Marécal, V.; Reiter, A.; Schlager, H.; Eckhardt, S.; Jurkat, T.; Oram, D.; Quack, B.; Atlas, E.; Pfeilsticker, K.

    2012-12-01

    During the SHIVA (Stratospheric Ozone: Halogen Impacts in a Varying Atmosphere) campaign in Nov. and Dec. 2011 a number of polluted air masses were observed in the marine and terrestrial boundary layer (0 - 2 km) and in the free troposphere (2 - 12 km) over Borneo/Malaysia. The measurements include isoprene, CO, CO2, CH4, N2O, NO2, SO2 as primary pollutants, O3 and HCHO as secondary pollutants, and meteorological parameters. This set of trace gases can be used to fingerprint different sources of local and regional air pollution (e.g., biomass burning and fossil fuel burning, gas flaring on oil rigs, emission of ships and from urban areas, volcanic emissions, and biogenic emissions). Individual sources and location can be identified when the measurements are combined with a nested-grid regional scale chemical and meteorological model and lagrangian particle dispersion model (e.g., CCATT-BRAMS and FLEXPART). In the case of the former, emission inventories of the primary pollutants provide the basis for the trace gas simulations. In this region, the anthropogenic influence on air pollution seems to dominate over natural causes. For example, CO2 and CH4 often show strong correlations with CO, suggesting biomass burning or urban fossil fuel combustion dominates the combustion sources. The study of the CO/CO2 and CH4/CO ratios can help separate anthropogenic combustion from biomass burning pollution sources. In addition, these ratios can be used as a measure of combustion efficiency to help place the type of biomass burning particular to this region within the wider context of fire types found globally. On several occasions, CH4 enhancements are observed near the ocean surface, which are not directly correlated with CO enhancements thus indicating a non-combustion-related CH4 source. Positive correlations between SO2 and CO show the anthropogenic influence of oil rigs located in the South China Sea. Furthermore, SO2 enhancements are observed without any increase in CO

  19. Global Anthropogenic Phosphorus Loads to Fresh Water, Grey Water Footprint and Water Pollution Levels: A High-Resolution Global Study

    Science.gov (United States)

    Mekonnen, M. M.; Hoekstra, A. Y. Y.

    2014-12-01

    We estimated anthropogenic phosphorus (P) loads to freshwater, globally at a spatial resolution level of 5 by 5 arc minute. The global anthropogenic P load to freshwater systems from both diffuse and point sources in the period 2002-2010 was 1.5 million tonnes per year. China contributed about 30% to this global anthropogenic P load. India was the second largest contributor (8%), followed by the USA (7%), Spain and Brazil each contributing 6% to the total. The domestic sector contributed the largest share (54%) to this total followed by agriculture (38%) and industry (8%). Among the crops, production of cereals had the largest contribution to the P loads (32%), followed by fruits, vegetables, and oil crops, each contributing about 15% to the total. We also calculated the resultant grey water footprints, and relate the grey water footprints per river basin to runoff to calculate the P-related water pollution level (WPL) per catchment.

  20. Wildfire air pollution hazard during the 21st century

    Science.gov (United States)

    Knorr, Wolfgang; Dentener, Frank; Lamarque, Jean-François; Jiang, Leiwen; Arneth, Almut

    2017-07-01

    Wildfires pose a significant risk to human livelihoods and are a substantial health hazard due to emissions of toxic smoke. Previous studies have shown that climate change, increasing atmospheric CO2, and human demographic dynamics can lead to substantially altered wildfire risk in the future, with fire activity increasing in some regions and decreasing in others. The present study re-examines these results from the perspective of air pollution risk, focussing on emissions of airborne particulate matter (PM2. 5), combining an existing ensemble of simulations using a coupled fire-dynamic vegetation model with current observation-based estimates of wildfire emissions and simulations with a chemical transport model. Currently, wildfire PM2. 5 emissions exceed those from anthropogenic sources in large parts of the world. We further analyse two extreme sets of future wildfire emissions in a socio-economic, demographic climate change context and compare them to anthropogenic emission scenarios reflecting current and ambitious air pollution legislation. In most regions of the world, ambitious reductions of anthropogenic air pollutant emissions have the potential to limit mean annual pollutant PM2. 5 levels to comply with World Health Organization (WHO) air quality guidelines for PM2. 5. Worst-case future wildfire emissions are not likely to interfere with these annual goals, largely due to fire seasonality, as well as a tendency of wildfire sources to be situated in areas of intermediate population density, as opposed to anthropogenic sources that tend to be highest at the highest population densities. However, during the high-fire season, we find many regions where future PM2. 5 pollution levels can reach dangerous levels even for a scenario of aggressive reduction of anthropogenic emissions.

  1. Two Centuries of Trace Element Deposition at the Top of the Himalaya: Natural Background vs. Anthropogenic Pollution.

    Science.gov (United States)

    Wegner, A.; Gabrielli, P.; Barker, J. D.; Sierra Hernandez, R.; Beaudon, E.; Thompson, L. G.

    2014-12-01

    South East Asia is one of the fastest developing regions on Earth and has experienced a recent large increase in atmospheric pollution. Glaciers of the nearby Himalayan mountains represent a unique archive that provides the potential to be used to determine the strength and timing of the onset of anthropogenic atmospheric pollution in the region. Within the Third Pole Project several ice cores from the Tibetan Plateau and the Himalaya are analyzed for their trace element concentrations. Here we present results of a new trace element record from the Dasuopu ice core spanning 1790 - 1993 AD. The Dasuopu ice core was drilled in 1997 at 7200 m altitude in the Himalaya and provides the highest elevation ice core record ever obtained. Due to the high altitude this site has the potential to archive not only contamination records of regional significance, but possibly also long distant pollution from, for example, Europe and climatic signals influenced by the North Atlantic. This area is heavily influenced by the monsoon regime providing seasonally and highly variable snow accumulation rates. The upper 50 m of the core covering the time interval from 1950 to 1997 consist of Firn and is sampled non-continuously in a resolution of approximately one sample/year. The time interval between 1790 and 1950 is presented by a continuous record in subannual resolution. Crustal enrichment factors are used to discriminate between the terrigenous and the anthropogenic contributions. In this study we focus two research topics: (1) determine the onset of the earliest anthropogenic contamination from trace elements at this elevation (7200 m) Himalayan site and (2) determine intra-annual variations of atmospheric trace elements, with a focus on discriminating between pre-monsoon season (when the aerosol input is governed by the high dust input in spring) and the monsoon and dry season. We find trace element concentrations to be very low and very variable throughout the year with

  2. Anthropogenic organic micro-pollutants and pathogens in the urban water cycle: assessment, barriers and risk communication (ASKURIS)

    OpenAIRE

    Jekel, Martin; Ruhl, Aki Sebastian; Meinel, Felix; Zietzschmann, Frederik; Pflugmacher Lima, Stephan; Baur, Nina; Wenzel, Melanie; Gnierß, Regina; Sperlich, Alexander; Dünnbier, Uwe; Böckelmann, Uta; Hummelt, Daniel; van Baar, Patricia; Wode, Florian; Petersohn, Dietmar

    2013-01-01

    First published by Springer: Jekel, Martin et al.: Anthropogenic organic micro-pollutants and pathogens in the urban water cycle: assessment, barriers and risk communication (ASKURIS). - In: Environmental Sciences Europe. - ISSN 2190-4715 (online). - 25 (2013), art. 20. - doi:10.1186/2190-4715-25-20. In urban areas, water often flows along a partially closed water cycle in which treated municipal wastewater is discharged into surface waters which are one source of raw waters used for dr...

  3. Assessing water pollution level and gray water footprint of anthropogenic nitrogen in agricultural system

    Science.gov (United States)

    Huang, Guorui; Chen, Han; Yu, Chaoqing

    2017-04-01

    Water pollution has become a global problem which is one of the most critical issues of today's water treatment. At a spatial resolution of 10km, we use the DeNitrification-DeComposition (DNDC) model to simulate the biogeochemical processes for major cropping systems from 1955 to 2014, estimate the anthropogenic nitrogen loads to fresh, and calculate the resultant grey water footprints and N-related water pollution level in China. The accumulated annual Nitrogen loads to fresh from agricultural system is 0.38Tg in 1955 and 4.42Tg in 2014, while the grey water footprints vary from 1.53 billion m3 to 17.67 billion m3, respectively. N loads in north of China contributes much more on the N leaching because of the high fertilizer but in south of China, it is mainly focused on the N runoff because of the heavy rain. There are more than 25% of grids with WPL>1 (exceed the water capacity of assimilation), which is mainly located on the North China Plain.

  4. The observed influence of local anthropogenic pollution on northern Alaskan cloud properties

    Directory of Open Access Journals (Sweden)

    M. Maahn

    2017-12-01

    Full Text Available Due to their importance for the radiation budget, liquid-containing clouds are a key component of the Arctic climate system. Depending on season, they can cool or warm the near-surface air. The radiative properties of these clouds depend strongly on cloud drop sizes, which are governed in part by the availability of cloud condensation nuclei. Here, we investigate how cloud drop sizes are modified in the presence of local emissions from industrial facilities at the North Slope of Alaska. For this, we use aircraft in situ observations of clouds and aerosols from the 5th Department of Energy Atmospheric Radiation Measurement (DOE ARM Program's Airborne Carbon Measurements (ACME-V campaign obtained in summer 2015. Comparison of observations from an area with petroleum extraction facilities (Oliktok Point with data from a reference area relatively free of anthropogenic sources (Utqiaġvik/Barrow represents an opportunity to quantify the impact of local industrial emissions on cloud properties. In the presence of local industrial emissions, the mean effective radii of cloud droplets are reduced from 12.2 to 9.4 µm, which leads to suppressed drizzle production and precipitation. At the same time, concentrations of refractory black carbon and condensation nuclei are enhanced below the clouds. These results demonstrate that the effects of anthropogenic pollution on local climate need to be considered when planning Arctic industrial infrastructure in a warming environment.

  5. The environment of nature reserves under anthropogenic load: air transport of pollution to the North of European Russia

    Science.gov (United States)

    Vinogradova, A. A.; Ivanova, Yu. A.; Veremeychik, A. O.

    2012-04-01

    Nature reserves are created to keep in their original states natural environment, flora and fauna of various ecological systems, territories, climatic zones, etc. Now natural objects everywhere exist under anthropogenic loading from man-made activities. It is impossible to avoid atmospheric or river transport of pollution to the environment of reserved territories. The main idea of the work is to analyze atmospheric transport of anthropogenic metals (Ni, Cu, Pb, Fe, Al), as well as of soot (black carbon - BC) from Russian large industrial areas (source-regions) to the territories of nature reserves at the North of European Russia - the Kostomukshsky reserve (KR) in Karelia (64.57°N, 30.67°E) and the Nenetzky reserve (NR) at the Pechora River mouth (68,5°N, 53,5°E). The basic data for these 2 points were back trajectories of air mass transport calculated for every day of January, April, July, and October during 10 years from 2001 to 2010. We used NCEP/NCAR Reanalysis Data Files with HYSPLIT 4 model and two approaches for analyzing the trajectories. The main source-regions were chosen for each reserve. The annual source emissions for the last decade are generalized from the data published by Roshydromet of Russia (http://www.nii-atmosphere.ru/files/PUBL/Eg_2008.doc). The deposition velocity was a sum of dry and wet components. The equal values of deposition velocities onto the surface were assumed for all impurities because they are mainly on submicron aerosol particles under atmospheric transport for a long distance. The seasonal and spatial variations of averaged deposition velocity were accounted in accordance with surface properties and precipitation regimes. As a result, the maximal air concentrations of aerosol pollutants are observed in cold seasons, whereas the maximal fluxes onto the surface occur in warm period. Thus, it's possible that the cleanest air does not indicate the same surface. Fe and Al are the crust (dust or soil) elements. Thus, their main

  6. Towards a monitoring strategy to assess the anthropogenic signature of traffic derived pollution

    Science.gov (United States)

    Ojha, G.; Appel, E.; Magiera, T.; Wawer, M.

    2013-12-01

    Soil contamination along roadsides is one important factor of anthropogenic linear pollution source. In our present study we focus on typical traffic pollutants like heavy metals (HM), platinum group elements (PGEs), polycyclic aromatic hydrocarbons (PAHs) and investigate the use of magnetic parameters, in particular to discriminate the distribution of contaminants by surface runoff, splash-water and airborne transport. For monitoring we removed 10-15 cm of top soil at 1 m distance from the roadside edge and replaced it by 30 plastic boxes, and installed pillars at 1 m and 2 m distances to the roadside with samplers in different heights (ground, 0.5 m, 2 m) as well as 4 m long u-channels (surface and 2.5 cm above ground) perpendicular to the road. Clean quartz sand was used as collector material. Mass-specific magnetic susceptibility (χ) and the concentration of pollutants (HM, PAH) all show a significant increase with time in the box samples, however, there are obviously also seasonal and site-dependent effects which lead to more stable values over several months or even some decrease in the upper few cm due to vertical migration. Similar significant differences of χ, PAH and HM concentrations and an importance of splash-water were noticed in pillars and u-channels within one year of monitoring. Magnetic results revealed that magnetite-like phases are responsible for the enhancement of magnetic concentration. A good correlation between χ and semi-volatile and particle-bound PAH phases as well as HM suggests that χ can be used as a proxy for traffic derived PAH and HM pollution. SEM observations and EDX analyses identified a dominance of angular and aggregates-shaped particles with composition of Fe-Cr-Ni derived from traffic-specific activities (abrasion of tyres, exhausts and brake linings). The results from our monitoring studies will be utilized to develop new innovative roadside pollution monitoring concepts.

  7. First simultaneous space measurements of atmospheric pollutants in the boundary layer from IASI: A case study in the North China Plain

    International Nuclear Information System (INIS)

    Boynard, Anne; Safieddine, Sarah; Oudot, Charlotte; Hadji-Lazaro, Juliette; Clerbaux, Cathy; Clarisse, Lieven; Bauduin, Sophie; Hurtmans, Daniel; Coheur, Pierre-Francois; Pommier, Matthieu; Van Damme, Martin

    2014-01-01

    In this paper we investigate a severe pollution episode that occurred in Beijing, Tianjin, and the Hebei province in January 2013. The episode was caused by the combination of anthropogenic emissions and a high-pressure system that trapped pollutants in the boundary layer. Using IASI (Infrared Atmospheric Sounding Interferometer) satellite measurements, high concentrations of key trace gases such as carbon monoxide (CO), sulfur dioxide (SO 2 ), and ammonia (NH 3 ) along with ammonium sulfate aerosol ((NH 4 ) 2 SO 4 ) are found. We show that IASI is able to detect boundary layer pollution in case of large negative thermal contrast combined with high levels of pollution. Our findings demonstrate that anthropogenic key pollutants, such as CO and SO 2 , can be monitored by IASI in the North China Plain during wintertime in support of air quality evaluation and management. (authors)

  8. Wildfire air pollution hazard during the 21st century

    Directory of Open Access Journals (Sweden)

    W. Knorr

    2017-07-01

    Full Text Available Wildfires pose a significant risk to human livelihoods and are a substantial health hazard due to emissions of toxic smoke. Previous studies have shown that climate change, increasing atmospheric CO2, and human demographic dynamics can lead to substantially altered wildfire risk in the future, with fire activity increasing in some regions and decreasing in others. The present study re-examines these results from the perspective of air pollution risk, focussing on emissions of airborne particulate matter (PM2. 5, combining an existing ensemble of simulations using a coupled fire–dynamic vegetation model with current observation-based estimates of wildfire emissions and simulations with a chemical transport model. Currently, wildfire PM2. 5 emissions exceed those from anthropogenic sources in large parts of the world. We further analyse two extreme sets of future wildfire emissions in a socio-economic, demographic climate change context and compare them to anthropogenic emission scenarios reflecting current and ambitious air pollution legislation. In most regions of the world, ambitious reductions of anthropogenic air pollutant emissions have the potential to limit mean annual pollutant PM2. 5 levels to comply with World Health Organization (WHO air quality guidelines for PM2. 5. Worst-case future wildfire emissions are not likely to interfere with these annual goals, largely due to fire seasonality, as well as a tendency of wildfire sources to be situated in areas of intermediate population density, as opposed to anthropogenic sources that tend to be highest at the highest population densities. However, during the high-fire season, we find many regions where future PM2. 5 pollution levels can reach dangerous levels even for a scenario of aggressive reduction of anthropogenic emissions.

  9. Assurance of risk assessment and protection distant transportation and fall out of pollutants under large anthropogenic on nuclear power stations due to mountainous regional peculiarities

    International Nuclear Information System (INIS)

    Tsitskishvili, M.; Tsitskishvili, N.; Kordzakhia, G.; Valiaev, A.; Kazakov, S.; Aitmatov, I.; Petrov, V.

    2005-01-01

    Full text: All types of industrial activities require the norms of protection, assessment of corresponding risks to preserve the pollution and degradation of corresponding areas. To make available the sustainable development of the country the risk assessment of possible accidents on the big enterprises is foreseen that provides preparedness of the country and possibility of the prevention measures and mitigation of the accidents. While big anthropogenic accidents in mountainous countries - the main paths for transportation of the pollution are the rivers and sea basins. Due to overpopulation of these areas assessment of the pollution risks are very important. Problem of forecast and distant atmospheric transportation of the toxic products and corresponding risk assessment under anthropogenic damages is multi-component and depends on meteorological conditions and frontier layer of atmosphere. Generally, for real relief and basic fields the problem is not solved yet especially taking into consideration the big level and shortest time of the process being of the natural anthropogenic accidents in mountainous regions. Usually, geostropic drawing for determined relief is used. Integral differential equations taking into consideration a physical- chemical characteristic of the pollutants, their transformations, fall out, coagulations, washing out and self rectification in general cannot be solved. In last time essential success in formalization of above-mentioned equations i.e. carrying out some simplifications give possibility to establish necessary modeling on the basis of numerical calculations. In the most general case forecasting model is essentially limited because of bulky size of accounting schemes and necessity of powerful and high-speed computers. Main ways of achievement of further success is connected with so called 'seasonal typification' with applied a priory calculation of probabilistic picture of the pollutants concentration fields, as well as

  10. Sensitivity of air pollution simulations with LOTOS-EUROS to temporal distribution of anthropogenic emissions

    Science.gov (United States)

    Mues, A.; Kuenen, J.; Hendriks, C.; Manders, A.; Segers, A.; Scholz, Y.; Hueglin, C.; Builtjes, P.; Schaap, M.

    2013-07-01

    In this study the sensitivity of the model performance of the chemistry transport model (CTM) LOTOS-EUROS to the description of the temporal variability of emissions was investigated. Currently the temporal release of anthropogenic emissions is described by European average diurnal, weekly and seasonal time profiles per sector. These default time profiles largely neglect the variation of emission strength with activity patterns, region, species, emission process and meteorology. The three sources dealt with in this study are combustion in energy and transformation industries (SNAP1), non-industrial combustion (SNAP2) and road transport (SNAP7). First the impact of neglecting the temporal emission profiles for these SNAP categories on simulated concentrations was explored. In a~second step, we constructed more detailed emission time profiles for the three categories and quantified their impact on the model performance separately as well as combined. The performance in comparison to observations for Germany was quantified for the pollutants NO2, SO2 and PM10 and compared to a simulation using the default LOTOS-EUROS emission time profiles. In general the largest impact on the model performance was found when neglecting the default time profiles for the three categories. The daily average correlation coefficient for instance decreased by 0.04 (NO2), 0.11 (SO2) and 0.01 (PM10) at German urban background stations compared to the default simulation. A systematic increase of the correlation coefficient is found when using the new time profiles. The size of the increase depends on the source category, the component and station. Using national profiles for road transport showed important improvements of the explained variability over the weekdays as well as the diurnal cycle for NO2. The largest impact of the SNAP1 and 2 profiles were found for SO2. When using all new time profiles simultaneously in one simulation the daily average correlation coefficient increased by 0

  11. Comparison of emissions inventories of anthropogenic air pollutants and greenhouse gases in China

    Science.gov (United States)

    Saikawa, Eri; Kim, Hankyul; Zhong, Min; Avramov, Alexander; Zhao, Yu; Janssens-Maenhout, Greet; Kurokawa, Jun-ichi; Klimont, Zbigniew; Wagner, Fabian; Naik, Vaishali; Horowitz, Larry W.; Zhang, Qiang

    2017-05-01

    Anthropogenic air pollutant emissions have been increasing rapidly in China, leading to worsening air quality. Modelers use emissions inventories to represent the temporal and spatial distribution of these emissions needed to estimate their impacts on regional and global air quality. However, large uncertainties exist in emissions estimates. Thus, assessing differences in these inventories is essential for the better understanding of air pollution over China. We compare five different emissions inventories estimating emissions of carbon dioxide (CO2), carbon monoxide (CO), nitrogen oxides (NOx), sulfur dioxide (SO2), and particulate matter with an aerodynamic diameter of 10 µm or less (PM10) from China. The emissions inventories analyzed in this paper include the Regional Emission inventory in ASia v2.1 (REAS), the Multi-resolution Emission Inventory for China (MEIC), the Emission Database for Global Atmospheric Research v4.2 (EDGAR), the inventory by Yu Zhao (ZHAO), and the Greenhouse Gas and Air Pollution Interactions and Synergies (GAINS). We focus on the period between 2000 and 2008, during which Chinese economic activities more than doubled. In addition to national totals, we also analyzed emissions from four source sectors (industry, transport, power, and residential) and within seven regions in China (East, North, Northeast, Central, Southwest, Northwest, and South) and found that large disagreements exist among the five inventories at disaggregated levels. These disagreements lead to differences of 67 µg m-3, 15 ppbv, and 470 ppbv for monthly mean PM10, O3, and CO, respectively, in modeled regional concentrations in China. We also find that all the inventory emissions estimates create a volatile organic compound (VOC)-limited environment and MEIC emissions lead to much lower O3 mixing ratio in East and Central China compared to the simulations using REAS and EDGAR estimates, due to their low VOC emissions. Our results illustrate that a better

  12. Pollution going multimodal: the complex impact of the human-altered sensory environment on animal perception and performance.

    Science.gov (United States)

    Halfwerk, Wouter; Slabbekoorn, Hans

    2015-04-01

    Anthropogenic sensory pollution is affecting ecosystems worldwide. Human actions generate acoustic noise, emanate artificial light and emit chemical substances. All of these pollutants are known to affect animals. Most studies on anthropogenic pollution address the impact of pollutants in unimodal sensory domains. High levels of anthropogenic noise, for example, have been shown to interfere with acoustic signals and cues. However, animals rely on multiple senses, and pollutants often co-occur. Thus, a full ecological assessment of the impact of anthropogenic activities requires a multimodal approach. We describe how sensory pollutants can co-occur and how covariance among pollutants may differ from natural situations. We review how animals combine information that arrives at their sensory systems through different modalities and outline how sensory conditions can interfere with multimodal perception. Finally, we describe how sensory pollutants can affect the perception, behaviour and endocrinology of animals within and across sensory modalities. We conclude that sensory pollution can affect animals in complex ways due to interactions among sensory stimuli, neural processing and behavioural and endocrinal feedback. We call for more empirical data on covariance among sensory conditions, for instance, data on correlated levels in noise and light pollution. Furthermore, we encourage researchers to test animal responses to a full-factorial set of sensory pollutants in the presence or the absence of ecologically important signals and cues. We realize that such approach is often time and energy consuming, but we think this is the only way to fully understand the multimodal impact of sensory pollution on animal performance and perception. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  13. Anthropogenic Pollutants in Extracts from Maritsa Iztok Dumps

    Science.gov (United States)

    Stefanova, Maya; Milakovska, Zlatka; Marinov, Stefan

    2017-12-01

    Coals are suspected for many human health problems and are an object of the new discipline - “medical geology”. Potential human health risk of organic compounds with coal/lignite provenance includes endocrine disruption, nephrotoxicity, cancer, etc. Recent investigations proved that different organic components, i.e. hydrocarbons, phenols etc. move through/release out of the dump area as a result of alteration processes of the organic matter (OM) caused by the wash-out and/or drainage processes. The timeliness of the present study is based on the scarcity of information on organic geochemistry of dump materials from open pit coal mines and weathered lignites in particular. The limited number of studies on dumps clarifies that even for the “short” time span (some tens of years) in geological point of view, processes of transformation of the extractable OM are detectable. The secondary phases, a result of the OM transformations, move through and out of the dump area and could be potential contaminants for the surface/underground waters and soils in the area. Another environmental problem comes from the air-born VOCs and products of the modern chemical industry. By GC-MS in the slightly polar fractions of the chloroform extracts of dump samples a broad set of components was determined, i.e. phthalates (dominant), i-propyl palmitate, i-propyl myristate, n-hexyl benzoates, etc. These organic contaminants could be regarded more likely as anthropogenic (originating from plasticizers, industrial pollutants, etc.). Presently, it seems that the identified compounds do not represent an acute toxic risk from an environmental viewpoint. However, some compounds could raise concerns and further attention is needed to be focused on them.

  14. The impact of anthropogenic pollution on limnological characteristics of a subtropical highland reservoir “Lago de Guadalupe”, Mexico

    Directory of Open Access Journals (Sweden)

    Sepulveda-Jauregui A.

    2013-08-01

    Full Text Available “Lago de Guadalupe” is an important freshwater ecosystem located in the northern part of the metropolitan area surrounding Mexico City, under high demographic pressure. It receives approximately 15 hm3·y-1 of untreated municipal wastewater from the surrounding municipalities. In order to develop a comparative assessment of the pollution effect over the limnological characteristics of Lago de Guadalupe, this lake was characterised from February 2006 to July 2009, and the results were compared with those obtained from a non-polluted lake “Lago el Llano” located in the same drainage area. Lago de Guadalupe was hypereutrophic with anoxic conditions throughout most of the water column. In contrast, Lago el Llano was mesotrophic with high dissolved oxygen concentrations throughout the entire water column with a clinograde profile. Both reservoirs had a monomictic mixing regime. The longitudinal zonation of physicochemical and biological variables were investigated in order to better understand the processes controlling the water quality across the reservoir during its residence time. This study shows the impact of anthropogenic pollution on the limnological characteristics of a subtropical reservoir and confirms that under adequate management schemes, namely avoiding pollution and wastewater discharges, subtropical reservoirs can be prevented from developing eutrophic conditions.

  15. Barents Sea polar bears (Ursus maritimus: population biology and anthropogenic threats

    Directory of Open Access Journals (Sweden)

    Magnus Andersen

    2016-07-01

    Full Text Available This paper examines how anthropogenic threats, such as disturbance, pollution and climate change, are linked to polar bear (Ursus maritimus population biology in the Svalbard and Barents Sea area, with the aim to increase our understanding of how human activity may impact the population. Overharvesting drastically reduced the population of polar bears in the Barents Sea region from about 1870 to 1970. After harvesting was stopped—in 1956 in Russia and 1973 in Norway—the population grew to an estimated 2650 individuals (95% confidence interval 1900–3600 in 2004, and maternity denning in the Svalbard Archipelago became more widely distributed. During recent decades, the population has faced challenges from a variety of new anthropogenic impacts: a range of pollutants, an increasing level of human presence and activity as well as changes in ice conditions. Contaminants bioaccumulate up through the marine food web, culminating in this top predator that consumes ringed, bearded and harp seals. Females with small cubs use land-fast sea ice for hunting and are therefore vulnerable to disturbance by snowmobile drivers. Sea-ice diminution, associated with climate change, reduces polar bears’ access to denning areas and could negatively affect the survival of cubs. There are clear linkages between population biology and current anthropogenic threats, and we suggest that future research and management should focus on and take into consideration the combined effects of several stressors on polar bears.

  16. Next generation sequencing reveals distinct fecal pollution signatures in aquatic sediments across gradients of anthropogenic influence

    Directory of Open Access Journals (Sweden)

    Gian Marco Luna

    2016-11-01

    Full Text Available Aquatic sediments are the repository of a variety of anthropogenic pollutants, including bacteria of fecal origin, that reach the aquatic environment from a variety of sources. Although fecal bacteria can survive for long periods of time in aquatic sediments, the microbiological quality of sediments is almost entirely neglected when performing quality assessments of aquatic ecosystems. Here we investigated the relative abundance, patterns and diversity of fecal bacterial populations in two coastal areas in the Northern Adriatic Sea (Italy: the Po river prodelta (PRP, an estuarine area receiving significant contaminant discharge from one of the largest European rivers and the Lagoon of Venice (LV, a transitional environment impacted by a multitude of anthropogenic stressors. From both areas, several indicators of fecal and sewage contamination were determined in the sediments using Next Generation Sequencing (NGS of 16S rDNA amplicons. At both areas, fecal contamination was high, with fecal bacteria accounting for up to 3.96% and 1.12% of the sediment bacterial assemblages in PRP and LV, respectively. The magnitude of the fecal signature was highest in the PRP site, highlighting the major role of the Po river in spreading microbial contaminants into the adjacent coastal area. In the LV site, fecal pollution was highest in the urban area, and almost disappeared when moving to the open sea. Our analysis revealed a large number of fecal Operational Taxonomic Units (OTU, 960 and 181 in PRP and LV, respectively and showed a different fecal signature in the two areas, suggesting a diverse contribution of human and non-human sources of contamination. These results highlight the potential of NGS techniques to gain insights into the origin and fate of different fecal bacteria populations in aquatic sediments.

  17. Global Anthropogenic Phosphorus Loads to Freshwater and Associated Grey Water Footprints and Water Pollution Levels: A High-Resolution Global Study

    Science.gov (United States)

    Mekonnen, Mesfin M.; Hoekstra, Arjen Y.

    2018-01-01

    We estimate the global anthropogenic phosphorus (P) loads to freshwater and the associated grey water footprints (GWFs) for the period 2002-2010, at a spatial resolution of 5 × 5 arc min, and compare the GWF per river basin to runoff to assess the P-related water pollution level (WPL). The global anthropogenic P load to freshwater systems from both diffuse and point sources is estimated at 1.5 Tg/yr. More than half of this total load was in Asia, followed by Europe (19%) and Latin America and the Caribbean (13%). The domestic sector contributed 54% to the total, agriculture 38%, and industry 8%. In agriculture, cereals production had the largest contribution to the P load (31%), followed by fruits, vegetables, and oil crops, each contributing 15%. The global total GWF related to anthropogenic P loads is estimated to be 147 × 1012 m3/yr, with China contributing 30%, India 8%, USA 7%, and Spain and Brazil 6% each. The basins with WPL > 1 (where GWF exceeds the basin's assimilation capacity) together cover about 38% of the global land area, 37% of the global river discharge, and provide residence to about 90% of the global population.

  18. The Effects of Anthropogenic Heat Release on Urban Meteorology and Implication for Haze Pollution in the Beijing-Tianjin-Hebei Region

    Directory of Open Access Journals (Sweden)

    Ruiting Liu

    2016-01-01

    Full Text Available In this study, the effect of anthropogenic heat release (AHR on meteorological variables and atmospheric diffusion capability and implication for haze pollution in the Beijing-Tianjin-Hebei region in January 2013 were investigated by using Weather Research and Forecasting (WRF model with an urban canopy model (UCM and an AHR scheme. The comparison with observation demonstrated the WRF/UCM model taking AHR into account apparently improved meteorological prediction, especially for surface air temperature at 2 m (T2. The model also exhibited a better performance for planetary boundary layer (PBL height. This study revealed that AHR from cities exerted a significant impact on meteorology by generally increasing surface air temperature and wind speed, decreasing relative humidity, and elevating PBL height and near surface turbulent kinetic energy (TKE, which could consequently reduce surface pollutant concentration and mitigate haze pollution by enhancing atmospheric instability and turbulent mixing and reducing aerosol hygroscopic growth.

  19. Atmospheric pollution history at Linfen (China) uncovered by magnetic and chemical parameters of sediments from a water reservoir

    International Nuclear Information System (INIS)

    Ma, Mingming; Hu, Shouyun; Cao, Liwan; Appel, Erwin; Wang, Longsheng

    2015-01-01

    We studied magnetic and chemical parameters of sediments from sediments of a water reservoir at Linfen (China) in order to quantitatively reconstruct the atmospheric pollution history in this region. The results show that the main magnetic phases are magnetite and maghemite originating from the surrounding catchment and from anthropogenic activities, and there is a significant positive relationship between magnetic concentration parameters and heavy metals concentrations, indicating that magnetic proxies can be used to monitor the anthropogenic pollution. In order to uncover the atmospheric pollution history, we combined the known events of environmental improvement with variations of magnetic susceptibility (χ) and heavy metals along the cores to obtain a detailed chronological framework. In addition, air comprehensive pollution index (ACPI) was reconstructed from regression equation among magnetic and chemical parameters as well as atmospheric monitoring data. Based on these results, the atmospheric pollution history was successfully reconstructed. - Highlights: • Magnetic proxies can be used to monitor the heavy mental pollution in sediments. • Accurate age model was obtained using known events of environmental improvement. • Regression equation was obtained among sediment records and monitoring data. • Atmospheric pollution history was quantitatively reconstructed. - Atmospheric pollution history was quantitatively reconstructed using magnetic and chemical records of reservoir sediments combined with atmospheric monitoring data

  20. Foreign and Domestic Contributions to Springtime Ozone Pollution over China

    Science.gov (United States)

    Ni, R.; Lin, J.; Yan, Y.; Lin, W.; Chen, H.

    2017-12-01

    Ozone is a critical air pollutant that damages human health and vegetation. Previous studies for the United States and Europe have shown large influences of foreign emissions on domestic ozone levels, whereas the relative contributions of foreign versus domestic emissions are much less clear for China. Here, we use a global-regional two-way coupled model system based on GEOS-Chem to quantify the contributions to springtime ozone over China from anthropogenic emissions in major source regions across the globe. Our results indicate considerable influences of foreign anthropogenic pollution on China's ozone pollution. Together, foreign anthropogenic emissions enhance springtime surface ozone over China by 3 12 ppb. Of all ozone over China produced by global anthropogenic emissions, foreign emissions contribute 40% near the surface, and the contribution increases with altitude until a value of 80% in the upper troposphere. Impact from Japan and Korea is 1 2 ppb over east coastal regions, and negligible in inland. Anthropogenic emissions of South and South-East Asia increase ozone over Tibet and the Yunnan-Guizhou Plateau by up to 5 ppb, and their contribution increases with height due to strong vertical transport. Pollution from North America and Europe mainly accompanies strong westerly winds and frequent cyclonic activities that are favorable to long-range transport. European anthropogenic pollution enhances surface ozone by 1 3 ppb over West and North China. Despite a much longer transport distance, the contribution from North America is greater than European contribution due to the nearly doubled amount of anthropogenic NMVOC emissions. The high percentage contribution of foreign anthropogenic emissions to China's ozone pollution can be partly explained by excessive domestic NOx emissions that suppress ozone production efficiency and even destroy ozone. Our study is relevant to Chinese ozone pollution control and global environmental protection collaboration.

  1. Low levels of chemical anthropogenic pollution may threaten amphibians by impairing predator recognition.

    Science.gov (United States)

    Polo-Cavia, Nuria; Burraco, Pablo; Gomez-Mestre, Ivan

    2016-03-01

    Recent studies suggest that direct mortality and physiological effects caused by pollutants are major contributing factors to global amphibian decline. However, even sublethal concentrations of pollutants could be harmful if they combined with other factors to cause high mortality in amphibians. Here we show that sublethal concentrations of pollutants can disrupt the ability of amphibian larvae to recognize predators, hence increasing their risk of predation. This effect is indeed much more important since very low amounts of pollutants are ubiquitous, and environmental efforts are mostly directed towards preventing lethal spills. We analyzed the effects of two common contaminants (humic acid and ammonium nitrate) on the ability of tadpoles of the western spadefoot toad (Pelobates cultripes) to recognize chemical cues from a common predator, nymphs of the dragonfly Anax imperator. We compared the swimming activity of tadpoles in the presence and absence of water-borne chemical cues from dragonflies at different concentrations of humic acid and ammonium nitrate. Tadpoles reduced swimming activity in response to predator cues in the absence of pollutants, whereas they remained unresponsive to these cues when either humic acid or ammonium nitrate was added to the water, even at low concentrations. Moreover, changes in tadpole activity associated with the pollutants themselves were non-significant, indicating no toxic effect. Alteration of the natural chemical environment of aquatic systems by pollutants may be an important contributing cause for declines in amphibian populations, even at sublethal concentrations. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Assessment of groundwater vulnerability to anthropogenic pollution and seawater intrusion in a small tropical island using index-based methods.

    Science.gov (United States)

    Kura, Nura Umar; Ramli, Mohammad Firuz; Ibrahim, Shaharin; Sulaiman, Wan Nor Azmin; Aris, Ahmad Zaharin; Tanko, Adamu Idris; Zaudi, Muhammad Amar

    2015-01-01

    In this work, the DRASTIC and GALDIT models were employed to determine the groundwater vulnerability to contamination from anthropogenic activities and seawater intrusion in Kapas Island. In addition, the work also utilized sensitivity analysis to evaluate the influence of each individual parameter used in developing the final models. Based on these effects and variation indices of the said parameters, new effective weights were determined and were used to create modified DRASTIC and GALDIT models. The final DRASTIC model classified the island into five vulnerability classes: no risk (110-140), low (140-160), moderate (160-180), high (180-200), and very high (>200), covering 4, 26, 59, 4, and 7 % of the island, respectively. Likewise, for seawater intrusion, the modified GALDIT model delineates the island into four vulnerability classes: very low (130) covering 39, 33, 18, and 9 % of the island, respectively. Both models show that the areas that are likely to be affected by anthropogenic pollution and seawater intrusion are within the alluvial deposit at the western part of the island. Pearson correlation was used to verify the reliability of the two models in predicting their respective contaminants. The correlation matrix showed a good relationship between DRASTIC model and nitrate (r = 0.58). In a similar development, the correlation also reveals a very strong negative relationship between GALDIT model and seawater contaminant indicator (resistivity Ωm) values (r = -0.86) suggesting that the model predicts more than 86 % of seawater intrusion. In order to facilitate management strategy, suitable areas for artificial recharge were identified through modeling. The result suggested some areas within the alluvial deposit at the western part of the island as suitable for artificial recharge. This work can serve as a guide for a full vulnerability assessment to anthropogenic pollution and seawater intrusion in small islands and will help policy maker and

  3. Future anthropogenic pollutant emissions in a Mediterranean port city with emphasis on the maritime sector emissions - Study of the impact on the city air quality

    Science.gov (United States)

    Liora, Natalia; Poupkou, Anastasia; Markakis, Konstantinos; Giannaros, Theodoros; Karagiannidis, Athanasios; Melas, Dimitrios

    2013-04-01

    The aim of this study is the estimation of the future emissions in the area of the large urban center of Thessaloniki (Greece) with emphasis on the emissions originated from the maritime sector within the port area of the city which are presented in detail. In addition, the contribution of the future anthropogenic emissions to atmospheric pollution levels in Thessaloniki focusing on PM levels is studied. A 2km spatial resolution anthropogenic gaseous and particulate matter emission inventory has been compiled for the port city of Thessaloniki for the year 2010 with the anthropogenic emission model MOSESS, developed by Laboratory of Atmospheric Physics of the Aristotle University of Thessaloniki. MOSESS was used for the estimation of emissions from several emission sources (road transport, central heating, industries, maritime sector etc) while the natural emission model NEMO was implemented for the calculation of dust, sea salt and biogenic emissions. Maritime emissions originated from the various processes inside the area of the port (harbor operations such as stockpiles, loading/unloading operations, machineries etc) as well as from the maritime transport sector including passenger ships, cargo shipping, inland waterways vessels (e.g. pleasure crafts) and fish catching ships. Ship emissions were estimated for the three operation modes; cruising, maneuvering and hotelling. For the calculation of maritime emissions, the activity data used were provided by local and national authorities (e.g.Thessaloniki Port Authority S.A.). Pollutant anthropogenic emissions were projected to the year 2020. The emissions from all the anthropogenic sources except for the maritime sector were projected using factors provided by the GAINS model. Future emissions from the maritime activities were estimated on the basis of the future activity data provided by the Port Authority and of the legislation for shipping in the future. Future maritime emissions are determined by the vessels

  4. Aquatic noise pollution: implications for individuals, populations, and ecosystems.

    Science.gov (United States)

    Kunc, Hansjoerg P; McLaughlin, Kirsty Elizabeth; Schmidt, Rouven

    2016-08-17

    Anthropogenically driven environmental changes affect our planet at an unprecedented scale and are considered to be a key threat to biodiversity. According to the World Health Organization, anthropogenic noise is one of the most hazardous forms of anthropogenically driven environmental change and is recognized as a major global pollutant. However, crucial advances in the rapidly emerging research on noise pollution focus exclusively on single aspects of noise pollution, e.g. on behaviour, physiology, terrestrial ecosystems, or on certain taxa. Given that more than two-thirds of our planet is covered with water, there is a pressing need to get a holistic understanding of the effects of anthropogenic noise in aquatic ecosystems. We found experimental evidence for negative effects of anthropogenic noise on an individual's development, physiology, and/or behaviour in both invertebrates and vertebrates. We also found that species differ in their response to noise, and highlight the potential underlying mechanisms for these differences. Finally, we point out challenges in the study of aquatic noise pollution and provide directions for future research, which will enhance our understanding of this globally present pollutant. © 2016 The Author(s).

  5. Impact of Santiago de Chile urban atmospheric pollution on anthropogenic trace elements enrichment in snow precipitation at Cerro Colorado, Central Andes

    Science.gov (United States)

    Cereceda-Balic, F.; Palomo-Marín, M. R.; Bernalte, E.; Vidal, V.; Christie, J.; Fadic, X.; Guevara, J. L.; Miro, C.; Pinilla Gil, E.

    2012-02-01

    Seasonal snow precipitation in the Andes mountain range is evaluated as an environmental indicator of the composition of atmospheric emissions in Santiago de Chile metropolitan area, by measuring a set of representative trace elements in snow samples by ICP-MS. Three late winter sampling campaigns (2003, 2008 and 2009) were conducted in three sampling areas around Cerro Colorado, a Central Andes mountain range sector NE of Santiago (36 km). Nevados de Chillán, a sector in The Andes located about 500 km south from the metropolitan area, was selected as a reference area. The experimental results at Cerro Colorado and Nevados de Chillán were compared with previously published data of fresh snow from remote and urban background sites. High snow concentrations of a range of anthropogenic marker elements were found at Cerro Colorado, probably derived from Santiago urban aerosol transport and deposition combined with the effect of mining and smelting activities in the area, whereas Nevados de Chillán levels roughly correspond to urban background areas. Enhanced concentrations in surface snow respect to deeper samples are discussed. Significant differences found between the 2003, 2008 and 2009 anthropogenic source markers profiles at Cerro Colorado sampling points were correlated with changes in emission sources at the city. The preliminary results obtained in this study, the first of this kind in the southern hemisphere, show promising use of snow precipitation in the Central Andes as a suitable matrix for receptor model studies aimed at identifying and quantifying pollution sources in Santiago de Chile.

  6. Combining tree-ring metal concentrations and lead, carbon and oxygen isotopes to reconstruct peri-urban atmospheric pollution

    Directory of Open Access Journals (Sweden)

    Annick Doucet

    2012-08-01

    Full Text Available In this study, we analysed the tree-ring metal concentrations and isotope ratios of five stands located in three contrasted settings to infer the diffuse air pollution history of the northern part of the Windsor–Québec City Corridor in eastern Canada. Tree-ring series show that the Cd and Zn accumulation rates were higher between 1960 and 1986 and that the long-term acidification of the soil (Ca/Al series was likely induced by NOx and SOx deposition (δ15N and δ13C trends as proxy. The Pb concentrations and 206Pb/207Pb ratios indicate that the dominant source of lead from 1880 to the 1920s was the combustion of north-eastern American coal, which was succeeded by the combustion of leaded gasoline from the 1920s to the end of the 1980s. Our modelling approach allows separating the climatic and anthropogenic effects on the tree-ring δ13C and δ18O responses. Diffuse air pollution caused an enrichment in 13C in all stands and a decrease of the δ18O values only in three of the stands. This study indicates that dendrogeochemistry can show contrasted responses to environmental changes and that the combination of several independent indicators constitutes a powerful tool to reconstruct the air pollution history in the complex context of peri-urban regions.

  7. The positive relationship between ocean acidification and pollution.

    Science.gov (United States)

    Zeng, Xiangfeng; Chen, Xijuan; Zhuang, Jie

    2015-02-15

    Ocean acidification and pollution coexist to exert combined effects on the functions and services of marine ecosystems. Ocean acidification can increase the biotoxicity of heavy metals by altering their speciation and bioavailability. Marine pollutants, such as heavy metals and oils, could decrease the photosynthesis rate and increase the respiration rate of marine organisms as a result of biotoxicity and eutrophication, facilitating ocean acidification to varying degrees. Here we review the complex interactions between ocean acidification and pollution in the context of linkage of multiple stressors to marine ecosystems. The synthesized information shows that pollution-affected respiration acidifies coastal oceans more than the uptake of anthropogenic carbon dioxide. Coastal regions are more vulnerable to the negative impact of ocean acidification due to large influxes of pollutants from terrestrial ecosystems. Ocean acidification and pollution facilitate each other, and thus coastal environmental protection from pollution has a large potential for mitigating acidification risk. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Aquatic subsidies transport anthropogenic nitrogen to riparian spiders

    Energy Technology Data Exchange (ETDEWEB)

    Akamatsu, Fumikazu, E-mail: f-akamt55@pwri.go.jp [Department of Environmental Sciences, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan); Toda, Hideshige [Department of Environmental Sciences, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan)

    2011-05-15

    Stable nitrogen isotopic composition ({delta}{sup 15}N) of aquatic biota increases with anthropogenic N inputs such as sewage and livestock waste downstream. Increase in {delta}{sup 15}N of riparian spiders downstream may reflect the anthropogenic pollution exposure through predation on aquatic insects. A two-source mixing model based on stable carbon isotopic composition showed the greatest dependence on aquatic insects (84%) by horizontal web-building spiders, followed by intermediate (48%) and low (31%) dependence by cursorial and vertical web-building spiders, respectively. The spider body size was negatively correlated with the dietary proportion of aquatic insects and spider {delta}{sup 15}N. The aquatic subsidies transported anthropogenic N to smaller riparian spiders downstream. This transport of anthropogenic N was regulated by spider's guild designation and body size. - Highlights: > {delta}{sup 15}N of aquatic insects increases downstream with anthropogenic nitrogen inputs. > {delta}{sup 15}N of riparian spiders increases with a high dietary proportion of aquatic insects and smaller spider body size. > The aquatic subsidies transport anthropogenic nitrogen to smaller riparian spiders downstream. - Smaller spiders assimilate anthropogenic nitrogen through the predation on aquatic subsides.

  9. Aquatic subsidies transport anthropogenic nitrogen to riparian spiders

    International Nuclear Information System (INIS)

    Akamatsu, Fumikazu; Toda, Hideshige

    2011-01-01

    Stable nitrogen isotopic composition (δ 15 N) of aquatic biota increases with anthropogenic N inputs such as sewage and livestock waste downstream. Increase in δ 15 N of riparian spiders downstream may reflect the anthropogenic pollution exposure through predation on aquatic insects. A two-source mixing model based on stable carbon isotopic composition showed the greatest dependence on aquatic insects (84%) by horizontal web-building spiders, followed by intermediate (48%) and low (31%) dependence by cursorial and vertical web-building spiders, respectively. The spider body size was negatively correlated with the dietary proportion of aquatic insects and spider δ 15 N. The aquatic subsidies transported anthropogenic N to smaller riparian spiders downstream. This transport of anthropogenic N was regulated by spider's guild designation and body size. - Highlights: → δ 15 N of aquatic insects increases downstream with anthropogenic nitrogen inputs. → δ 15 N of riparian spiders increases with a high dietary proportion of aquatic insects and smaller spider body size. → The aquatic subsidies transport anthropogenic nitrogen to smaller riparian spiders downstream. - Smaller spiders assimilate anthropogenic nitrogen through the predation on aquatic subsides.

  10. Modeling of photochemical air pollution in the Barcelona area with highly disaggregated anthropogenic and biogenic emissions

    International Nuclear Information System (INIS)

    Toll, I.; Baldasano, J.M.

    2000-01-01

    The city of Barcelona and its surrounding area, located in the western Mediterranean basin, can reach high levels of O 3 in spring and summertime. To study the origin of this photochemical pollution, a numerical modeling approach was adopted and the episode that took place between 3 and 5 August 1990 was chosen. The main meteorological mesoscale flows were reproduced with the meteorological non-hydrostatic mesoscale model MEMO for 5 August 1990, when weak pressure synoptic conditions took place. The emissions inventory was calculated with the EIM-LEM model, giving highly disaggregated anthropogenic and biogenic emissions in the zone studied, an 80 x 80 km 2 area around the city of Barcelona. Major sources of VOC were road traffic (51%) and vegetation (34%), while NO x were mostly emitted by road traffic (88%). However, emissions from some industrial stacks can be locally important and higher than those from road traffic. Photochemical simulation with the MARS model revealed that the combination of mesoscale wind flows and the above-mentioned local emissions is crucial in the production and transport of O 3 in the area. On the other hand, the geostrophic wind also played an important role in advecting the air masses away from the places O 3 had been generated. The model simulations were also evaluated by comparing meteorological measurements from nine surface stations and concentration measurements from five surface stations, and the results proved to be fairly satisfactory. (author)

  11. Atmospheric delivery of anthropogenic bioavailable iron from mineral dust to the ocean

    OpenAIRE

    伊藤, 彰記; 時, 宗波; ITO, Akinori; SHI, Zongbo

    2015-01-01

    Atmospheric deposition of anthropogenic soluble iron (Fe) to the ocean has been suggested to modulate primary ocean productivity and thus indirectly affect the climate. A key process contributing to anthropogenic sources of soluble Fe is associated with air pollution, which acidifies Fe-containing mineral aerosols during their transport and leads to Fe transformation from insoluble to soluble forms. However, there is large uncertainty in our estimate of this anthropogenic soluble Fe. Here, we...

  12. Atmospheric pollution history at Linfen (China) uncovered by magnetic and chemical parameters of sediments from a water reservoir.

    Science.gov (United States)

    Ma, Mingming; Hu, Shouyun; Cao, Liwan; Appel, Erwin; Wang, Longsheng

    2015-09-01

    We studied magnetic and chemical parameters of sediments from sediments of a water reservoir at Linfen (China) in order to quantitatively reconstruct the atmospheric pollution history in this region. The results show that the main magnetic phases are magnetite and maghemite originating from the surrounding catchment and from anthropogenic activities, and there is a significant positive relationship between magnetic concentration parameters and heavy metals concentrations, indicating that magnetic proxies can be used to monitor the anthropogenic pollution. In order to uncover the atmospheric pollution history, we combined the known events of environmental improvement with variations of magnetic susceptibility (χ) and heavy metals along the cores to obtain a detailed chronological framework. In addition, air comprehensive pollution index (ACPI) was reconstructed from regression equation among magnetic and chemical parameters as well as atmospheric monitoring data. Based on these results, the atmospheric pollution history was successfully reconstructed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Heavy Metal Polluted Soils: Effect on Plants and Bioremediation Methods

    Directory of Open Access Journals (Sweden)

    G. U. Chibuike

    2014-01-01

    Full Text Available Soils polluted with heavy metals have become common across the globe due to increase in geologic and anthropogenic activities. Plants growing on these soils show a reduction in growth, performance, and yield. Bioremediation is an effective method of treating heavy metal polluted soils. It is a widely accepted method that is mostly carried out in situ; hence it is suitable for the establishment/reestablishment of crops on treated soils. Microorganisms and plants employ different mechanisms for the bioremediation of polluted soils. Using plants for the treatment of polluted soils is a more common approach in the bioremediation of heavy metal polluted soils. Combining both microorganisms and plants is an approach to bioremediation that ensures a more efficient clean-up of heavy metal polluted soils. However, success of this approach largely depends on the species of organisms involved in the process.

  14. Environmental pollution

    International Nuclear Information System (INIS)

    Odzuck, W.

    1982-01-01

    The volume of the anthropogenic pollution of the environment (incl. radioactivity) is of great economical importance and has also a meaning to the health and happiness of people. The pocket book introduces into the whole problem by giving exact information and data. After a general survey, the pollutions of urban-industrial, and aquatic ecosystems are dealt with. The book closes with indications as to general principles, specific dangers, and the fature development of the environmental pollution. (orig.) [de

  15. DETECTING INDUSTRIAL POLLUTION IN THE ATMOSPHERES OF EARTH-LIKE EXOPLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Henry W. [Harvard College, Cambridge, MA 02138 (United States); Abad, Gonzalo Gonzalez; Loeb, Abraham, E-mail: henrylin@college.harvard.edu, E-mail: ggonzalezabad@cfa.harvard.edu, E-mail: aloeb@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States)

    2014-09-01

    Detecting biosignatures, such as molecular oxygen in combination with a reducing gas, in the atmospheres of transiting exoplanets has been a major focus in the search for alien life. We point out that in addition to these generic indicators, anthropogenic pollution could be used as a novel biosignature for intelligent life. To this end, we identify pollutants in the Earth's atmosphere that have significant absorption features in the spectral range covered by the James Webb Space Telescope. We focus on tetrafluoromethane (CF{sub 4}) and trichlorofluoromethane (CCl{sub 3}F), which are the easiest to detect chlorofluorocarbons (CFCs) produced by anthropogenic activity. We estimate that ∼1.2 days (∼1.7 days) of total integration time will be sufficient to detect or constrain the concentration of CCl{sub 3}F (CF{sub 4}) to ∼10 times the current terrestrial level.

  16. Sensitivity of air pollution simulations with LOTOS-EUROS to the temporal distribution of anthropogenic emissions

    Science.gov (United States)

    Mues, A.; Kuenen, J.; Hendriks, C.; Manders, A.; Segers, A.; Scholz, Y.; Hueglin, C.; Builtjes, P.; Schaap, M.

    2014-01-01

    In this study the sensitivity of the model performance of the chemistry transport model (CTM) LOTOS-EUROS to the description of the temporal variability of emissions was investigated. Currently the temporal release of anthropogenic emissions is described by European average diurnal, weekly and seasonal time profiles per sector. These default time profiles largely neglect the variation of emission strength with activity patterns, region, species, emission process and meteorology. The three sources dealt with in this study are combustion in energy and transformation industries (SNAP1), nonindustrial combustion (SNAP2) and road transport (SNAP7). First of all, the impact of neglecting the temporal emission profiles for these SNAP categories on simulated concentrations was explored. In a second step, we constructed more detailed emission time profiles for the three categories and quantified their impact on the model performance both separately as well as combined. The performance in comparison to observations for Germany was quantified for the pollutants NO2, SO2 and PM10 and compared to a simulation using the default LOTOS-EUROS emission time profiles. The LOTOS-EUROS simulations were performed for the year 2006 with a temporal resolution of 1 h and a horizontal resolution of approximately 25 × 25km2. In general the largest impact on the model performance was found when neglecting the default time profiles for the three categories. The daily average correlation coefficient for instance decreased by 0.04 (NO2), 0.11 (SO2) and 0.01 (PM10) at German urban background stations compared to the default simulation. A systematic increase in the correlation coefficient is found when using the new time profiles. The size of the increase depends on the source category, component and station. Using national profiles for road transport showed important improvements in the explained variability over the weekdays as well as the diurnal cycle for NO2. The largest impact of the SNAP1

  17. Seasonal and Spatial Variability of Anthropogenic and Natural Factors Influencing Groundwater Quality Based on Source Apportionment

    Directory of Open Access Journals (Sweden)

    Xueru Guo

    2018-02-01

    Full Text Available Globally, groundwater resources are being deteriorated by rapid social development. Thus, there is an urgent need to assess the combined impacts of natural and enhanced anthropogenic sources on groundwater chemistry. The aim of this study was to identify seasonal characteristics and spatial variations in anthropogenic and natural effects, to improve the understanding of major hydrogeochemical processes based on source apportionment. 34 groundwater points located in a riverside groundwater resource area in northeast China were sampled during the wet and dry seasons in 2015. Using principal component analysis and factor analysis, 4 principal components (PCs were extracted from 16 groundwater parameters. Three of the PCs were water-rock interaction (PC1, geogenic Fe and Mn (PC2, and agricultural pollution (PC3. A remarkable difference (PC4 was organic pollution originating from negative anthropogenic effects during the wet season, and geogenic F enrichment during the dry season. Groundwater exploitation resulted in dramatic depression cone with higher hydraulic gradient around the water source area. It not only intensified dissolution of calcite, dolomite, gypsum, Fe, Mn and fluorine minerals, but also induced more surface water recharge for the water source area. The spatial distribution of the PCs also suggested the center of the study area was extremely vulnerable to contamination by Fe, Mn, COD, and F−.

  18. Anthropogenic versus natural processes and pollution in Padana Valley in last years involving new communication/policy strategies and ethical issues in research evaluation

    Science.gov (United States)

    Quattrocchi, Fedora; Vaccaro, Carmela; Boschi, Enzo

    2014-05-01

    Smart grids-Smat cities "fashion" requires management plans of highly urbanized areas located over the Padanian floodplain, which are prone to diffuse pollution of both lands and urban sectors, mostly after the disasters caused by tremendous alluvial rains in January 2014, when shallow aquifers and agricultural matters could have increase pollution over wide territory. Moreover the urban expansion has affected areas previously used for industrial activity and in some cases such for landfills. When the loss of memory of previous activity prevails after urbanization, with health issues, ethical questions are inevitable, accompanied by social conflicts and economic impacts. The alluvial plains of active tectonic areas - as the Padania Valley - in additions to widespread "anthropogenic pollution" is suffering from widespread "natural pollution" of deep fluid sources - mainly methane - corresponding to areas prone to uprising gaseous brines, along faults. Some of them were partially activated during the 2012 Emilia seismic sequence. This noteworthy seismic sequence engaged discussion about the possible role of gas storages and hydrocarbons production or the simple/exploring drilling activity to trigger typical tectonic seismicity. The paper deepen this troubled communication strategy, their gaps and peculiar geopolicy case histories, to avoid the same strategy, in the future. On the other hand, gas burst or brine-gas-contamination in shallow aquifers, soils and indoor, should be studied by simple and cheap methods, by deepening stratigraphic gaps for the tectonics effects on sedimentation: natural processes should be recalled prior to recall anthropogenic causes, if any. Policy should be more responsible in state clearly the role of research in study infrastructures/processes, also when engaged by private companies, for sites selected by ministries mostly to star research: relevant gaps involves serious confusion in the public as regards responsibility and an exact

  19. A 500 year sediment lake record of anthropogenic and natural inputs to Windermere (English Lake District) using double-spike lead isotopes, radiochronology, and sediment microanalysis.

    Science.gov (United States)

    Miller, Helen; Croudace, Ian W; Bull, Jonathan M; Cotterill, Carol J; Dix, Justin K; Taylor, Rex N

    2014-07-01

    A high-resolution record of pollution is preserved in recent sediments from Windermere, the largest lake in the English Lake District. Data derived from X-ray core scanning (validated against wavelength dispersive X-ray fluorescence), radiochronological techniques ((210)Pb and (137)Cs) and ultrahigh precision, double-spike mass spectrometry for lead isotopes are combined to decipher the anthropogenic inputs to the lake. The sediment record suggests that while most element concentrations have been stable, there has been a significant increase in lead, zinc, and copper concentrations since the 1930s. Lead isotope down-core variations identify three major contributory sources of anthropogenic (industrial) lead, comprising gasoline lead, coal combustion lead (most likely source is coal-fired steam ships), and lead derived from Carboniferous Pb-Zn mineralization (mining activities). Periods of metal workings do not correlate with peaks in heavy metals due to the trapping efficiency of up-system lakes in the catchment. Heavy metal increases could be due to flood-induced metal inwash after the cessation of mining and the weathering of bedrock in the catchment. The combination of sediment analysis techniques used provides new insights into the pollutant depositional history of Windermere and could be similarly applied to other lake systems to determine the timing and scale of anthropogenic inputs.

  20. Role of atmospheric circulations in haze pollution in December 2016

    Science.gov (United States)

    Yin, Zhicong; Wang, Huijun

    2017-09-01

    In the east of China, recent haze pollution has been severe and damaging. In addition to anthropogenic emissions, atmospheric circulations and local meteorological conditions were conducive factors. The number of December haze days over North China and the Huanghuai area has increased sharply since 2010 and was greatest in 2016. During 2016, the most aggressive control measures for anthropogenic emissions were implemented from 16 to 21 December, but the most severe haze pollution still occurred, covering approximately 25 % of the land area of China and lasting for 6 days. The atmospheric circulations must play critical roles in the sub-seasonal haze events. Actually, the positive phase of the East Atlantic-West Russia pattern in the middle troposphere strengthened the anomalous anti-cyclone over the NH area that confined vertical motion below. The associated southerly anomalies made the cold air and surface wind speed weaker, but enhanced the humid flow. Thus, the horizontal and vertical dispersion of atmospheric particulates was suppressed and the pollutants gathered within a narrow space. In December 2016, these key indices were strongly beneficial for haze occurrence and combined to result in the severest haze pollution. The influences of the preceding autumn sea surface temperature near the Gulf of Alaska and the subtropical eastern Pacific, October-November snow cover in western Siberia, and associated physical processes on haze pollution are also discussed.

  1. Anthropogenic impact on diazotrophic diversity in the mangrove rhizosphere revealed by nifH pyrosequencing.

    Science.gov (United States)

    Jing, Hongmei; Xia, Xiaomin; Liu, Hongbin; Zhou, Zhi; Wu, Chen; Nagarajan, Sanjay

    2015-01-01

    Diazotrophs in the mangrove rhizosphere play a major role in providing new nitrogen to the mangrove ecosystem and their composition and activity are strongly influenced by anthropogenic activity and ecological conditions. In this study, the diversity of the diazotroph communities in the rhizosphere sediment of five tropical mangrove sites with different levels of pollution along the north and south coastline of Singapore were studied by pyrosequencing of the nifH gene. Bioinformatics analysis revealed that in all the studied locations, the diazotroph communities comprised mainly of members of the diazotrophic cluster I and cluster III. The detected cluster III diazotrophs, which were composed entirely of sulfate-reducing bacteria, were more abundant in the less polluted locations. The metabolic capacities of these diazotrophs indicate the potential for bioremediation and resiliency of the ecosystem to anthropogenic impact. In heavily polluted locations, the diazotrophic community structures were markedly different and the diversity of species was significantly reduced when compared with those in a pristine location. This, together with the increased abundance of Marinobacterium, which is a bioindicator of pollution, suggests that anthropogenic activity has a negative impact on the genetic diversity of diazotrophs in the mangrove rhizosphere.

  2. Determination of Natural and Anthropogenic Factors on Pollution of Heavy Metals in the Central Zanjan (Based on Multivariate Analysis

    Directory of Open Access Journals (Sweden)

    A. Afshari

    2017-01-01

    level of 5%. Principle component analysis (PCA and hierarchical cluster analysis (HCA were used to classify metals group. Achieving a simple structure and better results interpretation, data rotation in varimax type was conducted in PCA algorithm. Before cluster analysis, data were standardized and subsequently exposed to cluster analysis and plotting dendrogram, Euclidean approach was applied. Results and Discussion Multivariate analysis (PCA, CA and CM have been shown as an efficient tool to identify heavy metals origins, helping us in better data comprehension and interpretation. Results obtained on multivariate analysis approaches might are promising to distinguish polluted area and heavy metals potential origin, in turns indicating soil environmental quality. PCA is known as an efficient method to determine anthropogenic impacts on a spatial scale and it may be essential to specify heavy metals contamination degree in respect to anthropogenic and litogenic contribution. As it illustrated, heavy metals are categorized in three-component model framework, accounting for 67% of total data variations. In rotated component matrix the first PC (PC1, 30% of variance involves Ni, Cr, Co, Mn and Fe, while the second PC (PC2, 19% of variance involves Zn and Pb and eventually the third one (PC3, 18% of variance covers Cu and Cd among others. PC1 can be introduced as geological component because of its less coefficient of variations than others, skewedness less than 1 and normalized data status. It denotes lithogenic distribution of these metals in area. Furthermore,as above mentioned, the average heavy metalconcentrations werefound to be less than calculated background threshold. Because of their increased concentration in soil, high coefficient of variations and very high concentration than background threshold level as well as positive skewedness in heavy metals, PC2 and PC3 can be defined to antropogenical components. Atmospheric precipitation (deposition serves as one of

  3. Anthropogenic desertification by high-albedo pollution Observations and modeling

    Science.gov (United States)

    Otterman, J.; Rosenberg, N. W.; Rosenberg, E.

    1974-01-01

    ERTS-1 MSS albedo data of Western Negev, Sinai and the Gaza strip are presented. A sharp contrast in albedo exists across the Negev-Sinai and Negev-Gaza strip borders. Anthropogenic desertification has occurred on the Arab side due to overgrazing and Bedouin agriculture, whereas natural vegetation grows much more abundantly on the Israeli side.

  4. Attribution of Anthropogenic Influence on Atmospheric Patterns Conducive to Recent Most Severe Haze Over Eastern China

    Science.gov (United States)

    Li, Ke; Liao, Hong; Cai, Wenju; Yang, Yang

    2018-02-01

    Severe haze pollution in eastern China has caused substantial health impacts and economic loss. Conducive atmospheric conditions are important to affect occurrence of severe haze events, and circulation changes induced by future global climate warming are projected to increase the frequency of such events. However, a potential contribution of an anthropogenic influence to recent most severe haze (December 2015 and January 2013) over eastern China remains unclear. Here we show that the anthropogenic influence, which is estimated by using large ensemble runs with a climate model forced with and without anthropogenic forcings, has already increased the probability of the atmospheric patterns conducive to severe haze by at least 45% in January 2013 and 27% in December 2015, respectively. We further confirm that simulated atmospheric circulation pattern changes induced by anthropogenic influence are driven mainly by increased greenhouse gas emissions. Our results suggest that more strict reductions in pollutant emissions are needed under future anthropogenic warming.

  5. Evaluation of anthropogenic urban soils. Final report; Bewertung anthropogener Stadtboeden. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Blume, H.P.; Schleuss, U. [eds.

    1997-12-31

    The research project `Evaluation of Anthropogenic Urban Soils` was subsidized by the German Federal Ministry of Education, Science, Research and Technology and adviced by the working group `Stadtboeden` of the German Society of Soil Science. It was realized as a cooperation between the universities of Berlin (TU), Halle-Wittenberg, Hohenheim, Kiel and Rostock and had three objectives: - to characterize soils developed from anthropogenic substratums (`urban soils`), - to figure out distribution patterns of such soils and - to verify whether urban soils could be evaluated according to their filtering and habitat function in the same way as soils developed from natural parent material. Evaluation methods based on easily obtainable field data had to be adapted to `urban soils` respectively developed anew. For that reason some typical soils of anthropogenic lithogenesis had to be examined between 1993 and 1996 both on their importance as habitats for plants and soil organisms and on their filtering, buffering and transforming capacities for organic and inorganic pollutants. Accordingly representative `urban soils` were gathered in the towns of Berlin, Eckernfoerde, Essen, Halle, Kiel, Rostock and Stuttgart; these soils had developed from technogenic substratums (brick and mortar debris, municipal waste, ashes, slag, sludge) and redeposited alkaline resp. acidic natural substratums (mud, coal mine and coking plant deposits). Some of the soils were influenced by ground water, and all soils developed from the same kind of parent material belonged to different stages of development. (orig./SR) [Deutsch] Ziele des vom BMBF gefoerderten und vom Arbeitskreis Stadtboeden der Deutschen Bodenkundlichen Gesellschaft beratenen Verbundprojektes `Bewertung anthropogener Stadtboeden` waren die Charakterisierung von Boeden anthropogener Substrate, die exemplarische Ermittlung des Verteilungsmusters derartiger Boeden und die Pruefung, inwieweit sie sich aehnlich den Boeden natuerlicher

  6. Contribution of anthropogenic pollutants to the increase of tropospheric ozone levels in the Oporto Metropolitan Area, Portugal since the 19th century

    International Nuclear Information System (INIS)

    Alvim-Ferraz, M.C.M.; Sousa, S.I.V.; Pereira, M.C.; Martins, F.G.

    2006-01-01

    The main purpose of this study was to evaluate the contribution of anthropogenic pollutants to the increase of tropospheric ozone levels in the Oporto Metropolitan Area (Portugal) since the 19th century. The study was based on pre-industrial and recent data series, the results being analyzed according to the atmospheric chemistry. The treatment of ozone and meteorological data was performed by classical statistics and by time-series analysis. It was concluded that in the 19th century the ozone present in the troposphere was not of photochemical origin, being possible to consider the respective concentrations as reference values. For recent data a cycle of 8 h for ozone concentrations could be related to traffic. Compared to the 19th century, the current concentrations were 147% higher (252% higher in May) due to the increased photochemical production associated with the increased anthropogenic emissions. - Compared to the 19th century, the current ozone concentrations are 147% higher at Oporto, Portugal

  7. Atmospheric pollution

    International Nuclear Information System (INIS)

    Lambrozo, J.; Guillossou, G.

    2008-01-01

    The atmosphere is the reservoir of numerous pollutants (nitrogen oxides, sulfur oxides, carbon oxides, particulates, volatile organic compounds, polycyclic aromatic hydrocarbons) from natural origin or anthropogenic origin ( industry, transport, agriculture, district heating). With epidemiologic studies the atmospheric pollution is associated with an increase of respiratory and cardiovascular diseases. At the european level, the technological progress, the legislation have allowed a reduction of pollutant emissions, however these efforts have to be continued because the sanitary impact of atmospheric pollution must not be underestimated, even if the risks appear less important that these ones in relation with tobacco, inside pollution or others factors of cardiovascular risks. Indeed, on these last factors an individual action is possible for the exposure to air pollution people have no control. (N.C.)

  8. Interactions of climate, socio-economics, and global mercury pollution in the North Water

    DEFF Research Database (Denmark)

    Dietz, Rune; Mosbech, Anders; Flora, Janne

    2018-01-01

    Despite the remoteness of the North Water, Northwest Greenland, the local Inughuit population is affected by global anthropogenic pollution and climate change. Using a cross-disciplinary approach combining Mercury (Hg) analysis, catch information, and historical and anthropological perspectives......, this article elucidates how the traditional diet is compromised by Hg pollution originating from lower latitudes. In a new approach we here show how the Inughuits in Avanersuaq are subject to high Hg exposure from the hunted traditional food, consisting of mainly marine seabirds and mammals. Violation...

  9. Atmospheric metal pollution records in the Kovářská Bog (Czech Republic) as an indicator of anthropogenic activities over the last three millennia.

    Science.gov (United States)

    Bohdálková, Leona; Bohdálek, Petr; Břízová, Eva; Pacherová, Petra; Kuběna, Aleš Antonín

    2018-08-15

    Three peat cores were extracted from the Kovářská Bog in the central Ore Mountains to study anthropogenic pollution generated by mining and metallurgy. The core profiles were 14 C dated, and concentrations of selected elements were determined by ICP MS and HG-AAS. Principal component analysis indicated that Pb, Cu, As and Ag may be useful elements for the reconstruction of historical atmospheric pollution. Total and anthropogenic accumulation rates (ARs) of Pb, Cu and As estimated for the last ca. 3500years showed similar chronologies, and revealed twelve periods of elevated ARs of Pb, As and Cu related to possible mining and metallurgic activities. In total, four periods of elevated ARs of Pb, Cu and As were detected during the Middle and Late Bronze Ages, including a distinct Late Bronze Age pollution event between 1030BCE and 910BCE. The Iron Age included three episodes of increased ARs of Pb and As; the first and the most distinctive episode, recorded between 730 and 440BCE, was simultaneous with the Bylany culture during the Hallstatt Period. The Roman Age was characterized by one pollution event, two events were detected in the Middle Ages, and the last two during the modern period. Enhanced element ARs in the late 12th and 15th centuries clearly documented the onset of two periods of intense mining in the Ore Mountains. Metal ARs culminated in ca. 1600CE, and subsequently decreased after the beginning of the Thirty Years' War. The last boom of mining between 1700CE and 1830CE represented the last period of important metallurgical operations. Late Medieval and modern period metal ARs are in good agreement with written documents. Earlier pollution peaks suggest that local metal production could have a much longer tradition than commonly believed; however, archaeological or written evidence is scarce or lacking. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Delivery of anthropogenic bioavailable iron from mineral dust and combustion aerosols to the ocean

    OpenAIRE

    伊藤, 彰記; 時, 宗波; ITO, Akinori; SHI, Zongbo

    2016-01-01

    Atmospheric deposition of anthropogenic soluble iron (Fe) to the ocean has been suggested to modulate primary ocean productivity and thus indirectly affect the climate. A key process contributing to anthropogenic sources of soluble Fe is associated with air pollution, which acidifies Fe-containing mineral aerosols during their transport and leads to Fe transformation from insoluble to soluble forms. However, there is large uncertainty in our estimate of this anthropogenic soluble Fe. In this ...

  11. Anthropogenic atmospheric precipitation and quality of environment in Ivano-Frankivsk oblast

    OpenAIRE

    Ганжа, Дмитро Дмитрович; Ганжа, Дмитро Дмитрович

    2016-01-01

    It is studied anthropogenic atmospheric precipitation by the content of soluble salts, macroelements and dust in snow water. Total air pollution index was calculated by the measured parameters of precipitation. It was established statistical connections between total pollution index, on the one hand, and the population growth, mortality from tumors and vascular lesions at diseases of the circulatory system, on the other hand

  12. Towards a multidisciplinary and integrated strategy in the assessment of adverse health effects related to air pollution: The case study of Cracow (Poland) and asthma

    International Nuclear Information System (INIS)

    Oudinet, Jean-Paul; Meline, Julie; Chelmicki, Wojciech; Sanak, Marek; Magdalena, Dutsch-Wicherek; Besancenot, Jean-Pierre; Wicherek, Stanislas; Julien-Laferriere, Bertrand; Gilg, Jean-Paul; Geroyannis, Helene; Szczeklik, Andrew; Krzemien, Kazimierz

    2006-01-01

    Complex interaction between anthropogenic activities, air quality and human health in urban areas, such as in Cracow sustains the need for the development of an interdisciplinary and integrated risk-assessment methodology. In such purpose, we propose a pilot study performed on asthmatics and based on a combined use of a biomarker, such as metallothionein 2A (MT-2A) in the characterization of human exposure to one or a mixture of pollutants and of Geographical Information Systems (G.I.S.) which integrates climatic and urban anthropogenic parameters in the assessment of spatio-temporal dispersion of air pollutants. Considering global incidence of air pollution on asthma and on peripheral blood lymphocytes MT-2A expression should provide a complementary information on biological risks linked to urban anthropogenic activities. Such study would help for the establishment of a sustainable development in urban areas that can maintain the integrity of air quality and preserve human health. - An integrative risk methodology based on both geographic and molecular biological approaches is proposed for the assessment of asthmatics exposure to urban air pollution

  13. Climatic impacts of anthropogenic aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Iversen, T. [Oslo Univ. (Norway)

    1996-03-01

    This paper was read at the workshop ``The Norwegian Climate and Ozone Research Programme`` held on 11-12 March 1996. Anthropogenic production of aerosols is mainly connected with combustion of fossil fuel. Measured by particulate mass, the anthropogenic sulphate production is the dominating source of aerosols in the Northern Hemisphere. Particles emitted in mechanical processes, fly ash etc. are less important because of their shorter atmospheric residence time. Possible climatological effects of anthropogenic aerosols are usually classified in two groups: direct and indirect. Direct effects are alterations of the radiative heating budget due to the aerosol particles in clear air. Indirect effects involve the interaction between particles and cloud processes. A simplified one-layer radiation model gave cooling in the most polluted mid-latitude areas and heating due to soot absorption in the Arctic. This differential trend in heating rates may have significant effects on atmospheric meridional circulations, which is important for the atmosphere as a thermodynamic system. Recently the description of sulphur chemistry in the hemispheric scale dispersion model has been improved and will be used in a model for Mie scattering and absorption

  14. Determination of nitrate pollution sources in the Marano Lagoon (Italy) by using a combined approach of hydrochemical and isotopic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Saccon, Pierpaolo; Leis, Albrecht [JOANNEUM RESEARCH Forschungsgesellschaft mbH, Institute for Water, Energy and Sustainability, 8010 Graz (Austria); Marca, Alina; Kaiser, Jan; Campisi, Laura [School of Environmental Sciences, University of East Anglia, NR4 7TJ Norwich (United Kingdom); Boettcher, Michael E.; Escher, Peter [Leibniz Institute for Baltic Sea Research (IOW), Geochemistry and Isotope Geochemistry Group, D-18119 Rostock (Germany); Savarino, Joel; Erbland, Joseph [UJF-Grenoble 1/CNRS-INSU, Laboratoire de Glaciologie et Geophysique de l' Environnement (LGGE) UMR 5183 (France); Eisenhauer, Anton [GEOMAR, Helmholtz Zentrum fuer Ozean Forschung Kiel, Wischhofstr. 1-3, 24148 Kiel (Germany)

    2013-07-01

    Due to increased pollution by nitrate from intensive agricultural and other anthropogenic activities the Marano lagoon (northeast Italy) and part of its catchment area have been investigated, applying a combined approach of hydrochemical and isotopic techniques. Thus, to identify and characterize the potential multiple-sources of nitrate pollution the isotopic compositions of nitrate (δ{sup 15}N, δ{sup 18}O, and Δ{sup 17}O), boron (δ{sup 11}B), water (δ{sup 2}H and δ{sup 18}O), and sulphate (δ{sup 34}S and δ{sup 18}O), as well as the chemical composition of different water types have been determined. In the monitoring program water samples from the lagoon, its tributary rivers, the groundwater upwelling line, groundwater, sewage, and open sea on a quarterly interval from 2009 to 2010 have been collected and analyzed. Coupling isotopic and hydrochemical results indicate that the nitrate load in the lagoon was not only derived from agriculture activities but also from other sources such as urban wastewaters, in situ nitrification, and atmospheric deposition. However, none of the samples showed the isotopic characteristics of synthetic fertilizers. (authors)

  15. Tracing diffuse anthropogenic Pb sources in rural soils by means of Pb isotope analysis

    NARCIS (Netherlands)

    Walraven, N.; Gaans, P.F.M. van; Veer, G. van der; Os, B.J.H. van; Klaver, G.T.; Vriend, S.P.; Middelburg, J.J.; Davies, G.R.

    2013-01-01

    Knowledge of the cause and source of Pb pollution is important to abate environmental Pb pollution by taking source-related actions. Lead isotope analysis is a potentially powerful tool to identify anthropogenic Pb and its sources in the environment. Spatial information on the variation of

  16. Anthropogenic Emissions Change the Amount and Composition of Organic PM1 in Amazonia

    Science.gov (United States)

    de Sá, S. S.; Palm, B. B.; Campuzano Jost, P.; Day, D. A.; Hu, W.; Isaacman-VanWertz, G. A.; Yee, L.; Wernis, R. A.; Thalman, R.; Brito, J.; Carbone, S.; Artaxo, P.; Goldstein, A. H.; Manzi, A. O.; Souza, R. A. F. D.; Wang, J.; Alexander, M. L. L.; Jimenez, J. L.; Martin, S. T.

    2017-12-01

    The Amazon forest, while one of the few regions on the globe where pristine conditions may still prevail, has experienced rapid changes due to increasing urbanization in the past decades. Manaus, a Brazilian city of 2-million people in the central Amazon basin, releases a pollution plume over the forest, potentially affecting the production pathways of particulate matter (PM) in the region. As part of GoAmazon2014/5, a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and a suite of other gas and particle-phase instruments were deployed at the T3 research site, 70 km downwind of Manaus, during the wet and dry seasons. Through a combination of meteorology, emissions, and chemistry, the T3 site was affected by a mixture of biogenic emissions from the tropical rainforest, urban outflow from the Manaus metropolitan area and biomass burning plumes. Results from the T3 site are presented in the context of measurements at T0a/T0t and T2, sites representing predominantly clean and polluted conditions, respectively. The organic component consistently represented on average 70-80% of the PM1 mass concentration across sites and seasons, and constitutes the focus of this work. Positive matrix factorization (PMF) analysis was applied to the time series of organic mass spectra. The resulting factors, which included the so-called IEPOX-SOA, MO-OOA, LO-OOA, BBOA, Fac91 and HOA, provide information on the relative contributions of different sources and pathways to organic PM production. In addition, Fuzzy c-means clustering was applied to the time series of pollution indicators, including concentrations of NOy, total particle number, ozone and sulfate, in order to better understand the convoluted influences of different processes and airmass origin to each point in time. Through combination of the PMF and Fuzzy c-means analyses, insights are drawn about the relative composition of organic PM1 at varying degrees of influence of biogenic and anthropogenic

  17. Environmental and anthropogenic factors affecting the respiratory toxicity of volcanic ash in vitro

    Science.gov (United States)

    Tomašek, Ines; Horwell, Claire J.; Damby, David E.; Ayris, Paul M.; Barošová, Hana; Geers, Christoph; Petri-Fink, Alke; Rothen-Rutishauser, Barbara; Clift, Martin J. D.

