WorldWideScience

Sample records for anthocyanins

  1. Anthocyanins and heart disease

    Science.gov (United States)

    Anthocyanins are red, blue, and purple pigments distributed throughout nature, and in our diet. One potential health benefit of dietary anthocyanins is protection against cardiovascular disease (CVD). Evidence for beneficial effects of anthocyanins with respect to heart disease comes from epidemio...

  2. Anthocyanin pigments in strawberry

    OpenAIRE

    Lopes-da-Silva, M.F.; Escribano-Bailón, M.T.; Perez-Alonso, J.J.; Rivas-Gonzalo, J.C.; Santos-Buelga, Celestino

    2007-01-01

    The anthocyanin composition was analysed in strawberry fruits from five different cultivars (cv. Eris, Oso Grande, Carisma, Tudnew and Camarosa). Twenty-five defined anthocyanin pigments were detected, most of them containing Pelargonidin (Pg) as aglycone; some cyanidin (Cy) derivatives were also found. Glucose and rutinose were the usual substituting sugars, although arabinose and rhamnose were also tentatively identified; some minor anthocyanins showed acylation with aliphatic acids. A rele...

  3. Anthocyanin analyses of Vaccinium fruit dietary supplements

    Science.gov (United States)

    Vaccinium fruit ingredients within dietary supplements were identified by comparisons with anthocyanin analyses of known Vaccinium profiles (demonstration of anthocyanin fingerprinting). Available Vaccinium supplements were purchased and analyzed; their anthocyanin profiles (based on HPLC separation...

  4. Anthocyanins Present in Some Tropical Fruits.

    Science.gov (United States)

    Many tropical fruits are rich in anthocyanins, though limited information is available about the characterization and quantification of these anthocyanins. The identification of anthocyanin pigments in four tropical fruits was determined by ion trap mass spectrometry. Fruits studied included acero...

  5. Anthocyanins as Functional Food Colors

    Science.gov (United States)

    Motohashi, Noboru; Sakagami, Hiroshi

    Anthocyanins, a proanthocyanidin-type of flavonoid, contain an abundance of functional phytochemicals and occur in fruits such as cranberry, blueberry, orange, apple and in vegetables such as tomato, sweet pepper, spinach, and radishes. Functional and essential diets have been ingested in daily life since the primitive era of history. When anthocyanins are coupled with some water-soluble sugar molecules, their color becomes red, yellow, violet, or blue. It is very intriguing that anthocyanins provide the colorful variety of pigments for pansies, petunias, plums, and other diverse flowers. Chlorophyll in various fruits and vegetables is the main green phyto-component, while anthocyanins are probably the most important visible plant pigments in the natural kingdom having specific colors. Anthocyanins have been clinically used in many folklore medicines worldwide. Anthocyanins could provide health benefits for age-related diseases as well as other diseases. Anthocyanins have higher antioxidant capacity against oxidative stress induced by excess reactive oxygen species (ROS) such as superoxide radicals, hydrogen peroxide, and thus the human body might be protected from oxidative injury by anthocyanins. On the basis of these facts, we review the synthesis of plant flavonoids and their ability to scavenge oxidants, inhibit or activate enzymes, and the safety of proanthocyanidins and anthocyanidins present in common foods.

  6. Anthocyanin stability: a chemometrical approach

    OpenAIRE

    Cabrita, Luís; Fossen, Torgils; Flåten, Geir R.; Andersen, Øyvind M

    2002-01-01

    The stability of cyanidin 3-glucoside towards five different factors (pH, anthocyanin concentration, sodium chloride concentration, ascorbic acid concentration, Oxygen) was studied during 60 days storage at room temperature using a 2^4-1 reduced factorial design. The influence of each individual parameter on anthocyanin stability was found to vary as a function of time. Sodium chloride and ascorbic acid were, respectively, the variables most contributing to and against antho...

  7. Anthocyanins facilitate tungsten accumulation in Brassica

    Energy Technology Data Exchange (ETDEWEB)

    Hale, K.L.

    2002-11-01

    Accumulation of molybdenum in Brassica was recently found to be correlated with anthocyanin content, involving the formation of a blue complex. Here the role of anthocyanins in tungsten sequestration was investigated using three species of Brassica: B. rapa (cv. Fast plants), B. juncea (Indian mustard) and B. oleracea (red cabbage). Seedlings of B. rapa and B. juncea turned blue when supplied with colourless tungstate. The blue compound co-localized with anthocyanins in the peripheral cell layers, and the degree of blueness was correlated with anthocyanin content. The direct involvement of anthocyanins in the blue coloration was evident when purified anthocyanins showed a colour change from pink to blue in vitro upon addition of tungstate, over a wide pH range. Anthocyanin production was upregulated 3-fold by W in B. juncea, possibly reflecting a function for anthocyanins in W tolerance or sequestration. The presence of anthocyanins facilitated W accumulation in B. rapa: anthocyanin-containing seedlings accumulated 3-fold more W than an anthocyaninless mutant. There was no correlation between anthocyanin content and W tolerance under these conditions. The nature of the interaction between anthocyanins and tungstate was investigated. X-ray absorption spectroscopy showed no change in the local chemical environment of Wupon uptake of tungstate by the plant; HPLC analysis of purified anthocyanin with or without tungstate showed no peak shift after metal treatment.

  8. Mulberry anthocyanin biotransformation by intestinal probiotics.

    Science.gov (United States)

    Cheng, Jing-Rong; Liu, Xue-Ming; Chen, Zhi-Yi; Zhang, You-Sheng; Zhang, Ye-Hui

    2016-12-15

    This study was designed to evaluate mulberry anthocyanins bioconversion traits for intestinal probiotics. Five intestinal beneficial bacteria were incubated with mulberry anthocyanins under anaerobic conditions at 37°C, and bacterial β-glucosidase activity and anthocyanin level were determined. Results demonstrated that all strains could convert mulberry anthocyanins to some extent. With high β-glucosidase production capacity, Streptococcus thermophiles GIM 1.321 and Lactobacillus plantarum GIM 1.35 degraded mulberry anthocyanins by 46.17% and 43.62%, respectively. Mulberry anthocyanins were mainly biotransformed to chlorogenic acid, crypto-chlorogenic acid, caffeic acid, and ferulic acid during the anaerobic process. Non-enzymatic deglycosylation of anthocyanins also occurred and approximately 19.42% of the anthocyanins were degraded within 48h by this method. PMID:27451240

  9. Anthocyanin analyses of Vaccinium fruit dietary supplements.

    Science.gov (United States)

    Lee, Jungmin

    2016-09-01

    Vaccinium fruit ingredients within dietary supplements were identified by comparisons with anthocyanin analyses of known Vaccinium profiles (demonstration of anthocyanin fingerprinting). Available Vaccinium supplements were purchased and analyzed, their anthocyanin profiles (based on high-performance liquid chromatography [HPLC] separation) indicated if products' fruit origin listings were authentic. Over 30% of the Vaccinium fruit (cranberry, lingonberry, bilberry, and blueberry; 14 of 45) products available as dietary supplements did not contain the fruit listed as ingredients. Six supplements contained no anthocyanins. Five others had contents differing from labeled fruit (e.g., bilberry capsules containing Andean blueberry fruit). Of the samples that did contain the specified fruit (n = 27), anthocyanin content ranged from 0.04 to 14.37 mg per capsule, tablet, or teaspoon (5 g). Approaches to utilizing anthocyanins in assessment of sample authenticity, and a discussion of the challenges with anthocyanin profiles in quality control are both presented. PMID:27625778

  10. Anthocyanin biosynthetic genes in Brassica rapa

    OpenAIRE

    Guo, Ning; Cheng, Feng; Wu, Jian; Liu, Bo; Zheng, Shuning; Liang, Jianli; Wang, Xiaowu

    2014-01-01

    Background Anthocyanins are a group of flavonoid compounds. As a group of important secondary metabolites, they perform several key biological functions in plants. Anthocyanins also play beneficial health roles as potentially protective factors against cancer and heart disease. To elucidate the anthocyanin biosynthetic pathway in Brassica rapa, we conducted comparative genomic analyses between Arabidopsis thaliana and B. rapa on a genome-wide level. Results In total, we identified 73 genes in...

  11. Anthocyanins from pomegranate (Punica granatum L.)

    OpenAIRE

    Cabrita, Luís; Neves, Higuinaldo Chaves das

    2002-01-01

    The anthocyanin contents in the fruits from three cultivars of Punica granatum L. (asseria, mollar and negral) was studied. Six anthocyanins were isolated from the red seeds of pomegranate fruits using a combination of Sephadex LH-20 column chromatography and reverse-phase semi-preparative HPLC. On the basis of chromatographic and spectroscopic techniques, they were identified as the 3-monoglucosides and 3,5-diglucosides of delphinidin, cyanidin and pelargonidin. Total anthocyanin content in...

  12. Anthocyanins of Hibiscus sabdiffera calyces from Sudan.

    Science.gov (United States)

    Cahliková, Lucie; Ali, Badreldin H; Havliková, Lucie; Ločárek, Mirek; Siatka, Tomáš; Opletal, Lubomir; Blunden, Gerald

    2015-01-01

    Extracts of the calyces of Hibiscus sabdariffa are widely used in folk medicine to combat many illnesses. The active constituents of the extracts have been shown on several occasions to be anthocyanins. In our current studies the biological activities of an extract of H. sabdariffa calyces purchased in Oman, but grown in Sudan, are being compared with those of the anthocyanins isolated from them, and, for this, the anthocyanin profile of the extract needed to be ascertained. Although several anthocyanins were detected by UHPLC-ESI-MS/MS, delphinidin-3-sambubioside (major) and cyanidin-3-sambubioside were predominant. PMID:25920224

  13. High variability in anthocyanin contents between different blackcurrant varieties

    OpenAIRE

    Hellström, Jarkko; Hietaranta, Tarja; Karhu, Saila; Mattila, Pirjo; Tiirikka, Timo; Veteläinen, Merja

    2010-01-01

    The results confirm that blackcurrant is a good source of anthocyanins. However, remarkable variation in the anthocyanin content between varieties is evident. The anthocyanin profile is always dominated by four major anthocyanins, yet some variation appears in their relative proportions. The high anthocyanin content is usually most desirable in the blackcurrant products and this study shows that the choice of variety may have a great impact on it.

  14. Microwave-assisted extraction of anthocyanin from Chinese bayberry and its effects on anthocyanin stability

    OpenAIRE

    Wenkai DUAN; Jin, Shiping; Guofu ZHAO; SUN, PEILONG

    2015-01-01

    AbstractAnthocyanins are present in high concentrations in Chinese bayberry, Myrica rubra Sieb. & Zucc. Herein, a microwave-assisted extraction was used to extract the anthocyanins from Chinese bayberry. The HPLC chromatogram of the extracts showed that the anthocyanin components were slightly hydrolysed during the extraction process. Further experiments confirmed that microwave irradiation slightly hydrolysed cyanidin-3-O-glucoside to cyanidin, but did not significantly influence the antioxi...

  15. Change of anthocyanins content during raspberry extraction

    Directory of Open Access Journals (Sweden)

    Vukosavljević Predrag

    2003-01-01

    Full Text Available Change in anthocyanins content under different conditions of extraction enzymatic maceration and heat treatment of two raspberry cultivars (Villamette and Meeker was determined. Experiments were carried out on a laboratory hydraulic extractor. During extraction commercial operating conditions were emulated using a "Bucher" extractor (pressure 180-200 bar 1-3 pulp shakings. A pectin preparation Klerzyme®120, manufactured by DSM France, was used for maceration and depectinization, because it is specific for "sour fruits" with pH below 3.2. At a single-stage maceration, it was applied in the amount of 200-400 g/t, for 1-2 hours at 50oC. In a two-stage maceration and depectinization, the enzyme was added as follows: in the first stage 100-200 g/t for 0.5 - 1 hour at 20oC and in the second stage 4-8 g/hl for 1-2 hours at 200C. Thermal breaks of raspberry pulp were performed at raised temperatures for 2 and 5 min in order to examine the effects of raised temperatures on anthocyanins extraction. The application of heat-enzymatic treatments of the pulp prior to extraction proved to be suitable in both raspberry cultivars. Apart from well-known degrading effects of heat on anthocyanins, the juice obtained by extraction, after enzymatic maceration, has higher anthocyanins content by 30% than the juice obtained without enzymatic maceration. Juice pasteurization, in each stage of processing, produced markedly negative effect on anthocyanins content therefore their content decreases considerably. The forms of anthocyanins that are lost most are those uncolored. In batches subjected to a two -stage enzymatic maceration, despite initial high anthocyanins content, the content of total anthocyanins is reduced after the second pasteurization to the approximate value as that in batches subjected to a single-stage enzymatic maceration.

  16. Anthocyanins influence tannin-cell wall interactions.

    Science.gov (United States)

    Bautista-Ortín, Ana Belén; Martínez-Hernández, Alejandro; Ruiz-García, Yolanda; Gil-Muñoz, Rocío; Gómez-Plaza, Encarna

    2016-09-01

    The rate of tannin extraction was studied in a vinification of red grapes and the results compared with another vinification made with white grapes fermented as for typical red wine, in the presence of skins and seeds. Even though the grapes presented a quite similar skin and seed tannin content, the differences in tannin concentration between both vinifications was very large, despite the fact that the only apparent difference between the phenolic composition of both wines was the anthocyanin content. This suggests that anthocyanins play an important role in tannin extractability, perhaps because they affect the extent of the tannin-cell wall interaction, a factor that largely controls the resulting quantity of tannins in wines. To confirm this observation, the effect of anthocyanins on the tannin extractability from grape seeds and skin and on the interaction between tannins and grape cell walls suspended in model solutions were studied. The results indicated that anthocyanins favored skin and seed tannin extraction and that there is a competition for the adsorption sites between anthocyanins and tannins that increases the tannin content when anthocyanins are present. PMID:27041322

  17. Stability-increasing effects of anthocyanin glycosyl acylation.

    Science.gov (United States)

    Zhao, Chang-Ling; Yu, Yu-Qi; Chen, Zhong-Jian; Wen, Guo-Song; Wei, Fu-Gang; Zheng, Quan; Wang, Chong-De; Xiao, Xing-Lei

    2017-01-01

    This review comprehensively summarizes the existing knowledge regarding the chemical implications of anthocyanin glycosyl acylation, the effects of acylation on the stability of acylated anthocyanins and the corresponding mechanisms. Anthocyanin glycosyl acylation commonly refers to the phenomenon in which the hydroxyl groups of anthocyanin glycosyls are esterified by aliphatic or aromatic acids, which is synthetically represented by the acylation sites as well as the types and numbers of acyl groups. Generally, glycosyl acylation increases the in vitro and in vivo chemical stability of acylated anthocyanins, and the mechanisms primarily involve physicochemical, stereochemical, photochemical, biochemical or environmental aspects under specific conditions. Additionally, the acylation sites as well as the types and numbers of acyl groups influence the stability of acylated anthocyanins to different degrees. This review could provide insight into the optimization of the stability of anthocyanins as well as the application of suitable anthocyanins in food, pharmaceutical and cosmetic industries. PMID:27507456

  18. Light-induced vegetative anthocyanin pigmentation in Petunia

    OpenAIRE

    Albert, Nick W.; David H Lewis; Zhang, Huaibi; Irving, Louis J.; Jameson, Paula E; Davies, Kevin M.

    2009-01-01

    The Lc petunia system, which displays enhanced, light-induced vegetative pigmentation, was used to investigate how high light affects anthocyanin biosynthesis, and to assess the effects of anthocyanin pigmentation upon photosynthesis. Lc petunia plants displayed intense purple anthocyanin pigmentation throughout the leaves and stems when grown under high-light conditions, yet remain acyanic when grown under shade conditions. The coloured phenotypes matched with an accumulation of anthocyanins...

  19. Anthocyanins and Their Variation in Red Wines II. Anthocyanin Derived Pigments and Their Color Evolution

    Directory of Open Access Journals (Sweden)

    Chang-Qing Duan

    2012-02-01

    Full Text Available Originating in the grapes, anthocyanins and their derivatives are the crucial pigments responsible for the red wine color. During wine maturation and aging, the concentration of monomeric anthocyanins declines constantly, while numerous more complex and stable anthocyanin derived pigments are formed, mainly including pyranoanthocyanins, polymeric anthocyanins produced from condensation between anthocyanin and/or flavan-3-ols directly or mediated by aldehydes. Correspondingly, their structural modifications result in a characteristic variation of color, from purple-red color in young red wines to brick-red hue of the aged. Because of the extreme complexity of chemical compounds involved, many investigations have been made using model solutions of know composition rather than wine. Thus, there is a large amount of research still required to obtain an overall perspective of the anthocyanin composition and its change with time in red wines. Future findings may well greatly revise our current interpretation of the color in red wines. This paper summarizes the most recent advances in the studies of the anthocyanins derived pigments in red wines, as well as their color evolution.

  20. Expression and mapping of anthocyanin biosynthesis genes in carrot

    Science.gov (United States)

    Anthocyanin gene expression has been extensively studied in leaves, fruits and flowers of numerous plants. Little, however, is known about anthocyanin accumulation in roots, or in carrots or other Apiaceae. We quantified expression of six anthocyanin biosynthetic genes (phenylalanine ammonia-lyase (...

  1. Identification and quantification of anthocyanins in transgenic purple tomato.

    Science.gov (United States)

    Su, Xiaoyu; Xu, Jianteng; Rhodes, Davina; Shen, Yanting; Song, Weixing; Katz, Benjamin; Tomich, John; Wang, Weiqun

    2016-07-01

    Anthocyanins are natural pigments derived from the phenylpropanoid pathway. Most tomatoes produce little anthocyanins, but the transgenic purple tomato biosynthesizes a high level of anthocyanins due to expression of two transcription factors (Del and Ros1). This study was to identify and quantify anthocyanins in this transgenic tomato line. Seven anthocyanins, including two new anthocyanins [malvidin-3-(p-coumaroyl)-rutinoside-5-glucoside and malvidin-3-(feruloyl)-rutinoside-5-glucoside], were identified by LC-MS/MS. Petunidin-3-(trans-coumaroyl)-rutinoside-5-glucoside and delphinidin-3-(trans-coumaroyl)-rutinoside-5-glucoside were the most abundant anthocyanins, making up 86% of the total anthocyanins. Compared to undetectable anthocyanins in the wild type, the contents of anthocyanins in the whole fruit, peel, and flesh of the Del/Ros1-transgenic tomato were 5.2±0.5, 5.1±0.5, and 5.8±0.3g/kg dry matter, respectively. Anthocyanins were undetectable in the seeds of both wide-type and transgenic tomato lines. Such novel and high levels of anthocyanins obtained in this transgenic tomato may provide unique functional products with potential health benefits. PMID:26920283

  2. Anthocyanin content and UVB sensitivity in Brassica rapa

    International Nuclear Information System (INIS)

    Three genotypes of rapid-cycling Brassica rapa that differ in anthocyanin content were grown in the presence and absence of elevated levels of shortwave ultraviolet (UBV, 280-325 nm) radiation. After 41 days, UVB exposure reduced leaf length and plant height of all genotypes. Plants with low levels of anthocyanin experienced a reduction in flower number twice as great as in genotypes with normal or elevated levels of anthocyanins; however, the absence of differences in flower production by genotypes with normal and elevated levels of anthocyanins suggests that factors other than anthocyanin pigmentation contribute to UVB responses in this species. (UK)

  3. Anthocyanin content and UVB sensitivity in Brassica rapa

    Energy Technology Data Exchange (ETDEWEB)

    Klaper, R.; Frankel, S.; Berenbaum, M.R. [Illinois Univ., Urbana, IL (United States)

    1996-06-01

    Three genotypes of rapid-cycling Brassica rapa that differ in anthocyanin content were grown in the presence and absence of elevated levels of shortwave ultraviolet (UBV, 280-325 nm) radiation. After 41 days, UVB exposure reduced leaf length and plant height of all genotypes. Plants with low levels of anthocyanin experienced a reduction in flower number twice as great as in genotypes with normal or elevated levels of anthocyanins; however, the absence of differences in flower production by genotypes with normal and elevated levels of anthocyanins suggests that factors other than anthocyanin pigmentation contribute to UVB responses in this species. (UK).

  4. Anthocyanins and Their Variation in Red Wines I. Monomeric Anthocyanins and Their Color Expression

    Directory of Open Access Journals (Sweden)

    Chang-Qing Duan

    2012-02-01

    Full Text Available Originating in the grapes, monomeric anthocyanins in young red wines contribute the majority of color and the supposed beneficial health effects related to their consumption, and as such they are recognized as one of the most important groups of phenolic metabolites in red wines. In recent years, our increasing knowledge of the chemical complexity of the monomeric anthocyanins, their stability, together with the phenomena such as self-association and copigmentation that can stabilize and enhance their color has helped to explain their color representation in red wine making and aging. A series of new enological practices were developed to improve the anthocyanin extraction, as well as their color expression and maintenance. This paper summarizes the most recent advances in the studies of the monomeric anthocyanins in red wines, emphasizing their origin, occurrence, color enhancing effects, their degradation and the effect of various enological practices on them.

  5. Anthocyanins in the bracts of Curcuma species and relationship of the species based on anthocyanin composition.

    Science.gov (United States)

    Koshioka, Masaji; Umegaki, Naoko; Boontiang, Kriangsuk; Pornchuti, Witayaporn; Thammasiri, Kanchit; Yamaguchi, Satoshi; Tatsuzawa, Fumi; Nakayama, Masayoshi; Tateishi, Akira; Kubota, Satoshi

    2015-03-01

    Five anthocyanins, delphinidin 3-O-rutinoside, cyanidin 3-O-rutinoside, petunidin 3-O-rutinoside, malvidin 3-O-glucoside and malvidin 3-O-rutinoside, were identified. Three anthocyanins, delphinidin 3-O-glucoside, cyanidin 3-O-glucoside and pelargonidin 3-O-rutinoside, were putatively identified based on C18 HPLC retention time, absorption spectrum, including λmax, and comparisons with those of corresponding standard anthocyanins, as the compounds responsible for the pink to purple-red pigmentation of the bracts of Curcuma alismatifolia and five related species. Cluster analysis based on four major anthocyanins formed two clusters. One consisted of only one species, C. alismatifolia, and the other consisted of five. Each cluster further formed sub-clusters depending on either species or habitats.

  6. Microwave-assisted extraction of anthocyanin from Chinese bayberry and its effects on anthocyanin stability

    Directory of Open Access Journals (Sweden)

    Wenkai DUAN

    2015-09-01

    Full Text Available AbstractAnthocyanins are present in high concentrations in Chinese bayberry, Myrica rubra Sieb. & Zucc. Herein, a microwave-assisted extraction was used to extract the anthocyanins from Chinese bayberry. The HPLC chromatogram of the extracts showed that the anthocyanin components were slightly hydrolysed during the extraction process. Further experiments confirmed that microwave irradiation slightly hydrolysed cyanidin-3-O-glucoside to cyanidin, but did not significantly influence the antioxidant activity of the extracts. Optimized extraction conditions for total anthocyanin content were a solid-to-liquid ratio, extraction temperature, and extraction time of 1:50, 80 °C, and 15 min, respectively. Under these conditions, the anthocyanin content was 2.95 ± 0.08 mg·g−1, and the antioxidant activity yield was 279.96 ± 0.1 μmol.·g−1 Trolox equivalent on a dry weight basis. These results indicated that microwave-assisted extraction was a highly efficient extraction method with reduced processing time. However, under some extraction conditions it could damage the anthocyanins. These results provide an important guide for the application of microwave extraction.

  7. Antioxidant capacity of anthocyanins from acerola genotypes

    Directory of Open Access Journals (Sweden)

    Vera Lúcia Arroxelas Galvão De Lima

    2011-03-01

    Full Text Available Anthocyanins from 12 acerola genotypes cultivated at the Active Germplasm Bank at Federal Rural University of Pernambuco were isolated for antioxidant potential evaluation. The antioxidant activity and radical scavenging capacity of the anthocyanin isolates were measured according to the β-carotene bleaching method and 1,1-diphenyl-2-picrylhydrazyl (DPPH free radical scavenging assay, respectively. The antioxidant activity varied from 25.58 to 47.04% at 0.2 mg.mL-1, and it was measured using the β-carotene bleaching method. The free radical scavenging capacity increased according to the increase in concentration and reaction time by the DPPH assay. At 16.7 μg.mL-1 concentration and after 5 minutes and 2 hours reaction time, the percentage of scavenged radicals varied from 36.97 to 63.92% and 73.27 to 94.54%, respectively. Therefore, the antioxidant capacity of acerola anthocyanins varied amongst acerola genotypes and methods used. The anthocyanins present in this fruit may supply substantial dietary source of antioxidant which may promote health and produce disease prevention effects.

  8. Comparison of Two Methods for Anthocyanin Quantification

    Science.gov (United States)

    The pH differential method (AOAC method 2005.02) by spectrophotometer, and high performance liquid chromatography (HPLC) are methods commonly used by researchers and the food industry for quantifying anthocyanins of samples or products. This study was carried out to establish a relationship between ...

  9. Chemistry, Pharmacology and Health Benefits of Anthocyanins.

    Science.gov (United States)

    Smeriglio, Antonella; Barreca, Davide; Bellocco, Ersilia; Trombetta, Domenico

    2016-08-01

    Anthocyanins are naturally occurring molecules belonging to the flavonoid class characterized by the presence of chromophores. Apart from their well-known antioxidant activity, they show a wide variety of health-promoting properties for human health, ranging from cytoprotective, antimicrobial and antitumour activities to neuroprotective, anti-obesity and lipidomic potential, properties for which anthocyanins have been prescribed as medicines in several countries for thousands of years. Despite this, these phytochemicals have received less attention than other flavonoids, and there is still a gap in the literature, particularly regarding pharmacological and toxicological aspects. Moreover, epidemiological evidence suggests a direct correlation between anthocyanin intake and a lower incidence of chronic and degenerative diseases. In light of this, the aim of this review is to cover the current literature on anthocyanins, their biological in vitro and in vivo effects and their potential therapeutic applications, as well as their bioavailability and pharmacokinetics, all of which are essential to gain a better understanding of their biological effectiveness and potential toxicity. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27221033

  10. Grape anthocyanin altered by absolute sunlight exclusion

    Science.gov (United States)

    This research was conducted to clarify anthocyanin accumulation within ‘Merlot’ grapes in response to microclimate, specifically to light incidence, temperature, and humidity. Treatment grape clusters were light-excluded during ripening by opaque white polypropylene enclosures, during which light in...

  11. Effects of Cerium on Accumulation of Anthocyanins and Expression of Anthocyanin Biosynthetic Genes in Potato Cell Tissue Cultures

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The effects of Ce (Ⅳ) on callus growth, anthocyanin content, and expression of anthocyanin biosynthetic genes in callus suspension cultures of Solanum tuberosum cv. Chieftain were studied by the measurement of fresh weight, spectrophotometric assays, and semiquantitative RT-PCR. The results indicate that 0.1 mmol·L-1 Ce (Ⅳ) can promote callus growth, increase the accumulation of anthocyanins, and enhance the expression of five anthocyanin biosynthetic genes (CHS, F3H, F3′5′H, DFR, and 3GT) most efficiently. At high concentrations of 1 mmol·L-1, Ce (Ⅳ) partially inhibits callus growth and at 2 mmol·L-1 eventually lends to cell death. The results show that Ce(Ⅳ) can induce the expression of anthocyanin biosynthetic genes to produce and accumulate anthocyanins and increase the yield of anthocyanins.

  12. Coordinated regulation of biosynthetic and regulatory genes coincides with anthocyanin accumulation in developing eggplant fruit

    Science.gov (United States)

    Violet to black pigmentation of eggplant (Solanum melongena) fruit is attributed to anthocyanin accumulation. Model systems support the interaction of biosynthetic and regulatory genes for anthocyanin biosynthesis. Anthocyanin structural gene transcription requires the expression of at least one m...

  13. Quantification and Purification of Mulberry Anthocyanins with Macroporous Resins

    Directory of Open Access Journals (Sweden)

    Xueming Liu

    2004-01-01

    Full Text Available Total anthocyanins in different cultivars of mulberry were measured and a process for the industrial preparation of mulberry anthocyanins as a natural food colorant was studied. In 31 cultivars of mulberry, the total anthocyanins, calculated as cyanidin 3-glucoside, ranged from 147.68 to 2725.46 mg/L juice. Extracting and purifying with macroporous resins was found to be an efficient potential method for the industrial production of mulberry anthocyanins as a food colorant. Of six resins tested, X-5 demonstrated the best adsorbent capability for mulberry anthocyanins (91 mg/mL resin. The adsorption capacity of resins increased with the surface area and the pore radius. Residual mulberry fruit juice after extraction of pigment retained most of its nutrients, except for anthocyanins, and may provide a substrate for further processing.

  14. Sugar-Hormone Cross-Talk in Anthocyanin Biosynthesis

    OpenAIRE

    Das, Prasanta Kumar; Shin, Dong Ho; Choi, Sang-Bong; Park, Youn-Il

    2012-01-01

    Anthocyanins, a class of flavonoids, are recognized for their diverse functions in plant development and beneficial effects on human health. Many of the genes encoding anthocyanin biosynthesis enzymes and the transcription factors that activate or repress them have been identified. Regulatory proteins that control anthocyanin biosynthesis by regulating the expression of different structural genes at the transcriptional and post-transcriptional levels are differentially modulated by environmen...

  15. New insights into regulation of anthocyanin biosynthesis in fruits

    OpenAIRE

    Jaakola, Laura

    2013-01-01

    Anthocyanins are important health-promoting pigments that make a major contribution to the quality of fruits. The biosynthetic pathway leading to anthocyanins is well known and the key regulatory genes controlling the pathway have been isolated in many species. Recently, a considerable amount of new information has been gathered on the developmental and environmental regulation of anthocyanin biosynthesis in fruits, specifically the impact of regulation through light. New discoveries have beg...

  16. CHARACTERIZATION OF MALAYSIAN WILD BANANAS BASED ON ANTHOCYANINS

    OpenAIRE

    MUHAMMAD ASIF JAVED; MAK CHAI; ROFINA YASMIN OTHMAN

    2001-01-01

    The male buds of 16 Musa species (Musaceae) populations were investigated by HPLC for the occurrence of anthocyanins. The investigation was based on the presence of 6 anthocyanins. The 16 Musa samples could be classified into three distinct species i.e. Musa acuminata, Musa violascens and Musa balbisiana. Musa acuminata could be divided into two subspecies : malaccensis (lowland) and tmncata (highland) according to their constituents and content of major anthocyanins. No variation was ob...

  17. Antioxidant activity of anthocyanins from quixabeira (Sideroxylon obtusifolium) fruits

    OpenAIRE

    F.J. FIGUEIREDO; V. L. A. G. LIMA

    2015-01-01

    ABSTRACT The fruits of Sideroxylon obtusifolium T.D. Penn. are small berries which have dark purple skin color at maturity due the anthocyanins presence. Therefore, the aim of this research was to evaluate the antioxidant activity of anthocyanins from mature fruits which were obtained at a semi-arid region of Paraiba/BR. In addition, the total anthocyanins content was measured by the pH differential method. The anthocyanins were purified by solid-phase extraction (SPE) using C18 Sep-Pak cartr...

  18. Contribution of anthocyanin fraction to the antioxidant properties of wine.

    Science.gov (United States)

    Rivero-Pérez, M D; Muñiz, P; González-Sanjosé, M L

    2008-08-01

    The wine is a beverage with an important antioxidant efficiency which is attributed to their bioactives compounds, especially polyphenols. The anthocyanins are the main phenolic compounds of red wine and its consumption has been partially related with the "French Paradox". The aim of the present work was to evaluate the contribution of the anthocyanins to the antioxidant properties of red wines. So, total antioxidant capacity (TAC), hydroxyl and superoxide scavenger activity and lipid peroxidation of 80 Spanish red wines and their anthocyanins fractions have been assessed for ABTS, DPPH, DMPD, and FRAP methods, hydroxyl radical (HRSA), superoxide radical scavenger activity (SRSA) and ABAP-lipid peroxidation (ABAP-LP). The results showed that free anthocyanins fraction are main responsible of the total antioxidant capacity of red wines correlated with electron transference processes. In similar way, free anthocyanins are the maximum responsible of HRSA scavenger activity of red wines, contributing less extensively to their SRSA capacity or to their protective action on lipid peroxidation. Furthermore, simple anthocyanins exert a low action in TAC process involved with proton transference. Glycosilated and methoxylic anthocyanins as malvidin-3-glucoside, seem to be the type of anthocyanins with higher participation on the antioxidant effect of red wine.

  19. Adsorption behavior of natural anthocyanin dye on mesoporous silica

    Science.gov (United States)

    Kohno, Yoshiumi; Haga, Eriko; Yoda, Keiko; Shibata, Masashi; Fukuhara, Choji; Tomita, Yasumasa; Maeda, Yasuhisa; Kobayashi, Kenkichiro

    2014-01-01

    Because of its non-toxicity, naturally occurring anthocyanin is potentially suitable as a colorant for foods and cosmetics. To the wider use of the anthocyanin, the immobilization on the inorganic host for an easy handling as well as the improvement of the stability is required. This study is focused on the adsorption of significant amount of the natural anthocyanin dye onto mesoporous silica, and on the stability enhancement of the anthocyanin by the complexation. The anthocyanin has successfully been adsorbed on the HMS type mesoporous silica containing small amount of aluminum. The amount of the adsorbed anthocyanin has been increased by modifying the pore wall with n-propyl group to make the silica surface hydrophobic. The light fastness of the adsorbed anthocyanin has been improved by making the composite with the HMS samples containing aluminum, although the degree of the improvement is not so large. It has been proposed that incorporation of the anthocyanin molecule deep inside the mesopore is required for the further enhancement of the stability.

  20. Biosynthesis of Anthocyanins and Their Regulation in Colored Grapes

    Directory of Open Access Journals (Sweden)

    Guo-Liang Yan

    2010-12-01

    Full Text Available Anthocyanins, synthesized via the flavonoid pathway, are a class of crucial phenolic compounds which are fundamentally responsible for the red color of grapes and wines. As the most important natural colorants in grapes and their products, anthocyanins are also widely studied for their numerous beneficial effects on human health. In recent years, the biosynthetic pathway of anthocyanins in grapes has been thoroughly investigated. Their intracellular transportation and accumulation have also been further clarified. Additionally, the genetic mechanism regulating their biosynthesis and the phytohormone influences on them are better understood. Furthermore, due to their importance in the quality of wine grapes, the effects of the environmental factors and viticulture practices on anthocyanin accumulation are being investigated increasingly. The present paper summarizes both the basic information and the most recent advances in the study of the anthocyanin biosynthesis in red grapes, emphasizing their gene structure, the transcriptional factors and the diverse exterior regulation factors.

  1. CHARACTERIZATION OF MALAYSIAN WILD BANANAS BASED ON ANTHOCYANINS

    Directory of Open Access Journals (Sweden)

    MUHAMMAD ASIF JAVED

    2001-01-01

    Full Text Available The male buds of 16 Musa species (Musaceae populations were investigated by HPLC for the occurrence of anthocyanins. The investigation was based on the presence of 6 anthocyanins. The 16 Musa samples could be classified into three distinct species i.e. Musa acuminata, Musa violascens and Musa balbisiana. Musa acuminata could be divided into two subspecies : malaccensis (lowland and tmncata (highland according to their constituents and content of major anthocyanins. No variation was observed in the composition of the anthocyanins of Kedah type ssp. siamea and Selangor types ssp. malaccensis. The classification of M. acuminata into two subspecies based on anthocyanin data further supported the current taxonomic grouping of the species.

  2. Stability and bioaccessibility of anthocyanins in bakery products enriched with anthocyanins.

    Science.gov (United States)

    Karakaya, Sibel; Simsek, Sebnem; Eker, Alper Tolga; Pineda-Vadillo, Carlos; Dupont, Didier; Perez, Beatriz; Viadel, Blanca; Sanz-Buenhombre, Marisa; Rodriguez, Alberto Guadarrama; Kertész, Zsófia; Hegyi, Adrienn; Bordoni, Alessandra; El, Sedef Nehir

    2016-08-10

    Anthocyanins, water soluble polyphenols, have been associated with several beneficial health effects. The aim of this study was to determine how the baking process and food matrix affect anthocyanin stability and bioaccessibility in bakery products in order to develop functional foods. Three well known regularly consumed bakery products (buns, breadsticks and biscuits) were enriched with anthocyanin (AC) isolated from grape skin alone or in combination with docosahexaenoic acid (AC + DHA) to reveal knowledge on AC as active ingredients in real food systems rather than pure compounds. Anthocyanin amounts added to the formulations of buns, breadsticks and biscuits were 34 mg per 100 g, 40 mg per 100 g and 37 mg per 100 g, respectively. The effect of processing, storage and the food matrix on AC stability and bioaccessibility was investigated. In addition, the sensory properties of bakery products were evaluated. Breadsticks enriched with AC and AC + DHA received the lowest scores in the pre-screening sensory test. Therefore breadsticks were excluded from further analysis. AC retentions, which were monitored by determination of malvidin 3-O-glucoside, in the bun and biscuit after baking were 95.9% (13.6 mg per 100 g) and 98.6% (15.2 mg per 100 g), respectively. Biscuits and buns enriched only with AC showed significantly higher anthocyanin bioaccessibilities (57.26% and 57.30%, respectively) than the same ones enriched with AC + DHA. AC stability in enriched products stored for 21 days was significantly lower than in products stored for 7 days (p < 0.05). However, this loss can be accepted as negligible since more than 70% of AC was retained in all the products. PMID:27415853

  3. Development of Table and Raisin Grapes With High Anthocyanins Using a Leaf Disk Assay.

    Science.gov (United States)

    Anthocyanins are considered an excellent source of antioxidant phytochemicals for health benefits. The majority of wine, table and raisin grapes have anthocyanins only in their colored skin. Anthocyanin content of grapes would be increased if their flesh also contained anthocyanins. Rubired wine ...

  4. Antioxidant activity of anthocyanins from quixabeira (Sideroxylon obtusifolium fruits

    Directory of Open Access Journals (Sweden)

    F.J. FIGUEIREDO

    2015-09-01

    Full Text Available ABSTRACT The fruits of Sideroxylon obtusifolium T.D. Penn. are small berries which have dark purple skin color at maturity due the anthocyanins presence. Therefore, the aim of this research was to evaluate the antioxidant activity of anthocyanins from mature fruits which were obtained at a semi-arid region of Paraiba/BR. In addition, the total anthocyanins content was measured by the pH differential method. The anthocyanins were purified by solid-phase extraction (SPE using C18 Sep-Pak cartridges and submitted to antioxidant activity determined by scavenging 2,2-diphenyl-1-picrylhydrazyl (DPPH·. The butylated hydroxytoluene (BHT was the positive control and the results were expressed as DPPH· scavenging activity (%. Anthocyanins content were higher in the husks (236.15 mg cyanidin-3-glucoside 100g-1 fw than in the pulp (30.49 mg cyanidin-3-glucoside 100g-1 fw. The results showed that the potential free radical scavenging grew with the increase of concentration used and the reaction time. The ability of the anthocyanins in scavenging the free radical was statistically greater than the BHT one. The anthocyanins which were present in this fruit may supply substantial dietary source of antioxidant that may promote health and produce disease prevention effects or that could be applied in food industry as a good source of natural pigments

  5. ANTHOCYANINS OF SOME HAWTHORN SPECIES (CRATAEGUS L., ROSACEAE FRUITS

    Directory of Open Access Journals (Sweden)

    Виктор Иванович Дейнека

    2014-09-01

    Full Text Available Anthocyanins of two hawthorn species fruits: C. chlorosarca Maxim. and C. pentagyna Waldst. et Kit., were investigated by HPLC-DAD-ESI-MS method. Cyanidin-3-galactoside, cyanidine-3-glucoside, cyanidine-3-arabinoside and cyanidine-3-xiloside were found. Overall anthocyanins accumulation was the highest in the case of C. chlorosarca fruits: 0.460÷0.620 g per 100 g of fresh fruits as cyanidine-3-glucoside chloride equivalent. It has been found that according to anthocyanins accumulation as well as to the antioxidant activity C. chlorosarca fruits are rather comparable to dried hibiscus subdariffa calyces and may be used for another tea preparation at some acidification.

  6. EFFECT OF ANTHOCYANIN FRACTION ON CISPLATIN-INDUCED NEPHROTOXICITY

    OpenAIRE

    Adikay Sreedevi; Belide Pavani

    2012-01-01

    Present study was designed to evaluate the effect of anthocyanin fraction of Syzygium cumini on cisplatin-induced nephrotoxicity in male Albino rats. Anthocyanin fraction was administered by gastric intubation at two dose levels. Animals were divided into 5 groups. Group I animals received vehicle. On day 1, Group II animals received cisplatin (6 mg/kg, i,p., single dose). Group III (7.5mg/kg) and IV (15mg/kg) received anthocyanin fraction respectively at 1 hr before, 24 hr and 48 hr after ci...

  7. Simultaneous Analysis of Anthocyanin and Non-Anthocyanin Flavonoid in Various Tissues of Different Lotus (Nelumbo) Cultivars by HPLC-DAD-ESI-MSn

    OpenAIRE

    Sha Chen; Yue Xiang; Jiao Deng; Yanling Liu; Shaohua Li

    2013-01-01

    A validated HPLC-DAD-ESI-MS(n) method for the analysis of non-anthocyanin flavonoids was applied to nine different tissues of twelve lotus genotypes of Nelumbo nucifera and N. lutea, together with an optimized anthocyanin extraction and separation protocol for lotus petals. A total of five anthocyanins and twenty non-anthocyanin flavonoids was identified and quantified. Flavonoid contents and compositions varied with cultivar and tissue and were used as a basis to divide tissues into three gr...

  8. Major anthocyanins from purple asparagus (Asparagus officinalis).

    Science.gov (United States)

    Sakaguchi, Yumi; Ozaki, Yukio; Miyajima, Ikuo; Yamaguchi, Masaatsu; Fukui, Yuko; Iwasa, Keiko; Motoki, Satoru; Suzuki, Takashi; Okubo, Hiroshi

    2008-05-01

    Two major anthocyanins (A1 and A2) were isolated from peels of the spears of Asparagus officinalis cv. Purple Passion. They were purified by column, paper and high-performance liquid chromatographic separations, and their structures were elucidated by high-resolution Fourier transform ion cyclotron resonance mass spectrometry (HR-FT-ICR MS), 1H, 13C and two-dimensional NMR spectroscopic analyses and either acid or alkaline hydrolysis, respectively. A1 was identified as cyanidin 3-[3''-(O-beta-d-glucopyranosyl)-6''-(O-alpha-l-rhamnopyranosyl)-O-beta-d-glucopyranoside], whereas A2 was cyanidin 3-rutinoside, which is widely distributed in higher plants. Oxygen radical absorbance capacity (ORAC) assays proved their high antioxidant activities. PMID:18406435

  9. Anthocyanin synthesis in native and wound periderms of potato.

    Science.gov (United States)

    Fogelman, Edna; Tanami, Sivan; Ginzberg, Idit

    2015-04-01

    Skin color of red potatoes is due to accumulation of anthocyanins in the tuber periderm, a protective tissue that replaces the epidermis at an early stage of tuber development. The periderm consists of external layers of suberized phellem cells making up the skin, and internal layers of parenchyma-like phelloderm cells. Red pigmentation is an important marketing factor for red-skinned potatoes. However, injuries to the tuber surface, which are common in the potato industry, result in the development of a wound periderm that is devoid of the characteristic red coloration. To study the reason for these differences in anthocyanin accumulation, the expression level of anthocyanin biosynthesis genes and regulators was monitored in native and wound periderm using microarray analysis and quantitative polymerase chain reaction. We found significantly higher expression of the anthocyanin pathway in the phelloderm cells compared with the skin and tuber-flesh samples. However, in wound periderm, the anthocyanin pathway was strongly downregulated relative to the native periderm. This was true for two developmental stages of the native periderm--'immature', when the skin is prone to skinning injuries, and 'mature', following skin set--suggesting that anthocyanin synthesis continues postharvest. Wound-induced expression of steroidal glycoalkaloid glycosyltransferases, suberin-related 3-ketoacyl-CoA synthase and actin indicated that downregulation of the anthocyanin-specific pathway does not reflect global repression of the wound-periderm transcriptome. Loss of pigmentation may result from reduced expression of the Myb-bHLH-WD40 anthocyanin regulatory complex--a possible candidate might be the bHLH transcription factor JAF13. PMID:25156080

  10. Anthocyanin Pigmentation Patternings in Petals of Hibiscus syriacus

    OpenAIRE

    Kim, Jong Hwa; Okubo, Hiroshi; Fujieda, Kunimitsu; Uemoto, Shunpei

    1989-01-01

    Petals of Hibiscus syriacus are characterized by the various colored main part ‘body’ and an intense red to mauve ‘eye’ in the base of each petal. The concentrations of each anthocyanin varied greatly in the body part by the colors of the petals, while the predominant pigments were the cyanidin 3-glucoside and 3-malonylglucoside in the eye regions of all examined culivars. These pigmentation patternings were further investigated in several flowering stages; the anthocyanin pathways were disti...

  11. Anthocyanin Vacuolar Inclusions Form by a Microautophagy Mechanism.

    Science.gov (United States)

    Chanoca, Alexandra; Kovinich, Nik; Burkel, Brian; Stecha, Samantha; Bohorquez-Restrepo, Andres; Ueda, Takashi; Eliceiri, Kevin W; Grotewold, Erich; Otegui, Marisa S

    2015-09-01

    Anthocyanins are flavonoid pigments synthesized in the cytoplasm and stored inside vacuoles. Many plant species accumulate densely packed, 3- to 10-μm diameter anthocyanin deposits called anthocyanin vacuolar inclusions (AVIs). Despite their conspicuousness and importance in organ coloration, the origin and nature of AVIs have remained controversial for decades. We analyzed AVI formation in cotyledons of different Arabidopsis thaliana genotypes grown under anthocyanin inductive conditions and in purple petals of lisianthus (Eustoma grandiorum). We found that cytoplasmic anthocyanin aggregates in close contact with the vacuolar surface are directly engulfed by the vacuolar membrane in a process reminiscent of microautophagy. The engulfed anthocyanin aggregates are surrounded by a single membrane derived from the tonoplast and eventually become free in the vacuolar lumen like an autophagic body. Neither endosomal/prevacuolar trafficking nor the autophagy ATG5 protein is involved in the formation of AVIs. In Arabidopsis, formation of AVIs is promoted by both an increase in cyanidin 3-O-glucoside derivatives and by depletion of the glutathione S-transferase TT19. We hypothesize that this novel microautophagy mechanism also mediates the transport of other flavonoid aggregates into the vacuole. PMID:26342015

  12. A New Acylated Anthocyanin from the Red Flowers of Camellia hongkongensis and Characterization of Anthocyanins in the Section Camellia Species

    Institute of Scientific and Technical Information of China (English)

    Jian-Bin Li; Fumio Hashimoto; Keiichi Shimizu; Yusuke Sakata

    2009-01-01

    Twelve anthocyanins (1-12) were isolated from the red flowers of Camellia hongkongensis Seem. by chromatography using open columns. Their structures were elucidated on the basis of spectroscopic analyses, that is, proton-nuclear magnetic resonance, carbon 13-nuclear magnetic resonance, heteronuclear multiple quantum correlation, heteronuclear multiple bond correlation, high resolution electrospray ionization mass and ultraviolet visible spectroscopies. Out of these anthocyanins, a novel acylated anthocyanin, cyanidin 3-O-(6-O-(Z)-p-coumaroyl)-β-galactopyranoside (6), two known acylated anthocyanins, cyanidin 3-O-(6-O-(E)-p-coumaroyl)-β-galactopyranoside (7) and cyanidin 3-O-(6-O-(E)-caffeoyl)-β-galactopyranoside (8), and three known delphinidin glycosides (10-12) were for the first time isolated from the genus Camellia. Furthermore, pigment components in C. japonica L., C. chekiangoleosa Hu and C. semiserrata Chi were studied.The results indicated that the distribution of anthocyanins was differed among these species. Delphinidin glycoside was only detected in the flowers of C. hongkongensis, which is a special and important species in the section Camellia. Based on the characterization of anthocyanins in the section Camellia species, there is a close relationship among these species,and C. hongkongensis might be an important parent for creating new cultivars with bluish flower color.

  13. Isolation and Characterization of Anthocyanins from Hibiscus sabdariffa Flowers.

    Science.gov (United States)

    Grajeda-Iglesias, Claudia; Figueroa-Espinoza, Maria C; Barouh, Nathalie; Baréa, Bruno; Fernandes, Ana; de Freitas, Victor; Salas, Erika

    2016-07-22

    The intense red-colored Hibiscus sabdariffa flowers are an inexpensive source of anthocyanins with potential to be used as natural, innocuous, and health-beneficial colorants. An anthocyanin-rich extract from hibiscus flowers was obtained by ultrasound-assisted extraction. By a single-step process fractionation using a Sep-Pak C18 cartridge, the main hibiscus anthocyanins, delphinidin-3-O-sambubioside (Dp-samb) and cyanidin-3-O-sambubioside (Cy-samb), were separated and then characterized via NMR and HPLC-ESIMS data. Since Dp-samb was the most abundant anthocyanin identified in the extract, its colorant properties were studied by the pH jumps method, which allowed the calculation of the single acid-base equilibrium (pK'a 2.92), the acidity (pKa 3.70), and the hydration constants (pKh 3.02). Moreover, by using size-exclusion chromatography, new cyanidin-derived anthocyanins (with three or more sugar units) were successfully identified and reported for the first time in the hibiscus extract. PMID:27312226

  14. Systematic Review of Anthocyanins and Markers of Cardiovascular Disease

    Directory of Open Access Journals (Sweden)

    Taylor C. Wallace

    2016-01-01

    Full Text Available Anthocyanins are dietary flavonoids commonly consumed in the diet, which have been suggested to have a preventative effect on cardiovascular disease (CVD development among epidemiological studies. We systematically reviewed randomized controlled trials (RCTs testing the effects of purified anthocyanins and anthocyanin-rich extracts on markers of CVD (triglycerides, total cholesterol, low-density lipoprotein (LDL cholesterol, high-density lipoprotein (HDL cholesterol, and blood pressure in both healthy and diseased populations. Eligible studies included RCTs of adults published in English. We searched PubMed, Web of Science Core Collection, and BIOSIS Previews for relevant articles from inception until 1 July 2014. Twelve RCTs representing 10 studies were included in this review. Supplementation with anthocyanins significantly improved LDL cholesterol among diseased individuals or those with elevated biomarkers. Supplementation did not significantly affect other markers of CVD in either healthy individuals or those with elevated markers. No adverse effects of anthocyanins were reported across studies at levels up to 640 mg/day. Limitations of trials in the qualitative analyses include short trial duration and large variability in the dose administered within the trials. Longer-duration trials assessing dose response are needed to adequately determine whether an effect of supplementation exists.

  15. Antioxidative and Cardioprotective Properties of Anthocyanins from Defatted Dabai Extracts

    Directory of Open Access Journals (Sweden)

    Hock Eng Khoo

    2013-01-01

    Full Text Available This study aimed to determine anthocyanins and their antioxidative and cardioprotective properties in defatted dabai parts. Anthocyanins in crude extracts and extract fractions of defatted dabai peel and pericarp were quantified using UHPLC, while their antioxidant capacity and oxidative stress inhibition ability were evaluated by using DPPH and CUPRAC assays as well as linoleic acid oxidation system, hemoglobin oxidation, and PARP-1 inhibition ELISA. Cardioprotective effect of the defatted dabai peel extract was evaluated using hypercholesterolemic-induced New Zealand white rabbits. Six anthocyanins were detected in the defatted dabai peel, with the highest antioxidant capacities and oxidative stress inhibition effect compared to the other part. The defatted dabai peel extract has also inhibited lipid peroxidation (plasma MDA and elevated cellular antioxidant enzymes (SOD and GPx in the tested animal model. Major anthocyanin (cyanidin-3-glucoside and other anthocyanins (pelargonidin-3-glucoside, malvidin-3-glucoside, cyanidin-3-galactoside, cyanidin-3-arabinoside, and peonidin-3-glucoside detected in the defatted dabai peel are potential future nutraceuticals with promising medicinal properties.

  16. Mesophyll-localized phytochromes gate stress- and light-inducible anthocyanin accumulation in Arabidopsis thaliana

    OpenAIRE

    Oh, Sookyung; Warnasooriya, Sankalpi N.; Montgomery, Beronda L.

    2014-01-01

    Abiotic stress and light induce anthocyanin accumulation in Arabidopsis. Here, we demonstrate that mesophyll-localized phytochromes regulate nitrogen-, phosphate- and cold-induced anthocyanin accumulation in shoots of Arabidopsis. Whereas ecotype-dependent differences result in distinct total levels of anthocyanin accumulation in response to light, cold, or nutrient-deficient treatments, phytochromes generally gate light- and/or stress-induced anthocyanin accumulation in shoots, as plants dep...

  17. Phenolic metabolites of anthocyanins following a dietary intervention study in post-menopausal women

    OpenAIRE

    de Ferrars, Rachel M; Cassidy, Aedín; Curtis, Peter; Kay, Colin D.

    2014-01-01

    Scope Numerous studies feeding anthocyanin-rich foods report limited bioavailability of the parent anthocyanins. The present study explores the identity and concentration of the phenolic metabolites of anthocyanins in humans. Methods and results Anthocyanin metabolites were quantified in samples collected from a previously conducted 12-wk elderberry intervention study in healthy post-menopausal women. Individual 1-, 2- and 3-h post-bolus urine samples and pooled plasma samples following acute...

  18. Low Medium pH Value Enhances Anthocyanin Accumulation in Malus Crabapple Leaves

    OpenAIRE

    Yanchen Zhang; Jie Zhang; Tingting Song; Jinyan Li; Ji Tian; Kaina Jin; Yuncong Yao

    2014-01-01

    Anthocyanin is a critical factor involved in coloration of plant tissues, but the mechanism how medium pH values affect anthocyanin accumulation in woody plants is unknown. We analyzed anthocyanin composition and the expression of elements encoding anthocyanin and flavonols biosynthesis underlying different medium pH values by using three different leave color type cultivars. HPLC analysis demonstrated that high medium pH values treatment induced a dramatic decrease in the concentration of cy...

  19. Tissue- and isoform-specific phytochrome regulation of light-dependent anthocyanin accumulation in Arabidopsis thaliana

    OpenAIRE

    Warnasooriya, Sankalpi N.; Porter, Katie J.; Montgomery, Beronda L

    2011-01-01

    Phytochromes regulate light- and sucrose-dependent anthocyanin synthesis and accumulation in many plants. Mesophyll-specific phyA alone has been linked to the regulation of anthocyanin accumulation in response to far-red light in Arabidopsis thaliana. However, multiple mesophyll-localized phytochromes were implicated in the photoregulation of anthocyanin accumulation in red-light conditions. Here, we report a role for mesophyll-specific phyA in blue-light-dependent regulation of anthocyanin l...

  20. Anthocyanin Accumulation, Antioxidant Ability and Stability, and a Transcriptional Analysis of Anthocyanin Biosynthesis in Purple Heading Chinese Cabbage (Brassica rapa L. ssp. pekinensis).

    Science.gov (United States)

    He, Qiong; Zhang, Zhanfeng; Zhang, Lugang

    2016-01-13

    Heading Chinese cabbage (Brassica rapa L. ssp. pekinensis) is a significant dietary vegetable for its edible heading leaves in Asia countries. The new purple anthocyanin-rich pure line (11S91) was successfully bred, and the anthocyanins were mainly distributed in 2-3 cell layers beneath the leaf epidermis, whereas siliques and stems accumulated only a cell layer of anthocyanins. The anthocyanins of 11S91 were more stable at pHs below 3.0 and temperatures below 45 °C. The total antioxidant ability was highly positive correlated with the anthocyanin content in 11S91. Thirty-two anthocyanins were separated and identified, and 70% of them were glycosylated and acylated cyanidins. The four major anthocyanins present were cyanidin-3-sophoroside(p-coumaroyl)-5-glucoside(malonyl), cyanidin-3-sophoroside(ferulyl)-5-glucoside(malonyl), cyanidin-3-sophoroside(sinapyl-p-coumaroyl)-5-glucoside(malonyl), and cyanidin-3-sophoroside-(sinapyl-ferulyl)-5-glucoside(malonyl). According to the expression of biosynthetic genes and the component profile of anthocyanins in 11S91 and its parents, regulatory genes BrMYB2 and BrTT8 probably activate the anthocyanin biosynthesis but other factors may govern the primary anthocyanins and the distribution. PMID:26709726

  1. Evaluation of red cabbage anthocyanins after partial purification on clay

    Directory of Open Access Journals (Sweden)

    Toni Jefferson Lopes

    2011-12-01

    Full Text Available The aim of this work was to evaluate the red cabbage anthocyanins quality after purification by static adsorption assays on clay (Tonsil Terrana 580FF. Thin-layer chromatography analysis and scan spectrometry on UV-Visible showed a good dye stability of the pigment interacting with the clay. The use of pH 3.0 buffer during the batch assays provided a protective effect on the cabbage anthocyanins, limiting the dye acid hydrolyses. Analyses of the reducing sugars contents of the extract showed that clay retained 20% average of total free sugars under the test conditions.

  2. Sugar Maple Phenology: Anthocyanin Production During Leaf Senescence

    Science.gov (United States)

    Lindgren, E.; Rock, B.

    2007-12-01

    The Northeastern United States is known for its brilliant fall foliage colors. Foliage is responsible for a billion dollar tourism industry. Many comment that past years have not resulted in the amazing color displays seen historically. As sugar maple trees senesce they contribute bright red leaves to the mural of oranges, yellows, and greens. The pigment that produces the red color, anthocyanin, is synthesized in the fall as chlorophyll slowly degrades. Remote sensing data from LandSat during fall senescence can help investigate this event by quantifying color change and intensity. This data can then be compared to ground validation efforts in several study plots. The results will help answer the question, "Why do leaves turn red?" One hypothesis is that this pigment acts as a photoprotectant and screens leaves from UV light. It is possible that an increase in tropospheric ozone has negatively affected fall foliage due to the increased reflection of UV light before it reaches the trees; thereby reducing the leaves need to produce anthocyanin. Another hypothesis is that production of anthocyanin is linked to temperature, with maximum synthesis occurring during cold evenings and moderate days. Temperature changes caused by climate change could also be affecting anthocyanin. Through observing these changes by remote sensing and ground experiments, more can be learned about this phenological stage and why it happens.

  3. Foliar anthocyanin content - Sensitivity of vegetation indices using green reflectance

    Science.gov (United States)

    Vina, A.; Gitelson, A. A.

    2009-12-01

    The amount and composition of photosynthetic and non-photosynthetic foliar pigments varies primarily as a function of species, developmental and phenological stages, and environmental stresses. Information on the absolute and relative amounts of these pigments thus provides insights onto the physiological conditions of plants and their responses to stress, and has the potential to be used for evaluating plant species composition and diversity across broad geographic regions. Anthocyanins in particular, are non-photosynthetic pigments associated with the resistance of plants to environmental stresses (e.g., drought, low soil nutrients, high radiation, herbivores, and pathogens). As they absorb radiation primarily in the green region of the electromagnetic spectrum (around 540-560 nm), broad-band vegetation indices that use this region in their formulation will respond to their presence. We evaluated the sensitivity of three vegetation indices using reflectance in the green spectral region (the green Normalized Difference Vegetation Index, gNDVI, the green Chlorophyll Index, CIg, and the Visible Atmospherically Resistant Vegetation Index, VARI) to foliar anthocyanins in five different species. For comparison purposes the widely used Normalized Difference Vegetation Index, NDVI was also evaluated. Among the four indices tested, the VARI, which uses only spectral bands in the visible region of the electromagnetic spectrum, was found to be inversely and linearly related to the relative amount of foliar anthocyanins. While this result was obtained at leaf level, it opens new possibilities for analyzing anthocyanin content across multiple scales, by means of currently operational aircraft- and spacecraft-mounted broad-band sensor systems. Further studies that evaluate the sensitivity of the VARI to the relative content of anthocyanins across space (e.g., at canopy and regional scales) and time, and its relationship with plant biodiversity and vegetation stresses, are

  4. Anthocyanin copigmentation and color of wine: The effect of naturally obtained hydroxycinnamic acids as cofactors.

    Science.gov (United States)

    Bimpilas, Andreas; Panagopoulou, Marilena; Tsimogiannis, Dimitrios; Oreopoulou, Vassiliki

    2016-04-15

    Copigmentation of anthocyanins accounts for over 30% of fresh red wine color, while during storage, the color of polymeric pigments formed between anthocyanins and proanthocyanidins predominates. Rosmarinic acid and natural extracts rich in hydroxycinnamic acids, obtained from aromatic plants (Origanum vulgare and Satureja thymbra), were examined as cofactors to fresh Merlot wine and the effect on anthocyanin copigmentation and wine color was studied during storage for 6months. An increase of the copigmented anthocyanins that enhanced color intensity by 15-50% was observed, confirming the ability of complex hydroxycinnamates to form copigments. The samples with added cofactors retained higher percentages of copigmented anthocyanins and higher color intensity, compared to the control wine, up to 3 months. However, the change in the equilibrium between monomeric and copigmented anthocyanins that was induced by added cofactors, did not affect the rate of polymerization reactions during storage. PMID:26616922

  5. Anthocyanins: Model Compounds for Learning about More than pH

    Science.gov (United States)

    Curtright, Robert; Rynearson, James A.; Markwell, John

    1996-04-01

    We have all experienced anthocyanins as a part of the natural beauty of the plant world. Anthocyanins provide a startling contrast to an otherwise green world producing the beauty of garden-variety flowers, wildflowers, and the blazing colors of many trees, bushes, and berries. We believe that anthocyanins deserve a more prominent role as models for engaging student interest in basic chemical principles. In recent years it has become common to use anthocyanins as pH indicators. We believe that chemistry teachers can capitalize further on the natural interest of students in anthocyanin pigments to design meaningful lessons involving chromatography and hydrolysis. This article focuses on the use of anthocyanins in chromatography and hydrolysis.

  6. Anthocyanin copigmentation and color of wine: The effect of naturally obtained hydroxycinnamic acids as cofactors.

    Science.gov (United States)

    Bimpilas, Andreas; Panagopoulou, Marilena; Tsimogiannis, Dimitrios; Oreopoulou, Vassiliki

    2016-04-15

    Copigmentation of anthocyanins accounts for over 30% of fresh red wine color, while during storage, the color of polymeric pigments formed between anthocyanins and proanthocyanidins predominates. Rosmarinic acid and natural extracts rich in hydroxycinnamic acids, obtained from aromatic plants (Origanum vulgare and Satureja thymbra), were examined as cofactors to fresh Merlot wine and the effect on anthocyanin copigmentation and wine color was studied during storage for 6months. An increase of the copigmented anthocyanins that enhanced color intensity by 15-50% was observed, confirming the ability of complex hydroxycinnamates to form copigments. The samples with added cofactors retained higher percentages of copigmented anthocyanins and higher color intensity, compared to the control wine, up to 3 months. However, the change in the equilibrium between monomeric and copigmented anthocyanins that was induced by added cofactors, did not affect the rate of polymerization reactions during storage.

  7. Anthocyanin-dependent anoxygenic photosynthesis in coloured flower petals?

    Science.gov (United States)

    Lysenko, Vladimir; Varduny, Tatyana

    2013-11-01

    Chlorophylless flower petals are known to be composed of non-photosynthetic tissues. Here, we show that the light energy storage that can be photoacoustically measured in flower petals of Petunia hybrida is approximately 10-12%. We found that the supposed chlorophylless photosynthesis is an anoxygenic, anthocyanin-dependent process occurring in blue flower petals (ADAPFP), accompanied by non-respiratory light-dependent oxygen uptake and a 1.5-fold photoinduced increase in ATP levels. Using a simple, adhesive tape stripping technique, we have obtained a backside image of an intact flower petal epidermis, revealing sword-shaped ingrowths connecting the cell wall and vacuole, which is of interest for the further study of possible vacuole-related photosynthesis. Approaches to the interpretations of ADAPFP are discussed, and we conclude that these results are not impossible in terms of the known photochemistry of anthocyanins.

  8. Anthocyanin extracts with antioxidant and radical scavenging effect

    Energy Technology Data Exchange (ETDEWEB)

    Gabrielska, J.; Langner, M. [Technical Univ. Wroclaw (Poland). Dept. of Physics and Biophysics; Oszmianski, J. [Technical Univ. Wroclaw (Poland). Dept. of Fruit and Vegetable Technology; Komorowska, M. [Politechnika Wroclawska, Wroclaw (Poland). Inst. Fizyki

    1999-06-01

    The antioxidative activity of three anthocyanin pigments, extracted from the fruits of chokeberry, honeysuckle and sloe, were studied. Lipid oxidation in the liposome membrane, induced by UV radiation, was evaluated with a thiobarbituric acid-reactive substances assay. The antioxidant efficiency of the studied compounds follows this sequence: chokeberry>sloe>honeysuckle. The extract concentrations at which a 50% reduction of phosphatidylcholine oxidation was observed, were respectively: 48, 54 and 60 mg/l. The end products of lipid membrane oxidation were evaluated using HPLC. It was found that the antioxidative potency of anthocyanin extracts is concentration-dependent. As shown by EPR technique the efficiency of the extracts to eliminate free radicals from the solution follows the order of the antioxidant activity. (orig.)

  9. Optimization of Ultrasound-Assisted Extraction of Anthocyanins from Mulberry, Using Response Surface Methodology

    OpenAIRE

    Ren-You Gan; Wen-Hua Ling; Tang-Bin Zou; Min Wang

    2011-01-01

    Mulberry is one of the most widely used traditional Chinese medicines. Anthocyanins are the main bioactive components of mulberry, and possess important biological activities, such as antimicrobial, anti-inflammatory and antioxidant activities. This study investigated the ultrasound-assisted extraction (UAE) of anthocyanins from mulberry by using response surface methodology (RSM). The extraction conditions associated with anthocyanin yield, including extraction solvent, liquid-to-solid rate,...

  10. Effect of Light on Anthocyanin Levels in Submerged, Harvested Cranberry Fruit

    OpenAIRE

    Yu Zhou; Bal Ram Singh

    2004-01-01

    Anthocyanins are a group of plant antioxidants known for their therapeutic use. The effects of natural light, red light, and far-red light on individual as well as total anthocyanin content in cranberry fruit (Vaccinium macrocarpon Ait) were examined in an experimental setting designed to mimic water-harvesting conditions. The reversed-phase high-performance liquid chromatography (HPLC) method was used to separate and analyze the anthocyanins. In contrast to the case of the control sample tha...

  11. Impact of Frozen Storage on the Anthocyanin and Polyphenol Content of American Elderberry Fruit Juice

    OpenAIRE

    Johnson, Mitch C.; Thomas, Andrew L.; Greenlief, C. Michael

    2015-01-01

    The effects of frozen storage on the anthocyanin and polyphenol content of elderberry fruit juice are investigated. Juice from three genotypes of American elderberry (Adams II, Bob Gordon, and Wyldewood) was screened for total phenolic (TP) and total monomeric anthocyanin (TMA) content with spectrophotometric methods. The individual anthocyanin content (IAC) of the juice was tested by coupling solid phase extraction with ultra-performance liquid chromatography/tandem mass spectrometry. Juice ...

  12. Sour Cherry (Prunus cerasus L) Anthocyanins as Ingredients for Functional Foods

    OpenAIRE

    Federica Blando; Carmela Gerardi; Isabella Nicoletti

    2004-01-01

    In the recent years many studies on anthocyanins have revealed their strong antioxidant activity and their possible use as chemotherapeutics. The finding that sour cherries (Prunus cerasus L) (also called tart cherries) contain high levels of anthocyanins that possess strong antioxidant and anti-inflammatory properties has attracted much attention to this species. Here we report the preliminary results of the induction of anthocyanin biosynthesis in sour cherry callus cell cultures. The evalu...

