WorldWideScience

Sample records for anthropogenic mercury emissions

  1. Anthropogenic mercury emissions from 1980 to 2012 in China.

    Science.gov (United States)

    Huang, Ying; Deng, Meihua; Li, Tingqiang; Japenga, Jan; Chen, Qianqian; Yang, Xiaoe; He, Zhenli

    2017-07-01

    China was considered the biggest contributor for airborne mercury in the world but the amount of mercury emission in effluents and solid wastes has not been documented. In this study, total national and regional mercury emission to the environment via exhaust gases, effluents and solid wastes were accounted with updated emission factors and the amount of goods produced and/or consumed. The national mercury emission in China increased from 448 to 2151 tons during the 1980-2012 period. Nearly all of the emissions were ended up as exhaust gases and solid wastes. The proportion of exhaust gases decreased with increasing share of solid wastes and effluents. Of all the anthropogenic sources, coal was the most important contributor in quantity, followed by mercury mining, gold smelting, nonferrous smelting, iron steel production, domestic wastes, and cement production, with accounting for more than 90% of the total emission. There was a big variation of regional cumulative mercury emission during 1980-2012 in China, with higher emissions occurred in eastern areas and lower values in the western and far northern regions. The biggest cumulative emission occurred in GZ (Guizhou), reaching 3974 t, while the smallest cumulative emission was lower than 10 t in XZ (Tibet). Correspondingly, mercury accumulation in soil were higher in regions with larger emissions in unit area. Therefore, it is urgent to reduce anthropogenic mercury emission and subsequent impact on ecological functions and human health. Copyright © 2017. Published by Elsevier Ltd.

  2. Trends in anthropogenic mercury emissions estimated for South Africa during 2000-2006

    CSIR Research Space (South Africa)

    Masekoameng, KE

    2010-08-01

    Full Text Available Recent studies suggest an increase in mercury (Hg) emissions to the global environment, particularly as a result of anthropogenic activities. This has prompted many countries to complete Hg emission inventories, based on country-specific Hg sources...

  3. Atmospheric mercury emissions in Australia from anthropogenic, natural and recycled sources

    Science.gov (United States)

    Nelson, Peter F.; Morrison, Anthony L.; Malfroy, Hugh J.; Cope, Martin; Lee, Sunhee; Hibberd, Mark L.; Meyer, C. P. (Mick); McGregor, John

    2012-12-01

    The United Nations Environment Programme (UNEP) has begun a process of developing a legally binding instrument to manage emissions of mercury from anthropogenic sources. The UNEP Governing Council has concluded that there is sufficient evidence of significant global adverse impacts from mercury to warrant further international action; and that national, regional and global actions should be initiated as soon as possible to identify populations at risk and to reduce human generated releases. This paper describes the development of, and presents results from, a comprehensive, spatially and temporally resolved inventory of atmospheric mercury emissions from the Australian landmass. Results indicate that the best estimate of total anthropogenic emissions of mercury to the atmosphere in 2006 was 15 ± 5 tonnes. Three industrial sectors contribute substantially to Australian anthropogenic emissions: gold smelting (˜50%, essentially from a single site/operation), coal combustion in power plants (˜15%) and alumina production from bauxite (˜12%). A diverse range of other sectors contribute smaller proportions of the emitted mercury, but industrial emissions account for around 90% of total anthropogenic mercury emissions. The other sectors include other industrial sources (mining, smelting, and cement production) and the use of products containing mercury. It is difficult to determine historical trends in mercury emissions given the large uncertainties in the data. Estimates for natural and re-emitted emissions from soil, water, vegetation and fires are made using meteorological models, satellite observations of land cover and soil and vegetation type, fuel loading, fire scars and emission factors which account for the effects of temperature, insolation and other environmental variables. These natural and re-emitted sources comfortably exceed the anthropogenic emissions, and comprise 4-12 tonnes per year from vegetation, 70-210 tonnes per year from soils, and 21-63 tonnes

  4. Intercontinental transport and deposition patterns of atmospheric mercury from anthropogenic emissions

    Science.gov (United States)

    Chen, L.; Wang, H. H.; Liu, J. F.; Tong, Y. D.; Ou, L. B.; Zhang, W.; Hu, D.; Chen, C.; Wang, X. J.

    2014-09-01

    Global policies that regulate anthropogenic mercury emissions to the environment require quantitative and comprehensive source-receptor relationships for mercury emissions, transport and deposition among major continental regions. In this study, we use the GEOS-Chem global chemical transport model to establish source-receptor relationships among 11 major continental regions worldwide. Source-receptor relationships for surface mercury concentrations (SMC) show that some regions (e.g., East Asia, the Indian subcontinent, and Europe) should be responsible for their local surface Hg(II) and Hg(P) concentrations due to near-field transport and deposition contributions from their local anthropogenic emissions (up to 64 and 71% for Hg(II) and Hg(P), respectively, over East Asia). We define the region of primary influence (RPI) and the region of secondary influence (RSI) to establish intercontinental influence patterns. Results indicate that East Asia is the SMC RPI for almost all other regions, while Europe, Russia, and the Indian subcontinent also make some contributions to SMC over some receptor regions because they are dominant RSI source regions. Source-receptor relationships for mercury deposition show that approximately 16 and 17% of dry and wet deposition, respectively, over North America originate from East Asia, indicating that transpacific transport of East Asian emissions is the major foreign source of mercury deposition in North America. Europe, Southeast Asia, and the Indian subcontinent are also important mercury deposition sources for some receptor regions because they are the dominant RSIs. We also quantify seasonal variation on mercury deposition contributions over other regions from East Asia. Results show that mercury deposition (including dry and wet) contributions from East Asia over the Northern Hemisphere receptor regions (e.g., North America, Europe, Russia, the Middle East, and Middle Asia) vary seasonally, with the maximum values in summer and

  5. Mapping the spatial distribution of global anthropogenic mercury atmospheric emission inventories

    Science.gov (United States)

    Wilson, Simon J.; Steenhuisen, Frits; Pacyna, Jozef M.; Pacyna, Elisabeth G.

    This paper describes the procedures employed to spatially distribute global inventories of anthropogenic emissions of mercury to the atmosphere, prepared by Pacyna, E.G., Pacyna, J.M., Steenhuisen, F., Wilson, S. [2006. Global anthropogenic mercury emission inventory for 2000. Atmospheric Environment, this issue, doi:10.1016/j.atmosenv.2006.03.041], and briefly discusses the results of this work. A new spatially distributed global emission inventory for the (nominal) year 2000, and a revised version of the 1995 inventory are presented. Emissions estimates for total mercury and major species groups are distributed within latitude/longitude-based grids with a resolution of 1×1 and 0.5×0.5°. A key component in the spatial distribution procedure is the use of population distribution as a surrogate parameter to distribute emissions from sources that cannot be accurately geographically located. In this connection, new gridded population datasets were prepared, based on the CEISIN GPW3 datasets (CIESIN, 2004. Gridded Population of the World (GPW), Version 3. Center for International Earth Science Information Network (CIESIN), Columbia University and Centro Internacional de Agricultura Tropical (CIAT). GPW3 data are available at http://beta.sedac.ciesin.columbia.edu/gpw/index.jsp). The spatially distributed emissions inventories and population datasets prepared in the course of this work are available on the Internet at www.amap.no/Resources/HgEmissions/

  6. Trends in anthropogenic mercury emissions estimated for South Africa during 2000-2006

    Energy Technology Data Exchange (ETDEWEB)

    Masekoameng, K.E.; Leaner, J.; Dabrowski, J. [CSIR, Pretoria (South Africa)

    2010-08-15

    Recent studies suggest an increase in mercury (Hg) emissions to the global environment, particularly as a result of anthropogenic activities. This has prompted many countries to complete Hg emission inventories, based on country-specific Hg sources. In this study, information on annual coal consumption and Hg-containing commodities produced in South Africa, was used to estimate Hg emissions during 2000-2006. Based on the information, the UNEP toolkit was used to estimate the amount of Hg released to air and general waste from each activity; using South Africa specific and toolkit based emission factors. In both atmospheric and solid waste releases, coal-fired power plants were estimated to be the largest contributors of Hg emissions, viz. 27.1 to 38.9 tonnes y{sup -1} in air, and 5.8 to 7.4 tonnes y{sup -1} in waste. Cement production was estimated to be the second largest atmospheric Hg emission contributor (2.2-3.9 tonnes y{sup -1}), while coal gasification was estimated to be the second largest Hg contributor in terms of general waste releases (2.9-4.2 tonnes y{sup -1}). Overall, there was an increase in total atmospheric Hg emissions from all activities, estimated at ca. 34 tonnes in 2000, to 50 tonnes in 2006, with some fluctuations between the years. Similarly, the total Hg emissions released to general waste was estimated to be 9 tonnes in 2000, with an increase to 12 tonnes in 2006.

  7. Trend analysis from 1970 to 2008 and model evaluation of EDGARv4 global gridded anthropogenic mercury emissions

    International Nuclear Information System (INIS)

    Muntean, Marilena; Janssens-Maenhout, Greet; Song, Shaojie; Selin, Noelle E.; Olivier, Jos G.J.; Guizzardi, Diego; Maas, Rob; Dentener, Frank

    2014-01-01

    The Emission Database for Global Atmospheric Research (EDGAR) provides a time-series of man-made emissions of greenhouse gases and short-lived atmospheric pollutants from 1970 to 2008. Mercury is included in EDGARv4.tox1, thereby enriching the spectrum of multi-pollutant sources in the database. With an average annual growth rate of 1.3% since 1970, EDGARv4 estimates that the global mercury emissions reached 1287 tonnes in 2008. Specifically, gaseous elemental mercury (GEM) (Hg 0 ) accounted for 72% of the global total emissions, while gaseous oxidised mercury (GOM) (Hg 2+ ) and particle bound mercury (PBM) (Hg-P) accounted for only 22% and 6%, respectively. The less reactive form, i.e., Hg 0 , has a long atmospheric residence time and can be transported long distances from the emission sources. The artisanal and small-scale gold production, accounted for approximately half of the global Hg 0 emissions in 2008 followed by combustion (29%), cement production (12%) and other metal industry (10%). Given the local-scale impacts of mercury, special attention was given to the spatial distribution showing the emission hot-spots on gridded 0.1° × 0.1° resolution maps using detailed proxy data. The comprehensive ex-post analysis of the mitigation of mercury emissions by end-of-pipe abatement measures in the power generation sector and technology changes in the chlor-alkali industry over four decades indicates reductions of 46% and 93%, respectively. Combined, the improved technologies and mitigation measures in these sectors accounted for 401.7 tonnes of avoided mercury emissions in 2008. A comparison shows that EDGARv4 anthropogenic emissions are nearly equivalent to the lower estimates of the United Nations Environment Programme (UNEP)'s mercury emissions inventory for 2005 for most sectors. An evaluation of the EDGARv4 global mercury emission inventory, including mercury speciation, was performed using the GEOS-Chem global 3-D mercury model. The model can

  8. Observed decrease in atmospheric mercury explained by global decline in anthropogenic emissions

    Science.gov (United States)

    Yanxu Zhang,; Daniel J. Jacob,; Hannah M. Horowitz,; Long Chen,; Helen M. Amos,; Krabbenhoft, David P.; Franz Slemr,; Vincent L. St. Louis,; Elsie M. Sunderland,

    2015-01-01

    Observations of elemental mercury (Hg0) at sites in North America and Europe show large decreases (∼1–2% y−1) from 1990 to present. Observations in background northern hemisphere air, including Mauna Loa Observatory (Hawaii) and CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container) aircraft flights, show weaker decreases (inventories indicating flat or increasing emissions over that period. However, the inventories have three major flaws: (i) they do not account for the decline in atmospheric release of Hg from commercial products; (ii) they are biased in their estimate of artisanal and small-scale gold mining emissions; and (iii) they do not properly account for the change in Hg0/HgII speciation of emissions from coal-fired utilities after implementation of emission controls targeted at SO2 and NOx. We construct an improved global emission inventory for the period 1990 to 2010 accounting for the above factors and find a 20% decrease in total Hg emissions and a 30% decrease in anthropogenic Hg0 emissions, with much larger decreases in North America and Europe offsetting the effect of increasing emissions in Asia. Implementation of our inventory in a global 3D atmospheric Hg simulation [GEOS-Chem (Goddard Earth Observing System-Chemistry)] coupled to land and ocean reservoirs reproduces the observed large-scale trends in atmospheric Hg0 concentrations and in HgII wet deposition. The large trends observed in North America and Europe reflect the phase-out of Hg from commercial products as well as the cobenefit from SO2 and NOx emission controls on coal-fired utilities.

  9. Trend analysis from 1970 to 2008 and model evaluation of EDGARv4 global gridded anthropogenic mercury emissions.

    Science.gov (United States)

    Muntean, Marilena; Janssens-Maenhout, Greet; Song, Shaojie; Selin, Noelle E; Olivier, Jos G J; Guizzardi, Diego; Maas, Rob; Dentener, Frank

    2014-10-01

    The Emission Database for Global Atmospheric Research (EDGAR) provides a time-series of man-made emissions of greenhouse gases and short-lived atmospheric pollutants from 1970 to 2008. Mercury is included in EDGARv4.tox1, thereby enriching the spectrum of multi-pollutant sources in the database. With an average annual growth rate of 1.3% since 1970, EDGARv4 estimates that the global mercury emissions reached 1,287 tonnes in 2008. Specifically, gaseous elemental mercury (GEM) (Hg(0)) accounted for 72% of the global total emissions, while gaseous oxidised mercury (GOM) (Hg(2+)) and particle bound mercury (PBM) (Hg-P) accounted for only 22% and 6%, respectively. The less reactive form, i.e., Hg(0), has a long atmospheric residence time and can be transported long distances from the emission sources. The artisanal and small-scale gold production, accounted for approximately half of the global Hg(0) emissions in 2008 followed by combustion (29%), cement production (12%) and other metal industry (10%). Given the local-scale impacts of mercury, special attention was given to the spatial distribution showing the emission hot-spots on gridded 0.1°×0.1° resolution maps using detailed proxy data. The comprehensive ex-post analysis of the mitigation of mercury emissions by end-of-pipe abatement measures in the power generation sector and technology changes in the chlor-alkali industry over four decades indicates reductions of 46% and 93%, respectively. Combined, the improved technologies and mitigation measures in these sectors accounted for 401.7 tonnes of avoided mercury emissions in 2008. A comparison shows that EDGARv4 anthropogenic emissions are nearly equivalent to the lower estimates of the United Nations Environment Programme (UNEP)'s mercury emissions inventory for 2005 for most sectors. An evaluation of the EDGARv4 global mercury emission inventory, including mercury speciation, was performed using the GEOS-Chem global 3-D mercury model. The model can generally

  10. Mercury transformation and speciation in flue gases from anthropogenic emission sources: a critical review

    Directory of Open Access Journals (Sweden)

    L. Zhang

    2016-02-01

    Full Text Available Mercury transformation mechanisms and speciation profiles are reviewed for mercury formed in and released from flue gases of coal-fired boilers, non-ferrous metal smelters, cement plants, iron and steel plants, waste incinerators, biomass burning and so on. Mercury in coal, ores, and other raw materials is released to flue gases in the form of Hg0 during combustion or smelting in boilers, kilns or furnaces. Decreasing temperature from over 800 °C to below 300 °C in flue gases leaving boilers, kilns or furnaces promotes homogeneous and heterogeneous oxidation of Hg0 to gaseous divalent mercury (Hg2+, with a portion of Hg2+ adsorbed onto fly ash to form particulate-bound mercury (Hgp. Halogen is the primary oxidizer for Hg0 in flue gases, and active components (e.g., TiO2, Fe2O3, etc. on fly ash promote heterogeneous oxidation and adsorption processes. In addition to mercury removal, mercury transformation also occurs when passing through air pollution control devices (APCDs, affecting the mercury speciation in flue gases. In coal-fired power plants, selective catalytic reduction (SCR system promotes mercury oxidation by 34–85 %, electrostatic precipitator (ESP and fabric filter (FF remove over 99 % of Hgp, and wet flue gas desulfurization system (WFGD captures 60–95 % of Hg2+. In non-ferrous metal smelters, most Hg0 is converted to Hg2+ and removed in acid plants (APs. For cement clinker production, mercury cycling and operational conditions promote heterogeneous mercury oxidation and adsorption. The mercury speciation profiles in flue gases emitted to the atmosphere are determined by transformation mechanisms and mercury removal efficiencies by various APCDs. For all the sectors reviewed in this study, Hgp accounts for less than 5 % in flue gases. In China, mercury emission has a higher Hg0 fraction (66–82 % of total mercury in flue gases from coal combustion, in contrast to a greater Hg2+ fraction (29–90 % from non-ferrous metal

  11. Trans-boundary movement of mercury in the Northeast Asian region predicted by CAMQ-Hg from anthropogenic emissions distribution

    Science.gov (United States)

    Sung, Jin-Ho; Roy, Debananda; Oh, Joo-Sung; Back, Seung-Ki; Jang, Ha-Na; Kim, Seong-Heon; Seo, Yong-Chil; Kim, Jeong-Hun; Lee, Chong Bum; Han, Young-Ji

    2018-05-01

    The percentage contribution of trans-boundary mercury (Hg) from China at different locations in South Korea was estimated from Hg anthropogenic emission distributions using the Hg dispersion model, CMAQ-Hg. This investigation quantifies the trans-boundary Hg emissions as contribution ratios. In addition, the long-range transportation frequency is also calculated, to verify inflow cases from China. The seasonal distribution of the Hg contribution ratio was found to be highest in winter (40%), followed by fall (16%). Seasonal observations of Hg inflow frequencies were estimated as 40%, 25%, 21%, and 4% in winter, fall, summer, and spring, respectively, at the same location. Such results would be produced by the wind generally blowing from the west and north-west with a speed of 5.0 m/s and 4.5 m/s, respectively, during winter and fall, around the study area. This study made an effort to quantify the trans-boundary Hg transport and to plot Hg anthropogenic emissions distribution in the region.

  12. Coal fired flue gas mercury emission controls

    CERN Document Server

    Wu, Jiang; Pan, Weiguo; Pan, Weiping

    2015-01-01

    Mercury (Hg) is one of the most toxic heavy metals, harmful to both the environment and human health. Hg is released into the atmosphere from natural and anthropogenic sources and its emission control has caused much concern. This book introduces readers to Hg pollution from natural and anthropogenic sources and systematically describes coal-fired flue gas mercury emission control in industry, especially from coal-fired power stations. Mercury emission control theory and experimental research are demonstrated, including how elemental mercury is oxidized into oxidized mercury and the effect of

  13. Quantifying Anthropogenic Dust Emissions

    Science.gov (United States)

    Webb, Nicholas P.; Pierre, Caroline

    2018-02-01

    Anthropogenic land use and land cover change, including local environmental disturbances, moderate rates of wind-driven soil erosion and dust emission. These human-dust cycle interactions impact ecosystems and agricultural production, air quality, human health, biogeochemical cycles, and climate. While the impacts of land use activities and land management on aeolian processes can be profound, the interactions are often complex and assessments of anthropogenic dust loads at all scales remain highly uncertain. Here, we critically review the drivers of anthropogenic dust emission and current evaluation approaches. We then identify and describe opportunities to: (1) develop new conceptual frameworks and interdisciplinary approaches that draw on ecological state-and-transition models to improve the accuracy and relevance of assessments of anthropogenic dust emissions; (2) improve model fidelity and capacity for change detection to quantify anthropogenic impacts on aeolian processes; and (3) enhance field research and monitoring networks to support dust model applications to evaluate the impacts of disturbance processes on local to global-scale wind erosion and dust emissions.

  14. Mercury emission from crematories in Japan

    Directory of Open Access Journals (Sweden)

    M. Takaoka

    2010-04-01

    Full Text Available Anthropogenic sources of mercury emissions have a significant impact on global pollution. Therefore, finding uncharacterised sources and assessing the emissions from these sources are important. However, limited data are available worldwide on mercury emissions from crematories. In Japan, 99.9% of dead bodies are cremated, which is the highest percentage in the world, and more than 1600 crematories are in operation. We thus focused on emissions from crematories in Japan. The number of targeted facilities was seven, and we used continuous emission monitoring to measure the mercury concentrations and investigate mercury behaviour. The total mercury concentrations in stack gases were a few μg/Nm3 (normal cubic meters. Considering the time profile of mercury and its species in cremations, the findings confirmed that the mercury in stack gas originated from dental amalgam. The amount of mercury emissions was calculated using the total concentration and gas flow rate. Furthermore, the annual amount of mercury emission from crematories in Japan was estimated by using the total number of corpses. The emission amount was considerably lower than that estimated in the United Kingdom. From statistical analyses on population demographics and measurements, future total emissions from crematories were also predicted. As a result, the amount of mercury emitted by crematories will likely increase by 2.6-fold from 2007 to 2037.

  15. Coal fired flue gas mercury emission controls

    International Nuclear Information System (INIS)

    Wu, Jiang; Pan, Weiguo; Cao, Yan; Pan, Weiping

    2015-01-01

    Mercury (Hg) is one of the most toxic heavy metals, harmful to both the environment and human health. Hg is released into the atmosphere from natural and anthropogenic sources and its emission control has caused much concern. This book introduces readers to Hg pollution from natural and anthropogenic sources and systematically describes coal-fired flue gas mercury emission control in industry, especially from coal-fired power stations. Mercury emission control theory and experimental research are demonstrated, including how elemental mercury is oxidized into oxidized mercury and the effect of flue gas contents on the mercury speciation transformation process. Mercury emission control methods, such as existing APCDs (air pollution control devices) at power stations, sorbent injection, additives in coal combustion and photo-catalytic methods are introduced in detail. Lab-scale, pilot-scale and full-scale experimental studies of sorbent injection conducted by the authors are presented systematically, helping researchers and engineers to understand how this approach reduces the mercury emissions in flue gas and to apply the methods in mercury emission control at coal-fired power stations.

  16. A global ocean inventory of anthropogenic mercury based on water column measurements

    NARCIS (Netherlands)

    Lamborg, C.H.; Hammerschmidt, C.R.; Bowman, K.L.; Swarr, G.J.; Munson, K.M.; Ohnemus, D.C.; Lam, P.L.; Heimbürger, L.-E.; Rijkenberg, M.J.A.; Saito, M.A.

    2014-01-01

    Mercury is a toxic, bioaccumulating trace metal whose emissions to the environment have increased significantly as a result of anthropogenic activities such as mining and fossil fuel combustion. Several recent models have estimated that these emissions have increased the oceanic mercury inventory by

  17. Historical anthropogenic mercury in two lakes of Central Chile: comparison between an urban and rural lake.

    Science.gov (United States)

    Álvarez, Denisse; Torrejón, Fernando; Climent, María José; Garcia-Orellana, Jordi; Araneda, Alberto; Urrutia, Roberto

    2018-02-01

    Mercury concentrations in the environment tend to decrease in recent years due to environmental restrictions. Lakes store mercury in their sediments, making them potential secondary contamination sources. In South America, the occurrence of mercury in lake systems has been associated mainly with volcanic emissions and only few records anthropogenic contamination in the pre-Hispanic period. The objective of this research was to study historical anthropogenic mercury concentration in two lakes in Central Chile (La Señoraza and Pillo), in order to establish background mercury levels and their variations from preindustrial to modern periods. Different background levels and mercury concentrations were found in each lake, with significantly higher concentrations in Lake La Señoraza during the last 150 years. Mining-related activities during the nineteenth century could have a negligible influence on mercury concentrations. Later on, the use of coal railroads and subsequent employment of mercury in the cellulose industry were associated with three- and fourfold increases in mercury concentration over the nineteenth century background levels, which decrease once these activities ceased. However, in the case of Lake Pillo, an important increase in mercury concentration can be observed between 1990 and the early twenty-first century, which could be related to a higher watershed/lake area ratio, extensive agriculture, and volcanic emission, being the latter that could have contributed with mercury to both systems. Nevertheless, sedimentological characteristics in Lake Pillo can be favorable to retain mercury in this aquatic system up to the present day.

  18. Mercury Emissions: The Global Context

    Science.gov (United States)

    Mercury emissions are a global problem that knows no national or continental boundaries. Mercury that is emitted to the air can travel thousands of miles in the atmosphere before it is eventually deposited back to the earth.

  19. Influence of emissions on regional atmospheric mercury concentrations

    Directory of Open Access Journals (Sweden)

    Bieser J.

    2013-04-01

    Full Text Available Mercury is a global pollutant that is rapidly transported in the atmosphere. Unlike the majority of air pollutants the background concentrations of mercury play a major role for the atmospheric concentrations on a hemispheric scale. In this study the influence of regional anthropogenic emissions in comparison to the global emissions on mercury concentrations over Europe are investigated. For this purpose an advanced threedimensional model system is used that consists of three components. The emission model SMOKE-EU, the meteorological model COSMO-CLM, and the chemistry transport model (CTM CMAQ. A variety of sensitivity runs is performed in order to determine the influence of different driving factors (i.e. boundary conditions, anthropogenic and natural emissions, emission factors, meteorological fields on the atmoshperic concentrations of different mercury species. This study is part of the European FP7 project GMOS (Global Mercury Observation System. The aim is to identify the most important drivers for atmospheric mercury in order to optimize future regional modelling studies in the course of the GMOS project. Moreover, the model results are used to determine areas of interest for air-plane based in-situ measurements which are also part of GMOS.

  20. Data used in Xu et al., 2016 paper entitled "Characteristics and distributions of atmospheric mercury emitted from anthropogenic sources in Guiyang, southwestern China

    Data.gov (United States)

    U.S. Environmental Protection Agency — Mercury emissions data from anthropogenic sources as described in Xu et al., 2016. This dataset is associated with the following publication: Xu, X., N. Liu, M....

  1. Control of mercury emissions from coal fired electric uitlity boilers: An update

    Science.gov (United States)

    Coal-fired power plants in the U.S. are known to be the major anthropogenic source of domestic mercury emissions. The Environmental Protection Agency (EPA) has recently proposed to reduce emissions of mercury from these plants. In March 2005, EPA plans to promulgate final regulat...

  2. Substance flow analysis for mercury emission in Poland

    Directory of Open Access Journals (Sweden)

    Panasiuk D.

    2013-04-01

    Full Text Available Substance Flow Analysis (SFA is an approach showing main sources of emission and flows of pollution to the environment, which allows to define possible environmental risk. Total identified mercury emission to air, soil and water in Poland for year 2010 from anthropogenic sources was estimated as 18.0 Mg. Annual Hg emission to air from by-product sources was equal 13.5 Mg, with the highest share of emission from brown coal-fired power plants. Mercury contained in combustion residues and removed from flue gases is transferred to waste waters, disposed to landfills and used to a concrete production with unknown amounts. Annual mercury emission to air from the use of mercury-containing products (0.5 Mg was estimated by authors based on model for distribution and emissions for batteries, light sources, other electrical and electronic equipment and also for measuring and control equipment. Emission to air from dental practice (0.3 Mg was estimated for combustion of wastes containing dental amalgam and from bodies cremation. SFA for the use of mercury-containing products and dental practice presents significant load of 10.4 Mg mercury contained in hazardous wastes produced annually. It covers wastes of used products, dental amalgam wastes directly from clinics as well as stream from incineration of infectious dental wastes. In the paper mercury discharges to water from large and medium industrial facilities (2.9 Mg and municipal waste-water treatment plants in large agglomerations (0.4 Mg are presented. Smaller loads are generates by leachate transfer from municipal landfills to WWTPs and further to agriculture and also by releases from dental amalgam in buried bodies. The paper indicates lack of information in SFA which should be regarded, mainly concerning mercury releases from municipal landfills to water and soil and emissions from municipal WWTPs to air.

  3. Mercury and halogens in coal--Their role in determining mercury emissions from coal combustion

    Science.gov (United States)

    Kolker, Allan; Quick, Jeffrey C.; Senior, Connie L.; Belkin, Harvey E.

    2012-01-01

    Mercury is a toxic pollutant. In its elemental form, gaseous mercury has a long residence time in the atmosphere, up to a year, allowing it to be transported long distances from emission sources. Mercury can be emitted from natural sources such as volcanoes, or from anthropogenic sources, such as coal-fired powerplants. In addition, all sources of mercury on the Earth's surface can re-emit it from land and sea back to the atmosphere, from which it is then redeposited. Mercury in the atmosphere is present in such low concentrations that it is not considered harmful. Once mercury enters the aquatic environment, however, it can undergo a series of biochemical transformations that convert a portion of the mercury originally present to methylmercury, a highly toxic organic form of mercury that accumulates in fish and birds. Many factors contribute to creation of methylmercury in aquatic ecosystems, including mercury availability, sediment and nutrient load, bacterial influence, and chemical conditions. In the United States, consumption of fish with high levels of methylmercury is the most common pathway for human exposure to mercury, leading the U.S. Environmental Protection Agency (EPA) to issue fish consumption advisories in every State. The EPA estimates that 50 percent of the mercury entering the atmosphere in the United States is emitted from coal-burning utility powerplants. An EPA rule, known as MATS (for Mercury and Air Toxics Standards), to reduce emissions of mercury and other toxic pollutants from powerplants, was signed in December 2011. The rule, which is currently under review, specifies limits for mercury and other toxic elements, such as arsenic, chromium, and nickel. MATS also places limits on emission of harmful acid gases, such as hydrochloric acid and hydrofluoric acid. These standards are the result of a 2010 detailed nationwide program by the EPA to sample stack emissions and thousands of shipments of coal to coal-burning powerplants. The United

  4. Natural and anthropogenic mercury sources and their impact on the air-surface exchange of mercury on regional and global scales

    Energy Technology Data Exchange (ETDEWEB)

    Ebinghaus, R.; Tripathi, R.M.; Wallschlaeger, D.; Lindberg, S.E.

    1998-12-31

    Mercury is outstanding among the global environmental pollutants of continuing concern. Especially in the last decade of the 20th century, environmental scientists, legislators, politicians and the public have become aware of mercury pollution in the global environment. It has often been suggested that anthropogenic emissions are leading to a general increase in mercury on local, regional, and global scales (Lindqvist et al. 1991; Expert Panel 1994). Mercury is emitted into the atmosphere from a number of natural as well as anthropogenic sources. In contrast with most of the other heavy metals, mercury and many of its compounds behave exceptionally in the environment due to their volatility and capability for methylation. Long-range atmospheric transport of mercury, its transformation to more toxic methylmercury compounds, and their bioaccumulation in the aquatic foodchain have motivated intensive research on mercury as a pollutant of global concern. Mercury takes part in a number of complex environmental cycles, and special interest is focused on the aquatic-biological and the atmospheric cycles. (orig./SR)

  5. Atmospheric mercury emission from artisanal mercury mining in Guizhou Province, Southwestern China

    Science.gov (United States)

    Li, Ping; Feng, Xinbin; Qiu, Guangle; Shang, Lihai; Wang, Shaofeng; Meng, Bo

    Mercury (Hg) mining is an important anthropogenic source of atmospheric Hg emissions. The Guizhou Province in Southwestern China is a region with extensive artisanal mercury mining (AMM), but little Hg emission data from this area is available. Using a mass balance method, we estimated emission factors from artisanal mercury mining in Wuchuan mercury mining area (WMMA) and Gouxi area (GX). Average emission factors were 18.2% in WMMA (ranging from 6.9% to 32.1%) and 9.8% in GX (ranging from 6.6% to 14.5%), respectively, which were 2.2-36.4 times higher than the literature values used to estimate Hg emission from Hg mining. Furthermore, the average Hg emission factor of AMM in WMMA was much higher than that in GX, indicating that double condensation processes practiced in GX resulted in higher recoveries and lower emission factors compared to single condensation process applied in WMMA. Atmospheric Hg emission was estimated to be 3.7-9.6 metric tons in 2004 for WMMA and 1.3-2.7 metric tons in 2006 for GX, indicating artisanal Hg mining was an important atmospheric Hg emission source in the study area.

  6. Mercury emissions from municipal solid waste combustors

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    This report examines emissions of mercury (Hg) from municipal solid waste (MSW) combustion in the United States (US). It is projected that total annual nationwide MSW combustor emissions of mercury could decrease from about 97 tonnes (1989 baseline uncontrolled emissions) to less than about 4 tonnes in the year 2000. This represents approximately a 95 percent reduction in the amount of mercury emitted from combusted MSW compared to the 1989 mercury emissions baseline. The likelihood that routinely achievable mercury emissions removal efficiencies of about 80 percent or more can be assured; it is estimated that MSW combustors in the US could prove to be a comparatively minor source of mercury emissions after about 1995. This forecast assumes that diligent measures to control mercury emissions, such as via use of supplemental control technologies (e.g., carbon adsorption), are generally employed at that time. However, no present consensus was found that such emissions control measures can be implemented industry-wide in the US within this time frame. Although the availability of technology is apparently not a limiting factor, practical implementation of necessary control technology may be limited by administrative constraints and other considerations (e.g., planning, budgeting, regulatory compliance requirements, etc.). These projections assume that: (a) about 80 percent mercury emissions reduction control efficiency is achieved with air pollution control equipment likely to be employed by that time; (b) most cylinder-shaped mercury-zinc (CSMZ) batteries used in hospital applications can be prevented from being disposed into the MSW stream or are replaced with alternative batteries that do not contain mercury; and (c) either the amount of mercury used in fluorescent lamps is decreased to an industry-wide average of about 27 milligrams of mercury per lamp or extensive diversion from the MSW stream of fluorescent lamps that contain mercury is accomplished.

  7. Mercury emission monitoring on municipal waste combustion

    International Nuclear Information System (INIS)

    Braun, H.; Gerig, A.

    1991-01-01

    In waste incineration, mercury is the only heavy metal to be released as a gas, mostly as mercury(II) chloride, because of its high volatility. Continuous emission monitoring is possible only when mercury occurs in its elemental form. This paper reports on various possibilities of converting Hg(II) into Hg(0) that has been studied and tested on a laboratory scale and in the TAMARA refuse incineration pilot facility. Continuous mercury emission measurement appears to be possible, provided mercury is converted in the flue gas condensate precipitated. The measuring results obtained on two municipal solid waste and on one sewage treatment sludge incineration plants show that the mercury monitor is a highly sensitive and selective continuously working instrument for mercury emission monitoring

  8. Anthropogenic sulfur dioxide emissions: 1850–2005

    Directory of Open Access Journals (Sweden)

    S. J. Smith

    2011-02-01

    Full Text Available Sulfur aerosols impact human health, ecosystems, agriculture, and global and regional climate. A new annual estimate of anthropogenic global and regional sulfur dioxide emissions has been constructed spanning the period 1850–2005 using a bottom-up mass balance method, calibrated to country-level inventory data. Global emissions peaked in the early 1970s and decreased until 2000, with an increase in recent years due to increased emissions in China, international shipping, and developing countries in general. An uncertainty analysis was conducted including both random and systemic uncertainties. The overall global uncertainty in sulfur dioxide emissions is relatively small, but regional uncertainties ranged up to 30%. The largest contributors to uncertainty at present are emissions from China and international shipping. Emissions were distributed on a 0.5° grid by sector for use in coordinated climate model experiments.

  9. Global mercury emissions from combustion in light of international fuel trading.

    Science.gov (United States)

    Chen, Yilin; Wang, Rong; Shen, Huizhong; Li, Wei; Chen, Han; Huang, Ye; Zhang, Yanyan; Chen, Yuanchen; Su, Shu; Lin, Nan; Liu, Junfeng; Li, Bengang; Wang, Xilong; Liu, Wenxin; Coveney, Raymond M; Tao, Shu

    2014-01-01

    The spatially resolved emission inventory is essential for understanding the fate of mercury. Previous global mercury emission inventories for fuel combustion sources overlooked the influence of fuel trading on local emission estimates of many countries, mostly developing countries, for which national emission data are not available. This study demonstrates that in many countries, the mercury content of coal and petroleum locally consumed differ significantly from those locally produced. If the mercury content in locally produced fuels were used to estimate emission, then the resulting global mercury emissions from coal and petroleum would be overestimated by 4.7 and 72%, respectively. Even higher misestimations would exist in individual countries, leading to strong spatial bias. On the basis of the available data on fuel trading and an updated global fuel consumption database, a new mercury emission inventory for 64 combustion sources has been developed. The emissions were mapped at 0.1° × 0.1° resolution for 2007 and at country resolution for a period from 1960 to 2006. The estimated global total mercury emission from all combustion sources (fossil fuel, biomass fuel, solid waste, and wildfires) in 2007 was 1454 Mg (1232-1691 Mg as interquartile range from Monte Carlo simulation), among which elementary mercury (Hg(0)), divalent gaseous mercury (Hg(2+)), and particulate mercury (Hg(p)) were 725, 548, and 181 Mg, respectively. The total emission from anthropogenic sources, excluding wildfires, was 1040 Mg (886-1248 Mg), with coal combustion contributing more than half. Globally, total annual anthropogenic mercury emission from combustion sources increased from 285 Mg (263-358 Mg) in 1960 to 1040 Mg (886-1248 Mg) in 2007, owing to an increased fuel consumption in developing countries. However, mercury emissions from developed countries have decreased since 2000.

  10. Continental anthropogenic primary particle number emissions

    Science.gov (United States)

    Paasonen, Pauli; Kupiainen, Kaarle; Klimont, Zbigniew; Visschedijk, Antoon; Denier van der Gon, Hugo A. C.; Amann, Markus

    2016-06-01

    Atmospheric aerosol particle number concentrations impact our climate and health in ways different from those of aerosol mass concentrations. However, the global, current and future anthropogenic particle number emissions and their size distributions are so far poorly known. In this article, we present the implementation of particle number emission factors and the related size distributions in the GAINS (Greenhouse Gas-Air Pollution Interactions and Synergies) model. This implementation allows for global estimates of particle number emissions under different future scenarios, consistent with emissions of other pollutants and greenhouse gases. In addition to determining the general particulate number emissions, we also describe a method to estimate the number size distributions of the emitted black carbon particles. The first results show that the sources dominating the particle number emissions are different to those dominating the mass emissions. The major global number source is road traffic, followed by residential combustion of biofuels and coal (especially in China, India and Africa), coke production (Russia and China), and industrial combustion and processes. The size distributions of emitted particles differ across the world, depending on the main sources: in regions dominated by traffic and industry, the number size distribution of emissions peaks in diameters range from 20 to 50 nm, whereas in regions with intensive biofuel combustion and/or agricultural waste burning, the emissions of particles with diameters around 100 nm are dominant. In the baseline (current legislation) scenario, the particle number emissions in Europe, Northern and Southern Americas, Australia, and China decrease until 2030, whereas especially for India, a strong increase is estimated. The results of this study provide input for modelling of the future changes in aerosol-cloud interactions as well as particle number related adverse health effects, e.g. in response to tightening

  11. Continental anthropogenic primary particle number emissions

    Directory of Open Access Journals (Sweden)

    P. Paasonen

    2016-06-01

    Full Text Available Atmospheric aerosol particle number concentrations impact our climate and health in ways different from those of aerosol mass concentrations. However, the global, current and future anthropogenic particle number emissions and their size distributions are so far poorly known. In this article, we present the implementation of particle number emission factors and the related size distributions in the GAINS (Greenhouse Gas–Air Pollution Interactions and Synergies model. This implementation allows for global estimates of particle number emissions under different future scenarios, consistent with emissions of other pollutants and greenhouse gases. In addition to determining the general particulate number emissions, we also describe a method to estimate the number size distributions of the emitted black carbon particles. The first results show that the sources dominating the particle number emissions are different to those dominating the mass emissions. The major global number source is road traffic, followed by residential combustion of biofuels and coal (especially in China, India and Africa, coke production (Russia and China, and industrial combustion and processes. The size distributions of emitted particles differ across the world, depending on the main sources: in regions dominated by traffic and industry, the number size distribution of emissions peaks in diameters range from 20 to 50 nm, whereas in regions with intensive biofuel combustion and/or agricultural waste burning, the emissions of particles with diameters around 100 nm are dominant. In the baseline (current legislation scenario, the particle number emissions in Europe, Northern and Southern Americas, Australia, and China decrease until 2030, whereas especially for India, a strong increase is estimated. The results of this study provide input for modelling of the future changes in aerosol–cloud interactions as well as particle number related adverse health effects, e.g. in response

  12. Increased mercury emissions from modern dental amalgams.

    Science.gov (United States)

    Bengtsson, Ulf G; Hylander, Lars D

    2017-04-01

    All types of dental amalgams contain mercury, which partly is emitted as mercury vapor. All types of dental amalgams corrode after being placed in the oral cavity. Modern high copper amalgams exhibit two new traits of increased instability. Firstly, when subjected to wear/polishing, droplets rich in mercury are formed on the surface, showing that mercury is not being strongly bonded to the base or alloy metals. Secondly, high copper amalgams emit substantially larger amounts of mercury vapor than the low copper amalgams used before the 1970s. High copper amalgams has been developed with focus on mechanical strength and corrosion resistance, but has been sub-optimized in other aspects, resulting in increased instability and higher emission of mercury vapor. This has not been presented to policy makers and scientists. Both low and high copper amalgams undergo a transformation process for several years after placement, resulting in a substantial reduction in mercury content, but there exist no limit for maximum allowed emission of mercury from dental amalgams. These modern high copper amalgams are nowadays totally dominating the European, US and other markets, resulting in significant emissions of mercury, not considered when judging their suitability for dental restoration.

  13. Urban artisanal gold shops and mercury emissions

    International Nuclear Information System (INIS)

    Cordy, P.; Veiga, M.; Carrasco, V.H.G.

    2008-01-01

    Artisanal miners in developing countries use mercury amalgamation processes to extract gold. The amalgams are then refined before being sold on to urban gold shops. The amalgams can often contain between 2 to 40 per cent mercury. Unburned amalgams are also often sold directly to gold shops. There are serious health risks for shop employees and nearby populations when the gold is melted and further purified. Studies have shown that mercury concentrations in the ambient air of gold shops often exceeds World Health Organization (WHO) limits by an order of magnitude or more. This study examined the practices and technologies used to refine gold in Latin America and Indonesia. The study compared and contrasted various refining methods and their resulting mercury emissions. Methods of reducing mercury emissions were also investigated, including a filtration system designed to capture 80 per cent of mercury emissions. Barriers to implementing mercury emissions reduction plans were also investigated. It was concluded that the design of urban gold shops must include condensers, fume hoods, and efficient mercury capture systems. 15 refs

  14. Urban artisanal gold shops and mercury emissions

    Energy Technology Data Exchange (ETDEWEB)

    Cordy, P.; Veiga, M.; Carrasco, V.H.G. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Mining and Mineral Process Engineering

    2008-07-01

    Artisanal miners in developing countries use mercury amalgamation processes to extract gold. The amalgams are then refined before being sold on to urban gold shops. The amalgams can often contain between 2 to 40 per cent mercury. Unburned amalgams are also often sold directly to gold shops. There are serious health risks for shop employees and nearby populations when the gold is melted and further purified. Studies have shown that mercury concentrations in the ambient air of gold shops often exceeds World Health Organization (WHO) limits by an order of magnitude or more. This study examined the practices and technologies used to refine gold in Latin America and Indonesia. The study compared and contrasted various refining methods and their resulting mercury emissions. Methods of reducing mercury emissions were also investigated, including a filtration system designed to capture 80 per cent of mercury emissions. Barriers to implementing mercury emissions reduction plans were also investigated. It was concluded that the design of urban gold shops must include condensers, fume hoods, and efficient mercury capture systems. 15 refs.

  15. Mercury emissions from South Africa’s coal-fired power stations

    Directory of Open Access Journals (Sweden)

    Belinda L. Garnham

    2016-12-01

    Full Text Available Mercury is a persistent and toxic substance that can be bio-accumulated in the food chain. Natural and anthropogenic sources contribute to the mercury emitted in the atmosphere. Eskom’s coal-fired power stations in South Africa contributed just under 93% of the total electricity produced in 2015 (Eskom 2016. Trace amounts of mercury can be found in coal, mostly combined with sulphur, and can be released into the atmosphere upon combustion. Coal-fired electricity generation plants are the highest contributors to mercury emissions in South Africa. A major factor affecting the amount of mercury emitted into the atmosphere is the type and efficiency of emission abatement equipment at a power station. Eskom employs particulate emission control technology at all its coal-fired power stations, and new power stations will also have sulphur dioxide abatement technology. A co-beneficial reduction of mercury emissions exists as a result of emission control technology. The amount of mercury emitted from each of Eskom’s coal-fired power stations is calculated, based on the amount of coal burnt and the mercury content in the coal. Emission Reduction Factors (ERF’s from two sources are taken into consideration to reflect the co-benefit received from the emission control technologies at the stations. Between 17 and 23 tons of mercury is calculated to have been emitted from Eskom’s coal-fired power stations in 2015. On completion of Eskom’s emission reduction plan, which includes fabric filter plant retrofits at two and a half stations and a flue gas desulphurisation retrofit at one power station, total mercury emissions from the fleet will potentially be reduced by 6-13% by 2026 relative to the baseline. Mercury emission reduction is perhaps currently not the most pressing air quality problem in South Africa. While the focus should then be on reducing emissions of other pollutants which have a greater impact on human health, mercury emission reduction

  16. Control of mercury emissions: policies, technologies, and future trends

    OpenAIRE

    Rhee, Seung-Whee

    2015-01-01

    Seung-Whee Rhee Department of Environmental Engineering, Kyonggi University, Suwon, Republic of Korea Abstract: Owing to the Minamata Convention on Mercury and the Global Mercury Partnership, policies and regulations on mercury management in advanced countries were intensified by a mercury phaseout program in the mercury control strategy. In developing countries, the legislative or regulatory frameworks on mercury emissions are not established specifically, but mercury management is designed...

  17. Were mercury emission factors for Chinese non-ferrous metal smelters overestimated? Evidence from onsite measurements in six smelters

    International Nuclear Information System (INIS)

    Zhang Lei; Wang Shuxiao; Wu Qingru; Meng Yang; Yang Hai; Wang Fengyang; Hao Jiming

    2012-01-01

    Non-ferrous metal smelting takes up a large proportion of the anthropogenic mercury emission inventory in China. Zinc, lead and copper smelting are three leading sources. Onsite measurements of mercury emissions were conducted for six smelters. The mercury emission factors were 0.09–2.98 g Hg/t metal produced. Acid plants with the double-conversion double-absorption process had mercury removal efficiency of over 99%. In the flue gas after acid plants, 45–88% was oxidized mercury which can be easily scavenged in the flue gas scrubber. 70–97% of the mercury was removed from the flue gas to the waste water and 1–17% to the sulfuric acid product. Totally 0.3–13.5% of the mercury in the metal concentrate was emitted to the atmosphere. Therefore, acid plants in non-ferrous metal smelters have significant co-benefit on mercury removal, and the mercury emission factors from Chinese non-ferrous metal smelters were probably overestimated in previous studies. - Highlights: ► Acid plants in smelters provide significant co-benefits for mercury removal (over 99%). ► Most of the mercury in metal concentrates for smelting ended up in waste water. ► Previously published emission factors for Chinese metal smelters were probably overestimated. - Acid plants in smelters have high mercury removal efficiency, and thus mercury emission factors for Chinese non-ferrous metal smelters were probably overestimated.

  18. Historical (1850–2010 mercury stable isotope inventory from anthropogenic sources to the atmosphere

    Directory of Open Access Journals (Sweden)

    Ruoyu Sun

    2016-02-01

    Full Text Available Abstract Mercury (Hg stable isotopes provide a new tool to trace the biogeochemical cycle of Hg. An inventory of the isotopic composition of historical anthropogenic Hg emissions is important to understand sources and post-emission transformations of Hg. We build on existing global inventories of anthropogenic Hg emissions to the atmosphere to develop the first corresponding historical Hg isotope inventories for total Hg (THg and three Hg species: gaseous elemental Hg (GEM, gaseous oxidized Hg (GOM and particulate-bound Hg (PBM. We compile δ202Hg and Δ199Hg of major Hg emissions source materials. Where possible, δ202Hg and Δ199Hg values in emissions are corrected for the mass dependent Hg isotope fractionation during industrial processing. The framework and Hg isotope inventories can be updated and improved as new data become available. Simulated THg emissions from all sectors between 1850s and 2010s generally show an increasing trend (−1.1‰ to −0.7‰ for δ202Hg, and a stable trend (−0.02‰ to −0.04‰ for Δ199Hg. Δ200Hg are near-zero in source materials and therefore emissions. The δ202Hg trend generally reflects a shift of historically dominant Hg emissions from 19th century Hg mining and liquid Hg0 uses in Au/Ag refining to 20th century coal combustion and non-ferrous metal production. The historical δ202Hg and Δ199Hg curves of GEM closely follow those of THg. The δ202Hg curves of GOM and PBM show no trends. Δ199Hg values for both GOM and PBM decrease from the 1850s to 1950s by ∼0.1‰, and then gradually rebound towards the 2010s. Our updated δ202Hg values (−0.76 ± 0.11 ‰, 1SD, n=9 of bulk emissions from passively degassing volcanoes overlap with δ202Hg of present-day anthropogenic THg emissions.

  19. Product-related emissions of Mercury to Air in the European Union

    Energy Technology Data Exchange (ETDEWEB)

    Kindbom, Karin; Munthe, John

    2007-06-15

    Mercury emissions to air from the use of mercury in products have been estimated for the EU for the year 2005. The consumption of mercury in the EU in 2005 was amounted to 125 tonnes in technical products. Estimates of emissions of mercury from dental amalgam were derived from information on cremations in European countries and average contents of amalgam fillings. Annual emissions of mercury to air from product use in EU27 have been estimated to be in the range 10-18 tonnes (best estimate 14 tonnes) from technical products and to 2-5 tonnes from cremation, in total 12-23 tonnes. Of the mercury consumed in technical products, 11% was calculated to be emitted to air, 31% to end up in safe storage while 58% would still be accumulated in society or disposed of in landfills. From the share still accumulated in society, as well as from the already land filled amounts, further emissions of mercury to air may occur in the longer term. Emissions from technical products are calculated based on the consumption of mercury in 2005. Emissions occurring in the same year but caused by consumption in the previous 10 years were derived using the consumption in 2005 and assuming the same patterns of distribution and emissions. The latest available estimates of total anthropogenic emissions of mercury in EU27 refer to the year 2000 and are in the order of 140-190 tonnes, probably to have declined to 2005. Based on these figures the contribution to anthropogenic mercury emissions to air in EU from product use and cremation in 2005 is at least 6-16%. In a previous report product related air emissions of 72 tonnes were estimated for Europe in the mid 1990s, corresponding to 18% of the total air emissions. A significant decrease of emissions has thus occurred which is in line with a decreasing use of mercury in technical products, more efficient collection of remaining products and better emission control. However, the calculations show that the use of mercury in products still

  20. Reducing global mercury emissions in artisanal and small-scale ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2016-04-28

    caused mercury emissions, surpassing even coal-burning. With more than 15 million small-scale gold miners operating in more than 70 countries today, finding a way to reduce mercury emissions is vital.

  1. Sources and trends of environmental mercury emissions in Asia

    International Nuclear Information System (INIS)

    Wong, Coby S.C.; Duzgoren-Aydin, Nurdan S.; Aydin, Adnan; Wong, Ming H.

    2006-01-01

    This paper focuses on environmental mercury emissions in Asia and elaborates its probable trend in the future and associated implications given the anticipated socioeconomic outlook and other macro-environmental factors. Among the various regions, Asia has become the largest contributor of anthropogenic atmospheric Hg, responsible for over half of the global emission. In the next few decades, a significant increase in anthropogenic Hg emissions in Asia is likely owing to rapid economic and industrial development, unless drastic measures are taken. In particular, the dominance of Asia in some Hg-emitting industries, such as coal combustion, steel production and gold mining, provokes a serious environmental concern over their potential contributions of incidental Hg in the region. Moreover, the increasing prevalence of electrical and electronic manufacturing industry as a user and a contributor of Hg in Asia is also worrying. Specifically, disposal of obsolete electrical and electronic wastes represents a phenomenon increasingly encountered in Asia. In addition to escalating anthropogenic Hg emissions in Asia, associated environmental and health implications may also exacerbate in the region for the probable effects of a unique combination of climatic (e.g. subtropical climate), environmental (e.g. acid rain) and socioeconomic factors (e.g. high population density). Hence, much effort is still needed to understand the role of Asia in global Hg cycle and associated environmental and health effects in the region

  2. Development of novel activated carbon-based adsorbents for the control of mercury emissions from coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Radisav D. Vidic

    1999-03-01

    In addition to naturally occurring mercury sources, anthropogenic activities increase the mercury loading to the environment. Although not all produced mercury is dissipated directly into the environment, only minor portions of the total production are stocked or recycled, and the rest of the mercury and its compounds is finally released in some way into atmosphere, surface waters and soil, or ends in landfills dumps, and refuse. Since mercury and its compounds are highly toxic, their presence in the environment constitutes potential impact on all living organisms, including man. The first serious consequence of industrial mercury discharges causing neurological disorder even death occurred in Minimata, Japan in 1953. Systematic studies showed that mercury poisoning is mainly found in fish-eating populations. However, various levels of mercury are also found in food other than fish. During the past several decades, research has been conducted on the evaluation of risks due to exposure to mercury and the development of control technologies for mercury emissions. In 1990, the Clean Air Act Amendments listed mercury, along with 10 other metallic species, as a hazardous air pollutant (HAP). This has further stimulated research for mercury control during the past several years. The impact of mercury on humans, sources of mercury in the environment, current mercury control strategies and the objective of this research are discussed in this section.

  3. Climate Impacts From a Removal of Anthropogenic Aerosol Emissions

    Science.gov (United States)

    Samset, B. H.; Sand, M.; Smith, C. J.; Bauer, S. E.; Forster, P. M.; Fuglestvedt, J. S.; Osprey, S.; Schleussner, C.-F.

    2018-01-01

    Limiting global warming to 1.5 or 2.0°C requires strong mitigation of anthropogenic greenhouse gas (GHG) emissions. Concurrently, emissions of anthropogenic aerosols will decline, due to coemission with GHG, and measures to improve air quality. However, the combined climate effect of GHG and aerosol emissions over the industrial era is poorly constrained. Here we show the climate impacts from removing present-day anthropogenic aerosol emissions and compare them to the impacts from moderate GHG-dominated global warming. Removing aerosols induces a global mean surface heating of 0.5-1.1°C, and precipitation increase of 2.0-4.6%. Extreme weather indices also increase. We find a higher sensitivity of extreme events to aerosol reductions, per degree of surface warming, in particular over the major aerosol emission regions. Under near-term warming, we find that regional climate change will depend strongly on the balance between aerosol and GHG forcing.

  4. Mercury rising : mercury emissions from Ontario Power Generation's coal-fired plants

    International Nuclear Information System (INIS)

    Rang, S.

    2004-09-01

    Ontario Power Generation (OPG) operates 5 coal-fired power plants which are the largest single source of mercury emissions in Ontario. Mercury is a persistent, bioaccumulative neurotoxin which is considered toxic under the Canadian Environmental Protection Act. This report examines the health and environmental impacts of mercury, and the trends for mercury emission in Ontario. In 2002, the 5 coal-fired plants emitted 527 kg of mercury into the atmosphere and contributed 39 per cent of the total amount of mercury emitted into the air. While many other sectors have reduced their mercury emissions since 1988, Ontario's coal-fired plants have lagged behind and have actually increased mercury emissions by 16 per cent since 1988. This paper suggests that phasing out OPG coal-fired plants by 2007 could lead to a 39 per cent reduction in airborne mercury emissions. It would also allow Ontario to achieve the Canada Wide Standard for mercury emissions 3 years early, and would help both Ontario and Canada meet air pollution reduction commitments under international agreements. It was noted that phasing out coal-fired power plants by one-third will help Ontario achieve its goal of a 90 per cent reduction in mercury emissions by 2010. It was suggested that alternative power sources can offer a wide range of environmental advantages. 16 refs., 3 tabs., 2 figs

  5. Method and apparatus for monitoring mercury emissions

    Science.gov (United States)

    Durham, Michael D.; Schlager, Richard J.; Sappey, Andrew D.; Sagan, Francis J.; Marmaro, Roger W.; Wilson, Kevin G.

    1997-01-01

    A mercury monitoring device that continuously monitors the total mercury concentration in a gas. The device uses the same chamber for converting speciated mercury into elemental mercury and for measurement of the mercury in the chamber by radiation absorption techniques. The interior of the chamber is resistant to the absorption of speciated and elemental mercury at the operating temperature of the chamber.

  6. Mercury emission from a temperate lake during autumn turnover

    International Nuclear Information System (INIS)

    Wollenberg, Jennifer L.; Peters, Stephen C.

    2009-01-01

    Lakes in temperate regions stratify during summer and winter months, creating distinct layers of water differentiated by their physical and chemical characteristics. When lakes mix in autumn and spring, mercury cycling may be affected by the chemical changes that occur during mixing. Sampling was conducted in Lake Lacawac, Eastern Pennsylvania, USA, throughout the autumn of 2007 to characterize changes in emission of gaseous elemental mercury (Hg 0 ) from the lake surface and dissolved mercury profiles in the water column during mixing. Water chemistry and weather parameters were also measured, including dissolved organic carbon (DOC), iron, and solar radiation which have been shown to interact with mercury species. Results indicate that emission of Hg 0 from the lake to the atmosphere during turnover was controlled both by solar radiation and by surface water mercury concentration. As autumn turnover progressed through the months of October and November, higher mercury concentration water from the hypolimnion mixed with epilimnetic water, increasing mercury concentration in epilimnetic waters. Dissolved absorbance was significantly correlated with mercury concentrations and with iron, but DOC concentrations were essentially constant throughout the study period and did not exhibit a relationship with either dissolved mercury concentrations or emission rates. Positive correlations between dissolved mercury and iron and manganese also suggest a role for these elements in mercury transport within the lake, but iron and manganese did not demonstrate a relationship with emission rates. This research indicates that consideration of seasonal processes in lakes is important when evaluating mercury cycling in aquatic systems

  7. Particulate-phase mercury emissions from biomass burning ...

    Science.gov (United States)

    Mercury (Hg) emissions from biomass burning (BB) are an important source of atmospheric Hg and a major factor driving the interannual variation of Hg concentrations in the troposphere. The greatest fraction of Hg from BB is released in the form of elemental Hg (Hg0(g)). However, little is known about the fraction of Hg bound to particulate matter (HgP) released from BB, and the factors controlling this fraction are also uncertain. In light of the aims of the Minamata Convention to reduce intentional Hg use and emissions from anthropogenic activities, the relative importance of Hg emissions from BB will have an increasing impact on Hg deposition fluxes. Hg speciation is one of the most important factors determining the redistribution of Hg in the atmosphere and the geographical distribution of Hg deposition. Using the latest version of the Global Fire Emissions Database (GFEDv4.1s) and the global Hg chemistry transport model, ECHMERIT, the impact of Hg speciation in BB emissions, and the factors which influence speciation, on Hg deposition have been investigated for the year 2013. The role of other uncertainties related to physical and chemical atmospheric processes involving Hg and the influence of model parametrisations were also investigated, since their interactions with Hg speciation are complex. The comparison with atmospheric HgP concentrations observed at two remote sites, Amsterdam Island (AMD) and Manaus (MAN), in the Amazon showed a significant improve

  8. Assessment of the mercury emissions from burning mining waste dumps

    Directory of Open Access Journals (Sweden)

    Barbara Białecka

    2016-04-01

    occur and to which the environment and local inhabitants can be exposed, it is important to define the size of the emission of mercury compounds from these objects. Despite the potential threats so far no measurements of mercury concentration which would a llow quantifying this phenomenon have been done. The analyses presented in this article fill this gap. Additionally, initial calculation of annual mercury emissions from burning coal mining waste dumps in Poland is presented.

  9. Mercury emissions control technologies for mixed waste thermal treatment

    International Nuclear Information System (INIS)

    Chambers, A.; Knecht, M.; Soelberg, N.; Eaton, D.

    1997-01-01

    EPA has identified wet scrubbing at low mercury feedrates, as well as carbon adsorption via carbon injection into the offgas or via flow through fixed carbon beds, as control technologies that can be used to meet the proposed Maximum Achievable Control Technology (MACT) rule limit for mercury emissions from hazardous waste incinerators. DOE is currently funding demonstrations of gold amalgamation that may also control mercury to the desired levels. Performance data from a variety of sources was reviewed to determine ranges of achievable mercury control. Preliminary costs were estimated for using these technologies to control mercury emissions from mixed waste incineration. Mercury emissions control for mixed waste incineration may need to be more efficient than for incineration of other hazardous wastes because of higher mercury concentrations in some mixed waste streams. However, mercury control performance data for wet scrubbing and carbon adsorption is highly variable. More information is needed to demonstrate control efficiencies that are achievable under various design and operating conditions for wet scrubbing, carbon adsorption, and gold amalgamation technologies. Given certain assumptions made in this study, capital costs, operating costs, and lifecycle costs for carbon injection, carbon beds, and gold amalgamation generally vary for different assumed mercury feedrates and for different offgas flowrates. Assuming that these technologies can in fact provide the necessary mercury control performance, each of these technologies may be less costly than the others for certain mercury feedrates and the offgas flowrates

  10. Childhood asthma and anthropogenic CO2 emissions

    Directory of Open Access Journals (Sweden)

    Dosanjh A

    2011-10-01

    Full Text Available Amrita DosanjhPediatric Pulmonologist, San Diego, California, USATrends in the incidence of childhood asthma worldwide have paralleled the sharp increase in carbon dioxide (CO2 emissions, over at least the last two decades. The prevalence of asthma in the United States has quadrupled over the last 20 years in part due to climate-related factors. In a report released by Harvard Medical School and the Center for Health and the Global Environment, it was noted that there was an increase in asthma incidence of 160% from 1980–1994 among preschool children.  

  11. Ancillary Benefits of Climate Policies for the Mitigation of Atmospheric Mercury Emissions

    Directory of Open Access Journals (Sweden)

    Rafaj P.

    2013-04-01

    Full Text Available This study provides an analysis of the impact of global climate policies on mercury emissions using the Greenhouse Gas and Air Pollution Interactions and Synergies (GAINS model in the time horizon up to 2050. The time evolution of mercury emissions is based on projections of energy consumption provided by the Prospective Outlook for the Long term Energy System (POLES model for a scenario without any global greenhouse gas mitigation efforts, and for a 2°C climate policy scenario, which assumes internationally coordinated action to mitigate climate change. Outcomes of the analysis are reported globally and for key world regions: EU-27, China, India and the US. The assessment takes into account current air pollution control legislation in each country. Scenario calculations for mercury emissions indicate significant scope for co-benefits made possible through climate policies. Atmospheric releases of mercury from anthropogenic sources under the global climate mitigation regime are reduced in 2050 by 45% when compared to the case without climate measures. Around one third of co-benefits for mercury emissions estimated world-wide in this study by 2050 are allocated to China. An annual Hg-abatement of about 800 tons is estimated for the coal combustion in power sector if the current air pollution legislation and climate policies are adopted in parallel.

  12. Estimating mercury emissions from a zinc smelter in relation to China's mercury control policies

    International Nuclear Information System (INIS)

    Wang, S.X.; Song, J.X.; Li, G.H.; Wu, Y.; Zhang, L.; Wan, Q.; Streets, D.G.; Chin, Conrad K.; Hao, J.M.

    2010-01-01

    Mercury concentrations of flue gas at inlet/outlet of the flue gas cleaning, electrostatic demister, reclaiming tower, acid plant, and mercury contents in zinc concentrate and by-products were measured in a hydrometallurgical zinc smelter. The removal efficiency of flue gas cleaning, electrostatic demister, mercury reclaiming and acid plant was about 17.4%, 30.3%, 87.9% and 97.4% respectively. Flue gas cleaning and electrostatic demister captured 11.7% and 25.3% of the mercury in the zinc concentrate, respectively. The mercury reclaiming tower captured 58.3% of the mercury in the zinc concentrate. About 4.2% of the mercury in the zinc concentrate was captured by the acid plant. Consequently, only 0.8% of the mercury in the zinc concentrate was emitted to the atmosphere. The atmospheric mercury emission factor was 0.5 g t -1 of zinc produced for the tested smelter, indicating that this process offers the potential to effectively reduce mercury emissions from zinc smelting. - Modern scale production equipped with acid plant and Hg reclaiming tower will significantly reduce Hg emissions from zinc smelters in China.

  13. Increased mercury emissions from modern dental amalgams

    OpenAIRE

    Bengtsson, Ulf G.; Hylander, Lars D.

    2017-01-01

    All types of dental amalgams contain mercury, which partly is emitted as mercury vapor. All types of dental amalgams corrode after being placed in the oral cavity. Modern high copper amalgams exhibit two new traits of increased instability. Firstly, when subjected to wear/polishing, droplets rich in mercury are formed on the surface, showing that mercury is not being strongly bonded to the base or alloy metals. Secondly, high copper amalgams emit substantially larger amounts of mercury vapor ...

  14. A tiered observational system for anthropogenic methane emissions

    Science.gov (United States)

    Duren, R. M.; Miller, C. E.; Hulley, G. C.; Hook, S. J.; Sander, S. P.

    2014-12-01

    Improved understanding of anthropogenic methane emissions is required for closing the global carbon budget and addressing priority challenges in climate policy. Several decades of top-down and bottom-up studies show that anthropogenic methane emissions are systematically underestimated in key regions and economic sectors. These uncertainties have been compounded by the dramatic rise of disruptive technologies (e.g., the transformation in the US energy system due to unconventional gas and oil production). Methane flux estimates derived from inverse analyses and aircraft-based mass balance approaches underscore the disagreement in nationally and regionally reported methane emissions as well as the possibility of a long-tail distribution in fugitive emissions spanning the US natural gas supply chain; i.e. a small number of super-emitters may be responsible for most of the observed anomalies. Other studies highlight the challenges of sectoral and spatial attribution of fugitive emissions - including the relative contributions of dairies vs oil and gas production or disentangling the contributions of natural gas transmission, distribution, and consumption or landfill emissions in complex urban environments. Limited observational data remains a foundational barrier to resolving these challenges. We present a tiered observing system strategy for persistent, high-frequency monitoring over large areas to provide remote detection, geolocation and quantification of significant anthropogenic methane emissions across cities, states, basins and continents. We describe how this would both improve confidence in methane emission estimates and expedite resolution of fugitive emissions and leaks. We summarize recent prototype field campaigns that employ multiple vantage points and measurement techniques (including NASA's CARVE and HyTES aircraft and PanFTS instrument on Mt Wilson). We share preliminary results of this tiered observational approach including examples of individual

  15. Atmospheric mercury concentration and chemical speciation at a rural site in Beijing, China: implications of mercury emission sources

    Directory of Open Access Journals (Sweden)

    L. Zhang

    2013-10-01

    Full Text Available Continuous measurements of atmospheric mercury concentration and speciation play a key role in identifying mercury sources and its behavior in the atmosphere. In this study, speciated atmospheric mercury including gaseous elemental mercury (GEM, reactive gaseous mercury (RGM and particle-bound mercury (PBM were continuously measured at Miyun, a rural site in Beijing, China, from December 2008 to November 2009. The average GEM, RGM and PBM concentrations were found to be 3.22 ± 1.74, 10.1 ± 18.8 and 98.2 ± 112.7 pg m−3, respectively, about 2–20 times higher than the background concentration of the Northern Hemisphere. The results indicated that atmospheric mercury concentrations in northern China were highly affected by anthropogenic emissions. The atmospheric mercury showed obvious seasonal variations, with the highest seasonal average GEM concentration in summer (3.48 ng m−3 and the lowest value in winter (2.66 ng m−3. In autumn and winter a diurnal variation of GEM was observed, with peak levels in the late afternoon till midnight. Most of the high RGM concentration values occurred in the afternoon of all seasons due to the higher oxidation. The PBM concentration was higher in early morning of all seasons because of the the temperature inversion that increases in depth as the night proceeds. The ratio of GEM to CO indicates that residential boilers play an important role in the elevation of GEM in winter. The ratio of RGM to O3 could be an indicator of the contribution of local primary sources. The ratio of PBM to PM2.5 reveals that the air mass from the east and southwest of the site in spring and summer carries more atmospheric mercury. The HYSPLIT back-trajectory analysis indicated that the monitoring site is affected by local, regional and interregional sources simultaneously during heavy pollution episodes. The results from the potential source contribution function (PSCF model indicate that the atmospheric transport

  16. Mercury emissions from India and South East Asia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-10-01

    Mercury is an element of growing global concern. The United Nations Environment Programme plans to finalise a new global legally binding instrument on mercury by 2013, to coordinate actions to reduce emissions of mercury. It has been well established that Asia represents not only the region contributing to greatest current mercury emissions but also the region with the fastest growth rate. Despite this, emissions from human activities in most countries in this region are not well characterised. This report summarises the limited data available on mercury emissions from India, Cambodia, Indonesia, Malaysia, the Philippines, Thailand and Vietnam. These countries were specifically selected as they are areas of potentially significant growth in energy use in the near future. Information is given on the major sources of mercury in these countries, concentrating mostly on coal combustion and the non-ferrous metal industry. Although it is beyond the scope of this report to make new estimates for emissions, information is provided on current fossil fuel use and industrial activity as well as projections for these sectors to 2020 to give an indication of the general scale of these sources and the potential for increased emissions in the future. Some countries have established regulations or action plans on emissions and these are summarised where possible. Recommendations are then made for potential actions which could be taken in each country to encourage action and achieve economic reduction in mercury emissions.

  17. Anthropogenic Chromium Emissions in China from 1990 to 2009

    Science.gov (United States)

    Cheng, Hongguang; Zhou, Tan; Li, Qian; Lu, Lu; Lin, Chunye

    2014-01-01

    An inventory of chromium emission into the atmosphere and water from anthropogenic activities in China was compiled for 1990 through to 2009. We estimate that the total emission of chromium to the atmosphere is about 1.92×105t. Coal and oil combustion were the two leading sources of chromium emission to the atmosphere in China, while the contribution of them showed opposite annual growth trend. In total, nearly 1.34×104t of chromium was discharged to water, mainly from six industrial categories in 20 years. Among them, the metal fabrication industry and the leather tanning sector were the dominant sources of chromium emissions, accounting for approximately 68.0% and 20.0% of the total emissions and representing increases of15.6% and 10.3% annually, respectively. The spatial trends of Cr emissions show significant variation based on emissions from 2005 to 2009. The emission to the atmosphere was heaviest in Hebei, Shandong, Guangdong, Zhejiang and Shanxi, whose annual emissions reached more than 1000t for the high level of coal and oil consumption. In terms of emission to water, the largest contributors were Guangdong, Jiangsu, Shandong and Zhejiang, where most of the leather production and metal manufacturing occur and these four regions accounted for nearly 47.4% of the total emission to water. PMID:24505309

  18. Mercury emissions from coal combustion in Silesia, analysis using geostatistics

    Science.gov (United States)

    Zasina, Damian; Zawadzki, Jaroslaw

    2015-04-01

    Data provided by the UNEP's report on mercury [1] shows that solid fuel combustion in significant source of mercury emission to air. Silesia, located in southwestern Poland, is notably affected by mercury emission due to being one of the most industrialized Polish regions: the place of coal mining, production of metals, stone mining, mineral quarrying and chemical industry. Moreover, Silesia is the region with high population density. People are exposed to severe risk of mercury emitted from both: industrial and domestic sources (i.e. small household furnaces). Small sources have significant contribution to total emission of mercury. Official and statistical analysis, including prepared for international purposes [2] did not provide data about spatial distribution of the mercury emitted to air, however number of analysis on Polish public power and energy sector had been prepared so far [3; 4]. The distribution of locations exposed for mercury emission from small domestic sources is interesting matter merging information from various sources: statistical, economical and environmental. This paper presents geostatistical approach to distibution of mercury emission from coal combustion. Analysed data organized in 2 independent levels: individual, bottom-up approach derived from national emission reporting system [5; 6] and top down - regional data calculated basing on official statistics [7]. Analysis, that will be presented, will include comparison of spatial distributions of mercury emission using data derived from sources mentioned above. Investigation will include three voivodeships of Poland: Lower Silesian, Opole (voivodeship) and Silesian using selected geostatistical methodologies including ordinary kriging [8]. References [1] UNEP. Global Mercury Assessment 2013: Sources, Emissions, Releases and Environmental Transport. UNEP Chemicals Branch, Geneva, Switzerland, 2013. [2] NCEM. Poland's Informative Inventory Report 2014. NCEM at the IEP-NRI, 2014. http

  19. Micrometeorological methods for measurements of mercury emissions over contaminated soils

    International Nuclear Information System (INIS)

    Kim, K.H.; Lindberg, S.E.; Hanson, P.J.; Owens, J.; Myers, T.P.