    2016-04-01

    Human exposure to inhalable volcanic ash particles following an eruption is a health concern, as respirable-sized particles can potentially contribute towards adverse respiratory health effects, such as the onset or exacerbation of respiratory and cardiovascular diseases. Although there is substantial information on the mineralogical properties of volcanic ash that may influence its biological reactivity, knowledge as to how external factors, such as air pollution, contribute to and augment the potential reactivity is limited. To determine the respiratory effects of volcanic particle interactions with anthropogenic pollution and volcanic gases we will experimentally assess: (i) physicochemical characteristics of volcanic ash relevant to respiratory toxicity; (ii) the effects of simultaneously inhaling anthropogenic pollution (i.e. diesel exhaust particles (DEP)) and volcanic ash (of different origins); (iii) alteration of volcanic ash toxicity following interaction with volcanic gases. In order to gain a first understanding of the biological impact of the respirable fraction of volcanic ash when inhaled with DEP in vitro, we used a sophisticated 3D triple cell co-culture model of the human alveolar epithelial tissue barrier. The multi-cellular system was exposed to DEP [0.02 mg/mL] and then exposed to either a single or repeated dose of well-characterised respirable volcanic ash (0.26 ± 0.09 or 0.89 ± 0.29 μg/cm2, respectively) from the Soufrière Hills volcano, Montserrat for a period of 24 hours using a pseudo-air liquid interface approach. Cultures were subsequently assessed for adverse biological endpoints including cytotoxicity, oxidative stress and (pro)-inflammatory responses. Results indicated that the combination of DEP and respirable volcanic ash at sub-lethal concentrations incited a significant release of pro-inflammatory markers that was greater than the response for either DEP or volcanic ash, independently. Further work is planned, to determine if

  18. Assessment of global industrial-age anthropogenic arsenic contamination.

    Science.gov (United States)

    Han, Fengxiang X; Su, Yi; Monts, David L; Plodinec, M John; Banin, Amos; Triplett, Glover E

    2003-09-01

    Arsenic, a carcinogenic trace element, threatens not only the health of millions of humans and other living organisms, but also global sustainability. We present here, for the first time, the global industrial-age cumulative anthropogenic arsenic production and its potential accumulation and risks in the environment. In 2000, the world cumulative industrial-age anthropogenic arsenic production was 4.53 million tonnes. The world-wide coal and petroleum industries accounted for 46% of global annual gross arsenic production, and their overall contribution to industrial-age gross arsenic production was 27% in 2000. Global industrial-age anthropogenic As sources (as As cumulative production) follow the order: As mining production>As generated from coal>As generated from petroleum. The potential industrial-age anthropogenic arsenic input in world arable surface in 2000 was 2.18 mg arsenic kg(-1), which is 1.2 times that in the lithosphere. The development of substitute materials for arsenic applications in the agricultural and forestry industries and controls of arsenic emissions from the coal industry may be possible strategies to significantly decrease arsenic pollution sources and dissipation rates into the environment.

  19. 87Sr/86Sr and 143Nd/144Nd for disentangling anthropogenic and natural REE contributions in river water during flood events.

    Science.gov (United States)

    Hissler, Christophe; Stille, Peter; Pfister, Laurent

    2017-04-01

    The sustainable management of water resources is one of the greatest challenges of the 21st century. Water is a vital resource that is increasingly put under pressure from multiple perspectives. While the global population is on the rise, socio-economic development makes equally rapid progress - eventually compromising access to clean water bodies. Multiple pollution sources constitute an immediate threat to aquatic ecosystems and are likely to cause long lasting contaminations of water bodies that are critical for drinking and/or irrigation water production. There is a pressing need for an adequate quantification of anthropogenic impacts on the critical zone of river basins and the identification of the temporal dynamics of these impacts. As an example, despite the work done to assess the environmental impact of REE pollutions in larger river systems, we are still lacking information on the dynamics of these anthropogenic compounds in relation to rapid hydrological changes. Filling these knowledge gaps is a pre-requisite for the design and implementation of sustainable water resources management strategies. In order to better constrain the relative contributions of both anthropogenic and geogenic trace element sources we propose using a multitracer approach combining elemental and 87Sr/86Sr, 143Nd/144Nd, and 206Pb/207Pb isotopic ratios. The use of these three separate isotopic systems together with REE concentrations is new in the field of anthropogenic source identification in river systems. We observed enrichments in Anthropogenic Rare Earth Elements (AREE) for dissolved Gd and suspended Nd loads of river water. With increasing discharge, AREE anomalies progressively disappeared and gave way to the geogenic chemical signature of the basin in both dissolved and suspended loads. The isotopic data confirm these observations and shed new light on the trace elements sources. On the one hand, dissolved loads have peculiar isotopic characteristics and carry mainly

  20. An in-vitro approach for water quality determination: activation of NF-κB as marker for cancer-related stress responses induced by anthropogenic pollutants of drinking water.

    Science.gov (United States)

    Spitta, Luis F; Diegeler, Sebastian; Baumstark-Khan, Christa; Hellweg, Christine E

    2018-02-01

    Epidemiological studies show that there is a link between urban water pollution and increase in human morbidity and mortality. With the increase in number of new substances arising from the chemical, pharmaceutical, and agricultural industries, there is an urgent need to develop biological test systems for fast evaluation of potential risks to humans and the environmental ecosystems. Here, a combined cellular reporter assay based on the cellular survival and the stress-induced activation of the survival-promoting factor nuclear factor κB (NF-κB) and its use for the detection of cytotoxicity and cancer-related stress responses is presented. A total of 14 chemicals that may be found in trace-amounts in ground water levels are applied and tested with the presented assay. The project is embedded within the joint research project TOX-BOX which aims to develop a harmonized testing strategy for risk management of anthropogenic trace substances in potable water. The assay identified carbendazim as a NF-κB-activating agent in mammalian cells.

  1. Brazil-USA Collaborative Research: Modifications by Anthropogenic Pollution of the Natural Atmospheric Chemistry and Particle Microphysics of the Tropical Rain Forest During the GoAmazon Intensive Operating Periods (IOPs)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Saewung [Univ. of California, Irvine, CA (United States)

    2017-08-01

    Manaus, a city of nearly two million people, represents an isolated urban area having a distinct urban pollution plume within the otherwise pristine Amazon Basin. The plume has high concentrations of oxides of nitrogen and sulfur, carbon monoxide, particle concentrations, and soot, among other pollutants. Critically, the distinct plume in the setting of the surrounding tropical rain forest serves as a natural laboratory to allow direct comparisons between periods of pollution influence to those of pristine conditions. The funded activity of this report is related to the Brazil-USA collaborative project during the two Intensive Operating Periods (wet season, 1 Feb - 31 Mar 2014; dry season, 15 Aug - 15 Oct 2014) of GoAmazon2014/5. The project addresses key science questions regarding the modification of the natural atmospheric chemistry and particle microphysics of the forest by present and future anthropogenic pollution.

  2. Organic and Inorganic Pollutant Concentrations Suggest Anthropogenic Contamination of Soils Along the Manali-Leh Highway, Northwestern Himalaya, India.

    Science.gov (United States)

    Dasgupta, Rajarshi; Crowley, Brooke E; Barry Maynard, J

    2017-05-01

    Most studies on roadside soil pollution have been performed in areas where petrol is the main fuel. Very little work has been conducted in regions where diesel predominates. We collected soil samples from four sites that span a precipitation gradient along the Manali-Leh Highway in northwestern Himalaya, India. This road traverses rough terrain and most of the vehicles that travel along it are diesel-driven. At each site, we collected samples at incremental distances from the highway (0, 2, 5, 10, 20, and 150 m), and at each distance we collected samples from three depths (3, 9, and 15 cm). We assessed the concentrations of 10 heavy metals (Al, Fe, Cr, Cu, Pb, Ni, Co, Zn, V, and Ba), total sulphur, and total organic carbon (TOC) at each distance, and we measured the concentration of 16 polycyclic aromatic hydrocarbons (PAHs) at 2 m from the highway. Overall, we found that metal concentrations are low and there is no relationship between concentrations and distance from the highway, or depth within the soil profile. Sulphur concentrations, on the other hand, are high in roadside soils and there is a negative relationship between concentration and distance from the highway. PAH concentrations are low, but the proportion of different ringed species suggests that their source is anthropogenic. Correlations between TOC and the various pollutants further suggest that diesel vehicles and potentially biomass combustion are starting to affect the roadside environment in remote northwestern India. We suggest that pollutant concentrations be regularly monitored.

  3. Environmental pollution. Uni-Taschenbuecher

    Energy Technology Data Exchange (ETDEWEB)

    Odzuck, W

    1982-01-01

    The volume of the anthropogenic pollution of the environment (incl. radioactivity) is of great economical importance and has also a meaning to the health and happiness of people. The pocket book introduces into the whole problem by giving exact information and data. After a general survey, the pollutions of urban-industrial, and aquatic ecosystems are dealt with. The book closes with indications as to general principles, specific dangers, and the future development of the environmental pollution.

  4. Response of bacterial community structure to seasonal fluctuation and anthropogenic pollution on coastal water of Alang-Sosiya ship breaking yard, Bhavnagar, India.

    Science.gov (United States)

    Patel, Vilas; Munot, Hitendra; Shouche, Yogesh S; Madamwar, Datta

    2014-06-01

    Bacterial community structure was analyzed from coastal water of Alang-Sosiya ship breaking yard (ASSBY), world's largest ship breaking yard, near Bhavnagar, using 16S rRNA gene sequencing (cultured dependent and culture independent). In clone libraries, total 2324 clones were retrieved from seven samples (coastal water of ASSBY for three seasons along with one pristine coastal water) which were grouped in 525 operational taxonomic units. Proteobacteria was found to be dominant in all samples. In pristine samples, Gammaproteobacteria was found to be dominant, whereas in polluted samples dominancy of Gammaproteobacteria has shifted to Betaproteobacteria and Epsilonproteobacteria. Richness and diversity indices also indicated that bacterial community in pristine sample was the most diverse followed by summer, monsoon and winter samples. To the best of knowledge, this is the first study describing bacterial community structure from coastal water of ASSBY, and it suggests that seasonal fluctuation and anthropogenic pollutions alters the bacterial community structure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Chinese mineral dust and anthropogenic aerosol inter-continental transport: a Greenland perspective

    Science.gov (United States)

    Bory, A.; Abouchami, W.; Galer, S.; Svensson, A.; Biscaye, P.

    2012-04-01

    Impurities contained in snow and ice layers in Greenland provide a record of the history of atmospheric dustiness and pollution in the Northern Hemisphere. The source of the particles deposited onto the ice cap may be investigated using specific intrinsic tracers. Provenance discrimination may then provide valuable constraints for the validation of atmospheric transport models as well as for the monitoring of natural and anthropogenic aerosols emissions at a global scale. Clay mineralogy combined with the strontium and neodymium isotope composition of the insoluble particles extracted from recent snow deposits at NorthGRIP (75.1°N, 042.3°W), for instance, enabled us to demonstrate that the Taklimakan desert of North-western China was the main source of mineral dust reaching central Greenland at present [Bory et al., EPSL, 2002 ; GRL, 2003a]. Here we report the lead isotopic signature of these snow-pit samples, covering the 1989-1995 and 1998-2001 time periods. Unradiogenic lead isotopic composition of our Greenland samples, compared to Asian dust isotopic fingerprints, implies that most of the insoluble lead reaching the ice cap is of anthropogenic origin. Lead isotopes reveal likely contributions from European/Canadian and, to a lesser extent, US sources, as well as a marked overprinted signature typical of Chinese anthropogenic lead sources. The relative contribution of the latter appears to have been increasing steadily over the last decade of the 20th century. Quantitative estimates suggest that, in addition to providing most of the dust, China may have already become the most important supplier of anthropogenic lead deposited in Greenland by the turn of the 20th to the 21st century. The close timing between dust and anthropogenic particles deposition onto the ice cap provides new insights for our understanding of Chinese aerosols transport to Greenland.

  6. Responses of Surface Ozone Air Quality to Anthropogenic Nitrogen Deposition

    Science.gov (United States)

    Zhang, L.; Zhao, Y.; Tai, A. P. K.; Chen, Y.; Pan, Y.

    2017-12-01

    Human activities have substantially increased atmospheric deposition of reactive nitrogen to the Earth's surface, inducing unintentional effects on ecosystems with complex environmental and climate consequences. One consequence remaining unexplored is how surface air quality might respond to the enhanced nitrogen deposition through surface-atmosphere exchange. We combine a chemical transport model (GEOS-Chem) and a global land model (Community Land Model) to address this issue with a focus on ozone pollution in the Northern Hemisphere. We consider three processes that are important for surface ozone and can be perturbed by addition of atmospheric deposited nitrogen: emissions of biogenic volatile organic compounds (VOCs), ozone dry deposition, and soil nitrogen oxide (NOx) emissions. We find that present-day anthropogenic nitrogen deposition (65 Tg N a-1 to the land), through enhancing plant growth (represented as increases in vegetation leaf area index (LAI) in the model), could increase surface ozone from increased biogenic VOC emissions, but could also decrease ozone due to higher ozone dry deposition velocities. Meanwhile, deposited anthropogenic nitrogen to soil enhances soil NOx emissions. The overall effect on summer mean surface ozone concentrations show general increases over the globe (up to 1.5-2.3 ppbv over the western US and South Asia), except for some regions with high anthropogenic NOx emissions (0.5-1.0 ppbv decreases over the eastern US, Western Europe, and North China). We compare the surface ozone changes with those driven by the past 20-year climate and historical land use changes. We find that the impacts from anthropogenic nitrogen deposition can be comparable to the climate and land use driven surface ozone changes at regional scales, and partly offset the surface ozone reductions due to land use changes reported in previous studies. Our study emphasizes the complexity of biosphere-atmosphere interactions, which can have important

  7. Differentiating the Spatiotemporal Distribution of Natural and Anthropogenic Processes on River Water-Quality Variation Using a Self-Organizing Map With Factor Analysis.

    Science.gov (United States)

    Wang, Yeuh-Bin; Liu, Chen-Wuing; Lee, Jin-Jing

    2015-08-01

    To elucidate the historical improvement and advanced measure of river water quality in the Taipei metropolitan area, this study applied the self-organizing map (SOM) technique with factor analysis (FA) to differentiate the spatiotemporal distribution of natural and anthropogenic processes on river water-quality variation spanning two decades. The SOM clustered river water quality into five groups: very low pollution, low pollution, moderate pollution, high pollution, and very high pollution. FA was then used to extract four latent factors that dominated water quality from 1991 to 2011 including three anthropogenic process factors (organic, industrial, and copper pollution) and one natural process factor [suspended solids (SS) pollution]. The SOM revealed that the water quality improved substantially over time. However, the downstream river water quality was still classified as high pollution because of an increase in anthropogenic activity. FA showed the spatiotemporal pattern of each factor score decreasing over time, but the organic pollution factor downstream of the Tamsui River, as well as the SS factor scores in the upstream major tributary (the Dahan Stream), remained within the high pollution level. Therefore, we suggest that public sewage-treatment plants should be upgraded from their current secondary biological processing to advanced treatment processing. The conservation of water and soil must also be reinforced to decrease the SS loading of the Dahan Stream from natural erosion processes in the future.

  8. A method for apportionment of natural and anthropogenic contributions to heavy metal loadings in the surface soils across large-scale regions.

    Science.gov (United States)

    Hu, Yuanan; Cheng, Hefa

    2016-07-01

    Quantification of the contributions from anthropogenic sources to soil heavy metal loadings on regional scales is challenging because of the heterogeneity of soil parent materials and high variability of anthropogenic inputs, especially for the species that are primarily of lithogenic origin. To this end, we developed a novel method for apportioning the contributions of natural and anthropogenic sources by combining sequential extraction and stochastic modeling, and applied it to investigate the heavy metal pollution in the surface soils of the Pearl River Delta (PRD) in southern China. On the average, 45-86% of Zn, Cu, Pb, and Cd were present in the acid soluble, reducible, and oxidizable fractions of the surface soils, while only 12-24% of Ni, Cr, and As were partitioned in these fractions. The anthropogenic contributions to the heavy metals in the non-residual fractions, even the ones dominated by natural sources, could be identified and quantified by conditional inference trees. Combination of sequential extraction, Kriging interpolation, and stochastic modeling reveals that approximately 10, 39, 6.2, 28, 7.1, 15, and 46% of the As, Cd, Cr, Cu, Ni, Pb, and Zn, respectively, in the surface soils of the PRD were contributed by anthropogenic sources. These results were in general agreements with those obtained through subtraction of regional soil metal background from total loadings, and the soil metal inputs through atmospheric deposition as well. In the non-residual fractions of the surface soils, the anthropogenic contributions to As, Cd, Cr, Cu, Ni, Pb, and Zn, were 48, 42, 50, 51, 49, 24, and 70%, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Interactive effects of global climate change and pollution on marine microbes: the way ahead.

    Science.gov (United States)

    Coelho, Francisco J R C; Santos, Ana L; Coimbra, Joana; Almeida, Adelaide; Cunha, Angela; Cleary, Daniel F R; Calado, Ricardo; Gomes, Newton C M

    2013-06-01

    Global climate change has the potential to seriously and adversely affect marine ecosystem functioning. Numerous experimental and modeling studies have demonstrated how predicted ocean acidification and increased ultraviolet radiation (UVR) can affect marine microbes. However, researchers have largely ignored interactions between ocean acidification, increased UVR and anthropogenic pollutants in marine environments. Such interactions can alter chemical speciation and the bioavailability of several organic and inorganic pollutants with potentially deleterious effects, such as modifying microbial-mediated detoxification processes. Microbes mediate major biogeochemical cycles, providing fundamental ecosystems services such as environmental detoxification and recovery. It is, therefore, important that we understand how predicted changes to oceanic pH, UVR, and temperature will affect microbial pollutant detoxification processes in marine ecosystems. The intrinsic characteristics of microbes, such as their short generation time, small size, and functional role in biogeochemical cycles combined with recent advances in molecular techniques (e.g., metagenomics and metatranscriptomics) make microbes excellent models to evaluate the consequences of various climate change scenarios on detoxification processes in marine ecosystems. In this review, we highlight the importance of microbial microcosm experiments, coupled with high-resolution molecular biology techniques, to provide a critical experimental framework to start understanding how climate change, anthropogenic pollution, and microbiological interactions may affect marine ecosystems in the future.

  10. Sources, Properties, Aging, and Anthropogenic Influences on OA and SOA over the Southeast US and the Amazon duing SOAS, DC3, SEAC4RS, and GoAmazon

    Science.gov (United States)

    The SE US and the Amazon have large sources of biogenic VOCs, varying anthropogenic pollution impacts, and often poor organic aerosol (OA) model performance. Recent results on the sources, properties, aging, and impact of anthropogenic pollution on OA and secondary OA (SOA) over ...

  11. Experience and problems with bees as bioindicators of airborne pollution

    International Nuclear Information System (INIS)

    Boertitz, S.; Wienhaus, O.; Reuter, F.

    1992-01-01

    The effects of anthropogenic air pollution on apiculture are far-reaching: From the loss of feeding plants to the accumulation of toxic materials in nectar and pollen (due to chronic or acute damage). A negative effect on the life functions of the bee is caused by arsenic and in particular fluorocompounds. The biological indicator function of the bee possible in this manner was and is combined with problems of trace amount analysis methods and the interpretation of the diagnosis. (orig.) [de

  12. Measuring combined exposure to environmental pressures in urban areas: an air quality and noise pollution assessment approach.

    Science.gov (United States)

    Vlachokostas, Ch; Achillas, Ch; Michailidou, A V; Moussiopoulos, Nu

    2012-02-01

    This study presents a methodological scheme developed to provide a combined air and noise pollution exposure assessment based on measurements from personal portable monitors. Provided that air and noise pollution are considered in a co-exposure approach, they represent a significant environmental hazard to public health. The methodology is demonstrated for the city of Thessaloniki, Greece. The results of an extensive field campaign are presented and the variations in personal exposure between modes of transport, routes, streets and transport microenvironments are evaluated. Air pollution and noise measurements were performed simultaneously along several commuting routes, during the morning and evening rush hours. Combined exposure to environmental pollutants is highlighted based on the Combined Exposure Factor (CEF) and Combined Dose and Exposure Factor (CDEF). The CDEF takes into account the potential relative uptake of each pollutant by considering the physical activities of each citizen. Rather than viewing environmental pollutants separately for planning and environmental sustainability considerations, the possibility of an easy-to-comprehend co-exposure approach based on these two indices is demonstrated. Furthermore, they provide for the first time a combined exposure assessment to these environmental pollutants for Thessaloniki and in this sense they could be of importance for local public authorities and decision makers. A considerable environmental burden for the citizens of Thessaloniki, especially for VOCs and noise pollution levels is observed. The material herein points out the importance of measuring public health stressors and the necessity of considering urban environmental pollution in a holistic way. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. CLASSIFICATION OF ANTHROPOGENIC TRANSFORMATIONS SOILS URBOECOSYSTEMS OF DNEPROPETROVSK

    Directory of Open Access Journals (Sweden)

    YAKOVYSHYNA T.F.

    2015-12-01

    Full Text Available Raising of problem. The functioning of the city, as artificially created system of the result of the anthropogenic activity, promotes degradation and, sometimes, destruction of the environment, with change it to the technogenic replacement. First of all suffers the soil, as a basic component of any ecosystem, where the circulation of materials close, because it is a powerful biogeochemical barrier to their migration, able to deposit toxicants a long time through its protective functions. The leading role of the formation of the urban soil plays an anthropogenic factor, which is able to influence directly – the destruction of the soil profile due to construction activity and indirectly – with aerogenic or hydrogenous pollution xenobiotics contained in the emissions and discharges of the industrial enterprises; and it is determined by the type of economic use and history of area developing. The variability of using the urban soil is reflected in the soil profile and contributed to the creation of the organic-mineral layer by the mixing, mound, burial and (or contamination of the different substances on the surface. Therefore, classification of the urban soils by the anthropogenic destruction degree of the soil profile is very important scientific and practical task for the urban ecology to the achievement standards of the ecological safety of the modern city, because the restoring of their protective functions is impossible without knowledge of the morphological structure. Purpose. Classify the anthropogenical soils of city Dnipropetrovsk disturbed by the construction activities by the determining of the morphological characteristics of the soil profile structure with separation of the anthropogenic and technogenic surface formations compared to the zonal soil – ordinery chernozem. Conclusion. Within urboecosystem city Dnipropetrovsk long-term human impact to the zonal soil – chernozem led to its transformation into urbanozem witch

  14. Heavy Metals Pollution on Surface Water Sources in Kaduna ...

    African Journals Online (AJOL)

    This study examine the effects of heavy metal pollutants to aquatic ecosystems and the environment by considering the role of urban, municipal, agricultural, industrial and other anthropogenic processes as sources of heavy metal pollution in surface water sources of Kaduna metropolis. Samples of the polluted water were ...

  15. Intercontinental Transport of Air Pollution

    Science.gov (United States)

    Rogers, David; Whung, Pai-Yei; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The development of the global economy goes beyond raising our standards of living. We are in an ear of increasing environmental as well as economic interdependence. Long-range transport of anthropogenic atmospheric pollutants such as ozone, ozone precursors, airborne particles, heavy metals (such as mercury) and persistent organic pollutants are the four major types of pollution that are transported over intercontinental distances and have global environmental effects. The talk includes: 1) an overview of the international agreements related to intercontinental transport of air pollutants, 2) information needed for decision making, 3) overview of the past research on intercontinental transport of air pollutants - a North American's perspective, and 4) future research needs.

  16. Isotopic identification of natural vs. anthropogenic lead sources in marine sediments from the inner Ria de Vigo (NW Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez-Iglesias, P., E-mail: palvarez@uvigo.es [Department of Marine Geosciences and Land Use Management, Faculty of Marine Sciences, University of Vigo (Spain); Laboratorio de Analisis Quimico Instrumental, C.A.C.T.I., Universidad de Vigo (Spain); Rubio, B., E-mail: brubio@uvigo.es [Department of Marine Geosciences and Land Use Management, Faculty of Marine Sciences, University of Vigo (Spain); Millos, J., E-mail: jmillos@uvigo.es [Laboratorio de Analisis Quimico Instrumental, C.A.C.T.I., Universidad de Vigo (Spain)

    2012-10-15

    San Simon Bay, the inner part of the Ria de Vigo (NW Spain), an area previously identified as highly polluted by Pb, was selected for the application of Pb stable isotope ratios as a fingerprinting tool in subtidal and intertidal sediment cores. Lead isotopic ratios were determined by inductively coupled plasma mass spectrometry on extracts from bulk samples after total acid digestion. Depth-wise profiles of {sup 206}Pb/{sup 207}Pb, {sup 206}Pb/{sup 204}Pb, {sup 207}Pb/{sup 204}Pb, {sup 208}Pb/{sup 204}Pb and {sup 208}Pb/{sup 207}Pb ratios showed, in general, an upward decrease for both intertidal and subtidal sediments as a consequence of the anthropogenic activities over the last century, or centuries. Waste channel samples from a nearby ceramic factory showed characteristic Pb stable isotope ratios different from those typical of coal and petrol. Natural isotope ratios from non-polluted samples were established for the study area, differentiating sediments from granitic or schist-gneiss sources. A binary mixing model employed on the polluted samples allowed estimating the anthropogenic inputs to the bay. These inputs represented between 25 and 98% of Pb inputs in intertidal samples, and 9-84% in subtidal samples, their contributions varying with time. Anthropogenic sources were apportioned according to a three-source model. Coal combustion-related emissions were the main anthropogenic source Pb to the bay (60-70%) before the establishment of the ceramic factory in the area (in the 1970s) which has since constituted the main source (95-100%), followed by petrol-related emissions. The Pb inputs history for the intertidal area was determined for the 20th century, and, for the subtidal area, the 19th and 20th centuries. -- Highlights: Black-Right-Pointing-Pointer Pb stable isotope ratios were applied to study Pb sources in coastal sediments. Black-Right-Pointing-Pointer Pb isotopic ratios were determined for pre-pollution and for industrial samples. Black

  17. Identification and elucidation of anthropogenic source contribution in PM10 pollutant: Insight gain from dispersion and receptor models.

    Science.gov (United States)

    Roy, Debananda; Singh, Gurdeep; Yadav, Pankaj

    2016-10-01

    Source apportionment study of PM 10 (Particulate Matter) in a critically polluted area of Jharia coalfield, India has been carried out using Dispersion model, Principle Component Analysis (PCA) and Chemical Mass Balance (CMB) techniques. Dispersion model Atmospheric Dispersion Model (AERMOD) was introduced to simplify the complexity of sources in Jharia coalfield. PCA and CMB analysis indicates that monitoring stations near the mining area were mainly affected by the emission from open coal mining and its associated activities such as coal transportation, loading and unloading of coal. Mine fire emission also contributed a considerable amount of particulate matters in monitoring stations. Locations in the city area were mostly affected by vehicular, Liquid Petroleum Gas (LPG) & Diesel Generator (DG) set emissions, residential, and commercial activities. The experimental data sampling and their analysis could aid understanding how dispersion based model technique along with receptor model based concept can be strategically used for quantitative analysis of Natural and Anthropogenic sources of PM 10 . Copyright © 2016. Published by Elsevier B.V.

  18. Using oysters as anthropogenic indicators to evaluate the occurrence of the wastewater contamination of the estuaries

    Science.gov (United States)

    Ding, Wang-Hsien

    2015-04-01

    The oyster (Crossostrea gigas) is an important aquacultural species in Taiwan. With an area of over 85% of the total inshore aquacultural field, its production, measured by quantity or economic value, ranks above all other aquacultural products in Taiwan. Since oyster's habitat is on shelves near the coast, the samples from a particular "oyster cultural site" can be applied to evaluate the pollution of a segment of the coastal water. Deficient wastewater treatment has caused untreated wastewaters to have flown in rivers into oyster cultural areas in estuaries as well as shallow coastal water. Therefore, the concentration of pollutants in the oysters can be used as anthropogenic indicators to evaluate the occurrence of the for wastewater contamination of the coastal water. In this study, two groups of anthropogenic organic compounds, chlorinated flame retardant (i.e., Dechlorane Plus) and benzophenone-type UV absorbing substances (i.e., 2-hydroxy-4-methoxybenzophenone), were determined in oyster samples as wastewater contamination pollutants. The method involves the use of matrix solid-phase dispersion prior to their determination by gas chromatography mass spectrometry. The results show that these two groups of compounds are ubiquitous in oysters with the concentrations of chlorinated flame retardant and benzophenone-type UV absorbing substances ranging from 0.3 to 3.6 ng/g and from 120 to 910 ng/g (lipid weight), respectively. Oysters are useful anthropogenic indicators of organic pollutants in Taiwan's marine environment. The ubiquity of these pollutants in Taiwan's coastal environment supports the need for greater awareness of bioaccumulation processes.

  19. Effect of recent climate change on Arctic Pb pollution: A comparative study of historical records in lake and peat sediments

    International Nuclear Information System (INIS)

    Liu Xiaodong; Jiang Shan; Zhang Pengfei; Xu Liqiang

    2012-01-01

    Historical changes of anthropogenic Pb pollution were reconstructed based on Pb concentrations and isotope ratios in lake and peat sediment profiles from Ny-Ålesund of Arctic. The calculated excess Pb isotope ratios showed that Pb pollution largely came from west Europe and Russia. The peat profile clearly reflected the historical changes of atmospheric deposition of anthropogenic Pb into Ny-Ålesund, and the result showed that anthropogenic Pb peaked at 1960s–1970s, and thereafter a significant recovery was observed by a rapid increase of 206 Pb/ 207 Pb ratios and a remarkable decrease in anthropogenic Pb contents. In contrast to the peat record, the longer lake record showed relatively high anthropogenic Pb contents and a persistent decrease of 206 Pb/ 207 Pb ratios within the uppermost samples, suggesting that climate-sensitive processes such as catchment erosion and meltwater runoff might have influenced the recent change of Pb pollution record in the High Arctic lake sediments. - Highlights: ► Historical changes of anthropogenic Pb pollution in Ny-Ålesund were reconstructed. ► Anthropogenic Pb in Ny-Ålesund was largely originated from W. European and Russia. ► Anthropogenic Pb recorded in peat sediments peaked at 1960–1970s and then declined. ► High anthropogenic fluxes were found in recent change of Pb record from lake sediments. ► Climate-sensitive processes might have influenced recent Pb accumulation rate in lakes. - This manuscript reports the effects of climate-sensitive processes on historical records of Pb pollution in sediments of Arctic lakes.

  20. Significant atmospheric aerosol pollution caused by world food cultivation

    Science.gov (United States)

    Bauer, Susanne E.; Tsigaridis, Kostas; Miller, Ron

    2017-04-01

    Particulate matter is a major concern for public health, causing cancer and cardiopulmonary mortality. Therefore, governments in most industrialized countries monitor and set limits for particulate matter. To assist policy makers, it is important to connect the chemical composition and severity of particulate pollution to it s sources. Here we show how agricultural practices, livestock production, and the use of nitrogen fertilizers impact near-surface air quality. In many densely populated areas, aerosols formed from gases that are released by fertilizer application and animal husbandry dominate over the combined contributions from all other anthropogenic pollution. Here we test reduction scenarios of combustion-based and agricultural emissions that could lower air pollution. For a future scenario, we find opposite trends, decreasing nitrate aerosol formation near the surface while total tropospheric loads increase. This suggests that food production could be increased to match the growing global population without sacrificing air quality if combustion emission is decreased.

  1. Significant Atmospheric Aerosol Pollution Caused by World Food Cultivation

    Science.gov (United States)

    Bauer, Susanne E.; Tsigaridis, Kostas; Miller, Ron

    2016-01-01

    Particulate matter is a major concern for public health, causing cancer and cardiopulmonary mortality. Therefore, governments in most industrialized countries monitor and set limits for particulate matter. To assist policy makers, it is important to connect the chemical composition and severity of particulate pollution to its sources. Here we show how agricultural practices, livestock production, and the use of nitrogen fertilizers impact near-surface air quality. In many densely populated areas, aerosols formed from gases that are released by fertilizer application and animal husbandry dominate over the combined contributions from all other anthropogenic pollution. Here we test reduction scenarios of combustion-based and agricultural emissions that could lower air pollution. For a future scenario, we find opposite trends, decreasing nitrate aerosol formation near the surface while total tropospheric loads increase. This suggests that food production could be increased to match the growing global population without sacrificing air quality if combustion emission is decreased.

  2. Distinguishing Natural and Anthropogenic Sources of Chemical Loading on a Watershed-Scale, Mill River Watershed, Massachusetts

    Science.gov (United States)

    Rhodes, A. L.; Newton, R. M.; Pufall, A.

    2001-05-01

    The Mill River Watershed (MRW), a 125 km2 catchment of the Connecticut River, possesses heterogeneous topography, geology, and human settlement patterns suitable for distinguishing natural sources of chemical loading to rivers from anthropogenic sources. The MRW is divided into catchments by drainage patterns of dominant tributaries. Catchments are further classified into land-use zones, defined by intensity of human activity. Water chemistry in Zone I areas, where human activity is minimal to absent, serves as a baseline for assessing human impacts on water quality from within the watershed. Zone II areas are primarily affected by water removal from drinking water reservoirs on two tributaries ( ~9500 m3 per day, combined). Zone III regions receive runoff from agricultural, residential, and transportation areas. Since 1997, water samples collected from 13 sites in MRW have been analyzed for specific conductance, temperature, pH, ANC, base cations (Ca, Mg, Na, K, NH4), anions (Cl, SO4, NO3, PO4), and dissolved silica. GIS software was used to calculate percent area of different land uses that drain to each sample site. For the majority of sample sites in MRW, average concentrations of both NO3 and SO4 show a positive, linear relationship with percent area of anthropogenic land (R2> 0.91). Concentrations of Cl increase linearly with road density (R2= 0.95). However, two Zone III sites receiving additional point-source pollution show higher NO3 and SO4 concentrations than predicted by land use; concentrations reflect 20 and 50% more anthropogenic area than actually exists. Removal of drinking water from the larger reservoir also produces 20 and 30% more NO3 and SO4 than predicted by land use, showing that water removal concentrates pollution. Low-gradient, Zone III sites that receive highway runoff show elevated salt concentrations that persist throughout the year. Salt-impacted regions show a strong correlation between Na and Cl (R2 = 0.86 to 0.95). Cl typically

  3. Air pollution and risk of hospitalization for epilepsy: the role of farm use of nitrogen fertilizers and emissions of the agricultural air pollutant, nitrous oxide

    Directory of Open Access Journals (Sweden)

    Keith Fluegge

    Full Text Available ABSTRACT The link between various air pollutants and hospitalization for epilepsy has come under scrutiny. We have proposed that exposure to air pollution and specifically the pervasive agricultural air pollutant and greenhouse gas, nitrous oxide (N2O, may provoke susceptibility to neurodevelopmental disorders. Evidence supports a role of N2O exposure in reducing epileptiform seizure activity, while withdrawal from the drug has been shown to induce seizure-like activity. Therefore, we show here that the statewide use of anthropogenic nitrogen fertilizers (the most recognized causal contributor to environmental N2O burden is significantly negatively associated with hospitalization for epilepsy in all three pre-specified hospitalization categories, even after multiple pollutant comparison correction (p<.007, while the other identified pollutants were not consistently statistically significantly associated with hospitalization for epilepsy. We discuss potential neurological mechanisms underpinning this association between air pollutants associated with farm use of anthropogenic nitrogen fertilizers and hospitalization for epilepsy.

  4. Assessing the impact of anthropogenic pollution on isoprene-derived secondary organic aerosol formation in PM2.5 collected from the Birmingham, Alabama, ground site during the 2013 Southern Oxidant and Aerosol Study

    Directory of Open Access Journals (Sweden)

    W. Rattanavaraha

    2016-04-01

    Full Text Available In the southeastern US, substantial emissions of isoprene from deciduous trees undergo atmospheric oxidation to form secondary organic aerosol (SOA that contributes to fine particulate matter (PM2.5. Laboratory studies have revealed that anthropogenic pollutants, such as sulfur dioxide (SO2, oxides of nitrogen (NOx, and aerosol acidity, can enhance SOA formation from the hydroxyl radical (OH-initiated oxidation of isoprene; however, the mechanisms by which specific pollutants enhance isoprene SOA in ambient PM2.5 remain unclear. As one aspect of an investigation to examine how anthropogenic pollutants influence isoprene-derived SOA formation, high-volume PM2.5 filter samples were collected at the Birmingham, Alabama (BHM, ground site during the 2013 Southern Oxidant and Aerosol Study (SOAS. Sample extracts were analyzed by gas chromatography–electron ionization-mass spectrometry (GC/EI-MS with prior trimethylsilylation and ultra performance liquid chromatography coupled to electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry (UPLC/ESI-HR-QTOFMS to identify known isoprene SOA tracers. Tracers quantified using both surrogate and authentic standards were compared with collocated gas- and particle-phase data as well as meteorological data provided by the Southeastern Aerosol Research and Characterization (SEARCH network to assess the impact of anthropogenic pollution on isoprene-derived SOA formation. Results of this study reveal that isoprene-derived SOA tracers contribute a substantial mass fraction of organic matter (OM ( ∼  7 to  ∼  20 %. Isoprene-derived SOA tracers correlated with sulfate (SO42− (r2 = 0.34, n = 117 but not with NOx. Moderate correlations between methacrylic acid epoxide and hydroxymethyl-methyl-α-lactone (together abbreviated MAE/HMML-derived SOA tracers with nitrate radical production (P[NO3] (r2 = 0.57, n = 40 were observed during nighttime, suggesting a

  5. Atmospheric lead and heavy metal pollution records from a Belgian peat bog spanning the last two millenia: Human impact on a regional to global scale

    Energy Technology Data Exchange (ETDEWEB)

    Vleeschouwer, Francois de [URAP, Departement de Geologie, Universite de Liege, Allee du 6 Aout B18 Sart Tilman B4000 - Liege (Belgium)]. E-mail: fdevleeschouwer@student.ulg.ac.be; Gerard, Laetitia [URAP, Departement de Geologie, Universite de Liege, Allee du 6 Aout B18 Sart Tilman B4000 - Liege (Belgium); Goormaghtigh, Catherine [Unite de recherche: ' Isotopes, Petrologie et Environnement' , Departement des Sciences de la Terre et de l' Environnement, CP 160/02 Universite Libre de Bruxelles, Avenue FD. Roosevelt, 50, B-1050 Bruxelles (Belgium); Mattielli, Nadine [Unite de recherche: ' Isotopes, Petrologie et Environnement' , Departement des Sciences de la Terre et de l' Environnement, CP 160/02 Universite Libre de Bruxelles, Avenue FD. Roosevelt, 50, B-1050 Bruxelles (Belgium); Le Roux, Gael [Institute of Environmental Geochemistry, University of Heidelberg, Im Neuenheimer Feld 236 B-69120 Heidelberg (Germany); Fagel, Nathalie [URAP, Departement de Geologie, Universite de Liege, Allee du 6 Aout B18 Sart Tilman B4000 - Liege (Belgium)

    2007-05-15

    Europe has been continuously polluted throughout the last two millennia. During the Roman Empire, these pollutions were mainly from ore extraction and smelting across Europe. Then, during the Middle Ages and the Early times of Industrial revolution (i.e. 1750), these pollutions extended to coal burning and combustion engine. Belgian ombrotrophic peat bogs have proved an effective archive of these pollutants and provide the opportunity to reconstruct the history of atmospheric deposition in NW Europe. The results of recent and past trace metal accumulation and Pb isotopes from a one-meter peat core (in the Misten peat bog) have been derived using XRF and Nu-plasma MC-ICP-MS. Combined with {sup 14}C and {sup 210}Pb dates these data have enabled us to trace fluxes in anthropogenic pollution back to original Roman times. Several periods of well-known Pb pollution events are clearly recorded including the Early and Late Roman Empire, the Middle Ages and the second industrial revolution. Also recorded is the introduction of leaded gasoline, and more recently the introduction of unleaded gasoline. Lead isotopes in this site have also enabled us to fingerprint several regional and global sources of anthropogenic particles.

  6. Atmospheric lead and heavy metal pollution records from a Belgian peat bog spanning the last two millenia. Human impact on a regional to global scale

    Energy Technology Data Exchange (ETDEWEB)

    De Vleeschouwer, Francois; Gerard, Laetitia; Fagel, Nathalie [URAP, Departement de Geologie, Universite de Liege, Allee du 6 Aout B18 Sart Tilman B4000 - Liege (Belgium); Goormaghtigh, Catherine; Mattielli, Nadine [Unite de recherche: ' ' Isotopes, Petrologie et Environnement' ' , Departement des Sciences de la Terre et de l' Environnement, CP 160/02 Universite Libre de Bruxelles, Avenue FD. Roosevelt, 50, B-1050 Bruxelles (Belgium); Le Roux, Gael [Institute of Environmental Geochemistry, University of Heidelberg, Im Neuenheimer Feld 236 B-69120 Heidelberg (Germany)

    2007-05-15

    Europe has been continuously polluted throughout the last two millennia. During the Roman Empire, these pollutions were mainly from ore extraction and smelting across Europe. Then, during the Middle Ages and the Early times of Industrial revolution (i.e. 1750), these pollutions extended to coal burning and combustion engine. Belgian ombrotrophic peat bogs have proved an effective archive of these pollutants and provide the opportunity to reconstruct the history of atmospheric deposition in NW Europe. The results of recent and past trace metal accumulation and Pb isotopes from a one-meter peat core (in the Misten peat bog) have been derived using XRF and Nu-plasma MC-ICP-MS. Combined with {sup 14}C and {sup 210}Pb dates these data have enabled us to trace fluxes in anthropogenic pollution back to original Roman times. Several periods of well-known Pb pollution events are clearly recorded including the Early and Late Roman Empire, the Middle Ages and the second industrial revolution. Also recorded is the introduction of leaded gasoline, and more recently the introduction of unleaded gasoline. Lead isotopes in this site have also enabled us to fingerprint several regional and global sources of anthropogenic particles. (author)

  7. Delivery of anthropogenic bioavailable iron from mineral dust and combustion aerosols to the ocean

    Directory of Open Access Journals (Sweden)

    A. Ito

    2016-01-01

    Full Text Available Atmospheric deposition of anthropogenic soluble iron (Fe to the ocean has been suggested to modulate primary ocean productivity and thus indirectly affect the climate. A key process contributing to anthropogenic sources of soluble Fe is associated with air pollution, which acidifies Fe-containing mineral aerosols during their transport and leads to Fe transformation from insoluble to soluble forms. However, there is large uncertainty in our estimate of this anthropogenic soluble Fe. In this study, for the first time, we interactively combined laboratory kinetic experiments with global aerosol modeling to more accurately quantify anthropogenic soluble Fe due to air pollution. Firstly, we determined Fe dissolution kinetics of African dust samples at acidic pH values with and without ionic species commonly found in aerosol water (i.e., sulfate and oxalate. Then, by using acidity as a master variable, we constructed a new empirical scheme for Fe release from mineral dust due to inorganic and organic anions in aerosol water. We implemented this new scheme and applied an updated mineralogical emission database in a global atmospheric chemistry transport model to estimate the atmospheric concentration and deposition flux of soluble Fe under preindustrial and modern conditions. Our improved model successfully captured the inverse relationship of Fe solubility and total Fe loading measured over the North Atlantic Ocean (i.e., 1–2 orders of magnitude lower Fe solubility in northern-African- than combustion-influenced aerosols. The model results show a positive relationship between Fe solubility and water-soluble organic carbon (WSOC/Fe molar ratio, which is consistent with previous field measurements. We estimated that deposition of soluble Fe to the ocean increased from 0.05–0.07 Tg Fe yr−1 in the preindustrial era to 0.11–0.12 Tg Fe yr−1 in the present day, due to air pollution. Over the high-nitrate, low-chlorophyll (HNLC regions

  8. Organic pollution of rivers : Combined threats of urbanization, livestock farming and global climate change

    NARCIS (Netherlands)

    Wen, Y.; Schoups, G.H.W.; van de Giesen, N.C.

    2017-01-01

    Organic pollution of rivers by wastewater discharge from human activities negatively impacts people and ecosystems. Without treatment, pollution control relies on a combination of natural degradation and dilution by natural runoff to reduce downstream effects. We quantify here for the first time

  9. Sources and timing of anthropogenic pollution in the Ensenada de San Simon (inner Ria de Vigo), Galicia, NW Spain: an application of mixture-modelling and nonlinear optimization to recent sedimentation.

    Science.gov (United States)

    Howarth, Richard J; Evans, Graham; Croudace, Ian W; Cundy, Andrew B

    2005-03-20

    The Ensenada de San Simon is the inner part of the Ria de Vigo, one of the major mesotidal rias of the Galician coast, NW Spain. The geochemistry of its bottom sediments can be accounted for in terms of both natural and anthropogenic sources. Mixture-modelling enables much of the Cr, Ni, V, Cu, Pb and Zn concentrations of the bottom and subaqueous sediments to be explained by sediment input from the river systems and faecal matter from manmade mussel rafts. The compositions and relative contributions of additional, unknown, sources of anomalous heavy-metal concentrations are quantified using constrained nonlinear optimization. The pattern of metal enrichment is attributed to: material carried in solution and suspension in marine water entering the Ensenada from the polluted industrial areas of the adjacent Ria de Vigo; wind-borne urban dusts and/or vehicular emissions from the surrounding network of roads and a motorway road-bridge over the Estrecho de Rande; industrial and agricultural pollution from the R. Redondela; and waste from a former ceramics factory near the mouth of the combined R. Oitaben and R. Verdugo. Using (137)Cs dating, it is suggested that heavy metal build-up in the sediments since the late 1970s followed development of inshore fisheries and introduction of the mussel rafts (ca. 1960) and increasing industrialisation.

  10. Assessing heavy metal pollution in the surface soils of a region that had undergone three decades of intense industrialization and urbanization.

    Science.gov (United States)

    Hu, Yuanan; Liu, Xueping; Bai, Jinmei; Shih, Kaimin; Zeng, Eddy Y; Cheng, Hefa

    2013-09-01

    Heavy metals in the surface soils from lands of six different use types in one of the world's most densely populated regions, which is also a major global manufacturing base, were analyzed to assess the impact of urbanization and industrialization on soil pollution. A total of 227 surface soil samples were collected and analyzed for major heavy metals (As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, and Zn) by using microwave-assisted acid digestion and inductively coupled plasma-mass spectrometry (ICP-MS). Multivariate analysis combined with enrichment factors showed that surface soils from the region (>7.2 × 10(4) km(2)) had mean Cd, Cu, Zn, and As concentrations that were over two times higher than the background values, with Cd, Cu, and Zn clearly contributed by anthropogenic sources. Soil pollution by Pb was more widespread than the other heavy metals, which was contributed mostly by anthropogenic sources. The results also indicate that Mn, Co, Fe, Cr, and Ni in the surface soils were primarily derived from lithogenic sources, while Hg and As contents in the surface soils were controlled by both natural and anthropogenic sources. The pollution level and potential ecological risk of the surface soils both decreased in the order of: urban areas > waste disposal/treatment sites ∼ industrial areas > agricultural lands ∼ forest lands > water source protection areas. These results indicate the significant need for the development of pollution prevention and reduction strategies to reduce heavy metal pollution for regions undergoing fast industrialization and urbanization.

  11. Combining chemometric tools for assessing hazard sources and factors acting simultaneously in contaminated areas. Case study: "Mar Piccolo" Taranto (South Italy).

    Science.gov (United States)

    Mali, Matilda; Dell'Anna, Maria Michela; Notarnicola, Michele; Damiani, Leonardo; Mastrorilli, Piero

    2017-10-01

    Almost all marine coastal ecosystems possess complex structural and dynamic characteristics, which are influenced by anthropogenic causes and natural processes as well. Revealing the impact of sources and factors controlling the spatial distributions of contaminants within highly polluted areas is a fundamental propaedeutic step of their quality evaluation. Combination of different pattern recognition techniques, applied to one of the most polluted Mediterranean coastal basin, resulted in a more reliable hazard assessment. PCA/CA and factorial ANOVA were exploited as complementary techniques for apprehending the impact of multi-sources and multi-factors acting simultaneously and leading to similarities or differences in the spatial contamination pattern. The combination of PCA/CA and factorial ANOVA allowed, on one hand to determine the main processes and factors controlling the contamination trend within different layers and different basins, and, on the other hand, to ascertain possible synergistic effects. This approach showed the significance of a spatially representative overview given by the combination of PCA-CA/ANOVA in inferring the historical anthropogenic sources loading on the area. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Pollution of the Rhine with toxic metals

    Energy Technology Data Exchange (ETDEWEB)

    Breder, R

    1981-07-17

    In the chapter of chemical analytics of traces contamination and element wastes are described. Another chapter is called ''sampling and treatment of samples''. In the chapter of determination methods are described atomic absorption spectrometry and inverse voltammetry. The chapter on the origin of metals in rivers deals with natural sources and anthropogenic pollution. The next chapter is called ''metal distribution and transfer events within the components water suspended matter and sediment''. Some toxicological aspects are treated, too. The chapter of anthropogenic metal pollution of the Rhine deals with some aspects of importance of the Rhine, the selection of the sampling places and metal contents in waters suspended matters and sediments. Another chapter treats the general relevance of data.

  13. Sedimentary record and anthropogenic pollution of a complex, multiple source fed dam reservoirs: An example from the Nové Mlýny reservoir, Czech Republic.

    Science.gov (United States)

    Sedláček, Jan; Bábek, Ondřej; Nováková, Tereza

    2017-01-01

    While numerous studies of dam reservoirs contamination are reported world-wide, we present a missing link in the study of reservoirs sourced from multiple river catchments. In such reservoirs, different point sources of contaminants and variable composition of their sedimentary matrices add to extremely complex geochemical patterns. We studied a unique, step-wise filled Nové Mlýny dam reservoir, Czech Republic, which consists of three interconnected sub-basins. Their source areas are located in units with contrasting geology and different levels and sources of contamination. The aim of this study is to provide an insight into the provenance of the sediment, including lithogenic elements and anthropogenic pollutants, to investigate the sediment dispersal across the reservoir, and to assess the heavy metal pollution in each basin. The study is based on multi-proxy stratigraphic analysis and geochemistry of sediment cores. There is a considerable gradient in the sediment grain size, brightness, MS and geochemistry, which reflects changing hydrodynamic energy conditions and primary pelagic production of CaCO 3 . The thickness of sediments generally decreases from proximal to distal parts, but underwater currents can accumulate higher amounts of sediments in distal parts near the thalweg line. Average sedimentation rates vary over a wide range from 0.58cm/yr to 2.33cm/yr. In addition, the petrophysical patterns, concentrations of lithogenic elements and their ratios made it possible to identify two main provenance areas, the Dyje River catchment (upper basin) and the Svratka and Jihlava River catchments (middle and lower basin). Enrichment factors (EF) were used for distinguishing the anthropogenic element contribution from the local background levels. We found moderate Zn and Cu pollution (EF ~2 to 5) in the upper basin and Zn, Cu and Pb (EF ~2 to 4.5) in the middle basin with the peak contamination in the late 1980s, indicating that the two basins have different

  14. Combined effects of water stress and pollution on macroinvertebrate and fish assemblages in a Mediterranean intermittent river.

    Science.gov (United States)

    Kalogianni, Eleni; Vourka, Aikaterini; Karaouzas, Ioannis; Vardakas, Leonidas; Laschou, Sofia; Skoulikidis, Nikolaos Th

    2017-12-15

    Water stress is a key stressor in Mediterranean intermittent rivers exacerbating the negative effects of other stressors, such as pollutants, with multiple effects on different river biota. The current study aimed to determine the response of macroinvertebrate and fish assemblages to instream habitat and water chemistry, at the microhabitat scale and at different levels of water stress and pollution, in an intermittent Mediterranean river. Sampling was conducted at high and low summer discharge, at two consecutive years, and included four reaches that were targeted for their different levels of water stress and pollution. Overall, the macroinvertebrate fauna of Evrotas River indicated high resilience to intermittency, however, variation in community structure and composition occurred under acute water stress, due to habitat alteration and change in water physico-chemistry, i.e. water temperature increase. The combined effects of pollution and high water stress had, however, pronounced effects on species richness, abundance and community structure in the pollution impacted reach, where pollution sensitive taxa were almost extirpated. Fish response to drought, in reaches free of pollution, consisted of an increase in the abundance of the two small limnophilic species, coupled with their shift to faster flowing riffle habitats, and a reduction in the abundance of the larger, rheophilic species. In the pollution impacted reach, however, the combination of pollution and high water stress led to hypoxic conditions assumed to be the leading cause of the almost complete elimination of the fish assemblage. In contrast, the perennial Evrotas reaches with relatively stable physicochemical conditions, though affected hydrologically by drought, appear to function as refugia for fish during high water stress. When comparing the response of the two biotic groups to combined acute water stress and pollution, it is evident that macroinvertebrates were negatively impacted, but fish

  15. Effects of business-as-usual anthropogenic emissions on air quality

    Directory of Open Access Journals (Sweden)

    A. Pozzer

    2012-08-01

    Full Text Available The atmospheric chemistry general circulation model EMAC has been used to estimate the impact of anthropogenic emission changes on global and regional air quality in recent and future years (2005, 2010, 2025 and 2050. The emission scenario assumes that population and economic growth largely determine energy and food consumption and consequent pollution sources with the current technologies ("business as usual". This scenario is chosen to show the effects of not implementing legislation to prevent additional climate change and growing air pollution, other than what is in place for the base year 2005, representing a pessimistic (but plausible future.

    By comparing with recent observations, it is shown that the model reproduces the main features of regional air pollution distributions though with some imprecisions inherent to the coarse horizontal resolution (~100 km and simplified bottom-up emission input.

    To identify possible future hot spots of poor air quality, a multi pollutant index (MPI, suited for global model output, has been applied. It appears that East and South Asia and the Middle East represent such hotspots due to very high pollutant concentrations, while a general increase of MPIs is observed in all populated regions in the Northern Hemisphere. In East Asia a range of pollutant gases and fine particulate matter (PM2.5 is projected to reach very high levels from 2005 onward, while in South Asia air pollution, including ozone, will grow rapidly towards the middle of the century. Around the Persian Gulf, where natural PM2.5 concentrations are already high (desert dust, ozone levels are expected to increase strongly.

    The population weighted MPI (PW-MPI, which combines demographic and pollutant concentration projections, shows that a rapidly increasing number of people worldwide will experience reduced air quality during the first half of the 21st century. Following this business as usual

  16. Socio–economic benefits and pollution levels of water resources ...

    African Journals Online (AJOL)

    Communities are dependent on wetlands resources for income generation. However, anthropogenic activities that result into pollution of water are one of the major public health problems. Assessment of socio–economic activities and pollution levels of domestic water sources in Gulu Municipality, Pece wetland was done.

  17. Evaluation of co-benefits from combined climate change and air pollution reduction strategies

    Science.gov (United States)

    Leitao, Joana; Van Dingenen, Rita; Dentener, Frank; Rao, Shilpa

    2014-05-01

    The connection of climate change and air pollution is becoming more relevant in the process of policy making and implementation of emission control strategies because of resulting co-benefits and trade-offs. Some sectors, such as fossil fuel combustion, are sources of both pollutants (NOx and PM) as well as greenhouse gas (CO2). Additionally, the use of wood burning as biofuel to reduce climate impact may in fact deteriorate air quality. Furthermore, several air pollutants are important radiative forcers and regulating their emissions impacts on climate. It is evident that both problems need to be undertaken with a common strategy and the existence of cross-policy with co-benefits may encourage their implementation. The LIMITS FP7 project (http://www.feem-project.net/limits/index.html) was designed with the main goal of assessing strategies for reduction of GHG emissions so that the 2°C target can be achieved. The work developed focus on the evaluation of the implementation of strategies analysing several aspects of different scenarios, namely: the feasibility of low carbon scenarios in terms of available technologies and infrastructure, the required financial mechanisms, and also the co-benefits regarding energy security, economic development and air pollution. For the latter, five integrated assessment models (IAMs) provided greenhouse gases and pollutant emission values for several scenarios. These were based on air pollution scenarios defined according to stringency and implementation of future global legislation. They which were also combined with 2 climate policy scenarios (no climate policy and 2.8 W/m2 target). The former are mostly focused on non-climate policies and technical control measures for emissions of air pollutants, such as PM2.5, NOx and SO2, with their emission factors harmonized between the IAMs. With the global air quality source-receptor model TM5-FASST the impact of the resulting emissions was analysed and the co-benefits of combined

  18. Anthropogenic nitrogen and phosphorus emissions and related grey water footprints caused by EU-27's crop production and consumption

    NARCIS (Netherlands)

    Mekonnen, Mesfin; Lutter, Stephan; Martinez, Aldo

    2016-01-01

    Water is a prerequisite for life on our planet. Due to climate change and pollution, water availability for agricultural production, industry and households is increasingly put at risk. With agriculture being the largest water user as well as polluter worldwide, we estimate anthropogenic nitrogen

  19. Laboratory experiments on dynamics of anthropogenic ferrimagnetics in sand formations

    Czech Academy of Sciences Publication Activity Database

    Kapička, Aleš; Fialová, Hana; Petrovský, Eduard; Kodešová, R.; Kopáč, J.

    2008-01-01

    Roč. 38, Special issue (2008), s. 52-53 ISSN 1335-2806. [Paleo, Rock and Environmental Magnetism. Castle Meeting /11./. 22.06.2008-28.06.2008, Bojnice] R&D Projects: GA AV ČR IAA300120701 Institutional research plan: CEZ:AV0Z30120515 Keywords : soil pollution * dynamics of anthropogenic particles * magnetic susceptibility Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  20. First simultaneous space measurements of atmospheric pollutants in the boundary layer from IASI: a case study in the North China Plain

    Science.gov (United States)

    Boynard, Anne; Clerbaux, Cathy; Clarisse, Lieven; Safieddine, Sarah; Pommier, Matthieu; Van Damme, Martin; Bauduin, Sophie; Oudot, Charlotte; Hadji-Lazaro, Juliette; Hurtmans, Daniel; Coheur, Pierre-François

    2014-05-01

    An extremely severe and persistent smog episode occurred in January 2013 over China. The levels of air pollution have been dangerously high, reaching 40 times recommended safety levels and have affected health of millions of people. China faced one of the worst periods of air quality in recent history and drew worldwide attention. This pollution episode was caused by the combination of anthropogenic emissions and stable meteorological conditions (absence of wind and temperature inversion) that trapped pollutants in the boundary layer. To characterize this episode, we used the IASI (Infrared Atmospheric Sounding Interferometer) instrument onboard the MetOp-A platform. IASI observations show high concentrations of key trace gases such as carbon monoxide (CO), sulfur dioxide (SO2) and ammonia (NH3) along with ammonium sulfate aerosol. We show that IASI is able to detect boundary layer pollution in case of large negative thermal contrast combined with high levels of pollution. Our findings demonstrate the ability of thermal infrared instrument such as IASI to monitor boundary layer pollutants, which can support air quality evaluation and management.

  1. Combined acid rain and lanthanum pollution and its potential ecological risk for nitrogen assimilation in soybean seedling roots.

    Science.gov (United States)

    Zhang, Fan; Cheng, Mengzhu; Sun, Zhaoguo; Wang, Lihong; Zhou, Qing; Huang, Xiaohua

    2017-12-01

    Rare earth elements (REEs) are used in various fields, resulting in their accumulation in the environment. This accumulation has affected the survival and distribution of crops in various ways. Acid rain is a serious global environmental problem. The combined effects on crops from these two types of pollution have been reported, but the effects on crop root nitrogen assimilation are rarely known. To explore the impact of combined contamination from these two pollutants on crop nitrogen assimilation, the soybean seedlings were treated with simulated environmental pollution from acid rain and a representative rare earth ion, lanthanum ion (La 3+ ), then the indexes related to plant nitrogen assimilation process in roots were determined. The results showed that combined treatment with pH 4.5 acid rain and 0.08 mM La 3+ promoted nitrogen assimilation synergistically, while the other combined treatments all showed inhibitory effects. Moreover, acid rain aggravated the inhibitory effect of 1.20 or 0.40 mM La 3+ on nitrogen assimilation in soybean seedling roots. Thus, the effects of acid rain and La 3+ on crops depended on the combination levels of acid rain intensity and La 3+ concentration. Acid rain increases the bioavailability of La 3+ , and the combined effects of these two pollutants were more serious than that of either pollutant alone. These results provide new evidence in favor of limiting overuse of REEs in agriculture. This work also provides a new framework for ecological risk assessment of combined acid rain and REEs pollution on soybean crops. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Benthic Nutrient Fluxes from Mangrove Sediments of an Anthropogenically Impacted Estuary in Southern China

    Directory of Open Access Journals (Sweden)

    David Kaiser

    2015-06-01

    Full Text Available Mangroves serve as either sinks or sources for inorganic and organic nutrients and can mitigate anthropogenic nutrient pollution, control the production in adjacent systems, and prevent eutrophication. To better understand the nutrient dynamics in a subtropical mangrove, we employed a three-way approach in the Nanliu River Estuary, southern China: Pore water profiles and sediment incubations revealed benthic early diagenesis as well as sediment–water exchange of dissolved nutrients and oxygen, while tidal sampling of estuarine and mangrove water identified source and sink functions of the entire mangrove forest. Fluxes of oxygen during incubations were always directed into the sediment, indicating heterotrophy of the system. There was a net uptake of dissolved inorganic nitrogen, mainly caused by nitrate influx, while ammonium and nitrite showed variable flux direction. Despite high pore water concentrations, phosphate and silica showed net uptake. Fluxes of dissolved organic carbon were generally low except for high efflux in the dark following a storm event. Due to the combination of small forest area and strong anthropogenic nutrient input, the net sink function for dissolved nitrogen and phosphorus provides no significant buffer against the eutrophication of coastal waters.

  3. Combined effects of road traffic noise and ambient air pollution in relation to risk for stroke?

    DEFF Research Database (Denmark)

    Sørensen, Mette; Lühdorf, Pernille; Ketzel, Matthias

    2014-01-01

    Exposure to road traffic noise and air pollution have both been associated with risk for stroke. The few studies including both exposures show inconsistent results. We aimed to investigate potential mutual confounding and combined effects between road traffic noise and air pollution in association...... to 2009 were identified in national registers and road traffic noise and air pollution were modeled for all addresses. Analyses were done using Cox regression. A higher mean annual exposure at time of diagnosis of 10µg/m(3) nitrogen dioxide (NO2) and 10dB road traffic noise at the residential address...... was found for combination of high noise and high NO2 (IRR=1.28; 95% CI=1.09-1.52). Fatal stroke was positively associated with air pollution and not with traffic noise. In conclusion, in mutually adjusted models road traffic noise and not air pollution was associated ischemic stroke, while only air...

  4. Global Scenarios of Air Pollution until 2030: Combining Air Quality, Climate Change and Energy Access Policies

    Science.gov (United States)

    Rao, S.; Dentener, F. J.; Klimont, Z.; Riahi, K.

    2011-12-01

    Outdoor air pollution is increasingly recognized as a significant contributor to global health outcomes. This has led to the implementation of a number of air quality policies worldwide, with total air pollution control costs in 2005 estimated at US$195 billion. More than 80% of the world's population is still found to be exposed to PM2.5 concentrations exceeding WHO air quality guidelines and health impacts resulting from these exposures estimated at around 2-5% of the global disease burden. Key questions to answer are 1) How will pollutant emissions evolve in the future given developments in the energy system and how will energy and environmental policies influence such emission trends. 2) What implications will this have for resulting exposures and related health outcomes. In order to answer these questions, varying levels of stringency of air quality legislation are analyzed in combination with policies on universal access to clean cooking fuels and limiting global temperature change to 2°C in 2100. Bottom-up methodologies using energy emissions modeling are used to derive sector-based pollutant emission trajectories until 2030. Emissions are spatially downscaled and used in combination with a global transport chemistry model to derive ambient concentrations of PM2.5. Health impacts of these exposures are further estimated consistent with WHO data and methodology. The results indicate that currently planned air quality legislation combined with rising energy demand will be insufficient in controlling future emissions growth in developing countries. In order to achieve significant reductions in pollutant emissions of the order of more than 50% from 2005 levels and reduce exposures to levels consistent with WHO standards, it will be necessary to increase the stringency of such legislations and combine them with policies on energy access and climate change. Combined policies also result in reductions in air pollution control costs as compared to those associated

  5. On Hydraulic and Pollution Effects of Converting Combined Sewer Catchments to Separate Sewer Catchments

    DEFF Research Database (Denmark)

    Thorndahl, Søren Liedtke; Schaarup-Jensen, Kjeld; Rasmussen, Michael R.

    2015-01-01

    systems to become serviced with separate sewer systems decreases the volumes of storm water and pollutants diverted to the waste water treatment plant and discharged as combined sewer overflow. This happens at the expense of an increase in volumes of storm water and pollutant loads diverted to local...... receiving waters when detention ponds are not built-in the new separate sewer systems. It is concluded that consequences can be fatal for receiving waters, if no retention of pollutants is integrated into the system....

  6. Factors affecting metal and radionuclide pollution in the Baltic sea

    Directory of Open Access Journals (Sweden)

    Martin Lodenius

    2016-12-01

    Full Text Available External pollution load in the Baltic Sea originates from urban, agricultural and industrial sources. Emissions of heavy metals have decreased substantially in the catchment area but the temporal trends are not always significant and differ with sample, area and pollutant. The most significant source of anthropogenic radioactivity in the Baltic Sea is fallout from the Chernobyl accident in 1986. Many factors affect the future development of pollutant concentrations including anthropogenic emissions, political decisions and changes in salinity, temperature and water currents, in eutrophication and oxygen status, in fisheries and in atmospheric deposition of pollutants. Large scale changes like eutrophication and climate change affect ecosystems in many ways, directly and indirectly, causing biological and abiotic effects. These factors are interrelated and difficult to predict. Measures aiming to enhance the ecological status of the Baltic Sea will certainly give positive results but this will take at least several decades.

  7. Monitoring an air pollution episode in Shenzhen by combining MODIS satellite images and the HYSPLIT model

    Science.gov (United States)

    Li, Lili; Liu, Yihong; Wang, Yunpeng

    2017-07-01

    Urban air pollution is influenced not only by local emission sources including industry and vehicles, but also greatly by regional atmospheric pollutant transportation from the surrounding areas, especially in developed city clusters, like the Pearl River Delta (PRD). Taking an air pollution episode in Shenzhen as an example, this paper investigates the occurrence and evolution of the pollution episode and identifies the transport pathways of air pollutants in Shenzhen by combining MODIS satellite images and HYSPLIT back trajectory analysis. Results show that this pollution episode is mainly caused by the local emission of pollutants in PRD and oceanic air masses under specific weather conditions.

  8. [Effects of combined pollution of lead and benzo[a] pyrene on seed growth of wheat in soils].

    Science.gov (United States)

    Wang, Hong-Qi; Wang, Shuai; Ning, Shao-Wei; Sun, Yan-Ling; Hou, Ze-Qing

    2011-03-01

    Seed germination, root elongation, shoot elongation and ratio of shoot to root of wheat in soils polluted by lead (Pb) and benzo (a)pyrene (B[a] P) with medium-low concentrations were studied to reveal the ecological effects of combined pollution and screen the indicative markers. Results indicated that seed germination was not sensitive to single or combined pollution of Pb or B[a] P. Root elongation was inhibited by single pollution of Pb or B[a]P to different extents. Extensive interactions between Pb and B[a]P occurred to root elongation of wheat, including synergistic-stimulatory effect and antagonistic-inhibitory effect. The joint action was mainly antagonistic. Single pollution of B [a] P had an inhibitory effect on shoot elongation. Under combined pollution conditions, the shoot elongation of wheat correlated well with Pb contents (p pollutants had little effect on shoot elongation of wheat. The joint action on shoot elongation was consistently antagonistic. The response pattern of the ratio of shoot to root was similar to the response pattern of shoot elongation. However, the former had better correlation than the latter, indicating it as a more suitable indicative marker for Pb pollution. If lead acetate was employed instead of lead nitrate, longer root elongation, shorter shoot elongation and no effect on ratio of shoot to root were found. Therefore, the forms of Pb salt had significant influence on seed growth of wheat in soils.

  9. Human Activity and Pollution in Antarctica

    Science.gov (United States)

    Graf, H.-F.; Shirsat, S. V.; Podzun, R.

    2009-04-01

    A regional climate chemistry model is used to determine the level of pollution of the Antarctic continent due to anthropogenic and natural emission of sulphur species. Based on an emission inventory for the year 2004/2005 including emissions from energy use and ground traffic at and between Antarctic research stations, flight activity, tourist and scientific ship operations, and emissions from the Mt. Erebus volcano, atmospheric concentration and deposition rates of sulphur species and black carbon were simulated at 0.5 degree resolution for the whole Antarctic continent. The biggest anthropogenic source of pollution is ship operations. These concentrate near the Antarctic Peninsula and close to the big scientific stations at Queen Maud Land and in the Ross sea area. The prevailing winds guarantee that most of the anthropogenic emissions from sources near the coast will be blown to lower latitudes and do not affect the continent. While atmospheric concentrations over vast areas remain extremely low, in some places locally concentrations and deposition rates are reached that may be detectable by in-situ measurements and give rise to concern. Especially at the Peninsula atmospheric concentrations and surface deposition of sulphur and soot are dominated by ship emissions. The largest part of shipping activity in this region is from tourist ships, a strongly increasing business. The by far biggest source of sulphur species in Antarctica is the Mt. Erebus volcano. It is also the only source that remains equally strong in polar winter. However, due to its high altitude and the long life time of SO2, especially in winter resulting in long range transport and dilution, Erebus emissions contribute relatively little to deposition of sulphur in the most anthropogenic polluted areas while they dominate the sulphur deposition in central Antarctica.

  10. Anthropogenic pollution indicators in marine environment of the Eastern Part of the Gulf of Finland

    Science.gov (United States)

    Zhakovskaya, Zoya; Nikiforov, Vladimir; Mamontova, Varvara; Khoroshko, Larisa; Chernova, Ekaterina; Russkikh, Iana

    2014-05-01

    processes and reproductive impairment, increasing number of cancer incidences and increasing of bacterial antibiotic resistance. Diclofenac one of anthropogenic markers, was analyzed by the method of liquid chromatography high-resolution mass-spectrometry, using LTQ Orbitrap (Thermo Finnigan) in natural water and sediment samples. Mass spectra were recorded in several modes: full scan, SIM and MRM using positive and negative ionization. Resolution was 30000. Diclofenac were detected in several water samples (in the range of 3,9-270,0 ng/L). The obtained results are using for "Biota spatial distribution/Geological diversity/Pollution" model validation. This study was supported by projects TOPCONS («Transboundary tool for spatial planning and conservation of the Gulf of Finland»), HELCOM projects BALTHAZAR Phase II and BASE.

  11. Immune- and Pollution-mediated DNA Damage in Two Wild Mya arenaria Clam Populations

    Directory of Open Access Journals (Sweden)

    François Gagné

    2009-01-01

    Full Text Available In aquatic environments, genotoxicity results from the effects of pollution combined with the inflammatory response triggered by the immune system. Indeed, the production of nitrosylated DNA and proteins are though to arise from the production of peroxinitrite during phagocytosis and inflammation. The purpose of this study was to examine new DNA biomarkers that differentiate between immune- and pollution-mediated genotoxicity in wild clam populations. Intertidal clam populations were sampled and analyzed for gonadal DNA strand breaks, DNA nitrosylation and xanthine oxidoreductase (XOR activity (purine salvage pathway. The clam weight-to-shell-length ratio, the gonado-somatic index (GSI, age status, lipid peroxidation, xenobiotic conjugation activity (glutathione S-transferase (GST and phagocytic activity were examined to shed light on their relationships with the observed genotoxic endpoints. XOR activity and DNA strand breaks were generally elevated at polluted sites and correlated significantly with clam weight-to-shell-length ratios and DNA nitrosylation. DNA nitrosylation was also higher at some sites and correlated significantly with phagocytic activity and with DNA strand breaks. This study showed that DNA strand breaks were associated with both immune- and pollution-mediated effects. This suggests that there is a loss of DNA repair capacity due to the combined effects of aging, pollution and immune response in wild clam populations that are impacted by anthropogenic activity.

  12. Combination of magnetic parameters: an efficient way to discriminate soil-contamination sources (south France)

    International Nuclear Information System (INIS)

    Lecoanet, H.; Leveque, F.; Ambrosi, J.-P.

    2003-01-01

    Biplots combining magnetic parameters allow identification of different pollutant emission sources. - Biplots combining magnetic parameters allow to identification and differentiation different pollutant emission sources. A major problem in soil pollution is the characterization of the relative contributions of different anthropogenic particles sources. This paper demonstrates the efficiency of magnetic techniques to provide identification and differentiation of contaminating emission sources. About 100 soil samples were collected across a mixed agricultural and industrial area (Crau plain/Berre-Fos basin) in southern France. Nine soil profiles were realized. They are aligned along a transect, from the Mediterranean cost to the north. Measurements of initial magnetic susceptibility (χ) and remanent magnetization (ARM, IRM) have been carried out at room temperature. Several ratios of magnetic parameters were calculated and tested. Bivariate analyses allow to characterize different pollution sources and graphic results suggest three dominant contributions originated from road traffic, airport and steel industry. Moreover, magnetic grain-size discrimination between surface-soil samples and bottom-soil samples is obtained. An increase of hard magnetic components from topsoil towards the bottom of the profiles is evidenced

  13. Large Gain in Air Quality Compared to an Alternative Anthropogenic Emissions Scenario

    Science.gov (United States)

    Daskalakis, Nikos; Tsigaridis, Kostas; Myriokefalitakis, Stelios; Fanourgakis, George S.; Kanakidou, Maria

    2016-01-01

    During the last 30 years, significant effort has been made to improve air quality through legislation for emissions reduction. Global three-dimensional chemistrytransport simulations of atmospheric composition over the past 3 decades have been performed to estimate what the air quality levels would have been under a scenario of stagnation of anthropogenic emissions per capita as in 1980, accounting for the population increase (BA1980) or using the standard practice of neglecting it (AE1980), and how they compare to the historical changes in air quality levels. The simulations are based on assimilated meteorology to account for the yearto- year observed climate variability and on different scenarios of anthropogenic emissions of pollutants. The ACCMIP historical emissions dataset is used as the starting point. Our sensitivity simulations provide clear indications that air quality legislation and technology developments have limited the rapid increase of air pollutants. The achieved reductions in concentrations of nitrogen oxides, carbon monoxide, black carbon, and sulfate aerosols are found to be significant when comparing to both BA1980 and AE1980 simulations that neglect any measures applied for the protection of the environment. We also show the potentially large tropospheric air quality benefit from the development of cleaner technology used by the growing global population. These 30-year hindcast sensitivity simulations demonstrate that the actual benefit in air quality due to air pollution legislation and technological advances is higher than the gain calculated by a simple comparison against a constant anthropogenic emissions simulation, as is usually done. Our results also indicate that over China and India the beneficial technological advances for the air quality may have been masked by the explosive increase in local population and the disproportional increase in energy demand partially due to the globalization of the economy.

  14. Large gain in air quality compared to an alternative anthropogenic emissions scenario

    Directory of Open Access Journals (Sweden)

    N. Daskalakis

    2016-08-01

    Full Text Available During the last 30 years, significant effort has been made to improve air quality through legislation for emissions reduction. Global three-dimensional chemistry-transport simulations of atmospheric composition over the past 3 decades have been performed to estimate what the air quality levels would have been under a scenario of stagnation of anthropogenic emissions per capita as in 1980, accounting for the population increase (BA1980 or using the standard practice of neglecting it (AE1980, and how they compare to the historical changes in air quality levels. The simulations are based on assimilated meteorology to account for the year-to-year observed climate variability and on different scenarios of anthropogenic emissions of pollutants. The ACCMIP historical emissions dataset is used as the starting point. Our sensitivity simulations provide clear indications that air quality legislation and technology developments have limited the rapid increase of air pollutants. The achieved reductions in concentrations of nitrogen oxides, carbon monoxide, black carbon, and sulfate aerosols are found to be significant when comparing to both BA1980 and AE1980 simulations that neglect any measures applied for the protection of the environment. We also show the potentially large tropospheric air quality benefit from the development of cleaner technology used by the growing global population. These 30-year hindcast sensitivity simulations demonstrate that the actual benefit in air quality due to air pollution legislation and technological advances is higher than the gain calculated by a simple comparison against a constant anthropogenic emissions simulation, as is usually done. Our results also indicate that over China and India the beneficial technological advances for the air quality may have been masked by the explosive increase in local population and the disproportional increase in energy demand partially due to the globalization of the economy.

  15. Transport pathways for Asian pollution outflow over the Pacific: Interannual and seasonal variations

    Science.gov (United States)

    Liu, Hongyu; Jacob, Daniel J.; Bey, Isabelle; Yantosca, Robert M.; Duncan, Bryan N.; Sachse, Glen W.

    2003-10-01

    The meteorological pathways contributing to Asian pollution outflow over the Pacific are examined with a global three-dimensional model analysis of CO observations from the Transport and Chemical Evolution over the Pacific (TRACE-P) aircraft mission (February-April 2001). The model is used also to place the TRACE-P observations in an interannual (1994-2001) and seasonal context. The major process driving Asian pollution outflow in spring is frontal lifting ahead of southeastward-moving cold fronts (the leading edge of cold surges) and transport in the boundary layer behind the cold fronts. Orographic lifting over central and eastern China combines with the cold fronts to promote the transport of Chinese pollution to the free troposphere. Outflow of seasonal biomass burning in Southeast Asia during spring takes place mostly by deep convection but also by northeastward transport and frontal lifting, mixing with the anthropogenic outflow. Boundary layer outflow over the western Pacific is largely devoid of biomass burning influence. European and African (biomass burning) plumes in Asian outflow during TRACE-P were weak (pollution signal. Spring 2001 (La Niña) was characterized by unusually frequent cold surge events in the Asian Pacific rim and strong convection in Southeast Asia, leading to unusually strong boundary layer outflow of anthropogenic emissions and convective outflow of biomass burning emissions in the upper troposphere. The Asian outflow flux of CO to the Pacific is found to vary seasonally by a factor of 3-4 (maximum in March and minimum in summer). The March maximum results from frequent cold surge events and seasonal biomass burning emissions.

  16. Pollutant dispersal and stability in a severely polluted floodplain: A case study in the Litavka River, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Nováková, Tereza; Kotková, Kristýna; Elznicová, J.; Strnad, L.; Engel, Z.; Matys Grygar, Tomáš

    2015-01-01

    Roč. 156, SEP (2015), s. 131-144 ISSN 0375-6742 Institutional support: RVO:61388980 Keywords : Anthropogenic alluvium * Fluvial sediments * Heavy metals * Secondary pollution from mining Subject RIV: DD - Geochemistry Impact factor: 2.147, year: 2015

  17. Effect of recent climate change on Arctic Pb pollution: a comparative study of historical records in lake and peat sediments.

    Science.gov (United States)

    Liu, Xiaodong; Jiang, Shan; Zhang, Pengfei; Xu, Liqiang

    2012-01-01

    Historical changes of anthropogenic Pb pollution were reconstructed based on Pb concentrations and isotope ratios in lake and peat sediment profiles from Ny-Ålesund of Arctic. The calculated excess Pb isotope ratios showed that Pb pollution largely came from west Europe and Russia. The peat profile clearly reflected the historical changes of atmospheric deposition of anthropogenic Pb into Ny-Ålesund, and the result showed that anthropogenic Pb peaked at 1960s-1970s, and thereafter a significant recovery was observed by a rapid increase of (206)Pb/(207)Pb ratios and a remarkable decrease in anthropogenic Pb contents. In contrast to the peat record, the longer lake record showed relatively high anthropogenic Pb contents and a persistent decrease of (206)Pb/(207)Pb ratios within the uppermost samples, suggesting that climate-sensitive processes such as catchment erosion and meltwater runoff might have influenced the recent change of Pb pollution record in the High Arctic lake sediments. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. [Transport and sources of runoff pollution from urban area with combined sewer system].