  13. Transcriptional control of floral anthocyanin pigmentation in monkeyflowers (Mimulus)

    OpenAIRE

    Yuan, Yao-Wu; Sagawa, Janelle M.; Frost, Laura; Vela, James P.; Bradshaw, Harvey D.

    2014-01-01

    A molecular description of the control of floral pigmentation in a multi-species group displaying various flower color patterns is of great interest for understanding the molecular bases of phenotypic diversification and pollinator-mediated speciation.Through transcriptome profiling, mutant analyses, and transgenic experiments, we aim to establish a ‘baseline’ floral anthocyanin regulation model in Mimulus lewisii and to examine the different ways of tinkering with this model in generating th...

  14. Antioxidation of Anthocyanins in Photosynthesis Under High Temperature Stress

    Institute of Scientific and Technical Information of China (English)

    Ling Shao; Zhan Shu; Shu-Lan Sun; Chang-Lian Peng; Xiao-Jing Wang; Zhi-Fang Lin

    2007-01-01

    Chlorophyll fluorescence and antioxidative capability in detached leaves of the wild type Arabidopsis thaliana L. ecotype Landsberg erecta (Ler) and three mutants deficient in anthocyanins biosynthesis (tt3, tt4, and tt3tt4) were investigated during treatment with temperatures ranging 25-45 ℃. In comparison with the wild type, chlorophyll fluorescence parameters Fv/Fm, ΦPSⅡ, electron transport rate (ETR), Fv/Fo and qP in three anthocyanin-deficient mutants showed a more rapidly decreasing rate when the temperature was over 35 ℃. Non-photochemical quenching (NPQ) in these mutants was almost completely lost at 44 ℃, whereas the content of heat stable protein dropped and the rate of the membrane leakage increased.Fo-temperature curves were obtained by monitoring Fo levels with gradually elevated temperatures from 22 ℃ to 72 ℃ at 0.5℃/min. The inflexion temperatures of Fo were 45.8 ℃ in Ler, 45.1 ℃ in tt3, 44.1 ℃ in tt4 and 42.3 ℃ in tt3tt4, respectively.The temperatures of maximal Fo in three mutants were 1.9-3.8 ℃ lower than the wild type plants. Meanwhile, three mutants had lower activities of superoxide dismutase (SOD) and ascorbate peroxidase (APX) and an inferior scavenging capability to DPPH (1.1-diphenyl-2-picrylhy.drazyl) radical under heat stress, and in particular tt3tt4 had the lowest antioxidative potential. The results of the diaminobenzidine-H2O2 histochemical staining showed that H2O2 was accumulated in the leaf vein and mesophyll cells of mutants under treatment at 40 ℃, and it was significantly presented in leaf cells of tt3tt4.The sensitivity of Arabidopsis anthocyanins-deficient mutants to high temperatures has revealed that anthocyanins in normal plants might provide protection from high temperature injury, by enhancing its antioxidative capability under high temperature stress.

  15. Film with anthocyanins as an indicator of chilled pork deterioration

    Directory of Open Access Journals (Sweden)

    Luana Baptista Golasz

    2013-02-01

    Full Text Available An indicator can be defined as a substance which indicates the presence or absence of another substance or the degree of a certain reaction through characteristic changes, especially color. Therefore, the aim of this work is to evaluate the performance of a bio-based film with anthocyanin as an indicator of chilled pork deterioration. A film made of cassava starch, glycerol, and grape anthocyanins was prepared using the casting technique. Pork loin samples were put in Petri dishes containing an anthocyanin film on the bottom and stored at 4 ºC. Psychrotrophic microorganism count and the pH of the pork loin samples were analyzed for a 14 day- period. At the same time, the films were subjected to colorimetric analysis using D65 illuminant and the CIELAB system. Chroma and hue angle data for these films were evaluated by Anova and Dunnett's test. An increase in the microbial population and in the pH was observed over the storage period as result of pork deterioration. Color changes were also identified in the film. However, only at the beginning of the storage period was it possible to establish a correlation between film color and pork deterioration. The shelf life end-point could not be clearly detected by the film.

  16. Engineering the anthocyanin regulatory complex of strawberry (Fragaria vesca

    Directory of Open Access Journals (Sweden)

    Kui eLin-Wang

    2014-11-01

    Full Text Available The woodland strawberry, Fragaria vesca is a model fruit for a number of rosaceous crops. We have engineered altered concentrations of anthocyanin in F. vesca, to determine the impact on plant growth and fruit quality. Anthocyanin concentrations were significantly increased by over-expression or decreased by knock-down of the R2R3 MYB activator, MYB10. In contrast, a potential bHLH partner for MYB10 (bHLH33 did not affect the anthocyanin pathway when knocked down using RNAi constructs. Metabolic analysis of fruits revealed that, of all the polyphenolics surveyed, only cyanidin and pelargonidin glucoside, and coumaryl hexose were significantly affected by over-expression and knock down of MYB10. Using the F. vesca genome sequence, members of the MYB, bHLH and WD40 families were examined. Global analysis of gene expression and targeted qPCR analysis of biosynthetic genes and regulators confirmed the effects of altering MYB10 expression, as well as the knock-down of bHLH33. Other members of the MYB transcription factor family were affected by the transgenes. Transient expression of strawberry genes in Nicotiana benthamiana revealed that MYB10 can auto-regulate itself, and potential repressors of MYB10. In tobacco, MYB10’s activation of biosynthetic steps is inhibited by the strawberry repressor MYB1.

  17. Signal perception, transduction, and gene expression involved in anthocyanin biosynthesis

    International Nuclear Information System (INIS)

    Anthocyanin pigments provide fruits and flowers with their bright red and blue colors and are induced in vegetative tissues by various signals. The biosynthetic pathway probably represents one of the best‐studied examples of higher plant secondary metabolism. It has attracted much attention of plant geneticists because of the dispensable nature of the compounds it produces. Not unexpectedly, several excellent reviews on anthocyanin biosynthesis have been published over the last 5 years (Dooner et al., 1991; Martin and Gerats, 1993a, 1993b; Koes et al., 1994; Holton and Cornish, 1995). These reviews emphasize the late steps of pigment biosynthesis rather than the early and intermediate events of signal perception and transduction. This review is broader and not only covers the identification of components of the anthocyanin signal perception/transduction networks but also provides a description of our current understanding of how they evoke the responses that they do. Progress has derived from a combination of biochemical, molecular and genetic studies. We discuss a range of relevant research to highlight the different experimental approaches being used and the diverse biological systems under investigation. (author)

  18. Fluorescence of anthocyanin pigments in plant extracts at various pH

    Science.gov (United States)

    Pliszka, Barbara; Olszewska, Teresa; Drabent, Regina

    2001-07-01

    The fluorescence properties of anthocyanin pigments in extracts of red cabbage, Brassica oleracea, have been studied. The fluorescence spectra and fluorescence excitation spectra have been measured with absorption spectra of anthocyanins in extracts at pH 2 and pH 7. The results of the researches show that kinds of fluorescent anthocyanins (or/and other compounds) depend on pH conditions of red cabbage extracts. The properly chosen parameters of fluorescence measurement allow to distinguish spectrally two different fluorescent anthocyanin compounds in extract at pH 2 in comparison to pH 7, where three fluorescent compounds have been found.

  19. Coronatine Induces an Accumulation of Anthocyanin and Starch in Purple-fleshed Sweetpotato (Ipomoea batatas Lam.)

    Institute of Scientific and Technical Information of China (English)

    Baoqing WANG; Beitao XIE; Haiyan ZHANG; Liming ZHANG; Qingmei WANG

    2013-01-01

    [Objective] The objective of this research was to examine the effects of COR on anthocyanin and starch content in storage roots of two PFS genotypes, and to explore the relationships between anthocyanin synthesis and starch accumula-tion. [Method] A field experiment was carried out to determine the changes in yield components, yield, contents of anthocyanin and starch, activities of phenylalanine ammonia-lyase (PAL) and adenosine 5-diphosphate glucose pyrophosphorylase (AG-Pase) in two genotypes of PFS (Ipomoea batatas L., var. ‘Ayamurasaki’ and‘Jishu18’). [Result] The application of COR significantly increased starch and antho-cyanin content in storage roots of Jishu18 across developmental stages by inducing the activities of PAL and AGPase, and final y enhanced yield by promoting fresh weight of storage roots. Ayamurasaki was insensitive to treatment with COR al-though its PAL activity temporal y increased. The starch and anthocyanin content of Aya, and the anthocyanin content of Jishu18 increased progressively across devel-opmental stages with or without COR application, but the starch content of Jishu18 increased initial y, then decreased before increasing again without application of COR. Treatment with COR reduced downward trend of starch accumulation in Jishu18. Thus, the effect of COR on accumulation of anthocyanin and starch in storage roots of PFS differs according to genotypes. [Conclusion] The application of 0.05 μmol/L COR may increase starch and anthocyanin content in PFS genotypes with lower starch and anthocyanin content in storage roots.

  20. Post-harvest UVC irradiation effect on anthocyanin profile of grape berries

    International Nuclear Information System (INIS)

    Anthocyanins are a class of phenolic compounds that contribute to the color of red grapes and have shown nutraceutical properties for human health. UVC light irradiation has been proved to increase phenolic compounds such as stilbenes, but its effect on anthocyanins has not been reported. The aim of this work was to identify the best treatment conditions of UVC light irradiation on post-harvest berries of Malbec (M), Cabernet Sauvignon (CS) and Tempranillo (T) for anthocyanin increments. Grape berries were irradiated with 240 W at 20 and 40 cm from the light source, for 30, 60 and 120 seconds. Both, irradiated and control grapes were stored on darkness at 20 C degree until anthocyanin extraction with methanol/ClH. HPLC analysis were performed and nine anthocyanins were quantified. UVC light irradiation modified the anthocyanin profile of the three cultivars. All the glucoside anthocyanins derivates and peonidin-acetyl-glucoside, as well as total anthocyanins were increased when CS berries were exposed to UVC for 120 s at 40 cm. This suggests that UVC stimulated the entire biosynthetic pathway. The anthocyanin content of the control berries was always higher than the treatments with UVC on M and T, making necessary to evaluate less rigorous conditions for these varieties. (authors)

  1. Identification, content and distribution of anthocyanins and low molecular weight anthocyanin-derived pigments in Spanish commercial red wines.

    Science.gov (United States)

    Blanco-Vega, Dora; Gómez-Alonso, Sergio; Hermosín-Gutiérrez, Isidro

    2014-09-01

    The content and distribution of low molecular weight red wine pigments (anthocyanins, flavanol-anthocyanins adducts and pyranoanthocyanins) has been analysed in 283 wine samples. A total of 90 red wine pigments were identified and up to 68 of them quantified in most of the wine samples. The content of the different pigments classes accounted for wide ranges of values, because of the diversity of the commercial wines regarding grape cultivar and age. Garnacha young wines were prone to contain higher hydroxyphenyl-pyranoanthocyanin concentrations. The aging had an effect of making uniform the concentrations and molar percentages of every type of pigments, and only slight differences among wine groups were found for B-type vitisins (highest values for Syrah wines) and 10-hydroxyphenyl-pyranoanthocyanins (highest values for Merlot wines). Among Tempranillo wines, the ethylidene-bridged flavanol-anthocyanin adducts were the most affected by disappearance during aging, whereas hydroxyphenyl-pyranoanthocyanins increased their contribution in most of those aged wines.

  2. Anthocyanin-Rich Juice Lowers Serum Cholesterol, Leptin, and Resistin and Improves Plasma Fatty Acid Composition in Fischer Rats

    OpenAIRE

    Daniela Graf; Stephanie Seifert; Anke Jaudszus; Achim Bub; Bernhard Watzl

    2013-01-01

    Obesity and obesity-associated diseases e.g. cardiovascular diseases and type 2 diabetes are spread worldwide. Anthocyanins are supposed to have health-promoting properties, although convincing evidence is lacking. The aim of the present study was to investigate the effect of anthocyanins on several risk factors for obesity-associated diseases. Therefore, Fischer rats were fed anthocyanin-rich grape-bilberry juice or an anthocyanin-depleted control juice for 10 weeks. Intervention with anthoc...

  3. AKTIVITAS ANTIOKSIDAN ANTOSIANIN BERAS KETAN HITAM SELAMA FERMENTASI [Antioxidant Activity of Anthocyanin of Black Glutinous Rice During Fermentation

    OpenAIRE

    Nanik Suhartatik1)*; Muhammad Nur Cahyanto; Sri Raharjo2); Endang S Rahayu1)

    2013-01-01

    Anthocyanin is a group of bioactive compound found to be abundant in black glutinous rice. It has been widely studied for their health beneficial effect. Hydrolysis of anthocyanin glycoside into anthocyanidin and sugar by β,D-glucosidase is presumed to be the first step in anthocyanin metabolism. Enzymatic degradation of anthocyanin was reported to produce not only more stable compounds, but also healthier compounds with better bioavailability. Some species of Lactic Acid Bacteria showed β,D-...

  4. Different Localization Patterns of Anthocyanin Species in the Pericarp of Black Rice Revealed by Imaging Mass Spectrometry

    OpenAIRE

    Yukihiro Yoshimura; Nobuhiro Zaima; Tatsuya Moriyama; Yukio Kawamura

    2012-01-01

    Black rice (Oryza sativa L. Japonica) contains high levels of anthocyanins in the pericarp and is considered an effective health-promoting food. Several studies have identified the molecular species of anthocyanins in black rice, but information about the localization of each anthocyanin species is limited because methodologies for investigating the localization such as determining specific antibodies to anthocyanin, have not yet been developed Matrix-assisted laser desorption/ionization imag...

  5. Different localization patterns of anthocyanin species in the pericarp of black rice revealed by imaging mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Yukihiro Yoshimura

    Full Text Available Black rice (Oryza sativa L. Japonica contains high levels of anthocyanins in the pericarp and is considered an effective health-promoting food. Several studies have identified the molecular species of anthocyanins in black rice, but information about the localization of each anthocyanin species is limited because methodologies for investigating the localization such as determining specific antibodies to anthocyanin, have not yet been developed Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS is a suitable tool for investigating the localization of metabolites. In this study, we identified 7 species of anthocyanin monoglycosides and 2 species of anthocyanin diglycosides in crude extracts from black rice by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS analysis. We also analyzed black rice sections by MALDI-IMS and found 2 additional species of anthocyanin pentosides and revealed different localization patterns of anthocyanin species composed of different sugar moieties. Anthocyanin species composed of a pentose moiety (cyanidin-3-O-pentoside and petunidin-3-O-pentoside were localized in the entire pericarp, whereas anthocyanin species composed of a hexose moiety (cyanidin-3-O-hexoside and peonidin-3-O-hexoside were focally localized in the dorsal pericarp. These results indicate that anthocyanin species composed of different sugar moieties exhibit different localization patterns in the pericarp of black rice. This is the first detailed investigation into the localization of molecular species of anthocyanins by MALDI-IMS.

  6. CCoAOMT down-regulation activates anthocyanin biosynthesis in petunia

    NARCIS (Netherlands)

    N.F.M. Shaipulah; J.K. Muhlemann; B.D. Woodworth; A. Van Moerkercke; J.C. Verdonk; A.M. Ramirez; M.A. Haring; N. Dudareva; R.C. Schuurink

    2015-01-01

    Anthocyanins and volatile phenylpropenes (isoeugenol and eugenol) in petunia flowers have the precursor 4-coumaryl CoA in common. These phenolics are produced at different stages during flower development. Anthocyanins are synthesized during early stages of flower development and sequestered in vacu

  7. CCoAOMT down-regulation activates anthocyanin biosynthesis in petunia

    NARCIS (Netherlands)

    Shaipulah, N.F.M.; Muhlemann, Joëlle K.; Woodworth, Benjamin D.; Moerkercke, Van Alex; Verdonk, J.C.; Ramirez, A.A.; Haring, Michel A.; Dudareva, Natalia; Schuurink, Robert C.

    2016-01-01

    Anthocyanins and volatile phenylpropenes (isoeugenol and eugenol) in petunia (Petunia hybrida) flowers have the precursor 4-coumaryl coenzyme A (CoA) in common. These phenolics are produced at different stages during flower development. Anthocyanins are synthesized during early stages of flower d

  8. Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors

    NARCIS (Netherlands)

    Butelli, E.; Titta, L.; Giorgio, M.; Mock, H.P.; Matros, A.; Peterek, S.; Schijlen, E.G.W.M.; Hall, R.D.; Bovy, A.G.; Luo, J.; Martin, C.

    2008-01-01

    Dietary consumption of anthocyanins, a class of pigments produced by higher plants, has been associated with protection against a broad range of human diseases. However, anthocyanin levels in the most commonly eaten fruits and vegetables may be inadequate to confer optimal benefits. When we expresse

  9. Health Benefits of Anthocyanins and Their Encapsulation for Potential Use in Food Systems: A Review.

    Science.gov (United States)

    Yousuf, Basharat; Gul, Khalid; Wani, Ali Abas; Singh, Preeti

    2016-10-01

    Anthocyanins are one of the six subgroups of large and widespread group of plant constituents known as flavonoids. These are responsible for the bright and attractive orange, red, purple, and blue colors of most fruits, vegetables, flowers and some cereal grains. More than 600 structurally distinct anthocyanins have been identified in nature. Earlier, anthocyanins were only known for their coloring properties but now interest in anthocyanin pigments has intensified because of their possible health benefits as dietary antioxidants, which help to prevent neuronal diseases, cardiovascular illnesses, cancer, diabetes, inflammation, and many such others diseases. Ability of anthocyanins to counter oxidants makes them atherosclerosis fighters. Therefore, anthocyanin-rich foods may help to boost overall health by offering an array of nutrients. However, the incorporation of anthocyanins into food and medical products is a challenging task due to their low stability toward environmental conditions during processing and storage. Encapsulation seems to be an efficient way to introduce such compounds into these products. Encapsulating agents act as a protector coat against ambient adverse conditions such as light, humidity, and oxygen. Encapsulated bioactive compounds are easier to handle and offer improved stability. The main objective of this review is to explore health benefits of anthocyanins and their extraction, characterization, encapsulation, and delivery.

  10. Bioavailability of Anthocyanins from Purple Carrot Juice: Effects of Acylation and Plant Matrix

    Science.gov (United States)

    Bioavailability of anthocyanins from juiced purple carrots was investigated through a human feeding study. Ten healthy adults consumed three doses of purple carrot juice, and bioavailability was assessed by appearance of anthocyanins in plasma for 8 hours after the dose. Doses were 50 mL, 150 mL, ...

  11. Content and Color Stability of Anthocyanins Isolated from Schisandra chinensis Fruit

    Directory of Open Access Journals (Sweden)

    Yuangang Zu

    2012-11-01

    Full Text Available In this work, a multivariate study based on Box-Behnken Design was used to evaluate the influence of three major variables affecting the performance of the extraction process of Schisandra chinensis anthocyanins. The optimum parameters were 5.5 h extraction time; 1:19 solid-liquid ratio and 260 r/min stirring rate, respectively. The extraction yield of anthocyanins was 29.06 mg/g under the optimum conditions. Moreover, many factors on the impact of heating, ultrasound, microwave treatment and ultraviolet irradiation on content and color stability of anthocyanins from Schisandra chinensis fruit were investigated. The results show that thermal degradation reaction of anthocyanins complies with the first order reaction kinetics, and the correlation coefficient is greater than 0.9950 at 40–80 °C. Ultrasound and microwave treatment has little effect on the stability of anthocyanins, and the extraction time of ultrasound and microwave should be no more than 60 min and 5 min, respectively. The anthocyanins degradation effect of UVC ultraviolet radiation is greater than UVA and UVB; after 9 h ultraviolet radiation, the anthocyanins content degradation of UVC is 23.9 ± 0.7%, and the ΔE* was changed from 62.81 to 76.52 ± 2.3. Through LC-MS analysis, the major composition of Schisandra chinensis anthocyanins was cyanidin-3-O-xylosylrutinoside.

  12. Anthocyanin and Potential Therapeutic Traits in Clitoria, Desmodium, Corchorus, Catharanthus, and Hibiscus Species

    Science.gov (United States)

    The USDA, ARS, Plant Genetic Resources Conservation Unit curates several important nutraceutical and medicinal plant species. Anthocyanins are responsible for flower, leaf, seed coat color in plants, and are antioxidants as well. However, little is known about anthocyanin content in Clitoria terna...

  13. An O-methyltransferase modifies accumulation of methylated anthocyanins in seedlings of tomato

    NARCIS (Netherlands)

    Gomez Roldan, M.V.; Outchkourov, N.S.; Houwelingen, van A.M.M.L.; Lammers, M.; Romero Fuente, I.; Ziklo, N.; Aharoni, A.; Hall, R.D.; Beekwilder, M.J.

    2014-01-01

    Anthocyanins contribute to the appearance of fruit by conferring to them a red, blue or purple colour. In a food context, they have also been suggested to promote consumer health. In purple tomato tissues, such as hypocotyls, stems and purple fruits, various anthocyanins accumulate. These molecules

  14. Using gamma irradiation for the recovery of anthocyanins from grape pomace

    Energy Technology Data Exchange (ETDEWEB)

    Ayed, N.; Yu, H.-L.; Lacroix, M. E-mail: Monique_Lacroix@iaf.uquebec.ca

    2000-03-01

    This research investigated the effect of gamma irradiation from 0 to 9 kGy, packaging in air or under vacuum, or in combination with other treatments for enhancing anthocyanin extraction from grape pomace. Results indicate that the irradiation at 6 kGy and packaging in the presence of a low concentration of sodium metabisulfite yielded the highest value of anthocyanin extraction. (author)

  15. Issues with fruit dietary supplements in the US - authentication by anthocyanin

    Science.gov (United States)

    Current fruit-based dietary supplements in the US marketplace have no obligation to meet any fruit-component concentration requirement. For example, berry supplements might be promoted for their high anthocyanin content, but they actually have no standard or minimum anthocyanin threshold for legal s...

  16. Rosaceae products: Anthocyanin quality and comparisons between dietary supplements and foods

    Science.gov (United States)

    Rosaceae (strawberry, cherry, blackberry, red raspberry, and black raspberry) dietary supplements and food products (total n=74) were purchased and analyzed to determine their anthocyanin concentrations and profiles. Eight of the 33 dietary supplements had no detectable anthocyanins (five samples) o...

  17. Genetic analyses of anthocyanin concentrations and the intensity of red color in onion

    Science.gov (United States)

    Higher concentrations of anthocyanins in vegetables are important for attractive appearance and may offer health benefits for consumers. The red color of onion bulbs is due primarily to the accumulation of anthocyanins. Segregating haploid plants from the cross of yellow and red inbreds were asexual...

  18. Tissue bioavailability of anthocyanins from whole tart cherry in healthy rats.

    Science.gov (United States)

    Kirakosyan, Ara; Seymour, E Mitchell; Wolforth, Janet; McNish, Robert; Kaufman, Peter B; Bolling, Steven F

    2015-03-15

    Our aim was to confirm and identify the presence of tart cherry anthocyanins in several target tissues of healthy rats. Liquid chromatography-mass spectrometry analysis was employed for detection and characterisation of anthocyanin metabolites. It was shown that four native anthocyanins, namely cyanidin 3-glucosylrutinoside, cyanidin 3-rutinoside, cyanidin 3-rutinoside 5-β-D-glucoside, and peonidin 3-rutinoside were differentially distributed among targeted tissues of rats. Bladder and kidney contained more total anthocyanins than all other tissues analysed. It was also revealed that the bioavailability pattern of these native anthocyanins among tissues is varied. The highest concentration of individual anthocyanin cyanidin 3-glucosylrutinoside (2339 picograms/gram of tissue) was detected in bladder, followed by cyanidin 3-rutinoside 5-β-d-glucoside (916 picograms/gram) in the liver of rats. Although the diverse distribution of tart cherry anthocyanins in different rat tissues still requires further explanation, it may provide an evidentiary link between tissue bioavailability and health-enhancing properties of anthocyanins at target sites. PMID:25308638

  19. Anthocyanin Induces Apoptosis of DU-145 Cells In Vitro and Inhibits Xenograft Growth of Prostate Cancer

    Science.gov (United States)

    Ha, U-Syn; Bae, Woong Jin; Kim, Su Jin; Yoon, Byung Il; Hong, Sung Hoo; Lee, Ji Youl; Hwang, Tae-Kon; Hwang, Sung Yeoun; Wang, Zhiping

    2015-01-01

    Purpose To investigate the effects of anthocyanins extracted from black soybean, which have antioxidant activity, on apoptosis in vitro (in hormone refractory prostate cancer cells) and on tumor growth in vivo (in athymic nude mouse xenograft model). Materials and Methods The growth and viability of DU-145 cells treated with anthocyanins were assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and apoptosis was assessed by DNA laddering. Immunoblotting was conducted to evaluate differences in the expressions of p53, Bax, Bcl, androgen receptor (AR), and prostate specific antigen (PSA). To study the inhibitory effects of anthocyanins on tumor growth in vivo, DU-145 tumor xenografts were established in athymic nude mice. The anthocyanin group was treated with daily oral anthocyanin (8 mg/kg) for 14 weeks. After 2 weeks of treatment, DU-145 cells (2×106) were inoculated subcutaneously into the right flank to establish tumor xenografts. Tumor dimensions were measured twice a week using calipers and volumes were calculated. Results Anthocyanin treatment of DU-145 cells resulted in 1) significant increase in apoptosis in a dose-dependent manner, 2) significant decrease in p53 and Bcl-2 expressions (with increased Bax expression), and 3) significant decrease in PSA and AR expressions. In the xenograft model, anthocyanin treatment significantly inhibit tumor growth. Conclusion This study suggests that anthocyanins from black soybean inhibit the progression of prostate cancer in vitro and in a xenograft model. PMID:25510742

  20. Using gamma irradiation for the recovery of anthocyanins from grape pomace

    International Nuclear Information System (INIS)

    This research investigated the effect of gamma irradiation from 0 to 9 kGy, packaging in air or under vacuum, or in combination with other treatments for enhancing anthocyanin extraction from grape pomace. Results indicate that the irradiation at 6 kGy and packaging in the presence of a low concentration of sodium metabisulfite yielded the highest value of anthocyanin extraction. (author)

  1. Health Benefits of Anthocyanins and Their Encapsulation for Potential Use in Food Systems: A Review.

    Science.gov (United States)

    Yousuf, Basharat; Gul, Khalid; Wani, Ali Abas; Singh, Preeti

    2016-10-01

    Anthocyanins are one of the six subgroups of large and widespread group of plant constituents known as flavonoids. These are responsible for the bright and attractive orange, red, purple, and blue colors of most fruits, vegetables, flowers and some cereal grains. More than 600 structurally distinct anthocyanins have been identified in nature. Earlier, anthocyanins were only known for their coloring properties but now interest in anthocyanin pigments has intensified because of their possible health benefits as dietary antioxidants, which help to prevent neuronal diseases, cardiovascular illnesses, cancer, diabetes, inflammation, and many such others diseases. Ability of anthocyanins to counter oxidants makes them atherosclerosis fighters. Therefore, anthocyanin-rich foods may help to boost overall health by offering an array of nutrients. However, the incorporation of anthocyanins into food and medical products is a challenging task due to their low stability toward environmental conditions during processing and storage. Encapsulation seems to be an efficient way to introduce such compounds into these products. Encapsulating agents act as a protector coat against ambient adverse conditions such as light, humidity, and oxygen. Encapsulated bioactive compounds are easier to handle and offer improved stability. The main objective of this review is to explore health benefits of anthocyanins and their extraction, characterization, encapsulation, and delivery. PMID:25745811

  2. Antioxidant activities and anthocyanin content of fresh fruits of common fig (Ficus carica L.).

    Science.gov (United States)

    Solomon, Anat; Golubowicz, Sara; Yablowicz, Zeev; Grossman, Shlomo; Bergman, Margalit; Gottlieb, Hugo E; Altman, Arie; Kerem, Zohar; Flaishman, Moshe A

    2006-10-01

    Fig fruit has been a typical component in the health-promoting Mediterranean diet for millennia. To study the potential health-promoting constituents of fig fruits, six commercial fig varieties differing in color (black, red, yellow, and green) were analyzed for total polyphenols, total flavonoids, antioxidant capacity, and amount and profile of anthocyanins. Using reversed-phase liquid chromatography (RP-LC), various concentrations of anthocyanins but a similar profile was found in all varieties studied. Hydrolysis revealed cyanidin as the major aglycon. Proton and carbon NMR confirmed cyanidin-3-O-rhamnoglucoside (cyanidin-3-O-rutinoside; C3R) as the main anthocyanin in all fruits. Color appearance of fig extract correlated well with total polyphenols, flavonoids, anthocyanins, and antioxidant capacity. Extracts of darker varieties showed higher contents of phytochemicals compared to lighter colored varieties. Fruit skins contributed most of the above phytochemicals and antioxidant activity compared to the fruit pulp. Antioxidant capacity correlated well with the amounts of polyphenols and anthocyanins (R2 = 0.985 and 0.992, respectively). In the dark-colored Mission and the red Brown-Turkey varieties, the anthocyanin fraction contributed 36 and 28% of the total antioxidant capacity, respectively. C3R contributed 92% of the total antioxidant capacity of the anthocyanin fraction. Fruits of the Mission variety contained the highest levels of polyphenols, flavonoids, and anthocyanins and exhibited the highest antioxidant capacity.

  3. Matrix Effects on the Stability and Antioxidant Activity of Red Cabbage Anthocyanins under Simulated Gastrointestinal Digestion

    Directory of Open Access Journals (Sweden)

    Anna Podsędek

    2014-01-01

    Full Text Available Red cabbage is, among different vegetables, one of the major sources of anthocyanins. In the present study an in vitro digestion method has been used to assay the influence of the physiological conditions in the stomach and small intestine, as well as faecal microflora on anthocyanins stability in red cabbage and anthocyanin-rich extract. The recovery of anthocyanins during in vitro gastrointestinal digestion was strongly influenced by food matrix. The results showed that other constituents present in cabbage enhanced the stability of anthocyanins during the digestion. The amount of anthocyanins (HPLC method and antioxidant capacity (ABTS and FRAP assays strongly decreased after pancreatic-bile digestion in both matrices but total phenolics content (Folin-Ciocalteu assay in these digestions was higher than in initial samples. Incubation with human faecal microflora caused further decline in anthocyanins content. The results obtained suggest that intact anthocyanins in gastric and products of their decomposition in small and large intestine may be mainly responsible for the antioxidant activity and other physiological effects after consumption of red cabbage.

  4. Anthocyanins from flowers of the orchids Dracula chimaera and D. cordobae.

    Science.gov (United States)

    Fossen, Torgils; Øvstedal, Dag Olav

    2003-08-01

    The main anthocyanins from flowers of the orchids Dracula chimaera and D. cordobae were isolated from a purified methanolic extract by preparative HPLC. Their structures were determined to be cyanidin 3-O-(6"-O-malonyl-beta-glucopyranoside), cyanidin 3-O-(6"-O-alpha-rhamnopyranosyl-beta-glucopyranoside), cyanidin 3-O-beta-glucopyranoside, peonidin 3-O-(6"-O-alpha-rhamnopyranosyl-beta-glucopyranoside) and peonidin 3-O-(6"-O-malonyl-beta-glucopyranoside). The structure determinations were mainly based on extensive use of 2D and 1D NMR spectroscopy, UV-vis spectroscopy and MS. The anthocyanin contents of species belonging to the subtribe Pleurothallidinae including genus Dracula Luer (Orchidaceae) have previously not been determined. The high content of anthocyanin rutinosides found in D. chimaera and D. cordobae (78 and 28% of the total anthocyanin content, respectively) differs from previously analysed orchid species, in which glucose is found as the only anthocyanin sugar moiety.

  5. Molecular mechanism for cadmium-induced anthocyanin accumulation in Azolla imbricata.

    Science.gov (United States)

    Dai, Ling-Peng; Dong, Xin-Jiao; Ma, Hai-Hu

    2012-04-01

    Anthocyanins inducibly synthesized by Cd treatment showed high antioxidant activity and might be involved in internal detoxification mechanisms of Azolla imbricata against Cd toxicity. In order to understand anthocyanin biosynthesis mechanism during Cd stress, the cDNAs encoding chalcone synthase (CHS) and dihydroflavonol reductase (DFR), two key enzymes in the anthocyanin synthesis pathway, were isolated from A. imbricata. Deduced amino acid sequences of the cDNAs showed high homology to the sequences from other plants. Expression of AiDFR, and to a lesser extent AiCHS, was significantly induced in Cd treatment plant in comparison with the control. CHS and DFR enzymatic activities showed similar pattern changes with these genes expression during Cd stress. These results strongly indicate that Cd induced anthocyanin accumulation is probably mediated by up-regulation of structural genes including CHS and DFR, which might further increase the activities of enzymes encoded by these structural genes that control the anthocyanin biosynthetic steps. PMID:22225708

  6. Absorption and excretion of black currant anthocyanins in human and Watanabe Heritable Hyperlipidemic rabbits

    DEFF Research Database (Denmark)

    Nielsen, I. L.. F.; Ravn-Haren, Gitte; Dragsted, L. O.;

    2003-01-01

    Anthocyanins are thought to protect against cardiovascular diseases. Watanabe heritable hyperlipidemic (WHHL) rabbits are hypercholesterolemic and used as a model of the development of atherosclerosis. To compare the uptake and excretion of anthocyanins in humans and WHHL rabbits, single-dose black...... currant anthocyanin studies were performed. Procedures for workup and analyses of urine and plasma samples containing anthocyanins were developed with high recoveries (99 and 81%, respectively) and low limits of quantification (greater than or equal to 6.6 and greater than or equal to 1.1 nM, respectively......). The excretion and absorption of anthocyanins from black currant juice were found to be within the same order of magnitude in the two species regarding urinary excretion within the first 4 h (rabbits, 0.035%; humans, 0.072%) and t(ma)x (rabbits, similar to30 min; humans, similar to45 min). A food matrix effect...

  7. Control of anthocyanin and non-flavonoid compounds by anthocyanin-regulating MYB and bHLH transcription factors in Nicotiana benthamiana leaves

    OpenAIRE

    Outchkourov, Nikolay S.; Carollo, Carlos A.; Gomez-Roldan, Victoria; De Vos, Ric C. H.; Bosch, Dirk; Hall, Robert D.; Beekwilder, Jules

    2014-01-01

    Coloration of plant organs such as fruit, leaves and flowers through anthocyanin production is governed by a combination of MYB and bHLH type transcription factors (TFs). In this study we introduced Rosea1 (ROS1, a MYB type) and Delila (DEL, a bHLH type), into Nicotiana benthamiana leaves by agroinfiltration. ROS1 and DEL form a pair of well-characterized TFs from Snapdragon (Antirrhinum majus), which specifically induce anthocyanin accumulation when expressed in tomato fruit. In N. benthamia...

  8. Active anthocyanin degradation in Brunfelsia calycina (yesterday--today--tomorrow) flowers.

    Science.gov (United States)

    Vaknin, Hila; Bar-Akiva, Ayelet; Ovadia, Rinat; Nissim-Levi, Ada; Forer, Izhak; Weiss, David; Oren-Shamir, Michal

    2005-09-01

    Anthocyanins are the largest group of plant pigments responsible for colors ranging from red to violet and blue. The biosynthesis of anthocyanins, as part of the larger phenylpropanoid pathway, has been characterized in great detail. In contrast to the detailed molecular knowledge available on anthocyanin synthesis, very little is known about the stability and catabolism of anthocyanins in plants. In this study we present a preliminary characterization of active in planta degradation of anthocyanins, requiring novel mRNA and protein synthesis, in Brunfelsia calycina flowers. Brunfelsia is a unique system for this study, since the decrease in pigment concentration in its flowers (from dark purple to white) is extreme and rapid, and occurs at a specific and well-defined stage of flower development. Treatment of detached flowers with protein and mRNA synthesis inhibitors, at specific stages of flower development, prevented degradation. In addition, treatment of detached flowers with cytokinins delayed senescence without changing the rate of anthocyanin degradation, suggesting that degradation of anthocyanins is not part of the general senescence process of the flowers but rather a distinctive and specific pathway. Based on studies on anthocyanin degradation in wine and juices, peroxidases are reasonable candidates for the in vivo degradation. A significant increase in peroxidase activity was shown to correlate in time with the rate of anthocyanin degradation. An additional indication that oxidative enzymes are involved in the process is the fact that treatment of flowers with reducing agents, such as DTT and glutathione, caused inhibition of degradation. This study represents the first step in the elucidation of the molecular mechanism behind in vivo anthocyanin degradation in plants. PMID:15918029

  9. A gene-derived SNP-based high resolution linkage map of carrot including the location of QTL conditioning root and leaf anthocyanin pigmentation

    OpenAIRE

    Cavagnaro, Pablo F; Iorizzo, Massimo; Yildiz, Mehtap; Senalik, Douglas; Parsons, Joshua; Ellison, Shelby; Simon, Philipp W

    2014-01-01

    Background Purple carrots accumulate large quantities of anthocyanins in their roots and leaves. These flavonoid pigments possess antioxidant activity and are implicated in providing health benefits. Informative, saturated linkage maps associated with well characterized populations segregating for anthocyanin pigmentation have not been developed. To investigate the genetic architecture conditioning anthocyanin pigmentation we scored root color visually, quantified root anthocyanin pigments by...

  10. Antioxidant Activity and Acetylcholinesterase Inhibition of Grape Skin Anthocyanin (GSA

    Directory of Open Access Journals (Sweden)

    Mehnaz Pervin

    2014-07-01

    Full Text Available We aimed to investigate the antioxidant and acetylcholinesterase inhibitory activities of the anthocyanin rich extract of grape skin. Grape skin anthocyanin (GSA neutralized free radicals in different test systems, such as 2,-2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS and 2,2-diphenyl-1-picrylhydrazyl (DPPH assays, to form complexes with Fe2+ preventing 2,2'-azobis(2-amidinopropane dihydrochloride (AAPH-induced erythrocyte hemolysis and oxidative DNA damage. Moreover, GSA decreased reactive oxygen species (ROS generation in isolated mitochondria thus inhibiting 2',-7'-dichlorofluorescin (DCFH oxidation. In an in vivo study, female BALB/c mice were administered GSA, at 12.5, 25, and 50 mg per kg per day orally for 30 consecutive days. Herein, we demonstrate that GSA administration significantly elevated the level of antioxidant enzymes in mice sera, livers, and brains. Furthermore, GSA inhibited acetylcholinesterase (AChE in the in vitro assay with an IC50 value of 363.61 µg/mL. Therefore, GSA could be an excellent source of antioxidants and its inhibition of cholinesterase is of interest with regard to neurodegenerative disorders such as Alzheimer’s disease.

  11. Estimation of Anthocyanin Content of Berries by NIR Method

    Science.gov (United States)

    Zsivanovits, G.; Ludneva, D.; Iliev, A.

    2010-01-01

    Anthocyanin contents of fruits were estimated by VIS spectrophotometer and compared with spectra measured by NIR spectrophotometer (600-1100 nm step 10 nm). The aim was to find a relationship between NIR method and traditional spectrophotometric method. The testing protocol, using NIR, is easier, faster and non-destructive. NIR spectra were prepared in pairs, reflectance and transmittance. A modular spectrocomputer, realized on the basis of a monochromator and peripherals Bentham Instruments Ltd (GB) and a photometric camera created at Canning Research Institute, were used. An important feature of this camera is the possibility offered for a simultaneous measurement of both transmittance and reflectance with geometry patterns T0/180 and R0/45. The collected spectra were analyzed by CAMO Unscrambler 9.1 software, with PCA, PLS, PCR methods. Based on the analyzed spectra quality and quantity sensitive calibrations were prepared. The results showed that the NIR method allows measuring of the total anthocyanin content in fresh berry fruits or processed products without destroying them.

  12. Anthocyanins in Wheat Seed – A Mini Review

    Directory of Open Access Journals (Sweden)

    Havrlentová Michaela

    2014-06-01

    Full Text Available Improving the micronutrients in food has become an important field of the Second Green Revolution. In recent years, minor bioactive compounds such as polyphenols, pigments and carotenoids, have attracted more and more interest from both researchers and food manufactures as health-promoting and disease-preventing effects in both in vitro and in vivo studies. One of plant pigments, wheat anthocyanins as plant phenolics are increasingly attractive as natural compounds positively affecting consumer´s health and condition moreover wheat is staple food source consumed usually daily. For a purple, blue, or red colour of wheat seed are responsible glycosylated cyanidins, delphinidins, malvinidins, pelargonidins, petunidins, and peonidins located in aleurone layer or pericarp, respectively. Other than white seed colour is not natural for common hexaploid wheat but this trait can be introduced from donors by aimed breeding programs. The way of wheat anthocyanins to provide positive effects for consumer´s physiology is limited due to their specific occurrence in seed parts usually removed during grain milling practice and lower stability during processing to foods

  13. Influence of rutin and ascorbic acid in colour, plum anthocyanins and antioxidant capacity stability in model juices.

    Science.gov (United States)

    Hernández-Herrero, J A; Frutos, M J

    2015-04-15

    Model juices at pH 3.7 were prepared with different combinations of ascorbic acid, rutin (quercetin 3-rutinoside) and concentrated anthocyanin extract of plums (cv. Black Gold). The anthocyanins in the concentrated extract were cyanidin 3-glucoside and cyanidin 3-rutinoside, in a proportion of 76% and 24% respectively. The model juices were stored during 17 weeks in darkness at 20 °C. The colour stability was improved by the presence of rutin and strongly damaged by the ascorbic acid. The fortification of anthocyanin model juices with ascorbic acid originated the degradation of most of anthocyanins. However, anthocyanins improved ascorbic acid stability during storage. The copigmentation of anthocyanin and rutin showed a beneficial effect on colour stability from the 5 weeks of storage. In model juices prepared exclusively with purified plum extract a high correlation (R(2)=0.881) between anthocyanins and antioxidant capacity was found. PMID:25466051

  14. Influence of rutin and ascorbic acid in colour, plum anthocyanins and antioxidant capacity stability in model juices.

    Science.gov (United States)

    Hernández-Herrero, J A; Frutos, M J

    2015-04-15

    Model juices at pH 3.7 were prepared with different combinations of ascorbic acid, rutin (quercetin 3-rutinoside) and concentrated anthocyanin extract of plums (cv. Black Gold). The anthocyanins in the concentrated extract were cyanidin 3-glucoside and cyanidin 3-rutinoside, in a proportion of 76% and 24% respectively. The model juices were stored during 17 weeks in darkness at 20 °C. The colour stability was improved by the presence of rutin and strongly damaged by the ascorbic acid. The fortification of anthocyanin model juices with ascorbic acid originated the degradation of most of anthocyanins. However, anthocyanins improved ascorbic acid stability during storage. The copigmentation of anthocyanin and rutin showed a beneficial effect on colour stability from the 5 weeks of storage. In model juices prepared exclusively with purified plum extract a high correlation (R(2)=0.881) between anthocyanins and antioxidant capacity was found.

  15. Anthocyanin Concentration of “Assaria” Pomegranate Fruits During Different Cold Storage Conditions

    Directory of Open Access Journals (Sweden)

    Graça Miguel

    2004-01-01

    Full Text Available The concentration of anthocyanins in fruits of “Assaria” pomegranate, a sweet Portuguese cultivar typically grown in Algarve (south Portugal, was monitored during storage under different conditions. The fruits were exposed to cold storage (5∘C after the following treatments: spraying with wax; spraying with 1.5% CaCl2; spraying with wax and 1.5% CaCl2; covering boxes with 25 μc thickness low-density polyethylene film. Untreated fruits were used as a control. The anthocyanin levels were quantified by either comparison with an external standard of cyanidin 3-rutinoside (based on the peak area or individual calculation from the peak areas based on standard curves of each anthocyanin type. The storage time as well as the fruit treatment prior to storage influenced total anthocyanin content. The highest levels were observed at the end of the first month of storage, except for the fruits treated with CaCl2, where the maximal values were achieved at the end of the second month. The anthocyanin quantification method influenced the final result. When total anthocyanin was calculated as a sum of individual pigments quantified based on standard curves of each anthocyanin type, lower values were obtained.

  16. Antioxidations and Their Correlations with Total Flavones and Anthocyanin Contents in Different Black Rice Varieties

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The antioxidations and their correlations with total flavones and anthocyanin contents in different black rice varieties were studied. The results indicated that the great differences in total antioxidant capacity (TAC), scavenging free radical capacity (SFRC), total flavones and anthocyanin contents existed among 242 black rice varieties. Comparisons of TAC,SFRC, total flavones and anthocyanin contents of different black rice types showed that the differences between black rice and white rice, indica one and japonica one, and nonglutinous one and glutinous one were significant at 0.01 levels,respectively. This showed that the TAC, SFRC, total flavones and anthocyanin contents of japonica type were higher than those of indica one, and nonglutinous type were higher than glutinous one. According to the fast clustering procedure, 242 black rice varieties could be clustered into 10 clusters, 184 indica rice varieties into 10 clusters, and 58japonica rice varieties into 6 clusters. Most significant (P<0.01) correlations existed between TAC and total flavones and anthocyanin contents, and between SFRC and total flavones and anthocyanin contents of black rice, respectively. This showed that the antioxidation of black rice was closely correlated with its active compositions of flavones and anthocyanin.

  17. Anthocyanin Accumulation Mediated by Blue Light and Cytokinin in Arabidopsis Seedlings

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    It has been reported that pigmentation in plants is stimulated by light and cytokinin (CTK); however, the signaling pathways and the relationship between light and CTK involved in the regulation of anthocyanin accumulation remain to be elucidated. We investigated (i) the role of blue light (BL) and CTK in anthocyanin accumulation; and (ii) the relationship between BL and CTK in wild type (WT) and hy4 mutants of Arabidopsis thaliana. Two-d-old seedlings grown on medium with or without kinetin (KT) or zeatin (ZT) in darkness were irradiated using BL at different fluence rates for 3 d before the anthocyanin content was determined using a spectrophotometric method. Anthocyanin accumulation was strongly induced by BL in WT seedlings but not in hy4 seedlings, which demonstrated that CRY1 is the main photoreceptor for BL. Both KT and ZT enhanced the response of the WT seedlings to BL in a dose-dependent manner, whereas they were not sufficient to promote anthocyanin accumulation in darkness. In addition, data from experiments using the hy4 mutant showed that the CTK effect of BL was also CRY1-dependent. The results from experiments with three different treatment programs showed that the relationship between BL and KT in anthocyanin accumulation of Arabidopsis seedlings seems neither multiplicative nor additive coaction, but rather interaction. BL is necessary for anthocyanin accumulation, and KT might be involved in the BL signaling pathway.

  18. Solvent optimization for anthocyanin extraction from Syzygium cumini L. Skeels using response surface methodology.

    Science.gov (United States)

    Chaudhary, Bratati; Mukhopadhyay, Kunal

    2013-05-01

    Anthocyanins are plant pigments that are potential candidates for use as natural food colourant. In this study, Syzygium cumini fruit skin has been used as anthocyanin source. All the six major types of anthocyanins were identified in the sample by ultra performance liquid chromatography studies, and the antioxidant activity was found to be 4.34 ± 0.26 Fe(2+)g(- 1) in the sample with highest anthocyanin content. Optimization of conditions for extracting high amounts of anthocyanin from the fruit peels was investigated by response surface methodology. The results suggested that highest anthocyanin yield (763.80 mg; 100 ml(- 1)), highest chroma and hue angle in the red colour range could be obtained when 20% ethanol was used in combination with 1% acetic acid. Methanol was replaced with ethanol for the extraction of pigments due to its less toxicity and being safe for human consumption. The optimized solvent can be used to extract anthocyanins from the S. cumini fruits and used as natural colourants in the food industries. PMID:23121325

  19. Classification of fruits based on anthocyanin types and relevance to their health effects.

    Science.gov (United States)

    Fang, Jim

    2015-01-01

    Anthocyanins are a group of water-soluble pigments that confer the blue, purple, and red color to many fruits. Anthocyanin-rich fruits can be divided into three groups based on the types of aglycones of their anthocyanins: pelargonidin group, cyanidin/peonidin group, and multiple anthocyanidins group. Some fruits contain a major anthocyanin type and can serve as useful research tools. Cyanidin glycosides and peonidin glycosides can be metabolically converted to each other by methylation and demethylation. Both cyanidin and peonidin glycosides can be metabolized to protocatechuic acid and vanillic acid. Pelargonidin-3-glucoside is metabolized to 4-hydroxybenoic acid. On the other hand, phenolic acid metabolites of delphinidin, malvidin, and petunidin glycosides are unstable and can be further fragmented into smaller molecules. A literature review indicates berries with higher cyanidin content, such as black raspberries, chokeberries, and bilberries are more likely to produce an antiinflammatory effect. This observation seems to be consistent with the hypothesis that one or more stable phenolic acid metabolites contribute to the antiinflammatory effects of anthocyanin-rich fruits. More studies are needed before we can conclude that fruits rich in cyanidin, peonidin, or pelargonidin glycosides have better antiinflammatory effects. Additionally, fruit polyphenols other than anthocyanins could contribute to their antiinflammatory effects. Furthermore, blueberries could exert their health effects with other mechanisms such as improving intestinal microbiota composition. In summary, this classification system can facilitate our understanding of the absorption and metabolic processes of anthocyanins and the health effects of different fruits.

  20. Color Parameters and Total Anthocyanins of Sour Cherries (Prunus cerasus L. During Ripening

    Directory of Open Access Journals (Sweden)

    Sandra Pedišić

    2009-12-01

    Full Text Available Color is very important indicator of quality of fresh fruit. It also serves for estimating the stage of maturity of fruit. Plant pigments responsible for the color of some kind of fruits are anthocyanins. Anthocyanins are the flavonoids which are present in high amounts in sour cherries. The aim of this study was to determine total anthocyanins and color parameters of sour cherries ‘Cigančica’ and ‘Keleris’ collected in Osijek and Zadar (Croatia in 2005 during ripening. Color parameters of skin and fl esh of sour cherries were determined with colorimetric CIE LAB method and total anthocyanins were determined by means of high performance liquid chromatography (HPLC using UV/VIS PDA detector. Total anthocyanin was higher in sour cherries cv. Keleris grown in Zadar than in cv. Cigančica grown in Osijek during ripening although cv. Keleris is light colored genotype. Obtained results suggested that warm Mediterranean climate could have influence on high anthocyanin synthesis during ripening. Analysis of variance showed that stage of ripening did not influence total anthocyanin concentrations, but influenced almost all color parameters. Parameter H° was good indicator of color variation during ripening in both sour cherry cultivars.

  1. An O-methyltransferase modifies accumulation of methylated anthocyanins in seedlings of tomato.

    Science.gov (United States)

    Gomez Roldan, Maria Victoria; Outchkourov, Nikolay; van Houwelingen, Adèle; Lammers, Michiel; Romero de la Fuente, Irene; Ziklo, Noa; Aharoni, Asaph; Hall, Robert D; Beekwilder, Jules

    2014-11-01

    Anthocyanins contribute to the appearance of fruit by conferring to them a red, blue or purple colour. In a food context, they have also been suggested to promote consumer health. In purple tomato tissues, such as hypocotyls, stems and purple fruits, various anthocyanins accumulate. These molecules have characteristic patterns of modification, including hydroxylations, methylations, glycosylations and acylations. The genetic basis for many of these modifications has not been fully elucidated, and nor has their role in the functioning of anthocyanins. In this paper, AnthOMT, an O-methyltransferase (OMT) mediating the methylation of anthocyanins, has been identified and functionally characterized using a combined metabolomics and transcriptomics approach. Gene candidates were selected from the draft tomato genome, and their expression was subsequently monitored in a tomato seedling system comprising three tissues and involving several time points. In addition, we also followed gene expression in wild-type red and purple transgenic tomato fruits expressing Rosea1 and Delila transcription factors. Of the 57 candidates identified, only a single OMT gene showed patterns strongly correlating with both accumulation of anthocyanins and expression of anthocyanin biosynthesis genes. This candidate (AnthOMT) was compared to a closely related caffeoyl CoA OMT by recombinant expression in Escherichia coli, and then tested for substrate specificity. AnthOMT showed a strong affinity for glycosylated anthocyanins, while other flavonoid glycosides and aglycones were much less preferred. Gene silencing experiments with AnthOMT resulted in reduced levels of the predominant methylated anthocyanins. This confirms the role of this enzyme in the diversification of tomato anthocyanins. PMID:25227758

  2. An O-methyltransferase modifies accumulation of methylated anthocyanins in seedlings of tomato.

    Science.gov (United States)

    Gomez Roldan, Maria Victoria; Outchkourov, Nikolay; van Houwelingen, Adèle; Lammers, Michiel; Romero de la Fuente, Irene; Ziklo, Noa; Aharoni, Asaph; Hall, Robert D; Beekwilder, Jules

    2014-11-01

    Anthocyanins contribute to the appearance of fruit by conferring to them a red, blue or purple colour. In a food context, they have also been suggested to promote consumer health. In purple tomato tissues, such as hypocotyls, stems and purple fruits, various anthocyanins accumulate. These molecules have characteristic patterns of modification, including hydroxylations, methylations, glycosylations and acylations. The genetic basis for many of these modifications has not been fully elucidated, and nor has their role in the functioning of anthocyanins. In this paper, AnthOMT, an O-methyltransferase (OMT) mediating the methylation of anthocyanins, has been identified and functionally characterized using a combined metabolomics and transcriptomics approach. Gene candidates were selected from the draft tomato genome, and their expression was subsequently monitored in a tomato seedling system comprising three tissues and involving several time points. In addition, we also followed gene expression in wild-type red and purple transgenic tomato fruits expressing Rosea1 and Delila transcription factors. Of the 57 candidates identified, only a single OMT gene showed patterns strongly correlating with both accumulation of anthocyanins and expression of anthocyanin biosynthesis genes. This candidate (AnthOMT) was compared to a closely related caffeoyl CoA OMT by recombinant expression in Escherichia coli, and then tested for substrate specificity. AnthOMT showed a strong affinity for glycosylated anthocyanins, while other flavonoid glycosides and aglycones were much less preferred. Gene silencing experiments with AnthOMT resulted in reduced levels of the predominant methylated anthocyanins. This confirms the role of this enzyme in the diversification of tomato anthocyanins.

  3. Arabidopsis ROOT HAIR DEFECTIVE3 is involved in nitrogen starvation-induced anthocyanin accumulation

    Institute of Scientific and Technical Information of China (English)

    Jing Wang; Yan Wang; Ju Yang; Chunli Ma; Ying Zhang; Ting Ge; Zhi Qi; Yan Kang

    2015-01-01

    Anthocyanin accumulation is a common phenom-enon seen in plants under environmental stress. In this study, we identified a new allele of ROOT HAIR DEFECTIVE3 (RHD3) showing an anthocyanin overaccumulation phenotype under nitrogen starvation conditions. It is known that ethylene negatively regulates light- and sucrose-induced anthocyanin biosynthesis. We hypothesized that RHD3 achieves its negative effect on anthocyanin biosynthesis via an ethylene-regulating pathway. In support of this, similar to rhd3 mutants, the Arabidopsis ethylene signaling mutants etr1, ein2, and ein3/eil1 showed an anthocyanin overaccumulation phenotype under nitrogen starvation conditions. The ethylene precursor ACC strongly suppressed anthocyanin accumulation, dependent on ETR1, EIN2, EIN3/EIL1, and, partially, RHD3. In addition, inactivating RHD3 partially reversed the suppressive effect of ETO1 inactivation-evoked endogenous ethylene production on anthocyanin accumulation. The expression of nitrogen starva-tion-induced anthocyanin biosynthesis genes was negatively regulated by RHD3, but ethylene response genes were positively regulated by RHD3. Wild-type seedlings overexpress-ing RHD3 showed similar phenotypes to rhd3 mutants, indicating the existence of a fine-tuned relationship between gene expression and function. RHD3 was initial y identified as a gene involved in root hair development. This study uncovered a new physiological function of RHD3 in nitrogen starvation-induced anthocyanin accumulation and ethylene homeostasis. Correction added on 6 August 2015, after first online publica-tion:“RND3”corrected to“RHD3”.

  4. Achievements and perspectives in biochemistry concerning anthocyanin modification for blue flower coloration.

    Science.gov (United States)

    Sasaki, Nobuhiro; Nakayama, Toru

    2015-01-01

    Genetic engineering of roses and other plants of floricultural importance to give them a truly blue petal color is arguably one of the holy grails of plant biotechnology. Toward this goal, bluish carnations and roses were previously engineered by establishing an exclusive accumulation of delphinidin (Dp)-type anthocyanins in their petals via the heterologous expression of a flavonoid 3',5'-hydroxylase gene. Very recently, purple-blue varieties of chrysanthemums were also genetically engineered via a similar biochemical strategy. Although the floral colors of these transgenic plants still lack a true blue color, the basis for the future molecular breeding of truly blue flowers is via the engineering of anthocyanin pathways. Anthocyanins with multiple aromatic acyl groups (often referred to as polyacylated anthocyanins) in the 3'- or 7-position tend to display a more stable blue color than non-acylated anthocyanins. The 7-polyacylation process during the biosynthesis of purple-blue anthocyanins in delphinium (Delphinium grandiflorum) was found to occur in vacuoles using acyl-glucose as both the glucosyl and acyl donor. Glucosyltransferases and acyltransferases involved in anthocyanin 7-polyacylation in delphinium are vacuolar acyl-glucose-dependent enzymes belonging to the glycoside hydrolase family 1 and serine carboxypeptidae-like protein family, respectively. The 7-polyacylation proceeds through the alternate glucosylation and p-hydroxybenzoylation catalyzed by these enzymes. p-Hydroxybenzoyl-glucose serves as the p-hydroxybenzoyl and glucosyl donor to produce anthocyanins modified with a p-hydroxybenzoyl-glucose concatemer at the 7-position. This novel finding has provided a potential breakthrough for the genetic engineering of truly blue flowers, where polyacylated Dp-type anthocyanins are accumulated exclusively in the petals.

  5. High concentrations of aromatic acylated anthocyanins found in cauline hairs in Plectranthus ciliatus.

    Science.gov (United States)

    Jordheim, Monica; Calcott, Kate; Gould, Kevin S; Davies, Kevin M; Schwinn, Kathy E; Andersen, Øyvind M

    2016-08-01

    Vegetative shoots of a naturalized population of purple-leaved plectranthus (Plectranthus ciliatus, Lamiaceae) were found to contain four main anthocyanins: peonidin 3-(6″-caffeoyl-β-glucopyranoside)-5-β-glucopyranoside, peonidin 3-(6″-caffeoyl-β-glucopyranoside)-5-(6‴-malonyl-β-glucopyranoside), peonidin 3-(6″-E-p-coumaroyl-β-glucopyranoside)-5-(6‴-malonyl-β-glucopyranoside), and peonidin 3-(6″-E-p-coumaroyl-β-glucopyranoside)-5-β-glucopyranoside. The first three of these pigments have not been reported previously from any plant. They all follow the typical anthocyanin pattern of Lamiaceae, with universal occurrence of anthocyanidin 3,5-diglucosides and aromatic acylation with p-coumaric and sometimes caffeic acids; however, they differ by being based on peonidin. The four anthocyanins were present in the leaves (22.2 mg g(-1) DW), and in the xylem and interfascicular parenchyma of the stem. They were exceptionally abundant, among the highest reported for any plant organ, in epidermal hairs on some of the stem internodes (101 mg g(-1) DW). Anthocyanin content in these hairs increased more than three-fold from the youngest to the fourth-youngest internodes. In situ absorbances (λmax ≈ 545 nm) were bathochromic in comparison to absorbances of the isolated anthocyanins in their flavylium form in acidified aqueous solutions (λmax = 525 nm), suggesting that the anthocyanins occur both in quinoidal and flavylium forms in constant proportions in the anthocyanic hair cells. The most distinctive observation with respect to relative proportions of individual anthocyanins was found in de-haired internodes, for which anthocyanin caffeoyl-derivatives decreased, and anthocyanin coumaroyl-derivatives increased, from the youngest to the fourth-youngest internode. PMID:27165277

  6. ANTHOCYANIN PIGMENTATION IN TRITICUM AESTIVUM L.: GENETIC BASIS AND ROLE UNDER ABIOTIC STRESS CONDITIONS

    Directory of Open Access Journals (Sweden)

    Tereshchenko O.Yu.

    2012-08-01

    Full Text Available Anthocyanins are secondary metabolites of plants. They have a wide range of biological activity such as antioxidant, photoprotection, osmoregulation, heavy metal ions chelation, antimicrobial and antifungal activities, which help plants to survive under different stress conditions. Bread wheat (T. aestivum L. can have purple pigmentation provided by anthocyanin compounds in different organs, such as grain pericarp, coleoptile, culm, leaf blades, leaf sheaths, glumes and anthers. However, the genetic mechanisms underlying formation of these traits as well as contribution of the pigmentation to stress tolerance have not been widely studied in wheat. The aim of the current study was to investigate molecular-genetic mechanisms underlying anthocyanin pigmentation in different wheat organs and to estimate the role of the pigmentation under different abiotic stress conditions in wheat seedlings. In the current study, near-isogenic lines (NILs: cv. ‘Saratovskaya 29’ (‘S29’ and lines i:S29Pp1Pp2PF and i:S29Pp1Pp3P developed on the ‘S29’ background but having grain pericarp coloration (genes Pp and more intense coleoptile (Rc, culm (Pc, leaf blade (Plb, leaf sheath (Pls pigmentation in comparison with ‘S29’, were used. Comparative transcriptional analysis of the five structural genes Chs, Chi, F3h, Dfr, Ans, encoding enzymes participating in the anthocyanin biosynthesis, was performed in different organs of NILs. It was shown that the presence of the Rc, Pc, Plb, Pls and Pp alleles conferring strong anthocyanin pigmentation induced more intense transcription of the structural genes, suggesting the genes Rc, Pc, Plb, Pls and Pp to play a regulatory role in anthocyanin biosynthesis network. To evaluate the role of anthocyanins in stress response at the seedling stage, growth ability of the NILs and anthocyanin content in their coleoptiles were assessed after treatments with NaCl (100 and 200 mM, CdCl2 (25 and 50 μM and 15% PEG 6000

  7. Identification and characterization of seed-specific transcription factors regulating anthocyanin biosynthesis in black rice

    OpenAIRE

    Kim, C.-K; Cho, M.-A.; Choi, Y.-H.; Kim, J.-A.; Kim, Y.-H.; Kim, Y.-K.; Park, S.-H

    2011-01-01

    Black rice is rich in anthocyanin and is expected to have more healthful dietary potential than white rice. We assessed expression of anthocyanin in black rice cultivars using a newly designed 135 K Oryza sativa microarray. A total of 12,673 genes exhibited greater than 2.0-fold up- or down-regulation in comparisons between three rice cultivars and three seed developmental stages. The 137 transcription factor genes found to be associated with production of anthocyanin pigment were classified ...

  8. Dynamics of anthocyanin in aging of ipomea purpurea flowers treated by uv-b radiation

    OpenAIRE

    Анастасія Миколаївна Берестяна

    2014-01-01

    The dynamics of the anthocyanin content reduction in the course of aging of the Ipomoea purpureа petals, which characterizes the rate of the degradation processes in a cell, has been studied. The analysis included the impact of various UV-B radiation doses on the rate of anthocyanin age-related decomposition. The experiment proved that but one dose – 12.6 kJ/m2 contributed to the deceleration of the anthocyanin decomposition rate, within the range studied. The probable mechanisms that connect...

  9. Dynamics of anthocyanin in aging of ipomea purpurea flowers treated by uv-b radiation

    Directory of Open Access Journals (Sweden)

    Анастасія Миколаївна Берестяна

    2014-10-01

    Full Text Available The dynamics of the anthocyanin content reduction in the course of aging of the Ipomoea purpureа petals, which characterizes the rate of the degradation processes in a cell, has been studied. The analysis included the impact of various UV-B radiation doses on the rate of anthocyanin age-related decomposition. The experiment proved that but one dose – 12.6 kJ/m2 contributed to the deceleration of the anthocyanin decomposition rate, within the range studied. The probable mechanisms that connect ageing and pigment degradation are being discussed. 

  10. LC/PDA/ESI-MS Profiling and Radical Scavenging Activity of Anthocyanins in Various Berries

    Directory of Open Access Journals (Sweden)

    Jun-ichiro Nakajima

    2004-01-01

    Full Text Available Anthocyanin extracts of two blueberries, Vaccinium myrtillus (bilberry and Vaccinium ashei (rabbiteye blueberry, and of three other berries, Ribes nigrum (black currant, Aronia melanocarpa (chokeberry, and Sambucus nigra (elderberry, were analyzed by high-performance liquid chromatography coupled with photodiode array detection and electrospray ionization - mass spectrometry (LC/PDA/ESI-MS. Both bilberry and rabbiteye blueberry contained 15 identical anthocyanins with different distribution patterns. Black currant, chokeberry, and elderberry contained 6, 4, and 4 kinds of anthocyanins, respectively. The radical scavenging activities of these berry extracts were analyzed by using 2,2-diphenyl-1-picrylhydrazyl (DPPH. All these extracts showed potent antiradical activities.

  11. Two LcbHLH transcription factors interacting with LcMYB1 in regulating late structural genes of anthocyanin biosynthesis in Nicotiana and Litchi chinensis during anthocyanin accumulation

    Directory of Open Access Journals (Sweden)

    Biao eLai

    2016-02-01

    Full Text Available Anthocyanin biosynthesis requires the MYB-bHLH-WD40 protein complex to activate the late biosynthetic genes. LcMYB1 was thought to act as key regulator in anthocyanin biosynthesis of litchi. However, basic helix-loop-helix proteins (bHLHs as partners have not been identified yet. The present study describes the functional characterization of three litchi bHLH candidate anthocyanin regulators, LcbHLH1, LcbHLH2 and LcbHLH3. Although these three litchi bHLHs phylogenetically clustered with bHLH proteins involved in anthcoyanin biosynthesis in other plant, only LcbHLH1 and LcbHLH3 were found to localize in the nucleus and physically interact with LcMYB1. The transcription levels of all these bHLHs were not coordinated with anthocyanin accumulation in different tissues and during development. However, when co-infiltrated with LcMYB1, both LcbHLH1 and LcbHLH3 enhanced anthocyanin accumulation in tobacco leaves with LcbHLH3 being the best inducer. Significant accumulation of anthocyanins in leaves transformed with the combination of LcMYB1 and LcbHLH3 were noticed, And this was associated with the up-regulation of two tobacco endogenous bHLH regulators, NtAn1a and NtAn1b, and late structural genes, like NtDFR and NtANS. Significant activity of the ANS promoter was observed in transient expression assays either with LcMYB1-LcbHLH1 or LcMYB1-LcbHLH3, while only minute activity was detected after transformation with only LcMYB1. In contrast, no activity was measured after induction with the combination of LcbHLH2 and LcMYB1. Higher DFR expression was also oberseved in paralleling with higher anthocyanins in co-transformed lines. LcbHLH1 and LcbHLH3 are essential partner of LcMYB1 in regulating the anthocyanin production in tobacco and probably also in litchi. The LcMYB1-LcbHLH complex enhanced anthocyanin accumulation may associate with activating the transcription of DFR and ANS.