    1993-01-01

    As part of a larger study involving development and application of field and laboratory methods (micrometeorological, dynamic enclosure chamber, and controlled laboratory chamber methods) to measure the air/surface exchange of Hg vapor, we performed a series of preliminary measurements over contaminated soils. From March--April 1993, we used the modified Bowen ratio (MBR) method to measure emission rates of mercury over a floodplain contaminated with mercury near Oak Ridge, TN. The mercury emission rates measured from contaminated EFPC soils using the MBR method during early spring show that (1) in all cases, the contaminated soils acted as a source of mercury to the atmosphere with source strengths ranging from 17 to 160 ng m -2 h -1 ; and (2) the strengths of mercury emissions can be greatly influenced by the combined effects of surface soil temperature, residence time of air masses over the source area, and turbulence conditions. The mercury fluxes measured in a controlled flow chamber indicate that contaminated soils can exhibit up to an order of magnitude higher emission rates of Hg under conditions of elevated soil temperature, soil structure disturbance, and high turbulence. Mercury emissions from contaminated soils exceeded emissions from background soils by one to two orders of magnitude

  20. Emissions of airborne toxics from coal-fired boilers: Mercury

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H.S.; Livengood, C.D.; Zaromb, S.

    1991-09-01

    Concerns over emissions of hazardous air Pollutants (air toxics) have emerged as a major environmental issue, and the authority of the US Environmental Protection Agency to regulate such pollutants was greatly expanded through the Clean Air Act Amendments of 1990. Mercury has been singled out for particular attention because of concerns over possible effects of emissions on human health. This report evaluates available published information on the mercury content of coals mined in the United States, on mercury emitted in coal combustion, and on the efficacy of various environmental control technologies for controlling airborne emissions. Anthracite and bituminous coals have the highest mean-mercury concentrations, with subbituminous coals having the lowest. However, all coal types show very significant variations in mercury concentrations. Mercury emissions from coal combustion are not well-characterized, particularly with regard to determination of specific mercury compounds. Variations in emission rates of more than an order of magnitude have been reported for some boiler types. Data on the capture of mercury by environmental control technologies are available primarily for systems with electrostatic precipitators, where removals of approximately 20% to over 50% have been reported. Reported removals for wet flue-gas-desulfurization systems range between 35 and 95%, while spray-dryer/fabric-filter systems have given removals of 75 to 99% on municipal incinerators. In all cases, better data are needed before any definitive judgments can be made. This report briefly reviews several areas of research that may lead to improvements in mercury control for existing flue-gas-clean-up technologies and summarizes the status of techniques for measuring mercury emissions from combustion sources.

  1. Atmospheric emission of mercury due to combustion of steam coal and domestic coal in China

    Science.gov (United States)

    Wang, Shaobin; Luo, Kunli

    2017-08-01

    To study the mercury emission due to the combustion of steam coal and domestic coal in China, we analyzed the mercury contents of coal, fly ash, bottom ash and sluicing water in thermal power plants, steam boilers as well as domestic coal-stoves, in Shaanxi, Shanxi, Shandong and Yunnan Provinces. This study conduct an estimate of the Hg emission rates from steam coal and domestic coal combustion based on the method of mass distribution ratio of fly ash and bottom ash. The results show that the Hg emission rate of coal combustion in thermal power plants is about 50.21% (electrostatic precipitators + wet flue gas desulfurization), and that in heating boilers is about 67.23%, and 92.28% in industrial boilers without flue gas desulphurisation equipment. Furthermore, Hg emission rate is 83.61% due to domestic coal combustion in coal-stoves. The Hg emission amount into the atmosphere from power and heat generation, industrial boilers, domestic coal-stoves and spontaneous combustion of coal gangue is roughly estimated to be 133 ± 4, 100 ± 17, 11 ± 0.1 and 47 ± 26 tons in China in 2014, respectively, and the total Hg emission amount from this paper is estimated at 292 tons. The trends of Hg emission in China from 1991 to 2014 show an accelerating growth after 2002. The proportion of mercury emission due to thermal power, heating generation and industrial energy utilization continuously increased. The atmospheric emission of mercury due to combustion of steam coal, domestic coal and coal gangue accounts nearly 50% in total anthropogenic Hg emissions in China, indicating one of the largest sources of Hg emission in China which should draw more public and scientific attention in the future.

  2. Primary anthropogenic aerosol emission trends for China, 1990–2005

    Directory of Open Access Journals (Sweden)

    Y. Lei

    2011-02-01

    Full Text Available An inventory of anthropogenic primary aerosol emissions in China was developed for 1990–2005 using a technology-based approach. Taking into account changes in the technology penetration within industry sectors and improvements in emission controls driven by stricter emission standards, a dynamic methodology was derived and implemented to estimate inter-annual emission factors. Emission factors of PM2.5 decreased by 7%–69% from 1990 to 2005 in different industry sectors of China, and emission factors of TSP decreased by 18%–80% as well, with the measures of controlling PM emissions implemented. As a result, emissions of PM2.5 and TSP in 2005 were 11.0 Tg and 29.7 Tg, respectively, less than what they would have been without the adoption of these measures. Emissions of PM2.5, PM10 and TSP presented similar trends: they increased in the first six years of 1990s and decreased until 2000, then increased again in the following years. Emissions of TSP peaked (35.5 Tg in 1996, while the peak of PM10 (18.8 Tg and PM2.5 (12.7 Tg emissions occurred in 2005. Although various emission trends were identified across sectors, the cement industry and biofuel combustion in the residential sector were consistently the largest sources of PM2.5 emissions, accounting for 53%–62% of emissions over the study period. The non-metallic mineral product industry, including the cement, lime and brick industries, accounted for 54%–63% of national TSP emissions. There were no significant trends of BC and OC emissions until 2000, but the increase after 2000 brought the peaks of BC (1.51 Tg and OC (3.19 Tg emissions in 2005. Although significant improvements in the estimation of primary aerosols are presented here, there still exist large uncertainties. More accurate and detailed activity information and emission factors based on local tests are essential to further improve emission estimates

  3. GOSAT observations of anthropogenic emission of carbon dioxide and methane

    Science.gov (United States)

    Janardanan, Rajesh; Maksyutov, Shamil; Oda, Tomohiro; Saito, Makoto; Ito, Akihiko; Kaiser, Johannes W.; Ganshin, Alexander; Yoshida, Yukio; Yokota, Tatsuya; Matsunaga, Tsuneo

    2017-04-01

    Carbon dioxide (CO2) and methane (CH4) are the most important greenhouse gases in terms of radiative forcing. Human activities such as combustion of fossil fuel (for CO2), and gas leakage, animal agriculture, rice cultivation and landfill emissions (for CH4), are considered to be major sources of their emissions. Global emissions datasets usually depend on emission estimates reported by countries, which are seldom evaluated in an objective way. Here we present a method for delineating anthropogenic contributions to global atmospheric CO2 and CH4 (2009-2014) concentration fields using GOSAT observations of column-average dry air mole fractions (XCO2 and XCH4) and atmospheric transport model simulations using high-resolution emissions datasets (ODIAC for CO2 and EDGAR for CH4). The XCO2 and XCH4 concentration enhancements due to anthropogenic emissions are estimated at all GOSAT observation locations using the transport model simulation. We calculated threshold values to classify GOSAT observations into two categories: (1) data influenced by the anthropogenic sources and (2) those not influenced. We defined a clean background (averaged concentrations of GOSAT data that are free from contamination) in 10˚ ×10˚ regions over the globe and subtracted the background values from individual GOSAT observations. The anomalies (GOSAT observed values minus background values) were binned and compared to model-based anomalies over continental regions and selected countries. For CO2, we have found global and regional linear relationships between model and observed anomalies especially for Eurasia and North America. The analysis for East Asian region showed a systematic bias that is somewhat comparable in magnitude to the uncertainties in emission inventories in that region, which were reported by recent studies. In the case of CH4, we found a good match between inventory-based estimates and GOSAT observations for continental regions and large countries. The inventory

  4. Biogenic emissions of isoprenoids and NO in China and comparison to anthropogenic emissions

    International Nuclear Information System (INIS)

    Tie Xuexi; Li Guohui; Ying, Zhuming; Guenther, Alex; Madronich, Sasha

    2006-01-01

    In this study, a regional dynamical model (WRF) is used to drive biogenic emission models to calculate high resolution (10 x 10 km) biogenic emissions of isoprene (C 5 H 8 ), monoterpenes (C 1 H 16 ), and nitric oxide (NO) in China. This high resolution biogenic inventory will be available for the community to study the effect of biogenic emissions on photochemical oxidants in China. The biogenic emissions are compared to anthropogenic emissions to gain insight on the potential impact of the biogenic emissions on tropospheric chemistry, especially ozone production in this region. The results show that the biogenic emissions in China exhibit strongly diurnal, seasonal, and spatial variations. The isoprenoid (including both isoprene and monoterpenes) emissions are closely correlated to tree density and strongly vary with season and local time. During winter (January), the biogenic isoprenoid emissions are the lowest, resulting from lower temperature and solar radiation, and highest in summer (July) due to higher temperature and solar radiation. The biogenic NO emissions are also higher during summer and lower during winter, but the magnitude of the seasonal variation is smaller than the emissions of isoprene and monoterpenes. The biogenic emissions of NO are widely spread out in the northern, eastern, and southern China regions, where high-density agricultural soil lands are located. Both biogenic NO and isoprenoid emissions are very small in western China. The calculated total biogenic emission budget is smaller than the total anthropogenic VOC emission budget in China. The biogenic isoprenoid and anthropogenic VOC emissions are 10.9 and 15.1 Tg year -1 , respectively. The total biogenic and anthropogenic emissions of NO are 5.9 and 11.5 Tg(NO) year -1 , respectively. The study shows that in central eastern China, the estimated biogenic emissions of isoprenoids are very small, and the anthropogenic emissions of VOCs are dominant in this region. However, in

  5. Biogenic emissions of isoprenoids and NO in China and comparison to anthropogenic emissions.

    Science.gov (United States)

    Tie, Xuexi; Li, Guohui; Ying, Zhuming; Guenther, Alex; Madronich, Sasha

    2006-12-01

    In this study, a regional dynamical model (WRF) is used to drive biogenic emission models to calculate high resolution (10x10 km) biogenic emissions of isoprene (C(5)H(8)), monoterpenes (C(10)H(16)), and nitric oxide (NO) in China. This high resolution biogenic inventory will be available for the community to study the effect of biogenic emissions on photochemical oxidants in China. The biogenic emissions are compared to anthropogenic emissions to gain insight on the potential impact of the biogenic emissions on tropospheric chemistry, especially ozone production in this region. The results show that the biogenic emissions in China exhibit strongly diurnal, seasonal, and spatial variations. The isoprenoid (including both isoprene and monoterpenes) emissions are closely correlated to tree density and strongly vary with season and local time. During winter (January), the biogenic isoprenoid emissions are the lowest, resulting from lower temperature and solar radiation, and highest in summer (July) due to higher temperature and solar radiation. The biogenic NO emissions are also higher during summer and lower during winter, but the magnitude of the seasonal variation is smaller than the emissions of isoprene and monoterpenes. The biogenic emissions of NO are widely spread out in the northern, eastern, and southern China regions, where high-density agricultural soil lands are located. Both biogenic NO and isoprenoid emissions are very small in western China. The calculated total biogenic emission budget is smaller than the total anthropogenic VOC emission budget in China. The biogenic isoprenoid and anthropogenic VOC emissions are 10.9 and 15.1 Tg year(-1), respectively. The total biogenic and anthropogenic emissions of NO are 5.9 and 11.5 Tg(NO) year(-1), respectively. The study shows that in central eastern China, the estimated biogenic emissions of isoprenoids are very small, and the anthropogenic emissions of VOCs are dominant in this region. However, in

  6. [Study on mercury re-emissions during fly ash utilization].

    Science.gov (United States)

    Meng, Yang; Wang, Shu-Xiao

    2012-09-01

    The amount of fly ash produced during coal combustion is around 400 million tons per year in China. About 65%-68% of fly ash is used in building material production, road construction, architecture and agriculture. Some of these utilization processes include high temperature procedures, which may lead to mercury re-emissions. In this study, experiments were designed to simulate the key process in cement production and steam-cured brick production. A temperature programmed desorption (TPD) method was used to study the mercury transformation in the major utilization processes. Mercury re-emission during the fly ash utilization in China was estimated based on the experimental results. It was found that mercury existed as HgCl2 (Hg2 Cl2), HgS and HgO in the fly ash. During the cement production process, more than 98% of the mercury in fly ash was re-emitted. In the steam-curing brick manufacturing process, the average mercury re-emission percentage was about 28%, which was dominated by the percentage of HgCl2 (Hg2 Cl2). It is estimated that the mercury re-emission during the fly ash utilization have increased from 4.07 t in 2002 to 9.18 t in 2008, of which cement industry contributes about 96.6%.

  7. Atmospheric verification of anthropogenic CO2 emission trends

    Science.gov (United States)

    Francey, Roger J.; Trudinger, Cathy M.; van der Schoot, Marcel; Law, Rachel M.; Krummel, Paul B.; Langenfelds, Ray L.; Paul Steele, L.; Allison, Colin E.; Stavert, Ann R.; Andres, Robert J.; Rödenbeck, Christian

    2013-05-01

    International efforts to limit global warming and ocean acidification aim to slow the growth of atmospheric CO2, guided primarily by national and industry estimates of production and consumption of fossil fuels. Atmospheric verification of emissions is vital but present global inversion methods are inadequate for this purpose. We demonstrate a clear response in atmospheric CO2 coinciding with a sharp 2010 increase in Asian emissions but show persisting slowing mean CO2 growth from 2002/03. Growth and inter-hemispheric concentration difference during the onset and recovery of the Global Financial Crisis support a previous speculation that the reported 2000-2008 emissions surge is an artefact, most simply explained by a cumulative underestimation (~ 9PgC) of 1994-2007 emissions; in this case, post-2000 emissions would track mid-range of Intergovernmental Panel on Climate Change emission scenarios. An alternative explanation requires changes in the northern terrestrial land sink that offset anthropogenic emission changes. We suggest atmospheric methods to help resolve this ambiguity.

  8. Technical opportunities to reduce global anthropogenic emissions of nitrous oxide

    Science.gov (United States)

    Winiwarter, Wilfried; Höglund-Isaksson, Lena; Klimont, Zbigniew; Schöpp, Wolfgang; Amann, Markus

    2018-01-01

    We describe a consistent framework developed to quantify current and future anthropogenic emissions of nitrous oxide and the available technical abatement options by source sector for 172 regions globally. About 65% of the current emissions derive from agricultural soils, 8% from waste, and 4% from the chemical industry. Low-cost abatement options are available in industry, wastewater, and agriculture, where they are limited to large industrial farms. We estimate that by 2030, emissions can be reduced by about 6% ±2% applying abatement options at a cost lower than 10 €/t CO2-eq. The largest abatement potential at higher marginal costs is available from agricultural soils, employing precision fertilizer application technology as well as chemical treatment of fertilizers to suppress conversion processes in soil (nitrification inhibitors). At marginal costs of up to 100 €/t CO2-eq, about 18% ±6% of baseline emissions can be removed and when considering all available options, the global abatement potential increases to about 26% ±9%. Due to expected future increase in activities driving nitrous oxide emissions, the limited technical abatement potential available means that even at full implementation of reduction measures by 2030, global emissions can be at most stabilized at the pre-2010 level. In order to achieve deeper reductions in emissions, considerable technological development will be required as well as non-technical options like adjusting human diets towards moderate animal protein consumption.

  9. A reactive transport model for mercury fate in soil--application to different anthropogenic pollution sources.

    Science.gov (United States)

    Leterme, Bertrand; Blanc, Philippe; Jacques, Diederik

    2014-11-01

    Soil systems are a common receptor of anthropogenic mercury (Hg) contamination. Soils play an important role in the containment or dispersion of pollution to surface water, groundwater or the atmosphere. A one-dimensional model for simulating Hg fate and transport for variably saturated and transient flow conditions is presented. The model is developed using the HP1 code, which couples HYDRUS-1D for the water flow and solute transport to PHREEQC for geochemical reactions. The main processes included are Hg aqueous speciation and complexation, sorption to soil organic matter, dissolution of cinnabar and liquid Hg, and Hg reduction and volatilization. Processes such as atmospheric wet and dry deposition, vegetation litter fall and uptake are neglected because they are less relevant in the case of high Hg concentrations resulting from anthropogenic activities. A test case is presented, assuming a hypothetical sandy soil profile and a simulation time frame of 50 years of daily atmospheric inputs. Mercury fate and transport are simulated for three different sources of Hg (cinnabar, residual liquid mercury or aqueous mercuric chloride), as well as for combinations of these sources. Results are presented and discussed with focus on Hg volatilization to the atmosphere, Hg leaching at the bottom of the soil profile and the remaining Hg in or below the initially contaminated soil layer. In the test case, Hg volatilization was negligible because the reduction of Hg(2+) to Hg(0) was inhibited by the low concentration of dissolved Hg. Hg leaching was mainly caused by complexation of Hg(2+) with thiol groups of dissolved organic matter, because in the geochemical model used, this reaction only had a higher equilibrium constant than the sorption reactions. Immobilization of Hg in the initially polluted horizon was enhanced by Hg(2+) sorption onto humic and fulvic acids (which are more abundant than thiols). Potential benefits of the model for risk management and remediation of

  10. Global anthropogenic emissions of particulate matter including black carbon

    Science.gov (United States)

    Klimont, Zbigniew; Kupiainen, Kaarle; Heyes, Chris; Purohit, Pallav; Cofala, Janusz; Rafaj, Peter; Borken-Kleefeld, Jens; Schöpp, Wolfgang

    2017-07-01

    This paper presents a comprehensive assessment of historical (1990-2010) global anthropogenic particulate matter (PM) emissions including the consistent and harmonized calculation of mass-based size distribution (PM1, PM2. 5, PM10), as well as primary carbonaceous aerosols including black carbon (BC) and organic carbon (OC). The estimates were developed with the integrated assessment model GAINS, where source- and region-specific technology characteristics are explicitly included. This assessment includes a number of previously unaccounted or often misallocated emission sources, i.e. kerosene lamps, gas flaring, diesel generators, refuse burning; some of them were reported in the past for selected regions or in the context of a particular pollutant or sector but not included as part of a total estimate. Spatially, emissions were calculated for 172 source regions (as well as international shipping), presented for 25 global regions, and allocated to 0.5° × 0.5° longitude-latitude grids. No independent estimates of emissions from forest fires and savannah burning are provided and neither windblown dust nor unpaved roads emissions are included. We estimate that global emissions of PM have not changed significantly between 1990 and 2010, showing a strong decoupling from the global increase in energy consumption and, consequently, CO2 emissions, but there are significantly different regional trends, with a particularly strong increase in East Asia and Africa and a strong decline in Europe, North America, and the Pacific region. This in turn resulted in important changes in the spatial pattern of PM burden, e.g. European, North American, and Pacific contributions to global emissions dropped from nearly 30 % in 1990 to well below 15 % in 2010, while Asia's contribution grew from just over 50 % to nearly two-thirds of the global total in 2010. For all PM species considered, Asian sources represented over 60 % of the global anthropogenic total, and residential combustion

  11. Global anthropogenic emissions of particulate matter including black carbon

    Directory of Open Access Journals (Sweden)

    Z. Klimont

    2017-07-01

    Full Text Available This paper presents a comprehensive assessment of historical (1990–2010 global anthropogenic particulate matter (PM emissions including the consistent and harmonized calculation of mass-based size distribution (PM1, PM2. 5, PM10, as well as primary carbonaceous aerosols including black carbon (BC and organic carbon (OC. The estimates were developed with the integrated assessment model GAINS, where source- and region-specific technology characteristics are explicitly included. This assessment includes a number of previously unaccounted or often misallocated emission sources, i.e. kerosene lamps, gas flaring, diesel generators, refuse burning; some of them were reported in the past for selected regions or in the context of a particular pollutant or sector but not included as part of a total estimate. Spatially, emissions were calculated for 172 source regions (as well as international shipping, presented for 25 global regions, and allocated to 0.5°  ×  0.5° longitude–latitude grids. No independent estimates of emissions from forest fires and savannah burning are provided and neither windblown dust nor unpaved roads emissions are included. We estimate that global emissions of PM have not changed significantly between 1990 and 2010, showing a strong decoupling from the global increase in energy consumption and, consequently, CO2 emissions, but there are significantly different regional trends, with a particularly strong increase in East Asia and Africa and a strong decline in Europe, North America, and the Pacific region. This in turn resulted in important changes in the spatial pattern of PM burden, e.g. European, North American, and Pacific contributions to global emissions dropped from nearly 30 % in 1990 to well below 15 % in 2010, while Asia's contribution grew from just over 50 % to nearly two-thirds of the global total in 2010. For all PM species considered, Asian sources represented over 60 % of the global

  12. [Mercury Distribution Characteristics and Atmospheric Mercury Emission Factors of Typical Waste Incineration Plants in Chongqing].

    Science.gov (United States)

    Duan, Zhen-ya; Su, Hai-tao; Wang, Feng-yang; Zhang, Lei; Wang, Shu-xiao; Yu, Bin

    2016-02-15

    Waste incineration is one of the important atmospheric mercury emission sources. The aim of this article is to explore the atmospheric mercury pollution level of waste incineration industry from Chongqing. This study investigated the mercury emissions from a municipal solid waste incineration plant and a medical waste incineration plant in Chongqing. The exhaust gas samples in these two incineration plants were obtained using USA EPA 30B method. The mercury concentrations in the fly ash and bottom ash samples were analyzed. The results indicated that the mercury concentrations of the municipal solid waste and medical waste incineration plant in Chongqing were (26.4 +/- 22.7) microg x m(-3) and (3.1 +/- 0.8) microg x m(-3) in exhaust gas respectively, (5279.2 +/- 798.0) microg x kg(-1) and (11,709.5 +/- 460.5) microg x kg(-1) in fly ash respectively. Besides, the distribution proportions of the mercury content from municipal solid waste and medical waste in exhaust gas, fly ash, and bottom ash were 34.0%, 65.3%, 0.7% and 32.3%, 67.5%, 0.2% respectively; The mercury removal efficiencies of municipal solid waste and medical waste incineration plants were 66.0% and 67.7% respectively. The atmospheric mercury emission factors of municipal solid waste and medical waste incineration plants were (126.7 +/- 109.0) microg x kg(-1) and (46.5 +/- 12.0) microg x kg(-1) respectively. Compared with domestic municipal solid waste incineration plants in the Pearl River Delta region, the atmospheric mercury emission factor of municipal solid waste incineration plant in Chongqing was lower.

  13. MercNet: A national monitoring network to assess responses to changing mercury emissions in the United States

    Science.gov (United States)

    Schmeltz, D.; Evers, D.C.; Driscoll, C.T.; Artz, R.; Cohen, M.; Gay, D.; Haeuber, R.; Krabbenhoft, D.P.; Mason, R.; Morris, K.; Wiener, J.G.

    2011-01-01

    A partnership of federal and state agencies, tribes, industry, and scientists from academic research and environmental organizations is establishing a national, policy-relevant mercury monitoring network, called MercNet, to address key questions concerning changes in anthropogenic mercury emissions and deposition, associated linkages to ecosystem effects, and recovery from mercury contamination. This network would quantify mercury in the atmosphere, land, water, and biota in terrestrial, freshwater, and coastal ecosystems to provide a national scientific capability for evaluating the benefits and effectiveness of emission controls. Program development began with two workshops, convened to establish network goals, to select key indicators for monitoring, to propose a geographic network of monitoring sites, and to design a monitoring plan. MercNet relies strongly on multi-institutional partnerships to secure the capabilities and comprehensive data that are needed to develop, calibrate, and refine predictive mercury models and to guide effective management. Ongoing collaborative efforts include the: (1) development of regional multi-media databases on mercury in the Laurentian Great Lakes, northeastern United States, and eastern Canada; (2) syntheses and reporting of these data for the scientific and policy communities; and (3) evaluation of potential monitoring sites. The MercNet approach could be applied to the development of other monitoring programs, such as emerging efforts to monitor and assess global mercury emission controls. ?? 2011 Springer Science+Business Media, LLC (outside the USA).

  14. African anthropogenic combustion emission inventory: specificities and uncertainties

    Science.gov (United States)

    Sekou, K.; Liousse, C.; Eric-michel, A.; Veronique, Y.; Thierno, D.; Roblou, L.; Toure, E. N.; Julien, B.

    2015-12-01

    Fossil fuel and biofuel emissions of gases and particles in Africa are expected to significantly increase in the near future, particularly due to the growth of African cities. In addition, African large savannah fires occur each year during the dry season, mainly for socio-economical purposes. In this study, we will present the most recent developments of African anthropogenic combustion emission inventories, stressing African specificities. (1)A regional fossil fuel and biofuel inventory for gases and particulates will be presented for Africa at a resolution of 0.25° x 0.25° from 1990 to 2012. For this purpose, the original database of Liousse et al. (2014) has been used after modification for emission factors and for updated regional fuel consumption including new emitter categories (waste burning, flaring) and new activity sectors (i.e. disaggregation of transport into sub-sectors including two wheel ). In terms of emission factors, new measured values will be presented and compared to litterature with a focus on aerosols. They result from measurement campaigns organized in the frame of DACCIWA European program for each kind of African specific anthropogenic sources in 2015, in Abidjan (Ivory Coast), Cotonou (Benin) and in Laboratoire d'Aérologie combustion chamber. Finally, a more detailed spatial distribution of emissions will be proposed at a country level to better take into account road distributions and population densities. (2) Large uncertainties still remain in biomass burning emission inventories estimates, especially over Africa between different datasets such as GFED and AMMABB. Sensitivity tests will be presented to investigate uncertainties in the emission inventories, applying methodologies used for AMMABB and GFED inventories respectively. Then, the relative importance of each sources (fossil fuel, biofuel and biomass burning inventories) on the budgets of carbon monoxide, nitrogen oxides, sulfur dioxide, black and organic carbon, and volatile

  15. North American Pollutant Export Due to Anthropogenic Emissions and Lightning

    Science.gov (United States)

    Martini, M.; Allen, D. J.; Pickering, K. E.; Loughner, C. P.; Yegorova, E. A.; Stenchikov, G.; Hyer, E.

    2008-12-01

    Power plant NOx emission reductions and their impact on air quality as well as the impact of different meteorological conditions is evaluated by using both a global and regional model. The anthropogenic contribution to North American (NA) pollutant export is evaluated for the summers of 2002 and 2004 by University of Maryland Chemistry and Transport Model (UMD-CTM) driven by GEOS-4 CERES reanalysis data. In the first part, we compare the magnitudes of the NA pollutant export and radiative forcing due to ozone production by NA anthropogenic emissions between the 2002 and 2004 summer seasons. Near surface air was cleaner during the summer of 2004 due to relatively cool temperatures, frequent synoptic disturbances, and reduced emissions. In spite of reduced NOx emissions and abnormally low surface temperatures in summer 2004, we show that the monthly averages of net IR radiative fluxes are greater or similar in magnitude in 2004 than in 2002. We hypothesize that this is because of stronger convective transport of polluted airmasses in the upper troposphere where ozone plays an important climate role. We test a new lightning scheme which was tuned to total flashrates determined by combining National Lightning Detection Network (NLDN) flashrates with climatological IC/CG ratios. We also investigate if 500 moles/flash is an appropriate average LNOx production per flash in midlatitudes. In the second part, we simulate a couple of high ozone episodes using WRF-CHEM at a 48-km horizontal resolution (4x finer than that used in UMD-CTM) and a nested 12km domain covering the Eastern half of the US with trace gas lateral boundary and initial conditions from the UMD-CTM. WRF-CHEM model output is compared with high resolution satellite- (SCIAMACHY NO2, MOPITT CO), aircraft- (INTEX-A) and ground- based measurements (AQS). Lastly, we run the simulation with different lateral boundary conditions from Global Modeling Initiative (GMI) model.

  16. Emissions of biogenic VOC from forest ecosystems in central Europe: Estimation and comparison with anthropogenic emission inventory

    International Nuclear Information System (INIS)

    Zemankova, Katerina; Brechler, Josef

    2010-01-01

    This paper describes a method of estimating emission fluxes of biogenic volatile organic compounds (BVOCs) based on the approach proposed by and the high-resolution Corine land-cover 2000 database (1 x 1 km resolution). The computed emission fluxes for the Czech Republic (selected for analysis as being representative of a heavily cultivated, central European country) are compared with anthropogenic emissions, both for the entire country and for individual administrative regions. In some regions, BVOC emissions are as high as anthropogenic emissions; however, in most regions the BVOC emissions are approximately 50% of the anthropogenic emissions. The yearly course of BVOC emissions (represented by monoterpenes and isoprene) is presented, along with the spatial distribution of annual mean values. Differences in emission distributions during winter (January) and summer (June) are also considered. - The amount of the biogenic VOCs emitted over the central Europe is comparable with the anthropogenic VOC emissions from this region.

  17. Mercury emissions inventory for 2014 in Costa Rica using the PNUMA Toolkit to a N2 level

    Directory of Open Access Journals (Sweden)

    Julio César Murillo-Hernández

    2017-12-01

    Full Text Available The Minamata Convention was signed in October 2013 to protect human health and the environment from releases and anthropogenic emissions of elemental mercury and compounds containing this element.  When Costa Rica ratified this instrument, the country committed to develop and keep updated an inventory of emissions from the relevant sources of mercury. In the present work, the tool proposed by UNEP was used to generate the first mercury inventory at the N2 level of the country, which considers releases of mercury in air, water, soil, product and waste matrices. Taking 2014 as the reference year, the estimated mercury emission for Costa Rica was recorded at 5 052 kg, with an uncertainty interval between 2 675 kg and 10 525 kg; and the most important sectors in terms of the total emission were the extraction of gold with amalgamation (42 %, informal burning of waste (15 % and use of dental amalgams (10 %. The most impacted matrices were air (29 %, water (28 % and soil (21 %, respectively.

  18. The consideration of non-anthropogenic emissions for air quality modelling in South Africa

    CSIR Research Space (South Africa)

    Naidoo, M

    2015-10-01

    Full Text Available inventory to appraise their impact on air quality. Frequently the anthropogenic sources are the easiest to control through various emissions mitigation strategies. However emissions from natural sources can also contribute significantly to air pollution...

  19. Mercury Emission Control Technologies for PPL Montana-Colstrip Testing

    Energy Technology Data Exchange (ETDEWEB)

    John P. Kay; Michael L. Jones; Steven A. Benson

    2007-04-01

    The Energy & Environmental Research Center (EERC) was asked by PPL Montana LLC (PPL) to provide assistance and develop an approach to identify cost-effective options for mercury control at its coal-fired power plants. The work conducted focused on baseline mercury level and speciation measurement, short-term parametric testing, and week long testing of mercury control technology at Colstrip Unit 3. Three techniques and various combinations of these techniques were identified as viable options for mercury control. The options included oxidizing agents or sorbent enhancement additives (SEAs) such as chlorine-based SEA1 and an EERC proprietary SEA2 with and without activated carbon injection. Baseline mercury emissions from Colstrip Unit 3 are comparatively low relative to other Powder River Basin (PRB) coal-fired systems and were found to range from 5 to 6.5 g/Nm3 (2.9 to 3.8 lb/TBtu), with a rough value of approximately 80% being elemental upstream of the scrubber and higher than 95% being elemental at the outlet. Levels in the stack were also greater than 95% elemental. Baseline mercury removal across the scrubber is fairly variable but generally tends to be about 5% to 10%. Parametric results of carbon injection alone yielded minimal reduction in Hg emissions. SEA1 injection resulted in 20% additional reduction over baseline with the maximum rate of 400 ppm (3 gal/min). Week long testing was conducted with the combination of SEA2 and carbon, with injection rates of 75 ppm (10.3 lb/hr) and 1.5 lb/MMacf (40 lb/hr), respectively. Reduction was found to be an additional 30% and, overall during the testing period, was measured to be 38% across the scrubber. The novel additive injection method, known as novel SEA2, is several orders of magnitude safer and less expensive than current SEA2 injection methods. However, used in conjunction with this plant configuration, the technology did not demonstrate a significant level of mercury reduction. Near-future use of this

  20. Effects of future anthropogenic pollution emissions on global air quality

    Science.gov (United States)

    Pozzer, A.; Zimmermann, P.; Doering, U.; van Aardenne, J.; Dentener, F.; Lelieveld, J.

    2012-04-01

    The atmospheric chemistry general circulation model EMAC is used to estimate the impact of anthropogenic emission changes on global and regional air quality in recent and future years (2005, 2010, 2025 and 2050). The emission scenario assumes that population and economic growth largely determine energy consumption and consequent pollution sources ("business as usual"). By comparing with recent observations, it is shown that the model reproduces the main features of regional air pollution distributions though with some imprecision inherent to the coarse horizontal resolution (around 100 km). To identify possible future hot spots of poor air quality, a multi pollutant index (MPI) has been applied. It appears that East and South Asia and the Arabian Gulf regions represent such hotspots due to very high pollutant concentrations. In East Asia a range of pollutant gases and particulate matter (PM2.5) are projected to reach very high levels from 2005 onward, while in South Asia air pollution, including ozone, will grow rapidly towards the middle of the century. Around the Arabian Gulf, where natural PM2.5 concentrations are already high (desert dust), ozone levels will increase strongly. By extending the MPI definition, we calculated a Per Capita MPI (PCMPI) in which we combined population projections with those of pollution emissions. It thus appears that a rapidly increasing number of people worldwide will experience reduced air quality during the first half of the 21st century. It is projected that air quality for the global average citizen in 2050 will be comparable to the average in East Asia in the year 2005.

  1. Benchmarking Anthropogenic Heavy Metals Emissions: Australian and Global Urban Environmental Health Risk Based Indicators of Sustainability

    Science.gov (United States)

    Dejkovski, Nick

    2016-01-01

    In Australia, the impacts of urbanisation and human activity are evident in increased waste generation and the emissions of metals into the air, land or water. Metals that have accumulated in urban soils almost exclusively anthropogenically can persist for long periods in the environment. Anthropogenic waste emissions containing heavy metals are a…

  2. LOCAL IMPACTS OF MERCURY EMISSIONS FROM COAL FIRED POWER PLANTS.

    Energy Technology Data Exchange (ETDEWEB)

    SULLIVAN, T.M.; BOWERMAN, B.; ADAMS, J.; MILIAN, L.; LIPFERT, F.; SUBRAMANIAM, S.; BLAKE, R.

    2005-09-21

    Mercury is a neurotoxin that accumulates in the food chain and is therefore a health concern. The primary human exposure pathway is through fish consumption. Coal-fired power plants emit mercury and there is uncertainty over whether this creates localized hot spots of mercury leading to substantially higher levels of mercury in water bodies and therefore higher exposure. To obtain direct evidence of local deposition patterns, soil and vegetations samples from around three U.S. coal-fired power plants were collected and analyzed for evidence of hot spots and for correlation with model predictions of deposition. At all three sites, there was no correlation between modeled mercury deposition and either soil concentrations or vegetation concentrations. It was estimated that less than 2% of the total mercury emissions from these plants deposited within 15 km of these plants. These small percentages of deposition are consistent with the literature review findings of only minor perturbations in environmental levels, as opposed to hot spots, near the plants. The major objective of the sampling studies was to determine if there was evidence for hot spots of mercury deposition around coal-fired power plants. From a public health perspective, such a hot spot must be large enough to insure that it did not occur by chance, and it must increase mercury concentrations to a level in which health effects are a concern in a water body large enough to support a population of subsistence fishers. The results of this study suggest that neither of these conditions has been met.

  3. Estimation of mercury emissions into the Slovene environment in 2001

    Directory of Open Access Journals (Sweden)

    Martina Svetina

    2002-12-01

    Full Text Available The aim of the study was to collect data for better control of mercury emissions in Slovenia, especially from the point and spread sources of all categories. In the past years the Slovenian industry avoided the use of mercury as a raw material in the productionprocess to prevent the emissions and discharge of this hazardous substance. About 733 kg of Hg was imported with products, 620 kg Hg was produced with coal combustion and cement production, 920 kg was sold with products and around 200 kg was exported as waste in year 2001. Annually 1620 kg of Hg emission into environment is estimated, of this approximately 900 kg is deposited as waste, 630 kg escape in the air and 90 kg in water. The following sectors have been identified in Slovenia as the potential sources of mercury into environment: the thermal power plants, dental amalgams, products of electric industry (batteries, lamps, thermometers, manometers, barometers, chemicals, cement industry, incineration and waste treatment. A mercury flow diagram for Slovenia in theyear 2001 was established.

  4. Emissions of biogenic VOC from forest ecosystems in central Europe: estimation and comparison with anthropogenic emission inventory.

    Science.gov (United States)

    Zemankova, Katerina; Brechler, Josef

    2010-02-01

    This paper describes a method of estimating emission fluxes of biogenic volatile organic compounds (BVOCs) based on the approach proposed by Guenther et al. (1995) and the high-resolution Corine land-cover 2000 database (1x1km resolution). The computed emission fluxes for the Czech Republic (selected for analysis as being representative of a heavily cultivated, central European country) are compared with anthropogenic emissions, both for the entire country and for individual administrative regions. In some regions, BVOC emissions are as high as anthropogenic emissions; however, in most regions the BVOC emissions are approximately 50% of the anthropogenic emissions. The yearly course of BVOC emissions (represented by monoterpenes and isoprene) is presented, along with the spatial distribution of annual mean values. Differences in emission distributions during winter (January) and summer (June) are also considered. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  5. Mercury Emission From Phragmites in a Contaminated Wetland

    Science.gov (United States)

    Bubb, M.; Peters, S.

    2008-12-01

    , as well as internal leaf properties such as transpiration and relative humidity. It is the ongoing goal of this study to relate the magnitude of mercury flux with said parameters in order to better understand the controls by which emission is enhanced or diminished.

  6. Anthropogenic contributions to mercury levels in present-day Arctic animals-A review

    Energy Technology Data Exchange (ETDEWEB)

    Dietz, Rune, E-mail: rdi@dmu.dk [National Environmental Research Institute, Department of Arctic Environment, Aarhus University, Roskilde (Denmark); Outridge, Peter M. [Geological Survey of Canada, Ottawa (Canada); Hobson, Keith A. [Environment Canada, Saskatoon (Canada)

    2009-12-01

    Background: Because of concern about the recently increasing levels of biological Hg in some areas of the Arctic, we examined the literature concerning the long-term changes of Hg in humans and selected Arctic marine mammals and birds of prey since pre-industrial times (i.e. before 1800 A.D.), to determine the anthropogenic contribution to present-day Hg concentrations and the historical timing of any changes. Methods: Mercury data from published articles were extracted on historical and pre-industrial concentrations as percentages of the recent maximum, as well as the man-made contribution was calculated and depicted in a uniform manner to provide an overview of the development over time. Results and discussion: Trends of [Hg] in hard tissues such as teeth, hair and feathers consistently showed that there had been an order-of-magnitude increase of [Hg] in Arctic marine foodweb-based animals that began in the mid- to late-19th Century and accelerated in the 20th Century. The median man-made contribution to present-day Hg concentrations was 92.4% ranging from 74.2 to 94.4%. Confidence in our data was increased by accompanying data in some studies on stable isotopes ({delta}{sup 13}C, {delta}{sup 15}N), which allowed us to normalize where necessary for changes in animal trophic position and feeding location over time, and by careful attention to the possibility of sample chemical diagenesis (Hg contamination or loss) which can alter the Hg content of ancient hard tissues. Conclusions: Wildlife hard tissue matrices provide consistent information with respect to the steep onset of Hg exposure of Arctic wildlife beginning in the latter half of the 19th Century. Today the man-made contribution was found to be above 92%. Stable isotope analyses provide important information to normalize for possible changes in diet over time, and are highly relevant to include when interpreting temporal trends, baseline concentrations as well as man-made anthropogenic contribution of Hg.

  7. Anthropogenic contributions to mercury levels in present-day Arctic animals-A review

    International Nuclear Information System (INIS)

    Dietz, Rune; Outridge, Peter M.; Hobson, Keith A.

    2009-01-01

    Background: Because of concern about the recently increasing levels of biological Hg in some areas of the Arctic, we examined the literature concerning the long-term changes of Hg in humans and selected Arctic marine mammals and birds of prey since pre-industrial times (i.e. before 1800 A.D.), to determine the anthropogenic contribution to present-day Hg concentrations and the historical timing of any changes. Methods: Mercury data from published articles were extracted on historical and pre-industrial concentrations as percentages of the recent maximum, as well as the man-made contribution was calculated and depicted in a uniform manner to provide an overview of the development over time. Results and discussion: Trends of [Hg] in hard tissues such as teeth, hair and feathers consistently showed that there had been an order-of-magnitude increase of [Hg] in Arctic marine foodweb-based animals that began in the mid- to late-19th Century and accelerated in the 20th Century. The median man-made contribution to present-day Hg concentrations was 92.4% ranging from 74.2 to 94.4%. Confidence in our data was increased by accompanying data in some studies on stable isotopes (δ 13 C, δ 15 N), which allowed us to normalize where necessary for changes in animal trophic position and feeding location over time, and by careful attention to the possibility of sample chemical diagenesis (Hg contamination or loss) which can alter the Hg content of ancient hard tissues. Conclusions: Wildlife hard tissue matrices provide consistent information with respect to the steep onset of Hg exposure of Arctic wildlife beginning in the latter half of the 19th Century. Today the man-made contribution was found to be above 92%. Stable isotope analyses provide important information to normalize for possible changes in diet over time, and are highly relevant to include when interpreting temporal trends, baseline concentrations as well as man-made anthropogenic contribution of Hg.

  8. Mercury biogeochemistry: Paradigm shifts, outstanding issues and research needs

    Science.gov (United States)

    Sonke, Jeroen E.; Heimbürger, Lars-Eric; Dommergue, Aurélien

    2013-05-01

    Half a century of mercury research has provided scientists and policy makers with a detailed understanding of mercury toxicology, biogeochemical cycling and past and future impacts on human exposure. The complexity of the global biogeochemical mercury cycle has led to repeated and ongoing paradigm shifts in numerous mercury-related disciplines and outstanding questions remain. In this review, we highlight some of the paradigm shifts and questions on mercury toxicity, the risks and benefits of seafood consumption, the source of mercury in seafood, and the Arctic mercury cycle. We see a continued need for research on mercury toxicology and epidemiology, for marine mercury dynamics and ecology, and for a closer collaboration between observational mercury science and mercury modeling in general. As anthropogenic mercury emissions are closely tied to the energy cycle (in particular coal combustion), mercury exposure to humans and wildlife are likely to persist unless drastic emission reductions are put in place.

  9. A Cavity Ring-Down Spectroscopy Mercury Continuous Emission Monitor

    Energy Technology Data Exchange (ETDEWEB)

    Christopher C. Carter

    2004-12-15

    The Sensor Research & Development Corporation (SRD) has undertaken the development of a Continuous Emissions Monitor (CEM) for mercury based on the technique of Cavity Ring-Down Spectroscopy (CRD). The project involved building an instrument for the detection of trace levels of mercury in the flue gas emissions from coal-fired power plants. The project has occurred over two phases. The first phase concentrated on the development of the ringdown cavity and the actual detection of mercury. The second phase dealt with the construction and integration of the sampling system, used to carry the sample from the flue stack to the CRD cavity, into the overall CRD instrument. The project incorporated a Pulsed Alexandrite Laser (PAL) system from Light Age Incorporated as the source to produce the desired narrow band 254 nm ultra-violet (UV) radiation. This laser system was seeded with a diode laser to bring the linewidth of the output beam from about 150 GHz to less than 60 MHz for the fundamental beam. Through a variety of non-linear optics the 761 nm fundamental beam is converted into the 254 nm beam needed for mercury detection. Detection of the mercury transition was verified by the identification of the characteristic natural isotopic structure observed at lower cavity pressures. The five characteristic peaks, due to both natural isotopic abundance and hyperfine splitting, provided a unique identifier for mercury. SRD scientists were able to detect mercury in air down below 10 parts-per-trillion by volume (pptr). This value is dependent on the pressure and temperature within the CRD cavity at the time of detection. Sulfur dioxide (SO{sub 2}) absorbs UV radiation in the same spectral region as mercury, which is a significant problem for most mercury detection equipment. However, SRD has not only been able to determine accurate mercury concentrations in the presence of SO{sub 2}, but the CRD instrument can in fact determine the SO{sub 2} concentration as well. Detection of

  10. Emissions of forest floor and mineral soil carbon, nitrogen and mercury pools and relationships with fire severity for the Pagami Creek Fire in the Boreal Forest of northern Minnesota

    Science.gov (United States)

    Randall K. Kolka; Brian R. Sturtevant; Jessica R. Miesel; Aditya Singh; Peter T. Wolter; Shawn Fraver; Thomas M. DeSutter; Phil A. Townsend

    2017-01-01

    Forest fires cause large emissions of C (carbon), N (nitrogen) and Hg (mercury) to the atmosphere and thus have important implications for global warming (e.g. via CO2 and N2O emissions), anthropogenic fertilisation of natural ecosystems (e.g. via N deposition), and bioaccumulation of harmful metals in aquatic and...

  11. Mercury

    International Nuclear Information System (INIS)

    Vilas, F.; Chapman, C.R.; Matthews, M.S.

    1988-01-01

    Papers are presented on future observations of and missions to Mercury, the photometry and polarimetry of Mercury, the surface composition of Mercury from reflectance spectrophotometry, the Goldstone radar observations of Mercury, the radar observations of Mercury, the stratigraphy and geologic history of Mercury, the geomorphology of impact craters on Mercury, and the cratering record on Mercury and the origin of impacting objects. Consideration is also given to the tectonics of Mercury, the tectonic history of Mercury, Mercury's thermal history and the generation of its magnetic field, the rotational dynamics of Mercury and the state of its core, Mercury's magnetic field and interior, the magnetosphere of Mercury, and the Mercury atmosphere. Other papers are on the present bounds on the bulk composition of Mercury and the implications for planetary formation processes, the building stones of the planets, the origin and composition of Mercury, the formation of Mercury from planetesimals, and theoretical considerations on the strange density of Mercury

  12. Estimation of gaseous mercury emissions in Germany. Inverse modelling of source strengths at the contaminated industrial site BSL Werk Schkopau

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, O.; Ebinghaus, R.; Kock, H.H.; Richter-Politz, I.; Geilhufe, C.

    1998-12-31

    Anthropogenic emission sources of gaseous mercury at the contaminated industrial site BSL Werk Schkopau have been determined by measurements and numerical modelling applying a local dispersion model. The investigations are based on measurements from several field campaigns in the period of time between December 1993 and June 1994. The estimation of the source strengths was performed by inverse modelling using measurements as constraints for the dispersion model. Model experiments confirmed the applicability of the inverse modelling procedure for the source strength estimation at BSL Werk Schkopau. At the factory premises investigated, the source strengths of four source areas, among them three closed chlor-alkali productions, one partly removed acetaldehyde factory and additionaly one still producing chlor-alkali factory have been identified with an approximate total gaseous mercury emission of lower than 2.5 kg/day. (orig.)

  13. Global Anthropogenic Emissions of Non-CO2 Greenhouse Gases 1990-2020

    Data.gov (United States)

    U.S. Environmental Protection Agency — The data in these Appendices to the Global Anthropogenic Emissions of Non-CO2 Greenhouse Gases (1990-2020) report provide historical and projected estimates of...

  14. TSCA Section 21 Petition Requesting EPA to Regulate Anthropogenic Emissions Carbon Dioxide

    Science.gov (United States)

    This petition requests EPA to promulgate regulations under section 6 of TSCA to protect “public health and the environment from the serious harms associated with anthropogenic emissions of carbon dioxide, including ocean acidification.

  15. JV Task 98 - Controlling Mercury Emissions for Utilities Firing Lignites from North America

    Energy Technology Data Exchange (ETDEWEB)

    Steven Benson

    2007-06-15

    This project compiled and summarized the findings and conclusions of research, development, and demonstration projects on controlling mercury from lignite coals. A significant amount of work has been conducted since 1994 on mercury in lignite, mercury measurement in flue gases, sorbent, sorbent enhancement additives, oxidation agent development, and full-scale demonstration of mercury control technologies. This report is focused on providing the lignite industry with an understanding of mercury issues associated with the combustion of lignite, as well as providing vital information on the methods to control mercury emissions in coal-fired power plants.

  16. The impact of anthropogenic and biogenic emissions on surface ozone concentrations in Istanbul.

    Science.gov (United States)

    Im, Ulas; Poupkou, Anastasia; Incecik, Selahattin; Markakis, Konstantinos; Kindap, Tayfun; Unal, Alper; Melas, Dimitros; Yenigun, Orhan; Topcu, Sema; Odman, M Talat; Tayanc, Mete; Guler, Meltem

    2011-03-01

    Surface ozone concentrations at Istanbul during a summer episode in June 2008 were simulated using a high resolution and urban scale modeling system coupling MM5 and CMAQ models with a recently developed anthropogenic emission inventory for the region. Two sets of base runs were performed in order to investigate for the first time the impact of biogenic emissions on ozone concentrations in the Greater Istanbul Area (GIA). The first simulation was performed using only the anthropogenic emissions whereas the second simulation was performed using both anthropogenic and biogenic emissions. Biogenic NMVOC emissions were comparable with anthropogenic NMVOC emissions in terms of magnitude. The inclusion of biogenic emissions significantly improved the performance of the model, particularly in reproducing the low night time values as well as the temporal variation of ozone concentrations. Terpene emissions contributed significantly to the destruction of the ozone during nighttime. Biogenic NMVOCs emissions enhanced ozone concentrations in the downwind regions of GIA up to 25ppb. The VOC/NO(x) ratio almost doubled due to the addition of biogenic NMVOCs. Anthropogenic NO(x) and NMVOCs were perturbed by ±30% in another set of simulations to quantify the sensitivity of ozone concentrations to the precursor emissions in the region. The sensitivity runs, as along with the model-calculated ozone-to-reactive nitrogen ratios, pointed NO(x)-sensitive chemistry, particularly in the downwind areas. On the other hand, urban parts of the city responded more to changes in NO(x) due to very high anthropogenic emissions. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Oral bioaccessibility and human exposure to anthropogenic and geogenic mercury in urban, industrial and mining areas

    NARCIS (Netherlands)

    Rodrigues, S.M.; Coelho, C.; Cruz, N.; Monteiro, R.J.R.; Henriques, B.; Duarte, A.C.; Romkens, P.F.A.M.; Pereira, E.

    2014-01-01

    The objective of this study was to characterize the link between bioaccessibility and fractionation of mercury (Hg) in soils and to provide insight into human exposure to Hg due to inhalation of airborne soil particles and hand-to-mouth ingestion of Hg-bearing soil. Mercury in soils from mining,

  18. Mercury and plants in contaminated soils. 1: Uptake, partitioning, and emission to the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, T.L.; Gustin, M.S.; Fernandez, G.C.J. [Univ. of Nevada, Reno, NV (United States); Taylor, G.E. Jr. [George Mason Univ., Fairfax, VA (United States). Dept. of Biology

    1998-10-01

    The uptake, distribution, and subsequent emission of mercury to the atmosphere were investigated in five plant species (Lepidium latifolium [L.], Artemisia douglasiana [Bess in Hook], Caulanthus sp. [S. Watson], Fragaria vesca [L.], and Eucalyptus globulus [Labill]) with different ecological and physiological attributes. Transfer coefficients for mercury in the soil-plant system were calculated. Plant-to-atmosphere emissions of mercury were determined using a controlled environment gas-exchange system and ranged from 10 to 93 mg/m{sup 2}/h in the light; emissions in the dark were an order of magnitude less. Transfer coefficients for mercury within the soil-plant system increased acropetally (root-to-leaf axis) by orders of magnitude. Estimated mercury emissions from plants in the Carson River Drainage Basin of Nevada over the growing season (0.5 mg/m{sup 2}) add to the previously reported soil mercury emissions (8.5 mg/m{sup 2}), resulting in total landscape emissions of 9 mg/m{sup 2}. For L. latifolium, 70% of the mercury taken up by the roots during the growing season was emitted to the atmosphere. For every one molecule of mercury retained in foliage of L. latifolium, 12 molecules of mercury were emitted. Within this arid ecosystem, mercury emissions are a dominant pathway of the mercury cycle. Plants function as conduits for the interfacial transport of mercury from the geosphere to the atmosphere, and this role is undervalued in models of the behavior of mercury in terrestrial exosystems and in the atmosphere on a global scale.

  19. Control of mercury emissions from coal-fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H.S.; Livengood, C.D.

    1992-09-01

    This project at Argonne is designed to investigate new concepts leading to advanced control technologies for fossil-energy systems. The objective of this new task on air toxics control is to develop new or improved, cost-effective control technology for the abatement of emissions of hazardous air pollutants (HAPs) from fossil-fuel combustion plants and to evaluate the possible effects of any captured species on waste disposal. The HAPs to be investigated initially in this task include mercury and arsenic compounds.

  20. Control of mercury emissions from coal-fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H.S.; Livengood, C.D.

    1992-01-01

    This project at Argonne is designed to investigate new concepts leading to advanced control technologies for fossil-energy systems. The objective of this new task on air toxics control is to develop new or improved, cost-effective control technology for the abatement of emissions of hazardous air pollutants (HAPs) from fossil-fuel combustion plants and to evaluate the possible effects of any captured species on waste disposal. The HAPs to be investigated initially in this task include mercury and arsenic compounds.

  1. Anthropogenic Sulfur Dioxide Emissions, 1850-2005: National and Regional Data Set by Source Category, Version 2.86

    Data.gov (United States)

    National Aeronautics and Space Administration — The Anthropogenic Sulfur Dioxide Emissions, 1850-2005: National and Regional Data Set by Source Category, Version 2.86 provides annual estimates of anthropogenic...

  2. Tracking and verifying anthropogenic CO2 emissions over the Swiss Plateau

    Science.gov (United States)

    Oney, Brian; Brunner, Dominik; Henne, Stephan; Leuenberger, Markus

    2013-04-01

    The Swiss Plateau is the densely populated and industrialized part of Switzerland producing more than 90% of the country's total greenhouse gas emissions. Verification of the efficacy of emission mitigation measures in a post Kyoto Protocol era will require several levels of scrutiny at local and regional scales. We present a measurement and modeling system, which quantifies anthropogenic CO2 emissions at a regional scale using the Lagrangian particle dispersion model FLEXPART driven by output from a high-resolution regional scale atmospheric model (COSMO) and observations from two tall tower sites. These rural measurement sites are situated between the largest cities of Switzerland (Zürich, Geneva, Basel and Bern). We present methods used to discretize the anthropogenic CO2 signal from atmospheric CO2 measurements. First, we perform high resolution, time-inverted simulations of air transport combined with a new high quality Swiss CO2 emissions inventory to determine a model-estimated anthropogenic portion of the measured CO2. Second, we assess the utility of CO measurements and the relationship between CO2 and CO in combustion processes as a proxy to quantify the anthropogenic CO2 fraction directly from the measurements. We then compare these two methods in their ability to determine the anthropogenic portion of CO2 measurements at a high temporal resolution (hours). Finally, we assess the quality of the simulated atmospheric transport by comparing CO concentrations obtained with the same atmospheric transport model and a high resolution CO emission inventory with the measured CO concentrations. This comparison of methods for determining anthropogenic CO2 emissions provides information on how to independently certify reported CO2 emissions. This study is a first step towards a prototype GHG monitoring and verification system for the regional scale in a complex topographic setting, which constitutes a necessary component of emissions reporting.

  3. Impact of biogenic emission uncertainties on the simulated response of ozone and fine particulate matter to anthropogenic emission reductions.

    Science.gov (United States)

    Hogrefe, Christian; Isukapalli, Sastry S; Tang, Xiaogang; Georgopoulos, Panos G; He, Shan; Zalewsky, Eric E; Hao, Winston; Ku, Jia-Yeong; Key, Tonalee; Sistla, Gopal

    2011-01-01

    The role of emissions of volatile organic compounds and nitric oxide from biogenic sources is becoming increasingly important in regulatory air quality modeling as levels of anthropogenic emissions continue to decrease and stricter health-based air quality standards are being adopted. However, considerable uncertainties still exist in the current estimation methodologies for biogenic emissions. The impact of these uncertainties on ozone and fine particulate matter (PM2.5) levels for the eastern United States was studied, focusing on biogenic emissions estimates from two commonly used biogenic emission models, the Model of Emissions of Gases and Aerosols from Nature (MEGAN) and the Biogenic Emissions Inventory System (BEIS). Photochemical grid modeling simulations were performed for two scenarios: one reflecting present day conditions and the other reflecting a hypothetical future year with reductions in emissions of anthropogenic oxides of nitrogen (NOx). For ozone, the use of MEGAN emissions resulted in a higher ozone response to hypothetical anthropogenic NOx emission reductions compared with BEIS. Applying the current U.S. Environmental Protection Agency guidance on regulatory air quality modeling in conjunction with typical maximum ozone concentrations, the differences in estimated future year ozone design values (DVF) stemming from differences in biogenic emissions estimates were on the order of 4 parts per billion (ppb), corresponding to approximately 5% of the daily maximum 8-hr ozone National Ambient Air Quality Standard (NAAQS) of 75 ppb. For PM2.5, the differences were 0.1-0.25 microg/m3 in the summer total organic mass component of DVFs, corresponding to approximately 1-2% of the value of the annual PM2.5 NAAQS of 15 microg/m3. Spatial variations in the ozone and PM2.5 differences also reveal that the impacts of different biogenic emission estimates on ozone and PM2.5 levels are dependent on ambient levels of anthropogenic emissions.

  4. Mercury Production and Use in Colonial Andean Silver Production: Emissions and Health Implications

    Science.gov (United States)

    Hagan, Nicole A.

    2012-01-01

    Background: Colonial cinnabar mining and refining began in Huancavelica, Peru, in 1564. With a local source of mercury, the amalgamation process was adopted to refine silver in Potosí, Bolivia, in the early 1570s. As a result, large quantities of mercury were released into the environment. Objectives: We used archival, primary, and secondary sources to develop the first estimate of mercury emissions from cinnabar refining in Huancavelica and to revise previous estimates of emissions from silver refining in Potosí during the colonial period (1564–1810). Discussion: Although other estimates of historical mercury emissions have recognized Potosí as a significant source, Huancavelica has been overlooked. In addition, previous estimates of mercury emissions from silver refining under-estimated emissions because of unrecorded (contra-band) production and volatilization of mercury during processing and recovery. Archival descriptions document behavioral and health issues during the colonial period that are consistent with known effects of mercury intoxication. Conclusions: According to our calculations, between 1564 and 1810, an estimated 17,000 metric tons of mercury vapor were emitted from cinnabar smelting in Huancavelica, and an estimated 39,000 metric tons were released as vapor during silver refining operations in Potosí. Huancavelica and Potosí combined contributed > 25% of the 196,000 metric tons of mercury vapor emissions in all of Latin America between 1500 and 1800. The historical record is laden with evidence of mercury intoxication consistent with effects recognized today. Our estimates serve as the foundation of investigations of present-day contamination in Huancavelica and Potosí resulting from historical emissions of mercury. PMID:22334094

  5. Mercury production and use in colonial Andean silver production: emissions and health implications.

    Science.gov (United States)

    Robins, Nicholas A; Hagan, Nicole A

    2012-05-01

    Colonial cinnabar mining and refining began in Huancavelica, Peru, in 1564. With a local source of mercury, the amalgamation process was adopted to refine silver in Potosí, Bolivia, in the early 1570s. As a result, large quantities of mercury were released into the environment. We used archival, primary, and secondary sources to develop the first estimate of mercury emissions from cinnabar refining in Huancavelica and to revise previous estimates of emissions from silver refining in Potosí during the colonial period (1564-1810). Although other estimates of historical mercury emissions have recognized Potosí as a significant source, Huancavelica has been overlooked. In addition, previous estimates of mercury emissions from silver refining under-estimated emissions because of unrecorded (contra-band) production and volatilization of mercury during processing and recovery. Archival descriptions document behavioral and health issues during the colonial period that are consistent with known effects of mercury intoxication. According to our calculations, between 1564 and 1810, an estimated 17,000 metric tons of mercury vapor were emitted from cinnabar smelting in Huancavelica, and an estimated 39,000 metric tons were released as vapor during silver refining operations in Potosí. Huancavelica and Potosí combined contributed > 25% of the 196,000 metric tons of mercury vapor emissions in all of Latin America between 1500 and 1800. The historical record is laden with evidence of mercury intoxication consistent with effects recognized today. Our estimates serve as the foundation of investigations of present-day contamination in Huancavelica and Potosí resulting from historical emissions of mercury.

  6. Potential mercury emissions from fluorescent lamps production and obsolescence in mainland China.

    Science.gov (United States)

    Tan, Quanyin; Li, Jinhui

    2016-01-01

    The use of fluorescent lamps has expanded rapidly all over the world in recent years, because of their energy-saving capability. Consequently, however, mercury emissions from production, breakage, and discard of the lamps are drawing increasing concern from the public. This article focuses on evaluating the amount of mercury used for fluorescent lamp production, as well as the potential mercury emissions during production and breakage, in mainland China. It is expected to provide a comprehensive understanding about the risks present in the mercury from fluorescent lamps, and to know about the impacts of the policies on fluorescent lamps after their implementation. It is estimated that, in 2020, mercury consumption will be about 11.30-15.69 tonnes, a significant reduction of 34.9%-37.4% from that used in 2013, owing to improvement in mercury dosing dosage technology and tighter limitations on mercury content in fluorescent lamps. With these improvements, the amount of mercury remaining in fluorescent lamps and released during production is estimated to be 10.71-14.86 and 0.59-0.83 tonnes, respectively; the mercury released from waste fluorescent lamps is estimated to be about 5.37-7.59 tonnes. Also, a significant reduction to the mercury emission can be expected when a collection and treatment system is well established and conducted in the future. © The Author(s) 2015.

  7. A CAVITY RING-DOWN SPECTROSCOPY MERCURY CONTINUOUS EMISSION MONITOR

    Energy Technology Data Exchange (ETDEWEB)

    Christopher C. Carter

    2004-03-31

    The construction of the sampling system was completed during the past quarter. The sampling system has been built on a 3 feet x 4 feet x 2 inch breadboard table. The laser system, all the associated optics, and the mounts and hardware needed to couple the UV light into the fiber optic have also been condensed and placed on an identical 3 feet x 4 feet x 2 inch breadboard table. This reduces the footprint of each system for ease of operation at a field test facility. The two systems are only connected with a fiber optic, to bring the UV light to the CRD cavity, and a single coaxial cable used to apply a voltage to the diode seed laser to scan the frequency over the desired mercury transition. SRD software engineers applied a couple of software fixes to correct the problems of the diode seed laser drifting or mode hopping. Upon successful completion of the software fixes another long-term test was conducted. A nearly 3 day long, 24 hours/day, test was run to test out the new subroutines. Everything appeared to work as it should and the mercury concentrations were accurately reported for the entire test, with the exception of a small interval of time when the intensity of the UV light dropped low enough that the program was no longer triggering properly. After adjusting the power of the laser the program returned to proper operation. With the successful completion of a relatively long test SRD software engineer incorporated the new subroutine into an entirely new program. This program operates the CRD instrument automatically as a continuous emissions monitor for mercury. In addition the program also reports the concentration of SO{sub 2} determined in the sample flue gas stream. Various functions, operation of, and a description of the new program have been included with this report. This report concludes the technical work associated with Phase II of the Cavity Ring-Down project for the continuous detection of trace levels of mercury. The project is presently

  8. Enhanced SOA formation from mixed anthropogenic and biogenic emissions during the CARES campaign

    Directory of Open Access Journals (Sweden)

    J. E. Shilling

    2013-02-01

    Full Text Available The CARES campaign was conducted during June, 2010 in the vicinity of Sacramento, California to study aerosol formation and aging in a region where anthropogenic and biogenic emissions regularly mix. Here, we describe measurements from an Aerodyne High Resolution Aerosol Mass Spectrometer (AMS, an Ionicon Proton Transfer Reaction Mass Spectrometer (PTR-MS, and trace gas detectors (CO, NO, NOx deployed on the G-1 research aircraft to investigate ambient gas- and particle-phase chemical composition. AMS measurements showed that the particle phase is dominated by organic aerosol (OA (85% on average with smaller concentrations of sulfate (5%, nitrate (6% and ammonium (3% observed. PTR-MS data showed that isoprene dominated the biogenic volatile organic compound concentrations (BVOCs, with monoterpene concentrations generally below the detection limit. Using two different metrics, median OA concentrations and the slope of plots of OA vs. CO concentrations (i.e., ΔOA/ΔCO, we contrast organic aerosol evolution on flight days with different prevailing meteorological conditions to elucidate the role of anthropogenic and biogenic emissions on OA formation. Airmasses influenced predominantly by biogenic emissions had median OA concentrations of 2.2 μg m−3 and near zero ΔOA/ΔCO. Those influenced predominantly by anthropogenic emissions had median OA concentrations of 4.7 μg m−3 and ΔOA/ΔCO ratios of 35–44 μg m−3 ppmv. But, when biogenic and anthropogenic emissions mixed, OA levels were enhanced, with median OA concentrations of 11.4 μg m−3 and ΔOA/ΔCO ratios of 77–157 μg m−3 ppmv. Taken together, our observations show that production of OA was enhanced when anthropogenic emissions from Sacramento mixed with isoprene-rich air from the foothills. After considering several anthropogenic/biogenic interaction mechanisms, we conclude that NOx concentrations

  9. Estimating Anthropogenic Emissions of Hydrogen Chloride and Fine Particulate Chloride in China

    Science.gov (United States)

    Fu, X.; Wang, T.; Wang, S.; Zhang, L.

    2017-12-01

    Nitryl chloride (ClNO2) can significantly impact the atmospheric photochemistry via photolysis and subsequent reactions of chlorine radical with other gases. The formation of ClNO2 in the atmosphere is sensitive to the emissions of chlorine-containing particulates from oceanic and anthropogenic sources. For China, the only available anthropogenic chlorine emission inventory was compiled for the year 1990 with a coarse resolution of 1 degree. In this study, we developed an up-to-date anthropogenic inventory of hydrogen chloride (HCl) and fine particulate chloride (Cl-) emissions in China for the year 2014, including coal burning, industrial processes, biomass burning and waste burning. Bottom-up and top-down methodologies were combined. Detailed local data (e.g. Cl content in coal, control technologies, etc.) were collected and applied. In order to improve the spatial resolution of emissions, detailed point source information were collected for coal-fired power plants, cement factories, iron & steel factories and waste incineration factories. Uncertainties of this emission inventory and their major causes were analyzed using the Monte Carlo method. This work enables better quantification of the ClNO2 production and impact over China.

  10. Anthropogenic and natural CO2 emission sources in an arid urban environment.

    Science.gov (United States)

    Koerner, B; Klopatek, J

    2002-01-01

    Recent research has shown the Phoenix, AZ metropolitan region to be characterized by a CO2 dome that peaks near the urban center. The CO2 levels, 50% greater than the surrounding non-urban areas, have been attributed to anthropogenic sources and the physical geography of the area. We quantified sources of CO2 emissions across the metropolitan region. Anthropogenic CO2 emission data were obtained from a variety of government and NGO sources. Soil CO2 efflux from the dominant land-use types was measured over the year. Humans and automobile activity produced more than 80% input of CO2 into the urban environment. Soil CO2 efflux from the natural desert ecosystems showed minimal emissions during hot and dry periods, but responded rapidly to moisture. Conversely, human maintained vegetation types (e.g. golf courses, lawns, irrigated agriculture) have greater efflux and are both temperature and soil moisture dependent. Landfills exhibited the most consistent rates, but were temperature and moisture independent. We estimate the annual CO2 released from the predominant land-use types in the Phoenix region and present a graphical portrayal of soil CO2 emissions and the total natural and anthropogenic CO2 emissions in the metropolitan region using a GIS-based approach. The results presented here do not mimic the spatial pattern shown in previous studies. Only, with sophisticated mixing models will we be able to address the total effect of urbanization on CO2 levels and the contribution to regional patterns.

  11. Anthropogenic dust emissions due to livestock trampling in a Mongolian temperate grassland

    Science.gov (United States)

    Munkhtsetseg, Erdenebayar; Shinoda, Masato; Ishizuka, Masahide; Mikami, Masao; Kimura, Reiji; Nikolich, George

    2017-09-01

    Mongolian grasslands are a natural dust source region and they contribute to anthropogenic dust due to the long tradition of raising livestock there. Past decades of abrupt changes in a nomadic society necessitate a study on the effects of livestock trampling on dust emissions, so that research studies may help maintain a sustainable ecosystem and well-conditioned atmospheric environment. In this study, we conducted a mini wind tunnel experiment (using a PI-SWERL® device) to measure dust emissions fluxes from trampling (at three disturbance levels of livestock density, N) and zero trampling (natural as the background level) at test areas in a Mongolian temperate grassland. Moreover, we scaled anthropogenic dust emissions to natural dust emissions as a relative consequence of livestock trampling. We found a substantial increase in dust emissions due to livestock trampling. This effect of trampling on dust emissions was persistent throughout all wind friction velocities, u* (varying from 0.44 to 0.82 m s-1). Significantly higher dust loading occurs after a certain disturbance level has been reached by the livestock trampling. Our results suggest that both friction velocity (u*) and disturbance level of livestock density (N) have an enormous combinational effect on dust emissions from the trampling test surface. This means that the effect of livestock trampling on dust emissions can be seen or revealed when wind is strong. Our results also emphasize that better management for livestock allocation coupled with strategies to prevent anthropogenic dust loads are needed. However, there are many uncertainties and assumptions to be improved on in this study.