    Science.gov (United States)

    Li, Li-Qing; Yin, Cheng-Qing

    2009-02-15

    Sampling and monitoring of runoff and sewage water in Wuhan urban area with combined sewer system were carried out during the period from 2003 to 2006, to study the transport and sources of runoff pollution at the catchment scale coupled with environmental geochemistry method. The results showed a change in quality between the runoff entering the sewer network and the combined storm water flow at the sewer's outlet. A significant increase was observed in the concentrations of total suspended solids (TSS), volatile suspended solids (VSS), COD, TN, and TP, and in the proportion of COD linked to particles. During the runoff production and transport, the concentrations of TSS and COD increased from 18.7 mg/L and 37.0 mg/L in roof runoff, to 225.3 mg/L and 176.5 mg/L in street runoff, and to 449.7 mg/L and 359.9 mg/L in combined storm water flow, respectively. The proportion of COD linked to particles was increased by 18%. In addition, the total phosphorus (P) and iron (Fe) contents in urban ground dust, storm drain sediment, sewage sewer sediment and combined sewer sediment were measured to identify the potential sources of suspended solids in the combined flow. The urban ground dust andstorm drain sediment wererich in Fe, whereas the sewage sewer sediment was rich in P. The P/Fe ratios in these groups were significantly distinct and able to differentiate them. A calculation of the two storm events based on the P/Fe rations showed that 56% +/- 26% of suspended solids in combined flow came from urban ground and storm drain. The rest wer e originated from the sewage sewer sediments which deposited in combined sewer on the dry weather days and were eroded on the wet weather days. The combined sewer network not only acts as a transport system, but also constitutes a physicochemical reactor that degrades the quality of urban water. Reducing the in-sewer pollution stocks would effectively control urban runoff pollution.

  19. Role of Chinese wind-blown dust in enhancing environmental pollution in Metropolitan Seoul

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Wonnyon [Department of Earth and Environmental Sciences, Korea University, Seoul 136-713 (Korea, Republic of); Doh, Seong-Jae [Department of Earth and Environmental Sciences, Korea University, Seoul 136-713 (Korea, Republic of)], E-mail: sjdoh@korea.ac.kr; Yu, Yongjae; Lee, Meehye [Department of Earth and Environmental Sciences, Korea University, Seoul 136-713 (Korea, Republic of)

    2008-05-15

    A suite of rock magnetic experiments and intensive microscopic observations were carried out on Asian dust deposits in Seoul, Korea, collected on 19 and 23 March 2002, 9 April 2002 and 12 April 2003. Desert-sand and loess from the dust source regions in China were also analyzed as a comparison. Asian dust showed a higher magnetic concentration than the source region samples, indicating a significant influx of magnetic particles into Asian dust had occurred during its transportation. Electron microscopy identified carbon-bearing iron-oxides as the added material. These iron-oxides were likely to have been produced by anthropogenic pollution (fossil fuel combustion) while the wind-blown dusts passing across the industrial areas of eastern China and western Korea. Such wind-paths were confirmed by a simulation of the air-mass trajectories. The magnetic technique appears to be useful for determining the anthropogenic pollution of Asian dust. - Magnetic quantification of anthropogenic pollution of Asian dust.

  20. Role of Chinese wind-blown dust in enhancing environmental pollution in Metropolitan Seoul

    International Nuclear Information System (INIS)

    Kim, Wonnyon; Doh, Seong-Jae; Yu, Yongjae; Lee, Meehye

    2008-01-01

    A suite of rock magnetic experiments and intensive microscopic observations were carried out on Asian dust deposits in Seoul, Korea, collected on 19 and 23 March 2002, 9 April 2002 and 12 April 2003. Desert-sand and loess from the dust source regions in China were also analyzed as a comparison. Asian dust showed a higher magnetic concentration than the source region samples, indicating a significant influx of magnetic particles into Asian dust had occurred during its transportation. Electron microscopy identified carbon-bearing iron-oxides as the added material. These iron-oxides were likely to have been produced by anthropogenic pollution (fossil fuel combustion) while the wind-blown dusts passing across the industrial areas of eastern China and western Korea. Such wind-paths were confirmed by a simulation of the air-mass trajectories. The magnetic technique appears to be useful for determining the anthropogenic pollution of Asian dust. - Magnetic quantification of anthropogenic pollution of Asian dust

  1. Pollution evaluation in the Shahrood River: Do physico-chemical and macroinvertebrate-based indices indicate same responses to anthropogenic activities?

    Science.gov (United States)

    Sharifinia, Moslem; Mahmoudifard, Abbas; Imanpour Namin, Javid; Ramezanpour, Zohreh; Yap, Chee Kong

    2016-09-01

    This study evaluates the impact of anthropogenic activities on the Shahrood River using water physico-chemical variables and macroinvertebrates data sets obtained over a period of 12 months between February 2012 and February 2013 at 8 sampling sites. Biotic indices i.e. FBI and BMWP based on macroinvertebrates and physico-chemical indices (MPI, HPI and NSF-WQI) were employed to evaluate the water quality status in connection with natural- and human-induced pressures. Based on physico-chemical indices, water quality was categorized as low polluted level and it is suitable for drinking purposes. The water quality based on biotic indices was related to the anthropic activities; a clear deterioration of the water quality was observed from upstream to downstream sites. The water quality along the river changed from very good (class I; reference sites) to good (class II; midstream sites) and turned into moderate (class III) and poor (class IV) quality (downstream sites). These findings indicate that biotic indices are more powerful indicators in assessing water quality than physico-chemical indices. Allocapnia, Glossosoma and Hesperoperla were exclusively related to least disturbed sites, and Naididae, Orthocladiinae and Ecdyonurus were found in sites showing notable degradation. Our results recommended that the use of macroinvertebrates could be employed as a cost-effective tool for biomonitoring and controlling of polluted riverine ecosystems in the Middle East. Finally, the results from this study may be useful not only for developing countries, but also for any organization struggling to use macroinvertebrate based indices with restricted financial resources and knowledge. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Anthropogenic heat fluxes over Moscow agglomeration and other Russian and world cities

    Science.gov (United States)

    Belova, Iya; Ginzburg, Alexander

    2010-05-01

    Urbanization, particularly with respect to its sustainability, remains to be a great challenge in all regions of the world. Urbanization has an influence on soils, hydrology, and climate, these changes have effect on global climate, pollution, increase of anthropogenic greenhouse gases in the earth's atmosphere and human health. Thus anthropogenic heat flux is an important factor for estimation of development of global climate. The simple formula for anthropogenic heat fluxes (AHF) was proposed in the EGU General Assembly 2008 presentation [1] AHF = k × PD × EC, were PD is urban population density and EC is total energy consumption per capita. It was estimated that two of the world megacities - Seoul and Moscow - have the highest AHF values - 83 and 56 W/m2 correspondently. In presented paper it was studied the reasons of such high anthropogenic heat fluxes within Moscow region as well as AHF over the major Russian cities. It was shown that main reason of this circumstance is the administrative divisions in Moscow region. Moscow is ringed by Moscow circle motor road. Accordingly the city has sharply defined boundaries and densely populated residential suburbs are cut off and don't included in Moscow city administrative area. It was constructed the special graph to illuminate why Moscow city has such a high anthropogenic heat factor and how much Moscow agglomeration AHF could be if consider not only Moscow city itself but also the nearest suburb towns. Using the data from World Bank [2] and Russian governmental statistic agency [3] anthropogenic heat fluxes for Russian cities with population more than 500 000 were estimated. Energy consumption data for different Russian regions were calculated by special routine using in the Web-atlas [4]. This research is supported by RAS Fundamental Research Project 'Influence of anthropogenic heat fluxes and aerosol pollution on heat balance and climate of urbanized areas'. Other results of this project is presented in paper [5

  3. AMPHIBIAN COMMUNITIES IN BIOGEOCOENOSIS WITH DIFFERENT STAGES OF ANTHROPOGENIC CLYMAX

    Directory of Open Access Journals (Sweden)

    Marchenkovskaya А. А.

    2013-04-01

    Full Text Available We examined the abundance of juvenile (fingerlings and yearlings and sexually mature (3-6 years of various anurans at various biotopes with different degrees of anthropogenic influence. Population analysis has revealed that the number of juveniles in all the habitats are depended on type and level of anthropogenic influence. In all the habitats the most numerous species was synanthropic bufo viridis. In biotopes with high contamination of pollutants, only one species of amphibians - the marsh frog has populations with juveniles migrating here in the early fall. The highest number of mature individuals registered for the population of Bombina bombina, pelobates fuscus and in one biotope for hyla arborea. The populations of pelophylax ridibundus could be considered as the most balanced by number of juvenile and mature individuals.

  4. Comparing differential tolerance of native and non-indigenous marine species to metal pollution using novel assay techniques

    International Nuclear Information System (INIS)

    Piola, Richard F.; Johnston, Emma L.

    2009-01-01

    Recent research suggests anthropogenic disturbance may disproportionately advantage non-indigenous species (NIS), aiding their establishment within impacted environments. This study used novel laboratory- and field-based toxicity testing to determine whether non-indigenous and native bryozoans (common within marine epibenthic communities worldwide) displayed differential tolerance to the common marine pollutant copper (Cu). In laboratory assays on adult colonies, NIS showed remarkable tolerance to Cu, with strong post-exposure recovery and growth. In contrast, native species displayed negative growth and reduced feeding efficiency across most exposure levels. Field transplant experiments supported laboratory findings, with NIS growing faster under Cu conditions. In field-based larval assays, NIS showed strong recruitment and growth in the presence of Cu relative to the native species. We suggest that strong selective pressures exerted by the toxic antifouling paints used on transport vectors (vessels), combined with metal contamination in estuarine environments, may result in metal tolerant NIS advantaged by anthropogenically modified selection regimes. - Greater tolerance to pollutants in marine NIS may increase the risk of invasion in port and harbours worldwide by providing a competitive advantage over native taxa.

  5. Mercury pollution in Asia: a review of the contaminated sites.

    Science.gov (United States)

    Li, P; Feng, X B; Qiu, G L; Shang, L H; Li, Z G

    2009-09-15

    This article describes the mercury contaminated sites in Asia. Among the various regions, Asia has become the largest contributor of anthropogenic atmospheric mercury (Hg), responsible for over half of the global emission. Based on different emission source categories, the mercury contaminated sites in Asia were divided into various types, such as Hg pollution from Hg mining, gold mining, chemical industry, metal smelting, coal combustion, metropolitan cities, natural resources and agricultural sources. By the review of a large number of studies, serious Hg pollutions to the local environment were found in the area influenced by chemical industry, mercury mining and gold mining. With the probable effects of a unique combination of climatic (e.g. subtropical climate), environmental (e.g. acid rain), economic (e.g. swift growth) and social factors (e.g. high population density), more effort is still needed to understand the biogeochemistry cycle of Hg and associated health effects in Asia. Safer alternatives and cleaner technologies must be developed and effectively implemented to reduce mercury emission; remedial techniques are also required to restore the historical mercury pollution in Asia.

  6. Natural and anthropogenic hydrocarbon inputs to sediments of Patos Lagoon Estuary, Brazil.

    Science.gov (United States)

    Medeiros, Patricia Matheus; Bícego, Márcia Caruso; Castelao, Renato Menezes; Del Rosso, Clarissa; Fillmann, Gilberto; Zamboni, Ademilson Josemar

    2005-01-01

    The Patos Lagoon Estuary, southern Brazil, is an area of environmental interest not only because of tourism, but also because of the presence of the second major port of Brazil, with the related industrial and shipping activities. Thus, potential hydrocarbon pollution was examined in this study. Sediment samples were collected at 10 sites in the estuary, extracted, and analyzed by GC-FID and GC-MS for composition and concentration of the following organic geochemical markers: normal and isoprenoid alkanes, petroleum biomarkers, linear alkylbenzenes (LABs), and polycyclic aromatic hydrocarbons (PAHs). The total concentrations varied from 1.1 to 129.6 microg g(-1) for aliphatic hydrocarbons, from 17.8 to 4510.6 ng g(-1) for petroleum biomarkers, from 3.2 to 1601.9 ng g(-1) for LABs, and from 37.7 to 11,779.9 ng g(-1) for PAHs. Natural hydrocarbons were mainly derived from planktonic inputs due to a usual development of blooms in the estuary. Terrestrial plant wax compounds prevailed at sites located far from Rio Grande City and subject to stronger currents. Anthropogenic hydrocarbons are related to combustion/pyrolysis processes of fossil fuel, release of unburned oil products and domestic/industrial waste outfalls. Anthropogenic hydrocarbon inputs were more apparent at sites associated with industrial discharges (petroleum distributor and refinery), shipping activities (dry docking), and sewage outfalls (sewage). The overall concentrations of anthropogenic hydrocarbons revealed moderate to high hydrocarbon pollution in the study area.

  7. Cyanobacterial flora from polluted industrial effluents.

    Science.gov (United States)

    Parikh, Amit; Shah, Vishal; Madamwar, Datta

    2006-05-01

    Effluents originating from pesticides, agro-chemicals, textile dyes and dyestuffs industries are always associated with high turbidity, colour, nutrient load, and heavy metals, toxic and persistent compounds. But even with such an anthropogenic nature, these effluents contain dynamic cyanobacterial communities. Documentation of cyanobacterial cultures along the water channels of effluents discharged by above mentioned industries along the west coast of India and their relationship with water quality is reported in this study. Intensity of pollution was evaluated by physico-chemical analysis of water. Higher load of solids, carbon and nutrients were found to be persistent throughout the analysis. Sediment and water samples were found to be colored in nature. Cyanobacterial community structure was found to be influenced by the anthropogenic pollution. 40 different cyanobacterial species were recorded from 14 genera of 5 families and an elevated occurrence of Phormidium, Oscillatoria and Chroococcus genera was observed in all the sampling sites.

  8. Visual attention based detection of signs of anthropogenic activities in satellite imagery

    Energy Technology Data Exchange (ETDEWEB)

    Skurikhin, Alexei N [Los Alamos National Laboratory

    2010-10-13

    With increasing deployment of satellite imaging systems, only a small fraction of collected data can be subject to expert scrutiny. We present and evaluate a two-tier approach to broad area search for signs of anthropogenic activities in high-resolution commercial satellite imagery. The method filters image information using semantically oriented interest points by combining Harris corner detection and spatial pyramid matching. The idea is that anthropogenic structures, such as rooftop outlines, fence corners, road junctions, are locally arranged in specific angular relations to each other. They are often oriented at approximately right angles to each other (which is known as rectilinearity relation). Detecting the rectilinearity provides an opportunity to highlight regions most likely to contain anthropogenic activity. This is followed by supervised classification of regions surrounding the detected corner points as man-made vs. natural scenes. We consider, in particular, a search for anthropogenic activities in uncluttered areas. In this paper, we proposed and evaluated a two-tier approach to broad area search for signs of anthropogenic activities. Results from experiments on high-resolution ({approx}0.6m) commercial satellite image data showed the potential applicability of this approach and its ability of achieving both high precision and recall rates. The main advantage of combining corner-based cueing with general object recognition is that the incorporation of domain specific knowledge even in its more general form, such as presence of comers, provides a useful cue to narrow the focus of search for signs of anthropogenic activities. Combination of comer based cueing with spatial pyramid matching addressed the issue of comer categorization. An important practical issue for further research is optimizing the balance between false positive and false negative rates. While the results presented in the paper are encouraging, the problem of an automated broad area

  9. Lidar system for air-pollution monitoring over urban areas

    Science.gov (United States)

    Moskalenko, Irina V.; Shcheglov, Djolinard A.; Molodtsov, Nikolai A.

    1997-05-01

    The atmospheric environmental situation over the urban area of a large city is determined by a complex combination of anthropogenic pollution and meteorological factors. The efficient way to provide three-dimensional mapping of gaseous pollutants over wide areas is utilization of lidar systems employing tunable narrowband transmitters. The paper presented describes activity of RRC 'Kurchatov Institute' in the field of lidar atmospheric monitoring. The project 'mobile remote sensing system based on tunable laser transmitter for environmental monitoring' is developed under financial support of International Scientific and Technology Center (Moscow). The objective of the project is design, construction and field testing of a DIAL-technique system. The lidar transmitter consists of an excimer laser pumping dye laser, BBO crystal frequency doubler, and scanning flat mirror. Sulfur dioxide and atomic mercury have been selected as pollutants for field tests of the lidar system under development. A recent large increase in Moscow traffic stimulated taking into consideration also the remote sensing of lower troposphere ozone because of the photochemical smog problem. The status of the project is briefly discussed. The current activity includes also collecting of environmental data relevant to lidar remote sensing. Main attention is paid to pollutant concentration levels over Moscow city and Moscow district areas.

  10. Sediment bacterial community structures and their predicted functions implied the impacts from natural processes and anthropogenic activities in coastal area.

    Science.gov (United States)

    Su, Zhiguo; Dai, Tianjiao; Tang, Yushi; Tao, Yile; Huang, Bei; Mu, Qinglin; Wen, Donghui

    2018-06-01

    Coastal ecosystem structures and functions are changing under natural and anthropogenic influences. In this study, surface sediment samples were collected from disturbed zone (DZ), near estuary zone (NEZ), and far estuary zone (FEZ) of Hangzhou Bay, one of the most seriously polluted bays in China. The bacterial community structures and predicted functions varied significantly in different zones. Firmicutes were found most abundantly in DZ, highlighting the impacts of anthropogenic activities. Sediment total phosphorus was most influential on the bacterial community structures. Predicted by PICRUSt analysis, DZ significantly exceeded FEZ and NEZ in the subcategory of Xenobiotics Biodegradation and Metabolism; and DZ enriched all the nitrate reduction related genes, except nrfA gene. Seawater salinity and inorganic nitrogen, respectively as the representative natural and anthropogenic factor, performed exact-oppositely in nitrogen metabolism functions. The changes of bacterial community compositions and predicted functions provide a new insight into human-induced pollution impacts on coastal ecosystem. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. The importance of invertebrates when considering the impacts of anthropogenic noise.

    Science.gov (United States)

    Morley, Erica L; Jones, Gareth; Radford, Andrew N

    2014-02-07

    Anthropogenic noise is now recognized as a major global pollutant. Rapidly burgeoning research has identified impacts on individual behaviour and physiology through to community disruption. To date, however, there has been an almost exclusive focus on vertebrates. Not only does their central role in food webs and in fulfilling ecosystem services make imperative our understanding of how invertebrates are impacted by all aspects of environmental change, but also many of their inherent characteristics provide opportunities to overcome common issues with the current anthropogenic noise literature. Here, we begin by explaining why invertebrates are likely to be affected by anthropogenic noise, briefly reviewing their capacity for hearing and providing evidence that they are capable of evolutionary adaptation and behavioural plasticity in response to natural noise sources. We then discuss the importance of quantifying accurately and fully both auditory ability and noise content, emphasizing considerations of direct relevance to how invertebrates detect sounds. We showcase how studying invertebrates can help with the behavioural bias in the literature, the difficulties in drawing strong, ecologically valid conclusions and the need for studies on fitness impacts. Finally, we suggest avenues of future research using invertebrates that would advance our understanding of the impact of anthropogenic noise.

  12. Individual, population and community level effects of subtle anthropogenic contamination in estuarine meiobenthos

    International Nuclear Information System (INIS)

    Rubal, Marcos; Guilhermino, Lucia M.; Medina, Matias H.

    2009-01-01

    The study presented here searched for the level of taxonomic resolution required to detect the effects of low-level chronic pollution on estuarine meiobenthic communities. Meiofauna from two sites, with special attention to harpacticoid copepods, was analysed at different taxonomic levels of aggregation using uni- and multivariate methods. Adaptation processes that could buffer biodiversity disruptions were also considered through the analysis of fitness-related and tolerance traits in the harpacticoid copepod Paronychocamptus nanus. Results showed that uni- and multivariate analyses could be inadequate when assessing subtle anthropogenic contamination. Instead, the assessment of inter-population differences in tolerance to the main source of stress rises as a required procedure if potential effects of this type of contamination are being investigated. Specifically, a 96 h acute toxicity test performed with populations from the affected site appears as a faster and reliable general tool to assess impacts of low-level chronic pollution in estuaries. - Tolerance of local populations as a reliable tool to assess impacts of subtle anthropogenic contamination in estuaries.

  13. Individual, population and community level effects of subtle anthropogenic contamination in estuarine meiobenthos

    Energy Technology Data Exchange (ETDEWEB)

    Rubal, Marcos [CIIMAR/CIMAR-LA - Centro Interdisciplinar de Investigacao Marinha e Ambiental, Universidade do Porto, Laboratorio de Ecotoxicologia, Rua dos Bragas 289, 4050-123 Porto (Portugal); Guilhermino, Lucia M. [CIIMAR/CIMAR-LA - Centro Interdisciplinar de Investigacao Marinha e Ambiental, Universidade do Porto, Laboratorio de Ecotoxicologia, Rua dos Bragas 289, 4050-123 Porto (Portugal); ICBAS - Instituto de Ciencias Biomedicas de Abel Salazar, Departamento de Estudos de Populacoes, Laboratorio de Ecotoxicologia, Universidade do Porto, Lg. Prof. Abel Salazar 2, 4099-003 Porto (Portugal); Medina, Matias H., E-mail: matias.medina@avs-chile.c [AVS Chile SA, Imperial 0655, Off. 3A, Puerto Varas (Chile); Centro i-mar, Universidad de Los Lagos, Camino Chinquihue km 6, Puerto Montt (Chile)

    2009-10-15

    The study presented here searched for the level of taxonomic resolution required to detect the effects of low-level chronic pollution on estuarine meiobenthic communities. Meiofauna from two sites, with special attention to harpacticoid copepods, was analysed at different taxonomic levels of aggregation using uni- and multivariate methods. Adaptation processes that could buffer biodiversity disruptions were also considered through the analysis of fitness-related and tolerance traits in the harpacticoid copepod Paronychocamptus nanus. Results showed that uni- and multivariate analyses could be inadequate when assessing subtle anthropogenic contamination. Instead, the assessment of inter-population differences in tolerance to the main source of stress rises as a required procedure if potential effects of this type of contamination are being investigated. Specifically, a 96 h acute toxicity test performed with populations from the affected site appears as a faster and reliable general tool to assess impacts of low-level chronic pollution in estuaries. - Tolerance of local populations as a reliable tool to assess impacts of subtle anthropogenic contamination in estuaries.

  14. The '333' integrated strategy for effective pollution control and its application to the heavily polluted Jialu River in north China.

    Science.gov (United States)

    Huang, Yu; Sun, Jie; Li, Aimin; Xie, Xianchuan

    2018-05-01

    In this study, an integrated approach named the '333' strategy was applied to pollution control in the Jialu River, in northern China, which is heavily burdened with anthropogenic pollution. Due to a deficiency of the natural ecological inflow, the Jialu River receives predominantly industrial and municipal effluent. The '333' strategy is composed of three steps of pollution control including industrial point-source pollution control, advanced treatment of municipal wastewater, and ecological restoration; three increased stringency emission standards; and three stages of reclamation. Phase 1 of the '333' strategy focuses on industrial point-source pollution control; phase 2 aims to harness municipal wastewater and minimize sewage effluents using novel techniques for advanced water purification; phase 3 of the '333' strategy focuses on the further purification of effluents flowing into Jialu River with the employment of an engineering-based ecological restoration project. The application of the '333' strategy resulted in the development of novel techniques for water purification including modified magnetic resins (NDMP resin), a two-stage internal circulation anaerobic reactor (IC reactor) and an ecological restoration system. The results indicate that water quality in the river was significantly improved, with increased concentrations of dissolved oxygen (DO), as well as reduction of COD by 42.8% and NH 3 -N by 61.4%. In addition, it was observed that the total population of phytoplankton in treated river water notably increased from only one prior to restoration to 8 following restoration. This system also provides a tool for pollution control of other similar industrial and anthropogenic source polluted rivers.

  15. Using ensemble models to identify and apportion heavy metal pollution sources in agricultural soils on a local scale

    International Nuclear Information System (INIS)

    Wang, Qi; Xie, Zhiyi; Li, Fangbai

    2015-01-01

    This study aims to identify and apportion multi-source and multi-phase heavy metal pollution from natural and anthropogenic inputs using ensemble models that include stochastic gradient boosting (SGB) and random forest (RF) in agricultural soils on the local scale. The heavy metal pollution sources were quantitatively assessed, and the results illustrated the suitability of the ensemble models for the assessment of multi-source and multi-phase heavy metal pollution in agricultural soils on the local scale. The results of SGB and RF consistently demonstrated that anthropogenic sources contributed the most to the concentrations of Pb and Cd in agricultural soils in the study region and that SGB performed better than RF. - Highlights: • Ensemble models including stochastic gradient boosting and random forest are used. • The models were verified by cross-validation and SGB performed better than RF. • Heavy metal pollution sources on a local scale are identified and apportioned. • Models illustrate good suitability in assessing sources in local-scale agricultural soils. • Anthropogenic sources contributed most to soil Pb and Cd pollution in our case. - Multi-source and multi-phase pollution by heavy metals in agricultural soils on a local scale were identified and apportioned.

  16. Combined effects of road traffic noise and ambient air pollution in relation to risk for stroke?

    Science.gov (United States)

    Sørensen, Mette; Lühdorf, Pernille; Ketzel, Matthias; Andersen, Zorana J; Tjønneland, Anne; Overvad, Kim; Raaschou-Nielsen, Ole

    2014-08-01

    Exposure to road traffic noise and air pollution have both been associated with risk for stroke. The few studies including both exposures show inconsistent results. We aimed to investigate potential mutual confounding and combined effects between road traffic noise and air pollution in association with risk for stroke. In a population-based cohort of 57,053 people aged 50-64 years at enrollment, we identified 1999 incident stroke cases in national registries, followed by validation through medical records. Mean follow-up time was 11.2 years. Present and historical residential addresses from 1987 to 2009 were identified in national registers and road traffic noise and air pollution were modeled for all addresses. Analyses were done using Cox regression. A higher mean annual exposure at time of diagnosis of 10 µg/m(3) nitrogen dioxide (NO2) and 10 dB road traffic noise at the residential address was associated with ischemic stroke with incidence rate ratios (IRR) of 1.11 (95% CI: 1.03, 1.20) and 1.16 (95% CI: 1.07, 1.24), respectively, in single exposure models. In two-exposure models road traffic noise (IRR: 1.15) and not NO2 (IRR: 1.02) was associated with ischemic stroke. The strongest association was found for combination of high noise and high NO2 (IRR=1.28; 95% CI=1.09-1.52). Fatal stroke was positively associated with air pollution and not with traffic noise. In conclusion, in mutually adjusted models road traffic noise and not air pollution was associated ischemic stroke, while only air pollution affected risk for fatal strokes. There were indications of combined effects. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Air pollution engineering

    Science.gov (United States)

    Maduna, Karolina; Tomašić, Vesna

    2017-11-01

    Air pollution is an environmental and a social problem which leads to a multitude of adverse effects on human health and standard of human life, state of the ecosystems and global change of climate. Air pollutants are emitted from natural, but mostly from anthropogenic sources and may be transported over long distances. Some air pollutants are extremely stable in the atmosphere and may accumulate in the environment and in the food chain, affecting human beings, animals and natural biodiversity. Obviously, air pollution is a complex problem that poses multiple challenges in terms of management and abatements of the pollutants emission. Effective approach to the problems of air pollution requires a good understanding of the sources that cause it, knowledge of air quality status and future trends as well as its impact on humans and ecosystems. This chapter deals with the complexities of the air pollution and presents an overview of different technical processes and equipment for air pollution control, as well as basic principles of their work. The problems of air protection as well as protection of other ecosystems can be solved only by the coordinated endeavors of various scientific and engineering disciplines, such as chemistry, physics, biology, medicine, chemical engineering and social sciences. The most important engineering contribution is mostly focused on development, design and operation of equipment for the abatement of harmful emissions into environment.

  18. Organic pollution of rivers: Combined threats of urbanization, livestock farming and global climate change.

    Science.gov (United States)

    Wen, Yingrong; Schoups, Gerrit; van de Giesen, Nick

    2017-02-23

    Organic pollution of rivers by wastewater discharge from human activities negatively impacts people and ecosystems. Without treatment, pollution control relies on a combination of natural degradation and dilution by natural runoff to reduce downstream effects. We quantify here for the first time the global sanitation crisis through its impact on organic river pollution from the threats of (1) increasing wastewater discharge due to urbanization and intensification of livestock farming, and (2) reductions in river dilution capacity due to climate change and water extractions. Using in-stream Biochemical Oxygen Demand (BOD) as an overall indicator of organic river pollution, we calculate historical (2000) and future (2050) BOD concentrations in global river networks. Despite significant self-cleaning capacities of rivers, the number of people affected by organic pollution (BOD >5 mg/l) is projected to increase from 1.1 billion in 2000 to 2.5 billion in 2050. With developing countries disproportionately affected, our results point to a growing need for affordable wastewater solutions.

  19. Organic pollution of rivers: Combined threats of urbanization, livestock farming and global climate change

    Science.gov (United States)

    Wen, Yingrong; Schoups, Gerrit; van de Giesen, Nick

    2017-02-01

    Organic pollution of rivers by wastewater discharge from human activities negatively impacts people and ecosystems. Without treatment, pollution control relies on a combination of natural degradation and dilution by natural runoff to reduce downstream effects. We quantify here for the first time the global sanitation crisis through its impact on organic river pollution from the threats of (1) increasing wastewater discharge due to urbanization and intensification of livestock farming, and (2) reductions in river dilution capacity due to climate change and water extractions. Using in-stream Biochemical Oxygen Demand (BOD) as an overall indicator of organic river pollution, we calculate historical (2000) and future (2050) BOD concentrations in global river networks. Despite significant self-cleaning capacities of rivers, the number of people affected by organic pollution (BOD >5 mg/l) is projected to increase from 1.1 billion in 2000 to 2.5 billion in 2050. With developing countries disproportionately affected, our results point to a growing need for affordable wastewater solutions.

  20. Parasite responses to pollution: what we know and where we go in 'Environmental Parasitology'.

    Science.gov (United States)

    Sures, Bernd; Nachev, Milen; Selbach, Christian; Marcogliese, David J

    2017-02-06

    Environmental parasitology deals with the interactions between parasites and pollutants in the environment. Their sensitivity to pollutants and environmental disturbances makes many parasite taxa useful indicators of environmental health and anthropogenic impact. Over the last 20 years, three main research directions have been shown to be highly promising and relevant, namely parasites as accumulation indicators for selected pollutants, parasites as effect indicators, and the role of parasites interacting with established bioindicators. The current paper focuses on the potential use of parasites as indicators of environmental pollution and the interactions with their hosts. By reviewing some of the most recent findings in the field of environmental parasitology, we summarize the current state of the art and try to identify promising ideas for future research directions. In detail, we address the suitability of parasites as accumulation indicators and their possible application to demonstrate biological availability of pollutants; the role of parasites as pollutant sinks; the interaction between parasites and biomarkers focusing on combined effects of parasitism and pollution on the health of their hosts; and the use of parasites as indicators of contaminants and ecosystem health. Therefore, this review highlights the application of parasites as indicators at different biological scales, from the organismal to the ecosystem.

  1. Variability in metagenomic samples from the Puget Sound: Relationship to temporal and anthropogenic impacts.

    Directory of Open Access Journals (Sweden)

    James C Wallace

    Full Text Available Whole-metagenome sequencing (WMS has emerged as a powerful tool to assess potential public health risks in marine environments by measuring changes in microbial community structure and function in uncultured bacteria. In addition to monitoring public health risks such as antibiotic resistance determinants, it is essential to measure predictors of microbial variation in order to identify natural versus anthropogenic factors as well as to evaluate reproducibility of metagenomic measurements.This study expands our previous metagenomic characterization of Puget Sound by sampling new nearshore environments including the Duwamish River, an EPA superfund site, and the Hood Canal, an area characterized by highly variable oxygen levels. We also resampled a wastewater treatment plant, nearshore and open ocean sites introducing a longitudinal component measuring seasonal and locational variations and establishing metagenomics sampling reproducibility. Microbial composition from samples collected in the open sound were highly similar within the same season and location across different years, while nearshore samples revealed multi-fold seasonal variation in microbial composition and diversity. Comparisons with recently sequenced predominant marine bacterial genomes helped provide much greater species level taxonomic detail compared to our previous study. Antibiotic resistance determinants and pollution and detoxification indicators largely grouped by location showing minor seasonal differences. Metal resistance, oxidative stress and detoxification systems showed no increase in samples proximal to an EPA superfund site indicating a lack of ecosystem adaptation to anthropogenic impacts. Taxonomic analysis of common sewage influent families showed a surprising similarity between wastewater treatment plant and open sound samples suggesting a low-level but pervasive sewage influent signature in Puget Sound surface waters. Our study shows reproducibility of

  2. Air pollutants and the leaf cuticle. Proceedings

    International Nuclear Information System (INIS)

    Percy, K.E.; Jagels, R.; Simpson, C.J.

    1994-01-01

    The leaf surface forms the interface between plants and a deteriorating atmospheric environment. It is, therefore, the first point of contact between plants and air pollutants and presents an effective barrier to pollutant entry. Outermost surfaces of leaves are covered by a thin, lipoidal, non-living membrane called a cuticle. Cuticle integrity is essential to plant survival and has many essential functions, including the prevention of excessive water loss, regulation of solute uptake and protection of sensitive underlying photosynthetic tissues against harmful irradiation such as enhanced UV-B resulting from stratospheric ozone depletion. The physicochemical properties of the cuticle vary greatly between and within species. They are known to be sensitive to change through natural and anthropogenic influences. This book comprises contributions made to a NATO-sponsored Advanced Research Workshop ''Air Pollutants and the Leaf Cuticle'' held October 4-9, 1993 in Fredericton, New Brunswick, Canada. The objective of the ARW was to bring together for the first time international expertise on the subject of air pollutant interactions with the cuticle. In order to facilitate a state-of-science review, the ARW was structured around four themes. They were as follows: 1. Cuticular physicochemical characteristics, physiological, regulatory, and protective roles. 2. Effects, mechanisms, and consequences of air pollutant interaction with leaf cuticles. 3. Non-anthropogenic and environmental influences on the cuticle and potential of the cuticle for biomonitoring and critical levels mapping. 4. New developments in experimental methodology and analytical techniques. (orig./vhe)

  3. Environmental costs of mercury pollution

    Energy Technology Data Exchange (ETDEWEB)

    Hylander, Lars D. [Department of Earth Sciences, Air and Water Science, Uppsala University, Villavaegen 16, S-752 36 Uppsala (Sweden); Goodsite, Michael E. [Department of Chemistry, Environmental Chemistry Research Group, University of Southern Denmark, Campusvej 55, DK-5230 Odense M (Denmark)

    2006-09-01

    Mercury (Hg) has been used for millennia in many applications, primarily in artisanal mining and as an electrode in the chlor-alkali industry. It is anthropogenically emitted as a pollutant from coal fired power plants and naturally emitted, primarily from volcanoes. Its unique chemical characteristics enable global atmospheric transport and it is deposited after various processes, ultimately ending up in one of its final sinks, such as incorporated into deep sediment or bioaccumulated, primarily in the marine environment. All forms of Hg have been established as toxic, and there have been no noted biological benefits from the metal. Throughout time, there have been notable incidents of Hg intoxication documented, and the negative health effects have been documented to those chronically or acutely exposed. Today, exposure to Hg is largely diet or occupationally dependent, however, many are exposed to Hg from their amalgam fillings. This paper puts a tentative monetary value on Hg polluted food sources in the Arctic, where local, significant pollution sources are limited, and relates this to costs for strategies avoiding Hg pollution and to remediation costs of contaminated sites in Sweden and Japan. The case studies are compiled to help policy makers and the public to evaluate whether the benefits to the global environment from banning Hg and limiting its initial emission outweigh the benefits from its continued use or lack of control of Hg emissions. The cases we studied are relevant for point pollution sources globally and their remediation costs ranged between 2500 and 1.1 million US$ kg{sup -1} Hg isolated from the biosphere. Therefore, regulations discontinuing mercury uses combined with extensive flue gas cleaning for all power plants and waste incinerators is cost effective. (author)

  4. Exploring the planetary boundary for chemical pollution.

    Science.gov (United States)

    Diamond, Miriam L; de Wit, Cynthia A; Molander, Sverker; Scheringer, Martin; Backhaus, Thomas; Lohmann, Rainer; Arvidsson, Rickard; Bergman, Åke; Hauschild, Michael; Holoubek, Ivan; Persson, Linn; Suzuki, Noriyuki; Vighi, Marco; Zetzsch, Cornelius

    2015-05-01

    Rockström et al. (2009a, 2009b) have warned that humanity must reduce anthropogenic impacts defined by nine planetary boundaries if "unacceptable global change" is to be avoided. Chemical pollution was identified as one of those boundaries for which continued impacts could erode the resilience of ecosystems and humanity. The central concept of the planetary boundary (or boundaries) for chemical pollution (PBCP or PBCPs) is that the Earth has a finite assimilative capacity for chemical pollution, which includes persistent, as well as readily degradable chemicals released at local to regional scales, which in aggregate threaten ecosystem and human viability. The PBCP allows humanity to explicitly address the increasingly global aspects of chemical pollution throughout a chemical's life cycle and the need for a global response of internationally coordinated control measures. We submit that sufficient evidence shows stresses on ecosystem and human health at local to global scales, suggesting that conditions are transgressing the safe operating space delimited by a PBCP. As such, current local to global pollution control measures are insufficient. However, while the PBCP is an important conceptual step forward, at this point single or multiple PBCPs are challenging to operationalize due to the extremely large number of commercial chemicals or mixtures of chemicals that cause myriad adverse effects to innumerable species and ecosystems, and the complex linkages between emissions, environmental concentrations, exposures and adverse effects. As well, the normative nature of a PBCP presents challenges of negotiating pollution limits amongst societal groups with differing viewpoints. Thus, a combination of approaches is recommended as follows: develop indicators of chemical pollution, for both control and response variables, that will aid in quantifying a PBCP(s) and gauging progress towards reducing chemical pollution; develop new technologies and technical and social

  5. Monitoring and inventorying of the pollutant emissions from thermal power plants

    International Nuclear Information System (INIS)

    Vladescu, Gherghina; Iordache, Daniela; Iordache, Victorita; Ciomaga, Carmencita; Matei, Magdalena; Ilie, Ion; Motiu, Cornel

    2001-01-01

    Pollution due to emissions discharged in atmosphere as a result of human (anthropogenic) activities and the related environmental effects, such as acid depositions, land quality degradation, global warming/climate changes, building degradation, ozone layer depletion required the monitoring and inventorying of the polluting emissions at the local, regional and global levels. The paper briefly presents the international requirements concerning the development of a polluting emission inventory, the European methodologies for air polluting emission inventorying, programs and methodologies used in the Romanian electricity production sector for inventorying the polluting emissions and calculation of the dispersion of the pollutants discharged in the atmosphere. (author)

  6. The transformation of vegetation vertical zonality affected by anthropogenic impact in East Fennoscandia (Russia)

    Science.gov (United States)

    Sidorik, Vadim; Miulgauzen, Daria

    2017-04-01

    Ecosystems of East Fennoscandia have been affected by intensive anthropogenic influence that resulted in their significant transformation. Study of ecosystems in the framework of vegetation vertical zonality disturbance as well as its recovery allows to understand the trends of anthropogenically induced changes. The aim of the present research is the comparative analysis of vegetation vertical zonality of the two uplands in East Fennoscandia which may be considered as unaffected and affected by anthropogenic impact. The objects of key studies carried out in the north-west of Kola Peninsula in the vicinity of the Pechenganikel Mining and Metallurgical Plant are represented by ecosystems of Kalkupya (h 357 m) and Hangaslachdenvara (h 284 m) uplands. They are characterized by the similarity in sequence of altitudinal belts due to the position on the northern taiga - forest-tundra boundary. Plant communities of Kalkupya upland have no visible signs of anthropogenic influence, therefore, they can be considered as model ecosystems of the area. The sequence of altitudinal belts is the following: - up to 200 m - pine subshrub and green moss ("zonal") forest replaced by mixed pine and birch forest near the upper boundary; - 200-300 m - birch crooked subshrub wood; - above 300 m - tundra subshrub and lichen communities. Ecosystems of Hangaslachdenvara upland have been damaged by air pollution (SO2, Ni, Cu emissions) of the Pechenganikel Plant. This impact has led to plant community suppression and formation of barren lands. Besides the soil cover was significantly disturbed, especially upper horizons. Burying of soil profiles, represented by Podzols (WRB, 2015), also manifested itself in the exploited part of the area. The vegetation cover of Hangaslachdenvara upland is the following: - up to 130 m - birch and aspen subshrub and grass forest instead of pine forest ("zonal"); - 130-200 m - barren lands instead of pine forest ("zonal"); - above 200 m - barren lands instead of

  7. Marine chemistry of energy-related pollutants. Iron-55 phenomenon

    International Nuclear Information System (INIS)

    Crecelius, E.A.; Robertson, D.E.; Abel, K.H.

    1981-01-01

    These programs are designed to increase understanding of the biogeochemical and physical processes that control the fate of energy-generated pollutants that enter the marine environment. This research provides an understanding of (1) the natural origins, distributions and concentrations in baseline data of trace metals and other contaminants in the oceans; (2) the input rates and mixing rates of pollutants introduced to the oceans; (3) the behavior and fate of the anthropogenic pollutants entering the oceans from the atmosphere and the continents; and (4) provides an assessment of the potential environmental impact of energy-generated pollutants on the marine environment

  8. Sediment pollution of the Elbe River side structures - current research

    Science.gov (United States)

    Chalupova, Dagmar; Janský, Bohumír

    2016-04-01

    The contribution brings the summarized results of a long-term research on sediment pollution of side structures of the Elbe River over the last 14 years. The investigation has been focused on old anthropogenic pollution of sediment cores taken from fluvial lakes and floodplain, as the sampling of deeper sediments outside the riverbed is not a part of systematic monitoring of sediment pollution of the Elbe. The Elbe River floodplain has been influenced by human activities since the Middle Ages, but the main anthropogenic pollution have been produced in the 20th century. The studied localities were chosen with the respect to the distance from the source of industrial pollution, the intensity of hydrological communication with the river and the surrounding landuse to determine the extend and the level of anthropogenic contamination in the Elbe River floodplain ecosystem. Apart from bathymetric measurements, observation of the hydrological regime in several fluvial lakes or water quality sampling at some localities, the research was focused above all on determination of metal concentrations (Ag, Cd, Cr, Cu, Fe, Hg, Mn, Pb, Zn) in all taken sediment cores, specific organic compounds (PCBs, DDT, HCH, HCB, PAHs etc.), total organic carbon at some localities and grain structure analyses. The data were also compared with the results of systematic sediment monitoring from the nearest riverbed sampling stations on the Elbe River. The highest concentrations of metals and specific organic compounds were determined in the sediments taken from fluvial lakes and floodplain (Zimní přístav PARAMO, Rosice fuvial Lake, Libiš pool etc.) situated in the vicinity of the main Elbe River polluters - Synthesia chemical plant and PARAMO refinery in Pardubice or Spolana chemical plant near Neratovice. However, there was also determined a significant role of the hydrological communication with the river proved with lower sediment pollution in separated localities. The realization of the

  9. Structure of the macrozoobenthos as an indicator of different types of pollution in running waters

    Directory of Open Access Journals (Sweden)

    Simić Vladica M.

    2002-01-01

    Full Text Available Hydrobiological research on streams with different dominant forms of pollution (anthropogenic eutrophication, organic pollution, toxic pollution, trans-saprobic pollution in the central part of the Balkan Peninsula (territory of Serbia and Montenegro indicates that these different forms of pollution can be detected on the basis of structure of the macrozoobenthos community and individual indicator taxa. It is established from the obtained results that the greatest community diversity occurs in the case of anthropogenic eutrophication or weak organic pollution as a dominant process, where phytophilous and/or detritophagic forms (Cloeon, Polypedilum, Asellus, Stylaria, Erpobdella, Gammarus are dominant in the community. In the cases of very strong organic pollution, the macrozoobenthos community is characterized by mass development of certain taxa of the group Oligochaeta (Tubificidae and Chironomidae larvae {Chironomus gr. thummi. Depending on the strength and contribution of organic, toxic, and/or transsaprobic components, toxic pollution and mixed pollution arc characterized by a more or less heterogeneous and nonspecific population. However, a common feature is the presence of a small number of taxa with populations of a relatively low density, or the occurrence of individual specimens belonging to different groups of animals.

  10. Hybrid technologies for the remediation of Diesel fuel polluted soil

    Energy Technology Data Exchange (ETDEWEB)

    Pazos, M.; Alcantara, M.T.; Rosales, E.; Sanroman, M.A. [Department of Chemical Engineering, University of Vigo (Spain)

    2011-12-15

    Diesel fuel may be released into soil due to anthropogenic activities, such as accidental spills or leaks in underground storage tanks or pipelines. Since diesel fuel is mainly composed of hydrophobic organic compounds, it has low water solubility. Therefore, treating contaminated areas with conventional techniques is difficult. In this study, electrokinetic treatment of soil contaminated with diesel fuel was carried out. Two different hybrid approaches to pollutant removal were tested. A surfactant was used as a processing fluid during electrokinetic treatment to increase desorption and the solubility of diesel fuel. Additionally, a hybrid technology combining a Fenton reaction and electrokinetic remediation (EK-Fenton) was tested in an attempt to generate favorable in situ degradation of pollutants. The efficiency of each treatment was determined based on diesel fuel removal. After 30 days of treatment, the highest removal of diesel fuel was found to be achieved with the EK-Fenton process. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. EMISSION OF POLLUTANTS FROM COMBINED SEWER OVERFLOWS IN THE ASPECT OF THEIR IMPACT ON A RECEIVER

    Directory of Open Access Journals (Sweden)

    Agnieszka Brzezińska

    2016-06-01

    Full Text Available Increased efficiency of wastewater treatment highlights the role of combined sewer overflows in deterioration the quality of water receiver because pollutant loads discharged by them have a growing share in entire load discharged into a receiver. The article contains the results of the wastewater quality analyzes emitted into the receiver from the three studied combined sewer overflows of the city of Lodz. The results demonstrated a large variations in the pollutant concentration directed to the receiver during rain events. The possible impact of untreated wastewater emitted to the receiver is also presented. Apart from the pollution of the receiver, mainly by organic and nutrient substances, the microbiological contamination which is dangerous for people using the river as a recreation area and for animals that use a water receiver as a source of drinking water, should be taken into particular attention.

  12. Continental scale Antarctic deposition of sulphur and black carbon from anthropogenic and volcanic sources

    Directory of Open Access Journals (Sweden)

    H.-F. Graf

    2010-03-01

    Full Text Available While Antarctica is often described as a pristine environment, there is an increasing awareness of the potential threats from local pollution sources including tourist ships and emissions associated with scientific activities. However, to date there has been no systematic attempt to model the impacts of such pollutants at the continental scale. Indeed, until very recently there was not even a sulphur emission budget available for Antarctica. Here we present the first comprehensive study of atmospheric pollution in Antarctica using a limited area chemistry climate model, and a monthly emissions inventory for sulphur from maintenance of research stations, ground and air traffic, shipping and the active Erebus volcano. We find that ship emissions, both sulphurous and black carbon, dominate anthropogenic pollution near the ground. Their prevalence is likely to rise dramatically if recent trends in tourism continue.

  13. Source apportionment of atmospheric mercury pollution in China using the GEOS-Chem model

    International Nuclear Information System (INIS)

    Wang, Long; Wang, Shuxiao; Zhang, Lei; Wang, Yuxuan; Zhang, Yanxu; Nielsen, Chris; McElroy, Michael B.; Hao, Jiming

    2014-01-01

    China is the largest atmospheric mercury (Hg) emitter in the world. Its Hg emissions and environmental impacts need to be evaluated. In this study, China's Hg emission inventory is updated to 2007 and applied in the GEOS-Chem model to simulate the Hg concentrations and depositions in China. Results indicate that simulations agree well with observed background Hg concentrations. The anthropogenic sources contributed 35–50% of THg concentration and 50–70% of total deposition in polluted regions. Sensitivity analysis was performed to assess the impacts of mercury emissions from power plants, non-ferrous metal smelters and cement plants. It is found that power plants are the most important emission sources in the North China, the Yangtze River Delta (YRD) and the Pearl River Delta (PRD) while the contribution of non-ferrous metal smelters is most significant in the Southwest China. The impacts of cement plants are significant in the YRD, PRD and Central China. - Highlights: • China's anthropogenic mercury emission was 643.1 t in 2007. • GEOS-Chem model well reproduces the background Hg concentrations. • Anthropogenic emissions contribute 35–50% of Hg concentrations in polluted regions. • The priorities for mercury control in polluted regions are identified. - Anthropogenic Hg emissions are updated and their impacts on atmospheric mercury concentrations and depositions are quantified for China

  14. Potential sensitivity of photosynthesis and isoprene emission to direct radiative effects of atmospheric aerosol pollution

    Science.gov (United States)

    Strada, Susanna; Unger, Nadine

    2016-04-01

    A global Earth system model is applied to quantify the impacts of direct anthropogenic aerosol effective radiative forcing on gross primary productivity (GPP) and isoprene emission. The impacts of different pollution aerosol sources (anthropogenic, biomass burning, and non-biomass burning) are investigated by performing sensitivity experiments. The model framework includes all known light and meteorological responses of photosynthesis, but uses fixed canopy structures and phenology. On a global scale, our results show that global land carbon fluxes (GPP and isoprene emission) are not sensitive to pollution aerosols, even under a global decline in surface solar radiation (direct + diffuse) by ˜ 9 %. At a regional scale, GPP and isoprene emission show a robust but opposite sensitivity to pollution aerosols in regions where forested canopies dominate. In eastern North America and Eurasia, anthropogenic pollution aerosols (mainly from non-biomass burning sources) enhance GPP by +5-8 % on an annual average. In the northwestern Amazon Basin and central Africa, biomass burning aerosols increase GPP by +2-5 % on an annual average, with a peak in the northwestern Amazon Basin during the dry-fire season (+5-8 %). The prevailing mechanism varies across regions: light scattering dominates in eastern North America, while a reduction in direct radiation dominates in Europe and China. Aerosol-induced GPP productivity increases in the Amazon and central Africa include an additional positive feedback from reduced canopy temperatures in response to increases in canopy conductance. In Eurasia and northeastern China, anthropogenic pollution aerosols drive a decrease in isoprene emission of -2 to -12 % on an annual average. Future research needs to incorporate the indirect effects of aerosols and possible feedbacks from dynamic carbon allocation and phenology.

  15. Satellite data based approach for the estimation of anthropogenic heat flux over urban areas

    Science.gov (United States)

    Nitis, Theodoros; Tsegas, George; Moussiopoulos, Nicolas; Gounaridis, Dimitrios; Bliziotis, Dimitrios

    2017-09-01

    Anthropogenic effects in urban areas influence the thermal conditions in the environment and cause an increase of the atmospheric temperature. The cities are sources of heat and pollution, affecting the thermal structure of the atmosphere above them which results to the urban heat island effect. In order to analyze the urban heat island mechanism, it is important to estimate the anthropogenic heat flux which has a considerable impact on the urban energy budget. The anthropogenic heat flux is the result of man-made activities (i.e. traffic, industrial processes, heating/cooling) and thermal releases from the human body. Many studies have underlined the importance of the Anthropogenic Heat Flux to the calculation of the urban energy budget and subsequently, the estimation of mesoscale meteorological fields over urban areas. Therefore, spatially disaggregated anthropogenic heat flux data, at local and city scales, are of major importance for mesoscale meteorological models. The main objectives of the present work are to improve the quality of such data used as input for mesoscale meteorological models simulations and to enhance the application potential of GIS and remote sensing in the fields of climatology and meteorology. For this reason, the Urban Energy Budget concept is proposed as the foundation for an accurate determination of the anthropogenic heat discharge as a residual term in the surface energy balance. The methodology is applied to the cities of Athens and Paris using the Landsat ETM+ remote sensing data. The results will help to improve our knowledge on Anthropogenic Heat Flux, while the potential for further improvement of the methodology is also discussed.

  16. China's international trade and air pollution in the United States.

    Science.gov (United States)

    Lin, Jintai; Pan, Da; Davis, Steven J; Zhang, Qiang; He, Kebin; Wang, Can; Streets, David G; Wuebbles, Donald J; Guan, Dabo

    2014-02-04

    China is the world's largest emitter of anthropogenic air pollutants, and measurable amounts of Chinese pollution are transported via the atmosphere to other countries, including the United States. However, a large fraction of Chinese emissions is due to manufacture of goods for foreign consumption. Here, we analyze the impacts of trade-related Chinese air pollutant emissions on the global atmospheric environment, linking an economic-emission analysis and atmospheric chemical transport modeling. We find that in 2006, 36% of anthropogenic sulfur dioxide, 27% of nitrogen oxides, 22% of carbon monoxide, and 17% of black carbon emitted in China were associated with production of goods for export. For each of these pollutants, about 21% of export-related Chinese emissions were attributed to China-to-US export. Atmospheric modeling shows that transport of the export-related Chinese pollution contributed 3-10% of annual mean surface sulfate concentrations and 0.5-1.5% of ozone over the western United States in 2006. This Chinese pollution also resulted in one extra day or more of noncompliance with the US ozone standard in 2006 over the Los Angeles area and many regions in the eastern United States. On a daily basis, the export-related Chinese pollution contributed, at a maximum, 12-24% of sulfate concentrations over the western United States. As the United States outsourced manufacturing to China, sulfate pollution in 2006 increased in the western United States but decreased in the eastern United States, reflecting the competing effect between enhanced transport of Chinese pollution and reduced US emissions. Our findings are relevant to international efforts to reduce transboundary air pollution.

  17. Leaf wettability as a measure of air pollution effects

    International Nuclear Information System (INIS)

    Jagels, R.

    1994-01-01

    Droplet contact angle (DCA) is a technique that can be used to measure wettability and, in turn, provide an assessment of the physical and chemical characteristics of a surface. As adapted to plant bioligy, DCA measurements have been useful in characterizing changes in the type or condition of leaf epicuticular waxes. Environmental as well as temporal factors can modify the biophysical features of epicuticular wax surfaces and thereby affect DCA measurements. An understanding of the role of these non-pollutant factors is necessary before pollution damage can be accurately assessed. Controlled chamber experiments and field pollutant gradient studies have shown that DCA is generally reduced when plants are exposed to air pollutants such as ozone, So 2 , and acidic fog. In some cases, environmental influences, such as temperature, have been separated from the pollutant effect. However, mixtures of anthropogenic pollutants or anthropogenic and natural compounds (sea salts, dust particles) which are often present in field studies can confound the interpretation of DCA measurements. A few studies that attempt to separate these factors have been conducted, but more are needed before the potential for using DCA measurements in long-term bioindicator studies can be fully realized. Some studies have demonstrated that pollutants do not necessarily affect leaf surfaces in a uniform pattern, but rather are specific for certain structures such as stomates or trichomes; deposition levels can also be different on ad-and abaxial surfaces. The degree to which these inhomogeneities of action can affect DCA measurements needs further study. (orig.)

  18. Antibiotic resistance marker genes as environmental pollutants in GMO-pristine agricultural soils in Austria

    International Nuclear Information System (INIS)

    Woegerbauer, Markus; Zeinzinger, Josef; Gottsberger, Richard Alexander; Pascher, Kathrin; Hufnagl, Peter; Indra, Alexander; Fuchs, Reinhard; Hofrichter, Johannes; Kopacka, Ian; Korschineck, Irina

    2015-01-01

    Antibiotic resistance genes may be considered as environmental pollutants if anthropogenic emission and manipulations increase their prevalence above usually occurring background levels. The prevalence of aph(3′)-IIa/nptII and aph(3′)-IIIa/nptIII – frequent marker genes in plant biotechnology conferring resistance to certain aminoglycosides – was determined in Austrian soils from 100 maize and potato fields not yet exposed to but eligible for GMO crop cultivation. Total soil DNA extracts were analysed by nptII/nptIII-specific TaqMan real time PCR. Of all fields 6% were positive for nptII (median: 150 copies/g soil; range: 31–856) and 85% for nptIII (1190 copies/g soil; 13–61600). The copy-number deduced prevalence of nptIII carriers was 14-fold higher compared to nptII. Of the cultivable kanamycin-resistant soil bacteria 1.8% (95% confidence interval: 0–3.3%) were positive for nptIII, none for nptII (0–0.8%). The nptII-load of the studied soils was low rendering nptII a typical candidate as environmental pollutant upon anthropogenic release into these ecosystems. - Highlights: • ARM genes may act as environmental pollutants under certain conditions. • Vital criteria for rating are low endemic presence and anthropogenic ARG immission. • Agricultural soils were rarely positive for nptII with few gene copy numbers. • Most fields were nptIII positive with variable but also increased allele frequency. • NptII/III qualify as pollutants in the tested settings with low endemic abundances. - ARM genes may be considered as environmental pollutants if anthropogenic activities raise their abundance above naturally occurring background levels in exposed ecosystems.

  19. Anthropogenic heavy metals in the environment of Eurasian Arctic Nature Reserves

    Science.gov (United States)

    Vinogradova, Anna; Ivanova, Yulia; Karpov, Alexey

    2014-05-01

    The Russian Arctic Nature Reserves are situated far from the main industrial regions. In spite of this, there are anthropogenic constituents (for example, heavy metals - HM) in the environmental objects (air, water, etc.) and in food chains (plants, birds, and so on). We studied the long-range atmospheric transport of some heavy metals (such as nickel, copper, lead, arsenic, and so on) to four Nature Reserves situated near the shore of the Arctic Ocean - in the Deltas of the Pechora River (Nenets reserve), the Ob River (Gydansky reserve), the Lena River (Ust-Lensky reserve), and at Wrangel Island. The air mass trajectories to each reserve were calculated with the help of the site (www.arl.noaa.gov/ready) for each day of January, April, July, and October for the period of 2001-2010. Analyzing the spatial distributions of these trajectories we studied seasonal variations in air transport of pollution to different Russian Arctic points. Modeling the HM transport in the atmosphere was as in [1]. The main assumption is that HM are transported with submicron aerosol particles. The annual source emissions for the last decade are generalized from the data published by Roshydromet of Russia (http://www.nii-atmosphere.ru/files/PUBL/Eg_2008.doc). The main important source-regions were found for each point. Mean anthropogenic HM concentrations in air and precipitations, as well as HM fluxes onto the surface were estimated at different arctic regions. The spatial distributions of so called "potential function of pollution" were calculated and presented on the maps. These results allow to analyze the role of a real pollution source or of a planned source for each reserve. So, the influence of northern oil and gas industry may be of great importance because of its proximity to the reserves under investigation. The work was partly supported by RFBR, grant No. 14-05-00059. Authors thank the NOAA service for possibility to use their data and products. ________________ 1. Vinogradova

  20. Air pollution

    International Nuclear Information System (INIS)

    Nelson, P.

    2000-01-01

    Australian cites experience a number of current and emerging air pollution problems. Concentrations of traditional primary pollutants such as CO, lead and dust have fallen in recent years as a consequence of air pollutant control measures, and the widespread introduction of lead-free petrol. However, recommended guidelines for ozone, the principal component of photochemical smog, are regularly exceeded in major capital cities in the summer months. In addition, it is predicted that extensive urban expansion will lead to much greater dependence on the motor vehicle as the primary means of transportation. Effects of air pollution are felt at a variety of scales. Traditionally, concerns about gaseous and particulate emissions from industrial and vehicular sources were focused on local impacts due to exposure to toxic species such as CO and lead. As noted above, concentrations of these pollutants have been reduced by a variety of control measures. Pollutants which have effects at a regional scale, such as photochemically-produced ozone, and acidic gases and particles have proved more difficult to reduce. In general, these pollutants arc not the result of direct emissions to atmosphere, but result from complex secondary processes driven by photochemical reactions of species such as NO 2 and aldehydes. In addition, global effects of gaseous and particulate emissions to the atmosphere have received significant recent attention, concentrations of atmospheric CO 2 with predicted impacts on global climate, and ozone depletion due to anthropogenic emissions of chlorine-containing chemicals are the two major examples. Combustion processes from petrol- and diesel-fuelled vehicles, make major contributions to air pollution, and the magnitude of this contribution is discussed in this article

  1. Indicating anthropogenic effectson urban water system - indicators and extension

    Science.gov (United States)

    Strauch, G.; Ufz-Team

    2003-04-01

    Urban water systems are polluted by diffusive and direct contribution of anthropogenic activities. Besides industrial contaminants like aromatic and chlorinated HC and other persistent organic compounds, the urban aquatic environment is increasingly polluted by low concentrated but high eco-toxic compounds as pharmaceuticals, fragrances, plasticizers which most have disrupt endocrine functions, and trace elements carried in by surface and sub-surface waste water and seeping processes. This contamination could have a longtime impact on the urban ecosystem and on the human health. The interdisciplinary project on risk assessment of water pollution was initiated to explore new methodologies for assessing human activities on the urban water system and processes among urban watersheds. In a first assumption we used a flow model concept with in- and output and surface water transport represented by the city of Halle, Germany, and the river Saale. The river Saale acts as surface water system collecting waste water inputs along the city traverse. We investigated the anthropogenic effect on the urban water system using the indicators hydrological parameters, compound specific pattern of complex organic substances and trace elements, isotopic signatures of water (H, O) and dissolved substances (sulfate, DIC, nitrate), pathogens, and microbiota. A first balance modeling showed that main ions are not very sensitive concerning the direct urban input into the river. Depending on the discharge of the river in high and low flood stages the load of dissolved matter has no specific urban effect. However, the concentration pattern of fragrances (tonalid, galaxolid) and endocrine disrupters (t-nonylphenol) point to a different pollution along the city traverse: downstream of the sewage plant a higher load was observed in comparison to the upstream passage. Furthermore, a degradation ability of fungi and bacteria occurred in the bank sediments could be detected in lab experiments

  2. Light-mediated 15N fractionation in Caribbean gorgonian octocorals: implications for pollution monitoring

    Science.gov (United States)

    Baker, D. M.; Kim, K.; Andras, J. P.; Sparks, J. P.

    2011-09-01

    The stable nitrogen isotope ratio ( δ 15N) of coral tissue is a useful recorder of anthropogenic pollution in tropical marine ecosystems. However, little is known of the natural environmentally induced fractionations that affect our interpretation of coral δ 15N values. In symbiotic scleractinians, light affects metabolic fractionation of N during photosynthesis, which may confound the identification of N pollution between sites of varied depth or turbidity. Given the superiority of octocorals for δ 15N studies, our goal was to quantify the effect of light on gorgonian δ 15N in the context of monitoring N pollution sources. Using field collections, we show that δ 15N declined by 1.4‰ over 20 m depth in two species of gorgonians, the common sea fan, Gorgonia ventalina, and the slimy sea plume, Pseudopterogorgia americana. An 8-week laboratory experiment with P. americana showed that light, not temperature causes this variation, whereby the lowest fractionation of the N source was observed in the highest light treatment. Finally, we used a yearlong reciprocal depth transplant experiment to quantify the time frame over which δ 15N changes in G. ventalina as a function of light regime . Over the year, δ 15N was unchanged and increased slightly in the deep control colonies and shallow colonies transplanted to the deep site, respectively. Within 6 months, colonies transplanted from deep to shallow became enriched by 0.8‰, mirroring the enrichment observed in the shallow controls, which was likely due to the combined effect of an increase in the source δ 15N and reduced fractionation. We conclude that light affects gorgonian δ 15N fractionation and should be considered in sampling designs for N pollution monitoring. However, these fractionations are small relative to differences observed between natural and anthropogenic N sources.

  3. Interrogating pollution sources in a mangrove food web using multiple stable isotopes.

    Science.gov (United States)

    Souza, Iara da C; Arrivabene, Hiulana P; Craig, Carol-Ann; Midwood, Andrew J; Thornton, Barry; Matsumoto, Silvia T; Elliott, Michael; Wunderlin, Daniel A; Monferrán, Magdalena V; Fernandes, Marisa N

    2018-06-01

    Anthropogenic activities including metal contamination create well-known problems in coastal mangrove ecosystems but understanding and linking specific pollution sources to distinct trophic levels within these environments is challenging. This study evaluated anthropogenic impacts on two contrasting mangrove food webs, by using stable isotopes (δ 13 C, δ 15 N, 87 Sr/ 86 Sr, 206 Pb/ 207 Pb and 208 Pb/ 207 Pb) measured in sediments, mangrove trees (Rhizophora mangle, Laguncularia racemosa, Avicennia schaueriana), plankton, shrimps (Macrobranchium sp.), crabs (Aratus sp.), oysters (Crassostrea rhizophorae) and fish (Centropomus parallelus) from both areas. Strontium and Pb isotopes were also analysed in water and atmospheric particulate matter (PM). δ 15 N indicated that crab, shrimp and oyster are at intermediate levels within the local food web and fish, in this case C. parallelus, was confirmed at the highest trophic level. δ 15 N also indicates different anthropogenic pressures between both estuaries; Vitória Bay, close to intensive human activities, showed higher δ 15 N across the food web, apparently influenced by sewage. The ratio 87 Sr/ 86 Sr showed the primary influence of marine water throughout the entire food web. Pb isotope ratios suggest that PM is primarily influenced by metallurgical activities, with some secondary influence on mangrove plants and crabs sampled in the area adjacent to the smelting works. To our knowledge, this is the first demonstration of the effect of anthropogenic pollution (probable sewage pollution) on the isotopic fingerprint of estuarine-mangrove systems located close to a city compared to less impacted estuarine mangroves. The influence of industrial metallurgical activity detected using Pb isotopic analysis of PM and mangrove plants close to such an impacted area is also notable and illustrates the value of isotopic analysis in tracing the impact and species affected by atmospheric pollution. Copyright © 2018 Elsevier B

  4. Anthropogenic signatures of lead in the Northeast Atlantic

    NARCIS (Netherlands)

    Rusiecka, D.; Gledhill, M.; Milne, A.; Achterberg, E.P.; Annett, A.L.; Atkinson, S.; Birchill, A.; Karstensen, J.; Lohan, M.; Mariez, C.; Middag, R.; Rolison, J.M.; Tanhua, T.; Ussher, S.; Connelly, D.

    2018-01-01

    Anthropogenic activities have resulted in enhanced lead (Pb) emissions to the environment over the past century, mainly through the combustion of leaded gasoline. Here we present the first combined dissolved (DPb), labile (LpPb), and particulate (PPb) Pb data set from the Northeast Atlantic (Celtic

  5. The quantification and distribution of pollution Pb at a woodland in rural south central Ontario, Canada

    International Nuclear Information System (INIS)

    Watmough, Shaun A.; Hutchinson, Thomas C.

    2004-01-01

    Lead concentrations and Pb isotope ratios were measured in the forest floor, mineral soil and vegetation at a white pine and a sugar maple stand in a woodland in south central Ontario. Lead concentrations decreased and 206 Pb/ 207 Pb ratios increased with mineral soil depth reflecting the mixing of pollution and natural Pb sources. Lead concentrations and 206 Pb/ 207 Pb ratios at 20-30 cm depth were ∼6-7 mg/kg and 1.31-1.32, respectively. Assuming an integrated 206 Pb/ 207 Pb ratio in deposition over time of 1.18, estimated from lichen measurements and published data for the region, approximately 65% of Pb in the surface (0-1 cm) mineral soil is from anthropogenic sources. Approximately 90% of pollution Pb is found in the 0-10 cm soil layer (Ah) and less than 3% of the pollution Pb is present in the forest biomass and mull-type forest floor combined. Despite low Pb concentrations in vegetation ( 2 , respectively. - The distribution of pollution lead was determined at a woodland through the use of stable leads isotopes

  6. Neutron activation analysis for study of distribution patterns of organo-halogen pollutants in apple

    International Nuclear Information System (INIS)

    Zhang Hong; Luo Jialing; Sun Huibin; Chai Zhifang; Chinese Academy of Sciences, Beijing

    2007-01-01

    The distribution characteristics of organo-halogens in apple and their sources were studied by neutron activation analysis combined with statistical analysis. The results indicated that concentrations of organo-halogens in apple were in the order of organo-chlorine >> organo-bromine > organo-iodine, and concentrations of the organo-chlorine in four parts of apple were in the order of seed >> peel >> endocarp ≥ pulp. Also, the organo-chlorine, -bromine and-iodine in apple were found to have different sources. The latter two were mainly from naturally synthetic products by plant itself, while the former was mainly from anthropogenic pollutants. (authors)

  7. Regional Air Pollutions in Three Different Regions of Asia From a Transcontinental Transport Perspective

    Science.gov (United States)

    Pochanart, P.; Kanaya, Y.; Komazaki, Y.; Liu, Y.; Akimoto, H.

    2007-12-01

    Asia is known as one of the regions with the fastest rate of growing in industrialization and urbanization. As a result, the rapid increases of large-scale air pollution in Asia emerge as a serious concern at both domestic and international levels. Apart from the problems of air quality degradation, emission control, environmental risk, and health effect in a domestic level, evidences from scientific studies indicate that by the long-range transport, Asian air pollution is becoming a global problem. Observations and model studies confirm that air pollution from Asia could be transported to North America or farther. In this work, we investigate the Asian air pollutions, in particular ozone and some other atmospheric components such as carbon monoxide and black carbon, from the ground- based observations in the three different regions, namely 1) background region of Siberia and central Asia, 2) highly anthropogenic region in eastern China, and 3) the rim region of the Asia-Pacific. In a transcontinental transport perspective, these regions are regarded as the inflow region, source region, and outflow region of Asia, respectively. From the results, it is found that the influences from large-scale emission in East Asia are observed clearly in the source region, and to the significant extent in the outflow region. For the inflow region of Asia, our data in Siberia and Kyrgyzstan indicate that air masses in this region are mostly intact from large-scale anthropogenic emission, and remain much of the global background atmospheric pollution characteristic. When the air masses are transported to source region, the air pollutants level increased sharply and frequent episodes of extremely high pollutions have been observed. Our results show good correlation between the residence time of air masses over the source region in eastern China and the observed levels of air pollutants verifying the strong enhancements by anthropogenic emissions from industrialization and

  8. Emission inventory of anthropogenic air pollutants and VOC species in the Yangtze River Delta region, China

    Directory of Open Access Journals (Sweden)

    C. Huang

    2011-05-01

    Full Text Available The purpose of this study is to develop an emission inventory for major anthropogenic air pollutants and VOC species in the Yangtze River Delta (YRD region for the year 2007. A "bottom-up" methodology was adopted to compile the inventory based on major emission sources in the sixteen cities of this region. Results show that the emissions of SO2, NOx, CO, PM10, PM2.5, VOCs, and NH3 in the YRD region for the year 2007 are 2392 kt, 2293 kt, 6697 kt, 3116 kt, 1511 kt, 2767 kt, and 459 kt, respectively. Ethylene, mp-xylene, o-xylene, toluene, 1,2,4-trimethylbenzene, 2,4-dimethylpentane, ethyl benzene, propylene, 1-pentene, and isoprene are the key species contributing 77 % to the total ozone formation potential (OFP. The spatial distribution of the emissions shows the emissions and OFPs are mainly concentrated in the urban and industrial areas along the Yangtze River and around Hangzhou Bay. The industrial sources, including power plants other fuel combustion facilities, and non-combustion processes contribute about 97 %, 86 %, 89 %, 91 %, and 69 % of the total SO2, NOx, PM10, PM2.5, and VOC emissions. Vehicles take up 12.3 % and 12.4 % of the NOx and VOC emissions, respectively. Regarding OFPs, the chemical industry, domestic use of paint & printing, and gasoline vehicles contribute 38 %, 24 %, and 12 % to the ozone formation in the YRD region.

  9. Chemical composition of anthropogenic particles on needles collected close to the Estonian oil-shale power plants

    International Nuclear Information System (INIS)

    Meinander, O.

    1995-01-01

    Within the countries surrounding the Baltic Sea, north-eastern Estonia is among the most polluted areas. Emissions from the oil-shale power plants produce air pollution problems both locally and on a larger scale. In the atmosphere, pollutants mix and convert. Consequently, the particles deposited due to the use of oil-shale can have various chemical compositions. From the point of view of air chemistry, ecological effects and air pollution modelling, knowledge of the chemical composition of the deposited particles can be of great value. The aim of this work was to study the chemical composition of single anthropogenic particles occurring on needle surfaces in north-eastern Estonia and Southern Finland close to the Estonian oil-shale power plants. For the purpose, scanning electron microscopical microanalysis was used

  10. Evaluation of heavy metals pollution of Nokoue Lake

    African Journals Online (AJOL)

    use

    African Journal of Environmental Science and Technology Vol. 5(3), pp. 255-261, March ... Key words: Nokoue Lake, pollution, heavy metal, texture. INTRODUCTION ... certain anthropogenic trace metals released by industries and domestic .... storage on ice, complete filling containers, use of plastic materials for storage ...

  11. Exploring feedbacks between air pollution and climate policy

    NARCIS (Netherlands)

    Chuwah, C.D.

    2015-01-01

    The climate of the Earth is changing in response to natural and anthropogenic forcing agents. Emissions of greenhouse gases and air pollutants have led to significant changes in the Earth’s climate systems and projections indicate that further extensive changes are likely. Increased scientific

  12. Effects of pollutant accumulation by the invasive weed saltcedar (Tamarix ramosissima) on the biological control agent Diorhabda elongata (Coleoptera: Chrysomelidae).

    Science.gov (United States)

    Sorensen, Mary A; Parker, David R; Trumble, John T

    2009-02-01

    Hydroponic greenhouse studies were used to investigate the effect of four anthropogenic pollutants (perchlorate (ClO4(-)), selenium (Se), manganese (Mn), and hexavalent chromium (Cr (VI))) on the biological control agent Diorhabda elongata Brullé. Contaminant concentrations were quantified for experimental Tamarix ramosissima Ledab. plants and D. elongata beetles. Growth of larvae was significantly reduced by Se contamination, but was not affected by the presence of perchlorate, Mn, or Cr (VI). All of the contaminants were transferred from plants to D. elongata beetles. Only Cr (VI) was accumulated at greater levels in beetles than in their food. Because T. ramosissima grows in disturbed areas, acquires salts readily, and utilizes groundwater, this plant is likely to accumulate anthropogenic pollutants in contaminated areas. This study is one of the first to investigate the potential of an anthropogenic pollutant to influence a weed biological control system.

  13. Potential sensitivity of photosynthesis and isoprene emission to direct radiative effects of atmospheric aerosol pollution

    Directory of Open Access Journals (Sweden)

    S. Strada

    2016-04-01

    Full Text Available A global Earth system model is applied to quantify the impacts of direct anthropogenic aerosol effective radiative forcing on gross primary productivity (GPP and isoprene emission. The impacts of different pollution aerosol sources (anthropogenic, biomass burning, and non-biomass burning are investigated by performing sensitivity experiments. The model framework includes all known light and meteorological responses of photosynthesis, but uses fixed canopy structures and phenology. On a global scale, our results show that global land carbon fluxes (GPP and isoprene emission are not sensitive to pollution aerosols, even under a global decline in surface solar radiation (direct + diffuse by  ∼ 9 %. At a regional scale, GPP and isoprene emission show a robust but opposite sensitivity to pollution aerosols in regions where forested canopies dominate. In eastern North America and Eurasia, anthropogenic pollution aerosols (mainly from non-biomass burning sources enhance GPP by +5–8 % on an annual average. In the northwestern Amazon Basin and central Africa, biomass burning aerosols increase GPP by +2–5 % on an annual average, with a peak in the northwestern Amazon Basin during the dry-fire season (+5–8 %. The prevailing mechanism varies across regions: light scattering dominates in eastern North America, while a reduction in direct radiation dominates in Europe and China. Aerosol-induced GPP productivity increases in the Amazon and central Africa include an additional positive feedback from reduced canopy temperatures in response to increases in canopy conductance. In Eurasia and northeastern China, anthropogenic pollution aerosols drive a decrease in isoprene emission of −2 to −12 % on an annual average. Future research needs to incorporate the indirect effects of aerosols and possible feedbacks from dynamic carbon allocation and phenology.

  14. China’s international trade and air pollution in the United States

    Science.gov (United States)

    Lin, Jintai; Pan, Da; Davis, Steven J.; Zhang, Qiang; He, Kebin; Wang, Can; Streets, David G.; Wuebbles, Donald J.; Guan, Dabo

    2014-01-01

    China is the world’s largest emitter of anthropogenic air pollutants, and measurable amounts of Chinese pollution are transported via the atmosphere to other countries, including the United States. However, a large fraction of Chinese emissions is due to manufacture of goods for foreign consumption. Here, we analyze the impacts of trade-related Chinese air pollutant emissions on the global atmospheric environment, linking an economic-emission analysis and atmospheric chemical transport modeling. We find that in 2006, 36% of anthropogenic sulfur dioxide, 27% of nitrogen oxides, 22% of carbon monoxide, and 17% of black carbon emitted in China were associated with production of goods for export. For each of these pollutants, about 21% of export-related Chinese emissions were attributed to China-to-US export. Atmospheric modeling shows that transport of the export-related Chinese pollution contributed 3–10% of annual mean surface sulfate concentrations and 0.5–1.5% of ozone over the western United States in 2006. This Chinese pollution also resulted in one extra day or more of noncompliance with the US ozone standard in 2006 over the Los Angeles area and many regions in the eastern United States. On a daily basis, the export-related Chinese pollution contributed, at a maximum, 12–24% of sulfate concentrations over the western United States. As the United States outsourced manufacturing to China, sulfate pollution in 2006 increased in the western United States but decreased in the eastern United States, reflecting the competing effect between enhanced transport of Chinese pollution and reduced US emissions. Our findings are relevant to international efforts to reduce transboundary air pollution. PMID:24449863

  15. Natural and anthropogenic mercury sources and their impact on the air-surface exchange of mercury on regional and global scales

    Energy Technology Data Exchange (ETDEWEB)

    Ebinghaus, R.; Tripathi, R.M.; Wallschlaeger, D.; Lindberg, S.E.

    1998-12-31

    Mercury is outstanding among the global environmental pollutants of continuing concern. Especially in the last decade of the 20th century, environmental scientists, legislators, politicians and the public have become aware of mercury pollution in the global environment. It has often been suggested that anthropogenic emissions are leading to a general increase in mercury on local, regional, and global scales (Lindqvist et al. 1991; Expert Panel 1994). Mercury is emitted into the atmosphere from a number of natural as well as anthropogenic sources. In contrast with most of the other heavy metals, mercury and many of its compounds behave exceptionally in the environment due to their volatility and capability for methylation. Long-range atmospheric transport of mercury, its transformation to more toxic methylmercury compounds, and their bioaccumulation in the aquatic foodchain have motivated intensive research on mercury as a pollutant of global concern. Mercury takes part in a number of complex environmental cycles, and special interest is focused on the aquatic-biological and the atmospheric cycles. (orig./SR)

  16. Natural and anthropogenic mercury sources and their impact on the air-surface exchange of mercury on regional and global scales

    Energy Technology Data Exchange (ETDEWEB)

    Ebinghaus, R; Tripathi, R M; Wallschlaeger, D; Lindberg, S E

    1999-12-31

    Mercury is outstanding among the global environmental pollutants of continuing concern. Especially in the last decade of the 20th century, environmental scientists, legislators, politicians and the public have become aware of mercury pollution in the global environment. It has often been suggested that anthropogenic emissions are leading to a general increase in mercury on local, regional, and global scales (Lindqvist et al. 1991; Expert Panel 1994). Mercury is emitted into the atmosphere from a number of natural as well as anthropogenic sources. In contrast with most of the other heavy metals, mercury and many of its compounds behave exceptionally in the environment due to their volatility and capability for methylation. Long-range atmospheric transport of mercury, its transformation to more toxic methylmercury compounds, and their bioaccumulation in the aquatic foodchain have motivated intensive research on mercury as a pollutant of global concern. Mercury takes part in a number of complex environmental cycles, and special interest is focused on the aquatic-biological and the atmospheric cycles. (orig./SR)

  17. Phthalate pollution in an Amazonian rainforest.

    Science.gov (United States)

    Lenoir, Alain; Boulay, Raphaël; Dejean, Alain; Touchard, Axel; Cuvillier-Hot, Virginie

    2016-08-01

    Phthalates are ubiquitous contaminants and endocrine-disrupting chemicals that can become trapped in the cuticles of insects, including ants which were recognized as good bioindicators for such pollution. Because phthalates have been noted in developed countries and because they also have been found in the Arctic, a region isolated from direct anthropogenic influence, we hypothesized that they are widespread. So, we looked for their presence on the cuticle of ants gathered from isolated areas of the Amazonian rainforest and along an anthropogenic gradient of pollution (rainforest vs. road sides vs. cities in French Guiana). Phthalate pollution (mainly di(2-ethylhexyl) phthalate (DEHP)) was higher on ants gathered in cities and along road sides than on those collected in the pristine rainforest, indicating that it follows a human-mediated gradient of disturbance related to the use of plastics and many other products that contain phthalates in urban zones. Their presence varied with the ant species; the cuticle of Solenopsis saevissima traps higher amount of phthalates than that of compared species. However, the presence of phthalates in isolated areas of pristine rainforests suggests that they are associated both with atmospheric particles and in gaseous form and are transported over long distances by wind, resulting in a worldwide diffusion. These findings suggest that there is no such thing as a "pristine" zone.