  12. Anthocyanins from the scarlet flowers of Anemone coronaria.

    Science.gov (United States)

    Toki, K; Saito, N; Shigihara, A; Honda, T

    2001-04-01

    Three acylated anthocyanins were isolated from the scarlet flowers of Anemone coronaria 'St. Brigid Red' along with a known pigment, pelargonidin 3-lathyroside. The structures of the acylated pigments were based on a pelargonidin 3-lathyroside skeleton acylated at different positions with malonic acid. The first pigment was identified as pelargonidin 3-O-[2-(beta-D-xylopyranosyl)-6-O-(malonyl)-beta-D-galactopyranoside], the second was pelargonidin 3-O-[2-O-(beta-D-xylopyranosyl)-6-O-(methyl-malonyl)-beta-D-galactopyranoside], and the third was (6''-O-(pelargonidin 3-O-[2''-O-(beta-D-xylopyranosyl)-beta-D-galactopyranosyl]))((4-O-(beta-D-glucopyranosyl)-trans-caffeoyl)-O-tartatryl)malonate.

  13. Harvest date affects aronia juice polyphenols, sugars, and antioxidant activity, but not anthocyanin stability.

    Science.gov (United States)

    Bolling, Bradley W; Taheri, Rod; Pei, Ruisong; Kranz, Sarah; Yu, Mo; Durocher, Shelley N; Brand, Mark H

    2015-11-15

    The goal of this work was to characterize how the date of harvest of 'Viking' aronia berry impacts juice pigmentation, sugars, and antioxidant activity. Aronia juice anthocyanins doubled at the fifth week of the harvest, and then decreased. Juice hydroxycinnamic acids decreased 33% from the first week, while proanthocyanidins increased 64%. Juice fructose and glucose plateaued at the fourth week, but sorbitol increased 40% to the seventh harvest week. Aronia juice pigment density increased due to anthocyanin concentration, and polyphenol copigmentation did not significantly affect juice pigmentation. Anthocyanin stability at pH 4.5 was similar between weeks. However, addition of quercetin, sorbitol, and chlorogenic acid to aronia anthocyanins inhibited pH-induced loss of color. Sorbitol and citric acid may be partially responsible for weekly variation in antioxidant activity, as addition of these agents inhibited DPPH scavenging 13-30%. Thus, aronia polyphenol and non-polyphenol components contribute to its colorant and antioxidant functionality.

  14. Antioxidant capacities and anthocyanin characteristics of the black-red wild berries obtained in Northeast China.

    Science.gov (United States)

    Feng, Chengyong; Su, Shang; Wang, Lijin; Wu, Jie; Tang, Zhongqiu; Xu, Yanjun; Shu, Qingyan; Wang, Liangsheng

    2016-08-01

    Various edible berries widely accessible in nature in Northeast China are poorly exploited. The compositions and contents of anthocyanins in black (Padus maackii, Padus avium, Lonicera caerulea, and Ribes nigrum) and red (Ribes rubrum, Sambucus williamsii, Rubus idaeus, and Ribes procumbens) wild berries in Northeast China were firstly characterized by HPLC-DAD/ESI-MS(2). Twenty-three anthocyanins were detected and identified. Cyanidin glycosides were dominant in both berries. Six anthocyanins were reported for the first time in P. avium, R. rubrum, and Sambucus. Total anthocyanin content (TAC) ranged from 10mg/100gfreshweight (FW) (R. procumbens) to 1058mg/100gFW (P. maackii) among berries. The TACs and antioxidant activities assessed by DPPH and FRAP assays were much higher in black than in red berries. Black-red berries, especially P. maackii and P. avium, can be used in developing functional foods and in improving breeding programs. PMID:26988488

  15. Developmental effects on phenolic, flavonol, anthocyanin, and carotenoid metabolites and gene expression in potatoes

    Science.gov (United States)

    Potato phytonutrients include phenolic acids, flavonols, anthocyanins and carotenoids. Developmental effects on phytonutrient concentrations and gene expression was studied in white, yellow and purple potatoes. Purple potatoes contained the most total phenolics, which decreased during development (1...

  16. Harvest date affects aronia juice polyphenols, sugars, and antioxidant activity, but not anthocyanin stability.

    Science.gov (United States)

    Bolling, Bradley W; Taheri, Rod; Pei, Ruisong; Kranz, Sarah; Yu, Mo; Durocher, Shelley N; Brand, Mark H

    2015-11-15

    The goal of this work was to characterize how the date of harvest of 'Viking' aronia berry impacts juice pigmentation, sugars, and antioxidant activity. Aronia juice anthocyanins doubled at the fifth week of the harvest, and then decreased. Juice hydroxycinnamic acids decreased 33% from the first week, while proanthocyanidins increased 64%. Juice fructose and glucose plateaued at the fourth week, but sorbitol increased 40% to the seventh harvest week. Aronia juice pigment density increased due to anthocyanin concentration, and polyphenol copigmentation did not significantly affect juice pigmentation. Anthocyanin stability at pH 4.5 was similar between weeks. However, addition of quercetin, sorbitol, and chlorogenic acid to aronia anthocyanins inhibited pH-induced loss of color. Sorbitol and citric acid may be partially responsible for weekly variation in antioxidant activity, as addition of these agents inhibited DPPH scavenging 13-30%. Thus, aronia polyphenol and non-polyphenol components contribute to its colorant and antioxidant functionality. PMID:25977015

  17. Impact of Frozen Storage on the Anthocyanin and Polyphenol Contents of American Elderberry Fruit Juice.

    Science.gov (United States)

    Johnson, Mitch C; Thomas, Andrew L; Greenlief, C Michael

    2015-06-17

    The effects of frozen storage on the anthocyanin and polyphenol content of elderberry fruit juice are investigated. Juice from three genotypes of American elderberry (Adams II, Bob Gordon, and Wyldewood) was screened for total phenolic (TP) and total monomeric anthocyanin (TMA) contents with spectrophotometric methods. The individual anthocyanin content (IAC) of the juice was tested by coupling solid phase extraction with ultraperformance liquid chromatography-tandem mass spectrometry. Juice samples were tested initially upon harvest and then again after 3, 6, and 9 months of frozen storage. Juice from the three different genotypes had significantly different TP, TMA, and IAC profiles initially (p < 0.05). The TP, TMA, and IAC contents of the juice from different genotypes were significantly affected (p < 0.05) by the frozen storage time, suggesting that both genotype and length of frozen storage time can affect the anthocyanin content of elderberry fruit juice. PMID:26028422

  18. Impact of Frozen Storage on the Anthocyanin and Polyphenol Content of American Elderberry Fruit Juice

    Science.gov (United States)

    Johnson, Mitch C.; Thomas, Andrew L.; Greenlief, C. Michael

    2015-01-01

    The effects of frozen storage on the anthocyanin and polyphenol content of elderberry fruit juice are investigated. Juice from three genotypes of American elderberry (Adams II, Bob Gordon, and Wyldewood) was screened for total phenolic (TP) and total monomeric anthocyanin (TMA) content with spectrophotometric methods. The individual anthocyanin content (IAC) of the juice was tested by coupling solid phase extraction with ultra-performance liquid chromatography/tandem mass spectrometry. Juice samples were tested initially upon harvest, then again after 3, 6, and 9 months of frozen storage. Juice from the three different genotypes had significantly different TP, TMA, and IAC profiles initially (p<0.05). The TP,, TMA, and IAC content of the juice from different genotypes were significantly affected (p<0.05) by the frozen storage time, suggesting that both genotype and length of frozen storage time can affect the anthocyanin content of elderberry fruit juice. PMID:26028422

  19. Review of Anthocyanins Chemical Studies%花色苷化学研究进展

    Institute of Scientific and Technical Information of China (English)

    郑杰; 丁晨旭; 赵先恩; 索有瑞

    2011-01-01

    Anthocyanins are a kind of widely spread natural colorant,which have raised great interest due to its potent physiological and nutritional effects. Although the great potential of application that anthocyanins represent for food,pharmaceutical and cosmetic industries, their use has been limited because of lack of knowledge about its chemical proper-ties,deficient extraction and identification technology. Currently,many researches are focused on resoling the difficulties. In this paper,the recently advances in anthocyanins research filed are summarised from three parts;anthocyanins chemical chtiractrrizations;extraction and separation technologies;and identification methods.%本文以近期研究报道作为基础从花色苷的化学性质、提取与分离技术、鉴定技术三个方面对花色苷化合物的化学研究进展做一系统综述.

  20. Electrochemical and theoretical complexation studies between Zn, Cu and individual anthocyanins in wine samples

    OpenAIRE

    I. Esparza; Salinas, I; Santamaria, C.; Garcia-Mina, J.M. (José María); Fernandez, J.M.

    2004-01-01

    Book of abstracts of Euroanalysis XIII 2004; PS1-280. Identification of the posible interactions between individual anthocyanins and metals was performed in selected samples of must ans wine, collected at different vinification times.

  1. Changes of the Anthocyanins and Antioxidant properties of Concord Grape (Vitis labrusca Pomace After Acid Hydrolysis

    Directory of Open Access Journals (Sweden)

    Mustafa Bener

    2016-05-01

    Full Text Available Grape pomace contains high levels of valuable antioxidants such as anthocyanins and phenolic compounds that help prevent chronic diseases such as cardiovascular problems and cancers. In this study, Concord grape pomace was soaked in acidic solutions at different time intervals and pHs in a water bath at 80 oC. Five kinds of anthocyanins were released and identified in the pomace after acid hydrolysis. The releasing rate of anthocyanins and antioxidant activities of the acid hydrolyzed pomace extracts were determined by multitest systems. Different antioxidant assays including total antioxidant capacity (TAC, total phenolic content (TPC and free radical scavenging activity (RSA were used to evaluate the antioxidant properties of the acid hydrolyzed pomace extracts. The change in antioxidant capacity of the pomace extracts during hydrolysis was correlated with total phenolic content and free radical scavenging activity but had little relationship with anthocyanin contents.

  2. Pharmacokinetic Characterization and Bioavailability of Strawberry Anthocyanins Relative to Meal Intake.

    Science.gov (United States)

    Sandhu, Amandeep K; Huang, Yancui; Xiao, Di; Park, Eunyoung; Edirisinghe, Indika; Burton-Freeman, Britt

    2016-06-22

    Plasma strawberry anthocyanins were characterized in overweight (BMI: 26 ± 2 kg/m(2)) adults (n = 14) on the basis of meal timing. At each visit, subjects ingested three study drinks: two control and one strawberry drink. A strawberry drink was given at either 2 h before the breakfast meal (BM), with the meal (WM), or 2 h after the meal (AM), and control drinks were given at the alternative time points. Plasma anthocyanins and their metabolic conjugates were assessed hourly for 10 h using a triple-quadrupole liquid chromatography mass spectrometer. Maximum concentrations (Cmax), area under the curve (AUC), and bioavailability of pelargonidin-based anthocyanins determined from the main conjugated metabolite (pelargonidin glucuronide) were greater when a strawberry drink was consumed 2 h before the meal (BM) compared to consumption WM or AM (p strawberry consumption relative to a meal impacts anthocyanin pharmacokinetic variables. PMID:27255121

  3. A candidate-gene association study for berry colour and anthocyanin content in Vitis vinifera L.

    Directory of Open Access Journals (Sweden)

    Silvana Cardoso

    Full Text Available Anthocyanin content is a trait of major interest in Vitis vinifera L. These compounds affect grape and wine quality, and have beneficial effects on human health. A candidate-gene approach was used to identify genetic variants associated with anthocyanin content in grape berries. A total of 445 polymorphisms were identified in 5 genes encoding transcription factors and 10 genes involved in either the biosynthetic pathway or transport of anthocyanins. A total of 124 SNPs were selected to examine association with a wide range of phenotypes based on RP-HPLC analysis and visual characterization. The phenotypes were total skin anthocyanin (TSA concentration but also specific types of anthocyanins and relative abundance. The visual assessment was based on OIV (Organisation Internationale de la Vigne et du Vin descriptors for berry and skin colour. The genes encoding the transcription factors MYB11, MYBCC and MYC(B were significantly associated with TSA concentration. UFGT and MRP were associated with several different types of anthocyanins. Skin and pulp colour were associated with nine genes (MYB11, MYBCC, MYC(B, UFGT, MRP, DFR, LDOX, CHI and GST. Pulp colour was associated with a similar group of 11 genes (MYB11, MYBCC, MYC(B, MYC(A, UFGT, MRP, GST, DFR, LDOX, CHI and CHS(A. Statistical interactions were observed between SNPs within the transcription factors MYB11, MYBCC and MYC(B. SNPs within LDOX interacted with MYB11 and MYC(B, while SNPs within CHI interacted with MYB11 only. Together, these findings suggest the involvement of these genes in anthocyanin content and on the regulation of anthocyanin biosynthesis. This work forms a benchmark for replication and functional studies.

  4. Composition and antioxidant activity of the anthocyanins of the fruit of Berberis heteropoda Schrenk.

    Science.gov (United States)

    Sun, Li-Li; Gao, Wan; Zhang, Meng-Meng; Li, Cheng; Wang, Ai-Guo; Su, Ya-Lun; Ji, Teng-Fei

    2014-01-01

    In present study, the anthocyanin composition and content of the fruit of B. heteropoda Schrenk were determined for the first time. The total anthocyanins were extracted from the fruit of B. heteropoda Schrenk using 0.5% HCl in 80% methanol and were then purified using an AB-8 macroporous resin column. The purified anthocyanin extract (PAE) was evaluated by high-performance liquid chromatography with a diode array detector (HPLC-DAD) and HPLC-high resolution-electrospray ionization-mass spectrometry (HPLC-HR-ESI-MS) under the same experimental conditions. The results revealed the presence of seven different anthocyanins. The major anthocyanins purified by preparative HPLC were confirmed to be delphinidin-3-O-glucopyranoside (30.3%), cyanidin-3-O-glucopyranoside (33.5%), petunidin-3-Ο-glucopyranoside (10.5%), peonidin-3-O-glucopyranoside (8.5%) and malvidin-3-O-glucopyranoside (13.8%) using HPLC-HR-ESI-MS and NMR spectroscopy. The total anthocyanin content was 2036.6 ± 2.2 mg/100 g of the fresh weight of B. heteropoda Schrenk fruit. In terms of its total reducing capacity assay, DPPH radical-scavenging activity assay, ferric-reducing antioxidant power (FRAP) assay and ABTS radical cation-scavenging activity assay, the PAE also showed potent antioxidant activity. The results are valuable for illuminating anthocyanins composition of B. heteropoda Schrenk and for further utilising them as a promising anthocyanin pigment source. This research enriched the chemical information of B. heteropoda Schrenk.

  5. An Intracellular Laccase Is Responsible for Epicatechin-Mediated Anthocyanin Degradation in Litchi Fruit Pericarp.

    Science.gov (United States)

    Fang, Fang; Zhang, Xue-lian; Luo, Hong-hui; Zhou, Jia-jian; Gong, Yi-hui; Li, Wen-jun; Shi, Zhao-wan; He, Quan; Wu, Qing; Li, Lu; Jiang, Lin-lin; Cai, Zhi-gao; Oren-Shamir, Michal; Zhang, Zhao-qi; Pang, Xue-qun

    2015-12-01

    In contrast to the detailed molecular knowledge available on anthocyanin synthesis, little is known about its catabolism in plants. Litchi (Litchi chinensis) fruit lose their attractive red color soon after harvest. The mechanism leading to quick degradation of anthocyanins in the pericarp is not well understood. An anthocyanin degradation enzyme (ADE) was purified to homogeneity by sequential column chromatography, using partially purified anthocyanins from litchi pericarp as a substrate. The purified ADE, of 116 kD by urea SDS-PAGE, was identified as a laccase (ADE/LAC). The full-length complementary DNA encoding ADE/LAC was obtained, and a polyclonal antibody raised against a deduced peptide of the gene recognized the ADE protein. The anthocyanin degradation function of the gene was confirmed by its transient expression in tobacco (Nicotiana benthamiana) leaves. The highest ADE/LAC transcript abundance was in the pericarp in comparison with other tissues, and was about 1,000-fold higher than the polyphenol oxidase gene in the pericarp. Epicatechin was found to be the favorable substrate for the ADE/LAC. The dependence of anthocyanin degradation by the enzyme on the presence of epicatechin suggests an ADE/LAC epicatechin-coupled oxidation model. This model was supported by a dramatic decrease in epicatechin content in the pericarp parallel to anthocyanin degradation. Immunogold labeling transmission electron microscopy suggested that ADE/LAC is located mainly in the vacuole, with essential phenolic substances. ADE/LAC vacuolar localization, high expression levels in the pericarp, and high epicatechin-dependent anthocyanin degradation support its central role in pigment breakdown during pericarp browning.

  6. Caffeoylquinic Acids Generated In Vitro in a High-Anthocyanin-Accumulating Sweet potato Cell Line

    OpenAIRE

    Izabela Konczak; Shigenori Okuno; Makoto Yoshimoto; Osamu Yamakawa

    2004-01-01

    Accumulation of phenolic compounds has been monitored in a suspension culture of anthocyanin-accumulating sweet potato cell line grown under the conditions of modified Murashige and Skoog high-anthocyanin production medium (APM) over a period of 24 days. Tissue samples extracted with 15% acetic acid were analysed using HPLC at a detection wavelength of 326 nm. Among others, the following derivatives of caffeoylquinic acids were detected: 4,5-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid, 3...

  7. Anthocyanin absorption and metabolism by human intestinal Caco-2 cells: a review

    OpenAIRE

    Senem Kamiloglu; Esra Capanoglu; Charlotte Grootaert; John Van Camp

    2015-01-01

    Anthocyanins from different plant sources have been shown to possess health beneficial effects against a number of chronic diseases. To obtain any influence in a specific tissue or organ, these bioactive compounds must be bioavailable, i.e., effectively absorbed from the gut into the circulation and transferred to the appropriate location within the body while still maintaining their bioactivity. One of the key factors affecting the bioavailability of anthocyanins is their transport through...

  8. Relationship Between Anthocyanin Biosynthesis and Related Enzymes Activity in Pyrus pyrifolia Mantianhong and Its Bud Sports Aoguan

    Institute of Scientific and Technical Information of China (English)

    FENG Shou-qian; CHEN Xue-sen; ZHANG Chun-yu; LIU Xiao-jing; LIU Zun-chun; WANG Hai-bo; WANG Yan-ling; ZHOU Chao-hua

    2008-01-01

    The aim of this article is to study the relationship between biosynthesis of anthocyanin and activities of phenylalanine ammonia lyase (PAL), chalcone ismoerase (CHI) enzymes in Pyrus pyrifolia. Changes in the level of anthocyanin and the activities of enzymes of anthocyanin biosynthesis including PAL, CH1 were studied in the pericarp of Pyrus pyrifolia Aoguan and Mantianhong during the period of pigment formation. Bagging treatment was also carried out to manipulate the synthesis of anthocyanin and the activities of related enzymes during the period of pigment formation. The results demonstrated that the level of anthocyanin of Aoguan was higher than that of Mantianhong. However, the content of anthocyanins has the similar changing trend in Aoguan and Mantianhong, highest anthocyanin concentrations of two varieties appeared in immature fruit and faded toward harvest. Meanwhile, similar changing trends of activities of PAL and CHI were also observed in both varieties. Aoguan has a lower activity of PAL than Mantianhong, whereas activity of CHI in Aoguan was higher than that in Mantianhong. Activity of PAL decreased during the period of pigment formation and was apparently not limiting to color development, whereas CHI activity increased at the same period and was closely related to the synthesis of anthocyanin. The results of bagging treatment showed that bagging treatment inhibited the activity of CHI, as well as the synthesis of anthocyanin, whereas debagging enhanced both the activity of CHI and synthesis of anthocyanin. The activity of CHI in debagging Aoguan pericarp was higher than the untreated Aoguan. However, effect of bagging treatment toward PAL activity was not obvious. Anthocyanin of bagging treated Aoguan decreased toward harvest. The content of anthocyanin of Pyrus pyrifolia increased at the beginning of fruit coloration period and decreased toward fruit harvest. Activity of PAL was apparently not limiting to color development, whereas CHI activity

  9. Functional characterization of Dihydroflavonol-4-reductase in anthocyanin biosynthesis of purple sweet potato underlies the direct evidence of anthocyanins function against abiotic stresses.

    Directory of Open Access Journals (Sweden)

    Hongxia Wang

    Full Text Available Dihydroflavonol-4-reductase (DFR is a key enzyme in the catalysis of the stereospecific reduction of dihydroflavonols to leucoanthocyanidins in anthocyanin biosynthesis. In the purple sweet potato (Ipomoea batatas Lam. cv. Ayamurasaki, expression of the IbDFR gene was strongly associated with anthocyanin accumulation in leaves, stems and roots. Overexpression of the IbDFR in Arabidopsis tt3 mutants fully complemented the pigmentation phenotype of the seed coat, cotyledon and hypocotyl. Downregulation of IbDFR expression in transgenic sweet potato (DFRi using an RNAi approach dramatically reduced anthocyanin accumulation in young leaves, stems and storage roots. In contrast, the increase of flavonols quercetin-3-O-hexose-hexoside and quercetin-3-O-glucoside in the leaves and roots of DFRi plants is significant. Therefore, the metabolic pathway channeled greater flavonol influx in the DFRi plants when their anthocyanin and proanthocyanidin accumulation were decreased. These plants also displayed reduced antioxidant capacity compared to the wild type. After 24 h of cold treatment and 2 h recovery, the wild-type plants were almost fully restored to the initial phenotype compared to the slower recovery of DFRi plants, in which the levels of electrolyte leakage and hydrogen peroxide accumulation were dramatically increased. These results provide direct evidence of anthocyanins function in the protection against oxidative stress in the sweet potato. The molecular characterization of the IbDFR gene in the sweet potato not only confirms its important roles in flavonoid metabolism but also supports the protective function of anthocyanins of enhanced scavenging of reactive oxygen radicals in plants under stressful conditions.

  10. Anthocyanin and other phenolic compounds in Ceylon gooseberry (Dovyalis hebecarpa) fruits.

    Science.gov (United States)

    Bochi, Vivian Caetano; Godoy, Helena Teixeira; Giusti, M Monica

    2015-06-01

    Ceylon gooseberry is a deep-purple exotic berry that is being produced in Brazil with great market potential. This work aimed to determine major phenolic compounds in this specie by HPLC-PDA-ESI/MS. Samples were collected in two different seasons. Pulp and skin were analyzed separately. Non-acylated rutinoside derivatives of delphinidin (∼60-63%) and cyanidin (∼17-21%) were major anthocyanins tentatively identified. All anthocyanins had higher concentration in skin than in pulp (64-82 and 646-534mg of cyaniding-3-glucoside equivalents/100g skin and pulp, respectively). Moreover, anthocyanin profile changed between sampling dates (p<0.05). Mainly for delphinidin-3-rutinoside which could be a result of season variation. In this specie, non-anthocyanin polyphenols represent less than 35% of total extracted polyphenols. The tentative identification proposed a flavonol and three ellagitannins as major compounds of the non-anthocyanin phenolics fraction. Finally, anthocyanin is the major phenolic class in this fruit and its composition and content are significantly affected by season.

  11. Stabilization of natural colors and nutraceuticals: Inhibition of anthocyanin degradation in model beverages using polyphenols.

    Science.gov (United States)

    Chung, Cheryl; Rojanasasithara, Thananunt; Mutilangi, William; McClements, David Julian

    2016-12-01

    Anthocyanins are widely used as natural colorants in foods, but they are highly susceptible to chemical degradation during storage leading to color fading. This study examined the potential of natural quillaja saponin and polyphenols (vanillin, epigallocatechin gallate, green tea extract, and protocatechualdehyde) at inhibiting color fading of anthocyanins in model beverages. The purple carrot anthocyanin (0.025%) in model beverages (citric acid, pH 3.0) containing l-ascorbic acid (0.050%) degraded with a first-order reaction rate during storage (40°C/7days in light). The addition of polyphenols (0.2%) delayed color fading, with the most notable improvement observed with green tea extract addition. The half-life for anthocyanin color fading increased from 2.9 to 6.7days with green tea extract. Fluorescence quenching measurements showed that the green tea extract contained components that interacted with anthocyanins probably through hydrophobic interactions. Overall, this study provides valuable information about enhancing the stability of anthocyanins in beverage systems using polyphenols. PMID:27374573

  12. Genetic engineering of novel flower colour by suppression of anthocyanin modification genes in gentian.

    Science.gov (United States)

    Nakatsuka, Takashi; Mishiba, Kei-ichiro; Kubota, Akiko; Abe, Yoshiko; Yamamura, Saburo; Nakamura, Noriko; Tanaka, Yoshikazu; Nishihara, Masahiro

    2010-02-15

    Ornamental gentian plants have vivid-blue flowers. The main factor contributing to the flower colour is the accumulation of a polyacylated delphinidin 'gentiodelphin' in their petals. Although in vitro studies proposed that acylation plays an important role in the stability and development of gentian blue colour, the in vivo stability of the polyacylated anthocyanin was not clearly demonstrated. Thus, to reveal the importance of anthocyanin modification, especially acylation, and to engineer new colours of gentian flowers, we used chimeric RNAi technology to produce transgenic gentian plants with downregulated anthocyanin 5,3'-aromatic acyltransferase (5/3'AT) and flavonoid 3',5'-hydroxylase (F3'5'H) activities, which are both essential enzymes for gentiodelphin biosynthesis. Two lines of flower colour-modified plants were obtained from fifteen transgenic gentian plants. Clone no. 1 exhibited a lilac flower colour and clone no. 15 exhibited pale-blue flowers. RNA gel blot analysis confirmed that both transgenic lines had markedly suppressed 5/3'AT transcripts, whereas clone no. 15 had fewer F3'5'H transcripts than clone no. 1 and untransformed control plants. HPLC analysis of anthocyanin compositions showed that downregulation of the 5/3'AT gene led to increased accumulation of non-acylated anthocyanins, as expected. These results demonstrated that genetic engineering to reduce the accumulation of polyacylated anthocyanins could cause modulations of flower colour.

  13. Characterisation of Vranec, Cabernet sauvignon and Merlot wines based on their chromatic and anthocyanin profiles

    Directory of Open Access Journals (Sweden)

    Dimitrovska Maja

    2013-01-01

    Full Text Available Wines of three different grape varieties, Vranec, Cabernet Sauvignon and Merlot were examined for their characterisation in terms of anthocyanin and chromatic profiles, total polyphenols and antioxidant potential. Total, monomeric, polymeric and copigmented anthocyanins were determined by spectrophotometry and the individual anthocyanin compounds were quantified using HPLC-DAD. Chromatic profile was evaluated according to colour density, hue, % red, % blue, % yellow and brilliance (% dA. The established data were submitted to analysis of variance and principle component analysis in order to evaluate their potential for differentiation of wines according to variety and vintage. Vranec wines have shown distinctive characteristics, with the highest content of anthocyanins and values of colour intensity, % red and % dA, compared to the other two studied varieties. The content of petunidin-3-glucoside, peonindin-3-glucoside and anthocyanin acetates were established as possible markers for differentiation of Vranec wines from Cabernet Sauvignon and Merlot wines. However, none of the assayed parameters could be used for differentiation of Cabernet Sauvignon from Merlot wines. It was observed that wine age limits successful classification of the wines by variety according to anthocyanins. The chromatic parameters allowed distinguishing of young (aged up to 1 year from old Vranec wines.

  14. Enhancement of colour stability of anthocyanins in model beverages by gum arabic addition.

    Science.gov (United States)

    Chung, Cheryl; Rojanasasithara, Thananunt; Mutilangi, William; McClements, David Julian

    2016-06-15

    This study investigated the potential of gum arabic to improve the stability of anthocyanins that are used in commercial beverages as natural colourants. The degradation of purple carrot anthocyanin in model beverage systems (pH 3.0) containing L-ascorbic acid proceeded with a first-order reaction rate during storage (40 °C for 5 days in light). The addition of gum arabic (0.05-5.0%) significantly enhanced the colour stability of anthocyanin, with the most stable systems observed at intermediate levels (1.5%). A further increase in concentration (>1.5%) reduced its efficacy due to a change in the conformation of the gum arabic molecules that hindered their exposure to the anthocyanins. Fluorescence quenching measurements showed that the anthocyanin could have interacted with the glycoprotein fractions of the gum arabic through hydrogen bonding, resulting in enhanced stability. Overall, this study provides valuable information about enhancing the stability of anthocyanins in beverage systems using natural ingredients. PMID:26868542

  15. Protective Effect of Anthocyanins from Lingonberry on Radiation-induced Damages

    Directory of Open Access Journals (Sweden)

    Shuang-Qi Tian

    2012-12-01

    Full Text Available There is a growing concern about the serious harm of radioactive materials, which are widely used in energy production, scientific research, medicine, industry and other areas. In recent years, owing to the great side effects of anti-radiation drugs, research on the radiation protectants has gradually expanded from the previous chemicals to the use of natural anti-radiation drugs and functional foods. Some reports have confirmed that anthocyanins are good antioxidants, which can effectively eliminate free radicals, but studies on the immunoregulatory and anti-radiation effects of anthocyanins from lingonberry (ALB are less reported. In this experiment, mice were given orally once daily for 14 consecutive days before exposure to 6 Gy of gamma-radiation and were sacrificed on the 7th day post-irradiation. The results showed that the selected dose of extract did not lead to acute toxicity in mice; while groups given anthocyanins orally were significantly better than radiation control group according to blood analysis; pretreatment of anthocyanins significantly (p < 0.05 enhanced the thymus and spleen indices and spleen cell survival compared to the irradiation control group. Pretreatment with anthocyanins before irradiation significantly reduced the numbers of micronuclei (MN in bone marrow polychromatic erythrocytes (PCEs. These findings indicate that anthocyanins have immunostimulatory potential against immunosuppression induced by the radiation.

  16. Influence of temperature and preserving agents on the stability of cornelian cherries anthocyanins.

    Science.gov (United States)

    Moldovan, Bianca; David, Luminiţa

    2014-01-01

    Cornelian cherry (Cornus mas L.) fruits are known for their significant amounts of anthocyanins which can be used as natural food colorants. The storage stability of anthocyanins from these fruit extracts, at different temperatures (2 °C, 25 °C and 75 °C), pH 3.02, in the presence of two of the most widely employed food preserving agents (sodium benzoate and potassium sorbate) was investigated. The highest stability was exhibited by the anthocyanin extract stored at 2 °C without any added preservative, with half-life and constant rate values of 1443.8 h and 0.48 × 10(-3) h(-1), respectively. The highest value of the degradation rate constant (82.76 × 10(-3)/h) was obtained in the case of anthocyanin extract stored at 75 °C without any added preservative. Experimental results indicate that the storage degradation of anthocyanins followed first-order reaction kinetics under each of the investigated conditions. In aqueous solution, the food preservatives used were found to have a slight influence on the anthocyanins' stability. PMID:24941341

  17. Antiproliferative and Antioxidant Properties of Anthocyanin Rich Extracts from Blueberry and Blackcurrant Juice

    Directory of Open Access Journals (Sweden)

    Zoriţa Diaconeasa

    2015-01-01

    Full Text Available The present study was aimed at evaluating the antiproliferative potential of anthocyanin-rich fractions (ARFs obtained from two commercially available juices (blueberry and blackcurrant juices on three tumor cell lines; B16F10 (murine melanoma, A2780 (ovarian cancer and HeLa (cervical cancer. Individual anthocyanin determination, identification and quantification were done using HPLC-MS. Antioxidant activity of the juices was determined through different mechanism methods such as DPPH and ORAC. For biological testing, the juices were purified through C18 cartridges in order to obtain fractions rich in anthocyanins. The major anthocyanins identified were glycosylated cyanidin derivatives. The antiproliferative activity of the fractions was tested using the MTT assay. The antiproliferative potential of ARF was found to be associated with those bioactive molecules, anthocyanins due to their antioxidant potential. The results obtained indicated that both blueberry and blackcurrants are rich sources of antioxidants including anthocyanins and therefore these fruits are highly recommended for daily consumption to prevent numerous degenerative diseases.

  18. Correlation Between Antioxidation and the Content of Total Phenolics and Anthocyanin in Black Soybean Accessions

    Institute of Scientific and Technical Information of China (English)

    XU Jin-rui; ZHANG Ming-wei; LIU Xing-hua; LIU Zhang-xiong; ZHANG Rui-fen; SUN Ling; QIU Li-juan

    2007-01-01

    The objective of this study was to investigate the correlations between antioxidations and the contents of the total phenolics and anthocyanin in 127 accessions of black soybean. A T-test, a fast clustering procedure, and a correlation coefficient analysis were used for experimentation. The variation ranges of the total antioxidant capacity (TAC), the total phenolics, and anthocyanin contents in 127 black soybean accessions were 0.44-3.56, 7.05-74.82, and 0.22-1.87mg g-1, respectively, displaying significant genotype differences. The major differences in TAC, the total phenolics,and the anthocyanin contents existed among various types of accessions from geographical regions. The differences between the accessions from black and yellow soybeans, spring and autumn, summer and autumn, Dongbeichun and Nanfangchun, Dongbeichun and Nanfangxia, Beifangchun and Nanfangchun, and Beifangchun and Nanfangxia were significant at 0.01 or 0.05 levels, respectively. The general tendency was that the TAC, the total phenolics, and the anthocyanin contents of Beifangchun accessions were higher than that of Dongbeichun ones, while that of Nanfangchun accessions were the worst. 127 black soybean accessions could be clustered into 6 clusters, which consisted of 3, 24,20, 31, 37, and 12 accessions, respectively. The most significant (P < 0.01) correlations existed respectively between the TAC and the total phenolics content, and the TAC and the anthocyanin content of black soybean. The results showed that the total phenolics and anthocyanin in black soybean seed coat were the important antioxidation substances.

  19. Enhancement of colour stability of anthocyanins in model beverages by gum arabic addition.

    Science.gov (United States)

    Chung, Cheryl; Rojanasasithara, Thananunt; Mutilangi, William; McClements, David Julian

    2016-06-15

    This study investigated the potential of gum arabic to improve the stability of anthocyanins that are used in commercial beverages as natural colourants. The degradation of purple carrot anthocyanin in model beverage systems (pH 3.0) containing L-ascorbic acid proceeded with a first-order reaction rate during storage (40 °C for 5 days in light). The addition of gum arabic (0.05-5.0%) significantly enhanced the colour stability of anthocyanin, with the most stable systems observed at intermediate levels (1.5%). A further increase in concentration (>1.5%) reduced its efficacy due to a change in the conformation of the gum arabic molecules that hindered their exposure to the anthocyanins. Fluorescence quenching measurements showed that the anthocyanin could have interacted with the glycoprotein fractions of the gum arabic through hydrogen bonding, resulting in enhanced stability. Overall, this study provides valuable information about enhancing the stability of anthocyanins in beverage systems using natural ingredients.

  20. Incorporating graphene in anthocyanin-based dye-sensitized solar cells

    International Nuclear Information System (INIS)

    The use of natural dyes as sensitizer for dye-sensitized solar cells (DSSC) offers significant advantages such as attainability and cheaper production cost. However, its low power conversion efficiency (PCE) impedes its wide utilization. In this study, enhancement in efficiency of anthocyanin-based dye sensitized solar cells through the incorporation of graphene was studied. Graphene is a two-dimensional sheet of sp”2-hyridized carbon known for its extraordinary mechanical, thermal and electrical properties. This remarkable material was incorporated in the TiO2 photoanode or with anthocyanin dye dispersion. Current-voltage (IV) and electrochemical impedance spectroscopy (EIS) measurements were carried out to characterize the anthocyanin-based DSSC. Addition of graphene ration into TiO2 as a photoanode composite and/or in anthocyanin extracts (anthocyanin: graphene dispersion) gave the same positive effect, an increase in PCE from 0.185% without graphene to as high as 0.516% with combined graphene doping of the TiO2 and using an anthocyanin: graphene dye dispersion. Furthermore, a 30% increase in fill factor was obtained for DSSCs in the presence of graphene. EIS data showed a favourable decrease in charge transfer resistance in the TiO2 layer as graphene is added to the DSSC, with increased magnitude of the short-circuit current (Jsc). This is explained by graphene providing added conducting pathways for the photo-generated electrons. (author)

  1. Isolation, characterization and microvascular activity of anthocyanins from Ficus Racemosa fruits

    Directory of Open Access Journals (Sweden)

    R V Sarpate

    2009-01-01

    Full Text Available Anthocyanins (ACN are part of a large and wide spread group of plant constituents known collectively as flavanoids. In the present research work anthocyanins were extracted from Ficus racemosa fruit. Family: Moraceae, using acidified methanol (1% HCL in methanol. The extracted anthocyanins were isolated and purified using the Amberllite - XAD4 resin. Anthocyanins were characterized by means of Chromatographic and Spectral data obtained from HPLC and UV Spectroscopy. Two major pigments identified were Peonidin -3-glucoside and Pelargonidin -3-glucoside. Peaks for anthocyanins, which are present in very low amount, and in less concentration, can be verified by means of commercially available external standards. The samples were diluted in the mixture of methanol and formic acid just before the injection on the column and separated on Lichrospher-100 Reversed phase C18 end capped column (5 micron 125mm x 4mm using gradient solvent system consisting of 5Mm of phosphoric acid and acetonitrile . DAD detector was employed at 520 nm for anthocyanins. An Ficus racemosa fruit anthocyanosides preparation (equivalent to 30% of anthocyanidins demonstrated significant vasoprotective effect in rabbits, the skin capillary permeability increase, due to chloroform, was reduced after i.p. (25-100 mg/kg anthocyanosides. Comparison was made between the action of the methanol extract and a known protective microvascular drug proxerutin (25 mg/kg. The mixed of anthocyanosides was more active that the proxerutin.

  2. The food matrix affects the anthocyanin profile of fortified egg and dairy matrices during processing and in vitro digestion.

    Science.gov (United States)

    Pineda-Vadillo, Carlos; Nau, Françoise; Guerin-Dubiard, Catherin; Jardin, Julien; Lechevalier, Valérie; Sanz-Buenhombre, Marisa; Guadarrama, Alberto; Tóth, Tamás; Csavajda, Éva; Hingyi, Hajnalka; Karakaya, Sibel; Sibakov, Juhani; Capozzi, Francesco; Bordoni, Alessandra; Dupont, Didier

    2017-01-01

    The aim of the present study was to understand to what extent the inclusion of anthocyanins into dairy and egg matrices could affect their stability after processing and their release and solubility during digestion. For this purpose, individual and total anthocyanin content of four different enriched matrices, namely custard dessert, milkshake, pancake and omelettete, was determined after their manufacturing and during in vitro digestion. Results showed that anthocyanin recovery after processing largely varied among matrices, mainly due to the treatments applied and the interactions developed with other food components. In terms of digestion, the present study showed that the inclusion of anthocyanins into food matrices could be an effective way to protect them against intestinal degradation, and also the incorporation of anthocyanins into matrices with different compositions and structures could represent an interesting and effective method to control the delivery of anthocyanins within the different compartments of the digestive tract. PMID:27507502

  3. The food matrix affects the anthocyanin profile of fortified egg and dairy matrices during processing and in vitro digestion.

    Science.gov (United States)

    Pineda-Vadillo, Carlos; Nau, Françoise; Guerin-Dubiard, Catherin; Jardin, Julien; Lechevalier, Valérie; Sanz-Buenhombre, Marisa; Guadarrama, Alberto; Tóth, Tamás; Csavajda, Éva; Hingyi, Hajnalka; Karakaya, Sibel; Sibakov, Juhani; Capozzi, Francesco; Bordoni, Alessandra; Dupont, Didier

    2017-01-01

    The aim of the present study was to understand to what extent the inclusion of anthocyanins into dairy and egg matrices could affect their stability after processing and their release and solubility during digestion. For this purpose, individual and total anthocyanin content of four different enriched matrices, namely custard dessert, milkshake, pancake and omelettete, was determined after their manufacturing and during in vitro digestion. Results showed that anthocyanin recovery after processing largely varied among matrices, mainly due to the treatments applied and the interactions developed with other food components. In terms of digestion, the present study showed that the inclusion of anthocyanins into food matrices could be an effective way to protect them against intestinal degradation, and also the incorporation of anthocyanins into matrices with different compositions and structures could represent an interesting and effective method to control the delivery of anthocyanins within the different compartments of the digestive tract.

  4. Overexpressing CAPRICE and GLABRA3 did not change the anthocyanin content of tomato (solanum lycopersicum) fruit peel

    OpenAIRE

    Wada, Takuji; Onishi, Mio; Kunihiro, Asuka; Tominaga-Wada, Rumi

    2015-01-01

    In Arabidopsis thaliana, the R3-type MYB transcription factor CAPRICE (CPC) and bHLH transcription factor GLABRA3 (GL3) cooperatively regulate epidermal cell differentiation. CPC and GL3 are involved in root-hair differentiation, trichome initiation and anthocyanin biosynthesis in Arabidopsis epidermal cells. Previously, we showed that CPC and GL3 also influence anthocyanin accumulation in tomato. Introduction of 35S::CPC into tomato significantly inhibits anthocyanin accumulation in cotyledo...

  5. Gibberellins negatively regulate low temperature-induced anthocyanin accumulation in a HY5/HYH-dependent manner

    OpenAIRE

    Zhang, Yongqiang; Liu, Zhongjuan; Liu, Rongzhi; Hao, Hualing; Bi, Yurong

    2011-01-01

    Low temperature could significantly induce anthocyanin accumulation in the presence of light. Recently, two bZIP transcription factors LONG HYPOCOTYL 5 (HY5) and HOMOLOG OF HY5 (HYH) were identified to play an important role in the process of low temperature-induced anthocyanin accumulation. However, the mechanism by which HY5/HYH regulates anthocyanin accumulation under low temperature still remains unclear. Here, we found that the gibberellins (GAs) could decrease but PAC (endogenous GAs bi...

  6. A Novel bHLH Transcription Factor Involved in Regulating Anthocyanin Biosynthesis in Chrysanthemums (Chrysanthemum morifolium Ramat.)

    OpenAIRE

    Li-li Xiang; Xiao-fen Liu; Xue Li; Xue-ren Yin; Donald Grierson; Fang Li; Kun-song Chen

    2015-01-01

    Chrysanthemums (Chrysanthemum morifolium Ramat.) exhibit a variety of flower colors due to their differing abilities to accumulate anthocyanins. One MYB member, CmMYB6, has been verified as a transcription regulator of chrysanthemum genes involved in anthocyanin biosynthesis; however, the co-regulators for CmMYB6 remain unclear in chrysanthemum. Here, the expression pattern of CmbHLH2, which is clustered in the IIIf bHLH subgroup, was shown to be positively correlated with the anthocyanin con...

  7. Sunlight-stimulated phenylalanine ammonia-lyase (PAL) activity and anthocyanin accumulation in exocarp of ‘Mahajanaka’ mango

    OpenAIRE

    Kobkiat Saengnil

    2011-01-01

    The activity of phenylalanine ammonia-lyase (PAL) required for anthocyanin synthesis was stimulated by sunlight exposure resulting in the development of red colour in ‘Mahajanaka’ mango exocarp, which occurred only on the sunlight-exposed side of the fruit. The accumulation of anthocyanin was concurrent with the increase in PAL activity in the mature stage of the fruit. The exposed side of the fruit had higher PAL activity, endogenous sugar content, and anthocyanin accumulation than the unexp...

  8. Gene regulation of anthocyanin biosynthesis in two blood-flesh peach (Prunus persica (L.) Batsch) cultivars during fruit development* #

    OpenAIRE

    Jiao, Yun; Ma, Rui-juan; Shen, Zhi-Jun; Yan, Juan; Yu, Ming-liang

    2014-01-01

    The blood-flesh peach has become popular in China due to its attractive anthocyanin-induced pigmentation and antioxidant properties. In this study, we investigated the molecular mechanisms underlying anthocyanin accumulation by examining the expression of nine genes of the anthocyanin biosynthesis pathway found in the peach mesocarp. Expression was measured at six developmental stages in fruit of two blood-flesh and one white-flesh peach cultivars, using quantitative reverse transcription pol...

  9. The effect of solvents on the stabilities (color and Fe) of anthocyanin isolated from the red-color-melinjo peels

    Science.gov (United States)

    Tarmizi, Ermiziar; Lalasari, Latifa Hanum; Saragih, Raskita

    2015-12-01

    Anthocyanin from the red-color-melinjo peels could be isolated using a polar solvent (ethanol) [ermiziar, 2010]. The amount of hydrocarbons in the structure of anthocyanin might cause that anthocyanin could be isolated using a non polar solvent. The purpose of research is to isolate anthocyanin using non polar solvents (hexane and petroleum ether) with maceration steps for 24 hours and separate solvents using rotary evaporator equipment. The stability of anthocyanin could be observed every week (1,2,3 and 4 weeks) in various environmental conditions (with or without light in refrigerator and open or closed storage). The characterization of anthocyanin was analyzed with visual (physic photo) and or using equipments such as Fourier Transform Infrared Spectroscopy (FTIR) for determining functional groups, Ultraviolet-Visible Spectroscopy (UV/Vis) with 500-550 nm wavelengths for deciding absorption of anthocyanin and atomic absorption spectroscopy (AAS) for analyzing Fe element. The result showed that anthocyanin isolation with hexane solvent has yield higher than petroleum eter solvent. From the results of physic observation for 4 weeks looked that there are changing colors of samples significant after 3 and 4 weeks in cooler with or without light. The stability of anthocyanin color was the best on the storage time until 2 weeks using hexane solvent in refrigerator and closed condition that it has absorption of 0.6740 with 500 nm wavelengths and Fe concentration 6.29 ppm.

  10. The effect of solvents on the stabilities (color and Fe) of anthocyanin isolated from the red-color-melinjo peels

    International Nuclear Information System (INIS)

    Anthocyanin from the red-color-melinjo peels could be isolated using a polar solvent (ethanol) [ermiziar, 2010]. The amount of hydrocarbons in the structure of anthocyanin might cause that anthocyanin could be isolated using a non polar solvent. The purpose of research is to isolate anthocyanin using non polar solvents (hexane and petroleum ether) with maceration steps for 24 hours and separate solvents using rotary evaporator equipment. The stability of anthocyanin could be observed every week (1,2,3 and 4 weeks) in various environmental conditions (with or without light in refrigerator and open or closed storage). The characterization of anthocyanin was analyzed with visual (physic photo) and or using equipments such as Fourier Transform Infrared Spectroscopy (FTIR) for determining functional groups, Ultraviolet–Visible Spectroscopy (UV/Vis) with 500-550 nm wavelengths for deciding absorption of anthocyanin and atomic absorption spectroscopy (AAS) for analyzing Fe element. The result showed that anthocyanin isolation with hexane solvent has yield higher than petroleum eter solvent. From the results of physic observation for 4 weeks looked that there are changing colors of samples significant after 3 and 4 weeks in cooler with or without light. The stability of anthocyanin color was the best on the storage time until 2 weeks using hexane solvent in refrigerator and closed condition that it has absorption of 0.6740 with 500 nm wavelengths and Fe concentration 6.29 ppm

  11. DNA Damage Protecting Activity and Free Radical Scavenging Activity of Anthocyanins from Red Sorghum (Sorghum bicolor) Bran

    OpenAIRE

    P. Suganya Devi; M. Saravana Kumar; S. Mohan Das

    2012-01-01

    There is increasing interest in natural food colorants like carotenoids and anthocyanins with functional properties. Red sorghum bran is known as a rich source for anthocyanins. The anthocyanin contents extracted from red sorghum bran were evaluated by biochemical analysis. Among the three solvent system used, the acidified methanol extract showed a highest anthocyanin content (4.7 mg/g of sorghum bran) followed by methanol (1.95 mg/g) and acetone (1 mg/g). Similarly, the highest total flavon...

  12. The effect of solvents on the stabilities (color and Fe) of anthocyanin isolated from the red-color-melinjo peels

    Energy Technology Data Exchange (ETDEWEB)

    Tarmizi, Ermiziar, E-mail: uph-ermi@yahoo.com, E-mail: ermitarmizi@gmail.com; Saragih, Raskita, E-mail: raskitasaragih@yahoo.com [Indonesia Institute of Technology (ITI), Raya PuspiptekSerpong, Tangerang Banten 15320 (Indonesia); Lalasari, Latifa Hanum, E-mail: ifa-sari@yahoo.com, E-mail: lati003@lipi.go.id [Research Centre for Metallurgy and Material, Indonesian Institute of Sciences (LIPI), KawasanPuspiptekSerpong, Tangerang Selatan 15314 (Indonesia)

    2015-12-29

    Anthocyanin from the red-color-melinjo peels could be isolated using a polar solvent (ethanol) [ermiziar, 2010]. The amount of hydrocarbons in the structure of anthocyanin might cause that anthocyanin could be isolated using a non polar solvent. The purpose of research is to isolate anthocyanin using non polar solvents (hexane and petroleum ether) with maceration steps for 24 hours and separate solvents using rotary evaporator equipment. The stability of anthocyanin could be observed every week (1,2,3 and 4 weeks) in various environmental conditions (with or without light in refrigerator and open or closed storage). The characterization of anthocyanin was analyzed with visual (physic photo) and or using equipments such as Fourier Transform Infrared Spectroscopy (FTIR) for determining functional groups, Ultraviolet–Visible Spectroscopy (UV/Vis) with 500-550 nm wavelengths for deciding absorption of anthocyanin and atomic absorption spectroscopy (AAS) for analyzing Fe element. The result showed that anthocyanin isolation with hexane solvent has yield higher than petroleum eter solvent. From the results of physic observation for 4 weeks looked that there are changing colors of samples significant after 3 and 4 weeks in cooler with or without light. The stability of anthocyanin color was the best on the storage time until 2 weeks using hexane solvent in refrigerator and closed condition that it has absorption of 0.6740 with 500 nm wavelengths and Fe concentration 6.29 ppm.

  13. Anthocyanins increase low-density lipoprotein and plasma cholesterol and do not reduce atherosclerosis in Watanabe Heritable Hyperlipidemic rabbits

    DEFF Research Database (Denmark)

    Nielsen, I. L. F.; Rasmussen, S.E.; Mortensen, Alicja;

    2005-01-01

    a purified anthocyanin fraction front black currants, a black currant juice, probucol or control diet for 16 weeks. Purified anthocyanins significantly increased plasma cholesterol and low-density lipoprotein (LDL) cholesterol. Intake of black currant juice had no effect on total plasma cholesterol......, antioxidant enzymes, protein and lipid oxidation were not affected by any of the anthocyanin treatments. Adverse effects of purified anthocyanins were observed on plasma- and LDL-cholesterol. These effects were not observed with black currant juice, suggesting that black currants may contain components...

  14. Scientific Opinion on the re-evaluation of anthocyanins (E 163 as a food additive

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS

    2013-04-01

    Full Text Available Following a request from the European Commission to the European Food Safety Authority (EFSA, the Scientific Panel on Food Additives and Nutrient Sources added to Food (ANS was asked to provide a scientific opinion re-evaluating the safety of anthocyanins (E 163. The Panel concluded that the currently available toxicological database was inadequate to establish a numerical ADI for anthocyanins. For anthocyanins extracted from edible fruits and vegetables by aqueous processes, changes in composition would not be expected. The Panel concluded that provided exposure from use as a food additive was comparable to that from the diet the underlying conclusion in the 1975 SCF opinion that such food additives derived from natural sources would still apply. The majority of data are on aqueous grape skin extract (GSKE and blackcurrant extracts and the Panel considers that exposures estimated from current uses and use levels these extracts are unlikely to be of safety concern. The Panel recommends that the specifications for E 163 should be modified to reflect this conclusion. For anthocyanins extracted from other sources and/or using non-aqueous extraction methods the absence of characterisation does not allow verification that this conclusion in the 1975 SCF opinion could be applied. The Panel noted that for some extracts it had proven possible to assess a group based on toxicological and compositional data on representative samples across the range of extracts. The Panel concluded that refined exposure estimates of anthocyanins used as a food additive were higher than dietary intakes and that these did not include intakes from colouring foods. Therefore the Panel would recommend that appropriate characterisation and toxicological data should be required to permit a further re-evaluation of anthocyanins including comparative data on anthocyanins (E 163 produced by aqueous extraction.

  15. Effects of climatic conditions and soil properties on Cabernet Sauvignon berry growth and anthocyanin profiles.

    Science.gov (United States)

    Cheng, Guo; He, Yan-Nan; Yue, Tai-Xin; Wang, Jun; Zhang, Zhen-Wen

    2014-09-02

    Climatic conditions and soil type have significant influence on grape ripening and wine quality. The reported study was conducted in two "Cabernet Sauvignon (Vitis vinifera L.V)" vineyards located in Xinjiang, a semiarid wine-producing region of China during two vintages (2011 and 2012). The results indicate that soil and climate affected berry growth and anthocyanin profiles. These two localities were within a distance of 5 km from each other and had soils of different physical and chemical composition. For each vineyard, the differences of anthocyanin concentrations, and parameters concerning berry growth and composition between the two years could be explained by different climatic conditions. Soil effect was studied by investigation of differences in berry composition and anthocyanin profiles between the two vineyards in the same year, which could be explained mainly by the different soil properties, vine water and nitrogen status. Specifically, the soils with less water and organic matter produced looser clusters, heavier berry skins and higher TSS, which contributed to the excellent performance of grapes. Compared with 2011, the increases in anthocyanin concentrations for each vineyard in 2012 could be attributed to smaller number of extreme temperature (>35 °C) days and rainfall, lower vine water status and N level. The explanation for higher anthocyanin concentrations in grape skins from the soils with less water and organic matter could be the vine status differences, lighter berry weight and heavier skin weight at harvest. In particular, grapes from the soils with less water and organic matter had higher levels of 3'5'-substituded, O-methylated and acylated anthocyanins, which represented a positive characteristic conferring more stable pigmentation to the corresponding wine in the future. The present work clarifies the effects of climate and soil on berry growth and anthocyanin profiles, thus providing guidance for production of high-quality wine grapes

  16. Effects of Climatic Conditions and Soil Properties on Cabernet Sauvignon Berry Growth and Anthocyanin Profiles

    Directory of Open Access Journals (Sweden)

    Guo Cheng

    2014-09-01

    Full Text Available Climatic conditions and soil type have significant influence on grape ripening and wine quality. The reported study was conducted in two “Cabernet Sauvignon (Vitis vinifera L.V” vineyards located in Xinjiang, a semiarid wine-producing region of China during two vintages (2011 and 2012. The results indicate that soil and climate affected berry growth and anthocyanin profiles. These two localities were within a distance of 5 km from each other and had soils of different physical and chemical composition. For each vineyard, the differences of anthocyanin concentrations, and parameters concerning berry growth and composition between the two years could be explained by different climatic conditions. Soil effect was studied by investigation of differences in berry composition and anthocyanin profiles between the two vineyards in the same year, which could be explained mainly by the different soil properties, vine water and nitrogen status. Specifically, the soils with less water and organic matter produced looser clusters, heavier berry skins and higher TSS, which contributed to the excellent performance of grapes. Compared with 2011, the increases in anthocyanin concentrations for each vineyard in 2012 could be attributed to smaller number of extreme temperature (>35 °C days and rainfall, lower vine water status and N level. The explanation for higher anthocyanin concentrations in grape skins from the soils with less water and organic matter could be the vine status differences, lighter berry weight and heavier skin weight at harvest. In particular, grapes from the soils with less water and organic matter had higher levels of 3′5′-substituded, O-methylated and acylated anthocyanins, which represented a positive characteristic conferring more stable pigmentation to the corresponding wine in the future. The present work clarifies the effects of climate and soil on berry growth and anthocyanin profiles, thus providing guidance for production of

  17. New insights into the bioavailability of red raspberry anthocyanins and ellagitannins.

    Science.gov (United States)

    Ludwig, Iziar A; Mena, Pedro; Calani, Luca; Borges, Gina; Pereira-Caro, Gema; Bresciani, Letizia; Del Rio, Daniele; Lean, Michael E J; Crozier, Alan

    2015-12-01

    Red raspberries, containing ellagitannins and cyanidin-based anthocyanins, were fed to volunteers and metabolites appearing in plasma and urine were analysed by UHPLC-MS. Anthocyanins were not absorbed to any extent with sub nmol/L concentrations of cyanidin-3-O-glucoside and a cyanidin-O-glucuronide appearing transiently in plasma. Anthocyanins excreted in urine corresponded to 0.007% of intake. More substantial amounts of phase II metabolites of ferulic acid and isoferulic acid, along with 4'-hydroxyhippuric acid, potentially originating from pH-mediated degradation of cyanidin in the proximal gastrointestinal tract, appeared in urine and also plasma where peak concentrations were attained 1-1.5h after raspberry intake. Excretion of 18 anthocyanin-derived metabolites corresponded to 15.0% of intake, a figure substantially higher than obtained in other anthocyanin feeding studies. Ellagitannins pass from the small to the large intestine where the colonic microbiota mediate their conversion to urolithins A and B which appeared in plasma and were excreted almost exclusively as sulfate and glucuronide metabolites. The urolithin metabolites persisted in the circulatory system and were excreted in urine for much longer periods of time than the anthocyanin metabolites although their overall urinary recovery was lower at 7.0% of intake. It is events originating in the proximal and distal gastrointestinal tract, and subsequent phase II metabolism, that play an important role in the bioavailability of both anthocyanins and ellagitannins and it is their metabolites which appear in the circulatory system, that are key to elucidating the mode of action(s) underlying the protective effects of these compounds on human health.

  18. Dietary Anthocyanins as Nutritional Therapy for Nonalcoholic Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    Luca Valenti

    2013-01-01

    Full Text Available Nonalcoholic fatty liver disease (NAFLD, defined by excessive lipid accumulation in the liver, is the hepatic manifestation of insulin resistance and the metabolic syndrome. Due to the epidemics of obesity, NAFLD is rapidly becoming the leading cause of altered liver enzymes in Western countries. NAFLD encompasses a wide spectrum of liver disease ranging from simple uncomplicated steatosis, to steatohepatitis, cirrhosis, and hepatocellular carcinoma. Diet may affect the development of NAFLD either by increasing risk or by providing protective factors. Therefore, it is important to investigate the role of foods and/or food bioactives on the metabolic processes involved in steatohepatitis for preventive strategies. It has been reported that anthocyanins (ACNs decrease hepatic lipid accumulation and may counteract oxidative stress and hepatic inflammation, but their impact on NAFLD has yet to be fully determined. ACNs are water-soluble bioactive compounds of the polyphenol class present in many vegetable products. Here, we summarize the evidence evaluating the mechanisms of action of ACNs on hepatic lipid metabolism in different experimental setting: in vitro, in vivo, and in human trials. Finally, a working model depicting the possible mechanisms underpinning the beneficial effects of ACNs in NAFLD is proposed, based on the available literature.

  19. Expression of structural genes related to anthocyanin biosynthesis of Vitis amurensis

    Institute of Scientific and Technical Information of China (English)

    Quan Zhao; Fei He; Malcolm J Reeves; Qiu-Hong Pan; Chang-Qing Duan; Jun Wang

    2016-01-01

    This research was designed to assess the changes in anthocyanin content in grape skins of Vitis amurensis and to explore mRNA transcriptions of 11 structural genes (PAL, CHS3, CHI1, F3H2, F30H, F3050H, DFR, LDOX, UFGT, OMT and GST) related to anthocyanin biosynthesis during grape berry development, by the use of HPLC-MS/MS and real-time Q-PCR analysis. Accumulation of anthocyanins began at veraison, continued throughout the later berry development and reached a peak at maturity. Veraison is the time when the berries turn from green to purple. Expression of PAL, CHI1, and LDOX were up-regulated from 2 to 4 weeks after flowering (WAF), down-regulated from 6 WAF to veraison, whereas DFR was up-regulated at 8 WAF, and then up-regulated from veraison to maturity. CHS3, F3050H, UFGT, GST, and OMT were down-regulated from 2 WAF to veraison, and then up-regulated from veraison to maturity. The transcriptional expressions of the 11 structural genes also showed positive correlations with the anthocyanin content from veraison to maturity. Positive correlations were also observed between OMT transcrip-tional level and the content of methoxyl-anthocyanins, and between F3050H transcriptional level and the content of delphinidin anthocyanins. F3H2 and F30H expression was up-regulated at 2 WAF. F3H2 expression was down-regu-lated from 4 WAF to veraison and then up-regulated again from veraison to maturity. F30H expression was down-reg-ulated at 4 WAF and then up-regulated again from 6 WAF to maturity. F30H transcriptional level was correlated posi-tively with the cyanidin anthocyanin concentration from veraison to maturity. These results indicate that the onset of anthocyanin synthesis during berry development coincides with a coordinated increase in the expression of a number of genes in the anthocyanin biosynthetic pathway.

  20. Influence of Temperature and Preserving Agents on the Stability of Cornelian Cherries Anthocyanins

    Directory of Open Access Journals (Sweden)

    Bianca Moldovan

    2014-06-01

    Full Text Available Cornelian cherry (Cornus mas L. fruits are known for their significant amounts of anthocyanins which can be used as natural food colorants. The storage stability of anthocyanins from these fruit extracts, at different temperatures (2 °C, 25 °C and 75 °C, pH 3.02, in the presence of two of the most widely employed food preserving agents (sodium benzoate and potassium sorbate was investigated. The highest stability was exhibited by the anthocyanin extract stored at 2 °C without any added preservative, with half-life and constant rate values of 1443.8 h and 0.48 × 10−3 h−1, respectively. The highest value of the degradation rate constant (82.76 × 10−3/h was obtained in the case of anthocyanin extract stored at 75 °C without any added preservative. Experimental results indicate that the storage degradation of anthocyanins followed first-order reaction kinetics under each of the investigated conditions. In aqueous solution, the food preservatives used were found to have a slight influence on the anthocyanins’ stability.

  1. Effects of cold atmospheric gas phase plasma on anthocyanins and color in pomegranate juice.

    Science.gov (United States)

    Bursać Kovačević, Danijela; Putnik, Predrag; Dragović-Uzelac, Verica; Pedisić, Sandra; Režek Jambrak, Anet; Herceg, Zoran

    2016-01-01

    The aim of the study was to evaluate effects of cold atmospheric gas phase plasma on anthocyanins and color in pomegranate juice. Outcomes of plasma treatment were observed at different operating conditions: (i) treatment time (3, 5, 7 min), (ii) treated juice volume (3, 4, 5 cm(3)), and (iii) gas flow (0.75, 1, 1.25 dm(3)/min). The greatest anthocyanin stability was found at: 3 min treatment time, 5 cm(3) sample volume, and 0.75 dm(3)/min gas flow. Plasma treatment yielded higher anthocyanin content from 21% to 35%. Multivariate analysis showed that total color change was not associated with sample volume and treatment time, however it declined with increased gas flow. The change of color increased in comparison treated vs. untreated pomegranate juice. Constructed mathematical equation confirmed that increase of anthocyanin content increased with gas flow, sample volume and change in color. In summary, this study showed that plasma treatment had positive influences on anthocyanins stability and color change in cloudy pomegranate juice.

  2. Analysis and characterization of anthocyanins and carotenoids in Japanese blue tomato.

    Science.gov (United States)

    Ooe, Emi; Ogawa, Kenjirou; Horiuchi, Tadashi; Tada, Hiroyuki; Murase, Hiromi; Tsuruma, Kazuhiro; Shimazawa, Masamitsu; Hara, Hideaki

    2016-01-01

    Tomato (Solanum lycopersicum) is rich in anthocyanins, which are polyphenolic pigments. This study aimed to analyze and characterize the anthocyanin composition in cultivated blue tomato in Japan. The extracts of peel, seed, and pulp of tomatoes were purified following which anthocyanins and lycopene contents were analyzed using high-performance liquid chromatography and electrospray ionization mass spectrometry. Eleven types of anthocyanins were identified, including delphinidin, petunidin, and malvidin. Further, the antioxidant activity of anthocyanins was evaluated using 2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) diammonium salt radical quenching assays and electron spin resonance. "Blue tomato" extracts exert antioxidant activity. Thus, we showed that petunidin was present in the "blue tomato" peel while lycopene was present in the peel and pulp. Additionally, the blue tomato peel extract was found to significantly inhibit H2O2-induced cell death in vitro. This is the first study on cell protective effects of Japanese blue tomato extract and petunidin in murine photoreceptor cells. PMID:26443075

  3. Analytical standards production for the analysis of pomegranate anthocyanins by HPLC

    Directory of Open Access Journals (Sweden)

    Manuela Cristina Pessanha de Araújo Santiago

    2014-03-01

    Full Text Available Pomegranate (Punica granatum L. is a fruit with a long medicinal history, especially due to its phenolic compounds content, such as the anthocyanins, which are reported as one of the most important natural antioxidants. The analysis of the anthocyanins by high performance liquid chromatography (HPLC can be considered as an important tool to evaluate the quality of pomegranate juice. For research laboratories the major challenge in using HPLC for quantitative analyses is the acquisition of high purity analytical standards, since these are expensive and in some cases not even commercially available. The aim of this study was to obtain analytical standards for the qualitative and quantitative analysis of the anthocyanins from pomegranate. Five vegetable matrices (pomegranate flower, jambolan, jabuticaba, blackberry and strawberry fruits were used to isolate each of the six anthocyanins present in pomegranate fruit, using an analytical HPLC scale with non-destructive detection, it being possible to subsequently use them as analytical standards. Furthermore, their identities were confirmed by high resolution mass spectrometry. The proposed procedure showed that it is possible to obtain analytical standards of anthocyanins with a high purity grade (98.0 to 99.9% from natural sources, which was proved to be an economic strategy for the production of standards by laboratories according to their research requirements.

  4. Sour Cherry (Prunus cerasus L) Anthocyanins as Ingredients for Functional Foods.

    Science.gov (United States)

    Blando, Federica; Gerardi, Carmela; Nicoletti, Isabella

    2004-01-01

    In the recent years many studies on anthocyanins have revealed their strong antioxidant activity and their possible use as chemotherapeutics. The finding that sour cherries (Prunus cerasus L) (also called tart cherries) contain high levels of anthocyanins that possess strong antioxidant and anti-inflammatory properties has attracted much attention to this species. Here we report the preliminary results of the induction of anthocyanin biosynthesis in sour cherry callus cell cultures. The evaluation and characterization of the in vitro produced pigments are compared to those of the anthocyanins found in vivo in fruits of several sour cherry cultivars. Interestingly, the anthocyanin profiles found in whole fruit extracts were similar in all tested genotypes but were different with respect to the callus extract. The evaluation of antioxidant activity, performed by ORAC and TEAC assays, revealed a relatively high antioxidant capacity for the fruit extracts (from 1145 to 2592 $\\mu $ mol TE/100 g FW) and a lower one for the callus extract (688 $\\mu $ mol TE/100 g FW). PMID:15577186

  5. Bioavailability of anthocyanins and colonic polyphenol metabolites following consumption of aronia berry extract.

    Science.gov (United States)

    Xie, Liyang; Lee, Sang Gil; Vance, Terrence M; Wang, Ying; Kim, Bohkyung; Lee, Ji-Young; Chun, Ock K; Bolling, Bradley W

    2016-11-15

    A single-dose pharmacokinetic trial was conducted in 6 adults to evaluate the bioavailability of anthocyanins and colonic polyphenol metabolites after consumption of 500mg aronia berry extract. UHPLC-MS methods were developed to quantitate aronia berry polyphenols and their metabolites in plasma and urine. While anthocyanins were bioavailable, microbial phenolic catabolites increased ∼10-fold more than anthocyanins in plasma and urine. Among the anthocyanins, cyanidin-3-O-galactoside was rapidly metabolized to peonidin-3-O-galactoside. Aronia polyphenols were absorbed and extensively metabolized with tmax of anthocyanins and other polyphenol catabolites from 1.0h to 6.33h in plasma and urine. Despite significant inter-individual variation in pharmacokinetic parameters, concentrations of polyphenol metabolites in plasma and urine at 24h were positively correlated with total AUC in plasma and urine (r=0.93, and r=0.98, respectively). This suggests that fasting blood and urine collections could be used to estimate polyphenol bioavailability and metabolism after aronia polyphenol consumption. PMID:27283706

  6. Investigation of optical properties of anthocyanin doped into sol-gel based matrix

    Science.gov (United States)

    Hashim, Hasrina; Abdul Aziz, Nik Mohd Azmi Nik; Isnin, Aishah

    2012-06-01

    Anthocyanin dye was extracted from petal of Hibiscus rosasinensis (Bunga Raya) and doped into sol-gel based matrix to investigate an effect of pH change on its optical properties. Sol-gel matrix based on Vinyl triethoxysilene (VTES) as a precursor was prepared through Sol-gel process at pH 7. The sol was doped with 0.1% of Anthocyanin and the same amount of dye was also dissolved in ethanol as a comparative sample. Hydrochloric Acid, HCl and Tetramethylammonium Hydroxide, TMAH were used to change the pH value by adding them at various concentrations into each sample. The emission spectra and chemical structures of the samples were measured by Spectrofluorometer and Fourier Transform Infrared (FTIR) respectively. When excited at 410 nm, two emission peaks at about 492 and 574 nm were observed for Anthocyanin in acidic environment both in ethanol and VTES sol. In base environment however, only Anthocyanin dissolved in ethanol produced emission peak with a single peak at about 539 nm. The sensitivity of Anthocyanin dye toward pH changes in VTES open a possibility to use it as sensing element in which sol-gel based matrix are known to have higher mechanical strength and thermal stability.