  12. Gridded anthropogenic emissions inventory and atmospheric transport of carbonyl sulfide in the U.S.: U.S. Anthropogenic COS Source and Transport

    Energy Technology Data Exchange (ETDEWEB)

    Zumkehr, Andrew [Sierra Nevada Research Institute, University of California, Merced California USA; Hilton, Timothy W. [Sierra Nevada Research Institute, University of California, Merced California USA; Whelan, Mary [Sierra Nevada Research Institute, University of California, Merced California USA; Smith, Steve [Joint Global Change Research Institute, PNNL, College Park Maryland USA; Campbell, J. Elliott [Sierra Nevada Research Institute, University of California, Merced California USA

    2017-02-21

    Carbonyl sulfide (COS or OCS), the most abundant sulfur containing gas in the troposphere, has recently emerged as a potentially important atmospheric tracer for the carbon cycle. Atmospheric inverse modeling studies may be able to use existing tower, airborne, and satellite observations of COS to infer information about photosynthesis. However, such analysis relies on gridded anthropogenic COS source estimates that are largely based on industry activity data from over three decades ago. Here we use updated emission factor data and industry activity data to develop a gridded inventory with a 0.1 degree resolution for the U.S. domain. The inventory includes the primary anthropogenic COS sources including direct emissions from the coal and aluminum industries as well as indirect sources from industrial carbon disulfide emissions. Compared to the previously published inventory, we found that the total anthropogenic source (direct and indirect) is 47% smaller. Using this new gridded inventory to drive the STEM/WRF atmospheric transport model, we found that the anthropogenic contribution to COS variation in the troposphere is small relative to the biosphere influence, which is encouraging of carbon cycle applications in this region. Additional anthropogenic sectors with highly uncertain emission factors require further field measurements.

  13. Mercury emission and dispersion models from soils contaminated by cinnabar mining and metallurgy.

    Science.gov (United States)

    Llanos, Willians; Kocman, David; Higueras, Pablo; Horvat, Milena

    2011-12-01

    The laboratory flux measurement system (LFMS) and dispersion models were used to investigate the kinetics of mercury emission flux (MEF) from contaminated soils. Representative soil samples with respect to total Hg concentration (26-9770 μg g(-1)) surrounding a decommissioned mercury-mining area (Las Cuevas Mine), and a former mercury smelter (Cerco Metalúrgico de Almadenejos), in the Almadén mercury mining district (South Central Spain), were collected. Altogether, 14 samples were analyzed to determine the variation in mercury emission flux (MEF) versus distance from the sources, regulating two major environmental parameters comprising soil temperature and solar radiation. In addition, the fraction of the water-soluble mercury in these samples was determined in order to assess how MEF from soil is related to the mercury in the aqueous soil phase. Measured MEFs ranged from less than 140 to over 10,000 ng m(-2) h(-1), with the highest emissions from contaminated soils adjacent to point sources. A significant decrease of MEF was then observed with increasing distance from these sites. Strong positive effects of both temperature and solar radiation on MEF was observed. Moreover, MEF was found to occur more easily in soils with higher proportions of soluble mercury compared to soils where cinnabar prevails. Based on the calculated Hg emission rates and with the support of geographical information system (GIS) tools and ISC AERMOD software, dispersion models for atmospheric mercury were implemented. In this way, the gaseous mercury plume generated by the soil-originated emissions at different seasons was modeled. Modeling efforts revealed that much higher emissions and larger mercury plumes are generated in dry and warm periods (summer), while the plume is smaller and associated with lower concentrations of atmospheric mercury during colder periods with higher wind activity (fall). Based on the calculated emissions and the model implementation, yearly emissions from

  14. Inventory of anthropogenic methane emissions in mainland China from 1980 to 2010

    Directory of Open Access Journals (Sweden)

    S. Peng

    2016-11-01

    Full Text Available Methane (CH4 has a 28-fold greater global warming potential than CO2 over 100 years. Atmospheric CH4 concentration has tripled since 1750. Anthropogenic CH4 emissions from China have been growing rapidly in the past decades and contribute more than 10 % of global anthropogenic CH4 emissions with large uncertainties in existing global inventories, generally limited to country-scale statistics. To date, a long-term CH4 emission inventory including the major sources sectors and based on province-level emission factors is still lacking. In this study, we produced a detailed annual bottom-up inventory of anthropogenic CH4 emissions from the eight major source sectors in China for the period 1980–2010. In the past 3 decades, the total CH4 emissions increased from 24.4 [18.6–30.5] Tg CH4 yr−1 in 1980 (mean [minimum–maximum of 95 % confidence interval] to 44.9 [36.6–56.4] Tg CH4 yr−1 in 2010. Most of this increase took place in the 2000s decade with averaged yearly emissions of 38.5 [30.6–48.3] Tg CH4 yr−1. This fast increase of the total CH4 emissions after 2000 is mainly driven by CH4 emissions from coal exploitation. The largest contribution to total CH4 emissions also shifted from rice cultivation in 1980 to coal exploitation in 2010. The total emissions inferred in this work compare well with the EPA inventory but appear to be 36 and 18 % lower than the EDGAR4.2 inventory and the estimates using the same method but IPCC default emission factors, respectively. The uncertainty of our inventory is investigated using emission factors collected from state-of-the-art published literatures. We also distributed province-scale emissions into 0.1°  ×  0.1° maps using socioeconomic activity data. This new inventory could help understanding CH4 budgets at regional scale and guiding CH4 mitigation policies in China.

  15. Basic Information about Mercury

    Science.gov (United States)

    ... Your Environment Contact Us Share Basic Information about Mercury On this page: What is mercury? Emissions of ... Consumer products that traditionally contain mercury What is Mercury? Mercury is a naturally-occurring chemical element found ...

  16. An atmospheric emission inventory of anthropogenic and biogenic sources for Lebanon

    Science.gov (United States)

    Waked, Antoine; Afif, Charbel; Seigneur, Christian

    2012-04-01

    A temporally-resolved and spatially-distributed emission inventory was developed for Lebanon to provide quantitative information for air pollution studies as well as for use as input to air quality models. This inventory covers major anthropogenic and biogenic sources in the region with 5 km spatial resolution for Lebanon and 1 km spatial resolution for its capital city Beirut and its suburbs. The results obtained for CO, NOx, SO2, NMVOC, NH3, PM10 and PM2.5 for the year 2010 were 563, 75, 62, 115, 4, 12, and 9 Gg, respectively. About 93% of CO emissions, 67% of NMVOC emissions and 52% of NOx emissions are calculated to originate from the on-road transport sector while 73% of SO2 emissions, 62% of PM10 emissions and 59% of PM2.5 emissions are calculated to originate from power plants and industrial sources. The spatial allocation of emissions shows that the city of Beirut and its suburbs encounter a large fraction of the emissions from the on-road transport sector while urban areas such as Zouk Mikael, Jieh, Chekka and Selaata are mostly affected by emissions originating from the industrial and energy production sectors. Temporal profiles were developed for several emission sectors.

  17. Oral bioaccessibility and human exposure to anthropogenic and geogenic mercury in urban, industrial and mining areas.

    Science.gov (United States)

    Rodrigues, S M; Coelho, C; Cruz, N; Monteiro, R J R; Henriques, B; Duarte, A C; Römkens, P F A M; Pereira, E

    2014-10-15

    The objective of this study was to characterize the link between bioaccessibility and fractionation of mercury (Hg) in soils and to provide insight into human exposure to Hg due to inhalation of airborne soil particles and hand-to-mouth ingestion of Hg-bearing soil. Mercury in soils from mining, urban and industrial areas was fractionated in organometallic forms; mobile; semi-mobile; and non-mobile forms as well as HCl-extractable Hg. The in vitro bioaccessibility of Hg was obtained by extracting soils with (1) a simulated human gastric fluid (pH1.5), and (2) a simulated human lung fluid (pH7.4). Total soil Hg concentrations ranged from 0.72 to 1.8 mg kg(-1) (urban areas), 0.28 to 94 mg kg(-1) (industrial area) and 0.92 to 37 mg kg(-1) (mining areas). Both organometallic Hg as well as 0.1M HCl extractable Hg were lower (urban and industrial soils (average 5.0-6.6% of total Hg) compared to mining soils. Such differences were related to levels of mobile Hg species in urban and industrial soils compared to mining soils. These results strengthen the need to measure site-specific Hg fractionation when determining Hg bioaccessibility. Results also show that ingestion and/or inhalation of Hg from soil particles can contribute up to 8% of adult total Hg intake when compared to total Hg intake via consumption of contaminated fish and animal products from contaminated areas. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Mercury

    NARCIS (Netherlands)

    de Vries, Irma

    2017-01-01

    Mercury is a naturally occurring metal that exists in several physical and chemical forms. Inorganic mercury refers to compounds formed after the combining of mercury with elements such as chlorine, sulfur, or oxygen. After combining with carbon by covalent linkage, the compounds formed are called

  19. Anthropogenic aerosol emissions and rainfall decline in South-West Australia: coincidence or causality?

    Science.gov (United States)

    Heinzeller, Dominikus; Junkermann, Wolfgang; Kunstmann, Harald

    2017-04-01

    It is commonly understood that the observed decline in precipitation in South-West Australia during the 20th century is caused by anthropogenic factors. Candidates therefore are changes to large-scale atmospheric circulations due to global warming, extensive deforestation and anthropogenic aerosol emissions - all of which are effective on different spatial and temporal scales. This presentation focusses on the role of rapidly rising aerosol emissions from anthropogenic sources in South-West Australia around 1970. An analysis of historical longterm rainfall data of the Bureau of Meteorology shows that South-West Australia as a whole experienced a gradual decline in precipitation over the 20th century. However, on smaller scales and for the particular example of the Perth catchment area, a sudden drop in precipitation around 1970 is apparent. Modelling experiments at a convection-resolving resolution of 3.3km using the Weather and Research Forecasting (WRF) model version 3.6.1 with the aerosol-aware Thompson-Eidhammer microphysics scheme are conducted for the period 1970-1974. A comparison of four runs with different prescribed aerosol emissions and without aerosol effects demonstrates that tripling the pre-1960s atmospheric CCN and IN concentrations can suppress precipitation by 2-9%, depending on the area and the season. This suggests that a combination of all three processes is required to account for the gradual decline in rainfall seen for greater South-West Australia and for the sudden drop observed in areas along the West Coast in the 1970s: changing atmospheric circulations, deforestation and anthropogenic aerosol emissions.

  20. Implications of overestimated anthropogenic CO2 emissions on East Asian and global land CO2 flux inversion

    Science.gov (United States)

    Saeki, Tazu; Patra, Prabir K.

    2017-12-01

    Measurement and modelling of regional or country-level carbon dioxide (CO2) fluxes are becoming critical for verification of the greenhouse gases emission control. One of the commonly adopted approaches is inverse modelling, where CO2 fluxes (emission: positive flux, sink: negative flux) from the terrestrial ecosystems are estimated by combining atmospheric CO2 measurements with atmospheric transport models. The inverse models assume anthropogenic emissions are known, and thus the uncertainties in the emissions introduce systematic bias in estimation of the terrestrial (residual) fluxes by inverse modelling. Here we show that the CO2 sink increase, estimated by the inverse model, over East Asia (China, Japan, Korea and Mongolia), by about 0.26 PgC year-1 (1 Pg = 1012 g) during 2001-2010, is likely to be an artifact of the anthropogenic CO2 emissions increasing too quickly in China by 1.41 PgC year-1. Independent results from methane (CH4) inversion suggested about 41% lower rate of East Asian CH4 emission increase during 2002-2012. We apply a scaling factor of 0.59, based on CH4 inversion, to the rate of anthropogenic CO2 emission increase since the anthropogenic emissions of both CO2 and CH4 increase linearly in the emission inventory. We find no systematic increase in land CO2 uptake over East Asia during 1993-2010 or 2000-2009 when scaled anthropogenic CO2 emissions are used, and that there is a need of higher emission increase rate for 2010-2012 compared to those calculated by the inventory methods. High bias in anthropogenic CO2 emissions leads to stronger land sinks in global land-ocean flux partitioning in our inverse model. The corrected anthropogenic CO2 emissions also produce measurable reductions in the rate of global land CO2 sink increase post-2002, leading to a better agreement with the terrestrial biospheric model simulations that include CO2-fertilization and climate effects.

  1. Anthropogenic emissions and space-borne observations of carbon monoxide over South Asia

    Science.gov (United States)

    Ul-Haq, Zia; Tariq, Salman; Ali, Muhammad

    2016-11-01

    The focus of this study is to understand anthropogenic emissions, spatiotemporal variability and trends of carbon monoxide (CO) over South Asia by using datasets from MACCity (Monitoring Atmospheric Composition and Climate, MACC and megaCITY - Zoom for the Environment, CityZEN), REAS (Regional Emission inventory in Asia), AIRS (Atmospheric Infrared Sounder) and SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CartograpHY). MACCity anthropogenic emissions show an overall increase of 16.5% during 2000-2010. Elevated levels of MACCity CO are found in Indo-Gangetic Basin (IGB), eastern mining region of India, Bangladesh and large urban areas. Some of the major contributors of these emissions have been identified as agricultural waste burning, land transport, industrial production, and energy generation and distribution. An area averaged mean value of AIRS CO at 600 hPa is found to be 114 ± 2 ppbv (slope -0.48 ± 0.2 ppbv yr-1, y-intercept 117 ± 1 ppbv and r = 0.68) with a minor declining trend at -0.41 ± 0.18% yr-1 over the region during 2003-2015. A strong seasonality in AIRS CO concentration is observed with spring season peak in March 129 ± 1.9 ppbv, whereas low values have been observed in summer monsoon with sturdy dip in July 99.6 ± 1.94 ppbv. AIRS CO and SCIAMACHY CO Total Column (CO TC) over the study region show spatial patterns similar to MACCity and REAS emissions. An analysis of SCIAMACHY CO TC tendencies has been performed which indicates minor rising trends over some parts of the region. Background CO, Recent Emissions (RE), and spatial anomalies in RE over high anthropogenic activity zones of Indus Basin, Ganges Basin and Eastern Region were analyzed using AIRS and SCIAMACHY CO data.

  2. Assessment of mercury emission at Norcem's cement kiln by the use of 203Hg-tracer

    International Nuclear Information System (INIS)

    Eriksen, D.R.; Meyer, J.; Qvenild, C.; Tokheim, L.A.; Eriksen, T.A.

    2007-01-01

    In manufacture of cement clinker, mercury is introduced in the cement kiln system via the fuels and as constituents in the raw materials, i.e., limestone, iron ore, etc. The permissible emission of Hg to air is very low (0.05 mg/Nm 3 ) due to its toxicity. Thus, it is important to know how mercury distributes and behaves in the kiln system. The objective of the study was to measure the distribution of mercury in the kiln system, to measure the hold up time of Hg, to measure the portion of emission through the chimneys, and to see the dependence of the injection sites on these parameters. The results showed that the amounts of mercury being emitted through the exhaust gases were largely dependent on where it was injected. The residence time of mercury in the system was nevertheless long, after 10 hours it was still increase in the count rate of the mercury absorbed. There was also an immediate increase in the filter dust, but nothing could be measured in the clinker. This knowledge is needed for the reduction of mercury emissions. (author)

  3. Characterization of Mercury Emissions from ASGM Goldshop Activities in Peru

    Science.gov (United States)

    Mercury (Hg), used in artisanal small-scale gold mining (ASGM) practices, is recognized as a significant source of Hg release to the environment and is a major area of focus of the United Nations Environment Programme (UNEP) Global Mercury Partnership. Hg is used to bind (form a...

  4. OPTIMIZING TECHNOLOGY TO REDUCE MERCURY AND ACID GAS EMISSIONS FROM ELECTRIC POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey C. Quick; David E. Tabet; Sharon Wakefield; Roger L. Bon

    2005-10-01

    Maps showing potential mercury, sulfur, chlorine, and moisture emissions for U.S. coal by county of origin were made from publicly available data (plates 1, 2, 3, and 4). Published equations that predict mercury capture by emission control technologies used at U.S. coal-fired utilities were applied to average coal quality values for 169 U.S. counties. The results were used to create five maps that show the influence of coal origin on mercury emissions from utility units with: (1) hot-side electrostatic precipitator (hESP), (2) cold-side electrostatic precipitator (cESP), (3) hot-side electrostatic precipitator with wet flue gas desulfurization (hESP/FGD), (4) cold-side electrostatic precipitator with wet flue gas desulfurization (cESP/FGD), and (5) spray-dry adsorption with fabric filter (SDA/FF) emission controls (plates 5, 6, 7, 8, and 9). Net (lower) coal heating values were calculated from measured coal Btu values, and estimated coal moisture and hydrogen values; the net heating values were used to derive mercury emission rates on an electric output basis (plate 10). Results indicate that selection of low-mercury coal is a good mercury control option for plants having hESP, cESP, or hESP/FGD emission controls. Chlorine content is more important for plants having cESP/FGD or SDA/FF controls; optimum mercury capture is indicated where chlorine is between 500 and 1000 ppm. Selection of low-sulfur coal should improve mercury capture where carbon in fly ash is used to reduce mercury emissions. Comparison of in-ground coal quality with the quality of commercially mined coal indicates that existing coal mining and coal washing practice results in a 25% reduction of mercury in U.S. coal before it is delivered to the power plant. Further pre-combustion mercury reductions may be possible, especially for coal from Texas, Ohio, parts of Pennsylvania and much of the western U.S.

  5. Historical (1750-2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS)

    Science.gov (United States)

    Hoesly, Rachel M.; Smith, Steven J.; Feng, Leyang; Klimont, Zbigniew; Janssens-Maenhout, Greet; Pitkanen, Tyler; Seibert, Jonathan J.; Vu, Linh; Andres, Robert J.; Bolt, Ryan M.; Bond, Tami C.; Dawidowski, Laura; Kholod, Nazar; Kurokawa, June-ichi; Li, Meng; Liu, Liang; Lu, Zifeng; Moura, Maria Cecilia P.; O'Rourke, Patrick R.; Zhang, Qiang

    2018-01-01

    We present a new data set of annual historical (1750-2014) anthropogenic chemically reactive gases (CO, CH4, NH3, NOx, SO2, NMVOCs), carbonaceous aerosols (black carbon - BC, and organic carbon - OC), and CO2 developed with the Community Emissions Data System (CEDS). We improve upon existing inventories with a more consistent and reproducible methodology applied to all emission species, updated emission factors, and recent estimates through 2014. The data system relies on existing energy consumption data sets and regional and country-specific inventories to produce trends over recent decades. All emission species are consistently estimated using the same activity data over all time periods. Emissions are provided on an annual basis at the level of country and sector and gridded with monthly seasonality. These estimates are comparable to, but generally slightly higher than, existing global inventories. Emissions over the most recent years are more uncertain, particularly in low- and middle-income regions where country-specific emission inventories are less available. Future work will involve refining and updating these emission estimates, estimating emissions' uncertainty, and publication of the system as open-source software.

  6. Historical (1750–2014 anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS

    Directory of Open Access Journals (Sweden)

    R. M. Hoesly

    2018-01-01

    Full Text Available We present a new data set of annual historical (1750–2014 anthropogenic chemically reactive gases (CO, CH4, NH3, NOx, SO2, NMVOCs, carbonaceous aerosols (black carbon – BC, and organic carbon – OC, and CO2 developed with the Community Emissions Data System (CEDS. We improve upon existing inventories with a more consistent and reproducible methodology applied to all emission species, updated emission factors, and recent estimates through 2014. The data system relies on existing energy consumption data sets and regional and country-specific inventories to produce trends over recent decades. All emission species are consistently estimated using the same activity data over all time periods. Emissions are provided on an annual basis at the level of country and sector and gridded with monthly seasonality. These estimates are comparable to, but generally slightly higher than, existing global inventories. Emissions over the most recent years are more uncertain, particularly in low- and middle-income regions where country-specific emission inventories are less available. Future work will involve refining and updating these emission estimates, estimating emissions' uncertainty, and publication of the system as open-source software.

  7. Comparison of seasonal variation between anthropogenic and natural emission inventory and Satellite observation in Southeast Asia

    Science.gov (United States)

    Kurata, G.; Lalitaporn, P.

    2012-12-01

    Since the economic growth of the countries in Southeast Asia is significantly rapid, the emission of air pollutant from the anthropogenic activity, such as industry, power generation and transportation is rapidly increasing. Moreover, biomass burning due to unsuitable agricultural management, deforestation and expansion of farmland are discharging large amount of pollutants, such as Carbon monoxide, volatile organic compound and particulate matter. Especially, the particulate matter from biomass burning causes the serious haze pollution in surrounding area in Southeast Asia. Furthermore, the biomass fuel used for cooking at residential sector discharges harmful pollutants including a particulate matter, and causes the adverse health impact to people on indoor and outdoor. In this study, we evaluated the spatial distribution and the seasonal variation of emission inventory for Southeast Asia region by comparing with satellite observation data in order to improve the accuracy of the impact assessment of air pollution by regional atmospheric chemistry transport model (WRF and CMAQ). As an emission inventory data, we used our original regional emission inventory for Southeast Asia region developed from detail transportation and industry data sets as well as a several existing emission inventories. As satellite observation data, the vertical column density of NO2, Particulate matter and Carbon monoxide obtained by various satellite, such as GOME, GOME2, SCIAMACY, OMI and so on. As a result of comparisons between satellite observation and emission inventories from 1996 to 2011, in the case of anthropogenic emission, seasonal variation was comparatively well in agreement with the seasonal variation of satellite data. However, the uncertainty of the seasonal variation was large on several large cities. In the case of emission from biomass burning, the seasonal variation was clear, but inter-annual variation was also large due to large scale climate condition.

  8. African Anthropogenic Combustion Emissions: Estimate of Regional Mortality Attributable to Fine Particle Concentrations in 2030

    Science.gov (United States)

    Liousse, C.; Roblou, L.; Assamoi, E.; Criqui, P.; Galy-Lacaux, C.; Rosset, R.

    2014-12-01

    Fossil fuel (traffic, industries) and biofuel (domestic fires) emissions of gases and particles in Africa are expected to significantly increase in the near future, particularly due to rapid growth of African cities and megacities. In this study, we will present the most recent developments of African combustion emission inventories, including African specificities. Indeed, a regional fossil fuel and biofuel inventory for gases and particulates described in Liousse et al. (2014) has been developed for Africa at a resolution of 0.25° x 0.25° for the years 2005 and 2030. For 2005, the original database of Junker and Liousse (2008) was used after modification for updated regional fuel consumption and emission factors. Two prospective inventories for 2030 are derived based on Prospective Outlook on Long-term Energy Systems (POLES) model (Criqui, 2001). The first is a reference scenario (2030ref) with no emission controls and the second is for a "clean" scenario (2030ccc*) including Kyoto policy and African specific emission control. This inventory predicts very large increases of pollutant emissions in 2030 (e.g. contributing to 50% of global anthropogenic organic particles), if no emission regulations are implemented. These inventories have been introduced in RegCM4 model. In this paper we will focus on aerosol modelled concentrations in 2005, 2030ref and 2030ccc*. Spatial distribution of aerosol concentrations will be presented with a zoom at a few urban and rural sites. Finally mortality rates (respiratory, cardiovascular) caused by anthropogenic PM2.5 increase from 2005 to 2030, calculated following Lelieveld et al. (2013), will be shown for each scenarios. To conclude, this paper will discuss the effectiveness of scenarios to reduce emissions, aerosol concentrations and mortality rates, underlining the need for further measurements scheduled in the frame of the new DACCIWA (Dynamics-Aerosol-Chemistry-Cloud Interactions) program.

  9. Modelling Southern Africa Air Quality and Atmosphere: Importance and Interplay of Natural and Anthropogenic Emissions

    Science.gov (United States)

    Garland, R. M.; Naidoo, M.; Dedekind, Z.; Sibiya, B.; Piketh, S.; Engelbrecht, C. J.; Engelbrecht, F.

    2017-12-01

    Many parts of the southern hemisphere are linked in part due to the strong impact that emissions from natural sources, such as large biomass burning events and marine sources, as well as growing anthropogenic emission sources. Most of southern Africa has an arid to semi-arid climate that is strongly impacted by biomass burning, biogenic and dust emissions. In addition, there are areas of growing industrialization and urbanization that contributes to poor air quality. This air pollution can impact not only human health, but also agriculture, ecosystems, and the climate. This presentation will highlight on-going research to simulate the southern Africa atmosphere and impacts, with a focus on the interplay and relative importance of natural and anthropogenic emissions. The presentation will discuss the simulated sensitivity of the southern African climate to aerosol particles to highlight the importance of natural sources. These historical simulations (1979-2012) were performed with CCAM and are towards the development of the first Africa-led earth systems model. The analysis focused on the simulated sensitivity of the climate and clouds off the southwestern coast of Africa to aerosol particles. The interplay between natural and anthropogenic sources on air pollution will be highlighted using the Waterberg region of South Africa as a case study. CAMx was run at 2km resolution for 2013 using local emission inventories and meteorological output from CCAM to simulate the air quality of the region. These simulations estimate that, on average in the summer, up to 20% of ozone in and around a power plant plume is attributable to biogenic sources of VOCs, with ozone peaks of up to 120ppb; highlighting the importance of understanding the mix of pollutants in this area. In addition to presenting results from this study, the challenges in modelling will be highlighted. These challenges include very few or no measurements that are important to understand, and then accurately

  10. Large Gain in Air Quality Compared to an Alternative Anthropogenic Emissions Scenario

    Science.gov (United States)

    Daskalakis, Nikos; Tsigaridis, Kostas; Myriokefalitakis, Stelios; Fanourgakis, George S.; Kanakidou, Maria

    2016-01-01

    During the last 30 years, significant effort has been made to improve air quality through legislation for emissions reduction. Global three-dimensional chemistrytransport simulations of atmospheric composition over the past 3 decades have been performed to estimate what the air quality levels would have been under a scenario of stagnation of anthropogenic emissions per capita as in 1980, accounting for the population increase (BA1980) or using the standard practice of neglecting it (AE1980), and how they compare to the historical changes in air quality levels. The simulations are based on assimilated meteorology to account for the yearto- year observed climate variability and on different scenarios of anthropogenic emissions of pollutants. The ACCMIP historical emissions dataset is used as the starting point. Our sensitivity simulations provide clear indications that air quality legislation and technology developments have limited the rapid increase of air pollutants. The achieved reductions in concentrations of nitrogen oxides, carbon monoxide, black carbon, and sulfate aerosols are found to be significant when comparing to both BA1980 and AE1980 simulations that neglect any measures applied for the protection of the environment. We also show the potentially large tropospheric air quality benefit from the development of cleaner technology used by the growing global population. These 30-year hindcast sensitivity simulations demonstrate that the actual benefit in air quality due to air pollution legislation and technological advances is higher than the gain calculated by a simple comparison against a constant anthropogenic emissions simulation, as is usually done. Our results also indicate that over China and India the beneficial technological advances for the air quality may have been masked by the explosive increase in local population and the disproportional increase in energy demand partially due to the globalization of the economy.

  11. Mercury emissions from municipal solid waste combustors. An assessment of the current situation in the United States and forecast of future emissions

    Energy Technology Data Exchange (ETDEWEB)

    None

    1993-05-01

    This report examines emissions of mercury (Hg) from municipal solid waste (MSW) combustion in the United States (US). It is projected that total annual nationwide MSW combustor emissions of mercury could decrease from about 97 tonnes (1989 baseline uncontrolled emissions) to less than about 4 tonnes in the year 2000. This represents approximately a 95 percent reduction in the amount of mercury emitted from combusted MSW compared to the 1989 mercury emissions baseline. The likelihood that routinely achievable mercury emissions removal efficiencies of about 80 percent or more can be assured; it is estimated that MSW combustors in the US could prove to be a comparatively minor source of mercury emissions after about 1995. This forecast assumes that diligent measures to control mercury emissions, such as via use of supplemental control technologies (e.g., carbon adsorption), are generally employed at that time. However, no present consensus was found that such emissions control measures can be implemented industry-wide in the US within this time frame. Although the availability of technology is apparently not a limiting factor, practical implementation of necessary control technology may be limited by administrative constraints and other considerations (e.g., planning, budgeting, regulatory compliance requirements, etc.). These projections assume that: (a) about 80 percent mercury emissions reduction control efficiency is achieved with air pollution control equipment likely to be employed by that time; (b) most cylinder-shaped mercury-zinc (CSMZ) batteries used in hospital applications can be prevented from being disposed into the MSW stream or are replaced with alternative batteries that do not contain mercury; and (c) either the amount of mercury used in fluorescent lamps is decreased to an industry-wide average of about 27 milligrams of mercury per lamp or extensive diversion from the MSW stream of fluorescent lamps that contain mercury is accomplished.

  12. Economic analysis of atmospheric mercury emission control for coal-fired power plants in China.

    Science.gov (United States)

    Ancora, Maria Pia; Zhang, Lei; Wang, Shuxiao; Schreifels, Jeremy; Hao, Jiming

    2015-07-01

    Coal combustion and mercury pollution are closely linked, and this relationship is particularly relevant in China, the world's largest coal consumer. This paper begins with a summary of recent China-specific studies on mercury removal by air pollution control technologies and then provides an economic analysis of mercury abatement from these emission control technologies at coal-fired power plants in China. This includes a cost-effectiveness analysis at the enterprise and sector level in China using 2010 as a baseline and projecting out to 2020 and 2030. Of the control technologies evaluated, the most cost-effective is a fabric filter installed upstream of the wet flue gas desulfurization system (FF+WFGD). Halogen injection (HI) is also a cost-effective mercury-specific control strategy, although it has not yet reached commercial maturity. The sector-level analysis shows that 193 tons of mercury was removed in 2010 in China's coal-fired power sector, with annualized mercury emission control costs of 2.7 billion Chinese Yuan. Under a projected 2030 Emission Control (EC) scenario with stringent mercury limits compared to Business As Usual (BAU) scenario, the increase of selective catalytic reduction systems (SCR) and the use of HI could contribute to 39 tons of mercury removal at a cost of 3.8 billion CNY. The economic analysis presented in this paper offers insights on air pollution control technologies and practices for enhancing atmospheric mercury control that can aid decision-making in policy design and private-sector investments. Copyright © 2015. Published by Elsevier B.V.

  13. Mercury in the environment : a review

    International Nuclear Information System (INIS)

    Goodarzi, F.

    2000-01-01

    Both geogenic and anthropogenic sources are responsible for the input of mercury into the environment. However, mercury comes mostly from geogenic sources and is found naturally in air, water and soil. Crustal degassing results in emission of mercury into the atmosphere. Mercury in water and soil is due mostly to input from sedimentary rocks. Mercury in lake sediments is related mainly to input by country rock and anthropogenic activities such as agriculture. The mercury content of coal is similar to or less than the amount found in the earths crust. Natural charcoal is also able to capture mercury at low temperature combustion. The amount of mercury emitted from the stack of coal-fired power plants is related to the nature of the milled coal and its mineralogical and elemental content. Mercury emissions originating from the combustion of coal from electric utility power plants are considered to be among the greatest contributors to global mercury air emissions. In order to quantify the impact the electric power industry has on the environment, information regarding mercury concentrations in coal and their speciation is needed. For this reason the author examined the behaviour of mercury in three coal samples ashed at increasing temperatures. Mercury removal from coal-fired power plants ranges from 10 to 50 per cent by fabric filters and 20 to 95 per cent by FGD systems. This data will help in regulating emissions of hazardous air pollutants from electric utility steam generating units and will potentially provide insight into the industry's contribution to the global mercury burden. 50 refs

  14. UNEP Demonstrations of Mercury Emission Reduction at Two Coal-fired Power Plants in Russia

    Directory of Open Access Journals (Sweden)

    Jozewicz W.

    2013-04-01

    Full Text Available The United Nations Environment Programme (UNEP partnership area “Mercury releases from coal combustion” (The UNEP Coal Partnership has initiated demonstrations of mercury air emission reduction at two coal-fired power plants in Russia. The first project has modified the wet particulate matter (PM scrubber installed in Toliatti thermal plant to allow for addition of chemical reagents (oxidants into the closedloop liquid spray system. The addition of oxidant resulted in significant improvement of mercury capture from 20% total mercury removal (without the additive up to 60% removal (with the additive. It demonstrates the effectiveness of sorbent injection technologies in conjunction with an electrostatic precipitator (ESP. ESPs are installed at 60%, while wet PM scrubbers are installed at 30% of total coal-fired capacity in Russia. Thus, the two UNEP Coal Partnership projects address the majority of PM emission control configurations occurring in Russia.

  15. CONTROL OF MERCURY EMISSIONS FROM COAL-FIRED ELECTRIC UTILITY BOILERS: INTERIM REPORT

    Science.gov (United States)

    The report provides additional information on mercury (Hg) emissions control following the release of "Study of Hazardous Air Pollutant Emissions from Electric Utility Steam Generating Units--Final Report to Congress" in February 1998. Chapters 1-3 describe EPA's December 2000 de...

  16. CHARACTERIZATION OF THE FUGITIVE MERCURY EMISSIONS AT A CHLOR-ALKALI PLANT. OVERALL STUDY DESIGN

    Science.gov (United States)

    The paper discusses a detailed emissions measurement campaign that was conducted over a 9-day period within a mercury (Hg) cell chlor-alkali plant in the southeastern United States (U.S.). The principal focus of this study was to measure fugitive (non-ducted) airborne Hg emission...

  17. Attributing Methane and Carbon Dioxide Emissions from Anthropogenic and Natural Sources Using AVIRIS-NG

    Science.gov (United States)

    Thorpe, A. K.; Frankenberg, C.; Thompson, D. R.; Duren, R. M.; Aubrey, A. D.; Bue, B. D.; Green, R. O.; Gerilowski, K.; Krings, T.; Borchardt, J.; Kort, E. A.; Sweeney, C.; Conley, S. A.; Roberts, D. A.; Dennison, P. E.; Ayasse, A.

    2016-12-01

    Imaging spectrometers like the next generation Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-NG) can map large regions with the high spatial resolution necessary to resolve methane (CH4) and carbon dioxide (CO2) emissions. This capability is aided by real time detection and geolocation of gas plumes, permitting unambiguous identification of individual emission source locations and communication to ground teams for rapid follow up. We present results from AVIRIS-NG flight campaigns in the Four Corners region (Colorado and New Mexico) and the San Joaquin Valley (California). Over three hundred plumes were observed, reflecting emissions from anthropogenic and natural sources. Examples of plumes will be shown for a number of sources, including CH4 from well completions, gas processing plants, tanks, pipeline leaks, natural seeps, and CO2 from power plants. Despite these promising results, an imaging spectrometer built exclusively for quantitative mapping of gas plumes would have improved sensitivity compared to AVIRIS-NG. For example, an instrument providing a 1 nm spectral sampling (2,000-2,400 micron) would permit mapping CH4, CO2, H2O, CO, and N2O from more diffuse sources using both airborne and orbital platforms. The ability to identify emission sources offers the potential to constrain regional greenhouse gas budgets and improve partitioning between anthropogenic and natural emission sources. Because the CH4 lifetime is only about 9 years and CH4 has a Global Warming Potential 86 times that of CO2 for a 20 year time interval, mitigating these emissions is a particularly cost-effective approach to reduce overall atmospheric radiative forcing. Fig. 1. True color image subset with superimposed gas plumes showing concentrations in ppmm. Left: AVIRIS-NG observed CH4 plumes from natural gas processing plant extending over 500 m downwind of multiple emissions sources. Right: Multiple CO2 plumes observed from coal-fired power plant.

  18. Radio-interferometric imaging of the subsurface emissions from the planet Mercury

    Science.gov (United States)

    Burns, J. O.; Zeilik, M.; Gisler, G. R.; Borovsky, J. E.; Baker, D. N.

    1987-01-01

    The distribution of total and polarized intensities from Mercury's subsurface layers have been mapped using VLA observations. The first detection of a hot pole along the Hermean equator is reported and modeled as black-body reradiation from preferential diurnal heating. These observations appear to rule out any internal sources of heat within Mercury. Polarized emission from the limb of the planet is also found, and is understood in terms of the dielectric properties of the Hermean surface.

  19. African Anthropogenic Emissions Inventories for gases and particles from 1990 to 2016

    Science.gov (United States)

    Liousse, Catherine; Keita, Sekou; N'Datchoch Touré, Evelyne 1; Doumbia, Thierno; Yoboué, Véronique; Assamoi, Eric; Haslett, Sophie; Roblou, Laurent; Léon, Jean-François; Galy-Lacaux, Corinne; Akpo, Aristide; Coe, Hugh

    2017-04-01

    Presently, there is one African regional inventory dealing with biofuel and fossil fuel emissions (Liousse et al., 2014) and only global emission inventories including Africa. Developing a regional inventory for gases and particles is not an easy task: the DACCIWA project has allowed to organize a framework suitable for this development through regrouping several investigators. The aim is to set an African database on fuel consumption and new emission factor measurements and to include other sources of pollution than biofuel and fossil fuel such as flaring and waste burning yet not negligible in Africa. The inclusion of these sources in the new inventory and also new emissions factor measurements will reduce the uncertainties on anthropogenic emissions in Africa. This work will present the first version of African fossil fuel (FF), biofuel (BF), gas flaring and waste burning emission inventories for the 1990-2016 period for the major atmospheric compounds (gases and particles) provides up to date emission fields at 0.125° x 0.125° spatial resolution and yearly temporal resolution that can be used to model atmospheric composition and impacts over West Africa. New emission factor measurements on ground and in combustion chambers will be discussed. Temporal variability of emissions from 1990 to 2016 will be scrutinized. In parallel, uncertainties on existing biomass burning emission inventories will be presented. New emission inventories based on MODIS burnt area products and AMMABB methodology have been developed for the period 2000-2012. They will be compared with GFED and GFAS products. Finally, tests on these inventories in Regional Climate Model (RegCM) at African scale will be presented for different years.

  20. An Asian emission inventory of anthropogenic emission sources for the period 1980─2020

    Directory of Open Access Journals (Sweden)

    X. Yan

    2007-08-01

    Full Text Available We developed a new emission inventory for Asia (Regional Emission inventory in ASia (REAS Version 1.1 for the period 1980–2020. REAS is the first inventory to integrate historical, present, and future emissions in Asia on the basis of a consistent methodology. We present here emissions in 2000, historical emissions for 1980–2003, and projected emissions for 2010 and 2020 of SO2, NOx, CO, NMVOC, black carbon (BC, and organic carbon (OC from fuel combustion and industrial sources. Total energy consumption in Asia more than doubled between 1980 and 2003, causing a rapid growth in Asian emissions, by 28% for BC, 30% for OC, 64% for CO, 108% for NMVOC, 119% for SO2, and 176% for NOx. In particular, Chinese NOx emissions showed a marked increase of 280% over 1980 levels, and growth in emissions since 2000 has been extremely high. These increases in China were mainly caused by increases in coal combustion in the power plants and industrial sectors. NMVOC emissions also rapidly increased because of growth in the use of automobiles, solvents, and paints. By contrast, BC, OC, and CO emissions in China showed decreasing trends from 1996 to 2000 because of a reduction in the use of biofuels and coal in the domestic and industry sectors. However, since 2000, Chinese emissions of these species have begun to increase. Thus, the emissions of air pollutants in Asian countries (especially China showed large temporal variations from 1980–2003. Future emissions in 2010 and 2020 in Asian countries were projected by emission scenarios and from emissions in 2000. For China, we developed three emission scenarios: PSC (policy success case, REF (reference case, and PFC (policy failure case. In the 2020 REF scenario, Asian total emissions of SO2, NOx, and NMVOC were projected to increase substantially by 22%, 44%, and 99%, respectively, over 2000 levels. The 2020 REF scenario showed a modest increase in CO (12%, a lesser increase in BC (1%, and a slight decrease in

  1. Changes in US background ozone due to global anthropogenic emissions from 1970 to 2020

    Science.gov (United States)

    Nopmongcol, Uarporn; Jung, Jaegun; Kumar, Naresh; Yarwood, Greg

    2016-09-01

    Estimates of North American and US Background (NAB and USB) ozone (O3) are critical in setting and implementing the US National Ambient Air Quality Standards (NAAQS) and therefore influence population exposure to O3 across the US. NAB is defined as the O3 concentration in the absence of anthropogenic O3 precursor emissions from North America whereas USB excludes anthropogenic emissions inside the US alone. NAB and USB vary geographically and with time of year. Analyses of O3 trends at rural locations near the west coast suggest that background O3 is rising in response to increasing non-US emissions. As the O3 NAAQS is lowered, rising background O3 would make attaining the NAAQS more difficult. Most studies of changing US background O3 have inferred trends from observations whereas air quality management decisions tend to rely on models. Thus, it is important that the models used to develop O3 management strategies are able to represent the changes in background O3 in order to increase confidence that air quality management strategies will succeed. We focus on how changing global emissions influence USB rather than the effects of inter-annual meteorological variation or long-term climate change. We use a regional model (CAMx) nested within a global model (GEOS-Chem) to refine our grid resolution over high terrain in the western US and near US borders where USB tends to be higher. We determine USB from CAMx simulations that exclude US anthropogenic emissions. Over five decades, from 1970 to 2020, estimated USB for the annual fourth highest maximum daily 8-h average O3 (H4MDA8) in the western US increased from mostly in the range of 40-55 ppb to 45-60 ppb, but remained below 45 ppb in the eastern US. USB increases in the southwestern US are consistent with rising emissions in Asia and Mexico. USB decreases in the northeast US after 1990 follow declining Canadian emissions. Our results show that the USB increases both for the top 30 MDA8 days and the H4MDA8 (the former

  2. REDUCTION OF INHERENT MERCURY EMISSIONS IN PC COMBUSTION

    Energy Technology Data Exchange (ETDEWEB)

    John C. Kramlich; Rebecca N. Sliger

    2000-08-26

    Oxidized mercury has been shown to be more easily removed from power plant flue gas by existing air pollution control equipment (e.g., wet scrubbers) than elemental mercury. The factors that determine how mercury is converted to the oxidized form in practical systems are, however, unknown. The present research focuses on developing an elementary, homogeneous mechanism that describes the oxidation of mercury by chlorine species as it occurs in practical furnaces. The goal is to use this mechanism (1) as a component in an overall homogeneous/heterogeneous mechanism that describes mercury behavior, and (2) to suggest low cost/low impact means of promoting mercury oxidation in furnaces. The results suggest an important role for Hg+Cl {r_arrow} HgCl and HgCl + Cl {r_arrow} HgCl{sub 2}. Here, the Cl is derived by radical attack on HCl in the high-temperature environment. The results suggest that the oxidation occurs during the time that the gases cool to room temperature. The high Cl concentrations from the flame persist into the quench region and provide for the oxidation of Hg to HgCl{sub 2} under lower temperatures where the products are stable. Under this mechanism, no significant HgCl{sub 2} is actually present at the higher temperatures where oxidized mercury is often reported in the literature (e.g., 900 C). Instead, all oxidation occurs as these gases are quenched. The results suggest that means of promoting Cl concentrations in the furnace will increase oxidation.

  3. Mercury

    Science.gov (United States)

    ... build up in fish, shellfish, and animals that eat fish. The nervous system is sensitive to all forms of mercury. Exposure to high levels can damage the brain and kidneys. Pregnant women can pass the mercury in their bodies to their babies. It is important to protect your family from ...

  4. Mercury

    Science.gov (United States)

    ... has set a limit of 2 parts of mercury per billion parts of drinking water (2 ppb). The Food and Drug Administration (FDA) has set a maximum permissible level of 1 part of methylmercury in a million ... of 0.1 milligram of organic mercury per cubic meter of workplace air (0.1 ...

  5. Inversion Approach to Validate Mercury Emissions Based on Background Air Monitoring at the High Altitude Research Station Jungfraujoch (3580 m).

    Science.gov (United States)

    Denzler, Basil; Bogdal, Christian; Henne, Stephan; Obrist, Daniel; Steinbacher, Martin; Hungerbühler, Konrad

    2017-03-07

    The reduction of emissions of mercury is a declared aim of the Minamata Convention, a UN treaty designed to protect human health and the environment from adverse effects of mercury. To assess the effectiveness of the convention in the future, better constraints about the current mercury emissions is a premise. In our study, we applied a top-down approach to quantify mercury emissions on the basis of atmospheric mercury measurements conducted at the remote high altitude monitoring station Jungfraujoch, Switzerland. We established the source-receptor relationships and by the means of atmospheric inversion we were able to quantify spatially resolved European emissions of 89 ± 14 t/a for elemental mercury. Our European emission estimate is 17% higher than the bottom-up emission inventory, which is within stated uncertainties. However, some regions with unexpectedly high emissions were identified. Stationary combustion, in particular in coal-fired power plants, is found to be the main responsible sector for increased emission estimates. Our top-down approach, based on measurements, provides an independent constraint on mercury emissions, helps to improve and refine reported emission inventories, and can serve for continued assessment of future changes in emissions independent from bottom-up inventories.

  6. Characterization, mapping, and mitigation of mercury vapour emissions from artisanal mining gold shops.

    Science.gov (United States)

    Cordy, Paul; Veiga, Marcello; Crawford, Ben; Garcia, Oseas; Gonzalez, Victor; Moraga, Daniel; Roeser, Monika; Wip, Dennis

    2013-08-01

    Artisanal miners sell their gold to shops that are usually located in the urban core, where the mercury-gold amalgam is burned to evaporate the mercury that was added during ore processing. People living and working near these gold shops are exposed to intermittent and extreme concentrations of mercury vapour. In the urban centres of Segovia, Colombia, and Andacollo, Chile, the average concentrations measured by mobile mercury vapour analyzer transects taken repeatedly over several weeks were 1.26 and 0.338μgm(-3), respectively. By World Health Organization standards, these towns are exposed to significant health hazard, and globally, the millions of miners, as well as non-miners who live near gold shops, are at serious risk of neurological and renal deficits. Measurements taken in Suriname, Ecuador and Peru reveal this to be a widespread phenomenon with unique regional variations and myriad attempts at remediation. Maps of average mercury concentrations show the spatial distribution of the hazard in relation to residential buildings and schools. Measurements from towers show the temporal variability of mercury concentrations, and suggest that large quantities of mercury are available for long-range atmospheric transport. Mercury mapping in Segovia in 2011 suggest a 10% reduction in airborne mercury concentrations over 2010, despite a 30% increase in gold production. This is attributable to the adoption of retorts by miners and regulations banning new processing centres to the rural periphery. This is the first full description of artisanal mining gold shop practices and of the character, quantity, and remediation of mercury emissions within urban mining centres. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. The contribution of anthropogenic bromine emissions to past stratospheric ozone trends: a modelling study

    Directory of Open Access Journals (Sweden)

    B.-M. Sinnhuber

    2009-04-01

    Full Text Available Bromine compounds play an important role in the depletion of stratospheric ozone. We have calculated the changes in stratospheric ozone in response to changes in the halogen loading over the past decades, using a two-dimensional (latitude/height model constrained by source gas mixing ratios at the surface. Model calculations of the decrease of total column ozone since 1980 agree reasonably well with observed ozone trends, in particular when the contribution from very short-lived bromine compounds is included. Model calculations with bromine source gas mixing ratios fixed at 1959 levels, corresponding approximately to a situation with no anthropogenic bromine emissions, show an ozone column reduction between 1980 and 2005 at Northern Hemisphere mid-latitudes of only ≈55% compared to a model run including all halogen source gases. In this sense anthropogenic bromine emissions are responsible for ≈45% of the model estimated column ozone loss at Northern Hemisphere mid-latitudes. However, since a large fraction of the bromine induced ozone loss is due to the combined BrO/ClO catalytic cycle, the effect of bromine would have been smaller in the absence of anthropogenic chlorine emissions. The chemical efficiency of bromine relative to chlorine for global total ozone depletion from our model calculations, expressed by the so called α-factor, is 64 on an annual average. This value is much higher than previously published results. Updates in reaction rate constants can explain only part of the differences in α. The inclusion of bromine from very short-lived source gases has only a minor effect on the global mean α-factor.

  8. Global Scale Attribution of Anthropogenic and Natural Dust Sources and their Emission Rates Based on MODIS Deep Blue Aerosol Products

    Science.gov (United States)

    Ginoux, Paul; Prospero, Joseph M.; Gill, Thomas E.; Hsu, N. Christina; Zhao, Ming

    2012-01-01

    Our understanding of the global dust cycle is limited by a dearth of information about dust sources, especially small-scale features which could account for a large fraction of global emissions. Here we present a global-scale high-resolution (0.1 deg) mapping of sources based on Moderate Resolution Imaging Spectroradiometer (MODIS) Deep Blue estimates of dust optical depth in conjunction with other data sets including land use. We ascribe dust sources to natural and anthropogenic (primarily agricultural) origins, calculate their respective contributions to emissions, and extensively compare these products against literature. Natural dust sources globally account for 75% of emissions; anthropogenic sources account for 25%. North Africa accounts for 55% of global dust emissions with only 8% being anthropogenic, mostly from the Sahel. Elsewhere, anthropogenic dust emissions can be much higher (75% in Australia). Hydrologic dust sources (e.g., ephemeral water bodies) account for 31% worldwide; 15% of them are natural while 85% are anthropogenic. Globally, 20% of emissions are from vegetated surfaces, primarily desert shrublands and agricultural lands. Since anthropogenic dust sources are associated with land use and ephemeral water bodies, both in turn linked to the hydrological cycle, their emissions are affected by climate variability. Such changes in dust emissions can impact climate, air quality, and human health. Improved dust emission estimates will require a better mapping of threshold wind velocities, vegetation dynamics, and surface conditions (soil moisture and land use) especially in the sensitive regions identified here, as well as improved ability to address small-scale convective processes producing dust via cold pool (haboob) events frequent in monsoon regimes.

  9. Comparison and evaluation of anthropogenic emissions of SO2 and NOx over China

    Science.gov (United States)

    Li, Meng; Klimont, Zbigniew; Zhang, Qiang; Martin, Randall V.; Zheng, Bo; Heyes, Chris; Cofala, Janusz; Zhang, Yuxuan; He, Kebin

    2018-03-01

    Bottom-up emission inventories provide primary understanding of sources of air pollution and essential input of chemical transport models. Focusing on SO2 and NOx, we conducted a comprehensive evaluation of two widely used anthropogenic emission inventories over China, ECLIPSE and MIX, to explore the potential sources of uncertainties and find clues to improve emission inventories. We first compared the activity rates and emission factors used in two inventories and investigated the reasons of differences and the impacts on emission estimates. We found that SO2 emission estimates are consistent between two inventories (with 1 % differences), while NOx emissions in ECLIPSE's estimates are 16 % lower than those of MIX. The FGD (flue-gas desulfurization) device penetration rate and removal efficiency, LNB (low-NOx burner) application rate and abatement efficiency in power plants, emission factors of industrial boilers and various vehicle types, and vehicle fleet need further verification. Diesel consumptions are quite uncertain in current inventories. Discrepancies at the sectorial and provincial levels are much higher than those of the national total. We then examined the impacts of different inventories on model performance by using the nested GEOS-Chem model. We finally derived top-down emissions by using the retrieved columns from the Ozone Monitoring Instrument (OMI) compared with the bottom-up estimates. High correlations were observed for SO2 between model results and OMI columns. For NOx, negative biases in bottom-up gridded emission inventories (-21 % for MIX, -39 % for ECLIPSE) were found compared to the satellite-based emissions. The emission trends from 2005 to 2010 estimated by two inventories were both consistent with satellite observations. The inventories appear to be fit for evaluation of the policies at an aggregated or national level; more work is needed in specific areas in order to improve the accuracy and robustness of outcomes at finer spatial

  10. Comparison and evaluation of anthropogenic emissions of SO2 and NOx over China

    Directory of Open Access Journals (Sweden)

    M. Li

    2018-03-01

    Full Text Available Bottom-up emission inventories provide primary understanding of sources of air pollution and essential input of chemical transport models. Focusing on SO2 and NOx, we conducted a comprehensive evaluation of two widely used anthropogenic emission inventories over China, ECLIPSE and MIX, to explore the potential sources of uncertainties and find clues to improve emission inventories. We first compared the activity rates and emission factors used in two inventories and investigated the reasons of differences and the impacts on emission estimates. We found that SO2 emission estimates are consistent between two inventories (with 1 % differences, while NOx emissions in ECLIPSE's estimates are 16 % lower than those of MIX. The FGD (flue-gas desulfurization device penetration rate and removal efficiency, LNB (low-NOx burner application rate and abatement efficiency in power plants, emission factors of industrial boilers and various vehicle types, and vehicle fleet need further verification. Diesel consumptions are quite uncertain in current inventories. Discrepancies at the sectorial and provincial levels are much higher than those of the national total. We then examined the impacts of different inventories on model performance by using the nested GEOS-Chem model. We finally derived top-down emissions by using the retrieved columns from the Ozone Monitoring Instrument (OMI compared with the bottom-up estimates. High correlations were observed for SO2 between model results and OMI columns. For NOx, negative biases in bottom-up gridded emission inventories (−21 % for MIX, −39 % for ECLIPSE were found compared to the satellite-based emissions. The emission trends from 2005 to 2010 estimated by two inventories were both consistent with satellite observations. The inventories appear to be fit for evaluation of the policies at an aggregated or national level; more work is needed in specific areas in order to improve the accuracy and robustness of

  11. Design and evaluation of a porous burner for the mitigation of anthropogenic methane emissions.

    Science.gov (United States)

    Wood, Susie; Fletcher, David F; Joseph, Stephen D; Dawson, Adrian; Harris, Andrew T

    2009-12-15

    Methane constitutes 15% of total global anthropogenic greenhouse gas emissions. The mitigation of these emissions could have a significant near-term effect on slowing global warming, and recovering and burning the methane would allow a wasted energy resource to be exploited. The typically low and fluctuating energy content of the emission streams makes combustion difficult; however porous burners-an advanced combustion technology capable of burning low-calorific value fuels below the conventional flammability limit-are one possible mitigation solution. Here we discuss a pilot-scale porous burner designed for this purpose. The burner comprises a cylindrical combustion chamber filled with a porous bed of alumina saddles, combined with an arrangement of heat exchanger tubes for preheating the incoming emission stream. A computational fluid dynamics model was developed to aid in the design process. Results illustrating the burner's stable operating range and behavior are presented: stable ultralean combustion is demonstrated at natural gas concentrations as low as 2.3 vol%, with transient combustion at concentrations down to 1.1 vol%; the system is comparatively stable to perturbations in the operating conditions, and emissions of both carbon monoxide and unburned hydrocarbons are negligible. Based on this pilot-scale demonstration, porous burners show potential as a methane mitigation technology.

  12. Mercury from wildfires: Global emission inventories and sensitivity to 2000-2050 global change

    Science.gov (United States)

    Kumar, Aditya; Wu, Shiliang; Huang, Yaoxian; Liao, Hong; Kaplan, Jed O.

    2018-01-01

    We estimate the global Hg wildfire emissions for the 2000s and the potential impacts from the 2000-2050 changes in climate, land use and land cover and Hg anthropogenic emissions by combining statistical analysis with global data on vegetation type and coverage as well as fire activities. Global Hg wildfire emissions are estimated to be 612 Mg year-1. Africa is the dominant source region (43.8% of global emissions), followed by Eurasia (31%) and South America (16.6%). We find significant perturbations to wildfire emissions of Hg in the context of global change, driven by the projected changes in climate, land use and land cover and Hg anthropogenic emissions. 2000-2050 climate change could increase Hg emissions by 14% globally and regionally by 18% for South America, 14% for Africa and 13% for Eurasia. Projected changes in land use by 2050 could decrease the global Hg emissions from wildfires by 13% mainly driven by a decline in African emissions due to significant agricultural land expansion. Future land cover changes could lead to significant increases in Hg emissions over some regions (+32% North America, +14% Africa, +13% Eurasia). Potential enrichment of terrestrial ecosystems in 2050 in response to changes in Hg anthropogenic emissions could increase Hg wildfire emissions globally (+28%) and regionally (+19% North America, +20% South America, +24% Africa, +41% Eurasia). Our results indicate that the future evolution of climate, land use and land cover and Hg anthropogenic emissions are all important factors affecting Hg wildfire emissions in the coming decades.

  13. Mercury in products - a source of transboundary pollutant transport

    Energy Technology Data Exchange (ETDEWEB)

    Munthe, J.; Kindbom, K. [Swedish Environmental Research Inst., Stockholm (Sweden)

    1997-12-01

    The purpose of this report is to summarize current knowledge on product-related emissions of mercury to air on a European scale, and to estimate the contribution from mercury contained in products, to the total anthropogenic emissions of mercury to air and transboundary transport of mercury in Europe. Products included in this study are batteries, measuring and control instruments, light sources and electrical equipment, all intentionally containing mercury. The main result of this study is that product-related emission of mercury can contribute significantly to total emissions and transboundary transport of mercury in the European region and that measures to limit the use of mercury in products can contribute to an overall decrease of the environmental input of mercury in Europe. It is concluded that: -Mercury contained in products may be emitted to air during consumption, after disposal when incinerated or when volatilized from landfill. Mercury may also be emitted to air during recycling of scrap metal or when accumulated (stored) in society. -The amount of mercury consumed in batteries and in measuring and control instruments had decreased since the late 1980`s. The total use of mercury in light sources and electrical equipment has not changed significantly during the same time period. The contribution to total anthropogenic emissions of mercury to air in Europe in the mid 1990`s is estimated to be: for batteries 4%; for measuring and control instruments 3%; for lighting and electrical equipment 11%. -Mercury in products leads to significant wet deposition input in Scandinavia. The relative amount of the total deposition flux attributable to products is estimated to be 10-14% 26 refs, 4 figs, 10 tabs

  14. Atmospheric toxic metals emission inventory and spatial characteristics from anthropogenic sources of Guangdong province, China

    Science.gov (United States)

    Cher, S.; Menghua, L.; Xiao, X.; Yuqi, W.; Zhuangmin, Z.; Zhijiong, H.; Cheng, L.; Guanglin, J.; Zibing, Y.; Junyu, Z.

    2017-12-01

    Atmospheric toxic metals (TMs) are part of particulate matters, and may create adverse effects on the environment and human health depending upon their bioavailability and toxicity. Localized emission inventory is fundamental for parsing of toxic metals to identify key sources in order to formulate efficient toxic metals control strategies. With the use of the latest municipal level environment statistical data, this study developed a bottom-up emission inventory of five toxic metals (Hg, As, Pb, Cd, Cr) from anthropogenic activities in Guangdong province for the year of 2014. Major atmospheric toxic metals sources including combustion sources (coal, oil, biomass, municipal solid waste) and industrial process sources (cement production, nonferrous metal smelting, iron and steel industry, battery and fluorescent lamp production) were investigated. Results showed that: (1) The total emissions of Hg, As, Pb, Cd, Cr in Guangdong province were 18.14, 32.59, 411.34, 13.13, 84.16 t, respectively. (2) Different pollutants have obvious characteristics of emission sources. For total Hg emission, 46% comes from combustion sources, of which 32% from coal combustion and 8% from MSW combustion. Other 54% comes from industrial processes, which dominated by the cement (19%), fluorescent lamp (18%) and battery production (13%). Of the total Hg emission, 69% is released as Hg0 , 29% as Hg2+ , and only 2% as Hgp due to strict particulate matters controls policies. For As emissions, coal combustion, nonferrous metal smelting and iron and steel industry contributed approximate 48%, 25% and 24%, respectively. Pb emissions primarily come from battery production (42%), iron and steel industry (21%) and on-road mobile gasoline combustion (17%). Cd and Cr emissions were dominated by nonferrous metal smelting (71%) and iron and steel industry (82%), respectively. (3) In term of the spatial distribution, emissions of atmospheric toxic metals are mainly concentrated in the central region of

  15. Managing mercury in the great lakes: an analytical review of abatement policies.

    Science.gov (United States)

    Mohapatra, Satya P; Nikolova, Iana; Mitchell, Anne

    2007-04-01

    Mercury, a toxic metal known to have several deleterious affects on human health, has been one of the principal contaminants of concern in the Great Lakes basin. There are numerous anthropogenic sources of mercury to the Great Lakes area. Combustion of coal, smelting of non ferrous metals, and incineration of municipal and medical waste are major sources of mercury emissions in the region. In addition to North American anthropogenic emissions, global atmospheric emissions also significantly contribute to the deposition of mercury in the Great Lakes basin. Both the USA and Canada have agreed to reduce human exposure to mercury in the Great Lakes basin and have significantly curtailed mercury load to this region through individual and joint efforts. However, many important mercury sources, such as coal-fired power plants, still exist in the vicinity of the Great Lakes. More serious actions to drastically reduce mercury sources by employing alternative energy sources, restricting mercury trade and banning various mercury containing consumer products, such as dental amalgam are as essential as cleaning up the historical deposits of mercury in the basin. A strong political will and mass momentum are crucial for efficient mercury management. International cooperation is equally important. In the present paper, we have analyzed existing policies in respective jurisdictions to reduce mercury concentration in the Great Lakes environment. A brief review of the sources, occurrence in the Great Lakes, and the health effects of mercury is also included.

  16. The role of anthropogenic aerosol emission reduction in achieving the Paris Agreement's objective

    Science.gov (United States)

    Hienola, Anca; Pietikäinen, Joni-Pekka; O'Donnell, Declan; Partanen, Antti-Ilari; Korhonen, Hannele; Laaksonen, Ari

    2017-04-01

    The Paris agreement reached in December 2015 under the auspices of the United Nation Framework Convention on Climate Change (UNFCCC) aims at holding the global temperature increase to well below 2◦C above preindustrial levels and "to pursue efforts to limit the temperature increase to 1.5◦C above preindustrial levels". Limiting warming to any level implies that the total amount of carbon dioxide (CO2) - the dominant driver of long-term temperatures - that can ever be emitted into the atmosphere is finite. Essentially, this means that global CO2 emissions need to become net zero. CO2 is not the only pollutant causing warming, although it is the most persistent. Short-lived, non-CO2 climate forcers also must also be considered. Whereas much effort has been put into defining a threshold for temperature increase and zero net carbon emissions, surprisingly little attention has been paid to the non-CO2 climate forcers, including not just the non-CO2 greenhouse gases (methane (CH4), nitrous oxide (N2O), halocarbons etc.) but also the anthropogenic aerosols like black carbon (BC), organic carbon (OC) and sulfate. This study investigates the possibility of limiting the temperature increase to 1.5◦C by the end of the century under different future scenarios of anthropogenic aerosol emissions simulated with the very simplistic MAGICC climate carbon cycle model as well as with ECHAM6.1-HAM2.2-SALSA + UVic ESCM. The simulations include two different CO2 scenarios- RCP3PD as control and a CO2 reduction leading to 1.5◦C (which translates into reaching the net zero CO2 emissions by mid 2040s followed by negative emissions by the end of the century); each CO2 scenario includes also two aerosol pollution control cases denoted with CLE (current legislation) and MFR (maximum feasible reduction). The main result of the above scenarios is that the stronger the anthropogenic aerosol emission reduction is, the more significant the temperature increase by 2100 relative to pre

  17. LOCAL IMPACTS OF MERCURY EMISSIONS FROM THE MONTICELLO COAL FIRED POWER PLANT.

    Energy Technology Data Exchange (ETDEWEB)

    SULLIVAN, T.M.; ADAMS, J.; MILIAN, L.; SUBRAMANIAN, S.; FEAGIN, L.; WILLIAMS, J.; BOYD, A.

    2006-10-31

    The Clean Air Interstate Rule (CAIR) and the Clean Air Mercury Rule (CAMR) as currently proposed by the U.S. Environmental Protection Agency (EPA) when fully implemented will lead to reduction in mercury emissions from coal-fired power plants by 70 percent to fifteen tons per year by 2018. The EPA estimates that mercury deposition would be reduced 8 percent on average in the Eastern United States. The CAMR permits cap-and-trade approach that requires the nationwide emissions to meet the prescribed level, but do not require controls on each individual power plant. This has led to concerns that there may be hot-spots of mercury contamination near power plants. Partially because of this concern, many states including Pennsylvania have implemented, or are considering, state regulations that are stricter on mercury emissions than those in the CAMR. This study examined the possibility that coal-fired power plants act as local sources leading to mercury ''hot spots'', using two types of evidence. First, the world-wide literature was searched for reports of deposition around mercury sources, including coal-fired power plants. Second, soil samples from around two mid-sized U.S. coal-fired power plants were collected and analyzed for evidence of ''hot spots'' and for correlation with model predictions of deposition. The following summarizes our findings from published reports on the impacts of local deposition. In terms of excesses over background the following increments have been observed within a few km of the plant: (A) local soil concentration Hg increments of 30%-60%, (B) sediment increments of 18-30%, (C) wet deposition increments of 11-12%, and (D) fish Hg increments of about 5-6%, based on an empirical finding that fish concentrations are proportional to the square root of deposition. Important uncertainties include possible reductions of RGM to Hg(0) in power plant plumes and the role of water chemistry in the relationship

  18. Emission inventory of anthropogenic air pollutants and VOC species in the Yangtze River Delta region, China

    Directory of Open Access Journals (Sweden)

    C. Huang

    2011-05-01

    Full Text Available The purpose of this study is to develop an emission inventory for major anthropogenic air pollutants and VOC species in the Yangtze River Delta (YRD region for the year 2007. A "bottom-up" methodology was adopted to compile the inventory based on major emission sources in the sixteen cities of this region. Results show that the emissions of SO2, NOx, CO, PM10, PM2.5, VOCs, and NH3 in the YRD region for the year 2007 are 2392 kt, 2293 kt, 6697 kt, 3116 kt, 1511 kt, 2767 kt, and 459 kt, respectively. Ethylene, mp-xylene, o-xylene, toluene, 1,2,4-trimethylbenzene, 2,4-dimethylpentane, ethyl benzene, propylene, 1-pentene, and isoprene are the key species contributing 77 % to the total ozone formation potential (OFP. The spatial distribution of the emissions shows the emissions and OFPs are mainly concentrated in the urban and industrial areas along the Yangtze River and around Hangzhou Bay. The industrial sources, including power plants other fuel combustion facilities, and non-combustion processes contribute about 97 %, 86 %, 89 %, 91 %, and 69 % of the total SO2, NOx, PM10, PM2.5, and VOC emissions. Vehicles take up 12.3 % and 12.4 % of the NOx and VOC emissions, respectively. Regarding OFPs, the chemical industry, domestic use of paint & printing, and gasoline vehicles contribute 38 %, 24 %, and 12 % to the ozone formation in the YRD region.

  19. Local Impacts of Mercury Emissions from the Three Pennsylvania Coal Fired Power Plants.

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan,T.; Adams,J.; Bender, M.; Bu, C.; Piccolo, N.; Campbell, C.

    2008-02-01

    The Clean Air Interstate Rule (CAIR) and the Clean Air Mercury Rule (CAMR) as proposed by the U.S. Environmental Protection Agency (EPA) when fully implemented will lead to reduction in mercury emissions from coal-fired power plants by 70 percent to fifteen tons per year by 2018. The EPA estimates that mercury deposition would be reduced 8 percent on average in the Eastern United States. The CAMR permits cap-and-trade approach that requires the nationwide emissions to meet the prescribed level, but do not require controls on each individual power plant. This has led to concerns that there may be hot-spots of mercury contamination near power plants. Partially because of this concern, many states including Pennsylvania have implemented, or are considering, state regulations that are stricter on mercury emissions than those in the CAMR. This study examined the possibility that coal-fired power plants act as local sources leading to mercury 'hot spots'. Soil and oak leaf samples from around three large U.S. coal-fired power plants in Western Pennsylvania were collected and analyzed for evidence of 'hot spots'. These three plants (Conemaugh, Homer City, and Keystone) are separated by a total distance of approximately 30 miles. Each emits over 500 pounds of mercury per year which is well above average for mercury emissions from coal plants in the U.S. Soil and oak leaf sampling programs were performed around each power plant. Sampling rings one-mile apart were used with eight or nine locations on each ring. The prevailing winds in the region are from the west. For this reason, sampling was conducted out to 10 miles from the Conemaugh plant which is southeast of the others. The other plants were sampled to a distance of five miles. The objectives were to determine if local mercury hot spots exist, to determine if they could be attributed to deposition of coal-fired power plant emissions, and to determine if they correlated with wind patterns. The study

  20. Modeling of photochemical air pollution in the Barcelona area with highly disaggregated anthropogenic and biogenic emissions

    International Nuclear Information System (INIS)

    Toll, I.; Baldasano, J.M.

    2000-01-01

    The city of Barcelona and its surrounding area, located in the western Mediterranean basin, can reach high levels of O 3 in spring and summertime. To study the origin of this photochemical pollution, a numerical modeling approach was adopted and the episode that took place between 3 and 5 August 1990 was chosen. The main meteorological mesoscale flows were reproduced with the meteorological non-hydrostatic mesoscale model MEMO for 5 August 1990, when weak pressure synoptic conditions took place. The emissions inventory was calculated with the EIM-LEM model, giving highly disaggregated anthropogenic and biogenic emissions in the zone studied, an 80 x 80 km 2 area around the city of Barcelona. Major sources of VOC were road traffic (51%) and vegetation (34%), while NO x were mostly emitted by road traffic (88%). However, emissions from some industrial stacks can be locally important and higher than those from road traffic. Photochemical simulation with the MARS model revealed that the combination of mesoscale wind flows and the above-mentioned local emissions is crucial in the production and transport of O 3 in the area. On the other hand, the geostrophic wind also played an important role in advecting the air masses away from the places O 3 had been generated. The model simulations were also evaluated by comparing meteorological measurements from nine surface stations and concentration measurements from five surface stations, and the results proved to be fairly satisfactory. (author)

  1. Particulate-phase mercury emissions from biomass burning and impact on resulting deposition: a modelling assessment

    Science.gov (United States)

    Mercury (Hg) emissions from biomass burning (BB) are an important source of atmospheric Hg and a major factor driving the interannual variation of Hg concentrations in the troposphere. The greatest fraction of Hg from BB is released in the form of elemental Hg (Hg0(g)). However, ...

  2. PERFORMANCE AND COST OF MERCURY AND MULTIPOLLUTANT EMISSION CONTROL TECHNOLOGY APPLICATIONS ON ELECTRIC UTILITY BOILERS

    Science.gov (United States)

    The report presents estimates of the performance and cost of both powdered activated carbon (PAC) and multipollutant control technologies that may be useful in controlling mercury emissions. Based on currently available data, cost estimates for PAC injection range are 0.03-3.096 ...

  3. EMISSION TEST REPORT, OMSS FIELD TEST ON CARBON INJECTION FOR MERCURY CONTROL

    Science.gov (United States)

    The report discusses results of a parametric evaluation of powdered activated carbon for control of mercury (Hg) emission from a municipal waste cornbustor (MWC) equipped with a lime spray dryer absorber/fabric filter (SD/FF). The primary test objectives were to evaluate the effe...

  4. CHARACTERIZATION OF MERCURY EMISSIONS AT A CHLOR-ALKALI PLANT, VOLUME II. APPENDICES F-J

    Science.gov (United States)

    The report gives results of a characterization of mercury (Hg) emissions at a chlor-alkali plant. Up to 160 short tons (146 Mg) of Hg is consumed by the chlor-alkali industry each year. Very little quantitative information is currently available however, on the actual Hg losses f...