  18. Impact of air pollution in deterioration of carbonate building materials in Italian urban environments

    International Nuclear Information System (INIS)

    Barca, Donatella; Comite, Valeria; Belfiore, Cristina M.; Bonazza, Alessandra; La Russa, Mauro F.; Ruffolo, Silvestro A.; Crisci, Gino M.; Pezzino, Antonino; Sabbioni, Cristina

    2014-01-01

    Highlights: • Geochemical study of black crusts developed on three monuments located in Milan, Florence and Rome. • Trace element composition of the black crusts is greatly influenced by anthropogenic pollution. • Geochemical characterization of black crusts can be used as a reliable indicator of environmental pollution. - Abstract: This work presents results from a petrographic, morphological and chemical study of the black crusts developing on monuments in three Italian cities, the Cathedral of Milan, the Cathedral of St. Maria del Fiore in Florence, and the Vittoriano Monument in Rome. Black crusts (BCs) were studied with traditional techniques such as optical microscopy (OM), scanning electron microscopy coupled with energy-dispersive X-ray spectrometry (SEM-EDS) and infrared spectroscopic techniques (FT-IR), in combination with laser ablation inductively coupled mass spectrometry (LA-ICP-MS), which has shown itself to be particularly useful in determining concentrations of heavy metals in BCs. Although the BCs of the three monuments show general enrichment in heavy metals with respect to the substrate (S), interesting differences were observed among them. The BCs from Milan are the richest in heavy metals, particularly Pb and Zn, reflecting the severe air pollution of this very large city, which, in addition to its intense traffic, is located in the most highly industrialized area of Northern Italy. The BCs from the south-eastern side of the Cathedral of St. Maria del Fiore in Florence, facing a pedestrian area, show little enrichment in heavy metals, and those from the Vittoriano Monument in Rome, which is exposed to intense road traffic, display variable enrichment, attributable to mobile emission sources. Results show that the various enrichment trends in heavy metals observed in the BCs of these three monuments are due to many factors: various sources of anthropogenic pollution, sampling height, exposure, orientation, and the shape of the deposition

  19. Cardiovascular effects of the combined exposure to noise and outdoor air pollution: A review

    NARCIS (Netherlands)

    Lekaviciute, J.; Kluizenaar, Y. de; Laszlo, H.E.; Hansell, A.; Floud, S.; Lercher, P.; Babisch, W.; Kephalopoulos, S.

    2012-01-01

    The combination of noise with other environmental stressors, particularly traffic-related air pollution, has been of growing interest in recent years. Cardiovascular effects are among the most evidence-based physical health outcomes. Moreover, the European Network on Noise and Health (ENNAH), which

  20. Functional evaluation of pollutant transformation in sediment from combined sewer system.

    Science.gov (United States)

    Shi, Xuan; Ngo, Huu Hao; Sang, Langtao; Jin, Pengkang; Wang, Xiaochang C; Wang, Guanghua

    2018-07-01

    In this study, a pilot combined sewer system was constructed to characterize the pollutant transformation in sewer sediment. The results showed that particulate contaminants deposited from sewage could be transformed into dissolved matter by distinct pollutant transformation pathways. Although the oxidation-reduction potential (ORP) was varied from -80 mV to -340 mV in different region of the sediment, the fermentation was the dominant process in all regions of the sediment, which induced hydrolysis and decomposition of particulate contaminants. As a result, the accumulation of dissolved organic matter and the variation of ORP values along the sediment depth led to the depth-dependent reproduction characteristics of methanogens and sulfate-reducing bacteria, which were existed in the middle and deep layer of the sediment respectively. However, the diversity of nitrifying and polyphosphate-accumulating bacteria was low in sewer sediment and those microbial communities showed a non-significant correlation with nitrogen and phosphorus contaminants, which indicated that the enrichment of nitrogen and phosphorus contaminants was mainly caused by physical deposition process. Thus, this study proposed a promising pathway to evaluate pollutant transformation and can help provide theoretical foundation for urban sewer improvement. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Impacts of air pollution and climate change on forest ecosystems - emerging research needs

    Science.gov (United States)

    Elena Paoletti; Bytnerowicz; Chris Andersen; Algirdas Augustaitis; Marco Ferretti; Nancy Grulke; Madeleine S. Gunthardt-goerg; John Innes; Dale Johnson; Dave Karnosky; Jessada Luangjame; Rainer Matyssek; Steven McNulty; Gerhard Muller-Starck; Robert Musselman; Kevin Percy

    2007-01-01

    Outcomes from the 22nd meeting for Specialists in Air Pollution Effects on Forest Ecosystems "Forests under Anthropogenic Pressure – Effects of Air Pollution, Climate Change and Urban Development", September 10–16, 2006, Riverside, CA, are summarized. Tropospheric or ground-level ozone (O3) is still the phytotoxic...

  2. Population-production-pollution nexus based air pollution management model for alleviating the atmospheric crisis in Beijing, China.

    Science.gov (United States)

    Zeng, X T; Tong, Y F; Cui, L; Kong, X M; Sheng, Y N; Chen, L; Li, Y P

    2017-07-15

    In recent years, increscent emissions in the city of Beijing due to expanded population, accelerated industrialization and inter-regional pollutant transportation have led to hazardous atmospheric pollution issues. Although a number of anthropogenic control measures have been put into use, frequent/severe haze events have still challenged regional governments. In this study, a hybrid population-production-pollution nexus model (PPP) is proposed for air pollution management and air quality planning (AMP) with the aim to coordinate human activities and environmental protection. A fuzzy-stochastic mixed quadratic programming method (FSQ) is developed and introduced into a PPP for tackling atmospheric pollution issues with uncertainties. Based on the contribution of an index of population-production-pollution, a hybrid PPP-based AMP model that considers employment structure, industrial layout pattern, production mode, pollutant purification efficiency and a pollution mitigation scheme have been applied in Beijing. Results of the adjustment of employment structure, pollution mitigation scheme, and green gross domestic product under various environmental regulation scenarios are obtained and analyzed. This study can facilitate the identification of optimized policies for alleviating population-production-emission conflict in the study region, as well as ameliorating the hazardous air pollution crisis at an urban level. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Source attribution and interannual variability of Arctic pollution in spring constrained by aircraft (ARCTAS, ARCPAC and satellite (AIRS observations of carbon monoxide

    Directory of Open Access Journals (Sweden)

    J. A. Fisher

    2010-02-01

    Full Text Available We use aircraft observations of carbon monoxide (CO from the NASA ARCTAS and NOAA ARCPAC campaigns in April 2008 together with multiyear (2003–2008 CO satellite data from the AIRS instrument and a global chemical transport model (GEOS-Chem to better understand the sources, transport, and interannual variability of pollution in the Arctic in spring. Model simulation of the aircraft data gives best estimates of CO emissions in April 2008 of 26 Tg month−1 for Asian anthropogenic, 9.4 for European anthropogenic, 4.1 for North American anthropogenic, 15 for Russian biomass burning (anomalously large that year, and 23 for Southeast Asian biomass burning. We find that Asian anthropogenic emissions are the dominant source of Arctic CO pollution everywhere except in surface air where European anthropogenic emissions are of similar importance. Russian biomass burning makes little contribution to mean CO (reflecting the long CO lifetime but makes a large contribution to CO variability in the form of combustion plumes. Analysis of two pollution events sampled by the aircraft demonstrates that AIRS can successfully observe pollution transport to the Arctic in the mid-troposphere. The 2003–2008 record of CO from AIRS shows that interannual variability averaged over the Arctic cap is very small. AIRS CO columns over Alaska are highly correlated with the Ocean Niño Index, suggesting a link between El Niño and Asian pollution transport to the Arctic. AIRS shows lower-than-average CO columns over Alaska during April 2008, despite the Russian fires, due to a weakened Aleutian Low hindering transport from Asia and associated with the moderate 2007–2008 La Niña. This suggests that Asian pollution influence over the Arctic may be particularly large under strong El Niño conditions.

  4. Impacts of air pollutants from fire and non-fire emissions on the regional air quality in Southeast Asia

    Science.gov (United States)

    Lee, Hsiang-He; Iraqui, Oussama; Gu, Yefu; Hung-Lam Yim, Steve; Chulakadabba, Apisada; Yiu-Ming Tonks, Adam; Yang, Zhengyu; Wang, Chien

    2018-05-01

    Severe haze events in Southeast Asia caused by particulate pollution have become more intense and frequent in recent years. Widespread biomass burning occurrences and particulate pollutants from human activities other than biomass burning play important roles in degrading air quality in Southeast Asia. In this study, numerical simulations have been conducted using the Weather Research and Forecasting (WRF) model coupled with a chemistry component (WRF-Chem) to quantitatively examine the contributions of aerosols emitted from fire (i.e., biomass burning) versus non-fire (including fossil fuel combustion, and road dust, etc.) sources to the degradation of air quality and visibility over Southeast Asia. These simulations cover a time period from 2002 to 2008 and are driven by emissions from (a) fossil fuel burning only, (b) biomass burning only, and (c) both fossil fuel and biomass burning. The model results reveal that 39 % of observed low-visibility days (LVDs) can be explained by either fossil fuel burning or biomass burning emissions alone, a further 20 % by fossil fuel burning alone, a further 8 % by biomass burning alone, and a further 5 % by a combination of fossil fuel burning and biomass burning. Analysis of an 24 h PM2.5 air quality index (AQI) indicates that the case with coexisting fire and non-fire PM2.5 can substantially increase the chance of AQI being in the moderate or unhealthy pollution level from 23 to 34 %. The premature mortality in major Southeast Asian cities due to degradation of air quality by particulate pollutants is estimated to increase from ˜ 4110 per year in 2002 to ˜ 6540 per year in 2008. In addition, we demonstrate the importance of certain missing non-fire anthropogenic aerosol sources including anthropogenic fugitive and industrial dusts in causing urban air quality degradation. An experiment of using machine learning algorithms to forecast the occurrence of haze events in Singapore is also explored in this study. All of these

  5. Impacts of air pollutants from fire and non-fire emissions on the regional air quality in Southeast Asia

    Directory of Open Access Journals (Sweden)

    H.-H. Lee

    2018-05-01

    Full Text Available Severe haze events in Southeast Asia caused by particulate pollution have become more intense and frequent in recent years. Widespread biomass burning occurrences and particulate pollutants from human activities other than biomass burning play important roles in degrading air quality in Southeast Asia. In this study, numerical simulations have been conducted using the Weather Research and Forecasting (WRF model coupled with a chemistry component (WRF-Chem to quantitatively examine the contributions of aerosols emitted from fire (i.e., biomass burning versus non-fire (including fossil fuel combustion, and road dust, etc. sources to the degradation of air quality and visibility over Southeast Asia. These simulations cover a time period from 2002 to 2008 and are driven by emissions from (a fossil fuel burning only, (b biomass burning only, and (c both fossil fuel and biomass burning. The model results reveal that 39 % of observed low-visibility days (LVDs can be explained by either fossil fuel burning or biomass burning emissions alone, a further 20 % by fossil fuel burning alone, a further 8 % by biomass burning alone, and a further 5 % by a combination of fossil fuel burning and biomass burning. Analysis of an 24 h PM2.5 air quality index (AQI indicates that the case with coexisting fire and non-fire PM2.5 can substantially increase the chance of AQI being in the moderate or unhealthy pollution level from 23 to 34 %. The premature mortality in major Southeast Asian cities due to degradation of air quality by particulate pollutants is estimated to increase from  ∼  4110 per year in 2002 to  ∼  6540 per year in 2008. In addition, we demonstrate the importance of certain missing non-fire anthropogenic aerosol sources including anthropogenic fugitive and industrial dusts in causing urban air quality degradation. An experiment of using machine learning algorithms to forecast the occurrence of haze events in Singapore is

  6. Natural and anthropogenic hydrocarbons in the Antarctic pack ice

    International Nuclear Information System (INIS)

    Nemirovskaya, I.A.; Novigatsky, A.N.

    2004-01-01

    A field experiment was conducted near the Russian Antarctic stations in May, 2001 in the Pridz Bay and coastal part of the Davies Sea to examine the content of dissolved and suspended forms of aliphatic hydrocarbons in melted snow samples, pack ice and ice cores. The site included clean control areas and polluted test areas. A spill was performed by covering the bare ice surface with marine diesel fuel. The different physical characteristics of clean and polluted ice were measured. This included radiation balance, reflected solar radiation, integral albedo radiation, surface temperature, seawater temperature, salinity at depth, and ice salinity. The study showed that accumulation of natural and anthropogenic hydrocarbon took place in the ice-water barrier zone, mostly in suspended form. It was concluded that for oil spills in pack Antarctic ice, the mechanism of filtration due to convection-diffusion plays an important role in the transformation of diesel fuel. 14 refs., 2 tabs., 2 figs

  7. River under anthropogenic stress: An isotope study of carbon cycling in the Vistula, Poland

    International Nuclear Information System (INIS)

    Wachniew, P.; Rozanski, K.

    2002-01-01

    Rivers play an important role in global carbon cycling as they transform and transport substantial amounts of carbon derived from the terrestrial systems to the oceans. Riverine carbon cycling is affected by anthropogenic influences on hydrology, chemistry and biology of the river and its catchment. The Vistula, one of the most mineralized rivers of the world, drains industrialized and agriculturally-used areas populated by almost 23 million inhabitants. Moreover, much of the industrial and domestic wastewaters discharged into the Vistula river are untreated or insufficiently treated. High levels of pollution have serious environmental and economical consequences. For example, they limit use of Vistula waters as a source of drinking water and for industrial purposes. Pollutants transported by the Vistula river significantly influence water quality far into the open Baltic Sea. The aim of the paper is to show how stable isotope techniques can be used to assess human impact on sources, fluxes and fate of dissolved inorganic carbon (DIC) and other pollutants in rivers, taking the Vistula river as an example. Vistula waters were sampled over a one-year period at Krakow (upper reaches), where the anthropogenic influences are at the extreme, and at the river mouth. Two campaigns were undertaken to sample the Vistula river along its course in summer and in autumn. Analyses of river water included temperature, pH, alkalinity, conductivity, dissolved oxygen, δ 13 C of dissolved inorganic carbon and stable isotope composition of water (δ 18 O and δ 2 H)

  8. Effects of atmospheric transport and trade on air pollution mortality in China

    Science.gov (United States)

    Zhao, Hongyan; Li, Xin; Zhang, Qiang; Jiang, Xujia; Lin, Jintai; Peters, Glen P.; Li, Meng; Geng, Guannan; Zheng, Bo; Huo, Hong; Zhang, Lin; Wang, Haikun; Davis, Steven J.; He, Kebin

    2017-09-01

    Air quality is a major environmental concern in China, where premature deaths due to air pollution have exceeded 1 million people per year in recent years. Here, using a novel coupling of economic, physical and epidemiological models, we estimate the premature mortality related to anthropogenic outdoor PM2.5 air pollution in seven regions of China in 2010 and show for the first time how the distribution of these deaths in China is determined by a combination of economic activities and physical transport of pollution in the atmosphere. We find that 33 % (338 600 premature deaths) of China's PM2.5-related premature mortality in 2010 were caused by pollutants emitted in a different region of the country and transported in the atmosphere, especially from north to south and from east to west. Trade further extended the cross-regional impact; 56 % of (568 900 premature deaths) China's PM2.5-related premature mortality was related to consumption in another region, including 423 800 (42 % of total) and 145 100 (14 %) premature deaths from domestic consumption and international trade respectively. Our results indicate that multilateral and multi-stage cooperation under a regional sustainable development framework is in urgent need to mitigate air pollution and related health impacts, and efforts to reduce the health impacts of air pollution in China should be prioritized according to the source and location of emissions, the type and economic value of the emitting activities, and the related patterns of consumption.

  9. Future air pollution in the Shared Socio-economic Pathways

    NARCIS (Netherlands)

    Rao, Shilpa; Klimont, Zbigniew; Smith, Steven J.; Van Dingenen, Rita; Dentener, Frank; Bouwman, Lex|info:eu-repo/dai/nl/090428048; Riahi, Keywan; Amann, Markus; Bodirsky, Benjamin Leon; van Vuuren, Detlef P.|info:eu-repo/dai/nl/11522016X; Aleluia Reis, Lara; Calvin, Katherine; Drouet, Laurent; Fricko, Oliver; Fujimori, Shinichiro; Gernaat, David|info:eu-repo/dai/nl/372664636; Havlik, Petr; Harmsen, Mathijs|info:eu-repo/dai/nl/374336520; Hasegawa, Tomoko; Heyes, Chris; Hilaire, Jérôme; Luderer, Gunnar; Masui, Toshihiko; Stehfest, Elke; Strefler, Jessica; van der Sluis, Sietske; Tavoni, Massimo

    Abstract Emissions of air pollutants such as sulfur and nitrogen oxides and particulates have significant health impacts as well as effects on natural and anthropogenic ecosystems. These same emissions also can change atmospheric chemistry and the planetary energy balance, thereby impacting global

  10. Detecting anthropogenic climate change with an optimal fingerprint method

    International Nuclear Information System (INIS)

    Hegerl, G.C.; Storch, H. von; Hasselmann, K.; Santer, B.D.; Jones, P.D.

    1994-01-01

    We propose a general fingerprint strategy to detect anthropogenic climate change and present application to near surface temperature trends. An expected time-space-variable pattern of anthropogenic climate change (the 'signal') is identified through application of an appropriate optimally matched space-time filter (the 'fingerprint') to the observations. The signal and the fingerprint are represented in a space with sufficient observed and simulated data. The signal pattern is derived from a model-generated prediction of anthropogenic climate change. Application of the fingerprint filter to the data yields a scalar detection variable. The statistically optimal fingerprint is obtained by weighting the model-predicted pattern towards low-noise directions. A combination of model output and observations is used to estimate the noise characteristics of the detection variable, arising from the natural variability of climate in the absence of external forcing. We test then the null hypothesis that the observed climate change is part of natural climate variability. We conclude that a statistically significant externally induced warming has been observed, with the caveat of a possibly inadequate estimate of the internal climate variability. In order to attribute this warming uniquely to anthropogenic greenhouse gas forcing, more information on the climate's response to other forcing mechanisms (e.g. changes in solar radiation, volcanic or anthropogenic aerosols) and their interaction is needed. (orig./KW)

  11. Bacteriological pollution indicators in Ogun River flowing through ...

    African Journals Online (AJOL)

    Water resources are significant part of integrated community development policy and good health. Hence, the need to reduce the impact of natural and anthropogenic pollution causes so as to enhance water quality. The bacteriological quality of the Ogun River was investigated to determine the sanitary conditions of the ...

  12. Earliest evidence of pollution by heavy metals in archaeological sites.

    Science.gov (United States)

    Monge, Guadalupe; Jimenez-Espejo, Francisco J; García-Alix, Antonio; Martínez-Ruiz, Francisca; Mattielli, Nadine; Finlayson, Clive; Ohkouchi, Naohiko; Sánchez, Miguel Cortés; de Castro, Jose María Bermúdez; Blasco, Ruth; Rosell, Jordi; Carrión, José; Rodríguez-Vidal, Joaquín; Finlayson, Geraldine

    2015-09-21

    Homo species were exposed to a new biogeochemical environment when they began to occupy caves. Here we report the first evidence of palaeopollution through geochemical analyses of heavy metals in four renowned archaeological caves of the Iberian Peninsula spanning the last million years of human evolution. Heavy metal contents reached high values due to natural (guano deposition) and anthropogenic factors (e.g. combustion) in restricted cave environments. The earliest anthropogenic pollution evidence is related to Neanderthal hearths from Gorham's Cave (Gibraltar), being one of the first milestones in the so-called "Anthropocene". According to its heavy metal concentration, these sediments meet the present-day standards of "contaminated soil". Together with the former, the Gibraltar Vanguard Cave, shows Zn and Cu pollution ubiquitous across highly anthropic levels pointing to these elements as potential proxies for human activities. Pb concentrations in Magdalenian and Bronze age levels at El Pirulejo site can be similarly interpreted. Despite these high pollution levels, the contaminated soils might not have posed a major threat to Homo populations. Altogether, the data presented here indicate a long-term exposure of Homo to these elements, via fires, fumes and their ashes, which could have played certain role in environmental-pollution tolerance, a hitherto neglected influence.

  13. The passive control of air pollution exposure in Dublin, Ireland: A combined measurement and modelling case study

    International Nuclear Information System (INIS)

    Gallagher, J.; Gill, L.W.; McNabola, A.

    2013-01-01

    This study investigates the potential real world application of passive control systems to reduce personal pollutant exposure in an urban street canyon in Dublin, Ireland. The implementation of parked cars and/or low boundary walls as a passive control system has been shown to minimise personal exposure to pollutants on footpaths in previous investigations. However, previous research has been limited to generic numerical modelling studies. This study combines real-time traffic data, meteorological conditions and pollution concentrations, in a real world urban street canyon before and after the implementation of a passive control system. Using a combination of field measurements and numerical modelling this study assessed the potential impact of passive controls on personal exposure to nitric oxide (NO) concentrations in the street canyon in winter conditions. A calibrated numerical model of the urban street canyon was developed, taking into account the variability in traffic and meteorological conditions. The modelling system combined the computational fluid dynamic (CFD) simulations and a semi-empirical equation, and demonstrated a good agreement with measured field data collected in the street canyon. The results indicated that lane distribution, fleet composition and vehicular turbulence all affected pollutant dispersion, in addition to the canyon geometry and local meteorological conditions. The introduction of passive controls displayed mixed results for improvements in air quality on the footpaths for different wind and traffic conditions. Parked cars demonstrated the most comprehensive passive control system with average improvements in air quality of up to 15% on the footpaths. This study highlights the potential of passive controls in a real street canyon to increase dispersion and improve air quality at street level. - Highlights: • Parked cars and LBWs were assessed as passive controls in an urban street canyon. • The calibrated model combined CFD

  14. The passive control of air pollution exposure in Dublin, Ireland: A combined measurement and modelling case study

    Energy Technology Data Exchange (ETDEWEB)

    Gallagher, J., E-mail: j.gallagher@bangor.ac.uk [School of Energy, Natural Resources and Geography, Bangor University (United Kingdom); Gill, L.W.; McNabola, A. [Dept. of Civil, Structural and Environmental Engineering, Trinity College Dublin (Ireland)

    2013-08-01

    This study investigates the potential real world application of passive control systems to reduce personal pollutant exposure in an urban street canyon in Dublin, Ireland. The implementation of parked cars and/or low boundary walls as a passive control system has been shown to minimise personal exposure to pollutants on footpaths in previous investigations. However, previous research has been limited to generic numerical modelling studies. This study combines real-time traffic data, meteorological conditions and pollution concentrations, in a real world urban street canyon before and after the implementation of a passive control system. Using a combination of field measurements and numerical modelling this study assessed the potential impact of passive controls on personal exposure to nitric oxide (NO) concentrations in the street canyon in winter conditions. A calibrated numerical model of the urban street canyon was developed, taking into account the variability in traffic and meteorological conditions. The modelling system combined the computational fluid dynamic (CFD) simulations and a semi-empirical equation, and demonstrated a good agreement with measured field data collected in the street canyon. The results indicated that lane distribution, fleet composition and vehicular turbulence all affected pollutant dispersion, in addition to the canyon geometry and local meteorological conditions. The introduction of passive controls displayed mixed results for improvements in air quality on the footpaths for different wind and traffic conditions. Parked cars demonstrated the most comprehensive passive control system with average improvements in air quality of up to 15% on the footpaths. This study highlights the potential of passive controls in a real street canyon to increase dispersion and improve air quality at street level. - Highlights: • Parked cars and LBWs were assessed as passive controls in an urban street canyon. • The calibrated model combined CFD

  15. Bacterial diversity impacts as a result of combined sewer overflow in a polluted waterway

    Directory of Open Access Journals (Sweden)

    O. Calderon

    2017-12-01

    Full Text Available Newtown Creek is an industrial waterway and former tidal wetland in New York City. It is one of the most polluted water bodies in the United States and was designated as a superfund site in 2010. For over a century, organic compounds, heavy metals, and other forms of industrial pollution have disrupted the creek’s environment. The creek is also impacted by discharges from twenty combined sewer overflow pipes, which may deposit raw sewage or partially treated wastewater directly into the creek during heavy or sustained rain events. Combined sewer overflow events and associated nutrient over-enrichment at the creek drive eutrophication and subsequent hypoxia. At the current study, three sites were sampled one week apart during a dry period and a wet period, where indication of a combined sewage overflow event could be detected. 16s rRNA high-throughput sequencing from these three sites collectively yielded over 1000 species of bacteria belonging to twenty-two classes. Based on these data, it is hypothesized that differences identified in the microbiome on wet versus dry days are as a result of combined sewage overflow, street runoff, and additional fluctuations in the creek’s environment associated with rain. It was found that after a combined sewer overflows event, the levels of Gamma Proteobacteria increased while the levels of Actinobacteria decreased. However, levels of bacteria stayed relatively unchanged at a site further away from combined sewer overflows discharge. Species found in Newtown Creek include pelagic, marine, human and animal pathogens, hydrocarbonoclastic, and other environmental microbes.

  16. Comprehensive assessment of toxic chemical pollutants at Trombay region

    International Nuclear Information System (INIS)

    Sahu, S.K.; Saradhi, I.V.; Raghunath, R.; Pandit, G.G.; Puranik, V.D.

    2006-04-01

    Anthropogenic activities like industrial production and transportation, a wide range of chemical pollutants such as trace and toxic metals, pesticides, polycyclic aromatic hydrocarbons etc. eventually found their way into various environmental compartments. These pollutants get distributed among soil, water bodies, air and if left unattended can cause serious health risk to all exposed ecosystem components including human beings. These compounds may produce immediate toxicity to ecosystems or exhibit long term effects such as mutagenicity, carcinogenicity or biomagnify (concentrations of pollutant increase per unit body weight) in higher trophic organism of the food chain. Thus regular monitoring of these toxic chemicals in all the environmental matrices is unquestionably essential for reclaiming our natural resources. This report describes some of the activities of Environmental Assessment Division which are having direct relevance to the public health and regulatory bodies. Extensive studies were carried out in our laboratories for the Trombay site, over the years; on the organic as well as inorganic pollution in the environment to understand inter compartmental behaviour of these chemical pollutants. In this report attempt has been made to compare the data on various toxic chemical pollutants that are being monitored regularly at Trombay site and their levels are compared with existing regulations. For monitoring, methodologies have been standardized for characterization of toxic chemical pollutants using different analytical techniques. Regular sample collection from different environmental matrices has been done. Sample analysis has been carried out using different analytical instruments such as high performance liquid chromatograph, ion chromatograph, gas chromatograph, atomic absorption spectrophotometer, and differential pulse anodic stripping voltammetry. Major portion of the study covers Air quality monitoring of toxic chemical pollutants, as the other

  17. The source of natural and anthropogenic heavy metals in the sediments of the Minjiang River Estuary (SE China): Implications for historical pollution

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yonghang, E-mail: yonghang_xu@163.com [Open Laboratory of Ocean and Coast Environmental Geology, Third Institute of Oceanography State Oceanic Administration, 178 Daxue Road, Xiamen 361005 (China); Sun, Qinqin [Fujian Provincial Key Laboratory of Coast and Island Management Technology Study, Fujian Institute of Oceanography, Xiamen 361013 (China); Yi, Liang [State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029 (China); Yin, Xijie; Wang, Aijun; Li, Yunhai; Chen, Jian [Open Laboratory of Ocean and Coast Environmental Geology, Third Institute of Oceanography State Oceanic Administration, 178 Daxue Road, Xiamen 361005 (China)

    2014-09-15

    Two sedimentary cores in the Minjiang River estuary (SE China) are documented for grain size, clay minerals, heavy metals, magnetic parameters and Pb isotopes to investigate the source and historical variation of heavy metals. The MJK9 core was collected outside of the Minjiang River estuary, and the core is composed of mixed sediments, of which ∼ 70% from the Yangtze River and 30% from the Minjiang River. It is thus difficult to be used for tracing the human activity along the Minjiang River. In contrast, the sediments of MJK16 core which was collected in a nearshore area are primarily from the Minjiang River. The enrichment factors of the sediments were < 1.5, indicating minor pollution. The results indicate that the sediments of the MJK16 core have Cu and Pb concentrations increasing since 1980, associated with the increase of magnetic mineral concentration and {sup 206}Pb/{sup 207}Pb and {sup 206}Pb/{sup 208}Pb of the sediments. We compared the Pb isotopic compositions between our results and those for the deposit mining in the Minjiang River basin, and aerosols and coal dust in south China, and considered that Pb in the sediments of the MJK16 core was derived primarily from weathered rocks as well as industrial emission (e.g. coal combustion). The sediments have anthropogenic Pb concentrations ranging from 6% in 1950 to 23.7% in 2010, consistent with the impact of rapid urban and industrial development in China. - Highlights: • Grain size, clay mineral and Pb isotope were used to identify sediment sources. • The contribution of Yangtze River to northern of Taiwan Strait was quantified. • Enrichment factors indicated Cu and Pb have increased over the last decades. • Coal combustion was the prevailing contamination source. • The anthropogenic Pb concentrations ranged from 6% in 1950 to 23.7% in 2010.

  18. The source of natural and anthropogenic heavy metals in the sediments of the Minjiang River Estuary (SE China): Implications for historical pollution

    International Nuclear Information System (INIS)

    Xu, Yonghang; Sun, Qinqin; Yi, Liang; Yin, Xijie; Wang, Aijun; Li, Yunhai; Chen, Jian

    2014-01-01

    Two sedimentary cores in the Minjiang River estuary (SE China) are documented for grain size, clay minerals, heavy metals, magnetic parameters and Pb isotopes to investigate the source and historical variation of heavy metals. The MJK9 core was collected outside of the Minjiang River estuary, and the core is composed of mixed sediments, of which ∼ 70% from the Yangtze River and 30% from the Minjiang River. It is thus difficult to be used for tracing the human activity along the Minjiang River. In contrast, the sediments of MJK16 core which was collected in a nearshore area are primarily from the Minjiang River. The enrichment factors of the sediments were < 1.5, indicating minor pollution. The results indicate that the sediments of the MJK16 core have Cu and Pb concentrations increasing since 1980, associated with the increase of magnetic mineral concentration and 206 Pb/ 207 Pb and 206 Pb/ 208 Pb of the sediments. We compared the Pb isotopic compositions between our results and those for the deposit mining in the Minjiang River basin, and aerosols and coal dust in south China, and considered that Pb in the sediments of the MJK16 core was derived primarily from weathered rocks as well as industrial emission (e.g. coal combustion). The sediments have anthropogenic Pb concentrations ranging from 6% in 1950 to 23.7% in 2010, consistent with the impact of rapid urban and industrial development in China. - Highlights: • Grain size, clay mineral and Pb isotope were used to identify sediment sources. • The contribution of Yangtze River to northern of Taiwan Strait was quantified. • Enrichment factors indicated Cu and Pb have increased over the last decades. • Coal combustion was the prevailing contamination source. • The anthropogenic Pb concentrations ranged from 6% in 1950 to 23.7% in 2010

  19. Quantitative identification and source apportionment of anthropogenic heavy metals in marine sediment of Hong Kong

    Science.gov (United States)

    Zhou, Feng; Guo, Huaicheng; Liu, Lei

    2007-10-01

    Based on ten heavy metals collected twice annually at 59 sites from 1998 to 2004, enrichment factors (EFs), principal component analysis (PCA) and multivariate linear regression of absolute principal component scores (MLR-APCS) were used in identification and source apportionment of the anthropogenic heavy metals in marine sediment. EFs with Fe as a normalizer and local background as reference values was properly tested and suitable in Hong Kong, and Zn, Ni, Pb, Cu, Cd, Hg and Cr mainly originated from anthropogenic sources, while Al, Mn and Fe were derived from rocks weathering. Rotated PCA and GIS mapping further identified two types of anthropogenic sources and their impacted regions: (1) electronic industrial pollution, riparian runoff and vehicle exhaust impacted the entire Victoria Harbour, inner Tolo Harbour, Eastern Buffer, inner Deep Bay and Cheung Chau; and (2) discharges from textile factories and paint, influenced Tsuen Wan Bay and Kwun Tong typhoon shelter and Rambler Channel. In addition, MLR-APCS was successfully introduced to quantitatively determine the source contributions with uncertainties almost less than 8%: the first anthropogenic sources were responsible for 50.0, 45.1, 86.6, 78.9 and 87.5% of the Zn, Pb, Cu, Cd and Hg, respectively, whereas 49.9% of the Ni and 58.4% of the Cr came from the second anthropogenic sources.

  20. Monitoring of pollution in sediments

    Directory of Open Access Journals (Sweden)

    Renee I. Abdallah

    2016-03-01

    Full Text Available Polycyclic aromatic hydrocarbons (PAHs and aliphatic hydrocarbons (AHs were analyzed in surface sediments collected from Suez till Hurgharda coasts to establish baseline levels for various types of organic pollutants before the anticipated identification of anthropogenic activities, petrogenic and biogenic. AHs for all samples were dominated by unresolved complex mixture (UCM, and petrogenic mixed with biogenic sources. Results also revealed that sedimentary PAHs mainly originated from pyrolysis sources.

  1. Exploring the planetary boundary for chemical pollution

    DEFF Research Database (Denmark)

    Diamond, Miriam L.; de Wit, Cynthia A.; Molander, Sverker

    2015-01-01

    Rockström et al. (2009a, 2009b) have warned that humanity must reduce anthropogenic impacts defined by nine planetary boundaries if "unacceptable global change" is to be avoided. Chemical pollution was identified as one of those boundaries for which continued impacts could erode the resilience...... of ecosystems and humanity. The central concept of the planetary boundary (or boundaries) for chemical pollution (PBCP or PBCPs) is that the Earth has a finite assimilative capacity for chemical pollution, which includes persistent, as well as readily degradable chemicals released at local to regional scales......, which in aggregate threaten ecosystem and human viability. The PBCP allows humanity to explicitly address the increasingly global aspects of chemical pollution throughout a chemical's life cycle and the need for a global response of internationally coordinated control measures. We submit that sufficient...

  2. Efficiency of Pollution Tolerance Index (PTI of macroinvertebrates in detecting aquatic pollution in an oxbow lake in India

    Directory of Open Access Journals (Sweden)

    Dipankar Ghosh

    2017-11-01

    Full Text Available This paper evaluates the efficiency of a macroinvertebrate-based Pollution Tolerance Index (PTI in detecting aquatic pollution in the Chhariganga oxbow lake in India. In this lake, calculated PTIs were compared with results from an array of physicochemical water and sediment parameters and to a macroinvertebrate diversity assessment conducted in parallel for the same lake. The obtained PTI values fell in a range (between 20 and 31 that are indicative of an absence of organic pollution according to the literature, and are normally reported for systems devoid of anthropogenic activity (for instance no monsoonal polluting jute retting activities. However, in the light of the results for the assessed water and sediment physicochemical parameters, and the support of diversity indexes of macroinvertebrates, using data from the same lake, it was possible to conclude that the obtained PTI values do not reflect the true pollution status of this oxbow lake. As PTI values and diversity indexes contradict each other in detecting pollution, it is advised to take both parameters into consideration when using macroinvertebrates to assess aquatic health.

  3. Past and future trends in grey water footprints of anthropogenic nitrogen and phosphorus inputs to major world rivers

    NARCIS (Netherlands)

    Liu, C.; Kroeze, C.; Hoekstra, Arjen Ysbert; Gerbens-Leenes, Winnie

    2012-01-01

    The grey water footprint (GWF) is an indicator of aquatic pollution. We calculate past and future trends in GWFs related to anthropogenic nitrogen (N) and phosphorus (P) inputs into major rivers around the world. GWFs were calculated from past, current and future nutrient loads in river basins using

  4. Plankton food-web functioning in anthropogenically impacted coastal waters (SW Mediterranean Sea): An ecological network analysis

    Science.gov (United States)

    Meddeb, Marouan; Grami, Boutheïna; Chaalali, Aurélie; Haraldsson, Matilda; Niquil, Nathalie; Pringault, Olivier; Sakka Hlaili, Asma

    2018-03-01

    The study is the first attempt to (i) model spring food webs in three SW Mediterranean ecosystems which are under different anthropogenic pressures and (ii) to project the consequence of this stress on their function. Linear inverse models were built using the Monte Carlo method coupled with Markov Chains to characterize the food-web status of the Lagoon, the Channel (inshore waters under high eutrophication and chemical contamination) and the Bay of Bizerte (offshore waters under less anthropogenic pressure). Ecological network analysis was used for the description of structural and functional properties of each food web and for inter-ecosystem comparisons. Our results showed that more carbon was produced by phytoplankton in the inshore waters (966-1234 mg C m-2 d-1) compared to the Bay (727 mg C m-2 d-1). The total ecosystem carbon inputs into the three food webs was supported by high primary production, which was mainly due to >10 μm algae. However, the three carbon pathways were characterized by low detritivory and a high herbivory which was mainly assigned to protozooplankton. This latter was efficient in channelling biogenic carbon. In the Lagoon and the Channel, foods webs acted almost as a multivorous structure with a tendency towards herbivorous one, whereas in the Bay the herbivorous pathway was more dominant. Ecological indices revealed that the Lagoon and the Channel food webs/systems had high total system throughput and thus were more active than the Bay. The Bay food web, which had a high relative ascendency value, was more organized and specialized. This inter-ecosystem difference could be due to the varying levels of anthropogenic impact among sites. Indeed, the low value of Finn's cycling index indicated that the three systems are disturbed, but the Lagoon and the Channel, with low average path lengths, appeared to be more stressed, as both sites have undergone higher chemical pollution and nutrient loading. This study shows that ecosystem models

  5. Implications of Combined Exposure to Household Air Pollution and HIV on Neurocognition in Children

    Directory of Open Access Journals (Sweden)

    Megan K. Suter

    2018-01-01

    Full Text Available Air pollution exposure and HIV infection can each cause neurocognitive insult in children. The purpose of this study was to test whether children with combined high air pollution exposure and perinatal HIV infection have even greater risk of neurocognitive impairment. This was a cross-sectional study of HIV-uninfected unexposed (HUU and HIV-infected children and their caregivers in Nairobi, Kenya. We used a detailed neuropsychological battery to evaluate neurocognitive functioning in several domains. We measured caregiver 24-h personal CO exposure as a proxy for child CO exposure and child urinary 1-hydroxypyrene (1-OHP, a biomarker for exposure to polycyclic aromatic hydrocarbons (PAHs. Median 24-h caregiver CO exposure was 6.1 and 3.7 ppm for 45 HIV-infected (mean age 6.6 years and 49 HUU (mean age 6.7 years, respectively; 48.5% of HIV-infected and 38.6% of HUU had caregiver 24-h CO levels exceeding the WHO recommended level. Median 1-OHP exposure was 0.6 and 0.7 µmol/mol creatinine among HIV-infected and HUU children, respectively. HIV-infected children with high urinary 1-OHP (exceeding 0.68 µmol/mol creatinine had significantly lower global cognition (p = 0.04, delayed memory (p = 0.01, and attention scores (p = 0.003. Among HUU children, urinary 1-OHP and caregiver 24-h caregiver CO were not significantly associated with neurocognitive function. Our findings suggest that combined chronic exposure to air pollutants and perinatal HIV infection may be associated with poorer neurocognitive outcomes. High prevalence of air pollution exposure highlights the need to reduce these exposures.

  6. Evaluation of anthropogenic influences on the Luhuitou fringing reef via spatial and temporal analyses (from isotopic values)

    Science.gov (United States)

    Cao, D.; Cao, W.; Yu, K.; Wu, G.; Yang, J.; Su, X.; Wang, F.

    2017-05-01

    Coral reefs have suffered remarkable declines worldwide. Nutrient overenrichment is considered to be one of the primary local causes. The Luhuitou fringing reef in southern China is a well-known tourist destination that is subject to enormous coastal renovation. The mean δ13C, δ15N value, and carbon over nitrogen ratio (C/N) of particulate organic matter were -21.56 ± 1.94‰, 7.04 ± 3.81‰, and 5.81 ± 1.86, respectively, suggesting mixed sources of carbon and nitrogen. The IsoError calculations suggested that marine phytoplankton and marine benthic algae dominated the majority of carbon sources, while anthropogenic and terrestrial organic nitrogen dominated the nitrogen sources. A tendency toward greater terrestrial detritus and anthropogenic-derived discharges was found during dry seasons and greater marine-derived organic matter during wet seasons. These results demonstrated the existence of anthropogenic influences and high dissolved inorganic nitrogen concentrations and C/N ratios. Anthropogenic nutrient discharge moderated nitrogen limitation, whereas phosphorus became more important to the reef ecosystem. Despite the marine carbon sources dominated, freshwater and terrestrial-derived organic carbon sources were also very important. Meanwhile, anthropogenic and terrestrial organic nitrogen sources were dominant. Therefore, pollution from more extensive region and anthropogenic activities from riverine sewage discharges adjacent to reefs should be focused to effectively reduce human-derived nutrients on reefs.

  7. Organic pollution and its effects in the marine mussel Mytilus galloprovincialis in Eastern Mediterranean coasts.

    Science.gov (United States)

    Kasiotis, Konstantinos M; Emmanouil, Christina; Anastasiadou, Pelagia; Papadi-Psyllou, Asimina; Papadopoulos, Antonis; Okay, Oya; Machera, Kyriaki

    2015-01-01

    Persistent chemicals and emerging pollutants are continuously detected in marine waters and biota. Out of these, polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCs) are significant contaminants with decades of presence in the marine environment. The Mediterranean Sea is an ecosystem directly affected by a variety of anthropogenic activities including industry, municipal, touristic, commercial and agricultural. The Mediterranean mussel (Mytilus galloprovincialis) is a filter feeder, which presents wide distribution. In this regard, the specific organism was used as a biological indicator for the monitoring and evaluation of pollution in the studied areas with focus on the mentioned chemical groups. Pristine Turkish sites with minimum effect from anthropogenic activities, in contrast with Greek sites which were subjected to heavy industrial and shipping activity, were selected. A gas chromatographic tandem mass spectrometric method (GC-MS/MS) was developed and validated to monitor 34 compounds (16 EPA priority PAHs and 18 OCs). Analyses of mussel samples in 2011 from sites with the limited anthropogenic pollution shores have shown the occurrence of 11 pollutants (6 PAHs, 5 OCs), while in the samples from sites with intensive activity and expected pollution, 12 PAHs and 6 OCs were detected. Biochemical and biological responses studied only in mussels samples from the sites with the highest contamination showed a situation that was under strong seasonal influence. The intensity of the response was also influenced by deployment duration. Noteworthy correlations were detected among biochemical/biological effects and between mussel body burden and these effects. Continuous monitoring of priority pollutants of East Mediterranean Sea is vital both for ecological and human risk assessment purposes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Monitoring of trace organic air pollutants – a developing country perspective

    CSIR Research Space (South Africa)

    Forbes, PBC

    2008-09-01

    Full Text Available Air pollutants arise both from natural sources and from various anthropogenic activities, and are of concern due to their environmental impacts, including human health effects. In developing countries, atmospheric monitoring has largely focused...

  9. An emission inventory of sulfur from anthropogenic sources in Antarctica

    Directory of Open Access Journals (Sweden)

    S. V. Shirsat

    2009-05-01

    Full Text Available This paper presents first results of a comprehensive emission inventory of chemical species from anthropogenic activities (power generation, vehicles, ships and aircraft in Antarctica, covering the 2004–2005 period.

    The inventory is based on estimated emission rates of fuel consumption provided by some of the Antarctic research stations. Since the emission sources have different modes of operation and use a variety of fuel, the emission flux rate of chemical species is calculated by multiplying the fuel consumption value with the density of fuel and appropriate emission factors. A separate inventory is prepared for each anthropogenic emission source in Antarctica.

    Depending on the type of operation, emission rates of SO2, and BC (Black Carbon, from shipping only have been calculated using the above technique. However, only results of SO2 emissions from each source are presented here. Emission inventory maps of SO2 depicting the track/path taken by each mobile source are shown. The total annual SO2 is 158 Mg from power generation and vehicle operations, 3873 Mg from ships and 56 Mg from aircraft for 2004–2005 and these values undergo strong seasonality following the human activity in Antarctica. Though these figures are small when compared to the emissions at most other regions of the world, they are an indication that human presence in Antarctica leads to at least local pollution. The sources are mainly line and point sources and thus the local pollution potentially is relatively strong.

  10. Evaluation of pollutant emissions in North China Plain using aircraft measurements from the Air Chemistry Research In Asia (ARIAs) campaign

    Science.gov (United States)

    He, H.; Ren, X.; Li, Z.; Dickerson, R. R.

    2017-12-01

    The North China Plain (NCP) is one of the most populated and polluted regions on Earth. With rapid economic development in past decades, air pollution including heavy atmospheric aerosol loadings became severe in this region, leading to environmental and climate problems. An aircraft campaign, Air Chemistry Research In Asia (ARIAs), was conducted in spring 2016 (in parallel to KORUS-AQ) to understand air quality in the NCP and transport of air pollutants from this area. Measurements of trace gases such as O3, CO, and SO2 and aerosol optical properties were analyzed to investigate the anthropogenic emissions in the NCP. Both high-efficiency combustion such as from automobiles and modern power plants as well as low-efficiency combustion such as from biomass burnings were identified. Transformations of primary pollutants and formation of secondary pollutants were simulated using the EPA CMAQ v5.2 model. The global HTAP-EDGAR v4.2 emission inventory of year 2010 was processed with SMOKE v4.5 to drive CMAQ. Modeling results were evaluated with aircraft observations to improve our knowledge of anthropogenic emissions and transport. We also used satellite observations including OMI SO2/NO2 and MODIS AOD to evaluate the model performance in the NCP. Through the comparison, we estimated the changes in emissions of major anthropogenic pollutants from 2010 to 2016. Sensitivity experiments with improved emission inventory were conducted to better investigate the air pollution in the NCP.

  11. Examination of the potential impacts of dust and pollution aerosol acting as cloud nucleating aerosol on water resources in the Colorado River Basin

    Science.gov (United States)

    Jha, Vandana

    In this study we examine the cumulative effect of dust acting as cloud nucleating aerosol (cloud condensation nuclei (CCN), giant cloud condensation nuclei (GCCN), and ice nuclei (IN)) along with anthropogenic aerosol pollution acting primarily as CCN, over the entire Colorado Rocky Mountains from the months of October to April in the year 2004-2005; the snow year. This ˜6.5 months analysis provides a range of snowfall totals and variability in dust and anthropogenic aerosol pollution. The specific objectives of this research is to quantify the impacts of both dust and pollution aerosols on wintertime precipitation in the Colorado Mountains using the Regional Atmospheric Modeling System (RAMS). In general, dust enhances precipitation primarily by acting as IN, while aerosol pollution reduces water resources in the CRB via the so-called "spill-over" effect, by enhancing cloud droplet concentrations and reducing riming rates. Dust is more episodic and aerosol pollution is more pervasive throughout the winter season. Combined response to dust and aerosol pollution is a net reduction of water resources in the CRB. The question is by how much are those water resources affected? Our best estimate is that total winter-season precipitation loss for for the CRB the 2004-2005 winter season due to the combined influence of aerosol pollution and dust is 5,380,00 acre-feet of water. Sensitivity studies for different cases have also been run for the specific cases in 2004-2005 winter season to analyze the impact of changing dust and aerosol ratios on precipitation in the Colorado River Basin. The dust is varied from 3 to 10 times in the experiments and the response is found to be non monotonic and depends on various environmental factors. The sensitivity studies show that adding dust in a wet system increases precipitation when IN affects are dominant. For a relatively dry system high concentrations of dust can result in over-seeding the clouds and reductions in precipitation

  12. Comparison of seasonal variation between anthropogenic and natural emission inventory and Satellite observation in Southeast Asia

    Science.gov (United States)

    Kurata, G.; Lalitaporn, P.

    2012-12-01

    Since the economic growth of the countries in Southeast Asia is significantly rapid, the emission of air pollutant from the anthropogenic activity, such as industry, power generation and transportation is rapidly increasing. Moreover, biomass burning due to unsuitable agricultural management, deforestation and expansion of farmland are discharging large amount of pollutants, such as Carbon monoxide, volatile organic compound and particulate matter. Especially, the particulate matter from biomass burning causes the serious haze pollution in surrounding area in Southeast Asia. Furthermore, the biomass fuel used for cooking at residential sector discharges harmful pollutants including a particulate matter, and causes the adverse health impact to people on indoor and outdoor. In this study, we evaluated the spatial distribution and the seasonal variation of emission inventory for Southeast Asia region by comparing with satellite observation data in order to improve the accuracy of the impact assessment of air pollution by regional atmospheric chemistry transport model (WRF and CMAQ). As an emission inventory data, we used our original regional emission inventory for Southeast Asia region developed from detail transportation and industry data sets as well as a several existing emission inventories. As satellite observation data, the vertical column density of NO2, Particulate matter and Carbon monoxide obtained by various satellite, such as GOME, GOME2, SCIAMACY, OMI and so on. As a result of comparisons between satellite observation and emission inventories from 1996 to 2011, in the case of anthropogenic emission, seasonal variation was comparatively well in agreement with the seasonal variation of satellite data. However, the uncertainty of the seasonal variation was large on several large cities. In the case of emission from biomass burning, the seasonal variation was clear, but inter-annual variation was also large due to large scale climate condition.

  13. Anthropogenic imprints on nitrogen and oxygen isotopic composition of precipitation nitrate in a nitrogen-polluted city in southern China

    Science.gov (United States)

    Fang, Y. T.; Koba, K.; Wang, X. M.; Wen, D. Z.; Li, J.; Takebayashi, Y.; Liu, X. Y.; Yoh, M.

    2011-02-01

    Nitric acid (HNO3) or nitrate (NO3-) is the dominant sink for reactive nitrogen oxides (NOx = NO + NO2) in the atmosphere. In many Chinese cities, HNO3 is becoming a significant contributor to acid deposition. In the present study, we measured nitrogen (N) and oxygen (O) isotopic composition of NO3- in 113 precipitation samples collected from Guangzhou City in southern China over a two-year period (2008 and 2009). We attempted to better understand the spatial and seasonal variability of atmospheric NOx sources and the NO3- formation pathways in this N-polluted city in the Pearl River Delta region. The δ15N values of NO3- (versus air N2) ranged from -4.9 to +10.1‰, and averaged +3.9‰ in 2008 and +3.3‰ in 2009. Positive δ15N values were observed throughout the year, indicating the anthropogenic contribution of NOx emissions, particularly from coal combustion. Different seasonal patterns of δ15N-NO3- were observed between 2008 and 2009, which might reflect different human activities associated with the global financial crisis and the intensive preparations for the 16th Asian Games. Nitrate δ18O values (versus Vienna Standard Mean Ocean Water) varied from +33.4 to +86.5‰ (average +65.0‰ and +67.0‰ in 2008 and 2009, respectively), a range being lower than those reported for high latitude and polar areas. Sixteen percent of δ18O values was observed lower than the expected minimum of +55‰ at our study site. This was likely caused by the reaction of NO with peroxy radicals; peroxy radicals can compete with O3 to convert NO to NO2, thereby donate O atoms with much lower δ18O value than that of O3 to atmospheric NO3-. Our results highlight that the influence of human activities on atmospheric chemistry can be recorded by the N and O isotopic composition of atmospheric NO3- in a N-polluted city.

  14. Interactions of climate, socio-economics, and global mercury pollution in the North Water.

    Science.gov (United States)

    Dietz, Rune; Mosbech, Anders; Flora, Janne; Eulaers, Igor

    2018-04-01

    Despite the remoteness of the North Water, Northwest Greenland, the local Inughuit population is affected by global anthropogenic pollution and climate change. Using a cross-disciplinary approach combining Mercury (Hg) analysis, catch information, and historical and anthropological perspectives, this article elucidates how the traditional diet is compromised by Hg pollution originating from lower latitudes. In a new approach we here show how the Inughuits in Avanersuaq are subject to high Hg exposure from the hunted traditional food, consisting of mainly marine seabirds and mammals. Violation of the provisional tolerably yearly intake of Hg, on average by a factor of 11 (range 7-15) over the last 20 years as well as the provisional tolerably monthly intake by a factor of 6 (range 2-16), raises health concerns. The surplus of Selenium (Se) in wildlife tissues including narwhals showed Se:Hg molar ratios of 1.5, 2.3, and 16.7 in muscle, liver, and mattak, respectively, likely to provide some protection against the high Hg exposure.

  15. Quantifying Anthropogenic Dust Emissions

    Science.gov (United States)

    Webb, Nicholas P.; Pierre, Caroline

    2018-02-01

    Anthropogenic land use and land cover change, including local environmental disturbances, moderate rates of wind-driven soil erosion and dust emission. These human-dust cycle interactions impact ecosystems and agricultural production, air quality, human health, biogeochemical cycles, and climate. While the impacts of land use activities and land management on aeolian processes can be profound, the interactions are often complex and assessments of anthropogenic dust loads at all scales remain highly uncertain. Here, we critically review the drivers of anthropogenic dust emission and current evaluation approaches. We then identify and describe opportunities to: (1) develop new conceptual frameworks and interdisciplinary approaches that draw on ecological state-and-transition models to improve the accuracy and relevance of assessments of anthropogenic dust emissions; (2) improve model fidelity and capacity for change detection to quantify anthropogenic impacts on aeolian processes; and (3) enhance field research and monitoring networks to support dust model applications to evaluate the impacts of disturbance processes on local to global-scale wind erosion and dust emissions.

  16. Climate Impacts From a Removal of Anthropogenic Aerosol Emissions

    Science.gov (United States)

    Samset, B. H.; Sand, M.; Smith, C. J.; Bauer, S. E.; Forster, P. M.; Fuglestvedt, J. S.; Osprey, S.; Schleussner, C.-F.

    2018-01-01

    Limiting global warming to 1.5 or 2.0°C requires strong mitigation of anthropogenic greenhouse gas (GHG) emissions. Concurrently, emissions of anthropogenic aerosols will decline, due to coemission with GHG, and measures to improve air quality. However, the combined climate effect of GHG and aerosol emissions over the industrial era is poorly constrained. Here we show the climate impacts from removing present-day anthropogenic aerosol emissions and compare them to the impacts from moderate GHG-dominated global warming. Removing aerosols induces a global mean surface heating of 0.5-1.1°C, and precipitation increase of 2.0-4.6%. Extreme weather indices also increase. We find a higher sensitivity of extreme events to aerosol reductions, per degree of surface warming, in particular over the major aerosol emission regions. Under near-term warming, we find that regional climate change will depend strongly on the balance between aerosol and GHG forcing.

  17. Noise pollution is pervasive in U.S. protected areas.

    Science.gov (United States)

    Buxton, Rachel T; McKenna, Megan F; Mennitt, Daniel; Fristrup, Kurt; Crooks, Kevin; Angeloni, Lisa; Wittemyer, George

    2017-05-05

    Anthropogenic noise threatens ecological systems, including the cultural and biodiversity resources in protected areas. Using continental-scale sound models, we found that anthropogenic noise doubled background sound levels in 63% of U.S. protected area units and caused a 10-fold or greater increase in 21%, surpassing levels known to interfere with human visitor experience and disrupt wildlife behavior, fitness, and community composition. Elevated noise was also found in critical habitats of endangered species, with 14% experiencing a 10-fold increase in sound levels. However, protected areas with more stringent regulations had less anthropogenic noise. Our analysis indicates that noise pollution in protected areas is closely linked with transportation, development, and extractive land use, providing insight into where mitigation efforts can be most effective. Copyright © 2017, American Association for the Advancement of Science.

  18. [Technogenic environmental pollution and the public health: analysis and prognosis].

    Science.gov (United States)

    Savilov, E D; Anganova, E V; Ilina, S V; Stepanenko, L A

    2016-01-01

    Technogenic risk factors are very aggressive for a human health. Due to the progressive increase in environmental pollution the problem of the adverse impact of these factors on the health of both the human population as a whole, and individual groups every year is becoming increasingly important. At that the influence of anthropogenic pollution on the various manifestations of infectious pathology in the scientific literature is presented very modestly. In this paper there is presented a review of research devoted to the problem of the interrelationship of man-made pollution of the environment and public health.

  19. Combined effects of local habitat, anthropogenic stress, and dispersal on stream ecosystems: a mesocosm experiment.

    Science.gov (United States)

    Turunen, Jarno; Louhi, Pauliina; Mykrä, Heikki; Aroviita, Jukka; Putkonen, Emmi; Huusko, Ari; Muotka, Timo

    2018-06-06

    The effects of anthropogenic stressors on community structure and ecosystem functioning can be strongly influenced by local habitat structure and dispersal from source communities. Catchment land uses increase the input of fine sediments into stream channels, clogging the interstitial spaces of benthic habitats. Aquatic macrophytes enhance habitat heterogeneity and mediate important ecosystem functions, being thus a key component of habitat structure in many streams. Therefore, the recovery of macrophytes following in-stream habitat modification may be prerequisite for successful stream restoration. Restoration success is also affected by dispersal of organisms from the source community, with potentially strongest responses in relatively isolated headwater sites that receive limited amount of dispersing individuals. We used a factorial design in a set of stream mesocosms to study the independent and combined effects of an anthropogenic stressor (sand sedimentation), local habitat (macrophytes, i.e. moss transplants) and enhanced dispersal (two levels: high vs. low) on organic matter retention, algal accrual rate, leaf decomposition and macroinvertebrate community structure. Overall, all responses were simple additive effects with no interactions between treatments. Sand reduced algal accumulation, total invertebrate density and density of a few individual taxa. Mosses reduced algal accrual rate and algae-grazing invertebrates, but enhanced organic matter retention and detritus- and filter-feeders. Mosses also reduced macroinvertebrate diversity by increasing the dominance by a few taxa. Mosses also reduced leaf-mass loss, possibly because the organic matter retained by mosses provided an additional food source for leaf-shredding invertebrates and thus reduced shredder aggregation into leaf packs. The effect of mosses on macroinvertebrate communities and ecosystem functioning was distinct irrespective of the level of dispersal, suggesting strong environmental

  20. The lead (Pb) isotope signature, behaviour and fate of traffic-related lead pollution in roadside soils in The Netherlands.

    Science.gov (United States)

    Walraven, N; van Os, B J H; Klaver, G Th; Middelburg, J J; Davies, G R

    2014-02-15

    In this study the origin, behaviour and fate of anthropogenic Pb in sandy roadside soils were assessed by measuring soil characteristics, Pb isotope composition and content. In 1991 and 2003 samples were taken at different depth intervals at approximately 8 and 75 m from two highways in The Netherlands. The Pb isotope composition of the litter layer ((206)Pb/(207)Pb=1.12-1.14) differs from the deeper soil samples ((206)Pb/(207)Pb=1.20-1.21). Based on a mixing model it is concluded that the samples contain two Pb sources: natural Pb and anthropogenic Pb, the latter mainly derived from gasoline. (206)Pb/(207)Pb ratios demonstrate that the roadside soils were polluted to a depth of ~15 cm. Within this depth interval, anthropogenic Pb content is associated with organic matter. Although Pb pollution only reached a depth of ~15 cm, this does not mean that the topsoils retain all anthropogenic Pb. Due to the low pH and negligible binding capacity of soils at depths >15 cm, anthropogenic Pb migrated towards groundwater after reaching depths of >15 cm. The Pb isotope composition of the groundwater ((206)Pb/(207)Pb=1.135-1.185) establishes that groundwater is polluted with anthropogenic Pb. The contribution of anthropogenic Pb to the groundwater varies between ~30 and 100%. Based on the difference in soil Pb content and Pb isotope compositions over a period of 12 years, downward Pb migration is calculated to vary from 72 ± 95 to 324 ± 279 mg m(-2)y(-1). Assuming that the downward Pb flux is constant over time, it is calculated that 35-90% of the atmospherically delivered Pb has migrated to the groundwater. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Photolysis of aromatic pollutants in clean and dirty ice

    Science.gov (United States)

    Kahan, T.; Malley, P.; Stathis, A.

    2015-12-01

    Anthropogenic aromatic pollutants such as polycyclic aromatic hydrocarbons (PAHs) and substituted benzenes often become more toxic following atmospheric oxidation. Photolysis of these pollutants in ice can be much faster than that in aqueous solution, which might lead to higher carcinogenic loadings in snow-covered regions. In this work we investigate two things. First, we investigate whether toluene, which has been detected at very elevated concentrations near hydraulic fracturing operations, can undergo photolysis at ice surfaces. Toluene in aqueous solution does not absorb sunlight, so photolysis has not been considered a potential atmospheric fate. However, benzene was recently demonstrated to undergo a significant red shift in its absorbance at ice surfaces, leading to photolysis under environmentally-relevant conditions. Here we show that toluene also undergoes photolysis at ice surfaces. In a second set of experiments, we have investigated the effects of organic matter on the photolysis kinetics ofPAHs in ice and at ice surfaces. We found that very small loadings of hydrophobic organics such as octanol can significantly suppress PAH photolysis kinetics in ice, but that the primary effect of the more soluble fulvic acid is competitive photon absorption. Our results show that photochemistry of anthropogenic pollutants can follow very different mechanisms and kinetics in ice than in aqueous solution, and that the photochemical fate of these pollutants depends strongly on the composition of the snow. These results have implications for pollutant fate and human health in a wide range of snow-covered environments including remote areas, cities, and regions near gas and oil extraction operations.

  2. Using ensemble models to identify and apportion heavy metal pollution sources in agricultural soils on a local scale.

    Science.gov (United States)

    Wang, Qi; Xie, Zhiyi; Li, Fangbai

    2015-11-01

    This study aims to identify and apportion multi-source and multi-phase heavy metal pollution from natural and anthropogenic inputs using ensemble models that include stochastic gradient boosting (SGB) and random forest (RF) in agricultural soils on the local scale. The heavy metal pollution sources were quantitatively assessed, and the results illustrated the suitability of the ensemble models for the assessment of multi-source and multi-phase heavy metal pollution in agricultural soils on the local scale. The results of SGB and RF consistently demonstrated that anthropogenic sources contributed the most to the concentrations of Pb and Cd in agricultural soils in the study region and that SGB performed better than RF. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Heavy Metal Polluted Soils: Effect on Plants and Bioremediation Methods

    OpenAIRE

    Chibuike, G. U.; Obiora, S. C.

    2014-01-01

    Soils polluted with heavy metals have become common across the globe due to increase in geologic and anthropogenic activities. Plants growing on these soils show a reduction in growth, performance, and yield. Bioremediation is an effective method of treating heavy metal polluted soils. It is a widely accepted method that is mostly carried out in situ; hence it is suitable for the establishment/reestablishment of crops on treated soils. Microorganisms and plants employ different mechanisms for...

  4. Modelling Southern Africa Air Quality and Atmosphere: Importance and Interplay of Natural and Anthropogenic Emissions

    Science.gov (United States)

    Garland, R. M.; Naidoo, M.; Dedekind, Z.; Sibiya, B.; Piketh, S.; Engelbrecht, C. J.; Engelbrecht, F.

    2017-12-01

    Many parts of the southern hemisphere are linked in part due to the strong impact that emissions from natural sources, such as large biomass burning events and marine sources, as well as growing anthropogenic emission sources. Most of southern Africa has an arid to semi-arid climate that is strongly impacted by biomass burning, biogenic and dust emissions. In addition, there are areas of growing industrialization and urbanization that contributes to poor air quality. This air pollution can impact not only human health, but also agriculture, ecosystems, and the climate. This presentation will highlight on-going research to simulate the southern Africa atmosphere and impacts, with a focus on the interplay and relative importance of natural and anthropogenic emissions. The presentation will discuss the simulated sensitivity of the southern African climate to aerosol particles to highlight the importance of natural sources. These historical simulations (1979-2012) were performed with CCAM and are towards the development of the first Africa-led earth systems model. The analysis focused on the simulated sensitivity of the climate and clouds off the southwestern coast of Africa to aerosol particles. The interplay between natural and anthropogenic sources on air pollution will be highlighted using the Waterberg region of South Africa as a case study. CAMx was run at 2km resolution for 2013 using local emission inventories and meteorological output from CCAM to simulate the air quality of the region. These simulations estimate that, on average in the summer, up to 20% of ozone in and around a power plant plume is attributable to biogenic sources of VOCs, with ozone peaks of up to 120ppb; highlighting the importance of understanding the mix of pollutants in this area. In addition to presenting results from this study, the challenges in modelling will be highlighted. These challenges include very few or no measurements that are important to understand, and then accurately

  5. Global styrene oligomers monitoring as new chemical contamination from polystyrene plastic marine pollution.

    Science.gov (United States)

    Kwon, Bum Gun; Koizumi, Koshiro; Chung, Seon-Yong; Kodera, Yoichi; Kim, Jong-Oh; Saido, Katsuhiko

    2015-12-30

    Polystyrene (PS) plastic marine pollution is an environmental concern. However, a reliable and objective assessment of the scope of this problem, which can lead to persistent organic contaminants, has yet to be performed. Here, we show that anthropogenic styrene oligomers (SOs), a possible indicator of PS pollution in the ocean, are found globally at concentrations that are higher than those expected based on the stability of PS. SOs appear to persist to varying degrees in the seawater and sand samples collected from beaches around the world. The most persistent forms are styrene monomer, styrene dimer, and styrene trimer. Sand samples from beaches, which are commonly recreation sites, are particularly polluted with these high SOs concentrations. This finding is of interest from both scientific and public perspectives because SOs may pose potential long-term risks to the environment in combination with other endocrine disrupting chemicals. From SOs monitoring results, this study proposes a flow diagram for SOs leaching from PS cycle. Using this flow diagram, we conclude that SOs are global contaminants in sandy beaches around the world due to their broad spatial distribution. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. A chemometric approach to the evaluation of atmospheric and fluvial pollutant inputs in aquatic systems: The Guadalquivir River estuary as a case study

    International Nuclear Information System (INIS)

    Lopez-Lopez, Jose A.; Garcia-Vargas, Manuel; Moreno, Carlos

    2011-01-01

    To establish the quality of waters it is necessary to identify both point and non-point pollution sources. In this work, we propose the combination of clean analytical methodologies and chemometric tools to study discrete and diffuse pollution caused in a river by tributaries and precipitations, respectively. During a two-year period, water samples were taken in the Guadalquivir river (selected as a case study) and its main tributaries before and after precipitations. Samples were characterized by analysing nutrients, pH, dissolved oxygen, total and volatile suspended solids, carbon species, and heavy metals. Results were used to estimate fluvial and atmospheric inputs and as tracers for anthropic activities. Multivariate analysis was used to estimate the background pollution, and to identify pollution inputs. Principal Component Analysis and Cluster Analysis were used as data exploratory tools, while box-whiskers plots and Linear Discriminant Analysis were used to analyse and distinguish the different types of water samples. - Highlights: → Atmospheric and fluvial inputs of pollutants in Guadalquivir River were identified. → Point (tributary rivers) and non-point sources (rains) were studied. → Nature and extension of anthropogenic pollution in the river were established. - By combining trace environmental analysis and selected chemometric tools atmospheric and fluvial inputs of pollutants in rivers may be identified. The extension of the pollution originated by each anthropic activity developed along the River may be established, as well as the identification of the pollution introduced into the river by the tributary rivers (point sources) and by rains (non-point sources).

  7. Impacts of pollution controls on air quality in Beijing during the 2008 Olympic Games.

    Science.gov (United States)

    Shen, Jianlin; Tang, Aohan; Liu, Xuejun; Kopsch, Jenny; Fangmeier, Andreas; Goulding, Keith; Zhang, Fusuo

    2011-01-01

    Air pollution has become one of the main environmental concerns in China since the 1980s due to China's rapid economic growth and resultant pollution. However, it is difficult to directly evaluate the anthropogenic contribution to air pollution in China. The 2008 Olympic Games in Beijing provided a unique opportunity for testing the contribution of anthropogenic pollution because of the clean-up controls on air quality in Beijing enforced over the period of the Games. In this case study, we monitored the concentrations of major air pollutants before, during, and after the Olympics at a suburban site in Beijing. Atmospheric concentrations of PM10, PM2.5, NH3, NO2, SO2, and the particulate ions NH4+, NO3-, SO4(2-) Ca2+, Mg2+, and K+ all decreased during the Olympic period because of strict emission controls, compared with the same period from 2005 to 2007. For example, the average PM10 concentration (61 microg m(-3)) during the Olympics was only 37% of that (166 microg m(-3)) in the same month (August) from 2005 to 2007. However, just 1 mo and 1 yr after the Games had ended, mean concentrations of these pollutants had increased significantly again. This rapid "recovery' of air pollutant concentrations after the Olympics suggests that China needs to implement long-lasting decreases in its air pollution in Beijing and other major cities.

  8. Mathematical models for atmospheric pollutants. Final report

    International Nuclear Information System (INIS)

    Drake, R.L.; Barrager, S.M.

    1979-08-01

    The present and likely future roles of mathematical modeling in air quality decisions are described. The discussion emphasizes models and air pathway processes rather than the chemical and physical behavior of specific anthropogenic emissions. Summarized are the characteristics of various types of models used in the decision-making processes. Specific model subclasses are recommended for use in making air quality decisions that have site-specific, regional, national, or global impacts. The types of exposure and damage models that are currently used to predict the effects of air pollutants on humans, other animals, plants, ecosystems, property, and materials are described. The aesthetic effects of odor and visibility and the impact of pollutants on weather and climate are also addressed. Technical details of air pollution meteorology, chemical and physical properties of air pollutants, solution techniques, and air quality models are discussed in four appendices bound in separate volumes

  9. Groundwater vulnerability to pollution mapping of Ranchi district using GIS

    Science.gov (United States)

    Krishna, R.; Iqbal, J.; Gorai, A. K.; Pathak, G.; Tuluri, F.; Tchounwou, P. B.

    2015-12-01

    Groundwater pollution due to anthropogenic activities is one of the major environmental problems in urban and industrial areas. The present study demonstrates the integrated approach with GIS and DRASTIC model to derive a groundwater vulnerability to pollution map. The model considers the seven hydrogeological factors [Depth to water table ( D), net recharge ( R), aquifer media ( A), soil media ( S), topography or slope ( T), impact of vadose zone ( I) and hydraulic Conductivity( C)] for generating the groundwater vulnerability to pollution map. The model was applied for assessing the groundwater vulnerability to pollution in Ranchi district, Jharkhand, India. The model was validated by comparing the model output (vulnerability indices) with the observed nitrate concentrations in groundwater in the study area. The reason behind the selection of nitrate is that the major sources of nitrate in groundwater are anthropogenic in nature. Groundwater samples were collected from 30 wells/tube wells distributed in the study area. The samples were analyzed in the laboratory for measuring the nitrate concentrations in groundwater. A sensitivity analysis of the integrated model was performed to evaluate the influence of single parameters on groundwater vulnerability index. New weights were computed for each input parameters to understand the influence of individual hydrogeological factors in vulnerability indices in the study area. Aquifer vulnerability maps generated in this study can be used for environmental planning and groundwater management.

  10. Groundwater vulnerability to pollution mapping of Ranchi district using GIS.

    Science.gov (United States)

    Krishna, R; Iqbal, J; Gorai, A K; Pathak, G; Tuluri, F; Tchounwou, P B

    2015-12-01

    Groundwater pollution due to anthropogenic activities is one of the major environmental problems in urban and industrial areas. The present study demonstrates the integrated approach with GIS and DRASTIC model to derive a groundwater vulnerability to pollution map. The model considers the seven hydrogeological factors [Depth to water table ( D ), net recharge ( R ), aquifer media ( A ), soil media ( S ), topography or slope ( T ), impact of vadose zone ( I ) and hydraulic Conductivity( C )] for generating the groundwater vulnerability to pollution map. The model was applied for assessing the groundwater vulnerability to pollution in Ranchi district, Jharkhand, India. The model was validated by comparing the model output (vulnerability indices) with the observed nitrate concentrations in groundwater in the study area. The reason behind the selection of nitrate is that the major sources of nitrate in groundwater are anthropogenic in nature. Groundwater samples were collected from 30 wells/tube wells distributed in the study area. The samples were analyzed in the laboratory for measuring the nitrate concentrations in groundwater. A sensitivity analysis of the integrated model was performed to evaluate the influence of single parameters on groundwater vulnerability index. New weights were computed for each input parameters to understand the influence of individual hydrogeological factors in vulnerability indices in the study area. Aquifer vulnerability maps generated in this study can be used for environmental planning and groundwater management.

  11. Pollution and health risk of potentially toxic metals in urban road dust in Nanjing, a mega-city of China

    International Nuclear Information System (INIS)

    Liu, Enfeng; Yan, Ting; Birch, Gavin; Zhu, Yuxin

    2014-01-01

    Spatial variations in concentrations of a suite of potentially toxic metals (Ba, Cr, Cu, Fe, Mn, Ni, Pb and Zn) and Ca in road dusts (n = 99) from urban trunk roads (TR) in Nanjing, a mega-city in China, were established. Metal pollution levels, sources and human health risk (non-carcinogenic) were studied. In contrast to previous studies, we labeled the indicative metals relating to non-exhaust traffic emissions by comparing metal pollution between crossroad and park road dusts, and then anthropogenic sources of metals in TR dusts were assessed combining their spatial pollution patterns, principal component analysis and Pb isotopic compositions. Results showed that the metals were enriched in TR dusts compared to background soil concentrations with mean enrichment factors (EFs) of 2.2–23, indicating considerable anthropogenic influence. The degrees of metal pollution ranged from minimal to extremely high and ranked by Ca > Cu > Pb ≈ Zn > Cr ≈ Fe > Ni ≈ Ba > Mn on average. Pollution of Cr, Cu, Fe, Mn, Ni, Pb and Zn in TR dusts resulted primarily from industrial emissions (e.g., coal combustion and smelting) and high pollution levels were found close to suburb industrial complexes, whereas pollution of Ba and Ca was mainly related to construction/demolition sources and was generally distributed homogeneously. The relatively minor contribution of non-exhaust traffic emissions to metal pollution in TR dusts was considered to be due to overwhelming industrial and construction/demolition contributions, as well as to the dilution effect of natural soil particles. Ingestion appears to be the major route of exposure for road dust for both adults and children, followed by dermal contact. The non-carcinogenic health risk resulting from exposure to the potentially toxic metals in TR dusts was within the safe level based on the Hazard Index (HI), except in pollution hotspots where exposure to Pb, Cr, and Cu may be hazardous to children. - Highlights: • Pollution and

  12. Pollution and health risk of potentially toxic metals in urban road dust in Nanjing, a mega-city of China

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Enfeng, E-mail: efliu@niglas.ac.cn [State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008 (China); Yan, Ting [State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Birch, Gavin [School of Geosciences, University of Sydney, Sydney, NSW 2006 (Australia); Zhu, Yuxin [State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008 (China)

    2014-04-01

    Spatial variations in concentrations of a suite of potentially toxic metals (Ba, Cr, Cu, Fe, Mn, Ni, Pb and Zn) and Ca in road dusts (n = 99) from urban trunk roads (TR) in Nanjing, a mega-city in China, were established. Metal pollution levels, sources and human health risk (non-carcinogenic) were studied. In contrast to previous studies, we labeled the indicative metals relating to non-exhaust traffic emissions by comparing metal pollution between crossroad and park road dusts, and then anthropogenic sources of metals in TR dusts were assessed combining their spatial pollution patterns, principal component analysis and Pb isotopic compositions. Results showed that the metals were enriched in TR dusts compared to background soil concentrations with mean enrichment factors (EFs) of 2.2–23, indicating considerable anthropogenic influence. The degrees of metal pollution ranged from minimal to extremely high and ranked by Ca > Cu > Pb ≈ Zn > Cr ≈ Fe > Ni ≈ Ba > Mn on average. Pollution of Cr, Cu, Fe, Mn, Ni, Pb and Zn in TR dusts resulted primarily from industrial emissions (e.g., coal combustion and smelting) and high pollution levels were found close to suburb industrial complexes, whereas pollution of Ba and Ca was mainly related to construction/demolition sources and was generally distributed homogeneously. The relatively minor contribution of non-exhaust traffic emissions to metal pollution in TR dusts was considered to be due to overwhelming industrial and construction/demolition contributions, as well as to the dilution effect of natural soil particles. Ingestion appears to be the major route of exposure for road dust for both adults and children, followed by dermal contact. The non-carcinogenic health risk resulting from exposure to the potentially toxic metals in TR dusts was within the safe level based on the Hazard Index (HI), except in pollution hotspots where exposure to Pb, Cr, and Cu may be hazardous to children. - Highlights: • Pollution and

  13. Oil pollution in Chilika lagoon: An anthropogenic threat to biodiversity.

    Digital Repository Service at National Institute of Oceanography (India)

    Baliarsingh, S.K.; Sahoo, S.; Acharya, A.; Dalabehera, H.B.; Sahu, K.C.; Lotliker, A.A.

    values compared to the other sec- tors. Presently observed values were concomitant with other studies indicating oil pollution due to increase in PHC con- centration, viz. in the Arabian Sea (0.6– 305 g/l)11, Visakhapatnam Harbour (11.5–123.8 g/l)12..., 415–420. 6. Chilika Development Authority, Gov- ernment of Odisha, Socio-economic con- dition of fishers in and around Chilika, 2009; http://www.chilika.com/jica_project/ Socio-economic%20condition%20%20- PART%201.pdf 7. Colavecchia, M. V., Backus...

  14. Speleothems and pine trees as sensitive indicators of environmental pollution - A case study of the effect of uranium-ore mining in Hungary

    Energy Technology Data Exchange (ETDEWEB)

    Siklosy, Zoltan, E-mail: siklosy@geochem.hu [Institute for Geochemical Research, Hungarian Academy of Sciences, Budapest (Hungary); Kern, Zoltan; Demeny, Attila [Institute for Geochemical Research, Hungarian Academy of Sciences, Budapest (Hungary); Pilet, Sebastian [Institute of Mineralogy and Geochemistry, University of Lausanne (Switzerland); Leel-Ossy, Szabolcs [Eotvos University, Budapest (Hungary); Lin, Ke; Shen, Chuan-Chou [High-precision Mass Spectrometry and Environment Change Laboratory, Department of Geosciences, National Taiwan University, Taipei, Taiwan (China); Szeles, Eva [Institute of Isotopes, Hungarian Academy of Sciences, Budapest (Hungary); Breitner, Daniel [Atomic Energy Research Institute, Hungarian Academy of Sciences, Budapest (Hungary)

    2011-05-15

    Research Highlights: > Stalagmites can preserve anthropogenic impact in the environment. > Living pine (P. sylvestis) trees are also act as a chemoenviromental archive. > A rise in uranium of the stalagmite suggested increasing amounts pollutants. > Two different geochemical proxies as pollution recorders were highlighted. - Abstract: Four decades of U ore production in Hungary provides an opportunity to study the possible environmental effects of mining. The study reveals significant changes in chemical composition of a stalagmite (cave deposit). The good fit between U content changes in the studied deposit and the U ore production rate support the assumption of the relationship with mining activity. An independent chemoenviromental archive, living pine (Pinus sylvestis) trees were also investigated. Data on pine tree cores collected from the same region show different levels of pollution (Cu, Zn, Mn, U) after the 1950s and 1960s, linked to the opening of mines and subsequent dust fallout around the site. Elevated concentrations of detritally derived elements (Si, Al, Th) coupled with a rise in U concentration and change in {delta}{sup 234}U values of the stalagmite suggest increasing amounts of mine-derived dust from 1 to 3 km distance that settled and washed into the karst system. The combined usage of different proxies not only provides historic records for the anthropogenic impact in the environment, but also allows the timing of U concentration increases within the stalagmite and the identification of elemental behavior from the pollution. This study shows that complementary geochemical archives such as stalagmites and tree rings used together can enhance understanding of past environmental contamination.