  7. Sugar Maple Pigments Through the Fall and the Role of Anthocyanin as an Analytical Tool

    Science.gov (United States)

    Lindgren, E.; Rock, B.; Middleton, E.; Aber, J.

    2008-12-01

    Sugar maple habitat is projected to almost disappear in future climate scenarios. In fact, many institutions state that these trees are already in decline. Being able to detect sugar maple health could prove to be a useful analytical tool to monitor changes in phenology. Anthocyanin, a red pigment found in sugar maples, is thought to be a universal indicator of plant stress. It is very prominent in the spring during the first flush of leaves, as well as in the fall as leaves senesce. Determining an anthocyanin index that could be used with satellite systems will provide a greater understanding of tree phenology and the distribution of plant stress, both over large areas as well as changes over time. The utilization of anthocyanin for one of it's functions, prevention of oxidative stress, may fluctuate in response to changing climatic conditions that occur during senescence or vary from year to year. By monitoring changes in pigment levels and antioxidant capacity through the fall, one may be able to draw conclusions about the ability to detect anthocyanin remotely from space-based systems, and possibly determine a more specific function for anthocyanin during fall senescence. These results could then be applied to track changes in tree stress.

  8. The anti-photooxidation of anthocyanins-rich leaves of a purple rice cultivar

    Institute of Scientific and Technical Information of China (English)

    PENG; Changlian; LIN; Guizhu; LIN; Zhifang; CHEN; Shaowei

    2006-01-01

    In the leaf of rice (Oryza sativa L.) cultivar Yunnan purple rice, the anthocyanins with an obvious absorption peak at 530nm were distributed in the cells of upper and lower epidermis, bulliform tissue and bristle. The maximal photosynthetic oxygen evolution rate and chlorophyll content in flag leaves were 28% and 23%, respectively, more than the common green leaf rice cultivar Chijiaoruanzhan. Higher chlorophyll content is probably one of the physiological adaptations for enhancing light harvesting capacity of the antenna in photosystems in this cyanic leaves species. Upon the photooxidation of leaf segments mediated by methyl viologen in weak light for 3 days, the distinct bleaching of anthocyanins in purple rice was associated with the reduction of scavenging ability to DPPH· free radical ability and the increase in membrane leakage rate. But almost no changes in contents of flavonoids and total phenolics were observed. Chlorophyll fluorescence parameters Fv/Fo, qP and фPSII decreased with the increase in NPQ and DES of xanthophylls cycle after photooxidation treatment. Green rice leaves showed more decrease in DPPH· scavenging rate and more increase in cell membrane leakage rate but showed a trace of anthocyanins during photooxidation. It is suggested that anthocyanin may be a beneficial and primary antioxidant in sun cyanic rice leaves against oxidative stress induced by environmental adversity. And photooxidation could induce different changing patterns of anthocyanins between the tested purple and green rice leaves.

  9. Approaches to understanding the contribution of anthocyanins to the antioxidant capacity of pasteurized pomegranate juices.

    Science.gov (United States)

    Vegara, Salud; Mena, Pedro; Martí, Nuria; Saura, Domingo; Valero, Manuel

    2013-12-01

    Influence of processing and storage conditions on anthocyanin stability and antioxidant activity of clarified and cloudy juices from arils of the 'Mollar' pomegranate variety was studied. Clarification process reduced the content of total monomeric and individual anthocyanins, and increased the antioxidant activity of pomegranate juice. Thermal treatments (65 and 90 °C for 30 or 5 s) decreased the percentage of polymeric anthocyanin form, increasing on the contrary the monomeric one. In any case, storage temperature was the main factor affecting all the parameters tested. Cyanidin 3-O-glucoside (Cy3G) was more instable than delphinidin 3,5-di (Dp3,5dG) and cyaniding 3,5-diglucosides (Cy3,5dG). A linear relationship was observed between oxygen radical absorbance capacity (ORAC) and total monomeric anthocyanins, suggesting that they contributed strongly to the antioxidant capacity. Results presented in this study show that hurdle technology (heating plus refrigeration) may help to reduce anthocyanin degradation in pasteurized pomegranate juice, avoiding a dramatic impact on its colour and preserving the beneficial effects of this specific bioactive compounds on human health.

  10. Anthocyanins degradation during storage of Hibiscus sabdariffa extract and evolution of its degradation products.

    Science.gov (United States)

    Sinela, André; Rawat, Nadirah; Mertz, Christian; Achir, Nawel; Fulcrand, Hélène; Dornier, Manuel

    2017-01-01

    Degradation parameters of two main anthocyanins from roselle extract (Hibiscus sabdariffa L.) stored at different temperatures (4-37°C) over 60days were determined. Anthocyanins and some of their degradation products were monitored and quantified using HPLC-MS and DAD. Degradation of anthocyanins followed first-order kinetics and reaction rate constants (k values), which were obtained by non-linear regression, showed that the degradation rate of delphinidin 3-O-sambubioside was higher than that of cyanidin 3-O-sambubioside with k values of 9.2·10(-7)s(-1) and 8.4·10(-7)s(-1) at 37°C respectively. The temperature dependence of the rate of anthocyanin degradation was modeled by the Arrhenius equation. Degradation of delphinidin 3-O-sambubioside (Ea=90kJmol(-1)) tended to be significantly more sensitive to an increase in temperature than cyanidin 3-O-sambubioside (Ea=80kJmol(-1)). Degradation of these anthocyanins formed scission products (gallic and protocatechuic acids respectively) and was accompanied by an increase in polymeric color index. PMID:27507471

  11. Molecular characterization and expression analyses of an anthocyanin synthase gene from Magnolia sprengeri Pamp.

    Science.gov (United States)

    Shi, Shou-Guo; Li, Shan-Ju; Kang, Yong-Xiang; Liu, Jian-Jun

    2015-01-01

    Anthocyanin synthase (ANS), which catalyzes the conversion of colorless leucoanthocyanins into colored anthocyanins, is a key enzyme in the anthocyanin biosynthetic pathway. It plays important roles in plant development and defense. An ANS gene designated as MsANS was cloned from Magnolia sprengeri using rapid amplification of complementary DNA (cDNA) ends technology. The full-length MsANS is 1171-bp long and contains a 1080-bp open reading frame encoding a 360 amino acid polypeptide. In a sequence alignment analysis, the deduced MsANS protein showed high identity to ANS proteins from other plants: Prunus salicina var. cordata (74 % identity), Ampelopsis grossedentata (74 % identity), Pyrus communis (73 % identity), and Prunus avium (73 % identity). A structural analysis showed that MsANS belongs to 2-oxoglutarate (2OG)- and ferrous iron-dependent oxygenase family because it contains three binding sites for 2OG. Real-time quantitative polymerase chain reaction analyses showed that the transcript level of MsANS was 26-fold higher in red petals than in white petals. The accumulation of anthocyanins in petals of white, pink, and red M. sprengeri flowers was analyzed by HPLC. The main anthocyanin was cyanidin-3-o-glucoside chloride, and the red petals contained the highest concentration of this pigment. PMID:25315387

  12. Sour Cherry (Prunus cerasus L Anthocyanins as Ingredients for Functional Foods

    Directory of Open Access Journals (Sweden)

    Federica Blando

    2004-01-01

    Full Text Available In the recent years many studies on anthocyanins have revealed their strong antioxidant activity and their possible use as chemotherapeutics. The finding that sour cherries (Prunus cerasus L (also called tart cherries contain high levels of anthocyanins that possess strong antioxidant and anti-inflammatory properties has attracted much attention to this species. Here we report the preliminary results of the induction of anthocyanin biosynthesis in sour cherry callus cell cultures. The evaluation and characterization of the in vitro produced pigments are compared to those of the anthocyanins found in vivo in fruits of several sour cherry cultivars. Interestingly, the anthocyanin profiles found in whole fruit extracts were similar in all tested genotypes but were different with respect to the callus extract. The evaluation of antioxidant activity, performed by ORAC and TEAC assays, revealed a relatively high antioxidant capacity for the fruit extracts (from 1145 to 2592 μmol TE/100 g FW and a lower one for the callus extract (688 μmol TE/100 g FW.

  13. Arabidopsis CAPRICE (MYB and GLABRA3 (bHLH control tomato (Solanum lycopersicum anthocyanin biosynthesis.

    Directory of Open Access Journals (Sweden)

    Takuji Wada

    Full Text Available In Arabidopsis thaliana the MYB transcription factor CAPRICE (CPC and the bHLH transcription factor GLABRA3 (GL3 are central regulators of root-hair differentiation and trichome initiation. By transforming the orthologous tomato genes SlTRY (CPC and SlGL3 (GL3 into Arabidopsis, we demonstrated that these genes influence epidermal cell differentiation in Arabidopsis, suggesting that tomato and Arabidopsis partially use similar transcription factors for epidermal cell differentiation. CPC and GL3 are also known to be involved in anthocyanin biosynthesis. After transformation into tomato, 35S::CPC inhibited anthocyanin accumulation, whereas GL3::GL3 enhanced anthocyanin accumulation. Real-time reverse transcription PCR analyses showed that the expression of anthocyanin biosynthetic genes including Phe-ammonia lyase (PAL, the flavonoid pathway genes chalcone synthase (CHS, dihydroflavonol reductase (DFR, and anthocyanidin synthase (ANS were repressed in 35S::CPC tomato. In contrast, the expression levels of PAL, CHS, DFR, and ANS were significantly higher in GL3::GL3 tomato compared with control plants. These results suggest that CPC and GL3 also influence anthocyanin pigment synthesis in tomato.

  14. The Tomato Hoffman’s Anthocyaninless Gene Encodes a bHLH Transcription Factor Involved in Anthocyanin Biosynthesis That Is Developmentally Regulated and Induced by Low Temperatures

    OpenAIRE

    Zhengkun Qiu; Xiaoxuan Wang; Jianchang Gao; Yanmei Guo; Zejun Huang; Yongchen Du

    2016-01-01

    Anthocyanin pigments play many roles in plants, including providing protection against biotic and abiotic stresses. Many of the genes that mediate anthocyanin accumulation have been identified through studies of flowers and fruits; however, the mechanisms of genes involved in anthocyanin regulation in seedlings under low-temperature stimulus are less well understood. Genetic characterization of a tomato inbred line, FMTT271, which showed no anthocyanin pigmentation, revealed a mutation in a b...

  15. High-purity isolation of anthocyanins mixtures from fruits and vegetables--a novel solid-phase extraction method using mixed mode cation-exchange chromatography.

    Science.gov (United States)

    He, Jian; Giusti, M Monica

    2011-11-01

    Research on biological activity of anthocyanins requires the availability of high purity materials. However, current methods to isolate anthocyanins or anthocyanin mixtures are tedious and expensive or insufficient for complete isolation. We applied a novel cation-exchange/reversed-phase combination solid-phase extraction (SPE) technique, and optimized the use of water/organic buffer mobile phases to selectively separate anthocyanins. Crude extracts of various representative anthocyanin sources were purified with this technique and compared to 3 commonly used SPE techniques: C(18), HLB, and LH-20. Purified anthocyanin fractions were analyzed with high performance liquid chromatography (HPLC) coupled to photodiode array (PDA) and mass spectrometry (MS) detectors and by Fourier transform infrared (FT-IR) spectroscopy. The UV-visible chromatograms quantitatively demonstrated that our novel technique achieved significantly higher (Pmethod, for 11 of the 12 anthocyanin sources tested. Among them, eight were purified to greater than 99% purity (based on UV-visible chromatograms). The new method efficiently removed non-anthocyanin phenolics. MS and FT-IR results semi-quantitatively confirmed extensive reduction of impurities. Due to strong ionic interaction, our sorbent capacity was superior to others, resulting in the highest throughput and least use of organic solvents. This new methodology for isolation of anthocyanin mixtures drastically increased purity and efficiency while maintaining excellent recovery rate and low cost. The availability of high purity anthocyanin mixtures will facilitate anthocyanin studies and promote the application of anthocyanins in the food and nutraceutical industries. PMID:21968344

  16. The co-pigmentation of anthocyanin isolated from mangosteen pericarp (Garcinia Mangostana L.) as Natural Dye for Dye- Sensitized Solar Cells (DSSC)

    Science.gov (United States)

    Munawaroh, H.; adillah, G. F.; Saputri, L. N. M. Z.; Hanif, Q. A.; Hidayat, R.; Wahyuningsih, S.

    2016-02-01

    Study of color stability of anthocyanin from extract mangosteen pericarp (Garcinia mangostana L.) with co-pigmentation method has been conducted. Malic acid and ascorbic acid used as a co-pigment to stabilize the anthocyanin structure through formation of new binding between anthocyanin. Anthocyanin from mangosteen pericarp were isolated by several steps, including maceration, extraction, and Thin Layer Chromatography (TLC). The anthocyanin separation was conducted by TLC, while the identification of functional groups of those compound, were used FTIR (Fourier Transform Infrared Spectroscopy) for spectra analysis. Ultraviolet- visible absorption spectra have represented differences absorbance and color intensity in various pH. Copigmentation with malic acid and ascorbic acid in many composition and temperature were also well described. Meanwhile, anthocyanin-malic acid and anthocyanin-ascorbic acid have color retention higher than that of pure anthocyanin. Maximum color retention has been achieved at a ratio of 1:3 and 1:5 for ascorbic acid and malic acid, respectively. Therefore, the addition of ascorbic acid and malic acid as a copigment shows the ability to protect color retention of anthocyanin (mangosteen pericarp) from degradation process. The better efficiency of DSSC (η) have been achieved, whereas n of controlled anthocyanin, anthocyanin-ascorbic acid, and anthocyanin-malic acid were 0,1996%, 0,2922%, 0,3029%, respectively.

  17. The beet Y locus encodes an anthocyanin MYB-like protein that activates the betalain red pigment pathway.

    Science.gov (United States)

    Hatlestad, Gregory J; Akhavan, Neda A; Sunnadeniya, Rasika M; Elam, Lee; Cargile, Scott; Hembd, Austin; Gonzalez, Antonio; McGrath, J Mitchell; Lloyd, Alan M

    2015-01-01

    Nearly all flowering plants produce red/violet anthocyanin pigments. Caryophyllales is the only order containing families that replace anthocyanins with unrelated red and yellow betalain pigments. Close biological correlation of pigmentation patterns suggested that betalains might be regulated by a conserved anthocyanin-regulating transcription factor complex consisting of a MYB, a bHLH and a WD repeat-containing protein (the MBW complex). Here we show that a previously uncharacterized anthocyanin MYB-like protein, Beta vulgaris MYB1 (BvMYB1), regulates the betalain pathway in beets. Silencing BvMYB1 downregulates betalain biosynthetic genes and pigmentation, and overexpressing BvMYB1 upregulates them. However, unlike anthocyanin MYBs, BvMYB1 will not interact with bHLH members of heterologous anthocyanin MBW complexes because of identified nonconserved residues. BvMYB1 resides at the historic beet pigment-patterning locus, Y, required for red-fleshed beets. We show that Y and y express different levels of BvMYB1 transcripts. The co-option of a transcription factor regulating anthocyanin biosynthesis would be an important evolutionary event allowing betalains to largely functionally replace anthocyanins. PMID:25436858

  18. Transcriptional activation of a MYB gene controls the tissue-specific anthocyanin accumulation in a purple cauliflower mutant

    Science.gov (United States)

    Flavonoids such as anthocyanins possess significant health benefits to humans and play important physiological roles in plants. An interesting Purple gene mutation in cauliflower confers an abnormal pattern of anthocyanin accumulation, giving intense purple color in very young leaves, curds, and see...

  19. Anthocyanin-Rich Juice Lowers Serum Cholesterol, Leptin, and Resistin and Improves Plasma Fatty Acid Composition in Fischer Rats.

    Directory of Open Access Journals (Sweden)

    Daniela Graf

    Full Text Available Obesity and obesity-associated diseases e.g. cardiovascular diseases and type 2 diabetes are spread worldwide. Anthocyanins are supposed to have health-promoting properties, although convincing evidence is lacking. The aim of the present study was to investigate the effect of anthocyanins on several risk factors for obesity-associated diseases. Therefore, Fischer rats were fed anthocyanin-rich grape-bilberry juice or an anthocyanin-depleted control juice for 10 weeks. Intervention with anthocyanin-rich grape-bilberry juice reduced serum cholesterol and tended to decrease serum triglycerides. No effects were seen for serum non-esterified fatty acids, glucose, and insulin. Anthocyanin-rich grape-bilberry juice intervention reduced serum leptin and resistin, but showed no influence on serum adiponectin and secretion of adipokines from mesenteric adipose tissue. Furthermore, anthocyanin-rich grape-bilberry juice increased the proportion of polyunsaturated fatty acids and decreased the amount of saturated fatty acids in plasma. These results indicate that anthocyanins possess a preventive potential for obesity-associated diseases.

  20. Principal Component Regression Analysis of the Relation Between CIELAB Color and Monomeric Anthocyanins in Young Cabernet Sauvignon Wines

    Directory of Open Access Journals (Sweden)

    Chang-Qing Duan

    2008-11-01

    Full Text Available Color is one of the key characteristics used to evaluate the sensory quality of red wine, and anthocyanins are the main contributors to color. Monomeric anthocyanins and CIELAB color values were investigated by HPLC-MS and spectrophotometry during fermentation of Cabernet Sauvignon red wine, and principal component regression (PCR, a statistical tool, was used to establish a linkage between the detected anthocyanins and wine coloring. The results showed that 14 monomeric anthocyanins could be identified in wine samples, and all of these anthocyanins were negatively correlated with the L*, b* and H*ab values, but positively correlated with a* and C*ab values. On an equal concentration basis for each detected anthocyanin, cyanidin-3-O-glucoside (Cy3-glu had the most influence on CIELAB color value, while malvidin 3-O-glucoside (Mv3-glu had the least. The color values of various monomeric anthocyanins were influenced by their structures, substituents on the B-ring, acyl groups on the glucoside and the molecular steric structure. This work develops a statistical method for evaluating correlation between wine color and monomeric anthocyanins, and also provides a basis for elucidating the effect of intramolecular copigmentation on wine coloring.

  1. Possible regulatory role of phenylalanine ammonia-lyase in the production of anthocyanins in asparagus (Asparagus officinalis L)

    NARCIS (Netherlands)

    Flores, F.B.; Oosterhaven, J.; Martinez-Madrid, M.C.; Romojaro, F.

    2005-01-01

    The regulatory role of phenylalanine ammonia-lyase (PAL) in the light-induced accumulation of anthocyanins in the epidermis of asparagus spears has been analysed. A correlation between the stimulation of PAL activity and the rise in total anthocyanin content has been observed. Light radiation induce

  2. The beet Y locus encodes an anthocyanin-MYB-like protein that activates the betalain red pigment pathway

    Science.gov (United States)

    Almost all flowering plants produce red/violet, phenylalanine-based, anthocyanin pigments. A single order, the Caryophyllales, contains families that replace anthocyanins with tyrosine-based red and yellow betalain pigments. Close biological correlation of pigmentation patterns suggested that betala...

  3. Glucose Sensor MdHXK1 Phosphorylates and Stabilizes MdbHLH3 to Promote Anthocyanin Biosynthesis in Apple.

    Science.gov (United States)

    Hu, Da-Gang; Sun, Cui-Hui; Zhang, Quan-Yan; An, Jian-Ping; You, Chun-Xiang; Hao, Yu-Jin

    2016-08-01

    Glucose induces anthocyanin accumulation in many plant species; however, the molecular mechanism involved in this process remains largely unknown. Here, we found that apple hexokinase MdHXK1, a glucose sensor, was involved in sensing exogenous glucose and regulating anthocyanin biosynthesis. In vitro and in vivo assays suggested that MdHXK1 interacted directly with and phosphorylated an anthocyanin-associated bHLH transcription factor (TF) MdbHLH3 at its Ser361 site in response to glucose. Furthermore, both the hexokinase_2 domain and signal peptide are crucial for the MdHXK1-mediated phosphorylation of MdbHLH3. Moreover, phosphorylation modification stabilized MdbHLH3 protein and enhanced its transcription of the anthocyanin biosynthesis genes, thereby increasing anthocyanin biosynthesis. Finally, a series of transgenic analyses in apple calli and fruits demonstrated that MdHXK1 controlled glucose-induced anthocyanin accumulation at least partially, if not completely, via regulating MdbHLH3. Overall, our findings provide new insights into the mechanism of the glucose sensor HXK1 modulation of anthocyanin accumulation, which occur by directly regulating the anthocyanin-related bHLH TFs in response to a glucose signal in plants. PMID:27560976

  4. An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae (on linr)

    NARCIS (Netherlands)

    Wang, Kui-Lin; Bolitho, Karen; Grafton, Karryn; Kortstee, A.J.; Karunairetnam, Sakuntala; McGhie, T.K.; Espley, R.V.; Hellens, R.P.; Allan, A.C.

    2010-01-01

    Background - The control of plant anthocyanin accumulation is via transcriptional regulation of the genes encoding the biosynthetic enzymes. A key activator appears to be an R2R3 MYB transcription factor. In apple fruit, skin anthocyanin levels are controlled by a gene called MYBA or MYB1, while the

  5. CPC,a Single-Repeat R3 MYB,Is a Negative Regulator of Anthocyanin Biosynthesis in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Hui-Fen Zhu; Karen Fitzsimmons; Abha Khandelwal; Robert G.Kranz

    2009-01-01

    Single-repeat R3 MYB transcription factors like CPC (CAPRICE) are known to play roles in developmental processes such as root hair differentiation and trichome initiation.However,none of the six Arabidopsis single-repeat R3 MYB members has been reported to regulate flavonoid biosynthesis.We show here that CPC is a negative regulator of anthocyanin biosynthesis.In the process of using CPC to test GAL4-dependent driver lines,we observed a repression of anthocyanin synthesis upon GAL4-mediated CPC overexpression,We demonstrated that this is not due to an increase in nutrient uptake because of more root hairs.Rather,CPC expression level tightly controls anthocyanin accumulation.Microarray analysis on the whole genome showed that,of 37 000 features tested,85 genes are repressed greater than three-fold by CPC overexpression.Of these 85,seven are late anthocyanin biosynthesis genes.Also,anthocyanin synthesis genes were shown to be down-regulated in 35S::CPC overexpression plants.Transient expression results suggest that CPC competes with the R2R3-MYB transcription factor PAP1/2,which is an activator of anthocyanin biosynthesis genes.This report adds anthocyanin biosynthesis to the set of programs that are under CPC control,indicating that this regulator is not only for developmental programs (e.g.root hairs,trichomes),but can influence anthocyanin pigment synthesis.

  6. Paper Chromatography and UV-Vis Spectroscopy to Characterize Anthocyanins and Investigate Antioxidant Properties in the Organic Teaching Laboratory

    Science.gov (United States)

    Galloway, Kelli R.; Bretz, Stacey Lowery; Novak, Michael

    2015-01-01

    A variety of fruits and vegetables, including raspberries, blueberries, Concord grapes, blackberries, strawberries, peaches, eggplant, red cabbage, and red onions, contain flavonoid compounds known as anthocyanins that are responsible for the blue-red color and the astringent taste associated with such foods. In addition, anthocyanins exhibit a…

  7. Gene regulation of anthocyanin biosynthesis in two blood-flesh peach (Prunus persica (L.) Batsch) cultivars during fruit development.

    Science.gov (United States)

    Jiao, Yun; Ma, Rui-juan; Shen, Zhi-jun; Yan, Juan; Yu, Ming-liang

    2014-09-01

    The blood-flesh peach has become popular in China due to its attractive anthocyanin-induced pigmentation and antioxidant properties. In this study, we investigated the molecular mechanisms underlying anthocyanin accumulation by examining the expression of nine genes of the anthocyanin biosynthesis pathway found in the peach mesocarp. Expression was measured at six developmental stages in fruit of two blood-flesh and one white-flesh peach cultivars, using quantitative reverse transcription polymerase chain reaction (qRT-PCR). Results show that the expression of the chalcone synthase (CHS) gene was closely related to anthocyanin accumulation in both of the blood-flesh peaches. In the white-flesh peach, we found that the transcription level of phenylalanine ammonia-lyase (PAL) during fruit development was much lower than that in the blood-flesh peach, even though all other genes of the anthocyanin biosynthesis pathway were highly expressed, suggesting that the PAL gene may be limiting in anthocyanin production in the white-flesh peach. Moreover, the transcription levels of the CHS and UDP-glucose-flavonoid 3-O-glucosyltransferase (UFGT) genes were markedly up-regulated at three days after bag removal (DABR) in the blood-flesh peach, suggesting that CHS and UFGT are the key genes in the process of anthocyanin biosynthesis for both of the blood-flesh peaches. The present study will be of great help in improving understanding of the molecular mechanisms involved in anthocyanin accumulation in blood-flesh peaches. PMID:25183035

  8. Effect of various factor on the stability of the anthocyanin pigment in passion fruit skin

    Directory of Open Access Journals (Sweden)

    J. S. Pruthi

    1960-04-01

    Full Text Available Since loss of anthocyanins is one of the major factors contributing to the colour deterioration in many highly coloured fruits, the effects of various factors such as temperature, oxygen, pH, ascorbic acid, tannic acid, thiourea and hydrogen peroxide on the stability of the anthocyanin pigment (Pelargonidin 3-diglucoside naturally occurring in passion fruit skin (Passiflora edulis, sims. have been studied with a view to elucidate the mechanism of degradation of the pigment during refrigerated and common storage of the fresh fruit. Storage studies demonstrated that (i ascorbic acid in the presence of oxygen accelerated the deterioration of the pigment; (ii thiourea decreased the rate of destruction of ascorbic acid, thus indirectly preventing the rate of anthocyanin losses; (iii tannins had a stabilizing effect on the pigment; (iv pH had a very significant effect on the stability of the pigment; and (v high storage temperature and H2O2 both had destructive effect on the pigment.

  9. The Immunomodulation Effect of Aronia Extract Lacks Association with Its Antioxidant Anthocyanins

    DEFF Research Database (Denmark)

    Mojsoska, Biljana; Xu, Jin

    2013-01-01

    Polyphenols comprise a diverse group of molecules with antioxidative and anti-inflammatory activities. To compare the antioxidative and anti-inflammatory capacity of Aronia melanocarpa berries (chokeberries), recognized for their high content of anthocyanins, a noncytotoxic isolation method...... was developed to obtain high-purity anthocyanins in the extract. The antioxidative activity of the extract, the anthocyanin-rich fraction (AF) was determined by 1,1-diphenyl-2-picrylhydrazyl radical and ferric-reducing ability of plasma along with resveratrol as a reference. The immunomodulation properties were......, whereas AF only had a slight effect in reducing IL-10. These results demonstrated that there was no major relationship between the antioxidative effect and immunomodulation capacities of AF and resveratrol. The immunomodulatory activity of the extract is associated with bioactive compounds in Aronia other...

  10. Expression Analysis of Dihydroflavonol 4-Reductase Genes Involved in Anthocyanin Biosynthesis in Purple Grains of Wheat

    Institute of Scientific and Technical Information of China (English)

    Mao-Sen LIU; Fang WANG; Yu-Xiu DONG; Xian-Sheng ZHANG

    2005-01-01

    The grain color of wheat (Triticum aestivum L.) is an important characteristic in crop production.Dihydroflavonol 4-reductase genes (DFR) encode the key enzyme dihydroflavonol 4-reductase, which is involved in the pigmentation of plant tissues. To investigate the molecular mechanism of anthocyanin deposition in grains of wheat, we determined the expression of the wheat DFR gene in purple grains of cultivar Heimai 76. The results showed that DFR transcripts were localized in the seed coat of purple grains rather than in the pericarp, whereas anthocyanins were accumulated in both tissues of purple grains,suggesting that anthocyanin deposition was mainly regulated at the transcriptional level. Overexpression of the TaDFR-A gene in Arabidopsis showed that TaDFR-A was responsible for the pigmentation of Arabidopsis plant tissues, indicating TaDFR-A gene has the same role in Arabidopsis.

  11. Optimization of Ultrasound-Assisted Extraction of Anthocyanins from Mulberry, Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Ren-You Gan

    2011-05-01

    Full Text Available Mulberry is one of the most widely used traditional Chinese medicines. Anthocyanins are the main bioactive components of mulberry, and possess important biological activities, such as antimicrobial, anti-inflammatory and antioxidant activities. This study investigated the ultrasound-assisted extraction (UAE of anthocyanins from mulberry by using response surface methodology (RSM. The extraction conditions associated with anthocyanin yield, including extraction solvent, liquid-to-solid rate, temperature and extraction time, are discussed. The optimal conditions obtained by RSM for UAE from mulberry include 63.8% methanol contains 1% (v/v trifluoroacetic acid (TFA, 43.2 °C temperature, 23.8 (v/w liquid-to-solid ratio, and 40 min time for the maximum yield (64.70 ± 0.45 mg/g. The results indicated that the UAE can be an effective method for the extraction of some active components from plant materials.

  12. Ultrasonic extraction of anthocyanin from Clitoria ternatea flowers using response surface methodology.

    Science.gov (United States)

    Chong, Fui Chin; Gwee, Xian Fu

    2015-01-01

    The ultrasonic extraction (UE) method of anthocyanin from Clitoria ternatea flowers using response surface methodology (RSM) was performed in this study. By using RSM, the objective is to optimise the extraction yield of anthocyanin from C. ternatea which is influenced by various factors, including the extraction temperature, time, ratio of solvent to solid and ultrasonic power. The empirical model was investigated by performing first-level optimisation in a two-level factorial design with Design Expert 7 software. In comparison with the conventional solvent extraction, UE showed a 246.48% better extraction yield and produced an anthocyanin extract with a radical scavenging activity of 68.48% at the optimised factors of 50°C, 150 min, 15 mL/g and 240 W. PMID:25836369

  13. Carbohydrate nutrition and anthocyanin accumulation in light grown and etiolated shoot cultures of carob (Ceratonia siliqua L.

    Directory of Open Access Journals (Sweden)

    Vinterhalter Branka

    2007-01-01

    Full Text Available Production of anthocyanins was studied in shoot cultures of carob at high (45.9 μmol s-1m-2 and low (9.2 μmol s-1m-2 irradiance levels and in darkness in relation to carbohydrate nutrition. Anthocyanin production was stimulated by light, but it also occurred in etiolated shoot cultures which developed in darkness. Anthocyanins were present in both leaves and shoot tips. The major factor affecting anthocyanin production was carbohydrate nutrition, with sucrose as a choice superior to fructose and glucose. The carbohydrate effect was clearly osmotic in nature, since anthocyanin production increased even at supraoptimal concentrations detrimental to the growth of shoot cultures. This conclusion was further confirmed in experiments in which sucrose was partly replaced with the sugar alcohols sorbitol and mannitol.

  14. Novel insight into the mechanism underlying light-controlled anthocyanin accumulation in eggplant (Solanum melongena L.).

    Science.gov (United States)

    Jiang, Mingmin; Ren, Li; Lian, Hongli; Liu, Yang; Chen, Huoying

    2016-08-01

    Eggplant is rich in anthocyanins, which are the major secondary metabolites and beneficial to human health. We discovered that the anthocyanin biosynthesis of eggplant cultivar 'Lanshan Hexian' was regulated by light. In this study, we isolated two blue light receptor genes, SmCRY1 and SmCRY2, and negative/positive anthocyanin regulatory factors SmCOP1 and SmHY5 from eggplant. In terms of transcript levels, SmCRY1, SmCRY2 and SmHY5 were up-regulated by light, while SmCOP1 was down-regulated. Subsequently, the four genes were functionally complemented in phenotype of corresponding mutants, indicating that they act as counterparts of Arabidopsis genes. Yeast two-hybrid and bimolecular fluorescence complementation assays showed that SmCRY1 and SmCRY2 interact with SmCOP1 in a blue-light-dependent manner. It also obtained the result that SmCOP1 interacts with SmHY5 and SmMYB1. Furthermore, using yeast one-hybrid assay, we found that SmHY5 and SmMYB1 both bind the promoters of anthocyanin biosynthesis structural genes (SmCHS and SmDFR). Taken together, blue-light-triggered CRY1/CRY2-COP1 interaction creates the condition that HY5 and MYB1 combine with the downstream anthocyanin synthesis genes (CHS and DFR) in eggplant. Our finding provides a new working model by which light controls anthocyanin accumulation in eggplant. PMID:27297989

  15. 拟南芥中花青素的修饰%Anthocyanin Modification in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    谢烨; 孙毅; 黄继荣

    2013-01-01

    Anthocyanins are produced by a branch of the flavonoid pathway. They give plants a colorful world from red, purple to blue pigments, and play an important role in pollination and seed dispersal. The diversities of modification groups, numbers and positions not only affect the color and stability of anthocyanins, but also largely expand their species. In recent years, enzymes involved in anthocyanin modifications have been widely reported in different species. Based on the sequenced genome, short life span and distinct anthocyanin composition, Arabidopsis thaliana has become an ideal material to study the anthocyanin modification pathway. This review summarized the progress made towards anthocyanin modification pathways in Arabidopsis.%花青素属于类黄酮化合物,赋予了植物从红色、蓝色到紫色的多种颜色,在帮助植物吸引昆虫为其传粉和传播种子等方面发挥着重要功能.现有研究表明花青素的呈色和稳定性与其修饰基团类别、数目和位置等要素密切相关.近年来,在不同物种中发现了参与花青素修饰的各种酶.模式植物拟南芥因其基因组信息清楚,生长周期短和花青素组成明确等特点成了研究花青素修饰途径的理想材料.本文主要综述了拟南芥中花青素合成后的修饰过程及其产物多样性.

  16. Arabidopsis TT19 Functions as a Carrier to Transport Anthocyanin from the Cytosol to Tonoplasts

    Institute of Scientific and Technical Information of China (English)

    Yi Sun; Hong Li; Ji-Rong Huang

    2012-01-01

    Anthocyanins are synthesized in the cytosolic surface of the endoplasmic reticulum (ER) but dominantly accumulate in the vacuole.Little is known about how anthocyanins are transported from the ER to the vacuole.Here,we provide evidence supporting that Transparent Testa 19 (TT19),a glutathione S-transferase (GST),functions as a carrier to transport cyanidin and/or anthocyanins to the tonoplast.We identified a novel tt19 mutant (tt19-7),which barely accumulates anthocyanins but produces a 36% higher level of flavonol than the wild-type (WT),from ethyl methanesulfonate mutagenized seeds.Expressing TT19-fused green fluorescence protein (GFP) in tt19-7 rescues the mutant phenotype in defective anthocyanin biosynthesis,indicating that TT19-GFP is functional.We further showed that TT19-GFP is localized not only in the cytoplasm and nuclei,but also on the tonoplast.The membrane localization of TT19-GFP was further ascertained by immunoblot analysis.In vitro assay showed that the purified recombinant TT19 increases water solubility of cyanidin (Cya) and cyanidin-3-O-glycoside (C3G).Compared with C3G,Cya can dramatically quench the intrinsic tryptophan fluorescence of TT19 to much lower levels,indicating a higher affinity of TT19 to Cya than to C3G.Isothermal titration calorimetry analysis also confirmed physical interaction between TT19 and C3G.Taken together,our data reveal molecular mechanism underlying TT19-mediated anthocyanin transportation.

  17. A MYB transcription factor regulates anthocyanin biosynthesis in mangosteen (Garcinia mangostana L.) fruit during ripening.

    Science.gov (United States)

    Palapol, Yossapol; Ketsa, Saichol; Lin-Wang, Kui; Ferguson, Ian B; Allan, Andrew C

    2009-05-01

    Mangosteen (Garcinia mangostana L.) fruit undergo rapid red colour development, both on the tree and after harvest, resulting in high anthocyanin production in the pericarp. Here, we report the isolation of three full-length mangosteen MYB transcription factors (GmMYB1, GmMYB7 and GmMYB10) and all the anthocyanin biosynthetic pathway genes (GmPal to GmUFGT). Phylogenetic analysis at the protein level of the R2R3-MYB transcription factor family showed GmMYB10 had a high degree of similarity with production of anthocyanin pigment1 in Arabidopsis and as well as sequences from other plant species related to the elevation of anthocyanin pigmentation. In transient transactivation assays, GmMYB10, co-expressed with AtbHLH2, strongly activated the GmDFR and AtDFR promoters. Transcripts of GmMYB10 and GmUFGT were highly abundant with onset of pigmentation and subsequently during red colouration. Our results suggest that GmMYB10 plays an important role in regulating anthocyanin biosynthesis both on the tree and after harvest, while GmUFGT may be a key biosynthetic gene in mangosteen pigmentation. The expression patterns of GmMYB10 and GmUFGT correlated with ethylene production that increased linearly until stage 5 (dark purple) and decreased thereafter. 1-Methycyclopropene (1-MCP) clearly delayed red colouration with resulting down-regulation of GmMYB10. These results suggest that the effect of ethylene on anthocyanin biosynthesis may be via the regulation of GmMYB10 expression.

  18. Anthocyanin concentration of "Assaria" pomegranate fruits during different cold storage conditions

    OpenAIRE

    Graça Miguel; Catarina Fontes; Dulce Antunes; Alcinda Neves; Denise Martins

    2004-01-01

    The concentration of anthocyanins in fruits of "Assaria" pomegranate, a sweet Portuguese cultivar typically grown in Algarve (south Portugal), was monitored during storage under different conditions. The fruits were exposed to cold storage (5 degrees C) after the following treatments: spraying with wax; spraying with 1.5% CaCl2; spraying with wax and 1.5% CaCl2; covering boxes with 25 mu c thickness low-density polyethylene film. Untreated fruits were used as a control. The anthocyanin levels...

  19. Transcriptome Profiling of Light-Regulated Anthocyanin Biosynthesis in the Pericarp of Litchi

    Science.gov (United States)

    Zhang, Hong-Na; Li, Wei-Cai; Wang, Hui-Cong; Shi, Sheng-You; Shu, Bo; Liu, Li-Qin; Wei, Yong-Zan; Xie, Jiang-Hui

    2016-01-01

    Light is a key environmental factor that affects anthocyanin biosynthesis. To enhance our understanding of the mechanisms involved in light-regulated anthocyanin biosynthesis in the pericarp of litchi, we performed transcriptomic analyses on the basis of Illumina sequencing. Fruit clusters were bagged with double-layer Kraft paper bags at 42 days after anthesis. The bags were removed after 2 weeks. Under light conditions, anthocyanins accumulated rapidly in the pericarp. RNA sequences were de novo assembled into 75,935 unigenes with an average length of 913 bp. Approximately 74.5% of unigenes (56,601) were annotated against four public protein databases. A total of 16,622 unigenes that significantly differed in terms of abundance were identified. These unigenes are implicated in light signal perception and transduction, flavonoid biosynthesis, carotenoid biosynthesis, plant hormone signal transduction, and photosynthesis. In photoreceptors, the expression levels of UV RESISTANCE LOCUS 8 (UVR8), Phototropin 2 (PHOT2), Phytochrome B (PHYB), and Phytochrome C (PHYC) increased significantly when the fruits were exposed to light. This result indicated that they likely play important roles in anthocyanin biosynthesis regulation. After analyzed digital gene expression (DGE), we found that the light signal transduction elements of COP1 and COP10 might be responsible for anthocyanin biosynthesis regulation. After the bags were removed, nearly all structural and regulatory genes, such as UDP-glucose: flavonoid-3-O-glucosyltransferase (UFGT), MYB, basic helix-loop-helix (bHLH), and WD40, involved in the anthocyanin biosynthetic pathway were upregulated. In addition to MYB-bHLH-WD40 transcription complex, ELONGATED HYPOCOTYL (HY5), NAM/ATAF/CUC (NAC), homeodomain leucine zipper proteins (ATHBs), and FAR-RED ELONGATED HYPOCOTYL (FHY) possibly participate in light-induced responses. On the basis of DGEs and qRT-PCR validation, we observed a light-induced anthocyanin biosynthesis

  20. Anthocyanin Characterization of Pilot Plant Water Extracts of Delonix regia Flowers

    Directory of Open Access Journals (Sweden)

    Emile M. Gaydou

    2008-06-01

    Full Text Available Following the development of new applications of pilot plant scale extraction and formulation processes for natural active bioproducts obtained from various underutilized tropical plants and herbs, we have manufactured water-extracts from Delonix regia flowers, grown in Ivory Coast. These extracts, which contain polyphenols, are traditionally home made and used as healthy bioproducts. They are reddish-coloured due to the presence of anthocyanins. The three major anthocyanins in these extracts have been characterized. The molecular structures were confirmed by LC-SM analysis. Amongst them, two are described for the first time in Delonix regia.

  1. Control of anthocyanin and non-flavonoid compounds by anthocyanin-regulating MYB and bHLH transcription factors in Nicotiana benthamiana leaves

    Directory of Open Access Journals (Sweden)

    Nikolay Stoyanov Outchkourov

    2014-10-01

    Full Text Available Coloration of plant organs such as fruit, leaves and flowers through anthocyanin production is governed by a combination of MYB and bHLH type transcription factors. In this study we introduced Rosea1 (ROS1, a MYB type and Delila (DEL, a bHLH type, into Nicotiana benthamiana leaves by agroinfiltration. ROS1 and DEL form a pair of well-characterized transcription factors from Snapdragon (Antirrhinum majus, which specifically induce anthocyanin accumulation when expressed in tomato fruit. In N. benthamiana, robust induction of a single anthocyanin, delphinidin-3-rutinoside (D3R was observed after expression of both ROS1 and DEL. Surprisingly in addition to D3R, a range of additional metabolites were also strongly and specifically up-regulated upon expression of ROS1 and DEL. Except for the D3R, these induced compounds were not derived from the flavonoid pathway. Most notable among these are nornicotine conjugates with butanoyl, hexanoyl and octanoyl hydrophobic moieties, and phenylpropanoid-polyamine conjugates such as caffeoyl-putrescine. The defensive properties of the induced molecules were addressed in bioassays using the tobacco specialist lepidopteran insect Manduca sexta. Our study showed that the effect of ROS1 and DEL expression in N. benthamiana leaves extends beyond the flavonoid pathway. Apparently the same transcription factor may regulate different secondary metabolite pathways in different plant species.

  2. Structural identification of anthocyanins and analysis of concentrations during growth and flowering in buckwheat (Fagopyrum esculentum Moench) petals.

    Science.gov (United States)

    Suzuki, Tatsuro; Kim, Sun-Ju; Mohamed, Zaidul Islam Sarker; Mukasa, Yuji; Takigawa, Shigenobu; Matsuura-Endo, Chie; Yamauchi, Hiroaki; Hashimoto, Naoto; Noda, Takahiro; Saito, Tatsuya

    2007-11-14

    The anthocyanin profiles and variety/breeding-line differences of anthocyanin concentrations in petals of common buckwheat flowers have been studied. Four anthocyanins, cyanidin 3-O-glucoside, cyanidin 3-O-rutinoside, cyanidin 3-O-rhamnoside, and cyanidin 3-O-galactosyl-rhamnoside were isolated from the petals of common buckwheat (Fagopyrum esculentum Moench), separated using high performance liquid chromatography and identified using reversed-phase liquid chromatography-electrospray ionization-tandem mass spectrometry techniques. In every variety/breeding line tested, cyanidin 3-O-rutinoside was detected as the major anthocyanin and the next is cyanidin 3-O-glucoside whereas cyanidin 3-O-rhamnoside and cyanidin 3-O-galactosyl-rhamnoside were trace or not detectable in white and pink flowered buckwheat. Of all the varieties/breeding lines tested, Gan-Chao, a Chinese variety, contained the highest amount of anthocyanins. The largest part of cyanidin moiety was presented as a proanthocyanidin form (PAs-Cy). Anthocyanins and PAs-Cy in petals were increased along with increase of flower development stages. Therefore, fully developed petals of red flowered buckwheat, especially Gan-Chao, are promising as a new anthocyanin-rich material for food processing.

  3. Optimization of Extraction Parameters by Using Response Surface Methodology, Purification, and Identification of Anthocyanin Pigments in Melastoma malabathricum Fruit

    Directory of Open Access Journals (Sweden)

    Nordiyanah Anuar

    2013-01-01

    Full Text Available Anthocyanins not just have various benefits in food industry but also have been used as natural colourants in cosmetic, coating products and as potential natural photosensitizers in solar cell. Thus, the main purpose of this study was to obtain information on the maximum yield of anthocyanin that can be recovered from Melastoma malabathricum fruit. Factors such as extraction temperature, extraction time, and solid to liquid ratio were identified to be significantly affecting anthocyanin extraction efficiency. By using three-level three-factor Box-Behnken design, the optimized conditions for anthocyanin extraction by acidified methanol (R2=0.972 were temperature of 60°C, time of 86.82 min, and 0.5 : 35 (g/mL solid to liquid ratio while the optimum extraction conditions by acidified ethanol (R2=0.954 were temperature of 60°C, time of 120 min, and 0.5 : 23.06 (g/mL solid to liquid ratio. The crude anthocyanin extract was further purified by using Amberlite XAD-7 and Sephadex LH-20 column chromatography. Identification of anthocyanins revealed the presence of cyanidin dihexoside, cyanidin hexoside, and delphinidin hexoside as the main anthocyanins in M. malabathricum fruit.

  4. Preheated milk proteins improve the stability of grape skin anthocyanins extracts.

    Science.gov (United States)

    He, Zhiyong; Xu, Mingzhu; Zeng, Maomao; Qin, Fang; Chen, Jie

    2016-11-01

    The effects of casein and whey proteins, preheated at 40-100°C and 45-60°C for 15min, respectively, on color loss and anthocyanins degradation in grape skin anthocyanins extracts (GSAE) at pH 3.2 and 6.3 were evaluated. Preheating milk proteins effectively improved their protective effects against color loss and anthocyanins degradation in GSAE solutions during thermal treatment (at 80°C for 2h), H2O2 oxidation (0.005% H2O2 for 1h) and illumination (at 5000lx for 5 d). Whey proteins and casein, preheated at 50°C and 60°C for 15min, respectively, demonstrated the optimal protective effects. However, preheated whey proteins had a better protective effect on the thermal, oxidation and photo stability of GSAE, decreasing the thermal, oxidative and photo degradation of anthocyanins in GSAE 71.59%, 32.22% and 56.92% at pH 3.2 and 54.91%, 22.89% and 46.68% at pH 6.3, respectively. PMID:27211641

  5. Stilbenes and anthocyanins reduce stress signaling in BV-2 mouse microglia

    Science.gov (United States)

    Blueberries contain an array of phytochemicals that may decrease both inflammatory and oxidative stress. We determined if pterostilbene, resveratrol, and two anthocyanins commonly found in blueberries, delphinidin-3-O-glucoside and malvidin-3-O-glucoside, would be efficacious in protecting microglia...

  6. Variability in anthocyanin content among Abutilon theophrasti, and Urena lobata genetic resources .

    Science.gov (United States)

    Plants contain bioactive phytochemicals and nutraceuticals to be utilized in the pharmaceutical and nutraceutical markets. Sixty-two accessions of Abutilon theophrasti, Basella alba, and Urena lobata are conserved at the USDA, ARS, Plant Genetic Resources Conservation Unit, Griffin, GA. Anthocyanins...

  7. Natural variation in petal color in Lycoris longituba revealed by anthocyanin components.

    Directory of Open Access Journals (Sweden)

    Qiuling He

    Full Text Available Lycoris longituba is one of the species belonging to the Amaryllidaceae family. Despite its limited distribution, endemic to central eastern China, this species displays an exceptionally wide diversity of flower colors from purple, red, orange, to yellow, in nature. We study the natural variation of floral color in L. longituba by testing the components of water-soluble vacuolar pigments--anthocyanins--in its petals using high-performance liquid chromatography coupled with photodiode array detection and electrospray ionization mass spectrometry. Four anthocyanins were identified, cyanidin-3-sophoroside (Cy3So, cyanidin-3-xylosylglucoside (Cy3XyGlc, cyanidin-3-sambubioside (Cy3Sa, and pelargonidin-3-xylosylglucoside (Pg3XyGlc, which occur at various amounts in L. longituba petals of different colors. A multivariate analysis was used to explore the relationship between pigments and flower color. Anthocyanins have been thought to play a major role in acting as a UV screen that protects the plant's DNA from sunlight damage and attracting insects for the purpose of pollination. Thus, knowledge about the content and type of anthocyanins determining the petal coloration of Lycoris longituba will help to study the adaptive evolution of flowers and provide useful information for the ornamental breeding of this species.

  8. Influence of Different Maceration Times on the Anthocyanin Composition and Sensory Properties of Blatina Wines

    Directory of Open Access Journals (Sweden)

    Stanka Herjavec

    2014-02-01

    Full Text Available Normal 0 false false false MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Obična tablica"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman"; mso-ansi-language:#0400; mso-fareast-language:#0400; mso-bidi-language:#0400;} Skin maceration contact time is essential winemaking technique to affect anthocyanin concentration and high quality of red wines. The aim of this work was to investigate the changes in basic composition, anthocyanin profile and sensory properties of Blatina wines obtained with skin contact time from 4, 8, 12 to 16 days. Results indicate that longer period of maceration positively influenced the quality of Blatina wines. Blatina wines obtained by 12 or 16 days of maceration presented a significant increase of the dry extract, ash, total phenol and pH value. It was observed that the concentration of total and individual anthocyanins significantly increased reaching a maximum value within 12 days of the skin maceration. In all wines, the dominant anthocyanin was malvidin 3-glucoside. Best organoleptic properties were observed in the wines macerated for 16 days.

  9. The influence of clay surface modification with berberine on the sorption of anthocyanins

    Science.gov (United States)

    Chulkov, A. N.; Deineka, V. I.; Tikhova, A. A.; Vesentzev, A. I.; Deineka, L. A.

    2012-03-01

    The influence of preliminary sorption of berberine on the sorption of anthocyanins by bentonite clay was studied. The cation exchange sorption mechanism was found to be replaced by hydrophobic sorption of these compounds after clay modification with berberine. The enthalpy of sorption along the initial isotherm part changed from endothermic to exothermic.

  10. Microencapsulation of saffron petal anthocyanins with cress seed gum compared with Arabic gum through freeze drying.

    Science.gov (United States)

    Jafari, Seid-Mahdi; Mahdavi-Khazaei, Katayoun; Hemmati-Kakhki, Abbas

    2016-04-20

    In this research, encapsulation efficiency of cress seed gum (CSG) as a native hydrocolloid was compared with Arabic gum (AG) and maltodextrin (dextrose equivalent of 20 (M20), and 7 (M7)) for saffron (Crocus sativus) petal's extract by freeze drying method. Combinations of CSG-M20, AG-M20, and M7-M20 with ratios of 50:50 and M20 alone (100%) were used as wall materials. A mixture of 1:5 (based on dry matter) between core (concentrated anthocyanin extract of saffron petal) and wall materials were freeze dried and stability of encapsulated anthocyanins along with color parameters (a*, b*, L*, C, H° and TCD) of final powders were measured during 10 weeks of storage (at 35°C as an accelerated method). Total anthocyanins were determined through pH differential method every week. Four prepared formulations of encapsulated powders didn't show any significant differences (P>0.01) in terms of total anthocyanin content measured immediately after production and after 10 weeks storage. AG-M20 mixture and M20 alone showed the highest and lowest TCD, respectively. The mixture of CSG-M20 in comparison with AG-M20 and M20 had the same protecting effect (P<0.01) but showed a relatively high TCD (9.33). PMID:26876823

  11. Transgene-based anthocyanin hyper-pigmentation as a visual reporter of gene silencing in plants

    Science.gov (United States)

    “Co-suppression” associated loss of flower pigmentation in transgenic petunia plants was one of the first clear indicators of the natural process of RNA-associated gene silencing in plants. We have been exploring the use of genetically engineered anthocyanin over-production in vegetative tissues as...

  12. Antioxidant capacity and anthocyanin profile of sour cherry (Prunus cerasus L.) juice.

    Science.gov (United States)

    Damar, Irem; Ekşi, Aziz

    2012-12-15

    The antioxidant capacities, total polyphenolic content and monomeric anthocyanin content of eleven types of sour cherry juice obtained from different varieties of sour cherries were investigated. Antioxidant capacity, total polyphenolic content and monomeric anthocyanin contents of the juices were within the ranges 20.0-37.9 mmol/L, 1510-2550 and 350.0-633.5mg/L, respectively. The main anthocyanin compound in sour cherry juice was cyanidin-3-glucosylrutinoside at concentrations between 140.3 and 320.9 mg/L. Cyanidin-3-glucosylrutinoside was followed by cyanidin-3-rutinoside within a concentration range of 25.5-85.5mg/L. Cyanidin-3-sophoroside and cyanidin-3-glucoside contents were relatively low (2.6-21.5 and 2.0-9.9 mg/L). Anthocyanin capacity and total polyphenol content were fairly well correlated (r=0.742, p0.05). The correlation between antioxidant capacity - cya-3-glucosylrutinoside (r=0.606, p<0.01) and antioxidant capacity - cya-3-rutinoside (r=0.628, p<0.01) was significant. PMID:22980889

  13. Assessment of anthocyanin and agronomic trait variation in some commonly used medicinal legumes

    Science.gov (United States)

    Several legumes including Canavalia ensiformis, Desmodium adscendens, Indigofera suffruticosa, Senna covesii, and S. occidentalis are currently used as medicinal plants. These species contain anthocyanins as well with potential to be used in the pharmaceutical markets. The USDA, ARS, Plant Genetic R...

  14. A secreted Ustilago maydis effector promotes virulence by targeting anthocyanin biosynthesis in maize.

    Science.gov (United States)

    Tanaka, Shigeyuki; Brefort, Thomas; Neidig, Nina; Djamei, Armin; Kahnt, Jörg; Vermerris, Wilfred; Koenig, Stefanie; Feussner, Kirstin; Feussner, Ivo; Kahmann, Regine

    2014-01-01

    The biotrophic fungus Ustilago maydis causes smut disease in maize with characteristic tumor formation and anthocyanin induction. Here, we show that anthocyanin biosynthesis is induced by the virulence promoting secreted effector protein Tin2. Tin2 protein functions inside plant cells where it interacts with maize protein kinase ZmTTK1. Tin2 masks a ubiquitin-proteasome degradation motif in ZmTTK1, thus stabilizing the active kinase. Active ZmTTK1 controls activation of genes in the anthocyanin biosynthesis pathway. Without Tin2, enhanced lignin biosynthesis is observed in infected tissue and vascular bundles show strong lignification. This is presumably limiting access of fungal hyphae to nutrients needed for massive proliferation. Consistent with this assertion, we observe that maize brown midrib mutants affected in lignin biosynthesis are hypersensitive to U. maydis infection. We speculate that Tin2 rewires metabolites into the anthocyanin pathway to lower their availability for other defense responses. DOI: http://dx.doi.org/10.7554/eLife.01355.001.

  15. Red chicory (Cichorium intybus L. cultivar) as a potential source of antioxidant anthocyanins for intestinal health.

    Science.gov (United States)

    D'evoli, Laura; Morroni, Fabiana; Lombardi-Boccia, Ginevra; Lucarini, Massimo; Hrelia, Patrizia; Cantelli-Forti, Giorgio; Tarozzi, Andrea

    2013-01-01

    Fruit- and vegetable-derived foods have become a very significant source of nutraceutical phytochemicals. Among vegetables, red chicory (Cichorium Intybus L. cultivar) has gained attention for its content of phenolic compounds, such as the anthocyanins. In this study, we evaluated the nutraceutical effects, in terms of antioxidant, cytoprotective, and antiproliferative activities, of extracts of the whole leaf or only the red part of the leaf of Treviso red chicory (a typical Italian red leafy plant) in various intestinal models, such as Caco-2 cells, differentiated in normal intestinal epithelia and undifferentiated Caco-2 cells. The results show that the whole leaf of red chicory can represent a good source of phytochemicals in terms of total phenolics and anthocyanins as well as the ability of these phytochemicals to exert antioxidant and cytoprotective effects in differentiated Caco-2 cells and antiproliferative effects in undifferentiated Caco-2 cells. Interestingly, compared to red chicory whole leaf extracts, the red part of leaf extracts had a significantly higher content of both total phenolics and anthocyanins. The same extracts effectively corresponded to an increase of antioxidant, cytoprotective, and antiproliferative activities. Taken together, these findings suggest that the red part of the leaf of Treviso red chicory with a high content of antioxidant anthocyanins could be interesting for development of new food supplements to improve intestinal health. PMID:24069504

  16. Anthocyanin Characterization, Total Phenolic Quantification and Antioxidant Features of Some Chilean Edible Berry Extracts

    Directory of Open Access Journals (Sweden)

    Anghel Brito

    2014-07-01

    Full Text Available The anthocyanin composition and HPLC fingerprints of six small berries endemic of the VIII region of Chile were investigated using high resolution mass analysis for the first time (HR-ToF-ESI-MS. The antioxidant features of the six endemic species were compared, including a variety of blueberries which is one of the most commercially significant berry crops in Chile. The anthocyanin fingerprints obtained for the fruits were compared and correlated with the antioxidant features measured by the bleaching of the DPPH radical, the ferric reducing antioxidant power (FRAP, the superoxide anion scavenging activity assay (SA, and total content of phenolics, flavonoids and anthocyanins measured by spectroscopic methods. Thirty one anthocyanins were identified, and the major ones were quantified by HPLC-DAD, mostly branched 3-O-glycosides of delphinidin, cyanidin, petunidin, peonidin and malvidin. Three phenolic acids (feruloylquinic acid, chlorogenic acid, and neochlorogenic acid and five flavonols (hyperoside, isoquercitrin, quercetin, rutin, myricetin and isorhamnetin were also identified. Calafate fruits showed the highest antioxidant activity (2.33 ± 0.21 μg/mL in the DPPH assay, followed by blueberry (3.32 ± 0.18 μg/mL, and arrayán (5.88 ± 0.21, respectively.

  17. Combining ability of sweetpotato germplasm for yield, dry matter content, and anthocyanin production

    Science.gov (United States)

    Interest in the potential of sweetpotato (Ipomoea batatas) for the production of industrial products is increasing. As part of an effort to evaluate the potential of sweetpotatoes for starch and anthocyanin production in the southeastern United States, a 5 x 5 North Carolina mating design II (NCII m...

  18. Chromaticity and color saturation of ultraviolet irradiated poly(vinyl alcohol)-anthocyanin coatings

    Science.gov (United States)

    Mat Nor, N. A.; Aziz, N.; Mohd-Adnan, A. F.; Taha, R. M.; Arof, A. K.

    2016-06-01

    The purpose of this paper is to evaluate the chromaticity and color saturation of anthocyanin extraction from fruit pericarps of Ixora siamensis in a poly(vinyl alcohol) (PVA) matrix. The colored PVA matrix was exposed to UV-B irradiation for 93 days at UV intensity of 17.55 lux. Anthocyanin colorant has been extracted using methanol acidified with 0.5% trifluoroacetic acid (TFA). Different concentrations of ferulic acid (FA) (0, 1, 2, 3, 4 and 5 wt.%) have been added to the anthocyanin extractions before mixing with PVA to form a coating system. The PVA-anthocyanin-FA mixtures have been coated on glass slides and kept overnight in the dark for curing before exposure to UV-B irradiation. The FA-free sample undergoes more color degradation compared to samples containing FA. The coating with 2% FA has the most stable color with chromaticity of 41% and color saturation of 0.88 compared to other FA containing coats. The FA-free coat exhibits 29% chromaticity and color saturation of 0.38 at the end of the experiment.

  19. Anthocyanin, phenolics and antioxidant activity changes in purple waxy corn as affected by traditional cooking

    Science.gov (United States)

    Antioxidant components, including anthocyanins and phenolic compounds, antioxidant activity, and their changes during traditional cooking of fresh purple waxy corn were investigated. As compared to the raw corn, thermal treatment caused significant (p < 0.05) decreases in each antioxidant compound a...

  20. Inheritance of anthocyanin content in the ripe berries of a tetraploid × diploid grape cross population

    Science.gov (United States)

    Variation patterns and inheritance of anthocyanin content in the ripe berries of a tetraploid × diploid table grape cross population were investigated in two successive years. The population segregated for three different ploidy levels: dipolids, triploids, and tetraploids. A total of 28 different a...

  1. Red Chicory (Cichorium intybus L. cultivar as a Potential Source of Antioxidant Anthocyanins for Intestinal Health

    Directory of Open Access Journals (Sweden)

    Laura D'evoli

    2013-01-01

    Full Text Available Fruit- and vegetable-derived foods have become a very significant source of nutraceutical phytochemicals. Among vegetables, red chicory (Cichorium Intybus L. cultivar has gained attention for its content of phenolic compounds, such as the anthocyanins. In this study, we evaluated the nutraceutical effects, in terms of antioxidant, cytoprotective, and antiproliferative activities, of extracts of the whole leaf or only the red part of the leaf of Treviso red chicory (a typical Italian red leafy plant in various intestinal models, such as Caco-2 cells, differentiated in normal intestinal epithelia and undifferentiated Caco-2 cells. The results show that the whole leaf of red chicory can represent a good source of phytochemicals in terms of total phenolics and anthocyanins as well as the ability of these phytochemicals to exert antioxidant and cytoprotective effects in differentiated Caco-2 cells and antiproliferative effects in undifferentiated Caco-2 cells. Interestingly, compared to red chicory whole leaf extracts, the red part of leaf extracts had a significantly higher content of both total phenolics and anthocyanins. The same extracts effectively corresponded to an increase of antioxidant, cytoprotective, and antiproliferative activities. Taken together, these findings suggest that the red part of the leaf of Treviso red chicory with a high content of antioxidant anthocyanins could be interesting for development of new food supplements to improve intestinal health.

  2. New challenges for the design of high value plant products: stabilization of anthocyanins in plant vacuoles

    Directory of Open Access Journals (Sweden)

    Valentina ePasseri

    2016-02-01

    Full Text Available In the last decade plant biotechnologists and breeders have made several attempt to improve the antioxidant content of plant-derived food. Most efforts concentrated on increasing the synthesis of antioxidants, in particular anthocyanins, by inducing the transcription of genes encoding the synthesizing enzymes. We present here an overview of economically interesting plant species, both food crops and ornamentals, in which anthocyanin content was improved by traditional breeding or transgenesis. Old genetic studies in petunia and more recent biochemical work in brunfelsia, have shown that after synthesis and compartmentalization in the vacuole, anthocyanins need to be stabilized to preserve the color of the plant tissue over time. The final yield of antioxidant molecules is the result of the balance between synthesis and degradation. Therefore the understanding of the mechanism that determine molecule stabilization in the vacuolar lumen is the next step that needs to be taken to further improve the anthocyanin content in food.In several species a phenomenon known as fading is responsible for the disappearance of pigmentation which in some case can be nearly complete. We discuss the present knowledge about the genetic and biochemical factors involved in pigment preservation/destabilization in plant cells.The improvement of our understanding of the fading process will supply new tools for both biotechnological approaches and marker-assisted breeding.

  3. Effect on in vitro starch digestibility of Mexican blue maize anthocyanins.

    Science.gov (United States)

    Camelo-Méndez, Gustavo A; Agama-Acevedo, Edith; Sanchez-Rivera, Mirna M; Bello-Pérez, Luis A

    2016-11-15

    The purpose of this study was to evaluate the effect of blue maize extracts obtained by acid-methanol treatment on the nutritional in vitro starch fractions such as: rapidly digestive starch (RDS), slowly digestive starch (SDS) and resistant starch (RS) of native and gelatinized commercial maize starch. Chromatographic analysis (HPLC-DAD/ESI-MS) of blue maize extracts showed the presence of seven anthocyanins, where cyanidin-3-(6″-malonylglucoside) was the main. Blue maize extracts modified nutritional in vitro starch fractions (decrease of RDS) while RS content increased (1.17 and 2.02 times for native and gelatinized commercial maize starch, respectively) when anthocyanins extracts were added to starch up to 75% (starch weight). This preliminary observation provides the basis for further suitability evaluation of blue maize extract as natural starch-modifier by the possible anthocyanins-starch interaction. Anthocyanin extracts can be a suitable to produce functional foods with higher RS content with potential human health benefits. PMID:27283633

  4. Contribution of Monomeric Anthocyanins to the Color of Young Red Wine: Statistical and Experimental Approaches.

    Science.gov (United States)

    Han, Fu Liang; Li, Zheng; Xu, Yan

    2015-12-01

    Monomeric anthocyanin contributions to young red wine color were investigated using partial least square regression (PLSR) and aqueous alcohol solutions in this study. Results showed that the correlation between the anthocyanin concentration and the solution color fitted in a quadratic regression rather than linear or cubic regression. Malvidin-3-O-glucoside was estimated to show the highest contribution to young red wine color according to its concentration in wine, whereas peonidin-3-O-glucoside in its concentration contributed the least. The PLSR suggested that delphinidin-3-O-glucoside and peonidin-3-O-glucoside under the same concentration resulted in a stronger color of young red wine compared with malvidin-3-O-glucoside. These estimates were further confirmed by their color in aqueous alcohol solutions. These results suggested that delphinidin-3-O-glucoside and peonidin-3-O-glucoside were primary anthocyanins to enhance young red wine color by increasing their concentrations. This study could provide an alternative approach to improve young red wine color by adjusting anthocyanin composition and concentration.

  5. Sour Cherry (Prunus cerasus L.) Anthocyanins: effects of juice processing on phenolic compounds and bioavailability

    NARCIS (Netherlands)

    Toydemir, G.; Boyacioglu, D.; Beekwilder, M.J.; Vos, de R.C.H.; Hall, R.D.; Capanoglu, E.

    2014-01-01

    Sour cherry (Prunus cerasus L.), has gained growing interest in recent years due to the envisaged health benefits associated with a regular intake of anthocyanins and related polyphenolic compounds. Turkish sour cherries are widely consumed as processed products and are renowned for their high juice

  6. Direct photothermal techniques for quantification of anthocyanins in sour cherry cultivars

    NARCIS (Netherlands)

    Doka, O.; Ficzek, G.; Bicanic, D.D.; Spruijt, R.B.; Luterotti, S.; Toth, M.; Buijnsters, J.G.; György Végvári, G.

    2011-01-01

    The analytical performance of the newly proposed laser-based photoacoustic spectroscopy (PAS) and of optothermal window (OW) method for quantification of total anthocyanin concentration (TAC) in five sour cherry varieties is compared to that of the spectrophotometry (SP). High performance liquid chr

  7. Viscous Food Matrix Influences Absorption and Excretion but Not Metabolism of Blackcurrant Anthocyanins in Rats

    NARCIS (Netherlands)

    Walton, M.C.; Hendriks, W.H.; Broomfield, A.M.; McGhie, T.K.