  5. CHARACTERIZATION OF MERCURY EMISSIONS AT A CHLOR-ALKALI PLANT: STUDY ORGANIZATION AND IMPLEMENTATION

    Science.gov (United States)

    The paper describes the organization and implementation of a detailed emissions measurement campaign conducted over a 2-week period at the Olin Corporation's mercury chlor-alkali plant in Augusta, GA. (NOTE: Since data analysis is continuing, study results will be provided later...

  6. Emission and speciation of mercury from waste incinerators with mass distribution investigations

    International Nuclear Information System (INIS)

    Seo, Yong-Chil; Kim, Jeong-Hun; Pudasainee, Deepak; Yoon, Young-Sik; Jung, Seung Jae; Bhatta, Dhruba

    2010-01-01

    In this paper mercury emission and removal characteristics in municipal wastes incinerators (MWIs), hazardous waste incinerators (HWIs) and hospital medical and infectious waste incinerators (HMIWIs) with mercury mass distribution within the system are presented. Mercury speciation in flue gas at inlet and outlet of each air pollution control devices (APCDs) were sampled and analyzed by Ontario Hydro Method. Solid and liquid samples were analyzed by U.S. EPA method 7470A and 7471A, respectively. Cold vapor atomic absorption spectroscopy was used for analysis. On an average, Hg emission concentrations in flue gas from MWIs ranged 173.9 to 15.3 μg Sm -3 at inlet and 10.5 to 3.8 μg Sm -3 at outlet of APCDs respectively. Mercury removal efficiency ranged 50 to 95% in MWIs, 7.2 to 59.9% in HWIs as co-beneficial results of APCDs for removing other air pollutants like particulate matter, dioxin and acidic gases. In general, mercury in incineration facilities was mainly distributed in fly ash followed by flue gas and bottom ash. In MWIs 94.4 to 74% of Hg were distributed in fly ash. In HWIs with dry type APCDs, Hg removal was less and 70.6% of mercury was distributed in flue gas. The variation of Hg concentration, speciation and finally the distribution in the tested facilities was related to the non-uniform distribution of Hg in waste combined with variation in waste composition (especially Cl, S content), operating parameters, flue gas components, fly ash properties, operating conditions, APCDs configuration. Long term data incorporating more number of tests are required to better understand mercury behavior in such sources and to apply effective control measures. (author)

  7. Mercury

    CERN Document Server

    Balogh, André; Steiger, Rudolf

    2008-01-01

    Mercury, the planet closest to the Sun, is different in several respects from the other three terrestrial planets. In appearance, it resembles the heavily cratered surface of the Moon, but its density is high, it has a magnetic field and magnetosphere, but no atmosphere or ionosphere. This book reviews the progress made in Mercury studies since the flybys by Mariner 10 in 1974-75, based on the continued research using the Mariner 10 archive, on observations from Earth, and on increasingly realistic models of its interior evolution.

  8. Impact of anthropogenic emissions and open biomass burning on regional carbonaceous aerosols in South China

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Gan, E-mail: zhanggan@gig.ac.c [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Li Jun [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Li Xiangdong [Department of Civil and Structural Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Xu Yue; Guo Lingli [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Tang Jianhui [Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003 (China); Lee, Celine S.L. [Department of Civil and Structural Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Liu Xiang [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Chen Yingjun [Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003 (China)

    2010-11-15

    Carbonaceous aerosols were studied at three background sites in south and southwest China. Hok Tsui in Hong Kong had the highest concentrations of carbonaceous aerosols (OC = 8.7 {+-} 4.5 {mu}g/m{sup 3}, EC = 2.5 {+-} 1.9 {mu}g/m{sup 3}) among the three sites, and Jianfeng Mountains in Hainan Island (OC = 5.8 {+-} 2.6 {mu}g/m{sup 3}, EC = 0.8 {+-} 0.4 {mu}g/m{sup 3}) and Tengchong mountain over the east edge of the Tibetan Plateau (OC = 4.8 {+-} 4.0 {mu}g/m{sup 3}, EC = 0.5 {+-} 0.4 {mu}g/m{sup 3}) showed similar concentration levels. Distinct seasonal patterns with higher concentrations during the winter, and lower concentrations during the summertime were observed, which may be caused by the changes of the regional emissions, and monsoon effects. The industrial and vehicular emissions in East, Southeast and South China, and the regional open biomass burning in the Indo-Myanmar region of Asia were probably the two major potential sources for carbonaceous matters in this region. - Anthropogenic emissions in China and open biomass burning in the Indo-Myanmar region were the two major potential sources for carbonaceous matters in South China region.

  9. Mercury sodium exospheric emission as a proxy for solar perturbations transit

    Science.gov (United States)

    Orsini, S.; Mangano, V.; Milillo, A.; Plainaki, C.; Mura, A.; Raines, J. M.; Laurenza, M.; De Angelis, E.; Rispoli, R.; Lazzarotto, F.; Aronica, A.

    2017-12-01

    The first evidence at Mercury of direct relation between ICME transit and Na exosphere dynamics is presented, suggesting that Na emission, observed from ground, could be a proxy of planetary space weather at Mercury. The link existing between the dayside exosphere Na patterns and the solar wind-magnetosphere-surface interactions is investigated. This goal is pursued by analyzing the Na intensity hourly images, as observed by the ground-based THEMIS solar telescope (Mangano et al., 2015*) during 10 selected periods between 2012 and 2013 (with seeing, σ 10.1016/j.pss.2015.04.001, 2015.

  10. Predominant anthropogenic sources and rates of atmospheric mercury accumulation in southern Ontario recorded by peat cores from three bogs: comparison with natural "background" values (past 8000 years).

    Science.gov (United States)

    Givelet, Nicolas; Roos-Barraclough, Fiona; Shotyk, William

    2003-12-01

    Peat cores from three bogs in southern Ontario provide a complete, quantitative record of net rates of atmospheric Hg accumulation since pre-industrial times. For comparison with modern values, a peat core extending back 8000 years was used to quantify the natural variations in Hg fluxes for this region, and their dependence on climatic change and land use history. The net mercury accumulation rates were separated into "natural" and "excess" components by comparing the Hg/Br ratios of modern samples with the long-term, pre-anthropogenic average Hg/Br. The average background mercury accumulation rate during the pre-anthropogenic period (from 5700 years BC to 1470 AD) was 1.4 +/- 1.0 microg m(-2) per year (n = 197). The beginning of Hg contamination from anthropogenic sources dates from AD 1475 at the Luther Bog, corresponding to biomass burning for agricultural activities by Native North Americans. During the late 17th and 18th centuries, deposition of anthropogenic Hg was at least equal to that of Hg from natural sources. Anthropogenic inputs of Hg to the bogs have dominated continuously since the beginning of the 19th century. The maximum Hg accumulation rates decrease in the order Sifton Bog, in the City of London, Ontario (141 microg Hg m(-2) per year), Luther Bog in an agricultural region (89 microg Hg m(-2) per year), and Spruce Bog which is in a comparatively remote, forested region (54 microg Hg m(-2) per year). Accurate age dating of recent peat samples using the bomb pulse curve of 14C shows that the maximum rate of atmospheric Hg accumulation occurred during AD 1956 and 1959 at all sites. In these (modern) samples, the Hg concentration profiles resemble those of Pb, an element which is known to be immobile in peat bogs. The correlation between these two metals, together with sulfur, suggests that the predominant anthropogenic source of Hg (and Pb) was coal burning. While Hg accumulation rates have gone into strong decline since the late 1950's, Hg

  11. Current and future levels of mercury atmospheric pollution on a global scale

    Science.gov (United States)

    Pacyna, Jozef M.; Travnikov, Oleg; De Simone, Francesco; Hedgecock, Ian M.; Sundseth, Kyrre; Pacyna, Elisabeth G.; Steenhuisen, Frits; Pirrone, Nicola; Munthe, John; Kindbom, Karin

    2016-10-01

    An assessment of current and future emissions, air concentrations, and atmospheric deposition of mercury worldwide is presented on the basis of results obtained during the performance of the EU GMOS (Global Mercury Observation System) project. Emission estimates for mercury were prepared with the main goal of applying them in models to assess current (2013) and future (2035) air concentrations and atmospheric deposition of this contaminant. The combustion of fossil fuels (mainly coal) for energy and heat production in power plants and in industrial and residential boilers, as well as artisanal and small-scale gold mining, is one of the major anthropogenic sources of Hg emissions to the atmosphere at present. These sources account for about 37 and 25 % of the total anthropogenic Hg emissions globally, estimated to be about 2000 t. Emissions in Asian countries, particularly in China and India, dominate the total emissions of Hg. The current estimates of mercury emissions from natural processes (primary mercury emissions and re-emissions), including mercury depletion events, were estimated to be 5207 t year-1, which represents nearly 70 % of the global mercury emission budget. Oceans are the most important sources (36 %), followed by biomass burning (9 %). A comparison of the 2035 anthropogenic emissions estimated for three different scenarios with current anthropogenic emissions indicates a reduction of these emissions in 2035 up to 85 % for the best-case scenario. Two global chemical transport models (GLEMOS and ECHMERIT) have been used for the evaluation of future mercury pollution levels considering future emission scenarios. Projections of future changes in mercury deposition on a global scale simulated by these models for three anthropogenic emissions scenarios of 2035 indicate a decrease in up to 50 % deposition in the Northern Hemisphere and up to 35 % in Southern Hemisphere for the best-case scenario. The EU GMOS project has proved to be a very important

  12. Current and future levels of mercury atmospheric pollution on a global scale

    Directory of Open Access Journals (Sweden)

    J. M. Pacyna

    2016-10-01

    Full Text Available An assessment of current and future emissions, air concentrations, and atmospheric deposition of mercury worldwide is presented on the basis of results obtained during the performance of the EU GMOS (Global Mercury Observation System project. Emission estimates for mercury were prepared with the main goal of applying them in models to assess current (2013 and future (2035 air concentrations and atmospheric deposition of this contaminant. The combustion of fossil fuels (mainly coal for energy and heat production in power plants and in industrial and residential boilers, as well as artisanal and small-scale gold mining, is one of the major anthropogenic sources of Hg emissions to the atmosphere at present. These sources account for about 37 and 25 % of the total anthropogenic Hg emissions globally, estimated to be about 2000 t. Emissions in Asian countries, particularly in China and India, dominate the total emissions of Hg. The current estimates of mercury emissions from natural processes (primary mercury emissions and re-emissions, including mercury depletion events, were estimated to be 5207 t year−1, which represents nearly 70 % of the global mercury emission budget. Oceans are the most important sources (36 %, followed by biomass burning (9 %. A comparison of the 2035 anthropogenic emissions estimated for three different scenarios with current anthropogenic emissions indicates a reduction of these emissions in 2035 up to 85 % for the best-case scenario. Two global chemical transport models (GLEMOS and ECHMERIT have been used for the evaluation of future mercury pollution levels considering future emission scenarios. Projections of future changes in mercury deposition on a global scale simulated by these models for three anthropogenic emissions scenarios of 2035 indicate a decrease in up to 50 % deposition in the Northern Hemisphere and up to 35 % in Southern Hemisphere for the best-case scenario. The EU GMOS project has

  13. Estimates of increased black carbon emissions from electrostatic precipitators during powdered activated carbon injection for mercury emissions control.

    Science.gov (United States)

    Clack, Herek L

    2012-07-03

    The behavior of mercury sorbents within electrostatic precipitators (ESPs) is not well-understood, despite a decade or more of full-scale testing. Recent laboratory results suggest that powdered activated carbon exhibits somewhat different collection behavior than fly ash in an ESP and particulate filters located at the outlet of ESPs have shown evidence of powdered activated carbon penetration during full-scale tests of sorbent injection for mercury emissions control. The present analysis considers a range of assumed differential ESP collection efficiencies for powdered activated carbon as compared to fly ash. Estimated emission rates of submicrometer powdered activated carbon are compared to estimated emission rates of particulate carbon on submicrometer fly ash, each corresponding to its respective collection efficiency. To the extent that any emitted powdered activated carbon exhibits size and optical characteristics similar to black carbon, such emissions could effectively constitute an increase in black carbon emissions from coal-based stationary power generation. The results reveal that even for the low injection rates associated with chemically impregnated carbons, submicrometer particulate carbon emissions can easily double if the submicrometer fraction of the native fly ash has a low carbon content. Increasing sorbent injection rates, larger collection efficiency differentials as compared to fly ash, and decreasing sorbent particle size all lead to increases in the estimated submicrometer particulate carbon emissions.

  14. 40 CFR Table 3 to Subpart Ddddd of... - Operating Limits for Boilers and Process Heaters With Mercury Emission Limits and Boilers and...

    Science.gov (United States)

    2010-07-01

    ... Process Heaters With Mercury Emission Limits and Boilers and Process Heaters That Choose To Comply With... Heaters With Mercury Emission Limits and Boilers and Process Heaters That Choose To Comply With the... operating limits: If you demonstrate compliance with applicable mercury and/or total selected metals...

  15. Anthropogenic influences on the input and biogeochemical cycling of nutrients and mercury in Great Salt Lake, Utah, USA

    International Nuclear Information System (INIS)

    Naftz, David; Angeroth, Cory; Kenney, Terry; Waddell, Bruce; Darnall, Nathan; Silva, Steven; Perschon, Clay; Whitehead, John

    2008-01-01

    Despite the ecological and economic importance of Great Salt Lake (GSL), little is known about the input and biogeochemical cycling of nutrients and trace elements in the lake. In response to increasing public concern regarding anthropogenic inputs to the GSL ecosystem, the US Geological Survey (USGS) and US Fish and Wildlife Service (USFWS) initiated coordinated studies to quantify and evaluate the significance of nutrient and Hg inputs into GSL. A 6 per mille decrease in δ 15 N observed in brine shrimp (Artemia franciscana) samples collected from GSL during summer time periods is likely due to the consumption of cyanobacteria produced in freshwater bays entering the lake. Supporting data collected from the outflow of Farmington Bay indicates decreasing trends in δ 15 N in particulate organic matter (POM) during the mid-summer time period, reflective of increasing proportions of cyanobacteria in algae exported to GSL on a seasonal basis. The C:N molar ratio of POM in outflow from Farmington Bay decreases during the summer period, supportive of the increased activity of N fixation indicated by decreasing δ 15 N in brine shrimp and POM. Although N fixation is only taking place in the relatively freshwater inflows to GSL, data indicate that influx of fresh water influences large areas of the lake. Separation of GSL into two distinct hydrologic and geochemical systems from the construction of a railroad causeway in the late 1950s has created a persistent and widespread anoxic layer in the southern part of GSL. This anoxic layer, referred to as the deep brine layer (DBL), has high rates of SO 4 2- reduction, likely increasing the Hg methylation capacity. High concentrations of methyl mercury (CH 3 Hg) (median concentration = 24 ng/L) were observed in the DBL with a significant proportion (31-60%) of total Hg in the CH 3 Hg form. Hydroacoustic and sediment-trap evidence indicate that turbulence introduced by internal waves generated during sustained wind events can

  16. Anthropogenic influences on the input and biogeochemical cycling of nutrients and mercury in Great Salt Lake, Utah, USA

    Energy Technology Data Exchange (ETDEWEB)

    Naftz, David [US Geological Survey, Salt Lake City 84119, UT (United States)], E-mail: dlnaftz@usgs.gov; Angeroth, Cory; Kenney, Terry [US Geological Survey, Salt Lake City 84119, UT (United States); Waddell, Bruce; Darnall, Nathan [US Fish and Wildlife Service, Salt Lake City, UT (United States); Silva, Steven [US Geological Survey, Menlo Park, CA (United States); Perschon, Clay [Utah Division of Wildlife Resources, Salt Lake City, UT (United States); Whitehead, John [Utah Department of Environmental Quality, Salt Lake City, UT (United States)

    2008-06-15

    Despite the ecological and economic importance of Great Salt Lake (GSL), little is known about the input and biogeochemical cycling of nutrients and trace elements in the lake. In response to increasing public concern regarding anthropogenic inputs to the GSL ecosystem, the US Geological Survey (USGS) and US Fish and Wildlife Service (USFWS) initiated coordinated studies to quantify and evaluate the significance of nutrient and Hg inputs into GSL. A 6 per mille decrease in {delta}{sup 15}N observed in brine shrimp (Artemia franciscana) samples collected from GSL during summer time periods is likely due to the consumption of cyanobacteria produced in freshwater bays entering the lake. Supporting data collected from the outflow of Farmington Bay indicates decreasing trends in {delta}{sup 15}N in particulate organic matter (POM) during the mid-summer time period, reflective of increasing proportions of cyanobacteria in algae exported to GSL on a seasonal basis. The C:N molar ratio of POM in outflow from Farmington Bay decreases during the summer period, supportive of the increased activity of N fixation indicated by decreasing {delta}{sup 15}N in brine shrimp and POM. Although N fixation is only taking place in the relatively freshwater inflows to GSL, data indicate that influx of fresh water influences large areas of the lake. Separation of GSL into two distinct hydrologic and geochemical systems from the construction of a railroad causeway in the late 1950s has created a persistent and widespread anoxic layer in the southern part of GSL. This anoxic layer, referred to as the deep brine layer (DBL), has high rates of SO{sub 4}{sup 2-} reduction, likely increasing the Hg methylation capacity. High concentrations of methyl mercury (CH{sub 3}Hg) (median concentration = 24 ng/L) were observed in the DBL with a significant proportion (31-60%) of total Hg in the CH{sub 3}Hg form. Hydroacoustic and sediment-trap evidence indicate that turbulence introduced by internal waves

  17. Environmental and Anthropogenic Factors Influencing Mercury Dynamics During the Past Century in Floodplain Lakes of the Tapajós River, Brazilian Amazon.

    Science.gov (United States)

    Oestreicher, Jordan Sky; Lucotte, Marc; Moingt, Matthieu; Bélanger, Émilie; Rozon, Christine; Davidson, Robert; Mertens, Frédéric; Romaña, Christina A

    2017-01-01

    In the Tapajós River region of the Brazilian Amazon, mercury (Hg) is a prevalent contaminant in the aquatic ecosystem. Few studies have used comprehensive chronological analyses to examine the combined effects of environmental and anthropogenic factors on Hg accumulation in sediments. Total mercury (THg) content was measured in sediments from eight floodplain lakes and Pb 210 isotope analysis was used to develop a timeline of THg accumulation. Secondary data representing environmental and anthropogenic factors were analyzed using geo-spatial analyses. These include land-cover change, hydrometeorological time-series data, lake morphology, and watershed biophysical characteristics. The results indicate that THg accumulation and sedimentation rates have increased significantly at the surface of most sediment cores, sometimes doubling since the 1970s. Human-driven land-cover changes in the watershed correspond closely to these shifts. Tropical deforestation enhances erosion, thereby mobilizing the heavy metal that naturally occurs in soils. Environmental factors also contribute to increased THg content in lacustrine sediments. Climate shifts since the 1980s are further compounding erosion and THg accumulation in surface sediments. Furthermore, variations in topography, soil types, and the level of hydrological connectivity between lakes and the river explain observed variations in THg fluxes and sedimentation. Although connectivity naturally varies among sampled lakes, deforestation of sensitive floodplain vegetation has changed lake-river hydrology in several sites. In conclusion, the results point to a combination of anthropogenic and environmental factors as determinants of increased THg accumulation in tropical floodplain sediments in the Tapajós region.

  18. Influence of natural and anthropogenic factors on the dynamics of CO2 emissions from chernozems soil

    Science.gov (United States)

    Syabruk, Olesia

    2017-04-01

    Twentieth century marked a significant expansion of agricultural production. Soil erosion caused by human activity, conversion of forests and grasslands to cropland, desertification, burning nutrient residues, drainage, excessive cultivation led to intense oxidation of soil carbon to the atmosphere and allocation of additional amounts of CO2. According to the UN Intergovernmental Panel on Climate Change, agriculture is one of the main sources of greenhouse gases emissions to the atmosphere. The thesis reveals main patterns of the impact of natural and anthropogenic factors on CO2 emissions in the chernozems typical and podzolized in a Left-bank Forest-Steppe of Ukraine, seasonal and annual dynamics. New provisions for conducting monitoring CO2 emissions from soil were developed by combining observations in natural and controlled conditions, which allows isolating the impact of hydrological, thermal and trophic factors. During the research, the methods for operational monitoring of emission of carbon losses were improved, using a portable infrared gas analyzer, which allows receiving information directly in the field. It was determined that the volumes of emission losses of carbon chernozems typical and podzolized Left-bank Forest-Steppe of Ukraine during the growing season are 480-910 kg/ha and can vary depending on the soil treatment ±( 4,0 - 6,0) % and fertilizer systems ± (3,8 - 7,1) %. The significant impact of long application of various fertilizer systems and soil treatment on the intensity of carbon dioxide emissions was investigated. It was found that most emission occurs in organic- mineral fertilizers systems with direct seeding. The seasonal dynamics of the potential capacity of the soil to produce CO2 were researched. Under identical conditions of humidity and temperature it has maximum in June and July and the gradual extinction of the autumn. It was determined that the intensity of the CO2 emission from the surface of chernozem fluctuates daily from

  19. Mercury Emissions Capture Efficiency with Activated Carbon Injection at a Russian Coal-Fired Thermal Power Plant

    Science.gov (United States)

    This EPA-led project, conducted in collaboration with UNEP, the Swedish Environmental Institute and various Russian Institutes, that demonstrates that the mercury emission control efficiencies of activated carbon injection technologies applied at a Russian power plant burning Rus...

  20. Synergistic impacts of anthropogenic and biogenic emissions on summer surface O3 in East Asia.

    Science.gov (United States)

    Qu, Yu; An, Junling; Li, Jian

    2013-03-01

    A factor separation technique and an improved regional air quality model (RAQM) were applied to calculate synergistic contributions of anthropogenic volatile organic compounds (AVOCs), biogenic volatile organic compounds (BVOCs) and nitrogen oxides (NOx) to daily maximum surface 03 (O3DM) concentrations in East Asia in summer (June to August 2000). The summer averaged synergistic impacts of AVOCs and NOx are dominant in most areas of North China, with a maximum of 60 ppbv, while those of BVOCs and NOx are notable only in some limited areas with high BVOC emissions in South China, with a maximum of 25 ppbv. This result implies that BVOCs contribute much less to summer averaged O3DM concentrations than AVOCs in most areas of East Asia at a coarse spatial resolution (1 degree x 1 degree) although global emissions of BVOCs are much greater than those of AVOCs. Daily maximum total contributions of BVOCs can approach 20 ppbv in North China, but they can reach 40 ppbv in South China, approaching or exceeding those in some developed countries in Europe and North America. BVOC emissions in such special areas should be considered when 03 control measures are taken. Synergistic contributions among AVOCs, BVOCs and NOx significantly enhance O3 concentrations in the Beijing-Tianjin-Tangshan region and decrease them in some areas in South China. Thus, the total contributions of BVOCs to O3DM vary significantly from day to day and from location to location. This result suggests that 03 control measures obtained from episodic studies could be limited for long-term applications.

  1. Worldwide trend of atmospheric mercury since 1995

    Directory of Open Access Journals (Sweden)

    F. Slemr

    2011-05-01

    Full Text Available Concern about the adverse effects of mercury on human health and ecosystems has led to tightening emission controls since the mid 1980s. But the resulting mercury emissions reductions in many parts of the world are believed to be offset or even surpassed by the increasing emissions in rapidly industrializing countries. Consequently, concentrations of atmospheric mercury are expected to remain roughly constant. Here we show that the worldwide atmospheric mercury concentrations have decreased by about 20 to 38 % since 1996 as indicated by long-term monitoring at stations in the Southern and Northern Hemispheres combined with intermittent measurements of latitudinal distribution over the Atlantic Ocean. The total reduction of the atmospheric mercury burden of this magnitude within 14 years is unusually large among most atmospheric trace gases and is at odds with the current mercury emission inventories with nearly constant anthropogenic emissions over this period. This suggests a major shift in the biogeochemical cycle of mercury including oceans and soil reservoirs. Decreasing reemissions from the legacy of historical mercury emissions are the most likely explanation for this decline since the hypothesis of an accelerated oxidation rate of elemental mercury in the atmosphere is not supported by the observed trends of other trace gases. Acidification of oceans, climate change, excess nutrient input and pollution may also contribute by their impact on the biogeochemistry of ocean and soils. Consequently, models of the atmospheric mercury cycle have to include soil and ocean mercury pools and their dynamics to be able to make projections of future trends.

  2. Heavy metals anthropogenic pollutants in Austria

    International Nuclear Information System (INIS)

    Anderl, M.; Gager, M.; Gugele, B.; Huttunen, K.; Kurzweil, A.; Poupa, S.; Ritter, M.; Wappel, D.; Wieser, M.

    2004-01-01

    Several heavy metals from anthropogenic sources are emitted in the atmosphere damaging the air quality and the human health, besides they accumulate on the soil and lately are transmitted into the human food chain. Therefore at international level there is a concern to reduce them. Austrian heavy metals emissions (cadmium, mercury and lead) during 1990-2002 are given including an analysis of causes and sources. Lead is the main pollutant and the main sector responsible is the industry. 5 figs. (nevyjel)

  3. Anthropogenic Emissions Change the Amount and Composition of Organic PM1 in Amazonia

    Science.gov (United States)

    de Sá, S. S.; Palm, B. B.; Campuzano Jost, P.; Day, D. A.; Hu, W.; Isaacman-VanWertz, G. A.; Yee, L.; Wernis, R. A.; Thalman, R.; Brito, J.; Carbone, S.; Artaxo, P.; Goldstein, A. H.; Manzi, A. O.; Souza, R. A. F. D.; Wang, J.; Alexander, M. L. L.; Jimenez, J. L.; Martin, S. T.

    2017-12-01

    The Amazon forest, while one of the few regions on the globe where pristine conditions may still prevail, has experienced rapid changes due to increasing urbanization in the past decades. Manaus, a Brazilian city of 2-million people in the central Amazon basin, releases a pollution plume over the forest, potentially affecting the production pathways of particulate matter (PM) in the region. As part of GoAmazon2014/5, a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and a suite of other gas and particle-phase instruments were deployed at the T3 research site, 70 km downwind of Manaus, during the wet and dry seasons. Through a combination of meteorology, emissions, and chemistry, the T3 site was affected by a mixture of biogenic emissions from the tropical rainforest, urban outflow from the Manaus metropolitan area and biomass burning plumes. Results from the T3 site are presented in the context of measurements at T0a/T0t and T2, sites representing predominantly clean and polluted conditions, respectively. The organic component consistently represented on average 70-80% of the PM1 mass concentration across sites and seasons, and constitutes the focus of this work. Positive matrix factorization (PMF) analysis was applied to the time series of organic mass spectra. The resulting factors, which included the so-called IEPOX-SOA, MO-OOA, LO-OOA, BBOA, Fac91 and HOA, provide information on the relative contributions of different sources and pathways to organic PM production. In addition, Fuzzy c-means clustering was applied to the time series of pollution indicators, including concentrations of NOy, total particle number, ozone and sulfate, in order to better understand the convoluted influences of different processes and airmass origin to each point in time. Through combination of the PMF and Fuzzy c-means analyses, insights are drawn about the relative composition of organic PM1 at varying degrees of influence of biogenic and anthropogenic

  4. Mercury emission to the atmosphere from municipal solid waste landfills: A brief review

    Science.gov (United States)

    Tao, Zhengkai; Dai, Shijin; Chai, Xiaoli

    2017-12-01

    Municipal solid waste (MSW) landfill is regarded as an important emission source of atmospheric mercury (Hg), which is associated with potential health and environmental risks, as outlined by the Minamata Convention on Hg. This review presents the current state of knowledge with regards to landfill Hg sources, Hg levels in MSW and cover soils, Hg emission to the atmosphere, available Hg biogeochemical transformations, research methods for Hg emission, and important areas for future research. In addition, strategies for controlling landfill Hg emissions are considered, including reducing the Hg load in landfill and in situ controls. These approaches mainly focus on Hg source reduction, Hg recycling programs, public education, and in situ technology such as timely soil cover, vegetation, and end-of-pipe technology for controlling Hg emission from landfill gas.

  5. Overview of major processes and mechanisms affecting the mercury cycle on different spatial and temporal scales

    Directory of Open Access Journals (Sweden)

    Sprovieri F.

    2010-12-01

    Full Text Available Mercury emissions to the atmosphere and its transport, transformation and deposition to and re-emission from terrestrial and aquatic ecosystems on hemispherical and global scales has received increasing attention from both the scientific and the regulatory communities during the last twenty years. It is well known that the atmosphere is the major transport media through which mercury is redistributed on global scale once it is released from point and diffuse emission sources. A substantial amount of research has been carried out worldwide aiming to assess the relationships between emissions from natural vs. anthropogenic sources, inter-hemispherical atmospheric transport patterns, and atmospheric deposition to and re-emission from oceans, its bioaccumulation in fish, and evaluation of policy strategies to reduce the impact of mercury emissions on human health and ecosystems. This chapter provides a highlight of key aspects related to mercury contamination, including: a major processes affecting the mercury cycle between the atmosphere and aquatic and terrestrial ecosystems, b mercury emissions from natural and anthropogenic sources, c spatial and temporal distributions and trends of mercury species over the northern and southern hemispheres, d the chemical and physical processes affecting the transport and fate of atmospheric mercury, and emajor policy frameworks aiming to control the impact of mercury on human health and ecosystems.

  6. An estimate of monthly global emissions of anthropogenic CO2: Impact on the seasonal cycle of atmospheric CO2

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, D [Oak Ridge National Laboratory (ORNL); Mills, R [Oak Ridge National Laboratory (ORNL); Gregg, J [University of Maryland; Blasing, T J [ORNL; Hoffman, F [Oak Ridge National Laboratory (ORNL); Andres, Robert Joseph [ORNL; Devries, M [Oak Ridge National Laboratory (ORNL); Zhu, Z [NASA Goddard Space Flight Center; Kawa, S [NASA Goddard Space Flight Center

    2008-01-01

    Monthly estimates of the global emissions of anthropogenic CO2 are presented. Approximating the seasonal CO2 emission cycle using a 2-harmonic Fourier series with coefficients as a function of latitude, the annual fluxes are decomposed into monthly flux estimates based on data for the United States and applied globally. These monthly anthropogenic CO2 flux estimates are then used to model atmospheric CO2 concentrations using meteorological fields from the NASA GEOS-4 data assimilation system. We find that the use of monthly resolved fluxes makes a significant difference in the seasonal cycle of atmospheric CO2 in and near those regions where anthropogenic CO2 is released to the atmosphere. Local variations of 2-6 ppmv CO2 in the seasonal cycle amplitude are simulated; larger variations would be expected if smaller source-receptor distances could be more precisely specified using a more refined spatial resolution. We also find that in the midlatitudes near the sources, synoptic scale atmospheric circulations are important in the winter and that boundary layer venting and diurnal rectifier effects are more important in the summer. These findings have implications for inverse-modeling efforts that attempt to estimate surface source/sink regions especially when the surface sinks are colocated with regions of strong anthropogenic CO2 emissions.

  7. Effects of business-as-usual anthropogenic emissions on air quality

    Science.gov (United States)

    Pozzer, A.; Zimmermann, P.; Doering, U. M.; van Aardenne, J.; Tost, H.; Dentener, F.; Janssens-Maenhout, G.; Lelieveld, J.

    2012-08-01

    The atmospheric chemistry general circulation model EMAC has been used to estimate the impact of anthropogenic emission changes on global and regional air quality in recent and future years (2005, 2010, 2025 and 2050). The emission scenario assumes that population and economic growth largely determine energy and food consumption and consequent pollution sources with the current technologies ("business as usual"). This scenario is chosen to show the effects of not implementing legislation to prevent additional climate change and growing air pollution, other than what is in place for the base year 2005, representing a pessimistic (but plausible) future. By comparing with recent observations, it is shown that the model reproduces the main features of regional air pollution distributions though with some imprecisions inherent to the coarse horizontal resolution (~100 km) and simplified bottom-up emission input. To identify possible future hot spots of poor air quality, a multi pollutant index (MPI), suited for global model output, has been applied. It appears that East and South Asia and the Middle East represent such hotspots due to very high pollutant concentrations, while a general increase of MPIs is observed in all populated regions in the Northern Hemisphere. In East Asia a range of pollutant gases and fine particulate matter (PM2.5) is projected to reach very high levels from 2005 onward, while in South Asia air pollution, including ozone, will grow rapidly towards the middle of the century. Around the Persian Gulf, where natural PM2.5 concentrations are already high (desert dust), ozone levels are expected to increase strongly. The population weighted MPI (PW-MPI), which combines demographic and pollutant concentration projections, shows that a rapidly increasing number of people worldwide will experience reduced air quality during the first half of the 21st century. Following this business as usual scenario, it is projected that air quality for the global

  8. Effects of business-as-usual anthropogenic emissions on air quality

    Directory of Open Access Journals (Sweden)

    A. Pozzer

    2012-08-01

    Full Text Available The atmospheric chemistry general circulation model EMAC has been used to estimate the impact of anthropogenic emission changes on global and regional air quality in recent and future years (2005, 2010, 2025 and 2050. The emission scenario assumes that population and economic growth largely determine energy and food consumption and consequent pollution sources with the current technologies ("business as usual". This scenario is chosen to show the effects of not implementing legislation to prevent additional climate change and growing air pollution, other than what is in place for the base year 2005, representing a pessimistic (but plausible future.

    By comparing with recent observations, it is shown that the model reproduces the main features of regional air pollution distributions though with some imprecisions inherent to the coarse horizontal resolution (~100 km and simplified bottom-up emission input.

    To identify possible future hot spots of poor air quality, a multi pollutant index (MPI, suited for global model output, has been applied. It appears that East and South Asia and the Middle East represent such hotspots due to very high pollutant concentrations, while a general increase of MPIs is observed in all populated regions in the Northern Hemisphere. In East Asia a range of pollutant gases and fine particulate matter (PM2.5 is projected to reach very high levels from 2005 onward, while in South Asia air pollution, including ozone, will grow rapidly towards the middle of the century. Around the Persian Gulf, where natural PM2.5 concentrations are already high (desert dust, ozone levels are expected to increase strongly.

    The population weighted MPI (PW-MPI, which combines demographic and pollutant concentration projections, shows that a rapidly increasing number of people worldwide will experience reduced air quality during the first half of the 21st century. Following this business as usual

  9. Mercury in coal and the impact of coal quality on mercury emissions from combustion systems

    International Nuclear Information System (INIS)

    Kolker, Allan; Senior, Constance L.; Quick, Jeffrey C.

    2006-01-01

    The proportion of Hg in coal feedstock that is emitted by stack gases of utility power stations is a complex function of coal chemistry and properties, combustion conditions, and the positioning and type of air pollution control devices employed. Mercury in bituminous coal is found primarily within Fe-sulfides, whereas lower rank coal tends to have a greater proportion of organic-bound Hg. Preparation of bituminous coal to reduce S generally reduces input Hg relative to in-ground concentrations, but the amount of this reduction varies according to the fraction of Hg in sulfides and the efficiency of sulfide removal. The mode of occurrence of Hg in coal does not directly affect the speciation of Hg in the combustion flue gas. However, other constituents in the coal, notably Cl and S, and the combustion characteristics of the coal, influence the species of Hg that are formed in the flue gas and enter air pollution control devices. The formation of gaseous oxidized Hg or particulate-bound Hg occurs post-combustion; these forms of Hg can be in part captured in the air pollution control devices that exist on coal-fired boilers, without modification. For a given coal type, the capture efficiency of Hg by pollution control systems varies according to type of device and the conditions of its deployment. For bituminous coal, on average, more than 60% of Hg in flue gas is captured by fabric filter (FF) and flue-gas desulfurization (FGD) systems. Key variables affecting performance for Hg control include Cl and S content of the coal, the positioning (hot side vs. cold side) of the system, and the amount of unburned C in coal ash. Knowledge of coal quality parameters and their effect on the performance of air pollution control devices allows optimization of Hg capture co-benefit

  10. Why nuclear energy is essential to reduce anthropogenic greenhouse gas emission rates

    Directory of Open Access Journals (Sweden)

    Alonso Agustin

    2015-01-01

    Full Text Available Reduction of anthropogenic greenhouse gas emissions is advocated by the Intergovernmental Panel on Climate Change. To achieve this target, countries have opted for renewable energy sources, primarily wind and solar. These renewables will be unable to supply the needed large quantities of energy to run industrial societies sustainably, economically and reliably because they are inherently intermittent, depending on flexible backup power or on energy storage for delivery of base-load quantities of electrical energy. The backup power is derived in most cases from combustion of natural gas. Intermittent energy sources, if used in this way, do not meet the requirements of sustainability, nor are they economically viable because they require redundant, under-utilized investment in capacity both for generation and for transmission. Because methane is a potent greenhouse gas, the equivalent carbon dioxide value of methane may cause gas-fired stations to emit more greenhouse gas than coal-fired plants of the same power for currently reported leakage rates of the natural gas. Likewise, intermittent wind/solar photovoltaic systems backed up by gas-fired power plants also release substantial amounts of carbon-dioxide-equivalent greenhouse gas to make such a combination environmentally unacceptable. In the long term, nuclear fission technology is the only known energy source that is capable of delivering the needed large quantities of energy safely, economically, reliably and in a sustainable way, both environmentally and as regards the available resource-base.

  11. Why nuclear energy is essential to reduce anthropogenic greenhouse gas emission rates

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, A. [Univ. Politecnica de Madrid, Madrid (Spain); Brook, B.W. [Univ. of Tasmania, Hobart TAS (Australia); Meneley, D.A. [Candu Energy Inc., Mississauga, Ontario (Canada); Misak, J. [UJV-Rez, Prague (Czech Republic); Blees, T. [Science Council for Global Initiatives, Chicago, Illinois (United States); Van Erp, J.B. [Illinois Commission on Atomic Energy, Chicago, Illinois (United States)

    2015-12-15

    Reduction of anthropogenic greenhouse gas emissions is advocated by the Intergovernmental Panel on Climate Change. To achieve this target, countries have opted for renewable energy sources, primarily wind and solar. These renewables will be unable to supply the needed large quantities of energy to run industrial societies sustainably, economically and reliably because they are inherently intermittent, depending on flexible backup power or on energy storage for delivery of base-load quantities of electrical energy. The backup power is derived in most cases from combustion of natural gas. Intermittent energy sources, if used in this way, do not meet the requirements of sustainability, nor are they economically viable because they require redundant, under- utilized investment in capacity both for generation and for transmission. Because methane is a potent greenhouse gas, the equivalent carbon dioxide value of methane may cause gas-fired stations to emit more greenhouse gas than coal-fired plants of the same power for currently reported leakage rates of the natural gas. Likewise, intermittent wind/solar photovoltaic systems backed up by gas-fu:ed power plants also release substantial amounts of carbon-dioxide- equivalent greenhouse gas to make such a combination environmentally unacceptable. In the long term, nuclear fission technology is the only known energy source that is capable of delivering the needed large quantities of energy safely, economically, reliably and in a sustainable way, both environmentally and as regards the available resource-base. (author)

  12. Soil biochemical properties of grassland ecosystems under anthropogenic emission of nitrogen compounds

    Science.gov (United States)

    Kudrevatykh, Irina; Ivashchenko, Kristina; Ananyeva, Nadezhda

    2016-04-01

    Inflow of pollutants in terrestrial ecosystems nowadays increases dramatically, that might be led to disturbance of natural biogeochemical cycles and landscapes structure. Production of nitrogen fertilizers is one of the air pollution sources, namely by nitrogen compounds (NH4+, NO3-, NO2-). Air pollution by nitrogen compounds of terrestrial ecosystems might be affected on soil biochemical properties, which results increasing mineral nitrogen content in soil, changing soil P/N and Al/Ca ratios, and, finally, the deterioration of soil microbial community functioning. The research is focused on the assessment of anthropogenic emission of nitrogen compounds on soil properties of grassland ecosystems in European Russia. Soil samples (Voronic Chernozem Pachic, upper 10 cm mineral layer, totally 10) were taken from grassland ecosystem: near (5-10 m) nitrogen fertilizer factory (NFF), and far from it (20-30 km, served as a control) in Tula region. In soil samples the NH4+ and NO3- (Kudeyarov's photocolorimetric method), P, Ca, Al (X-ray fluorescence method) contents were measured. Soil microbial biomass carbon (Cmic) was analyzed by substrate-induced respiration method. Soil microbial respiration (MR) was assessed by CO2 rate production. Soil microbial metabolic quotient (qCO2) was calculated as MR/Cmic ratio. Near NFF the soil ammonium and nitrate nitrogen contents were a strongly varied, variation coefficient (CV) was 42 and 86This study was supported by Russian Foundation of Basic Research Grant No. 14-04-00098, 15-44-03220, 15-04-00915.

  13. Trends and Patterns in a New Time Series of Natural and Anthropogenic Methane Emissions, 1980-2000

    Science.gov (United States)

    Matthews, E.; Bruhwiler, L.; Themelis, N. J.

    2007-12-01

    We report on a new time series of methane (CH4) emissions from anthropogenic and natural sources developed for a multi-decadal methane modeling study (see following presentation by Bruhwiler et al.). The emission series extends from 1980 through the early 2000s with annual emissions for all countries has several features distinct from the source histories based on IPCC methods typically employed in modeling the global methane cycle. Fossil fuel emissions rely on 7 fuel-process emission combinations and minimize reliance on highly-uncertain emission factors. Emissions from ruminant animals employ regional profiles of bovine populations that account for the influence of variable age- and size-demographics on emissions and are ~15% lower than other estimates. Waste-related emissions are developed using an approach that avoids using of data-poor emission factors and accounts for impacts of recycling and thermal treatment of waste on diverting material from landfills and CH4 capture at landfill facilities. Emissions from irrigated rice use rice-harvest areas under 3 water-management systems and a new historical data set that analyzes multiple sources for trends in water management since 1980. A time series of emissions from natural wetlands was developed by applying a multiple-regression model derived from full process-based model of Walter with analyzed meteorology from the ERA-40 reanalysis.

  14. Substantial nitrous oxide emissions from intertidal sediments and groundwater in anthropogenically-impacted West Falmouth Harbor, Massachusetts

    Science.gov (United States)

    Moseman-Valtierra, Serena; Kroeger, Kevin D.; Crusius, John; Baldwin, Sandy; Green, Adrian; Brooks, Thomas W.; Pugh, E.

    2015-01-01

    Large N2O emissions were observed from intertidal sediments in a coastal estuary, West Falmouth Harbor, MA, USA. Average N2O emission rates from 41 chambers during summer 2008 were 10.7 mol N2O m(-2) h(-1)±4.43 μmol N2O m(-2) h(-1) (standard error). Emissions were highest from sediments within a known wastewater plume, where a maximum N2O emission rate was 155 μmol N2O m(-2) h(-1). Intertidal N2O fluxes were positively related to porewater ammonium concentrations at 10 and 25 cm depths. In groundwater from 7 shoreline wells, dissolved N2O ranged from 488% of saturation (56 nM N2O) to more than 13000% of saturation (1529 nM N2O) and was positively related to nitrate concentrations. Fresh and brackish porewater underlying 14 chambers was also supersaturated in N2O, ranging from 2980% to 13175% of saturation. These observations support a relationship between anthropogenic nutrient loading and N2O emissions in West Falmouth Harbor, with both groundwater sources and also local N2O production within nutrient-rich, intertidal sediments in the groundwater seepage face. N2O emissions from intertidal "hotspot" in this harbor, together with estimated surface water emissions, constituted 2.4% of the average overall rate of nitrogen export from the watershed to the estuary. This suggests that N2O emissions factors from coastal ecosystems may be underestimated. Since anthropogenic nutrient loading affects estuaries worldwide, quantification of N2O dynamics is warranted in other anthropogenically-impacted coastal ecosystems.

  15. The Impact of Individual Anthropogenic Emissions Sectors on the Global Burden of Human Mortality due to Ambient Air Pollution.

    Science.gov (United States)

    Silva, Raquel A; Adelman, Zachariah; Fry, Meridith M; West, J Jason

    2016-11-01

    Exposure to ozone and fine particulate matter (PM2.5) can cause adverse health effects, including premature mortality due to cardiopulmonary diseases and lung cancer. Recent studies quantify global air pollution mortality but not the contribution of different emissions sectors, or they focus on a specific sector. We estimated the global mortality burden of anthropogenic ozone and PM2.5, and the impact of five emissions sectors, using a global chemical transport model at a finer horizontal resolution (0.67° × 0.5°) than previous studies. We performed simulations for 2005 using the Model for Ozone and Related Chemical Tracers, version 4 (MOZART-4), zeroing out all anthropogenic emissions and emissions from specific sectors (All Transportation, Land Transportation, Energy, Industry, and Residential and Commercial). We estimated premature mortality using a log-linear concentration-response function for ozone and an integrated exposure-response model for PM2.5. We estimated 2.23 (95% CI: 1.04, 3.33) million deaths/year related to anthropogenic PM2.5, with the highest mortality in East Asia (48%). The Residential and Commercial sector had the greatest impact globally-675 (95% CI: 428, 899) thousand deaths/year-and in most regions. Land Transportation dominated in North America (32% of total anthropogenic PM2.5 mortality), and it had nearly the same impact (24%) as Residential and Commercial (27%) in Europe. Anthropogenic ozone was associated with 493 (95% CI: 122, 989) thousand deaths/year, with the Land Transportation sector having the greatest impact globally (16%). The contributions of emissions sectors to ambient air pollution-related mortality differ among regions, suggesting region-specific air pollution control strategies. Global sector-specific actions targeting Land Transportation (ozone) and Residential and Commercial (PM2.5) sectors would particularly benefit human health. Citation: Silva RA, Adelman Z, Fry MM, West JJ. 2016. The impact of individual

  16. Millennial mercury records derived from ornithogenic sediment on Dongdao Island, South China Sea.

    Science.gov (United States)

    Yan, Hong; Wang, Yuhong; Cheng, Wenhan; Sun, Liguang

    2011-01-01

    Two ornithogenic sediment cores, which have a time span of 1000 years and are influenced by red-footed booby (Sula sula), were collected from Dongdao Islands, South China Sea. The determined mercury concentrations of the two cores show similar and substantial fluctuations during the past millennium, and the fluctuations are most likely caused by the changes in mercury level of the ocean environment and in anthropogenic Hg emission. For the past 500 years, the mercury concentration in the red-footed booby excrement has a striking association with global anthropogenic mercury emission. The mercury concentration increased rapidly after AD 1600 in corresponding to beginning of the unparalleled gold and silver mining in South Central America that left a large volume of anthropogenic mercury pollution. Since the Industrial Revolution, the mercury level has increased at a fast pace, very likely caused by modern coal combustion, chlor-alkali and oil refining industries. The comparison of mercury profiles from different places on earth suggested that anthropogenic mercury pollution after the Industrial Revolution is more severe in Northern Hemisphere than in Antarctica.

  17. Technology demonstration for reducing mercury emissions from small-scale gold refining facilities.

    Energy Technology Data Exchange (ETDEWEB)

    Habegger, L. J.; Fernandez, L. E.; Engle, M.; Bailey, J. L.; Peterson, D. P.; MacDonell, M. M.; U.S. Environmental Protection Agency

    2008-06-30

    Gold that is brought from artisanal and small-scale gold mining areas to gold shops for processing and sale typically contains 5-40% mercury. The uncontrolled removal of the residual mercury in gold shops by using high-temperature evaporation can be a significant source of mercury emissions in urban areas where the shops are located. Emissions from gold shop hoods during a burn can exceed 1,000 mg/m{sup 3}. Because the saturation concentration of mercury vapor at operating temperatures at the hood exhaust is less than 100 mg/m{sup 3}, the dominant component of the exhaust is in the form of aerosol or liquid particles. The U.S. Environmental Protection Agency (EPA), with technical support from Argonne National Laboratory (Argonne), has completed a project to design and test a technology to remove the dominant aerosol component in the emissions from gold shops. The objective was to demonstrate a technology that could be manufactured at low cost and by using locally available materials and manufacturing capabilities. Six prototypes designed by Argonne were locally manufactured, installed, and tested in gold shops in Itaituba and Creporizao, Brazil. The initial prototype design incorporated a pebble bed as the media for collecting the mercury aerosols, and a mercury collection efficiency of over 90% was demonstrated. Though achieving high efficiencies, the initial prototype was determined to have practical disadvantages such as excessive weight, a somewhat complex construction, and high costs (>US$1,000). To further simplify the construction, operation, and associated costs, a second prototype design was developed in which the pebble bed was replaced with slotted steel baffle plates. The system was designed to have flexibility for installation in various hood configurations. The second prototype with the baffle plate design was installed and tested in several different hood/exhaust systems to determine the optimal installation configuration. The significance of

  18. Procedure 5 Quality Assurance Requirements For Vapor Phase Mercury Continuous Emissions Monitoring Systems And Sorbent Trap Monitoring Systems Used For Compliance Determination At Stationary Sources

    Science.gov (United States)

    Promulgated quality assurance Procedure 5 Quality Assurance Requirements For Vapor Phase Mercury Continuous Emissions Monitoring Systems And Sorbent Trap Monitoring Systems Used For Compliance Determination At Stationary Sources

  19. An assessment of mercury emissions and health risks from a coal-fired power plant

    Energy Technology Data Exchange (ETDEWEB)

    Fthenakis, V.M.; Lipfert, F.; Moskowitz, P. [Brookhaven National Lab., Upton, NY (United States). Analytical Sciences Div.

    1994-12-01

    Title 3 of the 1990 Clean Air Act Amendments (CAAA) mandated that the US Environmental Protection Agency (EPA) evaluate the need to regulate mercury emissions from electric utilities. In support of this forthcoming regulatory analysis the U.S. DOE, sponsored a risk assessment project at Brookhaven (BNL) to evaluate methylmercury (MeHg) hazards independently. In the US MeHg is the predominant way of exposure to mercury originated in the atmosphere. In the BNL study, health risks to adults resulting from Hg emissions from a hypothetical 1,000 MW coal-fired power plant were estimated using probabilistic risk assessment techniques. This study showed that the effects of emissions of a single power plant may double the background exposures to MeHg resulting from consuming fish obtained from a localized area near the power plant. Even at these more elevated exposure levels, the attributable incidence in mild neurological symptoms was estimated to be quite small, especially when compared with the estimated background incidence in the population. The current paper summarizes the basic conclusions of this assessment and highlights issues dealing with emissions control and environmental transport.

  20. Regional and Global Climate Response to Anthropogenic SO2 Emissions from China in Three Climate Models

    Science.gov (United States)

    Kasoar, M.; Voulgarakis, Apostolos; Lamarque, Jean-Francois; Shindell, Drew T.; Bellouin, Nicholas; Collins, William J.; Faluvegi, Greg; Tsigaridis, Kostas

    2016-01-01

    We use the HadGEM3-GA4, CESM1, and GISS ModelE2 climate models to investigate the global and regional aerosol burden, radiative flux, and surface temperature responses to removing anthropogenic sulfur dioxide (SO2) emissions from China. We find that the models differ by up to a factor of 6 in the simulated change in aerosol optical depth (AOD) and shortwave radiative flux over China that results from reduced sulfate aerosol, leading to a large range of magnitudes in the regional and global temperature responses. Two of the three models simulate a near-ubiquitous hemispheric warming due to the regional SO2 removal, with similarities in the local and remote pattern of response, but overall with a substantially different magnitude. The third model simulates almost no significant temperature response. We attribute the discrepancies in the response to a combination of substantial differences in the chemical conversion of SO2 to sulfate, translation of sulfate mass into AOD, cloud radiative interactions, and differences in the radiative forcing efficiency of sulfate aerosol in the models. The model with the strongest response (HadGEM3-GA4) compares best with observations of AOD regionally, however the other two models compare similarly (albeit poorly) and still disagree substantially in their simulated climate response, indicating that total AOD observations are far from sufficient to determine which model response is more plausible. Our results highlight that there remains a large uncertainty in the representation of both aerosol chemistry as well as direct and indirect aerosol radiative effects in current climate models, and reinforces that caution must be applied when interpreting the results of modelling studies of aerosol influences on climate. Model studies that implicate aerosols in climate responses should ideally explore a range of radiative forcing strengths representative of this uncertainty, in addition to thoroughly evaluating the models used against

  1. Time-dependent climate sensitivity and the legacy of anthropogenic greenhouse gas emissions.

    Science.gov (United States)

    Zeebe, Richard E

    2013-08-20

    Climate sensitivity measures the response of Earth's surface temperature to changes in forcing. The response depends on various climate processes that feed back on the initial forcing on different timescales. Understanding climate sensitivity is fundamental to reconstructing Earth's climatic history as well as predicting future climate change. On timescales shorter than centuries, only fast climate feedbacks including water vapor, lapse rate, clouds, and snow/sea ice albedo are usually considered. However, on timescales longer than millennia, the generally higher Earth system sensitivity becomes relevant, including changes in ice sheets, vegetation, ocean circulation, biogeochemical cycling, etc. Here, I introduce the time-dependent climate sensitivity, which unifies fast-feedback and Earth system sensitivity. I show that warming projections, which include a time-dependent climate sensitivity, exhibit an enhanced feedback between surface warming and ocean CO2 solubility, which in turn leads to higher atmospheric CO2 levels and further warming. Compared with earlier studies, my results predict a much longer lifetime of human-induced future warming (23,000-165,000 y), which increases the likelihood of large ice sheet melting and major sea level rise. The main point regarding the legacy of anthropogenic greenhouse gas emissions is that, even if the fast-feedback sensitivity is no more than 3 K per CO2 doubling, there will likely be additional long-term warming from slow climate feedbacks. Time-dependent climate sensitivity also helps explaining intense and prolonged warming in response to massive carbon release as documented for past events such as the Paleocene-Eocene Thermal Maximum.

  2. THE ROLE OF COAL PROPERTIES AND COMBUSTION CONDITIONS IN THE CAPTURE OF MERCURY BY FLY ASH AND SORBENTS

    Science.gov (United States)

    The U. S. fleet of coal-fired power plants, with generating capacity of just over 300 GW, is known to be the major anthropogenic source of domestic mercury (Hg) emissions. As such, in March 2005, the U. S. Environmental Protection Agency (EPA) promulgated the Clean Air Mercury R...

  3. Human influence on the global mercury cycle: understanding the past and projecting the future

    Directory of Open Access Journals (Sweden)

    Amos H. M.

    2013-04-01

    Full Text Available Humans have been releasing mercury (Hg to the environment since antiquity. Due to the toxicity of Hg, the extent of anthropogenic enrichment is a global health concern. Here we use a global biogeochemical box model to quantify anthropogenic enrichment, investigate the timescales required to remove anthropogenic Hg from actively cycling reservoirs, and explore future anthropogenic emission scenarios and their impact on Hg accumulation. By considering the full history of anthropogenic emissions, we find that the global ocean has been substantially enriched by human activity, with implications for exposures of marine fish. Model simulations show anthropogenic Hg entering surface reservoirs is removed on the order of years. Future emission scenarios that achieve substantial reductions in global anthropogenic Hg emissions have the dual benefit of decreasing atmospheric deposition and decreasing the pool of legacy Hg actively cycling in terrestrial and oceanic ecosystems.

  4. Boreal forests can have a remarkable role in reducing greenhouse gas emissions locally: Land use-related and anthropogenic greenhouse gas emissions and sinks at the municipal level

    International Nuclear Information System (INIS)

    Vanhala, Pekka; Bergström, Irina; Haaspuro, Tiina; Kortelainen, Pirkko; Holmberg, Maria; Forsius, Martin

    2016-01-01

    Ecosystem services have become an important concept in policy-making. Carbon (C) sequestration into ecosystems is a significant ecosystem service, whereas C losses can be considered as an ecosystem disservice. Municipalities are in a position to make decisions that affect local emissions and therefore are important when considering greenhouse gas (GHG) mitigation. Integrated estimations of fluxes at a regional level help local authorities to develop land use policies for minimising GHG emissions and maximising C sinks. In this study, the Finnish national GHG accounting system is modified and applied at the municipal level by combining emissions and sinks from agricultural land, forest areas, water bodies and mires (land use-related GHG emissions) with emissions from activities such as energy production and traffic (anthropogenic GHG emissions) into the LUONNIKAS calculation tool. The study area consists of 14 municipalities within the Vanajavesi catchment area located in Southern Finland. In these municipalities, croplands, peat extraction sites, water bodies and undrained mires are emission sources, whereas forests are large carbon sinks that turn the land use-related GHG budget negative, resulting in C sequestration into the ecosystem. The annual land use-related sink in the study area was 78 t CO 2 eq km −2 and 2.8 t CO 2 eq per capita. Annual anthropogenic GHG emissions from the area amounted to 250 t CO 2 eq km −2 and 9.2 t CO 2 eq per capita. Since forests are a significant carbon sink and the efficiency of this sink is heavily affected by forest management practices, forest management policy is a key contributing factor for mitigating municipal GHG emissions. - Highlights: • The significance of natural landscapes in the regional C budgets is shown. • Boreal forests can be remarkable C sinks enabling net C sequestration in ecosystems. • The large area of forest may compensate for all C emissions in the municipality. • Forest management policy can

  5. Emission-dominated gas exchange of elemental mercury vapor over natural surfaces in China

    Directory of Open Access Journals (Sweden)

    X. Wang

    2016-09-01

    Full Text Available Mercury (Hg emission from natural surfaces plays an important role in global Hg cycling. The present estimate of global natural emission has large uncertainty and remains unverified against field data, particularly for terrestrial surfaces. In this study, a mechanistic model is developed for estimating the emission of elemental mercury vapor (Hg0 from natural surfaces in China. The development implements recent advancements in the understanding of air–soil and air–foliage exchange of Hg0 and redox chemistry in soil and on surfaces, incorporates the effects of soil characteristics and land use changes by agricultural activities, and is examined through a systematic set of sensitivity simulations. Using the model, the net exchange of Hg0 between the atmosphere and natural surfaces of mainland China is estimated to be 465.1 Mg yr−1, including 565.5 Mg yr−1 from soil surfaces, 9.0 Mg yr−1 from water bodies, and −100.4 Mg yr−1 from vegetation. The air–surface exchange is strongly dependent on the land use and meteorology, with 9 % of net emission from forest ecosystems; 50 % from shrubland, savanna, and grassland; 33 % from cropland; and 8 % from other land uses. Given the large agricultural land area in China, farming activities play an important role on the air–surface exchange over farmland. Particularly, rice field shift from a net sink (3.3 Mg uptake during April–October (rice planting to a net source when the farmland is not flooded (November–March. Summing up the emission from each land use, more than half of the total emission occurs in summer (51 %, followed by spring (28 %, autumn (13 %, and winter (8 %. Model verification is accomplished using observational data of air–soil/air–water fluxes and Hg deposition through litterfall for forest ecosystems in China and Monte Carlo simulations. In contrast to the earlier estimate by Shetty et al. (2008 that reported large emission from

  6. Economic evaluation of health benefits of mercury emission controls for China and the neighboring countries in East Asia

    International Nuclear Information System (INIS)

    Zhang, Wei; Zhen, Gengchong; Chen, Long; Wang, Huanhuan; Li, Ying; Ye, Xuejie; Tong, Yindong; Zhu, Yan; Wang, Xuejun

    2017-01-01

    Globally, coal-fired power plant (CFPP) is a major source of mercury. China is developing its first National Implementation Plan on Mercury Control, which priorities the control of emissions from CFPPs. While social benefits play an important role in designing environmental policies in China, the benefits associated with mercury control are not yet understood, mainly due to the scientific challenges to trace mercury's emissions-to-impacts path. This study evaluates the benefits of mercury reductions in China's CFPPs for China and its three neighboring countries in East Asia. Four policy scenarios are analyzed following the policies-to-impacts path, which links a global atmospheric model to health benefit analysis models to estimate the economic gains from avoided mercury-related adverse health outcomes under each scenario, and take into account key uncertainties in the path. Under the most stringent scenario, the benefits of mercury reduction by 2030 are projected to be $432 billion (95% CI: $166–941 billion), with the benefits for China and the neighboring countries accounting for 96% and 4% of the total benefits, respectively. Policy scenario analysis indicates that coal washing generates the greatest benefits in the near term, whereas upgrading air pollution control devices maximizes health benefits in the long term. - Highlights: • Benefits of mercury controls for China and neighboring countries are analyzed. • Policy analysis shows that coal washing generates the largest benefits in near term. • Upgrading air pollution control devices maximizes health benefits in long term. • For mercury controls, local policies contribute most to local benefits.

  7. Ice-core based assessment of historical anthropogenic heavy metal (Cd, Cu, Sb, Zn) emissions in the Soviet Union.

    Science.gov (United States)

    Eichler, Anja; Tobler, Leonhard; Eyrikh, Stella; Malygina, Natalia; Papina, Tatyana; Schwikowski, Margit

    2014-01-01

    The development of strategies and policies aiming at the reduction of environmental exposure to air pollution requires the assessment of historical emissions. Although anthropogenic emissions from the extended territory of the Soviet Union (SU) considerably influenced concentrations of heavy metals in the Northern Hemisphere, Pb is the only metal with long-term historical emission estimates for this region available, whereas for selected other metals only single values exist. Here we present the first study assessing long-term Cd, Cu, Sb, and Zn emissions in the SU during the period 1935-1991 based on ice-core concentration records from Belukha glacier in the Siberian Altai and emission data from 12 regions in the SU for the year 1980. We show that Zn primarily emitted from the Zn production in Ust-Kamenogorsk (East Kazakhstan) dominated the SU heavy metal emission. Cd, Sb, Zn (Cu) emissions increased between 1935 and the 1970s (1980s) due to expanded non-ferrous metal production. Emissions of the four metals in the beginning of the 1990s were as low as in the 1950s, which we attribute to the economic downturn in industry, changes in technology for an increasing metal recovery from ores, the replacement of coal and oil by gas, and air pollution control.

  8. Study on emission of hazardous trace elements in a 350 MW coal-fired power plant. Part 1. Mercury.

    Science.gov (United States)

    Zhao, Shilin; Duan, Yufeng; Chen, Lei; Li, Yaning; Yao, Ting; Liu, Shuai; Liu, Meng; Lu, Jianhong

    2017-10-01

    Hazardous trace elements (HTEs), especially mercury, emitted from coal-fired power plants had caused widespread concern worldwide. Field test on mercury emissions at three different loads (100%, 85%, 68% output) using different types of coal was conducted in a 350 MW pulverized coal combustion power plant equipped with selective catalytic reduction (SCR), electrostatic precipitator and fabric filter (ESP + FF), and wet flue gas desulfurization (WFGD). The Ontario Hydro Method was used for simultaneous flue gas mercury sampling for mercury at the inlet and outlet of each of the air pollutant control device (APCD). Results showed that mercury mass balance rates of the system or each APCD were in the range of 70%-130%. Mercury was mainly distributed in the flue gas, followed by ESP + FF ash, WFGD wastewater, and slag. Oxidized mercury (Hg 2+ ) was the main form of mercury form in the flue gas emitted to the atmosphere, which accounted for 57.64%-61.87% of total mercury. SCR was favorable for elemental mercury (Hg 0 ) removal, with oxidation efficiency of 50.13%-67.68%. ESP + FF had high particle-bound mercury (Hg p ) capture efficiency, at 99.95%-99.97%. Overall removal efficiency of mercury by the existing APCDs was 58.78%-73.32%. Addition of halogens or oxidants for Hg 0 conversion, and inhibitors for Hg 0 re-emission, plus the installation of a wet electrostatic precipitator (WESP) was a good way to improve the overall removal efficiency of mercury in the power plants. Mercury emission factor determined in this study was from 0.92 to 1.17 g/10 12 J. Mercury concentration in the emitted flue gas was much less than the regulatory limit of 30 μg/m 3 . Contamination of mercury in desulfurization wastewater should be given enough focus. Copyright © 2017. Published by Elsevier Ltd.

  9. High resolution of anthropogenic atmospheric emissions of 12 heavy metals in the three biggest metropolitan areas, China

    Science.gov (United States)

    Tian, H.; Zhu, C.

    2015-12-01

    Atmospheric emissions of typical toxic heavy metals from anthropogenic sources have received worldwide concerns due to their adverse effects on human health and the ecosystem. An integrated inventory of anthropogenic emissions of twelve HMs (Hg, As, Se, Pb, Cd, Cr, Ni, Sb, Mn, Co, Cu and Zn) in the three biggest metropolitan areas, including Beijing-Tianjin-Hebei (BTH) region, Yangtze River Delta (YRD) region and Pearl River Delta (PRD) region, are developed for 1980-2012 by combining with detailed activity data and inter-annual dynamic emission factors which are determined by S-shaped curves on account of technology progress, economic development, and emission control. The results indicate total emissions of twelve HMs in the three metropolitan regions have increased from 5448.8 tons in 1980 to 19054.9 tons in 2012, with an annual average growth rate of about 4.0%. Due to significant difference in industrial structures and energy consumption compositions, remarkable distinctions can be observed with respect to source contributions of total HM emissions from above three metropolitan areas. Specifically, the ferrous metal smelting sector, coal combustion by industrial boilers and coal combustion by power plants are found to be the primary source of total HM emissions in the BTH region (about 34.2%), YRD region (about 28.2%) and PRD region (about 24.3%), respectively. Furthermore, we allocate the annual emissions of these heavy metals in 2012 at a high spatial resolution of 9 km × 9 km grid with ArcGIS methodology and surrogate indexes, such as regional population and gross domestic product (GDP). The peak of HM emissions are mainly distributed over the grid cells of Beijing, Tianjin, Tangshan, Shijiazhuang, Handan and Baoding in the BTH region; Shanghai, Suzhou, Wuxi, Nanjing, Hangzhou, Ningbo in the YRD region; Guangzhou, Shenzhen, Dongguan, Foshan in the PYD region, respectively. Additionally, monthly emission profiles are established in order to further identify

  10. Controls on boreal peat combustion and resulting emissions of carbon and mercury

    Science.gov (United States)

    Kohlenberg, Andrew J.; Turetsky, Merritt R.; Thompson, Dan K.; Branfireun, Brian A.; Mitchell, Carl P. J.

    2018-03-01

    Warming in the boreal forest region has already led to changes in the fire regime. This may result in increasing fire frequency or severity in peatlands, which could cause these ecosystems to shift from a net sink of carbon (C) to a net source of C to the atmosphere. Similar to C cycling, peatlands serve as a net sink for mercury (Hg), which binds strongly to organic matter and accumulates in peat over time. This stored Hg is also susceptible to re-release to the atmosphere during peat fires. Here we investigate the physical properties that influence depth of burn in experimental peat columns and the resulting emissions of CO, CO2, CH4, and gaseous and particulate Hg. As expected, bulk density and soil moisture content were important controls on depth of burn, CO2 emissions, and CO emissions. However, our results show that CH4 and Hg emissions are insensitive to combustion temperature or fuel moisture content. Emissions during the burning of peat, across a wide range of moisture conditions, were associated with low particulate Hg and high gaseous Hg release. Due to strong correlations between total Hg and CO emissions and because high Hg emissions occurred despite incomplete combustion of total C, our results suggest that Hg release during peat burning is governed by the thermodynamics of Hg reduction more so than by the release of Hg associated with peat combustion. Our measured emissions ratios, particularly for CH4:CO2, are higher than values typically used in the upscaling of boreal forest or peatland fire emissions. These emission ratios have important implications not only for our understanding of smouldering chemistry, but also for potential influences of peat fires on the Earth’s climate system.

  11. Effects of Anthropogenic Emissions on the Nitrogen Cycle in the Desert Creosote Scrub Ecosystem

    Science.gov (United States)

    Scanlan, J.; Simunek, J.

    2009-12-01

    Wildfires are an ongoing threat to many ecosystems in Southern California. In some ecosystems, evidence suggests that high anthropogenic nitrogen deposition can increase susceptibility to fire by increasing the fuel loads and altering the plant species composition. Desert creosote scrub ecosystems are dominant throughout many low-elevation areas in the Mohave Desert and are among the ecosystems subjected to added deposition of nitrate and ammonium due to emissions from nearby agriculture and fossil fuel combustion. An understanding of how nitrogen flows through the desert creosote scrub ecosystem and of how the additional deposition affects this cycle is critical to determining how these ecosystems will change over time and assessing how the spread of fires can be mitigated. One high deposition and one low deposition desert creosote scrub site in Joshua Tree National Park have been studied for the past year in order to observe the flow of nitrogen through the soil and assess its connection to shifts in the vegetation. Extractable nitrate, extractable ammonium, and total nitrogen and carbon have been measured throughout 100cm soil profiles at each site in order to determine the fate and transport of the deposited nitrogen. Because the flow of water through the soil following the infrequent precipitation events is essential to the flow of nitrogen, dielectric water potential sensors have been installed throughout the top 70cm of soil in order to obtain hourly measurements of water potential. These measurements have been used in conjunction with weather and deposition data to model the flow of water and nitrogen through the soil using the hydrological model HYDRUS-1D. A geochemical model representing basic nitrogen reactions occurring in the soil has been started using PHREEQC coupled with HYDRUS-1D, but further modeling is necessary in order to accurately represent the complexity of the nitrogen cycle. After completion of an additional year of measurements and

  12. Estimation of mercury emissions from forest fires, lakes, regional and local sources using measurements in Milwaukee and an inverse method

    Directory of Open Access Journals (Sweden)

    B. de Foy

    2012-10-01

    Full Text Available Gaseous elemental mercury is a global pollutant that can lead to serious health concerns via deposition to the biosphere and bio-accumulation in the food chain. Hourly measurements between June 2004 and May 2005 in an urban site (Milwaukee, WI show elevated levels of mercury in the atmosphere with numerous short-lived peaks as well as longer-lived episodes. The measurements are analyzed with an inverse model to obtain information about mercury emissions. The model is based on high resolution meteorological simulations (WRF, hourly back-trajectories (WRF-FLEXPART and a chemical transport model (CAMx. The hybrid formulation combining back-trajectories and Eulerian simulations is used to identify potential source regions as well as the impacts of forest fires and lake surface emissions. Uncertainty bounds are estimated using a bootstrap method on the inversions. Comparison with the US Environmental Protection Agency's National Emission Inventory (NEI and Toxic Release Inventory (TRI shows that emissions from coal-fired power plants are properly characterized, but emissions from local urban sources, waste incineration and metal processing could be significantly under-estimated. Emissions from the lake surface and from forest fires were found to have significant impacts on mercury levels in Milwaukee, and to be underestimated by a factor of two or more.

  13. Estimation of mercury emissions from forest fires, lakes, regional and local sources using measurements in Milwaukee and an inverse method

    Science.gov (United States)

    de Foy, B.; Wiedinmyer, C.; Schauer, J. J.