  15. Rapid growth in nitrogen dioxide pollution over Western China, 2005-2013

    Science.gov (United States)

    Cui, Yuanzheng; Lin, Jintai; Song, Chunqiao; Liu, Mengyao; Yan, Yingying; Xu, Yuan; Huang, Bo

    2016-05-01

    Western China has experienced rapid industrialization and urbanization since the implementation of the National Western Development Strategies (the "Go West" movement) in 1999. This transition has affected the spatial and temporal characteristics of nitrogen dioxide (NO2) pollution. In this study, we analyze the trends and variability of tropospheric NO2 vertical column densities (VCDs) from 2005 to 2013 over Western China, based on a wavelet analysis on monthly mean NO2 data derived from the Ozone Monitoring Instrument (OMI) measurements. We focus on the anthropogenic NO2 by subtracting region-specific "background" values dominated by natural sources. After removing the background influences, we find significant anthropogenic NO2 growth over Western China between 2005 and 2013 (8.6 ± 0.9 % yr-1 on average, relative to 2005), with the largest increments (15 % yr-1 or more) over parts of several city clusters. The NO2 pollution in most provincial-level regions rose rapidly from 2005 to 2011 but stabilized or declined afterwards. The NO2 trends were driven mainly by changes in anthropogenic emissions, as confirmed by a nested GEOS-Chem model simulation and a comparison with Chinese official emission statistics. The rate of NO2 growth during 2005-2013 reaches 11.3 ± 1.0 % yr-1 over Northwestern China, exceeding the rates over Southwestern China (5.9 ± 0.6 % yr-1) and the three well-known polluted regions in the east (5.3 ± 0.8 % yr-1 over Beijing-Tianjin-Hebei, 4.0 ± 0.6 % yr-1 over the Yangtze River Delta, and -3.3 ± 0.3 % yr-1 over the Pearl River Delta). Subsequent socioeconomic analyses suggest that the rapid NO2 growth over Northwestern China is likely related to the fast developing resource- and pollution-intensive industries along with the "Go West" movement as well as relatively weak emission controls. Further efforts should be made to alleviate NOx pollution to achieve sustainable development in Western China.

  16. The Chukchi Sea zoobenthos: contemporary conditions and trends in anthropogenic influence.

    Directory of Open Access Journals (Sweden)

    Kirievskaya Dubrava

    2017-06-01

    Full Text Available The Chukchi Sea is a key region where rapid changes of the Arctic environment have been observed recently. Benthos of the Chukchi Sea is a sensitive indicator of these changes. In addition, the benthos can be used as an indicator of the anthropogenic load on the marine environment. A lot of researches have been conducted in the different parts of the Chukchi Sea. In this paper we summarized all the data collected for the last 30 years to evaluate contemporary conditions of the Chukchi Sea benthos as well as to discuss a potential response of the benthic ecosystem to the anthropogenic load. The Chukchi Sea zoobenthos is characterized by relatively high biodiversity compared to the seas of the western Arctic Ocean. The spatial distribution of zoobenthos is non-uniform. It is caused by a lot of factors: depth, bottom and sediment temperature, geochemical structure of the sediments, hydrodynamics, etc. Present environmental conditions of the Chukchi Sea biota can be considered to be close to the average long-term norms. By the reason of climate change scientists started to observe northing displacement of subarctic and temperate species of the benthic ecosystem. The Chukchi Sea is still included into the area with low anthropogenic pressure. The main potential threat for the Chukchi sea benthos results from continued oil and gas exploration and sea transport. For example, benthos around oil-wells (the Burger and the Klondike contains pollutants at a high concentration. The risk of rising anthropogenic load on the Chukchi Sea ecosystem poses the problem to additionally identify vulnerable areas of increased ecological significance for later receiving conservation status.

  17. Indices of soil contamination by heavy metals - methodology of calculation for pollution assessment (minireview).

    Science.gov (United States)

    Weissmannová, Helena Doležalová; Pavlovský, Jiří

    2017-11-07

    This article provides the assessment of heavy metal soil pollution with using the calculation of various pollution indices and contains also summarization of the sources of heavy metal soil pollution. Twenty described indices of the assessment of soil pollution consist of two groups: single indices and total complex indices of pollution or contamination with relevant classes of pollution. This minireview provides also the classification of pollution indices in terms of the complex assessment of soil quality. In addition, based on the comparison of metal concentrations in soil-selected sites of the world and used indices of pollution or contamination in soils, the concentration of heavy metal in contaminated soils varied widely, and pollution indices confirmed the significant contribution of soil pollution from anthropogenic activities mainly in urban and industrial areas.

  18. Air pollution in eastern Asia an integrated perspective

    CERN Document Server

    Wang, Xuemei; Brasseur, Guy

    2017-01-01

    This book, written by an international group of experts from China, Europe and the USA, presents a broad and comprehensive analysis of the chemical and meteorological processes responsible for the formation of air pollutants in eastern Asia, and in particular for the development of severe pollution episodes observed primarily during winter in the northeastern part of China. With the rapid population growth, economic development and urbanization occurring in Asia, air pollution has become a major environmental problem in this part of the world. The book is organized around six distinct parts. The first part of the volume offers a general perspective on issues related to air pollution including persistent haze events in eastern and southern Asia. The second part presents an overview of air pollution sources (i.e., anthropogenic and biomass burning sources). The third part analyzes in-situ observations of chemical species in China, while the fourth part focuses on space observations of gas-phase and aerosol spec...

  19. Organic compounds in aerosols from selected European sites - Biogenic versus anthropogenic sources

    Science.gov (United States)

    Alves, Célia; Vicente, Ana; Pio, Casimiro; Kiss, Gyula; Hoffer, Andras; Decesari, Stefano; Prevôt, André S. H.; Minguillón, María Cruz; Querol, Xavier; Hillamo, Risto; Spindler, Gerald; Swietlicki, Erik

    2012-11-01

    Atmospheric aerosol samples from a boreal forest (Hyytiälä, April 2007), a rural site in Hungary (K-puszta, summer 2008), a polluted rural area in Italy (San Pietro Capofiume, Po Valley, April 2008), a moderately polluted rural site in Germany located on a meadow (Melpitz, May 2008), a natural park in Spain (Montseny, March 2009) and two urban background locations (Zurich, December 2008, and Barcelona, February/March 2009) were collected. Aliphatics, polycyclic aromatic hydrocarbons, carbonyls, sterols, n-alkanols, acids, phenolic compounds and anhydrosugars in aerosols were chemically characterised by gas chromatography-mass spectrometry, along with source attribution based on the carbon preference index (CPI), the ratios between the unresolved and the chromatographically resolved aliphatics, the contribution of wax n-alkanes, n-alkanols and n-alkanoic acids from plants, diagnostic ratios of individual target compounds and source-specific markers to organic carbon ratios. In spite of transboundary pollution episodes, Hyytiälä registered the lowest levels among all locations. CPI values close to 1 for the aliphatic fraction of the Montseny aerosol suggest that the anthropogenic input may be associated with the transport of aged air masses from the surrounding industrial/urban areas, which superimpose the locally originated hydrocarbons with biogenic origin. Aliphatic and aromatic hydrocarbons in samples from San Pietro Capofiume reveal that fossil fuel combustion is a major source influencing the diel pattern of concentrations. This source contributed to 25-45% of the ambient organic carbon (OC) at the Po Valley site. Aerosols from the German meadow presented variable contributions from both biogenic and anthropogenic sources. The highest levels of vegetation wax components and biogenic secondary organic aerosol (SOA) products were observed at K-puszta, while anthropogenic SOA compounds predominated in Barcelona. The primary vehicular emissions in the Spanish

  20. 21st Century Rise in Anthropogenic Nitrogen Deposition on a Remote Coral Reef

    Science.gov (United States)

    Ren, H. A.; Chen, Y. C.; Wang, X. T.; Wong, G. T. F.; Cohen, A. L.; DeCarlo, T. M.; Weigand, M. A.; Mii, H. S.; Sigman, D. M.

    2017-12-01

    With the rapid rise in pollution-associated nitrogen inputs to the western Pacific, it has been suggested that even the open ocean has been impacted through atmospheric deposition. In a coral core from Dongsha Atoll, a coral reef ecosystem 340 km from the nearest continent, we observe a decline in the 15N/14N of coral skeleton-bound organic matter, signaling increased deposition of anthropogenic atmospheric N on the open ocean and its incorporation into plankton and in turn the corals living on the atoll. The decrease began just several years before 2000 CE, decades later than predicted by other work, and the amplitude of decline suggests that anthropogenic atmospheric N input is now 20±5% of the annual N input to the surface ocean in this region, less than two-thirds of that estimated by models and analyses of nutrient ratio changes.

  1. The passive control of air pollution exposure in Dublin, Ireland: a combined measurement and modelling case study.

    Science.gov (United States)

    Gallagher, J; Gill, L W; McNabola, A

    2013-08-01

    This study investigates the potential real world application of passive control systems to reduce personal pollutant exposure in an urban street canyon in Dublin, Ireland. The implementation of parked cars and/or low boundary walls as a passive control system has been shown to minimise personal exposure to pollutants on footpaths in previous investigations. However, previous research has been limited to generic numerical modelling studies. This study combines real-time traffic data, meteorological conditions and pollution concentrations, in a real world urban street canyon before and after the implementation of a passive control system. Using a combination of field measurements and numerical modelling this study assessed the potential impact of passive controls on personal exposure to nitric oxide (NO) concentrations in the street canyon in winter conditions. A calibrated numerical model of the urban street canyon was developed, taking into account the variability in traffic and meteorological conditions. The modelling system combined the computational fluid dynamic (CFD) simulations and a semi-empirical equation, and demonstrated a good agreement with measured field data collected in the street canyon. The results indicated that lane distribution, fleet composition and vehicular turbulence all affected pollutant dispersion, in addition to the canyon geometry and local meteorological conditions. The introduction of passive controls displayed mixed results for improvements in air quality on the footpaths for different wind and traffic conditions. Parked cars demonstrated the most comprehensive passive control system with average improvements in air quality of up to 15% on the footpaths. This study highlights the potential of passive controls in a real street canyon to increase dispersion and improve air quality at street level. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Dust-wind interactions can intensify aerosol pollution over eastern China.

    Science.gov (United States)

    Yang, Yang; Russell, Lynn M; Lou, Sijia; Liao, Hong; Guo, Jianping; Liu, Ying; Singh, Balwinder; Ghan, Steven J

    2017-05-11

    Eastern China has experienced severe and persistent winter haze episodes in recent years due to intensification of aerosol pollution. In addition to anthropogenic emissions, the winter aerosol pollution over eastern China is associated with unusual meteorological conditions, including weaker wind speeds. Here we show, based on model simulations, that during years with decreased wind speed, large decreases in dust emissions (29%) moderate the wintertime land-sea surface air temperature difference and further decrease winds by -0.06 (±0.05) m s -1 averaged over eastern China. The dust-induced lower winds enhance stagnation of air and account for about 13% of increasing aerosol concentrations over eastern China. Although recent increases in anthropogenic emissions are the main factor causing haze over eastern China, we conclude that natural emissions also exert a significant influence on the increases in wintertime aerosol concentrations, with important implications that need to be taken into account by air quality studies.

  3. Extracellular enzyme activities of aquatic bacteria in polluted environment: 2. Amylolytic activity

    International Nuclear Information System (INIS)

    Arbaciauskiene, V.

    2003-01-01

    Water samples were taken from Lake Drukshiai tributaries (Ricanka); Gulbinele Stream affected by urban rain sewerage from Visaginas; Gulbinele Stream into which municipal sewage from Visaginas (MS) and industrial rain sewerage from the Ignalina NPP and their mouth, and Lake Dringis. Lake Dringis, in Aukstaitija National Park, was selected as an ecosystem pattern of a weak anthropogenic influence, while Lake Drukshiai was chosen as a regularly polluted water body. Lake Drukshiai, the cooling basin of the Ignalina NPP (IRS-1.2), is being polluted with industrial and municipal sewage through its tributaries. The amylolytic activity (AA) of heterotrophic aquatic bacteria was tested. The highest total mean AA of aquatic bacteria was calculated in Lake Dringis. Here, the results were significantly higher than in Lake Drukshiai tributaries and their mouths, excepting the mouths of the Ricanka and MS. The lowest mean of AA in Lake Drukshiai was characteristic of the IRS-1.2 tributary. A comparison of the mean AA of active isolates showed that certain bacterial strains from the sites of varying degrees of pollution could be noted for a relatively high level of enzymatic activity. Thus, anthropogenic pollution exerts a negative effect on the total mean AA, although certain strains of bacteria are able to adapt to the stressful environment and remain active. (author)

  4. Polluted soil leaching: unsaturated conditions and flow rate effects

    Directory of Open Access Journals (Sweden)

    Chourouk Mathlouthi

    2017-04-01

    Full Text Available In this study, soil samples are extracted from a polluted site at different depths. Soils texture and pollutant presence are different with depth. Preliminary analyzes showed pollution by heavy metals. To simulate soil leaching operation in static condition, a series of leaching tests are conducted in laboratory column under conditions of upflow unsaturated soil. Electrical conductivity and pH measurements on the recovered leachate are performed. Different flow rates are tested. Comparison of different profiles shows that the dissolved pollutants are concentrated in the upper soil levels and disperse weakly in the lower parts which confirm the nature of anthropogenic pollution of heavy metals. Water mobilizes a high amount of dissolved ionic substances up to 80% of the initial concentration. The increase in flow rate requires more pore volume injected to achieve the maximum clearance rate. The down flow condition extracts a small amount of dissolved substances.

  5. Occurrence and sources of natural and anthropogenic lipid tracers in surface soils from arid urban areas of Saudi Arabia.

    Science.gov (United States)

    Rushdi, Ahmed I; Al-Mutlaq, Khalid F; El-Mubarak, Aarif H; Al-Saleh, Mohammed A; El-Otaibi, Mubarak T; Ibrahim, Sami M M; Simoneit, Bernd R T

    2016-01-01

    Soil particles contain a variety of natural and anthropogenic organic components, and in urban areas can be considered as local collectors of pollutants. Surface soil samples were taken from ten urban areas in Riyadh during early winter of 2007. They were extracted with dichloromethane-methanol mixture and the extracts were analyzed by gas chromatography-mass spectrometry. The major compounds were unresolved complex mixture (UCM), plasticizers, n-alkanes, carbohydrates, n-alkanoic acids, hopanes, n-alkanols, and sterols. Vegetation detritus was the major natural source of organic compounds (24.0 ± 15.7%) in samples from areas with less human activities and included n-alkanes, n-alkanoic acids, n-alkanols, sterols and carbohydrates. Vehicular emission products and discarded plastics were the major anthropogenic sources in the soil particles (53.3 ± 21.3% and 22.7 ± 10.7%, respectively). The anthropogenic tracers were UCM, plasticizers, n-alkanes, hopanes and traces of steranes. Vegetation and human activities control the occurrence and distribution of natural and anthropogenic extractable organic matter in this arid urban area. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Insights into a historic severe haze event in Shanghai: synoptic situation, boundary layer and pollutants

    Directory of Open Access Journals (Sweden)

    C. Leng

    2016-07-01

    Full Text Available A historic haze event, characterized by lengthy, large-scale and severe pollution, occurred in the Yangtze River Delta (YRD of China from 1 to 10 December 2013. This haze event significantly influenced air quality throughout the region, especially in urban areas. Aerosol physical, chemical and optical properties were measured in Shanghai. Sometimes the 1 h average particle concentration (e.g., PM2.5 exceeded 600 µg m−3. Inorganic water-soluble ions in particles, trace gases and aerosol optical coefficients had a similar tendency to increase evidently from clear to hazy episodes. A combination of various factors contributed to the formation and evolution of the haze event, among which meteorological conditions, local anthropogenic emissions and pollutants are the major factors. High pressure system, calm surface wind and subsidence airflow were responsible for the decrease of planetary boundary layer (PBL and the accumulation of pollutants. Atmospheric visibility correlated strongly with relative humidity (RH, particle number in size of 600–1400 nm other than particulate water-soluble species and particle mass (PM2.5. The particle hygroscopicity plays an important role in atmospheric visibility reduction. The results are somewhat helpful to forecast and eliminate regional atmospheric pollution in China.

  7. The lead (Pb) isotope signature, behaviour and fate of traffic-related lead pollution in roadside soils in The Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    Walraven, N., E-mail: n.walraven@geoconnect.nl [GeoConnect, Meester Dekkerstraat 4, 1901 PV Castricum (Netherlands); Os, B.J.H. van, E-mail: b.vanos@rce.nl [Rijksdienst voor Archeologie, Cultuurlandschap en Monumenten, P.O. Box 1600, 3800 BP Amersfoort (Netherlands); Klaver, G.Th., E-mail: g.klaver@brgm.nl [BRGM, 3 avenue Claude-Guillemin, BP 36009, 45060 Orléans Cedex 2 (France); Middelburg, J.J., E-mail: j.b.m.middelburg@uu.nl [University Utrecht, Faculty of Geosciences, P.O. Box 80021, 3508 TA Utrecht (Netherlands); Davies, G.R., E-mail: g.r.davies@vu.nl [VU University Amsterdam, Faculty of Earth and Life Sciences, Petrology, De Boelelaan 1085, 1081 HV Amsterdam (Netherlands)

    2014-02-01

    In this study the origin, behaviour and fate of anthropogenic Pb in sandy roadside soils were assessed by measuring soil characteristics, Pb isotope composition and content. In 1991 and 2003 samples were taken at different depth intervals at approximately 8 and 75 m from two highways in The Netherlands. The Pb isotope composition of the litter layer ({sup 206}Pb/{sup 207}Pb = 1.12–1.14) differs from the deeper soil samples ({sup 206}Pb/{sup 207}Pb = 1.20–1.21). Based on a mixing model it is concluded that the samples contain two Pb sources: natural Pb and anthropogenic Pb, the latter mainly derived from gasoline. {sup 206}Pb/{sup 207}Pb ratios demonstrate that the roadside soils were polluted to a depth of ∼ 15 cm. Within this depth interval, anthropogenic Pb content is associated with organic matter. Although Pb pollution only reached a depth of ∼ 15 cm, this does not mean that the topsoils retain all anthropogenic Pb. Due to the low pH and negligible binding capacity of soils at depths > 15 cm, anthropogenic Pb migrated towards groundwater after reaching depths of > 15 cm. The Pb isotope composition of the groundwater ({sup 206}Pb/{sup 207}Pb = 1.135–1.185) establishes that groundwater is polluted with anthropogenic Pb. The contribution of anthropogenic Pb to the groundwater varies between ∼ 30 and 100%. Based on the difference in soil Pb content and Pb isotope compositions over a period of 12 years, downward Pb migration is calculated to vary from 72 ± 95 to 324 ± 279 mg m{sup −2} y{sup −1}. Assuming that the downward Pb flux is constant over time, it is calculated that 35–90% of the atmospherically delivered Pb has migrated to the groundwater. - Highlights: • Lead isotope composition of litter and topsoil differs from the deeper soil samples. • Litter and topsoil contain anthropogenic Pb, with gasoline Pb as main source. • Anthropogenic Pb is strongly associated with organic matter in litter and topsoil. • Approximately 35–90% of

  8. Neither artificial light at night, anthropogenic noise nor distance from roads are associated with oxidative status of nestlings in an urban population of songbirds.

    Science.gov (United States)

    Casasole, Giulia; Raap, Thomas; Costantini, David; AbdElgawad, Hamada; Asard, Han; Pinxten, Rianne; Eens, Marcel

    2017-08-01

    Increasing urbanization is responsible for road-related pollutants and causes an unprecedented increase in light and noise pollution, with potential detrimental effects for individual animals, communities and ecosystems. These stressors rarely act in isolation but studies dissecting the effects of these multiple stressors are lacking. Moreover, studies on urban stressors have mainly focused on adults, while exposure in early-life may be detrimental but is largely ignored. To fill this important knowledge gap, we studied if artificial light at night, anthropogenic noise and road-related pollution (using distance from roads as a proxy) explain variation in oxidative status in great tit nestlings (Parus major) in an urban population. Artificial light at night, anthropogenic noise and distance from roads were not associated with variation of the nine studied metrics of oxidative status (superoxide dismutase-SOD-, glutathione peroxidase-GPX, catalase-CAT-, non-enzymatic total antioxidant capacity-TAC-, reduced glutathione-GSH-, oxidized glutathione-GSSG-, ratio GSH/GSSG, protein carbonyls and thiobarbituric acid reactive substances-TBARS). Interestingly, for all oxidative status metrics, we found that there was more variation in oxidative status among individuals of the same nest compared to between different nests. We also showed an increase in protein carbonyls and a decrease of the ratio GSH/GSSG as the day advanced, and an increase of GPX when weather conditions deteriorated. Our study suggests that anthropogenic noise, artificial light at night and road-related pollution are not the most important sources of variation in oxidative status in great tit nestlings. It also highlights the importance of considering bleeding time and weather conditions in studies with free-living animals. Copyright © 2017. Published by Elsevier Inc.

  9. Air Pollution Impacts on Global Crop Productivity and Nitrogen Depositio

    Science.gov (United States)

    Heald, C. L.; Tai, A. P. K.; Val Martin, M.

    2014-12-01

    The biosphere is undeniably transformed by air pollution. Emissions, climate change, and land use change are all expected to substantially alter future air quality. In this presentation, we discuss near-term projections (2050) of air quality impacts on both crop productivity and nitrogen deposition. First, we contrast the relative impacts of ozone air pollution and a warming climate on global crop yields. To do so, we define statistical crop yield functions to a warming climate based on the historical record. We combine these relationships with ozone-damage estimates and apply these to future air quality and climate projections from a global coupled chemistry-climate model (CESM). We find substantial variability in the response, with certain regions or crops more sensitive to ozone pollution and others more sensitive to warming. This work demonstrates that air quality management is a key element to ensuring global food security. Second, we examine the relative impacts of anthropogenic emissions, climate change, and land use change on global nitrogen deposition. Nitrogen deposition has rapidly increased over the Anthropocene. Excess deposition of nitrogen to ecosystems can lead to eutrophication of waters, and a decrease in biodiversity. We use the CESM to investigate two scenarios (RCP 4.5 and RCP8.5) and focus our analysis on the impacts on diverse ecoregions in North America, Europe, and Asia.

  10. Remediation of metal polluted soils by phytorremediation combined with biochar addition

    Science.gov (United States)

    Méndez, Ana; Paz-Ferreiro, Jorge; Gómez-Limón, Dulce; César Arranz, Julio; Saa, Antonio; Gascó, Gabriel

    2016-04-01

    The main objective of this work is to optimize and quantify the treatment of metal polluted soils through phytoremediation techniques combined with the addition of biochar. Biochar is a carbon rich material obtained by thermal treatment of biomass in inert atmosphere. In recent years, it has been attracted considerable interest due to their positive effect after soil addition. The use of biochar also seems appropriate for the treatment of metal-contaminated soils decreasing their mobility. Biochar properties highly depend on the raw material composition and manufacturing conditions. This paper is based on the use of manure wastes, rich in nutrients and therefore interesting raw materials for biochar production, especially when combined with phytoremediation techniques since the biochar act as conditioner and slow release fertilizer. We are very grateful to Ministerio de Economia y Competitividad (Spain) for financial support under Project CGL2014-58322-R.

  11. Analysis of Surface Water Pollution in the Kinta River Using Multivariate Technique

    International Nuclear Information System (INIS)

    Hamza Ahmad Isiyaka; Hafizan Juahir

    2015-01-01

    This study aims to investigate the spatial variation in the characteristics of water quality monitoring sites, identify the most significant parameters and the major possible sources of pollution, and apportion the source category in the Kinta River. 31 parameters collected from eight monitoring sites for eight years (2006-2013) were employed. The eight monitoring stations were spatially grouped into three independent clusters in a dendrogram. A drastic reduction in the number of monitored parameters from 31 to eight and nine significant parameters (P<0.05) was achieved using the forward stepwise and backward stepwise discriminate analysis (DA). Principal component analysis (PCA) accounted for more than 76 % in the total variance and attributes the source of pollution to anthropogenic and natural processes. The source apportionment using a combined multiple linear regression and principal component scores indicates that 41 % of the total pollution load is from rock weathering and untreated waste water, 26 % from waste discharge, 24 % from surface runoff and 7 % from faecal waste. This study proposes a reduction in the number of monitoring stations and parameters for a cost effective and time management in the monitoring processes and multivariate technique can provide a simple representation of complex and dynamic water quality characteristics. (author)

  12. Effects of pollutant accumulation by the invasive weed saltcedar (Tamarix ramosissima) on the biological control agent Diorhabda elongata (Coleoptera: Chrysomelidae)

    International Nuclear Information System (INIS)

    Sorensen, Mary A.; Parker, David R.; Trumble, John T.

    2009-01-01

    Hydroponic greenhouse studies were used to investigate the effect of four anthropogenic pollutants (perchlorate (ClO 4 - ), selenium (Se), manganese (Mn), and hexavalent chromium (Cr (VI))) on the biological control agent Diorhabda elongata Brulle. Contaminant concentrations were quantified for experimental Tamarix ramosissima Ledab. plants and D. elongata beetles. Growth of larvae was significantly reduced by Se contamination, but was not affected by the presence of perchlorate, Mn, or Cr (VI). All of the contaminants were transferred from plants to D. elongata beetles. Only Cr (VI) was accumulated at greater levels in beetles than in their food. Because T. ramosissima grows in disturbed areas, acquires salts readily, and utilizes groundwater, this plant is likely to accumulate anthropogenic pollutants in contaminated areas. This study is one of the first to investigate the potential of an anthropogenic pollutant to influence a weed biological control system. - The presence of Se, but not perchlorate, Mn, or Cr (VI), in foliage of the invasive weed saltcedar was shown to reduce growth of the biological control agent Diorhabda elongata

  13. Effects of pollutant accumulation by the invasive weed saltcedar (Tamarix ramosissima) on the biological control agent Diorhabda elongata (Coleoptera: Chrysomelidae)

    Energy Technology Data Exchange (ETDEWEB)

    Sorensen, Mary A. [Department of Entomology, University of California, Riverside, CA 92521 (United States)], E-mail: mary.sorensen@ucr.edu; Parker, David R. [Department of Environmental Science, University of California, Riverside, CA 92521 (United States); Trumble, John T. [Department of Entomology, University of California, Riverside, CA 92521 (United States)

    2009-02-15

    Hydroponic greenhouse studies were used to investigate the effect of four anthropogenic pollutants (perchlorate (ClO{sub 4}{sup -}), selenium (Se), manganese (Mn), and hexavalent chromium (Cr (VI))) on the biological control agent Diorhabda elongata Brulle. Contaminant concentrations were quantified for experimental Tamarix ramosissima Ledab. plants and D. elongata beetles. Growth of larvae was significantly reduced by Se contamination, but was not affected by the presence of perchlorate, Mn, or Cr (VI). All of the contaminants were transferred from plants to D. elongata beetles. Only Cr (VI) was accumulated at greater levels in beetles than in their food. Because T. ramosissima grows in disturbed areas, acquires salts readily, and utilizes groundwater, this plant is likely to accumulate anthropogenic pollutants in contaminated areas. This study is one of the first to investigate the potential of an anthropogenic pollutant to influence a weed biological control system. - The presence of Se, but not perchlorate, Mn, or Cr (VI), in foliage of the invasive weed saltcedar was shown to reduce growth of the biological control agent Diorhabda elongata.

  14. Natural and anthropogenic ocean noise recorded at long-term and temporary observatories

    Science.gov (United States)

    Grevemeyer, Ingo; Metz, Dirk; Watts, Anthony B.; Geissler, Wolfram

    2017-04-01

    Most people worldwide would assume that the oceans are silent. However, a number of natural phenomenon's like ocean waves, wind, lightening, ice noise, earthquakes, and submarine volcanic activity contributes to the ambient ocean noise. During their evolution, marine animals like fish and mammals have adopted in many ways to the acoustic properties of the sea. Yet in recent decades, anthropogenic and hence manmade ocean noise level has risen profoundly. Due to extreme reliance of fish and mammals on underwater sounds for basic life functions, including searching for food or mate and the absence of any mechanism to safeguard them against it, underwater noise pollution may disrupt marine life. The primary sources of low-frequency anthropogenic noise include sounds associated with shipping, military operations, oil and gas exploration and production, and even research activities. Some scientists suggest that today virtually no marine environment is without any noise pollution. Thus, all marine life forms that rely heavily on the integrity of their acoustic habitat may have to adapt to new conditions. Of greatest concern for whales are low-frequency sounds that travel long distances in the ocean. Ship propellers and motors, for instance, produce sound at low frequencies, as do natural and manmade seismic activity. These profound, loud noises reverberate in the deep ocean and can effectively mask or block vital whale communication. However, in general very little is known about the world-wide distribution of ambient ocean noise. Thus, on a global scale and considering the vast areas of the world's oceans, we know virtually nothing about noise levels in different parts of the oceans and how anthropogenic noise contributes to ambient noise. Here, we use hydrophone recordings from the UN's Comprehensive Nuclear-Test-Ban Treaty organization (CTBTO) and ocean-bottom seismometers to provide an assessment of noise in all major basins, including the Pacific, Atlantic and Indian

  15. Adaptation of forest ecosystems to air pollution and climate change: a global assessment on research priorities

    Science.gov (United States)

    Y. Serengil; A. Augustaitis; Andrzej Bytnerowicz; Nancy Grulke; A.R. Kozovitz; R. Matyssek; G. Müller-Starck; M. Schaub; G. Wieser; A.A. Coskun; E. Paoletti

    2011-01-01

    Climate change and air pollution are two of the anthropogenic stressors that require international collaboration. Influence mechanisms and combating strategies towards them have similarities to some extent. Impacts of air pollution and climate change have long been studied under IUFRO Research Group 7.01 and state of the art findings are presented at biannual meetings...

  16. In silico Analysis for Laccase-mediated Bioremediation of the Emerging Pharmaceutical Pollutants

    Directory of Open Access Journals (Sweden)

    Anjali Singh

    2015-12-01

    Full Text Available Laccases, a copper oxidase enzyme, has been employed for bioremediation of anthropogenic pollutants in the recent past. Laccase has a broad range of substrate specificity which offers the prospect for screening in numerable xenobiotics. The present study was aimed to use protein-ligand docking as a tool for prediction of biodegradation of selected pharmaceutical pollutants. A comparative study was also done to determine the binding efficacy of bacterial and fungal laccase for those selected pollutants. The laccase-pollutant docking was carried out using HEX software. The docking scores of bacterial and fungal laccase for predefined pollutants were comparable to ABTS, a substrate for laccase, which suggested that laccase might be able to degrade emerging pharmaceutical pollutants. The docking analysis approach can be useful in prediction of binding competence of pharmaceutical pollutants with laccase for in situ laccase-mediated bioremediation.

  17. The relative influence of the anthropogenic air pollutants on the atmospheric turbidity factors measured at an urban monitoring station

    International Nuclear Information System (INIS)

    Elminir, Hamdy K.; Hamid, R.H.; El-Hussainy, F.; Ghitas, Ahmed E.; Beheary, M.M.; Abdel-Moneim, Khaled M.

    2006-01-01

    This work is based on simultaneous measurements of direct solar radiation along with other chemical measurements, with the objective of investigating the diurnal and seasonal variations of atmospheric turbidity factors (i.e., Linke's factor, Angstroem's coefficient, and aerosol optical depth). Relationships between atmospheric turbidity factors, expressing the solar radiation extinction, and anthropogenic air pollutants were also evaluated. The frequency of occurrence of the individual indices has been established to describe the sky conditions. The preliminary results obtained indicate high variability of aerosol loading, leading to high turbidity for most of the year. Annual averages of 0.2 and 6 with standard deviations of 0.096 and 0.98 were found for Angstroem and Linke turbidities, respectively. On the base of the frequency of occurrence, it has been found that over 50% of the dataset are around 0.25 and 6.3 for Angstroem and Linke turbidities, respectively. On average, the month of September experienced the highest turbidity, while December experienced the lowest. A possible reason for this is that the vertical distribution of the aerosol particles moves up in September due to the extent of the Sudan monsoon trough. We also note that spring values of the turbidity factors are closer to summer values, whereas the pronounced difference between the summer values in comparison with the winter values may be attributed to relatively greater difference in the water vapor level in the atmosphere

  18. THE CONCENTRATION OF PHOTOSINTHESIS PIGMENTS IN THE ANTHROPOGENIC PLANT COMMUNITIES IN TOBOLSK TOWN

    Directory of Open Access Journals (Sweden)

    Еlena Ivanovna Popova

    2016-10-01

    Full Text Available Photosynthesis means a lot in the life of a plant body. For the normal photosynthesis process it is necessary to have certain external and internal conditions. The topic of the research is the study of photosynthesis pigments in anthropogenic plant communities. The aim of our work was to study the pigment composition plants of anthropogenic phytocenoses. Methods: we have used the spectrophotometric method to define the concentration of pigments. Results: the research has shown that the concentration of a – chlorophyll, b – chlorophyll and carotenoids changes depending on the site conditions. The maximal concentration of a and b chlorophyll is found on less polluted areas. High carotenoid concentration was found in stress anthropogenic conditions. On the one hand, this carotenoid concentration decreases the stress effect. On the other hand it fulfils the protection function, preventing the chlorophyll molecules and other organic substances from destruction. In the research you will find the species composition of vascular plants on the sites under research. Jaccard’s coefficient of community has been defined. Field of application of results: the data can be used to predict the dynamics of populations and communities of plants in the contaminated areas and monitor the status of natural ecosystems.

  19. Small Boreal Lake Ecosystem Evolution under the Influence of Natural and Anthropogenic Factors: Results of Multidisciplinary Long-Term Study

    Directory of Open Access Journals (Sweden)

    Liudmila Shirokova

    2016-07-01

    Full Text Available Small aquatic ecosystems of the boreal zone are known to be most sensitive indicators of on-going environmental change as well as local anthropogenic pressure, while being highly vulnerable to external impacts. Compared to rather detailed knowledge of the evolution of large and small lakes in Scandinavia and Canada, and large lakes in Eurasia, highly abundant small boreal lakes of northwest Russia have received very little attention, although they may become important centers of attraction of growing rural population in the near future. Here we present the results of a multidisciplinary, multi-annual study of a small boreal humic lake of NW Russia. A shallow (3 m and a deep (16 m site of this lake were regularly sampled for a range of chemical and biological parameters. Average multi-daily, summer-time values of the epilimnion (upper oxygenated layer of the lake provided indications of possible trends in temperature, nutrients, and bacterio-plankton concentration that revealed the local pollution impact in the shallow zone and overall environmental trend in the deep sampling point of the lake. Organic phosphorus, nitrate, and lead were found to be most efficient tracers of local anthropogenic pollution, especially visible in the surface layer of the shallow site of the lake. Cycling of trace elements between the epilimnion and hypolimnion is tightly linked to dissolved organic matter speciation and size fractionation due to the dominance of organic and organo-ferric colloids. The capacity of lake self-purification depends on the ratio of primary productivity to mineralization of organic matter. This ratio remained >1 both during winter and summer periods, which suggests a high potential of lake recovery from the input of allochthonous dissolved organic matter and local anthropogenic pollution.

  20. Source apportionment of toxic chemical pollutants at Trombay region

    International Nuclear Information System (INIS)

    Sahu, S.K.; Pandit, G.G.; Puranik, V.D.

    2007-05-01

    Anthropogenic activities like industrial production and transportation, a wide range of chemical pollutants such as trace and toxic metals, pesticides, polycyclic aromatic hydrocarbons etc. eventually find their way into various environmental compartments. One of the main issues of environmental pollution is the chemical composition of aerosols and their sources. In spite of all the efforts a considerable part of the atmospheric aerosol mass is still not accounted for. This report describes some of the activities of Environmental Assessment Division which are having direct relevance to the public health and regulatory bodies. Extensive studies were carried out in our laboratories for the Trombay site, over the years; on the organic as well as inorganic pollution in the environment to understand inter compartmental behaviour of these chemical pollutants. In this report an attempt has been made to collect different size fractionated ambient aerosols and to quantify the percentage contribution of each size fraction to the total aerosol mass. Subsequently, an effort has been made for chemical characterization (inorganic, organic and carbon content) of these particulate matter using different analytical techniques. The comprehensive data set on chemical characterization of particulate matter thus generated is being used with receptor modeling techniques to identify the possible sources contributing to the observed concentrations of the measured pollutants. The use of this comprehensive data set in receptor modeling has been helpful in distinguishing the source types in a better way. Receptor modeling techniques are powerful tools that can be used to locate sources of pollutants to the atmosphere. The major advantage of the receptor models is that actual ambient data are used to apportion source contributions, negating the need for dispersion calculations. Pollution sources affecting the sampling site were statistically identified using varimax rotated factor analysis of

  1. Population genetic dynamics of three-spined sticklebacks (Gasterosteus aculeatus) in anthropogenic altered habitats.

    Science.gov (United States)

    Scharsack, Joern P; Schweyen, Hannah; Schmidt, Alexander M; Dittmar, Janine; Reusch, Thorsten Bh; Kurtz, Joachim

    2012-06-01

    In industrialized and/or agriculturally used landscapes, inhabiting species are exposed to a variety of anthropogenic changes in their environments. Genetic diversity may be reduced if populations encounter founder events, bottlenecks, or isolation. Conversely, genetic diversity may increase if populations adapt to changes in selective regimes in newly created habitats. With the present study, genetic variability of 918 sticklebacks from 43 samplings (21.3 ± 3.8 per sample) at 36 locations from cultivated landscapes in Northwest Germany was analyzed at nine neutral microsatellite loci. To test if differentiation is influenced by habitat alterations, sticklebacks were collected from ancient running waters and adjacent artificial stagnant waters, from brooks with salt water inflow of anthropogenic and natural origin and adjacent freshwater sites. Overall population structure was dominated by isolation by distance (IBD), which was significant across all populations, and analysis of molecular variance (AMOVA) revealed that 10.6% of the variation was explained by river catchment area. Populations in anthropogenic modified habitats deviated from the general IBD structure and in the AMOVA, grouping by habitat type running/stagnant water explained 4.9% of variation and 1.4% of the variation was explained by salt-/freshwater habitat. Sticklebacks in salt-polluted water systems seem to exhibit elevated migratory activity between fresh- and saltwater habitats, reducing IBD. In other situations, populations showed distinct signs of genetic isolation, which in some locations was attributed to mechanical migration barriers, but in others to potential anthropogenic induced bottleneck or founder effects. The present study shows that anthropogenic habitat alterations may have diverse effects on the population genetic structure of inhabiting species. Depending on the type of habitat change, increased genetic differentiation, diversification, or isolation are possible consequences.

  2. Combining land use information and small stream sampling with PCR-based methods for better characterization of diffuse sources of human fecal pollution.

    Science.gov (United States)

    Peed, Lindsay A; Nietch, Christopher T; Kelty, Catherine A; Meckes, Mark; Mooney, Thomas; Sivaganesan, Mano; Shanks, Orin C

    2011-07-01

    Diffuse sources of human fecal pollution allow for the direct discharge of waste into receiving waters with minimal or no treatment. Traditional culture-based methods are commonly used to characterize fecal pollution in ambient waters, however these methods do not discern between human and other animal sources of fecal pollution making it difficult to identify diffuse pollution sources. Human-associated quantitative real-time PCR (qPCR) methods in combination with low-order headwatershed sampling, precipitation information, and high-resolution geographic information system land use data can be useful for identifying diffuse source of human fecal pollution in receiving waters. To test this assertion, this study monitored nine headwatersheds over a two-year period potentially impacted by faulty septic systems and leaky sanitary sewer lines. Human fecal pollution was measured using three different human-associated qPCR methods and a positive significant correlation was seen between abundance of human-associated genetic markers and septic systems following wet weather events. In contrast, a negative correlation was observed with sanitary sewer line densities suggesting septic systems are the predominant diffuse source of human fecal pollution in the study area. These results demonstrate the advantages of combining water sampling, climate information, land-use computer-based modeling, and molecular biology disciplines to better characterize diffuse sources of human fecal pollution in environmental waters.

  3. Effects of atmospheric transport and trade on air pollution mortality in China

    Directory of Open Access Journals (Sweden)

    H. Zhao

    2017-09-01

    Full Text Available Air quality is a major environmental concern in China, where premature deaths due to air pollution have exceeded 1 million people per year in recent years. Here, using a novel coupling of economic, physical and epidemiological models, we estimate the premature mortality related to anthropogenic outdoor PM2. 5 air pollution in seven regions of China in 2010 and show for the first time how the distribution of these deaths in China is determined by a combination of economic activities and physical transport of pollution in the atmosphere. We find that 33 % (338 600 premature deaths of China's PM2. 5-related premature mortality in 2010 were caused by pollutants emitted in a different region of the country and transported in the atmosphere, especially from north to south and from east to west. Trade further extended the cross-regional impact; 56 % of (568 900 premature deaths China's PM2. 5-related premature mortality was related to consumption in another region, including 423 800 (42 % of total and 145 100 (14 % premature deaths from domestic consumption and international trade respectively. Our results indicate that multilateral and multi-stage cooperation under a regional sustainable development framework is in urgent need to mitigate air pollution and related health impacts, and efforts to reduce the health impacts of air pollution in China should be prioritized according to the source and location of emissions, the type and economic value of the emitting activities, and the related patterns of consumption.

  4. Anthropogenic noise playback impairs embryonic development and increases mortality in a marine invertebrate

    Science.gov (United States)

    Nedelec, Sophie L.; Radford, Andrew N.; Simpson, Stephen D.; Nedelec, Brendan; Lecchini, David; Mills, Suzanne C.

    2014-07-01

    Human activities can create noise pollution and there is increasing international concern about how this may impact wildlife. There is evidence that anthropogenic noise may have detrimental effects on behaviour and physiology in many species but there are few examples of experiments showing how fitness may be directly affected. Here we use a split-brood, counterbalanced, field experiment to investigate the effect of repeated boat-noise playback during early life on the development and survival of a marine invertebrate, the sea hare Stylocheilus striatus at Moorea Island (French Polynesia). We found that exposure to boat-noise playback, compared to ambient-noise playback, reduced successful development of embryos by 21% and additionally increased mortality of recently hatched larvae by 22%. Our work, on an understudied but ecologically and socio-economically important taxon, demonstrates that anthropogenic noise can affect individual fitness. Fitness costs early in life have a fundamental influence on population dynamics and resilience, with potential implications for community structure and function.

  5. Soil diagnosis of an urban settlement with low levels of anthropogenic pollution (Stepnoe, Saratov region)

    Science.gov (United States)

    Ngun, C. T.; Pleshakova, Ye V.; Reshetnikov, M. V.

    2018-01-01

    A soil diagnosis of an urban territory Stepnoe (Saratov region) was conducted within the framework of soil research monitoring of inhabited localities with low levels of anthropogenic impact using chemical and microbiological analysis. Excess over maximum permissible concentration (MPC) of mobile forms of Cr, Zn and Cd were not observed within the researched territory. A universal excess over MPC of mobile forms of Ni, Cu and Pb was established which is most likely connected with anthropogenic contamination. It was discovered that, at the territory of the Stepnoe settlement, mobile forms of heavy metals compounds (HM) in most cases formed paragenetic associations with high correlation coefficient and despite this, an excess over MPC was not significant. This point to a common mineralogical origin of the elements inherited from the parent rock. The values of the total index of chemical contamination were not above 16, which puts the researched samples in a category with permissible contamination. The indices of the total number of heterotrophic bacteria, iron-oxidizing and hydrocarbon-oxidizing bacteria in most samples corresponded to normal indices for chestnut solonetsous and saline soils. In some samples, a deviation from the normal indices was observed justifying the impact of specific contaminants on the soil.

  6. Monitoring of PM10 and PM2.5 around primary particulate anthropogenic emission sources

    Science.gov (United States)

    Querol, Xavier; Alastuey, Andrés; Rodriguez, Sergio; Plana, Felicià; Mantilla, Enrique; Ruiz, Carmen R.

    Investigations on the monitoring of ambient air levels of atmospheric particulates were developed around a large source of primary anthropogenic particulate emissions: the industrial ceramic area in the province of Castelló (Eastern Spain). Although these primary particulate emissions have a coarse grain-size distribution, the atmospheric transport dominated by the breeze circulation accounts for a grain-size segregation, which results in ambient air particles occurring mainly in the 2.5-10 μm range. The chemical composition of the ceramic particulate emissions is very similar to the crustal end-member but the use of high Al, Ti and Fe as tracer elements as well as a peculiar grain-size distribution in the insoluble major phases allow us to identify the ceramic input in the bulk particulate matter. PM2.5 instead of PM10 monitoring may avoid the interference of crustal particles without a major reduction in the secondary anthropogenic load, with the exception of nitrate. However, a methodology based in PM2.5 measurement alone is not adequate for monitoring the impact of primary particulate emissions (such as ceramic emissions) on air quality, since the major ambient air particles derived from these emissions are mainly in the range of 2.5-10 μm. Consequently, in areas characterised by major secondary particulate emissions, PM2.5 monitoring should detect anthropogenic particulate pollutants without crustal particulate interference, whereas PM10 measurements should be used in areas with major primary anthropogenic particulate emissions.

  7. Copper and zinc in Elodea canadensis from rivers with various pollution levels

    NARCIS (Netherlands)

    Cegłowska, A.; Sokołowska, K.; Samecka-Cymerman, A.; Kolon, K.; Jusik, S.; Kempers, A.J.

    2016-01-01

    The anthropogenic impact of xenobiotics contributes to environmental risk for the aquatic environment and thus, must be controlled. Elodea canadensis, a cosmopolitan aquatic macrophyte with an important role in the ecology of many littoral zones, may provide an integrated record of pollution.

  8. Our fingerprint in tsunami deposits - anthropogenic markers as a new tsunami identification tool

    Science.gov (United States)

    Bellanova, P.; Schwarzbauer, J.; Reicherter, K. R.; Jaffe, B. E.; Szczucinski, W.

    2016-12-01

    Several recent geochemical studies have focused on the use of inorganic indicators to evaluate a tsunami origin of sediment in the geologic record. However, tsunami transport not only particulate sedimentary material from marine to terrestrial areas (and vice versa), but also associated organic material. Thus, tsunami deposits may be characterized by organic-geochemical parameters. Recently increased attention has been given to the use of natural organic substances (biomarkers) to identify tsunami deposits. To date no studies have been made investigating anthropogenic organic indicators in recent tsunami deposits. Anthropogenic organic markers are more sensitive and reliable markers compared to other tracers due to their specific molecular structural properties and higher source specificity. In this study we evaluate whether anthropogenic substances are useful indicators for determining whether an area has been inundated by a tsunami. We chose the Sendai Plain and Sanemoura and Oppa Bays, Japan, as study sites because the destruction of infrastructure by flooding released environmental pollutants (e.g., fuels, fats, tarmac, plastics, heavy metals, etc.) contaminating large areas of the coastal zone during the 2011 Tohoku-oki tsunami. Organic compounds from the tsunami deposits are extracted from tsunami sediment and compared with the organic signature of unaffected pre-tsunami samples using gas chromatography-mass spectrometry (GS/MS) based analyses. For the anthropogenic markers, compounds such as soil derived pesticides (DDT), source specific PAHs, halogenated aromatics from industrial sources were detected and used to observe the inland extent and the impact of the Tohoku-oki tsunami on the coastal region around Sendai.

  9. A 50-year record of platinum, iridium, and rhodium in Antarctic snow: volcanic and anthropogenic sources.

    Science.gov (United States)

    Soyol-Erdene, Tseren-Ochir; Huh, Youngsook; Hong, Sungmin; Hur, Soon Do

    2011-07-15

    Antarctic snow preserves an atmospheric archive that enables the study of global atmospheric changes and anthropogenic disturbances from the past. We report atmospheric deposition rates of platinum group elements (PGEs) in Antarctica during the last ∼ 50 years based on determinations of Pt, Ir, and Rh in snow samples collected from Queen Maud Land, East Antarctica to evaluate changes in the global atmospheric budget of these noble metals. The 50-year average PGE concentrations in Antarctic snow were 17 fg g(-1) (4.7-76 fg g(-1)) for Pt, 0.12 fg g(-1) (pollution for Pt and probably for Rh since the 1980s, which may be attributed to the increasing emissions of these metals from anthropogenic sources such as automobile catalysts and metal production processes.

  10. Characterizing the anthropogenic signature in the LCLU dynamics in the Central Asia region

    Science.gov (United States)

    Tatarskii, V.; Sokolik, I. N.; de Beurs, K.; Shiklomanov, A. I.

    2017-12-01

    Humans have been changing the LCLU dynamics over time through the world. In the Central Asia region, these changes have been especially pronounced due to the political and economic transformation. We present a detailed analysis, focusing on identifying and quantifying the anthropogenic signature in the water and land use across the region. We have characterized the anthropogenic dust emission by combining the modeling and observations. The model is a fully coupled model called WRF-Chem-DuMo that takes explicitly into account the vegetation treatment in modeling the dust emission. We have reconstructed the anthropogenic dust sources in the region, such as the retreat of the Aral Sea, changes in agricultural fields, etc. In addition, we characterize the anthropogenic water use dynamics, including the changes in the water use for the agricultural production. Furthermore, we perform an analysis to identify the anthropogenic signature in the NDVI pattern. The NDVI were analyzed in conjunction with the meteorological fields that were simulated at the high special resolution using the WRF model. Meteorological fields of precipitation and temperature were used for the correlation analysis to separate the natural vs. anthropogenic changes. In this manner, we were able to identify the regions that have been affected by human activities. We will present the quantitative assessment of the anthropogenic changes. The diverse consequences for the economy of the region, as well as, the environment will be addressed.

  11. Coupled effects of natural and anthropogenic controls on seasonal and spatial variations of river water quality during baseflow in a coastal watershed of Southeast China.

    Directory of Open Access Journals (Sweden)

    Jinliang Huang

    Full Text Available Surface water samples of baseflow were collected from 20 headwater sub-watersheds which were classified into three types of watersheds (natural, urban and agricultural in the flood, dry and transition seasons during three consecutive years (2010-2012 within a coastal watershed of Southeast China. Integrating spatial statistics with multivariate statistical techniques, river water quality variations and their interactions with natural and anthropogenic controls were examined to identify the causal factors and underlying mechanisms governing spatiotemporal patterns of water quality. Anthropogenic input related to industrial effluents and domestic wastewater, agricultural activities associated with the precipitation-induced surface runoff, and natural weathering process were identified as the potential important factors to drive the seasonal variations in stream water quality for the transition, flood and dry seasons, respectively. All water quality indicators except SRP had the highest mean concentrations in the dry and transition seasons. Anthropogenic activities and watershed characteristics led to the spatial variations in stream water quality in three types of watersheds. Concentrations of NH(4(+-N, SRP, K(+, COD(Mn, and Cl- were generally highest in urban watersheds. NO3(-N Concentration was generally highest in agricultural watersheds. Mg(2+ concentration in natural watersheds was significantly higher than that in agricultural watersheds. Spatial autocorrelations analysis showed similar levels of water pollution between the neighboring sub-watersheds exhibited in the dry and transition seasons while non-point source pollution contributed to the significant variations in water quality between neighboring sub-watersheds. Spatial regression analysis showed anthropogenic controls played critical roles in variations of water quality in the JRW. Management implications were further discussed for water resource management. This research

  12. Lead chromate detected as a source of atmospheric Pb and Cr (VI) pollution

    Science.gov (United States)

    Lee, Pyeong-Koo; Yu, Soonyoung; Chang, Hye Jung; Cho, Hye Young; Kang, Min-Ju; Chae, Byung-Gon

    2016-10-01

    Spherical black carbon aggregates were frequently observed in dust dry deposition in Daejeon, Korea. They were tens of micrometers in diameter and presented a mixture of black carbon and several mineral phases. Transmission electron microscopy (TEM) observations with energy-dispersive X-ray spectroscopy (EDS) and selected area diffraction pattern (SADP) analyses confirmed that the aggregates were compact and included significant amounts of lead chromate (PbCrO4). The compositions and morphologies of the nanosized lead chromate particles suggest that they probably originated from traffic paint used in roads and were combined as discrete minerals with black carbon. Based on Pb isotope analysis and air-mass backward trajectories, the dust in Daejeon received a considerable input of anthropogenic pollutants from heavily industrialized Chinese cities, which implies that long-range transported aerosols containing PbCrO4 were a possible source of the lead and hexavalent chromium levels in East Asia. Lead chromate should be considered to be a source of global atmospheric Pb and Cr(VI) pollution, especially given its toxicity.

  13. Lead chromate detected as a source of atmospheric Pb and Cr (VI) pollution.

    Science.gov (United States)

    Lee, Pyeong-Koo; Yu, Soonyoung; Chang, Hye Jung; Cho, Hye Young; Kang, Min-Ju; Chae, Byung-Gon

    2016-10-25

    Spherical black carbon aggregates were frequently observed in dust dry deposition in Daejeon, Korea. They were tens of micrometers in diameter and presented a mixture of black carbon and several mineral phases. Transmission electron microscopy (TEM) observations with energy-dispersive X-ray spectroscopy (EDS) and selected area diffraction pattern (SADP) analyses confirmed that the aggregates were compact and included significant amounts of lead chromate (PbCrO 4 ). The compositions and morphologies of the nanosized lead chromate particles suggest that they probably originated from traffic paint used in roads and were combined as discrete minerals with black carbon. Based on Pb isotope analysis and air-mass backward trajectories, the dust in Daejeon received a considerable input of anthropogenic pollutants from heavily industrialized Chinese cities, which implies that long-range transported aerosols containing PbCrO 4 were a possible source of the lead and hexavalent chromium levels in East Asia. Lead chromate should be considered to be a source of global atmospheric Pb and Cr(VI) pollution, especially given its toxicity.

  14. Late Holocene dune mobilizations in the northwestern Negev dunefield, Israel: A response to combined anthropogenic activity and short-term intensified windiness

    Science.gov (United States)

    Roskin, Joel; Katra, Itzhak; Blumberg, Dan G.

    2013-04-01

    dune chronostratigraphy. Because they were short lived, the dune mobilization events, corresponding windiness, and probable dustiness which were examined affected the northern Negev landscape differentially. However, they cannot be proved to have affected the environment sufficiently to influence the decline of the late Byzantine and Early Islam agricultural establishment. This study demonstrates the sensitivity of dunes in arid and semi-arid regions to a combination of local and short-term fluctuations in windiness at times of widespread grazing (anthropogenic activity). The results remind us that in similar future scenarios, sand mobilization may be similarly retriggered to varying degrees.

  15. Pollutants in drinking water - sources, harmful effects and removal procedures

    International Nuclear Information System (INIS)

    Qadeer, R.

    2005-01-01

    The underground water resources available for human consumption are being continuously contaminated by the natural sources and anthropogenic activities. The pollutants include toxic microorganism, inorganic and organic chemicals and radionuclide etc. This is an acute problem in our country, where free style way of disposal of industrial effluents into the natural water bodies contaminates the surface and ground water. These contaminants make their way into human body through contaminated drinking water, which leads to the malfunctioning of the body organs. Details of some pollutants present in drinking water, their source and harmful effects on human beings are reviewed in this communication Merits and demerits of methods used to remove the pollutants from drinking water are also discussed. (author)

  16. Focus on CSIR research in pollution waste: South African mercury assessment (SAMA) programme

    CSIR Research Space (South Africa)

    Leaner, J

    2007-08-01

    Full Text Available Mercury pollution is a world-wide problem requiring attention at global, regional and national levels. Various anthropogenic activities release mercury into the atmosphere. It can occur as both elemental and oxidized forms, and is removed from...

  17. Radiocarbon: nature's tracer for carbonaceous pollutants

    International Nuclear Information System (INIS)

    Currie, L.A.; Klouda, G.A.; Gerlach, R.W.

    1982-01-01

    Recent developments in radiocarbon dating techniques have made it feasible to determine 14 C/ 12 C ratios in samples containing milligram or even microgram quantities of carbon. As a result, it has become practicable to apply these techniques to the study of trace gases and particles in the atmosphere, as a means of resolving anthropogenic from natural source components. Interpretation of 14 C data is straightforward: biospheric carbon (such as vegetation) is alive with a 14 C/ 12 C ratio of about 1.5 x 10 -12 , whereas fossil carbon is dead. Beyond this dichotomous classification it becomes very interesting to combine the isotopic data with concurrent chemical data, as well as spatial and temporal distributions, in order to infer the strengths of specific sources of carbonaceous pollutants. A brief review will be presented of our program on atmospheric gases and carbonaceous particles. For the latter, we have assayed individual chemical and size fractions, and samples collected in urban, rural, and remote locales. The biogenic carbon fraction - presumably from wood-burning - ranged from 10% to 100% for the urban samples analyzed

  18. Changes of the properties of oil-polluted soils after recultivation (remediation on the northern territories of the Russian Federation (the Republic of Komi

    Directory of Open Access Journals (Sweden)

    Zakhar Ezhelev

    2015-10-01

    Full Text Available Soil petroleum pollution is characteristic for soils of many petroleum-producing countries. The success of recultivation of such soils is determined by the speed and quality of cleaning and further propertiestransformation of recultivated soils. Our work is devoted to the examination of properties of recultivated more than 20 years ago petroleum polluted soils. We defined physical and chemical properties and regimes of soils,, fractional composition of the hydrocarbons of petroleum, the total population and the taxonomic structure of saprotrophic bacterial complex. It was shown that the ability of the studied recultivatedsoils to self-purification from anthropogenic hydrocarbons is determined by a combination of such a factors: 1- landscape position and removal of organic pollutants by surface water, 2-fractional composition of hydrocarbons, 3 – biodegradation and level of initial contamination with hydrocarbons. It was found that the direction and intensity of the soils evolution is primarily due to the degree of soil initial properties and regimes transformations during the recultivation procedure.

  19. Respiratory hazard assessment of combined exposure to complete gasoline exhaust and respirable volcanic ash in a multicellular human lung model at the air-liquid interface.

    Science.gov (United States)

    Tomašek, Ines; Horwell, Claire J; Bisig, Christoph; Damby, David E; Comte, Pierre; Czerwinski, Jan; Petri-Fink, Alke; Clift, Martin J D; Drasler, Barbara; Rothen-Rutishauser, Barbara

    2018-07-01

    Communities resident in urban areas located near active volcanoes can experience volcanic ash exposures during, and following, an eruption, in addition to sustained exposures to high concentrations of anthropogenic air pollutants (e.g., vehicle exhaust emissions). Inhalation of anthropogenic pollution is known to cause the onset of, or exacerbate, respiratory and cardiovascular diseases. It is further postulated similar exposure to volcanic ash can also affect such disease states. Understanding of the impact of combined exposure of volcanic ash and anthropogenic pollution to human health, however, remains limited. The aim of this study was to assess the biological impact of combined exposure to respirable volcanic ash (from Soufrière Hills volcano (SHV), Montserrat and Chaitén volcano (ChV), Chile; representing different magmatic compositions and eruption styles) and freshly-generated complete exhaust from a gasoline vehicle. A multicellular human lung model (an epithelial cell-layer composed of A549 alveolar type II-like cells complemented with human blood monocyte-derived macrophages and dendritic cells cultured at the air-liquid interface) was exposed to diluted exhaust (1:10) continuously for 6 h, followed by immediate exposure to the ash as a dry powder (0.54 ± 0.19 μg/cm 2 and 0.39 ± 0.09 μg/cm 2 for SHV and ChV ash, respectively). After an 18 h incubation, cells were exposed again for 6 h to diluted exhaust, and a final 18 h incubation (at 37 °C and 5% CO 2 ). Cell cultures were then assessed for cytotoxic, oxidative stress and (pro-)inflammatory responses. Results indicate that, at all tested (sub-lethal) concentrations, co-exposures with both ash samples induced no significant expression of genes associated with oxidative stress (HMOX1, NQO1) or production of (pro-)inflammatory markers (IL-1β, IL-8, TNF-α) at the gene and protein levels. In summary, considering the employed experimental conditions, combined exposure of

  20. Respiratory hazard assessment of combined exposure to complete gasoline exhaust and respirable volcanic ash in a multicellular human lung model at the air-liquid interface

    Science.gov (United States)

    Tomasek, Ines; Horwell, Claire J.; Bisig, Christoph; Damby, David; Comte, Pierre; Czerwinski, Jan; Petri-Fink, Alke; Clift, Martin J D; Drasler, Barbara; Rothen-Rutishauer, Barbara

    2018-01-01

    Communities resident in urban areas located near active volcanoes can experience volcanic ash exposures during, and following, an eruption, in addition to sustained exposures to high concentrations of anthropogenic air pollutants (e.g., vehicle exhaust emissions). Inhalation of anthropogenic pollution is known to cause the onset of, or exacerbate, respiratory and cardiovascular diseases. It is further postulated similar exposure to volcanic ash can also affect such disease states. Understanding of the impact of combined exposure of volcanic ash and anthropogenic pollution to human health, however, remains limited.The aim of this study was to assess the biological impact of combined exposure to respirable volcanic ash (from Soufrière Hills volcano (SHV), Montserrat and Chaitén volcano (ChV), Chile; representing different magmatic compositions and eruption styles) and freshly-generated complete exhaust from a gasoline vehicle. A multicellular human lung model (an epithelial cell-layer composed of A549 alveolar type II-like cells complemented with human blood monocyte-derived macrophages and dendritic cells cultured at the air-liquid interface) was exposed to diluted exhaust (1:10) continuously for 6 h, followed by immediate exposure to the ash as a dry powder (0.54 ± 0.19 μg/cm2 and 0.39 ± 0.09 μg/cm2 for SHV and ChV ash, respectively). After an 18 h incubation, cells were exposed again for 6 h to diluted exhaust, and a final 18 h incubation (at 37 °C and 5% CO2). Cell cultures were then assessed for cytotoxic, oxidative stress and (pro-)inflammatory responses.Results indicate that, at all tested (sub-lethal) concentrations, co-exposures with both ash samples induced no significant expression of genes associated with oxidative stress (HMOX1, NQO1) or production of (pro-)inflammatory markers (IL-1β, IL-8, TNF-α) at the gene and protein levels. In summary, considering the employed experimental conditions, combined exposure of

  1. Emerging pollutants in the environment: present and future challenges in biomonitoring, ecological risks and bioremediation

    OpenAIRE

    Gavrilescu, M.; Demnerová, K.; Aamand, J.; Agathos, S.; Fava, F.

    2015-01-01

    Emerging pollutants reach the environment from various anthropogenic sources and are distributed throughout environmental matrices. Although great advances have been made in the detection and analysis of trace pollutants during recent decades, due to the continued development and refinement of specific techniques, a wide array of undetected contaminants of emerging environmental concern need to be identified and quantified in various environmental components and biological tissues. These poll...

  2. Investigating the origin of Pb pollution in a terrestrial soil-plant-snail food chain by means of Pb isotope ratios

    Energy Technology Data Exchange (ETDEWEB)

    Notten, M.J.M. [Institute of Ecological Science, Department of System Ecology, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam (Netherlands)], E-mail: m.notten@nunhems.com; Walraven, N. [Faculty of Geosciences, Department of Earth Sciences/Geochemistry, University of Utrecht, Budapestlaan 4, 3508 TA Utrecht (Netherlands); Beets, C.J. [Institute of Earth Sciences, Department of Quaternary Geology and Geomorphology, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam (Netherlands); Vroon, P. [Institute of Earth Sciences, Department of Petrology, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam (Netherlands); Rozema, J.; Aerts, R. [Institute of Ecological Science, Department of System Ecology, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam (Netherlands)

    2008-06-15

    Lead isotope ratios were used to trace the origin of Pb in a soil-plant (Urtica dioica)-snail (Cepaea nemoralis) food chain in two polluted locations in the floodplains of the rivers Meuse and Rhine (Biesbosch National Park) and one reference location in the Netherlands. Lead isotope ratios and concentrations were determined in soil, litter, plant leaves, snails, rainwater and airborne particulate matter. Anthropogenic Pb in the soils of all locations was found to be derived from deposition of Pb polluted river sediments. Discharging rivers influenced the reference location before being reclaimed from the sea. The river sediment contains anthropogenic Pb from various sources related to industrial activities in the hinterland of the rivers Meuse and Rhine. Lead in the atmosphere contributed substantially to Pb pollution and Pb transfer in plant leaves and snails in all locations. Lead pollution in plant leaves and snails can be explained from a mixture of river sediment-Pb and atmospheric Pb from various transfer routes that involve low concentrations.

  3. Investigating the origin of Pb pollution in a terrestrial soil-plant-snail food chain by means of Pb isotope ratios

    International Nuclear Information System (INIS)

    Notten, M.J.M.; Walraven, N.; Beets, C.J.; Vroon, P.; Rozema, J.; Aerts, R.

    2008-01-01

    Lead isotope ratios were used to trace the origin of Pb in a soil-plant (Urtica dioica)-snail (Cepaea nemoralis) food chain in two polluted locations in the floodplains of the rivers Meuse and Rhine (Biesbosch National Park) and one reference location in the Netherlands. Lead isotope ratios and concentrations were determined in soil, litter, plant leaves, snails, rainwater and airborne particulate matter. Anthropogenic Pb in the soils of all locations was found to be derived from deposition of Pb polluted river sediments. Discharging rivers influenced the reference location before being reclaimed from the sea. The river sediment contains anthropogenic Pb from various sources related to industrial activities in the hinterland of the rivers Meuse and Rhine. Lead in the atmosphere contributed substantially to Pb pollution and Pb transfer in plant leaves and snails in all locations. Lead pollution in plant leaves and snails can be explained from a mixture of river sediment-Pb and atmospheric Pb from various transfer routes that involve low concentrations

  4. Air pollution and asthma in children. The relationship between air pollution and anti-ashma medication despensing to children from 6 until 12 years old in the North of the Netherlands.

    NARCIS (Netherlands)

    Weide van der, Lianne

    2005-01-01

    This explorative study aimed to investigate the relationship between anthropogenic air pollution like summer smog, and anti-asthma medication dispensing by pharmacies to children from 6 until 12 years old in a city and a town in the North of the Netherlan

  5. Possible influence of anthropogenic aerosols on cirrus clouds and anthropogenic forcing

    Directory of Open Access Journals (Sweden)

    J. E. Penner

    2009-02-01

    Full Text Available Cirrus clouds have a net warming effect on the atmosphere and cover about 30% of the Earth's area. Aerosol particles initiate ice formation in the upper troposphere through modes of action that include homogeneous freezing of solution droplets, heterogeneous nucleation on solid particles immersed in a solution, and deposition nucleation of vapor onto solid particles. Here, we examine the possible change in ice number concentration from anthropogenic soot originating from surface sources of fossil fuel and biomass burning, from anthropogenic sulfate aerosols, and from aircraft that deposit their aerosols directly in the upper troposphere. We use a version of the aerosol model that predicts sulfate number and mass concentrations in 3-modes and includes the formation of sulfate aerosol through homogeneous binary nucleation as well as a version that only predicts sulfate mass. The 3-mode version best represents the Aitken aerosol nuclei number concentrations in the upper troposphere which dominated ice crystal residues in the upper troposphere. Fossil fuel and biomass burning soot aerosols with this version exert a radiative forcing of −0.3 to −0.4 Wm−2 while anthropogenic sulfate aerosols and aircraft aerosols exert a forcing of −0.01 to 0.04 Wm−2 and −0.16 to −0.12 Wm−2, respectively, where the range represents the forcing from two parameterizations for ice nucleation. The sign of the forcing in the mass-only version of the model depends on which ice nucleation parameterization is used and can be either positive or negative. The magnitude of the forcing in cirrus clouds can be comparable to the forcing exerted by anthropogenic aerosols on warm clouds, but this forcing has not been included in past assessments of the total anthropogenic radiative forcing of climate.

  6. STUDIES AND RESEARCH ON POLLUTION OF ENVIRONMENTAL FACTORS IN THE AREA SC ROMPLUMB BAIA MARE FROM ANTHROPOGENICAL ACTIVITY

    Directory of Open Access Journals (Sweden)

    COCIORHAN CAMELIA SIMONA

    2011-03-01

    Full Text Available The main ways of soil pollution are: on path air or atmospheric path and on terrestrial path, pollution path of direct their. Sources of air pollution are two categories: natural sources (volcanic eruptions, decomposition acts, etc. and artificial, resulting from human activities (mining and metallurgy, energy, etc.. Solid air pollutants are those treated in the paper. They are dispersed in the air from emissions of particles which containing heavy metal ions in the atmosphere having a low sedimentation rate. Finest particles, dispersed in the air gets a considerable stability, for which will persist for a much longer time in air, thereby of increasing pollution. Direct pollution comes from direct deposit of minerals on the soil as raw materials and hazardous waste, particle entrainment by deflation surface dumps, infiltration of sewage from emplacement, accidental discharge of sewage from the emplacement and crack pipes, etc. This paper shows how it is influenced soil pollution and crack pipes, etc. from the perimeter intrauzinal and extrauzinal of SC Romplumb SA by two of the factors leading to pollution, conveying technological waste water and atmospheric emissions, respectivelly.

  7. Anthropogenic signature of sediment organic matter probed by UV-Visible and fluorescence spectroscopy and the association with heavy metal enrichment.

    Science.gov (United States)

    He, Wei; Lee, Jong-Hyun; Hur, Jin

    2016-05-01

    Sediment organic matter (SOM) was extracted in an alkaline solution from 43 stream sediments in order to explore the anthropogenic signatures. The SOM spectroscopic characteristics including excitation-emission matrix (EEM)-parallel factor analysis (PARAFAC) were compared for five sampling site groups classified by the anthropogenic variables of land use, population density, the loadings of organics and nutrients, and metal enrichment. The conventional spectroscopic characteristics including specific UV absorbance, absorbance ratio, and humification index did not properly discriminate among the different cluster groups except in the case of metal enrichment. Of the four decomposed PARAFAC components, humic-like and tryptophan-like fluorescence responded negatively and positively, respectively, to increasing degrees of the anthropogenic variables except for land use. The anthropogenic enrichment of heavy metals was positively associated with the abundance of tryptophan-like component. In contrast, humic-like component, known to be mostly responsible for metal binding, exhibited a decreasing trend corresponding with metal enrichment. These conflicting trends can be attributed to the overwhelmed effects of the coupled discharges of heavy metals and organic pollutants into sediments. Our study suggests that the PARAFAC components can be used as functional signatures to probe the anthropogenic influences on sediments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Ecological effects of combined pollution associated with e-waste recycling on the composition and diversity of soil microbial communities.

    Science.gov (United States)

    Liu, Jun; He, Xiao-Xin; Lin, Xue-Rui; Chen, Wen-Ce; Zhou, Qi-Xing; Shu, Wen-Sheng; Huang, Li-Nan

    2015-06-02

    The crude processing of electronic waste (e-waste) has led to serious contamination in soils. While microorganisms may play a key role in remediation of the contaminated soils, the ecological effects of combined pollution (heavy metals, polychlorinated biphenyls, and polybrominated diphenyl ethers) on the composition and diversity of microbial communities remain unknown. In this study, a suite of e-waste contaminated soils were collected from Guiyu, China, and the indigenous microbial assemblages were profiled by 16S rRNA high-throughput sequencing and clone library analysis. Our data revealed significant differences in microbial taxonomic composition between the contaminated and the reference soils, with Proteobacteria, Acidobacteria, Bacteroidetes, and Firmicutes dominating the e-waste-affected communities. Genera previously identified as organic pollutants-degrading bacteria, such as Acinetobacter, Pseudomonas, and Alcanivorax, were frequently detected. Canonical correspondence analysis revealed that approximately 70% of the observed variation in microbial assemblages in the contaminated soils was explained by eight environmental variables (including soil physiochemical parameters and organic pollutants) together, among which moisture content, decabromodiphenyl ether (BDE-209), and copper were the major factors. These results provide the first detailed phylogenetic look at the microbial communities in e-waste contaminated soils, demonstrating that the complex combined pollution resulting from improper e-waste recycling may significantly alter soil microbiota.

  9. Characterization, Distribution, Sources and Origins of Aliphatic Hydrocarbons from Surface Sediment of Prai Strait, Penang, Malaysia: A Widespread Anthropogenic Input

    Directory of Open Access Journals (Sweden)

    Mahyar Sakari

    2008-07-01

    Full Text Available Persistent organic pollutants such as petroleum hydrocarbons are one of the most serious and important class of pollutants that face to many countries including Malaysia. Aliphatic hydrocarbons contain straight chain alkane; derive from anthropogenic and natural sources to the marine environment. The multi-purpose strait of Prai is located in the Northwest of Peninsular Malaysia plays an important economic role in the Southeast Asia. Twenty surface sediment samples were collected using Eckman dredge to measure the concentration and determine the characterization, sources and origins of the aliphatic hydrocarbons in December 2006. Samples (top 4 cm were extracted with Soxhlet, treated with activated copper and subjected to 2 steps column chromatography for purification and fractionation. Alkane fraction injected into Gas Chromatography–Flame Ionization Detector (GC-FID for instrumental analysis. The results showed that total n-alkane concentrations are ranging from 512 to 10770 ng/mg d. w. Carbon Preferences Index (CPI revealed an extreme widespread anthropogenic input and naturally derived (CPI= 0 to 4.88 hydrocarbons in the study area. The ratio of C31/C19 indicated that natural hydrocarbons are generating from terrestrial vascular plants and transferring by rivers. The characteristics of Major Hydrocarbons provided evidences that oil and its derivatives either fresh or degraded are the major contributors of the pollution in the study area. Statistical approaches also confirmed that 85% of study area affected by oil sources of pollution. It is seen that aliphatic hydrocarbons mostly transfer by lateral input to the marine environment than atmospheric movements.

  10. Spatiotemporal variability and differentiation between anthropogenic and natural contamination of heavy metals of surface water: a case study in the Cordillera Blanca, Peru

    Science.gov (United States)

    Guittard, A.; Baraer, M.; McKenzie, J. M.; Mark, B. G.; Fernandez, A.; Walsh, E.; Santos Perez, A.

    2015-12-01

    The Rio Santa, Peru, drains the western slopes of the glacierized Cordillera Blanca and provides water resources at almost all levels of the watershed. As it flows away from the valleys of the Cordillera Blanca, the Rio Santa takes out pollution from numerous sources, including acid mine drainage and natural sulfide oxidation by-products. The Rio Santa dry season discharge decline that is projected to be a consequence of glaciers retreat will probably have implications for the evolution of water pollution. This threat makes the characterization of the actual contamination mechanisms of primary importance. The present study focuses, first, on the spatiotemporal variability of heavy metal contamination across the entire Rio Santa Watershed and secondly on differentiating anthropogenic and natural contaminated sites. First, a macroscale sampling has been done during the summer 2013 to provide an overview of the contamination by trace metal, in water, suspended sediments and riverbed sediments. In addition, 30 water samples were taken from a point next to the city of Huaraz at a frequency of once every 2 weeks and analyzed for trace metals. Secondly, in order to identify hydrochemical contaminant origin dependant signatures in the Rio Santa watershed, 5 areas of known contamination origins were sampled during the summer 2014.Spatially speaking, we observed that most pollution is located in the south of the watershed, and that a large part of the arsenic that reaches the Santa in an aqueous phase does not make it to the outlet but remains trapped in the riverbed. Annual variation in water shows a very unusual fluctuation in Mn compare to other trace metal which are relatively stable. By differencing anthropogenic and natural sites and by considering glaciers melt and decrease water in future what would be the impact of the part of natural contaminated sites versus anthropogenic, mining and cities, on the water quality? Preliminary results show that anthropogenic sites

  11. Oxidative drug metabolizing enzymes in North Sea dab (Limanda limanda). Biological effects of pollutants

    International Nuclear Information System (INIS)

    Vobach, M.; Kellermann, H.J.

    1999-01-01

    Increasing environmental pollution is regarded as an anthropogenic stress factor in general. As a consequence, this may have several detrimental impacts on organisms, including aquatic species. The ability of organisms to tolerate stress from chemical pollutants depends on the availability of a variety of protection mechanisms. One important mechanism to protect cells from lipophilic xenobiotics is based on enzymes or enzyme systems converting the chemicals into more polar metabolites which can be excreted

  12. Inventory of conventional atmospheric pollutant emissions in the Cali-Yumbo zone

    International Nuclear Information System (INIS)

    Jaramillo, Mauricio; Nunez, Maria Eugenia; Ocampo, William; Perez, Diego; Portilla, Gloria

    2004-01-01

    This work presents the results of the emission inventory of criteria pollutants (VOC's, PM 1 0, CO, NO x and SO x ) from anthropogenic sources for the Cali-Yumbo urban area in Colombia in 1997. Area, point and mobile sources, were considered in the study. Four point sources; reports to environmental authorities from 108 industries in the area were analyzed. The method of emission factors was employed to relate production activity with pollutant emissions, and the MOBILE 6.0 model was applied to calculate vehicular emissions. This analysis will be useful to generate urban environmental management projects, to develop pollutant dispersion models, and to contribute criteria for improved air quality monitoring and prediction in the zone of interest

  13. Pollutants in drinking water: their sources, harmful effects and removal procedures

    International Nuclear Information System (INIS)

    Qadeer, R.

    2004-01-01

    The underground water resources available for human consumption are being continuously contaminated by the natural sources and anthropogenic activities. The pollutants include toxic microorganism, inorganic and organic chemical and radionuclide etc. this is an acute problem in our country, where free style way of disposal of industrial effluents into the natural water bodies contaminates the surface and ground water. These contaminants make their way into human body through contaminated drinking water, which leads to the malfunctioning of the body organs. Details of some pollutants present in drinking water, their source and harmful effects on human beings are reviewed in this communication. Merits and demerits of methods used to remove the pollutants from drinking water are also discussed. (author)

  14. Mercury pollution in the lake sediments and catchment soils of anthropogenically-disturbed sites across England.

    Science.gov (United States)

    Yang, Handong; Turner, Simon; Rose, Neil L

    2016-12-01

    Sediment cores and soil samples were taken from nine lakes and their catchments across England with varying degrees of direct human disturbance. Mercury (Hg) analysis demonstrated a range of impacts, many from local sources, resulting from differing historical and contemporary site usage and management. Lakes located in industrially important areas showed clear evidence for early Hg pollution with concentrations in sediments reaching 400-1600 ng g -1 prior to the mid-19th century. Control of inputs resulting from local management practices and a greater than 90% reduction in UK Hg emissions since 1970 were reflected by reduced Hg pollution in some lakes. However, having been a sink for Hg deposition for centuries, polluted catchment soils are now the major Hg source for most lakes and consequently recovery from reduced Hg deposition is being delayed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Interactions of Climate Change, Air Pollution, and Human Health.

    Science.gov (United States)

    Kinney, Patrick L

    2018-03-01

    I review literature on the impacts of climate change on air quality and human health, with a focus on articles published from 2013 on ozone and airborne particles. Selected previous literature is discussed where relevant in tracing the origins of our current knowledge. Climate and weather have strong influences on the spatial and temporal distribution of air pollution concentrations. Emissions of ozone and PM 2.5 precursors increase at higher ambient temperatures. The reactions that form ozone occur faster with greater sunlight and higher temperatures. Weather systems influence the movement and dispersion of air pollutants in the atmosphere through the action of winds, vertical mixing, and precipitation, all of which are likely to alter in a changing climate. Recent studies indicate that, holding anthropogenic air pollution emissions constant, ozone concentrations in populated regions will tend to increase in future climate scenarios. For the USA, the climate impact on ozone is most consistently seen in north-central and north-eastern states, with the potential for many thousands of additional ozone-related deaths. The sensitivity of anthropogenic PM 2.5 to climate is more variable across studies and regions, owing to the varied nature of PM constituents, as well as to less complete characterization of PM reaction chemistry in available atmospheric models. However, PM emitted by wildland fires is likely to become an increasing health risk in many parts of the world as climate continues to change. The complex interactions between climate change and air quality imply that future policies to mitigate these twin challenges will benefit from greater coordination. Assessing the health implications of alternative policy approaches towards climate and pollution mitigation will be a critical area of future work.

  16. Natural and anthropogenic pollution of the global atmosphere

    International Nuclear Information System (INIS)

    Jaworowski, Z.