    2009-01-01

    The aim of the present study was to investigate the effect of a simultaneous intake of food and anthocyanins (ACNs) on ACN absorption, metabolism, and excretion. Blackcurrant ACNs (BcACNs) were dissolved in water with or without the addition of oatmeal and orally administered to rats, providing appr

  8. Dyeing of Silk with Anthocyanins Dyes Extract from Liriope platyphylla Fruits

    Directory of Open Access Journals (Sweden)

    Huayin Wang

    2014-01-01

    Full Text Available A new source of natural anthocyanins dyes, from Liriope platyphylla fruit, is proposed. This paper analyzes the dye extracts, the primary color components of the extracts, the color features of the extracts under different pH conditions, and their application in silk dyeing. The research shows that, nine anthocyanins are found in  L. platyphylla fruits by analyzing the results of the HPLC/DAD, MS, and MS/MS spectra. The five major anthocyanins related to delphinidin, petunidin, and malvidin derivatives take up 91.72% of total anthocyanin contents. The color of the solution is red under acidic condition (pH < 3.0 and stays in yellow under alkaline condition with pH values above 7.0. The dye extracts applied to silk fabric with mordant free dyeing show different color under different pH conditions, changing between purple, blue, green, and yellow. However, the dyed colors is light and the dyeing rate is low. Metal mordant such as Sn in chelation enhances the dye depth and improves the fastness of the dyed silk fabrics, especially in silk fabrics dyed by premordanting and metamordanting.

  9. Identification of the Pr1 gene product completes the anthocyanin biosynthesis pathway of maize

    Science.gov (United States)

    In maize, mutations in the pr1 locus lead to the accumulation of pelargonidin (red) rather than cyanidin (purple) pigments in aleurone cells where the anthocyanin biosynthetic pathway is active. We characterized pr1 mutation and isolated a putative F3'H encoding gene (Zmf3'h1), and showed by segrega...

  10. Anthocyanins do not influence long-chain n-3 fatty acid status: studies in cells, rodents and humans.

    Science.gov (United States)

    Vauzour, David; Tejera, Noemi; O'Neill, Colette; Booz, Valeria; Jude, Baptiste; Wolf, Insa M A; Rigby, Neil; Silvan, Jose Manuel; Curtis, Peter J; Cassidy, Aedin; de Pascual-Teresa, Sonia; Rimbach, Gerald; Minihane, Anne Marie

    2015-03-01

    Increased tissue status of the long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA), eicosapentaenoic (EPA) and docosahexaenoic acid (DHA) is associated with cardiovascular and cognitive benefits. Limited epidemiological and animal data suggest that flavonoids, and specifically anthocyanins, may increase EPA and DHA levels, potentially by increasing their synthesis from the shorter-chain n-3 PUFA, α-linolenic acid. Using complimentary cell, rodent and human studies we investigated the impact of anthocyanins and anthocyanin-rich foods/extracts on plasma and tissue EPA and DHA levels and on the expression of fatty acid desaturase 2 (FADS2), which represents the rate limiting enzymes in EPA and DHA synthesis. In experiment 1, rats were fed a standard diet containing either palm oil or rapeseed oil supplemented with pure anthocyanins for 8 weeks. Retrospective fatty acid analysis was conducted on plasma samples collected from a human randomized controlled trial where participants consumed an elderberry extract for 12 weeks (experiment 2). HepG2 cells were cultured with α-linolenic acid with or without select anthocyanins and their in vivo metabolites for 24 h and 48 h (experiment 3). The fatty acid composition of the cell membranes, plasma and liver tissues were analyzed by gas chromatography. Anthocyanins and anthocyanin-rich food intake had no significant impact on EPA or DHA status or FADS2 gene expression in any model system. These data indicate little impact of dietary anthocyanins on n-3 PUFA distribution and suggest that the increasingly recognized benefits of anthocyanins are unlikely to be the result of a beneficial impact on tissue fatty acid status. PMID:25573539

  11. TiO2 dye sensitized solar cell (DSSC): linear relationship of maximum power point and anthocyanin concentration

    Science.gov (United States)

    Ahmadian, Radin

    2010-09-01

    This study investigated the relationship of anthocyanin concentration from different organic fruit species and output voltage and current in a TiO2 dye-sensitized solar cell (DSSC) and hypothesized that fruits with greater anthocyanin concentration produce higher maximum power point (MPP) which would lead to higher current and voltage. Anthocyanin dye solution was made with crushing of a group of fresh fruits with different anthocyanin content in 2 mL of de-ionized water and filtration. Using these test fruit dyes, multiple DSSCs were assembled such that light enters through the TiO2 side of the cell. The full current-voltage (I-V) co-variations were measured using a 500 Ω potentiometer as a variable load. Point-by point current and voltage data pairs were measured at various incremental resistance values. The maximum power point (MPP) generated by the solar cell was defined as a dependent variable and the anthocyanin concentration in the fruit used in the DSSC as the independent variable. A regression model was used to investigate the linear relationship between study variables. Regression analysis showed a significant linear relationship between MPP and anthocyanin concentration with a p-value of 0.007. Fruits like blueberry and black raspberry with the highest anthocyanin content generated higher MPP. In a DSSC, a linear model may predict MPP based on the anthocyanin concentration. This model is the first step to find organic anthocyanin sources in the nature with the highest dye concentration to generate energy.

  12. In the Solanaceae, a hierarchy of bHLHs confer distinct target specificity to the anthocyanin regulatory complex

    OpenAIRE

    Montefiori, Mirco; Brendolise, Cyril; Dare, Andrew P; Lin-Wang, Kui; Davies, Kevin M.; Hellens, Roger P; Andrew C. Allan

    2015-01-01

    The anthocyanin biosynthetic pathway is regulated by a transcription factor complex consisting of an R2R3 MYB, a bHLH, and a WD40. Although R2R3 MYBs belonging to the anthocyanin-activating class have been identified in many plants, and their role well elucidated, the subgroups of bHLH implicated in anthocyanin regulation seem to be more complex. It is not clear whether these potential bHLH partners are biologically interchangeable with redundant functions, or even if heterodimers are involve...

  13. Anatomical and biochemical analysis reveal the role of anthocyanins in flower coloration of herbaceous peony.

    Science.gov (United States)

    Zhao, Da-Qiu; Wei, Meng-Ran; Liu, Ding; Tao, Jun

    2016-05-01

    Herbaceous peony (Paeonia lactiflora Pall.) is particularly appreciated because of its elegant and gorgeous flower color, but little is known about the underlying mechanisms of flower coloration. In this study, three P. lactiflora cultivars 'Xuefeng', 'Fenyulou' and 'Dahonglou' with white, pink and red flower were selected as the materials. Their anatomical structures, cell sap pH and metal elements were investigated, and the colored pigment mainly distributed in palisade mesophyll was only found in 'Fenyulou' and 'Dahonglou', and their shape of epidermal cells, cell sap pH and metal elements were not the key factors deciding phenotype color. Moreover, the qualitative and quantitative analysis of flavonoids were performed, their total anthocyanin, anthoxanthin and flavonoid contents were decreased during flower development, and only anthocyanin content in 'Dahonglou' was always higher than that in 'Xuefeng' and 'Fenyulou'. Subsequently, three anthocyanin compositions were found, and peonidin 3,5-di-O-glucoside (Pn3G5G) was identified as the main anthocyanin composition. In addition, the full-length of flavonol synthase gene (FLS) was isolated with the GenBank accession number KM259902, and the expression patterns of eight flavonoid biosynthetic genes showed that only PlDFR and PlANS basically had the highest levels in 'Dahonglou' and the lowest levels in 'Xuefeng', and they basically displayed a descended trend during flower development especially PlDFR, suggesting that these two genes might play a key role in the anthocyanin biosynthesis which resulted in the shift from white to pink and red in flowers. These results would contribute to understand the underlying molecular mechanisms of flower coloration in P. lactiflora.

  14. Conventional and ultrasound-assisted extraction of anthocyanins from blackberry and sweet cherry cultivars.

    Science.gov (United States)

    Oancea, Simona; Grosu, Cristian; Ketney, Otto; Stoia, Mihaela

    2013-01-01

    Blackberry and sweet cherry are important plant foods rich in anthocyanins well-known for their pharmacological and antioxidant effects. The aim of the present paper was to comparatively investigate conventional and ultrasound-assisted extraction procedures in order to isolate an enriched crude anthocyanin extract from blackberry (Thornfree cultivar) and sweet cherry (Black Gold cultivar). Hydroethanolic solution and acidified ethanol were used to conventionally extract anthocyanins by a discontinuous process at 4 degreeC for 2/ 24 hours. Added hydrochloric acid in ethanol of different concentrations proved to be more efficient in both type of samples. In the ultrasound-assisted extraction, the highest recovered anthocyanin content in blackberry (107.81 mg 100 g(-1) FM) was obtained with a 10/1 solvent/solid ratio (v/w) at 30 degreeC for 5 minutes, while a 15/1 solvent/solid ratio (v/w) at 30 degreeC for 20 minutes lead to an increased antioxidant capacity as determined by ferric reducing antioxidant power in the extract using 0.1% HCI in 80% ethanol. The optimum conditions obtained for ultrasound-assisted extraction from sweet cherry in 0.1% HCI in 60% ethanol at 30 degree C include a 15/1 solid/solvent ratio (w/v) and 5 minutes for the maximum yield (36.05 mg 100(-1) FM). The final crude anthocyanin extracts may find useful application as dietary supplements, or may be further purified for application as food ingredients. PMID:23878943

  15. ACIDIC SOAKING AND STEAM BLANCHING RETAIN ANTHOCYANINS AND POLYPHENOLS IN PURPLE Dioscorea alata FLOUR

    Directory of Open Access Journals (Sweden)

    Nelis Imanningsih*

    2013-12-01

    Full Text Available Purple Dioscorea alata (DA tuber has health benefits due to its bioactive anthocyanins, which belong to polyphenolic group. Tuber is commonly made into flour to optimize its uses, however, the anthocyanins undergo significant degradation during processing because of the endogenous polyphenol oxidase activities. This research investigated factors that retain anthocyanins and polyphenols in the purple DA flour as well as its antioxidant capacity. The types of treatments during milling process should be taken into account; for instance, soaking in citric acid and blanching in order to preserve the bioactive compounds. To examine the inhibitory effects of acidic soaking and steam blanching on polyphenol oxidase activities, these experiments used four levels of citric acid (0, 0.25, 0.5, and 1% and two levels of steam blanching time course (5 and 10 minutes. It was found that steam blanching for 5 or 10 minutes could reduce the activity of polyphenol oxidase, and consequently, retard the oxidation process and retain the polyphenolic compounds. Soaking the purple DA slices into a 1% citric acid solution followed by steam blanching for 10 min resulted in the highest total anthocyanins (104.36 mg/100 g, polyphenols (198.52 mg equivalent gallic acid/100 g, with an antioxidant capacity of 1.300 mg trolox equivalent/100 g. This study showed that the retention of bioactive compounds of DA tuber through soaking the tuber slices in solution containing inexpensive chemicals like citric acid at low concentrations, combined with 10 minutes of steam blanching resulted in flour containing total anthocyanins and phenolic as high as 44.51 and 62.58% of fresh tuber, respectively.

  16. Research progress in anthocyanin in raspberry%树莓花色苷研究进展

    Institute of Scientific and Technical Information of China (English)

    王远辉; 王洪新

    2011-01-01

    Raspberry fruit was rich in anthocyanin, the structure of raspberry anthocyanins had their special characteristics. Raspberry anthocyanins had a variety of biological activity and were paid attention by food,pharmaceutics,cosmetics and other industries. At persent, domestic and foreign experts and scholars had done some interesting researches to lay solid theoretical foundation for the development and utilization of raspberry anthocyanins,but there were still many key areas to be explore. This paper introduced research status of raspberry anthocyanins about extraction, purification, biological activity, metabolism, and stability in recent years, and provided a reference for in-depth study in the future.%树莓果实富含花色苷,树莓花色苷具有自身结构特点,已被证实有多种生理活性,受到食品、药品、化妆品等行业青睐.迄今为止国内外专家学者对树莓花色苷做了一些有意义的研究,为树莓花色苷的开发利用奠定了坚实理论基础,但仍有许多关键领域要探索.本文介绍了近十年关于树莓花色苷提取、分离纯化、生理活性、代谢和稳定性等方面的研究现状,为以后深入研究提供参考.

  17. Enzymatic Acylation of Anthocyanin Isolated from Black Rice with Methyl Aromatic Acid Ester as Donor: Stability of the Acylated Derivatives.

    Science.gov (United States)

    Yan, Zheng; Li, Chunyang; Zhang, Lixia; Liu, Qin; Ou, Shiyi; Zeng, Xiaoxiong

    2016-02-10

    The enzymatic acylation of anthocyanin from black rice with aromatic acid methyl esters as acyl donors and Candida antarctica lipase B was carried out under reduced pressure. The highest conversion of 91% was obtained with benzoic acid methyl ester as acyl donor; cyanidin 3-(6″-benzoyl)-glucoside, cyanidin 3-(6″-salicyloyl)-glucoside, and cyanidin 3-(6″-cinnamoyl)-glucoside were successfully synthesized. This is the first report on the enzymatic acylation of anthocyanin from black rice with methyl aromatic esters as acyl donors and lipase as biocatalyst. Furthermore, the acylation with aromatic carboxylic acids enhanced both the thermostability and light resistivity of anthocyanin. In particular, cyanidin 3-(6″-cinnamoyl)-glucoside was the most stable among the three acylated anthocyanins synthesized. PMID:26766135

  18. Changes in antioxidant enzymes activities and proline, total phenol and anthocyanine contents in Hyssopus officinalis L. plants under salt stress.

    Science.gov (United States)

    Jahantigh, Omolbanin; Najafi, Farzaneh; Badi, Hassanali Naghdi; Khavari-Nejad, Ramazan Ali; Sanjarian, Forough

    2016-06-01

    The relationships between salt stress and antioxidant enzymes activities, proline, phenol and anthocyanine contents in Hyssopus officinalis L. plants in growth stage were investigated. The plants were subjected to five levels of saline irrigation water, 0.37 (tap water as control) with 2, 4, 6, 8 and 10 dSm(-1) of saline water. After two months the uniform plants were harvested for experimental analysis. Antioxidant enzymes activities and proline, phenol and anthocyanine contents of the plants were examinated. Enhanced activities of peroxidase, catalase and superoxide dismutase were determined by increasing salinity that plays an important protective role in the ROS-scavenging process. Proline, phenol and anthocyanine contents increased significantly with increasing salinity. These results suggest that salinity tolerance of Hyssopus officinalis plants might be closely related with the increased capacity of antioxidative system to scavenge reactive oxygen species and with the accumulation of osmoprotectant proline, phenol and anthocyanine contents under salinity conditions.

  19. Optimization of the extraction of anthocyanins from the fruit skin of Rhodomyrtus tomentosa (Ait.) Hassk and identification of anthocyanins in the extract using High-Performance Liquid Chromatography-Electrospray Ionization-Mass Spectrometry (HPLC-ESI-MS).

    Science.gov (United States)

    Liu, Guo-Ling; Guo, Hong-Hui; Sun, Yuan-Ming

    2012-01-01

    Anthocyanins are naturally occurring polyphenols that impart bright color to fruits, vegetables and plants. In this study, the extraction of anthocyanins from freeze-dried fruit skin of downy rose-myrtle (Rhodomyrtus tomentosa (Ait.) Hassk var. Gangren) was optimized using response surface methodology (RSM). Using 60% ethanol containing 0.1% (v/v) hydrochloric acid as extraction solvent, the optimal conditions for maximum yields of anthocyanin (4.358 ± 0.045 mg/g) were 15.7:1 (v/w) liquid to solid ratio, 64.38 °C with a 116.88 min extraction time. The results showed good fits with the proposed model for the anthocyanin extraction (R(2) = 0.9944). Furthermore, the results of high-performance liquid chromatography-electrospray ionization-mass spectrometry (HPLC-ESI-MS) analysis of the anthocyanins extracted from the fruit skin of downy rose-myrtle revealed the presence of five anthocyanin components, which were tentatively identified as delphinidin-3-glucoside, cyanidin-3-glucoside, peonidin-3-glucoside, petunidin-3-glucoside and malvidin-3-glucoside.

  20. Exogenous application of pectin-derived oligosaccharides to grape berries modifies anthocyanin accumulation, composition and gene expression.

    Science.gov (United States)

    Villegas, Daniel; Handford, Michael; Alcalde, José Antonio; Perez-Donoso, Alonso

    2016-07-01

    Anthocyanins are secondary metabolites synthesized in grape berry skins via the phenylpropanoid pathway, with functions ranging from skin coloration to protection against pathogens or UV light. Accumulation of these compounds is highly variable depending on genetics, environmental factors and viticultural practices. Besides their biological functions, anthocyanins improve wine quality, as a high anthocyanin content in berries has a positive impact on the color, total phenolic concentration and, ultimately, the price of wine. The present work studies the effect of the pre-veraison application of pectin derived oligosaccharides (PDO) on the synthesis and accumulation of these compounds, and associates the changes observed with the expression of key genes in the phenylpropanoid pathways. To this end, pre-veraison Cabernet Sauvignon bunches were treated with PDO to subsequently determine total anthocyanin content, the anthocyanin profile (by HPLC-DAD) and gene expression (by qRT-PCR), using Ethrel and water treatments for comparison. The results show that PDO were as efficient as Ethrel in generating a significant rise in total anthocyanin content at 30 days after treatment (dat), compared with water treatments (1.32, 1.48 and 1.02 mg e.Mv-3G/g FW respectively) without any undesirable effect on berry size, soluble solids, tartaric acid concentration or pH. In addition, a significant alteration in the anthocyanin profile was observed. Specifically, a significant increase in the relative concentration of malvidin was observed for both PDO and Ethrel treatments, compared with water controls (52.8; 55.0 and 48.3%, respectively), with a significant rise in tri-hydroxylated forms and a fall in di-hydroxylated anthocyanins. The results of gene expression analyses suggest that the increment in total anthocyanin content is related to a short term increase in phenylalanine ammonia-lyase (PAL) expression, mediated by a decrease in MYB4A expression. A longer term increase in UDP

  1. A bHLH transcription factor, DvIVS, is involved in regulation of anthocyanin synthesis in dahlia (Dahlia variabilis)

    OpenAIRE

    Ohno, Sho; Hosokawa, Munetaka; Hoshino, Atsushi; Kitamura, Yoshikuni; Morita, Yasumasa; Park, Kyeung-II; Nakashima, Akiko; Deguchi, Ayumi; Tatsuzawa, Fumi; Doi, Motoaki; Iida, Shigeru; Yazawa, Susumu

    2011-01-01

    Dahlias (Dahlia variabilis) exhibit a wide range of flower colours because of accumulation of anthocyanin and other flavonoids in their ray florets. Two lateral mutants were used that spontaneously occurred in ‘Michael J’ (MJW) which has yellow ray florets with orange variegation. MJOr, a bud mutant producing completely orange ray florets, accumulates anthocyanins, flavones, and butein, and MJY, another mutant producing completely yellow ray florets, accumulates flavones and butein. Reverse t...

  2. A bHLH transcription factor, DvIVS, is involved in regulation of anthocyanin synthesis in dahlia (Dahlia variabilis).

    OpenAIRE

    Ohno, Sho; Hosokawa, Munetaka; Hoshino, Atsushi; Kitamura, Yoshikuni; Morita, Yasumasa; Park, Kyeung-II; Nakashima, Akiko; Deguchi, Ayumi; Tatsuzawa, Fumi; Doi, Motoaki; Iida, Shigeru; Yazawa, Susumu

    2011-01-01

    Dahlias (Dahlia variabilis) exhibit a wide range of flower colours because of accumulation of anthocyanin and other flavonoids in their ray florets. Two lateral mutants were used that spontaneously occurred in 'Michael J' (MJW) which has yellow ray florets with orange variegation. MJOr, a bud mutant producing completely orange ray florets, accumulates anthocyanins, flavones, and butein, and MJY, another mutant producing completely yellow ray florets, accumulates flavones and butein. Reverse t...

  3. Comparative Leaves Transcriptome Analysis Emphasizing on Accumulation of Anthocyanins in Brassica: Molecular Regulation and Potential Interaction with Photosynthesis.

    Science.gov (United States)

    Mushtaq, Muhammad A; Pan, Qi; Chen, Daozong; Zhang, Qinghua; Ge, Xianhong; Li, Zaiyun

    2016-01-01

    The purple leaf pigmentation mainly associated with anthocyanins accumulation is common in Brassica but the mechanisms of its production and its potential physiological functions are poorly understood. Here, we performed the phenotypic, cytological, physiological, and comparative leaves transcriptome analyses of 11 different varieties belonging to five Brassica species with purple or green leaves. We observed that the anthocyanin was accumulated in most of vegetative tissues in all species and also in reproduction organs of B. carinata. Anthocyanin accumulated in different part of purple leaves including adaxial and abaxial epidermal cells as well as palisade and spongy mesophyll cells. Leave transcriptome analysis showed that almost all late biosynthetic genes (LBGs) of anthocyanin, especially Dihydroflavonol 4-Reductase (DFR), Anthocyanidin Synthase (ANS) and Transparent Testa 19 (TT19), were highly up-regulated in all purple leaves. However, only one of transcript factors in anthocyanin biosynthesis pathway, Transparent Testa 8 (TT8), was up regulated along with those genes in all purple leaves, indicating its pivotal role for anthocyanin production in Brassica. Interestingly, with the up-regulation of genes for anthocyanin synthesis, Cytosolic 6-phosphogluconolactonase (PLG5) which involved in the oxidative pentose-phosphate pathway was up-regulated in all purple leaves and three genes FTSH PROTEASE 8 (FTS8), GLYCOLATE OXIDASE 1 (GOX1), and GLUTAMINE SYNTHETASE 1;4 (GLN1;4) related to degradation of photo-damaged proteins in photosystem II and light respiration were down-regulated. These results highlighted the potential physiological functions of anthocyanin accumulation related to photosynthesis which might be of great worth in future.

  4. Comparative Leave Transcriptome Analysis Emphasizing on Accumulation of Anthocyanins in Brassica: Molecular Regulation and Potential Interaction with Photosynthesis

    Directory of Open Access Journals (Sweden)

    Muhammad Adnan Mushtaq

    2016-03-01

    Full Text Available The purple leaf pigmentation mainly associated with anthocyanins accumulation is common in Brassica but the mechanisms of its production and its potential physiological functions are poorly understood. Here, we performed the phenotypic, cytological, physiological and comparative leaves transcriptome analyses of 11 different varieties belonging to five Brassica species with purple or green leaves. We observed that the anthocyanin was accumulated in most of vegetative tissues in all Brassica species and also in reproduction organs of B. carinata. Anthocyanin accumulated in different part of purple leaves including adaxial and abaxial epidermal cells as well as palisade and spongy mesophyll cells. Leave transcriptome analysis showed that almost all late biosynthetic genes of anthocyanin especially Dihydroflavonol 4-Reductase (DFR, Anthocyanidin Synthase (ANS and Transparent Testa 19 (TT19, were highly up-regulated in all purple leaves. However, only one of transcript factors in anthocyanin biosynthesis pathway, Transparent Testa 8 (TT8, was co-up regulated along with those genes in all purple leaves, indicating its pivotal role for anthocyanin production in Brassica. Interestingly, with the up-regulation of genes for anthocyanin synthesis, Cytosolic 6-phosphogluconolactonase (PLG5 which involved in the oxidative pentose-phosphate pathway was up-regulated in all purple leaves and three genes FTSH PROTEASE 8 (FTS8, GLYCOLATE OXIDASE 1 (GOX1 and GLUTAMINE SYNTHETASE 1;4 (GLN1;4 related to degradation of photo-damaged proteins in photosystem II and light respiration were down-regulated. These results highlighted the potential physiological functions of anthocyanin accumulation related to photosynthesis which might be of great worth in future.

  5. Characterization of Acylated Anthocyanins in Callus Induced From Storage Root of Purple-Fleshed Sweet Potato, Ipomoea batatas L

    OpenAIRE

    Terahara N.; Konczak I.; Ono H.; Yoshimoto M.; Yamakawa O.

    2004-01-01

    Four anthocyanins were isolated from a highly pigmented callus induced from the storage root of purple-fleshed sweet potato (Ipomoea batatas L) cultivar Ayamurasaki. The anthocyanins were respectively identified as cyanidin 3- O -(2- O -(6- O -( E )-caffeoyl- β -D-glucopyranosyl)- β -D-glucopyranoside)-5- O - β -D-glucopyranoside, cyanidin 3- O -(2- O -(6- O -( E )- p -coumaroyl- β -D-glucopyranosyl)-6- O -( E )-caffeoyl- β -D-glucopyranoside)-5- O -...

  6. Melatonin Improved Anthocyanin Accumulation by Regulating Gene Expressions and Resulted in High Reactive Oxygen Species Scavenging Capacity in Cabbage

    OpenAIRE

    Zhang, Na; Sun, Qianqian; Li, Hongfei; Li, Xingsheng; Cao, Yunyun; Zhang, Haijun; Li, Shuangtao; Zhang, Lei; Qi, Yan; Ren, Shuxin; Zhao, Bing; Guo, Yang-Dong

    2016-01-01

    In this work, we found, that exogenous melatonin pretreatment improved anthocyanin accumulation (1- to 2-fold) in cabbage. To verify the relationship with melatonin and anthocyanin, an Arabidopsis mutant, snat, which expresses a defective form of the melatonin biosynthesis enzyme SNAT (Serotonin N-acetyl transferase), was employed. Under cold conditions, the foliage of wild-type Arabidopsis exhibited a deeper red color than the snat mutant. This finding further proved, that exogenous melatoni...

  7. Computational Identification of Anthocyanin-Specific Transcription Factors using a Rice Microarray and Maximum Boundary Range Algorithm

    OpenAIRE

    Chang Kug Kim; Shoshi Kikuchi; Jang Ho Hahn; Soo Chul Park; Yong Hwan Kim; Byun Woo Lee

    2010-01-01

    This study identifies 2,617 candidate genes related to anthocyanin biosynthesis in rice using microarray analysis and a newly developed maximum boundary range algorithm. Three seed developmental stages were examined in white cultivar and two black Dissociation insertion mutants. The resultant 235 transcription factor genes found to be associated with anthocyanin were classified into nine groups. It is compared the 235 genes by transcription factor analysis and 593 genes from among clusters of...

  8. Neuroprotective effects of anthocyanin- and proanthocyanidin-rich extracts in cellular models of Parkinson’s disease

    OpenAIRE

    Strathearn, Katherine E.; Yousef, Gad G.; Grace, Mary H.; Roy, Susan L.; Tambe, Mitali A.; Ferruzzi, Mario G.; Wu, Qing-Li; Simon, James E.; Lila, Mary Ann; Rochet, Jean-Christophe

    2014-01-01

    Neuropathological evidence indicates that dopaminergic cell death in Parkinson’s disease (PD) involves impairment of mitochondrial complex I, oxidative stress, microglial activation, and the formation of Lewy bodies. Epidemiological findings suggest that the consumption of berries rich in anthocyanins and proanthocyanidins may reduce PD risk. In this study, we investigated whether extracts rich in anthocyanins, proanthocyanidins, or other polyphenols suppress the neurotoxic effects of rotenon...

  9. Characterization of the regulatory network of BoMYB2 in controlling anthocyanin biosynthesis in purple cauliflower.

    Science.gov (United States)

    Chiu, Li-Wei; Li, Li

    2012-10-01

    Purple cauliflower (Brassica oleracea L. var. botrytis) Graffiti represents a unique mutant in conferring ectopic anthocyanin biosynthesis, which is caused by the tissue-specific activation of BoMYB2, an ortholog of Arabidopsis PAP2 or MYB113. To gain a better understanding of the regulatory network of anthocyanin biosynthesis, we investigated the interaction among cauliflower MYB-bHLH-WD40 network proteins and examined the interplay of BoMYB2 with various bHLH transcription factors in planta. Yeast two-hybrid studies revealed that cauliflower BoMYBs along with the other regulators formed the MYB-bHLH-WD40 complexes and BobHLH1 acted as a bridge between BoMYB and BoWD40-1 proteins. Different BoMYBs exhibited different binding activity to BobHLH1. Examination of the BoMYB2 transgenic lines in Arabidopsis bHLH mutant backgrounds demonstrated that TT8, EGL3, and GL3 were all involved in the BoMYB2-mediated anthocyanin biosynthesis. Expression of BoMYB2 in Arabidopsis caused up-regulation of AtTT8 and AtEGL3 as well as a subset of anthocyanin structural genes encoding flavonoid 3'-hydroxylase, dihydroflavonol 4-reductase, and leucoanthocyanidin dioxygenase. Taken together, our results show that MYB-bHLH-WD40 network transcription factors regulated the bHLH gene expression, which may represent a critical feature in the control of anthocyanin biosynthesis. BoMYB2 together with various BobHLHs specifically regulated the late anthocyanin biosynthetic pathway genes for anthocyanin biosynthesis. Our findings provide additional information for the complicated regulatory network of anthocyanin biosynthesis and the transcriptional regulation of transcription factors in vegetable crops. PMID:22644767

  10. Comparative Leaves Transcriptome Analysis Emphasizing on Accumulation of Anthocyanins in Brassica: Molecular Regulation and Potential Interaction with Photosynthesis.

    Science.gov (United States)

    Mushtaq, Muhammad A; Pan, Qi; Chen, Daozong; Zhang, Qinghua; Ge, Xianhong; Li, Zaiyun

    2016-01-01

    The purple leaf pigmentation mainly associated with anthocyanins accumulation is common in Brassica but the mechanisms of its production and its potential physiological functions are poorly understood. Here, we performed the phenotypic, cytological, physiological, and comparative leaves transcriptome analyses of 11 different varieties belonging to five Brassica species with purple or green leaves. We observed that the anthocyanin was accumulated in most of vegetative tissues in all species and also in reproduction organs of B. carinata. Anthocyanin accumulated in different part of purple leaves including adaxial and abaxial epidermal cells as well as palisade and spongy mesophyll cells. Leave transcriptome analysis showed that almost all late biosynthetic genes (LBGs) of anthocyanin, especially Dihydroflavonol 4-Reductase (DFR), Anthocyanidin Synthase (ANS) and Transparent Testa 19 (TT19), were highly up-regulated in all purple leaves. However, only one of transcript factors in anthocyanin biosynthesis pathway, Transparent Testa 8 (TT8), was up regulated along with those genes in all purple leaves, indicating its pivotal role for anthocyanin production in Brassica. Interestingly, with the up-regulation of genes for anthocyanin synthesis, Cytosolic 6-phosphogluconolactonase (PLG5) which involved in the oxidative pentose-phosphate pathway was up-regulated in all purple leaves and three genes FTSH PROTEASE 8 (FTS8), GLYCOLATE OXIDASE 1 (GOX1), and GLUTAMINE SYNTHETASE 1;4 (GLN1;4) related to degradation of photo-damaged proteins in photosystem II and light respiration were down-regulated. These results highlighted the potential physiological functions of anthocyanin accumulation related to photosynthesis which might be of great worth in future. PMID:27047501

  11. The Arabidopsis thaliana mutant air1 implicates SOS3 in the regulation of anthocyanins under salt stress

    KAUST Repository

    Van Oosten, Michael James

    2013-08-08

    The accumulation of anthocyanins in plants exposed to salt stress has been largely documented. However, the functional link and regulatory components underlying the biosynthesis of these molecules during exposure to stress are largely unknown. In a screen of second site suppressors of the salt overly sensitive3-1 (sos3-1) mutant, we isolated the anthocyanin-impaired-response-1 (air1) mutant. air1 is unable to accumulate anthocyanins under salt stress, a key phenotype of sos3-1 under high NaCl levels (120 mM). The air1 mutant showed a defect in anthocyanin production in response to salt stress but not to other stresses such as high light, low phosphorous, high temperature or drought stress. This specificity indicated that air1 mutation did not affect anthocyanin biosynthesis but rather its regulation in response to salt stress. Analysis of this mutant revealed a T-DNA insertion at the first exon of an Arabidopsis thaliana gene encoding for a basic region-leucine zipper transcription factor. air1 mutants displayed higher survival rates compared to wild-type in oxidative stress conditions, and presented an altered expression of anthocyanin biosynthetic genes such as F3H, F3′H and LDOX in salt stress conditions. The results presented here indicate that AIR1 is involved in the regulation of various steps of the flavonoid and anthocyanin accumulation pathways and is itself regulated by the salt-stress response signalling machinery. The discovery and characterization of AIR1 opens avenues to dissect the connections between abiotic stress and accumulation of antioxidants in the form of flavonoids and anthocyanins. © 2013 Springer Science+Business Media Dordrecht.

  12. Anthocyanin and Carotenoid Contents in Different Cultivars of Chrysanthemum (Dendranthema grandiflorum Ramat. Flower

    Directory of Open Access Journals (Sweden)

    Chang Ha Park

    2015-06-01

    Full Text Available The flowers of twenty-three cultivars of Dendranthema grandiflorum Ramat. were investigated to determine anthocyanin and carotenoid levels and to confirm the effects of the pigments on the flower colors using high-performance liquid chromatography (HPLC and electrospray ionization-mass spectrometry (ESI-MS. The cultivars contained the anthocyanins cyanidin 3-glucoside (C3g and cyanidin 3-(3ʺ-malonoyl glucoside (C3mg and the following carotenoids: lutein, zeaxanthin, β-cryptoxanthin, 13-cis-β-carotene, α-carotene, trans-β-carotene, and 9-cis-β-carotene. The cultivar “Magic” showed the greatest accumulation of total and individual anthocyanins, including C3g and C3gm. On the other hand, the highest level of lutein and zeaxanthin was noted in the cultivar “Il Weol”. The cultivar “Anastasia” contained the highest amount of carotenoids such as trans-β-carotene, 9-cis-β-carotene, and 13-cis-β-carotene. The highest accumulation of β-cryptoxanthin and α-carotene was noted in the cultivar “Anastasia” and “Il Weol”. Our results suggested that ‘Magic”, “Angel” and “Relance’ had high amounts of anthocyanins and showed a wide range of red and purple colors in their petals, whereas “Il Weol’, “Popcorn Ball’ and “Anastasia” produced higher carotenoid contents and displayed yellow or green petal colors. Interestingly, “Green Pang Pang”, which contained a high level of anthocyanins and a medium level of carotenoids, showed the deep green colored petals. “Kastelli”, had high level of carotenoids as well as a medium level of anthocyanins and showed orange and red colored petals. It was concluded that each pigment is responsible for the petal’s colors and the compositions of the pigments affect their flower colors and that the cultivars could be a good source for pharmaceutical, floriculture, and pigment industries.

  13. Evaluation of Antiproliferative Activity of Red Sorghum Bran Anthocyanin on a Human Breast Cancer Cell Line (MCF-7)

    International Nuclear Information System (INIS)

    Breast cancer is a leading cause of death in women worldwide both in the developed and developing countries. Thus effective treatment of breast cancer with potential antitumour drugs is important. In this paper, human breast cancer cell line MCF-7 has been employed to evaluate the antiproliferative activity of red sorghum bran anthocyanin. The present investigation showed that red sorghum bran anthocyanin induced growth inhibition of MCF-7 cells at significant level. The growth inhibition is dose dependent and irreversible in nature. When MCF-7 cells were treated with red sorghum bran anthocyanins due to activity of anthocyanin morphological changes were observed. The morphological changes were identified through the formation of apoptopic bodies. The fragmentation by these anthocyanins on DNA to oligonuleosomal-sized fragments, is a characteristic of apoptosis, and it was observed as concentration-dependent. Thus, this paper clearly demonstrates that human breast cancer cell MCF-7 is highly responsive by red sorghum bran anthocyanins result from the induction of apoptosis in MCF-7 cells.

  14. Effects of Anthocyanins on CAG Repeat Instability and Behaviour in Huntington’s Disease R6/1 Mice

    Science.gov (United States)

    Møllersen, Linda; Moldestad, Olve; Rowe, Alexander D.; Bjølgerud, Anja; Holm, Ingunn; Tveterås, Linda; Klungland, Arne; Retterstøl, Lars

    2016-01-01

    Background: Huntington’s disease (HD) is a progressive neurodegenerative disorder caused by CAG repeat expansions in the HTT gene. Somatic repeat expansion in the R6/1 mouse model of HD depends on mismatch repair and is worsened by base excision repair initiated by the 7,8-dihydroxy-8-oxoguanine-DNA glycosylase (Ogg1) or Nei-like 1 (Neil1). Ogg1 and Neil1 repairs common oxidative lesions. Methods: We investigated whether anthocyanin antioxidants added daily to the drinking water could affect CAG repeat instability in several organs and behaviour in R6/1 HD mice. In addition, anthocyanin-treated and untreated R6/1 HD mice at 22 weeks of age were tested in the open field test and on the rotarod. Results: Anthocyanin-treated R6/1 HD mice showed reduced instability index in the ears and in the cortex compared to untreated R6/1 mice, and no difference in liver and kidney. There were no significant differences in any of the parameters tested in the behavioural tests among anthocyanin-treated and untreated R6/1 HD mice. Conclusions: Our results indicate that continuous anthocyanin-treatment may have modest effects on CAG repeat instability in the ears and the cortex of R6/1 mice. More studies are required to investigate if anthocyanin-treatment could affect behaviour earlier in the disease course. PMID:27540492

  15. Measurement of total anthocyanins content in flowering tea using near infrared spectroscopy combined with ant colony optimization models.

    Science.gov (United States)

    Xiaowei, Huang; Xiaobo, Zou; Jiewen, Zhao; Jiyong, Shi; Xiaolei, Zhang; Holmes, Mel

    2014-12-01

    Flowering tea has become a popular beverage consumed across the world. Anthocyanins content is considered as an important quality index of flowering tea. The feasibility of using near infrared (NIR) spectra at the wavelength range of 10,000-4000 cm(-1) for rapid and nondestructive determination of total anthocyanins content in flowering tea was investigated. Ant colony optimization interval partial least squares (ACO-iPLS) and Genetic algorithm interval partial least squares (GA-iPLS) were used to develop calibration models for total anthocyanins content. Two characteristic wavelength regions (4590-4783, 5770-5,963 cm(-1)), which corresponding to the ultraviolet/visible absorption bands of anthocyanins, were selected by ACO-iPLS. The optimal ACO-iPLS model for total anthocyanins content (R=0.9856, RMSECV=0.1,198 mg/g) had better performance than full-spectrum PLS, iPLS, and GA-iPLS models. It could be concluded that NIR spectroscopy has significant potential in the nondestructive determination of total anthocyanins content in flowering tea. PMID:24996367

  16. Effect of floral cluster pruning on anthocyanin levels and anthocyanain-related gene expression in 'Houman' grape.

    Science.gov (United States)

    Zhang, Lei; Xu, Yan-Shuai; Jia, Yue; Wang, Ji-Yuan; Yuan, Yue; Yu, Yang; Tao, Jian-Min

    2016-01-01

    Lateral floral clusters were removed from the main axis of the floral clusters of 'Houman' grape plants, leaving only 3-5-cm-long region of flowers at the end of the central axis. The floral clusters were pruned at 7 days prior to flowering. The effect of the pruning on fruit quality was assessed by determining the composition and levels of anthocyanins in the fruit and anthocyanin-related gene expression. Results indicated that floral cluster pruning significantly improved the quality of the fruit by increasing berry size, fruit weight and the total content of soluble solids. Floral cluster pruning also decreased the level of titratable acidity. Sixteen different anthocyanins were detected in fruit of the pruned clusters, while only 15 were detected in fruit from unpruned clusters. The level of anthocyanins was also significantly higher in fruit of the pruned clusters than in the unpruned clusters. Anthocyanin-related gene expression was also significantly upregulated to a higher level in fruit from pruned floral clusters as compared with unpruned clusters. The upregulation was closely associated with increases in anthocyanin biosynthesis. PMID:27555920

  17. Alternative natural dyes in water purification: Anthocyanin as TiO 2-sensitizer in methyl orange photo-degradation

    Science.gov (United States)

    Zyoud, Ahed; Zaatar, Nidal; Saadeddin, Iyad; Helal, Muath H.; Campet, Guy; Hakim, Moulki; Park, DaeHoon; Hilal, Hikmat S.

    2011-06-01

    Natural molecular dye, anthocyanin, is described here as safe sensitizer for TiO 2 particles in photo-degradation of organic contaminants in water. The dye is a promising replacement for the more costly and hazardous heavy metal based systems, such as CdS particles and Ru-compounds. TiO 2/anthocyanin effectively catalyzed the photo-degradation of methyl orange contaminant under solar simulator radiation. The new TiO 2/anthocyanin catalyst showed comparable efficiency to earlier systems, while avoiding their hazardous nature. When supported onto activated carbon (AC) particles, the resulting AC/TiO 2/anthocyanin system showed enhanced efficiency and ease of recovery from the catalytic reaction mixture. The natural dye molecules showed the tendency to degrade under photo-degradation conditions, just like earlier hazardous sensitizers. However, complete mineralization of anthocyanin occurred leaving no traces of organic species in solution. Sensitizer degradation caused deactivation of the supported catalyst on recovery. Such a shortcoming was overcome by re-treatment of the recovered catalysts with fresh dye. Effects of different reaction parameters on the catalyst efficiency were studied. A mechanism, similar to earlier CdS-sensitized catalyst systems, is proposed for the TiO 2/anthocyanin catalyst.

  18. Expression and Anthocyanin Biosynthesis-Modulating Potential of Sweet Cherry (Prunus avium L. MYB10 and bHLH Genes.

    Directory of Open Access Journals (Sweden)

    Pavel Starkevič

    Full Text Available Anthocyanins are essential contributors to fruit coloration, an important quality feature and a breed determining trait of a sweet cherry fruit. It is well established that the biosynthesis of anthocyanins is regulated by an interplay of specific transcription factors belonging to MYB and bHLH families accompanied by a WD40 protein. In this study, we isolated and analyzed PaWD40, PabHLH3, PabHLH33, and several closely related MYB10 gene variants from different cultivars of sweet cherry, analyzed their expression in fruits with different anthocyanin levels at several developmental stages, and determined their capabilities to modulate anthocyanin synthesis in leaves of two Nicotiana species. Our results indicate that transcription level of variant PaMYB10.1-1 correlates with fruit coloration, but anthocyanin synthesis in Nicotiana was induced by another variant, PaMYB10.1-3, which is moderately expressed in fruits. The analysis of two fruit-expressed bHLH genes revealed that PabHLH3 enhances MYB-induced anthocyanin synthesis, whereas PabHLH33 has strong inhibitory properties.

  19. Expression and Anthocyanin Biosynthesis-Modulating Potential of Sweet Cherry (Prunus avium L.) MYB10 and bHLH Genes.

    Science.gov (United States)

    Starkevič, Pavel; Paukštytė, Jurgita; Kazanavičiūtė, Vaiva; Denkovskienė, Erna; Stanys, Vidmantas; Bendokas, Vidmantas; Šikšnianas, Tadeušas; Ražanskienė, Aušra; Ražanskas, Raimundas

    2015-01-01

    Anthocyanins are essential contributors to fruit coloration, an important quality feature and a breed determining trait of a sweet cherry fruit. It is well established that the biosynthesis of anthocyanins is regulated by an interplay of specific transcription factors belonging to MYB and bHLH families accompanied by a WD40 protein. In this study, we isolated and analyzed PaWD40, PabHLH3, PabHLH33, and several closely related MYB10 gene variants from different cultivars of sweet cherry, analyzed their expression in fruits with different anthocyanin levels at several developmental stages, and determined their capabilities to modulate anthocyanin synthesis in leaves of two Nicotiana species. Our results indicate that transcription level of variant PaMYB10.1-1 correlates with fruit coloration, but anthocyanin synthesis in Nicotiana was induced by another variant, PaMYB10.1-3, which is moderately expressed in fruits. The analysis of two fruit-expressed bHLH genes revealed that PabHLH3 enhances MYB-induced anthocyanin synthesis, whereas PabHLH33 has strong inhibitory properties. PMID:25978735

  20. The COI1 and DFR Genes are Essential for Regulation of Jasmonate-Induced Anthocyanin Accumulation in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Qin-Fang Chen; Liang-Ying Dai; Shi Xiao; Yun-Sheng Wang; Xiong-Lun Liu; Guo-Liang Wang

    2007-01-01

    Jasmonates (JAs) are a class of plant hormones that play important roles in the regulation of plant development and plant defense. It has been shown that Arabidopsis plants produce much higher levels of anthocyanins when treated exogenously with methyl jasmonate (MeJA). However, a molecular link between the JA response and anthocyanin production has not been determined. The CORONATINE INSENTITIVE1 (COI1) gene is a key player in the regulation of many JA-related responses. In the present study, we demonstrate that the COI1 gene is also required for the JA-induced accumulation of anthocyanins in Arabidopsis. Furthermore, the MeJA-inducible expression of DIHYDROFLA VONOL REDUCTASE (DFR), an essential component in the anthocyanin biosynthesis pathway, was completely eliminated in the coi1 mutant. Jasmonateinduced anthocyanin accumulation was found to be independent of auxin signaling. The present results indicate that the expression of both COI1 and DFR genes is required for the regulation of JA-induced anthocyanin accumulation and that DFR may be a key downstream regulator for this process.

  1. Effect of floral cluster pruning on anthocyanin levels and anthocyanain-related gene expression in ‘Houman’ grape

    Science.gov (United States)

    Zhang, Lei; Xu, Yan-shuai; Jia, Yue; Wang, Ji-yuan; Yuan, Yue; Yu, Yang; Tao, Jian-min

    2016-01-01

    Lateral floral clusters were removed from the main axis of the floral clusters of ‘Houman’ grape plants, leaving only 3–5-cm-long region of flowers at the end of the central axis. The floral clusters were pruned at 7 days prior to flowering. The effect of the pruning on fruit quality was assessed by determining the composition and levels of anthocyanins in the fruit and anthocyanin-related gene expression. Results indicated that floral cluster pruning significantly improved the quality of the fruit by increasing berry size, fruit weight and the total content of soluble solids. Floral cluster pruning also decreased the level of titratable acidity. Sixteen different anthocyanins were detected in fruit of the pruned clusters, while only 15 were detected in fruit from unpruned clusters. The level of anthocyanins was also significantly higher in fruit of the pruned clusters than in the unpruned clusters. Anthocyanin-related gene expression was also significantly upregulated to a higher level in fruit from pruned floral clusters as compared with unpruned clusters. The upregulation was closely associated with increases in anthocyanin biosynthesis. PMID:27555920

  2. Influence of Accelerated Solvent Extraction and Ultrasound-Assisted Extraction on the Anthocyanin Profile of Different Vaccinium Species in the Context of Statistical Models for Authentication.

    Science.gov (United States)

    Heffels, Peter; Weber, Fabian; Schieber, Andreas

    2015-09-01

    Anthocyanins are frequently discussed as marker compounds for fruit product authenticity. Proper analysis including sample preparation for the determination of anthocyanin concentrations is crucial for the comparability of authenticity data. The present study determined the influence of accelerated solvent extraction (ASE) and ultrasound-assisted extraction (UAE), using two different solvent compositions on the anthocyanin profile of bilberries (Vaccinium myrtillus L.), lowbush blueberries (Vaccinium angustifolium Ait.), and American cranberries (Vaccinium macrocarpon Ait.). Besides differences in total anthocyanin concentrations in the extracts, significant deviations (p ≤ 0.05) in the individual anthocyanin concentration were observed, resulting in differing anthocyanin proportions. Linear discriminant analysis comparing the differences caused by the extraction method to the natural differences within a set of 26 bilberry and lowbush blueberry samples of different origins was conducted. It revealed that profile variations induced by the extraction methods are in a similar scale to profile variations as a result of geographic and climatic differences. PMID:26330254

  3. Temperature dependency of shelf and thermal stabilities of anthocyanins from corn distillers' dried grains with solubles in different ethanol extracts and a commercially available beverage.

    Science.gov (United States)

    de Mejia, Elvira Gonzalez; Dia, Vermont P; West, Leslie; West, Megan; Singh, Vijay; Wang, Zhaoqin; Allen, Charlotte

    2015-11-18

    The objective was to determine the shelf and thermal stabilities of anthocyanins from distillers' dried grains with solubles (DDGS) extracted with different ethanol concentrations as well as a semi-purified Maiz Morado (purple corn) anthocyanin extract added to a commercially available beverage. Storage for 6 weeks of DDGS showed an overall reduction of anthocyanins from 6.8 to 73.7%. In DDGS, an ethanol increase from 0 to 25% resulted in less sensitivity of anthocyanin to temperature changes. Acylation resulted in faster degradation and higher reaction rate constants than their corresponding non-acylated forms. Anthocyanin changes were accompanied by an overall increase in lightness and a decrease in redness. Storage of beverage for 12 weeks at 4 °C resulted in a 25.5% reduction of anthocyanin. Results have important implications in selecting colored corn as an economical source of food colorants. PMID:26556543

  4. Identification and some properties of anthocyanin isolated from Zuiki, stalk of Colocasia esculenta.

    Science.gov (United States)

    Terasawa, Naoko; Saotome, Ayako; Tachimura, Yuki; Mochizuki, Ayumi; Ono, Hiroshi; Takenaka, Makiko; Murata, Masatsune

    2007-05-16

    Zuiki, a stalk of taro (Colocasia esculenta), is a traditional vegetable in Japan. Raw zuiki is often boiled and vinegared to eat. The surface color of zuiki is reddish. Here, we isolated a red pigment from zuiki and identified it as cyanidin 3-rutinoside using instrumental analyses. The color of zuiki disappeared by boiling, but the zuiki turned red again in an acetic acid solution. It seems that the cyanidin 3-rutinoside that exists on the surface of zuiki elutes in boiling water and then, the pigment that seeps out from the inside of the zuiki is exposed to an acid solution, and its surface turns red again. The radical scavenging activity of purified zuiki anthocyanin was 114 mg equivalent to BHT/g. About half of the anthocyanin in fresh zuiki was washed out by boiling, and the radical scavenging activity of zuiki was definitely reduced.

  5. Pinot noir wine volatile and anthocyanin composition under different levels of vine fruit zone leaf removal.

    Science.gov (United States)

    Feng, Hui; Skinkis, Patricia A; Qian, Michael C

    2017-01-01

    The impacts of fruit zone leaf removal on volatile and anthocyanin compositions of Pinot noir wine were investigated over two growing seasons. Wine volatiles were analyzed by multiple techniques, including headspace solid phase microextraction-GC-MS (HS-SPME-GC-MS), headspace-GC-FID (HS-GC-FID) and stir bar sorptive extraction-GC-MS (SBSE-GC-MS). Fruit zone leaf removal affected the concentration of many grape-derived volatile compounds such as terpene alcohols and C13-norisoprenoids in wine, although the degree of impact depended on the vintage year and severity of leaf removal. Fruit zone leaf removal resulted in greater concentrations of linalool, α-terpineol and β-damascenone but had no impact on other terpene alcohols or β-ionone. Fruit zone leaf removal had no consistent impact on C6 alcohols, volatile phenols, lactones, fermentation-derived alcohols, acids, or most esters. Fruit zone leaf removal increased anthocyanins in final wine.

  6. Direct photothermal techniques for rapid quantification of total anthocyanin content in sour cherry cultivars.

    Science.gov (United States)

    Dóka, Ottó; Ficzek, Gitta; Bicanic, Dane; Spruijt, Ruud; Luterotti, Svjetlana; Tóth, Magdolna; Buijnsters, Josephus Gerardus; Végvári, György

    2011-04-15

    The analytical performance of the newly proposed laser-based photoacoustic spectroscopy (PAS) and of optothermal window (OW) method for quantification of total anthocyanin concentration (TAC) in five sour cherry varieties is compared to that of the spectrophotometry (SP). High performance liquid chromatography (HPLC) was used to identify and quantify specific anthocyanins. Both, PAS and OW are direct methods that unlike SP and HPLC obviate the need for the extraction of analyte. The outcome of the study leads to the conclusion that PAS and OW are both suitable for quick screening of TAC in sour cherries. The correlation between the two methods and SP is linear with R(2)=0.9887 for PAS and R(2)=0.9918 for OW, respectively. Both methods are capable of the rapid determination of TAC in sour cherries without a need for a laborious sample pretreatment. PMID:21376955

  7. Evaluation of the pH and thermal stabilities of rosella anthocyanin extracts under solar light

    Directory of Open Access Journals (Sweden)

    Kahtan A. Askar

    2015-09-01

    Full Text Available Anthocyanin is considered as an unstable pigment, undergoes gradual degradation processes throughout the storage or use. The degradation of Rosella anthocyanin extract (RAE in different pH solutions was studied under solar light and compared with solutions kept in the dark. It appears that RAE solutions under solar light were suffering rapid degradation than those kept in the dark. Moreover, RAE samples at higher pH values showed faster rates of degradation than those with lower pH values. A mechanism for degradation was suggested through the formation of hydroxyl radical which is responsible for demineralization process. It is also appears that as the initial concentration of the dye increases, the requirement needed for degradation increased as well. The thermal degradation behavior of RAE at temperature range 25–60 °C under solar light showed first order kinetics with low activation energies.

  8. Electronic structure and optical properties of some anthocyanins extracted from grapes

    Science.gov (United States)

    Iosub, Ion; Kajzar, Francois; Makowska-Janusik, Malgorzata; Meghea, Aurelia; Tane, Alexandrina; Rau, Ileana

    2012-08-01

    The pallet of applications of natural dyes and pigments is continuously extending as a stringent need to meet the challenges arisen from sustainable development, particularly related to replacing synthetic chemicals by eco-friendly renewable raw materials. In this respect, the well known nutritive and therapeutic properties demonstrated by anthocyanin compounds present in selective plant extracts of numerous fruits, vegetables and flowers could be largely complemented by their characteristics as chromophores and fluorophores with high potential in promising applications in bio-imaging for diagnostic and therapy, but also in electronic and photonic devices, solar cells, etc. In this context, this paper proposes an improved protocol for extraction and HPLC detection of anthocyanins from black grapes. Moreover, in order to exploit their potential to be applied as chromatic and fluorescence molecular probes, the electronic properties have been studied by correlating spectral characteristics with trichromatic parameters, combined with quantum chemistry computation.

  9. Protective Effect of Anthocyanins from Lingonberry on Radiation-induced Damages

    OpenAIRE

    Shuang-Qi Tian; Zhen-Yu Wang; Li-Li Zuo; Zi-Luan Fan

    2012-01-01

    There is a growing concern about the serious harm of radioactive materials, which are widely used in energy production, scientific research, medicine, industry and other areas. In recent years, owing to the great side effects of anti-radiation drugs, research on the radiation protectants has gradually expanded from the previous chemicals to the use of natural anti-radiation drugs and functional foods. Some reports have confirmed that anthocyanins are good antioxidants, which can effectively e...

  10. Molecular genetics of blood-fleshed peach reveals activation of anthocyanin biosynthesis by NAC transcription factors.

    Science.gov (United States)

    Zhou, Hui; Lin-Wang, Kui; Wang, Huiliang; Gu, Chao; Dare, Andrew P; Espley, Richard V; He, Huaping; Allan, Andrew C; Han, Yuepeng

    2015-04-01

    Anthocyanin pigmentation is an important consumer trait in peach (Prunus persica). In this study, the genetic basis of the blood-flesh trait was investigated using the cultivar Dahongpao, which shows high levels of cyanidin-3-glucoside in the mesocarp. Elevation of anthocyanin levels in the flesh was correlated with the expression of an R2R3 MYB transcription factor, PpMYB10.1. However, PpMYB10.1 did not co-segregate with the blood-flesh trait. The blood-flesh trait was mapped to a 200-kb interval on peach linkage group (LG) 5. Within this interval, a gene encoding a NAC domain transcription factor (TF) was found to be highly up-regulated in blood-fleshed peaches when compared with non-red-fleshed peaches. This NAC TF, designated blood (BL), acts as a heterodimer with PpNAC1 which shows high levels of expression in fruit at late developmental stages. We show that the heterodimer of BL and PpNAC1 can activate the transcription of PpMYB10.1, resulting in anthocyanin pigmentation in tobacco. Furthermore, silencing the BL gene reduces anthocyanin pigmentation in blood-fleshed peaches. The transactivation activity of the BL-PpNAC1 heterodimer is repressed by a SQUAMOSA promoter-binding protein-like TF, PpSPL1. Low levels of PpMYB10.1 expression in fruit at early developmental stages is probably attributable to lower levels of expression of PpNAC1 plus the presence of high levels of repressors such as PpSPL1. We present a mechanism whereby BL is the key gene for the blood-flesh trait in peach via its activation of PpMYB10.1 in maturing fruit. Partner TFs such as basic helix-loop-helix proteins and NAC1 are required, as is the removal of transcriptional repressors.

  11. Anthocyanin Interactions with DNA: Intercalation, Topoisomerase I Inhibition and Oxidative Reactions

    OpenAIRE

    Webb, Michael R.; Min, Kyungmi; Susan E. Ebeler

    2008-01-01

    Anthocyanins and their aglycone anthocyanidins are pigmented flavonoids found in significant amounts in many commonly consumed foods. They exhibit a complex chemistry in aqueous solution, which makes it difficult to study their chemistry under physiological conditions. Here we used a gel electrophoresis assay employing supercoiled DNA plasmid to examine the ability of these compounds (1) to intercalate DNA, (2) to inhibit human topoisomerase I through both inhibition of plasmid relaxation act...

  12. Light signaling induces anthocyanin biosynthesis via AN3 mediated COP1 expression

    OpenAIRE

    Meng, Lai-Sheng; Liu, Aizhong

    2015-01-01

    Light signaling plays a pivotal role in controlling plant morphogenesis, metabolism, growth and development. The central process of light signaling pathway is to build the link between light signals and the expression of genes involved. Although studies focused on light signaling toward metabolism have been documented well in the past several decades, most regulation networks of light signaling in a specific metabolic production largely remained unknown. Anthocyanin accumulation in plant tiss...

  13. Anthocyanin-sensitized solar cells using carbon nanotube films as counter electrodes

    Science.gov (United States)

    Zhu, Hongwei; Zeng, Haifeng; Subramanian, Venkatachalam; Masarapu, Charan; Hung, Kai-Hsuan; Wei, Bingqing

    2008-11-01

    Carbon nanotube (CNT) films have been used as counter electrodes in natural dye-sensitized (anthocyanin-sensitized) solar cells to improve the cell performance. Compared with conventional cells using natural dye electrolytes and platinum as the counter electrodes, cells with a single-walled nanotube (SWNT) film counter electrode show comparable conversion efficiency, which is attributed to the increase in short circuit current density due to the high conductivity of the SWNT film.

  14. Total content of phenols and anthocyanins in edible fruits from Bosnia.

    Science.gov (United States)

    Rimpapa, Zlatan; Toromanović, Jasmin; Tahirović, Ismet; Sapcanin, Aida; Sofić, Emin

    2007-05-01

    Content of total phenols and total anthocyanins was estimated in edible fruits from Bosnia by photometric methods. Cyanidin-3-galactoside chloride was used as a standard for determination of total anthocyanins, and galic acid served as a standard for determination of total phenols. Total content of phenols was 12.7 mg/g in elderberry fruits, 10.4 mg/g in bilberry, 9.8 mg/g in blackberry, 8.8 mg/g in wild cherry, 6.1 mg/g in cultivated blackberry, 3.5 mg/g in cultivated strawberry, 2.4 mg/g in average in sour cherry fruits from different locations and the lowest quantity of total phenols was in edible parts of melon, only 0.2 mg/g. Total content of anthocyanins was 6.8 mg/g in wild cherry, 6.7 mg/g in elderberry fruits and 4.5 mg/g in bilberry. Wild bilberry fruits from different locations had in average 3.5 mg/g, cherries from different locations 1.3 mg/g, cultivated blackberries 1.0 mg/g, cultivated strawberries 0.8 mg/g while melon fruit had no anthocyanins at all. Acidity was measured in macerate of edible fruits by direct insertion of electrode. pH values in the macerates were as follows: 3.03 in bilberry, 3.45 in blackberries, 3.59 in sour cherries, 3.92 in wild cherries, 4.44 in elderberries and 6.19 in melon. PMID:17489745

  15. Red Chicory (Cichorium intybus L. cultivar) as a Potential Source of Antioxidant Anthocyanins for Intestinal Health

    OpenAIRE

    Laura D'Evoli; Fabiana Morroni; Ginevra Lombardi-Boccia; Massimo Lucarini; Patrizia Hrelia; Giorgio Cantelli-Forti; Andrea Tarozzi

    2013-01-01

    Fruit- and vegetable-derived foods have become a very significant source of nutraceutical phytochemicals. Among vegetables, red chicory (Cichorium Intybus L. cultivar) has gained attention for its content of phenolic compounds, such as the anthocyanins. In this study, we evaluated the nutraceutical effects, in terms of antioxidant, cytoprotective, and antiproliferative activities, of extracts of the whole leaf or only the red part of the leaf of Treviso red chicory (a typical Italian red leaf...

  16. Molecular genetics of blood-fleshed peach reveals activation of anthocyanin biosynthesis by NAC transcription factors.

    Science.gov (United States)

    Zhou, Hui; Lin-Wang, Kui; Wang, Huiliang; Gu, Chao; Dare, Andrew P; Espley, Richard V; He, Huaping; Allan, Andrew C; Han, Yuepeng

    2015-04-01

    Anthocyanin pigmentation is an important consumer trait in peach (Prunus persica). In this study, the genetic basis of the blood-flesh trait was investigated using the cultivar Dahongpao, which shows high levels of cyanidin-3-glucoside in the mesocarp. Elevation of anthocyanin levels in the flesh was correlated with the expression of an R2R3 MYB transcription factor, PpMYB10.1. However, PpMYB10.1 did not co-segregate with the blood-flesh trait. The blood-flesh trait was mapped to a 200-kb interval on peach linkage group (LG) 5. Within this interval, a gene encoding a NAC domain transcription factor (TF) was found to be highly up-regulated in blood-fleshed peaches when compared with non-red-fleshed peaches. This NAC TF, designated blood (BL), acts as a heterodimer with PpNAC1 which shows high levels of expression in fruit at late developmental stages. We show that the heterodimer of BL and PpNAC1 can activate the transcription of PpMYB10.1, resulting in anthocyanin pigmentation in tobacco. Furthermore, silencing the BL gene reduces anthocyanin pigmentation in blood-fleshed peaches. The transactivation activity of the BL-PpNAC1 heterodimer is repressed by a SQUAMOSA promoter-binding protein-like TF, PpSPL1. Low levels of PpMYB10.1 expression in fruit at early developmental stages is probably attributable to lower levels of expression of PpNAC1 plus the presence of high levels of repressors such as PpSPL1. We present a mechanism whereby BL is the key gene for the blood-flesh trait in peach via its activation of PpMYB10.1 in maturing fruit. Partner TFs such as basic helix-loop-helix proteins and NAC1 are required, as is the removal of transcriptional repressors. PMID:25688923

  17. Plant Anthocyanin Synthesis and Gene Regulation%植物花青素合成与基因调控

    Institute of Scientific and Technical Information of China (English)

    马延蕊; 张金文; 梁慧光; 柳永强

    2012-01-01

    文章在阐述植物花青素生物化学合成的基础上,综述了植物花色素苷合成的基因调控及环境、激素化学物质等外在因子对花青素基因调控的影响。结果表明:在植物花青素代谢中,温度、光照、紫外线、施肥状况、激素水平等因素能诱发花青素合成的调节基因或反义基因的表达,从而诱导或抑制了花青素的合成。在调控基因中,一些对花青素合成的结构蛋白表达产生促进作用,一些则具有抑制效应。不同外在因子激活或抑制调控基因的种类与数量不同,因此,产生了不同的花青素组型或相同组型的不同配比,使植物器官表现不同的颜色。%This paper aims to explain the biochemistry of anthocyanin synthesis based on an overview of plant anthocyanin synthesis genes and environmental factors in the regulation of anthocyanin metabolism. The results show that: ① The metabolism of anthocyanins in plants is affected by the temperature, light, ultraviolet, fertilization status, hormone levels and other factors, which affect the military anthocyanin biosynthetic genes, and then induce or inhibit the synthesis of anthocyanins. ② In the regulation of genes, some of the structural genes of anthocyanin synthesis showed promoting effect, while others showed inhibitory effect. At different environ- mental conditions, the regulation of gene activation and inhibition of the amount of different regulatory genes that anthocyanin accumulation is different, and cause different colors of plant-organs production. ③ In different environmental factors or hor-mones induced to produce the same or different regulation of gene expression changes in regulatory genes, resulting in several different anthocyanins or anthocyanin ratio changes, so that the color of plant organs in different colors.

  18. Quality assessment of 178 cultivars of plum regarding phenolic, anthocyanin and sugar content.

    Science.gov (United States)

    Sahamishirazi, Samira; Moehring, Jens; Claupein, Wilhelm; Graeff-Hoenninger, Simone

    2017-01-01

    In this study assessment of total phenolic, individual anthocyanin and total sugar content (TSC) of wide range of plum cultivars was done in order to select cultivars with high health benefiting compounds for potential breeding purposes. Total phenolics varied between 38.45 and 841.50mg GAE 100g(-1) FW. Cyaniding-3-rutinoside, cyaniding-3- glucoside and its equivalents were identified in anthocyanin measurement by HPLC with different ranges. TSC differed between 9.63 and 29.47%. Besides, evaluation of the effect of cultivar and year on phenolic content of 23 randomly selected cultivars over two following years (2013 & 2014) showed significant effect of both factors on phenolic content of plum cultivars. Overall, cultivars "Cacaks Spaete" which had high amount of total phenolics with stability over time, as well as "Hohenheim breed 4894" as a cultivar which contained high amounts of total phenolics, anthocyanins and TSC were selected for further breeding purposes to provide high nutritional quality plum to consumers.

  19. Anthocyanin content in dried berry skins and wine produced from dried grapes

    Directory of Open Access Journals (Sweden)

    PEÇULI ANISA

    2014-06-01

    Full Text Available Anthocyanin, are the substances which are biosynthesized in the grape skin, extracted during the maceration and vinification and which contribute in wine color. During the aging of wines these substances are converted in their derivates, contributing in wine quality. For this reasons in nowadays there is a big attention of studies in these components. Wines from two grapes variety, a French variety, Cabernet Sauvignon and the other an autochthonous variety of Albania Kallmet were observed. The role of drying in concentration of anthocyanin in skins berry and if this technique is reflected in wine produced from this dried grape, was studied. The results shown that the quantity of anthocyanins from dried skins varied from 136 mg/100gr fresh product to 468 mg/100gr. The dried skins had the higher quantity, but this result was more significant for Cabernet Sauvignon wine than Kallmet wine. Measurement of phenolic content showed no significant changes between wines from dried and non-dried grapes.