    2012-10-01

    Gaseous elemental mercury is a global pollutant that can lead to serious health concerns via deposition to the biosphere and bio-accumulation in the food chain. Hourly measurements between June 2004 and May 2005 in an urban site (Milwaukee, WI) show elevated levels of mercury in the atmosphere with numerous short-lived peaks as well as longer-lived episodes. The measurements are analyzed with an inverse model to obtain information about mercury emissions. The model is based on high resolution meteorological simulations (WRF), hourly back-trajectories (WRF-FLEXPART) and a chemical transport model (CAMx). The hybrid formulation combining back-trajectories and Eulerian simulations is used to identify potential source regions as well as the impacts of forest fires and lake surface emissions. Uncertainty bounds are estimated using a bootstrap method on the inversions. Comparison with the US Environmental Protection Agency's National Emission Inventory (NEI) and Toxic Release Inventory (TRI) shows that emissions from coal-fired power plants are properly characterized, but emissions from local urban sources, waste incineration and metal processing could be significantly under-estimated. Emissions from the lake surface and from forest fires were found to have significant impacts on mercury levels in Milwaukee, and to be underestimated by a factor of two or more.

  14. Updated atmospheric speciated mercury emissions from iron and steel production in China during 2000-2015

    Science.gov (United States)

    Wu, Qingru; Gao, Wei; Wang, Shuxiao; Hao, Jiming

    2017-09-01

    Iron and steel production (ISP) is one of the significant atmospheric Hg emission sources in China. Atmospheric mercury (Hg) emissions from ISP during 2000-2015 were estimated by using a technology-based emission factor method. To support the application of this method, databases of Hg concentrations in raw materials, technology development trends, and Hg removal efficiencies of air pollution control devices (APCDs) were constructed through national sampling and literature review. Hg input to ISP increased from 21.6 t in 2000 to 94.5 t in 2015. In the various types of raw materials, coking coal and iron concentrates contributed 35-46 and 25-32 % of the total Hg input. Atmospheric Hg emissions from ISP increased from 11.5 t in 2000 to 32.7 t in 2015 with a peak of 35.6 t in 2013. Pollution control promoted the increase in average Hg removal efficiency, from 47 % in 2000 to 65 % in 2015. During the study period, sinter/pellet plants and blast furnaces were the largest two emission processes. However, emissions from roasting plants and coke ovens cannot be ignored, which accounted for 22-34 % of ISP's emissions. Overall, Hg speciation shifted from 50/44/6 (gaseous elemental Hg (Hg0)/gaseous oxidized Hg (HgII)/particulate-bound Hg (Hgp)) in 2000 to 40/59/1 in 2015, which indicated a higher proportion of Hg deposition around the emission points. Future emissions of ISP were expected to decrease based on the comprehensive consideration crude-steel production, steel scrap utilization, energy saving, and pollution control measures.

  15. Updated atmospheric speciated mercury emissions from iron and steel production in China during 2000–2015

    Directory of Open Access Journals (Sweden)

    Q. Wu

    2017-09-01

    Full Text Available Iron and steel production (ISP is one of the significant atmospheric Hg emission sources in China. Atmospheric mercury (Hg emissions from ISP during 2000–2015 were estimated by using a technology-based emission factor method. To support the application of this method, databases of Hg concentrations in raw materials, technology development trends, and Hg removal efficiencies of air pollution control devices (APCDs were constructed through national sampling and literature review. Hg input to ISP increased from 21.6 t in 2000 to 94.5 t in 2015. In the various types of raw materials, coking coal and iron concentrates contributed 35–46 and 25–32 % of the total Hg input. Atmospheric Hg emissions from ISP increased from 11.5 t in 2000 to 32.7 t in 2015 with a peak of 35.6 t in 2013. Pollution control promoted the increase in average Hg removal efficiency, from 47 % in 2000 to 65 % in 2015. During the study period, sinter/pellet plants and blast furnaces were the largest two emission processes. However, emissions from roasting plants and coke ovens cannot be ignored, which accounted for 22–34 % of ISP's emissions. Overall, Hg speciation shifted from 50/44/6 (gaseous elemental Hg (Hg0/gaseous oxidized Hg (HgII/particulate-bound Hg (Hgp in 2000 to 40/59/1 in 2015, which indicated a higher proportion of Hg deposition around the emission points. Future emissions of ISP were expected to decrease based on the comprehensive consideration crude-steel production, steel scrap utilization, energy saving, and pollution control measures.

  16. Evaluation and Optimization of China's Anthropogenic CO2 Emissions using Observations from Northern China (2005-2009).

    Science.gov (United States)

    Dayalu, A.; Munger, J. W.; Wang, Y.; Wofsy, S.; Zhao, Y.; Nielsen, C. P.; Nehrkorn, T.; McElroy, M. B.; Chang, R.

    2017-12-01

    China has pledged to peak carbon emissions by 2030, but there continues to be significant uncertainty in estimates of its anthropogenic carbon dioxide (CO2) emissions. In this study, we evaluate the performance of three anthropogenic CO2 inventories, two global and one regional, using five years of continuous hourly observations from a site in Northern China. We model five years of continuous hourly observations (2005 to 2009) using the Stochastic Time-Inverted Lagrangian Transport Model (STILT) run in backward time mode driven by high resolution meteorology from the Weather Research and Forecasting Model version 3.6.1 (WRF) with vegetation fluxes prescribed by a simple biosphere model. We calculate regional enhancements to advected background CO2 derived from NOAA CarbonTracker on seasonal and annual bases and use observations to optimize emissions inventories within the site's influence region at these timescales. Finally, we use annual enhancements to examine carbon intensity of provinces in and adjacent to Northern China as CO2 per unit of the region's GDP to evaluate the effects of local and global economic events on CO2 emissions. With the exception of peak growing season where discrepancies are confounded by errors in the vegetation model, we find the regional inventory agrees significantly better with observations than the global inventories at all timescales. Here we use a single measurement site; significant improvements in inventory optimizations can be achieved with a network of measurements stations. This study highlights the importance of China-specific data over global averages in emissions evaluation and demonstrates the value of top-down studies in independently evaluating inventory performance. We demonstrate the framework's ability to resolve differences of at least 20% among inventories, establishing a benchmark for ongoing efforts to decrease uncertainty in China's reported CO2 emissions estimates.

  17. Contribution of contaminated sites to the global mercury budget.

    Science.gov (United States)

    Kocman, David; Horvat, Milena; Pirrone, Nicola; Cinnirella, Sergio

    2013-08-01

    Global mercury emission inventories include anthropogenic emissions, contributing via current use or presence of mercury in a variety of products and processes, as well as natural source emissions. These inventories neglect the contribution of areas contaminated with mercury from historical accumulation, which surround mines or production plants associated with mercury production or use. Although recent studies have shown that releases of mercury from these historical sites can be significant, a database of the global distribution of mercury contaminated sites does not exist, nor are there means of scaling up such releases to estimate fluxes on a regional and global basis. Therefore, here we estimated for the first time the contribution of mercury releases from contaminated sites to the global mercury budget. A geo-referenced database was built, comprising over 3000 mercury contaminated sites associated with mercury mining, precious metal processing, non-ferrous metal production and various polluted industrial sites. In the assessment, mercury releases from these sites to both the atmosphere as well as the hydrosphere were considered based on data available for selected case studies, their number, the reported extent of contamination and geographical location. Annual average global emissions of mercury from identified contaminated sites amount to 198 (137-260) Mgyr(-1). Of that, 82 (70-95)Mgyr(-1) contribute to atmospheric releases, while 116 (67-165) Mgyr(-1) is estimated to be transported away from these sites by hydrological processes. Although these estimates are associated with large uncertainties, our current understanding of mercury releases from contaminated sites indicates that these releases can also be of paramount importance on the global perspective. This is especially important as it is known that these sites represent a long-term source of releases if not managed properly. Therefore, the information presented here is needed by governments and NGO

  18. Study on the reduction of atmospheric mercury emissions from mine waste enriched soils through native grass cover in the Mt. Amiata region of Italy

    International Nuclear Information System (INIS)

    Fantozzi, L.; Ferrara, R.; Dini, F.; Tamburello, L.; Pirrone, N.; Sprovieri, F.

    2013-01-01

    Atmospheric mercury emissions from mine-waste enriched soils were measured in order to compare the mercury fluxes of bare soils with those from other soils covered by native grasses. Our research was conducted near Mt. Amiata in central Italy, an area that was one of the largest and most productive mining centers in Europe up into the 1980s. To determine in situ mercury emissions, we used a Plexiglas flux chamber connected to a portable mercury analyzer (Lumex RA-915+). This allowed us to detect, in real time, the mercury vapor in the air, and to correlate this with the meteorological parameters that we examined (solar radiation, soil temperature, and humidity). The highest mercury flux values (8000 ng m −2 h −1 ) were observed on bare soils during the hours of maximum insulation, while lower values (250 ng m −2 h −1 ) were observed on soils covered by native grasses. Our results indicate that two main environmental variables affect mercury emission: solar radiation intensity and soil temperature. The presence of native vegetation, which can shield soil surfaces from incident light, reduced mercury emissions, a result that we attribute to a drop in the efficiency of mercury photoreduction processes rather than to decreases in soil temperature. This finding is consistent with decreases in mercury flux values down to 3500 ng m −2 h −1 , which occurred under cloudy conditions despite high soil temperatures. Moreover, when the soil temperature was 28 °C and the vegetation was removed from the experimental site, mercury emissions increased almost four-fold. This increase occurred almost immediately after the grasses were cut, and was approximately eight-fold after 20 h. Thus, this study demonstrates that enhancing wild vegetation cover could be an inexpensive and effective approach in fostering a natural, self-renewing reduction of mercury emissions from mercury-contaminated soils. -- Highlights: ► Mercury air/surface exchange from grass covered soil is

  19. MERCURY EMISSIONS FROM COAL FIRED POWER PLANTS LOCAL IMPACTS ON HUMAN HEALTH RISK.

    Energy Technology Data Exchange (ETDEWEB)

    SULLIVAN, T.M.; BOWERMAN, B.; ADAMS, J.; LIPFERT, F.; MORRIS, S.M.; BANDO, A.; PENA, R.; BLAKE, R.

    2005-12-01

    A thorough quantitative understanding of the processes of mercury emissions, deposition, and translocation through the food chain is currently not available. Complex atmospheric chemistry and dispersion models are required to predict concentration and deposition contributions, and aquatic process models are required to predict effects on fish. However, there are uncertainties in all of these predictions. Therefore, the most reliable method of understanding impacts of coal-fired power plants on Hg deposition is from empirical data. A review of the literature on mercury deposition around sources including coal-fired power plants found studies covering local mercury concentrations in soil, vegetation, and animals (fish and cows). There is strong evidence of enhanced local deposition within 3 km of the chlor-alkali plants, with elevated soil concentrations and estimated deposition rates of 10 times background. For coal-fired power plants, the data show that atmospheric deposition of Hg may be slightly enhanced. On the scale of a few km, modeling suggests that wet deposition may be increased by a factor of two or three over background. The measured data suggest lower increases of 15% or less. The effects of coal-fired plants seem to be less than 10% of total deposition on a national scale, based on emissions and global modeling. The following summarizes our findings from published reports on the impacts of local deposition. In terms of excesses over background the following increments have been observed within a few km of the plant: (1) local soil concentration Hg increments of 30%-60%, (2) sediment increments of 18-30%, (3) wet deposition increments of 11-12%, and (4) fish Hg increments of about 5-6%, based on an empirical finding that fish concentrations are proportional to the square root of deposition. Important uncertainties include possible reductions of RGM to Hg{sub 0} in power plant plumes and the role of water chemistry in the relationship between Hg

  20. Radiative forcing associated with particulate carbon emissions resulting from the use of mercury control technology.

    Science.gov (United States)

    Lin, Guangxing; Penner, Joyce E; Clack, Herek L

    2014-09-02

    Injection of powdered activated carbon (PAC) adsorbents into the flue gas of coal fired power plants with electrostatic precipitators (ESPs) is the most mature technology to control mercury emissions for coal combustion. However, the PAC itself can penetrate ESPs to emit into the atmosphere. These emitted PACs have similar size and optical properties to submicron black carbon (BC) and thus could increase BC radiative forcing unintentionally. The present paper estimates, for the first time, the potential emission of PAC together with their climate forcing. The global average maximum potential emissions of PAC is 98.4 Gg/yr for the year 2030, arising from the assumed adoption of the maximum potential PAC injection technology, the minimum collection efficiency, and the maximum PAC injection rate. These emissions cause a global warming of 2.10 mW m(-2) at the top of atmosphere and a cooling of -2.96 mW m(-2) at the surface. This warming represents about 2% of the warming that is caused by BC from direct fossil fuel burning and 0.86% of the warming associated with CO2 emissions from coal burning in power plants. Its warming is 8 times more efficient than the emitted CO2 as measured by the 20-year-integrated radiative forcing per unit of carbon input (the 20-year Global Warming Potential).

  1. Source-specific speciation profiles of PM2.5 for heavy metals and their anthropogenic emissions in China.

    Science.gov (United States)

    Liu, Yayong; Xing, Jia; Wang, Shuxiao; Fu, Xiao; Zheng, Haotian

    2018-04-20

    Heavy metals are concerned for its adverse effect on human health and long term burden on biogeochemical cycling in the ecosystem. In this study, a provincial-level emission inventory of 13 kinds of heavy metals including V, Cr, Mn, Co, Ni, Cu, Zn, As, Cd, Sn, Sb, Ba and Pb from 10 anthropogenic sources was developed for China, based on the 2015 national emission inventory of primary particulate matters and source category-specific speciation profiles collected from 50 previous studies measured in China. Uncertainties associated with the speciation profiles were also evaluated. Our results suggested that total emissions of the 13 types of heavy metals in China are estimated at about 58000 ton for the year 2015. The iron production is the dominant source of heavy metal, contributing 42% of total emissions of heavy metals. The emissions of heavy metals vary significantly at regional scale, with largest amount of emissions concentrated in northern and eastern China. Particular, high emissions of Cr, Co, Ni, As and Sb (contributing 8%-18% of the national emissions) are found in Shandong where has large capacity of industrial production. Uncertainty analysis suggested that the implementation of province-specific source profiles in this study significantly reduced the emission uncertainties from (-89%, 289%) to (-99%, 91%), particularly for coal combustion. However, source profiles for industry sectors such as non-metallic mineral manufacturing are quite limited, resulting in a relative high uncertainty. The high-resolution emission inventories of heavy metals are essential not only for their distribution, deposition and transport studies, but for the design of policies to redress critical atmospheric environmental hazards at local and regional scales. Detailed investigation on source-specific profile in China are still needed to achieve more accurate estimations of heavy metals in the future. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Spatial and temporal disaggregation of anthropogenic CO2 emissions from the City of Cape Town

    Directory of Open Access Journals (Sweden)

    Alecia Nickless

    2015-11-01

    Full Text Available This paper describes the methodology used to spatially and temporally disaggregate carbon dioxide emission estimates for the City of Cape Town, to be used for a city-scale atmospheric inversion estimating carbon dioxide fluxes. Fossil fuel emissions were broken down into emissions from road transport, domestic emissions, industrial emissions, and airport and harbour emissions. Using spatially explicit information on vehicle counts, and an hourly scaling factor, vehicle emissions estimates were obtained for the city. Domestic emissions from fossil fuel burning were estimated from household fuel usage information and spatially disaggregated population data from the 2011 national census. Fuel usage data were used to derive industrial emissions from listed activities, which included emissions from power generation, and these were distributed spatially according to the source point locations. The emissions from the Cape Town harbour and the international airport were determined from vessel and aircraft count data, respectively. For each emission type, error estimates were determined through error propagation techniques. The total fossil fuel emission field for the city was obtained by summing the spatial layers for each emission type, accumulated for the period of interest. These results will be used in a city-scale inversion study, and this method implemented in the future for a national atmospheric inversion study.

  3. Natural vs. Anthropogenic: Combined Measurements of Methane and Volatile Organic Compounds (VOCs) for Investigating Sources of Methane Emissions

    Science.gov (United States)

    Zannoni, N.; Assan, S.; Gros, V.; Laville, P.; Loubet, B.; Ciuraru, R.; Baisnee, D.; Bonsang, B.; Sarda Esteve, R.; Chuppin, G.; Truong, F.; Lafouge, F.; Vogel, F. R.

    2016-12-01

    Methane is the second globally most abundant anthropogenic greenhouse gas, whose emissions contribute more than 1/3 of today's additional anthropogenic warming. Methane is emitted from the production and transport of coal, oil and natural gas, as well as from livestock and agricultural practices as well as from natural sources such as e.g. wetlands, freshwaters and wild fauna. Volatile organic compounds constitute less than 0.1% of the total atmospheric composition; however, their emissions and further atmospheric photo-oxidation reactions produce ozone and secondary organic aerosols which have adverse effects on climate and air quality. We measured the concentration of methane and volatile organic compounds (VOCs) over a winter wheat (Triticum aestivum) cropland located in the North-West of Europe during June 2016. The measurements site was located nearby a farm and a methanizer bioreactor, therefore was affected by contrasted sources of emissions: agricultural practices, enteric digestion of livestock, animal manures as well as possible leakages from the biogas unit. Here, measurements of methane, its isotopic composition, and VOCs concentrations are combined to investigate the fingerprint of these sources. Specifically, VOCs, as alkanes which are co-emitted by natural gas, and other compounds as ammonia and NOx will help to unravel the different sources contributions.

  4. Evaluating Anthropogenic Carbon Emissions in the Urban Salt Lake Valley through Inverse Modeling: Combining Long-term CO2 Observations and an Emission Inventory using a Multiple-box Atmospheric Model

    Science.gov (United States)

    Catharine, D.; Strong, C.; Lin, J. C.; Cherkaev, E.; Mitchell, L.; Stephens, B. B.; Ehleringer, J. R.

    2016-12-01

    The rising level of atmospheric carbon dioxide (CO2), driven by anthropogenic emissions, is the leading cause of enhanced radiative forcing. Increasing societal interest in reducing anthropogenic greenhouse gas emissions call for a computationally efficient method of evaluating anthropogenic CO2 source emissions, particularly if future mitigation actions are to be developed. A multiple-box atmospheric transport model was constructed in conjunction with a pre-existing fossil fuel CO2 emission inventory to estimate near-surface CO2 mole fractions and the associated anthropogenic CO2 emissions in the Salt Lake Valley (SLV) of northern Utah, a metropolitan area with a population of 1 million. A 15-year multi-site dataset of observed CO2 mole fractions is used in conjunction with the multiple-box model to develop an efficient method to constrain anthropogenic emissions through inverse modeling. Preliminary results of the multiple-box model CO2 inversion indicate that the pre-existing anthropogenic emission inventory may over-estimate CO2 emissions in the SLV. In addition, inversion results displaying a complex spatial and temporal distribution of urban emissions, including the effects of residential development and vehicular traffic will be discussed.

  5. Geochemistry and migration of anthropogenic arsenic emissions in Yara Siilinjärvi industrial site, Finland

    Science.gov (United States)

    Turunen, Kaisa; Backnäs, Soile; Pasanen, Antti

    2013-04-01

    Arsenic is a problematic element due to its relatively high mobility over a wide range of redox-conditions and its toxicity to humans, animals and plants. In extractive and industrial minerals arsenic is a common element and cannot be eluded in mining and quarrying activities. Therefore, mining and industrial activities are one of the most serious arsenic polluters at local scale. In assessing environmental effects, it is important to compare anthropogenic arsenic load to geological background. The aim of this study was to characterize environmental effects and risks of the arsenic bearing calcinate tailings to the surrounding environment. Yara Finland industrial site in Siilinjärvi, Eastern Finland produces mainly fertilizers and phosphoric acid, but also 250 000 t/a iron calcinate is recovered as by-product at the sulphuric acid plant. The tailings area is located about 200 m from Lake Kuuslahti and surrounded by double ditches collecting runoff and seepage waters to seepage ponds. Some seepage water migrates to a bedrock fracture zone under the tailings area and contaminant transport from the fracture zone is controlled by pumping the water back to seepage ponds. The arsenic content (500 mg/kg) of the calcinate tailings is very high considering that the natural arsenic concentrations of the local bedrock and soil are low (chemically adsorbed and bioavailable fractions. In addition 14 water samples were analyzed for total and soluble metal and metalloid concentrations, anions, DOC, TOC, pH, redox and alkalinity. The metal speciation in surface and ground waters was modeled by PhreeqC. According to the results main arsenic pathways from the tailings to environment and into the Lake Kuuslahti are by dust and surface runoff. Close to the tailings arsenic concentrations are high and exceed the Finnish threshold values of contamination for soil (50 mg/kg) and water (10 µg/l). However, the arsenic concentrations further away from the tailings are fairly low and close

  6. A 3-D Model Analysis of The Impact of Asian Anthropogenic Emissions on the Sulfur Cycle Over the Pacific Ocean

    Science.gov (United States)

    Chin, Mian; Thornton, Donald; Bandy, Alan; Huebert, Barry; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The impact of anthropogenic activities on the SO2 and sulfate aerosol levels over the Pacific region is examined in the Georgia Tech/Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model. We focus on the analysis of the data from the NASA Pacific Exploratory Missions (PEM) over the western North Pacific and the tropical Pacific. These missions include PEM-West A in September-October 1991, when the Asian outflow was at the minimum but the upper atmosphere was heavily influenced by the Pinatubo volcanic eruption, and PEM-West B in March-April 1994 when the Asian outflow was at the maximum, and PEM-Tropics A in August-September at a region relatively free of direct anthropogenic influences. Specifically, we will examine the relative importance of anthropogenic, volcanic and biogenic sources to the SO2 and sulfate concentrations over the Pacific, and quantify the processes controlling the distributions of SO2 and sulfate in both the boundary layer and the free troposphere. We will also assess the global impact of SO2 emission in Asia on the sulfate aerosol loading.

  7. Mercury emissions from flooded soils and sediments in Germany are an underestimated problem: challenges for reliable risk assessments and management strategies

    Directory of Open Access Journals (Sweden)

    Rinklebe J.

    2013-04-01

    Full Text Available Environmental pollution by mercury is a world-wide problem. Particularly floodplain ecosystems are frequently affected. One example is the Elbe River in Germany and its catchment areas; large amounts of Hg from a range of anthropogenic and geogenic sources have been accumulated in the soils of these floodplains. They serve as sink for Hg originating from the surface water of adjacent river. Today, the vastly elevated Hg contents of the floodplain soils at the Elbe River often exceed even the action values of the German Soil Conservation Law. This is especially important as Hg polluted areas at the Elbe River achieve several hundred square kilometres. Thus, authorities are coerced by law to conduct an appropriate risk assessment and to implement practical actions to eliminate or reduce environmental problems. A reliable risk assessment particularly with view to organisms (vegetation as green fodder and hay production, grazing and wild animals to avoid the transfer of Hg into the human food chain, requires an authentic determination of Hg fluxes and their dynamics since gaseous emissions from soil to atmosphere are an important pathway of Hg. However, reliable estimates of Hg fluxes from the highly polluted floodplain soils at the Elbe River and its tributaries, and its influencing factors are scarce. For this purpose, we have developed a new method to determine mercury emissions from soils at various sites. Our objectives were i to quantify seasonal variations of total gaseous mercury (TGM fluxes for floodplain soils at the Elbe River, ii to provide insights into physico-chemical processes regulating these TGM fluxes, and iii to quantify the impacts of the controlling factors soil temperature and soil water content on Hg volatilization from a typical contaminated floodplain soil within soil microcosm experiments under various controlled temperature and moisture conditions. Our study provides insight into TGM emissions from highly Hg

  8. Estimating mercury emissions resulting from wildfire in forests of the Western United States

    Science.gov (United States)

    Webster, Jackson; Kane, Tyler J.; Obrist, Daniel; Ryan, Joseph N.; Aiken, George R.

    2016-01-01

    Understanding the emissions of mercury (Hg) from wildfires is important for quantifying the global atmospheric Hg sources. Emissions of Hg from soils resulting from wildfires in the Western United States was estimated for the 2000 to 2013 period, and the potential emission of Hg from forest soils was assessed as a function of forest type and soil-heating. Wildfire released an annual average of 3100 ± 1900 kg-Hg y− 1 for the years spanning 2000–2013 in the 11 states within the study area. This estimate is nearly 5-fold lower than previous estimates for the study region. Lower emission estimates are attributed to an inclusion of fire severity within burn perimeters. Within reported wildfire perimeters, the average distribution of low, moderate, and high severity burns was 52, 29, and 19% of the total area, respectively. Review of literature data suggests that that low severity burning does not result in soil heating, moderate severity fire results in shallow soil heating, and high severity fire results in relatively deep soil heating ( wood > foliage > litter > branches.

  9. PRELIMINARY ESTIMATES OF PERFORMANCE AND COST OF MERCURY EMISSION CONTROL TECHNOLOGY APPLICATIONS ON ELECTRIC UTILITY BOILERS: AN UPDATE

    Science.gov (United States)

    The paper presents estimates of performance levels and related costs associated with controlling mercury (Hg) emissions from coal-fired power plants using either powdered activated carbon (PAC) injection or multipollutant control in which Hg capture is enhanced in existing and ne...

  10. CHARACTERIZATION OF MERCURY EMISSIONS AT A CHLOR-ALKALI PLANT, VOLUME I. REPORT AND APPENDICES A-E

    Science.gov (United States)

    The report gives results of a characterization of mercury (Hg) emissions at a chlor-alkali plant. Up to 160 short tons (146 Mg) of Hg is consumed by the chlor-alkali industry each year. Very little quantitative information is currently available however, on the actual Hg losses f...

  11. CHARACTERIZATION OF FUGITIVE MERCURY EMISSIONS FROM THE CELL BUILDING AT A U.S. CHLOR-ALKALI PLANT

    Science.gov (United States)

    The paper discusses an extensive measurement campaign that was conducted of the fugitive (non-ducted) airborne elemental mercury [Hg(0)] emissions from the cell building of a chlor-alkali plant (CAP) located in the southeastern United States. The objectives of this study were to ...

  12. MEASUREMENT OF TOTAL SITE MERCURY EMISSIONS FROM A CHLOR-ALKALI PLANT USING OPEN-PATH UV-DOAS

    Science.gov (United States)

    In December 2003, the EPA promulgated the National Emission Standard for Hazardous Air Pollutants for mercury cell chlor-alkali plants. In February 2004, the Natural Resources Defense Council filed petitions on the final rule in U.S. district court citing, among other issues, th...

  13. Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products

    Science.gov (United States)

    Ginoux, Paul; Prospero, Joseph M.; Gill, Thomas E.; Hsu, N. Christina; Zhao, Ming

    2012-09-01

    Our understanding of the global dust cycle is limited by a dearth of information about dust sources, especially small-scale features which could account for a large fraction of global emissions. Here we present a global-scale high-resolution (0.1°) mapping of sources based on Moderate Resolution Imaging Spectroradiometer (MODIS) Deep Blue estimates of dust optical depth in conjunction with other data sets including land use. We ascribe dust sources to natural and anthropogenic (primarily agricultural) origins, calculate their respective contributions to emissions, and extensively compare these products against literature. Natural dust sources globally account for 75% of emissions; anthropogenic sources account for 25%. North Africa accounts for 55% of global dust emissions with only 8% being anthropogenic, mostly from the Sahel. Elsewhere, anthropogenic dust emissions can be much higher (75% in Australia). Hydrologic dust sources (e.g., ephemeral water bodies) account for 31% worldwide; 15% of them are natural while 85% are anthropogenic. Globally, 20% of emissions are from vegetated surfaces, primarily desert shrublands and agricultural lands. Since anthropogenic dust sources are associated with land use and ephemeral water bodies, both in turn linked to the hydrological cycle, their emissions are affected by climate variability. Such changes in dust emissions can impact climate, air quality, and human health. Improved dust emission estimates will require a better mapping of threshold wind velocities, vegetation dynamics, and surface conditions (soil moisture and land use) especially in the sensitive regions identified here, as well as improved ability to address small-scale convective processes producing dust via cold pool (haboob) events frequent in monsoon regimes.

  14. The effects of recent control policies on trends in emissions of anthropogenic atmospheric pollutants and CO2 in China

    Directory of Open Access Journals (Sweden)

    C. P. Nielsen

    2013-01-01

    Full Text Available To examine the effects of China's national policies of energy conservation and emission control during 2005–2010, inter-annual emission trends of gaseous pollutants, primary aerosols, and CO2 are estimated with a bottom-up framework. The control measures led to improved energy efficiency and/or increased penetration of emission control devices at power plants and other important industrial sources, yielding reduced emission factors for all evaluated species except NOx. The national emissions of anthropogenic SO2, CO, and total primary PM (particulate matter in 2010 are estimated to have been 89%, 108%, and 87% of those in 2005, respectively, suggesting successful emission control of those species despite fast growth of the economy and energy consumption during the period. The emissions of NOx and CO2, however, are estimated to have increased by 47% and 43%, respectively, indicating that they remain largely determined by the growth of energy use, industrial production, and vehicle populations. Based on application of a Monte-Carlo framework, estimated uncertainties of SO2 and PM emissions increased from 2005 to 2010, resulting mainly from poorly understood average SO2 removal efficiency in flue gas desulfurization (FGD systems in the power sector, and unclear changes in the penetration levels of dust collectors at industrial sources, respectively. While emission trends determined by bottom-up methods can be generally verified by observations from both ground stations and satellites, clear discrepancies exist for given regions and seasons, indicating a need for more accurate spatial and time distributions of emissions. Limitations of current emission control polices are analyzed based on the estimated emission trends. Compared with control of total PM, there are fewer gains in control of fine particles and carbonaceous aerosols, the PM components most responsible for damages to public health and effects on radiative forcing. A much faster

  15. The effects of recent control policies on trends in emissions of anthropogenic atmospheric pollutants and CO2 in China

    Science.gov (United States)

    Zhao, Y.; Zhang, J.; Nielsen, C. P.

    2013-01-01

    To examine the effects of China's national policies of energy conservation and emission control during 2005-2010, inter-annual emission trends of gaseous pollutants, primary aerosols, and CO2 are estimated with a bottom-up framework. The control measures led to improved energy efficiency and/or increased penetration of emission control devices at power plants and other important industrial sources, yielding reduced emission factors for all evaluated species except NOx. The national emissions of anthropogenic SO2, CO, and total primary PM (particulate matter) in 2010 are estimated to have been 89%, 108%, and 87% of those in 2005, respectively, suggesting successful emission control of those species despite fast growth of the economy and energy consumption during the period. The emissions of NOx and CO2, however, are estimated to have increased by 47% and 43%, respectively, indicating that they remain largely determined by the growth of energy use, industrial production, and vehicle populations. Based on application of a Monte-Carlo framework, estimated uncertainties of SO2 and PM emissions increased from 2005 to 2010, resulting mainly from poorly understood average SO2 removal efficiency in flue gas desulfurization (FGD) systems in the power sector, and unclear changes in the penetration levels of dust collectors at industrial sources, respectively. While emission trends determined by bottom-up methods can be generally verified by observations from both ground stations and satellites, clear discrepancies exist for given regions and seasons, indicating a need for more accurate spatial and time distributions of emissions. Limitations of current emission control polices are analyzed based on the estimated emission trends. Compared with control of total PM, there are fewer gains in control of fine particles and carbonaceous aerosols, the PM components most responsible for damages to public health and effects on radiative forcing. A much faster decrease of alkaline base

  16. A simple modeling approach to study the regional impact of a Mediterranean forest isoprene emission on anthropogenic plumes

    Directory of Open Access Journals (Sweden)

    J. Cortinovis

    2005-01-01

    Full Text Available Research during the past decades has outlined the importance of biogenic isoprene emission in tropospheric chemistry and regional ozone photo-oxidant pollution. The first part of this article focuses on the development and validation of a simple biogenic emission scheme designed for regional studies. Experimental data sets relative to Boreal, Tropical, Temperate and Mediterranean ecosystems are used to estimate the robustness of the scheme at the canopy scale, and over contrasted climatic and ecological conditions. A good agreement is generally found when comparing field measurements and simulated emission fluxes, encouraging us to consider the model suitable for regional application. Limitations of the scheme are nevertheless outlined as well as further on-going improvements. In the second part of the article, the emission scheme is used on line in the broader context of a meso-scale atmospheric chemistry model. Dynamically idealized simulations are carried out to study the chemical interactions of pollutant plumes with realistic isoprene emissions coming from a Mediterranean oak forest. Two types of anthropogenic sources, respectively representative of the Marseille (urban and Martigues (industrial French Mediterranean sites, and both characterized by different VOC/NOx are considered. For the Marseille scenario, the impact of biogenic emission on ozone production is larger when the forest is situated in a sub-urban configuration (i.e. downwind distance TOWN-FOREST -1. In this case the enhancement of ozone production due to isoprene can reach +37% in term of maximum surface concentrations and +11% in term of total ozone production. The impact of biogenic emission decreases quite rapidly when the TOWN-FOREST distance increases. For the Martigues scenario, the biogenic impact on the plume is significant up to TOWN-FOREST distance of 90km where the ozone maximum surface concentration enhancement can still reach +30%. For both cases, the

  17. Risk mapping for sensitive species to underwater anthropogenic sound emissions: model development and validation in two Mediterranean areas.

    Science.gov (United States)

    Azzellino, A; Lanfredi, C; D'Amico, A; Pavan, G; Podestà, M; Haun, J

    2011-01-01

    Recent observations of cetacean mass strandings, coincident with anthropogenic sounds emissions, have raised concerns on the potential environmental impact of underwater noise. Cuvier's beaked whale (Ziphius cavirostris) was reported in all the cited stranding events. Within the NATO Marine Mammal Risk Mitigation project (MMRM), multiple interdisciplinary sea trials have been conducted in the Mediterranean Sea with the objective of developing tools and procedures to mitigate the impact of underwater sound emissions. During these cruises, visual observations, passive acoustic detections and environmental data were collected. The aim of this study was to evaluate "a priori" predictions of Cuvier's beaked whale presence in the Alboran Sea, using models developed in the Ligurian Sea that employ bathymetric and chlorophyll features as predictors. The accuracy of these predictions was found adequate and elements are given to account for the uncertainties associated to the use of models developed in areas different from their calibration site. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Boreal forests can have a remarkable role in reducing greenhouse gas emissions locally: Land use-related and anthropogenic greenhouse gas emissions and sinks at the municipal level

    Energy Technology Data Exchange (ETDEWEB)

    Vanhala, Pekka, E-mail: pekka.vanhala@ymparisto.fi [Finnish Environment Institute, Natural Environment Centre, P.O. Box 140, Mechelininkatu 34 a, FI-00251 Helsinki (Finland); Bergström, Irina [Finnish Environment Institute, Natural Environment Centre, P.O. Box 140, Mechelininkatu 34 a, FI-00251 Helsinki (Finland); Haaspuro, Tiina [University of Helsinki, Department of Environmental Sciences, P.O. Box 65, Viikinkaari 1, 00014 Helsinki (Finland); Kortelainen, Pirkko; Holmberg, Maria; Forsius, Martin [Finnish Environment Institute, Natural Environment Centre, P.O. Box 140, Mechelininkatu 34 a, FI-00251 Helsinki (Finland)

    2016-07-01

    Ecosystem services have become an important concept in policy-making. Carbon (C) sequestration into ecosystems is a significant ecosystem service, whereas C losses can be considered as an ecosystem disservice. Municipalities are in a position to make decisions that affect local emissions and therefore are important when considering greenhouse gas (GHG) mitigation. Integrated estimations of fluxes at a regional level help local authorities to develop land use policies for minimising GHG emissions and maximising C sinks. In this study, the Finnish national GHG accounting system is modified and applied at the municipal level by combining emissions and sinks from agricultural land, forest areas, water bodies and mires (land use-related GHG emissions) with emissions from activities such as energy production and traffic (anthropogenic GHG emissions) into the LUONNIKAS calculation tool. The study area consists of 14 municipalities within the Vanajavesi catchment area located in Southern Finland. In these municipalities, croplands, peat extraction sites, water bodies and undrained mires are emission sources, whereas forests are large carbon sinks that turn the land use-related GHG budget negative, resulting in C sequestration into the ecosystem. The annual land use-related sink in the study area was 78 t CO{sub 2} eq km{sup −2} and 2.8 t CO{sub 2} eq per capita. Annual anthropogenic GHG emissions from the area amounted to 250 t CO{sub 2} eq km{sup −2} and 9.2 t CO{sub 2} eq per capita. Since forests are a significant carbon sink and the efficiency of this sink is heavily affected by forest management practices, forest management policy is a key contributing factor for mitigating municipal GHG emissions. - Highlights: • The significance of natural landscapes in the regional C budgets is shown. • Boreal forests can be remarkable C sinks enabling net C sequestration in ecosystems. • The large area of forest may compensate for all C emissions in the municipality.

  19. Anthropogenic Vanadium emissions to air and ambient air concentrations in North-West Europe

    Directory of Open Access Journals (Sweden)

    Visschedijk A. H. J.

    2013-04-01

    Full Text Available An inventory of Vanadium emissions for North-West Europe for the year 2005 was made based on an identification of the major sources. The inventory covers Belgium, Germany, Denmark, France, United Kingdom, Luxembourg, Netherlands and the OSPAR region of the North Sea. Vanadium emission were calculated bottom-up using energy use activity data and collected fuel and sector-specific emissions factors, taking into account various emission control measures. The NW European emissions were dominated by combustion of heavy fuel oil and petroleum cokes. Total emissions for 2005 amounted to 1569 tons/yr. The major sources are sea going ships (39%, petroleum refineries (35% and industry (19%. Emission is strongly concentrated at the densely populated cities with major sea ports. The location of sources at or near the major port cities was confirmed by observational data, as was the downward trend in emissions due to emission control, fuel switches in industry and fuel quality improvement. The results show the positive impact of lower sulphur fuels on other possible health relevant air pollutants such as particle bound Vanadium. The emission inventory can be expanded to the full European domain and can be used to for air quality modeling and particularly for the tracing of source contributions from certain types of fossil fuels (petroleum coke and residual fuel oil. Moreover, it will allow the monitoring of changes in fuel use over time.

  20. Optimizing Techology to Reduce Mercury and Acid Gas Emissions from Electric Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey C. Quick; David E. Tabet; Sharon Wakefield; Roger L. Bon

    2004-01-31

    More than 56,000 coal quality data records from five public data sets have been selected for use in this project. These data will be used to create maps showing where coals with low mercury and acid-gas emissions might be found for power plants classified by air-pollution controls. Average coal quality values, calculated for 51,156 commercial coals by U.S. county-of-origin, are listed in the appendix. Coal moisture values are calculated for commercially shipped coal from 163 U.S. counties, where the raw assay data (including mercury and chlorine values) are reported on a dry basis. The calculated moisture values are verified by comparison with observed moisture values in commercial coal. Moisture in commercial U.S. coal shows provincial variation. For example, high volatile C bituminous rank coal from the Interior province has 3% to 4% more moisture than equivalent Rocky Mountain province coal. Mott-Spooner difference values are calculated for 4,957 data records for coals collected from coal mines and exploration drill holes. About 90% of the records have Mott-Spooner difference values within {+-}250 Btu/lb.

  1. Improving the City-scale Emission Inventory of Anthropogenic Air Pollutants: A Case Study of Nanjing

    Science.gov (United States)

    Qiu, L.; Zhao, Y.; Xu, R.; Xie, F.; Wang, H.; Qin, H.; Wu, X.; Zhang, J.

    2014-12-01

    To evaluate the improvement of city-scale emission inventory, a high-resolution emission inventory of air pollutants for Nanjing is first developed combining detailed source information, and then justified through quantitative analysis with observations. The best available domestic emission factors and unit-/facility-based activity level data were compiled based on a thorough field survey on major emission sources. Totally 1089 individual emission sources were identified as point sources and all the emission-related parameters including burner type, combustion technology, fuel quality, and removal efficiency of pollution control devices, are carefully investigated and analyzed. Some new data such as detailed information of city fueling-gas stations, construction sites, monthly activity level, data from continuous emission monitoring systems and traffic flow information were combined to improve spatiotemporal distribution of this inventory. For SO2, NOX and CO, good spatial correlations were found between ground observation (9 state controlling air sampling sites in Nanjing) and city-scale emission inventory (R2=0.34, 0.38 and 0.74, respectively). For TSP, PM10 and PM2.5, however, poorer correlation was found due to relatively weaker accuracy in emission estimation and spatial distribution of road dust. The mixing ratios between specific pollutants including OC/EC, BC/CO and CO2/CO, are well correlated between those from ground observation and emission. Compared to MEIC (Multi-resolution Emission Inventory for China), there is a better spatial consistence between this city-scale emission inventory and NO2 measured by OMI (Ozone Monitoring Instrument). In particular, the city-scale emission inventory still correlated well with satellite observations (R2=0.28) while the regional emission inventory showed little correlation with satellite observations (R2=0.09) when grids containing power plants are excluded. It thus confirms the improvement of city-scale emission

  2. A greenhouse gas source of surprising significance: anthropogenic CO2emissions from use of methanol in sewage treatment.

    Science.gov (United States)

    Willis, John L; Al-Omari, Ahmed; Bastian, Robert; Brower, Bill; DeBarbadillo, Christine; Murthy, Sudhir; Peot, Christopher; Yuan, Zhiguo

    2017-05-01

    The impact of methanol (CH 3 OH) as a source of anthropogenic carbon dioxide (CO 2 ) in denitrification at wastewater treatment plants (WWTPs) has never been quantified. CH 3 OH is the most commonly purchased carbon source for sewage denitrification. Until recently, greenhouse gas (GHG) reporting protocols consistently ignored the liberation of anthropogenic CO 2 attributable to CH 3 OH. This oversight can likely be attributed to a simplifying notion that CO 2 produced through activated-sludge-process respiration is biogenic because most raw-sewage carbon is un-sequestered prior to entering a WWTP. Instead, a biogenic categorization cannot apply to fossil-fuel-derived carbon sources like CH 3 OH. This paper provides a summary of how CH 3 OH use at DC Water's Blue Plains Advanced Wastewater Treatment Plant (AWTP; Washington, DC, USA) amounts to 60 to 85% of the AWTP's Scope-1 emissions. The United States Environmental Protection Agency and Water Environment Federation databases suggest that CH 3 OH CO 2 likely represents one quarter of all Scope-1 GHG emissions attributable to sewage treatment in the USA. Finally, many alternatives to CH 3 OH use exist and are discussed.

  3. Estimating mercury emissions resulting from wildfire in forests of the Western United States.

    Science.gov (United States)

    Webster, Jackson P; Kane, Tyler J; Obrist, Daniel; Ryan, Joseph N; Aiken, George R

    2016-10-15

    Understanding the emissions of mercury (Hg) from wildfires is important for quantifying the global atmospheric Hg sources. Emissions of Hg from soils resulting from wildfires in the Western United States was estimated for the 2000 to 2013 period, and the potential emission of Hg from forest soils was assessed as a function of forest type and soil-heating. Wildfire released an annual average of 3100±1900kg-Hgy(-1) for the years spanning 2000-2013 in the 11 states within the study area. This estimate is nearly 5-fold lower than previous estimates for the study region. Lower emission estimates are attributed to an inclusion of fire severity within burn perimeters. Within reported wildfire perimeters, the average distribution of low, moderate, and high severity burns was 52, 29, and 19% of the total area, respectively. Review of literature data suggests that that low severity burning does not result in soil heating, moderate severity fire results in shallow soil heating, and high severity fire results in relatively deep soil heating (severity burns ranged from 58 to 640μg-Hgkg-fuel(-1). In contrast, low severity burns have emission factors that are estimated to be only 18-34μg-Hgkg-fuel(-1). In this estimate, wildfire is predicted to release 1-30gHgha(-1) from Western United States forest soils while above ground fuels are projected to contribute an additional 0.9 to 7.8gHgha(-1). Land cover types with low biomass (desert scrub) are projected to release less than 1gHgha(-1). Following soil sources, fuel source contributions to total Hg emissions generally followed the order of duff>wood>foliage>litter>branches. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Isotopic evidence for anthropogenic impacts on aquatic food web dynamics and mercury cycling in a subtropical wetland ecosystem in the US

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yang, E-mail: ywang@magnet.fsu.edu [Department of Earth, Ocean and Atmospheric Science, Florida State University and National High Magnetic Field Laboratory, Tallahassee, FL 32306–4100 (United States); Gu, Binhe [South Florida Water Management District, West Palm Beach, FL 33406 (United States); Lee, Ming-Kuo [Department of Geology and Geography, Auburn University, Auburn, AL 36839 (United States); Jiang, Shijun, E-mail: sjiang@jnu.edu.cn [Institute of Hydrobiology/Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou, Guangdong 510632 (China); Xu, Yingfeng [Department of Earth, Ocean and Atmospheric Science, Florida State University and National High Magnetic Field Laboratory, Tallahassee, FL 32306–4100 (United States)

    2014-07-01

    Quantifying and predicting the food web consequences of anthropogenic changes is difficult using traditional methods (based on gut content analysis) because natural food webs are variable and complex. Here, stable and radioactive carbon isotopes are used, in conjunction with nitrogen isotopes and mercury (Hg) concentration data, to document the effects of land-use change on food webs and Hg bioaccumulation in the Everglades – a subtropical wetland ecosystem in the US. Isotopic signatures of largemouth bass and sunfish in reference (relatively pristine) wetlands indicate reliance on the food supply of modern primary production within the wetland. In contrast, both fish in areas impacted by agricultural runoff had radiocarbon ages as old as 540 years B.P., and larger isotopic variability than counterparts in reference wetlands, reflecting differences in the food web between impacted and reference wetlands. Consistent with this difference, particulate and dissolved organic matter in impacted areas had old radiocarbon ages (> 600 years B.P.), indicating that old carbon derived from historic peat deposits in the Everglades Agricultural Area was passed along the food chain to consumers. Significant radiocarbon deficiencies in largemouth bass and sunfish, relative to mosquitofish, in impacted areas most likely indicate a reduced dependence on small fish. Furthermore, largemouth bass and sunfish from impacted areas had much lower Hg contents than those from reference wetlands. Taken together, these data suggest a shift toward lower trophic levels and a possible reduction in mercury methylation in impacted wetlands. Our study provides clear evidence that hydrological modification and land-use change in the Everglades have changed the system from one driven primarily by in-situ productivity to one that is partially dependent on allochthonous carbon input from peat soils in the agricultural area and altered the Hg biogeochemical cycle in the wetlands. The results have

  5. Isotopic evidence for anthropogenic impacts on aquatic food web dynamics and mercury cycling in a subtropical wetland ecosystem in the US

    International Nuclear Information System (INIS)

    Wang, Yang; Gu, Binhe; Lee, Ming-Kuo; Jiang, Shijun; Xu, Yingfeng

    2014-01-01

    Quantifying and predicting the food web consequences of anthropogenic changes is difficult using traditional methods (based on gut content analysis) because natural food webs are variable and complex. Here, stable and radioactive carbon isotopes are used, in conjunction with nitrogen isotopes and mercury (Hg) concentration data, to document the effects of land-use change on food webs and Hg bioaccumulation in the Everglades – a subtropical wetland ecosystem in the US. Isotopic signatures of largemouth bass and sunfish in reference (relatively pristine) wetlands indicate reliance on the food supply of modern primary production within the wetland. In contrast, both fish in areas impacted by agricultural runoff had radiocarbon ages as old as 540 years B.P., and larger isotopic variability than counterparts in reference wetlands, reflecting differences in the food web between impacted and reference wetlands. Consistent with this difference, particulate and dissolved organic matter in impacted areas had old radiocarbon ages (> 600 years B.P.), indicating that old carbon derived from historic peat deposits in the Everglades Agricultural Area was passed along the food chain to consumers. Significant radiocarbon deficiencies in largemouth bass and sunfish, relative to mosquitofish, in impacted areas most likely indicate a reduced dependence on small fish. Furthermore, largemouth bass and sunfish from impacted areas had much lower Hg contents than those from reference wetlands. Taken together, these data suggest a shift toward lower trophic levels and a possible reduction in mercury methylation in impacted wetlands. Our study provides clear evidence that hydrological modification and land-use change in the Everglades have changed the system from one driven primarily by in-situ productivity to one that is partially dependent on allochthonous carbon input from peat soils in the agricultural area and altered the Hg biogeochemical cycle in the wetlands. The results have

  6. Future trends in environmental mercury concentrations: implications for prevention strategies

    Directory of Open Access Journals (Sweden)

    Sunderland Elsie M

    2013-01-01

    Full Text Available Abstract In their new paper, Bellanger and coauthors show substantial economic impacts to the EU from neurocognitive impairment associated with methylmercury (MeHg exposures. The main source of MeHg exposure is seafood consumption, including many marine species harvested from the global oceans. Fish, birds and other wildlife are also susceptible to the impacts of MeHg and already exceed toxicological thresholds in vulnerable regions like the Arctic. Most future emissions scenarios project a growth or stabilization of anthropogenic mercury releases relative to present-day levels. At these emissions levels, inputs of mercury to ecosystems are expected to increase substantially in the future, in part due to growth in the legacy reservoirs of mercury in oceanic and terrestrial ecosystems. Seawater mercury concentration trajectories in areas such as the North Pacific Ocean that supply large quantities of marine fish to the global seafood market are projected to increase by more than 50% by 2050. Fish mercury levels and subsequent human and biological exposures are likely to also increase because production of MeHg in ocean ecosystems is driven by the supply of available inorganic mercury, among other factors. Analyses that only consider changes in primary anthropogenic emissions are likely to underestimate the severity of future deposition and concentration increases associated with growth in mercury reservoirs in the land and ocean. We therefore recommend that future policy analyses consider the fully coupled interactions among short and long-lived reservoirs of mercury in the atmosphere, ocean, and terrestrial ecosystems. Aggressive anthropogenic emission reductions are needed to reduce MeHg exposures and associated health impacts on humans and wildlife and protect the integrity of one of the last wild-food sources globally. In the near-term, public health advice on safe fish consumption choices such as smaller species, younger fish, and harvests

  7. Satellite constraint for emissions of nitrogen oxides from anthropogenic, lightning and soil sources over East China on a high-resolution grid

    Directory of Open Access Journals (Sweden)

    J.-T. Lin

    2012-03-01

    Full Text Available Vertical column densities (VCDs of tropospheric nitrogen dioxide (NO2 retrieved from space provide valuable information to estimate emissions of nitrogen oxides (NOx inversely. Accurate emission attribution to individual sources, important both for understanding the global biogeochemical cycling of nitrogen and for emission control, remains difficult. This study presents a regression-based multi-step inversion approach to estimate emissions of NOx from anthropogenic, lightning and soil sources individually for 2006 over East China on a 0.25° long × 0.25° lat grid, employing the DOMINO product version 2 retrieved from the Ozone Monitoring Instrument. The inversion is done gridbox by gridbox to derive the respective emissions, taking advantage of differences in seasonality between anthropogenic and natural sources. Lightning and soil emissions are combined together for any given gridbox due to their similar seasonality; and their different spatial distributions are used implicitly for source separation to some extent. The nested GEOS-Chem model for East Asia is used to simulate the seasonal variations of different emission sources and impacts on VCDs of NO2 for the inversion purpose. Sensitivity tests are conducted to evaluate key assumptions embedded in the inversion process. The inverse estimate suggests annual budgets of about 7.1 TgN (±39%, 0.21 TgN (±61%, and 0.38 TgN (±65% for the a posteriori anthropogenic, lightning and soil emissions, respectively, about 18–23% higher than the respective a priori values. The enhancements in anthropogenic emissions are largest in cities and areas with extensive use of coal, particularly in the north in winter, as evident on the high-resolution grid. Derived soil emissions are consistent with recent bottom-up estimates. They are less than 6% of anthropogenic emissions annually, increasing to about 13% for July. Derived lightning emissions are about 3% of

  8. Anthropogenic emissions of non-methane volatile organic compounds in China

    Science.gov (United States)

    Klimont, Zbigniew; Streets, David G.; Gupta, Shalini; Cofala, Janusz; Lixin, Fu; Ichikawa, Yoichi

    Inventories of emissions of non-methane volatile organic compounds (NMVOC) in China are reported for the years 1990, 1995, 2000, 2010, and 2020. For 1990 and 1995, historical activity data were assembled for more than 70 processes that lead to the release of NMVOC. Appropriate emission factors were developed, based on Western, Asian and Chinese experience. It is estimated that emissions were 11.1 Tg in 1990 and 13.1 Tg in 1995, principally from the combustion of biofuels and coal in small combustors. All emissions are presented at provincial level. Using appropriate growth factors derived from anticipated economic, population, and lifestyle changes, and factoring in regulatory changes and technology improvements, we estimate that emissions could grow to 15.6 Tg in 2000, 17.2 Tg in 2010, and 18.2 Tg in 2020. Though activity growth rates are much higher than these increases would imply, technology improvements mediate the increases. Emissions from solvent use, paint use, and transport become increasingly important as time goes on. The sectoral distribution and per capita level of China's emissions are compared with those of other countries. Finally, gridded NMVOC emission fields are presented at 1°×1° resolution, and speciation of the emissions into 16 chemical types is reported.

  9. Past, Present, and Future Anthropogenic Emissions over Asia: a Regional Air Quality Modeling Perspective

    Science.gov (United States)

    Woo, Jung-Hun; Jung, Bujeon; Choi, Ki-Chul; Seo, Ji-Hyun; Kim, Tae Hyung; Park, Rokjin J.; Youn, Daeok; Jeong, Jaein; Moon, Byung-Kwon; Yeh, Sang-Wook

    2010-05-01

    Climate change will also affect future regional air quality which has potential human health, ecosystem, and economic implications. To analyze the impacts of climate change on Asian air quality, the NIER (National Institute of Environmental Research, Korea) integrated modeling framework was developed based on global-to-regional climate and atmospheric chemistry models. In this study, we developed emission inventories for the modeling framework for 1980~2100 with an emphasis on Asia emissions. Two emission processing systems which have functions of emission projection, spatial/temporal allocation, and chemical speciation have been also developed in support of atmospheric chemistry models including GEOS-Chem and Models-3/CMAQ. Asia-based emission estimates, projection factors, temporal allocation parameters were combined to improve regional modeling capability of past, present and future air quality over Asia. The global CO emissions show a 23% decrease from the years 1980 to 2000. For the future CO (from year 2000 to 2100), the A2 scenario shows a 95% increase due to the B40 (Residential-Biofuel) sector of Western Africa, Eastern Africa and East Asia and the F51 (Transport Road-Fossil fuel) sector of Middle East, USA and South Asia. The B1 scenario, however, shows a 79% decrease of emissions due to B40 and F51 sectors of East Asia, South Asia and USA for the same period. In many cases, Asian emissions play important roles for global emission increase or decrease depending on the IPCC scenarios considered. The regional ozone forming potential will be changed due to different VOC/NOx emission ratio changes in the future. More similarities and differences of Asian emission characteristics, in comparison with its global counterpart, are investigated.

  10. Speciation of anthropogenic emissions of non-methane volatile organic compounds: a global gridded data set for 1970–2012

    Directory of Open Access Journals (Sweden)

    G. Huang

    2017-06-01

    Full Text Available Non-methane volatile organic compounds (NMVOCs include a large number of chemical species which differ significantly in their chemical characteristics and thus in their impacts on ozone and secondary organic aerosol formation. It is important that chemical transport models (CTMs simulate the chemical transformation of the different NMVOC species in the troposphere consistently. In most emission inventories, however, only total NMVOC emissions are reported, which need to be decomposed into classes to fit the requirements of CTMs. For instance, the Emissions Database for Global Atmospheric Research (EDGAR provides spatially resolved global anthropogenic emissions of total NMVOCs. In this study the EDGAR NMVOC inventory was revised and extended in time and in sectors. Moreover the new version of NMVOC emission data in the EDGAR database were disaggregated on a detailed sector resolution to individual species or species groups, thus enhancing the usability of the NMVOC emission data by the modelling community. Region- and source-specific speciation profiles of NMVOC species or species groups are compiled and mapped to EDGAR processes (detailed resolution of sectors, with corresponding quality codes specifying the quality of the mapping. Individual NMVOC species in different profiles are aggregated to 25 species groups, in line with the common classification of the Global Emissions Initiative (GEIA. Global annual grid maps with a resolution of 0.1°  ×  0.1° for the period 1970–2012 are produced by sector and species. Furthermore, trends in NMVOC composition are analysed, taking road transport and residential sources in Germany and the United Kingdom (UK as examples.

  11. Speciation of anthropogenic emissions of non-methane volatile organic compounds: a global gridded data set for 1970-2012

    Science.gov (United States)

    Huang, Ganlin; Brook, Rosie; Crippa, Monica; Janssens-Maenhout, Greet; Schieberle, Christian; Dore, Chris; Guizzardi, Diego; Muntean, Marilena; Schaaf, Edwin; Friedrich, Rainer

    2017-06-01

    Non-methane volatile organic compounds (NMVOCs) include a large number of chemical species which differ significantly in their chemical characteristics and thus in their impacts on ozone and secondary organic aerosol formation. It is important that chemical transport models (CTMs) simulate the chemical transformation of the different NMVOC species in the troposphere consistently. In most emission inventories, however, only total NMVOC emissions are reported, which need to be decomposed into classes to fit the requirements of CTMs. For instance, the Emissions Database for Global Atmospheric Research (EDGAR) provides spatially resolved global anthropogenic emissions of total NMVOCs. In this study the EDGAR NMVOC inventory was revised and extended in time and in sectors. Moreover the new version of NMVOC emission data in the EDGAR database were disaggregated on a detailed sector resolution to individual species or species groups, thus enhancing the usability of the NMVOC emission data by the modelling community. Region- and source-specific speciation profiles of NMVOC species or species groups are compiled and mapped to EDGAR processes (detailed resolution of sectors), with corresponding quality codes specifying the quality of the mapping. Individual NMVOC species in different profiles are aggregated to 25 species groups, in line with the common classification of the Global Emissions Initiative (GEIA). Global annual grid maps with a resolution of 0.1° × 0.1° for the period 1970-2012 are produced by sector and species. Furthermore, trends in NMVOC composition are analysed, taking road transport and residential sources in Germany and the United Kingdom (UK) as examples.

  12. Anthropogenic vanadium emissions to air and ambient air concentrations in North-West Europe

    NARCIS (Netherlands)

    Visschedijk, A.H.J.; Denier van der Gon, H.A.C.; Hulskotte, J.H.J.; Quass, U.

    2013-01-01

    An inventory of Vanadium emissions for North-West Europe for the year 2005 was made based on an identification of the major sources. The inventory covers Belgium, Germany, Denmark, France, United Kingdom, Luxembourg, Netherlands and the OSPAR region of the North Sea. Vanadium emission were

  13. A laboratory based experimental study of mercury emission from contaminated soils in the River Idrijca catchment

    Directory of Open Access Journals (Sweden)

    D. Kocman

    2010-02-01

    Full Text Available Results obtained by a laboratory flux measurement system (LFMS focused on investigating the kinetics of the mercury emission flux (MEF from contaminated soils of the Idrija Hg-mine region, Slovenia are presented. Representative soil samples with respect to total Hg concentrations (4–417 μg g−1 and land cover (forest, meadow and alluvial soil alongside the River Idrijca were analysed to determine the variation in MEF versus distance from the source, regulating three major environmental parameters comprising soil temperature, soil moisture and solar radiation. MEFs ranged from less than 2 to 530 ng m−2 h−1, with the highest emissions from contaminated alluvial soils and soils near the mining district in the town of Idrija. A significant decrease of MEF was then observed with increasing distance from these sites. The results revealed a strong positive effect of all three parameters investigated on momentum MEF. The light-induced flux was shown to be independent of the soil temperature, while the soil aqueous phase seems to be responsible for recharging the pool of mercury in the soil available for both the light- and thermally-induced flux. The overall flux response to simulated environmental conditions depends greatly on the form of Hg in the soil. Higher activation energies are required for the overall process to occur in soils where insoluble cinnabar prevails compared to soils where more mobile Hg forms and forms available for transformation processes are dominant.

  14. Review of technologies for mercury removal from flue gas from cement production processes

    DEFF Research Database (Denmark)

    Zheng, Yuanjing; Jensen, Anker Degn; Windelin, Christian

    2012-01-01

    Mercury is a pollutant of concern and mercury emissions from cement plants are under environmental regulation. After coal-fired power plants, mercury emissions from cement and mineral production are the second largest anthropogenic sources. Compared to fuels, cement raw materials are the major...... sources of mercury in the cement kiln flue gas. Cement plants are quite different from power plants and waste incinerators regarding the flue gas composition, temperature, residence time, and material circulation. Cement kiln systems have some inherent ability to retain mercury in the solid materials due...... kilns.Among the mercury control technologies, sorbent injection upstream of a particulate control device has shown the most promise. Due to material recirculation, and high moisture level in the cement kiln flue gas the application of sorbent injection to cement plants will be more challenging...

  15. Emissions of carbon species, organic polar compounds, potassium, and mercury from prescribed burning activities

    Science.gov (United States)

    Zhang, Y.; Obrist, D.; Zielinska, B.; Gerler, A.

    2012-04-01

    Biomass burning is an important emission source of pollutants to the atmosphere, but few studies have focused on the chemical composition of emissions from prescribed burning activities. Here we present results from a sampling campaign to quantify particulate-phase emissions from various types of prescribed fires including carbon species (Elemental Carbon: EC; Organic Carbon: OC; and Total Carbon: TC); polar organic compounds (12 different compounds and four functional classes); water-soluble potassium (K+); and mercury (Hg). We measured emissions from the following types of prescribed biomass burning in the Lake Tahoe basin located on the California/Nevada border: (i) log piles stacked and dried in the field; (ii) log piles along with green understory vegetation; and (iii) understory green vegetation and surface litter; further emissions were collected from burns conducted in a wood stove: (iv) dried wooden logs; (v) green foliage of understory vegetation collected from the field; and (vi) surface organic litter collected from the field; finally, samples were also taken from (vii) ambient air in residential areas during peak domestic wood combustion season. Results show that OC/EC ratios of prescribed burns in the field ranged from 4 to 10, but lower values (around 1) were observed in controlled stove fires. These results are consistent with an excess of OC emissions over EC found in wildfires. OC/EC ratios, however, showed clear separations between controlled wood stove combustion (higher EC) and prescribed burns in the field (lower EC). We attribute this difference to a higher combustion temperatures and dominance of flaming combustion in wood stove fires. OC positively and linearly correlated to the sum of polar organic compounds across all burn types (r2 of 0.82). The most prevalent group of polar compounds emitted during prescribed fires was resin acids (dehydroabietic, pimaric, and abietic acids), followed by levoglucosan plus mannositol. Negligible

  16. Centuries of thermal sea-level rise due to anthropogenic emissions of short-lived greenhouse gases.

    Science.gov (United States)

    Zickfeld, Kirsten; Solomon, Susan; Gilford, Daniel M

    2017-01-24

    Mitigation of anthropogenic greenhouse gases with short lifetimes (order of a year to decades) can contribute to limiting warming, but less attention has been paid to their impacts on longer-term sea-level rise. We show that short-lived greenhouse gases contribute to sea-level rise through thermal expansion (TSLR) over much longer time scales than their atmospheric lifetimes. For example, at least half of the TSLR due to increases in methane is expected to remain present for more than 200 y, even if anthropogenic emissions cease altogether, despite the 10-y atmospheric lifetime of this gas. Chlorofluorocarbons and hydrochlorofluorocarbons have already been phased out under the Montreal Protocol due to concerns about ozone depletion and provide an illustration of how emission reductions avoid multiple centuries of future TSLR. We examine the "world avoided" by the Montreal Protocol by showing that if these gases had instead been eliminated in 2050, additional TSLR of up to about 14 cm would be expected in the 21st century, with continuing contributions lasting more than 500 y. Emissions of the hydrofluorocarbon substitutes in the next half-century would also contribute to centuries of future TSLR. Consideration of the time scales of reversibility of TSLR due to short-lived substances provides insights into physical processes: sea-level rise is often assumed to follow air temperature, but this assumption holds only for TSLR when temperatures are increasing. We present a more complete formulation that is accurate even when atmospheric temperatures are stable or decreasing due to reductions in short-lived gases or net radiative forcing.

  17. Contribution of Anthropogenic and Natural Emissions to Global CH4 Balances by Utilizing δ13C-CH4 Observations in CarbonTracker Data Assimilation System (CTDAS)

    Science.gov (United States)

    Kangasaho, V. E.; Tsuruta, A.; Aalto, T.; Backman, L. B.; Houweling, S.; Krol, M. C.; Peters, W.; van der Laan-Luijkx, I. T.; Lienert, S.; Joos, F.; Dlugokencky, E. J.; Michael, S.; White, J. W. C.

    2017-12-01

    The atmospheric burden of CH4 has more than doubled since preindustrial time. Evaluating the contribution from anthropogenic and natural emissions to the global methane budget is of great importance to better understand the significance of different sources at the global scale, and their contribution to changes in growth rate of atmospheric CH4 before and after 2006. In addition, observations of δ13C-CH4 suggest an increase in natural sources after 2006, which matches the observed increase and variation of CH4 abudance. Methane emission sources can be identified using δ13C-CH4, because different sources produce methane with process-specific isotopic signatures. This study focuses on inversion model based estimates of global anthropogenic and natural methane emission rates to evaluate the existing methane emission estimates with a new δ13C-CH4 inversion system. In situ measurements of atmospheric methane and δ13C-CH4 isotopic signature, provided by the NOAA Global Monitoring Division and the Institute of Arctic and Alpine Research, will be assimilated into the CTDAS-13C-CH4. The system uses the TM5 atmospheric transport model as an observation operator, constrained by ECMWF ERA Interim meteorological fields, and off-line TM5 chemistry fields to account for the atmospheric methane sink. LPX-Bern DYPTOP ecosystem model is used for prior natural methane emissions from wetlands, peatlands and mineral soils, GFED v4 for prior fire emissions and EDGAR v4.2 FT2010 inventory for prior anthropogenic emissions. The EDGAR antropogenic emissions are re-divided into enteric fermentation and manure management, landfills and waste water, rice, coal, oil and gas, and residential emissions, and the trend of total emissions is scaled to match optimized anthropogenic emissions from CTE-CH4. In addition to these categories, emissions from termites and oceans are included. Process specific δ13C-CH4 isotopic signatures are assigned to each emission source to estimate 13CH4 fraction

  18. A negative feedback between anthropogenic ozone pollution and enhanced ocean emissions of iodine

    OpenAIRE

    C. Prados-Roman; C. A. Cuevas; R. P. Fernandez; D. E. Kinnison; J.-F. Lamarque; A. Saiz-Lopez

    2014-01-01

    Naturally emitted from the oceans, iodine compounds efficiently destroy atmospheric ozone and reduce its positive radiative forcing effects in the troposphere. Emissions of inorganic iodine have been experimentally shown to depend on the deposition to the oceans of tropospheric ozone, whose concentrations have significantly increased since 1850 as a result of human activities. A chemistry-climate model is used herein to quantify the current ocean emissions of inorgani...

  19. Measurement of Total Site Mercury Emissions from Chlor-Alkali Plant Using Ultraviolet Differential Optical Absorption Spectroscopy and Cell Room Roof-Vent Monitoring

    Science.gov (United States)

    This technical note describes a United States Environmental Protection Agency (U.S. EPA) measurement project to determine elemental mercury (Hg0) emissions from a mercury cell chlor-alkali (MCCA) facility in the southeastern U.S. during a 53-day monitoring campaign in the fall of...

  20. Union of Soviet Socialist Republics: Progress report on mercury

    International Nuclear Information System (INIS)

    1987-01-01

    The main chemical contaminant of the environment is considered mercury and mercury compounds. Different from pesticides, detergents and other toxicants of anthropogenic origin mercury and its compounds occur in all parts of the environment and in all living organisms. In the process of geochemical cycle mercury is released to the environment. Unfavourable ecological effects are caused by elevated concentrations of mercury. In this report an attempt is made to generalize the materials submitted by the Baltic Sea States to the Helsinki Convention concerning the occurrence of mercury in natural systems, the use of mercury in various sectors of economy and emissions of mercury to the environment. The Baltic Sea States are aware of the actual and potential problems which can be caused by mercury pollution. The environmental protection efforts are concentrated on a number of counter-measures. Much is already been done both at national levels and within the Helsinki Convention to reduce the levels of mercury entering the marine environment. However, the national governments recognise that continuing actions need to be taken in order to ensure that the sea is kept free from pollution

  1. The imprint of anthropogenic CO2 emissions on Atlantic bluefin tuna otoliths

    Science.gov (United States)

    Fraile, Igaratza; Arrizabalaga, Haritz; Groeneveld, Jeroen; Kölling, Martin; Santos, Miguel Neves; Macías, David; Addis, Piero; Dettman, David L.; Karakulak, Saadet; Deguara, Simeon; Rooker, Jay R.

    2016-06-01

    Otoliths of Atlantic bluefin tuna (Thunnus thynnus) collected from the Mediterranean Sea and North Atlantic Ocean were analyzed to evaluate changes in the seawater isotopic composition over time. We report an annual otolith δ13C record that documents the magnitude of the δ13C depletion in the Mediterranean Sea between 1989 and 2010. Atlantic bluefin tuna in our sample (n = 632) ranged from 1 to 22 years, and otolith material corresponding to the first year of life (back-calculated birth year) was used to reconstruct seawater isotopic composition. Otolith δ18O remained relatively stable between 1989 and 2010, whereas a statistically significant decrease in δ13C was detected across the time interval investigated, with a rate of decline of 0.05‰ yr- 1 (- 0.94‰ depletion throughout the recorded period). The depletion in otolith δ13C over time was associated with the oceanic uptake of anthropogenically derived CO2.

  2. Mercury emissions during cofiring of sub-bituminous coal and biomass (chicken waste, wood, coffee residue, and tobacco stalk) in a laboratory-scale fluidized bed combustor.

    Science.gov (United States)

    Cao, Yan; Zhou, Hongcang; Fan, Junjie; Zhao, Houyin; Zhou, Tuo; Hack, Pauline; Chan, Chia-Chun; Liou, Jian-Chang; Pan, Wei-Ping

    2008-12-15

    Four types of biomass (chicken waste, wood pellets, coffee residue, and tobacco stalks) were cofired at 30 wt % with a U.S. sub-bituminous coal (Powder River Basin Coal) in a laboratory-scale fluidized bed combustor. A cyclone, followed by a quartz filter, was used for fly ash removal during tests. The temperatures of the cyclone and filter were controlled at 250 and 150 degrees C, respectively. Mercury speciation and emissions during cofiring were investigated using a semicontinuous mercury monitor, which was certified using ASTM standard Ontario Hydra Method. Test results indicated mercury emissions were strongly correlative to the gaseous chlorine concentrations, but not necessarily correlative to the chlorine contents in cofiring fuels. Mercury emissions could be reduced by 35% during firing of sub-bituminous coal using only a quartz filter. Cofiring high-chlorine fuel, such as chicken waste (Cl = 22340 wppm), could largely reduce mercury emissions by over 80%. When low-chlorine biomass, such as wood pellets (Cl = 132 wppm) and coffee residue (Cl = 134 wppm), is cofired, mercury emissions could only be reduced by about 50%. Cofiring tobacco stalks with higher chlorine content (Cl = 4237 wppm) did not significantly reduce mercury emissions. This was also true when limestone was added while cofiring coal and chicken waste because the gaseous chlorine was reduced in the freeboard of the fluidized bed combustor, where the temperature was generally below 650 degrees C without addition of the secondary air. Gaseous speciated mercury in flue gas after a quartz filter indicated the occurrence of about 50% of total gaseous mercury to be the elemental mercury for cofiring chicken waste, but occurrence of above 90% of the elemental mercury for all other cases. Both the higher content of alkali metal oxides or alkali earth metal oxides in tested biomass and the occurrence of temperatures lower than 650 degrees C in the upper part of the fluidized bed combustor seemed to be

  3. Dust emission and soil loss due to anthropogenic activities by wind erosion simulations

    Science.gov (United States)

    Katra, Itzhak; Swet, Nitzan; Tanner, Smadar

    2017-04-01

    Wind erosion is major process of soil loss and air pollution by dust emission of clays, nutrients, and microorganisms. Many soils throughout the world are currently or potentially associated with dust emissions, especially in dryland zones. The research focuses on wind erosion in semi-arid soils (Northern Negev, Israel) that are subjected to increased human activities of urban development and agriculture. A boundary-layer wind tunnel has been used to study dust emission and soil loss by simulation and quantification of high-resolution wind processes. Field experiments were conducted in various surface types of dry loess soils. The experimental plots represent soils with long-term and short term influences of land uses such as agriculture (conventional and organic practices), grazing, and natural preserves. The wind tunnel was operated under various wind velocities that are above the threshold velocity of aeolian erosion. Total soil sediment and particulate matter (PM) fluxes were calculated. Topsoil samples from the experimental plots were analysed in the laboratory for physical and chemical characteristics including aggregation, organic matter, and high-resolution particle size distribution. The results showed variations in dust emission in response to surface types and winds to provide quantitative estimates of soil loss over time. Substantial loss of particulate matter that is management strategies as well as for PM loading to the atmosphere and air pollution.