    1999-01-01

    Results of determination of natural radionuclides, fission products and heavy metals in contemporary and pre-industrial ice from 14 glaciers in Southern and Northern Hemisphere, and in aerosols collected during three decades from seven altitudes between 0 and 15 km in the troposphere and atmosphere, were used for determinations of fluxes of man-made and natural pollutants into the global atmosphere. For these determinations 137 Cs from nuclear explosions and natural 210 Pb were used as tracers. Concentration of natural radionuclides and heavy metals in ice deposited before industrial revolution were higher than the contemporary precipitation presented as firn in high mountain and polar glaciers. This is due probably to volcanic activity which was higher before the first part of 20 th century. Man-made contribution to the total atmospheric flux is now 3.5% for 226 Ra, 12% for U, 7.4% for Pb, 011% for Cd, 62% for V and 5.8 for Hg. The mass of annual global wet precipitation, determined for the first time with radioactive tracers, is 5.7·10 1 7 kg. In Poland the lowest concentration of stable lead in human bones is now in highly industrialized southern districts. Lead level in medieval human bones from these districts reached up to 370 μg/g. Its current average level in inhabitants of southern Poland is 3.5 μg/g, i. e. similar as 1800 years ago. (author)

  17. Anthropogenic Signatures of Lead in the Northeast Atlantic

    Science.gov (United States)

    Rusiecka, D.; Gledhill, M.; Milne, A.; Achterberg, E. P.; Annett, A. L.; Atkinson, S.; Birchill, A.; Karstensen, J.; Lohan, M.; Mariez, C.; Middag, R.; Rolison, J. M.; Tanhua, T.; Ussher, S.; Connelly, D.

    2018-03-01

    Anthropogenic activities have resulted in enhanced lead (Pb) emissions to the environment over the past century, mainly through the combustion of leaded gasoline. Here we present the first combined dissolved (DPb), labile (LpPb), and particulate (PPb) Pb data set from the Northeast Atlantic (Celtic Sea) since the phasing out of leaded gasoline in Europe. Concentrations of DPb in surface waters have decreased by fourfold over the last four decades. We demonstrate that anthropogenic Pb is transported from the Mediterranean Sea over long distances (>2,500 km). Benthic DPb fluxes exceeded the atmospheric Pb flux in the region, indicating the importance of sediments as a contemporary Pb source. A strong positive correlation between DPb, PPb, and LpPb indicates a dynamic equilibrium between the phases and the potential for particles to "buffer" the DPb pool. This study provides insights into Pb biogeochemical cycling and demonstrates the potential of Pb in constraining ocean circulation patterns.

  18. Does urban vegetation mitigate air pollution in northern conditions?

    International Nuclear Information System (INIS)

    Setälä, Heikki; Viippola, Viljami; Rantalainen, Anna-Lea; Pennanen, Arto; Yli-Pelkonen, Vesa

    2013-01-01

    It is generally accepted that urban vegetation improves air quality and thereby enhances the well-being of citizens. However, empirical evidence on the potential of urban trees to mitigate air pollution is meager, particularly in northern climates with a short growing season. We studied the ability of urban park/forest vegetation to remove air pollutants (NO 2 , anthropogenic VOCs and particle deposition) using passive samplers in two Finnish cities. Concentrations of each pollutant in August (summer; leaf-period) and March (winter, leaf-free period) were slightly but often insignificantly lower under tree canopies than in adjacent open areas, suggesting that the role of foliage in removing air pollutants is insignificant. Furthermore, vegetation-related environmental variables (canopy closure, number and size of trees, density of understorey vegetation) did not explain the variation in pollution concentrations. Our results suggest that the ability of urban vegetation to remove air pollutants is minor in northern climates. -- Highlights: ► The ability of northern urban vegetation to remove air pollutants is minor. ► Vegetation-related environmental variables had no effect on air pollution levels. ► The ability of vegetation to clean air did not differ between summer and winter. ► Dry deposition passive samplers proved applicable in urban air pollution study. -- The ability of urban vegetation to remove air pollutants seems to be minor in northern climates

  19. Combining a finite mixture distribution model with indicator kriging to delineate and map the spatial patterns of soil heavy metal pollution in Chunghua County, central Taiwan

    International Nuclear Information System (INIS)

    Lin Yupin; Cheng Baiyou; Shyu, G.-S.; Chang, T.-K.

    2010-01-01

    This study identifies the natural background, anthropogenic background and distribution of contamination caused by heavy metal pollutants in soil in Chunghua County of central Taiwan by using a finite mixture distribution model (FMDM). The probabilities of contaminated area distribution are mapped using single-variable indicator kriging and multiple-variable indicator kriging (MVIK) with the FMDM cut-off values and regulation thresholds for heavy metals. FMDM results indicate that Cr, Cu, Ni and Zn can be individually fitted by a mixture model representing the background and contamination distributions of the four metals in soil. The FMDM cut-off values for contamination caused by the metals are close to the regulation thresholds, except for the cut-off value of Zn. The receiver operating characteristic (ROC) curve validates that indicator kriging and MVIK with FMDM cut-off values can reliably delineate heavy metals contamination, particularly for areas lacking background information and high heavy metal concentrations in soil. - Effectively determine pollution threshold and map contaminated areas.

  20. Reconstruction of atmospheric trace metals pollution in Southwest China using sediments from a large and deep alpine lake: Historical trends, sources and sediment focusing.

    Science.gov (United States)

    Lin, Qi; Liu, Enfeng; Zhang, Enlou; Nath, Bibhash; Shen, Ji; Yuan, Hezhong; Wang, Rong

    2018-02-01

    Atmospheric pollution, one of the leading environmental problems in South and East Asia, and its impact on the terrestrial environmental quality remain poorly understood particularly in alpine areas where both historical and present-day mining and smelting operations might leave an imprint. Here, we reconstructed atmospheric trace metals pollution during the past century using core sediments from a large and deep alpine lake in Southwest China. The implication of in lake and/or in watershed sediment focusing in pollution quantification is discussed by analyzing 15 sediment cores. Factor analysis and enrichment factor indicated Cd, Pb and Sb as the typical pollutants. Distinct peaks of Pb and Sb pollution were observed around the 1920s, but little Pb pollution was detected in recent decades, different from other studies in similar regions. Cadmium pollution was observed until the mid-1980s synchronized with Sb. The distinctive variations in atmospheric trace metal pollution process in Southwest China highlight the regional and sub-regional sources of metal pollutants, which should be primarily attributed to non-ferrous metal smelting emissions. Both natural and anthropogenic metals showed wide concentration ranges though exhibited similar temporal trends in the 15 cores. Spatial variations of anthropogenic metals were influenced by the in-watershed pollutants remobilization, whereas, natural metals were regulated by the detrital materials in the sub-basin. In-lake sediment focusing had little influence on the spatial distributions of all metals, different from the traditional sediment focusing pattern observed in small lakes. Anthropogenic Cd accumulation in sediments ranged from 1.5 to 10.1mgm -2 in a specific core with an average of 6.5mgm -2 for the entire lake, highlighting that a reliable whole-lake pollutant budget requires an analysis of multiple cores. Our study suggests that the management of aquatic ecosystem health should take the remobilization of in

  1. Cellular immune responses and phagocytic activity of fishes exposed to pollution of volcano mud.

    Science.gov (United States)

    Risjani, Yenny; Yunianta; Couteau, Jerome; Minier, Christophe

    2014-05-01

    Since May 29, 2006, a mud volcano in the Brantas Delta of the Sidoarjo district has emitted mud that has inundated nearby villages. Pollution in this area has been implicated in detrimental effects on fish health. In fishes, leukocyte and phagocytic cells play a vital role in body defenses. We report for the first time the effect of "LUSI" volcano mud on the immune systems of fish in the Brantas Delta. The aim of this study was to find biomarkers to allow the evaluation of the effects of volcanic mud and anthropogenic pollution on fish health in the Brantas Delta. The study took places at the Brantas Delta, which was polluted by volcano mud, and at reference sites in Karangkates and Pasuruan. Leukocyte numbers were determined using a Neubauer hemocytometer and a light microscope. Differential leukocyte counts were determined using blood smears stained with May Grunwald-Giemsa, providing neutrophil, lymphocyte and monocyte counts. Macrophages were taken from fish kidney, and their phagocytic activity was measured. In vitro analyses revealed that leukocyte and differential leukocyte counts (DLC) were higher in Channa striata and Chanos chanos caught from the polluted area. Macrophage numbers were higher in Oreochromis mossambicus than in the other species, indicating that this species is more sensitive to pollution. In areas close to volcanic mud eruption, all specimens had lower phagocytic activity. Our results show that immune cells were changed and phagocytic activity was reduced in the polluted area indicating cytotoxicity and alteration of the innate immune system in fishes exposed to LUSI volcano mud and anthropogenic pollution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Heavy metal pollution and forest health in the Ukrainian Carpathians

    International Nuclear Information System (INIS)

    Shparyk, Y.S.; Parpan, V.I.

    2004-01-01

    The Ukrainian Carpathians are characterized by high air pollution caused by emissions from numerous industries. We have been monitoring the state of forests in this region since 1989. The highest levels of tree defoliation (>30%) are found close to industrial emission sources and in the upper mountain forests of the Ivano-Frankivsk and Chernivtsi regions. This is caused by a combination of strong anthropogenic influences (pollution, illegal uses, recreation) as well as poor site and climatic conditions. In the Ivano-Frankivsk region, Cd and Mo accumulate in forest soils; Cr, Mo and Zn soil concentrations are higher than their limit levels; and Pb concentrations exceed toxic levels close to industrial areas (10% of the region territory). Local background levels of heavy metals are greatly exceeded in snow close to industrial regions. Analysis of correlation matrices shows that the chemical elements Ba, Cd, Co, Cr, Cu, Mo, Ni, Pb, V and Zn occur at pollution levels in natural ecosystems in the Ukrainian Carpathians. Maximum concentrations of toxic elements occur in the oak forest zone; the most industrially developed area of the region. Toxic heavy metals in the Ukrainian Carpathians forests enter with precipitation and dustfall, then become fixed in soil and accumulate in leaves, needles of vascular plants and mosses. Concentrations of these metals decrease with altitude: highest in the oak forests, less in beech, and lowest in the spruce forest zones. However, some chemical elements have the highest concentrations in spruce forests; V in needles, As in snow, and Ba and Al in soils. - Local industrial emissions of heavy metal pollution and the condition of Ukrainian Carpathians forests are examined

  3. Historical reconstruction of atmospheric lead pollution in central Yunnan province, southwest China: an analysis based on lacustrine sedimentary records.

    Science.gov (United States)

    Liu, Enfeng; Zhang, Enlou; Li, Kai; Nath, Bibhash; Li, Yanling; Shen, Ji

    2013-12-01

    Atmospheric lead (Pb) pollution during the last century in central Yunnan province, one of the largest non-ferrous metal production centers in China, was reconstructed using sediment cores collected from Fuxian and Qingshui Lakes. Lead concentrations and isotopic ratios ((207)Pb/(206)Pb and (208)Pb/(206)Pb) were measured in sediment cores from both lakes. The operationally defined chemical fractions of Pb in sediment core from Fuxian Lake were determined by the optimized BCR procedure. The chronology of the cores was reconstructed using (210)Pb and (137)Cs dating methods. Similar three-phase variations in isotopic ratios and enrichment factors of Pb were observed in the sediment cores from both lakes. Before the 1950s, the sediment data showed low (207)Pb/(206)Pb and (208)Pb/(206)Pb ratios and enrichment factors (EFs=~1), indicating that the sedimentary Pb was predominantly of lithogenic origin. However, these indices were increased gradually between the 1950s and the mid-1980s, implying an atmospheric Pb deposition. The EFs and isotopic ratios of Pb reached their peak during recent years, indicating aggravating atmospheric Pb pollution. The average anthropogenic Pb fluxes since the mid-1980s were estimated to be 0.032 and 0.053 g m(-2) year(-1) recorded in Fuxian and Qingshui cores, respectively. The anthropogenic Pb was primarily concentrated in the reducible fraction. Combining the results of Pb isotopic compositions and chemical speciations in the sediment cores and in potential sources, we deduced that recent aggravating atmospheric Pb pollution in central Yunnan province should primarily be attributed to regional emissions from non-ferrous metal production industries.

  4. Climate Implications of the Heterogeneity of Anthropogenic Aerosol Forcing

    Science.gov (United States)

    Persad, Geeta Gayatri

    Short-lived anthropogenic aerosols are concentrated in regions of high human activity, where they interact with radiation and clouds, causing horizontally heterogeneous radiative forcing between polluted and unpolluted regions. Aerosols can absorb shortwave energy in the atmosphere, but deplete it at the surface, producing opposite radiative perturbations between the surface and atmosphere. This thesis investigates climate and policy implications of this horizontal and vertical heterogeneity of anthropogenic aerosol forcing, employing the Geophysical Fluid Dynamics Laboratory's AM2.1 and AM3 models, both at a global scale and using East Asia as a regional case study. The degree of difference between spatial patterns of climate change due to heterogeneous aerosol forcing versus homogeneous greenhouse gas forcing deeply impacts the detection, attribution, and prediction of regional climate change. This dissertation addresses a gap in current understanding of these two forcings' response pattern development, using AM2.1 historical forcing simulations. The results indicate that fast atmospheric and land-surface processes alone substantially homogenize the global pattern of surface energy flux response to heterogeneous aerosol forcing. Aerosols' vertical redistribution of energy significantly impacts regional climate, but is incompletely understood. It is newly identified here, via observations and historical and idealized forcing simulations, that increased aerosol-driven atmospheric absorption may explain half of East Asia's recent surface insolation decline. Further, aerosols' surface and atmospheric effects counteract each other regionally---atmospheric heating enhances summer monsoon circulation, while surface dimming suppresses it---but absorbing aerosols' combined effects reduce summer monsoon rainfall. This thesis constitutes the first vertical decomposition of aerosols' impacts in this high-emissions region and elucidates the monsoonal response to aerosols

  5. Metals in pond sediments as archives of anthropogenic activities: a study in response to health concerns

    International Nuclear Information System (INIS)

    Graney, Joseph R.; Eriksen, Timothy M.

    2004-01-01

    An environmental geochemistry approach was applied in response to health concerns about present day and past exposure to pollutants within Broome County, New York by determining historical records of anthropogenic activities as preserved in sediment cores. Sediment was collected from a stormwater retention pond adjacent to a warehouse complex in the urban community of Hillcrest as well as from 3 other ponds in rural locations in Broome County. Metal concentrations and decay products of 210 Pb and 137 Cs were measured to determine the timing of source specific differences in the distribution of metals in the sediment cores. Concentrations of Zn, Pb, Ni, Cu, Cr, Cd and As were elevated in the retention pond sediments when compared to sediment from other locations. Topography influenced atmospheric transport and deposition of pollutants within incised river valleys and enhanced runoff from impervious surfaces within an urban watershed contributed to the elevated metal concentrations at Hillcrest. Temporal changes in Pb deposition within retention pond sediment mimic the rise and fall in use of leaded gasoline. Arsenic concentrations decreased following placement of emission controls on nearby coal-fired power plant sources. Superimposed over the temporal trends of Pb and As are co-varying Zn, Ni, Cu, Cr and Cd concentrations; a suite of metals commonly used in metal plating processes by local industries. Analysis of sediment in stormwater retention ponds in other urban areas may provide opportunities for detailed records of pollution history to be obtained in many communities. Residents in urban communities located in incised river valley locations similar to Hillcrest may be particularly prone to enhanced exposure to metals from anthropogenic sources

  6. Urban air pollution in Latin America and the Caribbean

    International Nuclear Information System (INIS)

    Romieu, I.; Weitzenfeld, H.; Finkelman, J.

    1991-01-01

    Urban air pollution has become an increasing problem in Latin America and the Caribbean. One reason is the rapid expansion in the size of the urban population. This phenomenon is associated with an increase in the number of vehicles and in energy utilization which, in addition to industrial processes often concentrated in the cities, are the primary sources of air pollution i n Latin American cities. The air quality standards established in such countries are frequently exceeded although control programs have been implemented. The urban areas more affected by anthropogenic pollutant emissions are Sao Paulo, Brazil; Santiago, Chile; and Mexico City. In Latin America, the population of cities with high priority air pollution problems include approximately 81 million people or 26.5 percent of the total urban population of Latin America, corresponding to 30 million children (<15 years), 47 million adults (15-59 years) and 4 million elderly people (≥60 years) who are exposed to air pollutant levels that exceed World Health Organization (WHO) guidelines for adequate health protection

  7. Long range transport of acidic and polluted events from eastern Europe to the remote regions of Scotland

    International Nuclear Information System (INIS)

    Landsberger, S.; Davies, T.D.; Jickells, T.D.; Tranter, M.

    1991-01-01

    More than 60 daily snowfall samples were collected throughout a snow season at an altitude of 1,100 meters in Cairngorm Mountains in Scotland. Concentrations of major ions, trace metals, rare-earths, carbon and pH were measured in the aqueous and particulate phase. The techniques of neutron activation analysis, inductively coupled plasma mass spectrometry and ion chromatography were employed. Factor analysis indicated a marine and a combined anthropogenic and crustal source. Classification of back-trajectories showed that the events are heavily sector dependent: Eastern Europe and the Baltic dominating the transport of the polluted events. A very strong correlation was observed between low pH and high carbon concentrations in the particulate matter

  8. [Fluorescence excitation-emission matrix spectroscopy of CDOM from Yundang Lagoon and its indication for organic pollution].

    Science.gov (United States)

    Zhuo, Jian-Fu; Guo, Wei-Dong; Deng, Xun; Zhang, Zhi-Ying; Xu, Jing; Huang, Ling-Feng

    2010-06-01

    Fluorescence excitation-emission matrix spectroscopy (EEMs) combined with absorption spectroscopy were applied to study the optical properties of CDOM samples from highly-polluted Yundang Lagoon in Xiamen in order to demonstrate the feasibility of using these spectral properties as a tracer of the degree of organic pollution in similar polluted coastal waters. Surface water samples were collected from 13 stations 4 times during April and May, 2008. Parallel factor analysis (PARAFAC) model was used to resolve the EEMs of CDOM. Five separate fluorescent components were identified, including two humic-like components (C1: 240, 325/422 nm; C5: 260, 380/474 nm), two protein-like components (C2: 225, 275/350 nm; C4: 240, 300/354 nm) and one xenobiotic-like component (C3: 225/342 nm), which could be used as a good tracer for the input of the anthropogenic organic, pollutants. The concentrations of component C3 and dissolved organic carbon (DOC) are much higher near the inlet of sewage discharge, demonstrating that the discharge of surrounding sewage is a major source of organic pollutants in Yundang Lagoon. CDOM absorption coefficient alpha (280) and the score of humic-like component C1 showed significant linear relationships with COD(Mn), and a strong positive correlation was also found between the score of protein-like component C2 and BOD5. This suggested that the optical properties of CDOM may provide a fast in-situ way to monitor the variation of the water quality in Yundang Lagoon and that of similar polluted coastal waters.

  9. Biogenic robust synthesis of silver nanoparticles using Punica granatum peel and its application as a green catalyst for the reduction of an anthropogenic pollutant 4-nitrophenol

    Science.gov (United States)

    Edison, T. Jebakumar Immanuel; Sethuraman, M. G.

    2013-03-01

    A robust synthesis of silver nanoparticles (AgNPs) using the peel extract of Punica granatum is reported in this article. The formation of AgNPs was confirmed by the appearance of brownish yellow color and the Surface Plasmon Resonance (SPR) peak at 432 nm. The biogenic AgNPs were found to have the size approximately 30 nm with distorted spherical shape. The high negative zeta potential values of AgNPs revealed their high stability which could be attributed to the capping of AgNPs by the phytoconstituents of the Punica granatum peel. The biogenic AgNPs were also found to function as an effective green catalyst in the reduction of anthropogenic pollutant viz., 4-nitrophenol (4-NP) by solid sodium borohydride, which was evident from the instantaneous color change of bright yellow (400 nm) to colorless (294 nm) solution, after the addition of AgNPs. The catalytic action of biogenic AgNPs in the reduction of 4-NP could be explained on the basis of Langmuir-Hinshelwood model.

  10. Assessing the role of anthropogenic and biogenic sources on PM1 over southern West Africa using aircraft measurements

    Science.gov (United States)

    Brito, Joel; Freney, Evelyn; Dominutti, Pamela; Borbon, Agnes; Haslett, Sophie L.; Batenburg, Anneke M.; Colomb, Aurelie; Dupuy, Regis; Denjean, Cyrielle; Burnet, Frederic; Bourriane, Thierry; Deroubaix, Adrien; Sellegri, Karine; Borrmann, Stephan; Coe, Hugh; Flamant, Cyrille; Knippertz, Peter; Schwarzenboeck, Alfons

    2018-01-01

    As part of the Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa (DACCIWA) project, an airborne campaign was designed to measure a large range of atmospheric constituents, focusing on the effect of anthropogenic emissions on regional climate. The presented study details results of the French ATR42 research aircraft, which aimed to characterize gas-phase, aerosol and cloud properties in the region during the field campaign carried out in June/July 2016 in combination with the German Falcon 20 and the British Twin Otter aircraft. The aircraft flight paths covered large areas of Benin, Togo, Ghana and Côte d'Ivoire, focusing on emissions from large urban conurbations such as Abidjan, Accra and Lomé, as well as remote continental areas and the Gulf of Guinea. This paper focuses on aerosol particle measurements within the boundary layer (view of the complex mix of both biogenic and anthropogenic emissions, based on measurements from a compact time-of-flight aerosol mass spectrometer (C-ToF-AMS) and ancillary instrumentation. Background concentrations (i.e. outside urban plumes) observed from the ATR42 indicate a fairly polluted region during the time of the campaign, with average concentrations of carbon monoxide of 131 ppb, ozone of 32 ppb, and aerosol particle number concentration ( > 15 nm) of 735 cm-3 stp. Regarding submicron aerosol composition (considering non-refractory species and black carbon, BC), organic aerosol (OA) is the most abundant species contributing 53 %, followed by SO4 (27 %), NH4 (11 %), BC (6 %), NO3 (2 %) and minor contribution of Cl (< 0.5 %). Average background PM1 in the region was 5.9 µg m-3 stp. During measurements of urban pollution plumes, mainly focusing on the outflow of Abidjan, Accra and Lomé, pollutants are significantly enhanced (e.g. average concentration of CO of 176 ppb, and aerosol particle number concentration of 6500 cm-3 stp), as well as PM1 concentration (11.9 µg m-3 stp). Two classes of organic aerosols were

  11. Oxidative Stress in Fish induced by Environmental Pollutants

    Directory of Open Access Journals (Sweden)

    Anton Kováčik

    2017-05-01

    Full Text Available Environmental pollutants represent a risk factor for human and animals in all areas of occurrence. Environmental pollution caused by anthropogenic activities is a major problem in many countries. Numbers of studies deals with cumulation of xenobiotics in tissues but not all respond to the real impact on living organisms. Freshwater fishes are exposed to several anthropogenic contaminants. The most commonly studied are three metals: mercury (Hg, lead (Pb, cadmium (Cd. These contaminants could have several impacts to oxidative stress. In the normal healthy cell, ROS and pro-oxidant products are detoxified by antioxidant defences. Redox-active or Redox-inactive metals may cause an increase in production of reactive oxygen species (ROS. Mercury has a high affinity for thiol groups, and can non-specifically affect several enzymes, e. g. GSH (glutathione, which can induce GSH depletion and oxidative stress in tissue, also can induce lipid peroxidation, and mitochondrial dysfunction. The toxicity of Cd to aquatic species depends on speciation, with the free ion, Cd2+ concentration being proportional to bioavailability. Cadmium toxicity worsened of Ca, Na, and Mg ions homeostasis. Lead can be toxic to nervous and skeletal systems; at cellular level can cause apoptosis, also can affect mitochondria, neurotransmitters, and can substitute for Ca.

  12. Comparisons of cirrus cloud microphysical properties between polluted and pristine air

    Science.gov (United States)

    Diao, Minghui; Schumann, Ulrich; Minikin, Andreas; Jensen, Jorgen

    2015-04-01

    Cirrus clouds occur in the upper troposphere at altitudes where atmospheric radiative forcing is most sensitive to perturbations of water vapor concentration and water phase. The formation of cirrus clouds influences the distributions of water in both vapor and ice forms. The radiative properties of cirrus depend strongly on particle sizes. Currently it is still unclear how the formation of cirrus clouds and their microphysical properties are influenced by anthropogenic emissions (e.g., industrial emission and biomass burning). If anthropogenic emissions influence cirrus formation in a significant manner, then one should expect a systematic difference in cirrus properties between pristine (clean) air and polluted air. Because of the pollution contrasts between the Southern (SH) and Northern Hemispheres (NH), cirrus properties could have hemispheric differences as well. Therefore, we study high-resolution (~200 m), in-situ observations from two global flight campaigns: 1) the HIAPER Pole-to-Pole Observations (HIPPO) global campaign in 2009-2011 funded by the US National Science Foundation (NSF), and 2) the Interhemispheric Differences In Cirrus Properties from Anthropogenic Emissions (INCA) campaign in 2000 funded by the European Union and participating research institutions. To investigate the changes of cirrus clouds by anthropogenic emissions, we compare ice crystal distributions in polluted and pristine air, in terms of their frequency occurrence, number concentration (Nc) and mean diameter (i.e., effective-mean Deff and volume-mean Dc). Total aerosol concentration is used to represent the combined influence of natural and anthropogenic aerosols. In addition, measured carbon monoxide (CO) mixing ratio is used to discriminate between polluted and pristine air masses. All analyses are restricted to temperatures ≤ -40°C to exclude mixed-phased clouds. The HIPPO campaign observations were obtained over the North America continent and the central Pacific Ocean

  13. Tracing transfer processes of metal pollutants from soils to surface water using environmental magnetic techniques - results from Paris suburbia (France)

    Science.gov (United States)

    Franke, Christine; Lamy, Isabelle; van Oort, Folkert; Thiesson, Julien; Barsalini, Luca

    2015-04-01

    acidification (forestation, lixiviation by rain water, etc). Such anthropogenic metal phases were found in the suspended particular matter of the Seine river system, but the transfer mechanisms and pathways from the polluted soils to the surface waters are not yet fully understood and lack high resolution quantitative methods. In this work we aime at calibrating the environmental magnetic measurements that are tested as complementary tracer tools in combination with more classical geochemical analyses. We performed a magnetic cartography using susceptibility along a topographic profile from the different types of polluted soils (agricultural soil, forest deposits, waste land, flooding plains, etc) towards the surface waters (sediment traps of suspended particular matter) draining this area. The results were compared with laboratory susceptibility and elementary composition (XRF) analyses on the freeze dried bulk samples to evaluate the field work approach. Detailed magnetic hysteresis analyses were used to obtain additional information on the magneto-mineralogy and grain-size distribution in order to deconvolute the magnetic bulk signal in terms of the different "natural" and "anthropogenic" ferruginous phases present in the samples and therefore allowing a better tracking of the pathways of the metallic pollutants.

  14. Evaluation of hazardous metal pollution in irrigation and drinking water systems in the vicinity of a coal mine area of northwestern Bangladesh.

    Science.gov (United States)

    Bhuiyan, Mohammad A H; Islam, M A; Dampare, Samuel B; Parvez, Lutfar; Suzuki, Shigeyuki

    2010-07-15

    An integrated approach of pollution evaluation indices, principal component analysis (PCA) and cluster analysis (CA) was employed to evaluate the intensity and sources of pollution in irrigation and drinking water systems of northwestern Bangladesh. Temperature, BOD, chemical oxygen demand (COD), Mn, Fe, Co, Ni, Cu and Pb levels in most of the water samples exceed the Bangladesh and international standards. The heavy metal pollution index (HPI) and degree of contamination (C(d)) yield different results despite significant correlations between them. The heavy metal evaluation index (HEI) shows strong correlations with HPI and C(d), and gives a better assessment of pollution levels. Modifications to the existing HPI and C(d) schemes show comparable results with HEI, and indicate that about 55% of the mine drainage/irrigation waters and 50% of the groundwaters are moderately to highly contaminated. The CA, PCA and pollution indices suggest that the mine drainage water (DW) is contaminated by anthropogenic (mining operation and agrogenic) sources, and the proximal parts are more contaminated than the distal part. The groundwater system in the vicinity of the coal mine site is also heavily polluted by anthropogenic sources. The pollution status of irrigation and drinking water systems in the study area are of great environmental and health concerns. 2010 Elsevier B.V. All rights reserved.

  15. Bacterial diversity in relatively pristine and anthropogenically-influenced mangrove ecosystems (Goa, India

    Directory of Open Access Journals (Sweden)

    Sheryl Oliveira Fernandes

    2014-12-01

    Full Text Available To appreciate differences in benthic bacterial community composition at the relatively pristine Tuvem and the anthropogenically-influenced Divar mangrove ecosystems in Goa, India, parallel tag sequencing of the V6 region of 16S rDNA was carried out. We hypothesize that availability of extraneously-derived anthropogenic substrates could act as a stimulatant but not a deterrent to promote higher bacterial diversity at Divar. Our observations revealed that the phylum Proteobacteria was dominant at both locations comprising 43-46% of total tags. The Tuvem ecosystem was characterized by an abundance of members belonging to the class Deltaproteobacteria (21%, ~ 2100 phylotypes and 1561 operational taxonomic units (OTUs sharing > 97% similarity. At Divar, the Gammaproteobacteria were ~ 2x higher (17% than at Tuvem. A more diverse bacterial community with > 3300 phylotypes and > 2000 OTUs mostly belonging to Gammaproteobacteria and a significantly higher DNT (n = 9, p < 0.001, df = 1 were recorded at Divar. These findings suggest that the quantity and quality of pollutants at Divar are perhaps still at a level to maintain high diversity. Using this technique we could show higher diversity at Divar with the possibility of Gammaproteobacteria contributing to modulating excess nitrate.

  16. Occurrence and sources of natural and anthropogenic lipid tracers in surface soils from arid urban areas of Saudi Arabia

    International Nuclear Information System (INIS)

    Rushdi, Ahmed I.; Al-Mutlaq, Khalid F.; El-Mubarak, Aarif H.; Al-Saleh, Mohammed A.; El-Otaibi, Mubarak T.; Ibrahim, Sami M.M.; Simoneit, Bernd R.T.

    2016-01-01

    Soil particles contain a variety of natural and anthropogenic organic components, and in urban areas can be considered as local collectors of pollutants. Surface soil samples were taken from ten urban areas in Riyadh during early winter of 2007. They were extracted with dichloromethane-methanol mixture and the extracts were analyzed by gas chromatography-mass spectrometry. The major compounds were unresolved complex mixture (UCM), plasticizers, n-alkanes, carbohydrates, n-alkanoic acids, hopanes, n-alkanols, and sterols. Vegetation detritus was the major natural source of organic compounds (24.0 ± 15.7%) in samples from areas with less human activities and included n-alkanes, n-alkanoic acids, n-alkanols, sterols and carbohydrates. Vehicular emission products and discarded plastics were the major anthropogenic sources in the soil particles (53.3 ± 21.3% and 22.7 ± 10.7%, respectively). The anthropogenic tracers were UCM, plasticizers, n-alkanes, hopanes and traces of steranes. Vegetation and human activities control the occurrence and distribution of natural and anthropogenic extractable organic matter in this arid urban area. - Highlights: • Human activities influence the distribution of EOM in soils of urban arid regions. • Petroleum residues and plastics are the dominant anthropogenic input. • Low soil organic matter and moisture limit microbial/fungal alteration. - This work shows that human activities are critical factors that influence the characteristics and distribution of EOM in soils of arid urban regions.

  17. Combined effects of fretting and pollutant particles on the contact resistance of the electrical connectors

    Directory of Open Access Journals (Sweden)

    Zhigang Kong

    2017-06-01

    Full Text Available Usually, when electrical connectors operate in vibration environments, fretting will be produced at the contact interfaces. In addition, serious environmental pollution particles will affect contact resistance of the connectors. The fretting will worsen the reliability of connectors with the pollutant particles. The combined effects of fretting and quartz particles on the contact resistance of the gold plating connectors are studied with a fretting test system. The results show that the frequencies have obvious effect on the contact resistance. The higher the frequency, the higher the contact resistance is. The quartz particles cause serious wear of gold plating, which make the nickel and copper layer exposed quickly to increase the contact resistance. Especially in high humidity environments, water supply certain adhesion function and make quartz particles easy to insert or cover the contact surfaces, and even cause opening resistance.

  18. A modified SINTACS method for groundwater vulnerability and pollution risk assessment in highly anthropized regions based on NO3- and SO42- concentrations.

    Science.gov (United States)

    Busico, Gianluigi; Kazakis, Nerantzis; Colombani, Nicolò; Mastrocicco, Micòl; Voudouris, Konstantinos; Tedesco, Dario

    2017-12-31

    Groundwater vulnerability and risk assessment are worldwide tools in supporting groundwater protection and land planning. In this study, we used three of these different methodologies applied to the Campanian Plain located in southern Italy: SINTACS, AVI and LOS. However, their capability to describe the observed chemical pollution of the area has resulted quite poor. For such a reason, a modified SINTACS method has been then implemented in the area in order to get a more reliable view of groundwater vulnerability. NO 3 - and SO 4 2- from more than 400 monitoring wells were used for specific vulnerability assessment. Land use was chosen as key parameter to infer the risk of groundwater pollution in our area. The new methodology seems to show a higher correlation with observed NO 3 - concentrations and a more reliable identification of aquifer's pollution hot spots. The main sources of NO 3 - were found in sub-urban areas, where vulnerability and risk are higher than in other areas. Otherwise due to reducing conditions triggered by the presence of elevated sedimentary organic matter and peat, concentrations below agricultural areas were lower than in sub-urban areas. The SO 4 2- specific vulnerability map showed a positive correlation with observed concentrations, due to geogenic and anthropogenic SO 4 2- sources present in the area. The combination of both NO 3 - and SO 4 2- derived risk maps becomes essential to improve the conceptual model of aquifer pollution in this severely anthropized area. The application of this new and original approach shed light on the strengths and weaknesses of each of the described previous methods and clearly showed how anthropogenic activities have to be taken into account in the assessment process. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Assessment of annual pollutant loads in combined sewers from continuous turbidity measurements: sensitivity to calibration data.

    Science.gov (United States)

    Lacour, C; Joannis, C; Chebbo, G

    2009-05-01

    This article presents a methodology for assessing annual wet weather Suspended Solids (SS) and Chemical Oxygen Demand (COD) loads in combined sewers, along with the associated uncertainties from continuous turbidity measurements. The proposed method is applied to data from various urban catchments in the cities of Paris and Nantes. The focus here concerns the impact of the number of rain events sampled for calibration (i.e. through establishing linear SS/turbidity or COD/turbidity relationships) on the uncertainty of annual pollutant load assessments. Two calculation methods are investigated, both of which rely on Monte Carlo simulations: random assignment of event-specific calibration relationships to each individual rain event, and the use of an overall relationship built from the entire available data set. Since results indicate a fairly low inter-event variability for calibration relationship parameters, an accurate assessment of pollutant loads can be derived, even when fewer than 10 events are sampled for calibration purposes. For operational applications, these results suggest that turbidity could provide a more precise evaluation of pollutant loads at lower cost than typical sampling methods.

  20. Sources of anthropogenic lead in sediments from an artificial lake in Brasilia-central Brazil

    International Nuclear Information System (INIS)

    Gioia, S.M.C.L.; Pimentel, M.M.; Tessler, M.; Dantas, E.L.; Campos, J.E.G.; Guimaraes, E.M.; Maruoka, M.T.S.; Nascimento, E.L.C.

    2006-01-01

    Pb concentration and Pb isotopic composition are known to represent powerful tools to investigate the history of Pb pollution in water and sediments. In this paper, we present and discuss the results of a detailed study of sediments deposited in the Paranoa Lake, a 44-year-old artificial reservoir in Brasilia, central Brazil. Pb concentration and isotopic composition of the sediments were obtained by ID-TIMS, on three different sample fractions: leachate, residue, and bulk sample. The leachate phase has proven to be most efficient to distinguish between anthropogenic and natural Pb inputs. In the Paranoa lake, important sources of contamination were recognized, producing higher Pb concentrations (max. 37.68 ppm) and significant variations in Pb isotopic composition, relative to the regional geogenic background. Contamination of the sediments due to anthropogenic activity produced less radiogenic Pb isotopic compositions ( 206 Pb/ 207 Pb = 1.15-1.17), compared with the regional natural composition ( 206 Pb/ 207 Pb = 1.19-1.25). 21 Pb analyses along one bore hole which sampled the entire sediment section indicated a sedimentation rate of 8.2 ± 1.8 mm/year. The combined use of the 21 Pb ages and Pb isotopic compositions of these samples revealed three distinct periods in the lake history: (1) the period of the time formation of the lake in 1959 until ca. 1970 was characterized by the deposition of sediments displaying more radiogenic Pb isotopic signature, (2) the time interval from the start of the process of eutrophication at 1970, until 1995, was characterized by the deposition of sediments having less radiogenic average compositions, and (3) from 1995 until the present represents a period of recovery of water quality, after two sewage treatment stations started to operate

  1. Low concentration volatile organic pollutants removal in combined adsorber-desorber-catalytic reactor system

    Directory of Open Access Journals (Sweden)

    Arsenijević Zorana

    2008-01-01

    Full Text Available The removal of volatile organic compounds (VOCs from numerous emission sources is of crucial importance due to more rigorous demands on air quality. Different technologies can be used to treat the VOCs from effluent gases: absorption, physical adsorption, open flame combustion, thermal and catalytic incineration. Their appropriateness for the specific process depends on several factors such as efficiency, energy consumption, secondary pollution, capital investments etc. The distinctive features of the catalytic combustion are high efficiency and selectivity toward be­nign products, low energy consumption and absence of secondary polluti­on. The supported noble catalysts are widely used for catalytic incineration due to their low ignition temperatures and high thermal and chemical stability. In our combined system adsorption and desorption are applied in the spouted bed with draft tube (SBDT unit. The annular zone, loaded with sorbent, was divided in adsorption and desorption section. Draft tube enabled sorbent recirculation between sections. Combustion of desorbed gases to CO2 and water vapor are realized in additive catalytic reactor. This integrated device provided low concentrations VOCs removal with reduced energy consumption. Experiments were conducted on a pilot unit of 220 m3/h nominal capacity. The sorbent was activated carbon, type K81/B - Trayal Corporation, Krusevac. A sphere shaped commercial Pt/Al2O3 catalyst with "egg-shell" macro-distribution was used for the investigation of xylene deep oxidation. Within this paper the investigations of removal of xylene vapors, a typical pollutant in production of liquid pesticides, in combined adsorber/desorber/catalytic reactor system is presented.

  2. Spatiotemporal Analysis of Heavy Metal Water Pollution in Transitional China

    Directory of Open Access Journals (Sweden)

    Huixuan Li

    2015-07-01

    Full Text Available China’s socioeconomic transitions have dramatically accelerated its economic growth in last three decades, but also companioned with continuous environmental degradation. This study will advance the knowledge of heavy metal water pollution in China from a spatial–temporal perspective. Specifically, this study addressed the following: (1 spatial patterns of heavy metal water pollution levels were analyzed using data of prefecture-level cities from 2004 to 2011; and (2 spatial statistical methods were used to examine the underlying socioeconomic and physical factors behind water pollution including socioeconomic transitions (industrialization, urbanization, globalization and economic development, and environmental characteristic (natural resources, hydrology and vegetation coverage. The results show that only Cr pollution levels increased over the years. The individual pollution levels of the other four heavy metals, As, Cd, Hg, and Pb, declined. High heavy metal water pollution levels are closely associated with both anthropogenic activities and physical environments, in particular abundant mineral resources and industrialization prosperity. On the other hand, economic development and urbanization play important roles in controlling water pollution problems. The analytical findings will provide valuable information for policy-makers to initiate and adjust protocols and strategies for protecting water sources and controlling water pollution; thus improving the quality of living environments.

  3. Isolating the Meteorological Impact of 21st Century GHG Warming on the Removal and Atmospheric Loading of Anthropogenic Fine Particulate Matter Pollution at Global Scale

    Science.gov (United States)

    Xu, Yangyang; Lamarque, Jean-François

    2018-03-01

    Particulate matter with the diameter smaller than 2.5 μm (PM2.5) poses health threats to human population. Regardless of efforts to regulate the pollution sources, it is unclear how climate change caused by greenhouse gases (GHGs) would affect PM2.5 levels. Using century-long ensemble simulations with Community Earth System Model 1 (CESM1), we show that, if the anthropogenic emissions would remain at the level in the year 2005, the global surface concentration and atmospheric column burden of sulfate, black carbon, and primary organic carbon would still increase by 5%-10% at the end of 21st century (2090-2100) due to global warming alone. The decrease in the wet removal flux of PM2.5, despite an increase in global precipitation, is the primary cause of the increase in the PM2.5 column burden. Regionally over North America and East Asia, a shift of future precipitation toward more frequent heavy events contributes to weakened wet removal fluxes. Our results suggest climate change impact needs to be accounted for to define the future emission standards necessary to meet air quality standard.

  4. Anthropogenic CO2 in the ocean

    Directory of Open Access Journals (Sweden)

    Tsung-Hung Peng

    2005-06-01

    Full Text Available The focus of this review article is on the anthropogenic CO2 taken up by the ocean. There are several methods of identifying the anthropogenic CO2 signal and quantifying its inventory in the ocean. The ?C* method is most frequently used to estimate the global distribution of anthropogenic CO2 in the ocean. Results based on analysis of the dataset obtained from the comprehensive surveys of inorganic carbon distribution in the world oceans in the 1990s are given. These surveys were jointly conducted during the World Ocean Circulation Experiment (WOCE and the Joint Global Ocean Flux Study (JGOFS. This data set consists of 9618 hydrographic stations from a total of 95 cruises, which represents the most accurate and comprehensive view of the distribution of inorganic carbon in the global ocean available today. The increase of anthropogenic CO2 in the ocean during the past few decades is also evaluated using direct comparison of results from repeat surveys and using statistical method of Multi-parameter Linear Regression (MLR. The impact of increasing oceanic anthropogenic CO2 on the calcium carbonate system in the ocean is reviewed briefly as well. Extensive studies of CaCO3 dissolution as a result of increasing anthropogenic CO2 in the ocean have revealed several distinct oceanic regions where the CaCO3 undersaturation zone has expanded.

  5. Variation in the response of the invasive species Potamopyrgus antipodarum (Smith) to natural (cyanobacterial toxin) and anthropogenic (herbicide atrazine) stressors

    International Nuclear Information System (INIS)

    Gerard, Claudia; Poullain, Virginie

    2005-01-01

    In the context of increasing freshwater pollution, the impact on life-traits (survival, growth and fecundity) and locomotion of Potamopyrgus antipodarum of a 5-week field-concentration exposure to the cyanobacterial toxin microcystin-LR and the triazine herbicide, atrazine was studied. Whatever the age of exposed snails (juveniles, subadults, adults), microcystin-LR induced a decrease in survival, growth and fecundity but had no effect on locomotion. Atrazine induced a decrease in locomotory activity but had no significant effect on the life-traits. These results are discussed in terms of consequences to field populations. - At concentrations relevant to the field, cyanobacterial toxins (natural) and atrazine (anthropogenic) are detrimental to the gastropod Potamopyrgus antipodarum, with a greater toxicity for the natural (vs anthropogenic) stressor

  6. Variation in the response of the invasive species Potamopyrgus antipodarum (Smith) to natural (cyanobacterial toxin) and anthropogenic (herbicide atrazine) stressors

    Energy Technology Data Exchange (ETDEWEB)

    Gerard, Claudia [UMR CNRS Ecobio 6553, Equipe Physiologie et Ecophysiologie, Universite de Rennes 1, Avenue du General Leclerc, 35042 Rennes cedex (France)]. E-mail: claudia.gerard@univ-rennes1.fr; Poullain, Virginie [UMR CNRS Ecobio 6553, Equipe Physiologie et Ecophysiologie, Universite de Rennes 1, Avenue du General Leclerc, 35042 Rennes cedex (France)

    2005-11-15

    In the context of increasing freshwater pollution, the impact on life-traits (survival, growth and fecundity) and locomotion of Potamopyrgus antipodarum of a 5-week field-concentration exposure to the cyanobacterial toxin microcystin-LR and the triazine herbicide, atrazine was studied. Whatever the age of exposed snails (juveniles, subadults, adults), microcystin-LR induced a decrease in survival, growth and fecundity but had no effect on locomotion. Atrazine induced a decrease in locomotory activity but had no significant effect on the life-traits. These results are discussed in terms of consequences to field populations. - At concentrations relevant to the field, cyanobacterial toxins (natural) and atrazine (anthropogenic) are detrimental to the gastropod Potamopyrgus antipodarum, with a greater toxicity for the natural (vs anthropogenic) stressor.

  7. Human health effects of air pollution

    International Nuclear Information System (INIS)

    Kampa, Marilena; Castanas, Elias

    2008-01-01

    Hazardous chemicals escape to the environment by a number of natural and/or anthropogenic activities and may cause adverse effects on human health and the environment. Increased combustion of fossil fuels in the last century is responsible for the progressive change in the atmospheric composition. Air pollutants, such as carbon monoxide (CO), sulfur dioxide (SO 2 ), nitrogen oxides (NOx), volatile organic compounds (VOCs), ozone (O 3 ), heavy metals, and respirable particulate matter (PM2.5 and PM10), differ in their chemical composition, reaction properties, emission, time of disintegration and ability to diffuse in long or short distances. Air pollution has both acute and chronic effects on human health, affecting a number of different systems and organs. It ranges from minor upper respiratory irritation to chronic respiratory and heart disease, lung cancer, acute respiratory infections in children and chronic bronchitis in adults, aggravating pre-existing heart and lung disease, or asthmatic attacks. In addition, short- and long-term exposures have also been linked with premature mortality and reduced life expectancy. These effects of air pollutants on human health and their mechanism of action are briefly discussed. - The effect of air pollutants on human health and underlying mechanisms of cellular action are discussed

  8. Effects of Cu, Zn and Pb Combined Pollution on Soil Hydrolase Activities

    Directory of Open Access Journals (Sweden)

    FENG Dan

    2015-08-01

    Full Text Available To study the relations between soil enzyme activities and heavy metal pollution, the combined effects of Cu, Zn and Pb on the three hydrolase activities, including invertase(IN, urease(Uand alkaline phosphatase(ALPwere investigated via an orthogonal experiment. Results showed as the following: When the concentration of Cu was 400 mg·kg-1, the U and ALP activities were decreased 51% and 44%, separately; When Zn was at 500 mg·kg-1, IN and ALP activities were only decreased 3% and 9%, while U activity was increased; When Pb was at 500 mg·kg-1, IN and U activities were increased, while ALP activity was decreased 13%. As a whole, Cu was considered as the most remarkable influence factor for IN, U and ALP activity regardless of interactions among the heavy metals, Zn came second, and Pb mainly showed activation. Considering interactions, Cu×Zn could significantly influence U activity(P<0.05, effects of Cu×Pb and Cu×Zn on ALP activity were remarkable(95% confidence interval. The response of ALP activity was more sensitive than the other two enzymes. Soil ALP activity might be a sensitive tool for assessing the pollution degree of Cu.

  9. A combined MOIP-MCDA approach to building and screening atmospheric pollution control strategies in urban regions.

    Science.gov (United States)

    Mavrotas, George; Ziomas, Ioannis C; Diakouaki, Danae

    2006-07-01

    This article presents a methodological approach for the formulation of control strategies capable of reducing atmospheric pollution at the standards set by European legislation. The approach was implemented in the greater area of Thessaloniki and was part of a project aiming at the compliance with air quality standards in five major cities in Greece. The methodological approach comprises two stages: in the first stage, the availability of several measures contributing to a certain extent to reducing atmospheric pollution indicates a combinatorial problem and favors the use of Integer Programming. More specifically, Multiple Objective Integer Programming is used in order to generate alternative efficient combinations of the available policy measures on the basis of two conflicting objectives: public expenditure minimization and social acceptance maximization. In the second stage, these combinations of control measures (i.e., the control strategies) are then comparatively evaluated with respect to a wider set of criteria, using tools from Multiple Criteria Decision Analysis, namely, the well-known PROMETHEE method. The whole procedure is based on the active involvement of local and central authorities in order to incorporate their concerns and preferences, as well as to secure the adoption and implementation of the resulting solution.

  10. A Combined MOIP-MCDA Approach to Building and Screening Atmospheric Pollution Control Strategies in Urban Regions

    Science.gov (United States)

    Mavrotas, George; Ziomas, Ioannis C.; Diakouaki, Danae

    2006-07-01

    This article presents a methodological approach for the formulation of control strategies capable of reducing atmospheric pollution at the standards set by European legislation. The approach was implemented in the greater area of Thessaloniki and was part of a project aiming at the compliance with air quality standards in five major cities in Greece. The methodological approach comprises two stages: in the first stage, the availability of several measures contributing to a certain extent to reducing atmospheric pollution indicates a combinatorial problem and favors the use of Integer Programming. More specifically, Multiple Objective Integer Programming is used in order to generate alternative efficient combinations of the available policy measures on the basis of two conflicting objectives: public expenditure minimization and social acceptance maximization. In the second stage, these combinations of control measures (i.e., the control strategies) are then comparatively evaluated with respect to a wider set of criteria, using tools from Multiple Criteria Decision Analysis, namely, the well-known PROMETHEE method. The whole procedure is based on the active involvement of local and central authorities in order to incorporate their concerns and preferences, as well as to secure the adoption and implementation of the resulting solution.

  11. Oil Pollution in the Southeastern Baltic Sea in 2009-2011

    Directory of Open Access Journals (Sweden)

    Lavrova O. Yu.

    2014-12-01

    Full Text Available From January 2009 to April 2012 a satellite survey of the central and southeastern parts of the Baltic Sea was carried out by the Space Radar Laboratory at the Space Research Institute of Russian Academy of Sciences (RAS. The main attention was focused on the detection of oil pollution as well as biogenic and anthropogenic surfactant films. The basic data are high resolution radar images obtained by advanced synthetic aperture radar (ASAR on board of the Envisat satellite of the European Space Agency. Remotely sensed data in visual and infrared (IR bands acquired by sensors MERIS Envisat, MODIS-Terra and -Aqua, and AVHRR NOAA nearly simultaneously with the ASAR images, were processed and analysed in order to facilitate the discrimination between different types of surface pollutants, to understand a comprehensive features of meteorological and hydrodynamic processes in the sea area of investigation, and to reveal factors determining pollutants spread and drift. The regions of the most intense oil pollution are outlined.

  12. Dispersion of atmospheric air pollution in summer and winter season.

    Science.gov (United States)

    Cichowicz, Robert; Wielgosiński, Grzegorz; Fetter, Wojciech

    2017-11-04

    Seasonal variation of air pollution is associated with variety of seasons and specificity of particular months which form the so-called summer and winter season also known as the "heating" season. The occurrence of higher values of air pollution in different months of a year is associated with the type of climate, and accordingly with different atmospheric conditions in particular months, changing state of weather on a given day, and anthropogenic activity. The appearance of these conditions results in different levels of air pollution characteristic for a given period. The study uses data collected during a seven-year period (2009-2015) in the automatic measuring station of immissions located in Eastern Wielkopolska. The analysis concerns the average and maximum values of air pollution (i.e., particulate matter PM10, sulfur dioxide, nitrogen dioxide, carbon monoxide, and ozone) from the perspective of their occurrence in particular seasons and months or in relation to meteorological actors such as temperature, humidity, and wind speed.

  13. Change in diurnal variations of meteorological variables induced by anthropogenic aerosols over the North China Plain in summer 2008

    Science.gov (United States)

    Gao, Yi; Zhang, Meigen; Liu, Xiaohong; Wang, Lili

    2016-04-01

    This study investigates the impacts of all anthropogenic aerosols and anthropogenic black carbon (BC) on the diurnal variations of meteorological variables in the atmospheric boundary layer over the North China Plain (NCP) during June to August 2008, using a coupled meteorology and chemistry model (WRF-Chem). The results of the ensemble numerical experiments show that surface air temperature decreases by about 0.6 to 1.2 K with the maximum decrease over the Beijing urban area and the southern part of Hebei province, and the surface relative humidity (RH) increases by 2-4 % owing to all anthropogenic aerosols. On the contrary, anthropogenic BC induces a small change of temperature and RH at surface. Averaged for Beijing, Tianjin, and Hebei province (BTH region) and High Particle Concentration (HPC) periods when PM2.5 surface concentration is more than 60 μg m-3 and daily AOD is more than 0.9, all anthropogenic aerosols decrease air temperature under 850 hPa and increase it between 500 and 850 hPa, while anthropogenic BC increases it for whole atmosphere. The maximum changes occur at 08:00-20:00 (local time). Aerosol-induced surface energy and diabatic heating change leads to a cooling at the surface and in the lower atmosphere and a warming in the middle troposphere at 08:00-17:00, with reversed effects at 20:00-05:00. BC cools the atmosphere at the surface and warms the atmosphere above for the whole day. As a result, the equivalent potential temperature profile change shows that the lower atmosphere is more stable at 08:00 and 14:00. All anthropogenic aerosols decrease the surface wind speed by 20-60 %, while anthropogenic BC decreases the wind speed by 10-40 % over the NCP with the maximum decrease at 08:00. The aerosol-induced stabilization of the lower atmosphere favors the accumulation of air pollutants and thus contributes to deterioration of visibility and fog-haze events.

  14. Soil heavy metal pollution and risk assessment in Shenyang industrial district, Northeast China.

    Science.gov (United States)

    Jiao, Xudong; Teng, Yanguo; Zhan, Yanhong; Wu, Jin; Lin, Xueyu

    2015-01-01

    To investigate the soil heavy metal pollution characteristics and ecological risk factors, 42 samples and six typical soil profiles were collected from the Shenyang industrial district in northeast China and were analyzed for contents of titanium (Ti), copper (Cu), lead (Pb), zinc (Zn), cobalt (Co), nickel (Ni), chromium (Cr) and arsenic (As). Through statistical analysis, it was found that the mean concentrations were higher than their background values (Ti = 4.77>3.8g/kg, Cu = 33.75>22.6 mg/kg, Pb = 45.95>26 mg/kg, Zn = 81.54>74.2 mg/kg, Co = 12.91>12.7 mg/kg, Ni = 32.26>26.9 mg/kg, Cr = 83.36>61 mg/kg and As = 13.69>11.2 mg/kg) but did not exceed their corresponding pollution limits for the Chinese Environmental Quality Standard for Soils (State Environmental Protection Administration of China, 1995). There were contamination hotspots that may be caused by human activities such as smelting plants and sewage irrigation. The Enrichment Factor and Ecological Risk Index were used to identify the anthropogenic contamination and ecological risks of heavy metals. Soil in the study area could be considered lightly or partially polluted by heavy metals. According to clustering analysis, distinct groups of heavy metals were discriminated between natural or anthropogenic sources.

  15. Application of different enzyme assays and biomarkers for pollution monitoring of the marine environment.

    Science.gov (United States)

    Seitkalieva, Alexandra V; Menzorova, Natalie I; Rasskazov, Valerу A

    2016-01-01

    New phosphatase and DNase inhibition tests for assessing the total pollution of a natural marine ecosystem were applied. The seawater samples with different pollution degrees were collected in the Troitsa Bay of the Peter the Great Bay (the Sea of Japan). The sensitivity of the alkaline phosphatase test to integrated pollution was in accordance with the sensitivity of the standard sea urchin sperm cell toxicity test. The increased seawater pollution level was shown to result in an up to fourfold increase in specific activities of acid and alkaline phosphatases from the mussel Crenomytilus grayanus. It was demonstrated that a complex methodological approach can be used to assess marine water areas, as well as to assess the biological conditions of invertebrates adapting to different environmental and anthropogenic effects.

  16. Comparisons of cirrus cloud properties between polluted and pristine air based on in-situ observations from the NSF HIPPO, EU INCA and NASA ATTREX campaigns

    Science.gov (United States)

    Diao, M.; Schumann, U.; Jensen, J. B.; Minikin, A.

    2015-12-01

    The radiative forcing of cirrus clouds is influenced by microphysical (e.g., ice crystal number concentration and size distribution) and macroscopic properties. Currently it is still unclear how the formation of cirrus clouds and their microphysical properties are influenced by anthropogenic emissions. In this work, we use airborne in-situ observations to compare cirrus cloud properties between polluted and pristine regions. Our dataset includes: the NSF HIAPER Pole-to-Pole Observations (HIPPO) Global campaign (2009-2011), the EU Interhemispheric Differences In Cirrus Properties from Anthropogenic Emissions (INCA) campaign (2000) and the NASA Airborne Tropical Tropopause Experiment (ATTREX) campaign (2014). The combined dataset include observations of both extratropical (HIPPO and INCA) and tropical (ATTREX) cirrus, over the Northern and Southern Hemispheres. We use the in-situ measured carbon monoxide (CO) mixing ratio as a pollution indicator, and compare ice microphysical properties (i.e., ice crystal number concentration (Nc) and number-weighted mean diameter (Dc)) between air masses with higher and lower CO. All analyses are restricted to T ≤ -40°C. By analyzing ice crystals (Fast-2DC, 87.5-1600 µm) in HIPPO, we found that Dc decreases with increasing CO concentration at multiple constant pressure levels. In addition, analysis of INCA data shows that Nc and extinction of small ice particles (FSSP 3-20 µm) increases with increasing CO. Particles < 87.5 µm in Fast-2DC data are not considered due to uncertainty in sample volume, and the FSSP measurements are subject to possible shattering. We further analyze the ice crystals (SPEC FCDP, 1-50 µm) in the tropical tropopause layer in ATTREX. At -70°C to -90°C, we found that the average Nc (Dc) increases (decreases) at higher CO. Overall, our results suggest that extratropical and tropical cirrus are likely to have more numerous small ice particles, when sampled in the more polluted background. Back

  17. Evidence of global-scale As, Mo, Sb, and Tl atmospheric pollution in the antarctic snow.

    Science.gov (United States)

    Hong, Sungmin; Soyol-Erdene, Tseren-Ochir; Hwang, Hee Jin; Hong, Sang Bum; Hur, Soon Do; Motoyama, Hidaeki

    2012-11-06

    We report the first comprehensive and reliable time series for As, Mo, Sb, and Tl in the snowpack from Dome Fuji in the central East Antarctic Plateau. Our results show significant enrichment of these elements due to either anthropogenic activities or large volcanic eruptions during the past 50 years. With respect to the values reported from 1960 to 1964, we observed the maximum increases in crustal enrichment factors (EFs) for As (a factor of ~15), Mo (~4), Sb (~4), and Tl (~2) during the period between the 1970s and 1990s, reflecting the global dispersion of anthropogenic pollutants of these elements, even to the most remote areas on Earth. Such enrichments are likely related to emissions of trace elements from nonferrous metal smelting and fossil fuel combustion processes in South America, especially in Chile. A drastic decrease in the As concentration and its EF values was observed after the year 2000 in response to the introduction of environmental regulations in the 1990s to reduce As emissions from the copper industry, primarily in Chile. The observed decrease suggests that governmental regulations for pollution control are effective in reducing air pollution at both the regional and global level.

  18. Anthropogenic Threats and Conservation Needs of Blue Whales, Balaenoptera musculus indica, around Sri Lanka

    Directory of Open Access Journals (Sweden)

    A. de Vos

    2016-01-01

    Full Text Available Blue whales in the Northern Indian Ocean are a morphologically and acoustically distinct population restricted to these waters. Off Sri Lanka a portion of the population concentrates near shore where they are exposed to a range of anthropogenic threats. We review available data to determine anthropogenic threats/stressors faced by this population and assign subjective rankings for the population-level severity of each threat/stressor based on severity, scope, and immediacy. With the cessation of direct illegal catches on this population in the late 1960s, we ranked ship strike as the most important population-level threat. Incidental catch, which includes entanglement and bycatch, is also important as it can result in death. Other less important stressors that may negatively impact this population include threats resulting from oil and gas development and pollution. However, some stressors can have a long-term cumulative impact that is difficult to assess. The most important research needed for the conservation of these whales is to obtain an estimate of the size of the population using photo-identification methods.

  19. Avoiding Dangerous Anthropogenic Interference with the Climate System

    Energy Technology Data Exchange (ETDEWEB)

    Keller, K. [Department of Geosciences, Penn State, PA (United States); Hall, M. [Brookings Institution, Washington, DC (United States); Kim, Seung-Rae [Woodrow Wilson School of Public and International Affairs, Princeton University, Princeton, NJ (United States); Bradford, D.F. [Department of Economics, Princeton University, Princeton, NJ (United States); Oppenheimer, M. [Woodrow Wilson School and Department of Geosciences, Princeton University, Robertson Hall 448, Princeton, NJ, 08544 (United States)

    2005-12-01

    The UN Framework Convention on Climate Change calls for the avoidance of 'dangerous anthropogenic interference with the climate system'. Among the many plausible choices, dangerous interference with the climate system may be interpreted as anthropogenic radiative forcing causing distinct and widespread climate change impacts such as a widespread demise of coral reefs or a disintegration of the West Antarctic ice sheet. The geological record and numerical models suggest that limiting global warming below critical temperature thresholds significantly reduces the likelihood of these eventualities. Here we analyze economically optimal policies that may ensure this risk-reduction. Reducing the risk of a widespread coral reef demise implies drastic reductions in greenhouse gas emissions within decades. Virtually unchecked greenhouse gas emissions to date (combined with the inertia of the coupled natural and human systems) may have already committed future societies to a widespread demise of coral reefs. Policies to reduce the risk of a West Antarctic ice sheet disintegration allow for a smoother decarbonization of the economy within a century and may well increase consumption in the long run.

  20. Atmospheric Pb-pollution by pre-medieval mining detected in the sediments of the brackish karst lake An Loch Mor, western Ireland

    Energy Technology Data Exchange (ETDEWEB)

    Schettler, G. [GeoForschungsZentrum Potsdam, Telegrafenberg, D-14473 Potsdam (Germany)]. E-mail: schet@gfz-potsdam.de; Romer, R.L. [GeoForschungsZentrum Potsdam, Telegrafenberg, D-14473 Potsdam (Germany)

    2006-01-15

    This paper presents results of geochemical investigations of lake sediments from the karst lake An Loch Mor, Aran Islands, including the first highly resolved record of atmospheric Roman Pb pollution for Ireland. The natural Pb influx into the lake is largely contributed by 3 Pb components, which differ in their isotopic composition: detrital influx of Pb from the siliciclastic input, dissolved influx of Pb released by weathering of the local limestone, and dissolved influx of seawater Pb. The balance between the 3 Pb components varies in concert with the hydrological evolution of the lake. The influx of Pb in dissolved form is estimated by geochemical mass balance assuming that the siliciclastic influx is characterised by the Pb/Al-ratio of the Late Glacial clastic sediments. It typically accounts for 50-80% of total Pb input in the Holocene sediments of An Loch Mor. The natural dissolved influxes of Pb, Sc, and Y reach a similar order of magnitude. Normalisation with Sc and Y is applied to quantify contributions from anthropogenic Pb. Based on continuous sampling of 1 cm sample slices, variations in the influx of Roman Pb could be reconstructed at a time resolution of c. 5 a. Combined geochemical and Pb isotope mass balance is used to characterise the isotopic composition of anthropogenic Pb. Distinctly enhanced influx of anthropogenic Pb occurs in the 1st and 2nd century AD and shows high variability on decadal scale. This is in contrast to central European Pb records, which document a gradual increase and decrease in ancient atmospheric pollution by Roman Pb. The reconstructed high variability in the influx of Roman Pb in An Loch Mor documents variations in the wind regime of western Europe, temporarily favouring the transport of atmospheric Pb to western Ireland.

  1. Atmospheric Pb-pollution by pre-medieval mining detected in the sediments of the brackish karst lake An Loch Mor, western Ireland

    International Nuclear Information System (INIS)

    Schettler, G.; Romer, R.L.

    2006-01-01

    This paper presents results of geochemical investigations of lake sediments from the karst lake An Loch Mor, Aran Islands, including the first highly resolved record of atmospheric Roman Pb pollution for Ireland. The natural Pb influx into the lake is largely contributed by 3 Pb components, which differ in their isotopic composition: detrital influx of Pb from the siliciclastic input, dissolved influx of Pb released by weathering of the local limestone, and dissolved influx of seawater Pb. The balance between the 3 Pb components varies in concert with the hydrological evolution of the lake. The influx of Pb in dissolved form is estimated by geochemical mass balance assuming that the siliciclastic influx is characterised by the Pb/Al-ratio of the Late Glacial clastic sediments. It typically accounts for 50-80% of total Pb input in the Holocene sediments of An Loch Mor. The natural dissolved influxes of Pb, Sc, and Y reach a similar order of magnitude. Normalisation with Sc and Y is applied to quantify contributions from anthropogenic Pb. Based on continuous sampling of 1 cm sample slices, variations in the influx of Roman Pb could be reconstructed at a time resolution of c. 5 a. Combined geochemical and Pb isotope mass balance is used to characterise the isotopic composition of anthropogenic Pb. Distinctly enhanced influx of anthropogenic Pb occurs in the 1st and 2nd century AD and shows high variability on decadal scale. This is in contrast to central European Pb records, which document a gradual increase and decrease in ancient atmospheric pollution by Roman Pb. The reconstructed high variability in the influx of Roman Pb in An Loch Mor documents variations in the wind regime of western Europe, temporarily favouring the transport of atmospheric Pb to western Ireland

  2. Monitoring of trace metals and pharmaceuticals as anthropogenic and socio-economic indicators of urban and industrial impact on surface waters

    Science.gov (United States)

    Vystavna, Yuliya

    2014-05-01

    The research focuses on the monitoring of trace metals and pharmaceuticals as potential anthropogenic indicators of industrial and urban influences on surface water in poorly gauged transboundary Ukraine/Russia region. This study includes analysis of tracers use for the indication of water pollution events, including controlled and emerging discharges, and discussion of the detection method of these chemicals. The following criteria were proposed for the evaluation of indicators: specificity (physical chemical properties), variability (spatial and temporal) and practicality (capacity of the sampling and analytical techniques). The combination of grab and passive water sampling (i.e. DGT and POCIS) procedure was applied for the determination of dissolved and labile trace metals (Ag, Cd, Cr, Cu, Ni, Pb and Zn) and pharmaceuticals (carbamazepine, diazepam, paracetamol, caffeine, diclofenac and ketoprofen). Samples were analysed using ICP - MS (trace metals) and LC-MS/MS ESI +/- (pharmaceuticals). Our results demonstrate the distinctive spatial and temporal patterns of trace elements distribution along an urban watercourse. Accordingly, two general groups of trace metals have been discriminated: 'stable' (Cd and Cr) and 'time-varying' (Cu, Zn, Ni and Pb). The relationship Cd >> Cu > Ag > Cr ≥ Zn was proposed as an anthropogenic signature of the industrial and urban activities pressuring the environment from point sources (municipal wastewaters) and the group Pb - Ni was discussed as a relevant fingerprint of the economic activity (industry and transport) mainly from non-point sources (run-off, atmospheric depositions, etc.). Pharmaceuticals with contrasting hydro-chemical properties of molecules (water solubility, bioaccumulation, persistence during wastewater treatment processes) were discriminated on conservative, labile and with combined properties in order to provide information on wastewater treatment plant efficiency, punctual events (e.g. accidents on sewage

  3. Changes in the Essential Oil Composition in the Needles of Scots Pine (Pinus sylvestris L. Under Anthropogenic Stress

    Directory of Open Access Journals (Sweden)

    Asta Judzentiene

    2007-01-01

    Full Text Available Unfavorable anthropogenic factors, such as air pollution, lead to biochemical responses in trees. Changes in the amounts of secondary metabolites may be early indicators of invisible injuries. The aim of this study was to evaluate composition of the essential oils in the needles of Scots pine (Pinus sylvestris L. growing in the areas affected by pollutant emissions of main factories in Lithuania: a nitrogen fertilizer factory (NFF, a cement factory (CF, and an oil refinery (OR. Totally, 14 pine stands were examined along transects from the factories (July 2005. Volatile components of the needles were extracted and analyzed by GC and GC/MS. Over 70 components of the essential oils were identified in current-year and 1-year-old needles.

  4. Nitrate pollution and surface water chemistry in Shimabara, Nagasaki Prefecture, Japan

    Science.gov (United States)

    Nakagawa, K.; Amano, H.

    2017-12-01

    Shimabara city has been experiencing serious nitrate pollution in groundwater. To evaluate nitrate pollution and water chemistry in surface water, water samples were collected at 42 sampling points in 15 rivers in Shimabara including a part of Unzen city from January to February 2017. Firstly, spatial distribution of water chemistry was assessed by describing stiff and piper-trilinear diagrams using major ions concentrations. Most of the samples showed Ca-HCO3 or Ca-(NO3+SO4) water types. It corresponds to groundwater chemistry. Some samples were classified into characteristic water types such as Na-Cl, (Na+K)-HCO3, and Ca-Cl. These results indicate sea water mixing and anthropogenic pollution. At the upstream of Nishi-river, although water chemistry showed Ca-HCO3, ions concentrations were higher than that of the other rivers. It indicates that this site was affected by the peripheral anthropogenic activities. Secondly, nitrate-pollution assessment was performed by using NO3-, NO2-, coprostanol (5β(H)-Cholestan-3β-ol), and cholestanol (5α(H)-Cholestan-3β-ol). NO2-N was detected at the 2 sampling points and exceeded drinking standard 0.9 mg L-1 for bottle-fed infants (WHO, 2011). NO3-N + NO2-N concentrations exceeded Japanese drinking standard 10 mg L-1 at 18 sampling points. The highest concentration was 27.5 mg L-1. Higher NO3-N levels were observed in the rivers in the northern parts of the study area. Coprostanol has been used as a fecal contamination indicator, since it can be found in only feces of higher animals. Coprostanol concentrations at 8 sampling points exceeded 700 ng L-1 (Australian drinking water standard). Coprostanol has a potential to distinguish the nitrate pollution sources between chemical fertilizer or livestock wastes, since water samples with similar NO3-N + NO2-N concentration showed distinct coprostanol concentration. The sterols ratio (5β/ (5β+5α)) exceeded 0.5 at 18 sampling points. This reveals that fecal pollution has occurred.

  5. Contributions of mobile, stationary and biogenic sources to air pollution in the Amazon rainforest: a numerical study with the WRF-Chem model

    Science.gov (United States)

    Abou Rafee, Sameh A.; Martins, Leila D.; Kawashima, Ana B.; Almeida, Daniela S.; Morais, Marcos V. B.; Souza, Rita V. A.; Oliveira, Maria B. L.; Souza, Rodrigo A. F.; Medeiros, Adan S. S.; Urbina, Viviana; Freitas, Edmilson D.; Martin, Scot T.; Martins, Jorge A.

    2017-06-01

    This paper evaluates the contributions of the emissions from mobile, stationary and biogenic sources on air pollution in the Amazon rainforest by using the Weather Research and Forecasting with Chemistry (WRF-Chem) model. The analyzed air pollutants were CO, NOx, SO2, O3, PM2. 5, PM10 and volatile organic compounds (VOCs). Five scenarios were defined in order to evaluate the emissions by biogenic, mobile and stationary sources, as well as a future scenario to assess the potential air quality impact of doubled anthropogenic emissions. The stationary sources explain the highest concentrations for all air pollutants evaluated, except for CO, for which the mobile sources are predominant. The anthropogenic sources considered resulted an increasing in the spatial peak-temporal average concentrations of pollutants in 3 to 2780 times in relation to those with only biogenic sources. The future scenario showed an increase in the range of 3 to 62 % in average concentrations and 45 to 109 % in peak concentrations depending on the pollutant. In addition, the spatial distributions of the scenarios has shown that the air pollution plume from the city of Manaus is predominantly transported west and southwest, and it can reach hundreds of kilometers in length.

  6. Contributions of mobile, stationary and biogenic sources to air pollution in the Amazon rainforest: a numerical study with the WRF-Chem model

    Directory of Open Access Journals (Sweden)

    S. A. Abou Rafee

    2017-06-01

    Full Text Available This paper evaluates the contributions of the emissions from mobile, stationary and biogenic sources on air pollution in the Amazon rainforest by using the Weather Research and Forecasting with Chemistry (WRF-Chem model. The analyzed air pollutants were CO, NOx, SO2, O3, PM2. 5, PM10 and volatile organic compounds (VOCs. Five scenarios were defined in order to evaluate the emissions by biogenic, mobile and stationary sources, as well as a future scenario to assess the potential air quality impact of doubled anthropogenic emissions. The stationary sources explain the highest concentrations for all air pollutants evaluated, except for CO, for which the mobile sources are predominant. The anthropogenic sources considered resulted an increasing in the spatial peak-temporal average concentrations of pollutants in 3 to 2780 times in relation to those with only biogenic sources. The future scenario showed an increase in the range of 3 to 62 % in average concentrations and 45 to 109 % in peak concentrations depending on the pollutant. In addition, the spatial distributions of the scenarios has shown that the air pollution plume from the city of Manaus is predominantly transported west and southwest, and it can reach hundreds of kilometers in length.

  7. Combining monitoring data and modelling identifies PAHs as emerging contaminants in the Arctic

    NARCIS (Netherlands)

    De Laender, F.; Hammer, J.; Hendriks, J.; Soetaert, K.E.R.; Jansen, C.

    2011-01-01

    Protecting Arctic ecosystems against potential adverse effects from anthropogenic activities is recognized as a top priority. In particular, understanding the accumulation and effects of persistent organic pollutants (POPs) in these otherwise pristine ecosystems remains a scientific challenge. Here,

  8. Anthropogenic noise alters bat activity levels and echolocation calls

    Directory of Open Access Journals (Sweden)

    Jessie P. Bunkley

    2015-01-01

    Full Text Available Negative impacts from anthropogenic noise are well documented for many wildlife taxa. Investigations of the effects of noise on bats however, have not been conducted outside of the laboratory. Bats that hunt arthropods rely on auditory information to forage. Part of this acoustic information can fall within the spectrum of anthropogenic noise, which can potentially interfere with signal reception and processing. Compressor stations associated with natural gas extraction produce broadband noise 24 hours a day, 365 days a year. With over half a million producing gas wells in the U.S. this infrastructure is a major source of noise pollution across the landscape. We conducted a ‘natural experiment’ in the second largest gas extraction field in the U.S. to investigate the potential effects of gas compressor station noise on the activity levels of the local bat assemblage. We used acoustic monitoring to compare the activity level (number of minutes in a night with a bat call of the bat assemblage at sites with compressor stations to sites lacking this infrastructure. We found that activity levels for the Brazilian free-tailed bat (Tadarida brasiliensis were 40% lower at loud compressor sites compared to quieter well pads, whereas the activity levels of four other species (Myotis californicus, M. cillolabrum, M. lucifugus, Parastrellus hesperus were not affected by noise. Furthermore, our results reveal that the assemblage of bat species emitting low frequency (35 kHz echolocation did not exhibit altered activity levels in noise. Lower activity levels of Brazilian free-tailed bats at loud sites indicate a potential reduction in habitat for this species. Additionally, a comparison of echolocation search calls produced by free-tailed bats at sites with and without compressor stations reveal that this species modifies its echolocation search calls in noise—producing longer calls with a narrower bandwidth. Call alterations might affect prey

  9. Mosses as indicators of the air pollution by radionuclides in urban areas

    International Nuclear Information System (INIS)

    Todorovic, D.; Popovic, D.; Ajtic, J.; Todorovic, D.)

    2007-01-01

    The paper presents preliminary results on the contents of radionuclides in mosses exposed to air pollution in central urban area (a Belgrade city park). Activity of natural and anthropogenic radionuclides ( 40 K, 210 Pb, 137 Cs, 7 Be) was determined on two HPGe detectors (Canberra, relative efficiency 20% and 23%) by standard gamma spectrometry. (author) [sr

  10. Model calculated global, regional and megacity premature mortality due to air pollution

    Directory of Open Access Journals (Sweden)

    J. Lelieveld

    2013-07-01

    Full Text Available Air pollution by fine particulate matter (PM2.5 and ozone (O3 has increased strongly with industrialization and urbanization. We estimate the premature mortality rates and the years of human life lost (YLL caused by anthropogenic PM2.5 and O3 in 2005 for epidemiological regions defined by the World Health Organization (WHO. This is based upon high-resolution global model calculations that resolve urban and industrial regions in greater detail compared to previous work. Results indicate that 69% of the global population is exposed to an annual mean anthropogenic PM2.5 concentration of >10 μg m−3 (WHO guideline and 33% to > 25 μg m−3 (EU directive. We applied an epidemiological health impact function and find that especially in large countries with extensive suburban and rural populations, air pollution-induced mortality rates have been underestimated given that previous studies largely focused on the urban environment. We calculate a global respiratory mortality of about 773 thousand/year (YLL ≈ 5.2 million/year, 186 thousand/year by lung cancer (YLL ≈ 1.7 million/year and 2.0 million/year by cardiovascular disease (YLL ≈ 14.3 million/year. The global mean per capita mortality caused by air pollution is about 0.1% yr−1. The highest premature mortality rates are found in the Southeast Asia and Western Pacific regions (about 25% and 46% of the global rate, respectively where more than a dozen of the most highly polluted megacities are located.

  11. Morphological deformities of benthic foraminifera in response to nearshore pollution of the Red Sea, Egypt.

    Science.gov (United States)

    El-Kahawy, R; El-Shafeiy, M; Helal, S A; Aboul-Ela, N; El-Wahab, M Abd

    2018-04-28

    The Red Sea encompasses a wide range of tropical marine habitats that are stressed due to anthropogenic activities. The main anthropogenic activities are hydrocarbon exploration and important trading harbors. This work aims to assess the influence of the Red Sea coastal heavy metal contamination on the marine meiofauna along three sites (Ras Gharib, Safaga, and Quseir). Eight heavy metal (Cu, Cd, Zn, Pb, Cr, Co, Ni, and Mn) contents are considered in four benthic foraminiferal species (Elphidium striatopunctatum, Amphistegina lobifera, Amphisorus hemprichii, and Ammonia beccarii). Quseir Harbor showed the highest level of pollution followed by Safaga and Ras Gharib sites. The analyzed benthic foraminiferal tests displayed noteworthy high concentrations of Cd, Zn, and Pb in Quseir Harbor which could be attributed to the anthropogenic activities in the nearshore areas. Some foraminiferal tests exhibited abnormalities in their apertures, coiling, and shape of chambers. A comparison between normal and deformed foraminiferal tests revealed that the deformed ones are highly contaminated with elevated heavy metal contents such as Fe, Mn, Ni, and Cd. Statistics in addition to geo-accumulation and pollution load indices reveal a whistling alarm for the Quseir harbor. The present data are necessary to improve conservation and management of the Red Sea ecosystem in the near future.

  12. Combined biodegradation and ozonation for removal of tannins and dyes for the reduction of pollution loads.

    Science.gov (United States)

    Kanagaraj, James; Mandal, Asit Baran

    2012-01-01

    Tannins and dyes pose major threat to the environment by generating huge pollution problem. Biodegradation of wattle extract, chrome tannin and dye compounds using suitable fungal culture namely Aspergillus niger, Penicillium sp. were carried out. In addition to these, ozone treatment was carried out to get higher degradation rate. The results were monitored by carrying out chemical oxygen demand (COD), total organic carbon (TOC), and UV-Vis analysis. The results showed that wattle extract (vegetable tannin) gave better biodegradation rate than dye and chromium compounds. Biodegradation plus ozone showed degradation rates of 92-95%, 94-95%, and 85-87% for the wattle extract, dyes, chromium compounds, respectively. UV-Vis showed that there were no peaks observed for biodegraded samples indicating better degradation rates as compared to the control samples. FT-IR spectra analysis suggested that the formation of flavanoid derivatives, chromic oxide and NH(2) compounds during degradation of wattle extract, chromium and dye compounds, respectively, at the peaks of 1,601-1,629 cm(-1), 1,647 cm(-1), and 1,610-1,680 cm(-1). The present investigation shows that combination of biodegradation with ozone is the effective method for the removal of dyes and tannins. The biodegradation of the said compounds in combination with ozonation showed better rate of degradation than by chemical methods. The combination of biodegradation with ozone helps to reduce pollution problems in terms of COD, TOC, total dissolved solids and total suspended solids.

  13. Estimating animal mortality from anthropogenic hazards

    Science.gov (United States)

    Carcass searches are a common method for studying the risk of anthropogenic hazards to wildlife, including non-target poisoning and collisions with anthropogenic structures. Typically, numbers of carcasses found must be corrected for scavenging rates and imperfect detection. Para...

  14. Airborne anthropogenic radioactivity measurements from an international radionuclide monitoring system

    International Nuclear Information System (INIS)

    Mason, L.R.; Bohner, J.D.; Williams, D.L.