  20. Quality assessment of 178 cultivars of plum regarding phenolic, anthocyanin and sugar content.

    Science.gov (United States)

    Sahamishirazi, Samira; Moehring, Jens; Claupein, Wilhelm; Graeff-Hoenninger, Simone

    2017-01-01

    In this study assessment of total phenolic, individual anthocyanin and total sugar content (TSC) of wide range of plum cultivars was done in order to select cultivars with high health benefiting compounds for potential breeding purposes. Total phenolics varied between 38.45 and 841.50mg GAE 100g(-1) FW. Cyaniding-3-rutinoside, cyaniding-3- glucoside and its equivalents were identified in anthocyanin measurement by HPLC with different ranges. TSC differed between 9.63 and 29.47%. Besides, evaluation of the effect of cultivar and year on phenolic content of 23 randomly selected cultivars over two following years (2013 & 2014) showed significant effect of both factors on phenolic content of plum cultivars. Overall, cultivars "Cacaks Spaete" which had high amount of total phenolics with stability over time, as well as "Hohenheim breed 4894" as a cultivar which contained high amounts of total phenolics, anthocyanins and TSC were selected for further breeding purposes to provide high nutritional quality plum to consumers. PMID:27507527

  1. Anion channels and the stimulation of anthocyanin accumulation by blue light in Arabidopsis seedlings

    Science.gov (United States)

    Noh, B.; Spalding, E. P.; Evans, M. H. (Principal Investigator)

    1998-01-01

    Activation of anion channels by blue light begins within seconds of irradiation in seedlings and is related to the ensuing growth inhibition. 5-Nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB) is a potent, selective, and reversible blocker of these anion channels in Arabidopsis thaliana. Here we show that 20 microM NPPB blocked 72% of the blue-light-induced accumulation of anthocyanin pigments in seedlings. Feeding biosynthetic intermediates to wild-type and tt5 seedlings provided evidence that NPPB prevented blue light from up-regulating one or more steps between and including phenylalanine ammonia lyase and chalcone isomerase. NPPB was found to have no significant effect on the blue-light-induced increase in transcript levels of PAL1, CHS, CHI, or DFR, which are genes that encode anthocyanin-biosynthetic enzymes. Immunoblots revealed that NPPB also did not inhibit the accumulation of the chalcone synthase, chalcone isomerase, or flavanone-3-hydroxylase proteins. This is in contrast to the reduced anthocyanin accumulation displayed by a mutant lacking the HY4 blue-light receptor, as hy4 displayed reduced expression of the above enzymes. Taken together, the data indicate that blue light acting through HY4 leads to an increase in the amount of biosynthetic enzymes but blue light must also act through a separate, anion-channel-dependent system to create a fully functional biosynthetic pathway.

  2. High concentrations of anthocyanins in genuine cherry-juice of old local Austrian Prunus avium varieties.

    Science.gov (United States)

    Schüller, Elisabeth; Halbwirth, Heidi; Mikulic-Petkovsek, Maja; Slatnar, Ana; Veberic, Robert; Forneck, Astrid; Stich, Karl; Spornberger, Andreas

    2015-04-15

    Antioxidant activity and polyphenols were quantified in vapour-extracted juice of nine Austrian, partially endemic varieties of sweet cherry (Prunus avium): cv. 'Spätbraune von Purbach', cv. 'Early Rivers', cv. 'Joiser Einsiedekirsche', cv. 'Große Schwarze Knorpelkirsche' and four unidentified local varieties. Additionally the effect of storage was evaluated for six of the varieties. A variety showing the highest antioxidant capacity (9.64 μmol Trolox equivalents per mL), total polyphenols (2747 mg/L) and total cyanidins (1085 mg/L) was suitable for mechanical harvest and its juice did not show any losses of antioxidant capacity and total anthocyanin concentration during storage. The juice of cv. 'Große Schwarze Knorpelkirsche' had also high concentrations of total anthocyanins (873 mg/L), but showed substantial losses through storage. The local Austrian sweet cherry varieties from the Pannonian climate zone are particularly suitable for the production of processed products like cherry juice with high content of anthocyanins and polyphenols. PMID:25466109

  3. Progress in Regulation of Anthocyanins%花青素苷调控研究进展

    Institute of Scientific and Technical Information of China (English)

    樊荣辉; 黄敏玲

    2013-01-01

    Anthocyanins are main determinants of plant flower colors.In recent years,with rapid development of molecular bio-technology and research,the regulation mechanism of anthocyanins has become increasingly clear.In order to provide theoretical reference for flower color improving,this review describes regulation mechanism about biosynthesis of anthocyanins,modification of anthocyanidins,co-pigments,vacuole pH value,metal ions and transcription factors.%花青素苷是决定植物花色的主要色素.近年来,随着分子生物学技术的发展及研究的深入,花青素苷调控机理越来越清晰.该文主要论述了花青素苷生物合成、分子修饰、助色素、液泡pH值、金属离子、转录因子等调控机制,以期为花色改良提供理论参考.

  4. The Tomato Hoffman's Anthocyaninless Gene Encodes a bHLH Transcription Factor Involved in Anthocyanin Biosynthesis That Is Developmentally Regulated and Induced by Low Temperatures.

    Science.gov (United States)

    Qiu, Zhengkun; Wang, Xiaoxuan; Gao, Jianchang; Guo, Yanmei; Huang, Zejun; Du, Yongchen

    2016-01-01

    Anthocyanin pigments play many roles in plants, including providing protection against biotic and abiotic stresses. Many of the genes that mediate anthocyanin accumulation have been identified through studies of flowers and fruits; however, the mechanisms of genes involved in anthocyanin regulation in seedlings under low-temperature stimulus are less well understood. Genetic characterization of a tomato inbred line, FMTT271, which showed no anthocyanin pigmentation, revealed a mutation in a bHLH transcription factor (TF) gene, which corresponds to the ah (Hoffman's anthocyaninless) locus, and so the gene in FMTT271 at that locus was named ah. Overexpression of the wild type allele of AH in FMTT271 resulted in greater anthocyanin accumulation and increased expression of several genes in the anthocyanin biosynthetic pathway. The expression of AH and anthocyanin accumulation in seedlings was shown to be developmentally regulated and induced by low-temperature stress. Additionally, transcriptome analyses of hypocotyls and leaves from the near-isogenic lines seedlings revealed that AH not only influences the expression of anthocyanin biosynthetic genes, but also genes associated with responses to abiotic stress. Furthermore, the ah mutation was shown to cause accumulation of reactive oxidative species and the constitutive activation of defense responses under cold conditions. These results suggest that AH regulates anthocyanin biosynthesis, thereby playing a protective role, and that this function is particularly important in young seedlings that are particularly vulnerable to abiotic stresses.

  5. Characterization of Anthocyanins in Perilla frutescens var. acuta Extract by Advanced UPLC-ESI-IT-TOF-MSn Method and Their Anticancer Bioactivity

    Directory of Open Access Journals (Sweden)

    Yan-Kang He

    2015-05-01

    Full Text Available The anthocyanin extract from a domestic Perilla cultivar (Perilla frutescens var. acuta were isolated and characterized with high mass accuracy and multi-dimensional fragmentation by means of ultra-performance liquid chromatography (UPLC and electrospray ionization-ion trap-time of flight mass spectrometry analysis (ESI-IT-TOF-MSn. The new developed and applied LC-MS method focused on in-depth screening of anthocyanin compounds with similar structures which also provided a new approach of anthocyanin characterization without the use of external standards. Selective detection of interested anthocyanins was achieved utilizing extracted ion chromatogram (EIC analysis, while MSn spectra were recorded to allow identification of the anthocyanin based on characteristic fragmentation patterns. Seven anthocyanins including one feruloyl (Cyanidin 3-O-feruloylglucoside-5-O-glucoside, two caffeoyl (Cyanidin 3-O-caffeoylglucoside-5-O-glucoside, Cyanidin 3-O-caffeoylglucoside-5-O-malonylglucoside and four coumaroyl substituted anthocyanins (Cis-shisonin, Malonyl-cis-shisonin, Shisonin, and Malonyl-shisonin were identified. Annexin-V FITC/PI flow cytometric assay was performed to analyze the influence of anthocyanin extract of P. frutescens var. acuta on cell apoptosis. The results suggested that Perilla anthocyanins can induce Hela cell apoptosis by a dose dependent manner.

  6. A Continuous Procedure Based on Column Chromatography to Purify Anthocyanins from Schisandra chinensis by a Macroporous Resin plus Gel Filtration Chromatography

    Directory of Open Access Journals (Sweden)

    Daran Yue

    2016-02-01

    Full Text Available In our previous study, as natural food colorants and antioxidants, the color and content stabilities of Schisandra chinensis (S. chinensis anthocyanins were investigated. In this work, the purification process parameters of S. chinensis anthocyanins using a macroporous resin and gel filtration chromatography were evaluated. The optimized parameters of static adsorption and desorption were as follows. The selected resin is HPD-300 (nonpolar copolymer styrene type resin, and the anthocyanins adsorption saturation capacity of HPD-300 resin was 0.475 mg/g dry resin. Adsorption time was 4 h, and 0.517 mg/mL of S. chinensis anthocyanins was adsorbed on the resin column with a flow rate of 39 mL/h (3 BV/h. After adsorption, the anthocyanins were completely desorpted with 2.5 BV of 90% (v/v ethanol solution, and the desorption flow rate was 13 mL/h (1 BV/h. After purification by dynamic adsorption and desorption, the anthocyanins content in the effluent increased from 47.6 mg/g to 128.4 mg/g, the purity of anthocyanins increased six-fold from 5.08% to 30.43%, and the anthocyanins recovery was 96.5%. The major constituent of S. chinensis anthocyanins was isolated with Bio-Gel P2 gel filtration chromatography, and it was detected by liquid chromatography electrospray ionisation tandem mass spectrometry (LC-ESI-MS as cyanidin-3-O-xylosylrutinoside. Moreover, the antioxidant activities of S. chinensis anthocyanins were investigated. After purification using the HPD-300 resin, the antioxidant activities of anthocyanins were increased 1.2-fold (FRAP and 1.7-fold (ABTS.

  7. A Continuous Procedure Based on Column Chromatography to Purify Anthocyanins from Schisandra chinensis by a Macroporous Resin plus Gel Filtration Chromatography.

    Science.gov (United States)

    Yue, Daran; Yang, Lei; Liu, Shouxin; Li, Jian; Li, Wei; Ma, Chunhui

    2016-02-06

    In our previous study, as natural food colorants and antioxidants, the color and content stabilities of Schisandra chinensis (S. chinensis) anthocyanins were investigated. In this work, the purification process parameters of S. chinensis anthocyanins using a macroporous resin and gel filtration chromatography were evaluated. The optimized parameters of static adsorption and desorption were as follows. The selected resin is HPD-300 (nonpolar copolymer styrene type resin), and the anthocyanins adsorption saturation capacity of HPD-300 resin was 0.475 mg/g dry resin. Adsorption time was 4 h, and 0.517 mg/mL of S. chinensis anthocyanins was adsorbed on the resin column with a flow rate of 39 mL/h (3 BV/h). After adsorption, the anthocyanins were completely desorpted with 2.5 BV of 90% (v/v) ethanol solution, and the desorption flow rate was 13 mL/h (1 BV/h). After purification by dynamic adsorption and desorption, the anthocyanins content in the effluent increased from 47.6 mg/g to 128.4 mg/g, the purity of anthocyanins increased six-fold from 5.08% to 30.43%, and the anthocyanins recovery was 96.5%. The major constituent of S. chinensis anthocyanins was isolated with Bio-Gel P2 gel filtration chromatography, and it was detected by liquid chromatography electrospray ionisation tandem mass spectrometry (LC-ESI-MS) as cyanidin-3-O-xylosylrutinoside. Moreover, the antioxidant activities of S. chinensis anthocyanins were investigated. After purification using the HPD-300 resin, the antioxidant activities of anthocyanins were increased 1.2-fold (FRAP) and 1.7-fold (ABTS).

  8. Effects of pretreatments on anthocyanin composition, phenolics contents and antioxidant capacities during fermentation of hawthorn (Crataegus pinnatifida) drink.

    Science.gov (United States)

    Liu, Suwen; Chang, Xuedong; Liu, Xiufeng; Shen, Zhanwei

    2016-12-01

    The effect of microwave and heat pretreatment on the content and composition of anthocyanins, phenolics, and the antioxidant capacity of hawthorn drink were studied. Nine anthocyanins were isolated by chromatographic separation from the Zirou hawthorn source and their structure identified using HPLC-DAD-ESI/MS analysis. Heat and microwave pretreatments had a significant impact on the relative contents of hawthorn anthocyanins, such as cyanidin-3-galactoside (82.9% and 76.9%, respectively) and cyanidin-3-glucoside (9.2% and 11.5%, respectively). Pretreatment had no significant effect on pH, total soluble solid or total acid. More anthocyanins remained after heat treatment than after microwaving (0.745mg/100mL), and were 52.4% higher than the control group after storage for 7days. The colour density of the heat treated group was higher than the control group (24.5%) after 12days of fermentation. The main antioxidant capacities of the hawthorn drinks came from total polyphenolics rather than total anthocyanins or total flavonoids. PMID:27374510

  9. Optimization of ultrasound-assisted extraction of anthocyanins from haskap berries (Lonicera caerulea L.) using Response Surface Methodology.

    Science.gov (United States)

    Celli, Giovana Bonat; Ghanem, Amyl; Brooks, Marianne Su-Ling

    2015-11-01

    Haskap berries (Lonicera caerulea L.) are a rich source of bioactive molecules. As such, the extraction of anthocyanins is important for the development of many value-added products and functional food ingredients. In this paper, the ultrasound-assisted extraction (UAE) of anthocyanins from haskap berries was investigated. Significant independent variables were screened and optimized using Plackett-Burman (PB) and Box-Behnken (BB) designs, respectively. The mathematical model showed a high coefficient of determination (R(2)=0.9396) and the optimum conditions for the extraction were as follows: liquid/solid ratio 25:1 (mL/g), solvent composition of 80% ethanol, addition of 0.5% formic acid, ultrasound bath temperature of 35°C for 20 min. Under these conditions, the total anthocyanin content of 22.73 mg cyaniding 3-glucoside equivalents (C3G)/g dry weight (DW) was consistent with the predicted response of 22.45 mg C3G/g DW from the model (mean error of 1.28%). Five anthocyanins were identified in the optimized extract, namely cyanidin 3,5-diglucoside, cyanidin 3-glucoside, cyanidin 3-rutinoside, pelargonidin 3-glucoside, and peonidin 3-glucoside. Thus, UAE is a suitable technique for the extraction of anthocyanins from haskap berries. PMID:26186866

  10. Use of Modified Phenolic Thyme Extracts (Thymus vulgaris) with Reduced Polyphenol Oxidase Substrates as Anthocyanin Color and Stability Enhancing Agents.

    Science.gov (United States)

    Aguilar, Oscar; Hernández-Brenes, Carmen

    2015-01-01

    Residual enzymatic activity in certain foods, particularly of polyphenoloxidase (PPO), is responsible for the majority of anthocyanin degradation in food systems, causing also parallel losses of other relevant nutrients. The present work explored the feasibility of modifying phenolic profiles of thyme extracts, by use of chromatographic resins, to obtain phenolic extracts capable of enhancing anthocyanin colour and stability in the presence of PPO activity. Results indicated that pretreatment of thyme extracts with strong-anion exchange resins (SAE) enhanced their copigmentation abilities with strawberry juice anthocyanins. Phenolic chromatographic profiles, by HPLC-PDA, also demonstrated that thyme extracts subjected to SAE treatments had significantly lower concentrations of certain phenolic compounds, but extracts retained their colour enhancing and anthocyanin stabilization capacities though copigmentation. Additional testing also indicated that SAE modified extract had a lower ability (73% decrease) to serve as PPO substrate, when compared to the unmodified extract. Phenolic profile modification process, reported herein, could be potentially used to manufacture modified anthocyanin-copigmentation food and cosmetic additives for colour-stabilizing applications with lower secondary degradation reactions in matrixes that contain PPO activity. PMID:26694329

  11. Anthocyanin composition, antioxidant efficiency, and α-amylase inhibitor activity of different Hungarian sour cherry varieties (Prunus cerasus L.).

    Science.gov (United States)

    Homoki, Judit R; Nemes, Andrea; Fazekas, Erika; Gyémánt, Gyöngyi; Balogh, Péter; Gál, Ferenc; Al-Asri, Jamil; Mortier, Jérémie; Wolber, Gerhard; Babinszky, László; Remenyik, Judit

    2016-03-01

    Five Hungarian sour cherry cultivars were studied to determine their anthocyanin contents and their possible inhibitory properties. The water and methanol soluble antioxidant capacities were separately assessed by photoluminescence showing values ranged from 3.4μgmg(-1) to 15.4μgmg(-1), respectively. The "VN1" variety (selected from "Csengődi csokros") showed the highest antioxidant capacity. The anthocyanin content, measured by pH differential method or isolated by solid phase extraction, was the highest also in "VN1". Correlation was found between the anthocyanin content and the high antioxidant capacity. The main anthocyanin components were cyanidin-3-O-rutinoside and cyanidin-3-O-glucoside. The presence of malvidin-3,5-O-diglycoside was verified by MALDI-TOF MS. Sour cherry extracts and selected anthocyanins inhibited the human salivary alpha-amylase catalyzed hydrolysis competitively. The lowest IC50 value, 55μgmL(-1) or 80μM, was measured for malvidin-3,5-O-diglycoside, for which possible binding modes within the alpha-amylase active site could be investigated in silico using molecular docking and molecular dynamics. PMID:26471548

  12. Processing strawberries to different products alters contents of vitamin C, total phenolics, total anthocyanins, and antioxidant capacity.

    Science.gov (United States)

    Klopotek, Yvonne; Otto, Konrad; Böhm, Volker

    2005-07-13

    Strawberries were processed to juice, nectar, wine, and puree. For investigation of the antioxidant capacity as well as the contents of ascorbic acid, total phenolics and total anthocyanins, samples were taken after different stages of production to determine the effects of processing. The content of vitamin C was measured spectrophotometrically. The total phenolic content was analyzed by using the Folin-Ciocalteu method, and the amount of total anthocyanins was determined by using the pH-differential method. Two different methods-the trolox equivalent antioxidant capacity assay and the ferric reducing antioxidant power test-were used to determine the hydrophilic antioxidant capacity. This study showed the decrease of all investigated parameters within processing strawberries to different products. The content of ascorbic acid decreased with production time and processing steps, especially during heat treatment. The investigations on total phenolics in strawberry products proved fining to be a mild method to clarify berry juices and wines without removing high amounts of total phenolics. Fermentation did not lead to heavy losses of total phenolics, probably due to polymerization and condensation of monomer phenolics such as anthocyanins. Total anthocyanins and the hydrophilic antioxidant capacity decreased while using high temperatures. Anthocyanins also decreased considerably during the processing of wines, mainly caused by fermentation and pasteurization. PMID:15998127

  13. 植物花青素生物代谢调控%Metabolic Regulation of Plants Anthocyanin

    Institute of Scientific and Technical Information of China (English)

    郭凤丹; 王效忠; 刘学英; 夏晗; 王兴军

    2011-01-01

    Anthocyanin is a group of important natural pigments, and it's also one of the most important plant pigments. Recent years, as a free-radical scavenger, more research focus on the role of anthocyanins in healthy, so an important research object is to increase anthocyanin content by genetic engineering. This review summarizes the anthocyanin biosynthesis pathway, regulation mechanism and genetic engineering in plants. The environmental factors on the biosynthesis of anthocyanin also been emphasized in this article.%花青素是一类重要的天然色素物质,是植物的主要呈色物质之一,近年来花青素在保健方面的作用越来越受到人们的重视,利用基因工程改造植物花青素相关基因,提高花青素含量已成为研究的热点领域.综述花青素的合成途径、调控机理及转基因方面的研究,重点介绍近年来影响花青素合成的分子因素及外部环境因素的研究现状.

  14. Transcriptomics and Metabolite Analysis Reveals the Molecular Mechanism of Anthocyanin Biosynthesis Branch Pathway in Different Senecio cruentus Cultivars.

    Science.gov (United States)

    Jin, Xuehua; Huang, He; Wang, Lu; Sun, Yi; Dai, Silan

    2016-01-01

    The cyanidin (Cy), pelargonidin (Pg), and delphinidin (Dp) pathways are the three major branching anthocyanin biosynthesis pathways that regulate flavonoid metabolic flux and are responsible for red, orange, and blue flower colors, respectively. Different species have evolved to develop multiple regulation mechanisms that form the branched pathways. In the current study, five Senecio cruentus cultivars with different colors were investigated. We found that the white and yellow cultivars do not accumulate anthocyanin and that the blue, pink, and carmine cultivars mainly accumulate Dp, Pg, and Cy in differing densities. Subsequent transcriptome analysis determined that there were 43 unigenes encoding anthocyanin biosynthesis genes in the blue cultivar. We also combined chemical and transcriptomic analyses to investigate the major metabolic pathways that are related to the observed differences in flower pigmentation in the series of S. cruentus. The results showed that mutations of the ScbHLH17 and ScCHI1/2 coding regions abolish anthocyanin formation in the white and the yellow cultivars; the competition of the ScF3'H1, ScF3'5'H, and ScDFR1/2 genes for naringenin determines the differences in branching metabolic flux of the Cy, Dp, and Pg pathways. Our findings provide new insights into the regulation of anthocyanin branching and also supplement gene resources (including ScF3'5 'H, ScF3'H, and ScDFRs) for flower color modification of ornamentals. PMID:27656188

  15. Neuroprotective effects of anthocyanin- and proanthocyanidin-rich extracts in cellular models of Parkinson׳s disease.

    Science.gov (United States)

    Strathearn, Katherine E; Yousef, Gad G; Grace, Mary H; Roy, Susan L; Tambe, Mitali A; Ferruzzi, Mario G; Wu, Qing-Li; Simon, James E; Lila, Mary Ann; Rochet, Jean-Christophe

    2014-03-25

    Neuropathological evidence indicates that dopaminergic cell death in Parkinson׳s disease (PD) involves impairment of mitochondrial complex I, oxidative stress, microglial activation, and the formation of Lewy bodies. Epidemiological findings suggest that the consumption of berries rich in anthocyanins and proanthocyanidins may reduce PD risk. In this study, we investigated whether extracts rich in anthocyanins, proanthocyanidins, or other polyphenols suppress the neurotoxic effects of rotenone in a primary cell culture model of PD. Dopaminergic cell death elicited by rotenone was suppressed by extracts prepared from blueberries, grape seed, hibiscus, blackcurrant, and Chinese mulberry. Extracts rich in anthocyanins and proanthocyanidins exhibited greater neuroprotective activity than extracts rich in other polyphenols, and a number of individual anthocyanins interfered with rotenone neurotoxicity. The blueberry and grape seed extracts rescued rotenone-induced defects in mitochondrial respiration in a dopaminergic cell line, and a purple basal extract attenuated nitrite release from microglial cells stimulated by lipopolysaccharide. These findings suggest that anthocyanin- and proanthocyanidin-rich botanical extracts may alleviate neurodegeneration in PD via enhancement of mitochondrial function. PMID:24502982

  16. Processing strawberries to different products alters contents of vitamin C, total phenolics, total anthocyanins, and antioxidant capacity.

    Science.gov (United States)

    Klopotek, Yvonne; Otto, Konrad; Böhm, Volker

    2005-07-13

    Strawberries were processed to juice, nectar, wine, and puree. For investigation of the antioxidant capacity as well as the contents of ascorbic acid, total phenolics and total anthocyanins, samples were taken after different stages of production to determine the effects of processing. The content of vitamin C was measured spectrophotometrically. The total phenolic content was analyzed by using the Folin-Ciocalteu method, and the amount of total anthocyanins was determined by using the pH-differential method. Two different methods-the trolox equivalent antioxidant capacity assay and the ferric reducing antioxidant power test-were used to determine the hydrophilic antioxidant capacity. This study showed the decrease of all investigated parameters within processing strawberries to different products. The content of ascorbic acid decreased with production time and processing steps, especially during heat treatment. The investigations on total phenolics in strawberry products proved fining to be a mild method to clarify berry juices and wines without removing high amounts of total phenolics. Fermentation did not lead to heavy losses of total phenolics, probably due to polymerization and condensation of monomer phenolics such as anthocyanins. Total anthocyanins and the hydrophilic antioxidant capacity decreased while using high temperatures. Anthocyanins also decreased considerably during the processing of wines, mainly caused by fermentation and pasteurization.

  17. A novel glucosylation reaction on anthocyanins catalyzed by acyl-glucose-dependent glucosyltransferase in the petals of carnation and delphinium.

    Science.gov (United States)

    Matsuba, Yuki; Sasaki, Nobuhiro; Tera, Masayuki; Okamura, Masachika; Abe, Yutaka; Okamoto, Emi; Nakamura, Haruka; Funabashi, Hisakage; Takatsu, Makoto; Saito, Mikako; Matsuoka, Hideaki; Nagasawa, Kazuo; Ozeki, Yoshihiro

    2010-10-01

    Glucosylation of anthocyanin in carnations (Dianthus caryophyllus) and delphiniums (Delphinium grandiflorum) involves novel sugar donors, aromatic acyl-glucoses, in a reaction catalyzed by the enzymes acyl-glucose-dependent anthocyanin 5(7)-O-glucosyltransferase (AA5GT and AA7GT). The AA5GT enzyme was purified from carnation petals, and cDNAs encoding carnation Dc AA5GT and the delphinium homolog Dg AA7GT were isolated. Recombinant Dc AA5GT and Dg AA7GT proteins showed AA5GT and AA7GT activities in vitro. Although expression of Dc AA5GT in developing carnation petals was highest at early stages, AA5GT activity and anthocyanin accumulation continued to increase during later stages. Neither Dc AA5GT expression nor AA5GT activity was observed in the petals of mutant carnations; these petals accumulated anthocyanin lacking the glucosyl moiety at the 5 position. Transient expression of Dc AA5GT in petal cells of mutant carnations is expected to result in the transfer of a glucose moiety to the 5 position of anthocyanin. The amino acid sequences of Dc AA5GT and Dg AA7GT showed high similarity to glycoside hydrolase family 1 proteins, which typically act as β-glycosidases. A phylogenetic analysis of the amino acid sequences suggested that other plant species are likely to have similar acyl-glucose-dependent glucosyltransferases.

  18. Transcriptomics and Metabolite Analysis Reveals the Molecular Mechanism of Anthocyanin Biosynthesis Branch Pathway in Different Senecio cruentus Cultivars

    Science.gov (United States)

    Jin, Xuehua; Huang, He; Wang, Lu; Sun, Yi; Dai, Silan

    2016-01-01

    The cyanidin (Cy), pelargonidin (Pg), and delphinidin (Dp) pathways are the three major branching anthocyanin biosynthesis pathways that regulate flavonoid metabolic flux and are responsible for red, orange, and blue flower colors, respectively. Different species have evolved to develop multiple regulation mechanisms that form the branched pathways. In the current study, five Senecio cruentus cultivars with different colors were investigated. We found that the white and yellow cultivars do not accumulate anthocyanin and that the blue, pink, and carmine cultivars mainly accumulate Dp, Pg, and Cy in differing densities. Subsequent transcriptome analysis determined that there were 43 unigenes encoding anthocyanin biosynthesis genes in the blue cultivar. We also combined chemical and transcriptomic analyses to investigate the major metabolic pathways that are related to the observed differences in flower pigmentation in the series of S. cruentus. The results showed that mutations of the ScbHLH17 and ScCHI1/2 coding regions abolish anthocyanin formation in the white and the yellow cultivars; the competition of the ScF3′H1, ScF3′5′H, and ScDFR1/2 genes for naringenin determines the differences in branching metabolic flux of the Cy, Dp, and Pg pathways. Our findings provide new insights into the regulation of anthocyanin branching and also supplement gene resources (including ScF3′5 ′H, ScF3′H, and ScDFRs) for flower color modification of ornamentals. PMID:27656188

  19. Use of Modified Phenolic Thyme Extracts (Thymus vulgaris with Reduced Polyphenol Oxidase Substrates as Anthocyanin Color and Stability Enhancing Agents

    Directory of Open Access Journals (Sweden)

    Oscar Aguilar

    2015-12-01

    Full Text Available Residual enzymatic activity in certain foods, particularly of polyphenoloxidase (PPO, is responsible for the majority of anthocyanin degradation in food systems, causing also parallel losses of other relevant nutrients. The present work explored the feasibility of modifying phenolic profiles of thyme extracts, by use of chromatographic resins, to obtain phenolic extracts capable of enhancing anthocyanin colour and stability in the presence of PPO activity. Results indicated that pretreatment of thyme extracts with strong-anion exchange resins (SAE enhanced their copigmentation abilities with strawberry juice anthocyanins. Phenolic chromatographic profiles, by HPLC-PDA, also demonstrated that thyme extracts subjected to SAE treatments had significantly lower concentrations of certain phenolic compounds, but extracts retained their colour enhancing and anthocyanin stabilization capacities though copigmentation. Additional testing also indicated that SAE modified extract had a lower ability (73% decrease to serve as PPO substrate, when compared to the unmodified extract. Phenolic profile modification process, reported herein, could be potentially used to manufacture modified anthocyanin-copigmentation food and cosmetic additives for colour-stabilizing applications with lower secondary degradation reactions in matrixes that contain PPO activity.

  20. VIGS approach reveals the modulation of anthocyanin biosynthetic genes by CaMYB in chili pepper leaves.

    Science.gov (United States)

    Zhang, Zhen; Li, Da-Wei; Jin, Jing-Hao; Yin, Yan-Xu; Zhang, Huai-Xia; Chai, Wei-Guo; Gong, Zhen-Hui

    2015-01-01

    The purple coloration of pepper leaves arises from the accumulation of anthocyanin. Three regulatory and 12 structural genes have been characterized for their involvement in the anthocyanin biosynthesis. Examination of the abundance of these genes in leaves showed that the majority of them differed between anthocyanin pigmented line Z1 and non-pigmented line A3. Silencing of the R2R3-MYB transcription factor CaMYB in pepper leaves of Z1 resulted in the loss of anthocyanin accumulation. Moreover, the expression of multiple genes was altered in the silenced leaves. The expression of MYC was significantly lower in CaMYB-silenced leaves, whereas WD40 showed the opposite pattern. Most structural genes including CHS, CHI, F3H, F3'5'H, DFR, ANS, UFGT, ANP, and GST were repressed in CaMYB-silenced foliage with the exception of PAL, C4H, and 4CL. These results indicated that MYB plays an important role in the regulation of anthocyanin biosynthetic related genes. Besides CaMYB silenced leaves rendered more sporulation of Phytophthora capsici Leonian indicating that CaMYB might be involved in the defense response to pathogens. PMID:26217354

  1. Metabolomic analysis and differential expression of anthocyanin biosynthetic genes in white- and red-flowered buckwheat cultivars (Fagopyrum esculentum).

    Science.gov (United States)

    Kim, Yeon Bok; Park, Soo-Yun; Thwe, Aye Aye; Seo, Jeong Min; Suzuki, Tastsuro; Kim, Sun-Ju; Kim, Jae Kwang; Park, Sang Un

    2013-11-01

    Red-flowered buckwheat ( Fagopyrum esculentum ) is used in the production of tea, juice, and alcohols after the detoxification of fagopyrin. In order to investigate the metabolomics and regulatory of anthocyanin production in red-flowered (Gan-Chao) and white-flowered (Tanno) buckwheat cultivars, quantitative real-time RT-PCR (qRT-PCR), gas chromatography time-of-flight mass spectrometry (GC-TOFMS), and high performance liquid chromatography (HPLC) were conducted. The transcriptions of FePAL, FeC4H, Fe4CL1, FeF3H, FeANS, and FeDFR increased gradually from flowering stage 1 and reached their highest peaks at flowering stage 3 in Gan-Chao flower. In total 44 metabolites, 18 amino acids, 15 organic acids, 7 sugars, 3 sugar alcohols, and 1 amine were detected in Gan-Chao flowers. Two anthocyanins, cyanidin 3-O-glucoside and cyanidin 3-O-rutinoside, were identified in Gan-Chao cultivar. The first component of the partial least-squares to latent structures-discriminate analysis (PLS-DA) indicated that high amounts of phenolic, shikimic, and pyruvic acids were present in Gan-Chao. We suggest that transcriptions of genes involved in anthocyanin biosynthesis, anthocyanin contents, and metabolites have correlation in the red-flowered buckwheat Gan-Chao flowers. Our results may be helpful to understand anthocyanin biosynthesis in red-flowered buckwheat.

  2. Antidiabetic and Synergistic Effects of Anthocyanin Fraction from Berberis integerrima Fruit on Streptozotocin-Induced Diabetic Rats Model

    Directory of Open Access Journals (Sweden)

    Zahra Sabahi

    2016-03-01

    Full Text Available Diabetes mellitus is a complex endocrine disorder. There is a serious attempt to identify antidiabetic compounds from natural sources to use with other drugs for reduction of diabetes complications. Present study is based on the investigation of antihyperglycemic effect of anthocyanin fraction of Berberis integerrima Bunge (AFBI fruits on some physiological parameters (glucose level, glycogen content, and body weight in normal and streptozotocin-induced (STZ-induced diabetic rats and evaluation of synergic effect of this fraction with metformin and glibenclamide. Male Sprague dawley rats were divided into nine groups: healthy control group, diabetic control group, diabetic groups treated with anthocyanin fraction (200, 400 and 1000 mg/kg, respectively; diabetic groups treated with glibenclamide and metformin separately, diabetic groups treated with glibenclamide + anthocyanin fraction (1000 mg/kg, metformin + anthocyanin fraction (1000 mg/kg. Treatment of diabetic rats with AFBI (400, 1000mg/kg significantly decreased blood glucose as compared with control. Moreover, AFBI (400, 1000mg/kg significantly increased liver glycogen and body weight compared to control. Nevertheless, there were no synergistic effects between anthocyanin fraction and metformin or glibenclamide on blood glucose, liver glycogen, and body weight. The results of this study indicate that AFBI possesses hypoglycemic effects and may be considered for evaluation in future diabetes clinical studies.

  3. VIGS approach reveals the modulation of anthocyanin biosynthetic genes by CaMYB in Chili pepper leaves

    Directory of Open Access Journals (Sweden)

    zhen ezhang

    2015-07-01

    Full Text Available The purple coloration of pepper leaves arises from the accumulation of anthocyanin. Three regulatory and 12 structural genes have been characterized for their involvement in the anthocyanin biosynthesis. Examination of the abundance of these genes in leaves showed that the majority of them differed between anthocyanin pigmented line Z1 and non-pigmented line A3. Silencing of the R2R3-MYB transcription factor CaMYB in pepper leaves of Z1 resulted in the loss of anthocyanin accumulation. Moreover, the expression of multiple genes was altered in the silenced leaves. The expression of MYC was significantly lower in CaMYB-silenced leaves, whereas WD40 showed the opposite pattern. Most structural genes including CHS, CHI, F3H, F3’5’H, DFR, ANS, UFGT, ANP and GST were repressed in CaMYB-silenced foliage with the exception of PAL, C4H and 4CL. These results indicated that MYB plays an important role in the regulation of anthocyanin biosynthetic related genes. Besides CaMYB silenced leaves rendered more sporulation of Phytophthora capsici Leonian indicating that CaMYB might be involved in the defense response to pathogens.

  4. Formation of Anthocyanin in Rice (Oryza sativa L.)and Influence of Anthocyanin Content to Storage%水稻种子花色苷形成及其对稻谷储藏特性的影响

    Institute of Scientific and Technical Information of China (English)

    张丽丽; 刘斌美; 许学; 章忠贵; 吴跃进

    2012-01-01

    Anthocyanin, mainly existing in glume and episperm of colored rice, is a group of compounds formed from anthocyanidin and glucoside. Because of the structure of flavonoid, anthocyanin has the ability of an-tioxidation. The paper reported the changes of rice anthocyanin in growing and ageing processes and the function of rice anthocyanin to extend seed longevity in seed storage. The results indicated that rice anthocyanin had been accumulated in the early stage. With the increase of the seed's size, anthocyanin content gradually decreased in car-yopsis; meanwhile, the anthocyanin content did not change significantly in glume. After artificial ageing, the anthocyanin content notably decreased, contrary to the result in glume. It might indicate that the anthocyanin in glume doesn't get involved in antioxidant response. The analyses of mycotic infection of ageing seeds suggested that, in the three varieties, the anti-mycete ability of the ones with higher content of anthocyanin was better than that with lower content of anthocyanin. Considering the results, anthocyanin was not the crucial factor in seed storage.%花色苷是有色稻种皮和颖壳里呈现颜色的主要物质,属于类黄酮类物质,具有抗氧化性.本研究围绕水稻种子形成过程中花色苷含量的变化以及其对稻谷储藏特性变化的影响,探讨花色苷在稻谷储藏中延长种子寿命的作用.结果显示:选取的3个品种中,水稻种子的花色苷形成主要在发育初期,随着颖果体积的增大,颖果花色苷的含量会逐渐降低,而颖壳的花色苷含量变化不显著,将种子进行人工老化后,仍只有颖果的花色苷含量出现下降的趋势,表明种子在老化过程中颖壳的花色苷不参与抗老化的各项代谢反应.老化种子SOD活性分析显示,花色苷含量低的中籼9311可能是通过SOD酶活性增加,削减高温高湿胁迫对种子衰老的影响;由稻谷感染霉菌情况显示在3个水稻品种中,花色苷

  5. Microwave-assisted drying of blueberry (Vaccinium corymbosum L.) fruits: Drying kinetics, polyphenols, anthocyanins, antioxidant capacity, colour and texture.

    Science.gov (United States)

    Zielinska, Magdalena; Michalska, Anna

    2016-12-01

    The aim of the study was to evaluate the effect of hot air convective drying (HACD), microwave vacuum drying (MWVD) and their combination (HACD+MWVD) on the drying kinetics, colour, total polyphenols, anthocyanins antioxidant capacity and texture of frozen/thawed blueberries. Drying resulted in reduction of total polyphenols content and antioxidant capacity (69 and 77%, respectively). The highest content of total polyphenols was noted after HACD at 90°C. Lower air temperature and prolonged exposure to oxygen resulted in greater degradation of polyphenols and antioxidant capacity. Drying processes caused a significant decrease (from 70 to 95%) in the content of anthocyanins. The highest content of anthocyanins and the strongest antioxidant capacity was found in blueberries dried using HACD at 90°C+MWVD. Among drying methods, HACD at 90°C+MWVD satisfied significant requirements for dried fruits i.e. short drying time and improved product quality. PMID:27374583

  6. Research progress on anthocyanin of wine%葡萄酒中花色苷的研究进展

    Institute of Scientific and Technical Information of China (English)

    杜文华; 刘忠义

    2011-01-01

    花色苷是葡萄酒的主要呈色物质,同时也具有一定的生理活性功能.文章总结并简述葡萄酒中花色苷的结构、含量变化、性质及稳定性因素、成色作用的途径、生理活性功能、纯化鉴定方法,以期为葡萄酒中花色苷的研究提供参考.%Anthocyanins is the main coloring matter in wine, it have a certain function in physiological activity. Reviewed the anthocyanins' structure, contents change, character, stability factors, color formation, physiological activities and purified identification methods. It would provide reference for the research of anthocyanin in wine.

  7. Determination of Anthocyanins and Exploration of Relationship between Their Composition and Petal Coloration in Crape Myrtle (Lagerstroemia hybrid)

    Institute of Scientific and Technical Information of China (English)

    Jie Zhang; Liang-Sheng Wang; Jin-Ming Gao; Qing-Yan Shu; Chong-Hui Li; Juan Yao; Qing Hao; Jing-Jing Zhang

    2008-01-01

    Petal coloration and pigment components in 12 American crape myrtle cultivars (Lagerstroemla indica x Lagerstroemla fauriei) and five Chinese crape myrtle cultivars (L. indica hybrids) were studied. Color was measured by ClEL'a'b" scale and anthocyanin composition of crape myrtle was determined using high-performance liquid chromatography coupled to photodiode array detection and electrospray ionization mass spectrometry. The presence of the previously reported delphinidin 3-O-glucoside, petunidin 3-O-glucoside and malvidin 3-O-glucoside were confirmed. Cyanidin 3-O-glucoside was identified in crape myrtle for the first time. We explored the relationship between petal color and anthocyanin contents by multiple linear regression analyses. The results indicated that total flavones and flavonols were important variables and contributed to blue-enhancing in crape myrtle. Based on anthocyanins and co-pigments analysis, flower color breeding in crape myrtle towards true-red and blue were discussed.

  8. Effect of Water Stress and Storage Time on Anthocyanins and Other Phenolics of Different Genotypes of Fresh Sweet Basil.

    Science.gov (United States)

    Luna, María C; Bekhradi, Farzaneh; Ferreres, Federico; Jordán, María J; Delshad, Mojtaba; Gil, María I

    2015-10-28

    This study describes the effect of water stress and storage time on the content of anthocyanins and other phenolics in different genotypes of fresh sweet basil (Ocimum basilicum L.). Purple and green Iranian cultivars and a Genovese variety were exposed to a control (100% of the field capacity, FC) and to water stress of mild and severe deficit irrigation treatments (25 and 50 DI corresponding to 75 and 50% FC, respectively). The individual characterization by HPLC-DAD-ESI/MS(n) and the MS fragmentation pathway of anthocyanins are described. A 50% increase in the anthocyanin content was observed in 50 DI after storage. Water stress markedly enhanced the content of phenolic acids after storage in the three genotypes. Water stress can be an efficient way to help the sustainability of water resources, enriching the content of phenolic compounds that may be beneficial to human health. PMID:26473474

  9. Low-temperature conditioning of "seed" cloves enhances the expression of phenolic metabolism related genes and anthocyanin content in 'Coreano' garlic (Allium sativum) during plant development.

    Science.gov (United States)

    Dufoo-Hurtado, Miguel D; Zavala-Gutiérrez, Karla G; Cao, Cong-Mei; Cisneros-Zevallos, Luis; Guevara-González, Ramón G; Torres-Pacheco, Irineo; Vázquez-Barrios, M Estela; Rivera-Pastrana, Dulce M; Mercado-Silva, Edmundo M

    2013-11-01

    Low-temperature conditioning of garlic "seed" cloves accelerated the development of the crop cycle, decreased plant growth, and increased the synthesis of phenolic compounds and anthocyanins in the outer scale leaves of the bulbs at harvest time, leading to 3-fold content increase compared with those conditioned at room temperature. Cold conditioning of "seed" cloves also altered the anthocyanin profile during bulb development and at harvest. Two new anthocyanins are reported for the first time in garlic. The high phenolics and anthocyanin contents in bulbs of plants generated from "seed" cloves conditioned at 5 °C for 5 weeks were preceded by overexpression of some putative genes of the phenolic metabolism [6-fold for phenylalanine ammonia lyase (PAL)] and anthocyanin synthesis [1-fold for UDP-sugar:flavonoid 3-O-glycosyltransferase (UFGT)] compared with those conditioned at room temperature.

  10. Berries and anthocyanins: promising functional food ingredients with postprandial glycaemia-lowering effects.

    Science.gov (United States)

    Castro-Acosta, Monica L; Lenihan-Geels, Georgia N; Corpe, Christopher P; Hall, Wendy L

    2016-08-01

    The prevalence of type 2 diabetes (T2D) is predicted to reach unprecedented levels in the next few decades. In addition to excess body weight, there may be other overlapping dietary drivers of impaired glucose homeostasis that are associated with an obesogenic diet, such as regular exposure to postprandial spikes in blood glucose arising from diets dominated by highly refined starches and added sugars. Strategies to reduce postprandial hyperglycaemia by optimising the functionality of foods would strengthen efforts to reduce the risk of T2D. Berry bioactives, including anthocyanins, are recognised for their inhibitory effects on carbohydrate digestion and glucose absorption. Regular consumption of berries has been associated with a reduction in the risk of T2D. This review aims to examine the evidence from in vitro, animal and human studies, showing that berries and berry anthocyanins may act in the gut to modulate postprandial glycaemia. Specifically, berry extracts and anthocyanins inhibit the activities of pancreatic α-amylase and α-glucosidase in the gut lumen, and interact with intestinal sugar transporters, sodium-dependent glucose transporter 1 and GLUT2, to reduce the rate of glucose uptake into the circulation. Growing evidence from randomised controlled trials suggests that berry extracts, purées and nectars acutely inhibit postprandial glycaemia and insulinaemia following oral carbohydrate loads. Evidence to date presents a sound basis for exploring the potential for using berries/berry extracts as an additional stratagem to weight loss, adherence to dietary guidelines and increasing physical exercise, for the prevention of T2D. PMID:27170557

  11. Advanced Knowledge of Three Important Classes of Grape Phenolics: Anthocyanins, Stilbenes and Flavonols

    Directory of Open Access Journals (Sweden)

    Luigi Bavaresco

    2013-09-01

    Full Text Available Grape is qualitatively and quantitatively very rich in polyphenols. In particular, anthocyanins, flavonols and stilbene derivatives play very important roles in plant metabolism, thanks to their peculiar characteristics. Anthocyanins are responsible for the color of red grapes and wines and confer organoleptic characteristics on the wine. They are used for chemotaxonomic studies and to evaluate the polyphenolic ripening stage of grape. They are natural colorants, have antioxidant, antimicrobial and anticarcinogenic activity, exert protective effects on the human cardiovascular system, and are used in the food and pharmaceutical industries. Stilbenes are vine phytoalexins present in grape berries and associated with the beneficial effects of drinking wine. The principal stilbene, resveratrol, is characterized by anticancer, antioxidant, anti-inflammatory and cardioprotective activity. Resveratrol dimers and oligomers also occur in grape, and are synthetized by the vine as active defenses against exogenous attack, or produced by extracellular enzymes released from pathogens in an attempt to eliminate undesirable toxic compounds. Flavonols are a ubiquitous class of flavonoids with photo-protection and copigmentation (together with anthocyanins functions. The lack of expression of the enzyme flavonoid 3',5'-hydroxylase in white grapes restricts the presence of these compounds to quercetin, kaempferol and isorhamnetin derivatives, whereas red grapes usually also contain myricetin, laricitrin and syringetin derivatives. In the last ten years, the technological development of analytical instrumentation, particularly mass spectrometry, has led to great improvements and further knowledge of the chemistry of these compounds. In this review, the biosynthesis and biological role of these grape polyphenols are briefly introduced, together with the latest knowledge of their chemistry.

  12. Colour and stability assessment of blue ferric anthocyanin chelates in liquid pectin-stabilised model systems.

    Science.gov (United States)

    Buchweitz, M; Brauch, J; Carle, R; Kammerer, D R

    2013-06-01

    The formation of blue coloured ferric anthocyanin chelates and their colour stability during storage and thermal treatment were monitored in a pH range relevant to food (3.6-5.0). Liquid model systems were composed of different types of Citrus pectins, juices (J) and the respective phenolic extracts (E) from elderberry (EB), black currant (BC), red cabbage (RC) and purple carrot (PC) in the presence of ferric ions. For EB, BC and PC, pure blue colours devoid of a violet tint were exclusively observed for the phenolic extracts and at pH values ≥ 4.5 in model systems containing high methoxylated and amidated pectins, respectively. Colour and its stability strongly depended on the amount of ferric ions and the plant source; however, colour decay could generally be described as a pseudo-first-order kinetics. Despite optimal colour hues for RC-E and RC-J, storage and heat stabilities were poor. Highest colour intensities and best stabilities were observed for model systems containing PC-E at a molar anthocyanin:ferric ion ratio of 1:2. Ascorbic and lactic acids interfered with ferric ions, thus significantly affecting blue colour evolution and stability. Colour loss strongly depended on heat exposure with activation energies ranging between 60.5 and 78.4 kJ/mol. The comprehensive evaluation of the interrelationship of pigment source, pH conditions and pectin type on chelate formation and stability demonstrated that ferric anthocyanin chelates are promising natural blue food colourants.

  13. Hibiscus anthocyanins rich extract-induced apoptotic cell death in human promyelocytic leukemia cells

    International Nuclear Information System (INIS)

    Hibiscus sabdariffa Linne (Malvaceae), an attractive plant believed to be native to Africa, is cultivated in the Sudan and Eastern Taiwan. Anthocyanins exist widely in many vegetables and fruits. Some reports demonstrated that anthocyanins extracted from H. sabdariffa L., Hibiscus anthocyanins (HAs) (which are a group of natural pigments existing in the dried calyx of H. sabdariffa L.) exhibited antioxidant activity and liver protection. Therefore, in this study, we explored the effect of HAs on human cancer cells. The result showed that HAs could cause cancer cell apoptosis, especially in HL-60 cells. Using flow cytometry, we found that HAs treatment (0-4 mg/ml) markedly induced apoptosis in HL-60 cells in a dose- and time-dependent manner. The result also revealed increased phosphorylation in p38 and c-Jun, cytochrome c release, and expression of tBid, Fas, and FasL in the HAs-treated HL-60 cells. We further used SB203580 (p38 inhibitor), PD98059 (MEK inhibitor), SP600125 (JNK inhibitor), and wortmannin (phosphatidylinositol 3-kinase; PI-3K inhibitor) to evaluate their effect on the HAs-induced HL-60 death. The data showed that only SB203580 had strong potential in inhibiting HL-60 cell apoptosis and related protein expression and phosphorylation. Therefore, we suggested that HAs mediated HL-60 apoptosis via the p38-FasL and Bid pathway. According to these results, HAs could be developed as chemopreventive agents. However, further investigations into the specificity and mechanism(s) of HAs are needed

  14. Influence of Total Anthocyanins from Bitter Melon (Momordica charantia Linn.) as Antidiabetic and Radical Scavenging Agents.

    Science.gov (United States)

    Güdr, Aytaç

    2016-01-01

    The majority of the antioxidant and antidiabetic activities of fruits are anthocyanins; a group of polyphenolics that are responsible for the color of many fruits, vegetables and flowers. The harvesting time, storage conditions, maturity, extraction steps etc. are very important for the biological activities based on the alteration of chemical composition. The free radical scavenging and antidiabetic activities of total anthocyanins from bitter melon (Momordica charantia Linn) fruit (TAMC) were evaluated by considering four harvesting times. The free radical scavenging activities of the TAMC samples were assessed using DPPH(•), DMPD(•+) and ABTS(•+) assays against BHA, rutin and trolox standards. September as a harvesting period (TAMC-S) had effective DPPH(•) (SC50 2.55 ± 0.08 μg/mL), DMPD(•+) (SC50 2.68 ± 0.09 μg/mL) and ABTS(•+) (SC50 8.19 ± 0.09 μg/mL) scavenging activities compared with other samples and standards. In addition, August (TAMC-A) as a harvesting period showed very influential inhibitory activity against α-amylase (IC50 56.86 ± 1.12 μg/mL) and moderate inhibitory activity against α-glucosidase (IC50 88.19 ± 0.74 μg/mL). In comparison, pharmaceutical active ingredients such as acarbose exhibited anti-amylase and anti-glucosidase activities with IC50 values of 93.07 ± 1.49 μg/mL and 77.25 ± 1.20 μg/mL respectively. These results suggest that the correct selection of harvest period can significantly increase anthocyanin quantity because of the pharmaceutic properties of TAMC. Consequently, TAMC may be interesting for incorporation in pharmaceutical preparations for human health, since it can suppress hyperglycaemia that can be also used as food additives due to its antiradical activity. PMID:27610171

  15. Differential responses of sugar, organic acids and anthocyanins to source-sink modulation in Cabernet Sauvignon and Sangiovese grapevines

    Directory of Open Access Journals (Sweden)

    Natalia eBobeica

    2015-05-01

    Full Text Available Grape berry composition mainly consists of primary and secondary metabolites. Both are sensitive to environment and viticultural management. As a consequence, climate change can affect berry composition and modify wine quality and typicity. Leaf removal techniques can impact berry composition by modulating the source-to-sink balance and, in turn, may mitigate some undesired effects due to climate change. The present study investigated the balance between technological maturity parameters such as sugars and organic acids, and phenolic maturity parameters such as anthocyanins in response to source-sink modulation. Sugar, organic acid, and anthocyanin profiles were compared under two contrasting carbon supply levels in berries of cv. Cabernet Sauvignon and Sangiovese collected at 9 and 14 developmental stages respectively. In addition, whole-canopy net carbon exchange rate was monitored for Sangiovese vines and a mathematic model was used to calculate the balance between carbon fixation and berry sugar accumulation. Carbon limitation affected neither berry size nor the concentration of organic acids at harvest. However, it significantly reduced the accumulation of sugars and total anthocyanins in both cultivars. Most interestingly, carbon limitation decreased total anthocyanin concentration by 84.3 % as compared to the non source-limited control, whereas it decreased sugar concentration only by 27.1 %. This suggests that carbon limitation led to a strong imbalance between sugars and anthocyanins. Moreover, carbon limitation affected anthocyanin profiles in a cultivar dependent manner. Mathematical analysis of carbon-balance indicated that berries used a higher proportion of fixed carbon for sugar accumulation under carbon limitation (76.9% than under carbon sufficiency (48%. Thus, under carbon limitation, the grape berry can manage the metabolic fate of carbon in such a way that sugar accumulation is maintained at the expense of secondary

  16. [Determination of anthocyanins in the peel of sweet cherry by ultra performance liquid chromatography tandem mass spectrometry].

    Science.gov (United States)

    Wei, Hairong; Yi, Xibin; Tan, Yue; Zong, Xiaojuan; Wang, Jiawei; Xu, Li; Liu, Qingzhong

    2015-06-01

    A method for the determination of seven anthocyanins in the peel of sweet cherry was developed by ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The sample was extracted by methanol containing 0.1% (v/v) hydrochloric acid, and then purified by AB-8 macroporous resins. The separation was carried out on a Phenomenex Kinetex column (100 mm x 4.6 mm, 2.6 Rm) with mobile phase of 0.1% (v/v) formic acid aqueous solution containing 5 mmol/L ammonium formate and methanol. The sample solution was detected by UPLC-MS/MS with ESI under positive ion and multi reaction monitoring (MRM) modes. The results showed that the limits of quantification (LOQs) for the seven target compounds were 0.26-1.42 µg/kg. The seven anthocyanin standards showed a good linearity in the range of 0-100 µg/L with the correlation coefficients (r2) of 0.996 4-0.999 3. The average recoveries of the seven anthocyanins were 97.2%-105.4%, and the relative standard deviations (RSDs) were 1.9%-5.8%. The mature fruit samples of sweet cherry red variety "Tieton" and the yellow variety "13-33" were analyzed by this method. The results showed that the anthocyanin composition and contents were significantly different between the two varieties. This method can be used for rapid identification and the determination of anthocyanin components in sweet cherry fruits due to its simple operation, high sensitivity, good reproducibility and covering a wide range of anthocyanins. PMID:26536760

  17. The effects of enhanced methionine synthesis on amino acid and anthocyanin content of potato tubers

    Directory of Open Access Journals (Sweden)

    Bánfalvi Zsófia

    2008-06-01

    Full Text Available Abstract Background Potato is a staple food in the diet of the world's population and also being used as animal feed. Compared to other crops, however, potato tubers are relatively poor in the essential amino acid, methionine. Our aim was to increase the methionine content of tubers by co-expressing a gene involved in methionine synthesis with a gene encoding a methionine-rich storage protein in potato plants. Results In higher plants, cystathionine γ-synthase (CgS is the first enzyme specific to methionine biosynthesis. We attempted to increase the methionine content of tubers by expressing the deleted form of the Arabidopsis CgS (CgSΔ90, which is not regulated by methionine, in potato plants. To increase the incorporation of free methionine into a storage protein the CgSΔ90 was co-transformed with the methionine-rich 15-kD β-zein. Results demonstrated a 2- to 6-fold increase in the free methionine content and in the methionine content of the zein-containing protein fraction of the transgenic tubers. In addition, in line with higher methionine content, the amounts of soluble isoleucine and serine were also increased. However, all of the lines with high level of CgSΔ90 expression were phenotypically abnormal showing severe growth retardation, changes in leaf architecture and 40- to 60% reduction in tuber yield. Furthermore, the colour of the transgenic tubers was altered due to the reduced amounts of anthocyanin pigments. The mRNA levels of phenylalanine ammonia-lyase (PAL, the enzyme catalysing the first step of anthocyanin synthesis, were decreased. Conclusion Ectopic expression of CgSΔ90 increases the methionine content of tubers, however, results in phenotypic aberrations in potato. Co-expression of the 15-kD β-zein with CgSΔ90 results in elevation of protein-bound methionine content of tubers, but can not overcome the phenotypical changes caused by CgSΔ90 and can not significantly improve the nutritional value of tubers. The level

  18. Effect of frozen storage on the anthocyanins and phenolic components of pomegranate juice

    OpenAIRE

    Mirsaeedghazi, Hossein; Emam-Djomeh, Zahra; Ahmadkhaniha, Reza

    2011-01-01

    Pomegranate juice’s valuable nutritional components may be reduced during its processing or storage. This work examined the effect of frozen storage at −25 °C on some chemical characteristics of pomegranate juice. Total anthocyanin content of pomegranate juice, which was measured using the pH differential method, decreased by 11% after 20 days of frozen storage. Phenolic components, measured using a Folin and Ciocalteu assay by means of a UV–vis spectrophotometer, decreased by 29% after 20 da...

  19. cry1 and GPA1 signaling genetically interact in hook opening and anthocyanin synthesis in Arabidopsis

    OpenAIRE

    Fox, Ana R.; Soto, Gabriela C.; Jones, Alan M.; Casal, Jorge J.; Muschietti, Jorge P.; Mazzella, María A

    2012-01-01

    While studying blue light-independent effects of cryptochrome 1 (cry1) photoreceptor, we observed premature opening of the hook in cry1 mutants grown in complete darkness, a phenotype that resembles the one described for the heterotrimeric G-protein α subunit (GPA1) null mutant gpa1. Both cry1 and gpa1 also showed reduced accumulation of anthocyanin under blue light. These convergent gpa1 and cry1 phenotypes required the presence of sucrose in the growth media and were not additive in the cry...

  20. Comparison of the interaction between three anthocyanins and human serum albumins by spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Lin, E-mail: tanglin@sdnu.edu.cn; Zuo, Huijun; Shu, Li

    2014-09-15

    Anthocyanin is an important kind of water-soluble pigment existing widely in plants, and has various health benefits to human body. The number and location of the hydroxyl groups of the parent nucleus of Anthocyanins have significant effects on their activities. This research employed different spectroscopic methods (i.e. fluorescence spectroscopy, UV–vis absorbance, three-dimensional fluorescence spectra and circular dichroism (CD)) to investigate the mutual interactions between three differently substituted B-ring hydroxyl groups (Pelargonidin-3-O-glucoside, P3G; Cyanidin-3-O-glucoside, C3G and Delphinidin-3-O-glucoside, D3G) and human serum albumin (HSA) under physiological pH conditions. The calculated thermodynamic parameters and the spectrum showed that P3G, C3G and D3G could result in quenching of the intrinsic fluorescence. The comparison result of the strength of comprehensive binding parameter Y (i.e. Y=lg( K{sub a}×E×n/r)), which was used to reflect the extent of interaction of Anthocyanin–HSA system, was Y{sub D3G}>Y{sub C3G}>Y{sub P3G}. Moreover, the secondary structure of HSA was changed in the presence of P3G/C3G/D3G. The α-helix percentage of P3G–HSA increased while that of C3G/D3G–HSA decreased. Overall, these results showed that the number of B-ring –OH in each molecule played an important role in the interaction of these anthocyanins with HSA. - Highlights: • Study the interactions between three differently structured anthocyanins and HSA. • The order of binding parameter Y [Y=lg(K{sub a}×E×n/r)] as Delphinidin>Cyanidin>Pelargonidin. • Increase in the number of B-ring –OH may enhance the binding affinity for HSA. • HSA secondary structural changes occurred due to these interactions. • The number of B-ring –OH in each molecule played an important role in the interaction.

  1. Effects of condensed tannins on anthocyanins and colour of authentic pomegranate (Punica granatum L.) juices.

    Science.gov (United States)

    Türkyılmaz, Meltem; Ozkan, Mehmet

    2014-12-01

    This study was conducted to determine the effects of condensed tannins (CT) on anthocyanins (ACNs) and colour of pomegranate juice (PJ) samples obtained from nine registered varieties in Turkey. CT-catechins (CTCs) reactive to vanillin and phloroglucinol adducts of CT contents were determined. CTC and ACN contents of PJs highly depended on variety (pcolour (PC) values of the samples was found (r=-0.822). When PC value of PJs was ⩾8% or ratio of ACN contents to catechin-phloroglucinol contents of PJs was ⩽2.82, ACN contents of the samples determined by spectrophotometric method were higher than those determined by HPLC.

  2. NON-ANTHOCYANIN POLYPHENOLS QUANTIFICATION IN EUTERPE OLERACEA FRUITS BY A UHPLC−LTQ-ORBITRAP MS METHOD

    OpenAIRE

    Dias, Aecio; Rozet, Eric; Chataigné, G; Margalho, L; Larondelle, Y; HUBERT, Philippe; Roger, H; Quetin-Leclercq, J.

    2013-01-01

    High antioxidant and anti-inflammatory activities have been observed from non-anthocyanin polyphenols of E. oleracea fruits [1-2]. The aim of this work was to quantify major non-anthocyanin polyphenols by an accurate UHPLC−LTQ-Orbitrap MS method. Fruits were harvested in Pará state (Brazil), processed to pulp and lyophilised. 0.5g of dry pulp powder was defatted by sonication with petroleum ether. The residue was then extracted five times with 5mL MeOH each time for 30 min (optimized conditio...

  3. Expression and Anthocyanin Biosynthesis-Modulating Potential of Sweet Cherry (Prunus avium L.) MYB10 and bHLH Genes

    OpenAIRE

    Pavel Starkevič; Jurgita Paukštytė; Vaiva Kazanavičiūtė; Erna Denkovskienė; Vidmantas Stanys; Vidmantas Bendokas; Tadeušas Šikšnianas; Aušra Ražanskienė; Raimundas Ražanskas

    2015-01-01

    Anthocyanins are essential contributors to fruit coloration, an important quality feature and a breed determining trait of a sweet cherry fruit. It is well established that the biosynthesis of anthocyanins is regulated by an interplay of specific transcription factors belonging to MYB and bHLH families accompanied by a WD40 protein. In this study, we isolated and analyzed PaWD40, PabHLH3, PabHLH33, and several closely related MYB10 gene variants from different cultivars of sweet cherry, analy...

  4. Anthocyanins and phenolic acids from a wild blueberry (Vaccinium angustifolium) powder counteract lipid accumulation in THP-1-derived macrophages

    DEFF Research Database (Denmark)

    Del Bo', Cristian; Cao, Yi; Roursgaard, Martin;

    2016-01-01

    PURPOSE: Blueberries are a rich source of anthocyanins (ACNs) and phenolic acids (PA), which are hypothesized to protect against development of atherosclerosis. The present study examined the effect of an ACN- and PA-rich fractions, obtained from a wild blueberry powder, on the capacity to counte......PURPOSE: Blueberries are a rich source of anthocyanins (ACNs) and phenolic acids (PA), which are hypothesized to protect against development of atherosclerosis. The present study examined the effect of an ACN- and PA-rich fractions, obtained from a wild blueberry powder, on the capacity...

  5. Detection, stability and redox effects of black currant anthocyanin glycosides in vivo: Positive identification by mass spectrometry

    DEFF Research Database (Denmark)

    Nielsen, I. L. F.; Nielsen, S. E.; Ravn-Haren, Gitte;

    2001-01-01

    Anthocyanins are ingested as the red and blue coloured pigments in berries and red wine. They are potent antioxidants and their redox actions might positively affect health. It is therefore of interest to device a method to determine these compounds in blood and excreta, and to determine their st......Anthocyanins are ingested as the red and blue coloured pigments in berries and red wine. They are potent antioxidants and their redox actions might positively affect health. It is therefore of interest to device a method to determine these compounds in blood and excreta, and to determine...

  6. Extraction of anthocyanins and polyphenols from black rice (Oryza sativa L.) by modeling and assessing their reversibility and stability.

    Science.gov (United States)

    Pedro, Alessandra Cristina; Granato, Daniel; Rosso, Neiva Deliberali

    2016-01-15

    This study was aimed the extraction of total flavonoids, anthocyanins and phenolics, as well as the antioxidant activity of black rice (Oryza sativa) and to study the stability in relation to pH, light and copigmentation. Variations in temperature (10-50°C), time (20-80min), and solid-solvent ratio (1:15-1:45) were studied using a Box-Behnken design. The regression models were significant (Pphytic and gallic acids in the optimized extract exposed to light displayed an intermolecular copigmentation. The main anthocyanin identified in black rice was cyanidin-3-glucoside. PMID:26258696

  7. Adsorption properties of macroporous adsorbent resins for separation of anthocyanins from mulberry.

    Science.gov (United States)

    Chen, Yao; Zhang, Weijie; Zhao, Ting; Li, Fang; Zhang, Min; Li, Jing; Zou, Ye; Wang, Wei; Cobbina, Samuel J; Wu, Xiangyang; Yang, Liuqing

    2016-03-01

    In this study, the adsorption/desorption characteristics of mulberry anthocyanins (MA) on five types of macroporous resins (XAD-7HP, AB-8, HP-20, D-101 and X-5) were evaluated, XAD-7HP and AB-8 showed higher adsorption/desorption capacities. On the basis of static adsorption test, XAD-7HP and AB-8 resins were selected for kinetics, isotherms and thermodynamics. The adsorption mechanism indicated that the process was better explained by pseudo-first-order kinetics and the Langmuir isotherm model, and the thermodynamics tests showed that the processes were exothermic, spontaneous and thermodynamically feasible. Dynamic tests were performed on a column packed with XAD-7HP and AB-8, and breakthrough volume was reached at 15 and 14 bed volumes of MA solution, respectively. The purity of the fraction by 40% ethanol elution on XAD-7HP reached 93.6%, from which cyanidin-3-glucoside and cyanidin-3-rutinoside were identified by HPLC-ESI-MS/MS. The method could be used to prepare high purity anthocyanins from mulberry fruits as well as other plants. PMID:26471611

  8. Anthocyanin Interactions with DNA: Intercalation, Topoisomerase I Inhibition and Oxidative Reactions.

    Science.gov (United States)

    Webb, Michael R; Min, Kyungmi; Ebeler, Susan E

    2008-09-23

    Anthocyanins and their aglycone anthocyanidins are pigmented flavonoids found in significant amounts in many commonly consumed foods. They exhibit a complex chemistry in aqueous solution, which makes it difficult to study their chemistry under physiological conditions. Here we used a gel electrophoresis assay employing supercoiled DNA plasmid to examine the ability of these compounds (1) to intercalate DNA, (2) to inhibit human topoisomerase I through both inhibition of plasmid relaxation activity (catalytic inhibition) and stabilization of the cleavable DNA-topoisomerase complex (poisoning), and (3) to inhibit or enhance oxidative single-strand DNA nicking. We found no evidence of DNA intercalation by anthocyan(id)ins in the physiological pH range for any of the compounds used in this study-cyanidin chloride, cyanidin 3-O-glucoside, cyanidin 3,5-O-diglucoside, malvidin 3-O-glucoside and luteolinidin chloride. The anthocyanins inhibited topoisomerase relaxation activity only at high concentrations (> 50 muM) and we could find no evidence of topoisomerase I cleavable complex stabilization by these compounds. However, we observed that all of the anthocyan(id)ins used in this study were capable of inducing significant oxidative DNA strand cleavage (nicking) in the presence of 1 mM DTT (dithiothreitol), while the free radical scavenger, DMSO, at concentrations typically used in similar studies, completely inhibited DNA nicking. Finally, we propose a mechanism to explain the anthocyan(id)in induced oxidative DNA cleavage observed under our experimental conditions. PMID:19924259

  9. Red-fleshed Apples: Old Autochthonous Fruits as a Novel Source of Anthocyanin Antioxidants.

    Science.gov (United States)

    Faramarzi, Shadab; Pacifico, Severina; Yadollahi, Abbas; Lettieri, Annamaria; Nocera, Paola; Piccolella, Simona

    2015-09-01

    In order to promote breeding programs and a full reintroduction into production of two local red-fleshed apple varieties grown in Bekran and Bastam (Iran), the evaluation of their antioxidant properties was of interest. LC-MS(n) based metabolic fingerprinting analyses were applied to investigate the anthocyanin content of both peel and flesh components of the fruits. Cyanidin-3-O-hexoside isomers were present in both 'Bekran' and 'Bastam' apples, whereas 'Bekran' apple was a valuable source of anthocyanin rutinose derivatives. Employing DPPH(•), ABTS(•+), and ORAC methods, the antiradical efficacy was evaluated. The ability of the investigated fruit components to scavenge OH(•), and O(2) (•-) reactive species was also assessed. ID(50) values highlighted the massive antioxidant response of 'Bekran' peel component, able to counteract by 50 % OH(•), and O(2) (•-) at 130.3 and 91.6 μg/mL, respectively. The cytoprotective screening towards HeLa, HepG2, A549, SH-5YSY, and SK-N-BE(2)-C cell lines evidenced that the investigated Iranian red-fleshed apple fruits were able to exert a significant antioxidant response in hydrogen peroxide oxidized cell systems. Data collected suggested that the revaluation of 'Bekran' and 'Bastam' apple cultivars could represent a precious source of antioxidant compounds whose dietary intake could improve the human well-being reducing risks of free radical related chronic and degenerative diseases. PMID:26134879

  10. Protective effect of black raspberry seed containing anthocyanins against oxidative damage to DNA, protein, and lipid.