  4. Vegetation sensitivity to global anthropogenic carbon dioxide emissions in a topographically complex region

    Science.gov (United States)

    Diffenbaugh, N.S.; Sloan, L.C.; Snyder, M.A.; Bell, J.L.; Kaplan, J.; Shafer, S.L.; Bartlein, P.J.

    2003-01-01

    Anthropogenic increases in atmospheric carbon dioxide (CO2) concentrations may affect vegetation distribution both directly through changes in photosynthesis and water-use efficiency, and indirectly through CO2-induced climate change. Using an equilibrium vegetation model (BIOME4) driven by a regional climate model (RegCM2.5), we tested the sensitivity of vegetation in the western United States, a topographically complex region, to the direct, indirect, and combined effects of doubled preindustrial atmospheric CO2 concentrations. Those sensitivities were quantified using the kappa statistic. Simulated vegetation in the western United States was sensitive to changes in atmospheric CO2 concentrations, with woody biome types replacing less woody types throughout the domain. The simulated vegetation was also sensitive to climatic effects, particularly at high elevations, due to both warming throughout the domain and decreased precipitation in key mountain regions such as the Sierra Nevada of California and the Cascade and Blue Mountains of Oregon. Significantly, when the direct effects of CO2 on vegetation were tested in combination with the indirect effects of CO2-induced climate change, new vegetation patterns were created that were not seen in either of the individual cases. This result indicates that climatic and nonclimatic effects must be considered in tandem when assessing the potential impacts of elevated CO2 levels.

  5. The impact of North American anthropogenic emissions and lightning on long-range transport of trace gases and their export from the continent during summers 2002 and 2004

    KAUST Repository

    Martini, Matus

    2011-04-07

    We analyze the contribution of North American (NA) lightning and anthropogenic emissions to ozone concentrations, radiative forcing, and export fluxes from North America during summers 2002 and 2004 using the University of Maryland Chemical Transport Model (UMD-CTM) driven by GEOS-4 reanalysis. Reduced power plant emissions (NOx SIP Call) and cooler temperatures in 2004 compared to 2002 resulted in lower ambient ozone concentrations over the eastern United States. Lightning flash rates in early summer 2004 were 50% higher than 2002 over the United States. Over the North Atlantic, changes in ozone column between early summer 2002 and 2004 due to changes in lightning and meteorology exceeded the change due to emission reductions by a factor of 7. Late summer changes in lightning had a much smaller impact on ozone columns. In summer 2004, net downward radiative flux at the tropopause due to ozone produced from anthropogenic emissions ranged from 0.15 to 0.30 W m−2 across the North Atlantic, while that due to ozone produced from lightning NO emissions ranged from 0.20 to 0.50 W m−2. Enhanced lofting of polluted air followed by stronger westerly winds led to more net export of NOx, NOy, and ozone in early summer 2004 than 2002 despite reduced anthropogenic emissions. Ozone export fluxes across the eastern NA boundary due to anthropogenic emissions were factors of 1.6 and 2 larger than those due to lightning in 2004 and 2002, respectively. Doubling the NA lightning NO source increased downwind ozone enhancements due to lightning NO emissions by one third.

  6. The impact of North American anthropogenic emissions and lightning on long-range transport of trace gases and their export from the continent during summers 2002 and 2004

    Science.gov (United States)

    Martini, Matus; Allen, Dale J.; Pickering, Kenneth E.; Stenchikov, Georgiy L.; Richter, Andreas; Hyer, Edward J.; Loughner, Christopher P.

    2011-04-01

    We analyze the contribution of North American (NA) lightning and anthropogenic emissions to ozone concentrations, radiative forcing, and export fluxes from North America during summers 2002 and 2004 using the University of Maryland Chemical Transport Model (UMD-CTM) driven by GEOS-4 reanalysis. Reduced power plant emissions (NOx SIP Call) and cooler temperatures in 2004 compared to 2002 resulted in lower ambient ozone concentrations over the eastern United States. Lightning flash rates in early summer 2004 were 50% higher than 2002 over the United States. Over the North Atlantic, changes in ozone column between early summer 2002 and 2004 due to changes in lightning and meteorology exceeded the change due to emission reductions by a factor of 7. Late summer changes in lightning had a much smaller impact on ozone columns. In summer 2004, net downward radiative flux at the tropopause due to ozone produced from anthropogenic emissions ranged from 0.15 to 0.30 W m-2 across the North Atlantic, while that due to ozone produced from lightning NO emissions ranged from 0.20 to 0.50 W m-2. Enhanced lofting of polluted air followed by stronger westerly winds led to more net export of NOx, NOy, and ozone in early summer 2004 than 2002 despite reduced anthropogenic emissions. Ozone export fluxes across the eastern NA boundary due to anthropogenic emissions were factors of 1.6 and 2 larger than those due to lightning in 2004 and 2002, respectively. Doubling the NA lightning NO source increased downwind ozone enhancements due to lightning NO emissions by one third.

  7. POTENTIAL HEALTH RISK REDUCTION ARISING FROM REDUCED MERCURY EMISSIONS FROM COAL FIRED POWER PLANTS.

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, T. M.; Lipfert, F. W.; Morris, S. C.; Moskowitz, P. D.

    2001-09-01

    The U.S. Environmental Protection Agency (EPA) has announced plans to regulate mercury (Hg) emissions from coal-fired power plants. EPA has not prepared a quantitative assessment of the reduction in risk that could be achieved through reduction in coal plant emissions of Hg. To address this issue, Brookhaven National Laboratory (BNL) with support from the U.S. Department of Energy Office of Fossil Energy (DOE FE) prepared a quantitative assessment of the reduction in human health risk that could be achieved through reduction in coal plant emissions of Hg. The primary pathway for Hg exposure is through consumption of fish. The most susceptible population to Hg exposure is the fetus. Therefore the risk assessment focused on consumption of fish by women of child-bearing age. Dose response factors were generated from studies on loss of cognitive abilities (language skills, motor skills, etc.) by young children whose mothers consumed large amounts of fish with high Hg levels. Population risks were estimated for the general population in three regions of the country, (the Midwest, Northeast, and Southeast) that were identified by EPA as being heavily impacted by coal emissions. Three scenarios for reducing Hg emissions from coal plants were considered: (1) A base case using current conditions; (2) A 50% reduction; and, (3) A 90% reduction. These reductions in emissions were assumed to translate linearly into a reduction in fish Hg levels of 8.6% and 15.5%, respectively. Population risk estimates were also calculated for two subsistence fisher populations. These groups of people consume substantially more fish than the general public and, depending on location, the fish may contain higher Hg levels than average. Risk estimates for these groups were calculated for the three Hg levels used for the general population analyses. Analysis shows that the general population risks for exposure of the fetus to Hg are small. Estimated risks under current conditions (i.e., no

  8. Evolution of anthropogenic and biomass burning emissions of air pollutants at global and regional scales during the 1980-2010 period

    NARCIS (Netherlands)

    Granier, C.; Bessagnet, B.; Bond, T.; D'Angiola, A.; Gon, H.D. van der; Frost, G.J.; Heil, A.; Kaiser, J.W.; Kinne, S.; Klimont, Z.; Kloster, S.; Lamarque, J.-F.; Liousse, C.; Masui, T.; Meleux, F.; Mieville, A.; Ohara, T.; Raut, J.-C.; Riahi, K.; Schultz, M.G.; Smith, S.J.; Thompson, A.; Aardenne, J. van; Werf, G.R. van der; Vuuren, D.P. van

    2011-01-01

    Several different inventories of global and regional anthropogenic and biomass burning emissions are assessed for the 1980-2010 period. The species considered in this study are carbon monoxide, nitrogen oxides, sulfur dioxide and black carbon. The inventories considered include the ACCMIP historical

  9. Background Ozone in Southern China During 1994-2015: Role of Anthropogenic Emission and Climate Change

    Science.gov (United States)

    Wang, T.; Zhang, L.; Poon, S.

    2016-12-01

    Tropospheric ozone plays important roles in atmospheric chemistry, air quality, and climate. Changes in background ozone concentrations and underlying causes are therefore of great interest to the scientific community and governments. Compared with North America and Europe, long-term measurements of background ozone in China are scarce. This study reports the longest continuous ozone record in southern China measured at a background site (Hok Tsui) in Hong Kong during 1994-2015. The analysis of the 22-year record shows that the surface ozone in the background atmosphere of southern China has been increasing, with an overall Theil-Sen estimated rate of 0.43 ppbv/yr. Compared with our previous results during 1994-2007 (Wang et al., 2009), the average rate of increase has slowed down over during 2008-2015 (0.32 vs. 0.58 ppbv/yr), possibly due to smaller increase or even decrease in ozone precursors emission in mainland China in recent years. The average rates of change show significant seasonal differences with the largest rate occurring in summer (0.32, 0.55, 0.52, and 0.36 ppbv/yr in spring, summer, autumn, and winter, respectively). Monthly mean ozone concentrations at Hok Tsui are compared against an East Asian Monsoon index. It is found that only the summer-time ozone over period 2008-2015 has a strong positive correlation with the index, suggesting that climate might have played an important role in driving the ozone increase observed in summer since 2008. The ozone trend in Hong Kong will be compared to those from other regions in East Asia, and the role of emission changes in Asia will be discussed.

  10. A regional high resolution model of the marine mercury cycle.

    Science.gov (United States)

    Bieser, J.; Daewel, U.; Schrum, C.

    2017-12-01

    One of the main sources for mercury intoxication is the uptake of methylmercury from sea food. However, only little is known about the dynamics of methylmercury in the marine environment and its accumulation along the food chain. To further our understanding of the pathways from anthropogenic emissions of elemental mercury to the bio-accumulation of methylmercury in fish we developed the first regional Eulerian three dimensional multi-media chemistry transport model (MECOSMO) that includes atmosphere, ocean, and ecosystem. The marine part of the model includes a complete representation of the marine ecosystem ranging from phytoplankton up to higher trophic levels, including fish. We used the MECOSMO model to reconstruct mercury concentrations in water and biota in the North- and Baltic Sea for the past 60 years. Based on our model we examined the natural short and longterm variability of the system as well as long term trends in the distribution and amount of methylmercury in water and fish. Based on our findings we show how models can be utilized to develop future measurement strategies for marine mercury. Finally, the presented modelling system can be used to project the impact of future perturbations in the system (i.e.: emission reductions, climate change, nutrient control) on the mercury accumulation in sea food. Thereby, supporting the implementation of the Minamata Convention on Mercury on a regional scale by enabling us to estimate the impact of emission reductions on the marine mercury cycle.

  11. Nitrogen oxides, sulfur trioxide, and mercury emissions during oxy-fuel fluidized bed combustion of Victorian brown coal.

    Science.gov (United States)

    Roy, Bithi; Chen, Luguang; Bhattacharya, Sankar

    2014-12-16

    This study investigates, for the first time, the NOx, N2O, SO3, and Hg emissions from combustion of a Victorian brown coal in a 10 kWth fluidized bed unit under oxy-fuel combustion conditions. Compared to air combustion, lower NOx emissions and higher N2O formation were observed in the oxy-fuel atmosphere. These NOx reduction and N2O formations were further enhanced with steam in the combustion environment. The NOx concentration level in the flue gas was within the permissible limit in coal-fired power plants in Victoria. Therefore, an additional NOx removal system will not be required using this coal. In contrast, both SO3 and gaseous mercury concentrations were considerably higher under oxy-fuel combustion compared to that in the air combustion. Around 83% of total gaseous mercury released was Hg(0), with the rest emitted as Hg(2+). Therefore, to control harmful Hg(0), a mercury removal system may need to be considered to avoid corrosion in the boiler and CO2 separation units during the oxy-fuel fluidized-bed combustion using this coal.

  12. Field evaluation of a total mercury continuous emissions monitor at a U.S. Department of Energy mixed waste incinerator

    International Nuclear Information System (INIS)

    Gibson, L.V. Jr.; Dunn, J.E. Jr.; Baker, R.L.; Sigl, W.; Skegg, I.

    1999-01-01

    In conjunction with proposed Maximum Achievable Control Technology (MACT) standards for hazardous waste combustors, extended duration testing sponsored by the US Department of Energy (DOE) and the Environmental Protection Agency (EPA) of three mercury continuous emissions monitors (CEMs) was conducted in the 1996--97 timeframe at a commercial cement kiln burning hazardous wastes at Holly Hill, South Carolina. The emission characteristics of the kiln, specifically the combination of high particulate matter, moisture, and acid gases, were believed to have contributed to the failure of the tested CEMs. The MERCEM mercury analyzer for stack gases manufactured by Perkin Elmer and represented by Aldora Technologies was selected for further evaluation on a DOE mixed waste incinerator at Oak Ridge, Tennessee, expected to present less adverse conditions. The overall scope of the evaluation was carried out over a two-month period from September through October 1998. Not only was the performance of the MERCEM evaluated according to proposed EPA Performance Specification 12 but also were alternative methods of calibration with reference concentrations of mercury and a qualitative assessment of long-term endurance under wet stack conditions

  13. Mercury capture within coal-fired power plant electrostatic precipitators: model evaluation.

    Science.gov (United States)

    Clack, Herek L

    2009-03-01

    Efforts to reduce anthropogenic mercury emissions worldwide have recently focused on a variety of sources, including mercury emitted during coal combustion. Toward that end, much research has been ongoing seeking to develop new processes for reducing coal combustion mercury emissions. Among air pollution control processes that can be applied to coal-fired boilers, electrostatic precipitators (ESPs) are by far the most common, both on a global scale and among the principal countries of India, China, and the U.S. that burn coal for electric power generation. A previously reported theoretical model of in-flight mercury capture within ESPs is herein evaluated against data from a number of full-scale tests of activated carbon injection for mercury emissions control. By using the established particle size distribution of the activated carbon and actual or estimated values of its equilibrium mercury adsorption capacity, the incremental reduction in mercury concentration across each ESP can be predicted and compared to experimental results. Because the model does not incorporate kinetics associated with gas-phase mercury transformation or surface adsorption, the model predictions representthe mass-transfer-limited performance. Comparing field data to model results reveals many facilities performing at or near the predicted mass-transfer-limited maximum, particularly at low rates of sorbent injection. Where agreement is poor between field data and model predictions, additional chemical or physical phenomena may be responsible for reducing mercury removal efficiencies.

  14. Application of Space Borne CO2 and Fluorescence Measurements to Detect Urban CO2 Emissions and Anthropogenic Influence on Vegetation

    Science.gov (United States)

    Paetzold, Johannes C.; Chen, Jia; Ruisinger, Veronika

    2017-04-01

    The Orbiting Carbon Observatory 2 (OCO-2) is a NASA satellite mission dedicated to make global, space-based observations of atmospheric, column-averaged carbon dioxide (XCO2). In addition, the OCO-2 also measures Solar Induced Chlorophyll Fluorescence (SIF). In our research we have studied the combination of OCO-2's XCO2 and SIF measurements for numerous urban areas on the different continents. Applying GIS and KML visualization techniques as well as statistical approaches we are able to reliably detect anthropogenic CO2 emissions in CO2 column concentration enhancements over urban areas. Moreover, we detect SIF decreases over urban areas compared to their rural vicinities. We are able to obtain those findings for urban areas on different continents, of diverse sizes, dissimilar topographies and urban constructions. Our statistical analysis finds robust XCO2 enhancements of up to 3 ppm for urban areas in Europe, Asia and North America. Furthermore, the analysis of SIF indicates that urban construction, population density and seasonality influence urban vegetation, which can be observed from space. Additionally, we find that OCO-2's SIF measurements have the potential to identify and approximate green areas within cities. For Berlin's Grunewald Forest as well as Mumbai's Sanjay Gandhi and Tungareshwar National Parks we observe enhancements in SIF measurements at sub-city scales.

  15. Sensitivity of tropospheric ozone to chemical kinetic uncertainties in air masses influenced by anthropogenic and biomass burning emissions

    Science.gov (United States)

    Ridley, D. A.; Cain, M.; Methven, J.; Arnold, S. R.

    2017-07-01

    We use a Lagrangian chemical transport model with a Monte Carlo approach to determine impacts of kinetic rate uncertainties on simulated concentrations of ozone, NOy and OH in a high-altitude biomass burning plume and a low-level industrial pollution plume undergoing long-range transport. Uncertainties in kinetic rate constants yield 10-12 ppbv (5th to 95th percentile) uncertainty in the ozone concentration, dominated by reactions that cycle NO and NO2, control NOx conversion to NOy reservoir species, and key reactions contributing to O3 loss (O(1D) + H2O, HO2 + O3). Our results imply that better understanding of the peroxyacetylnitrate (PAN) thermal decomposition constant is key to predicting large-scale O3 production from fire emissions and uncertainty in the reaction of NO + O3 at low temperatures is particularly important for both the anthropogenic and biomass burning plumes. The highlighted reactions serve as a useful template for targeting new laboratory experiments aimed at reducing uncertainties in our understanding of tropospheric O3 photochemistry.

  16. A new approach for monthly updates of anthropogenic sulfur dioxide emissions from space: Application to China and implications for air quality forecasts

    Science.gov (United States)

    Wang, Yi; Wang, Jun; Xu, Xiaoguang; Henze, Daven K.; Wang, Yuxuan; Qu, Zhen

    2016-09-01

    SO2 emissions, the largest source of anthropogenic aerosols, can respond rapidly to economic and policy driven changes. However, bottom-up SO2 inventories have inherent limitations owing to 24-48 months latency and lack of month-to-month variation in emissions (especially in developing countries). This study develops a new approach that integrates Ozone Monitoring Instrument (OMI) SO2 satellite measurements and GEOS-Chem adjoint model simulations to constrain monthly anthropogenic SO2 emissions. The approach's effectiveness is demonstrated for 14 months in East Asia; resultant posterior emissions not only capture a 20% SO2 emission reduction in Beijing during the 2008 Olympic Games but also improve agreement between modeled and in situ surface measurements. Further analysis reveals that posterior emissions estimates, compared to the prior, lead to significant improvements in forecasting monthly surface and columnar SO2. With the pending availability of geostationary measurements of tropospheric composition, we show that it may soon be possible to rapidly constrain SO2 emissions and associated air quality predictions at fine spatiotemporal scales.

  17. THE LOCAL IMPACTS OF MERCURY EMISSIONS FROM COAL FIRED POWER PLANTS ON HUMAN HEALTH RISK. PROGRESS REPORT FOR THE PERIOD OF MARCH 2003 - MARCH 2003.

    Energy Technology Data Exchange (ETDEWEB)

    SULLIVAN,T.M.LIPFERT,F.D.MORRIS,S.M.

    2003-05-01

    This report presents a follow-up to previous assessments of the health risks of mercury that BNL performed for the Department of Energy. Methylmercury is an organic form of mercury that has been implicated as the form of mercury that impacts human health. A comprehensive risk assessment report was prepared (Lipfert et al., 1994) that led to several journal articles and conference presentations (Lipfert et al. 1994, 1995, 1996). In 2001, a risk assessment of mercury exposure from fish consumption was performed for 3 regions of the U.S (Northeast, Southeast, and Midwest) identified by the EPA as regions of higher impact from coal emissions (Sullivan, 2001). The risk assessment addressed the effects of in utero exposure to children through consumption of fish by their mothers. Two population groups (general population and subsistence fishers) were considered. Three mercury levels were considered in the analysis, current conditions based on measured data, and hypothetical reductions in Hg levels due to a 50% and 90% reduction in mercury emissions from coal fired power plants. The findings of the analysis suggested that a 90% reduction in coal-fired emissions would lead to a small reduction in risk to the general population (population risk reduction on the order of 10{sup -5}) and that the population risk is born by less than 1% of the population (i.e. high end fish consumers). The study conducted in 2001 focused on the health impacts arising from regional deposition patterns as determined by measured data and modeling. Health impacts were assessed on a regional scale accounting for potential percent reductions in mercury emissions from coal. However, quantitative assessment of local deposition near actual power plants has not been attempted. Generic assessments have been performed, but these are not representative of any single power plant. In this study, general background information on the mercury cycle, mercury emissions from coal plants, and risk assessment are

  18. Emissions, Monitoring, and Control of Mercury from Subbituminous Coal-Fired Power Plants - Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Alan Bland; Jesse Newcomer; Allen Kephart; Volker Schmidt; Gerald Butcher

    2008-10-31

    Western Research Institute (WRI), in conjunction with Western Farmers Electric Cooperative (WFEC), has teamed with Clean Air Engineering of Pittsburgh PA to conduct a mercury monitoring program at the WEFC Hugo plant in Oklahoma. Sponsored by US Department of Energy Cooperative Agreement DE-FC-26-98FT40323, the program included the following members of the Subbituminous Energy Coalition (SEC) as co-sponsors: Missouri Basin Power Project; DTE Energy; Entergy; Grand River Dam Authority; and Nebraska Public Power District. This research effort had five objectives: (1) determine the mass balance of mercury for subbituminous coal-fired power plant; (2) assess the distribution of mercury species in the flue gas (3) perform a comparison of three different Hg test methods; (4) investigate the long-term (six months) mercury variability at a subbituminous coal-fired power plant; and (5) assess operation and maintenance of the Method 324 and Horiba CEMS utilizing plant personnel.

  19. Long-term monitoring of atmospheric total gaseous mercury (TGM) at a remote site in Mt. Changbai area, northeastern China

    OpenAIRE

    X. W. Fu; X. Feng; L. H. Shang; S. F. Wang; H. Zhang

    2012-01-01

    Total gaseous mercury (TGM) was continuously monitored at a remote site (CBS) in the Mt. Changbai area, northeastern China biennially from 24 October 2008 to 31 October 2010. The overall mean TGM concentration was 1.60 ± 0.51 ng m−3, which is lower than those reported from remote sites in eastern, southwestern and western China, indicating a relatively low regional anthropogenic mercury (Hg) emission intensity in northeastern China. Measurements at a site in ...

  20. Two years of measurements of atmospheric total gaseous mercury (TGM) at a remote site in Mt. Changbai area, Northeastern China

    OpenAIRE

    X. W. Fu; X. Feng; L. H. Shang; S. F. Wang; H. Zhang

    2012-01-01

    Total gaseous mercury (TGM) was continuously monitored at a remote site (CBS) in Mt. Changbai area, Northeastern China from 24 October 2008 to 31 October 2010. The overall mean TGM concentration was 1.60±0.51 ng m−3, which is lower than those reported from remote sites in Eastern, Southwestern, and Western China, indicating a relatively lower regional anthropogenic mercury (Hg) emission intensity in Northeastern China. Measurements at a site in the vicinity (...

  1. How to distinguish natural and anthropogenic arsenic emissions? - A case study of Kittilä Suurikuusikko gold mine in Finland

    Science.gov (United States)

    Backnäs, Soile; Turunen, Kaisa; Pasanen, Antti

    2013-04-01

    Areas with bedrock abundant in ore minerals have naturally high amount of harmful elements in soil as well as in ground and in surface waters. After the beginning of the mining also the anthropogenic contamination tends to increase. Thus it is important to compare this load to the natural background when assessing the contamination of mine area and surrounding environment. Arsenic is common element in extractive and industrial minerals, and due to its relatively high mobility and toxicity, one of the most important local scale pollutants in the environments of mine areas in Finland. In this study natural and anthropogenic arsenic geochemisty in Suurikuusikko gold mine at Kittilä, Finland was characterized by using hot aqua regia, ammonium acetate and oxalate extractions. In total 35 samples of humus, peat, glacial till and bedrock were analyzed. In addition 11 water samples were analyzed for total and soluble metal and metalloid concentrations, anions, DOC, TOC, pH, redox and alkalinity. The metal speciation in surface and ground waters was modeled by PHREEQC. Due to gold bearing arsenopyrite ore, the arsenic concentrations in the Kittilä municipality and Central Lapland are naturally high. According to the geochemical analysis the percentage of oxalate and especially acetate extractable arsenic fractions in soil and bedrock samples indicates an increase in anthropogenic arsenic pollution. The results show higher aqua regia extractable arsenic concentrations and percentage of oxalate and acetate extractable fractions (30-97 %; 10-30 %) in glacial till and humus near the tailings and waste rock areas, but above all in samples taken from wetlands receiving tailings seepage waters. The background samples of humus and glacial till contained only 0-3 % of acetate and 17-77 % of oxalate extractable arsenic. The weathered bedrock samples in the mine area contained higher aqua regia extractable arsenic concentrations and acetate extractable arsenic fractions (14

  2. Model analyses of atmospheric mercury: present air quality and effects of transpacific transport on the United States

    Science.gov (United States)

    Lei, H.; Liang, X.-Z.; Wuebbles, D. J.; Tao, Z.

    2013-11-01

    Atmospheric mercury is a toxic air and water pollutant that is of significant concern because of its effects on human health and ecosystems. A mechanistic representation of the atmospheric mercury cycle is developed for the state-of-the-art global climate-chemistry model, CAM-Chem (Community Atmospheric Model with Chemistry). The model simulates the emission, transport, transformation and deposition of atmospheric mercury (Hg) in three forms: elemental mercury (Hg(0)), reactive mercury (Hg(II)), and particulate mercury (PHg). Emissions of mercury include those from human, land, ocean, biomass burning and volcano related sources. Land emissions are calculated based on surface solar radiation flux and skin temperature. A simplified air-sea mercury exchange scheme is used to calculate emissions from the oceans. The chemistry mechanism includes the oxidation of Hg(0) in gaseous phase by ozone with temperature dependence, OH, H2O2 and chlorine. Aqueous chemistry includes both oxidation and reduction of Hg(0). Transport and deposition of mercury species are calculated through adapting the original formulations in CAM-Chem. The CAM-Chem model with mercury is driven by present meteorology to simulate the present mercury air quality during the 1999-2001 period. The resulting surface concentrations of total gaseous mercury (TGM) are then compared with the observations from worldwide sites. Simulated wet depositions of mercury over the continental United States are compared to the observations from 26 Mercury Deposition Network stations to test the wet deposition simulations. The evaluations of gaseous concentrations and wet deposition confirm a strong capability for the CAM-Chem mercury mechanism to simulate the atmospheric mercury cycle. The general reproduction of global TGM concentrations and the overestimation on South Africa indicate that model simulations of TGM are seriously affected by emissions. The comparison to wet deposition indicates that wet deposition patterns

  3. Effect of biochar addition on short-term N2O and CO2 emissions during repeated drying and wetting of an anthropogenic alluvial soil.

    Science.gov (United States)

    Yang, Fang; Lee, Xinqing; Theng, Benny K G; Wang, Bing; Cheng, Jianzhong; Wang, Qian

    2017-06-01

    Agricultural soils are an important source of greenhouse gases (GHG). Biochar application to such soils has the potential of mitigating global anthropogenic GHG emissions. Under irrigation, the topsoils in arid regions experience repeated drying and wetting during the crop growing season. Biochar incorporation into these soils would change the soil microbial environment and hence affect GHG emissions. Little information, however, is available regarding the effect of biochar addition on carbon dioxide (CO 2 ) and nitrous oxide (N 2 O) emissions from agricultural soils undergoing repeated drying and wetting. Here, we report the results of a 49-day aerobic incubation experiment, incorporating biochar into an anthropogenic alluvial soil in an arid region of Xinjiang Province, China, and measuring CO 2 and N 2 O emissions. Under both drying-wetting and constantly moist conditions, biochar amendment significantly increased cumulative CO 2 emission. At the same time, there was a significant reduction (up to ~20 %) in cumulative N 2 O emission, indicating that the addition of biochar to irrigated agricultural soils may effectively slow down global warming in arid regions of China.

  4. Coupling atmospheric mercury isotope ratios and meteorology to identify sources of mercury impacting a coastal urban-industrial region near Pensacola, Florida, USA

    Science.gov (United States)

    Demers, Jason D.; Sherman, Laura S.; Blum, Joel D.; Marsik, Frank J.; Dvonch, J. Timothy

    2015-10-01

    Identifying the anthropogenic and natural sources of mercury (Hg) emissions contributing to atmospheric mercury on local, regional, and global scales continues to be a grand challenge. The relative importance of various direct anthropogenic emissions of mercury, in addition to natural geologic sources and reemission of previously released and deposited mercury, differs regionally and temporally. In this study, we used local-scale, mesoscale, and synoptic-scale meteorological analysis to couple the isotopic composition of ambient atmospheric mercury with potential sources of mercury contributing to a coastal urban-industrial setting near a coal-fired power plant in Pensacola, Florida, USA. We were able to broadly discern four influences on the isotopic composition of ambient atmospheric mercury impacting this coastal urban-industrial region: (1) local to regional urban-industrial anthropogenic emissions (mean δ202Hg = 0.44 ± 0.05‰, 1SD, n = 3), (2) marine-influenced sources derived from the Gulf of Mexico (mean δ202Hg = 0.77 ± 0.15‰, 1SD, n = 4), (3) continental sources associated with north-northwesterly flows from within the planetary boundary layer (mean δ202Hg = 0.65 ± 0.04‰, 1SD, n = 3), and (4) continental sources associated with north-northeasterly flows at higher altitudes (i.e., 2000 m above ground level; mean δ202Hg = 1.10 ± 0.21‰, 1SD, n = 8). Overall, these data, in conjunction with previous studies, suggest that the background global atmospheric mercury pool is characterized by moderately positive δ202Hg values; that urban-industrial emissions drive the isotopic composition of ambient atmospheric mercury toward lower δ202Hg values; and that air-surface exchange dynamics across vegetation and soils of terrestrial ecosystems drive the isotopic composition of ambient atmospheric mercury toward higher positive δ202Hg values. The data further suggest that mass-independent fractionation (MIF) of both even-mass- and odd-mass-number isotopes

  5. Mercury pollution in Asia: a review of the contaminated sites.

    Science.gov (United States)

    Li, P; Feng, X B; Qiu, G L; Shang, L H; Li, Z G

    2009-09-15

    This article describes the mercury contaminated sites in Asia. Among the various regions, Asia has become the largest contributor of anthropogenic atmospheric mercury (Hg), responsible for over half of the global emission. Based on different emission source categories, the mercury contaminated sites in Asia were divided into various types, such as Hg pollution from Hg mining, gold mining, chemical industry, metal smelting, coal combustion, metropolitan cities, natural resources and agricultural sources. By the review of a large number of studies, serious Hg pollutions to the local environment were found in the area influenced by chemical industry, mercury mining and gold mining. With the probable effects of a unique combination of climatic (e.g. subtropical climate), environmental (e.g. acid rain), economic (e.g. swift growth) and social factors (e.g. high population density), more effort is still needed to understand the biogeochemistry cycle of Hg and associated health effects in Asia. Safer alternatives and cleaner technologies must be developed and effectively implemented to reduce mercury emission; remedial techniques are also required to restore the historical mercury pollution in Asia.

  6. Substance Flow Analysis of Mercury in China

    Science.gov (United States)

    Hui, L. M.; Wang, S.; Zhang, L.; Wang, F. Y.; Wu, Q. R.

    2015-12-01

    In previous studies, the emission of anthropogenic atmospheric Hg in China as well as single sector have been examined a lot. However, there might have been more Hg released as solid wastes rather than air. Hg stored in solid wastes may be released to air again when the solid wastes experience high temperature process or cause local pollution if the solid wastes are stacked casually for a long time. To trace the fate of Hg in China, this study developed the substance flow of Hg in 2010 covering all the sectors summarized in table 1. Below showed in Figure 1, the total Hg input is 2825t. The unintentional input of Hg, mined Hg, and recycled Hg account for 57%, 32% and 11% respectively. Figure 2 provides the detail information of substance flow of Hg. Byproducts from one sector may be used as raw materials of another, causing cross Hg flow between sectors. The Hg input of cement production is 303 t, of which 34% comes from coal and limestone, 33% comes from non-ferrous smelting, 23% comes from coal combustion, 7% comes from iron and steel production and 3% comes from mercury mining. Hg flowing to recycledHg production is 639 t, mainly from Hg contained in waste active carbon and mercuric chloride catalyst from VCM production and acid sludge from non-ferrous smelting. There are 20 t mercury flowing from spent mercury adding products to incineration. Figure1 and Figure 2 also show that 46% of the output Hg belongs to "Lagged release", which means this part of mercury might be released later. The "Lagged release" Hg includes 809 t Hg contained in stacked byproducts form coal combustion, non-ferrous smelting, iron and steel production, Al production, cement production and mercury mining, 161t Hg stored in the pipeline of VCM producing, 10 t Hg in fluorescent lamps that are in use and 314 t mercury stored in materials waiting to be handled with in recycled mercury plants. There is 112 t Hg stored in landfill and 129 t Hg exported abroad with the export of mercury adding

  7. Mercury in tunas and blue marlin in the North Pacific Ocean.

    Science.gov (United States)

    Drevnick, Paul E; Brooks, Barbara A

    2017-05-01

    Models and data from the North Pacific Ocean indicate that mercury concentrations in water and biota are increasing in response to (global or hemispheric) anthropogenic mercury releases. In the present study, we provide an updated record of mercury in yellowfin tuna (Thunnus albacares) caught near Hawaii that confirms an earlier conclusion that mercury concentrations in these fish are increasing at a rate similar to that observed in waters shallower than 1000 m. We also compiled and reanalyzed data from bigeye tuna (Thunnus obesus) and blue marlin (Makaira nigricans) caught near Hawaii in the 1970s and 2000s. Increases in mercury concentrations in bigeye tuna are consistent with the trend found in yellowfin tuna, in both timing and magnitude. The data available for blue marlin do not allow for a fair comparison among years, because mercury concentrations differ between sexes for this species, and sex was identified (or reported) in only 3 of 7 studies. Also, mercury concentrations in blue marlin may be insensitive to modest changes in mercury exposure, because this species appears to have the ability to detoxify mercury. The North Pacific Ocean is a region of both relatively high rates of atmospheric mercury deposition and capture fisheries production. Other data sets that allow temporal comparisons in mercury concentrations, such as pacific cod (Gadus macrocephalus) in Alaskan waters and albacore tuna (Thunnus alalunga) off the US Pacific coast, should be explored further, to aid in understanding human health and ecological risks and to develop additional baseline knowledge for assessing changes in a region expected to respond strongly to reductions in anthropogenic mercury emissions. Environ Toxicol Chem 2017;36:1365-1374. © 2017 SETAC. © 2017 SETAC.

  8. Uncertainty in the Future Distribution of Tropospheric Ozone over West Africa due to Variability in Anthropogenic Emissions Estimates between 2025 and 2050

    Directory of Open Access Journals (Sweden)

    J. E. Williams

    2011-01-01

    Full Text Available Particle and trace gas emissions due to anthropogenic activity are expected to increase significantly in West Africa over the next few decades due to rising population and more energy intensive lifestyles. Here we perform 3D global chemistry-transport model calculations for 2025 and 2050 using both a “business-as-usual” (A1B and “clean economy” (B1 future anthropogenic emission scenario to focus on the changes in the distribution and uncertainties associated with tropospheric O3 due to the various projected emission scenarios. When compared to the present-day troposphere we find that there are significant increases in tropospheric O3 for the A1B emission scenario, with the largest increases being located in the lower troposphere near the source regions and into the Sahel around 15–20°N. In part this increase is due to more efficient NOx re-cycling related to increases in the background methane concentrations. Examining the uncertainty across different emission inventories reveals that there is an associated uncertainty of up to ~20% in the predicted increases at 2025 and 2050. For the upper troposphere, where increases in O3 have a more pronounced impact on radiative forcing, the uncertainty is influenced by transport of O3 rich air from Asia on the Tropical Easterly Jet.

  9. Climate change impacts on environmental and human exposure to mercury in the arctic.

    Science.gov (United States)

    Sundseth, Kyrre; Pacyna, Jozef M; Banel, Anna; Pacyna, Elisabeth G; Rautio, Arja

    2015-03-31

    This paper reviews information from the literature and the EU ArcRisk project to assess whether climate change results in an increase or decrease in exposure to mercury (Hg) in the Arctic, and if this in turn will impact the risks related to its harmful effects. It presents the state-of-the art of knowledge on atmospheric mercury emissions from anthropogenic sources worldwide, the long-range transport to the Arctic, and it discusses the likely environmental fate and exposure effects on population groups in the Arctic under climate change conditions. The paper also includes information about the likely synergy effects (co-benefits) current and new climate change polices and mitigation options might have on mercury emissions reductions in the future. The review concludes that reductions of mercury emission from anthropogenic sources worldwide would need to be introduced as soon as possible in order to assure lowering the adverse impact of climate change on human health. Scientific information currently available, however, is not in the position to clearly answer whether climate change will increase or decrease the risk of exposure to mercury in the Arctic. New research should therefore be undertaken to model the relationships between climate change and mercury exposure.

  10. Development of a New Spatial and Temporal resizing Tool of Natural and Anthropogenic Emissions for use in WRF/Chem Regional Modeling

    Science.gov (United States)

    Fernandez, Rafael Pedro; Schiavone, Juan Franco; Cremades, Pablo Gabriel; Ruben Santos, Jorge; Lopez Noreña, Ana Isabel; Puliafito, Salvador Enrique

    2017-04-01

    Atmospheric physical and chemical processes can be simulated with different degrees of complexity using global (CAM-Chem) and regional (WRF-Chem) chemical transport models. The proper representation of such processes strongly depends on the quality and temporal resolution of the initial and boundary conditions (IC/BC), as well as on the spatial resolution of the static fields used to represent the land/ocean - atmosphere interaction (e.g., emission sources). This work presents the development on a new spatial and temporal resizing tool of natural and anthropogenic emissions oriented to adapt the global emission inventories used in CAM-Chem to the technical requirements of the regional WRF/Chem model. The new resizing tool, which is based on the anthro_emiss NCAR pre-processor, allows to i) spatially interpolate and extrapolate any local or global emissions inventory to a given user-defined WRF/Chem domain (including nested domains); while at the same time it ii) imposes an hourly variation of the surface emission flux based on the superposition of the time-dependent Solar Zenith Angle (SZA) with high-resolution political maps (for anthropogenic sources) or geophysical land/ocean fields (for natural sources). Here we present results for the adaptation of two different emission inventories into a three-nested regional domain located in South America (with 36 x 36, 12 x 12 and 4 x 4 km2 spatial resolution, respectively): the global halogenated Very Short-Lived (VSLs) emissions inventory used in CAM-Chem (Ordoñez et al., 2012; with a spatial resolution of 100 x 250 km2 and a monthly seasonality); and a local vehicular emissions inventory of GHG for Argentina (Puliafito et al., 2015; which posses national annual means with a local resolution of 2.5 x 2.5 km2). Different diurnal profiles are analyzed for both natural and anthropogenic sources, assuring an identical total surface flux independently of the spatial resolution and temporal variation imposed to each source

  11. Mercury balance analysis

    International Nuclear Information System (INIS)

    Maag, J.; Lassen, C.; Hansen, E.

    1996-01-01

    A detailed assessment of the consumption of mercury, divided into use areas, was carried out. Disposal and emissions to the environment were also qualified. The assessment is mainly based on data from 1992 - 1993. The most important source of emission of mercury to air is solid waste incineration which is assessed in particular to be due to the supply of mercury in batteries (most likely mercury oxide batteries from photo equipment) and to dental fillings. The second most important source of mercury emission to air is coal-fired power plants which are estimated to account for 200-500 kg of mercury emission p.a. Other mercury emissions are mainly related to waste treatment and disposal. The consumption of mercury is generally decreasing. During the period from 1982/83 - 1992-93, the total consumption of mercury in Denmark was about halved. This development is related to the fact that consumption with regard to several important use areas (batteries, dental fillings, thermometers etc.) has been significantly reduced, while for other purposes the use of mercury has completely, or almost disappeared, i.e. (fungicides for seed, tubes etc.). (EG)

  12. Accumulation and fluxes of mercury in terrestrial and aquatic food chains with special reference to Finland

    Directory of Open Access Journals (Sweden)

    Martin Lodenius

    2013-03-01

    Full Text Available Mercury is known for its biomagnification especially in aquatic food chains and for its toxic effects on different organisms including man. In Finland mercury has formerly been used in industry and agriculture and in addition many anthropogenic activities may increase the mercury levels in ecosystems. Phenyl mercury was widely used as slimicide in the pulp and paper industry in the 1950s and 1960s. In the chlor-alkali industry metallic mercury was used as catalyst at three plants. The most toxic form of mercury, methyl mercury, may be formed in soils, water, sediments and organisms. Many factors, including microbial activity, temperature, oxygen status etc., affect the methylation rate. In the lake ecosystem bioaccumulation of methyl mercury is very strong. In early 1980s there was a restriction of fishing concerning approximately 4000 km2 of lakes and sea areas because of mercury pollution. In aquatic systems we still find elevated concentrations near former emission sources. Long-range atmospheric transport and mechanical operations like ditching and water regulation may cause increased levels of mercury in the aquatic ecosystems. In the Finnish agriculture organic mercury compounds were used for seed dressing until 1992. Although the amounts used were substantial the concentrations in agricultural soils have remained rather low. In terrestrial food chains bioaccumulation is normally weak with low or moderate concentration at all ecosystem levels. Due to a weak uptake through roots terrestrial, vascular plants normally contain only small amounts of mercury. There is a bidirectional exchange of mercury between vegetation and atmosphere. Contrary to vascular plants, there is a very wide range of concentrations in fungi. Mercury may pose a threat to human health especially when accumulated in aquatic food chains.

  13. NOVEL ECONOMICAL HG(0) OXIDATION REAGENT FOR MERCURY EMISSIONS CONTROL FROM COAL-FIRED BOILERS

    Science.gov (United States)

    The authors have developed a novel economical additive for elemental mercury (Hg0) removal from coal-fired boilers. The oxidation reagent was rigorously tested in a lab-scale fixed-bed column with the Norit America's FGD activated carbon (DOE's benchmark sorbent) in a typical PRB...

  14. Measurement of cesium and mercury emissions from the vitrification of simulated high level radioactive waste

    International Nuclear Information System (INIS)

    Zamecnik, J.R.

    1992-01-01

    In the Defense Waste Processing Facility at the Savannah River Site, it is desired to measure non-radioactive cesium in the offgas system from the glass melter. From a pilot scale melter system, offgas particulate samples were taken on filter paper media and analyzed by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). The ICP-MS method proved to be sufficiently sensitive to measure cesium quantities as low as 0.135 μg, with the sensitivity being limited by the background cesium present in the filter paper. This sensitivity allowed determination of cesium decontamination factors for four of the five major components of the offgas system. In addition, total particulate measurements were also made. Measurements of mercury decontamination factors were made on the same equipment; the results indicate that most of the mercury in the offgas system probably exists as elemental mercury and HgCl 2 , with some HgO and Hg 2 Cl 2 . The decontamination factors determined for cesium, total particulate, and mercury all compared favorably with the design values

  15. A Multimodel Assessment of the Influence of Regional Anthropogenic Emission Reductions on Aerosol Direct Radiative Forcing and the Role of Intercontinental Transport

    Science.gov (United States)

    Yu, Hongbin; Chin, Mian; West, Jason; Atherton, Cynthia S.; Bellouin, Nicolas; Bergmann, Dan; Bey, Isabelle; Bian, Huisheng; Diehl, Thomas; Forberth, Gerd; hide

    2013-01-01

    In this study, we assess changes of aerosol optical depth (AOD) and direct radiative forcing (DRF) in response to the reduction of anthropogenic emissions in four major pollution regions in the Northern Hemisphere by using results from nine global models in the framework of the Hemispheric Transport of Air Pollution (HTAP). DRF at top of atmosphere (TOA) and surface is estimated based on AOD results from the HTAP models and AOD-normalized DRF (NDRF) from a chemical transport model. The multimodel results show that, on average, a 20% reduction of anthropogenic emissions in North America, Europe, East Asia, and South Asia lowers the global mean AOD (all-sky TOA DRF) by 9.2% (9.0%), 3.5% (3.0%), and 9.4% (10.0%) for sulfate, particulate organic matter (POM), and black carbon (BC), respectively. Global annual average TOA all-sky forcing efficiency relative to particle or gaseous precursor emissions from the four regions (expressed as multimodel mean +/- one standard deviation) is -3.5 +/-0.8, -4.0 +/- 1.7, and 29.5+/-18.1mW / sq m per Tg for sulfate (relative to SO2), POM, and BC, respectively. The impacts of the regional emission reductions on AOD and DRF extend well beyond the source regions because of intercontinental transport (ICT). On an annual basis, ICT accounts for 11 +/- 5% to 31 +/- 9% of AOD and DRF in a receptor region at continental or subcontinental scale, with domestic emissions accounting for the remainder, depending on regions and species. For sulfate AOD, the largest ICT contribution of 31 +/- 9% occurs in South Asia, which is dominated by the emissions from Europe. For BC AOD, the largest ICT contribution of 28 +/- 18% occurs in North America, which is dominated by the emissions from East Asia. The large spreads among models highlight the need to improve aerosol processes in models, and evaluate and constrain models with observations.

  16. A review of global environmental mercury processes in response to human and natural perturbations: Changes of emissions, climate, and land use.

    Science.gov (United States)

    Obrist, Daniel; Kirk, Jane L; Zhang, Lei; Sunderland, Elsie M; Jiskra, Martin; Selin, Noelle E

    2018-03-01

    We review recent progress in our understanding of the global cycling of mercury (Hg), including best estimates of Hg concentrations and pool sizes in major environmental compartments and exchange processes within and between these reservoirs. Recent advances include the availability of new global datasets covering areas of the world where environmental Hg data were previously lacking; integration of these data into global and regional models is continually improving estimates of global Hg cycling. New analytical techniques, such as Hg stable isotope characterization, provide novel constraints of sources and transformation processes. The major global Hg reservoirs that are, and continue to be, affected by anthropogenic activities include the atmosphere (4.4-5.3 Gt), terrestrial environments (particularly soils: 250-1000 Gg), and aquatic ecosystems (e.g., oceans: 270-450 Gg). Declines in anthropogenic Hg emissions between 1990 and 2010 have led to declines in atmospheric Hg 0 concentrations and Hg II wet deposition in Europe and the US (- 1.5 to - 2.2% per year). Smaller atmospheric Hg 0 declines (- 0.2% per year) have been reported in high northern latitudes, but not in the southern hemisphere, while increasing atmospheric Hg loads are still reported in East Asia. New observations and updated models now suggest high concentrations of oxidized Hg II in the tropical and subtropical free troposphere where deep convection can scavenge these Hg II reservoirs. As a result, up to 50% of total global wet Hg II deposition has been predicted to occur to tropical oceans. Ocean Hg 0 evasion is a large source of present-day atmospheric Hg (approximately 2900 Mg/year; range 1900-4200 Mg/year). Enhanced seawater Hg 0 levels suggest enhanced Hg 0 ocean evasion in the intertropical convergence zone, which may be linked to high Hg II deposition. Estimates of gaseous Hg 0 emissions to the atmosphere over land, long considered a critical Hg source, have been revised downward, and

  17. A Novel Combination of Methods Developed for Decision Support on Abatement of Mercury in Europe

    Directory of Open Access Journals (Sweden)

    Sundseth K.

    2013-04-01

    Full Text Available There is clear evidence from the global mercury cycle that there is an urgent need for actions to reduce global anthropogenic mercury emissions. A legally- binding global agreement to reduce emissions of mercury is soon in place, meaning that many countries need to take steps to lower their emissions. Identification and assessment of policy options that already are in place as well as setting pollution control objectives and developing effective strategies to meet these objectives, are depending on a decision support tool that allows for identifying current and future environmental problems and to reduce these problems by providing a holistic management approach. Recent scientific advancement allows a more complete picture of the mercury problems and solutions to the problems, which is of outmost interest when it comes to justifying spending resources on the relevant measures. To make sure that resource allocation is favoring human welfare, the economic costs of introducing these measures need to be compared to their economic benefits. The major goal of this study was to provide a novel combination of assessment tools that form a framework for a decision support system towards environmental policy on mercury in Europe. The decision support tool was intended to act as a guideline for policy makers for the purpose of introducing cost- effective abatement of mercury. It was for the EU 27 countries demonstrated that large economic benefits can be achieved globally with reduced mercury emissions in the EU region. The investigated Baseline scenario thus highlighted the importance of full implementation of existing measures and the importance of making further progress in reducing mercury emissions from European sources. Reducing emissions in developing countries may however, be more cost effective, which basically reconfirms the need for a global convention on mercury.

  18. Soil-Air Mercury Flux near a Large Industrial Emission Source before and after Closure (Flin Flon, Manitoba, Canada).

    Science.gov (United States)

    Eckley, Chris S; Blanchard, Pierrette; McLennan, Daniel; Mintz, Rachel; Sekela, Mark

    2015-08-18

    Prior to its closure, the base-metal smelter in Flin Flon, Manitoba, Canada was one of the North America's largest mercury (Hg) emission sources. Our project objective was to understand the exchange of Hg between the soil and the air before and after the smelter closure. Field and laboratory Hg flux measurements were conducted to identify the controlling variables and used for spatial and temporal scaling. Study results showed that deposition from the smelter resulted in the surrounding soil being enriched in Hg (up to 99 μg g(-1)) as well as other metals. During the period of smelter operation, air concentrations were elevated (30 ± 19 ng m(-3)), and the soil was a net Hg sink (daily flux: -3.8 ng m(-2) h(-1)). Following the smelter closure, air Hg(0) concentrations were reduced, and the soils had large emissions (daily flux: 108 ng m(-2) h(-1)). The annual scaling of soil Hg emissions following the smelter closure indicated that the landscape impacted by smelter deposition emitted or re-emitted almost 100 kg per year. Elevated soil Hg concentrations and emissions are predicted to continue for hundreds of years before background concentrations are re-established. Overall, the results indicate that legacy Hg deposition will continue to cycle in the environment long after point-source reductions.

  19. Anthropogenic and volcanic emission impacts on SO2 dynamics and acid rain profiles. Numerical study using WRF-Chem in a high-resolution modeling

    Science.gov (United States)

    Vela, A. V.; González, C. M.; Ynoue, R.; Rojas, N. Y.; Aristizábal, B. H.; Wahl, M.

    2017-12-01

    Eulerian 3-D chemistry transport models (CTM) have been widely used for the study of air quality in urban environments, becoming an essential tool for studying the impacts and dynamics of gases and aerosols on air quality. However, their use in Colombia is scarce, especially in medium-sized cities, which are experimenting a fast urban growth, increasing the risk associated with possible air pollution episodes. In the densely populated medium-sized Andean city of Manizales, Colombia - a city located on the western slopes of the central range of the Andes (urban population 368000; 2150 m.a.s.l), there is an influence of the active Nevado del Ruiz volcano, located 28 km to the southwest. This natural source emits daily gas and particle fluxes, which could influence the atmospheric chemistry of the city and neighboring towns. Hence, the zone presents a unique combination of anthropogenic and volcanic sulfur gas emissions, which affects SO2 dynamics in the urban area, influencing also in the formation of acid rain phenomenon in the city. Therefore, studies analyzing the relative contribution of anthropogenic and volcanic emission could contribute with a deep understanding about causes and dynamics of both acid rain phenomenon and ambient SO2 levels in Manizales. This work aimed to analyze the influence of anthropogenic (on-road vehicular and industrial point-sources) and volcanic sulfur emissions in SO2 atmospheric chemistry dynamics, evaluating its possible effects on acid rain profiles. Ambient SO2 levels and day-night rain samples were measured and used to analyze results obtained from the application of the fully-coupled on-line WRF-Chem model. Two high-resolution simulations were performed during two dry and wet one-week periods in 2015. Analysis of SO2 dispersion patterns and comparison with SO2 observations in the urban area were performed for three different scenarios in which natural and anthropogenic emissions were simulated separately. Results suggest that

  20. A novel approach to mitigating sulphur dioxide emissions and producing a mercury sorbent material using oil-sands fluid coke

    International Nuclear Information System (INIS)

    Morris, E.; Jia, C.Q.; Tong, S.

    2008-01-01

    Pyrometallurgical smelting operations are a major source of sulphur dioxide (SO 2 ) which is a precursor to acid rain and increased levels of UV-B penetration in boreal lakes. Mercury is also released in copper smelter off-gas, which can bioaccumulate and cause neurological disorders and death in humans. Fluid coke is produced in massive quantities as a by-product of bitumen upgrading at Syncrude Canada's facility in Fort McMurray, Alberta. Oilsands fluid coke can be used to reduce SO 2 and produce elemental sulphur as a co-product. This process was dubbed SOactive. The reaction physically activates the fluid coke to produce a sulphur-impregnated activated carbon (SIAC) which is known as ECOcarbon. Some studies have indicated that SIAC is well suited for the removal of vapour phase mercury, mainly due to the formation of stable mercuric sulphide species. This paper discussed the findings made to date in relation to the SOactive process and the characterization of ECOcarbons. The paper discussed the use of fluid coke for reducing SO 2 emissions while producing elemental sulphur as well as coke-SO 2 -oxygen (O 2 ) and coke-SO 2 -water (H 2 O) systems. The paper also examined the production of SIAC products for use in capturing vapour phase mercury. The paper presented the materials and methodology, including an illustration of the apparatus used in reduction of SO 2 and activation of fluid coke. It was concluded that more work is still needed to analyse the effect of O 2 and SO 2 reduction and SIAC properties under smelter flue gas conditions. 10 refs., 1 tab., 8 figs

  1. Top-down model estimates, bottom-up inventories, and future projections of global natural and anthropogenic emissions of nitrous oxide

    Science.gov (United States)

    Davidson, E. A.; Kanter, D.

    2013-12-01

    Nitrous oxide (N2O) is the third most abundantly emitted greenhouse gas and the largest remaining emitted ozone depleting substance. It is a product of nitrifying and denitrifying bacteria in soils, sediments and water bodies. Humans began to disrupt the N cycle in the preindustrial era as they expanded agricultural land, used fire for land clearing and management, and cultivated leguminous crops that carry out biological N fixation. This disruption accelerated after the industrial revolution, especially as the use of synthetic N fertilizers became common after 1950. Here we present findings from a new United Nations Environment Programme report, in which we constrain estimates of the anthropogenic and natural emissions of N2O and consider scenarios for future emissions. Inventory-based estimates of natural emissions from terrestrial, marine and atmospheric sources range from 10 to 12 Tg N2O-N/yr. Similar values can be derived for global N2O emissions that were predominantly natural before the industrial revolution. While there was inter-decadal variability, there was little or no consistent trend in atmospheric N2O concentrations between 1730 and 1850, allowing us to assume near steady state. Assuming an atmospheric lifetime of 120 years, the 'top-down' estimate of pre-industrial emissions of 11 Tg N2O-N/yr is consistent with the bottom-up inventories for natural emissions, although the former includes some modest pre-industrial anthropogenic effects (probably business-as-usual scenarios over the period 2013-2050 is ~102 Tg N2O-N; equivalent to ~48 Gt CO2e or ~2730 kt ozone depleting potential. The impact of growing demand for biofuels is highly uncertain, ranging from trivial to the most significant N2O source to date, depending on the types of plants, their nutrient management, the amount of land used for their cultivation, and the fates of their waste products.

  2. Mitigation of gaseous Mercury Emissions from Waste-to-Energy Facilities: Homogeneous and Heterogeneous Hg-Oxidation Pathways in Presence of Fly Ash.

    Czech Academy of Sciences Publication Activity Database

    Rumayor, Marta; Svoboda, Karel; Švehla, Jaroslav; Pohořelý, Michael; Šyc, Michal

    Roč. 206, JAN 15 ( 2018 ), s. 276-283 ISSN 0301-4797 R&D Projects: GA TA ČR TE02000236 Institutional support: RVO:67985858 Keywords : mercury * emission * waste incineration Subject RIV: DI - Air Pollution ; Quality OBOR OECD: Environmental sciences (social aspects to be 5.7) Impact factor: 4.010, year: 2016

  3. Mitigation of gaseous Mercury Emissions from Waste-to-Energy Facilities: Homogeneous and Heterogeneous Hg-Oxidation Pathways in Presence of Fly Ash.

    Czech Academy of Sciences Publication Activity Database

    Rumayor, Marta; Svoboda, Karel; Švehla, Jaroslav; Pohořelý, Michael; Šyc, Michal

    2018-01-01

    Roč. 206, JAN 15 (2018), s. 276-283 ISSN 0301-4797 R&D Projects: GA TA ČR TE02000236 Institutional support: RVO:67985858 Keywords : mercury * emission * waste incineration Subject RIV: DI - Air Pollution ; Quality OBOR OECD: Environmental sciences (social aspects to be 5.7) Impact factor: 4.010, year: 2016

  4. Anthropogenic nitrogen and phosphorus emissions and related grey water footprints caused by EU-27's crop production and consumption

    NARCIS (Netherlands)

    Mekonnen, Mesfin; Lutter, Stephan; Martinez, Aldo

    2016-01-01

    Water is a prerequisite for life on our planet. Due to climate change and pollution, water availability for agricultural production, industry and households is increasingly put at risk. With agriculture being the largest water user as well as polluter worldwide, we estimate anthropogenic nitrogen

  5. Ultrasensitive Speciation Analysis of Mercury in Rice by Headspace Solid Phase Microextraction Using Porous Carbons and Gas Chromatography-Dielectric Barrier Discharge Optical Emission Spectrometry.

    Science.gov (United States)

    Lin, Yao; Yang, Yuan; Li, Yuxuan; Yang, Lu; Hou, Xiandeng; Feng, Xinbin; Zheng, Chengbin

    2016-03-01

    Rice consumption is a primary pathway for human methylmercury (MeHg) exposure in inland mercury mining areas of Asia. In addition, the use of iodomethane, a common fumigant that significantly accelerates the methylation of mercury in soil under sunlight, could increase the MeHg exposure from rice. Conventional hyphenated techniques used for mercury speciation analysis are usually too costly for most developing countries. Consequently, there is an increased interest in the development of sensitive and inexpensive methods for the speciation of mercury in rice. In this work, gas chromatography (GC) coupled to dielectric barrier discharge optical emission spectrometry (DBD-OES) was developed for the speciation analysis of mercury in rice. Prior to GC-DBD-OES analysis, mercury species were derivatized to their volatile species with NaBPh4 and preconcentrated by headspace solid phase microextraction using porous carbons. Limits of detection of 0.5 μg kg(-1) (0.16 ng), 0.75 μg kg(-1) (0.24 ng), and 1.0 μg kg(-1) (0.34 ng) were obtained for Hg(2+), CH3Hg(+), and CH3CH2Hg(+), respectively, with relative standard deviations (RSDs) better than 5.2% and 6.8% for one fiber or fiber-to-fiber mode, respectively. Recoveries of 90-105% were obtained for the rice samples, demonstrating the applicability of the proposed technique. Owing to the small size, low power, and low gas consumption of DBD-OES as well as efficient extraction of mercury species by porous carbons headspace solid phase micro-extraction, the proposed technique provides several advantages including compactness, cost-effectiveness, and potential to couple with miniature GC to accomplish the field speciation of mercury in rice compared to conventional hyphenated techniques.

  6. Viewing the effects of anthropogenic emission control from the change of CO2 concentration observed by GOSAT in China during the 2014 APEC summit

    Science.gov (United States)

    Lei, L.; Zhong, H.; Liu, L.; Yang, S., Sr.

    2016-12-01

    The growth of the global anthropogenic carbon emission stalled in 2014, according to data from International Energy Agency (IEA). This paper presents a practical application of satellite observation for detecting the regional enhancement of CO2 induced by underlying anthropogenic CO2 emissions especially during the 2014 Asia-Pacific Economic Cooperation (APEC) summit. We collected the column averaged dry air mole fraction (XCO2) data from Greenhouse Observation SATellite (GOSAT) from Jan. 2010 to Dec. 2015, which are provided by Japan GOSAT project team. The spatial change of the 5-year averaged XCO2 derived by gap filling [Zeng et al., TGRS, 2014], as shown in Fig.1, demonstrated that high XCO2prefer to correspond to the most intensive power plants. We calculated the regional contrasts between source and almost without emission (Fig.2), which are defined based on emission and potential temperature. The source, which is defined around Beijing, has many big power plants (Fig.1). The regional contrast showed 1-3 ppm with large seasonal variations while it is the lowest in summer due to influence of biospheric fluxes and especially show abnormal fluctuation in autumn 2014 (Fig.3). XCO2 fell from 398.9 ppm in 15-30 Oct. before APEC to 395.7 ppm during 1-11 Nov. 2014 APEC in source area around Beijing, and the contrast decreased from 4.5 ppm to 1.0 ppm (Table 1). This abnormal decline of XCO2 likely indicate the effects of controlling action for strong local source emissions such as closed many small inefficient coal-fired power plants from the beginning of 2014, banned on burning straw, especially in addition to temporally shut down the big coal-power plants and limiting the number of vehicles running during the APEC summit within the large zone covering the six provinces around Beijing. The large reduction was reported in aerosol of 50% above during the APEC summit (Sun et al., Sci. report, 2016). Our results agree to the potential of satellite observations to

  7. A new method to assess mercury emissions: a study of three coal-fired electric-generating power station configurations.

    Science.gov (United States)

    Boylan, Helen M; Cain, Randy D; Kingston, H M

    2003-11-01

    U.S. Environmental Protection Agency (EPA) Method 7473 for the analysis of mercury (Hg) by thermal decomposition, amalgamation, and atomic absorption spectroscopy has proved successful for use in Hg assessment at coal-fired power stations. In an analysis time of approximately 5 min per sample, this instrumental methodology can directly analyze total Hg--with no discrete sample preparation--in the solid matrices associated with a coal-fired power plant, including coal, fly ash, bottom ash, and flue gas desulfurization (FGD) material. This analysis technique was used to investigate Hg capture by coal combustion byproducts (CCBs) in three different coal-fired power plant configurations. Hg capture and associated emissions were estimated by partial mass balance. The station equipped with an FGD system demonstrated 68% capture on FGD material and an emissions estimate of 18% (11 kg/yr) of total Hg input. The power plant equipped with low oxides of nitrogen burners and an electrostatic precipitator (ESP) retained 43% on the fly ash and emitted 57% (51 kg/yr). The station equipped with conventional burners and an ESP retained less than 1% on the fly ash, emitting an estimated 99% (88 kg/yr) of Hg. Estimated Hg emissions demonstrate good agreement with EPA data for the power stations investigated.

  8. Removal of Elemental Mercury from a Gas Stream Facilitated by a Non-Thermal Plasma Device

    Energy Technology Data Exchange (ETDEWEB)

    Charles Mones

    2006-12-01

    Mercury generated from anthropogenic sources presents a difficult environmental problem. In comparison to other toxic metals, mercury has a low vaporization temperature. Mercury and mercury compounds are highly toxic, and organic forms such as methyl mercury can be bio-accumulated. Exposure pathways include inhalation and transport to surface waters. Mercury poisoning can result in both acute and chronic effects. Most commonly, chronic exposure to mercury vapor affects the central nervous system and brain, resulting in neurological damage. The CRE technology employs a series of non-thermal, plasma-jet devices to provide a method for elemental mercury removal from a gas phase by targeting relevant chemical reactions. The technology couples the known chemistry of converting elemental mercury to ionic compounds by mercury-chlorine-oxygen reactions with the generation of highly reactive species in a non-thermal, atmospheric, plasma device. The generation of highly reactive metastable species in a non-thermal plasma device is well known. The introduction of plasma using a jet-injection device provides a means to contact highly reactive species with elemental mercury in a manner to overcome the kinetic and mass-transfer limitations encountered by previous researchers. To demonstrate this technology, WRI has constructed a plasma test facility that includes plasma reactors capable of using up to four plasma jets, flow control instrumentation, an integrated control panel to operate the facility, a mercury generation system that employs a temperature controlled oven and permeation tube, combustible and mercury gas analyzers, and a ductless fume hood designed to capture fugitive mercury emissions. Continental Research and Engineering (CR&E) and Western Research Institute (WRI) successfully demonstrated that non-thermal plasma containing oxygen and chlorine-oxygen reagents could completely convert elemental mercury to an ionic form. These results demonstrate potential the

  9. A world avoided: impacts of changes in anthropogenic emissions on the burden and effects of air pollutants in Europe and North America.

    Science.gov (United States)

    Archibald, A T; Folberth, G; Wade, D C; Scott, D

    2017-08-24

    Emissions from anthropogenic activity are known to have deleterious impacts on human and ecosystem health and as such a significant amount of time, effort and money has been spent developing legislation to minimise their effects. Here we use a state of the art coupled chemistry-climate model HadGEM2-ES, with extended tropospheric chemistry, to assess the impacts that changes in emissions from anthropogenic activity have had on the burden and impacts of air pollutants over the last three decades. We use HadGEM2-ES to assess an alternative trajectory in air pollutant emissions to that which we have seen, with a regional focus on the contiguous United States and areas of Western Europe. This alternative trajectory can be considered to reflect a world avoided. In this world avoided, the significant levels of air pollution legislation imposed over the last three decades are simulated to not have come into effect in the contiguous United States and Western Europe. Rather a business as usual emission scenario is followed from 1970 to the present day. By combining the results of simulations of the world avoided with a base case present day atmosphere our model runs demonstrate that as a result of air pollution legislation, over 500 000 early mortalities a year have been mitigated owing to extensive reduction in sulfate aerosol and up to 8000 early mortalities a year have been mitigated as a result of improvements in ozone and nitrogen dioxide pollution. These results highlight the important role of legislation in reducing air pollution related mortality in these areas of the globe and highlight a compelling case for developing regions to follow.

  10. Elemental mercury emission in the indoor environment due to broken compact fluorescent light (CFL) bulbs--paper

    Science.gov (United States)

    Compact fluorescent light (CFL) bulbs contain a few milligrams (mg) of elemental mercury. When a CFL breaks, some of the mercury is immediately released as elemental mercury vapor and the remainder is deposited on indoor surfaces with the bulb debris. In a controlled study design...

  11. Controlling mercury and selenium emissions from coal-fired combustors using a novel regenerable natural product

    Energy Technology Data Exchange (ETDEWEB)

    Schlager, R.J.; Marmaro, R.W.; Roberts, D.L. [ADA Technologies, Inc., Englewood, CO (United States)

    1995-11-01

    This program successfully demonstrated the key components that are needed for a practical, regenerable sorption process for removing and recovering mercury from flue gas streams: (1) a proprietary natural product removed mercuric chloride from synthetic flue gas, (2) several new noble metal sorbents were shown to capture elemental gas-phase mercury from synthetic coal combustion flue gas, and (3) both the natural product and the noble metal sorbents could be regenerated in the laboratory (chemical method for the natural product, thermal method for noble metal sorbents). Several sorbents were tested for their ability to collect selenium oxide during the program. These tests, however, were not definitive due to inconclusive analytical results. If follow-on testing is funded, the ability of the proposed sorbents to collect selenium and other metals will be evaluated during the field testing phase of the program. A preliminary economic analysis indicates that the cost of the process appears to be substantially less than the cost of the state-of-the-art method, namely injection of activated carbon, and it also appears to cost less than using noble metal sorbents alone.

  12. A multimodel assessment of the influence of regional anthropogenic emission reductions on aerosol direct radiative forcing and the role of intercontinental transport

    Science.gov (United States)

    Yu, Hongbin; Chin, Mian; West, J. Jason; Atherton, Cynthia S.; Bellouin, Nicolas; Bergmann, Dan; Bey, Isabelle; Bian, Huisheng; Diehl, Thomas; Forberth, Gerd; Hess, Peter; Schulz, Michael; Shindell, Drew; Takemura, Toshihiko; Tan, Qian

    2013-01-01

    In this study, we assess changes of aerosol optical depth (AOD) and direct radiative forcing (DRF) in response to the reduction of anthropogenic emissions in four major pollution regions in the Northern Hemisphere by using results from nine global models in the framework of the Hemispheric Transport of Air Pollution (HTAP). DRF at top of atmosphere (TOA) and surface is estimated based on AOD results from the HTAP models and AOD-normalized DRF (NDRF) from a chemical transport model. The multimodel results show that, on average, a 20% reduction of anthropogenic emissions in North America, Europe, East Asia, and South Asia lowers the global mean AOD (all-sky TOA DRF) by 9.2% (9.0%), 3.5% (3.0%), and 9.4% (10.0%) for sulfate, particulate organic matter (POM), and black carbon (BC), respectively. Global annual average TOA all-sky forcing efficiency relative to particle or gaseous precursor emissions from the four regions (expressed as multimodel mean ± one standard deviation) is -3.5 ± 0.8, -4.0 ± 1.7, and 29.5 ± 18.1 mW m-2 per Tg for sulfate (relative to SO2), POM, and BC, respectively. The impacts of the regional emission reductions on AOD and DRF extend well beyond the source regions because of intercontinental transport (ICT). On an annual basis, ICT accounts for 11 ± 5% to 31 ± 9% of AOD and DRF in a receptor region at continental or subcontinental scale, with domestic emissions accounting for the remainder, depending on regions and species. For sulfate AOD, the largest ICT contribution of 31 ± 9% occurs in South Asia, which is dominated by the emissions from Europe. For BC AOD, the largest ICT contribution of 28 ± 18% occurs in North America, which is dominated by the emissions from East Asia. The large spreads among models highlight the need to improve aerosol processes in models, and evaluate and constrain models with observations.

  13. Municipal actions to reduce mercury

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-03-15

    This paper presented proper management practices for products containing mercury. The measures can help reduce mercury releases, occupational exposure and mercury spills, thereby preventing impacts on human health and the environment. Despite mercury's toxic nature, many common products that contain mercury are commercially available. These include thermostats, thermometers, fluorescent lamps, pressure measuring devices, electrical switches and relays, and dental amalgam. Mercury emissions are also associated with base metal smelting, waste incineration and coal-fired power generation. Mercury in the environment is a global issue, because it can travel in the atmosphere on wind currents. The actions taken by municipalities to address the issue include reducing or eliminating mercury releases from internal municipal operations and sources within the community. This document provided guidance on how to develop a Municipal Mercury Elimination Policy and Plan that will help reduce mercury releases. It presented information and case studies that will help municipalities manage mercury-containing products found in municipal buildings and street lighting. Information on sources of mercury from within the community was presented along with case studies that can help municipalities determine where community action is needed to reduce mercury releases. The 5 modules of this document were intended to help municipalities identify priorities, timelines and budget requirements for mercury initiatives. It was emphasized that municipalities that adopt a Municipal Mercury Elimination Policy and Plan formally commit to reducing and eliminating mercury from the environment. tabs., figs.