    1998-01-01

    Anthropogenic radioactivity is being measured in near-real time by an international monitoring system designed to verify the Comprehensive Nuclear Test Ban Treaty. Airborne radioactivity measurements are conducted in-situ by stations that are linked to a central data processing and analysis facility. Aerosols are separated by high-volume air sampling with high-efficiency particulate filters. Radio-xenon is separated from other gases through cryogenic methods. Gamma-spectrometry is performed by high purity germanium detectors and the raw spectral data is immediately transmitted to the central facility via Internet, satellite, or modem. These highly sensitive sensors, combined with the automated data processing at the central facility, result in a system capable of measuring environmental radioactivity on the microbecquerel scale where the data is available to scientists within minutes of the field measurement. During the past year, anthropogenic radioactivity has been measured at approximately half of the stations in the current network. Sources of these measured radionuclides include nuclear power plant emissions, Chernobyl resuspension, and isotope production facilities. The ability to thoroughly characterize site-specific radionuclides, which contribute to the radioactivity of the ambient environment, will be necessary to reduce the number of false positive events. This is especially true of anthropogenic radionuclides that could lead to ambiguous analysis. (author)

  15. Differentiating between anthropogenic and geological sources of nitrate using multiple geochemical tracers

    Science.gov (United States)

    Linhoff, B.; Norton, S.; Travis, R.; Romero, Z.; Waters, B.

    2017-12-01

    Nitrate contamination of groundwater is a major problem globally including within the Albuquerque Basin in New Mexico. Ingesting high concentrations of nitrate (> 10 mg/L as N) can lead to an increased risk of cancer and to methemoglobinemia in infants. Numerous anthropogenic sources of nitrate have been identified within the Albuquerque Basin including fertilizers, landfills, multiple sewer pipe releases, sewer lagoons, domestic septic leach fields, and a nitric acid line outfall. Furthermore, groundwater near ephemeral streams often exhibits elevated NO3 concentrations and high NO3/Cl ratios incongruous with an anthropogenic source. These results suggest that NO3 can be concentrated through evaporation beneath ephemeral streams and mobilized via irrigation or land use change. This study seeks to use extensive geochemical analyses of groundwater and surface water to differentiate between various sources of NO3 contamination. The U.S. Geological Survey collected 54 groundwater samples from wells and six samples from ephemeral streams from within and from outside of areas of known nitrate contamination. To fingerprint the sources of nitrate pollution, samples were analyzed for major ions, trace metals, nutrients, dissolved gases, δ15N and δ18O in NO3, δ15N within N2 gas, and, δ2H and δ18O in H2O. Furthermore, most sites were sampled for artificial sweeteners and numerous contaminants of emerging concern including pharmaceutical drugs, caffeine, and wastewater indicators. This study will also investigate the age distribution of groundwater and the approximate age of anthropogenic NO3 contamination using 3He/4He, δ13C, 14C, 3H, as well as pharmaceutical drugs and artificial sweeteners with known patent and U.S. Food and Drug Administration approval dates. This broad suite of analytes will be used to differentiate between naturally occurring and multiple anthropogenic NO3 sources, and to potentially determine the approximate date of NO3 contamination.

  16. A national day with near zero emissions and its effect on primary and secondary pollutants

    Science.gov (United States)

    Levy, Ilan

    2013-10-01

    Traffic related air pollution is a major health concern in many countries. The potential costs and benefits of different abatement policies are usually estimated by either models, case studies or previously implemented intervention measures. Such estimations have, however, limited ability to predict the effect of a reduction in primary pollutants' emissions on secondary pollutants such as ozone, because of the nonlinear nature of the photochemical reactions. This study examines the short term effects of a drastic change in emissions on a national scale during the Jewish holiday of Day of Atonement (DA) in Israel. During the holiday nearly all anthropogenic emission sources are ceased for a period of 25 h, including all vehicles, commercial, industrial and recreational activities. DAs during the 15 years period of 1998-2012 are analyzed at three sites with respect to primary and secondary air pollutants, and in greater details for 2001. A dramatic decrease in primary pollutants emissions (83-98% in NO) causes an 8 ppbv increase in ozone at the urban core. Downwind (27 km), ozone decreases by only 5 ppbv. Nighttime O3 is shown to increase to 20 ppbv at the urban sites and 30 ppbv downwind. In spite of the striking reduction in emissions, changes in ozone are not greater than what is reported in the literature about less significant events like the ozone weekend effect. Changes in ambient pollution levels observed during DA provide some indication to the possible outcomes of a major change in anthropogenic emissions. These may be considered as the best case scenario for emissions reduction intervention measures and thus aid policy makers in evaluating potential benefits of such measures.

  17. Climate forcing by anthropogenic aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Charlson, R J; Schwartz, S E; Hales, J M; Cess, R D; Coakley, Jr, J A; Hansen, J E; Hofmann, D J [University of Washington, Seattle, WA (USA). Inst. for Environmental Studies, Dept. of Atmospheric Sciences

    1992-01-24

    Although long considered to be of marginal importance to global climate change, tropospheric aerosol contributes substantially to radiative forcing, and anthropogenic sulfate aerosol in particular has imposed a major perturbation to this forcing. Both the direct scattering of short wavelength solar radiation and the modification of the shortwave reflective properties of clouds by sulfate aerosol particles increase planetary albedo, thereby exerting a cooling influence on the planet. Current climate forcing due to anthropogenic sulfate is estimated to be -1 to -2 watts per square metre, globally averaged. This perturbation is comparable in magnitude to current anthropogenic greenhouse gas forcing but opposite in sign. Thus, the aerosol forcing has likely offset global greenhouse warming to a substantial degree. However, differences in geographical and seasonal distributions of these forcings preclude any simple compensation. Aerosol effects must be taken into account in evaluating anthropogenic influences on past, current, and projected future climate and in formulating policy regarding controls on emission of greenhouse gases and sulfur dioxide. Resolution of such policy issues requires integrated research on the magnitude and geographical distribution of aerosol climate forcing and on the controlling chemical and physical processes. 73 refs., 4 figs., 2 tabs.

  18. Climate forcing by anthropogenic aerosols.

    Science.gov (United States)

    Charlson, R J; Schwartz, S E; Hales, J M; Cess, R D; Coakley, J A; Hansen, J E; Hofmann, D J

    1992-01-24

    Although long considered to be of marginal importance to global climate change, tropospheric aerosol contributes substantially to radiative forcing, and anthropogenic sulfate aerosol in particular has imposed a major perturbation to this forcing. Both the direct scattering of shortwavelength solar radiation and the modification of the shortwave reflective properties of clouds by sulfate aerosol particles increase planetary albedo, thereby exerting a cooling influence on the planet. Current climate forcing due to anthropogenic sulfate is estimated to be -1 to -2 watts per square meter, globally averaged. This perturbation is comparable in magnitude to current anthropogenic greenhouse gas forcing but opposite in sign. Thus, the aerosol forcing has likely offset global greenhouse warming to a substantial degree. However, differences in geographical and seasonal distributions of these forcings preclude any simple compensation. Aerosol effects must be taken into account in evaluating anthropogenic influences on past, current, and projected future climate and in formulating policy regarding controls on emission of greenhouse gases and sulfur dioxide. Resolution of such policy issues requires integrated research on the magnitude and geographical distribution of aerosol climate forcing and on the controlling chemical and physical processes.

  19. Pollution from organic contaminants in Greek marine areas, receiving anthropogenic pressures from intense activities in the coastal zone

    Science.gov (United States)

    Hatzianestis, Ioannis

    2014-05-01

    Polycyclic aromatic hydrocarbons (PAHs) are widespread pollutants in marine sediments, receiving the pressures from various anthropogenic activities in the coastal zone. Due to their mutagenic and carcinogenic behaviour, PAHs are classified as priority contaminants to be monitored in environmental quality control schemes. The purpose of this study was to determine the levels of PAHs in coastal areas of Greece directly influenced from the operation of major industrial units in the coastal zone, investigate their sources and evaluate their potential toxicity by comparison against effect - based sediment quality guidelines. Thirty two surface sediment samples were collected from three areas of the Hellenic coastline: a) Antikyra bay in Korinthiakos gulf, influenced from the operation of an alumina and aluminium production plant b) Larymna bay in Noth Evoikos gulf, influenced from the operation of a nickel production plant and c) Aliveri bay in South Evoikos Gulf, influenced from a cement production plant. In all the areas studied, aquaculture and fishing activities have been also developed in the coastal zone. PAH concentrations were determined by GC-MS, after soxhlet extraction and fractionation by silica column chromatography. PAH sources and origin were investigated by applying several isomeric ratio diagnostic criteria. The mean quotient Effect- Range Median (m-ERM) was used to evaluate the potential of adverse effects posed to benthic organisms. Three m-ERM-q values were used to differentiate the probability of observing toxicity and classify sites into four categories: sediments with m-ERM1.5 have the highest probability (76%) of toxicity. Extremely high PAH concentrations more than 100,000 ng/g were found in the close vicinity of the alumina production plant in Antikyra bay. High levels of PAHs up to 22,000 ng/g were also found in Aliveri bay, whereas lowest values, but still indicating significant pollution, were measured close to the nickel production plant

  20. Quantifying Anthropogenic Stress on Groundwater Resources.

    Science.gov (United States)

    Ashraf, Batool; AghaKouchak, Amir; Alizadeh, Amin; Mousavi Baygi, Mohammad; R Moftakhari, Hamed; Mirchi, Ali; Anjileli, Hassan; Madani, Kaveh

    2017-10-10

    This study explores a general framework for quantifying anthropogenic influences on groundwater budget based on normalized human outflow (h out ) and inflow (h in ). The framework is useful for sustainability assessment of groundwater systems and allows investigating the effects of different human water abstraction scenarios on the overall aquifer regime (e.g., depleted, natural flow-dominated, and human flow-dominated). We apply this approach to selected regions in the USA, Germany and Iran to evaluate the current aquifer regime. We subsequently present two scenarios of changes in human water withdrawals and return flow to the system (individually and combined). Results show that approximately one-third of the selected aquifers in the USA, and half of the selected aquifers in Iran are dominated by human activities, while the selected aquifers in Germany are natural flow-dominated. The scenario analysis results also show that reduced human withdrawals could help with regime change in some aquifers. For instance, in two of the selected USA aquifers, a decrease in anthropogenic influences by ~20% may change the condition of depleted regime to natural flow-dominated regime. We specifically highlight a trending threat to the sustainability of groundwater in northwest Iran and California, and the need for more careful assessment and monitoring practices as well as strict regulations to mitigate the negative impacts of groundwater overexploitation.

  1. Phisiological and biochemical characteristics of protein and lipid exchanges of maple and chestnut seeds from different regions of Dnepropetrovsk city technogenic pollution

    Directory of Open Access Journals (Sweden)

    I. O. Filonik

    2015-04-01

    Full Text Available The indexes of protein and lipid exchanges - the content of proteins, lipase activity, level of lipids and their composition, component composition of free fatty acids in the maple and chestnut seeds from several sites of Dnepropetrovsk technical pollution were investigated. The revealed figures can be used as biomarkers of anthropogenic pollution in industrial region.

  2. U.S. ozone air quality under changing climate and anthropogenic emissions.

    Science.gov (United States)

    Racherla, Pavan N; Adams, Peter J

    2009-02-01

    We examined future ozone (O3) air quality in the United States (U.S.) under changing climate and anthropogenic emissions worldwide by performing global climate-chemistry simulations, utilizing various combinations of present (1990s) and future (Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A2 2050s) climates, and present and future (2050s; IPCC SRES A2 and B1) anthropogenic emissions. The A2 climate scenario is employed here because it lies at the upper extreme of projected climate change for the 21st century. To examine the sensitivity of U.S. O3 to regional emissions increases (decreases), the IPCC SRES A2 and B1 scenarios, which have overall higher and lower O3-precursor emissions for the U.S., respectively, have been chosen. We find that climate change, by itself, significantly worsens the severity and frequency of high-O3 events ("episodes") over most locations in the U.S., with relatively small changes in average O3 air quality. These high-O3 increases due to climate change alone will erode moderately the gains made under a U.S. emissions reduction scenario (e.g., B1). The effect of climate change on high- and average-O3 increases with anthropogenic emissions. Insofar as average O3 air quality is concerned, changes in U.S. anthropogenic emissions will play the most important role in attaining (or not) near-term U.S. O3 air quality standards. However, policy makers must plan appropriately for O3 background increases due to projected increases in global CH4 abundance and non-U.S. anthropogenic emissions, as well as potential local enhancements that they could cause. These findings provide strong incentives for more-than-planned emissions reductions at locations that are currently O3-nonattainment.

  3. Anthropogenic phosphorus (P) inputs to a river basin and their impacts on P fluxes along its upstream-downstream continuum

    Science.gov (United States)

    Zhang, Wangshou; Swaney, Dennis; Hong, Bongghi; Howarth, Robert

    2017-04-01

    Phosphorus (P) originating from anthropogenic sources as a pollutant of surface waters has been an environmental issue for decades because of the well-known role of P in eutrophication. Human activities, such as food production and rapid urbanization, have been linked to increased P inputs which are often accompanied by corresponding increases in riverine P export. However, uneven distributions of anthropogenic P inputs along watersheds from the headwaters to downstream reaches can result in significantly different contributions to the riverine P fluxes of a receiving water body. So far, there is still very little scientific understanding of anthropogenic P inputs and their impacts on riverine flux in river reaches along the upstream to downstream continuum. Here, we investigated P budgets in a series of nested watersheds draining into Hongze Lake of China, and developed a simple empirical function to describe the relationship between anthropogenic inputs and riverine TP fluxes. The results indicated that an average of 1.1% of anthropogenic P inputs are exported into rivers, with most of the remainder retained in the watershed landscape over the period studied. Fertilizer application was the main contributor of P loading to the lake (55% of total loads), followed by legacy P stock (30%), food and feed P inputs (12%) and non-food P inputs (4%). From 60% to 89% of the riverine TP loads generated from various locations within this basin were ultimately transported into the receiving lake of the downstream, with an average rate of 1.86 tons P km-1 retaining in the main stem of the inflowing river annually. Our results highlight that in-stream processes can significantly buffer the riverine P loading to the downstream receiving lake. An integrated P management strategy considering the influence of anthropogenic inputs and hydrological interactions is required to assess and optimize P management for protecting fresh waters.

  4. Cosmetic Functional Ingredients from Botanical Sources for Anti-Pollution Skincare Products

    Directory of Open Access Journals (Sweden)

    Claudia Juliano

    2018-02-01

    Full Text Available Air pollution is a rising problem in many metropolitan areas around the world. Airborne contaminants are predominantly derived from anthropogenic activities, and include carbon monoxide, sulfur dioxide, nitrogen oxides, volatile organic compounds, ozone and particulate matter (PM; a mixture of solid and liquid particles of variable size and composition, able to absorb and delivery a large number of pollutants. The exposure to these air pollutants is associated to detrimental effects on human skin, such as premature aging, pigment spot formation, skin rashes and eczema, and can worsen some skin conditions, such as atopic dermatitis. A cosmetic approach to this problem involves the topical application of skincare products containing functional ingredients able to counteract pollution-induced skin damage. Considering that the demand for natural actives is growing in all segments of global cosmetic market, the aim of this review is to describe some commercial cosmetic ingredients obtained from botanical sources able to reduce the impact of air pollutants on human skin with different mechanisms, providing a scientific rationale for their use.

  5. Quantifying the vulnerability of well fields towards anthropogenic pollution: The Netherlands as an example

    NARCIS (Netherlands)

    Mendizabal, I.; Stuijfzand, P.J.; Wiersma, A.

    2011-01-01

    A new method is presented to asses the vulnerability of public supply well fields (PSWFs), other well fields or individual wells. The Intrinsic Vulnerability Index towards Pollution (VIP) is based on the age, redox level, alkalinity (or acidity), and surface water fraction of the pumped water,

  6. Assessing the hydrogeochemical processes affecting groundwater pollution in arid areas using an integration of geochemical equilibrium and multivariate statistical techniques

    International Nuclear Information System (INIS)

    El Alfy, Mohamed; Lashin, Aref; Abdalla, Fathy; Al-Bassam, Abdulaziz

    2017-01-01

    Rapid economic expansion poses serious problems for groundwater resources in arid areas, which typically have high rates of groundwater depletion. In this study, integration of hydrochemical investigations involving chemical and statistical analyses are conducted to assess the factors controlling hydrochemistry and potential pollution in an arid region. Fifty-four groundwater samples were collected from the Dhurma aquifer in Saudi Arabia, and twenty-one physicochemical variables were examined for each sample. Spatial patterns of salinity and nitrate were mapped using fitted variograms. The nitrate spatial distribution shows that nitrate pollution is a persistent problem affecting a wide area of the aquifer. The hydrochemical investigations and cluster analysis reveal four significant clusters of groundwater zones. Five main factors were extracted, which explain >77% of the total data variance. These factors indicated that the chemical characteristics of the groundwater were influenced by rock–water interactions and anthropogenic factors. The identified clusters and factors were validated with hydrochemical investigations. The geogenic factors include the dissolution of various minerals (calcite, aragonite, gypsum, anhydrite, halite and fluorite) and ion exchange processes. The anthropogenic factors include the impact of irrigation return flows and the application of potassium, nitrate, and phosphate fertilizers. Over time, these anthropogenic factors will most likely contribute to further declines in groundwater quality. - Highlights: • Hydrochemical investigations were carried out in Dhurma aquifer in Saudi Arabia. • The factors controlling potential groundwater pollution in an arid region were studied. • Chemical and statistical analyses are integrated to assess these factors. • Five main factors were extracted, which explain >77% of the total data variance. • The chemical characteristics of the groundwater were influenced by rock–water interactions

  7. Sources, factors, mechanisms and possible solutions to pollutants in marine ecosystems

    International Nuclear Information System (INIS)

    Mostofa, Khan M.G.; Liu, Cong-Qiang; Vione, Davide; Gao, Kunshan; Ogawa, Hiroshi

    2013-01-01

    Algal toxins or red-tide toxins produced during algal blooms are naturally-derived toxic emerging contaminants (ECs) that may kill organisms, including humans, through contaminated fish or seafood. Other ECs produced either naturally or anthropogenically ultimately flow into marine waters. Pharmaceuticals are also an important pollution source, mostly due to overproduction and incorrect disposal. Ship breaking and recycle industries (SBRIs) can also release various pollutants and substantially deteriorate habitats and marine biodiversity. Overfishing is significantly increasing due to the global food crisis, caused by an increasing world population. Organic matter (OM) pollution and global warming (GW) are key factors that exacerbate these challenges (e.g. algal blooms), to which acidification in marine waters should be added as well. Sources, factors, mechanisms and possible remedial measures of these challenges to marine ecosystems are discussed, including their eventual impact on all forms of life including humans. -- Review of sources, factors, mechanisms and possible remedial measures of key pollutants (contaminants, toxins, ship breaking, overfishing) in marine ecosystems

  8. Diagnosing Possible Anthropogenic Contributions to Heavy Colorado Rainfall in September 2013

    Science.gov (United States)

    Pall, Pardeep; Patricola, Christina; Wehner, Michael; Stone, Dáithí; Paciorek, Christopher; Collins, William

    2015-04-01

    Unusually heavy rainfall occurred over the Colorado Front Range during early September 2013, with record or near-record totals recorded in several locations. It was associated predominantly with a stationary large-scale weather pattern (akin to the North American Monsoon, which occurs earlier in the year) that drove a strong plume of deep moisture inland from the Gulf of Mexico against the Front Range foothills. The resulting floods across the South Platte River basin impacted several thousands of people and many homes, roads, and businesses. To diagnose possible anthropogenic contributions to the odds of such heavy rainfall, we adapt an existing event attribution paradigm of modelling an 'event that was' for September 2013 and comparing it to a modelled 'event that might have been' for that same time but for the absence of historical anthropogenic drivers of climate. Specifically, we first perform 'event that was' simulations with the regional Weather Research and Forecasting (WRF) model at 12 km resolution over North America, driven by NCEP2 re-analysis. We then re-simulate, having adjusted the re-analysis to 'event that might have been conditions' by modifying atmospheric greenhouse gas and other pollutant concentrations, temperature, humidity, and winds, as well as sea ice coverage, and sea-surface temperatures - all according to estimates from global climate model simulations. Thus our findings are highly conditional on the driving re-analysis and adjustments therein, but the setup allows us to elucidate possible mechanisms responsible for heavy Colorado rainfall in September 2013. Our model results suggests that, given an insignificant change in the pattern of large-scale driving weather, there is an increase in atmospheric water vapour under anthropogenic climate warming leading to a substantial increase in the probability of heavy rainfall occurring over the South Platte River basin in September 2013.

  9. Molecular characterization of mercury resistant bacteria inhabiting polluted water bodies of different geographical locations in India

    NARCIS (Netherlands)

    Jan, A.T.; Azam, M.; Ali, A.; Haq, Q.M.

    2012-01-01

    Mercury pollution is a major environmental problem that arises as a result of natural processes as well as from anthropogenic sources. In response to toxic mercury compounds, microbes have developed astonishing array of resistance systems to detoxify them. To address this challenge, this study was

  10. Pollution characteristics and source identification of trace metals in riparian soils of Miyun Reservoir, China.

    Science.gov (United States)

    Han, Lanfang; Gao, Bo; Lu, Jin; Zhou, Yang; Xu, Dongyu; Gao, Li; Sun, Ke

    2017-10-01

    The South-to-North Water Diversion Project, one of China's largest water diversion projects, has aroused widespread concerns about its potential ecological impacts, especially the potential release of trace metals from shoreline soils into Miyun Reservoir (MYR). Here, riparian soil samples from three elevations and four types of land use were collected. Soil particle size distributions, contents and chemical fractionations of trace metals and lead (Pb) isotopic compositions were analyzed. Results showed that soil texture was basically similar in four types of land use, being mainly composed of sand, with minor portions of clay and silt, while recreational land contained more abundant chromium (Cr), copper (Cu), zinc (Zn) and cadmium (Cd), suggesting a possible anthropogenic source for this soil pollution. The potential ecological risk assessment revealed considerable contamination of recreational land, with Cd being the predominant contaminant. Chemical fractionations showed that Cu, arsenic (As), Pb and Cd had potential release risks. Additionally, the 206 Pb/ 207 Pb and 208 Pb/ 207 Pb values of soils were similar to those of coal combustion. By combining principal component analysis (PCA) with Pb isotopic results, coal combustion was identified as the major anthropogenic source of Zn, Cr, Cu, Cd and Pb. Moreover, isotope ratios of Pb fell in the scope of aerosols, indicating that atmospheric deposition may be the primary input pathway of anthropogenic Zn, Cr, Cu, Cd and Pb. Therefore, controlling coal combustion should be a priority to reduce effectively the introduction of additional Zn, Cu, Cd, and Pb to the area in the future. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. HONO and Inorganic Fine Particle Composition in Typical Monsoon Region with Intensive Anthropogenic Emission: In-situ Observations and Source Identification.

    Science.gov (United States)

    Xie, Y.; Nie, W.; Ding, A.; Huang, X.

    2015-12-01

    Yangtze River Delta (YRD) is one of the most typical monsoon area with probably the most largest population intensity in the world. With sharply economic development and the large anthropogenic emissions, fine particle pollution have been one of the major air quality problem and may further have impact on the climate system. Though a lot of control policy (sulfur emission have been decreasing from 2007) have been conducted in the region, studies showed the sulfate in fine particles still take major fraction as the nitrate from nitrogen oxides increased significantly. In this study, the role of inorganic chemical compositions in fine particles was investigated with two years in-situ observation. Sulfate and Nitrate contribute to fine particle mass equally in general, but sulfate contributes more during summer and nitrate played more important role in winter. Using lagrangian dispersion backward modeling and source contribution clustering method, the impact of airmass coming from different source region (industrial, dust, biogenic emissions, etc) on fine particle inorganic compositions were discussed. Furthermore, we found two unique cases showing in-situ implications for sulfate formation by nitrogen dioxide oxidation mechanisms. It was showed that the mixing of anthropogenic pollutants with long-range transported mineral dust and biomass burning plume would enhance the sulfate formation by different chemistry mechanisms. This study focus on the complex aspects of fine particle formation in airmasses from different source regions: . It highlights the effect of NOx in enhancing the atmospheric oxidization capacity and indicates a potentially very important impact of increasing NOx on air pollution formation and regional climate change in East Asia.

  12. Coral Bacterial-Core Abundance and Network Complexity as Proxies for Anthropogenic Pollution

    Directory of Open Access Journals (Sweden)

    Deborah C. A. Leite

    2018-04-01

    Full Text Available Acclimatization via changes in the stable (core or the variable microbial diversity and/or abundance is an important element in the adaptation of coral species to environmental changes. Here, we explored the spatial-temporal dynamics, diversity and interactions of variable and core bacterial populations associated with the coral Mussismilia hispida and the surrounding water. This survey was performed on five reefs along a transect from the coast (Reef 1 to offshore (Reef 5, representing a gradient of influence of the river mouth, for almost 12 months (4 sampling times, in the dry and rainy seasons. A clear increasing gradient of organic-pollution proxies (nitrogen content and fecal coliforms was observed from Reef 1 to Reef 5, during both seasons, and was highest at the Buranhém River mouth (Reef 1. Conversely, a clear inverse gradient of the network analysis of the whole bacterial communities also revealed more-complex network relationships at Reef 5. Our data also indicated a higher relative abundance of members of the bacterial core, dominated by Acinetobacter sp., at Reef 5, and higher diversity of site-stable bacterial populations, likely related to the higher abundance of total coliforms and N content (proxies of sewage or organic pollution at Reef 1, during the rainy season. Thus, the less “polluted” areas may show a more-complex network and a high relative abundance of members of the bacterial core (almost 97% in some cases, resulting in a more-homogeneous and well-established bacteriome among sites/samples, when the influence of the river is stronger (rainy seasons.

  13. Integrative Application of Life Cycle Assessment and Risk Assessment to Environmental Impacts of Anthropogenic Pollutants at a Watershed Scale.

    Science.gov (United States)

    Lin, Xiaodan; Yu, Shen; Ma, Hwongwen

    2018-01-01

    Intense human activities have led to increasing deterioration of the watershed environment via pollutant discharge, which threatens human health and ecosystem function. To meet a need of comprehensive environmental impact/risk assessment for sustainable watershed development, a biogeochemical process-based life cycle assessment and risk assessment (RA) integration for pollutants aided by geographic information system is proposed in this study. The integration is to frame a conceptual protocol of "watershed life cycle assessment (WLCA) for pollutants". The proposed WLCA protocol consists of (1) geographic and environmental characterization mapping; (2) life cycle inventory analysis; (3) integration of life-cycle impact assessment (LCIA) with RA via characterization factor of pollutant of interest; and (4) result analysis and interpretation. The WLCA protocol can visualize results of LCIA and RA spatially for the pollutants of interest, which might be useful for decision or policy makers for mitigating impacts of watershed development.

  14. The influence of the interactions between anthropogenic activities and multiple ecological factors on land surface temperatures of urban forests

    Science.gov (United States)

    Ren, Y.

    2017-12-01

    Context Land surface temperatures (LSTs) spatio-temporal distribution pattern of urban forests are influenced by many ecological factors; the identification of interaction between these factors can improve simulations and predictions of spatial patterns of urban cold islands. This quantitative research requires an integrated method that combines multiple sources data with spatial statistical analysis. Objectives The purpose of this study was to clarify urban forest LST influence interaction between anthropogenic activities and multiple ecological factors using cluster analysis of hot and cold spots and Geogdetector model. We introduced the hypothesis that anthropogenic activity interacts with certain ecological factors, and their combination influences urban forests LST. We also assumed that spatio-temporal distributions of urban forest LST should be similar to those of ecological factors and can be represented quantitatively. Methods We used Jinjiang as a representative city in China as a case study. Population density was employed to represent anthropogenic activity. We built up a multi-source data (forest inventory, digital elevation models (DEM), population, and remote sensing imagery) on a unified urban scale to support urban forest LST influence interaction research. Through a combination of spatial statistical analysis results, multi-source spatial data, and Geogdetector model, the interaction mechanisms of urban forest LST were revealed. Results Although different ecological factors have different influences on forest LST, in two periods with different hot spots and cold spots, the patch area and dominant tree species were the main factors contributing to LST clustering in urban forests. The interaction between anthropogenic activity and multiple ecological factors increased LST in urban forest stands, linearly and nonlinearly. Strong interactions between elevation and dominant species were generally observed and were prevalent in either hot or cold spots

  15. Effects of Anthropogenic Pollution on the Oxidative Phosphorylation Pathway of Hepatocytes from Natural Populations of Fundulus heteroclitus

    Energy Technology Data Exchange (ETDEWEB)

    Du, Xiao; Crawford, Douglas L.; Oleksiak, Marjorie F., E-mail: moleksiak@rsmas.miami.edu

    2015-08-15

    Highlights: • Fish from a highly polluted and clean reference population were compared. • Oxidative phosphorylation (e.g., State 3, enzymes, and proton LEAK) was quantified. • Polluted fish had lower LEAK, enzyme III and enzyme IV but higher enzyme I. • Exposures to PAH and PCB only affected individuals from the reference population. - Abstract: Persistent organic pollutants (POPs), including polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), potentially target mitochondria and cause toxicity. We compared the effects of POPs on mitochondrial respiration by measuring oxidative phosphorylation (OxPhos) metabolism in hepatocytes isolated from lab-depurated Fundulus heteroclitus from a Superfund site contaminated with PAHs (Elizabeth River VA, USA) relative to OxPhos metabolism in individuals from a relatively clean, reference population (King’s Creek VA, USA). In individuals from the polluted Elizabeth River population, OxPhos metabolism displayed lower LEAK and lower activities in complex III, complex IV, and E State, but higher activity in complex I compared to individuals from the reference King’s Creek population. To test the supposition that these differences were due to or related to the chronic PAH contamination history of the Elizabeth River population, we compared the OxPhos functions of undosed individuals from the polluted and reference populations to individuals from these populations dosed with a PAH {benzo [α] pyrene (BaP)} or a PCB {PCB126 (3,3′,4,4′,5-pentachlorobiphenyl)}, respectively. Exposure to PAH or PCB affected OxPhos in the reference King’s Creek population but had no detectable effects on the polluted Elizabeth River population. Thus, PAH exposure significantly increased LEAK, and exposure to PCB126 significantly decreased State 3, E state and complex I activity in the reference King’s Creek population. These data strongly implicate an evolved tolerance in the Elizabeth River fish where dosed

  16. Effects of Anthropogenic Pollution on the Oxidative Phosphorylation Pathway of Hepatocytes from Natural Populations of Fundulus heteroclitus

    International Nuclear Information System (INIS)

    Du, Xiao; Crawford, Douglas L.; Oleksiak, Marjorie F.

    2015-01-01

    Highlights: • Fish from a highly polluted and clean reference population were compared. • Oxidative phosphorylation (e.g., State 3, enzymes, and proton LEAK) was quantified. • Polluted fish had lower LEAK, enzyme III and enzyme IV but higher enzyme I. • Exposures to PAH and PCB only affected individuals from the reference population. - Abstract: Persistent organic pollutants (POPs), including polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), potentially target mitochondria and cause toxicity. We compared the effects of POPs on mitochondrial respiration by measuring oxidative phosphorylation (OxPhos) metabolism in hepatocytes isolated from lab-depurated Fundulus heteroclitus from a Superfund site contaminated with PAHs (Elizabeth River VA, USA) relative to OxPhos metabolism in individuals from a relatively clean, reference population (King’s Creek VA, USA). In individuals from the polluted Elizabeth River population, OxPhos metabolism displayed lower LEAK and lower activities in complex III, complex IV, and E State, but higher activity in complex I compared to individuals from the reference King’s Creek population. To test the supposition that these differences were due to or related to the chronic PAH contamination history of the Elizabeth River population, we compared the OxPhos functions of undosed individuals from the polluted and reference populations to individuals from these populations dosed with a PAH {benzo [α] pyrene (BaP)} or a PCB {PCB126 (3,3′,4,4′,5-pentachlorobiphenyl)}, respectively. Exposure to PAH or PCB affected OxPhos in the reference King’s Creek population but had no detectable effects on the polluted Elizabeth River population. Thus, PAH exposure significantly increased LEAK, and exposure to PCB126 significantly decreased State 3, E state and complex I activity in the reference King’s Creek population. These data strongly implicate an evolved tolerance in the Elizabeth River fish where dosed

  17. Impacts of Air Pollution and Climate Change on Forest Ecosystems — Emerging Research Needs

    Directory of Open Access Journals (Sweden)

    Elena Paoletti

    2007-01-01

    Full Text Available Outcomes from the 22nd meeting for Specialists in Air Pollution Effects on Forest Ecosystems “Forests under Anthropogenic Pressure Effects of Air Pollution, Climate Change and Urban Development”, September 1016, 2006, Riverside, CA, are summarized. Tropospheric or ground-level ozone (O3 is still the phytotoxic air pollutant of major interest. Challenging issues are how to make O3 standards or critical levels more biologically based and at the same time practical for wide use; quantification of plant detoxification processes in flux modeling; inclusion of multiple environmental stresses in critical load determinations; new concept development for nitrogen saturation; interactions between air pollution, climate, and forest pests; effects of forest fire on air quality; the capacity of forests to sequester carbon under changing climatic conditions and coexposure to elevated levels of air pollutants; enhanced linkage between molecular biology, biochemistry, physiology, and morphological traits.

  18. Reduced Ultrafine Particle Concentration in Urban Air: Changes in Nucleation and Anthropogenic Emissions.

    Science.gov (United States)

    Saha, Provat K; Robinson, Ellis S; Shah, Rishabh U; Zimmerman, Naomi; Apte, Joshua S; Robinson, Allen L; Presto, Albert A

    2018-06-19

    Nucleation is an important source of ambient ultrafine particles (UFP). We present observational evidence of the changes in the frequency and intensity of nucleation events in urban air by analyzing long-term particle size distribution measurements at an urban background site in Pittsburgh, Pennsylvania during 2001-2002 and 2016-2017. We find that both frequency and intensity of nucleation events have been reduced by 40-50% over the past 15 years, resulting in a 70% reduction in UFP concentrations from nucleation. On average, the particle growth rates are 30% slower than 15 years ago. We attribute these changes to dramatic reductions in SO 2 (more than 90%) and other pollutant concentrations. Overall, UFP concentrations in Pittsburgh have been reduced by ∼48% in the past 15 years, with a ∼70% reduction in nucleation, ∼27% in weekday local sources (e.g., weekday traffic), and 49% in the regional background. Our results highlight that a reduction in anthropogenic emissions can considerably reduce nucleation events and UFP concentrations in a polluted urban environment.

  19. Bio-monitoring of the most industrialized area in Poland: Trees' response to climate and anthropogenic environmental changes

    Science.gov (United States)

    Sensuła, Barbara; Wilczyński, Sławomir; Piotrowska, Natalia

    2017-04-01

    rhythm between the studied populations of incremental growth of pines. The carbon isotope discrimination has been proposed as a method for evaluating a decrease in the total amount of atmospheric 13C and 14C that has been caused by fossil-fuel burning (Suess effect) and the ratio between CO2 assimilation and stomatal conductance (water use efficiency). In the period of time from 1975 and 2012, Δ14C indicates the presence of local Suess effect. In the period of time prior to 2000, a decrease in conductivity of stomata was associated with a minor changes in photosynthesis net and that elevated CO2 increased intrinsic water use efficiency (approx. by 40%). The usage of carbon isotopes data provides historical records of anthropogenic impact on the environment and allows to identify the behaviour adaptation to the contamination. This project was funded by the National Science Centre allocated on the basis of the decision number DEC-2011/03/D/ST10/05251. This publication is supported under the grant rector in research and development. Silesian University of Technology, grant number 14/990/RGJ17/0077. References: B. Sensula 2016.δ13C and water use efficiency in the glucose of annual pine tree rings as ecological indicators of the forests in the most industrialized part of Poland. Water Air Soil Pollut. B. Sensula 2016.The impact of climate, sulfur dioxide, and industrial dust on δ18O and δ13C in glucose from pine tree rings growing in an industrialized area in the southern part of Poland Water Air Soil Pollut. B. Sensuła, S. Wilczyński, M. Opała. 2015. Tree growth and climate relationship: dynamics of scots pine (pinus sylvestris l.) growing in the near-source region of the combined heat and power plant during the development of the pro-ecological strategy in Poland. Water Air Soil Pollut. B. Sensula 2015. Spatial and short-temporal variability of δ13C and δ15N and water-use efficiency in pine needles of the three forests along the most industrialized part of Poland

  20. Anthropogenic marine litter composition in coastal areas may be a predictor of potentially invasive rafting fauna

    Science.gov (United States)

    Borrell Pichs, Yaisel J.; García-Vazquez, Eva

    2018-01-01

    Anthropogenic plastic pollution is a global problem. In the marine environment, one of its less studied effects is the transport of attached biota, which might lead to introductions of non-native species in new areas or aid in habitat expansions of invasive species. The goal of the present work was to assess if the material composition of beached anthropogenic litter is indicative of the rafting fauna in a coastal area and could thus be used as a simple and cost-efficient tool for risk assessment in the future. Beached anthropogenic litter and attached biota along the 200 km coastline of Asturias, central Bay of Biscay, Spain, were analysed. The macrobiotic community attached to fouled litter items was identified using genetic barcoding combined with visual taxonomic analysis, and compared between hard plastics, foams, other plastics and non-plastic items. On the other hand, the material composition of beached litter was analysed in a standardized area on each beach. From these two datasets, the expected frequency of several rafting taxa was calculated for the coastal area and compared to the actually observed frequencies. The results showed that plastics were the most abundant type of beached litter. Litter accumulation was likely driven by coastal sources (industry, ports) and river/sewage inputs and transported by near-shore currents. Rafting vectors were almost exclusively made up of plastics and could mainly be attributed to fishing activity and leisure/ household. We identified a variety of rafting biota, including species of goose barnacles, acorn barnacles, bivalves, gastropods, polychaetes and bryozoan, and hydrozoan colonies attached to stranded litter. Several of these species were non-native and invasive, such as the giant Pacific oyster (Crassostrea gigas) and the Australian barnacle (Austrominius modestus). The composition of attached fauna varied strongly between litter items of different materials. Plastics, except for foam, had a much more diverse

  1. Anthropogenic marine litter composition in coastal areas may be a predictor of potentially invasive rafting fauna.

    Directory of Open Access Journals (Sweden)

    Sabine Rech

    Full Text Available Anthropogenic plastic pollution is a global problem. In the marine environment, one of its less studied effects is the transport of attached biota, which might lead to introductions of non-native species in new areas or aid in habitat expansions of invasive species. The goal of the present work was to assess if the material composition of beached anthropogenic litter is indicative of the rafting fauna in a coastal area and could thus be used as a simple and cost-efficient tool for risk assessment in the future. Beached anthropogenic litter and attached biota along the 200 km coastline of Asturias, central Bay of Biscay, Spain, were analysed. The macrobiotic community attached to fouled litter items was identified using genetic barcoding combined with visual taxonomic analysis, and compared between hard plastics, foams, other plastics and non-plastic items. On the other hand, the material composition of beached litter was analysed in a standardized area on each beach. From these two datasets, the expected frequency of several rafting taxa was calculated for the coastal area and compared to the actually observed frequencies. The results showed that plastics were the most abundant type of beached litter. Litter accumulation was likely driven by coastal sources (industry, ports and river/sewage inputs and transported by near-shore currents. Rafting vectors were almost exclusively made up of plastics and could mainly be attributed to fishing activity and leisure/ household. We identified a variety of rafting biota, including species of goose barnacles, acorn barnacles, bivalves, gastropods, polychaetes and bryozoan, and hydrozoan colonies attached to stranded litter. Several of these species were non-native and invasive, such as the giant Pacific oyster (Crassostrea gigas and the Australian barnacle (Austrominius modestus. The composition of attached fauna varied strongly between litter items of different materials. Plastics, except for foam, had a

  2. Anthropogenic marine litter composition in coastal areas may be a predictor of potentially invasive rafting fauna.

    Science.gov (United States)

    Rech, Sabine; Borrell Pichs, Yaisel J; García-Vazquez, Eva

    2018-01-01

    Anthropogenic plastic pollution is a global problem. In the marine environment, one of its less studied effects is the transport of attached biota, which might lead to introductions of non-native species in new areas or aid in habitat expansions of invasive species. The goal of the present work was to assess if the material composition of beached anthropogenic litter is indicative of the rafting fauna in a coastal area and could thus be used as a simple and cost-efficient tool for risk assessment in the future. Beached anthropogenic litter and attached biota along the 200 km coastline of Asturias, central Bay of Biscay, Spain, were analysed. The macrobiotic community attached to fouled litter items was identified using genetic barcoding combined with visual taxonomic analysis, and compared between hard plastics, foams, other plastics and non-plastic items. On the other hand, the material composition of beached litter was analysed in a standardized area on each beach. From these two datasets, the expected frequency of several rafting taxa was calculated for the coastal area and compared to the actually observed frequencies. The results showed that plastics were the most abundant type of beached litter. Litter accumulation was likely driven by coastal sources (industry, ports) and river/sewage inputs and transported by near-shore currents. Rafting vectors were almost exclusively made up of plastics and could mainly be attributed to fishing activity and leisure/ household. We identified a variety of rafting biota, including species of goose barnacles, acorn barnacles, bivalves, gastropods, polychaetes and bryozoan, and hydrozoan colonies attached to stranded litter. Several of these species were non-native and invasive, such as the giant Pacific oyster (Crassostrea gigas) and the Australian barnacle (Austrominius modestus). The composition of attached fauna varied strongly between litter items of different materials. Plastics, except for foam, had a much more diverse

  3. Multitaxon activity profiling reveals differential microbial response to reduced seawater pH and oil pollution.

    Science.gov (United States)

    Coelho, Francisco J R C; Cleary, Daniel F R; Costa, Rodrigo; Ferreira, Marina; Polónia, Ana R M; Silva, Artur M S; Simões, Mário M Q; Oliveira, Vanessa; Gomes, Newton C M

    2016-09-01

    There is growing concern that predicted changes to global ocean chemistry will interact with anthropogenic pollution to significantly alter marine microbial composition and function. However, knowledge of the compounding effects of climate change stressors and anthropogenic pollution is limited. Here, we used 16S and 18S rRNA (cDNA)-based activity profiling to investigate the differential responses of selected microbial taxa to ocean acidification and oil hydrocarbon contamination under controlled laboratory conditions. Our results revealed that a lower relative abundance of sulphate-reducing bacteria (Desulfosarcina/Desulfococcus clade) due to an adverse effect of seawater acidification and oil hydrocarbon contamination (reduced pH-oil treatment) may be coupled to changes in sediment archaeal communities. In particular, we observed a pronounced compositional shift and marked reduction in the prevalence of otherwise abundant operational taxonomic units (OTUs) belonging to the archaeal Marine Benthic Group B and Marine Hydrothermal Vent Group (MHVG) in the reduced pH-oil treatment. Conversely, the abundance of several putative hydrocarbonoclastic fungal OTUs was higher in the reduced pH-oil treatment. Sediment hydrocarbon profiling, furthermore, revealed higher concentrations of several alkanes in the reduced pH-oil treatment, corroborating the functional implications of the structural changes to microbial community composition. Collectively, our results advance the understanding of the response of a complex microbial community to the interaction between reduced pH and anthropogenic pollution. In future acidified marine environments, oil hydrocarbon contamination may alter the typical mixotrophic and k-/r-strategist composition of surface sediment microbiomes towards a more heterotrophic state with lower doubling rates, thereby impairing the ability of the ecosystem to recover from acute oil contamination events. © 2016 John Wiley & Sons Ltd.

  4. Environmental Sustainability of the Lopota River in Eastern Georgia against the Background of the Growing Anthropogenic Load

    Directory of Open Access Journals (Sweden)

    Tea T. Mchedluri

    2014-03-01

    Full Text Available We studied the ecological state of the Lopota River in Eastern Georgia. The study showed that the results of microbiological and chemical contamination do not experience significant changes, and mainly are within the acceptable range of concentration, although a pronounced difference is observed among individual performances over the entire flow. An increase in the anthropogenic pollution of the river is observed in summer time. Downstream the Alazani River the concentration of major cations ((K+,Na+,Mg2+,Ca2+, anions (SO42-, Cl- HCO3-, CO32- and biogenic elements (NO2, NO3-, NH4+, PO43- is increasing. As a result, the Lopota River is subjected to anthropogenic influence and faecal contamination. However, despite this, the ecological state of the river is satisfactory, due the turbulent flow of the river and good aeration. In addition, the increase in turbidity creates favourable conditions for sorption water purification. All this contributes to self-purification capacity of the river.

  5. Assessing the effects of rural livelihood transition on non-point source pollution: a coupled ABM-IECM model.

    Science.gov (United States)

    Yuan, Chengcheng; Liu, Liming; Ye, Jinwei; Ren, Guoping; Zhuo, Dong; Qi, Xiaoxing

    2017-05-01

    Water pollution caused by anthropogenic activities and driven by changes in rural livelihood strategies in an agricultural system has received increasing attention in recent decades. To simulate the effects of rural household livelihood transition on non-point source (NPS) pollution, a model combining an agent-based model (ABM) and an improved export coefficient model (IECM) was developed. The ABM was adopted to simulate the dynamic process of household livelihood transition, and the IECM was employed to estimate the effects of household livelihood transition on NPS pollution. The coupled model was tested in a small catchment in the Dongting Lake region, China. The simulated results reveal that the transition of household livelihood strategies occurred with the changes in the prices of rice, pig, and labor. Thus, the cropping system, land-use intensity, resident population, and number of pigs changed in the small catchment from 2000 to 2014. As a result of these changes, the total nitrogen load discharged into the river initially increased from 6841.0 kg in 2000 to 8446.3 kg in 2004 and then decreased to 6063.9 kg in 2014. Results also suggest that rural living, livestock, paddy field, and precipitation alternately became the main causes of NPS pollution in the small catchment, and the midstream region of the small catchment was the primary area for NPS pollution from 2000 to 2014. Despite some limitations, the coupled model provides an innovative way to simulate the effects of rural household livelihood transition on NPS pollution with the change of socioeconomic factors, and thereby identify the key factors influencing water pollution to provide valuable suggestions on how agricultural environmental risks can be reduced through the regulation of the behaviors of farming households in the future.

  6. The role of anthropogenic aerosol emission reduction in achieving the Paris Agreement's objective

    Science.gov (United States)

    Hienola, Anca; Pietikäinen, Joni-Pekka; O'Donnell, Declan; Partanen, Antti-Ilari; Korhonen, Hannele; Laaksonen, Ari

    2017-04-01

    The Paris agreement reached in December 2015 under the auspices of the United Nation Framework Convention on Climate Change (UNFCCC) aims at holding the global temperature increase to well below 2◦C above preindustrial levels and "to pursue efforts to limit the temperature increase to 1.5◦C above preindustrial levels". Limiting warming to any level implies that the total amount of carbon dioxide (CO2) - the dominant driver of long-term temperatures - that can ever be emitted into the atmosphere is finite. Essentially, this means that global CO2 emissions need to become net zero. CO2 is not the only pollutant causing warming, although it is the most persistent. Short-lived, non-CO2 climate forcers also must also be considered. Whereas much effort has been put into defining a threshold for temperature increase and zero net carbon emissions, surprisingly little attention has been paid to the non-CO2 climate forcers, including not just the non-CO2 greenhouse gases (methane (CH4), nitrous oxide (N2O), halocarbons etc.) but also the anthropogenic aerosols like black carbon (BC), organic carbon (OC) and sulfate. This study investigates the possibility of limiting the temperature increase to 1.5◦C by the end of the century under different future scenarios of anthropogenic aerosol emissions simulated with the very simplistic MAGICC climate carbon cycle model as well as with ECHAM6.1-HAM2.2-SALSA + UVic ESCM. The simulations include two different CO2 scenarios- RCP3PD as control and a CO2 reduction leading to 1.5◦C (which translates into reaching the net zero CO2 emissions by mid 2040s followed by negative emissions by the end of the century); each CO2 scenario includes also two aerosol pollution control cases denoted with CLE (current legislation) and MFR (maximum feasible reduction). The main result of the above scenarios is that the stronger the anthropogenic aerosol emission reduction is, the more significant the temperature increase by 2100 relative to pre

  7. Challenges and future direction of molecular research in air pollution-related lung cancers.

    Science.gov (United States)

    Shahadin, Maizatul Syafinaz; Ab Mutalib, Nurul Syakima; Latif, Mohd Talib; Greene, Catherine M; Hassan, Tidi

    2018-04-01

    Hazardous air pollutants or chemical release into the environment by a variety of natural and/or anthropogenic activities may give adverse effects to human health. Air pollutants such as sulphur dioxide (SO2), nitrogen oxides (NOx), carbon monoxide (CO), heavy metals and particulate matter (PM) affect number of different human organs, especially the respiratory system. The International Agency for Research on Cancer (IARC) reported that ambient air pollution is a cause of lung cancer. Recently, the agency has classified outdoor air pollution as well as PM air pollution as Group 1 carcinogens. In addition, several epidemiological studies have shown a positive association between air pollutants to lung cancer risks and mortality. However, there are only a few studies examining the molecular effects of air pollution exposure specifically in lung cancer due to multiple challenges to mimic air pollution exposure in basic experimentation. Another major issue is the lack of adequate adjustments for exposure misclassification as air pollution may differ temporo-spatially and socioeconomically. Thus, the purpose of this paper is to review the current molecular understanding of air pollution-related lung cancer and potential future direction in this challenging yet important research field. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Soil heavy metal pollution and risk assessment in Shenyang industrial district, Northeast China.

    Directory of Open Access Journals (Sweden)

    Xudong Jiao

    Full Text Available To investigate the soil heavy metal pollution characteristics and ecological risk factors, 42 samples and six typical soil profiles were collected from the Shenyang industrial district in northeast China and were analyzed for contents of titanium (Ti, copper (Cu, lead (Pb, zinc (Zn, cobalt (Co, nickel (Ni, chromium (Cr and arsenic (As. Through statistical analysis, it was found that the mean concentrations were higher than their background values (Ti = 4.77>3.8g/kg, Cu = 33.75>22.6 mg/kg, Pb = 45.95>26 mg/kg, Zn = 81.54>74.2 mg/kg, Co = 12.91>12.7 mg/kg, Ni = 32.26>26.9 mg/kg, Cr = 83.36>61 mg/kg and As = 13.69>11.2 mg/kg but did not exceed their corresponding pollution limits for the Chinese Environmental Quality Standard for Soils (State Environmental Protection Administration of China, 1995. There were contamination hotspots that may be caused by human activities such as smelting plants and sewage irrigation. The Enrichment Factor and Ecological Risk Index were used to identify the anthropogenic contamination and ecological risks of heavy metals. Soil in the study area could be considered lightly or partially polluted by heavy metals. According to clustering analysis, distinct groups of heavy metals were discriminated between natural or anthropogenic sources.

  9. Heavy metal pollution in immobile and mobile components of lentic ecosystems-a review.

    Science.gov (United States)

    Meena, Ramakrishnan Anu Alias; Sathishkumar, Palanivel; Ameen, Fuad; Yusoff, Abdull Rahim Mohd; Gu, Feng Long

    2018-02-01

    With growing population and urbanization, there is an increasing exploitation of natural resources, and this often results to environmental pollution. In this review, the levels of heavy metal in lentic compartments (water, sediment, fishes, and aquatic plants) over the past two decades (1997-2017) have been summarized to evaluate the current pollution status of this ecosystem. In all the compartments, the heavy metals dominated are zinc followed by iron. The major reason could be area mineralogy and lithogenic sources. Enormous quantity of metals like iron in estuarine sediment is a very natural incident due to the permanently reducing condition of organic substances. Contamination of cadmium, lead, and chromium was closely associated with anthropogenic origin. In addition, surrounding land use and atmospheric deposition could have been responsible for substantial pollution. The accumulation of heavy metals in fishes and aquatic plants is the result of time-dependent deposition in lentic ecosystems. Moreover, various potential risk assessment methods for heavy metals were discussed. This review concludes that natural phenomena dominate the accumulation of essential heavy metals in lentic ecosystems compared to anthropogenic sources. Amongst other recent reviews on heavy metals from other parts of the world, the present review is executed in such a way that it explains the presence of heavy metals not only in water environment, but also in the whole of the lentic system comprising sediment, fishes, and aquatic plants.

  10. Soil Heavy Metal Pollution and Risk Assessment in Shenyang Industrial District, Northeast China

    Science.gov (United States)

    Jiao, Xudong; Teng, Yanguo; Zhan, Yanhong; Wu, Jin; Lin, Xueyu

    2015-01-01

    To investigate the soil heavy metal pollution characteristics and ecological risk factors, 42 samples and six typical soil profiles were collected from the Shenyang industrial district in northeast China and were analyzed for contents of titanium (Ti), copper (Cu), lead (Pb), zinc (Zn), cobalt (Co), nickel (Ni), chromium (Cr) and arsenic (As). Through statistical analysis, it was found that the mean concentrations were higher than their background values (Ti = 4.77>3.8g/kg, Cu = 33.75>22.6 mg/kg, Pb = 45.95>26 mg/kg, Zn = 81.54>74.2 mg/kg, Co = 12.91>12.7 mg/kg, Ni = 32.26>26.9 mg/kg, Cr = 83.36>61 mg/kg and As = 13.69>11.2 mg/kg) but did not exceed their corresponding pollution limits for the Chinese Environmental Quality Standard for Soils (State Environmental Protection Administration of China, 1995). There were contamination hotspots that may be caused by human activities such as smelting plants and sewage irrigation. The Enrichment Factor and Ecological Risk Index were used to identify the anthropogenic contamination and ecological risks of heavy metals. Soil in the study area could be considered lightly or partially polluted by heavy metals. According to clustering analysis, distinct groups of heavy metals were discriminated between natural or anthropogenic sources. PMID:25997173

  11. Organic micropollutants discharged by combined sewer overflows - Characterisation of pollutant sources and stormwater-related processes.

    Science.gov (United States)

    Launay, Marie A; Dittmer, Ulrich; Steinmetz, Heidrun

    2016-11-01

    To characterise emissions from combined sewer overflows (CSOs) regarding organic micropollutants, a monitoring study was undertaken in an urban catchment in southwest Stuttgart, Germany. The occurrence of 69 organic micropollutants was assessed at one CSO outfall during seven rain events as well as in the sewage network at the influent of the wastewater treatment plant (WWTP) and in the receiving water. Several pollutant groups like pharmaceuticals and personal care products (PPCPs), urban biocides and pesticides, industrial chemicals, organophosphorus flame retardants, plasticisers and polycyclic aromatic hydrocarbons (PAHs) were chosen for analysis. Out of the 69 monitored substances, 60 were detected in CSO discharges. The results of this study show that CSOs represent an important pathway for a wide range of organic micropollutants from wastewater systems to urban receiving waters. For most compounds detected in CSO samples, event mean concentrations varied between the different events in about one order of magnitude range. When comparing CSO concentrations with median wastewater concentrations during dry weather, two main patterns could be observed depending on the source of the pollutant: (i) wastewater is diluted by stormwater; (ii) stormwater is the most important source of a pollutant. Both wastewater and stormwater only play an important role in pollutant concentration for a few compounds. The proportion of stormwater calculated with the conductivity is a suitable indicator for the evaluation of emitted loads of dissolved wastewater pollutants, but not for all compounds. In fact, this study demonstrates that remobilisation of in-sewer deposits contributed from 10% to 65% to emissions of carbamazepine in CSO events. The contribution of stormwater to CSO emitted loads was higher than 90% for all herbicides as well as for PAHs. Regarding the priority substance di(2-ethylhexyl)phthalate (DEHP), this contribution varied between 39% and 85%. The PAH

  12. Anthropogenic Space Weather

    Science.gov (United States)

    Gombosi, T. I.; Baker, D. N.; Balogh, A.; Erickson, P. J.; Huba, J. D.; Lanzerotti, L. J.

    2017-11-01

    Anthropogenic effects on the space environment started in the late 19th century and reached their peak in the 1960s when high-altitude nuclear explosions were carried out by the USA and the Soviet Union. These explosions created artificial radiation belts near Earth that resulted in major damages to several satellites. Another, unexpected impact of the high-altitude nuclear tests was the electromagnetic pulse (EMP) that can have devastating effects over a large geographic area (as large as the continental United States). Other anthropogenic impacts on the space environment include chemical release experiments, high-frequency wave heating of the ionosphere and the interaction of VLF waves with the radiation belts. This paper reviews the fundamental physical process behind these phenomena and discusses the observations of their impacts.

  13. Detection and differentiation of pollution in urban surface soils using magnetic properties in arid and semi-arid regions of northwestern China.

    Science.gov (United States)

    Wang, Bo; Xia, Dunsheng; Yu, Ye; Jia, Jia; Xu, Shujing

    2014-01-01

    Increasing urbanization and industrialization over the world has caused many social and environmental problems, one of which drawing particular concern is the soil pollution and its ecological degradation. In this study, the efficiency of magnetic methods for detecting and discriminating contaminates in the arid and semi-arid regions of northwestern China was investigated. Topsoil samples from six typical cities (i.e. Karamay, Urumqi, Lanzhou, Yinchuan, Shizuishan and Wuhai) were collected and a systematic analysis of their magnetic properties was conducted. Results indicate that the topsoil samples from the six cities were all dominated by coarse low-coercivity magnetite. In addition, the average magnetite contents in the soils from Urumqi and Lanzhou were shown to be much higher than those from Karamay, Yinchuan, Shizuishan and Wuhai, and they also have relatively higher χlf and χfd% when compared with cities in eastern China. Moreover, specific and distinctive soil pollution signals were identified at each sampling site using the combined various magnetic data, reflecting distinct sources. Industrial and traffic-derived pollution was dominant in Urumqi and Lanzhou, in Yinchuan industrial progress was observed to be important with some places affected by vehicle emission, while Karamay, Shizuishan and Wuhai were relatively clean. The magnetic properties of these latter three cities are significantly affected by both anthropogenic pollution and local parent materials from the nearby Gobi desert. The differences in magnetic properties of topsoil samples affected by mixed industrial and simplex traffic emissions are not obvious, but significant differences exist in samples affected by simplex industrial/vehicle emissions and domestic pollution. The combined magnetic analyses thus provide a sensitive and powerful tool for classifying samples according to likely sources, and may even provide a valuable diagnostic tool for discriminating among different cities

  14. Anthropogenic combustion iron as a complex climate forcer.

    Science.gov (United States)

    Matsui, Hitoshi; Mahowald, Natalie M; Moteki, Nobuhiro; Hamilton, Douglas S; Ohata, Sho; Yoshida, Atsushi; Koike, Makoto; Scanza, Rachel A; Flanner, Mark G

    2018-04-23

    Atmospheric iron affects the global carbon cycle by modulating ocean biogeochemistry through the deposition of soluble iron to the ocean. Iron emitted by anthropogenic (fossil fuel) combustion is a source of soluble iron that is currently considered less important than other soluble iron sources, such as mineral dust and biomass burning. Here we show that the atmospheric burden of anthropogenic combustion iron is 8 times greater than previous estimates by incorporating recent measurements of anthropogenic magnetite into a global aerosol model. This new estimation increases the total deposition flux of soluble iron to southern oceans (30-90 °S) by 52%, with a larger contribution of anthropogenic combustion iron than dust and biomass burning sources. The direct radiative forcing of anthropogenic magnetite is estimated to be 0.021 W m -2 globally and 0.22 W m -2 over East Asia. Our results demonstrate that anthropogenic combustion iron is a larger and more complex climate forcer than previously thought, and therefore plays a key role in the Earth system.

  15. Three centuries of heavy metal pollution in Paris (France) recorded by urban speleothems

    Energy Technology Data Exchange (ETDEWEB)

    Pons-Branchu, Edwige, E-mail: epons@lsce.ipsl.fr [LSCE (UMR8212, CEA/CNRS/UVSQ), Bâtiment 12, avenue de la Terrasse, 91198 Gif-Sur-Yvette (France); Ayrault, Sophie; Roy-Barman, Matthieu; Bordier, Louise [LSCE (UMR8212, CEA/CNRS/UVSQ), Bâtiment 12, avenue de la Terrasse, 91198 Gif-Sur-Yvette (France); Borst, Wolfgang; Branchu, Philippe [CEREMA, 12 rue Teisserenc de Bort, 78190 Trappes (France); Douville, Eric [LSCE (UMR8212, CEA/CNRS/UVSQ), Bâtiment 12, avenue de la Terrasse, 91198 Gif-Sur-Yvette (France); Dumont, Emmanuel [CEREMA, rue de l' égalité Prolongée, 93352, Le Bourget cedex 319 (France)

    2015-06-15

    The first record of urban speleothems used to reconstruct the history of heavy metal pollution of shallow groundwaters is presented. Two speleothems grew during the last 300 years in an underground aqueduct in the north-eastern part of Paris. They display high Pb, Mn V, Cu, Cd and Al concentrations since 1900 due to the urbanization of the site which triggered anthropogenic contamination of the water feeding the speleothems. Surprisingly, these heavy metal concentrations are also high in the oldest part. This early pollution could come from the use of Parisian waste as fertilizers in the orchards and vineyards cultivated above the aqueduct before urbanization. Lead isotopes were measured in these carbonates as well as in lead artifacts from the 17th–18th centuries ({sup 206}Pb/{sup 207}Pb = 1.180 +/− 0.003). The mean {sup 206}Pb/{sup 207}Pb ratio, for one of the speleothems is 1.181 +/− 0.003 unvarying with time. These lead signatures are close to those of coal and old lead from northern European mines, lower than the natural background signature. It confirms that the high metal concentrations found come from anthropogenic pollution. Conversely, the lead isotopic composition of the second speleothem presents two temporal trends: for the oldest levels, the mean value (1.183 +/− 0.003) is similar to the first speleothem. For the youngest part, a lower value (1.172 +/− 0.005) is recorded, evidencing the contribution of a new lead source at the beginning of the industrial revolution. Pb isotopes were also measured in recent samples from a nearby superficial site. The first sample is a recent (AD 1975 +/− 15 years) deposit ({sup 206}Pb/{sup 207}Pb = 1.148 +/− 0.003), and the second, a thin subactual layer ({sup 206}Pb/{sup 207}Pb = 1.181 +/− 0.002). These data are compatible with the adding of anthropogenic sources (leaded gasoline and industrial lead from Rio Tinto ore). - Highlights: • Urban speleothems from underground aqueduct in Paris, France were

  16. Three centuries of heavy metal pollution in Paris (France) recorded by urban speleothems

    International Nuclear Information System (INIS)

    Pons-Branchu, Edwige; Ayrault, Sophie; Roy-Barman, Matthieu; Bordier, Louise; Borst, Wolfgang; Branchu, Philippe; Douville, Eric; Dumont, Emmanuel

    2015-01-01

    The first record of urban speleothems used to reconstruct the history of heavy metal pollution of shallow groundwaters is presented. Two speleothems grew during the last 300 years in an underground aqueduct in the north-eastern part of Paris. They display high Pb, Mn V, Cu, Cd and Al concentrations since 1900 due to the urbanization of the site which triggered anthropogenic contamination of the water feeding the speleothems. Surprisingly, these heavy metal concentrations are also high in the oldest part. This early pollution could come from the use of Parisian waste as fertilizers in the orchards and vineyards cultivated above the aqueduct before urbanization. Lead isotopes were measured in these carbonates as well as in lead artifacts from the 17th–18th centuries ( 206 Pb/ 207 Pb = 1.180 +/− 0.003). The mean 206 Pb/ 207 Pb ratio, for one of the speleothems is 1.181 +/− 0.003 unvarying with time. These lead signatures are close to those of coal and old lead from northern European mines, lower than the natural background signature. It confirms that the high metal concentrations found come from anthropogenic pollution. Conversely, the lead isotopic composition of the second speleothem presents two temporal trends: for the oldest levels, the mean value (1.183 +/− 0.003) is similar to the first speleothem. For the youngest part, a lower value (1.172 +/− 0.005) is recorded, evidencing the contribution of a new lead source at the beginning of the industrial revolution. Pb isotopes were also measured in recent samples from a nearby superficial site. The first sample is a recent (AD 1975 +/− 15 years) deposit ( 206 Pb/ 207 Pb = 1.148 +/− 0.003), and the second, a thin subactual layer ( 206 Pb/ 207 Pb = 1.181 +/− 0.002). These data are compatible with the adding of anthropogenic sources (leaded gasoline and industrial lead from Rio Tinto ore). - Highlights: • Urban speleothems from underground aqueduct in Paris, France were studied. • Speleothems are

  17. Detecting the sensitivity of magnetic response on different pollution sources--A case study from typical mining cities in northwestern China.

    Science.gov (United States)

    Wang, Bo; Xia, Dunsheng; Yu, Ye; Jia, Jia; Nie, Yan; Wang, Xin

    2015-12-01

    Rapid monitoring and discriminating different anthropogenic pollution is a key scientific issue. To detect the applicability and sensitivity of magnetic measurements for evaluating different industrial pollution in urban environment, characteristics of topsoil from three typical fast developing industrial cities (Jinchang, Baiyin and Jiayuguan in Gansu province, northwestern China) were studied by magnetic and geochemical analyses. The results showed that magnetic susceptibility was enhanced near industrial areas, and PSD-MD magnetite dominated the magnetic properties. Magnetic concentration parameters (χlf, SIRM, and χARM) showed different correlations with heavy metals and PLI in the three cities, indicating significantly different magnetic response to different pollution sources. Principal component analysis showed that ferrimagnetic minerals coexist with heavy metals of Fe, As, Cu, Pb, and Zn in Baiyin and Fe, V, Cu, Mn, Pb, and Cr in Jiayuguan. Fuzzy cluster analysis and regression analysis further indicated that the sensitivity of magnetic monitoring to fuel dust is higher than that to mineral dust near non-ferrous metal smelters, and fossil fuel consumption is an important factor for increasing magnetite content. In all the three cities, the sensitivity of magnetic monitoring to pollutants from steel plants is much higher than that from non-ferrous metal plants. Therefore, magnetic proxies provide a rapid means for detecting heavy metal contamination caused by multi-anthropogenic pollution sources in a large scale area, however, the sensitivity was controlled by pollution sources. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Pollution and pollution tolerance as regards the sorption of organic chemicals in urban soils; Sorption organischer Chemikalien

    Energy Technology Data Exchange (ETDEWEB)

    Blume, H.P.; Wu Qinglan; Strehl, M. [Kiel Univ. (Germany). Inst. fuer Pflanzenernaehrung und Bodenkunde; Abend, S. [Kiel Univ. (Germany). Inst. fuer Anorganische Chemie; Rexilius, L. [Pflanzenschutzamt des Landes Schleswig-Holstein, Kiel (Germany); Schleuss, U. [Kiel Univ. (Germany). Oekologie-Zentrum]|[Zentrum fuer Agrarlandschafts- und Landnutzungsforschung Muencheberg (Germany)

    1997-12-31

    The behaviour of pollutants in soils concerning, for example, their immobilisation, transport, biodegradation, or uptake by useful plants is to large degree determined by the sorption properties of the soil in question. The degree of sorption is an all-important parameter in any model description of the behaviour of pollutants in soils. The aim of the present part-project was to estimate by means of simple field methods the binding capacity of anthropogenic urban soils for environmentally consequential organic chemicals and to assess the results with regard to soil and water protection. [Deutsch] Das Verhalten von Schadstoffen in Boeden, wie z.B. Immobilisierung, Transport, biologischer Abbau, Aufnahme durch Kulturpflanzen, wird von den Sorptionseigenschaften im Boden wesentlich beeinflusst. Bei allen Modellbeschreibungen ueber das Verhalten von Schadstoffen in Boeden ist die Staerke der Sorption ein unersetzbarer Parameter. Ziel dieses Teilprojektes war es, das Bindungsvermoegen der anthropogenen Stadtboeden fuer umweltrelevante organische Chemikalien mittels einfacher Feldmethoden abzuschaetzen und im Hinblick auf Boden- und Gewaesserschutz zu bewerten. (orig./SR)

  19. Meteorological Drivers of Extreme Air Pollution Events

    Science.gov (United States)

    Horton, D. E.; Schnell, J.; Callahan, C. W.; Suo, Y.

    2017-12-01

    The accumulation of pollutants in the near-surface atmosphere has been shown to have deleterious consequences for public health, agricultural productivity, and economic vitality. Natural and anthropogenic emissions of ozone and particulate matter can accumulate to hazardous concentrations when atmospheric conditions are favorable, and can reach extreme levels when such conditions persist. Favorable atmospheric conditions for pollutant accumulation include optimal temperatures for photochemical reaction rates, circulation patterns conducive to pollutant advection, and a lack of ventilation, dispersion, and scavenging in the local environment. Given our changing climate system and the dual ingredients of poor air quality - pollutants and the atmospheric conditions favorable to their accumulation - it is important to characterize recent changes in favorable meteorological conditions, and quantify their potential contribution to recent extreme air pollution events. To facilitate our characterization, this study employs the recently updated Schnell et al (2015) 1°×1° gridded observed surface ozone and particulate matter datasets for the period of 1998 to 2015, in conjunction with reanalysis and climate model simulation data. We identify extreme air pollution episodes in the observational record and assess the meteorological factors of primary support at local and synoptic scales. We then assess (i) the contribution of observed meteorological trends (if extant) to the magnitude of the event, (ii) the return interval of the meteorological event in the observational record, simulated historical climate, and simulated pre-industrial climate, as well as (iii) the probability of the observed meteorological trend in historical and pre-industrial climates.

  20. Ice-nucleating particle concentrations unaffected by urban air pollution in Beijing, China

    Science.gov (United States)

    Chen, Jie; Wu, Zhijun; Augustin-Bauditz, Stefanie; Grawe, Sarah; Hartmann, Markus; Pei, Xiangyu; Liu, Zirui; Ji, Dongsheng; Wex, Heike

    2018-03-01

    Exceedingly high levels of PM2.5 with complex chemical composition occur frequently in China. It has been speculated whether anthropogenic PM2.5 may significantly contribute to ice-nucleating particles (INP). However, few studies have focused on the ice-nucleating properties of urban particles. In this work, two ice-nucleating droplet arrays have been used to determine the atmospheric number concentration of INP (NINP) in the range from -6 to -25 °C in Beijing. No correlations between NINP and either PM2.5 or black carbon mass concentrations were found, although both varied by more than a factor of 30 during the sampling period. Similarly, there were no correlations between NINP and either total particle number concentration or number concentrations for particles with diameters > 500 nm. Furthermore, there was no clear difference between day and night samples. All these results indicate that Beijing air pollution did not increase or decrease INP concentrations in the examined temperature range above values observed in nonurban areas; hence, the background INP concentrations might not be anthropogenically influenced as far as urban air pollution is concerned, at least in the examined temperature range.

  1. Biogenic, anthropogenic and sea salt sulfate size-segregated aerosols in the Arctic summer

    Directory of Open Access Journals (Sweden)

    R. Ghahremaninezhad

    2016-04-01

    Full Text Available Size-segregated aerosol sulfate concentrations were measured on board the Canadian Coast Guard Ship (CCGS Amundsen in the Arctic during July 2014. The objective of this study was to utilize the isotopic composition of sulfate to address the contribution of anthropogenic and biogenic sources of aerosols to the growth of the different aerosol size fractions in the Arctic atmosphere. Non-sea-salt sulfate is divided into biogenic and anthropogenic sulfate using stable isotope apportionment techniques. A considerable amount of the average sulfate concentration in the fine aerosols with a diameter  <  0.49 µm was from biogenic sources (>  63 %, which is higher than in previous Arctic studies measuring above the ocean during fall (<  15 % (Rempillo et al., 2011 and total aerosol sulfate at higher latitudes at Alert in summer (>  30 % (Norman et al., 1999. The anthropogenic sulfate concentration was less than that of biogenic sulfate, with potential sources being long-range transport and, more locally, the Amundsen's emissions. Despite attempts to minimize the influence of ship stack emissions, evidence from larger-sized particles demonstrates a contribution from local pollution. A comparison of δ34S values for SO2 and fine aerosols was used to show that gas-to-particle conversion likely occurred during most sampling periods. δ34S values for SO2 and fine aerosols were similar, suggesting the same source for SO2 and aerosol sulfate, except for two samples with a relatively high anthropogenic fraction in particles  <  0.49 µm in diameter (15–17 and 17–19 July. The high biogenic fraction of sulfate fine aerosol and similar isotope ratio values of these particles and SO2 emphasize the role of marine organisms (e.g., phytoplankton, algae, bacteria in the formation of fine particles above the Arctic Ocean during the productive summer months.

  2. Nutrient and metal pollution of the eastern Gulf of Finland coastline: Sediments, macroalgae, microbiota

    International Nuclear Information System (INIS)

    Gubelit, Yulia; Polyak, Yulia; Dembska, Grazyna; Pazikowska-Sapota, Grazyna; Zegarowski, Lukasz; Kochura, Dmitry; Krivorotov, Denis; Podgornaya, Elena; Burova, Olga; Maazouzi, Chafik

    2016-01-01

    The anthropogenic pollution along the coastline of the eastern Gulf of Finland was studied through a range of methods, including analyses of metal contamination in water, surface sediments, accumulated algal biomass and its correlation with resistant microbiota. According to concentrations, the main pollutants in water were copper and manganese. Influence of Nuclear Power Plant was remarkable in adjacent areas and was expressed in high concentrations of molybdenum, nickel, copper and other elements in the water. Relatively high concentrations of copper, lead and zinc were found in sediments. Microbial tolerance appeared to be correlated with the concentration of the metals in sediments. Higher tolerance levels were found in sediment samples from more polluted stations. Macroalgae, which were massively developed in the coastal zone, had shown high level of metal bioaccumulation. Analyses of carbon, nitrogen and phosphorus content of algal tissues allowed the estimation of additional nutrient loading from accumulated decaying algal biomass on the coastal zone of the eastern Gulf of Finland. Mass development of algae in coastal area may contribute to accumulation of organic matter and associated metals. In our study the highest metal concentrations in sediments were found at the sites with dense and continuous layer of fresh and decaying macroalgal biomass, accompanied by hypoxic conditions. Also our study has shown that accumulated biomass may be a significant source of nutrients in the coastal ecosystem. - Highlights: • We studied heavy metal pollution in the coastline of the eastern Gulf of Finland. • Sediments, water, mass macroalgae and microbiota were included into analyses. • Eutrophication and nutrient loading remain the main problem of the studied area. • Macroalgae contribute to accumulation of organic matter, nutrient, and heavy metal. • Pollution in the studied area is caused by a combination of different factors.

  3. Nutrient and metal pollution of the eastern Gulf of Finland coastline: Sediments, macroalgae, microbiota

    Energy Technology Data Exchange (ETDEWEB)

    Gubelit, Yulia, E-mail: Gubelit@list.ru [Zoological Institute of the Russian Academy of Sciences, St. Petersburg (Russian Federation); Polyak, Yulia [Scientific Research Center for Ecological Safety of the Russian Academy of Sciences, St. Petersburg (Russian Federation); Dembska, Grazyna; Pazikowska-Sapota, Grazyna; Zegarowski, Lukasz [Maritime Institute in Gdansk, Department of Environmental Protection, Gdansk (Poland); Kochura, Dmitry; Krivorotov, Denis; Podgornaya, Elena; Burova, Olga [Research Institute of Hygiene, Occupational Pathology and Human Ecology (RIHOPHE), Federal Medical Biological Agency, St. Petersburg (Russian Federation); Maazouzi, Chafik [Université Claude Bernard Lyon 1, Laboratoire d' Écologie des Hydrosystèmes Naturels et Anthropisés (LEHNA), Lyon (France)

    2016-04-15

    The anthropogenic pollution along the coastline of the eastern Gulf of Finland was studied through a range of methods, including analyses of metal contamination in water, surface sediments, accumulated algal biomass and its correlation with resistant microbiota. According to concentrations, the main pollutants in water were copper and manganese. Influence of Nuclear Power Plant was remarkable in adjacent areas and was expressed in high concentrations of molybdenum, nickel, copper and other elements in the water. Relatively high concentrations of copper, lead and zinc were found in sediments. Microbial tolerance appeared to be correlated with the concentration of the metals in sediments. Higher tolerance levels were found in sediment samples from more polluted stations. Macroalgae, which were massively developed in the coastal zone, had shown high level of metal bioaccumulation. Analyses of carbon, nitrogen and phosphorus content of algal tissues allowed the estimation of additional nutrient loading from accumulated decaying algal biomass on the coastal zone of the eastern Gulf of Finland. Mass development of algae in coastal area may contribute to accumulation of organic matter and associated metals. In our study the highest metal concentrations in sediments were found at the sites with dense and continuous layer of fresh and decaying macroalgal biomass, accompanied by hypoxic conditions. Also our study has shown that accumulated biomass may be a significant source of nutrients in the coastal ecosystem. - Highlights: • We studied heavy metal pollution in the coastline of the eastern Gulf of Finland. • Sediments, water, mass macroalgae and microbiota were included into analyses. • Eutrophication and nutrient loading remain the main problem of the studied area. • Macroalgae contribute to accumulation of organic matter, nutrient, and heavy metal. • Pollution in the studied area is caused by a combination of different factors.

  4. Lead isotopes and trace metal ratios of aerosols as tracers of Pb pollution sources in Kanpur, India

    Science.gov (United States)

    Sen, Indra; Bizimis, Michael; Tripathi, Sachchida; Paul, Debajyoti; Tyagi, Swati; Sengupta, Deep

    2015-04-01

    The anthropogenic flux of Pb in the Earth's surface is almost an order of magnitude higher than its corresponding natural flux [1]. Identifying the sources and pathways of anthropogenic Pb in environment is important because Pb toxicity is known to have adverse effects on human health. Pb pollution sources for America, Europe, and China are well documented. However, sources of atmospheric Pb are unknown in India, particularly after leaded gasoline was phased out in 2000. India has a developing economy with a rapidly emerging automobile and high temperature industry, and anthropogenic Pb emission is expected to rise in the next decade. In this study, we report on the Pb- isotope compositions and trace metal ratios of airborne particulates collected in Kanpur, an industrial city in northern India. The Pb concentration in the airborne particulate matter varies between 14-216 ng/m3, while the other heavy metals vary by factor of 10 or less, e.g. Cd=0.3-3 ng/m3, As=0.4-3.5 ng/m3, Zn=36-161 ng/m3, and Cu=3-22 ng/m3. The 206Pb/207Pb, 208Pb/206Pb, and 208Pb/207Pb vary between 1.112 - 1.129, 2.123-2.141, and 2.409-2.424 respectively, and are highly correlated with each other (R2>0.9). Pb isotopes and trace metal data reveals that coal combustion is the major source of anthropogenic Pb in the atmosphere, with limited contribution from mining and smelting processes. We further conclude that combination of Pb isotope ratios and V/Pb ratios are powerful tracers for Pb source apportionment studies, which is otherwise difficult to differentiate based only on Pb systematics [1] Sen and Peucker-Ehrenbrink (2012), Environ. Sci. Technol.(46), 8601-8609

  5. Air Quality Assessment of Faisalabad and Gujranwala Cities of Pakistan: Application of Pollution Indices

    International Nuclear Information System (INIS)

    Faiz, Y.; Waheed, S.; Siddique, N.

    2015-01-01

    Urban air quality of industrial cities of Pakistan, namely Gujranwala and Faisalabad was assessed in terms of pollution level indicators such as pollution load index (PLI), geo-accumulation index (I/sub geo/), pollution index (PI) and integrated pollution index (IPI). It was found that both cities have elevated metal concentration indicating heavy to extreme contamination for most of the sites. Local anthropogenic activities and elevated geo-accumulation indices for different suite of elements were used to indicate possible pollutant sources in these two industrial cities to be traffic derived emissions, suspended soil, road dust, construction materials, fossil fuel and industrial emissions, tanneries, chrome plating units and metal smelters. Comparison of the pollution indices shows that Ba, Br, Ca, Cd, Na, Pb, Sb and Zn have mean PLI, I/sub geo/, PI and IPI for both cities which are in the highly polluted category. Cu, La, Sc, V and Zr have pollution indices corresponding to high or extreme levels in Faisalabad only while Cr and Ti are highly polluting only in Gujranwala. In Faisalabad and Gujranwala it was found that 91.43% and 85.29% respectively of the PI data occurs in high level of pollution implying that to some extent Faisalabad is more polluted as compared to Gujranwala. (author)

  6. Anthropogenic and tidal influences on salinity levels of the Shatt al-Arab River, Basra, Iraq

    NARCIS (Netherlands)

    Abdullah, Ali Dinar; Karim, Usama F.A.; Masih, Ilyas; Popescu, Ioana; van der Zaag, Pieter

    2016-01-01

    ABSTRACT: Understanding the salinity variation caused by a combination of anthropogenic and marine sources is important for water resource management in heavily used rivers impacted by tidal influence. A quantitative analysis of intra-annual variability of salinity levels was conducted in the Shatt

  7. Estimating Anthropogenic Emissions of Hydrogen Chloride and Fine Particulate Chloride in China

    Science.gov (United States)

    Fu, X.; Wang, T.; Wang, S.; Zhang, L.