    Science.gov (United States)

    Choi, Mi-Hee; Shim, Soon-Mi; Kim, Gun-Hee

    2016-02-01

    This study aimed to determine bioactive components and radical scavenging capacity of black raspberry seed extracts as byproducts obtaining during the juice (FSE) and wine (WSE) making process. Cyanidin-3-O-rutinoside was identified as a major anthocyanin and the total anthocyanin contents of fresh and wine seed were 78.24 and 41.61 mg/100 g of dry weight, respectively. The total phenolic and flavonoid contents of FSE and WSE were 2.31 g gallic acid equivalent (GAE) and 360.95 mg catechin equivalent (CE), and 2.44 g GAE and 379.54 mg CE per 100 g dry weight, respectively. The oxygen radical absorbance capacity (ORAC) values were 1041.9 μM TE/g for FSE and 1060.4 μM TE/g for WSE. Pretreatment of the FSE and WSE inhibited the generation of intracellular reactive oxygen species (ROS), DNA and protein damage induced by hydroxyl radicals, and Fe(3+)/ascorbic acid-induced lipid peroxidation in a dose dependent manner. WSE more effectively protected from oxidative damage than FSE. Results from the current study suggest that black raspberry seeds as byproducts from juice and wine processing could be potential sources for natural antioxidants. PMID:27162401

  11. Measurement of Antioxidant Activity of Wine Catechins, Procyanidins, Anthocyanins and Pyranoanthocyanins

    Directory of Open Access Journals (Sweden)

    Julián C. Rivas-Gonzalo

    2007-08-01

    Full Text Available Nowadays, there is considerable interest in finding out about antioxidants thatare consumed in the habitual diet. It is known that polyphenols are involved in reducing therisk of diseases associated with oxidative stress. The in vitro antioxidant activity of theprincipal wine polyphenolic compounds (catechins, procyanidins, anthocyanins andpyranoanthocyanins was studied in this work. Four distinct methods were used to assessthe antioxidant capacity of the tested compounds: inhibition of peroxynitrite mediatedtyrosine nitration, TEAC (Trolox equivalent antioxidant capacity assay, FRAP (Ferricreducing/antioxidant power assay and TBARS (thiobarbituric acid reactive substancesmethods. In general, it could be concluded that procyanidins were, among the in vitrotested groups, the ones which showed more antioxidant capacity using the four differentmethods, followed by anthocyanins and pyranoanthocyanins. On the basis of the simpleregression testing, there was a statistically significant relationship between these differentmethods used in aqueous phase (r > 0.92. However, no correlation was found between theresults obtained in lipid media with the TBARS method and those obtained in the aqueousmedia (peroxynitrite scavenging activity, TEAC and FRAP methods.

  12. Pinot noir wine volatile and anthocyanin composition under different levels of vine fruit zone leaf removal.

    Science.gov (United States)

    Feng, Hui; Skinkis, Patricia A; Qian, Michael C

    2017-01-01

    The impacts of fruit zone leaf removal on volatile and anthocyanin compositions of Pinot noir wine were investigated over two growing seasons. Wine volatiles were analyzed by multiple techniques, including headspace solid phase microextraction-GC-MS (HS-SPME-GC-MS), headspace-GC-FID (HS-GC-FID) and stir bar sorptive extraction-GC-MS (SBSE-GC-MS). Fruit zone leaf removal affected the concentration of many grape-derived volatile compounds such as terpene alcohols and C13-norisoprenoids in wine, although the degree of impact depended on the vintage year and severity of leaf removal. Fruit zone leaf removal resulted in greater concentrations of linalool, α-terpineol and β-damascenone but had no impact on other terpene alcohols or β-ionone. Fruit zone leaf removal had no consistent impact on C6 alcohols, volatile phenols, lactones, fermentation-derived alcohols, acids, or most esters. Fruit zone leaf removal increased anthocyanins in final wine. PMID:27507532

  13. Synergistic inhibition of interleukin-6 production in adipose stem cells by tart cherry anthocyanins and atorvastatin.

    Science.gov (United States)

    Zhou, Zhou; Nair, Muraleedharan G; Claycombe, Kate J

    2012-07-15

    Studies have shown positive correlations between inflammatory cytokines such as interleukin-6 (IL-6) and the development of chronic diseases including cardiovascular disease by activating C-reactive protein (CRP). Both atorvastatin calcium (lipitor) as well as flavonoid rich fruit such as tart cherry demonstrate potent anti-inflammatory effects on IL-6 secretion. In this study, we investigated whether tart cherry extract or specific anthocyanins contained in the tart cherry show synergistic anti-inflammatory effects with lipitor. Results showed that LPS-induced adipose stem cell secretion of IL-6 reduced with the addition of tart cherry extract, a mixture of tart cherry anthocyanins, and pure tart cherry cyanidin-3-O-glucoside (C3G) in a dose-dependent manner. Furthermore, lipitor and C3G exhibited synergistic effects in reducing LPS-induced IL-6 secretion from adipose stem cells. In conclusion, these results support potential benefits of using dietary phytochemicals in conjunction with pharmacological therapies to decrease adipose inflammation, drug doses, and ultimately, drug-induced adverse effects. PMID:22703874

  14. Effect of Pseudomonas putida on Growth and Anthocyanin Pigment in Two Poinsettia (Euphorbia pulcherrima Cultivars

    Directory of Open Access Journals (Sweden)

    Ramon Zulueta-Rodriguez

    2014-01-01

    Full Text Available Pseudomonas putida is plant growth promoting rhizobacteria (PGPR that have the capacity to improve growth in plants. The purpose of this study was to determine growth and anthocyanin pigmentation of the bracts in two poinsettia Euphorbia pulcherrima cultivars (Prestige and Sonora Marble using three strains of P. putida, as well as a mixture of the three (MIX. Comparison with the control group indicated for the most part that Prestige grew better than the Sonora Marble cultivars with the PGPR strains. Prestige with the MIX strain grew better compared to control for the number of cyathia (83 versus 70.4, volume of roots (45 versus 35 cm3, number of leaves (78 versus 58, and area of leaf (1,788 versus 1,331 cm2, except for the number of flowers (8.8 versus 11.6. To the naked eye, coloration of plants appeared identical in color compared to the control group. For all plants with P. putida strains, there was less anthocyanin pigment, but biomass was always greater with PGPR strains. Nevertheless, to the naked eye, the coloration of the plants appeared identical in color compared to the control group. This is the first study reporting the positive effects of P. putida rhizobacteria treatments on growth of poinsettia cultivars.

  15. Purple potato (Solanum tuberosum L.) anthocyanins attenuate alcohol-induced hepatic injury by enhancing antioxidant defense.

    Science.gov (United States)

    Jiang, Zhihui; Chen, Chen; Wang, Jian; Xie, Wenyan; Wang, Meng; Li, Xinsheng; Zhang, Xiaoying

    2016-01-01

    Alcoholic liver disease (ALD) is a serious and challenging health issue. In the past decade, natural components possessing hepatoprotective properties have gained more attention for ALD intervention. In this study, the phytochemical components of anthocyanins from purple potato were assessed using UPLC-MS/MS, and the hepatoprotective effects of purple potato anthocyanins (PPAs) were investigated in the ALD mouse model. Serum and liver biochemical parameters were determined, along with histopathological changes in liver tissue. In addition, the major contributors to alcohol-induced oxidative stress were assessed. The results indicated that the levels of aspartate transaminase and alanine transaminase were lower in the serum of the PPA-treated group than the alcohol-treated group. PPAs significantly inhibited the reduction of total cholesterol and triglycerides. Higher levels of superoxide dismutase and reduced glutathione enzymes as well as a reduction in the formation of malondialdehyde occurred in mice fed with PPAs. In addition, PPAs protected against increased alcohol-induced levels and activity of cytochrome P450 2E1 (CYP2E1), which demonstrates the effects of PPAs against alcohol-induced oxidative stress and liver injury. This study suggests that PPAs could be an effective therapeutic agent in alcohol-induced liver injuries by inhibiting CYP2E1 expression and thereby strengthening antioxidant defenses. PMID:26481011

  16. The transcriptome of Populus in elevated CO2 reveals increased anthocyanin biosynthesis during delayed autumnal senescence

    Energy Technology Data Exchange (ETDEWEB)

    Tallis, M.J.; Rogers, A.; Lin, Y.; Zhang, J.; Street, N. R.; Miglietta, F.; Karnosky, D. F.; Angelis, P. D.; Calfapietra, C.; Taylor, G.

    2010-03-01

    The delay in autumnal senescence that has occurred in recent decades has been linked to rising temperatures. Here, we suggest that increasing atmospheric CO{sub 2} may partly account for delayed autumnal senescence and for the first time, through transcriptome analysis, identify gene expression changes associated with this delay. Using a plantation of Populus x euramericana grown in elevated [CO{sub 2}] (e[CO{sub 2}]) with free-air CO{sub 2} enrichment (FACE) technology, we investigated the molecular and biochemical basis of this response. A Populus cDNA microarray was used to identify genes representing multiple biochemical pathways influenced by e[CO{sub 2}] during senescence. Gene expression changes were confirmed through real-time quantitative PCR, and leaf biochemical assays. Pathways for secondary metabolism and glycolysis were significantly up-regulated by e[CO{sub 2}] during senescence, in particular, those related to anthocyanin biosynthesis. Expressed sequence tags (ESTs) representing the two most significantly up-regulated transcripts in e[CO{sub 2}], LDOX (leucoanthocyanidin dioxgenase) and DFR (dihydroflavonol reductase), gave (e[CO{sub 2}]/ambient CO{sub 2} (a[CO{sub 2}])) expression ratios of 39.6 and 19.3, respectively. We showed that in e[CO{sub 2}] there was increased autumnal leaf sugar accumulation and up-regulation of genes determining anthocyanin biosynthesis which, we propose, prolongs leaf longevity during natural autumnal senescence.

  17. New acylated anthocyanins and other flavonoids from the red flowers of Clematis cultivars.

    Science.gov (United States)

    Hashimoto, Masanori; Suzuki, Toshisada; Iwashina, Tsukasa

    2011-11-01

    Six new acylated cyanidin glycosides, cyanidin 3-O-beta-(2''-E-caffeoylglucopyranosyl)-(1 --> 2)-O-beta-galactopyranoside (1), cyanidin 3-O-beta-(2''-E-caffeoylglucopyranosyl)-(1 --> 2)-O-beta-(6''-malonylgalactopyranoside) (2), cyanidin 3-O-beta-(2''-E-caffeoylglucopyranosyl)-(1 --> 2)-O-beta-(6''-succinylgalactopyranoside) (3), cyanidin 3-O-beta-(2''-E-caffeoylglucopyranosyl)-(1 --> 2)-O-beta-galactopyranoside-3''- O-beta-glucuronopyranoside (4), cyanidin 3-O-beta-(2''-E-caffeoylglucopyranosyl)-(1 --> 2)-O-beta-(6''-malonylgalactopyranoside)-3'-O-beta-glucuronopyranoside (5), and cyanidin 3-O-beta-(2'-E-feruloylglucopyranosyl)-(1 --> 2)-O-beta-(6''-malonylgalactoside)-3' -O-beta-glucuronopyranoside (6), were isolated from the red flowers of two Clematis cultivars, 'Niobe'and 'Madame Julia Correvon'. The chemical structures of the isolated anthocyanins were determined by UV, LC-MS, HPLC, TLC, characterization of hydrolysates, and 1H and 13C NMR spectroscopy, including H-H COSY, C-H COSY, HMBC, HMQC and NOESY. The last three anthocyanins were widely distributed in 37 red flower Clematis cultivars. On the other hand, the first three compounds were found only in two cultivars. Five known flavonol glycosides, kaempferol 3-O-glucoside, kaempferol 3-O-rutinoside, quercetin 3-O-galactoside, quercetin 3-O-glucoside and quercetin 3-O-rutinoside, were isolated from the flowers of'Madame Julia Correvon'. PMID:22224277

  18. Extracts, Anthocyanins and Procyanidins from Aronia melanocarpa as Radical Scavengers and Enzyme Inhibitors

    Directory of Open Access Journals (Sweden)

    Hilde Barsett

    2013-03-01

    Full Text Available Extracts, subfractions, isolated anthocyanins and isolated procyanidins B2, B5 and C1 from the berries and bark of Aronia melanocarpa were investigated for their antioxidant and enzyme inhibitory activities. Four different bioassays were used, namely scavenging of the diphenylpicrylhydrazyl (DPPH radical, inhibition of 15-lipoxygenase (15-LO, inhibition of xanthine oxidase (XO and inhibition of α-glucosidase. Among the anthocyanins, cyanidin 3-arabinoside possessed the strongest and cyanidin 3-xyloside the weakest radical scavenging and enzyme inhibitory activity. These effects seem to be influenced by the sugar units linked to the anthocyanidin. Subfractions enriched in procyanidins were found to be potent α-glucosidase inhibitors; they possessed high radical scavenging properties, strong inhibitory activity towards 15-LO and moderate inhibitory activity towards XO. Trimeric procyanidin C1 showed higher activity in the biological assays compared to the dimeric procyanidins B2 and B5. This study suggests that different polyphenolic compounds of A. melanocarpa can have beneficial effects in reducing blood glucose levels due to inhibition of α-glucosidase and may have a potential to alleviate oxidative stress.

  19. Natural variation for anthocyanin accumulation under high-light and low-temperature stress is attributable to the ENHANCER OF AG-4 2 (HUA2) locus in combination with PRODUCTION OF ANTHOCYANIN PIGMENT1 (PAP1) and PAP2

    NARCIS (Netherlands)

    Ilk, Nadine; Ding, Jia; Ihnatowicz, Anna; Koornneef, Maarten; Reymond, Matthieu

    2015-01-01

    Growing conditions combining high light intensities and low temperatures lead to anthocyanin accumulation in plants. This response was contrasted between two Arabidopsis thaliana accessions, which were used to decipher the genetic and molecular bases underlying the variation of this response. Qua

  20. Intra-species variation in transient accumulation of leaf anthocyanins in Cistus creticus during winter: evidence that anthocyanins may compensate for an inherent photosynthetic and photoprotective inferiority of the red-leaf phenotype.

    Science.gov (United States)

    Kytridis, Velissarios-Phaedon; Karageorgou, Panagiota; Levizou, Efi; Manetas, Yiannis

    2008-06-16

    Leaf color in some individuals of Cistus creticus turns transiently to red during winter, while neighboring individuals occupying the same site remain green. We have examined whether anthocyanin accumulation can be associated with variations in photosynthetic and/or photoprotective characteristics between the two phenotypes, rendering the red phenotype more vulnerable to photoinhibition and, accordingly, needing additional protection in the form of anthocyanins. Towards this aim, maximum (pre-dawn) and effective (mid-day) PSII photochemical efficiencies, xanthophyll cycle pool sizes and leaf nitrogen contents were seasonably followed, encompassing both the green (spring, summer, autumn) and the red (winter) period of the year. Moreover, the distribution of the two phenotypes in exposed and shaded sites was assessed. The frequency of red individuals was considerably higher in fully exposed sites, pointing to a photoprotective function of leaf anthocyanins. Yet, the assumption was not corroborated by pre-dawn PSII yield measurements, since both phenotypes displayed similar high values throughout the year and a similar drop during winter. However, the red phenotype was characterized by lower light-saturated PSII yields, xanthophyll cycle pool sizes and leaf nitrogen, during both the green and the red period of the year. Based on this correlative evidence, we suggest that winter redness in C. creticus may compensate for an inherent photosynthetic and photoprotective inferiority, possibly through a light screen and/or an antioxidant function of leaf anthocyanins. PMID:17923168

  1. The Effect Of Some Plant Growth Regulators And Their Combination With Methyl Jasmonate On Anthocyanin Formation In Roots Of Kalanchoe Blossfeldiana

    Directory of Open Access Journals (Sweden)

    Góraj Justyna

    2014-12-01

    Full Text Available In this study, we investigated the effect of plant growth regulators (PGRs - auxins, gibberellin, cytokinin, abscisic acid, brassinosteroid, ethylene and their interaction with methyl jasmonate (JA-Me applied to roots of the whole plants Kalanchoe blossfeldiana on the accumulation of anthocyanins in roots. The highest stimulation of anthocyanins synthesis was stated with application of JA-Me alone. In response to treatments with the other tested PGRs, the content of anthocyanins in roots of a whole plant was different depending on the concentration of the PGR when being applied alone or together with JA-Me. Auxin, indole-3-acetic acid (IAA at a concentration of 50 mg·L-1, indole-3-butyric acid (IBA at 5 mg·L-1 and abscisic acid (ABA at 10 mg·L-1 induced anthocyanin accumulation with approximately 60-115% compared to the control while 24-epibrassinolid (epiBL, gibberellic acid (GA3 and 6-benzylaminopurine (BAP had no effect on the anthocyanin accumulation. The simultaneous administration of the PGRs with JA-Me usually resulted in the accumulation of anthocyanins in roots in a manner similar to that caused by JA-Me. PGRs applied to isolated roots did not stimulate anthocyanin accumulation, except for the combination of JA-Me with 50 mg·L-1 IAA.

  2. Anthocyanins Downregulate Lipopolysaccharide-Induced Inflammatory Responses in BV2 Microglial Cells by Suppressing the NF-κB and Akt/MAPKs Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Yung Hyun Choi

    2013-01-01

    Full Text Available Anthocyanins are naturally occurring polyphenols that impart bright color to fruits, vegetables and plants and have a variety of protective properties, which have generally been attributed to their antioxidant capacity. However, little is known about the molecular mechanisms underlying anti-inflammatory effects of anthocyanins related to neurodegenerative diseases. Therefore, we determined whether anthocyanins isolated from black soybean seed coats would inhibit pro-inflammatory mediators and cytokines in lipopolysaccharide (LPS-stimulated murine BV2 microglial cells. Our results showed that anthocyanins significantly inhibited LPS-induced pro-inflammatory mediators, such as nitric oxide (NO and prostaglandin E2, and pro-inflammatory cytokines including tumor necrosis factor (TNF-α and interleukin (IL-1β, without significant cytotoxicity. Anthocyanins also downregulated excessive expression of inducible NO synthase, cyclooxygenase-2, TNF-α, and IL-1β in LPS-stimulated BV2 cells. Moreover, anthocyanins inhibited nuclear translocation of nuclear factor-kappa B (NF-κB by reducing inhibitor of NF-κB alpha degradation as well as phosphorylating extracellular signal-regulated kinase, c-Jun N-terminal kinase, p38 mitogen-activated protein kinase, and Akt. These findings suggest that anthocyanins may offer substantial therapeutic potential for treating inflammatory and neurodegenerative diseases accompanied by microglial activation.

  3. The Upregulation of NtAN2 Expression at Low Temperature is Required for Anthocyanin Accumulation in Juvenile Leaves of Lc-transgenic Tobacco (Nicotiana tabacum L.)

    Institute of Scientific and Technical Information of China (English)

    Zong-An Huang; Ting Zhao; Hua-Jie Fan; Ning Wang; Shu-Song Zheng; Hong-Qing Ling

    2012-01-01

    Anthocyanins often accumulate in plants subjected to environmental stress,including low temperature.However,the molecular regulatory mechanism of anthocyanin biosynthesis at low temperature is largely unknown.Here,tobacco was transformed with a maize anthocyanin regulatory gene Lc driven by AtSPX3 promoter to investigate the effect of Lc upon the anthocyanin-biosynthesis pathway.We found that the anthocyanin-biosynthesis pathway could not be activated in wild type,while Lc-transgenic tobacco lines exhibited purple pigmentation in juvenile leaves at low temperature.Accordingly,the total anthocyanin contents increased specifically in juvenilc leaves in Lc-transgenic lines.Transcriptional analysis showed that NtCHS and NtCHI were induced by low temperature in leaves of wild type and transgenic lines.NtDFR was uniquely expressed in Lc-transgenic lines,but its transcript was not detected in wild type,implying that NtDFR expression in tobacco leaves was dependent on Lc.Furthermore,the expression of NtAN2 (regulatory gene) and NtANS (anthocyanidin synthase gene) was coordinately upregulated in Lc-transgenic lines under low temperature,suggesting that both Lc and NtAN2 might activate the expression of NtANS,Based on our findings and previous reports,we postulated that Lc interacted with NtAN2 induced by low-temperature stress and consequently stimulated anthocyanin biosynthesis in juvenile leaves of Lc-transgenic tobacco lines.

  4. Determining Total Phenolics, Anthocyanin Content and Ascorbic Acid Content in Some Plum Genotypes Grown in Ardahan Ecological Conditions

    Directory of Open Access Journals (Sweden)

    Z. T. ABACI

    2014-06-01

    Full Text Available In this study, total phenol content, total anthocyanin content, brix, pH, titrable acidity and total ascorbic acid content in the five plum genotypes cultivated in Ardahan City are determined and sustenance of the plums are revealed. Total phenol content was determined with folin-ciocalteu’s method, total anthocyanin content was determined with pH differential method and total ascorbic acid was determined with 2,6-dichlorophenolindophenol method.It is detected that the genotype with the highest brix content (%13.9 and lowest acidity (%0.98 is cancur, the genotype with the lowest brix content (%11 and highest acidity (%2.06 is wild plum, the genotype with the highest content of total anthocyanin, total phenolic substance and ascorbic acid is the wild plum and the genotype with the least content of these is the water plum. As a result of the study, it is revealed that the plum fruit has high levels of phenolic substance, anthocyanin and ascorbic acid content, so it has a high sustenance.

  5. Effects of Anthocyanin and Flavanol Compounds on Lipid Metabolism and Adipose Tissue Associated Systemic Inflammation in Diet-Induced Obesity

    NARCIS (Netherlands)

    van der Heijden, Roel A; Morrison, Martine C; Sheedfar, Fareeba; Mulder, Petra; Schreurs, Marijke; Hommelberg, Pascal P H; Hofker, Marten H; Schalkwijk, Casper; Kleemann, Robert; Tietge, Uwe J F; Koonen, Debby P Y; Heeringa, Peter

    2016-01-01

    Background. Naturally occurring substances from the flavanol and anthocyanin family of polyphenols have been proposed to exert beneficial effects in the course of obesity. We hypothesized that their effects on attenuating obesity-induced dyslipidemia as well as the associated inflammatory sequelae e

  6. Anthocyanin, antioxidant activity and stress-induced gene expression in high CO2-treated table grapes stored at low temperature.

    Science.gov (United States)

    Romero, Irene; Teresa Sanchez-Ballesta, M; Maldonado, Roberto; Isabel Escribano, M; Merodio, Carmen

    2008-01-01

    A pretreatment with 20kPa CO2+20 kPa O2+60 kPa N2 for 3 days proved effective in maintaining the fruit quality and controlling decay in table grapes (Vitis vinifera cv. Cardinal) stored at 0 degrees C. In the present work, we analyzed whether total anthocyanin content, the molecular mechanism implicated in their biosynthesis and antioxidant activity is related to the beneficial effect of this gaseous treatment. We isolated partial cDNAs that codified for enzymes implicated in the anthocyanin biosynthesis such as l-phenylalanine ammonia-lyase (PAL) and chalcone synthase (CHS), and an antioxidant enzyme such as ascorbate peroxidase (APX). Low temperatures induced an accumulation of total anthocyanin content in the skin of both treated and non-treated grapes, although levels were lower in CO2-treated fruit. By contrast, antioxidant activity decreased during storage at 0 degrees C in non-treated grapes but did not change in CO2-treated grapes. The up-regulation of anthocyanin biosynthesis gene expression and VcAPX mRNA observed in non-treated grape is not enhanced in CO2-treated grapes, which presented low total decay. These results point out the ability of CO2-treated grapes to prevent the generation of reactive oxygen species rather than their inactivation by means of induction of studied defense systems. PMID:17570561

  7. Foliar reflective film and water deficit increase anthocyanin to soluble solids ratio during berry ripening in Merlot

    Science.gov (United States)

    Elevated temperature can decrease the ratio of anthocyanins to soluble solids in red-skinned berries and warming trends in grape production regions have raised concern about color to alcohol balance in wines produced from fruit with altered ratios. In this study, we tested the effectiveness of a fol...

  8. Geospatial Modeling of Wine Grape Quality (Anthocyanin for Optimum Sampling Strategy in Mechanized On-The-Go Differential Harvesting Programs

    Directory of Open Access Journals (Sweden)

    Balaji Sethuramasamyraja

    2010-11-01

    Full Text Available Site-specific harvest of wine grapes based on quality and segregation before delivery to winery is a profitable cultural practice in vineyard management. Wine grape segregation based on quality parameters like anthocyanin to delineate quality zones in vineyards aids differential harvest. However, capturing vineyard variability with optimal sampling strategies is essential for economical feasibility of differential harvest. In this study, anthocyanin (mg/gfruit data was collected on two production vineyards for geo-statistical analysis of spatial variability and determination of optimum samples/acre (SPA for differential harvesting programs. Geo-referenced field samples of wine grapes were measured for anthocyanin using near-infrared sensors (NIR in two vineyards of San Joaquin Valley California (Twin Creeks & Merjan. Two strategies of sampling, strategy I & II were utilized for 3, 5, 7 and 10 (reference SPA. While strategy I selected 3, 5 or 7 random SPA in whole vineyard, strategy II did the same from every 1 acre block of the vineyard. Geo-spatial interpolations using ordinary kriging prediction of anthocyanin evaluated through cross validation parameters resulted in determining applicability of strategies in capturing vineyard field variability for differential harvesting. Strategy II outperformed strategy I in predictions with 5 and 7SPA predicting vineyard spatial variability.

  9. A two-stage process with temperature-shift for enhanced anthocyanin production in strawberry cell suspension cultures

    Institute of Scientific and Technical Information of China (English)

    张卫; Shintaro; Furusaki; Chris; Franco

    1999-01-01

    A two-stage process with temperature-shift has been developed to enhance the anthocyanin yield in suspension cultures of strawberry cells. The effect of the temperature-shift interval and the shift-time point was investigated for the optimization of this strategy. In this process, strawberry cells were grown at 30℃ (the optimum temperature for cell growth) for a certain period as the first stage, with the temperature shifted to a lower temperature for the second stage. In response to the temperature shift-down, anthoeyanin synthesis was stimulated and a higher content could be achieved than that at both boundary temperatures but cell growth was suppressed. When the lower boundary temperature was deereased, cell growth was lowered and a delayed, sustained maximum anthocyanin content was achieved. Anthocyanin synthesis was strongly influeneed by the shift-time point but cell growth was not. Consequently, the maximum anthocyanin content of 2.7 mg(?)g-fresh cell-1 was obtained on day 9 by a temperature-

  10. Highly efficient extraction of anthocyanins from grape skin using deep eutectic solvents as green and tunable media.

    Science.gov (United States)

    Jeong, Kyung Min; Zhao, Jing; Jin, Yan; Heo, Seong Rok; Han, Se Young; Yoo, Da Eun; Lee, Jeongmi

    2015-12-01

    Deep eutectic solvents (DESs) were investigated as tunable, environmentally benign, yet superior extraction media to enhance the extraction of anthocyanins from grape skin, which is usually discarded as waste. Ten DESs containing choline chloride as hydrogen bond acceptor combined with different hydrogen bond donors were screened for high extraction efficiencies based on the anthocyanin extraction yields. As a result, citric acid, D-(+)-maltose, and fructose were selected as the effective DES components, and the newly designed DES, CM-6 that is composed of citric acid and D-(+)-maltose at 4:1 molar ratio, exhibited significantly higher levels of anthocyanin extraction yields than conventional extraction solvents such as 80% aqueous methanol. The final extraction method was established based on the ultrasound-assisted extraction under conditions optimized using response surface methodology. Its extraction yields were double or even higher than those of conventional methods that are time-consuming and use volatile organic solvents. Our method is truly a green method for anthocyanin extraction with great extraction efficiency using a minimal amount of time and solvent. Moreover, this study suggested that grape skin, the by-products of grape juice processing, could serve as a valuable source for safe, natural colorants or antioxidants by use of the eco-friendly extraction solvent, CM-6. PMID:26534763

  11. Anthocyanin-rich blueberry diets enhance protection of critical brain regions exposed to acute levels of 56Fe cosmic radiation

    Science.gov (United States)

    The protective effects of anthocyanin-rich blueberries on brain health are well documented and are particularly important under conditions of high oxidative stress which can lead to “accelerated aging”. One such scenario is exposure to space radiation, which consists of high-energy and -charge parti...

  12. Black bean coats: New source of anthocyanins stabilized by β-cyclodextrin copigmentation in a sport beverage.

    Science.gov (United States)

    Aguilera, Yolanda; Mojica, Luis; Rebollo-Hernanz, Miguel; Berhow, Mark; de Mejía, Elvira González; Martín-Cabrejas, María A

    2016-12-01

    Anthocyanin-rich powders and aqueous extracts, with high antioxidant activities, were obtained from black bean seed coats and applied to colour a sport beverage. Idaho and Otomi bean coats were extracted in water-citric acid 2% (1/50, w/v), stirring for 4h at 40°C. Anthocyanins from Idaho and Otomi extracts (1.83mg and 1.02mg C3G/g, respectively) were applied to a commercially available sport beverage, with and without 2% β-cyclodextrin (βCD) under light and darkness conditions for 10days, and stored at 4°C and 25°C for 6weeks. At different light and storage conditions, anthocyanin degradation fitted a first-order reaction model. All bean coat anthocyanins combined with βCD showed extended half-life (up to 13months), higher D-values (up to 43months) and fewer differences in colourimetric properties (lightness, chroma and hue angle) under darkness and 4°C conditions. These black bean coat aqueous extracts and powders might represent natural alternatives to synthetic colorants, ecologically extracted, and with a high antioxidant potential. PMID:27374568

  13. Determination of anthocyanins from camu-camu (Myrciaria dubia) by HPLC-PDA, HPLC-MS, and NMR.

    Science.gov (United States)

    Zanatta, Cinthia Fernanda; Cuevas, Elyana; Bobbio, Florinda O; Winterhalter, Peter; Mercadante, Adriana Z

    2005-11-30

    Camu-camu [Myrciaria dubia (HBK) McVaugh] is a small fruit native to the Amazonian rain forest. Its anthocyanin profile has now been investigated for the first time. Fruits from two different regions of the São Paulo state, Brazil, were analyzed. The major anthocyanins were isolated by high-speed countercurrent chromatography. HPLC-PDA, HPLC-MS/MS, and 1H NMR were used to confirm the identity of the main anthocyanins of camu-camu. Cyanidin-3-glucoside was identified as the major pigment in the fruits from both regions, representing 89.5% in the fruits produced in Iguape and 88.0% in those from Mirandópolis, followed by the delphinidin-3-glucoside, ranging between 4.2 and 5.1%, respectively. Higher total anthocyanin contents were detected in the fruits from Iguape (54.0 +/- 25.9 mg/100 g) compared to those from Mirandópolis (30.3 +/- 6.8 mg/100 g), most likely because of the lower temperatures in the Iguape region. PMID:16302773

  14. Green ultrasound-assisted extraction of anthocyanin and phenolic compounds from purple sweet potato using response surface methodology

    Science.gov (United States)

    Zhu, Zhenzhou; Guan, Qingyan; Guo, Ying; He, Jingren; Liu, Gang; Li, Shuyi; Barba, Francisco J.; Jaffrin, Michel Y.

    2016-01-01

    Response surface methodology was used to optimize experimental conditions for ultrasound-assisted extraction of valuable components (anthocyanins and phenolics) from purple sweet potatoes using water as a solvent. The Box-Behnken design was used for optimizing extraction responses of anthocyanin extraction yield, phenolic extraction yield, and specific energy consumption. Conditions to obtain maximal anthocyanin extraction yield, maximal phenolic extraction yield, and minimal specific energy consumption were different; an overall desirability function was used to search for overall optimal conditions: extraction temperature of 68ºC, ultrasonic treatment time of 52 min, and a liquid/solid ratio of 20. The optimized anthocyanin extraction yield, phenolic extraction yield, and specific energy consumption were 4.91 mg 100 g-1 fresh weight, 3.24 mg g-1 fresh weight, and 2.07 kWh g-1, respectively, with a desirability of 0.99. This study indicates that ultrasound-assisted extraction should contribute to a green process for valorization of purple sweet potatoes.

  15. Antioxidant and DNA damage protective properties of anthocyanin-rich extracts from Hibiscus and Ocimum: a comparative study.

    Science.gov (United States)

    Sarkar, Biswatrish; Kumar, Dhananjay; Sasmal, Dinakar; Mukhopadhyay, Kunal

    2014-01-01

    Anthocyanin extracts (AEs) from Ocimum tenuiflorum (leaf), Hibiscus rosa-sinensis (petal) and Hibiscus sabdariffa (calyx) were investigated and compared for in vitro antioxidant activity and DNA damage protective property. Total phenolic content (TPC) and total anthocyanin content (TAC) of the AEs were determined and the major anthocyanins were characterised. In vitro antioxidant activities were assessed by ferric-reducing antioxidant power (FRAP) assay, 2,2-diphenyl-1-picryl hydrazyl (DPPH) radical-scavenging activity, 2-deoxy-D-ribose degradation assay and lipid peroxidation assay. The protective property of the AEs was also examined against oxidative DNA damage by H2O2 and UV using pUC19 plasmid. All the AEs particularly those from O. tenuiflorum demonstrated efficient antioxidant activity and protected DNA from damage. Strong correlation between antioxidant capacity and TPC and TAC was observed. Significant correlation between antioxidant capacity and TPC and TAC ascertained that phenolics and anthocyanins were the major contributors of antioxidant activity. PMID:24730725

  16. Anthocyanins, colour and antioxidant properties of eggplant (Solanum melongena L.) and violet pepper (Capsicum annuum L.) peel extracts.

    Science.gov (United States)

    Sadilova, Eva; Stintzing, Florian C; Carle, Reinhold

    2006-01-01

    Acetone extracts from eggplant (Solanum melongena L.) and violet pepper (Capsicum annuum L.) peels both belonging to the Solanaceae plant family were characterized with respect to their anthocyanin profiles, colour qualities and antioxidant capacities. According to HPLC-DAD-MS3 analyses the major anthocyanin in eggplant was delphinidin-3-rutinoside, while the predominant pigment in violet pepper was assigned to delphinidin-3-trans-coumaroylrutinoside-5-glucoside. Since virtually all anthocyanins were delphinidin-based, the effect of acylation and glycosylation patterns on colour stability and antioxidant capacity could be assessed. Application of two in vitro-assays for antioxidant capacity assessment revealed that eggplant generally exhibited higher values compared to violet pepper which was ascribed to 3,5-diglycosylated structures predominating in the latter. The higher extent of acylation in violet pepper was reflected by a more purplish colour shade of the extracts, but did not translate into a higher stability against fading which again was attributed to additional glycosyl substitution at C5. These findings support the relevance of structure-related activities of anthocyanins both for understanding food colour and their particular nutritional value. PMID:16989312

  17. Prediction of radical scavenging activities of anthocyanins applying adaptive neuro-fuzzy inference system (ANFIS) with quantum chemical descriptors.

    Science.gov (United States)

    Jhin, Changho; Hwang, Keum Taek

    2014-01-01

    Radical scavenging activity of anthocyanins is well known, but only a few studies have been conducted by quantum chemical approach. The adaptive neuro-fuzzy inference system (ANFIS) is an effective technique for solving problems with uncertainty. The purpose of this study was to construct and evaluate quantitative structure-activity relationship (QSAR) models for predicting radical scavenging activities of anthocyanins with good prediction efficiency. ANFIS-applied QSAR models were developed by using quantum chemical descriptors of anthocyanins calculated by semi-empirical PM6 and PM7 methods. Electron affinity (A) and electronegativity (χ) of flavylium cation, and ionization potential (I) of quinoidal base were significantly correlated with radical scavenging activities of anthocyanins. These descriptors were used as independent variables for QSAR models. ANFIS models with two triangular-shaped input fuzzy functions for each independent variable were constructed and optimized by 100 learning epochs. The constructed models using descriptors calculated by both PM6 and PM7 had good prediction efficiency with Q-square of 0.82 and 0.86, respectively. PMID:25153627

  18. Hydrogen peroxide, nitric oxide and UV RESISTANCE LOCUS8 interact to mediate UV-B-induced anthocyanin biosynthesis in radish sprouts

    Science.gov (United States)

    Wu, Qi; Su, Nana; Zhang, Xiaoyan; Liu, Yuanyuan; Cui, Jin; Liang, Yongchao

    2016-01-01

    The cross talk among hydrogen peroxide (H2O2), nitric oxide (NO) and UV RESISTANCE LOCUS8 (UVR8) in UV-B-induced anthocyanin accumulation in the hypocotyls of radish sprouts was investigated. The results showed that UV-B irradiation significantly increased the anthocyanin accumulation and the expression of UVR8, and a similar trend appeared in radish sprouts subjected to cadmium, chilling and salt stresses regardless of light source. However, these responses disappeared under dark exposure. These results suggest that abiotic stress-induced anthocyanin accumulation and UVR8 expression were light-dependent. Moreover, abiotic stresses all enhanced the production of H2O2 and exogenous H2O2 addition significantly increased the anthocyanin concentration and UVR8 transcription, while these increases were severely inhibited by addition of dimethylthiourea (DMTU, a chemical trap for H2O2). It seems to suggest that H2O2 played an important role in the anthocyanin biosynthesis. Furthermore, addition of 0.5 mM sodium nitroprusside (SNP, a NO-releasing compound) substantially induced the anthocyanin accumulation, and H2O2-induced anthocyanin accumulation and UVR8 expression were significantly suppressed by co-treatment with 2-phenyl-4,4,5,5-tetramethylimidazoline-3-oxide-1-oxyl (PTIO, a NO scavenger), which was parallel with the expression of anthocyanin biosynthesis-related transcription factors and structural genes. All these results demonstrate that both H2O2 and NO are involved in UV-B-induced anthocyanin accumulation, and there is a crosstalk between them as well as a classical UVR8 pathway. PMID:27404993

  19. Effects of Exogenous Indole Butyric Acid and Callus Formation on the Anti-oxidant Activity, Total Phenolic, and Anthocyanin Constituents of Mulberry Cuttings

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In order to evaluate the effects of exogenous indole butyric acid (IBA) and callus formation on the antioxidant activity, total phenolics, and anthocyanin constituents of Morus nigra L. and M. alba L. cuttings, we investigated the variations before and after the treatment. The results indicate that anti-oxidant ability, total phenolic, and anthocyanin constituents of the callus stems of both Morus species were higher than those of non-callus forming species. There were also increases observed in anti-oxidant ability, total phenolic,and anthocyanin constituents of calli treated with IBA (1 000-3 000 mg/L).

  20. 3种花色苷对DF-1细胞的影响%Effect of Three Sorts of Anthocyanin on DF-1 Cells

    Institute of Scientific and Technical Information of China (English)

    盖丽丽; 张莉; 姜世金; 雷用东

    2012-01-01

    Objective: To investigate the impact of three sorts of anthocyanin including heart radish anthocyanin, purple potato anthocyanin and purple corn anthocyanin on DF-1 cell line. Methods: The impact of the three sorts of anthocyanin on DF-1 cells growth was explored and the final concentration was measured respectively by intuitive observation. The impact of the three sorts of anthocyanin in improving the role of cell activity was explored by MTT assay. Results: The different concentrations of anthocyanins were affected on DF-1 monolayer cells growth, and the optimal final concentration of heart radish anthocyanin, purple potato anthocyanin and purple corn anthocyanin was got for 100, 75 and 50 μg/mL respectively. At the same time, we mapped the chart based on the data measured by MTT assay. Conclusion: Different varieties of anthocyanins as different concentrations were affected on DF-1 monolayer cells growth significantly. These will provide data support for the research of anthocyanins antivirus in the future.%目的:探讨来自心里美萝卜、紫甘薯和紫玉米的3种不同的花色苷对DF-1细胞单层生长的影响.方法:直观观察3种花色苷对DF-1细胞生长的影响,初步摸索其最适终浓度;用MTT法检测花色苷在提高细胞活性方面的作用.结果:不同浓度的3种花色苷均对细胞单层生长有不同的影响,心里美萝卜花色苷、紫甘薯花色苷和紫玉米花色苷对细胞生长的最适终浓度分别为100、75和50 μg/mL;用MTT法获得相应数据并制成细胞活性图表.结论:不同品种来源及不同浓度的花色苷对DF-1细胞单层生长均有明显影响,为今后开展花色苷促细胞生长,提高细胞抗病毒活性研究提供了数据基础.

  1. Anthocyanins standards (cyanidin-3-O-glucoside and cyanidin-3-O-rutinoside) isolation from freeze-dried açaí (Euterpe oleraceae Mart.) by HPLC

    OpenAIRE

    Ana Cristina Miranda Senna Gouvêa; Manuela Cristina Pessanha de Araujo; Daniel Filisberto Schulz; Sidney Pacheco; Ronoel Luis de Oliveira Godoy; Lourdes Maria Corrêa Cabral

    2012-01-01

    Availability of analytical standards is a critical aspect in developing methods for quantitative analysis of anthocyanins. The anthocyanins cyanidin-3-O-glucoside and cyanidin-3-O-rutinoside were isolated from samples of freeze-dried açaí (Euterpe oleraceae Mart.), which is a round and purple well-known palm fruit in Brazil, and then used as standards. The isolation of the anthocyanins was performed by High Performance Liquid Chromatography (HPLC), using an adapted six-channel selection valve...

  2. Molecular cloning and characterization of three genes encoding dihydroflavonol-4-reductase from Ginkgo biloba in anthocyanin biosynthetic pathway.

    Directory of Open Access Journals (Sweden)

    Cheng Hua

    Full Text Available Dihydroflavonol-4-reductase (DFR, EC1.1.1.219 catalyzes a key step late in the biosynthesis of anthocyanins, condensed tannins (proanthocyanidins, and other flavonoids important to plant survival and human nutrition. Three DFR cDNA clones (designated GbDFRs were isolated from the gymnosperm Ginkgo biloba. The deduced GbDFR proteins showed high identities to other plant DFRs, which form three distinct DFR families. Southern blot analysis showed that the three GbDFRs each belong to a different DFR family. Phylogenetic tree analysis revealed that the GbDFRs share the same ancestor as other DFRs. The expression of the three recombinant GbDFRs in Escherichia coli showed that their actual protein sizes were in agreement with predictions from the cDNA sequences. The recombinant proteins were purified and their activity was analyzed; both GbDFR1 and GbDFR3 could catalyze dihydroquercetin conversion to leucocyanidin, while GbDFR2 catalyzed dihydrokaempferol conversion to leucopelargonidin. qRT-PCR showed that the GbDFRs were expressed in a tissue-specific manner, and transcript accumulation for the three genes was highest in young leaves and stamens. These transcription patterns were in good agreement with the pattern of anthocyanin accumulation in G.biloba. The expression profiles suggested that GbDFR1 and GbDFR2 are mainly involved in responses to plant hormones, environmental stress and damage. During the annual growth cycle, the GbDFRs were significantly correlated with anthocyanin accumulation in leaves. A fitted linear curve showed the best model for relating GbDFR2 and GbDFR3 with anthocyanin accumulation in leaves. GbDFR1 appears to be involved in environmental stress response, while GbDFR3 likely has primary functions in the synthesis of anthocyanins. These data revealed unexpected properties and differences in three DFR proteins from a single species.

  3. Antioxidant Activity of Blueberry Anthocyanin%蓝莓花青素的抗氧化活性研究

    Institute of Scientific and Technical Information of China (English)

    王健; 潘利华

    2013-01-01

    [目的]研究蓝莓花青素的抗氧化活性.[方法]采用酸化乙醇提取蓝莓鲜果中的蓝莓花青素,并通过羟自由基、DPPH自由基、H2O2、超氧阴离子自由基及Fe3+清除率试验评价蓝莓花青素的抗氧化能力.[结果]蓝莓花青素对羟自由基、DPPH自由基、H2O2、超氧阴离子自由基及Fe3+清除率随着浓度的增大而增强,其抗氧化活性高于相同浓度的抗坏血酸.[结论]蓝莓花青素具有很高的抗氧化活性,可以作为天然抗氧化剂进行开发.%[Objective] To determine the antioxidant activity of anthocyanin from blueberry.[Method] The anthocyanin were extracted with acidified ethanol from the fresh blueberry and the antioxidant activities of blueberry anthocyanin were determined by · OH,DPPH ·,H2O2,superoxide anion and Fe3+ removal experiments.[Result] The · OH,DPPH ·,H2O2,superoxide anion and Fe3+ removal rates of blueberry anthocyanin increased with its concentrations and were superior to that of Vc at the same concentration.[Conclusion] Blueberry anthocyanin possessed high antioxidant activity,which can be developed as natural antioxidants.

  4. MdMYB1 Regulates Anthocyanin and Malate Accumulation by Directly Facilitating Their Transport into Vacuoles in Apples.

    Science.gov (United States)

    Hu, Da-Gang; Sun, Cui-Hui; Ma, Qi-Jun; You, Chun-Xiang; Cheng, Lailiang; Hao, Yu-Jin

    2016-03-01

    Tonoplast transporters, including proton pumps and secondary transporters, are essential for plant cell function and for quality formation of fleshy fruits and ornamentals. Vacuolar transport of anthocyanins, malate, and other metabolites is directly or indirectly dependent on the H(+)-pumping activities of vacuolar H(+)-ATPase (VHA) and/or vacuolar H(+)-pyrophosphatase, but how these proton pumps are regulated in modulating vacuolar transport is largely unknown. Here, we report a transcription factor, MdMYB1, in apples that binds to the promoters of two genes encoding the B subunits of VHA, MdVHA-B1 and MdVHA-B2, to transcriptionally activate its expression, thereby enhancing VHA activity. A series of transgenic analyses in apples demonstrates that MdMYB1/10 controls cell pH and anthocyanin accumulation partially by regulating MdVHA-B1 and MdVHA-B2. Furthermore, several other direct target genes of MdMYB10 are identified, including MdVHA-E2, MdVHP1, MdMATE-LIKE1, and MdtDT, which are involved in H(+)-pumping or in the transport of anthocyanins and malates into vacuoles. Finally, we show that the mechanism by which MYB controls malate and anthocyanin accumulation in apples also operates in Arabidopsis (Arabidopsis thaliana). These findings provide novel insights into how MYB transcription factors directly modulate the vacuolar transport system in addition to anthocyanin biosynthesis, consequently controlling organ coloration and cell pH in plants. PMID:26637549

  5. Acylated anthocyanins from the blue-violet flowers of Anemone coronaria.

    Science.gov (United States)

    Saito, Norio; Toki, Kenjiro; Moriyama, Hidekazu; Shigihara, Atsushi; Honda, Toshio

    2002-06-01

    Five polyacylated anthocyanins were isolated from blue-violet flowers of Anemone coronaria 'St. Brigid'. They were identified as delphinidin 3-O-[2-O-(2-O-(trans-caffeoyl)-beta-D-glucopyranosyl)-6-O-(malonyl)-beta-D-galactopyranoside]-7-O-[6-O-(trans-caffeoyl)-beta-D-glucopyranoside]-3'-O-[beta-D-glucuronopyranoside], and its demalonylated form, delphinidin 3-O-[2-O-(2-O-(trans-caffeoyl)-beta-D-glucopyranosyl)-6-O-(2-O-tartaryl)malonyl)-beta-D-galactopyranoside]-7-O-[6-O-(trans-caffeoyl)-beta-D-glucopyranoside]-3'-O-[beta-D-glucuronopyranoside], and its cyanidin analog as well as delphinidin 3-O-[2-O-(2-O-(trans-caffeoyl)-beta-D-glucopyranosyl)-6-O-(2-O-(tartaryl)malonyl)-beta-D-galactopyranoside]-7-O-[6-O-(trans-caffeoyl)-beta-D-glucopyranoside].

  6. Influence of Copigment derived from Tasmannia Pepper Leaves on Davidson’s Plum Anthocyanins

    DEFF Research Database (Denmark)

    Jensen, Morten Busch; López-de-Dicastillo Bergamo, Carolina Ana; Payet, René Marc;

    2011-01-01

    in model soft drink solutions subjected to light irradiation and heat treatment. In both cases the addition of the copigment resulted in a lasting increase in color intensity. In conclusion, Davidson’s plum extract can successfully be utilized as a source of natural food color. Extract from Tasmania pepper...... to evaluate the suitability of Davidson’s plum extract as a source of anthocyanin-based food colorant. The stability of the Davidson’s plum extract towards heat treatment at 95 °C was higher than that of commercial mulberry colorant, but inferior to colorants derived from red cabbage and purple sweetpotato....... An addition of a variety of phenolic acids significantly increased color intensity indicating the formation of copigmentation complexes. Commercial chlorogenic acid as well as extract from a native Australian herb rich in chlorogenic acid, Tasmannia pepper leaf (Tasmannia lanceolata, R. Br.), were both tested...

  7. Pressurized liquid extraction of anthocyanins and biflavonoids from Schinus terebinthifolius Raddi: A multivariate optimization.

    Science.gov (United States)

    Feuereisen, Michelle M; Gamero Barraza, Mariana; Zimmermann, Benno F; Schieber, Andreas; Schulze-Kaysers, Nadine

    2017-01-01

    Response surface methodology was employed to investigate the effects of pressurized liquid extraction (PLE) parameters on the recovery of phenolic compounds (anthocyanins, biflavonoids) from Brazilian pepper (Schinus terebinthifolius Raddi) fruits. The effects of temperature, static time, and ethanol as well as acid concentration on the polyphenol yield were described well by quadratic models (p75°C), an artifact occurred and was tentatively identified as a diastereomer of I3',II8-binaringenin. Multivariate optimization led to high yields of phenolic compounds from the exocarp/drupes at 100/75°C, 10/10min, 54.5/54.2% ethanol, and 5/0.03% acetic acid. This study demonstrates that PLE is well suited for the extraction of phenolic compounds from S. terebinthifolius and can efficiently be optimized by response surface methodology. PMID:27507511

  8. Inhibitory effects of sweet cherry anthocyanins on the obesity development in C57BL/6 mice.

    Science.gov (United States)

    Wu, Tao; Tang, Qiong; Yu, Zhuoping; Gao, Zichun; Hu, Hao; Chen, Wei; Zheng, Xiaodong; Yu, Ting

    2014-05-01

    In the present study, purified sweet cherry anthocyanins (CACN) were evaluated to determine their inhibitory effects on adipocyte differentiation of 3T3-L1 cells and their anti-obesity properties in male C57BL/6 mice fed with high-fat diet (HFD). CACN prevented HFD-induced obesity in C57BL/6 mice. In vivo experiment revealed that 40 and 200 mg/kg of CACN in food reduced the body weight by 5.2% and 11.2%, respectively. CACN supplementation could also reduce the size of adipocytes, leptin secretion, serum glucose, triglyceride, total cholesterol, LDL-cholesterol and liver triglycerides. Furthermore, CACN could effectively reduce the expression levels of IL-6 and TNFα genes, markedly increase the SOD and GPx activity. Our results indicated that CACN slowed down the development of HFD-induced obesity in male C57BL/6 mice. PMID:24224922

  9. Strigolactone regulates anthocyanin accumulation, acid phosphatases production and plant growth under low phosphate condition in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Shinsaku Ito

    Full Text Available Phosphate is an essential macronutrient in plant growth and development; however, the concentration of inorganic phosphate (Pi in soil is often suboptimal for crop performance. Accordingly, plants have developed physiological strategies to adapt to low Pi availability. Here, we report that typical Pi starvation responses in Arabidopsis are partially dependent on the strigolactone (SL signaling pathway. SL treatment induced root hair elongation, anthocyanin accumulation, activation of acid phosphatase, and reduced plant weight, which are characteristic responses to phosphate starvation. Furthermore, the expression profile of SL-response genes correlated with the expression of genes induced by Pi starvation. These results suggest a potential overlap between SL signaling and Pi starvation signaling pathways in plants.

  10. Regulated deficit irrigation alters anthocyanins, tannins and sensory properties of cabernet sauvignon grapes and wines.

    Science.gov (United States)

    Casassa, Luis Federico; Keller, Markus; Harbertson, James F

    2015-01-01

    Four regulated deficit irrigation (RDI) regimes were applied to Cabernet Sauvignon grapes, which were analyzed for phenolics and also made into wine over three consecutive growing seasons. Relative to an industry standard regime (IS), yield was reduced over the three years by 37% in a full-deficit (FD) regime and by 18% in an early deficit (ED) regime, whereas no yield reduction occurred with a late deficit (LD) regime. Relative to IS, skin anthocyanin concentration (fresh weight basis) was 18% and 24% higher in ED and FD, respectively, whereas no effect was seen in LD. Seed tannin concentration was 3% and 8% higher in ED and FD, respectively, relative to the other two RDI regimes, whereas seed tannin content (amount per berry) was higher in IS than in FD. There were no practically relevant effects on the basic chemistry of the wines. The finished wines showed concentrations of tannins and anthocyanins that generally mirrored observed differences in skin and seed phenolic concentrations, although these were amplified in FD wines. Descriptive sensory analysis of the 2008 wines showed that FD wines were the most saturated in color, with higher purple hue, roughness, dryness and harshness, followed by ED wines, whereas IS and LD wines were less saturated in color and with higher brown and red hues. Overall, FD and ED seemed to yield fruit and wine with greater concentrations of phenolics than IS and LD, with the additional advantage of reducing water usage. However, these apparent benefits need to be balanced out with reductions in crop yields and potential long-term effects associated with pre-véraison water deficits.

  11. Purple sweet potato anthocyanin attenuates fat-induced mortality in Drosophila melanogaster.

    Science.gov (United States)

    Wang, Lijun; Li, Yuk Man; Lei, Lin; Liu, Yuwei; Wang, Xiaobo; Ma, Ka Ying; Zhang, Chengnan; Zhu, Hanyue; Zhao, Yimin; Chen, Zhen-Yu

    2016-09-01

    A high fat diet induces the accumulation of lipid hydroperoxides (LPO), accelerates the ageing process and causes a greater mortality in Drosophila melanogaster. Purple sweet potato is rich in antioxidant anthocyanin. The purpose of the present study was to examine if supplementation of purple sweet potato anthocyanin (PSPA) could reduce the mortality of fruit flies fed a high-fat diet. Results showed that the mean lifespan of fruit flies was shortened from 56 to 35days in a dose-dependent manner when lard in the diet increased from 0% to 20%. PSPA supplementation partially attenuated the lard-induced mortality. The maximum lifespan and 50% survival time were 49 and 27days, respectively, for the 10% lard control flies, in contrast, these parameters increased to 57 and 30days in the PSPA-supplemented fruit flies. Similarly, addition of lard into diet increased the total body LPO, while addition of PSPA partially attenuated its increase. Real-time PCR analysis indicated that PSPA-supplemented diet significantly up-regulated the mRNA of superoxide dismutase (SOD), catalase (CAT) and Rpn11, compared with the control lard diet. The western blot analysis also demonstrated that PSPA supplementation was associated with up-regulation protein mass of SOD1, SOD2, and CAT. In addition, PSPA supplementation could restore the climbing ability of fruit flies fed a 10% lard diet. We could conclude that the lifespan-prolonging activity of PSPA was potentially mediated by modulating the genes of SOD, CAT and Rpn11. PMID:27329928

  12. Anthocyanin- and proanthocyanidin-rich extracts of berries in food supplements--analysis with problems.

    Science.gov (United States)

    Krenn, L; Steitz, M; Schlicht, C; Kurth, H; Gaedcke, F

    2007-11-01

    The fundamental nutritional benefit of fruit and vegetables in the prevention of degenerative diseases--especially in the light of the current "anti-aging wave"--has directed the attention of scientists and consumers to a variety of berry fruits and their constituents. Many of these fruits, e.g. blueberries, elderberries or cranberries, have a long tradition in European and North American folk medicine. Based on these experiences and due to the growing interest the number of food supplements on the market containing fruit powders, juice concentrates or extracts of these fruits has increased considerably. Advertising for these products mainly focusses on the phenolic compounds, especially the anthocyanins and proanthocyanidins and their preventive effects. Most of the preparations are combinations, e.g. of extracts of different fruits with vitamins and trace elements, etc. which are labelled in a way which does not allow a comparison of the products. Typically, information on the extraction solvent, the drug: extract ratio and the content of anthocyanins and proanthocyanidins is missing. Besides that, the analysis of these polyphenols causes additional problems. Whereas the quality control of herbal medicinal products is regulated in detail, no uniform requirements for food supplements are existing. A broad spectrum of methods is used for the assay of the constituents, leading to differing, incomparable results. In addition to that, the methods are quite interference-prone and consequently lead to over- or underestimation of the contents. This publication provides an overview of some selected berries (lingonberry, cranberry, black elderberry, black chokeberry, black currant, blueberry), their constituents and use. The analytical methods currently used for the identification and quantification of the polyphenols in these berries are described, including an evaluation of their advantages and disadvantages. PMID:18065095

  13. Gene Expression Profiling of Development and Anthocyanin Accumulation in Kiwifruit (Actinidia chinensis Based on Transcriptome Sequencing.

    Directory of Open Access Journals (Sweden)

    Wenbin Li

    Full Text Available Red-fleshed kiwifruit (Actinidia chinensis Planch. 'Hongyang' is a promising commercial cultivar due to its nutritious value and unique flesh color, derived from vitamin C and anthocyanins. In this study, we obtained transcriptome data of 'Hongyang' from seven developmental stages using Illumina sequencing. We mapped 39-54 million reads to the recently sequenced kiwifruit genome and other databases to define gene structure, to analyze alternative splicing, and to quantify gene transcript abundance at different developmental stages. The transcript profiles throughout red kiwifruit development were constructed and analyzed, with a focus on the biosynthesis and metabolism of compounds such as phytohormones, sugars, starch and L-ascorbic acid, which are indispensable for the development and formation of quality fruit. Candidate genes for these pathways were identified through MapMan and phylogenetic analysis. The transcript levels of genes involved in sucrose and starch metabolism were consistent with the change in soluble sugar and starch content throughout kiwifruit development. The metabolism of L-ascorbic acid was very active, primarily through the L-galactose pathway. The genes responsible for the accumulation of anthocyanin in red kiwifruit were identified, and their expression levels were investigated during kiwifruit development. This survey of gene expression during kiwifruit development paves the way for further investigation of the development of this uniquely colored and nutritious fruit and reveals which factors are needed for high quality fruit formation. This transcriptome data and its analysis will be useful for improving kiwifruit genome annotation, for basic fruit molecular biology research, and for kiwifruit breeding and improvement.

  14. A gene-derived SNP-based high resolution linkage map of carrot including the location of QTL conditioning root and leaf anthocyanin pigmentation

    Science.gov (United States)

    Background: Purple carrots accumulate large quantities of anthocyanins in their roots and leaves. These flavonoid pigments possess antioxidant activity and are implicated in providing health benefits. The lack of informative and saturated linkage maps associated with well characterized populations s...

  15. Phenylpropanoid metabolites and expression of key genes involved in anthocyanin biosynthesis in the shaded peel of apple fruit in response to sun exposure.

    Science.gov (United States)

    Feng, Fengjuan; Li, Mingjun; Ma, Fengwang; Cheng, Lailiang

    2013-08-01

    The shaded peel of 'Fortune' (a red cultivar) and 'Mutsu' (a yellow/green cultivar) apple (Malus domestica Borkh.) was exposed to full sun by turning fruit 180° at about one week before harvest to determine the expression of key genes involved in anthocyanin synthesis in response to sunlight exposure and their relationships with the levels of anthocyanins and other phenolics. For the unturned (control) fruit, the shaded peel had lower expression levels of MdMYB10 (a transcriptional factor in the regulation of anthocyanin biosynthesis) and seven structural genes in anthocyanin synthesis (MdPAL, MdCHS, MdCHI, MdF3H, MdDFR1, MdLDOX, and MdUFGT), and lower levels of anthocyanins and flavonols than the sun-exposed peel in both cultivars. Exposure of the shaded peel to full sun caused marked up-regulation of the expression of MdMYB10 and all seven structural genes, which peaked between 6 h and 30 h after fruit turning, consequently leading to higher levels of anthocyanins, flavonols, and total phenolics than in the shaded peel and even in the sun-exposed peel of control fruit. Interestingly, the levels of flavonols were higher in the shaded peel of turned fruit (the original sun-exposed peel) than in the sun-exposed peel of both control and turned fruit in both cultivars, suggesting that competition for substrates exists in different branches of the phenylpropanoid pathway. These results indicate that sunlight exposure stimulates the expression of MdMYB10 and structural genes in anthocyanin synthesis, thereby elevating the levels of anthocyanins and other phenolic compounds in both red and yellow/green cultivars. PMID:23727590

  16. A CONSORT-Compliant, Randomized, Double-Blind, Placebo-Controlled Pilot Trial of Purified Anthocyanin in Patients With Nonalcoholic Fatty Liver Disease

    OpenAIRE

    Zhang, Pei-Wen; Chen, Feng-Xia; Li, Di; Ling, Wen-hua; Guo, Hong-Hui

    2015-01-01

    Abstract Nonalcoholic fatty liver disease (NAFLD) is a common liver disease that can progress to cirrhosis and liver failure. Anthocyanin, a member of the flavonoid family, has been shown to ameliorate NAFLD-associated pathologies in rodents. The aim of this CONSORT-compliant pilot study is to evaluate the effects of anthocyanin supplementation on insulin resistance and liver injury biomarkers in patients with NAFLD. A total of 74 subjects with NAFLD were divided into 2 groups in this double-...

  17. Comparative Transcriptome Analysis of Genes Involved in Anthocyanin Biosynthesis in the Red and Yellow Fruits of Sweet Cherry (Prunus avium L.)

    OpenAIRE

    Hairong Wei; Xin Chen; Xiaojuan Zong; Huairui Shu; Dongsheng Gao; Qingzhong Liu

    2015-01-01

    Background Fruit color is one of the most important economic traits of the sweet cherry (Prunus avium L.). The red coloration of sweet cherry fruit is mainly attributed to anthocyanins. However, limited information is available regarding the molecular mechanisms underlying anthocyanin biosynthesis and its regulation in sweet cherry. Methodology/Principal Findings In this study, a reference transcriptome of P. avium L. was sequenced and annotated to identify the transcriptional determinants of...

  18. Mesophyll versus epidermal anthocyanins as potential in vivo antioxidants: evidence linking the putative antioxidant role to the proximity of oxy-radical source.

    Science.gov (United States)

    Kytridis, Velissarios-Phaedon; Manetas, Yiannis

    2006-01-01

    The hypothesis that anthocyanins in red leaves may be potential in vivo antioxidants whose efficiency is linked to their proximity with the oxy-radical source was tested. Advantage was taken of intra-individual and intra-species variations in the anthocyanic trait and green and red leaves on the same individuals or leaves of green and red phenotypes were compared for the extent of PSII damage by reactive oxygen species generated by methyl viologen treatment in the light. Two species possessing anthocyanins in the mesophyll (Cistus creticus and Photinia x fraseri) and two in the epidermis (Rosa sp. and Ricinus communis) were used, while red actinic light (which is not absorbed by anthocyanins) allowed discrimination between an indirect sunscreen and a direct antioxidant function. Red leaves whose anthocyanins were located in the mesophyll were more resistant to methyl viologen treatment than their green counterparts. In one of these species (Cistus creticus), where anthocyanins are induced in some individuals within the natural population after bright cool days in winter, both green and future-red morphs displayed the same sensitivity to methyl viologen before anthocyanin induction. Immediately after reddening, however, resistance to methyl viologen was considerably increased in the red morphs. By contrast, red leaves whose anthocyanins were restricted to epidermal cells were more sensitive to the herbicide. Total leaf phenolic levels in green/red pairs were similar. The results indicate that vacuolar anthocyanins may be an effective in vivo target for oxy-radicals, provided that the oxy-radical source and the anthocyanic detoxifying sink are in close vicinity. PMID:16714309

  19. Transient winter leaf reddening in Cistus creticus characterizes weak (stress-sensitive) individuals, yet anthocyanins cannot alleviate the adverse effects on photosynthesis

    OpenAIRE

    Zeliou, Konstantina; Manetas, Yiannis; Petropoulou, Yiola

    2009-01-01

    Under apparently similar field conditions individual plants of Cistus creticus turn transiently red during winter, while neighbouring plants remain green. These two phenotypes provide a suitable system for comparing basic photosynthetic parameters and assessing critically two hypotheses, i.e. anthocyanins afford photoprotection and anthocyanins induce shade characteristics on otherwise exposed leaves. With that aim, pigment levels and in vivo chlorophyll fluorescence parameters were monitored...

  20. Responses of grape berry anthocyanin and titratable acidity to the projected climate change across the Western Australian wine regions

    Science.gov (United States)

    Barnuud, Nyamdorj N.; Zerihun, Ayalsew; Mpelasoka, Freddie; Gibberd, Mark; Bates, Bryson

    2014-08-01

    More than a century of observations has established that climate influences grape berry composition. Accordingly, the projected global climate change is expected to impact on grape berry composition although the magnitude and direction of impact at regional and subregional scales are not fully known. The aim of this study was to assess potential impacts of climate change on levels of berry anthocyanin and titratable acidity (TA) of the major grapevine varieties grown across all of the Western Australian (WA) wine regions. Grape berry anthocyanin and TA responses across all WA wine regions were projected for 2030, 2050 and 2070 by utilising empirical models that link these berry attributes and climate data downscaled (to ˜5 km resolution) from the csiro_mk3_5 and miroc3_2_medres global climate model outputs under IPCC SRES A2 emissions scenario. Due to the dependence of berry composition on maturity, climate impacts on anthocyanin and TA levels were assessed at a common maturity of 22 °Brix total soluble solids (TSS), which necessitated the determination of when this maturity will be reached for each variety, region and warming scenario, and future period. The results indicate that both anthocyanin and TA levels will be affected negatively by a warming climate, but the magnitude of the impacts will differ between varieties and wine regions. Compared to 1990 levels, median anthocyanins concentrations are projected to decrease, depending on global climate model, by up to 3-12 % and 9-33 % for the northern wine regions by 2030 and 2070, respectively while 2-18 % reductions are projected in the southern wine regions for the same time periods. Patterns of reductions in the median Shiraz berry anthocyanin concentrations are similar to that of Cabernet Sauvignon; however, the magnitude is lower (up to 9-18 % in southern and northern wine regions respectively by 2070). Similarly, uneven declines in TA levels are projected across the study regions. The largest reductions

  1. THF1 mutations lead to increased basal and wound-induced levels of oxylipins that stimulate anthocyanin biosynthesis via COI1 signaling in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Yi Gan; Hong Li; Ye Xie; Wenjuan Wu; Maoyin Li; Xuemin Wang; Jirong Huang

    2014-01-01

    Mutants defective in chloroplast development or photosynthesis are liable to accumulate higher levels of anthocyanin in photo-oxidative stress. However, regulatory mechanisms of anthocyanin biosynthesis in the mutants remain unclear. Here, we investigated the mechanism by which the deletion of thylakoid formation1 (THF1) leads to an increased level of anthocyanin in Arabidopsis thaliana L. Physiological and genetic evidence showed that the increased level of anthocya-nin in thf1 is dependent on coronatine-insensitive1 (COI1) signaling. Our data showed that thf1 had higher levels of basal a-linolenic acid (a-LeA), and methyl jasmonate (JA)-induced a-LeA and 12-oxophytodienoic acid (OPDA) than the wild type (WT). Consistently, expression levels of phospholipase genes including pPLAIIa and PLA-Ig1 were elevated in thf1. Further-more, inhibition of lipase activity by bromoenol lactone, a specific inhibitor of plant pPLA, led to producing identical levels of anthocyanins in WT and thf1 plants. Interestingly, OPDA biosynthesis was triggered by light il umination in isolated chloroplasts, indicating that new protein import into chlor-oplasts is not required for OPDA biosynthesis. Thus, we conclude that the elevated anthocyanin accumulation in thf1 is attributed to an increase in JA levels. This JA-mediated signaling to coordinate plant metabolism and growth in stress may be conserved in other photosensitive mutants.