  14. Sulfur, arsenic, fluorine and mercury emissions resulting from coal-washing byproducts: A critical component of China's emission inventory

    Science.gov (United States)

    Zhao, Chao; Luo, Kunli

    2017-03-01

    The coal-washing rate in China increased from 1991 to 2014 and shows a particular increase from ∼22% to ∼60% since 2002. However, few studies pay attention to the use and disposal of the coal-washing byproducts (CWBs). A preliminary estimate of the likely S, As, F and Hg contents and emissions from the combustion of CWBs in China was determined in this work. About 632 million tons of CWBs, including middling coal, flotation tailing coal and coal slime, were produced in China in 2014. About 4.03%, 20.80%, 1.48%, and 73.25% CWBs were used for thermal power, industry, domestic and discard. The mean S, As, F and Hg contents of CWBs are 1.52%, 14.04 mg/kg, 216.31 mg/kg and 0.27 mg/kg, respectively. SO2 emissions in 2014 from the combustion of CWBs were ∼5.76 million tons, similar to that released into the atmosphere by China's coal-fired power plants, accounting for ∼29% of the country's total SO2 emissions. Arsenic, F and Hg emissions from CWBs were 1 599.54, 61 575.07 and 77.16 tons, respectively. These emissions have become a critical component of air pollution in China.

  15. Global projections for anthropogenic reactive nitrogen emissions to the atmosphere: An assessment of scenarios in the scientific literature

    NARCIS (Netherlands)

    van Vuuren, D.P.; Bouwman, L.F.; Smith, S.J.; Dentener, F.

    2011-01-01

    Most long-term scenarios of global reactive nitrogen (Nr) emissions to the atmosphere are produced by Integrated Assessment Models in the context of climate change assessments. These scenarios indicate that these global Nr emissions are likely to increase in the next decades, followed by a

  16. Mercury exposure among artisanal gold miners in Madre de Dios, Peru: a cross-sectional study.

    Science.gov (United States)

    Yard, Ellen E; Horton, Jane; Schier, Joshua G; Caldwell, Kathleen; Sanchez, Carlos; Lewis, Lauren; Gastaňaga, Carmen

    2012-12-01

    Exposure to mercury, a toxic metal, occurs primarily from inhaling mercury vapors or consuming methylmercury-contaminated fish. One third of all anthropogenic mercury emissions worldwide are from artisanal gold mining, which uses mercury to extract gold. Although recent reports suggest that the Madre de Dios region in Peru (with >30,000 artisanal miners) has extensive mercury contamination, residents had never been assessed for mercury exposure. Thus, our objective was to quantify mercury exposure among residents of an artisanal mining town in Madre de Dios and to assess risk factors for exposure. We conducted a cross-sectional assessment of 103 residents of an artisanal gold mining town in July 2010. Each participant provided a urine and blood sample and completed a questionnaire assessing potential exposures and health outcomes. We calculated geometric mean (GM) urine total mercury and blood methylmercury concentrations and compared log-transformed concentrations between subgroups using linear regression. One third (34.0 %) of participants were gold miners. All participants had detectable urine total mercury (GM, 5.5 μg/g creatinine; range, 0.7-151 μg/g creatinine) and 91 % had detectable blood methylmercury (GM, 2.7 μg/L; range, 0.6-10 μg/L); 13 participants (13 %) reported having kidney dysfunction or a neurological disorder. Urine total mercury concentrations were higher among people who heated gold-mercury amalgams compared with people who never heated amalgams (p < 0.05); methylmercury concentrations were higher among fish consumers compared with nonfish consumers (p < 0.05). Our findings suggest that mercury exposure may be widespread in Huaypetue.

  17. Mercury distribution characteristics in primary manganese smelting plants.

    Science.gov (United States)

    Back, Seung-Ki; Sung, Jin-Ho; Moon, Young-Hoon; Kim, Young-Hee; Seok, Kwang-Seol; Song, Geum-Ju; Seo, Yong-Chil

    2017-08-01

    The mercury (Hg) distribution characteristics were investigated in three primary manganese smelting plants in Korea for the assessment of anthropogenic Hg released. Input and output materials were sampled from each process, and Hg concentrations in the samples were analyzed. Among the input materials, the most mercury was found in the manganese ore (83.1-99.7%) and mercury was mainly released through fly ash or off gas, depending on the condition of off gas cleaning system. As off gas temperature decreases, proportion and concentration of emitted gaseous elemental mercury (Hg 0 ) in off gas decreases. Based on mass balance study from these three plants and national manganese production data, the total amount of mercury released from those Korean plants was estimated to 644 kg/yr. About half of it was emitted into the air while the rest was released to waste as fly ash. With the results of this investigation, national inventory for Hg emission and release could be updated for the response to Minamata Convention on Mercury. Copyright © 2017. Published by Elsevier Ltd.

  18. A 1990 global emission inventory of anthropogenic sources of carbon monoxide on 1o x 1o developed in the framework of EDGAR/GEIA

    International Nuclear Information System (INIS)

    Olivier, J.G.J.; Bouwman, A.F.; Bloos, J.P.J.; Berdowski, J.J.M.; Visschedijk, A.J.H.

    1999-01-01

    A global emission inventory of carbon monoxide (CO) emissions with 1 o x 1 o latitude-longitude resolution was compiled for 1990 on a sectoral basis. The sectoral sources considered include large-scale biomass burning (29%, of which savanna burning, 18%, and deforestation, 11%), fossil fuel combustion (27%, predominantly in road transport), biofuel combustion (19%, predominantly fuelwood combustion), agricultural waste burning (21%) and industrial process sources (4%). The inventory was compiled using mostly national statistics as activity data, emission factors at global or country level, and specific grid maps to convert, by sector, country total emissions to the 1 o x 1 o grid. A special effort was made to compile a global inventory of biofuel use, since this was considered to be a significant source on a global level, and a major source in some regions such as India and China. The global anthropogenic source of CO in 1990 is estimated at about 974 Tg CO yr -1 . The inventory is available on a sectoral basis on a 1 o x 1 o grid for input to global atmospheric models and on a regional/country basis for policy analysis. (author)

  19. HONO and Inorganic Fine Particle Composition in Typical Monsoon Region with Intensive Anthropogenic Emission: In-situ Observations and Source Identification.

    Science.gov (United States)

    Xie, Y.; Nie, W.; Ding, A.; Huang, X.

    2015-12-01

    Yangtze River Delta (YRD) is one of the most typical monsoon area with probably the most largest population intensity in the world. With sharply economic development and the large anthropogenic emissions, fine particle pollution have been one of the major air quality problem and may further have impact on the climate system. Though a lot of control policy (sulfur emission have been decreasing from 2007) have been conducted in the region, studies showed the sulfate in fine particles still take major fraction as the nitrate from nitrogen oxides increased significantly. In this study, the role of inorganic chemical compositions in fine particles was investigated with two years in-situ observation. Sulfate and Nitrate contribute to fine particle mass equally in general, but sulfate contributes more during summer and nitrate played more important role in winter. Using lagrangian dispersion backward modeling and source contribution clustering method, the impact of airmass coming from different source region (industrial, dust, biogenic emissions, etc) on fine particle inorganic compositions were discussed. Furthermore, we found two unique cases showing in-situ implications for sulfate formation by nitrogen dioxide oxidation mechanisms. It was showed that the mixing of anthropogenic pollutants with long-range transported mineral dust and biomass burning plume would enhance the sulfate formation by different chemistry mechanisms. This study focus on the complex aspects of fine particle formation in airmasses from different source regions: . It highlights the effect of NOx in enhancing the atmospheric oxidization capacity and indicates a potentially very important impact of increasing NOx on air pollution formation and regional climate change in East Asia.

  20. Biomass gasification chars for mercury capture from a simulated flue gas of coal combustion.

    Science.gov (United States)

    Fuente-Cuesta, A; Diaz-Somoano, M; Lopez-Anton, M A; Cieplik, M; Fierro, J L G; Martínez-Tarazona, M R

    2012-05-15

    The combustion of coal can result in trace elements, such as mercury, being released from power stations with potentially harmful effects for both human health and the environment. Research is ongoing to develop cost-effective and efficient control technologies for mercury removal from coal-fired power plants, the largest source of anthropogenic mercury emissions. A number of activated carbon sorbents have been demonstrated to be effective for mercury retention in coal combustion power plants. However, more economic alternatives need to be developed. Raw biomass gasification chars could serve as low-cost sorbents for capturing mercury since they are sub-products generated during a thermal conversion process. The aim of this study was to evaluate different biomass gasification chars as mercury sorbents in a simulated coal combustion flue gas. The results were compared with those obtained using a commercial activated carbon. Chars from a mixture of paper and plastic waste showed the highest retention capacity. It was found that not only a high carbon content and a well developed microporosity but also a high chlorine content and a high aluminium content improved the mercury retention capacity of biomass gasification chars. No relationship could be inferred between the surface oxygen functional groups and mercury retention in the char samples evaluated. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Why Modelling on Different Scales is Necessary to Understand the Balance of Mercury in the Atmosphere

    Science.gov (United States)

    Pirrone, N.; Hedgecock, I. M.; Jung, G.

    2007-05-01

    Two apparently conflicting facts concerning atmospheric mercury have prompted debate and an intensification of research activity over the last five years. The first is that global background atmospheric mercury concentrations are extremely uniform, with a slightly lower in the southern hemisphere compared to the northern hemisphere. This indicates that the atmospheric residence time pf mercury is long enough for it to be transported from its main emission source areas. The second is the by now well established presence of oxidised mercury compounds in the marine BL, far from anthropogenic sources. Oxidised mercury compounds make up a fairly small component of anthropogenic emissions, but are much more readily scavenged or deposited than elemental mercury and therefore not expected to be transported over any great distance. The presence of these compounds in the MBL therefore suggests that in-situ production occurs, which would also infer in-situ deposition thereby reducing the local concentration of mercury. However, as stated previously background concentrations are hemisperically extremely uniform. In order to investigate the atmospheric transport and transformation of mercury, modelling studies at different scales are required. Complex photochemical box models are used to study chemical processes in detail. Regional transport models with less complex chemistry but including anthropogenic and natural emission sources and a parameterised description of deposition processes are used to study source receptor relationships and estimate Hg exchange budgets between the atmosphere and terrestrial and marine receptors. Global transport models (with simplified chemistry) are used to investigate long-distance (intercontinental) transport pathways and the uniformity of hemispherical background concentrations. Results from the photochemical box model studies indicate that the atmospheric lifetime of mercury due to reactions with Br and OH may be shorter than previously

  2. Improved provincial emission inventory and speciation profiles of anthropogenic non-methane volatile organic compounds: a case study for Jiangsu, China

    Directory of Open Access Journals (Sweden)

    Y. Zhao

    2017-06-01

    Full Text Available Non-methane volatile organic compounds (NMVOCs are the key precursors of ozone (O3 and secondary organic aerosol (SOA formation. Accurate estimation of their emissions plays a crucial role in air quality simulation and policy making. We developed a high-resolution anthropogenic NMVOC emission inventory for Jiangsu in eastern China from 2005 to 2014, based on detailed information of individual local sources and field measurements of source profiles of the chemical industry. A total of 56 NMVOCs samples were collected in nine chemical plants and were then analyzed with a gas chromatography – mass spectrometry system (GC-MS. Source profiles of stack emissions from synthetic rubber, acetate fiber, polyether, vinyl acetate and ethylene production, and those of fugitive emissions from ethylene, butanol and octanol, propylene epoxide, polyethylene and glycol production were obtained. Various manufacturing technologies and raw materials led to discrepancies in source profiles between our domestic field tests and foreign results for synthetic rubber and ethylene production. The provincial NMVOC emissions were calculated to increase from 1774 Gg in 2005 to 2507 Gg in 2014, and relatively large emission densities were found in cities along the Yangtze River with developed economies and industries. The estimates were larger than those from most other available inventories, due mainly to the complete inclusion of emission sources and to the elevated activity levels from plant-by-plant investigation in this work. Industrial processes and solvent use were the largest contributing sectors, and their emissions were estimated to increase, respectively, from 461 to 958 and from 38 to 966 Gg. Alkanes, aromatics and oxygenated VOCs (OVOCs were the most important species, accounting for 25.9–29.9, 20.8–23.2 and 18.2–21.0 % to annual total emissions, respectively. Quantified with a Monte Carlo simulation, the uncertainties of annual NMVOC emissions

  3. Methane, a greenhouse gas: measures to reduce and valorize anthropogenic emissions; Le methane, un gaz a effet de serre: mesures de reduction et de valorisation des emissions anthropiques

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-03-15

    This report first presents the greenhouse effect properties of methane (one of the six gases the emissions of which must be reduced according to the Kyoto protocol), comments the available data on methane emission assessment in the World, in Europe and in France, and outlines the possibilities of improvement of data and indicators on a short and middle term. It describes how methane can be captured and valorized, indicates the concerned quantities. Notably, it discussed the management of methane generating and spreading practices (from waste water treatment, from domestic wastes), how to reduce methane emissions in agriculture. It finally proposes elements aimed at elaborating a national and international policy regarding methane emission reductions

  4. Field Evaluation of MERCEM Mercury Emission Analyzer System at the Oak Ridge TSCA Incinerator East Tennessee Technology Park Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    None

    2000-03-01

    The authors reached the following conclusions: (1) The two-month evaluation of the MERCEM total mercury monitor from Perkin Elmer provided a useful venue in determining the feasibility of using a CEM to measure total mercury in a saturated flue gas. (2) The MERCEM exhibited potential at a mixed waste incinerator to meet requirements proposed in PS12 under conditions of operation with liquid feeds only at stack mercury concentrations in the range of proposed MACT standards. (3) Performance of the MERCEM under conditions of incinerating solid and liquid wastes simultaneously was less reliable than while feeding liquid feeds only for the operating conditions and configuration of the host facility. (4) The permeation tube calibration method used in this test relied on the CEM internal volumetric and time constants to relate back to a concentration, whereas a compressed gas cylinder concentration is totally independent of the analyzer mass flowmeter and flowrates. (5) Mercury concentration in the compressed gas cylinders was fairly stable over a 5-month period. (6) The reliability of available reference materials was not fully demonstrated without further evaluation of their incorporation into routine operating procedures performed by facility personnel. (7) The degree of mercury control occurring in the TSCA Incinerator off-gas cleaning system could not be quantified from the data collected in this study. (8) It was possible to conduct the demonstration at a facility incinerating radioactively contaminated wastes and to release the equipment for later unrestricted use elsewhere. (9) Experience gained by this testing answered additional site-specific and general questions regarding the operation and maintenance of CEMs and their use in compliance monitoring of total mercury emissions from hazardous waste incinerators.

  5. Laboratory-scale evaluation of various sampling and analytical methods for determining mercury emissions from coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Agbede, R.O.; Bochan, A.J.; Clements, J.L. [Advanced Technology Systems, Inc., Monroeville, PA (United States)] [and others

    1995-11-01

    Comparative bench-scale mercury sampling method tests were performed at the Advanced Technology Systems, Inc. (ATS) laboratories for EPA Method 101A, EPA Method 29 and the Ontario Hydro Method. Both blank and impinger spiking experiments were performed. The experimental results show that the ambient level of mercury in the ATS laboratory is at or below the detection limit (10 ng Hg) as measured by a cold vapor atomic absorption spectrophotometer (CVAAS) which was used to analyze the mercury samples. From the mercury spike studies, the following observations and findings were made. (a) The recovery of mercury spikes using EPA Method 101A was 104%. (b) The Ontario Hydro Method retains about 90% of mercury spikes in the first absorbing solution but has a total spike retention of 106%. As a result, the test data shows possible migration of spiked mercury from the first impinger solution (KCI) to the permanganate impingers. (c) For the EPA Method 29 solutions, when only the peroxide impingers were spiked, mercury recoveries were 65.6% for the peroxide impingers, 0.1% for the knockout impinger and 32.8% for the permanganate impingers with an average total mercury recovery of 98.4%. At press time, data was still being obtained for both the peroxide and permanganate impinger solution spikes. This and other data will be available at the presentation.

  6. Modeling Mercury in Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Jeremy C [ORNL; Parks, Jerry M [ORNL

    2016-01-01

    Mercury (Hg) is a naturally occurring element that is released into the biosphere both by natural processes and anthropogenic activities. Although its reduced, elemental form Hg(0) is relatively non-toxic, other forms such as Hg2+ and, in particular, its methylated form, methylmercury, are toxic, with deleterious effects on both ecosystems and humans. Microorganisms play important roles in the transformation of mercury in the environment. Inorganic Hg2+ can be methylated by certain bacteria and archaea to form methylmercury. Conversely, bacteria also demethylate methylmercury and reduce Hg2+ to relatively inert Hg(0). Transformations and toxicity occur as a result of mercury interacting with various proteins. Clearly, then, understanding the toxic effects of mercury and its cycling in the environment requires characterization of these interactions. Computational approaches are ideally suited to studies of mercury in proteins because they can provide a detailed picture and circumvent issues associated with toxicity. Here we describe computational methods for investigating and characterizing how mercury binds to proteins, how inter- and intra-protein transfer of mercury is orchestrated in biological systems, and how chemical reactions in proteins transform the metal. We describe quantum chemical analyses of aqueous Hg(II), which reveal critical factors that determine ligand binding propensities. We then provide a perspective on how we used chemical reasoning to discover how microorganisms methylate mercury. We also highlight our combined computational and experimental studies of the proteins and enzymes of the mer operon, a suite of genes that confers mercury resistance in many bacteria. Lastly, we place work on mercury in proteins in the context of what is needed for a comprehensive multi-scale model of environmental mercury cycling.

  7. Increase in winter haze over eastern China in recent decades: Roles of variations in meteorological parameters and anthropogenic emissions: INCREASE IN WINTER HAZE IN EASTERN CHINA

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yang [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Liao, Hong [School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing China; Joint International Research Laboratory of Climate and Environment Change, Nanjing University of Information Science and Technology, Nanjing China; Lou, Sijia [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA

    2016-11-05

    The increase in winter haze over eastern China in recent decades due to variations in meteorological parameters and anthropogenic emissions was quantified using observed atmospheric visibility from the National Climatic Data Center Global Summary of Day database for 1980–2014 and simulated PM2.5 concentrations for 1985–2005 from the Goddard Earth Observing System (GEOS) chemical transport model (GEOS-Chem). Observed winter haze days averaged over eastern China (105–122.5°E, 20–45°N) increased from 21 d in 1980 to 42 d in 2014, and from 22 to 30 d between 1985 and 2005. The GEOS-Chem model captured the increasing trend of winter PM2.5 concentrations for 1985–2005, with concentrations averaged over eastern China increasing from 16.1 μg m-3 in 1985 to 38.4 μg m-3 in 2005. Considering variations in both anthropogenic emissions and meteorological parameters, the model simulated an increase in winter surface-layer PM2.5 concentrations of 10.5 (±6.2) μg m-3 decade-1 over eastern China. The increasing trend was only 1.8 (±1.5) μg m-3 decade-1 when variations in meteorological parameters alone were considered. Among the meteorological parameters, the weakening of winds by -0.09 m s-1 decade-1 over 1985–2005 was found to be the dominant factor leading to the decadal increase in winter aerosol concentrations and haze days over eastern China during recent decades.

  8. Kalman-filtered compressive sensing for high resolution estimation of anthropogenic greenhouse gas emissions from sparse measurements.

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Jaideep; Lee, Jina; Lefantzi, Sophia; Yadav, Vineet; Michalak, Anna M.; van Bloemen Waanders, Bart Gustaaf; McKenna, Sean Andrew

    2013-09-01

    The estimation of fossil-fuel CO2 emissions (ffCO2) from limited ground-based and satellite measurements of CO2 concentrations will form a key component of the monitoring of treaties aimed at the abatement of greenhouse gas emissions. The limited nature of the measured data leads to a severely-underdetermined estimation problem. If the estimation is performed at fine spatial resolutions, it can also be computationally expensive. In order to enable such estimations, advances are needed in the spatial representation of ffCO2 emissions, scalable inversion algorithms and the identification of observables to measure. To that end, we investigate parsimonious spatial parameterizations of ffCO2 emissions which can be used in atmospheric inversions. We devise and test three random field models, based on wavelets, Gaussian kernels and covariance structures derived from easily-observed proxies of human activity. In doing so, we constructed a novel inversion algorithm, based on compressive sensing and sparse reconstruction, to perform the estimation. We also address scalable ensemble Kalman filters as an inversion mechanism and quantify the impact of Gaussian assumptions inherent in them. We find that the assumption does not impact the estimates of mean ffCO2 source strengths appreciably, but a comparison with Markov chain Monte Carlo estimates show significant differences in the variance of the source strengths. Finally, we study if the very different spatial natures of biogenic and ffCO2 emissions can be used to estimate them, in a disaggregated fashion, solely from CO2 concentration measurements, without extra information from products of incomplete combustion e.g., CO. We find that this is possible during the winter months, though the errors can be as large as 50%.

  9. Trends and variations in CO, C2H6, and HCN in the Southern Hemisphere point to the declining anthropogenic emissions of CO and C2H6

    Science.gov (United States)

    Zeng, G.; Wood, S. W.; Morgenstern, O.; Jones, N. B.; Robinson, J.; Smale, D.

    2012-08-01

    We analyse the carbon monoxide (CO), ethane (C2H6) and hydrogen cyanide (HCN) partial columns (from the ground to 12 km) derived from measurements by ground-based solar Fourier Transform Spectroscopy at Lauder, New Zealand (45° S, 170° E), and at Arrival Heights, Antarctica (78° S, 167° E), from 1997 to 2009. Significant negative trends are calculated for all species at both locations, based on the daily-mean observed time series, namely CO (-0.94 ± 0.47% yr-1), C2H6 (-2.37 ± 1.18% yr-1) and HCN (-0.93 ± 0.47% yr-1) at Lauder and CO (-0.92 ± 0.46% yr-1), C2H6 (-2.82 ± 1.37% yr-1) and HCN (-1.41 ± 0.71% yr-1) at Arrival Heights. The uncertainties reflect the 95% confidence limits. However, the magnitudes of the trends are influenced by the anomaly associated with the 1997-1998 El Niño Southern Oscillation event at the beginning of the time series reported. We calculate trends for each month from 1997 to 2009 and find negative trends for all months. The largest monthly trends of CO and C2H6 at Lauder, and to a lesser degree at Arrival Heights, occur during austral spring during the Southern Hemisphere tropical and subtropical biomass burning period. For HCN, the largest monthly trends occur in July and August at Lauder and around November at Arrival Heights. The correlations between CO and C2H6 and between CO and HCN at Lauder in September to November, when the biomass burning maximizes, are significantly larger that those in other seasons. A tropospheric chemistry-climate model is used to simulate CO, C2H6, and HCN partial columns for the period of 1997-2009, using interannually varying biomass burning emissions from GFED3 and annually periodic but seasonally varying emissions from both biogenic and anthropogenic sources. The model-simulated partial columns of these species compare well with the measured partial columns and the model accurately reproduces seasonal cycles of all three species at both locations. However, while the model satisfactorily

  10. Trends and variations in CO, C2H6, and HCN in the Southern Hemisphere point to the declining anthropogenic emissions of CO and C2H6

    Directory of Open Access Journals (Sweden)

    N. B. Jones

    2012-08-01

    Full Text Available We analyse the carbon monoxide (CO, ethane (C2H6 and hydrogen cyanide (HCN partial columns (from the ground to 12 km derived from measurements by ground-based solar Fourier Transform Spectroscopy at Lauder, New Zealand (45° S, 170° E, and at Arrival Heights, Antarctica (78° S, 167° E, from 1997 to 2009. Significant negative trends are calculated for all species at both locations, based on the daily-mean observed time series, namely CO (−0.94 ± 0.47% yr−1, C2H6 (−2.37 ± 1.18% yr−1 and HCN (−0.93 ± 0.47% yr−1 at Lauder and CO (−0.92 ± 0.46% yr−1, C2H6 (−2.82 ± 1.37% yr−1 and HCN (−1.41 ± 0.71% yr−1 at Arrival Heights. The uncertainties reflect the 95% confidence limits. However, the magnitudes of the trends are influenced by the anomaly associated with the 1997–1998 El Niño Southern Oscillation event at the beginning of the time series reported. We calculate trends for each month from 1997 to 2009 and find negative trends for all months. The largest monthly trends of CO and C2H6 at Lauder, and to a lesser degree at Arrival Heights, occur during austral spring during the Southern Hemisphere tropical and subtropical biomass burning period. For HCN, the largest monthly trends occur in July and August at Lauder and around November at Arrival Heights. The correlations between CO and C2H6 and between CO and HCN at Lauder in September to November, when the biomass burning maximizes, are significantly larger that those in other seasons. A tropospheric chemistry-climate model is used to simulate CO, C2H6, and HCN partial columns for the period of 1997–2009, using interannually varying biomass burning emissions from GFED3 and annually periodic but seasonally varying emissions from both biogenic and anthropogenic sources. The model-simulated partial columns of these species compare well with the measured partial columns and the model accurately reproduces seasonal cycles of all three species at both locations. However

  11. Impact of reduced anthropogenic emissions and century flood on the phosphorus stock, concentrations and loads in the Upper Danube

    Science.gov (United States)

    Zoboli, Ottavia; Viglione, Alberto; Rechberger, Helmut; Zessner, Matthias

    2015-01-01

    Patterns of changes in the concentration of total and soluble reactive phosphorus (TP, SRP) and suspended sediments at different flow levels from 1991 to 2013 in the Austrian Danube are statistically analyzed and related to point and diffuse emissions, as well as to extreme hydrological events. Annual loads are calculated with three methods and their development in time is examined taking into consideration total emissions and hydrological conditions. The reduction of point discharges achieved during the 1990s was well translated into decreasing TP and SRP baseflow concentrations during the same period, but it did not induce any change in the concentrations at higher flow levels nor in the annual transport of TP loads. A sharp and long-lasting decline in TP concentration, affecting all flow levels, took place after a major flood in 2002. It was still visible during another major flood in 2013, which recorded lower TP concentrations than its predecessor. Such decline could not be linked to changes in point or diffuse emissions. This suggests that, as a result of the flood, the river system experienced a significant depletion of its in-stream phosphorus stock and a reduced mobilization of TP rich sediments afterwards. This hypothesis is corroborated by the decoupling of peak phosphorus loads from peak maximum discharges after 2002. These results are highly relevant for the design of monitoring schemes and for the correct interpretation of water quality data in terms of assessing the performance of environmental management measures. PMID:25747371

  12. Assessment of fossil fuel carbon dioxide and other anthropogenic trace gas emissions from airborne measurements over Sacramento, California in spring 2009

    Directory of Open Access Journals (Sweden)

    J. C. Turnbull

    2011-01-01

    2ff mole fraction to infer total fossil fuel CO2 emissions from the Sacramento region, using a mass balance approach. The resulting emissions are uncertain to within a factor of two due to uncertainties in wind speed and boundary layer height. Nevertheless, this first attempt to estimate urban-scale CO2ff from atmospheric radiocarbon measurements shows that CO2ff can be used to verify and improve emission inventories for many poorly known anthropogenic species, separate biospheric CO2, and indicates the potential to constrain CO2ff emissions if transport uncertainties are reduced.

  13. Anthropogenic plumes from metropolitan areas and biomass burning emissions in West Africa during DACCIWA - airborne measurements on board the DLR Falcon 20

    Science.gov (United States)

    Stratmann, Greta; Schlager, Hans; Sauer, Daniel; Brocchi, Vanessa; Catoire, Valery; Baumann, Robert

    2017-04-01

    The DACCIWA (Dynamics-Aerosol-Chemistry-Cloud Interactions over West Africa) airborne field campaign was conducted in Southern West Africa in June/July 2016. Three European research aircraft (DLR - Falcon 20, SAFIRE - ATR 42 and BAS - Twin Otter) were deployed from Lomé/Togo and conducted research flights across Ivory Coast, Ghana, Togo and Benin. On board the DLR Falcon O3, SO2, CO, NO2 and aerosol fine mode particle number concentration and size distribution were measured during a total of 12 scientific flights. Until now only few airborne trace gas measurements were conducted in Southern West Africa. Therefore, this field experiment contributes to the knowledge of the chemical composition of the lower troposphere between 0 - 4 km. During several flights pollution plumes from major population centers - Lomé/Togo, Accra/Ghana, Kumasi/Ghana, and Abidjan/Ivory Coast - were probed below, inside and above clouds. Here, enhanced trace gas and particle concentrations were observed. In addition, plumes from biomass burning emissions were detected which were transported to West Africa. The composition of the pollution plumes are presented as well as transport pathways using HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectories) trajectory calculations. Ozone enhancements in the biomass burning pollution plumes of up to 70 ppb were observed compared to background concentrations of 30-40 ppb. Furthermore, HYSPLIT atmospheric dispersion simulations are used to estimate anthropogenic SO2 city emissions.

  14. Examining the Effects of Anthropogenic Emissions on Isoprene-Derived Secondary Organic Aerosol Formation During the 2013 Southern Oxidant and Aerosol Study (SOAS) at the Look Rock, Tennessee, Ground Site

    Science.gov (United States)

    A suite of offline and real-time gas- and particle-phase measurements was deployed atLook Rock, Tennessee (TN), during the 2013 Southern Oxidant and Aerosol Study (SOAS) to examine the effects of anthropogenic emissions on isoprene-derived secondary organic aerosol (SOA) formatio...

  15. Fly Ash and Mercury Oxidation/Chlorination Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Sukh Sidhu; Patanjali Varanasi

    2008-12-31

    Mercury is a known pollutant that has detrimental effect on human health and environment. The anthropogenic emissions of mercury account for 10 to 30% of worldwide mercury emissions. There is a need to control/reduce anthropogenic mercury emissions. Many mercury control technologies are available but their effectiveness is dependent on the chemical form of mercury, because different chemical forms of mercury have different physical and chemical properties. Mercury leaves the boiler in its elemental form but goes through various transformations in the post-combustion zone. There is a need to understand how fly ash and flue gas composition affect speciation, partitioning, and reactions of mercury under the full range of post-combustion zone conditions. This knowledge can then be used to predict the chemical transformation of mercury (elemental, oxidized or particulate) in the post combustion zone and thus help with the control of mercury emissions from coal-burning power plants. To accomplish this goal present study was conducted using five coal fly ashes. These ashes were characterized and their catalytic activity was compared under selected reaction conditions in a fixed bed reactor. Based on the results from these fly ash experiments, three key components (carbon, iron oxide and calcium oxide) were chosen. These three components were then used to prepare model fly ashes. Silica/alumina was used as a base for these model fly ashes. One, two or three component model fly ashes were then prepared to investigate mercury transformation reactions. The third set of experiments was performed with CuO and CuCl2 catalysts to further understand the mercury oxidation process. Based on the results of these three studies the key components were predicted for different fly ash compositions under variety of flue gas conditions. A fixed bed reactor system was used to conduct this study. In all the experiments, the inlet concentration of Hg0(g) was maintained at 35 {micro}g/m3 using

  16. Atmospheric mercury footprints of nations.

    Science.gov (United States)

    Liang, Sai; Wang, Yafei; Cinnirella, Sergio; Pirrone, Nicola

    2015-03-17

    The Minamata Convention was established to protect humans and the natural environment from the adverse effects of mercury emissions. A cogent assessment of mercury emissions is required to help implement the Minamata Convention. Here, we use an environmentally extended multi-regional input-output model to calculate atmospheric mercury footprints of nations based on upstream production (meaning direct emissions from the production activities of a nation), downstream production (meaning both direct and indirect emissions caused by the production activities of a nation), and consumption (meaning both direct and indirect emissions caused by final consumption of goods and services in a nation). Results show that nations function differently within global supply chains. Developed nations usually have larger consumption-based emissions than up- and downstream production-based emissions. India, South Korea, and Taiwan have larger downstream production-based emissions than their upstream production- and consumption-based emissions. Developed nations (e.g., United States, Japan, and Germany) are in part responsible for mercury emissions of developing nations (e.g., China, India, and Indonesia). Our findings indicate that global mercury abatement should focus on multiple stages of global supply chains. We propose three initiatives for global mercury abatement, comprising the establishment of mercury control technologies of upstream producers, productivity improvement of downstream producers, and behavior optimization of final consumers.

  17. Speciation of mercury compounds by gas chromatography with atomic emission detection. Simultaneous optimization of a headspace solid-phase microextraction and derivatization procedure by use of chemometric techniques

    Energy Technology Data Exchange (ETDEWEB)

    Carro, A.M.; Neira, I.; Rodil, R.; Lorenzo, R. A. [Univ. Santiago de Compostela (Spain). Dpto. Quimica Analitica, Nutricion y Bromatologia

    2003-06-01

    A method is proposed for the extraction and determination of organomercury compounds and Hg(II) in seawater samples by headspace solid-phase microextraction (HS-SPME) combined with capillary gas chromatography-microwave-induced plasma atomic emission spectrometry. The mercury species were derivatized with sodium tetraphenylborate, sorbed on a polydimethylsiloxane-coated fused-silica fibre, and desorbed in the injection port of the GC, in splitless mode. Experimental design methodology was used to evaluate the effect of six HS-SPME-derivatization variables: sample volume, NaBPh{sub 4} volume, pH, sorption time, extraction-derivatization temperature, and rate of stirring. Use of a multicriterion decision-making approach, with the desirability function, enabled determination of the optimum working conditions of the procedure for simultaneous analysis of three mercury species. (orig.)

  18. Evaluation of the Emission, Transport, and Deposition of Mercury, Fine Particulate Matter, and Arsenic from Coal-Based Power Plants in the Ohio River Valley Region

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Crist

    2005-10-02

    Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg0, RGM, arsenic, and fine

  19. Evaluation of the Emission, Transport, and Deposition of Mercury and Fine Particulate Matter from Coal-Based Power Plants in the Ohio River Valley Region

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Crist

    2008-12-31

    As stated in the proposal: Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, evaluated the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury and associated fine particulate matter. This evaluation involved two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring included the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station contains sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO2, O3, etc.). Laboratory analyses of time-integrated samples were used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Nearreal- time measurements were used to measure the ambient concentrations of PM mass and all gaseous species including Hg0 and RGM. Approximately 30 months of field data were collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data provides mercury, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis includes (1) development of updated inventories of mercury emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg0, RGM, and fine particulate matter in the different sectors of the study region to identify key transport

  20. Separation of mercury in industrial processes of Polish hard steam coals cleaning

    Directory of Open Access Journals (Sweden)

    Wierzchowski Krzysztof

    2016-01-01

    Full Text Available Coal use is regarded as one of main sources of anthropogenic propagation of mercury in the environment. The coal cleaning is listed among methods of the mercury emission reduction. The article concerns the statistical assessment of mercury separation between coal cleaning products. Two industrial processes employed in the Polish coal preparation plants are analysed: coal cleaning in heavy media vessels and coal cleaning in jigs. It was found that the arithmetic mean mercury content in coarse and medium coal size fractions for clean coal from heavy media vessels, amounts 68.9 μg/kg, and most of the results lay below the mean value, while for rejects it amounts 95.5 μg/kg. It means that it is for around 25 μg/kg greater than in the clean coal. The arithmetic mean mercury content in raw coal smalls amounts around 118 mg/kg. The cleaning of smalls in jigs results in clean coal and steam coal blends characterized by mean mercury content 96.8 μg/kg and rejects with mean mercury content 184.5 μg/kg.

  1. Characterization of submicron particles influenced by mixed biogenic and anthropogenic emissions using high-resolution aerosol mass spectrometry: results from CARES

    Directory of Open Access Journals (Sweden)

    A. Setyan

    2012-09-01

    mass relative to CO (ΔOA/ΔCO varied in the range of 5-196 μg m−3 ppm−1, reflecting large variability in SOA production. The highest ΔOA/ΔCO was reached when air masses were dominated by anthropogenic emissions in the presence of a high concentration of biogenic volatile organic compounds (BVOCs. This ratio, which was 97 μg m−3 ppm−1 on average, was much higher than when urban plumes arrived in a low BVOC environment (~36 μg m−3 ppm−1 or during other periods dominated by biogenic SOA (35 μg m−3 ppm−1. These results demonstrate that SOA formation is enhanced when anthropogenic emissions interact with biogenic precursors.

  2. Multivariate analysis of effects of diurnal temperature and seasonal humidity variations by tropical savanna climate on the emissions of anthropogenic volatile organic compounds.

    Science.gov (United States)

    Liu, Chih-Chung; Chen, Wei-Hsiang; Yuan, Chung-Shin; Lin, Chitsan

    2014-02-01

    Volatile organic compounds (VOCs), particularly those from anthropogenic sources, have been of substantial concern. In this study, the influences of diurnal temperature and seasonal humidity variations by tropical savanna climate on the distributions of VOCs from stationary industrial sources were investigated by analyzing the concentrations during the daytime and nighttime in the dry and wet seasons and assessing the results by principal component analysis (PCA) and cluster analysis. Kaohsiung City in Southern Taiwan, known for its severe VOC pollution, was chosen as the location to be examined. In the results, the VOC concentrations were lower during the daytime and in the wet season, possibly attributed to the stronger photochemical reactions and increasing inhibition of VOC emissions and transports by elevating humidity levels. Certain compounds became appreciably more important at higher humidity, as these compounds were saturated hydrocarbons with relatively low molecular weights. The influence of diurnal temperature variation on VOC distribution behaviors seemed to be less important than and interacted with that of seasonal humidity variation. Heavier aromatic hydrocarbons with more complex structures and some aliphatic compounds were found to be the main species accounting for the maximum variances of the data observed at high humidity, and the distinct grouping of compounds implied a pronounced inherent characteristic of each cluster in the observed VOC distributions. Under the influence of diurnal temperature variation, selected VOCs that may have stronger photochemical resistances and/or longer lifetimes in the atmosphere were clustered with each other in the cluster analysis, whereas the other groups might consist of compounds with different levels of vulnerability to sunlight or high temperatures. These findings prove the complications in the current knowledge regarding the VOC contaminations and providing insight for managing the adverse impacts of

  3. Anthropogenic effects on greenhouse gas (CH{sub 4} and N{sub 2}O) emissions in the Guadalete River Estuary (SW Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Burgos, M.; Sierra, A.; Ortega, T.; Forja, J.M.

    2015-01-15

    Coastal areas are subject to a great anthropogenic pressure because more than half of the world's population lives in its vicinity causing organic matter inputs, which intensifies greenhouse gas emissions into the atmosphere. Dissolved concentrations of CH{sub 4} and N{sub 2}O have been measured seasonally during 2013 in the Guadalete River Estuary, which flows into the Cadiz Bay (southwestern Spanish coast). It has been intensely contaminated since 1970. Currently it receives wastewater effluents from cities and direct discharges from nearby agriculture crop. Eight sampling stations have been established along 18 km of the estuary. CH{sub 4} and N{sub 2}O were measured using a gas chromatograph connected to an equilibration system. Additional parameters such as organic matter, dissolved oxygen, nutrients and chlorophyll were determinate as well, in order to understand the relationship between physicochemical and biological processes. Gas concentrations increased from the River mouth toward the inner part, closer to the wastewater treatment plant discharge. Values varied widely within 21.8 and 3483.4 nM for CH{sub 4} and between 9.7 and 147.6 nM for N{sub 2}O. Greenhouse gas seasonal variations were large influenced by the precipitation regime, masking the temperature influence. The Guadatete Estuary acted as a greenhouse gas source along the year, with mean fluxes of 495.7 μmol m{sup −2} d{sup −1} and 92.8 μmol m{sup −2} d{sup −1} for CH{sub 4} and N{sub 2}O, respectively. - Highlights: • The estuary acts as a source of atmospheric methane and nitrous oxide. • Anthropogenic inputs affect the distribution of the greenhouse gases. • Dissolved gases presented an important longitudinal gradient. • Seasonal variations highly depended on the precipitation regimen.

  4. Characterizing mercury emissions from a coal-fired power plant utilizing a venturi wet FGD system

    Energy Technology Data Exchange (ETDEWEB)

    Vann Bush, P.; Dismukes, E.B.; Fowler, W.K.

    1995-11-01

    Southern Research Institute (SRI) conducted a test program at a coal-fired utility plant from October 24 to October 29, 1994. The test schedule was chosen to permit us to collect samples during a period of consecutive days with a constant coal source. SRI collected the samples required to measured concentrations of anions and trace elements around two scrubber modules and in the stack. Anions of interest were CI{sup -}, F{sup -}, and SO{sub 4}{sup =}. We analyzed samples for five major elements (Al, Ca, Fe, Mg, and Ti) and 16 trace elements (As, B, Ba, Be, Cd, Co, Cr, Cu, Hg, Mn, Mo, Ni, Pb, Sb, Se, and V). SRI made measurements across two scrubber modules, each treating nominally 20% of the total effluent from the boiler. Across one module we examined the effects of changes in the liquid-to-gas ratio (L/G) on the efficiency with which the scrubber removes trace elements and anions from the flue gas. Across another module we examined the effects of slurry pH on the removal of trace elements and anions from the flue gas. Measurements in the stack quantified emissions rates of anions and trace elements.

  5. Anthropogenic Nitrogen and Phosphorus Emissions and Related Grey Water Footprints Caused by EU-27′s Crop Production and Consumption

    Directory of Open Access Journals (Sweden)

    Mesfin M. Mekonnen

    2016-01-01

    Full Text Available Water is a prerequisite for life on our planet. Due to climate change and pollution, water availability for agricultural production, industry and households is increasingly put at risk. With agriculture being the largest water user as well as polluter worldwide, we estimate anthropogenic nitrogen and phosphorus emissions to fresh water related to global crop production at a spatial resolution level of 5 by 5 arc min and calculate the grey water footprints (GWF related to EU-27′s crop production. A multiregional input-output model is used to trace the the GWF embodied in the final consumption of crop products by the EU-27. The total GWF related to crop production in the EU-27 in 2007 was 1 × 1012 m3/year. Spain contributed about 40% to this total. Production of cereals (wheat, rice and other cereals take the largest share, accounting for 30% of the GWF, followed by fruits (17%, vegetables (14%, and oil crops (13%. The total agricultural GWF of the EU-27 related to crop consumption was 1830 billion m3/year, which is 3700 m3/year per capita on average. Overall, the EU-27 was able to externalize about 41% of the GWF to the rest of the world through imports of crop products.

  6. Seasonal variation of mercury vapor concentrations in industrial ...

    African Journals Online (AJOL)

    Mercury has been known as a toxic substance that could raise potential risks to human health. The main anthropogenic sources of mercury pollution in air include combustion of fossil fuel, metal smelting and processing, and vehicle transportation all of which exist in Ahvaz city in Southwestern Iran. Ambient air mercury ...

  7. What are the Connections between Mercury and CFLs?

    Science.gov (United States)

    Small amounts of mercury vapor can be released when CFLs break or are improperly disposed of. Despite these emissions, the use of CFLs actually helps reduce total mercury emissions in the U.S. because of their significant energy savings.

  8. Toward the next generation of air quality monitoring: Mercury

    Science.gov (United States)

    Pirrone, Nicola; Aas, Wenche; Cinnirella, Sergio; Ebinghaus, Ralf; Hedgecock, Ian M.; Pacyna, Jozef; Sprovieri, Francesca; Sunderland, Elsie M.

    2013-12-01

    Mercury is a global pollutant that is ubiquitous in the environment. Enrichment of mercury in the biosphere as the result of human activities and subsequent production of methylmercury (MeHg) has resulted in elevated concentrations in fish, wildlife and marine mammals globally. Elemental mercury (Hg0) is the most common form of mercury in the atmosphere, and the form that is most readily transported long distances from its emission source. Most mercury deposition from the atmosphere is in the highly soluble, oxidised inorganic form HgII. Thus, understanding atmospheric transport and oxidant distribution is essential for understanding mercury inputs to ecosystems. Methylmercury (MeHg) is the most toxic form of mercury that accumulates in aquatic food web and can cause a variety of negative health effects such as long-term IQ deficits and cardiovascular impairment in exposed individuals. Humans are predominately exposed to MeHg by consuming fish. Hg0 emitted from anthropogenic sources has a long (6 months-1 year) atmospheric residence time allowing it to be transported long distances in the atmosphere. It is eventually oxidised to the highly soluble HgII (likely by atomic Br and/or OH/O3) and rapidly deposited with precipitation. Some of the mercury deposited to terrestrial and marine ecosystems is converted to MeHg, which is the only form that bioaccumulates in aquatic food webs. Recent studies suggest that there is a first-order relationship between the supply of inorganic mercury to ecosystems and production of MeHg, thus implying that declines in deposition will translate directly into reduced concentrations in biota and human exposures. However, one of the major uncertainties in this cycle is the time scale required for these changes to take place and this is known to vary from years to centuries across different environmental compartments depending on their physical and biogeochemical attributes. Thus, a key challenge in the case of mercury pollution is

  9. Long-term trends of surface ozone and its influencing factors at the Mt Waliguan GAW station, China - Part 2: The roles of anthropogenic emissions and climate variability

    Science.gov (United States)

    Xu, Wanyun; Xu, Xiaobin; Lin, Meiyun; Lin, Weili; Tarasick, David; Tang, Jie; Ma, Jianzhong; Zheng, Xiangdong

    2018-01-01

    Inter-annual variability and long-term trends in tropospheric ozone are both environmental and climate concerns. Ozone measured at Mt Waliguan Observatory (WLG, 3816 m a.s.l.) on the Tibetan Plateau over the period of 1994-2013 has increased significantly by 0.2-0.3 ppbv yr-1 during spring and autumn but shows a much smaller trend in winter and no significant trend in summer. Here we explore the factors driving the observed ozone changes at WLG using backward trajectory analysis, chemistry-climate model hindcast simulations (GFDL AM3), a trajectory-mapped ozonesonde data set, and several climate indices. A stratospheric ozone tracer implemented in GFDL AM3 indicates that stratosphere-to-troposphere transport (STT) can explain ˜ 60 % of the simulated springtime ozone increase at WLG, consistent with an increase in the NW air-mass frequency inferred from the trajectory analysis. Enhanced STT associated with the strengthening of the mid-latitude jet stream contributes to the observed high ozone anomalies at WLG during the springs of 1999 and 2012. During autumn, observations at WLG are more heavily influenced by polluted air masses originating from South East Asia than in the other seasons. Rising Asian anthropogenic emissions of ozone precursors are the key driver of increasing autumnal ozone observed at WLG, as supported by the GFDL AM3 model with time-varying emissions, which captures the observed ozone increase (0.26 ± 0.11 ppbv yr-1). AM3 simulates a greater ozone increase of 0.38 ± 0.11 ppbv yr-1 at WLG in autumn under conditions with strong transport from South East Asia and shows no significant ozone trend in autumn when anthropogenic emissions are held constant in time. During summer, WLG is mostly influenced by easterly air masses, but these trajectories do not extend to the polluted regions of eastern China and have decreased significantly over the last 2 decades, which likely explains why summertime ozone measured at WLG shows no significant trend

  10. Mercury's exosphere: observations during MESSENGER's First Mercury flyby.

    Science.gov (United States)

    McClintock, William E; Bradley, E Todd; Vervack, Ronald J; Killen, Rosemary M; Sprague, Ann L; Izenberg, Noam R; Solomon, Sean C

    2008-07-04

    During MESSENGER's first Mercury flyby, the Mercury Atmospheric and Surface Composition Spectrometer measured Mercury's exospheric emissions, including those from the antisunward sodium tail, calcium and sodium close to the planet, and hydrogen at high altitudes on the dayside. Spatial variations indicate that multiple source and loss processes generate and maintain the exosphere. Energetic processes connected to the solar wind and magnetospheric interaction with the planet likely played an important role in determining the distributions of exospheric species during the flyby.

  11. Impact of anthropogenic emission on air quality over a megacity – revealed from an intensive atmospheric campaign during the Chinese Spring Festival

    Directory of Open Access Journals (Sweden)

    K. Huang

    2012-12-01

    Full Text Available The Chinese Spring Festival is one of the most important traditional festivals in China. The peak transport in the Spring Festival season (spring travel rush provides a unique opportunity for investigating the impact of human activity on air quality in the Chinese megacities. Emission sources are varied and fluctuate greatly before, during and after the Festival. Increased vehicular emissions during the "spring travel rush" before the 2009 Festival resulted in high level pollutants of NOx (270 μg m−3, CO (2572 μg m−3, black carbon (BC (8.5 μg m−3 and extremely low single scattering albedo of 0.76 in Shanghai, indicating strong, fresh combustion. Organics contributed most to PM2.5, followed by NO3, NH4+, and SO42−. During the Chinese Lunar New Year's Eve and Day, widespread usage of fireworks caused heavy pollution of extremely high aerosol concentration, scattering coefficient, SO2, and NOx. Due to the "spring travel rush" after the festival, anthropogenic emissions gradually climbed and mirrored corresponding increases in the aerosol components and gaseous pollutants. Secondary inorganic aerosol (SO42−, NO3, and NH4+ accounted for a dominant fraction of 74% in PM2.5 due to an increase in human activity. There was a greater demand for energy as vast numbers of people using public transportation or driving their own vehicles returned home after the Festival. Factories and constructions sites were operating again.

    The potential source contribution function (PSCF analysis illustrated the possible source areas for air pollutants of Shanghai. The effects of regional and long-range transport were both revealed. Five major sources, i.e. natural sources, vehicular emissions, burning of fireworks, industrial

  12. Environmental costs of mercury pollution.

    Science.gov (United States)

    Hylander, Lars D; Goodsite, Michael E

    2006-09-01

    Mercury (Hg) has been used for millennia in many applications, primarily in artisanal mining and as an electrode in the chlor-alkali industry. It is anthropogenically emitted as a pollutant from coal fired power plants and naturally emitted, primarily from volcanoes. Its unique chemical characteristics enable global atmospheric transport and it is deposited after various processes, ultimately ending up in one of its final sinks, such as incorporated into deep sediment or bioaccumulated, primarily in the marine environment. All forms of Hg have been established as toxic, and there have been no noted biological benefits from the metal. Throughout time, there have been notable incidents of Hg intoxication documented, and the negative health effects have been documented to those chronically or acutely exposed. Today, exposure to Hg is largely diet or occupationally dependent, however, many are exposed to Hg from their amalgam fillings. This paper puts a tentative monetary value on Hg polluted food sources in the Arctic, where local, significant pollution sources are limited, and relates this to costs for strategies avoiding Hg pollution and to remediation costs of contaminated sites in Sweden and Japan. The case studies are compiled to help policy makers and the public to evaluate whether the benefits to the global environment from banning Hg and limiting its initial emission outweigh the benefits from its continued use or lack of control of Hg emissions. The cases we studied are relevant for point pollution sources globally and their remediation costs ranged between 2,500 and 1.1 million US dollars kg(-1) Hg isolated from the biosphere. Therefore, regulations discontinuing mercury uses combined with extensive flue gas cleaning for all power plants and waste incinerators is cost effective.

  13. Current understanding of the driving mechanisms for spatiotemporal variations of atmospheric speciated mercury: a review

    Directory of Open Access Journals (Sweden)

    H. Mao

    2016-10-01

    Full Text Available Atmospheric mercury (Hg is a global pollutant and thought to be the main source of mercury in oceanic and remote terrestrial systems, where it becomes methylated and bioavailable; hence, atmospheric mercury pollution has global consequences for both human and ecosystem health. Understanding of spatial and temporal variations of atmospheric speciated mercury can advance our knowledge of mercury cycling in various environments. This review summarized spatiotemporal variations of total gaseous mercury or gaseous elemental mercury (TGM/GEM, gaseous oxidized mercury (GOM, and particulate-bound mercury (PBM in various environments including oceans, continents, high elevation, the free troposphere, and low to high latitudes. In the marine boundary layer (MBL, the oxidation of GEM was generally thought to drive the diurnal and seasonal variations of TGM/GEM and GOM in most oceanic regions, leading to lower GEM and higher GOM from noon to afternoon and higher GEM during winter and higher GOM during spring–summer. At continental sites, the driving mechanisms of TGM/GEM diurnal patterns included surface and local emissions, boundary layer dynamics, GEM oxidation, and for high-elevation sites mountain–valley winds, while oxidation of GEM and entrainment of free tropospheric air appeared to control the diurnal patterns of GOM. No pronounced diurnal variation was found for Tekran measured PBM at MBL and continental sites. Seasonal variations in TGM/GEM at continental sites were attributed to increased winter combustion and summertime surface emissions, and monsoons in Asia, while those in GOM were controlled by GEM oxidation, free tropospheric transport, anthropogenic emissions, and wet deposition. Increased PBM at continental sites during winter was primarily due to local/regional coal and wood combustion emissions. Long-term TGM measurements from the MBL and continental sites indicated an overall declining trend. Limited measurements suggested TGM

  14. Characterization of submicron particles influenced by mixed biogenic and anthropogenic emissions using high-resolution aerosol mass spectrometry: results from CARES

    Energy Technology Data Exchange (ETDEWEB)

    Setyan, Ari; Zhang, Qi; Merkel, M.; Knighton, Walter B.; Sun, Y.; Song, Chen; Shilling, John E.; Onasch, Timothy B.; Herndon, Scott C.; Worsnop, Douglas R.; Fast, Jerome D.; Zaveri, Rahul A.; Berg, Larry K.; Wiedensohler, A.; Flowers, B. A.; Dubey, Manvendra K.; Subramanian, R.

    2012-09-11

    due to local traffic. Twenty three periods of urban plumes from T0 (Sacramento) to T1 (Cool) were identified using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem). The average PM1 mass loading was much higher in urban plumes (3.9 {micro}gm{sup -3}) than in air masses dominated by biogenic SOA (1.8 {micro}gm{sup -3}). The change in OA mass relative to CO ({Delta}OA/{Delta}CO) varied in the range of 5-196 {micro}gm{sup -3} ppm{sup -1}, reflecting large variability in SOA production. The highest {Delta}OA/{Delta}CO were reached when urban plumes arrived at Cool in the presence of a high concentration of biogenic volatile organic compounds (BVOCs=isoprene+monoterpenes+2-methyl-3-buten-2- ol [MBO]+methyl chavicol). This ratio, which was 77 {micro}gm{sup -3} ppm{sup -1} on average when BVOCs > 2 ppb, is much higher than when urban plumes arrived in a low biogenic VOCs environment (28 {micro}gm{sup -3} ppm{sup -1} when BVOCs < 0.7 ppb) or during other periods dominated by biogenic SOA (40 {micro}gm{sup -3} ppm{sup -1}). The results from this study demon10 strate that SOA formation is enhanced when anthropogenic emissions interact with biogenic precursors.

  15. Observation and analysis of speciated atmospheric mercury in Shangri-La, Tibetan Plateau, China

    Science.gov (United States)

    Zhang, H.; Fu, X. W.; Lin, C.-J.; Wang, X.; Feng, X. B.

    2015-01-01

    This study reports the concentrations and potential sources of speciated atmospheric mercury at the Shangri-La Atmosphere Watch Regional Station (SAWRS), a pristine high-altitude site (3580 m a.s.l.) in Tibetan Plateau, China. Total gaseous mercury (TGM, defined as the sum of gaseous elemental mercury, GEM, and gaseous oxidized mercury, GOM), GOM and particulate-bound mercury (PBM) were monitored from November 2009 to November 2010 to investigate the characteristics and potential influence of the Indian summer monsoon (ISM) and the Westerlies on atmospheric transport of mercury. The mean concentrations (± standard deviation) of TGM, PBM and GOM were 2.55 ± 0.73 ng m-3, 38.82 ± 31.26 pg m-3 and 8.22 ± 7.90 pg m-3, respectively. A notable seasonal pattern of TGM concentrations was observed with higher concentrations at the beginning and the end of the ISM season. High TGM concentrations (> 2.5 ng m-3) were associated with the transport of dry air that carried regional anthropogenic emissions from both Chinese domestic and foreign (e.g., Myanmar, Bay of Bengal, and northern India) sources based on analysis of HYSPLIT4 back trajectories. Somewhat lower PBM and GOM levels during the ISM period were attributed to the enhanced wet scavenging. The high GOM and PBM were likely caused by local photo-chemical transformation under low RH and the domestic biofuel burning in cold seasons.

  16. Mercury in Canadian crude oil

    International Nuclear Information System (INIS)

    Hollebone, B.P.

    2005-01-01

    Estimates for average mercury concentrations in crude oil range widely from 10 ng/g of oil to 3,500 ng/g of oil. With such a broad range of estimates, it is difficult to determine the contributions of the petroleum sector to the total budget of mercury emissions. In response to concerns that the combustion of petroleum products may be a major source of air-borne mercury pollution, Environment Canada and the Canadian Petroleum Products Institute has undertaken a survey of the average total mercury concentration in crude oil processed in Canadian refineries. In order to calculate the potential upper limit of total mercury in all refined products, samples of more than 30 different types of crude oil collected from refineries were measured for their concentration of mercury as it enters into a refinery before processing. High temperature combustion, cold vapour atomic absorption and cold vapour atomic fluorescence were the techniques used to quantify mercury in the samples. The results of the study provide information on the total mass of mercury present in crude oil processed in Canada each year. Results can be used to determine the impact of vehicle exhaust emissions to the overall Canadian mercury emission budget. 17 refs., 2 tabs., 2 figs

  17. Mercury in tropical and subtropical coastal environments

    Science.gov (United States)

    Costa, Monica F.; Landing, William M.; Kehrig, Helena A.; Barletta, Mário; Holmes, Christopher D.; Barrocas, Paulo R. G.; Evers, David C.; Buck, David G.; Vasconcellos, Ana Claudia; Hacon, Sandra S.; Moreira, Josino C.; Malm, Olaf

    2012-01-01

    Anthropogenic activities influence the biogeochemical cycles of mercury, both qualitatively and quantitatively, on a global scale from sources to sinks. Anthropogenic processes that alter the temporal and spatial patterns of sources and cycling processes are changing the impacts of mercury contamination on aquatic biota and humans. Human exposure to mercury is dominated by the consumption of fish and products from aquaculture operations. The risk to society and to ecosystems from mercury contamination is growing, and it is important to monitor these expanding risks. However, the extent and manner to which anthropogenic activities will alter mercury sources and biogeochemical cycling in tropical and sub-tropical coastal environments is poorly understood. Factors as (1) lack of reliable local/regional data; (2) rapidly changing environmental conditions; (3) governmental priorities and; (4) technical actions from supra-national institutions, are some of the obstacles to overcome in mercury cycling research and policy formulation. In the tropics and sub-tropics, research on mercury in the environment is moving from an exploratory “inventory” phase towards more process-oriented studies. Addressing biodiversity conservation and human health issues related to mercury contamination of river basins and tropical coastal environments are an integral part of paragraph 221 paragraph of the United Nations document “The Future We Want” issued in Rio de Janeiro in June 2012. PMID:22901765

  18. Mercury and Your Health

    Science.gov (United States)

    ... the Risk of Exposure to Mercury Learn About Mercury What is Mercury What is Metallic mercury? Toxicological Profile ToxFAQs Mercury Resources CDC’s National Biomonitoring Program Factsheet on Mercury ...

  19. Isotopic Composition of Atmospheric Mercury in China: New Evidence for Sources and Transformation Processes in Air and in Vegetation.

    Science.gov (United States)

    Yu, Ben; Fu, Xuewu; Yin, Runsheng; Zhang, Hui; Wang, Xun; Lin, Che-Jen; Wu, Chuansheng; Zhang, Yiping; He, Nannan; Fu, Pingqing; Wang, Zifa; Shang, Lihai; Sommar, Jonas; Sonke, Jeroen E; Maurice, Laurence; Guinot, Benjamin; Feng, Xinbin

    2016-09-06

    The isotopic composition of atmospheric total gaseous mercury (TGM) and particle-bound mercury (PBM) and mercury (Hg) in litterfall samples have been determined at urban/industrialized and rural sites distributed over mainland China for identifying Hg sources and transformation processes. TGM and PBM near anthropogenic emission sources display negative δ(202)Hg and near-zero Δ(199)Hg in contrast to relatively positive δ(202)Hg and negative Δ(199)Hg observed in remote regions, suggesting that different sources and atmospheric processes force the mass-dependent fractionation (MDF) and mass-independent fractionation (MIF) in the air samples. Both MDF and MIF occur during the uptake of atmospheric Hg by plants, resulting in negative δ(202)Hg and Δ(199)Hg observed in litter-bound Hg. The linear regression resulting from the scatter plot relating the δ(202)Hg to Δ(199)Hg data in the TGM samples indicates distinct anthropogenic or natural influences at the three study sites. A similar trend was also observed for Hg accumulated in broadleaved deciduous forest foliage grown in areas influenced by anthropogenic emissions. The relatively negative MIF in litter-bound Hg compared to TGM is likely a result of the photochemical reactions of Hg(2+) in foliage. This study demonstrates the diagnostic stable Hg isotopic composition characteristics for separating atmospheric Hg of different source origins in China and provides the isotopic fractionation clues for the study of Hg bioaccumulation.

  20. Sedimentary mercury (Hg) in the marginal seas adjacent to Chinese high-Hg emissions: Source-to-sink, mass inventory, and accumulation history.

    Science.gov (United States)

    Kim, Jihun; Lim, Dhongil; Jung, Dohyun; Kang, Jeongwon; Jung, Hoisoo; Woo, Hanjun; Jeong, Kapsik; Xu, Zhaokai

    2018-03-01

    We comprehensively investigated sedimentary Hg in Yellow and East China Seas (YECSs), which constitute potentially important depocenters for large anthropogenic Hg emissions from mainland China. A large dataset of Al-TOC-Hg concentrations led to an in-depth understanding of sedimentary Hg in the entire YECSs, including distribution and its determinants, source-to-sink, background levels, inventory in flux and budget, and accumulation history. Especially, the net atmospheric Hg flux to the sediments was estimated to be 1.3 × 10 -5  g/m 2 /yr, which corresponded reasonably well to that calculated using a box model. About 21.2 tons of atmospheric Hg (approximately 4% of the total anthropogenic atmospheric Hg emissions from China) were buried annually in the YECS basin. This result implies that most of atmospheric Hg from China is transferred to the surface of the Pacific (including the East/Japan Sea and South China Sea) by the westerlies and, consequently, can play a critical role in open-sea aquatic ecosystems. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. The Open-source Data Inventory for Anthropogenic CO2, version 2016 (ODIAC2016: a global monthly fossil fuel CO2 gridded emissions data product for tracer transport simulations and surface flux inversions

    Directory of Open Access Journals (Sweden)

    T. Oda

    2018-01-01

    Full Text Available The Open-source Data Inventory for Anthropogenic CO2 (ODIAC is a global high-spatial-resolution gridded emissions data product that distributes carbon dioxide (CO2 emissions from fossil fuel combustion. The emissions spatial distributions are estimated at a 1  ×  1 km spatial resolution over land using power plant profiles (emissions intensity and geographical location and satellite-observed nighttime lights. This paper describes the year 2016 version of the ODIAC emissions data product (ODIAC2016 and presents analyses that help guide data users, especially for atmospheric CO2 tracer transport simulations and flux inversion analysis. Since the original publication in 2011, we have made modifications to our emissions modeling framework in order to deliver a comprehensive global gridded emissions data product. Major changes from the 2011 publication are (1 the use of emissions estimates made by the Carbon Dioxide Information Analysis Center (CDIAC at the Oak Ridge National Laboratory (ORNL by fuel type (solid, liquid, gas, cement manufacturing, gas flaring, and international aviation and marine bunkers; (2 the use of multiple spatial emissions proxies by fuel type such as (a nighttime light data specific to gas flaring and (b ship/aircraft fleet tracks; and (3 the inclusion of emissions temporal variations. Using global fuel consumption data, we extrapolated the CDIAC emissions estimates for the recent years and produced the ODIAC2016 emissions data product that covers 2000–2015. Our emissions data can be viewed as an extended version of CDIAC gridded emissions data product, which should allow data users to impose global fossil fuel emissions in a more comprehensive manner than the original CDIAC product. Our new emissions modeling framework allows us to produce future versions of the ODIAC emissions data product with a timely update. Such capability has become more significant given the CDIAC/ORNL's shutdown. The ODIAC data

  2. The Open-source Data Inventory for Anthropogenic CO2, version 2016 (ODIAC2016): a global monthly fossil fuel CO2 gridded emissions data product for tracer transport simulations and surface flux inversions

    Science.gov (United States)

    Oda, Tomohiro; Maksyutov, Shamil; Andres, Robert J.

    2018-01-01

    The Open-source Data Inventory for Anthropogenic CO2 (ODIAC) is a global high-spatial-resolution gridded emissions data product that distributes carbon dioxide (CO2) emissions from fossil fuel combustion. The emissions spatial distributions are estimated at a 1 × 1 km spatial resolution over land using power plant profiles (emissions intensity and geographical location) and satellite-observed nighttime lights. This paper describes the year 2016 version of the ODIAC emissions data product (ODIAC2016) and presents analyses that help guide data users, especially for atmospheric CO2 tracer transport simulations and flux inversion analysis. Since the original publication in 2011, we have made modifications to our emissions modeling framework in order to deliver a comprehensive global gridded emissions data product. Major changes from the 2011 publication are (1) the use of emissions estimates made by the Carbon Dioxide Information Analysis Center (CDIAC) at the Oak Ridge National Laboratory (ORNL) by fuel type (solid, liquid, gas, cement manufacturing, gas flaring, and international aviation and marine bunkers); (2) the use of multiple spatial emissions proxies by fuel type such as (a) nighttime light data specific to gas flaring and (b) ship/aircraft fleet tracks; and (3) the inclusion of emissions temporal variations. Using global fuel consumption data, we extrapolated the CDIAC emissions estimates for the recent years and produced the ODIAC2016 emissions data product that covers 2000-2015. Our emissions data can be viewed as an extended version of CDIAC gridded emissions data product, which should allow data users to impose global fossil fuel emissions in a more comprehensive manner than the original CDIAC product. Our new emissions modeling framework allows us to produce future versions of the ODIAC emissions data product with a timely update. Such capability has become more significant given the CDIAC/ORNL's shutdown. The ODIAC data product could play an important

  3. PATHOLOIGCAL EFFECTS OF DIETARY METHYL MERCURY IN AMERICAN KESTRELS ( FALCO SPARVERIUS)

    Science.gov (United States)

    Methyl mercury in aquatic food webs poses significant health risks to both wildlife and humans. One primary source of mercury contamination for both aquatic and terrestrial systems is atmospheric deposition of inorganic mercury from industrial emissions. Once in the environment, ...

  4. Shipborne measurements of mercury in the marine boundary layer

    Science.gov (United States)

    Soerensen, A. L.; Skov, H.; Christensen, J.; Glasius, M.; Soerensen, B. T.; Steffen, A.; Jensen, B.; Christoffersen, C.; Madsen, H. W.; Johnson, M. S.

    2008-12-01

    Mercury accumulates in the human body, for example when consumed through fish and other aquatic animals. While it is poisonous to adults, only low doses are sufficient to cause severe effects in the development of foetuses where the source of mercury is through the mother's blood. From once being a problem restricted to certain populations, the negative effects of mercury consumption are becoming a global problem due to high anthropogenic emissions, long range transport in the atmosphere and bioaccumulation in the food chain after deposition. It is therefore important to understand the atmospheric photochemical pathways of mercury from source to sink. We have used a TEKRAN 2537A mercury vapor analyzer with a TEKRAN 1130 mercury speciation unit to measure gaseous elemental mercury (GEM) and reactive gaseous mercury (RGM) during an eight month circumnavigation of the Earth. This is the longest single track time series of mercury concentrations that we know of. This has offered the opportunity to give a global overview of the marine boundary layer (MBL) distribution of both GEM and RGM. Supplemented with earlier cruise measurements, we now have a broader knowledge of global GEM and RGM concentration in the MBL. The Galathea 3 cruise data offers new knowledge of the mechanisms causing the distribution patterns of GEM and RGM in the MBL. The first analysis of the Galathea 3 data indicates that measurements show a concentration difference between the northern and the southern hemispheres. In the northern hemisphere, the mean concentration in the free ocean is 2.06 ng/m3 and, including values down wind of Western Europe, an average value of 2.47 ng/m3 was found. Measurements in the southern hemisphere show a mean concentration of 1.24 ng/m3 and 1.57 ng/m3 where values close to the coast of West Africa are included. In contrast, the concentration levels of RGM are similar for the two hemispheres (northern hemisphere 3.40 pg/m3, southern hemisphere 3.95 pg/m3). Some

  5. Overview of mercury dry deposition, litterfall, and throughfall studies

    Directory of Open Access Journals (Sweden)

    L. P. Wright

    2016-10-01

    Full Text Available The current knowledge concerning mercury dry deposition is reviewed, including dry-deposition algorithms used in chemical transport models (CTMs and at monitoring sites and related deposition calculations, measurement methods and studies for quantifying dry deposition of gaseous oxidized mercury (GOM and particulate bound mercury (PBM, and measurement studies of litterfall and throughfall mercury. Measured median GOM plus PBM dry deposition in Asia (10.7 µg m−2 yr−1 is almost double that in North America (6.1 µg m−2 yr−1 due to the higher anthropogenic emissions in Asia. The measured mean GOM plus PBM dry deposition in Asia (22.7 µg m−2 yr−1, however, is less than that in North America (30.8 µg m−2 yr−1. The variations between the median and mean values reflect the influences that single extreme measurements can have on the mean of a data set. Measured median litterfall and throughfall mercury are, respectively, 34.8 and 49.0 µg m−2 yr−1 in Asia, 12.8 and 16.3 µg m−2 yr−1 in Europe, and 11.9 and 7.0 µg m−2 yr−1 in North America. The corresponding measured mean litterfall and throughfall mercury are, respectively, 42.8 and 43.5 µg m−2 yr−1 in Asia, 14.2 and 19.0 µg m−2 yr−1 in Europe, and 12.9 and 9.3 µg m−2 yr−1 in North America. The much higher litterfall mercury than GOM plus PBM dry deposition suggests the important contribution of gaseous elemental mercy (GEM to mercury dry deposition to vegetated canopies. Over all the regions, including the Amazon, dry deposition, estimated as the sum of litterfall and throughfall minus open-field wet deposition, is more dominant than wet deposition for Hg deposition. Regardless of the measurement or modelling method used, a factor of 2 or larger uncertainties in GOM plus PBM dry deposition need to be kept in mind when using these numbers for mercury impact studies.