    2017-12-01

    Nitryl chloride (ClNO2) can significantly impact the atmospheric photochemistry via photolysis and subsequent reactions of chlorine radical with other gases. The formation of ClNO2 in the atmosphere is sensitive to the emissions of chlorine-containing particulates from oceanic and anthropogenic sources. For China, the only available anthropogenic chlorine emission inventory was compiled for the year 1990 with a coarse resolution of 1 degree. In this study, we developed an up-to-date anthropogenic inventory of hydrogen chloride (HCl) and fine particulate chloride (Cl-) emissions in China for the year 2014, including coal burning, industrial processes, biomass burning and waste burning. Bottom-up and top-down methodologies were combined. Detailed local data (e.g. Cl content in coal, control technologies, etc.) were collected and applied. In order to improve the spatial resolution of emissions, detailed point source information were collected for coal-fired power plants, cement factories, iron & steel factories and waste incineration factories. Uncertainties of this emission inventory and their major causes were analyzed using the Monte Carlo method. This work enables better quantification of the ClNO2 production and impact over China.

  8. Symbiotic bacteria of helminths: what role may they play in ecosystems under anthropogenic stress?

    Science.gov (United States)

    Morley, N J

    2016-11-01

    Symbiotic bacteria are a common feature of many animals, particularly invertebrates, from both aquatic and terrestrial habitats. These bacteria have increasingly been recognized as performing an important role in maintaining invertebrate health. Both ecto- and endoparasitic helminths have also been found to harbour a range of bacterial species which provide a similar function. The part symbiotic bacteria play in sustaining homeostasis of free-living invertebrates exposed to anthropogenic pressure (climate change, pollution), and the consequences to invertebrate populations when their symbionts succumb to poor environmental conditions, are increasingly important areas of research. Helminths are also susceptible to environmental stress and their symbiotic bacteria may be a key aspect of their responses to deteriorating conditions. This article summarizes the ecophysiological relationship helminths have with symbiotic bacteria and the role they play in maintaining a healthy parasite and the relevance of specific changes that occur in free-living invertebrate-bacteria interactions under anthropogenic pressure to helminths and their bacterial communities. It also discusses the importance of understanding the mechanistic sensitivity of helminth-bacteria relationships to environmental stress for comprehending the responses of parasites to challenging conditions.

  9. Assessment of Pressure Sources and Water Body Resilience: An Integrated Approach for Action Planning in a Polluted River Basin.

    Science.gov (United States)

    Mirauda, Domenica; Ostoich, Marco

    2018-02-23

    The present study develops an integrated methodology combining the results of the water-quality classification, according to the Water Framework Directive 2000/60/EC-WFD, with those of a mathematical integrity model. It is able to analyse the potential anthropogenic impacts on the receiving water body and to help municipal decision-makers when selecting short/medium/long-term strategic mitigation actions to be performed in a territory. Among the most important causes of water-quality degradation in a river, the focus is placed on pollutants from urban wastewater. In particular, the proposed approach evaluates the efficiency and the accurate localisation of treatment plants in a basin, as well as the capacity of its river to bear the residual pollution loads after the treatment phase. The methodology is applied to a sample catchment area, located in northern Italy, where water quality is strongly affected by high population density and by the presence of agricultural and industrial activities. Nearly 10 years of water-quality data collected through official monitoring are considered for the implementation of the system. The sample basin shows different real and potential pollution conditions, according to the resilience of the river and surroundings, together with the point and diffuse pressure sources acting on the receiving body.

  10. Assessment of Pressure Sources and Water Body Resilience: An Integrated Approach for Action Planning in a Polluted River Basin

    Directory of Open Access Journals (Sweden)

    Domenica Mirauda

    2018-02-01

    Full Text Available The present study develops an integrated methodology combining the results of the water-quality classification, according to the Water Framework Directive 2000/60/EC—WFD, with those of a mathematical integrity model. It is able to analyse the potential anthropogenic impacts on the receiving water body and to help municipal decision-makers when selecting short/medium/long-term strategic mitigation actions to be performed in a territory. Among the most important causes of water-quality degradation in a river, the focus is placed on pollutants from urban wastewater. In particular, the proposed approach evaluates the efficiency and the accurate localisation of treatment plants in a basin, as well as the capacity of its river to bear the residual pollution loads after the treatment phase. The methodology is applied to a sample catchment area, located in northern Italy, where water quality is strongly affected by high population density and by the presence of agricultural and industrial activities. Nearly 10 years of water-quality data collected through official monitoring are considered for the implementation of the system. The sample basin shows different real and potential pollution conditions, according to the resilience of the river and surroundings, together with the point and diffuse pressure sources acting on the receiving body.

  11. Rapid growth in nitrogen dioxide pollution over Western China, 2005-2013

    Science.gov (United States)

    Cui, Y.-Z.; Lin, J.-T.; Song, C.; Liu, M.-Y.; Yan, Y.-Y.; Xu, Y.; Huang, B.

    2015-12-01

    Western China has experienced rapid industrialization and urbanization since the implementation of the National Western Development Strategies (the "Go West" movement) in 1999. This transition has affected the spatial and temporal characteristics of nitrogen dioxide (NO2) pollution. In this study, we analyze the trends and variability of tropospheric NO2 vertical column densities (VCDs) from 2005 to 2013 over Western China, based on a wavelet analysis on monthly mean NO2 data derived from the Ozone Monitoring Instrument (OMI) measurements. We focus on the anthropogenic NO2 by subtracting region-specific "background" values dominated by natural sources. We find significant NO2 growth over Western China between 2005 and 2013 (8.6 ± 0.9 % yr-1 on average, relative to 2005), with the largest increments (15 % yr-1 or more) over parts of several city clusters. The NO2 pollution in most provincial regions rose rapidly from 2005 to 2011 but stabilized or declined afterwards. The NO2 trends were driven mainly by changes in anthropogenic emissions, as confirmed by a nested GEOS-Chem model simulation and a comparison with Chinese official emission statistics. The rate of NO2 growth during 2005-2013 reaches 11.3 ± 1.0 % yr-1 over Northwestern China, exceeding the rates over Southwestern China (5.9 ± 0.6 % yr-1) and the three well-known polluted regions in the east (5.3 ± 0.8 % yr-1 over Beijing-Tianjin-Hebei, 4.0 ± 0.6 % yr-1} over the Yangtze River Delta, and -3.3 ± 0.3 % yr-1 over the Pearl River Delta). Additional socioeconomic analyses suggest that the rapid NO2 growth in Northwestern China is likely related to the fast developing resource- and pollution-intensive industries along with the "Go West" movement as well as relatively weak emission controls. Further efforts should be made to alleviate NOx pollution to achieve sustainable development in Western China.

  12. Environmental magnetism and magnetic mapping of urban metallic pollution (Paris, France)

    Science.gov (United States)

    Isambert, Aude; Franke, Christine; Macouin, Mélina; Rousse, Sonia; Philip, Aurélio; de Villeneuve, Sybille Henry

    2017-04-01

    Airborne pollution in dense urban areas is nowadays a subject of major concern. Fine particulate pollution events are ever more frequent and represent not only an environmental and health but also a real economic issue. In urban atmosphere, the so-called PM2.5 (particulate matter pollution and determine their sources (Sagnotti et al., 2012). In this study, we report on magnetic measurements of traffic-related airborne PM in the city of Paris, France. Two distinct environments were sampled and analyzed along the Seine River: the aquatic environment in studying fluvial bank and river bed sediments and the atmospheric environment by regarding magnetic particles trapped in adjacent tree barks (Platanus hispanica). About 50 sediment samples and 350 bark samples have been collected and analysed to determine their magnetic properties (susceptibility, hysteresis parameters, IRM, frequency-dependent susceptibility) and to estimate the presence and spatial concentration of superparamagnetic or multi-domain particles for each sample type. The bark results allow proposing a high spatial resolution mapping (pollution. In addition to that, the sampling of banks and riverbed sediments of the Seine allow a global estimation on the anthropogenic versus detrital and biologic input in the city of Paris. The first results presented here show a general increase of the concentration in magnetic particles from upstream to downstream Paris probably linked to urban pollutions as previously observed for suspended particulate matter (Franke et al. 2009; Kayvantash, 2016). Sagnotti, L., & Winkler, A. (2012). On the magnetic characterization and quantification of the superparamagnetic fraction of traffic-related urban airborne PM in Rome, Italy. Atmospheric environment, 59, 131-140. Franke, C., Kissel, C., Robin, E., Bonté, P., & Lagroix, F. (2009). Magnetic particle characterization in the Seine river system: Implications for the determination of natural versus anthropogenic input

  13. Soil biochemical properties of grassland ecosystems under anthropogenic emission of nitrogen compounds

    Science.gov (United States)

    Kudrevatykh, Irina; Ivashchenko, Kristina; Ananyeva, Nadezhda

    2016-04-01

    Inflow of pollutants in terrestrial ecosystems nowadays increases dramatically, that might be led to disturbance of natural biogeochemical cycles and landscapes structure. Production of nitrogen fertilizers is one of the air pollution sources, namely by nitrogen compounds (NH4+, NO3-, NO2-). Air pollution by nitrogen compounds of terrestrial ecosystems might be affected on soil biochemical properties, which results increasing mineral nitrogen content in soil, changing soil P/N and Al/Ca ratios, and, finally, the deterioration of soil microbial community functioning. The research is focused on the assessment of anthropogenic emission of nitrogen compounds on soil properties of grassland ecosystems in European Russia. Soil samples (Voronic Chernozem Pachic, upper 10 cm mineral layer, totally 10) were taken from grassland ecosystem: near (5-10 m) nitrogen fertilizer factory (NFF), and far from it (20-30 km, served as a control) in Tula region. In soil samples the NH4+ and NO3- (Kudeyarov's photocolorimetric method), P, Ca, Al (X-ray fluorescence method) contents were measured. Soil microbial biomass carbon (Cmic) was analyzed by substrate-induced respiration method. Soil microbial respiration (MR) was assessed by CO2 rate production. Soil microbial metabolic quotient (qCO2) was calculated as MR/Cmic ratio. Near NFF the soil ammonium and nitrate nitrogen contents were a strongly varied, variation coefficient (CV) was 42 and 86This study was supported by Russian Foundation of Basic Research Grant No. 14-04-00098, 15-44-03220, 15-04-00915.

  14. Additive negative effects of anthropogenic sedimentation and warming on the survival of coral recruits.

    Science.gov (United States)

    Fourney, Francesca; Figueiredo, Joana

    2017-09-28

    Corals worldwide are facing population declines due to global climate change and local anthropogenic impacts. Global climate change effects are hard to tackle but recent studies show that some coral species can better handle climate change stress when provided with additional energy resources. The local stressor that most undermines energy acquisition is sedimentation because it impedes coral heterotrophic feeding and their ability to photosynthesize. To investigate if reducing local sedimentation will enable corals to better endure ocean warming, we quantitatively assessed the combined effects of increased temperature and sedimentation (concentration and turbidity) on the survival of coral recruits of the species, Porites astreoides. We used sediment from a reef and a boat basin to mimic natural sediment (coarse) and anthropogenic (fine) sediment (common in dredging), respectively. Natural sediment did not negatively impact coral survival, but anthropogenic sediment did. We found that the capacity of coral recruits to survive under warmer temperatures is less compromised when anthropogenic sedimentation is maintained at the lowest level (30 mg.cm -2 ). Our study suggests that a reduction of US-EPA allowable turbidity from 29 Nephelometric Turbidity Units (NTU) above background to less than 7 NTU near coral reefs would facilitate coral recruit survival under current and higher temperatures.

  15. Part 5. Public health and air pollution in Asia (PAPA): a combined analysis of four studies of air pollution and mortality.

    Science.gov (United States)

    Wong, C M; Vichit-Vadakan, N; Vajanapoom, N; Ostro, B; Thach, T Q; Chau, P Y K; Chan, E K P; Chung, R Y N; Ou, C Q; Yang, L; Peiris, J S M; Thomas, G N; Lam, T H; Wong, T W; Hedley, A J; Kan, H; Chen, B; Zhao, N; London, S J; Song, G; Chen, G; Zhang, Y; Jiang, L; Qian, Z; He, Q; Lin, H M; Kong, L; Zhou, D; Liang, S; Zhu, Z; Liao, D; Liu, W; Bentley, C M; Dan, J; Wang, B; Yang, N; Xu, S; Gong, J; Wei, H; Sun, H; Qin, Z

    2010-11-01

    adjustments in methods to optimize the fit of health-effects models to each city's data set. It provides the basis for generating reproducible results in each city and for meta-estimates from combined data. By establishing a common methodology, factors that might influence the differences in results from previous studies can more easily be explored. Administrative support was provided to ensure that the highest quality data were used in the analysis. It is anticipated that the PAPA results will contribute to the international scientific discussion of how to conduct and interpret time-series studies of air pollution and will stimulate the development of high-quality routine systems for recording daily deaths and hospital admissions for time-series analysis. Mortality data were retrieved from routine databases with underlying causes of death coded using the World Health Organization (WHO) International Classification of Diseases, 9th revision or 10th revision (ICD-9, ICD-10). Air quality measurements included nitrogen dioxide (NO2), sulfur dioxide (SO2), particulate matter with aerodynamic diameter air monitoring stations that were located throughout the metropolitan areas of the four cities and that met the standards of procedures for quality assurance and quality control carried out by local government units in each city. Using the Common Protocol, an optimized core model was established for each city to assess the effects of each of the four air pollutants on daily mortality using generalized linear modeling with adjustments for time trend, seasonality, and other time-varying covariates by means of a natural-spline smoothing function. The models were adjusted to suit local situations by correcting for influenza activity, autocorrelation, and special weather conditions. Researchers in Hong Kong, for example, used influenza activity based on frequency of respiratory mortality; researchers in Hong Kong and Shanghai used autoregressive terms for daily outcomes at lag days; and

  16. The relative importance of impacts from climate change vs. emissions change on air pollution levels in the 21st century

    Directory of Open Access Journals (Sweden)

    G. B. Hedegaard

    2013-04-01

    Full Text Available So far several studies have analysed the impacts of climate change on future air pollution levels. Significant changes due to impacts of climate change have been made clear. Nevertheless, these changes are not yet included in national, regional or global air pollution reduction strategies. The changes in future air pollution levels are caused by both impacts from climate change and anthropogenic emission changes, the importance of which needs to be quantified and compared. In this study we use the Danish Eulerian Hemispheric Model (DEHM driven by meteorological input data from the coupled Atmosphere-Ocean General Circulation Model ECHAM5/MPI-OM and forced with the newly developed RCP4.5 emissions. The relative importance of the climate signal and the signal from changes in anthropogenic emissions on the future ozone, black carbon (BC, total particulate matter with a diameter below 2.5 μm (total PM2.5 including BC, primary organic carbon (OC, mineral dust and secondary inorganic aerosols (SIA and total nitrogen (including NHx + NOy has been determined. For ozone, the impacts of anthropogenic emissions dominate, though a climate penalty is found in the Arctic region and northwestern Europe, where the signal from climate change dampens the effect from the projected emission reductions of anthropogenic ozone precursors. The investigated particles are even more dominated by the impacts from emission changes. For black carbon the emission signal dominates slightly at high latitudes, with an increase up to an order of magnitude larger, close to the emission sources in temperate and subtropical areas. Including all particulate matter with a diameter below 2.5 μm (total PM2.5 enhances the dominance from emissions change. In contrast, total nitrogen (NHx + NOy in parts of the Arctic and at low latitudes is dominated by impacts of climate change.

  17. Anthropogenic Carbon Pump in an Urbanized Estuary

    Science.gov (United States)

    Park, J. H.; Yoon, T. K.; Jin, H.; Begum, M. S.

    2015-12-01

    The importance of estuaries as a carbon source has been increasingly recognized over the recent decades. However, constraining sources of CO2 evasion from urbanized estuaries remains incomplete, particularly in densely populated river systems receiving high loads of organic carbon from anthropogenic sources. To account for major factors regulating carbon fluxes the tidal reach of the Han River estuary along the metropolitan Seoul, characterization of organic carbon in the main stem and major urban tributaries were combined with continuous, submersible sensor measurements of pCO2 at a mid-channel location over a year and continuous underway measurements using a submersible sensor and two equilibrator sytems across the estuarine section receiving urban streams. Single-site continuous measurements exhibited large seasonal and diurnal variations in pCO2, ranging from sub-ambient air levels to exceptionally high values approaching 10,000 ppm. Diurnal variations of pCO2 were pronounced in summer and had an inverse relationship with dissolved oxygen, pointing to a potential role of day-time algal consumption of CO2. Cruise measurements displayed sharp pCO2 pulses along the confluences of urban streams as compared with relatively low values along the upper estuary receiving low-CO2 outflows from upstream dams. Large downstream increases in pCO2, concurrent with increases in DOC concentrations and fluorescence intensities indicative of microbially processed organic components, imply a translocation and subsequent dilution of CO2 carried by urban streams and/or fast transformations of labile C during transit along downstream reaches. The unique combination of spatial and temporal continuous measurements of pCO2 provide insights on estuarine CO2 pulses that might have resulted from the interplay between high loads of CO2 and organic C of anthropogenic origin and their priming effects on estuarine microbial processing of terrigenous and algal organic matter.

  18. Combined effects of antimony and sodium diethyldithiocarbamate on soil microbial activity and speciation change of heavy metals. Implications for contaminated lands hazardous material pollution in nonferrous metal mining areas.

    Science.gov (United States)

    Zhu, Xiaozhe; Yao, Jun; Wang, Fei; Yuan, Zhimin; Liu, Jianli; Jordan, Gyozo; Knudsen, Tatjana Šolević; Avdalović, Jelena

    2018-05-05

    The combined effects of antimony (Sb) and sodium diethyldithiocarbamate (DDTC), a common organic flotation reagent, on soil microbial activity and speciation changes of heavy metals were investigated for the first time. The results showed that the exchangeable fraction of Sb was transformed to a stable residual fraction during the incubation period, and the addition of DDTC promoted the transformation compared with single Sb pollution, probably because DDTC can react with heavy metals to form a complex. In addition, the presence of DDTC and Sb inhibited the soil microbial activity to varying degrees. The growth rate constant k of different interaction systems was in the following order on the 28th day: control group ≥ single DDTC pollution > combined pollution > single Sb pollution. A correlation analysis showed that the concentration of exchangeable Sb was the primary factor that affected the toxic reaction under combined pollution conditions, and it significantly affected the characteristics of the soil microorganisms. All the observations provide useful information for a better understanding of the toxic effects and potential risks of combined Sb and DDTC pollution in antimony mining areas. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. The differences in phenolic content in rivers exposed and non-exposed to anthropogenic contamination.

    Science.gov (United States)

    Michałowicz, Jaromir; Bukowska, Bozena; Duda, Wirgiliusz

    2008-03-01

    The purpose of the work was to determine the differences in a kind, number and concentrations of phenol, chlorophenols, chlorocatechols chlorinated methoxyphenols (chloroguaiacols, chlorosyringols) and 3,4,5-trichloroveratrole in the drainage of the Dzierzazna river, the flow non-exposed to anthropogenic contamination and in the Ner river, the flow exposed to anthropogenic pollution. The samples of water were collected in the Dzierzazna river in the Swoboda locality, the inflow of the Dzierzazna river - the Ciosenka river and, also, in the spring situated in Ciosny Sady locality. Water of the Ner river was collected in points near Łódź, Konstantynów, Poddebice and Dabie towns. The compounds were condensed (adsorbed) and eluted with methylene chloride on octadecyl C18 layer in a Baker Separex system. The obtained eluent was separated using the method of gas chromatography and analysed using mass spectrometry technique. In samples collected from the drainage of the Dzierzazna river phenol, chlorophenols, guaiacol, trichloroguaiacol, tetrachloroguaiacol, trichlorosyringol and 3,4,5-trichloroveratole were determined. As no anthropogenic sources are situated within the drainage of the Dzierzazna river, we may suppose that most of the determined compounds are mainly of natural origin. No or trace concentrations of chlorinated methoxyphenols were noted in the water of the Ner river, but a higher number, and concentrations of chlorophenols and additionally chlorocatechols were determined in this flow. It is also apparent that changes in a number and concentrations of phenols in the water of the Ner river did not prove a seasonal character, which was typical of the Dzierzazna drainage waters.

  20. Trace element analytics and multivariate statistics for investigation and assessment of the pollution situation in rivers; Elementspurenanalytik und multivariate Statistik zur Untersuchung und Bewertung des Belastungszustandes von Fliessgewaessern

    Energy Technology Data Exchange (ETDEWEB)

    Aulinger, A.M. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Kuestenforschung

    2002-07-01

    In order to describe and assess the element distribution and the trend of the pollution in sediments, particulate suspended matter and dissolved matter of the river Elbe more than 60 elements were determined in several sampling campaigns along the entire river during the nineties. By analyzing the resulting data with two- and multi-way principal components analysis geogenic and anthropogenically influenced elements were distinguished and typical longitudinal profiles concerning geogenic or anthropogenic characteristics were summarized. Sampling locations having similiar element distribution patterns were aggregated to characteristic Elbe sections by means of hierarchical cluster analysis. The temporal trend of the pollution within the different sections was quantified by comparing the mean concentrations of the anthropogenically influenced elements. Two- and Three-way PLS regression models were applied to predict element concentrations in one certain river compartment from measured concentrations in one or two different compartments. (orig.)

  1. Integrative assessment of coastal pollution: Development and evaluation of sediment quality criteria from chemical contamination and ecotoxicological data

    Science.gov (United States)

    Bellas, Juan; Nieto, Óscar; Beiras, Ricardo

    2011-04-01

    Elutriate embryo-larval bioassays with sea-urchins ( Paracentrotus lividus) were conducted concurrently with chemical analyses of sediments and biota as part of an integrative assessment of pollution in highly productive coastal regions. High metal contents and organic compounds in sediments and mussels were found in localised areas from the inner part of the estuaries indicating a clear anthropogenic influence. In particular, average maximum concentrations of 2803 mg Cu/kg dw, 776 mg Pb/kg dw, 2.5 mg Hg/kg dw and 5803 μg ∑ 7PAHs/kg dw were measured in sediments from the most polluted sites. Significant correlations were observed between sediment chemistry and toxicity bioassays. Moreover, the Mantel test revealed a significant correlation ( rM=0.80; pbioassays identified polluted sites and quantified the level of toxicity, providing a cost-effective tool to complement the routine chemical monitoring currently conducted in European coastal waters with ecologically relevant information. This is in line with the recent European legislation that advocates the use of biological tools with the ultimate aim of protecting marine resources from anthropogenic substances that will affect their sensitive early life stages.

  2. Pollutant Dilution and Diffusion in Urban Street Canyon Neighboring Streets

    Science.gov (United States)

    Sun, Z.; Fu, Zh. M.

    2011-09-01

    In the present study we investigated the airflow patterns and air quality of a series of typical street canyon combinations, developed a mass balance model to determine the local pollutant dilution rate, and discuss the impact of upstream canyon on the air quality of downstream canyon. The results indicated that the geometrical size of upstream and downstream buildings have significant impacts on the ambient airflow patterns. The pollution distribution within the canyons varies with different building combinations and flow patterns. Within the upstream canyon, pollution always accumulates to the low building side for non-symmetrical canyon, and for symmetrical canyon high level of pollution occurs at the leeward side. The height of the middle and downstream buildings can evidently change the pollutant dispersion direction during the transport process. Within the polluted canyon, the pollutant dilution rate (PDR) also varies with different street canyon combinations. The highest PDR is observed when the upstream buildings are both low buildings no matter the height of downstream building. However, the two cases are likely to contribution pollution to the downstream canyon. The H-L-H combination is mostly against local pollution remove, while the L-H-L case is considered the best optimistic building combination with both the ability of diluting local pollution and not remarkably decreasing air quality of downstream canyon. The current work is expected instructive for city designers to optimize traffic patterns under typical existing geometry or in the development of urban geometry modification for air quality control.

  3. Assessing the role of anthropogenic and biogenic sources on PM1 over southern West Africa using aircraft measurements

    Directory of Open Access Journals (Sweden)

    J. Brito

    2018-01-01

    Full Text Available As part of the Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa (DACCIWA project, an airborne campaign was designed to measure a large range of atmospheric constituents, focusing on the effect of anthropogenic emissions on regional climate. The presented study details results of the French ATR42 research aircraft, which aimed to characterize gas-phase, aerosol and cloud properties in the region during the field campaign carried out in June/July 2016 in combination with the German Falcon 20 and the British Twin Otter aircraft. The aircraft flight paths covered large areas of Benin, Togo, Ghana and Côte d'Ivoire, focusing on emissions from large urban conurbations such as Abidjan, Accra and Lomé, as well as remote continental areas and the Gulf of Guinea. This paper focuses on aerosol particle measurements within the boundary layer (<  2000 m, in particular their sources and chemical composition in view of the complex mix of both biogenic and anthropogenic emissions, based on measurements from a compact time-of-flight aerosol mass spectrometer (C-ToF-AMS and ancillary instrumentation. Background concentrations (i.e. outside urban plumes observed from the ATR42 indicate a fairly polluted region during the time of the campaign, with average concentrations of carbon monoxide of 131 ppb, ozone of 32 ppb, and aerosol particle number concentration ( >  15 nm of 735 cm−3 stp. Regarding submicron aerosol composition (considering non-refractory species and black carbon, BC, organic aerosol (OA is the most abundant species contributing 53 %, followed by SO4 (27 %, NH4 (11 %, BC (6 %, NO3 (2 % and minor contribution of Cl (<  0.5 %. Average background PM1 in the region was 5.9 µg m−3 stp. During measurements of urban pollution plumes, mainly focusing on the outflow of Abidjan, Accra and Lomé, pollutants are significantly enhanced (e.g. average concentration of CO of 176 ppb, and aerosol

  4. Anthropogenic phosphorus flow analysis of Hefei City, China

    International Nuclear Information System (INIS)

    Li Sisi; Yuan Zengwei; Bi Jun; Wu Huijun

    2010-01-01

    The substance flow analysis (SFA) method was employed to examine phosphorus flow and its connection to water pollution in the city of Hefei, China, in 2008. As human activity is the driving force of phosphorus flux from the environment to the economy, the study provides a conceptual framework for analyzing an anthropogenic phosphorus cycle that includes four stages: extraction, fabrication and manufacturing, use, and waste management. Estimates of phosphorus flow were based on existing data as well as field research, expert advice, local accounting systems, and literature. The total phosphorus input into Hefei in 2008 reached 7810 tons, mainly as phosphate ore, chemical fertilizer, pesticides, crops and animal products. Approximately 33% of the total phosphorus input left the area, and nearly 20% of that amount was discharged as waste to surface water. Effluent containing excessive fertilizer from farming operations plays an important role in phosphorus overloads onto surface water; the other major emission source is sewage discharge. We also provide suggestions for reducing phosphorus emissions, for example reducing fertilizer use, recycling farming residues, and changing human consumption patterns.

  5. First Top-Down Estimates of Anthropogenic NOx Emissions Using High-Resolution Airborne Remote Sensing Observations

    Science.gov (United States)

    Souri, Amir H.; Choi, Yunsoo; Pan, Shuai; Curci, Gabriele; Nowlan, Caroline R.; Janz, Scott J.; Kowalewski, Matthew G.; Liu, Junjie; Herman, Jay R.; Weinheimer, Andrew J.

    2018-03-01

    A number of satellite-based instruments have become an essential part of monitoring emissions. Despite sound theoretical inversion techniques, the insufficient samples and the footprint size of current observations have introduced an obstacle to narrow the inversion window for regional models. These key limitations can be partially resolved by a set of modest high-quality measurements from airborne remote sensing. This study illustrates the feasibility of nitrogen dioxide (NO2) columns from the Geostationary Coastal and Air Pollution Events Airborne Simulator (GCAS) to constrain anthropogenic NOx emissions in the Houston-Galveston-Brazoria area. We convert slant column densities to vertical columns using a radiative transfer model with (i) NO2 profiles from a high-resolution regional model (1 × 1 km2) constrained by P-3B aircraft measurements, (ii) the consideration of aerosol optical thickness impacts on radiance at NO2 absorption line, and (iii) high-resolution surface albedo constrained by ground-based spectrometers. We characterize errors in the GCAS NO2 columns by comparing them to Pandora measurements and find a striking correlation (r > 0.74) with an uncertainty of 3.5 × 1015 molecules cm-2. On 9 of 10 total days, the constrained anthropogenic emissions by a Kalman filter yield an overall 2-50% reduction in polluted areas, partly counterbalancing the well-documented positive bias of the model. The inversion, however, boosts emissions by 94% in the same areas on a day when an unprecedented local emissions event potentially occurred, significantly mitigating the bias of the model. The capability of GCAS at detecting such an event ensures the significance of forthcoming geostationary satellites for timely estimates of top-down emissions.

  6. Assessment of heavy metals contamination in surface layers of Roztocze National Park forest soils (SE Poland) by indices of pollution.

    Science.gov (United States)

    Mazurek, Ryszard; Kowalska, Joanna; Gąsiorek, Michał; Zadrożny, Paweł; Józefowska, Agnieszka; Zaleski, Tomasz; Kępka, Wojciech; Tymczuk, Maryla; Orłowska, Kalina

    2017-02-01

    In most cases, in soils exposed to heavy metals accumulation, the highest content of heavy metals was noted in the surface layers of the soil profile. Accumulation of heavy metals may occur both as a result of natural processes as well as anthropogenic activities. The quality of the soil exposed to heavy metal contamination can be evaluated by indices of pollution. On the basis of determined heavy metals (Pb, Zn, Cu, Mn, Ni and Cr) in the soils of Roztocze National Park the following indices of pollution were calculated: Enrichment Factor (EF), Geoaccumulation Index (I geo ), Nemerow Pollution Index (PI Nemerow ) and Potential Ecological Risk (RI). Additionally, we introduced and calculated the Biogeochemical Index (BGI), which supports determination of the ability of the organic horizon to accumulate heavy metals. A tens of times higher content of Pb, Zn, Cu and Mn was found in the surface layers compared to their content in the parent material. This distribution of heavy metals in the studied soils was related to the influence of anthropogenic pollution (both local and distant sources of emission), as well as soil properties such as pH, organic carbon and total nitrogen content. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Bioremediation mechanisms of combined pollution of PAHs and heavy metals by bacteria and fungi: A mini review.

    Science.gov (United States)

    Liu, Shao-Heng; Zeng, Guang-Ming; Niu, Qiu-Ya; Liu, Yang; Zhou, Lu; Jiang, Lu-Hua; Tan, Xiao-Fei; Xu, Piao; Zhang, Chen; Cheng, Min

    2017-01-01

    In recent years, knowledge in regard to bioremediation of combined pollution of polycyclic aromatic hydrocarbons (PAHs) and heavy metals by bacteria and fungi has been widely developed. This paper reviews the species of bacteria and fungi which can tackle with various types of PAHs and heavy metals entering into environment simultaneously or successively. Microbial activity, pollutants bioavailability and environmental factors (e.g. pH, temperature, low molecular weight organic acids and humic acids) can all affect the bioremediation of PAHs and heavy metals. Moreover, this paper summarizes the remediation mechanisms of PAHs and heavy metals by microbes via elucidating the interaction mechanisms of heavy metals with heavy metals, PAHs/PAHs metabolites with PAHs and PAHs with heavy metals. Based on the above reviews, this paper also discusses the potential research needs for this field. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Economic damages of ozone air pollution to crops using combined air quality and GIS modelling

    Science.gov (United States)

    Vlachokostas, Ch.; Nastis, S. A.; Achillas, Ch.; Kalogeropoulos, K.; Karmiris, I.; Moussiopoulos, N.; Chourdakis, E.; Banias, G.; Limperi, N.

    2010-09-01

    This study aims at presenting a combined air quality and GIS modelling methodological approach in order to estimate crop damages from photochemical air pollution, depict their spatial resolution and assess the order of magnitude regarding the corresponding economic damages. The analysis is conducted within the Greater Thessaloniki Area, Greece, a Mediterranean territory which is characterised by high levels of photochemical air pollution and considerable agricultural activity. Ozone concentration fields for 2002 and for specific emission reduction scenarios for the year 2010 were estimated with the Ozone Fine Structure model in the area under consideration. Total economic damage to crops turns out to be significant and estimated to be approximately 43 M€ for the reference year. Production of cotton presents the highest economic loss, which is over 16 M€, followed by table tomato (9 M€), rice (4.2 M€), wheat (4 M€) and oilseed rape (2.8 M€) cultivations. Losses are not spread uniformly among farmers and the major losses occur in areas with valuable ozone-sensitive crops. The results are very useful for highlighting the magnitude of the total economic impacts of photochemical air pollution to the area's agricultural sector and can potentially be used for comparison with studies worldwide. Furthermore, spatial analysis of the economic damage could be of importance for governmental authorities and decision makers since it provides an indicative insight, especially if the economic instruments such as financial incentives or state subsidies to farmers are considered.

  9. Anthropogenic nutrient sources rival natural sources on small scales in the coastal waters of the Southern California Bight

    KAUST Repository

    Howard, Meredith D. A.; Sutula, Martha; Caron, David A.; Chao, Yi; Farrara, John D.; Frenzel, Hartmut; Jones, Burton; Robertson, George; McLaughlin, Karen; Sengupta, Ashmita

    2014-01-01

    Anthropogenic nutrients have been shown to provide significant sources of nitrogen (N) that have been linked to increased primary production and harmful algal blooms worldwide. There is a general perception that in upwelling regions, the flux of anthropogenic nutrient inputs is small relative to upwelling flux, and therefore anthropogenic inputs have relatively little effect on the productivity of coastal waters. To test the hypothesis that natural sources (e.g., upwelling) greatly exceed anthropogenic nutrient sources to the Southern California Bight (SCB), this study compared the source contributions of N from four major nutrient sources: (1) upwelling, (2) treated wastewater effluent discharged to ocean outfalls, (3) riverine runoff, and (4) atmospheric deposition. This comparison was made using large regional data sets combined with modeling on both regional and local scales. At the regional bight-wide spatial scale, upwelling was the largest source of N by an order of magnitude to effluent and two orders of magnitude to riverine runoff. However, at smaller spatial scales, more relevant to algal bloom development, natural and anthropogenic contributions were equivalent. In particular, wastewater effluent and upwelling contributed the same quantity of N in several subregions of the SCB. These findings contradict the currently held perception that in upwelling-dominated regions anthropogenic nutrient inputs are negligible, and suggest that anthropogenic nutrients, mainly wastewater effluent, can provide a significant source of nitrogen for nearshore productivity in Southern California coastal waters.

  10. Anthropogenic nutrient sources rival natural sources on small scales in the coastal waters of the Southern California Bight

    KAUST Repository

    Howard, Meredith D. A.

    2014-01-26

    Anthropogenic nutrients have been shown to provide significant sources of nitrogen (N) that have been linked to increased primary production and harmful algal blooms worldwide. There is a general perception that in upwelling regions, the flux of anthropogenic nutrient inputs is small relative to upwelling flux, and therefore anthropogenic inputs have relatively little effect on the productivity of coastal waters. To test the hypothesis that natural sources (e.g., upwelling) greatly exceed anthropogenic nutrient sources to the Southern California Bight (SCB), this study compared the source contributions of N from four major nutrient sources: (1) upwelling, (2) treated wastewater effluent discharged to ocean outfalls, (3) riverine runoff, and (4) atmospheric deposition. This comparison was made using large regional data sets combined with modeling on both regional and local scales. At the regional bight-wide spatial scale, upwelling was the largest source of N by an order of magnitude to effluent and two orders of magnitude to riverine runoff. However, at smaller spatial scales, more relevant to algal bloom development, natural and anthropogenic contributions were equivalent. In particular, wastewater effluent and upwelling contributed the same quantity of N in several subregions of the SCB. These findings contradict the currently held perception that in upwelling-dominated regions anthropogenic nutrient inputs are negligible, and suggest that anthropogenic nutrients, mainly wastewater effluent, can provide a significant source of nitrogen for nearshore productivity in Southern California coastal waters.

  11. Multivariate statistical and GIS-based approach to identify source of anthropogenic impacts on metallic elements in sediments from the mid Guangdong coasts, China

    International Nuclear Information System (INIS)

    Gu Yangguang; Wang, Zhao-Hui; Lu Songhui; Jiang Shijun; Mu Dehai; Shu Yonghong

    2012-01-01

    Growing concerns surround the mid Guangdong coasts, one of China’s fastest and developing economical regions. To study the environmental impacts of economic and industrial development, we measured ten metallic elements (Hg, Pb, Cu, Zn, Fe, Al, Ni, Sr, Li, and Co) in surface sediments from nineteen stations in three bays. All these metals showed concentrations substantially higher than their background values, suggesting possible anthropogenic pollution. Highest metal levels were close to the nuclear power plants likely as a result of nuclear waste discharges. Results revealed that Hg, Pb, and Sr largely originated from human activities, while Cu, Ni, Co, Al, and Fe mainly from natural rock weathering. Two types of anthropogenic sources were identified through a principal component analysis, one from shipping industry, port transport service and nuclear power plants, and the other from municipal sewage and coal power plant. - Highlights: ► Ten metallic elements in surface sediments from mid Guangdong coasts were measured. ► High metal levels occurred close to the nuclear power plants. ► Hg, Pb and Sr mainly originated from human activities. ► Two types of anthropogenic metallic sources were identified in this region. - Hot spots of metallic elements were close to the nuclear power plants. Industrial and municipal discharges were the main anthropogenic metallic source.

  12. Anthropogenic disturbances jeopardize biodiversity conservation within tropical rainforest reserves.

    Science.gov (United States)

    Martínez-Ramos, Miguel; Ortiz-Rodríguez, Iván A; Piñero, Daniel; Dirzo, Rodolfo; Sarukhán, José

    2016-05-10

    Anthropogenic disturbances affecting tropical forest reserves have been documented, but their ecological long-term cumulative effects are poorly understood. Habitat fragmentation and defaunation are two major anthropogenic threats to the integrity of tropical reserves. Based on a long-term (four decades) study, we document how these disturbances synergistically disrupt ecological processes and imperil biodiversity conservation and ecosystem functioning at Los Tuxtlas, the northernmost tropical rainforest reserve in the Americas. Deforestation around this reserve has reduced the reserve to a medium-sized fragment (640 ha), leading to an increased frequency of canopy-gap formation. In addition, hunting and habitat loss have caused the decline or local extinction of medium and large herbivores. Combining empirical, experimental, and modeling approaches, we support the hypothesis that such disturbances produced a demographic explosion of the long-lived (≈120 y old, maximum height of 7 m) understory palm Astrocaryum mexicanum, whose population has increased from 1,243-4,058 adult individuals per hectare in only 39 y (annual growth rate of ca 3%). Faster gap formation increased understory light availability, enhancing seed production and the growth of immature palms, whereas release from mammalian herbivory and trampling increased survival of seedlings and juveniles. In turn, the palm's demographic explosion was followed by a reduction of tree species diversity, changing forest composition, altering the relative contribution of trees to forest biomass, and disrupting litterfall dynamics. We highlight how indirect anthropogenic disturbances (e.g., palm proliferation) on otherwise protected areas threaten tropical conservation, a phenomenon that is currently eroding the planet's richest repositories of biodiversity.

  13. Soil Landscape Pattern Changes in Response to Rural Anthropogenic Activity across Tiaoxi Watershed, China

    Science.gov (United States)

    Xiao, Rui; Jiang, Diwei; Christakos, George; Fei, Xufeng; Wu, Jiaping

    2016-01-01

    Soil sealing (loss of soil resources due to extensive land covering for the purpose of house building, road construction etc.) and subsequent soil landscape pattern changes constitute typical environmental problems in many places worldwide. Previous studies concentrated on soil sealing in urbanized regions, whereas rural areas have not been given sufficient attention. Accordingly, this paper studies soil landscape pattern dynamics (i.e., landscape pattern changes in response to rural anthropogenic activities) in the Tiaoxi watershed (Zhejiang province, eastern China), in which surface sealing is by far the predominant component of human forcing with respect to environmental change. A novel approach of quantifying the impacts of rural anthropogenic activities on soil resources is presented. Specifically, quantitative relationships were derived between five soil landscape pattern metrics (patch density, edge density, shape index, Shannon’s diversity index and aggregation index) and three rural anthropogenic activity indicators (anthropogenic activity intensity, distance to towns, and distance to roads) at two landscape block scales (3 and 5 km) between 1985 and 2010. The results showed that the Tiaoxi watershed experienced extensive rural settlement expansion and high rates of soil sealing. Soil landscapes became more fragmented, more irregular, more isolated, and less diverse. Relationships between soil landscape pattern changes and rural anthropogenic activities differed with the scale (spatial and temporal) and variable considered. In particular, the anthropogenic activity intensity was found to be the most important indicator explaining social development intensity, whereas the other two proximity indicators had a significant impact at certain temporal interval. In combination with scale effects, spatial dependency (correlation) was shown to play a key role that should be carefully taken into consideration in any relevant environmental study. Overall, the

  14. Multi-model Estimates of Intercontinental Source-Receptor Relationships for Ozone Pollution

    Energy Technology Data Exchange (ETDEWEB)

    Fiore, A M; Dentener, F J; Wild, O; Cuvelier, C; Schultz, M G; Hess, P; Textor, C; Schulz, M; Doherty, R; Horowitz, L W; MacKenzie, I A; Sanderson, M G; Shindell, D T; Stevenson, D S; Szopa, S; Van Dingenen, R; Zeng, G; Atherton, C; Bergmann, D; Bey, I; Carmichael, G; Collins, W J; Duncan, B N; Faluvegi, G; Folberth, G; Gauss, M; Gong, S; Hauglustaine, D; Holloway, T; Isaksen, I A; Jacob, D J; Jonson, J E; Kaminski, J W; Keating, T J; Lupu, A; Marmer, E; Montanaro, V; Park, R; Pitari, G; Pringle, K J; Pyle, J A; Schroeder, S; Vivanco, M G; Wind, P; Wojcik, G; Wu, S; Zuber, A

    2008-10-16

    Understanding the surface O{sub 3} response over a 'receptor' region to emission changes over a foreign 'source' region is key to evaluating the potential gains from an international approach to abate ozone (O{sub 3}) pollution. We apply an ensemble of 21 global and hemispheric chemical transport models to estimate the spatial average surface O{sub 3} response over East Asia (EA), Europe (EU), North America (NA) and South Asia (SA) to 20% decreases in anthropogenic emissions of the O{sub 3} precursors, NO{sub x}, NMVOC, and CO (individually and combined), from each of these regions. We find that the ensemble mean surface O{sub 3} concentrations in the base case (year 2001) simulation matches available observations throughout the year over EU but overestimates them by >10 ppb during summer and early fall over the eastern U.S. and Japan. The sum of the O{sub 3} responses to NO{sub x}, CO, and NMVOC decreases separately is approximately equal to that from a simultaneous reduction of all precursors. We define a continental-scale 'import sensitivity' as the ratio of the O{sub 3} response to the 20% reductions in foreign versus 'domestic' (i.e., over the source region itself) emissions. For example, the combined reduction of emissions from the 3 foreign regions produces an ensemble spatial mean decrease of 0.6 ppb over EU (0.4 ppb from NA), less than the 0.8 ppb from the reduction of EU emissions, leading to an import sensitivity ratio of 0.7. The ensemble mean surface O{sub 3} response to foreign emissions is largest in spring and late fall (0.7-0.9 ppb decrease in all regions from the combined precursor reductions in the 3 foreign regions), with import sensitivities ranging from 0.5 to 1.1 (responses to domestic emission reductions are 0.8-1.6 ppb). High O{sub 3} values are much more sensitive to domestic emissions than to foreign emissions, as indicated by lower import sensitivities of 0.2 to 0.3 during July in EA, EU, and NA

  15. Effects of pollution on the geochemical properties of marine sediments across the fringing reef of Aqaba, Red Sea.

    Science.gov (United States)

    Al-Rousan, Saber; Al-Taani, Ahmed A; Rashdan, Maen

    2016-09-15

    The Gulf of Aqaba is of significant strategic and economic value to all gulf-bordering states, particularly to Jordan, where it provides Jordan with its only marine outlet. The Gulf is subject to a variety of impacts posing imminent ecological risk to its unique marine ecosystem. We attempted to investigate the status of metal pollution in the coastal sediments of the Jordanian Gulf of Aqaba. The distribution of Cd, Cr, Zn, Cu, Pb, Al, Fe, and Mn concentrations were determined in trapped and bottom-surface sediments at three selected sites at different depths. In addition, monthly sedimentation rates at varying water depths were also estimated at each sampling site using sediment traps. The high concentrations of Cd, Cr, Zn were recorded at the Phosphate Loading Birth (PLB) site followed by the Industrial Complex (IC) site indicating their dominant anthropogenic source (i.e., the contribution of industrial activities). However, Fe, Al, and Mn contents were related to inputs from the terrigenous (crustal) origin. Except for Al, Fe and Mn at the PLB site, the concentrations of metals exhibited a decreasing trend with increasing water depth (distance from the shoreline). The PLB site also showed the highest sedimentation rate which decreased with increasing water depth. The Enrichment factors (EFs) showed that Cd was the most enriched element in the sediment (indicating that Cd pollution is widespread), whereas the least enriched metal in sediments was Cu. EF values suggested that the coastal area is impacted by a combination of human and natural sources of metals, where the anthropogenic sources are intense in the PLB site (north of Gulf of Aqaba). The MSS area is potentially the least polluted, consistent with being a marine reserve. The IC sediments have been found to be impacted by human activities but less intensely compared to the PLB area. These results suggested that there are two sources of metals in sediments; the primary source is likely closer to PLB

  16. The CO2 emission in urbanic soils in the conditions of intensive technogenic pollution

    Science.gov (United States)

    Deviatova, Tatiana; Alaeva, Liliia; Negrobova, Elena; Kramareva, Tatiana

    2017-04-01

    Massive industrial pollution of the environment including soils leads to drastic changes in the vital activity of microorganisms, plants and animals. As objects of research was selected soils of the industrial and residential zones, farmland soils, forest soils. Comparative analysis showed that the emission of CO2 urbanizable increase compared to the suburban soils in recreational areas is 1.5 times, in the residential and industrial zones - in 3-5 times. In addition, identified a local point located in the vicinity of chemical plants, where soil CO2 emission increased up to 40 times compared to the suburban soils. Air technogenic pollution of soils by industrial emissions and transport enhances the mineralization of soil organic matter, increases its lability. These trends are associated with nonspecific adaptive reactions of the soil microbial complex in terms of pollution. Strengthening of the processes of mineralization may be due to the increase in the proportion of fungi in the microbial community. According to numerous reports they are more resistant to pollution compared to bacteria and actinomycetes. Admission to the soil organic matter of anthropogenic origin also increases the process of mineralization. According to the findings, low concentrations of petroleum products lead to increased "breathing" of the soil. Strengthening of the processes of mineralization and, consequently, of CO2 emissions, in the conditions of technogenic pollution of the soils identified in our studies, confirmed by numerous studies by other authors. According to reports in Russia the emission of CO2 from soils is 4.5 times higher than the industrial receipt of its atmosphere. The contribution of local anthropogenic CO2 emissions is not so significant compared to the indirect influence of soil pollution on increased CO2 emissions. Consequently, the expansion of technogenic contaminated soil is becoming a more significant factor adversely affecting the state of the atmosphere

  17. Air pollution and cardiovascular mortality with over 25years follow-up: A combined analysis of two British cohorts.

    Science.gov (United States)

    Dehbi, Hakim-Moulay; Blangiardo, Marta; Gulliver, John; Fecht, Daniela; de Hoogh, Kees; Al-Kanaani, Zaina; Tillin, Therese; Hardy, Rebecca; Chaturvedi, Nish; Hansell, Anna L

    2017-02-01

    Adverse effects of air pollution on cardiovascular disease (CVD) mortality are well established. There are comparatively fewer studies in Europe, and in the UK particularly, than in North America. We examined associations in two British cohorts with >25years of follow-up. Annual average NO 2 , SO 2 and black smoke (BS) air pollution exposure estimates for 1991 were obtained from land use regression models using contemporaneous monitoring data. From the European Study of Cohorts and Air Pollution (ESCAPE), air pollution estimates in 2010-11 were obtained for NO 2 , NO x , PM 10 , PM coarse and PM 2.5 . The exposure estimates were assigned to place of residence 1989 for participants in a national birth cohort born in 1946, the MRC National Study of Health and Development (NSHD), and an adult multi-ethnic London cohort, Southall and Brent Revisited (SABRE) recruited 1988-91. The combined median follow-up was 26years. Single-pollutant competing risk models were employed, adjusting for individual risk factors. Elevated non-significant hazard ratios for CVD mortality were seen with 1991 BS and SO 2 and with ESCAPE PM 10 and PM 2.5 in fully adjusted linear models. Per 10μg/m 3 increase HRs were 1.11 [95% CI: 0.76-1.61] for BS, 1.05 [95% CI: 0.91-1.22] for SO 2 , 1.16 [95% CI: 0.70-1.92] for PM 10 and 1.30 [95% CI: 0.39-4.34] for PM 2.5 , with largest effects seen in the fourth quartile of BS and PM 2.5 compared to the first with HR 1.24 [95% CI: 0.91-1.61] and 1.21 [95% CI: 0.88-1.66] respectively. There were no consistent associations with other ESCAPE pollutants, or with 1991 NO 2 . Modelling using Cox regression led to similar results. Our results support a detrimental long-term effect for air pollutants on cardiovascular mortality. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Mapping real-time air pollution health risk for environmental management: Combining mobile and stationary air pollution monitoring with neural network models.

    Science.gov (United States)

    Adams, Matthew D; Kanaroglou, Pavlos S

    2016-03-01

    Air pollution poses health concerns at the global scale. The challenge of managing air pollution is significant because of the many air pollutants, insufficient funds for monitoring and abatement programs, and political and social challenges in defining policy to limit emissions. Some governments provide citizens with air pollution health risk information to allow them to limit their exposure. However, many regions still have insufficient air pollution monitoring networks to provide real-time mapping. Where available, these risk mapping systems either provide absolute concentration data or the concentrations are used to derive an Air Quality Index, which provides the air pollution risk for a mix of air pollutants with a single value. When risk information is presented as a single value for an entire region it does not inform on the spatial variation within the region. Without an understanding of the local variation residents can only make a partially informed decision when choosing daily activities. The single value is typically provided because of a limited number of active monitoring units in the area. In our work, we overcome this issue by leveraging mobile air pollution monitoring techniques, meteorological information and land use information to map real-time air pollution health risks. We propose an approach that can provide improved health risk information to the public by applying neural network models within a framework that is inspired by land use regression. Mobile air pollution monitoring campaigns were conducted across Hamilton from 2005 to 2013. These mobile air pollution data were modelled with a number of predictor variables that included information on the surrounding land use characteristics, the meteorological conditions, air pollution concentrations from fixed location monitors, and traffic information during the time of collection. Fine particulate matter and nitrogen dioxide were both modelled. During the model fitting process we reserved

  19. Atmospheric Depositions of Natural and Anthropogenic Aerosols on the Guliya Ice Cap (Northwestern Tibetan Plateau) during the last 340 years

    Science.gov (United States)

    Sierra Hernandez, R.; Gabrielli, P.; Beaudon, E.; Thompson, L. G.; Wegner, A.

    2017-12-01

    Anthropogenic emissions (e.g., greenhouse gases, trace elements (TE) including toxic metals) to the atmosphere have dramatically increased since the Industrial Revolution in the 19th century. High temperature processes such as fossil fuel combustion and pyrometallurgy generate fumes and fine particles (industrial times. Thus, ice core records of TEs from mid- and low-latitudes are needed to assess the spatial and temporal extent and levels of pollution in the environment. Here we present records of 29 TEs spanning the period 1650-1991 CE from the Guliya ice cap in the western Kunlun Mountains, northwest Tibetan Plateau to assess their natural and anthropogenic sources. The Guliya TEs records show two distinct periods with only crustal contributions prior to the 1850s and non-crustal contributions (Pb, Cd, Sb, Zn, Sn) after the 1850s. Enrichments of Pb, Cd, Sb, and Zn in Guliya between 1850 and 1950 can be attributed primarily to coal combustion emissions from western countries (Europe) while regional emissions (fossil fuel combustion, mining/smelting, fertilizers) from Central Asia, and probably from Kashgar in western China, and South Asia (India, Nepal) could be the source of the TE enrichments (Cd, Pb, Sn) observed in Guliya after 1950. This information can be used by modelers to assess pollution transport at local, regional, and global scales and by policy makers to develop strategies and policies to reduce their emissions.

  20. Application of Radioactive and Stable Isotopes to Trace Anthropogenic Pollution in the Baltic Sea

    International Nuclear Information System (INIS)

    Lujaniene, G.; Valiulis, D.; Remeikaitė-Nikienė, N.; Barisevičiūtė, R.; Stankevičius, A.; Kulakauskaitė, I.; Mažeika, J.; Petrošius, R.; Jokšas, K.; Li, H.-C.; Garnaga, G.; Povinec, P.

    2015-01-01

    The Baltic Sea is one of the seas most contaminated by various pollutants including the chemical munitions dumped after the Second World War. Pu isotopes, Δ 14 C and δ 13 C of total organic carbon (TOC) as well as lipid and phospholipids (PL) fractions of the sediments were applied to study sources of pollutants including chemical warfare agents (CWA). The compound-specific δ 13 C analysis, PL–derived fatty acid biomarkers and an end-member mixing model were used to estimate a relative contribution of the marine, terrestrial and fossil as well as petroleum hydrocarbons (measured directly) sources to organic carbon in the sediments, to assess a possible effect of petroleum hydrocarbon contamination on radiocarbon signatures and to elucidate a possible leakage of CWA at the Gotland Deep dumpsite. Data on spatial distribution of As, Zn, Ni, Cr, Hg, Cd, Cu and Pb concentrations as well as 206 Pb/ 207 Pb and 208 Pb/ 207 Pb ratios in the surface sediments indicated the highest concentrations of Pb with their different pattern of distribution and insignificant variations of 206 Pb/ 207 Pb and 208 Pb/ 207 Pb ratios. The obtained data revealed the possible application of the Chernobyl-derived Pu to trace the pollutants of the terrestrial origin. Wide TOC variations with the strong impact of the terrestrial and fresh waters in the coastal areas were observed. Variations of Δ 14 C and δ 13 C values with the most depleted values of the Δ 14 C TOC (-453%) and Δ 14 C of total lipid extracts (-812.4%) at the CWA dumpsite were found. An excess (after subtracting the petroleum hydrocarbon) of fossil sources at the CWA dumpsite as compared to those at other stations in the Baltic Sea was detected. The obtained results indicated a possible effect of CWA on depleted Δ 14 C and δ 13 C values. This study was supported by the Research Council of Lithuania, contract No. MIP-080/2012. (author)

  1. Identification of sources and long term trends for pollutants in the arctic using isentropic trajectory analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mahura, A.; Jaffe, D.; Harris, J.

    2003-07-01

    The understanding of factors driving climate and ecosystem changes in the Arctic requires careful consideration of the sources, correlation and trends for anthropogenic pollutants. The database from the NOAA-CMDL Barrow Observatory (71deg.17'N, 156deg.47'W) is the longest and most complete record of pollutant measurements in the Arctic. It includes observations of carbon dioxide (CO{sub 2}), methane (CH{sub 4}), carbon monoxide (CO), ozone (O{sub 3}), aerosol scattering coefficient ({sigma}{sub sp}), aerosol number concentration (NC{sub asl}), etc. The objectives of this study are to understand the role of long-range transport to Barrow in explaining: (1) the year-to-year variations, and (2) the trends in the atmospheric chemistry record at the NOAA-CMDL Barrow observatory. The key questions we try to answer are: 1. What is the relationship between various chemical species measured at Barrow Observatory, Alaska and transport pathways at various altitudes? 2. What are the trends of species and their relation to transport patterns from the source regions? 3. What is the impact of the Prudhoe Bay emissions on the Barrow's records? To answer on these questions we apply the following main research tools. First, it is an isentropic trajectory model used to calculate the trajectories arriving at Barrow at three altitudes of 0.5, 1.5 and 3 km above sea level. Second - clustering procedure used to divide the trajectories into groups based on source regions. Third - various statistical analysis tools such as the exploratory data analysis, two component correlation analysis, trend analysis, principal components and factor analysis used to identify the relationship between various chemical species vs. source regions as a function of time. In this study, we used the chemical data from the NOAA-CMDL Barrow observatory in combination with isentropic backward trajectories from gridded ECMWF data to understand the importance of various pollutant source regions on

  2. Identification of sources and long term trends for pollutants in the arctic using isentropic trajectory analysis

    International Nuclear Information System (INIS)

    Mahura, A.; Jaffe, D.; Harris, J.

    2003-01-01

    The understanding of factors driving climate and ecosystem changes in the Arctic requires careful consideration of the sources, correlation and trends for anthropogenic pollutants. The database from the NOAA-CMDL Barrow Observatory (71deg.17'N, 156deg.47'W) is the longest and most complete record of pollutant measurements in the Arctic. It includes observations of carbon dioxide (CO 2 ), methane (CH 4 ), carbon monoxide (CO), ozone (O 3 ), aerosol scattering coefficient (σ sp ), aerosol number concentration (NC asl ), etc. The objectives of this study are to understand the role of long-range transport to Barrow in explaining: (1) the year-to-year variations, and (2) the trends in the atmospheric chemistry record at the NOAA-CMDL Barrow observatory. The key questions we try to answer are: 1. What is the relationship between various chemical species measured at Barrow Observatory, Alaska and transport pathways at various altitudes? 2. What are the trends of species and their relation to transport patterns from the source regions? 3. What is the impact of the Prudhoe Bay emissions on the Barrow's records? To answer on these questions we apply the following main research tools. First, it is an isentropic trajectory model used to calculate the trajectories arriving at Barrow at three altitudes of 0.5, 1.5 and 3 km above sea level. Second - clustering procedure used to divide the trajectories into groups based on source regions. Third - various statistical analysis tools such as the exploratory data analysis, two component correlation analysis, trend analysis, principal components and factor analysis used to identify the relationship between various chemical species vs. source regions as a function of time. In this study, we used the chemical data from the NOAA-CMDL Barrow observatory in combination with isentropic backward trajectories from gridded ECMWF data to understand the importance of various pollutant source regions on atmospheric composition in the Arctic. We

  3. Benthic macroalgae as biological indicators of heavy metal pollution in the marine environments: a biomonitoring approach for pollution assessment.

    Science.gov (United States)

    Chakraborty, Sukalyan; Bhattacharya, Tanushree; Singh, Gurmeet; Maity, Jyoti Prakash

    2014-02-01

    Metal pollution in the marine coastline environment is an important topical issue in the context of ecological disturbance and climate change. Heavy metal contaminations (Cd, Cr, Cu, Mn, Ni, Pb and Zn) in seawater and surficial sediments, as well as macroalgal diversity, were determined in six different locations along the coast of the Gulf of Kutch in India. The marine coastline environment was found to be enriched with Cd and Zn in comparison to other metals. Significant (p ≤ 0.05) inter-elemental positive-correlations were observed between Fe-Mn, Fe-Cu, Fe-Cr, Fe-Zn, Cr-Cu, Cu-Mn, and Cd-Zn, as well as negative-correlations between Cd-Pb, Ni-Pb, and Zn-Pb. Though genus specific macroalgal responses to heavy metal accumulation were significant, species specific response was insignificant (p ≤ 0.05). The relative abundance of metals in macroalgae followed the order of Fe>Zn>Mn>Cu>Cd>Cr>Ni>Pb. The high uptake of metals in green algae (Ulva lactuca and Enteromorpha intestinalis) and brown algae (Padina gymnospora and Dictyota bartayresiana) suggested that these algae may be used as potential biomonitors for heavy metal pollution. Three pollution indicators, Contamination Factor (CF), Enrichment Factor (EF) and Geochemical Index (Igeo) were calculated to determine the degree of metal pollution in the marine coastline and the contribution of anthropogenic influence. © 2013 Published by Elsevier Inc.

  4. Analysis and Pollution Assessment of Heavy Metal in Soil, Perlis

    International Nuclear Information System (INIS)

    Siti Norbaya Mat Ripin; Siti Norbaya Mat Ripin; Sharizal Hasan; Mohd Lias Kamal; NorShahrizan Mohd Hashim

    2014-01-01

    Concentration of 5 heavy metals (Cu, Cr, Ni, Cd, Pb) were studied in the soils around Perlis, to assess heavy metals contamination distribution due to industrialization, urbanization and agricultural activities. Soil samples were collected at depth of 0-15 cm in eighteen station around Perlis. The soil samples (2 mm) were obtained duplicates and subjected to hot block digestion and the concentration of total metal was determined via ICP-MS. Overall concentrations of Cu, Cr, Ni, Cd and Pb in the soil samples ranged from 0.38-240.59, 0.642-3.921, 0.689-2.398, 0-0.63 and 0.39-27.47 mg/ kg respectively. The concentration of heavy metals in the soil display the following decreasing trend: Cu> Pb> Cr> Ni> Cd. From this result, found that level of heavy metal in soil near centralized Chuping industrial areas give maximum value compared with other location in Perlis. The Pollution index revealed that only 11 % of Cu and 6 % of Cd were classes as heavily contaminated. Meanwhile, Cu and Pb showed 6 % from all samples result a moderately contaminated and the others element give low contamination. Results of combined heavy metal concentration and heavy metal assessment indicate that industrial activities and traffic emission represent most important sources for Cu, Cd and Pb whereas Cr, Ni mainly from natural sources. Increasing anthropogenic influences on the environment, especially pollution loadings, have caused negative changes in natural ecosystems and decreased biodiversity. (author)

  5. Detection and differentiation of pollution in urban surface soils using magnetic properties in arid and semi-arid regions of northwestern China

    International Nuclear Information System (INIS)

    Wang, Bo; Xia, Dunsheng; Yu, Ye; Jia, Jia; Xu, Shujing

    2014-01-01

    Increasing urbanization and industrialization over the world has caused many social and environmental problems, one of which drawing particular concern is the soil pollution and its ecological degradation. In this study, the efficiency of magnetic methods for detecting and discriminating contaminates in the arid and semi-arid regions of northwestern China was investigated. Topsoil samples from six typical cities (i.e. Karamay, Urumqi, Lanzhou, Yinchuan, Shizuishan and Wuhai) were collected and a systematic analysis of their magnetic properties was conducted. Results indicate that the topsoil samples from the six cities were all dominated by coarse low-coercivity magnetite. In addition, the average magnetite contents in the soils from Urumqi and Lanzhou were shown to be much higher than those from Karamay, Yinchuan, Shizuishan and Wuhai, and they also have relatively higher χ lf and χ fd % when compared with cities in eastern China. Moreover, specific and distinctive soil pollution signals were identified at each sampling site using the combined various magnetic data, reflecting distinct sources. Industrial and traffic-derived pollution was dominant in Urumqi and Lanzhou, in Yinchuan industrial progress was observed to be important with some places affected by vehicle emission, while Karamay, Shizuishan and Wuhai were relatively clean. The magnetic properties of these latter three cities are significantly affected by both anthropogenic pollution and local parent materials from the nearby Gobi desert. The differences in magnetic properties of topsoil samples affected by mixed industrial and simplex traffic emissions are not obvious, but significant differences exist in samples affected by simplex industrial/vehicle emissions and domestic pollution. The combined magnetic analyses thus provide a sensitive and powerful tool for classifying samples according to likely sources, and may even provide a valuable diagnostic tool for discriminating among different cities

  6. Anthropogenic Biomes of the World, Version 2: 1700

    Data.gov (United States)

    National Aeronautics and Space Administration — The Anthropogenic Biomes of the World, Version 2: 1700 data set describes anthropogenic transformations within the terrestrial biosphere caused by sustained direct...

  7. Anthropogenic Biomes of the World, Version 2: 1900

    Data.gov (United States)

    National Aeronautics and Space Administration — The Anthropogenic Biomes of the World, Version 2: 1900 data set describes anthropogenic transformations within the terrestrial biosphere caused by sustained direct...

  8. Anthropogenic Biomes of the World, Version 2: 1800

    Data.gov (United States)

    National Aeronautics and Space Administration — The Anthropogenic Biomes of the World, Version 2: 1800 data set describes anthropogenic transformations within the terrestrial biosphere caused by sustained direct...

  9. Anthropogenic Biomes of the World, Version 2: 2000

    Data.gov (United States)

    National Aeronautics and Space Administration — The Anthropogenic Biomes of the World, Version 2: 2000 data set describes anthropogenic transformations within the terrestrial biosphere caused by sustained direct...

  10. Light pollution offshore: Zenithal sky glow measurements in the mediterranean coastal waters

    Science.gov (United States)

    Ges, Xavier; Bará, Salvador; García-Gil, Manuel; Zamorano, Jaime; Ribas, Salvador J.; Masana, Eduard

    2018-05-01

    Light pollution is a worldwide phenomenon whose consequences for the natural environment and the human health are being intensively studied nowadays. Most published studies address issues related to light pollution inland. Coastal waters, however, are spaces of high environmental interest, due to their biodiversity richness and their economical significance. The elevated population density in coastal regions is accompanied by correspondingly large emissions of artificial light at night, whose role as an environmental stressor is increasingly being recognized. Characterizing the light pollution levels in coastal waters is a necessary step for protecting these areas. At the same time, the marine surface environment provides a stage free from obstacles for measuring the dependence of the skyglow on the distance to the light polluting sources, and validating (or rejecting) atmospheric light propagation models. In this work we present a proof-of-concept of a gimbal measurement system that can be used for zenithal skyglow measurements on board both small boats and large vessels under actual navigation conditions. We report the results obtained in the summer of 2016 along two measurement routes in the Mediterranean waters offshore Barcelona, travelling 9 and 31.7 km away from the coast. The atmospheric conditions in both routes were different from the ones assumed for the calculation of recently published models of the anthropogenic sky brightness. They were closer in the first route, whose results approach better the theoretical predictions. The results obtained in the second route, conducted under a clearer atmosphere, showed systematic differences that can be traced back to two expected phenomena, which are a consequence of the smaller aerosol content: the reduction of the anthropogenic sky glow at short distances from the sources, and the slower decay rate of brightness with distance, which gives rise to a relative excess of brightness at large distances from the

  11. The role of meteorological conditions and pollution control strategies in reducing air pollution in Beijing during APEC 2014 and Victory Parade 2015

    Science.gov (United States)

    Liang, Pengfei; Zhu, Tong; Fang, Yanhua; Li, Yingruo; Han, Yiqun; Wu, Yusheng; Hu, Min; Wang, Junxia

    2017-11-01

    of the PM2.5 concentration during APEC and 38 and 25 % during the Victory Parade, respectively, based on the assumption that the concentrations of air pollutants are only determined by meteorological conditions and emission intensities. We also estimated the contribution of meteorological conditions and control strategies in reducing the concentrations of gaseous pollutants and PM2.5 components with the GLMs, revealing the effective control of anthropogenic emissions.

  12. Hydrocarbon pollution fixed to combined sewer sediment: a case study in Paris.

    Science.gov (United States)

    Rocher, Vincent; Garnaud, Stéphane; Moilleron, Régis; Chebbo, Ghassan

    2004-02-01

    Over a period of two years (2000-2001), sediment samples were extracted from 40 silt traps (STs) spread through the combined sewer system of Paris. All sediment samples were analysed for physico-chemical parameters (pH, organic matter content, grain size distribution), with total hydrocarbons (THs) and 16 polycyclic aromatic hydrocarbons (PAHs) selected from the priority list of the US-EPA. The two main objectives of the study were (1) to determine the hydrocarbon contamination levels in the sediments of the Paris combined sewer system and (2) to investigate the PAH fingerprints in order to assess their spatial variability and to elucidate the PAH origins. The results show that there is some important inter-site and intra-site variations in hydrocarbon contents. Despite this variability, TH and PAH contamination levels (50th percentile) in the Parisian sewer sediment are estimated at 530 and 18 microg g(-1), respectively. The investigation of the aromatic compound distributions in all of the 40 STs has underlined that there is, at the Paris sewer system scale, a homogeneous PAH background pollution. Moreover, the study of the PAH fingerprints, using specific ratios, suggests the predominance of a pyrolytic origin for those PAHs fixed to the sewer sediment.

  13. Dental health state of children living in different anthropogenic condition

    Directory of Open Access Journals (Sweden)

    M. A. Luchynskyі

    2015-11-01

    I. Y. Horbachevskyy Ternopil State Medical University of Ministry of Health of Ukraine, Ukraine, Ternopil (Ternopil, Maydan Voli, 1, 46001   Abstract   The purpose of the work is to study dental health of children living in conditions of combined negative impact of natural and technological factors. Materials and methods. It was performed an epidemiological dental examination of 2,551 children aged 6 to 15 years, who settled in different regions of the Precarpathians, in conditions of iodine and fluoride deficiency (plain - 1087 children, foothills - 730 and mountain - 734 children. Results. Comprehensive epidemiological studies found low levels of dental health of children living in different geochemical and anthropogenic conditions of Ivano-Frankivsk region (48,83 ± 0,36% in the general observation, that is not statistically different by regions examination, moreover girls level is lower, than that of boys in examined regions (48,14 ± 0,50 and (49,51 ± 0,52%, respectively. It was founded, that the main diseases, which contribute to the reduction of dental health in children, is dental caries and its complications and abnormalities of dentoalveolar system. It was found, that the frequency and severity of dentoalveolar abnormalities depend on anthropogenic environmental conditions: in children of plain and foothill regions, that suffer from greater anthropogenic pressure, dentoalveolar abnormalities where found in (67,99 ± 1,42 and (65,21 ± 1,76%, against (45,91 ± 1,84% in children of conditionally pure mountain region. These same children also often recorded more severe pathology – combined anomalies (24,09 ± 1,57 and (22,06 ± 1,90%, against (12,17 ± 1,78%, respectively. It was found the connection between the dentoalveolar abnormalities and the presence of caries (r = + 0,95; p <0,01 and periodontal tissue diseases (r = + 0,79; p <0,05.   Keywords: children, dental health, dentoalveolar abnormalities, dental caries, periodontal disease, hypoplasia.

  14. Detecting anthropogenic footprints in regional and global sea level rise since 1900

    Science.gov (United States)

    Dangendorf, S.; Marcos, M.; Piecuch, C. G.; Jensen, J.

    2015-12-01

    While there is scientific consensus that global and local mean sea level (GMSL and LMSL) is rising since the late 19th century, it remains unclear how much of this rise is due to natural variability or anthropogenic forcing. Distinguishing both contributions requires an extensive knowledge about the persistence of natural high and low stands in GMSL and LMSL. This is challenging, since observational time series represent the superposition of various processes with different spectral properties. Here we provide a probabilistic upper range of long-term persistent natural GMSL/LMSL variability (P=0.99), which in turn determines the minimum/maximum anthropogenic contribution since 1900. To account for different spectral characteristics of various contributing processes, we separate LMSL (corrected for vertical land motion) into a slowly varying volumetric (mass and density changes) and a more rapidly changing atmospheric component. Based on a combination of spectral analyses of tide gauge records, barotropic and baroclinic ocean models and numerical Monte-Carlo experiments, we find that in records where transient atmospheric processes dominate the spectra, the persistence of natural volumetric changes tends to be underestimated. If each component is assessed separately, natural centennial trends are locally up to ~1.0 mm/yr larger than in case of an integrated assessment, therefore erroneously enhancing the significance of anthropogenic footprints. The GMSL, however, remains unaffected by such biases. On the basis of a model assessment of the separate components, we conclude that it is virtually certain (P=0.99) that at least 45% of the observed increase in GMSL is of anthropogenic origin.

  15. Biochemical responses and physiological status in the crab Hemigrapsus crenulatus (Crustacea, Varunidae) from high anthropogenically-impacted estuary (Lenga, south-central Chile).

    Science.gov (United States)

    Díaz-Jaramillo, M; Socowsky, R; Pardo, L M; Monserrat, J M; Barra, R

    2013-02-01

    Estuarine environmental assessment by sub-individual responses is important in order to understand contaminant effects and to find suitable estuarine biomonitor species. Our study aimed to analyze oxidative stress responses, including glutathione-S-transferase (GST) activity, total antioxidant capacity (ACAP) and lipid peroxidation levels (TBARS) in estuarine crabs Hemigrapsus crenulatus from a high anthropogenically-impacted estuary (Lenga) compared to low and non-polluted estuaries (Tubul and Raqui), in a seasonal scale (winter-summer), tissue specific (hepatopancreas and gills) and sex related responses. Results showed that hepatopancreas in male crabs better reflected inter-estuary differences. Morpho-condition traits as Cephalothorax hepatopancreas index (CHI) could be used as an indicator of physiological status of estuarine crabs. Discriminant analysis also showed that GST and TBARS levels in summer are more suitable endpoints for establishing differences between polluted and non-polluted sites. These results suggest the importance of seasonality, target tissue, sex and physiological status of brachyuran crabs for estuarine biomonitoring assessment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Tolerance Levels of Roadside Trees to Air Pollutants Based on Relative Growth Rate and Air Pollution Tolerance Index

    Directory of Open Access Journals (Sweden)

    SULISTIJORINI

    2008-09-01

    Full Text Available Motor vehicles release carbon monoxide, nitrogen dioxide, sulphur dioxide, and particulate matters to the air as pollutants. Vegetation can absorb these pollutants through gas exchange processes. The objective of this study was to examine the combination of the relative growth rate (RGR and physiological responses in determining tolerance levels of plant species to air pollutants. Physiological responses were calculated as air pollution tolerance index (APTI. Eight roadside tree species were placed at polluted (Jagorawi highway and unpolluted (Sindangbarang field area. Growth and physiological parameters of the trees were recorded, including plant height, leaf area, total ascorbate, total chlorophyll, leaf-extract pH, and relative water content. Scoring criteria for the combination of RGR and APTI method was given based on means of the two areas based on two-sample t test. Based on the total score of RGR and APTI, Lagerstroemia speciosa was categorized as a tolerant species; and Pterocarpus indicus, Delonix regia, Swietenia macrophylla were categorized as moderately tolerant species. Gmelina arborea, Cinnamomum burmanii, and Mimusops elengi were categorized as intermediate tolerant species. Lagerstroemia speciosa could be potentially used as roadside tree. The combination of RGR and APTI value was better to determinate tolerance level of plant to air pollutant than merely APTI method.

  17. Effects of air pollutants on epicuticular wax structure

    International Nuclear Information System (INIS)

    Huttunen, S.

    1994-01-01

    In xerophytes, like conifers, the epicuticular wax is well developed. Especially in and around stomatal entrances, a thick wax coating is present. Epicuticular waxes are modified by changes in plant growth conditions such as temperature, relative humidity, irradiance, and wind, or acid rain. The fine structure of epicuticular waxes, their chemistry, and ecophysiological function are modified, especially in evergreen, long-lived conifer needles with characteristic crystalline wax structures. During needle flushing and development, wax structure is easily modified. Acid rain-treated Scots pine needles had 50% less epicuticular waxes in early August. Pollution-induced delayed development, destruction, and disturbances have been identified in many plant species. The structural changes in wax crystals are known. Acid rain or polluted air can destroy the crystalloid epicuticular waxes in a few weeks. In Pinus sylvestris, the first sign of pollution effect is the fusion of wax tubes. In Picea abies and P. sitchensis, modifications of crystalloid wax structure are known. In Californian pine trees phenomena of recrystallization of wax tubes on second-year needles were observed after delayed epicuticular wax development in Pinus ponderosa and P. coulteri. Thus, the effects of air pollutants are modified by climate. Accelerated senescence of leaves and needles have been associated with natural and anthropogenic stresses. The accelerated erosion rate of epicuticular waxes has been measured under air pollution conditions. Many short-term air pollution experiments have failed to show any structural changes in epicuticular wax structures. The quantity and quality of needle waxes grown in open-top chambers, glass houses, or polluted air before treatment, differ from field conditions and make it difficult to detect effects of any treatment. (orig.)

  18. Anthropogenic and volcanic emission impacts on SO2 dynamics and acid rain profiles. Numerical study using WRF-Chem in a high-resolution modeling

    Science.gov (United States)

    Vela, A. V.; González, C. M.; Ynoue, R.; Rojas, N. Y.; Aristizábal, B. H.; Wahl, M.

    2017-12-01

    Eulerian 3-D chemistry transport models (CTM) have been widely used for the study of air quality in urban environments, becoming an essential tool for studying the impacts and dynamics of gases and aerosols on air quality. However, their use in Colombia is scarce, especially in medium-sized cities, which are experimenting a fast urban growth, increasing the risk associated with possible air pollution episodes. In the densely populated medium-sized Andean city of Manizales, Colombia - a city located on the western slopes of the central range of the Andes (urban population 368000; 2150 m.a.s.l), there is an influence of the active Nevado del Ruiz volcano, located 28 km to the southwest. This natural source emits daily gas and particle fluxes, which could influence the atmospheric chemistry of the city and neighboring towns. Hence, the zone presents a unique combination of anthropogenic and volcanic sulfur gas emissions, which affects SO2 dynamics in the urban area, influencing also in the formation of acid rain phenomenon in the city. Therefore, studies analyzing the relative contribution of anthropogenic and volcanic emission could contribute with a deep understanding about causes and dynamics of both acid rain phenomenon and ambient SO2 levels in Manizales. This work aimed to analyze the influence of anthropogenic (on-road vehicular and industrial point-sources) and volcanic sulfur emissions in SO2 atmospheric chemistry dynamics, evaluating its possible effects on acid rain profiles. Ambient SO2 levels and day-night rain samples were measured and used to analyze results obtained from the application of the fully-coupled on-line WRF-Chem model. Two high-resolution simulations were performed during two dry and wet one-week periods in 2015. Analysis of SO2 dispersion patterns and comparison with SO2 observations in the urban area were performed for three different scenarios in which natural and anthropogenic emissions were simulated separately. Results suggest that

  19. The effect of metal pollution on the life history and insecticide resistance phenotype of the major malaria vector Anopheles arabiensis (Diptera: Culicidae)

    OpenAIRE

    Oliver, Shüné V.; Brooke, Basil D.

    2018-01-01

    Metal exposure is one of the commonest anthropogenic pollutants mosquito larvae are exposed to, both in agricultural and urban settings. As members of the Anopheles gambiae complex, which contains several major malaria vector species including An. arabiensis, are increasingly adapting to polluted environments, this study examined the effects of larval metal exposure on various life history traits of epidemiological importance. Two laboratory strains of An. arabiensis, SENN (insecticide suscep...

  20. Three centuries of heavy metal pollution in Paris (France) recorded by urban speleothems.

    Science.gov (United States)

    Pons-Branchu, Edwige; Ayrault, Sophie; Roy-Barman, Matthieu; Bordier, Louise; Borst, Wolfgang; Branchu, Philippe; Douville, Eric; Dumont, Emmanuel

    2015-06-15

    The first record of urban speleothems used to reconstruct the history of heavy metal pollution of shallow groundwaters is presented. Two speleothems grew during the last 300 years in an underground aqueduct in the north-eastern part of Paris. They display high Pb, Mn V, Cu, Cd and Al concentrations since 1900 due to the urbanization of the site which triggered anthropogenic contamination of the water feeding the speleothems. Surprisingly, these heavy metal concentrations are also high in the oldest part. This early pollution could come from the use of Parisian waste as fertilizers in the orchards and vineyards cultivated above the aqueduct before urbanization. Lead isotopes were measured in these carbonates as well as in lead artifacts from the 17th-18th centuries ((206)Pb/(207)Pb=1.180+/-0.003). The mean (206)Pb/(207)Pb ratio, for one of the speleothems is 1.181+/-0.003 unvarying with time. These lead signatures are close to those of coal and old lead from northern European mines, lower than the natural background signature. It confirms that the high metal concentrations found come from anthropogenic pollution. Conversely, the lead isotopic composition of the second speleothem presents two temporal trends: for the oldest levels, the mean value (1.183+/-0.003) is similar to the first speleothem. For the youngest part, a lower value (1.172+/-0.005) is recorded, evidencing the contribution of a new lead source at the beginning of the industrial revolution. Pb isotopes were also measured in recent samples from a nearby superficial site. The first sample is a recent (AD 1975+/-15 years) deposit ((206)Pb/(207)Pb=1.148+/-0.003), and the second, a thin subactual layer ((206)Pb/(207)Pb=1.181+/-0.002). These data are compatible with the adding of anthropogenic sources (leaded gasoline and industrial lead from Rio Tinto ore). Copyright © 2015 Elsevier B.V. All rights reserved.