  6. Conifer density within lake catchments predicts fish mercury concentrations in remote subalpine lakes

    Science.gov (United States)

    Eagles-Smith, Collin A.; Herring, Garth; Johnson, Branden L.; Graw, Rick

    2016-01-01

    Remote high-elevation lakes represent unique environments for evaluating the bioaccumulation of atmospherically deposited mercury through freshwater food webs, as well as for evaluating the relative importance of mercury loading versus landscape influences on mercury bioaccumulation. The increase in mercury deposition to these systems over the past century, coupled with their limited exposure to direct anthropogenic disturbance make them useful indicators for estimating how changes in mercury emissions may propagate to changes in Hg bioaccumulation and ecological risk. We evaluated mercury concentrations in resident fish from 28 high-elevation, sub-alpine lakes in the Pacific Northwest region of the United States. Fish total mercury (THg) concentrations ranged from 4 to 438 ng/g wet weight, with a geometric mean concentration (±standard error) of 43 ± 2 ng/g ww. Fish THg concentrations were negatively correlated with relative condition factor, indicating that faster growing fish that are in better condition have lower THg concentrations. Across the 28 study lakes, mean THg concentrations of resident salmonid fishes varied as much as 18-fold among lakes. We used a hierarchal statistical approach to evaluate the relative importance of physiological, limnological, and catchment drivers of fish Hg concentrations. Our top statistical model explained 87% of the variability in fish THg concentrations among lakes with four key landscape and limnological variables: catchment conifer density (basal area of conifers within a lake's catchment), lake surface area, aqueous dissolved sulfate, and dissolved organic carbon. Conifer density within a lake's catchment was the most important variable explaining fish THg concentrations across lakes, with THg concentrations differing by more than 400 percent across the forest density spectrum. These results illustrate the importance of landscape characteristics in controlling mercury bioaccumulation in fish.

  7. Elimination of mercury in health care facilities.

    Science.gov (United States)

    2000-03-01

    Mercury is a persistent, bioaccumulative toxin that has been linked to numerous health effects in humans and wildlife. It is a potent neurotoxin that may also harm the brain, kidneys, and lungs. Unborn children and young infants are at particular risk for brain damage from mercury exposure. Hospitals' use of mercury in chemical solutions, thermometers, blood pressure gauges, batteries, and fluorescent lamps makes these facilities large contributors to the overall emission of mercury into the environment. Most hospitals recognize the dangers of mercury. In a recent survey, four out of five hospitals stated that they have policies in place to eliminate the use of mercury-containing products. Sixty-two percent of them require vendors to disclose the presence of mercury in chemicals that the hospitals purchase. Only 12 percent distribute mercury-containing thermometers to new parents. Ninety-two percent teach their employees about the health and environmental effects of mercury, and 46 percent teach all employees how to clean up mercury spills. However, the same study showed that many hospitals have not implemented their policies. Forty-two percent were not aware whether they still purchased items containing mercury. In addition, 49 percent still purchase mercury thermometers, 44 percent purchase mercury gastrointestinal diagnostic equipment, and 64 percent still purchase mercury lab thermometers.

  8. Large-scale spatial variation in mercury concentrations in cattle in NW Spain

    International Nuclear Information System (INIS)

    Lopez Alonso, M.; Benedito, J.L.; Miranda, M.; Fernandez, J.A.; Castillo, C.; Hernandez, J.; Shore, R.F.

    2003-01-01

    This study quantifies the spatial scale over which major point and diffuse sources of anthropogenic mercury emission affect mercury accumulation by cattle in northwest Spain. - Mercury (Hg) is a highly toxic environmental contaminant and man-made emissions account for between a quarter and a third of total atmospheric levels. Point discharges, particularly coal-burning power stations, are major sources of atmospheric Hg and can result in marked spatial variation in mercury deposition and subsequent uptake by biota. The aims of this study were to quantify the extent to which major point and diffuse sources of atmospheric Hg emissions affected accumulation of Hg by biota throughout Galicia and Asturias, two of the major regions in northwest Spain. We did this by relating renal Hg concentrations in locally reared cattle (n=284) to the proximity of animals to point and diffuse sources of Hg emissions. Mercury residues in calf kidneys ranged between non-detected and 89.4 μg/kg wet weight. Point discharges from coal-fired power plants in Galicia had the most dominant impact on Hg accumulation by calves in Galicia, affecting animals throughout the region and explaining some two-thirds of the variation in renal residues between animals located directly downwind from the plants. The effects of more diffuse emission sources on Hg accumulation in calves were not distinguishable in Galicia but were detected in cattle from neighbouring Asturias. The impact of both point and diffuse sources in elevating environmental levels of bioavailable Hg and subsequent accumulation by cattle extended to approximately 140-200 km downwind from source

  9. 40 CFR 60.45Da - Standard for mercury (Hg).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for mercury (Hg). 60.45Da... for mercury (Hg). (a) For each coal-fired electric utility steam generating unit other than an IGCC... gases that contain mercury (Hg) emissions in excess of each Hg emissions limit in paragraphs (a)(1...

  10. World Emission RETRO ANTHRO

    Data.gov (United States)

    Washington University St Louis — Anthropogenic and vegetation fire emissions data were generated monthly covering a period of 1960 to 2000. Anthropogenic emissions in the RETRO inventory are derived...

  11. Got Mercury?

    Science.gov (United States)

    Meyers, Valerie E.; McCoy, J. Torin; Garcia, Hector D.; James, John T.

    2009-01-01

    Many of the operational and payload lighting units used in various spacecraft contain elemental mercury. If these devices were damaged on-orbit, elemental mercury could be released into the cabin. Although there are plans to replace operational units with alternate light sources, such as LEDs, that do not contain mercury, mercury-containing lamps efficiently produce high quality illumination and may never be completely replaced on orbit. Therefore, exposure to elemental mercury during spaceflight will remain possible and represents a toxicological hazard. Elemental mercury is a liquid metal that vaporizes slowly at room temperature. However, it may be completely vaporized at the elevated operating temperatures of lamps. Although liquid mercury is not readily absorbed through the skin or digestive tract, mercury vapors are efficiently absorbed through the respiratory tract. Therefore, the amount of mercury in the vapor form must be estimated. For mercury releases from lamps that are not being operated, we utilized a study conducted by the New Jersey Department of Environmental Quality to calculate the amount of mercury vapor expected to form over a 2-week period. For longer missions and for mercury releases occurring when lamps are operating, we conservatively assumed complete volatilization of the available mercury. Because current spacecraft environmental control systems are unable to remove mercury vapors, both short-term and long-term exposures to mercury vapors are possible. Acute exposure to high concentrations of mercury vapors can cause irritation of the respiratory tract and behavioral symptoms, such as irritability and hyperactivity. Chronic exposure can result in damage to the nervous system (tremors, memory loss, insomnia, etc.) and kidneys (proteinurea). Therefore, the JSC Toxicology Group recommends that stringent safety controls and verifications (vibrational testing, etc.) be applied to any hardware that contains elemental mercury that could yield

  12. Mercury in dated Greenland marine sediments

    DEFF Research Database (Denmark)

    Asmund, G.; Nielsen, S.P.

    2000-01-01

    Twenty marine sediment cores from Greenland were analysed for mercury, and dated by the lead-210 method. In general the cores exhibit a mercury profile with higher mercury concentrations in the upper centimetres of the core. The cores were studied by linear regression of In Hg vs, age...... of the sediment for the youngest 100 years. As a rule the mercury decreased with depth in the sediment with various degrees of significance. The increase of the mercury flux during the last 100 years is roughly a doubling. The increase may be of anthropogenic origin as it is restricted to the last 100 years....... In four cores the concentration of manganese was found also to increase in the top layers indicating diagenesis. In the other cases the higher concentrations were not accompanied by higher manganese concentrations. The mercury flux to the sediment surface was generally proportional to the Pb-210 flux...

  13. Mercury CEM Calibration

    Energy Technology Data Exchange (ETDEWEB)

    John F. Schabron; Joseph F. Rovani; Susan S. Sorini

    2007-03-31

    The Clean Air Mercury Rule (CAMR) which was published in the Federal Register on May 18, 2005, requires that calibration of mercury continuous emissions monitors (CEMs) be performed with NIST-traceable standards. Western Research Institute (WRI) is working closely with the Electric Power Research Institute (EPRI), the National Institute of Standards and Technology (NIST), and the Environmental Protection Agency (EPA) to facilitate the development of the experimental criteria for a NIST traceability protocol for dynamic elemental mercury vapor generators. The traceability protocol will be written by EPA. Traceability will be based on the actual analysis of the output of each calibration unit at several concentration levels ranging from about 2-40 ug/m{sup 3}, and this analysis will be directly traceable to analyses by NIST using isotope dilution inductively coupled plasma/mass spectrometry (ID ICP/MS) through a chain of analyses linking the calibration unit in the power plant to the NIST ID ICP/MS. Prior to this project, NIST did not provide a recommended mercury vapor pressure equation or list mercury vapor pressure in its vapor pressure database. The NIST Physical and Chemical Properties Division in Boulder, Colorado was subcontracted under this project to study the issue in detail and to recommend a mercury vapor pressure equation that the vendors of mercury vapor pressure calibration units can use to calculate the elemental mercury vapor concentration in an equilibrium chamber at a particular temperature. As part of this study, a preliminary evaluation of calibration units from five vendors was made. The work was performed by NIST in Gaithersburg, MD and Joe Rovani from WRI who traveled to NIST as a Visiting Scientist.

  14. Influence of low pressure on mercury removal from coals via mild pyrolysis

    International Nuclear Information System (INIS)

    Xu, Ping; Luo, Guangqian; Zhang, Bi; Zeng, Xiaobo; Xu, Yang; Zou, Renjie; Gan, Rongli; Yao, Hong

    2017-01-01

    Highlights: • Reducing pressure would speed up Hg removal during the mild pyrolysis of coal. • The role of pyrolysis pressure in Hg removal was limited by coal type. • Hg removal depended on the temperature when the residence time was long enough. - Abstract: Anthropogenic Hg emission control has drawn worldwide attention along with enactments of strict legislation. In response to the need for mercury emission control from flue gases in coal combustion, studies have focused on mild pyrolysis as a promising technology for mercury removal before combustion. However, reaction pressure has not yet been studied, which might affect mercury removal in mild pyrolysis. In this paper, three types of powdery bituminous coal, Coals A-C, from the western plateau area of China, were studied. The core aim was to explore the effect of low reaction pressure on the efficiency of Hg removal. Data of the three coals under different pyrolysis pressures showed that reducing the pressure would improve the mercury removal rate and removal efficiency and that the effect was distinguished by coal type. The role of pyrolysis pressure in Hg removal was limited. When the residence time was long enough, the eventual Hg removal was dependent on the thermal decomposition temperature. These findings might be of some guidance for designing pyrolysis reactors. Furthermore, this article aims to provide some explanation about the mechanism and offer guidance for optimizing the technological parameters of Hg removal by mild pyrolysis.

  15. A Plasma Based OES-CRDS Dual-mode Portable Spectrometer for Trace Element Detection: Emission and Ringdown Measurements of Mercury

    Science.gov (United States)

    Sahay, Peeyush; Scherrer, Susan; Wang, Chuji

    2012-10-01

    Design and development of a plasma based optical emission spectroscopy-cavity ringdown spectroscopy (OES-CRDS) dual-mode portable spectrometer for in situ monitoring of trace elements is described. A microwave plasma torch (MPT) has been utilized, which serves both as an atomization and excitation source for the two modes, viz. OES and CRDS, of the spectrometer. Operation of both modes of the instrument is demonstrated with initial measurements of elemental mercury (Hg). A detection limit of 44 ng mL-1 for Hg at 253.65 nm was determined with the emission mode of the instrument. Severe radiation trapping of 253.65 nm line hampers the measurement of Hg in higher concentration region (> 50 μg ml-1). Therefore, a different wavelength, 365.01 nm, is suggested to measure Hg in that region. Ringdown measurements of the metastable 6s6p ^3P0 state of Hg in the plasma using a 404.65 nm palm size diode laser was conducted to demonstrate the CRDS mode of the instrument. Along with being portable, dual-mode, and self-calibrated, the instrument is capable of measuring a wide range of concentration ranging from sub ng mL-1 to several μg ml-1 for a number of elements.

  16. Development and application of a regional-scale atmospheric mercury model based on WRF/Chem: a Mediterranean area investigation.

    Science.gov (United States)

    Gencarelli, Christian Natale; De Simone, Francesco; Hedgecock, Ian Michael; Sprovieri, Francesca; Pirrone, Nicola

    2014-03-01

    The emission, transport, deposition and eventual fate of mercury (Hg) in the Mediterranean area has been studied using a modified version of the Weather Research and Forecasting model coupled with Chemistry (WRF/Chem). This model version has been developed specifically with the aim to simulate the atmospheric processes determining atmospheric Hg emissions, concentrations and deposition online at high spatial resolution. For this purpose, the gas phase chemistry of Hg and a parametrised representation of atmospheric Hg aqueous chemistry have been added to the regional acid deposition model version 2 chemical mechanism in WRF/Chem. Anthropogenic mercury emissions from the Arctic Monitoring and Assessment Programme included in the emissions preprocessor, mercury evasion from the sea surface and Hg released from biomass burning have also been included. Dry and wet deposition processes for Hg have been implemented. The model has been tested for the whole of 2009 using measurements of total gaseous mercury from the European Monitoring and Evaluation Programme monitoring network. Speciated measurement data of atmospheric elemental Hg, gaseous oxidised Hg and Hg associated with particulate matter, from a Mediterranean oceanographic campaign (June 2009), has permitted the model's ability to simulate the atmospheric redox chemistry of Hg to be assessed. The model results highlight the importance of both the boundary conditions employed and the accuracy of the mercury speciation in the emission database. The model has permitted the reevaluation of the deposition to, and the emission from, the Mediterranean Sea. In light of the well-known high concentrations of methylmercury in a number of Mediterranean fish species, this information is important in establishing the mass balance of Hg for the Mediterranean Sea. The model results support the idea that the Mediterranean Sea is a net source of Hg to the atmosphere and suggest that the net flux is ≈30 Mg year(-1) of elemental Hg.

  17. A high-resolution regional emission inventory of atmospheric mercury and its comparison with multi-scale inventories: a case study of Jiangsu, China

    Directory of Open Access Journals (Sweden)

    H. Zhong

    2016-12-01

    Full Text Available A better understanding of the discrepancies in multi-scale inventories could give an insight into their approaches and limitations as well as provide indications for further improvements; international, national, and plant-by-plant data are primarily obtained to compile those inventories. In this study we develop a high-resolution inventory of Hg emissions at 0.05°  ×  0.05° for Jiangsu, China, using a bottom-up approach and then compare the results with available global/national inventories. With detailed information on individual sources and the updated emission factors from field measurements applied, the annual Hg emissions of anthropogenic origin in Jiangsu in 2010 are estimated at 39 105 kg, of which 51, 47, and 2 % were Hg0, Hg2+, and Hgp, respectively. This provincial inventory is thoroughly compared to three downscaled national inventories (NJU, THU, and BNU and two global ones (AMAP/UNEP and EDGARv4.tox2. Attributed to varied methods and data sources, clear information gaps exist in multi-scale inventories, leading to differences in the emission levels, speciation, and spatial distributions of atmospheric Hg. The total emissions in the provincial inventory are 28, 7, 19, 22, and 70 % larger than NJU, THU, BNU, AMAP/UNEP, and EDGARv4.tox2, respectively. For major sectors, including power generation, cement, iron and steel, and other coal combustion, the Hg contents (HgC in coals/raw materials, abatement rates of air pollution control devices (APCDs and activity levels are identified as the crucial parameters responsible for the differences in estimated emissions between inventories. Regarding speciated emissions, a larger fraction of Hg2+ is found in the provincial inventory than national and global inventories, resulting mainly from the results by the most recent domestic studies in which enhanced Hg2+ were measured for cement and iron and steel plants. Inconsistent information on large power and industrial plants is

  18. Influence of biomass burning and anthropogenic emissions on ozone, carbon monoxide and black carbon at the Mt. Cimone GAW-WMO global station (Italy, 2165 m a.s.l.

    Directory of Open Access Journals (Sweden)

    P. Cristofanelli

    2013-01-01

    Full Text Available This work investigates the variability of ozone (O3, carbon monoxide (CO and equivalent black carbon (BC at the Italian Climate Observatory "O. Vittori" (ICO-OV, part of the Mt. Cimone global GAW-WMO station (Italy. For this purpose, ICO-OV observations carried out in the period January 2007–June 2009, have been analyzed and correlated with the outputs of the FLEXPART Lagrangian dispersion model to specifically evaluate the influence of biomass burning (BB and anthropogenic emissions younger than 20 days. During the investigation period, the average O3, CO and BC at ICO-OV were 54 ± 3 ppb, 122 ± 7 ppb and 213 ± 34 ng m−3 (mean ± expanded uncertainty with p < 95%, with clear seasonal cycles characterized by summer maxima and winter minima for O3 and BC and spring maximum and summer minimum for CO.

    According to FLEXPART outputs, BB impact is maximized during the warm months from July to September but appeared to have a significant contribution to the observed tracers only during specific transport events. We characterised in detail five "representative" events with respect to transport scales (i.e. global, regional and local, source regions and O3, CO and BC variations. For these events, very large variability of enhancement ratios O3/CO (from −0.22 to 0.71 and BC/CO (from 2.69 to 29.83 ng m−3 ppb−1 were observed.

    CO contributions related with anthropogenic emissions (COant contributed to 17.4% of the mean CO value observed at ICO-OV, with the warm months appearing particularly affected by transport events of air-masses rich in anthropogenic pollution. The proportion of tracer variability that is described by FLEXPART COant peaked to 37% (in May–September for CO, 19% (in May–September for O3 and 32% (in January–April for BC. During May–September, the analysis of the correlation

  19. Controlling Factors of Mercury Wet Deposition and Precipitation Concentrations in Upstate New York

    Science.gov (United States)

    Ye, Z.; Mao, H.; Driscoll, C. T.

    2017-12-01

    Observations from the Mercury Deposition Network (MDN) at Huntington Wildlife Forest (HWF) suggested that a significant decline in Hg concentrations in precipitation was linked to Hg emission decreases in the United States, especially in the Northeast and Midwest, and yet Hg wet deposition has remained fairly constant over the past two decades. The present study was aimed to investigate how climatic, terrestrial, and anthropogenic factors had influenced the Hg wet deposition flux in upstate New York (NY). To achieve this, an improved Community Multiscale Air Quality (CMAQ) model was employed, which included state-of-the-art Hg and halogen chemistry mechanisms. A base simulation and five sensitivity simulations were conducted. The base simulation used 2010 meteorology, U.S. EPA NEI 2011, and GEOS-Chem output as initial and boundary conditions (ICs and BCs). The five sensitivity runs each changed one condition at the time as follows: 1-3) 2004, 2005, and 2007 meteorology instead of 2010, 4) NEI 2005 Hg anthropogenic emission out of NYS instead of NEI 2011, and 5) no in-state Hg anthropogenic emission. The study period of all the simulations was March - November 2010, and the domain covered the northeastern United States at 12 km resolution. As a result, compared with rural areas in NYS, Hg wet deposition and ambient Hg concentrations in urban areas were affected more significantly by in-state anthropogenic Hg emission. The in-state anthropogenic Hg emissions contributed up to 20% of Hg wet deposition at urban sites and conditions, causing changes varying from a 91% decrease to a factor of 5 increase in monthly accumulated wet deposition amounts. Possible affecting meteorological factors included, not limited to, solar radiation, cloud height, precipitation, wind speed and direction, and relative humidity, among which precipitation had the largest effects in most areas. Diluting effects were found in non-convective precipitation, which contributed 31-48% to changes in

  20. Reference Atmosphere for Mercury

    Science.gov (United States)

    Killen, Rosemary M.

    2002-01-01

    We propose that Ar-40 measured in the lunar atmosphere and that in Mercury's atmosphere is due to current diffusion into connected pore space within the crust. Higher temperatures at Mercury, along with more rapid loss from the atmosphere will lead to a smaller column abundance of argon at Mercury than at the Moon, given the same crustal abundance of potassium. Because the noble gas abundance in the Hermean atmosphere represents current effusion, it is a direct measure of the crustal potassium abundance. Ar-40 in the atmospheres of the planets is a measure of potassium abundance in the interiors, since Ar-40 is a product of radiogenic decay of K-40 by electron capture with the subsequent emission of a 1.46 eV gamma-ray. Although the Ar-40 in the Earth's atmosphere is expected to have accumulated since the late bombardment, Ar-40 in the atmospheres of Mercury and the Moon is eroded quickly by photoionization and electron impact ionization. Thus, the argon content in the exospheres of the Moon and Mercury is representative of current effusion rather than accumulation over the lifetime of the planet.

  1. The temporal and geographical mercury patterns in polar bears and birds of prey

    DEFF Research Database (Denmark)

    Dietz, R.; Riget, F.; Olsen, M.T.

    2004-01-01

    , the pelagic food chain and the transfer to higher trophic levels. Large uncertainties on the inter-compartment fluxes still exist and future activities should be organised as joint campaigns having a more holistic approach with focus on periods and target areas with AMDEs. Based on the obtained knowledge......: emission – atmospheric transport – atmospheric deposition – transport to seawater (– reemission – transport to seawater) – uptake in plankton – transfer to higher trophic levels are at present insufficiently known. The complexity of the problem stresses the need of contributions from many disciplines...... is anthropogenic, Preliminary results in seawater indicate that 80% of total mercury is found in dissolved form or associated with particles food web. Significant increase in mercury content is found in predators such as crabs, fish, birds...

  2. Emissões naturais e antrópicas de nitrogênio, fósforo e metais para a bacia do Rio Macaé (Macaé, RJ, Brasil sob influência das atividades de exploração de petroleo e gás na Bacia de Campos Natural and anthropogenic emissions of nitrogen, phosphorous and metals into the Macaé river basin (Macaé, RJ, Brazil Influenced by oil and gas exploration in Campos Basin

    Directory of Open Access Journals (Sweden)

    Mauricio Mussi Molisani

    2013-01-01

    Full Text Available Emission factors of natural processes and anthropogenic activities were used to estimate nutrients and metal loads for the lower Macaé river basin, which hosts the operational base for the offshore oil and gas exploration in the Campos Basin. The estimates indicated that emissions from anthropogenic activities are higher than natural emissions. Major contributing drivers include husbandry and urbanization, whose effluents receive no treatment. The increasing offshore oil exploration along the Brazilian littoral has resulted in rapid urbanization and, therefore might increase the inshore emission of anthropogenic chemicals in cases where effective residue control measures are not implemented in fluvial basins of the region.

  3. What's hot about mercury? Examining the influence of climate on mercury levels in Ontario top predator fishes.

    Science.gov (United States)

    Chen, Miranda M; Lopez, Lianna; Bhavsar, Satyendra P; Sharma, Sapna

    2018-04-01

    Mercury (Hg) levels in Ontario top predator fishes have been increasing in recent decades. These increases may be a result of many additive factors, including global climate change. Only recently has research been conducted on how climate change may impact Hg levels in freshwater fishes at large-scales. We examined the relationship between Hg trends and (1) local weather, (2) large-scale climate drivers, and (3) anthropogenic Hg emissions, in native cool water (walleye and northern pike) and warm water (smallmouth bass and largemouth bass) predatory fishes in Ontario, Canada, for historical (1970-1992) and recent (1993-2014) time periods. For each fish species studied, > 25% of Ontario's secondary watersheds shifted from historically declining to recently increasing fish Hg trends, and ≥ 50% of watersheds experienced increasing trends between 1993 and 2014. Recent fish Hg increased at up to 0.20µg/g/decade; which were significant (p climate drivers, and anthropogenic Hg emissions influencing fish Hg levels. Recent Hg levels for walleye and largemouth bass increased with changes in global climate drivers, while higher precipitation influenced smallmouth bass Hg levels the most. Walleye Hg levels increased during the positive phases of global climate drivers, reflecting the local influence of local temperatures and precipitation indirectly. Differentiating the effects of climate-related parameters and emissions is increasingly crucial to assess how changing multiple environmental stressors may impact health of wildlife and humans consuming fish. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Determination of total mercury in biological and geological samples

    Science.gov (United States)

    Crock, James G.

    2005-01-01

    The analytical chemist is faced with several challenges when determining mercury in biological and geological materials. These challenges include widespread mercury contamination, both in the laboratory and the environment, possible losses of mercury during sample preparation and digestion, the wide range of mercury values commonly observed, ranging from the low nanogram per gram or per liter for background areas to hundreds of milligrams per kilogram in contaminated or ore-bearing areas, great matrix diversity, and sample heterogeneity1. These factors can be naturally occurring or anthropogenic, but must be addressed to provide a precise and accurate analysis. Although there are many instrumental methods available for the successful determination of mercury, no one technique will address all problems or all samples all of the time. The approach for the determination of mercury used at the U.S. Geological Survey, Crustal Imaging and Characterization Team, Denver Laboratories, utilizes a suite of complementary instrumental methods when approaching a study requiring mercury analyses. Typically, a study could require the analysis of waters, leachates or selective digestions of solids, vegetation, and biological materials such as tissue, bone, or shell, soils, rocks, sediments, coals, sludges, and(or) ashes. No one digestion or sample preparation method will be suitable for all of these matrices. The digestions typically employed at our laboratories include: (i) a closed-vessel microwave method using nitric acid and hydrogen peroxide, followed by digestion/dilution with a nitric acid/sodium dichromate solution, (ii) a robotic open test-tube digestion with nitric acid and sodium dichromate, (iii) a sealed Teflon? vessel with nitric acid and sodium dichromate, (iv) a sealed glass bottle with nitric acid and sodium dichromate, or (v) open test tube digestion with nitric and sulfuric acids and vanadium pentoxide. The common factor in all these digestions is that they are

  5. Mercury emission and plant uptake of trace elements during early stage of soil amendment using flue gas desulfurization materials.

    Science.gov (United States)

    A pilot-scale field study was carried out to investigate the distribution of Hg and other selected elements in the three potential mitigation pathways, i.e., emission to ambient air, uptake by surface vegetation (i.e., grass), and rainfall infiltration, after flue gas desulfurization (FGD) material ...

  6. The effects of composting approaches on the emissions of anthropogenic volatile organic compounds: A comparison between vermicomposting and general aerobic composting

    International Nuclear Information System (INIS)

    Bhattacharya, S.S.; Kim, Ki-Hyun; Ullah, Md. Ahsan; Goswami, L.; Sahariah, B.; Bhattacharyya, P.; Cho, Sung-Back; Hwang, Ok-Hwa

    2016-01-01

    Emission patterns of 13 VOCs were investigated in three types of vermicomposting systems (Eisenia fetida, Metaphire posthuma, and Lampito mauritii) in reference to a traditional aerobic composting system by feeding the systems with mixtures of three materials (coal ash (CA), municipal solid waste (MSW), and cow dung (CD)). On an average, the emission rates of aromatic VOCs (benzene, toluene, xylenes, and styrene) were two to three times higher than all other groups (aldehyde, ketones, esters, and alcohols) from all three types of feeding mixtures. However, the emission rates of aromatic VOCs were generally reduced over time in both aerobic composting and vermicomposting systems. Such reduction in the emission rates was most prominent from Eisenia-treated CD + MSW (1:1), Lampito-treated CD + CA (1:1), and Metaphire-treated CD. The results clearly indicated that the increase in humified organic C fractions (humic acid and fulvic acid) and the microbial biomass present during the biocomposting processes greatly reduced the emissions of VOCs. Hence, the study recommends that vermicomposting of coal ash and municipal solid waste in combination with cow dung in 1:1 ratio is an environmentally gainful proposition. - Highlights: • Emissions of volatile odorant gases from different composting treatments were investigated. • Emissions of 13 VOCs were quantified in three types of vermicomposting systems. • Systems are fed with mixtures of three materials: coal ash, cow dung, municipal wastes. • The optimum composition of three types of wastes is suggested for vermicomposting. - The emissions of VOCs from vermicomposting were controlled sensitively by humidified organic C fractions and microbial biomass during composting processes.

  7. Mercury CEM Calibration

    Energy Technology Data Exchange (ETDEWEB)

    John Schabron; Joseph Rovani; Mark Sanderson

    2008-02-29

    Mercury continuous emissions monitoring systems (CEMS) are being implemented in over 800 coal-fired power plant stacks. The power industry desires to conduct at least a full year of monitoring before the formal monitoring and reporting requirement begins on January 1, 2009. It is important for the industry to have available reliable, turnkey equipment from CEM vendors. Western Research Institute (WRI) is working closely with the Electric Power Research Institute (EPRI), the National Institute of Standards and Technology (NIST), and the Environmental Protection Agency (EPA) to facilitate the development of the experimental criteria for a NIST traceability protocol for dynamic elemental mercury vapor generators. The generators are used to calibrate mercury CEMs at power plant sites. The Clean Air Mercury Rule (CAMR) which was published in the Federal Register on May 18, 2005 requires that calibration be performed with NIST-traceable standards (Federal Register 2007). Traceability procedures will be defined by EPA. An initial draft traceability protocol was issued by EPA in May 2007 for comment. In August 2007, EPA issued an interim traceability protocol for elemental mercury generators (EPA 2007). The protocol is based on the actual analysis of the output of each calibration unit at several concentration levels ranging initially from about 2-40 {micro}g/m{sup 3} elemental mercury, and in the future down to 0.2 {micro}g/m{sup 3}, and this analysis will be directly traceable to analyses by NIST. The document is divided into two separate sections. The first deals with the qualification of generators by the vendors for use in mercury CEM calibration. The second describes the procedure that the vendors must use to certify the generator models that meet the qualification specifications. The NIST traceable certification is performance based, traceable to analysis using isotope dilution inductively coupled plasma/mass spectrometry performed by NIST in Gaithersburg, MD. The

  8. Climate forcing by anthropogenic aerosols

    Science.gov (United States)

    Charlson, R. J.; Schwartz, S. E.; Hales, J. M.; Cess, R. D.; Coakley, J. A., Jr.; Hansen, J. E.; Hofmann, D. J.

    1992-01-01

    Although long considered to be of marginal importance to global climate change, tropospheric aerosol contributes substantially to radiative forcing, and anthropogenic sulfate aerosol, in particular, has imposed a major perturbation to this forcing. Both the direct scattering of short-wavelength solar radiation and the modification of the shortwave reflective properties of clouds by sulfate aerosol particles increase planetary albedo, thereby exerting a cooling influence on the planet. Current climate forcing due to anthropogenic sulfate is estimated to be -1 to -2 watts per square meter, globally averaged. This perturbation is comparable in magnitude to current anthropogenic greenhouse gas forcing but opposite in sign. Thus, the aerosol forcing has likely offset global greenhouse warming to a substantial degree. However, differences in geographical and seasonal distributions of these forcings preclude any simple compensation. Aerosol effects must be taken into account in evaluating anthropogenic influences on past, current, and projected future climate and in formulating policy regarding controls on emission of greenhouse gases and sulfur dioxide. Resolution of such policy issues requires integrated research on the magnitude and geographical distribution of aerosol climate forcing and on the controlling chemical and physical processes.

  9. Climate forcing by anthropogenic aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Charlson, R.J.; Schwartz, S.E.; Hales, J.M.; Cess, R.D.; Coakley, J.A. Jr.; Hansen, J.E.; Hofmann, D.J. (University of Washington, Seattle, WA (USA). Inst. for Environmental Studies, Dept. of Atmospheric Sciences)

    1992-01-24

    Although long considered to be of marginal importance to global climate change, tropospheric aerosol contributes substantially to radiative forcing, and anthropogenic sulfate aerosol in particular has imposed a major perturbation to this forcing. Both the direct scattering of short wavelength solar radiation and the modification of the shortwave reflective properties of clouds by sulfate aerosol particles increase planetary albedo, thereby exerting a cooling influence on the planet. Current climate forcing due to anthropogenic sulfate is estimated to be -1 to -2 watts per square metre, globally averaged. This perturbation is comparable in magnitude to current anthropogenic greenhouse gas forcing but opposite in sign. Thus, the aerosol forcing has likely offset global greenhouse warming to a substantial degree. However, differences in geographical and seasonal distributions of these forcings preclude any simple compensation. Aerosol effects must be taken into account in evaluating anthropogenic influences on past, current, and projected future climate and in formulating policy regarding controls on emission of greenhouse gases and sulfur dioxide. Resolution of such policy issues requires integrated research on the magnitude and geographical distribution of aerosol climate forcing and on the controlling chemical and physical processes. 73 refs., 4 figs., 2 tabs.

  10. Mercury and methyl mercury ratios in caimans (Caiman crocodilus yacare) from the Pantanal area, Brazil.

    Science.gov (United States)

    Vieira, L M; Nunes, V da S; Amaral, M C do A; Oliveira, A C; Hauser-Davis, R A; Campos, R C

    2011-02-01

    The Pantanal region is the largest floodplain area in the world and of great biological importance due to its unique flora and fauna. This area is continuously undergoing increasing anthropogenic threats, and has also experienced mercury contamination associated with gold mining and other anthropogenic activities. Pantanal caimans are top-level predators, and, as such, show great potential to accumulate mercury (Hg) by biomagnification. In this study 79 specimens from four locations in the Pantanal were analyzed for total Hg and methyl mercury (MeHg) by cold vapor atomic absorption spectrometry. Total Hg contents ranged from 0.02 to 0.36 µg g(-1) (ww), and most specimens presented MeHg ratios above 70%. One of the sites, impacted by anthropogenic activities, presented significantly higher total Hg in comparison to three less impacted sites, supporting the hypothesis that caimans can, in fact, be considered effective bioindicators of ecosystem health.

  11. Comparison of pollutant emission control strategies for cadmium and mercury in urban water systems using substance flow analysis

    DEFF Research Database (Denmark)

    Revitt, D. M.; Lundy, L.; Eriksson, Eva

    2013-01-01

    effective for one city (59% reduction of Hg; 39% reduction of Cd) and the other city being most influenced by the presence of efficient advanced wastewater treatment processes (63% reduction of Hg; 43% reduction of Cd). These reductions in receiving water loads are necessarily accompanied by either...... of urban emission control strategies (ECS) with an emphasis on the scientific and technological benefits which can be achieved. Data from the literature, in combination with expert judgement, have been used to develop two different semi-hypothetical case cities (SHCC), which represent virtual platforms...... to be particularly effective for Cd with the potential to further lower the overall emissions by between 16% and 27%. The most efficient protection of the receiving surface water environment is strongly influenced by the city characteristics with the introduction of stormwater treatment practices being particularly...

  12. The centralized control of elemental mercury emission from the flue gas by a magnetic rengenerable Fe-Ti-Mn spinel.

    Science.gov (United States)

    Liao, Yong; Xiong, Shangchao; Dang, Hao; Xiao, Xin; Yang, Shijian; Wong, Po Keung

    2015-12-15

    A magnetic Fe-Ti-Mn spinel was developed to adsorb gaseous Hg(0) in our previous study. However, it is currently extremely restricted in the control of Hg(0) emission from the flue gas for at least three reasons: sorbent recovery, sorbent regeneration and the interference of the chemical composition in the flue gas. Therefore, the effect of SO2 and H2O on the adsorption of gaseous Hg(0) on the Fe-Ti-Mn spinel and the regeneration of spent Fe-Ti-Mn spinel were investigated in this study. Meanwhile, the procedure of the centralized control of Hg(0) emission from the flue gas by the magnetic Fe-Ti-Mn spinel has been analyzed for industrial application. The spent Fe-Ti-Mn spinel can be regenerated by water washing followed by the thermal treatment at 450 °C with no obvious decrease of its ability for Hg(0) capture. Meanwhile, gaseous Hg(0) in the flue gas can be remarkably concentrated during the regeneration, facilitating its safe disposal. Initial pilot test demonstrated that gaseous Hg(0) in the real flue gas can be concentrated at least 100 times by the Fe-Ti-Mn spinel. Therefore, Fe-Ti-Mn spinel was a novel magnetic regenerable sorbent, which can be used for the centralized control of Hg(0) emission from the flue gas. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Behavior of Mercury Emissions from a Commercial Coal-Fired Utility Boiler: TheRelationship Between Stack Speciation and Near-Field Plume Measurements

    Science.gov (United States)

    The reduction of divalent gaseous mercury (HgII) to elemental gaseous mercury (Hg0) in a commercial coal-fired power plant (CFPP)exhaust plume was investigated by simultaneous measurement in-stack and in-plume as part of a collaborative study among the U.S....

  14. Measurement of Total Site Mercury Emissions from a Chlor-Alkali Plant Using Ultraviolet Differential Optical Absorption Spectroscopy and Cell Room Roof-Vent Monitoring

    Science.gov (United States)

    Mercury-cell chlor-alkali plants can emit significant quantities of fugitive elemental mercury vapor to the air as part of production operations and maintenance activities. In the fall of 2006, the U.S. Environmental Protection Agency (EPA) conducted a measurement project at a ch...

  15. Distribution and air-sea exchange of mercury (Hg) in polluted marine environments

    Science.gov (United States)

    Bagnato, E.; Sprovieri, M.; Bitetto, M.; Bonsignore, M.; Calabrese, S.; Di Stefano, V.; Oliveri, E.; Parello, F.; Mazzola, S.

    2012-04-01

    Mercury (Hg) is emitted in the atmosphere by anthropogenic and natural sources, these last accounting for one third of the total emissions. Since the pre-industrial age, the atmospheric deposition of mercury have increased notably, while ocean emissions have doubled owing to the re-emission of anthropogenic mercury. Exchange between the atmosphere and ocean plays an important role in cycling and transport of mercury. We present the preliminary results from a study on the distribution and evasion flux of mercury at the atmosphere/sea interface in the Augusta basin (SE Sicily, southern Italy), a semi-enclosed marine area affected by a high degree of contamination (heavy metals and PHA) due to the oil refineries placed inside its commercial harbor. It seems that the intense industrial activity of the past have lead to an high Hg pollution in the bottom sediments of the basin, whose concentrations are far from the background mercury value found in most of the Sicily Strait sediments. The release of mercury into the harbor seawater and its dispersion by diffusion from sediments to the surface, make the Augusta basin a potential supplier of mercury both to the Mediterranean Sea and the atmosphere. Based on these considerations, mercury concentration and flux at the air-sea interface of the Bay have been estimated using a real-time atomic adsorption spectrometer (LUMEX - RA915+) and an home-made accumulation chamber, respectively. Estimated Total Atmospheric Mercury (TGM) concentrations during the cruise on the bay were in the range of 1-3 ng · m-3, with a mean value of about 1.4 ng · m-3. These data well fit with the background Hgatm concentration values detected on the land (1-2 ng · m-3, this work), and, more in general, with the background atmospheric TGM levels found in the North Hemisphere (1.5-1.7 ng · m-3)a. Besides, our measurements are in the range of those reported for other important polluted marine areas. The mercury evasion flux at the air-sea interface

  16. Multi-Model Simulations of Aerosol and Ozone Radiative Forcing Due to Anthropogenic Emission Changes During the Period 1990-2015

    Science.gov (United States)

    Myhre, Gunnar; Aas, Wenche; Ribu, Cherian; Collins, William; Faluvegi, Gregory S.; Flanner, Mark; Forster, Piers; Hodnebrog, Oivind; Klimont, Zbigniew; Lund, Marianne T.

    2017-01-01

    Over the past few decades, the geographical distribution of emissions of substances that alter the atmospheric energy balance has changed due to economic growth and air pollution regulations. Here, we show the resulting changes to aerosol and ozone abundances and their radiative forcing using recently updated emission data for the period 1990-2015, as simulated by seven global atmospheric composition models. The models broadly reproduce large-scale changes in surface aerosol and ozone based on observations (e.g. 1 to 3 percent per year in aerosols over the USA and Europe). The global mean radiative forcing due to ozone and aerosol changes over the 1990-2015 period increased by 0.17 plus or minus 0.08 watts per square meter, with approximately one-third due to ozone. This increase is more strongly positive than that reported in IPCC AR5 (Intergovernmental Panel on Climate Change Fifth Assessment Report). The main reasons for the increased positive radiative forcing of aerosols over this period are the substantial reduction of global mean SO2 emissions, which is stronger in the new emission inventory compared to that used in the IPCC analysis, and higher black carbon emissions.

  17. Mercury speciation analysis in marine samples by HPLC-ICPMS

    DEFF Research Database (Denmark)

    Rasmussen, Rie Romme; Svendsen, Maja Erecius; Herbst, M. Birgitte Koch

    Mercury (Hg) is a naturally occurring element, which is found in the earth’s crust and can be released into the environment through both natural and anthropogenic processes. Mercury exists as elemental mercury (metallic), inorganic mercury and organic mercury (primarily methylmercury......). Methylmercury is highly toxic, particularly to the nervous system, and the developing brain is thought to be the most sensitive target organ for methylmercury toxicity. Methylmercury bioaccumulates and biomagnifies along the food chain and it is the most common mercury species in fish and seafood. Human...... hydrochloric acid by sonication. Hereby the protein-bound mercury species are released. The extracts were then centrifuged (10 min at 3170 x g) and the supernatant decanted (extraction step was repeated twice). The combined extracts were added 10 M sodium hydroxide to increase pH, following further dilution...

  18. Mercury and Pregnancy

    Science.gov (United States)

    ... Home > Pregnancy > Is it safe? > Mercury and pregnancy Mercury and pregnancy E-mail to a friend Please ... vision problems. How can you be exposed to mercury? Mercury has several forms: It can be a ...

  19. Mercury Information Clearinghouse

    Energy Technology Data Exchange (ETDEWEB)

    Chad A. Wocken; Michael J. Holmes; Dennis L. Laudal; Debra F. Pflughoeft-Hassett; Greg F. Weber; Nicholas V. C. Ralston; Stanley J. Miller; Grant E. Dunham; Edwin S. Olson; Laura J. Raymond; John H. Pavlish; Everett A. Sondreal; Steven A. Benson

    2006-03-31

    The Canadian Electricity Association (CEA) identified a need and contracted the Energy & Environmental Research Center (EERC) to create and maintain an information clearinghouse on global research and development activities related to mercury emissions from coal-fired electric utilities. With the support of CEA, the Center for Air Toxic Metals{reg_sign} (CATM{reg_sign}) Affiliates, and the U.S. Department of Energy (DOE), the EERC developed comprehensive quarterly information updates that provide a detailed assessment of developments in the various areas of mercury monitoring, control, policy, and research. A total of eight topical reports were completed and are summarized and updated in this final CEA quarterly report. The original quarterly reports can be viewed at the CEA Web site (www.ceamercuryprogram.ca). In addition to a comprehensive update of previous mercury-related topics, a review of results from the CEA Mercury Program is provided. Members of Canada's coal-fired electricity generation sector (ATCO Power, EPCOR, Manitoba Hydro, New Brunswick Power, Nova Scotia Power Inc., Ontario Power Generation, SaskPower, and TransAlta) and CEA, have compiled an extensive database of information from stack-, coal-, and ash-sampling activities. Data from this effort are also available at the CEA Web site and have provided critical information for establishing and reviewing a mercury standard for Canada that is protective of environment and public health and is cost-effective. Specific goals outlined for the CEA mercury program included the following: (1) Improve emission inventories and develop management options through an intensive 2-year coal-, ash-, and stack-sampling program; (2) Promote effective stack testing through the development of guidance material and the support of on-site training on the Ontario Hydro method for employees, government representatives, and contractors on an as-needed basis; (3) Strengthen laboratory analytical capabilities through

  20. Future Premature Mortality Due to O3, Secondary Inorganic Aerosols and Primary PM in Europe — Sensitivity to Changes in Climate, Anthropogenic Emissions, Population and Building Stock

    Directory of Open Access Journals (Sweden)

    Camilla Geels

    2015-03-01

    Full Text Available Air pollution is an important environmental factor associated with health impacts in Europe and considerable resources are used to reduce exposure to air pollution through emission reductions. These reductions will have non-linear effects on exposure due, e.g., to interactions between climate and atmospheric chemistry. By using an integrated assessment model, we quantify the effect of changes in climate, emissions and population demography on exposure and health impacts in Europe. The sensitivity to the changes is assessed by investigating the differences between the decades 2000–2009, 2050–2059 and 2080–2089. We focus on the number of premature deaths related to atmospheric ozone, Secondary Inorganic Aerosols and primary PM. For the Nordic region we furthermore include a projection on how population exposure might develop due to changes in building stock with increased energy efficiency. Reductions in emissions cause a large significant decrease in mortality, while climate effects on chemistry and emissions only affects premature mortality by a few percent. Changes in population demography lead to a larger relative increase in chronic mortality than the relative increase in population. Finally, the projected changes in building stock and infiltration rates in the Nordic indicate that this factor may be very important for assessments of population exposure in the future.

  1. A vegetation control on seasonal variations in global atmospheric mercury concentrations

    Science.gov (United States)

    Jiskra, Martin; Sonke, Jeroen E.; Obrist, Daniel; Bieser, Johannes; Ebinghaus, Ralf; Myhre, Cathrine Lund; Pfaffhuber, Katrine Aspmo; Wängberg, Ingvar; Kyllönen, Katriina; Worthy, Doug; Martin, Lynwill G.; Labuschagne, Casper; Mkololo, Thumeka; Ramonet, Michel; Magand, Olivier; Dommergue, Aurélien

    2018-04-01

    Anthropogenic mercury emissions are transported through the atmosphere as gaseous elemental mercury (Hg(0)) before they are deposited to Earth's surface. Strong seasonality in atmospheric Hg(0) concentrations in the Northern Hemisphere has been explained by two factors: anthropogenic Hg(0) emissions are thought to peak in winter due to higher energy consumption, and atmospheric oxidation rates of Hg(0) are faster in summer. Oxidation-driven Hg(0) seasonality should be equally pronounced in the Southern Hemisphere, which is inconsistent with observations of constant year-round Hg(0) levels. Here, we assess the role of Hg(0) uptake by vegetation as an alternative mechanism for driving Hg(0) seasonality. We find that at terrestrial sites in the Northern Hemisphere, Hg(0) co-varies with CO2, which is known to exhibit a minimum in summer when CO2 is assimilated by vegetation. The amplitude of seasonal oscillations in the atmospheric Hg(0) concentration increases with latitude and is larger at inland terrestrial sites than coastal sites. Using satellite data, we find that the photosynthetic activity of vegetation correlates with Hg(0) levels at individual sites and across continents. We suggest that terrestrial vegetation acts as a global Hg(0) pump, which can contribute to seasonal variations of atmospheric Hg(0), and that decreasing Hg(0) levels in the Northern Hemisphere over the past 20 years can be partly attributed to increased terrestrial net primary production.

  2. Reflectance and Emissivity Spectra of Graphite as Potential Darkening Agent for Mercury from the UV to the TIR and its Comparison to Remote Sensing Measurements from MESSENGER and MERTIS on BepiColombo

    Science.gov (United States)

    Maturilli, A.; Helbert, J.; D'Amore, M.; Ferrari, S.; Hiesinger, H.

    2016-12-01

    For long time Mercury was considered a planet very similar to the Moon. Both are small rocky bodies in the inner solar system with thin exospheres and no large scale traces of recent geological activity. However Mercury's surface reflects much less sunlight than the Moon. Trying to explain the reasons for this difference, significant abundances of iron and titanium (and their oxides) were proposed for the Hermean surface. But the NASA MESSENGER instruments found only small abundances of iron, confirming earlier ground-based spectroscopy observations, and virtually no titanium. Therefore neither of the elements can account for this diversity. New analysis of MESSENGER data acquired for the darkest regions of Mercury's surface suggest that the unknown darkening material could be carbon, in particular as the mineral graphite (Peplowski et al., 2016) whose abundance in the darker regions is predicted to be 1 to 3 wt% higher than the surroundings. At the Planetary Spectroscopy Laboratory (PSL) of the Institute of Planetary Research (DLR, Berlin) we measured reflectance spectra for several phase angles of graphite, from UV to TIR spectral range (0.2 to 20 µm). Samples have been measured fresh and then after successive steps of heating at 400°C in vacuum for 8 hours. Following the same procedure, reflectance spectra of Komatiite (chosen as Mercury surface simulant, after Maturilli et al., 2014) was measured alone and mixed with few % of graphite to reproduce the results from Peplowski et al (2016). The results from this experiment can be compared to the data acquired from the MDIS and the MASCS instrument onboard the NASA MESSENGER mission. The same set of samples has been measured in emissivity, in vacuum (< 0.8 mbar) for successive cycles of several surface temperatures from 100°C to 400°C in the TIR spectral range (1 to 18 µm) in preparation for the emissivity spectra that will be collected by the Mercury Radiometer and Thermal Infrared Spectrometer (MERTIS), a

  3. Evaluation of the characteristics of a field emission cathode for use in a Mercury ion trap frequency standard

    Science.gov (United States)

    Christman, J. M.

    1988-01-01

    The performance is reported of a field emission array characterized for the purpose of replacing the filament in a trapped ion frequency standard. This dark electron emitter eliminates the need for the interference filter currently used in the trapped ion standard. While reducing the filament's unwanted light, this filter causes a significant reduction in the signal. The magnetic field associated with the filament is also eliminated, thus potentially improving the present stability of the trapped ion standard. The operation of the filament in the present system is described, as well as the associated concerns. The cathode considered for the filament's replacement is then described along with the experimental system. Experimental results, observations, and conclusions are presented.

  4. Microplasma source based on a dielectric barrier discharge for the determination of mercury by atomic emission spectrometry.

    Science.gov (United States)

    Zhu, Zhenli; Chan, George C-Y; Ray, Steven J; Zhang, Xinrong; Hieftje, Gary M

    2008-11-15

    A low-power, atmospheric-pressure microplasma source based on a dielectric barrier discharge (DBD) has been developed for use in atomic emission spectrometry. The small plasma (0.6 mm x 1 mm x 10 mm) is generated within a glass cell by using electrodes that do not contact the plasma. Powered by an inexpensive ozone generator, the discharge ignites spontaneously, can be easily sustained in Ar or He at gas flow rates ranging from 5 to 200 mL min(-1), and requires less than 1 W of power. The effect of operating parameters such as plasma gas identity, plasma gas flow rate, and residual water vapor on the DBD source performance has been investigated. The plasma can be operated without removal of residual water vapor, permitting it to be directly coupled with cold vapor generation sample introduction. The spectral background of the source is quite clean in the range from 200 to 260 nm with low continuum and structured components. The DBD source has been applied to the determination of Hg by continuous-flow, cold vapor generation and offers detection limits from 14 (He-DBD) to 43 pg mL(-1) (Ar-DBD) without removal of the residual moisture. The use of flow injection with the He-DBD permits measurement of Hg with a 7.2 pg limit of detection, and with repetitive injections having an RSD of <2% for a 10 ng mL(-1) standard.

  5. Effect of anthropogenic aerosol emissions on precipitation in warm conveyor belts in the western North Pacific in winter - a model study with ECHAM6-HAM

    Science.gov (United States)

    Joos, Hanna; Madonna, Erica; Witlox, Kasja; Ferrachat, Sylvaine; Wernli, Heini; Lohmann, Ulrike

    2017-05-01

    While there is a clear impact of aerosol particles on the radiation balance, whether and how aerosol particles influence precipitation is controversial. Here we use the ECHAM6-HAM global climate model coupled to an aerosol module to analyse whether an impact of anthropogenic aerosol particles on the timing and amount of precipitation can be detected in North Pacific warm conveyor belts. Warm conveyor belts are the strongest precipitation-producing airstreams in extratropical cyclones and are identified here with a Lagrangian technique, i.e. by objectively identifying the most strongly ascending trajectories in North Pacific cyclones. These conveyor belts have been identified separately in 10-year ECHAM6-HAM simulations with present-day and pre-industrial aerosol conditions. Then, the evolution of aerosols and cloud properties has been analysed in detail along the identified warm conveyor belt trajectories. The results show that, under present-day conditions, some warm conveyor belt trajectories are strongly polluted (i.e. high concentrations of black carbon and sulfur dioxide) due to horizontal transport from eastern Asia to the oceanic region where warm conveyor belts start their ascent. In these polluted trajectories a weak delay and reduction of precipitation formation occurs compared to clean warm conveyor belt trajectories. However, all warm conveyor belts consist of both polluted and clean trajectories at the time they start their ascent, and the typically more abundant clean trajectories strongly reduce the aerosol impact from the polluted trajectories. The main conclusion then is that the overall amount of precipitation is comparable in pre-industrial conditions, when all warm conveyor belt trajectories are clean, and in present-day conditions, when warm conveyor belts consist of a mixture of clean and polluted trajectories.

  6. Oxidation of elemental Hg in anthropogenic and marine airmasses

    Directory of Open Access Journals (Sweden)

    H. Timonen

    2013-03-01

    Full Text Available Mercury (Hg is a neurotoxin that bioaccumulates in the food chain. Mercury is emitted to the atmosphere primarily in its elemental form, which has a long lifetime allowing global transport. It is known that atmospheric oxidation of gaseous elemental mercury (GEM generates reactive gaseous mercury (RGM which plays an important role in the atmospheric mercury cycle by enhancing the rate of mercury deposition to ecosystems. However, the primary GEM oxidants, and the chemical composition of RGM are poorly known. Using speciated mercury measurements conducted at the Mt. Bachelor Observatory since 2005 we present two previously unidentified sources of RGM to the free troposphere (FT. Firstly, we observed elevated RGM concentrations, large RGM/GEM-ratios, and anti-correlation between RGM and GEM during Asian long-rang transport events, demonstrating that RGM is formed from GEM by in-situ oxidation in some anthropogenic pollution plumes in the FT. During the Asian pollution events the measured RGM/GEM-enhancement ratios reached peak values, up to ~0.20, which are significantly larger than ratios typically measured (RGM/GEM −3, high RGM/GEM-ratios (up to 1, and very low ozone levels during these events provide observational evidence indicating significant GEM oxidation in the lower FT in some conditions.

  7. Quantification of Gaseous Elemental Mercury Dry Deposition to Environmental Surfaces using Mercury Stable Isotopes in a Controlled Environment

    Science.gov (United States)

    Rutter, A. P.; Schauer, J. J.; Shafer, M. M.; Olson, M.; Robinson, M.; Vanderveer, P.; Creswell, J. E.; Parman, A.; Mallek, J.; Gorski, P.

    2009-12-01

    Andrew P. Rutter (1) * *, James J, Schauer (1,2) *, Martin M. Shafer(1,2), Michael R. Olson (1), Michael Robinson (1), Peter Vanderveer (3), Joel Creswell (1), Justin L. Mallek (1), Andrew M. Parman (1) (1) Environmental Chemistry and Technology Program, 660 N. Park St, Madison, WI 53705. (2) Wisconsin State Laboratory of Hygiene, 2601 Agriculture Drive, Madison, WI 53718. (3) Biotron, University of Wisconsin - Madison, 2115 Observatory Drive, Madison, WI 53706 * Correspond author(jjschauer@wisc.edu) * *Presenting author (aprutter@wisc.edu) Abstract Gaseous elemental mercury (GEM) is the predominant component of atmospheric mercury outside of arctic depletion events, and locations where anthropogenic point sources are not influencing atmospheric concentrations. GEM constitutes greater than 99% of the mercury mass in most rural and remote locations. While dry and wet deposition of atmospheric mercury is thought to be dominated by oxidized mercury (a.k.a. reactive mercury), only small GEM uptake to environmental surfaces could impact the input of mercury to terrestrial and aquatic ecosystems. Dry deposition and subsequent re-emission of gaseous elemental mercury is a pathway from the atmosphere that remains only partially understood from a mechanistic perspective. In order to properly model GEM dry deposition and re-emission an understanding of its dependence on irradiance, temperature, and relative humidity must be measured and parameterized for a broad spectrum of environmental surfaces colocated with surrogate deposition surfaces used to make field based dry deposition measurements. Measurements of isotopically enriched GEM dry deposition were made with a variety of environmental surfaces in a controlled environment room at the University of Wisconsin Biotron. The experimental set up allowed dry deposition components which are not easily separated in the field to be decoupled. We were able to isolate surface transfer processes from variabilities caused by

  8. Source apportionment of atmospheric mercury pollution in China using the GEOS-Chem model.

    Science.gov (United States)

    Wang, Long; Wang, Shuxiao; Zhang, Lei; Wang, Yuxuan; Zhang, Yanxu; Nielsen, Chris; McElroy, Michael B; Hao, Jiming

    2014-07-01

    China is the largest atmospheric mercury (Hg) emitter in the world. Its Hg emissions and environmental impacts need to be evaluated. In this study, China's Hg emission inventory is updated to 2007 and applied in the GEOS-Chem model to simulate the Hg concentrations and depositions in China. Results indicate that simulations agree well with observed background Hg concentrations. The anthropogenic sources contributed 35-50% of THg concentration and 50-70% of total deposition in polluted regions. Sensitivity analysis was performed to assess the impacts of mercury emissions from power plants, non-ferrous metal smelters and cement plants. It is found that power plants are the most important emission sources in the North China, the Yangtze River Delta (YRD) and the Pearl River Delta (PRD) while the contribution of non-ferrous metal smelters is most significant in the Southwest China. The impacts of cement plants are significant in the YRD, PRD and Central China. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Current and future levels of mercury atmospheric pollution on global scale

    NARCIS (Netherlands)

    Pacyna, Jozef M.; Travnikov, Oleg; De Simone, Francesco; Hedgecock, Ian M.; Sundseth, Kyrre; Pacyna, Elisabeth G.; Steenhuisen, Frits; Pirrone, Nicola; Munthe, John; Kindbom, Karin

    2016-01-01

    An assessment of current and future emissions, air concentrations and atmospheric deposition of mercury world-wide are presented on the basis of results obtained during the performance of the EU GMOS (Global Mercury Observation System) project. Emission estimates for mercury were prepared with the

  10. Current and future levels of mercury atmospheric pollution on a global scale

    NARCIS (Netherlands)

    Pacyna, J. M.; Travnikov, O.; De Simone, F.; Hedgecock, I. M.; Sundseth, K.; Pacyna, E. G.; Steenhuisen, F.; Pirrone, N.; Munthe, J.; Kindbom, K.

    2016-01-01

    An assessment of current and future emissions, air concentrations, and atmospheric deposition of mercury worldwide is presented on the basis of results obtained during the performance of the EU GMOS (Global Mercury Observation System) project. Emission estimates for mercury were prepared with the

  11. Use of mercury-based medical equipment and mercury content in effluents of tertiary care hospitals in India.

    Science.gov (United States)

    Peshin, Sharda Shah; Halder, Nabanita; Jathikarta, Chandrababu; Gupta, Yogendra Kumar

    2015-03-01

    Environmental pollution due to mercury has raised serious concern over the last few decades. Various anthropogenic sources including the health sector play a vital role in increasing the mercury load on the environment. Mercury poses an important health issue because of its indiscriminate disposal into the environment. There are numerous mercury-containing devices being used in the health-care setup. The objective of the study was to obtain information on the procurement and consumption of mercury-containing items in the current year, the methods adopted for disposal and the contamination of the hospital effluents with mercury. A questionnaire-based study was conducted in government and corporate hospitals from different states of India, for the quantitative assessment of use of mercury-based items in tertiary care hospitals in India (n = 113). The results showed that mercury-containing items are still being used in India. The most common method adopted for disposal was collection in plastic bags and labeling them as hazardous waste. The hospital effluents contained mercury below the permissible limits. In view of the environmental pollution due to mercury and its adverse impact on health, efforts by the government are on for phasing out mercury-containing equipment from the health-care setup in India.

  12. The export of mercury from Asia is studied by using the STEM-Hg model

    Science.gov (United States)

    Pan, L.; Carmichael, G.

    2005-12-01

    It is estimated that Asian countries (including China, India, and South and North Korea) contribute 56% to the global mercury emissions to the atmosphere due to the heavy use of coal. The large amount of mercury emissions and the long life time of mercury in the atmosphere imply the possibility of the long range transport of mercury from Asia to North America. To better understand the fate and transport of mercury between these two continents, the STEM-Hg model was developed based on up-to-date mercury mechanisms in the atmosphere. Mercury aqueous phase oxidation-reduction reactions, sulfite and oxygen aqueous phase reactions along with mercury gas phase reactions are included in the model. The model simulates Hg(0), Hg(2+) and Hg(p). By running the model using new mercury emissions inventory in two domains, the ACE-Asia and the ICARTT domains, the contributions of long range transport to Hg fluxes in North America are evaluated.

  13. Evidence of Increased Anthropogenic Emissions of Platinum in Coastal Systems from Time-Series Analysis of Mussels Samples (1991-2011

    Directory of Open Access Journals (Sweden)

    Patricia Neira Del Río

    2014-06-01

    Full Text Available The Platinum Group Elements (PGEs, which include platinum (Pt, palladium (Pd, iridium (Ir, rhodium (Rh, osmium (Os and ruthenium (Ru, are amongst the rarest trace elements in the Earth’s crust. They have similar physical and chemical properties, and tend to occur together in the same mineral deposits. Their properties are resistance to chemical corrosion over a wide temperature range, high melting point, high mechanical strength and good ductility, as well as outstanding catalytic properties, being therefore critical in many emerging technologies. Although natural environmental concentrations of PGEs are extremely low – generally at or below the ng/g –, levels of Pt, Pd and Rh are increasing, mainly because of their use in catalytic converters of motor vehicles (Zereini et al., 2007. The automobile catalysts converters use noble metals as active components, and were developed with the aim of reducing emissions of hydrocarbons, carbon monoxide and nitrogen oxides (Sures et al., 2005. Since the beginning of the 1980s, the PGEs represent a relatively new category of trace metals in the environment, especially in relation to automobile traffic (Haus et al., 2007. The PGEs of automobile catalytic converters are eroded from the surface of the catalyst and subsequently emitted in metallic form or as oxides (Turner and Price, 2008. The PGEs are subject to various physical and chemical transformations after deposition, and can potentially result in migration into environmental compartments (Moldovan et al., 2001; Vaughan and Florence, 1992. The concentration of PGEs has much increased in traffic exposed environmental samples (Lesniewska et al., 2004; Ely et al., 2001; Zereini et al., 2001; Schäfer et al., 1999; Fritsche and Meisel, 2004. However, what constituted a decrease in greenhouse gas emissions has resulted in increased levels of PGEs in the environment as shown in some studies in the dust of the road, roadsides, river sediments, sewage

  14. Mercury's Messenger

    Science.gov (United States)

    Chapman, Clark R.

    2004-01-01

    Forty years after Mariner 2, planetary exploration has still only just begun, and many more missions are on drawing boards, nearing the launch pad, or even en route across interplanetary space to their targets. One of the most challenging missions that will be conducted this decade is sending the MESSENGER spacecraft to orbit the planet Mercury.…

  15. Reducing Mercury Pollution from Artisanal and Small-Scale Gold Mining

    Science.gov (United States)

    To reduce airborne mercury emissions from these Gold Shops, EPA and the Argonne National Laboratory (ANL) have partnered to design a low cost, easily constructible technology called the Gold Shop Mercury Capture System (MCS).

  16. Historical and Future Trends in Global Source-receptor Relationships of Mercury

    Science.gov (United States)

    Chen, L.; Zhang, W.; Wang, X.

    2017-12-01

    Growing concerns about the risk associated with increasing environmental Mercury (Hg) levels have resulted in a focus on the relationships between intercontinental emitted and accumulated Hg. We use a global biogeochemical Hg model with eight continental regions and a global ocean to evaluate the legacy impacts of historical anthropogenic releases (2000 BC to 2008 AD) on global source-receptor relationships of Hg. The legacy impacts of historical anthropogenic releases are confirmed to be significant on the source-receptor relationships according to our results. Historical anthropogenic releases from Asia account for 8% of total soil Hg in North America, which is smaller than the proportion ( 17%) from previous studies. The largest contributors to the global oceanic Hg are historical anthropogenic releases from North America (26%), Asia (16%), Europe (14%) and South America (14%). Although anthropogenic releases from Asia have exceeded North America since the 1970s, source contributions to global Hg receptors from Asia have not exceeded North America so far. Future projections indicate that if Hg emissions are not effectively controlled, Asia will exceed North America as the largest contributor to the global ocean in 2019 and this has a long-term adverse impact on the future environment. For the Arctic Ocean, historical anthropogenic release from North America contributes most to the oceanic Hg reservoir and future projections reveal that the legacy impacts of historical releases from mid-latitudes would lead to the potential of rising Hg in the Arctic Ocean in the future decades, which calls for more effective Hg controls on mid-latitude releases.

  17. Mercury Report-Children's exposure to elemental mercury

    Science.gov (United States)

    ... gov . Mercury Background Mercury Report Additional Resources Mercury Report - Children's Exposure to Elemental Mercury Recommend on Facebook ... I limit exposure to mercury? Why was the report written? Children attending a daycare in New Jersey ...

  18. Enhancing atmospheric mercury research in China to improve the current understanding of the global mercury cycle: the need for urgent and closely coordinated efforts.

    Science.gov (United States)

    Ci, Zhijia; Zhang, Xiaoshan; Wang, Zhangwei

    2012-06-05

    The current understanding of the global mercury (Hg) cycle remains uncertain because Hg behavior in the environment is very complicated. The special property of Hg causes the atmosphere to be the most important medium for worldwide dispersion and transformation. The source and fate of atmospheric Hg and its interaction with the surface environment are the essential topics in the global Hg cycle. Recent declining measurement trends of Hg in the atmosphere are in apparent conflict with the increasing trends in global anthropogenic Hg emissions. As the single largest country contributor of anthropogenic Hg emission, China's role in the global Hg cycle will become more and more important in the context of the decreasing man-made Hg emission from developed regions. However, much less Hg information in China is available. As a global pollutant which undergoes long-range transport and is persistence in the environment, increasing Hg knowledge in China could not only promote the Hg regulation in this country but also improve the understanding of the fundamental of the global Hg cycle and further push the abatement of this toxin on a global scale. Then the atmospheric Hg research in China may be a breakthrough for improving the current understanding of the global Hg cycle. However, due to the complex behavior of Hg in the atmosphere, a deeper understanding of the atmospheric Hg cycle in China needs greater cooperation across fields.

  19. Influence of seasonality on the interaction of mercury with aquatic humic substances extracted from the Middle Negro River Basin (Amazon)

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Luciana C. de, E-mail: lcamargo@ufscar.br [Federal University of Sao Carlos (UFSCar), Sorocaba, SP (Brazil); Botero, Wander G. [Federal University of Alagoas (UFAL), Arapiraca, AL (Brazil); Santos, Felipe A. [Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, SP (Brazil); Sargentini Junior, Ezio [National Amazon Research Institute (INPA), Manaus, AM (Brazil); Rocha, Julio C.; Santos, Ademir dos [Institute of Chemistry of Araraquara, Sao Paulo State University (UNESP), Araraquara, SP (Brazil)

    2012-09-15

    High mercury concentrations in different environmental matrices in the Amazon have been attributed to mining activities. However, high concentrations of mercury are also present in the soil and water in places like in the middle of the Negro River Basin, which is far away from any anthropogenic emission sources. The Amazon region is characterized by two different regional seasons, with well-defined flood and low water periods. The objective of this work was to investigate the seasonal influences of the interaction between mercury and aquatic humic substances (AHS), which are the main agents of the natural organic complexation capacity. The results of the multivariate statistical analysis of the data showed that the humic substances had different structural characteristics, depending on each season. The ability of humic substances to form complexes with Hg(II) is not directly related to their carbon content, but to the nature and availability of the functional groups present in its structure. The functional groups are carboxylic and aromatic directly related to the higher complexation capacity of AHS by mercury ions. (author)

  20. Influence of seasonality on the interaction of mercury with aquatic humic substances extracted from the Middle Negro River Basin (Amazon)

    International Nuclear Information System (INIS)

    Oliveira, Luciana C. de; Botero, Wander G.; Santos, Felipe A.; Sargentini Junior, Ezio; Rocha, Julio C.; Santos, Ademir dos

    2012-01-01

    High mercury concentrations in different environmental matrices in the Amazon have been attributed to mining activities. However, high concentrations of mercury are also present in the soil and water in places like in the middle of the Negro River Basin, which is far away from any anthropogenic emission sources. The Amazon region is characterized by two different regional seasons, with well-defined flood and low water periods. The objective of this work was to investigate the seasonal influences of the interaction between mercury and aquatic humic substances (AHS), which are the main agents of the natural organic complexation capacity. The results of the multivariate statistical analysis of the data showed that the humic substances had different structural characteristics, depending on each season. The ability of humic substances to form complexes with Hg(II) is not directly related to their carbon content, but to the nature and availability of the functional groups present in its structure. The functional groups are carboxylic and aromatic directly related to the higher complexation capacity of AHS by mercury ions. (author)

  1. Global Burden of Disease of Mercury Used in Artisanal Small-Scale Gold Mining.

    Science.gov (United States)

    Steckling, Nadine; Tobollik, Myriam; Plass, Dietrich; Hornberg, Claudia; Ericson, Bret; Fuller, Richard; Bose-O'Reilly, Stephan

    Artisanal small-scale gold mining (ASGM) is the world's largest anthropogenic source of mercury emission. Gold miners are highly exposed to metallic mercury and suffer occupational mercury intoxication. The global disease burden as a result of this exposure is largely unknown because the informal character of ASGM restricts the availability of reliable data. To estimate the prevalence of occupational mercury intoxication and the disability-adjusted life years (DALYs) attributable to chronic metallic mercury vapor intoxication (CMMVI) among ASGM gold miners globally and in selected countries. Estimates of the number of artisanal small-scale gold (ASG) miners were extracted from reviews supplemented by a literature search. Prevalence of moderate CMMVI among miners was determined by compiling a dataset of available studies that assessed frequency of intoxication in gold miners using a standardized diagnostic tool and biomonitoring data on mercury in urine. Severe cases of CMMVI were not included because it was assumed that these persons can no longer be employed as miners. Cases in workers' families and communities were not considered. Years lived with disability as a result of CMMVI among ASG miners were quantified by multiplying the number of prevalent cases of CMMVI by the appropriate disability weight. No deaths are expected to result from CMMVI and therefore years of life lost were not calculated. Disease burden was calculated by multiplying the prevalence rate with the number of miners for each country and the disability weight. Sensitivity analyses were performed using different assumptions on the number of miners and the intoxication prevalence rate. Globally, 14-19 million workers are employed as ASG miners. Based on human biomonitoring data, between 25% and 33% of these miners-3.3-6.5 million miners globally-suffer from moderate CMMVI. The resulting global burden of disease is estimated to range from 1.22 (uncertainty interval [UI] 0.87-1.61) to 2.39 (UI 1

  2. Mercury's Exosphere During MESSENGER's Second Flyby: Detection of Magnesium and Distinct Distributions of Neutral Species

    Science.gov (United States)

    McClintock, William E.; Vervack, Ronald J., Jr.; Bradley, E. Todd; Killen, Rosemary M.; Mouawad, Nelly; Sprague, Ann L.; Burger, Matthew H.; Solomon, Sean C.; Izenberg, Noam R.

    2009-01-01

    During MESSENGER's second Mercury flyby, the Mercury Atmospheric and Surface Composition Spectrometer observed emission from Mercury's neutral exosphere. These observations include the first detection of emission from magnesium. Differing spatial distributions for sodium, calcium, and magnesium were revealed by observations beginning in Mercury's tail region, approximately 8 Mercury radii anti-sunward of the planet, continuing past the nightside, and ending near the dawn terminator. Analysis of these observations, supplemented by observations during the first Mercury flyby as well as those by other MESSENGER instruments, suggests that the distinct spatial distributions arise from a combination of differences in source, transfer, and loss processes.