  2. Effects of simultaneous use of methyl jasmonate with other plant hormones on the level of anthocyanins and biogenic amines in seedlings of common buckwheat (Fagopyrum esculentum Moench

    Directory of Open Access Journals (Sweden)

    Marcin Horbowicz

    2013-04-01

    Full Text Available The aim of the study was to assess the impact of auxin (IAA, gibberellin (GA3 and cytokinin (kinetin, used solely and in combination with methyl jasmonate (MJ, on the accumulation of anthocyanins and biogenic amines in hypocotyls and cotyledons of common buckwheat (Fagopyrum esculentum Moench seedlings. The obtained results indicate that accumulation of anthocyanins in buckwheat seedlings was dependent on the concentration of the phytohormone applied and the tissue studied. The combined use of MJ and IAA, GA3  or kinetin partly reversed the effect of strong inhibition of anthocyanin synthesis by MJ. IAA used solely decreased the level of anthocyanins in de-etiolated buckwheat cotyledons. IAA also caused a reduction of putrescine content, both in hypocotyls and cotyledons of buckwheat seedlings. MJ used alone caused high accumulation of 2-phenylethylamine (PEA in buckwheat cotyledons and hypocotyls. The simultaneous application of MJ and IAA, GA3  or kinetin also stimulated PEA synthesis in buckwheat tissues, however this effect was significantly lower compared to the use of MJ only. A reverse significant correlation between PEA and anthocyanin contents occurred in buckwheat hypocotyls, but not in cotyledons. It was suggested that the deficiency of L-phenylalanine, a substrate for synthesis of 2-phenylethylamine, may be partly responsible for the decline in anthocyanin content in buckwheat hypocotyls under the influence of MJ.

  3. Relation Between Anthocyanin Structures and Color in Red Wine: a Review%红葡萄酒花色苷结构和颜色的关系研究进展

    Institute of Scientific and Technical Information of China (English)

    韩富亮; 李杨; 李记明; 徐岩

    2011-01-01

    花色苷是红葡萄酒颜色的主要物质基础.本文根据花色苷结构,对其进行了分类,即基本花色苷(非酰化花色苷)、酰化花色苷、吡喃花色苷和聚合花色苷;并对其结构和颜色的关系进行了综述讨论,为葡萄酒颜色机理的研究提供参考.%Anthocyanins are responsible for red wine color. In this review , the anthocyanins are classified into four groups according to their structure: common anthocyanins (non-acylated anthocyanins), acylated anthocyanins, pyranoanthocyanins and polymeric anthocyanins; then expatiate on their contribution for wine color based on their structures in order to better understand the color changing mechanism of red wine.

  4. New Role of Rosea1 in Regulating Anthocyanin Biosynthetic Pathway in Hairy Root of Snapdragon (Antirrhinum majus L.

    Directory of Open Access Journals (Sweden)

    An Zhang

    2013-09-01

    Full Text Available We investigated the transcriptional regulation of anthocyanin biosynthesis in hairy roots system by ectopically expressing Rosea1 and Delila and we found something different from previous research. The RT-PCR results revealed that Rosea1 could activate early and late biosynthetic genes tested, including CHS, DFR and ANS. Delila enhanced the expression of CHS weakly, but did not influence DFR or ANS. The two regulators, Rosea1 and Delila, failed to interplay each other. It was speculated that Delila would be ineffective in the absence of Rosea1, another MYB factor specifically controlling CHS may exist. This investigation provided a new way to increase anthocyanin content by over expressing a MYB factor, potentially to be used in the field of agriculture and food

  5. Three-band model for noninvasive estimation of chlorophyll, carotenoids, and anthocyanin contents in higher plant leaves

    Science.gov (United States)

    Gitelson, Anatoly A.; Keydan, Galina P.; Merzlyak, Mark N.

    2006-06-01

    Leaf pigment content and composition provide important information about plant physiological status. Reflectance measurements offer a rapid, nondestructive technique to estimate pigment content. This paper describes a recently developed three-band conceptual model capable of remotely estimating total of chlorophylls, carotenoids and anthocyanins contents in leaves from many tree and crop species. We tuned the spectral regions used in the model in accord with pigment of interest and the optical characteristics of the leaves studied, and showed that the developed technique allowed accurate estimation of total chlorophylls, carotenoids and anthocyanins, explaining more than 91%, 70% and 93% of pigment variation, respectively. This new technique shows a great potential for noninvasive tracking of the physiological status of vegetation and the impact of environmental changes.

  6. Fruit quality, anthocyanin and total phenolic contents, and antioxidant activities of 45 blueberry cultivars grown in Suwon, Korea

    Institute of Scientific and Technical Information of China (English)

    Jin Gook KIM; Hong Lim KIM; Su Jin KIM; Kyo-Sun PARK

    2013-01-01

    Blueberry fruits from 45 commercial cultivars (39 northern highbush and 6 half highbush blueberry) grown in Suwon,Korea were analyzed for fruit size,soluble solids content,titratable acidity,total anthocyanin content,total phenolic content,and antioxidant activity.Fruit characteristics varied widely among the 45 blueberry cultivars.Fruit weight ranged from 0.9 to 3.6 g,soluble solids content from 8.3 to 14.3°Brix,and titratable acidity from 0.8% to 3.6%.Antioxidant activity ranged from 0.7 to 2.1 mg of quercetin equivalents per gram of fresh berries in different blueberry cultivars.Among the 45 blueberry cultivars,high amounts of anthocyanins and polyphenols,and high antioxidant activity were observed in ‘Elliott’,‘Rubel’,‘Rancocas’,and ‘Friendship’.

  7. Effects of grape (vitis labrusca b.) peel and seed extracts on phenolics, antioxidants and anthocyanins in grape juice

    International Nuclear Information System (INIS)

    Grape peel and seed are good sources of important bioactive components such as phenolics, anthocyanins and antioxidants. Recovery of these components and their proper utilization is important for the development of functional foods. We have utilized the extracts of grape peel and seed obtained by ultrasonic-assisted (UAE) and supercritical fluid extractions (SFE) for the enrichment of Campbell Early grape juice (CEJ). CEJ samples were analyzed for different functional compounds and it was observed that the addition of these extracts in CEJ significantly improved total phenolic compounds, antioxidants, anti radical activities and total anthocyanin contents. HPLC analysis of CEJ samples containing these extracts showed that the phenolic acids (benzoic and cinnamic acids) and catechins contents were also significantly improved with the addition of grape peel and seed extracts. Generally SFE extracts proved to be of superior quality for the functional enrichment in CEJ. The sensory evaluation revealed that the CEJ samples containing the extracts had good overall acceptability. (author)

  8. Sethoxydim treatment inhibits lipid metabolism and enhances the accumulation of anthocyanins in rape (Brassica napus L.) leaves.

    Science.gov (United States)

    Belkebir, Aicha; Benhassaine-Kesri, Ghouziel

    2013-09-01

    Cyclohexanediones (e.g., sethoxydim) are known to be inhibitors of plastid acetyl-CoA carboxylase (ACCase) of monocotyledonous plants and provoke plant death. When rape leaves were treated with 10(-3) M sethoxydim, growth rate, chlorophyll and lipid contents were reduced, but plant resisted to herbicide. [1-(14)C] Acetate labelling showed that lipid synthesis was affected by sethoxydim, probably through inhibition of chloroplast homomeric ACCase activity, and the fatty acid synthase activity (FAS) was reduced because of malonyl-CoA deficiency. In contrast, sethoxydim treatment provoked an increase in phenylalanine ammonia lyase (PAL) activity with an accumulation of cinnamic acid, naringenin and anthocyanins. The accumulation of anthocyanins seems to reduce the damaging effect of the herbicide stress. Thus, in plant cell, the flux of carbon seems to be oriented towards protective mechanisms, and the two ACCases could have an important role in this orientation. PMID:25149245

  9. Bread fortified with anthocyanin-rich extract from black rice as nutraceutical sources: Its quality attributes and in vitro digestibility.

    Science.gov (United States)

    Sui, Xiaonan; Zhang, Yan; Zhou, Weibiao

    2016-04-01

    Anthocyanin-rich black rice extract powder (ABREP) as a nutraceutical source was fortified into bread. The quality and digestibility behaviors of bread with ABREP were evaluated through instrumental and in vitro digestion studies. The quality of bread with 2% of ABREP was not significantly (p>0.05) different from the control bread; however, increasing the ABREP level to 4% caused less elasticity and higher density of bread. A mathematical model was further developed to systemically describe the trajectory of bread digestion. The digestion rates of bread with ABREP were found to be reduced by 12.8%, 14.1%, and 20.5% for bread with 1%, 2%, and 4% of ABREP, respectively. Results of the study suggest that the fortification of anthocyanins into bread could be an alternative way to produce functional bread with a lower digestion rate and extra health benefits. PMID:26593572

  10. Pleiotropic effect of fluoranthene on anthocyanin synthesis and nodulation of Medicago sativa is reversed by the plant flavone luteolin

    Energy Technology Data Exchange (ETDEWEB)

    Wetzel, A.; Parniske, M.; Werner, D. [Univ. of Marburg (Germany)

    1995-05-01

    The symbiosis between leguminous plants and soil bacteria of the genus Rhizobium is of considerable agronominal importance. Recently it has been found, that polycyclic aromatic hydrocarbons (PAHs; e.g. anthracene, phenanthrene, fluoranthene), occurring as ubiquitous environmental contaminants can inhibit nodulation of Medicago sativa. Fluoranthene is one of the dominant PAHs found in urban particulate matter, sewage sludge or beside motorways. Several organisms have been shown to be able to metabolize and mineralize fluoranthene but the uptake of fluoranthene is limited due to low solubility of fluoranthene in water and strong adsorption to humic substances in soil. Rhizobium meliloti cannot degrade fluoranthene. Toxic effects of fluoranthene on bacterial growth have never been observed. In contrast to their rhizobial symbiotic partners, alfalfa plants grown on a solidified fluoranthene-containing medium, exhibited symptoms of toxicity. They showed a dose-responsive decrease in shoot length and, if inoculated with R. meliloti, inhibition of nodule formation. Growth retardation is accompanied by a decrease in anthocyanin pigmentation of shoots, and an atypical accumulation of anthocyanins in roots. Plant flavonoids are known to play a central role in the signal exchange of the Legume-Rhizobium symbiosis. Phenylpropane derived compounds and flavonoids have been implicated in nodule development. Since fluoranthene impairs nodulation and induces the production of anthocyanins, it is possible that these events are causally linked via phenylpropanoid metabolism. These experiments attempt to overcome the inhibitory effects of fluoranthene by exogeneous application of the flavonoid luteolin. This paper demonstrates that luteolin antagonizes the fluoranthene mediated inhibition of nodule formation and prevents the accumulation of anthocyanins in roots. 29 refs., 4 figs., 1 tab.

  11. Stability of Anthocyanins from Red Grape Skins under Pressurized Liquid Extraction and Ultrasound-Assisted Extraction Conditions

    OpenAIRE

    Ali Liazid; Gerardo F. Barbero; Latifa Azaroual; Miguel Palma; Carmelo G. Barroso

    2014-01-01

    The stability of anthocyanins from grape skins after applying different extraction techniques has been determined. The following compounds, previously extracted from real samples, were assessed: delphinidin 3-glucoside, cyanidin 3-glucoside, petunidin 3-glucoside, peonidin 3-glucoside, malvidin 3-glucoside, peonidin 3-acetylglucoside, malvidin 3-acetylglucoside, malvidin 3-caffeoylglucoside, petunidin 3-p-coumaroylglucoside and malvidin 3-p-coumaroylglucoside (trans). The techniques used wer...

  12. A RAPID UHPLC-DAD-ESI-MSn METHOD FOR ANTHOCYANINS QUANTIFICATION FROM Euterpe oleracea FRUITS HARVESTED AT DIFFERENT TIMES

    OpenAIRE

    Dias, A.(Universidade Federal do ABC, Centro de Ciências Naturais e Humanas, Av. dos Estados, 5001, 09210-580, Santo André, SP, Brasil); Chataigné, G.; Rozet, Eric; de Oliveira, A.; Silva, A.; H. ROGEZ; Quetin-Leclercq, J.

    2011-01-01

    Euterpe oleracea is a palm tree widely distributed in northern South America. Its greatest occurrence and economic importance happens in the floodplains of the Amazonian delta. The fruits called açai are an interesting source of different anthocyanins. Lately they have gained popularity in North America and in the European countries in the food industry and in the health sector due to their extremely high antioxidant capacity and potential anti-inflammatory activities [1]. Some studies hav...

  13. Anthocyanins do not influence long-chain n-3 fatty acid status: studies in cells, rodents and humans ☆

    OpenAIRE

    Vauzour, D.; Pascual-Teresa, Sonia de; Minihane, Anne-Marie

    2015-01-01

    © 2015 The Authors. Increased tissue status of the long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA), eicosapentaenoic (EPA) and docosahexaenoic acid (DHA) is associated with cardiovascular and cognitive benefits. Limited epidemiological and animal data suggest that flavonoids, and specifically anthocyanins, may increase EPA and DHA levels, potentially by increasing their synthesis from the shorter-chain n-3 PUFA, α-linolenic acid. Using complimentary cell, rodent and human studies we ...

  14. Differential Adsorption of Ochratoxin A and Anthocyanins by Inactivated Yeasts and Yeast Cell Walls during Simulation of Wine Aging

    OpenAIRE

    Leonardo Petruzzi; Antonietta Baiano; Antonio De Gianni; Milena Sinigaglia; Maria Rosaria Corbo; Antonio Bevilacqua

    2015-01-01

    The adsorption of ochratoxin A (OTA) by yeasts is a promising approach for the decontamination of musts and wines, but some potential competitive or interactive phenomena between mycotoxin, yeast cells, and anthocyanins might modify the intensity of the phenomenon. The aim of this study was to examine OTA adsorption by two strains of Saccharomyces cerevisiae (the wild strain W13, and the commercial isolate BM45), previously inactivated by heat, and a yeast cell wall preparation. Experiments w...

  15. Anthocyanins extracted from Chinese blueberry (Vaccinium uliginosum L.) and its anticancer effects on DLD-1 and COLO205 cells

    Institute of Scientific and Technical Information of China (English)

    ZU Xiao-yan; ZHANG Zhen-ya; ZHANG Xiao-wen; YOSHIOKA Masahiro; YANG Ying-nan; LI Ji

    2010-01-01

    Background Vaccinium uliginosum L. is a type of blueberry found in the Chinese Changbai Mountains. We extracted Vaccinium uliginosurn Anthocyanins (Av.uli) to investigate its bioactivity on suppressing cancer cells.Methods Av.uli was extracted under different conditions of temperature (10℃-35℃), pH 1.0-3.0, and diatomaceous earth (1.0 g-3.0 g), followed by a HPLC analysis for the determination of the ingredients. Its anticancer bioactivities on human colon and colorectal cancer cells (DLD-1 and COLO205) were compared with those on Lonicera caerulea Anthocyanins (AL.cae) and Vaccinium myrtillus Anthocyanins (Av.myr), using cell viability assays, DNA electrophoresis and nuclear morphology assays.Results The optimum process of Av.uliextraction involved conditions of temperature 20℃, pH 2.0, and diatomaceous earth 1.0 g/50 g of fruit weight. Av.uli contained 5 main components: delphinidin (40.70±1.72)%, cyanidin (3.40±0.68)%,petunidin (17.70±0.54)%, peonidin (2.90±0.63)% and malvidin (35.50±1.11)%. The malvidin percentage was significantly higher (P <0.05) than it in Av.myr. Av.uli complied with a dose-dependent repression of cancer cell proliferation with an IC50 (50% inhibitory concentration) value of 50 μg/ml, and showed greater anticancer efficiency than AL. cae and Av. myr under the same cell treatment conditions. These observations were further supported by the results of nuclear assays.Conclusions The extraction protocol and conditions we used were effective for anthocyanin extraction. Av.uli could be a feasible practical research tool and a promising therapeutic source to suppress human colon or colorectal cancers.

  16. Anthocyanin Extracts from Black Soybean (Glycine max L.) Protect Human Glial Cells Against Oxygen-Glucose Deprivation by Promoting Autophagy

    OpenAIRE

    KIM, Yong Kwan; Yoon, Hye Hyeon; Lee, Young Dae; Youn, Dong-Ye; Ha, Tae Joung; Kim, Ho-Shik; Lee, Jeong-Hwa

    2012-01-01

    Anthocyanins have received growing attention as dietary antioxidants for the prevention of oxidative damage. Astrocytes, which are specialized glial cells, exert numerous essential, complex functions in both healthy and diseased central nervous system (CNS) through a process known as reactive astrogilosis. Therefore, the maintenance of glial cell viability may be important because of its role as a key modulator of neuropathological events. The aim of this study was to investigate the effect o...

  17. An anthocyanin-rich extract from Hibiscus sabdariffa linnaeus inhibits N-nitrosomethylurea-induced leukemia in rats.

    Science.gov (United States)

    Tsai, Tsung-Chang; Huang, Hui-Pei; Chang, Yun-Ching; Wang, Chau-Jong

    2014-02-19

    A previous study reported that anthocyanins from roselle (Hibiscus sabdariffa L.) showed significant anticancer activity in human promyelocytic leukemia cells. To explore the antitumor effect of anthocyanin, a roselle bioactive polyphenol in a rat model of chemical-induced leukemia was assayed. Anthocyanin extract of roselle (Hibiscus anthocyanins, HAs) was supplemented in the diet (0.1 and 0.2%). This study was carried out to evaluate the protective effect of HAs on N-nitrosomethylurea (NMU)-induced leukemia of rats. The study employed male Sprague-Dawley rats (n = 48), and leukemia was induced by intravenous injection of 35 mg kg(-1) body weight of NMU dissolved in physiologic saline solution. The rats were divided into four groups (n = 12): control, NMU only, and HAs groups that received different doses of HAs (0.1 and 0.2%) daily, orally, after NMU injection. After 220 days, the animals were killed, and the following parameters were assessed: morphological observation, hematology examination, histopathological assessment, and biochemical assay. When compared with the NMU-only group, HAs significantly prevented loss of organ weight and ameliorated the impairment of morphology, hematology, and histopathology. Treatment with HAs caused reduction in the levels of AST, ALT, uric acid, and MPO. Also, the results showed that oral administration of HAs (0.2%) remarkably inhibited progression of NMU-induced leukemia by approximately 33.3% in rats. This is the first report to demonstrate that the sequential administration of HAs followed by NMU resulted in an antileukemic activity in vivo. PMID:24471438

  18. Purification and characterization of UDP-glucose: anthocyanin 3',5'-O-glucosyltransferase from Clitoria ternatea.

    Science.gov (United States)

    Kogawa, Koichiro; Kato, Naoki; Kazuma, Kohei; Noda, Naonobu; Suzuki, Masahiko

    2007-11-01

    A UDP-glucose: anthocyanin 3',5'-O-glucosyltransferase (UA3'5'GT) (EC 2.4.1.-) was purified from the petals of Clitoria ternatea L. (Phaseoleae), which accumulate polyacylated anthocyanins named ternatins. In the biosynthesis of ternatins, delphinidin 3-O-(6''-O-malonyl)-beta-glucoside (1) is first converted to delphinidin 3-O-(6''-O-malonyl)-beta-glucoside-3'-O-beta-glucoside (2). Then 2 is converted to ternatin C5 (3), which is delphinidin 3-O-(6''-O-malonyl)-beta-glucoside-3',5'-di-O-beta-glucoside. UA3'5'GT is responsible for these two steps by transferring two glucosyl groups in a stepwise manner. Its substrate specificity revealed the regioselectivity to the anthocyanin's 3'- or 5'-OH groups. Its kinetic properties showed comparable k (cat) values for 1 and 2, suggesting the subequality of these anthocyanins as substrates. However, the apparent Km value for 1 (3.89 x 10(-5) M), which is lower than that for 2 (1.38 x 10(-4) M), renders the k(cat)/Km value for 1 smaller, making 1 catalytically more efficient than 2. Although the apparent Km value for UDP-glucose (6.18 x 10(-3) M) with saturated 2 is larger than that for UDP-glucose (1.49 x 10(-3) M) with saturated 1, the k(cat) values are almost the same, suggesting the UDP-glucose binding inhibition by 2 as a product. UA3'5'GT turns the product 2 into a substrate possibly by reversing the B-ring of 2 along the C2-C1' single bond axis so that the 5'-OH group of 2 can point toward the catalytic center. PMID:17668234

  19. Variation Laws of Anthocyanin Content in Roots and Their Relationships with Major Economic Traits in Purple-Fleshed Sweetpotato [Ipomoea batatas (L.) Lam

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Variation laws of anthocyanin content in root during the development and among the varieties, and their relationships with major economic traits in purple-fleshed sweetpotato [Ipomoea batatas (L.) Lam] were studied in the present article. The dynamics of 20 economic traits in 13 purple-fleshed sweetpotato varieties at 20, 40, 60, 80, 100, 120, and 140 d after their transplanting were investigated, and these traits included anthocyanin content in root, length of the longest vine, number of base branches, root number, dry matter contents in stem, foliage and root, fresh/dry weight of root, fresh/dry weight of stem, fresh/dry weight of foliage, fresh/dry weight of stem and foliage, fresh/dry weight of whole plant, and rations of photosynthate to root, stem, and foliage. The correlations between the variations of anthocyanin content and the other 19 economic traits among varieties and during the whole developing stages, and the correlations of daily increase of anthocyanin content with other 10 kinds of yields were analyzed. The results showed that: (1) During the whole development, the anthocyanin content had three variation types, I.e. A slow-increase type, a fluctuating-change type, and a devious- rising type, and had different responses to the growth of length of the longest vine, number of base branches, fresh/dry yield of root, and photosynthate allotments. (2) The anthocyanin contents among 13 varieties began to have significant difference after 20 d, and showed completed differentiation during 40-100 d, which had significantly negative correlationships with the number of base branches, fresh/dry yield of root, photosynthate allotment ratio to root, and had significant positive correlationships with dry matter content of root, length of the longest vine, fresh/dry yield of stem, dry yield of whole plant and photosynthate allotment ratio to foliage. (3) Because of the significantly negative correlation between daily increase of anthocyanin content and dry matter

  20. New technique to isolate anthocyanins from Delaware grapes by forming an aluminium complex using a Discovery DPA-6S.

    Science.gov (United States)

    Asada, Takayuki; Koi, Yoriko; Tamura, Hirotoshi

    2015-01-01

    An aluminium complex of crude Delaware grape anthocyanins, bearing an ortho-dihydroxyl group on the B ring and/or a p-coumaroyl group as an ester with flavocommelin, was formed and isolated by ethanol precipitation. Using a Discovery DPA-6S short column, selected anthocyanins were isolated to give cyanidin 3-glucoside (Cy3G, 48.2% yield with 95.2% purity) and cyanidin 3-(6-O-p-coumaroylglucoside) (Cy3-pC·G, 44.9% yield with 91.4% purity) from natural Delaware grape skin extracts without ODS-HPLC column chromatography. DPPH radical scavenging activity of the complex pigment was 3.4 ± 0.10 μmol TE/mg. Moreover, isolated pure anthocyanins from the complex pigment showed significantly higher DPPH radical scavenging activity [4.5 ± 0.08 μmol TE/mg (Cy3G) and 4.5 ± 0.04 μmol TE/mg (Cy3-pC·G), (p<0.05)].

  1. Adsorption/desorption characteristics and separation of anthocyanins from muscadine (Vitis rotundifolia) juice pomace by use of macroporous adsorbent resins.

    Science.gov (United States)

    Sandhu, Amandeep K; Gu, Liwei

    2013-02-20

    In this study, the adsorption/desorption characteristics of anthocyanins on five Amberlite resins (FPX-66, XAD-7HP, XAD-16N, XAD-1180, and XAD-761) were evaluated. FPX-66 and XAD-16N showed the highest adsorption and desorption capacities and ratios for anthocyanins from muscadine pomace extract, while XAD-7HP had the lowest adsorption and desorption capacities and ratios. On the basis of static adsorption and desorption tests, three resins (FPX-66, XAD-16N, and XAD-1180) were selected for adsorption kinetics and isotherms. The adsorption mechanism was better explained by the pseudo-first-order kinetics for FPX-66 and XAD-16N; however, for XAD-1180, pseudo-second-order kinetics was the most suitable model. The experimental data fitted best to Langmuir isotherm model for all three resins. Dynamic testing was done on a column packed with FPX-66 resin and breakthrough volume was reached at 17 bed volumes of muscadine pomace water extract during adsorption. Three bed volumes of aqueous ethanol (70%) resulted in complete desorption. Resin adsorption resulted in a concentrated pomace extract that contained 13% (w/w) anthocyanins with no detectable sugars. PMID:23368425

  2. Brix, pH and anthocyanin content determination in whole Port wine grape berries by hyperspectral imaging and neural networks

    DEFF Research Database (Denmark)

    Fernandes, Armando M.; Franco, Camilo; Mendes-Ferreira, Ana;

    2015-01-01

    This work presents the results of measuring pH, sugars, and anthocyanin content of whole grape berries. The spectrum of each sample, composed of six whole grape berries, was collected using hyperspectral imaging in reflectance mode from 380 to 1028 nm. The spectra were converted to enological...... parameters by multilayer perceptrons created using 240 samples that were split for 7-fold cross-validation and test. The test set with 30 samples revealed R2 values of 0.73, 0.92 and 0.95 and RMSE of 0.18, 0.95 °Brix and 14 mg/l for pH, sugars and anthocyanin content, respectively. This is the only work, up...... to the authors’ knowledge, that reports the simultaneous determination of pH, sugars and anthocyanin with a spatial resolution smaller than the bunch size, by spectroscopy measurements done in reflectance mode. The results presented show an improvement of the state-of-the-art, for both reflectance...

  3. Distinctive Anthocyanin Accumulation Responses to Temperature and Natural UV Radiation of Two Field-Grown Vitis vinifera L. Cultivars

    Directory of Open Access Journals (Sweden)

    Ana Fernandes de Oliveira

    2015-01-01

    Full Text Available The responses of two red grape varieties, Bovale Grande (syn. Carignan and Cannonau (syn. Grenache, to temperature and natural UV radiation were studied in a three-years field experiment conducted in Sardinia (Italy, under Mediterranean climate conditions. Vines were covered with plastic films with different transmittances to UV radiation and compared to uncovered controls. Light intensity and spectral composition at the fruit zone were monitored and berry skin temperature was recorded from veraison. Total skin anthocyanin content (TSA and composition indicated positive but inconsistent effects of natural UV light. Elevated temperatures induced alterations to a greater extent, decreasing TSA and increasing the degree of derivatives acylation. In Cannonau total soluble solids increases were not followed by increasing TSA as in Bovale Grande, due to both lower phenolic potential and higher sensitivity to permanence of high temperatures. Multi linear regression analysis tested the effects of different ranges of temperature as source of variation on anthocyanin accumulation patterns. To estimate the thermal time for anthocyanin accumulation, the use of normal heat hours model had benefit from the addition of predictor variables that take into account the permanence of high (>35 °C and low (<15 °C and <17 °C temperatures during ripening.

  4. Study and characterization of an ancient European flint white maize rich in anthocyanins: Millo Corvo from Galicia.

    Directory of Open Access Journals (Sweden)

    Chiara Lago

    Full Text Available In the second half of the last century, the American dent hybrids began to be widely grown, leading to the disappearance or marginalization of the less productive traditional varieties. Nowadays the characterization of traditional landraces can help breeders to discover precious alleles that could be useful for modern genetic improvement and allow a correct conservation of these open pollinated varieties (opvs. In this work we characterized the ancient coloured cultivar "Millo Corvo" typical of the Spanish region of Galicia. We showed that this cultivar accumulates high amounts of anthocyanins (83.4 mg/100g flour, and by TLC (Thin Layer Chromatography and HPLC (High Pressure Liquid Chromatography analysis, we demonstrated that they mainly consisted of cyanidin. Mapping and sequencing data demonstrate that anthocyanin pigmentation is due to the presence of the red color1 gene(r1, a transcription factor driving the accumulation of this pigment in the aleurone layer. Further chemical analysis showed that the kernels are lacking in carotenoids, as confirmed by genetic study. Finally a DPPH (2,2-diphenyl-1-picrylhydrazyl radical scavenging ability test showed that Millo Corvo, even though lacking carotenoids, has a high antioxidant ability, and could be considered as a functional food due to the presence of anthocyanins.

  5. A role for PacMYBA in ABA-regulated anthocyanin biosynthesis in red-colored sweet cherry cv. Hong Deng (Prunus avium L.).

    Science.gov (United States)

    Shen, Xinjie; Zhao, Kai; Liu, Linlin; Zhang, Kaichun; Yuan, Huazhao; Liao, Xiong; Wang, Qi; Guo, Xinwei; Li, Fang; Li, Tianhong

    2014-05-01

    The MYB transcription factors and plant hormone ABA have been suggested to play a role in fruit anthocyanin biosynthesis, but supporting genetic evidence has been lacking in sweet cherry. The present study describes the first functional characterization of an R2R3-MYB transcription factor, PacMYBA, from red-colored sweet cherry cv. Hong Deng (Prunus avium L.). Transient promoter assays demonstrated that PacMYBA physically interacted with several anthocyanin-related basic helix-loop-helix (bHLH) transcription factors to activate the promoters of PacDFR, PacANS and PacUFGT, which are thought to be involved in anthocyanin biosynthesis. Furthermore, the immature seeds of transgenic Arabidopsis plants overexpressing PacMYBA exhibited ectopic pigmentation. Silencing of PacMYBA, using a Tobacco rattle virus (TRV)-induced gene silencing technique, resulted in sweet cherry fruit that lacked red pigment. ABA treatment significantly induced anthocyanin accumulation, while treatment with the ABA biosynthesis inhibitor nordihydroguaiaretic acid (NDGA) blocked anthocyanin production. PacMYBA expression peaked after 2 h of pre-incubation in ABA and was 15.2-fold higher than that of sweet cherries treated with NDGA. The colorless phenotype was also observed in the fruits silenced in PacNCED1, which encodes a key enzyme in the ABA biosynthesis pathway. The endogenous ABA content as well as the transcript levels of six structural genes and PacMYBA in PacNCED1-RNAi (RNA interference) fruit were significantly lower than in the TRV vector control fruit. These results suggest that PacMYBA plays an important role in ABA-regulated anthocyanin biosynthesis and ABA is a signal molecule that promotes red-colored sweet cherry fruit accumulating anthocyanin. PMID:24443499

  6. The effect of cis-jasmone, jasmonic acid and methyl jasmonate on accumulation of anthocyanins and proanthocyanidins in seedlings of common buckwheat (Fagopyrum esculentum Moench

    Directory of Open Access Journals (Sweden)

    Marcin Horbowicz

    2011-04-01

    Full Text Available Effects of various jasmonates (methyl jasmonate, jasmonic acid, cis-jasmone on anthocyanins and procyanidins content of, as well as on growth of common buckwheat (Fagopyrum esculentum Moench seedlings were studied. The studied jasmonates were applied as solutions or vapors on four days seedlings, and the seedlings were grown during the next four days in day/night conditions (16/8 h. Afterwards anthocyanins and proanthocyanidins content, as well as elongation of primary roots and hypocotyls were measured. When applied as solutions cis-jasmone (JAS stimulated the anthocyanins accumulation, but when used as vapors had tendency to decrease its accumulation in buckwheat hypocotyls. Jasmonic acid (JA solutions slightly stimulated or had no effect on biosynthesis of anthocyanins in buckwheat hypocotyls, but used as vapors caused a decline of anthocyanins in buckwheat hypocotyls. Methyl jasmonate (MJ clearly inhibited biosynthesis of anthocyanins in hypocotyls of buckwheat seedlings. The studied jasmonates had no influence on anthocyanins level in cotyledons of buckwheat seedlings, except cis-jasmone, which at the lowest solution concentration slightly enhanced biosynthesis of the pigments. Treatment of buckwheat seedlings with solutions of all jasmonates (10-8 M, 10-6 M and 10-4 M had no influence on the growth of buckwheat hypocotyls. Contrary to that observation vapors of the growth regulators in concentrations 10-4 M, had a strong inhibitory effect on the growth of hypocotyls of buckwheat seedlings. Solutions of JA and MJ, as well as vapors of JA, MJ and JAS strongly inhibited the primary root growth of buckwheat seedlings, while JAS applied as solution had no such influence. MJ and JA caused much higher stimulation of proanthocyanidin biosynthesis in buckwheat hypocotyls than JAS.

  7. Fine mapping and candidate gene analysis of an anthocyanin-rich gene, BnaA.PL1, conferring purple leaves in Brassica napus L.

    Science.gov (United States)

    Li, Haibo; Zhu, Lixia; Yuan, Gaigai; Heng, Shuangping; Yi, Bin; Ma, Chaozhi; Shen, Jinxiong; Tu, Jinxing; Fu, Tingdong; Wen, Jing

    2016-08-01

    Because of the advantages of anthocyanins, the genetics and breeding of crops rich in anthocyanins has become a hot research topic. However, due to the lack of anthocyanin-related mutants, no regulatory genes have been mapped in Brassica napus. In this study, we first report the characterization of a B. napus line with purple leaves and the fine mapping and candidate screening of the BnaA.PL1 gene. The amount of anthocyanins in the purple leaf line was six times higher than that in a green leaf line. A genetic analysis indicated that the purple character was controlled by an incomplete dominant gene. Through map-based cloning, we localized the BnaA.PL1 gene to a 99-kb region at the end of B. napus chromosome A03. Transcriptional analysis of 11 genes located in the target region revealed that the expression level of only the BnAPR2 gene in seedling leaves decreased from purple to reddish green to green individuals, a finding that was consistent with the measured anthocyanin accumulation levels. Molecular cloning and sequence analysis of BnAPR2 showed that the purple individual-derived allele contained 17 variants. Markers co-segregating with BnaA.PL1 were developed from the sequence of BnAPR2 and were validated in the BC4P2 population. These results suggested that BnAPR2, which encodes adenosine 5'-phosphosulfate reductase, is likely to be a valuable candidate gene. This work may lay the foundation for the marker-assisted selection of B. napus vegetables that are rich in anthocyanins and for an improved understanding of the molecular mechanisms controlling anthocyanin accumulation in Brassica. PMID:27003438

  8. Chlorophyll, anthocyanin, and gas exchange changes assessed by spectroradiometry in Fragaria chiloensis under salt stress

    Institute of Scientific and Technical Information of China (English)

    Miguel Garriga; Jorge B. Retamales; Sebastin Romero-Bravo; Peter DS Caligari; Gustavo A. Lobos

    2014-01-01

    Chlorophyl and anthocyanin contents provide a valuable indicator of the status of a plant’s physiology, but to be more widely utilized it needs to be assessed easily and non-destructively. This is particularly evident in terms of assessing and exploiting germplasm for plant-breeding programs. We report, for the first time, experiments with Fragaria chiloensis (L.) Duch. and the estimation of the effects of response to salinity stress (0, 30, and 60 mmol NaCl/L) in terms of these pigments content and gas exchange. It is shown that both pigments (which interestingly, themselves show a high correlation) give a good indication of stress response. Both pigments can be accurately predicted using spectral reflectance indices (SRI);however, the accuracy of the predictions was slightly improved using multilinear regression analysis models and genetic algorithm analysis. Specifical y for chlorophyl content, unlike other species, the use of published SRI gave better indications of stress response than Normalized Difference Vegetation Index. The effect of salt on gas exchange is only evident at the highest concentration and some SRI gave better prediction perfor-mance than the known Photochemical Reflectance Index. This information wil therefore be useful for identifying tolerant genotypes to salt stress for incorporation in breeding programs.

  9. Interaction between κ- and ι-carrageenan and anthocyanins from Vaccinium myrtillus.

    Science.gov (United States)

    Navikaite, Vesta; Simanaviciute, Deimante; Klimaviciute, Rima; Jakstas, Valdas; Ivanauskas, Liudas

    2016-09-01

    Anthocyanins (ATCs) from the Vaccinium myrtillus water extract have been incorporated into the κ-carrageenan (κ-CARG) or ι-carrageenan (ι-CARG) during complexation in dilute solutions or adsorption onto the microgranules of κ-CARG or ι-CARG cross-linked with epichlorohydrin. At the optimal weight ratio of CARG to ATC at 0.4:1 and the total ATCs and CARG concentration≤0.07g/L, stable dispersions of the κ-CARG/ATCs or ι-CARG/ATCs complex nanosize particles were obtained. The Langmuir, Freundlich and Dubinin-Radushkevich adsorption models have been used to describe the equilibrium adsorption of ATCs on cross-linked CARG. The introduction of ATCs into CARG and cross-linked CARG was confirmed by FT-IR spectroscopy. The data of the HPLC analysis showed that during adsorption on cross-linked ι-CARG microgranules ATCs are isolated from the crude water extract of wild bilberries, whereas other phenolics remain in the adsorption solution. After desorption from cross-linked CARG/ATC into different media the sufficiently pure and stable solutions of ATCs were obtained. PMID:27185113

  10. Inhibition of Low-Grade Inflammation by Anthocyanins after Microbial Fermentation in Vitro

    Directory of Open Access Journals (Sweden)

    Sabine Kuntz

    2016-07-01

    Full Text Available The anti-inflammatory effects of anthocyanins (ACNs on vascular functions are discussed controversially because of their low bioavailability. This study was performed to determine whether microorganism (MO-fermented ACNs influence vascular inflammation in vitro. Therefore, MO growth media were supplemented with an ACN-rich grape/berry extract and growth responses of Escherichia coli, E. faecalis and H. alvei, as well as ACN fermentation were observed. MO supernatants were used for measuring the anti-inflammatory effect of MO-fermented ACNs in an epithelial-endothelial co-culture transwell system. After basolateral enrichment (240 min, endothelial cells were stimulated immediately or after 20 h with TNF-α. Afterwards, leukocyte adhesion, expression of adhesion molecules and cytokine release were measured. Results indicate that E. coli, E. faecalis and H. alvei utilized ACNs differentially concomitant with different anti-inflammatory effects. Whereas E. coli utilized ACNs completely, no anti-inflammatory effects of fermented ACNs were observed on activated endothelial cells. In contrast, ACN metabolites generated by E. faecalis and H. alvei significantly attenuated low-grade stimulated leukocyte adhesion, the expression of adhesion molecules E-selectin, VCAM-1 and ICAM-1 and cytokine secretion (IL-8 and IL-6, as well as NF-κB mRNA expression with a more pronounced effect of E. faecalis than H. alvei. Thus, MO-fermented ACNs have the potential to reduce inflammation.

  11. The Modulatory Effect of Anthocyanins from Purple Sweet Potato on Human Intestinal Microbiota in Vitro.

    Science.gov (United States)

    Zhang, Xin; Yang, Yang; Wu, Zufang; Weng, Peifang

    2016-03-30

    In order to investigate the modulatory effect of purple sweet potato anthocyanins (PSPAs) on human intestinal microbiota, PSPAs were prepared by column chromatography and their influence on intestinal microbiota was analyzed by monitoring the bacterial populations and analyzing short-chain fatty acid (SCFA) concentrations at different time points. The numbers (log10 cell/mL) of Bifidobacterium and Lactobacillus/Enterococcus spp., Bacteroides-Prevotella, Clostridium histolyticum, and total bacteria after 24 h of culture in anaerobic fermentation broth containing PSPAs were 8.44 ± 0.02, 8.30 ± 0.01, 7.80 ± 0.03, 7.60 ± 0.03, and 9.00 ± 0.02, respectively, compared with 8.21 ± 0.03, 8.12 ± 0.02, 7.95 ± 0.02, 7.77 ± 0.02, and 9.01 ± 0.03, respectively, in the controls. The results showed that PSPAs induced the proliferation of Bifidobacterium and Lactobacillus/Enterococcus spp., inhibited the growth of Bacteroides-Prevotella and Clostridium histolyticum, and did not affect the total bacteria number. Total SCFA concentrations in the cultures with PSPAs were significantly higher than in the controls (P acids, which may exert a better effect on intestinal microecology, suggesting that PSPAs may have prebiotic-like activity by generating SCFAs and modulating the intestinal microbiota, contributing to improvements in human health. PMID:26975278

  12. Anti-inflammatory activity and molecular mechanism of delphinidin 3-sambubioside, a Hibiscus anthocyanin.

    Science.gov (United States)

    Sogo, Takayuki; Terahara, Norihiko; Hisanaga, Ayami; Kumamoto, Takuma; Yamashiro, Takaaki; Wu, Shusong; Sakao, Kozue; Hou, De-Xing

    2015-01-01

    Delphinidin 3-sambubioside (Dp3-Sam), a Hibiscus anthocyanin, was isolated from the dried calices of Hibiscus sabdariffa L, which has been used for folk beverages and herbal medicine although the molecular mechanisms are poorly defined. Based on the properties of Dp3-Sam and the information of inflammatory processes, we investigated the anti-inflammatory activity and molecular mechanisms in both cell and animal models in the present study. In the cell model, Dp3-Sam and Delphinidin (Dp) reduced the levels of inflammatory mediators including iNOS, NO, IL-6, MCP-1, and TNF-α induced by LPS. Cellular signaling analysis revealed that Dp3-Sam and Dp downregulated NF-κB pathway and MEK1/2-ERK1/2 signaling. In animal model, Dp3-Sam and Dp reduced the production of IL-6, MCP-1 and TNF-α and attenuated mouse paw edema induced by LPS. Our in vitro and in vivo data demonstrated that Hibiscus Dp3-Sam possessed potential anti-inflammatory properties. PMID:25728636

  13. On statistical analysis of factors affecting anthocyanin extraction from Ixora siamensis

    Science.gov (United States)

    Mat Nor, N. A.; Arof, A. K.

    2016-10-01

    This study focused on designing an experimental model in order to evaluate the influence of operative extraction parameters employed for anthocyanin extraction from Ixora siamensis on CIE color measurements (a*, b* and color saturation). Extractions were conducted at temperatures of 30, 55 and 80°C, soaking time of 60, 120 and 180 min using acidified methanol solvent with different trifluoroacetic acid (TFA) contents of 0.5, 1.75 and 3% (v/v). The statistical evaluation was performed by running analysis of variance (ANOVA) and regression calculation to investigate the significance of the generated model. Results show that the generated regression models adequately explain the data variation and significantly represented the actual relationship between the independent variables and the responses. Analysis of variance (ANOVA) showed high coefficient determination values (R2) of 0.9687 for a*, 0.9621 for b* and 0.9758 for color saturation, thus ensuring a satisfactory fit of the developed models with the experimental data. Interaction between TFA content and extraction temperature exhibited to the highest significant influence on CIE color parameter.

  14. Effect of Three Training Systems on Grapes in a Wet Region of China: Yield, Incidence of Disease and Anthocyanin Compositions of Vitis vinifera cv. Cabernet Sauvignon

    Directory of Open Access Journals (Sweden)

    Mei-Ying Liu

    2015-10-01

    Full Text Available Grapevine training systems determine the suitability for grape varieties in a specific growing region. We evaluated the influence of three training systems, Single Guyot (SG, Spur-pruned Vertical Shoot-Positioned (VSP, and Four-Arm Kniffin (4AK, on the performance of grapes and vines of Vitis vinifera L. cv. Cabernet Sauvignon in the 2012 and 2013 growing seasons in a wet region of central China. 4AK was the most productive system in comparison to SG and VSP. SG and VSP had lower disease infections of leaves and berries, especially in the mid- and final stage of berry ripening. Three training systems had no impact on berry maturity. PLS-DA (Partial Least Squares-Discriminant analysis showed that the relatively dry vintage could well discriminate three training systems, but the wet vintage was not. A wet vintage of 2013 had more accumulation of 3′5′-substituted and acylated anthocyanins, including malvidin-3-O-(6-O-acetyl-glucoside, malvidin-3-O-glucoside, and petunidin-3-O-(cis-6-O-coumaryl-glucoside, etc. With regard to the effect of training systems, 4AK grapes had the lowest concentrations of total anthocyanins and individual anthocyanins, SG and VSP differed according to the different vintages, and showed highest concentration of total individual anthocyanins in 2012 and 2013, respectively. Generally, VSP benefited the most, contributing to significantly highest levels of total individual anthocyanins, and major anthocyanin, including malvidin-3-O-glucoside and malvidin-3-O-(6-O-acetyl-glucoside, and the grapes obtained from VSP presented significantly highest proportion of 3′5′-substituted anthocyanins. With regard to the ratios of 3′5′/3′-substituted, methoxylated/non-methoxylated and acylated/non-acylated anthocyanins, the significantly higher levels were also shown in VSP system. In summary, VSP was the best training system for Cabernet Sauvignon to accumulate relatively stable individual anthocyanins in this wet region of

  15. 金属离子对蓝莓花色苷的影响%Effects of metal ions on the blueberry anthocyanins

    Institute of Scientific and Technical Information of China (English)

    李颖畅; 齐凤元; 冯彦博

    2009-01-01

    Anthocyanins have important functional characteristic, but its stability was influenced by various physical-chemical factors. Metal ions have different influence on the stability of anthocyanins. Study on the effects of metal ions on the stability of blueberry anthocyanins to provide evidence for their industrialized production. The effects of metal ions on the blueberry anthocyanins were ascertained by absorbency in different metal ions solution. Results showed that the wavelength of absorption respectively was 279 nm and 520 nm in pH3.0 acid solvent. K+ had no effect on the stability of anthocyanins. Ca2+, Cu2+ and Al3+ had a certain effect of dour improvement, but no effect on the stability of anthocyanins. , Na+ , Zn2+ and Mn2+ could not noly strengthen the colour at higher concentration, but enhance the stability of blueberry anthocyanins. Fe2+, Fe3+ and Pb2+ were harmful to the stability of blueberry anthocyanins while Fe3+ and Pb2+ could lead to precipitate in blueberry anthocyanins solution.%花色苷具有重要的生理功能,但其稳定性易受各种理化因素的影响而发生变化.本试验系统地研究金属离子对其稳定性的影响,为蓝莓花色苷的加工生产提供理论指导.通过测定蓝莓花色苷在不同浓度金属溶液中的吸光度的变化,确定金属离子对蓝莓花色苷稳定性的影响.结果表明:蓝莓花色苷在酸性水溶液中的吸收峰分别在279,520 nm处.K+不能使花色苷的吸光度增加,对花色苷的稳定性也无显著影响;Ca2+、Cu2+、Al3+具有增色作用,对花色苷的稳定性无显著影响;高浓度Na+、Zn2+、Mn2+具有增色作用,而且能够增强花色苷的稳定性;Fe2+、Fe3+、Pb2+对花色苷具有破坏作用,使花色苷的稳定性下降,含Fe3+、Pb2+的花色苷溶液中有白色沉淀生成.

  16. Effect of anthocyanins contained in a blackberry extract on the circulatory failure and multiple organ dysfunction caused by endotoxin in the rat.

    Science.gov (United States)

    Sautebin, Lidia; Rossi, Antonietta; Serraino, Ivana; Dugo, Paola; Di Paola, Rosanna; Mondello, Luigi; Genovese, Tiziana; Britti, Domenico; Peli, Angelo; Dugo, Giovanni; Caputi, Achille P; Cuzzocrea, Salvatore

    2004-08-01

    Anthocyanins are a group of naturally occurring phenolic compounds related to the colouring of plants, flowers and fruits. These pigments are important as quality indicators, chemotaxonomic markers and for their antioxidant activities. Here we have investigated the therapeutic efficacy of anthocyanins contained in a blackberry extract on (i) circulatory failure, (ii), multiple organ dysfunction and (iii) activity of the inducible isoforms of nitric oxide (NO) synthase (iNOS) and cyclooxygenase (COX-2) in anaesthetised rats with endotoxic shock. In a model of endotoxic shock induced by lipopolysaccharide (LPS, E. coli, 10 mg/kg, i.v.) in the rat, pretreatment with anthocyanins present in the blackberry extract (5 mg/kg, i. v. 30 min before LPS) prevented the hypotension induced by LPS. Endotoxaemia also caused rises in the serum levels of (i) glutamyl oxaloacetic transaminase (GOT), glutamyl pyruvic transaminase (GPT), alkaline phosphates and bilirubin (hepatic dysfunction) (ii) creatinine (renal dysfunction), (iii) amylase and lipase (pancreatic injury), (iii) NOx and 6-keto-PGF1 alpha. Anthocyanins attenuated the hepatic and pancreatic injury, the renal dysfunction and decreased NOx and 6-keto-PGF1 alpha levels. Endotoxaemia for 6 h resulted in a substantial increase in iNOS and COX activity in rat lung, which was attenuated in rats pretreated with anthocyanins. Moreover, anthocyanins (0.02 - 0.32 mg/mL) inhibited in vitro iNOS and COX activity from lung of LPS-treated rats. Polymorphonuclear (PMN) infiltration (myeloperoxidase activity), lipid peroxidation (malondialdehyde levels), as well as tissue injury (histological examination) induced by LPS in rat lung and ileum was reduced by anthocyanins (5 mg/kg, i. v. 30 min before LPS). Furthermore, endotoxaemia induced the formation of nitrotyrosine and poly(ADP-ribose) synthetase (PARS) activation as determined by immunohistochemical analysis of lung and ileum tissues. The degree of staining was lowered by

  17. Instability of anthocyanin composition under different subculture conditions during long-term suspension cultures of Vitis vinifera L. var. Gamay Fréaux.

    Science.gov (United States)

    Qu, Junge; Zhang, Wei; Yu, Xingju

    2011-11-01

    The instability of secondary metabolite production is a ubiquitous problem in plant cell culture. In order to understand the instability in plant cell culture, we investigated anthocyanin accumulation in suspension cultures of Vitis vinifera, as a model system, in our laboratory. Not only the anthocyanin contents but also its composition exhibited instability along with the long-term subculture. New methods were developed to indicate the instability of plant cell culture. Both the definition of instability coefficient (delta) and the application of factor scores were the first time in this field. To examine the effects of culture conditions on instability of anthocyanin biosynthesis, different subculture cycles and inoculum sizes had been investigated. Subculture cycle and inoculum size were both environmental cues driving the instability. Compared with subculture cycle, inoculum size was more effective in working on the instability of anthocyanin accumulation. Among all the conditions investigated in our study, (6.5 d, 2.00 g), (7 d, 2.00 g), (7.5 d, 2.00 g), (7 d, 1.60 g) and (7 d, 2.40 g), the condition of 7 d-subculture cycle together with 1.60 g-inoculum size was the best one to keep the stable production of anthocyanins. PMID:22393716

  18. Degradation Kinetics of Anthocyanins from European Cranberrybush (Viburnum opulus L. Fruit Extracts. Effects of Temperature, pH and Storage Solvent

    Directory of Open Access Journals (Sweden)

    Claudia Cimpoiu

    2012-09-01

    Full Text Available European cranberrybush (Viburnum opulus L. fruits are well known for their biological properties, of which some are due to the presence of anthocyanins in the berries. Current literature provides little information concerning these fruits. The stability of anthocyanins from Viburnum opulus fruits, in aqueous and ethanolic extracts, stored under darkness for 7 days at different temperatures (2 °C, 37 °C and 75 °C and pH values (pH = 3 and 7, was studied here. The lowest stability was showed by the anthocyanins from the water extract stored at 75 °C and pH = 7, with half-life and constant rate values of 1.98 h and 0.3488 h−1, respectively. The results showed a good correlation between the total anthocyanin content (determined using the pH differential method and the time of storage, with determination coefficients varying from R2 = 0.9298 to R2 = 0.9971. Results indicate that the storage degradation of anthocyanins followed first-order reaction kinetics under all investigated conditions.

  19. 花色苷的热稳定性及其影响因素研究%Thermal stability and impacting factors of anthocyanins

    Institute of Scientific and Technical Information of China (English)

    董楠; 雷丹丹; 刘嘉; 赵国华

    2012-01-01

    Anthocyanins with physiological function of antioxidant activity,antitumor activity,and so on,are excellent sources of natural plants colorants.Degradation of anthocyanins during the thermal process limits their applications in food industrial.Kinetics and factors of thermal degradation of anthocyanins were reviewed on the basis of referring to a lot of researches home and abroad.Degradation of anthocyanins during the thermal process belongs to first order kinetics,and the influence factors including:pH,pressure,temperature,sugar,flavonoid,ascorbic acid,and acylation degree in anthocyanins.%花色苷是优良的天然植物源色素,同时具备抗氧化、抗肿瘤等重要生理功能。花色苷的热稳定性是影响其在食品工业中应用的主要因素,本文对花色苷的热降解动力学和热降解影响因素进行了综述。花色苷在食品中的热降解动力学均为一级动力学,影响其降解的主要因素包括pH、压强、温度、糖类、黄酮类物质、抗坏血酸类及其自身的酰基化程度。

  20. Instability of anthocyanin composition under different subculture conditions during long-term suspension cultures of Vitis vinifera L. var. Gamay Fréaux.

    Science.gov (United States)

    Qu, Junge; Zhang, Wei; Yu, Xingju

    2011-11-01

    The instability of secondary metabolite production is a ubiquitous problem in plant cell culture. In order to understand the instability in plant cell culture, we investigated anthocyanin accumulation in suspension cultures of Vitis vinifera, as a model system, in our laboratory. Not only the anthocyanin contents but also its composition exhibited instability along with the long-term subculture. New methods were developed to indicate the instability of plant cell culture. Both the definition of instability coefficient (delta) and the application of factor scores were the first time in this field. To examine the effects of culture conditions on instability of anthocyanin biosynthesis, different subculture cycles and inoculum sizes had been investigated. Subculture cycle and inoculum size were both environmental cues driving the instability. Compared with subculture cycle, inoculum size was more effective in working on the instability of anthocyanin accumulation. Among all the conditions investigated in our study, (6.5 d, 2.00 g), (7 d, 2.00 g), (7.5 d, 2.00 g), (7 d, 1.60 g) and (7 d, 2.40 g), the condition of 7 d-subculture cycle together with 1.60 g-inoculum size was the best one to keep the stable production of anthocyanins.

  1. Protective Role of Ternatin Anthocyanins and Quercetin Glycosides from Butterfly Pea (Clitoria ternatea Leguminosae) Blue Flower Petals against Lipopolysaccharide (LPS)-Induced Inflammation in Macrophage Cells.

    Science.gov (United States)

    Nair, Vimal; Bang, Woo Young; Schreckinger, Elisa; Andarwulan, Nuri; Cisneros-Zevallos, Luis

    2015-07-22

    Twelve phenolic metabolites (nine ternatin anthocyanins and three glycosylated quercetins) were identified from the blue flowers of Clitoria ternatea by high-performance liquid chromatography diode array detection and electrospray ionization/mass spectrometry (HPLC-DAD-ESI/MS(n)). Three anthocyanins not reported in this species before show fragmentation pattern of the ternatin class. Extracts were fractionated in fractions containing flavonols (F3) and ternatin anthocyanins (F4). In general, C. ternatea polyphenols showed anti-inflammatory properties in lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 macrophage cells with distinct molecular targets. Flavonols (F3) showed strong inhibition of COX-2 activity and partial ROS suppression. On the other hand, the ternatin anthocyanins (F4) inhibited nuclear NF-κB translocation, iNOS protein expression, and NO production through a non-ROS suppression mechanism. Accordingly, quercetin glycosides and ternatin anthocyanins from the blue flower petals of C. ternatea may be useful in developing drugs or nutraceuticals for protection against chronic inflammatory diseases by suppressing the excessive production of pro-inflammatory mediators from macrophage cells. PMID:26120869

  2. Optimization of the Extraction of Anthocyanins from the Fruit Skin of Rhodomyrtus tomentosa (Ait. Hassk and Identification of Anthocyanins in the Extract Using High-Performance Liquid Chromatography-Electrospray Ionization-Mass Spectrometry (HPLC-ESI-MS

    Directory of Open Access Journals (Sweden)

    Yuan-Ming Sun

    2012-05-01

    Full Text Available Anthocyanins are naturally occurring polyphenols that impart bright color to fruits, vegetables and plants. In this study, the extraction of anthocyanins from freeze-dried fruit skin of downy rose-myrtle (Rhodomyrtus tomentosa (Ait. Hassk var. Gangren was optimized using response surface methodology (RSM. Using 60% ethanol containing 0.1% (v/v hydrochloric acid as extraction solvent, the optimal conditions for maximum yields of anthocyanin (4.358 ± 0.045 mg/g were 15.7:1 (v/w liquid to solid ratio, 64.38 °C with a 116.88 min extraction time. The results showed good fits with the proposed model for the anthocyanin extraction (R2 = 0.9944. Furthermore, the results of high-performance liquid chromatography-electrospray ionization-mass spectrometry (HPLC-ESI-MS analysis of the anthocyanins extracted from the fruit skin of downy rose-myrtle revealed the presence of five anthocyanin components, which were tentatively identified as delphinidin-3-glucoside, cyanidin-3-glucoside, peonidin-3-glucoside, petunidin-3-glucoside and malvidin-3-glucoside.

  3. A SURVEY RESEARCH ON ANTIOXIDANT ACTIVITY OF ANTHOCYANIN PIGMENT%花色苷类色素抗氧化活性研究进展

    Institute of Scientific and Technical Information of China (English)

    薛红玮; 陈向民; 牟德华

    2009-01-01

    天然色素花色苷具有较强的抗氧化活性,本文对花色苷的抗氧化活性检测方法进行了总结,主要对体外方法像清除DPPH·的能力、ABTS+,ORAC等进行介绍,为进一步研究花色苷类色素的抗氧化活性提供便利.%Anthocyanin as a natural pigment has strong antioxidant activity.The detection methods with antioxidant activity of anthocyanin are summarized, the methods of in vitro such as the ability of DPPH free radicals scavenging, ABTS+,ORAC and other methods are mainly introduced,and it will make convenience for the later study on antioxidant activity of anthocyanin.

  4. Mining for Candidate Genes in an Introgression Line by Using RNA Sequencing: The Anthocyanin Overaccumulation Phenotype in Brassica

    Directory of Open Access Journals (Sweden)

    Lulu Xie

    2016-08-01

    Full Text Available Introgression breeding is a widely used method for the genetic improvement of crop plants; however, the mechanism underlying candidate gene flow patterns during hybridization is poorly understood. In this study, we used a powerful pipeline to investigate a Chinese cabbage (Brassica rapa L. ssp. pekinensis introgression line with the anthocyanin overaccumulation phenotype. Our purpose was to analyze the gene flow patterns during hybridization and elucidate the genetic factors responsible for the accumulation of this important pigment compound. We performed RNA-seq analysis by using two pipelines, one with and one without a reference sequence, to obtain transcriptome data. We identified 930 significantly differentially expressed genes (DEGs between the purple-leaf introgression line and B. rapa green cultivar, namely, 389 up-regulated and 541 down-regulated DEGs that mapped to the B. rapa reference genome. Since only one anthocyanin pathway regulatory gene was identified, i.e., Bra037887 (bHLH, we mined unmapped reads, revealing 2,031 de novo assembled unigenes, including c3563g1i2. Phylogenetic analysis suggested that c3563g1i2, which was transferred from the Brassica B genome of the donor parental line Brassica juncea, may represent an R2R3-MYB transcription factor that participates in the ternary transcriptional activation complex responsible for the anthocyanin overaccumulation phenotype of the B. rapa introgression line. We also identified genes involved in cold and light reaction pathways that were highly upregulated in the introgression line, as confirmed using quantitative real-time PCR analysis. The results of this study shed light on the mechanisms underlying the purple leaf trait in Brassica plants and may facilitate the use of introgressive hybridization for many traits of interest.

  5. Red Anthocyanins and Yellow Carotenoids Form the Color of Orange-Flower Gentian (Gentiana lutea L. var. aurantiaca)

    Science.gov (United States)

    Gómez Gómez, Lourdes; Veiga, Tania; Ni, Xiuzhen; Farré, Gemma; Capell, Teresa; Guitián, Javier; Guitián, Pablo; Sandmann, Gerhard; Christou, Paul

    2016-01-01

    Flower color is an important characteristic that determines the commercial value of ornamental plants. Gentian flowers occur in a limited range of colors because this species is not widely cultivated as a cut flower. Gentiana lutea L. var. aurantiaca (abbr, aurantiaca) is characterized by its orange flowers, but the specific pigments responsible for this coloration are unknown. We therefore investigated the carotenoid and flavonoid composition of petals during flower development in the orange-flowered gentian variety of aurantiaca and the yellow-flowered variety of G. lutea L. var. lutea (abbr, lutea). We observed minor varietal differences in the concentration of carotenoids at the early and final stages, but only aurantiaca petals accumulated pelargonidin glycosides, whereas these compounds were not found in lutea petals. We cloned and sequenced the anthocyanin biosynthetic gene fragments from petals, and analyzed the expression of these genes in the petals of both varieties to determine the molecular mechanisms responsible for the differences in petal color. Comparisons of deduced amino acid sequences encoded by the isolated anthocyanin cDNA fragments indicated that chalcone synthase (CHS), chalcone isomerase (CHI), anthocyanidin synthase 1 (ANS1) and ANS2 are identical in both aurantiaca and lutea varieties whereas minor amino acid differences of the deduced flavonone 3-hydroxylase (F3H) and dihydroflavonol 4-reductase (DFR) between both varieties were observed. The aurantiaca petals expressed substantially higher levels of transcripts representing CHS, F3H, DFR, ANS and UDP-glucose:flavonoid-3-O-glucosyltransferase genes, compared to lutea petals. Pelargonidin glycoside synthesis in aurantiaca petals therefore appears to reflect the higher steady-state levels of pelargonidin synthesis transcripts. Moreover, possible changes in the substrate specificity of DFR enzymes may represent additional mechanisms for producing red pelargonidin glycosides in petals of

  6. Biochemical and molecular characterization of a flavonoid 3-O-glycosyltransferase responsible for anthocyanins and flavonols biosynthesis in Freesia hybrida

    Directory of Open Access Journals (Sweden)

    Wei eSun

    2016-03-01

    Full Text Available The glycosylation of flavonoids increases their solubility and stability in plants. Flowers accumulate anthocyanidin and flavonol glycosides which are synthesized by UDP-sugar flavonoid glycosyltransferases (UFGTs. In our previous study, a cDNA clone (Fh3GT1 encoding UFGT was isolated from Freesia hybrida, which was preliminarily proved to be invovled in cyanidin 3-O-glucoside biosynthesis. Here, a variety of anthocyanin and flavonol glycosides were detected in flowers and other tissues of F. hybrida, implying the versatile roles of Fh3GT1 in flavonoids biosynthesis. To further unravel its multi-functional roles, integrative analysis between gene expression and metabolites was investigated. The results showed expression of Fh3GT1 was positively related to the accumulation of anthocyanins and flavonol glycosides, suggesting its potential roles in the biosynthesis of both flavonoid glycosides. Subsequently, biochemical analysis results revealed that a broad range of flavonoid substrates including flavonoid not naturally occurred in F. hybrida could be recognized by the recombinant Fh3GT1. Both UDP-glucose and UDP-galactose could be used as sugar donors by recombinant Fh3GT1, although UDP-galactose was transferred with relatively low activity. Furthermore, regiospecificity analysis demonstrated that Fh3GT1 was able to glycosylate delphinidin at the 3-, 4'- and 7- positions in a sugar-dependent manner. And the introduction of Fh3GT1 into Arabidopsis UGT78D2 mutant successfully restored the anthocyanins and flavonols phenotypes caused by lost-of-function of the 3GT, indicating that Fh3GT1 functions as a flavonoid 3-O-glucosyltransferase in vivo. In summary, these results demonstrate that Fh3GT1 is a flavonoid 3-O-glycosyltransferase using UDP-glucose as the preferred sugar donor and may involve in flavonoid glycosylation in F. hybrida.

  7. Red Anthocyanins and Yellow Carotenoids Form the Color of Orange-Flower Gentian (Gentiana lutea L. var. aurantiaca).

    Science.gov (United States)

    Berman, Judit; Sheng, Yanmin; Gómez Gómez, Lourdes; Veiga, Tania; Ni, Xiuzhen; Farré, Gemma; Capell, Teresa; Guitián, Javier; Guitián, Pablo; Sandmann, Gerhard; Christou, Paul; Zhu, Changfu

    2016-01-01

    Flower color is an important characteristic that determines the commercial value of ornamental plants. Gentian flowers occur in a limited range of colors because this species is not widely cultivated as a cut flower. Gentiana lutea L. var. aurantiaca (abbr, aurantiaca) is characterized by its orange flowers, but the specific pigments responsible for this coloration are unknown. We therefore investigated the carotenoid and flavonoid composition of petals during flower development in the orange-flowered gentian variety of aurantiaca and the yellow-flowered variety of G. lutea L. var. lutea (abbr, lutea). We observed minor varietal differences in the concentration of carotenoids at the early and final stages, but only aurantiaca petals accumulated pelargonidin glycosides, whereas these compounds were not found in lutea petals. We cloned and sequenced the anthocyanin biosynthetic gene fragments from petals, and analyzed the expression of these genes in the petals of both varieties to determine the molecular mechanisms responsible for the differences in petal color. Comparisons of deduced amino acid sequences encoded by the isolated anthocyanin cDNA fragments indicated that chalcone synthase (CHS), chalcone isomerase (CHI), anthocyanidin synthase 1 (ANS1) and ANS2 are identical in both aurantiaca and lutea varieties whereas minor amino acid differences of the deduced flavonone 3-hydroxylase (F3H) and dihydroflavonol 4-reductase (DFR) between both varieties were observed. The aurantiaca petals expressed substantially higher levels of transcripts representing CHS, F3H, DFR, ANS and UDP-glucose:flavonoid-3-O-glucosyltransferase genes, compared to lutea petals. Pelargonidin glycoside synthesis in aurantiaca petals therefore appears to reflect the higher steady-state levels of pelargonidin synthesis transcripts. Moreover, possible changes in the substrate specificity of DFR enzymes may represent additional mechanisms for producing red pelargonidin glycosides in petals of

  8. Mining for Candidate Genes in an Introgression Line by Using RNA Sequencing: The Anthocyanin Overaccumulation Phenotype in Brassica.

    Science.gov (United States)

    Xie, Lulu; Li, Fei; Zhang, Shifan; Zhang, Hui; Qian, Wei; Li, Peirong; Zhang, Shujiang; Sun, Rifei

    2016-01-01

    Introgression breeding is a widely used method for the genetic improvement of crop plants; however, the mechanism underlying candidate gene flow patterns during hybridization is poorly understood. In this study, we used a powerful pipeline to investigate a Chinese cabbage (Brassica rapa L. ssp. pekinensis) introgression line with the anthocyanin overaccumulation phenotype. Our purpose was to analyze the gene flow patterns during hybridization and elucidate the genetic factors responsible for the accumulation of this important pigment compound. We performed RNA-seq analysis by using two pipelines, one with and one without a reference sequence, to obtain transcriptome data. We identified 930 significantly differentially expressed genes (DEGs) between the purple-leaf introgression line and B. rapa green cultivar, namely, 389 up-regulated and 541 down-regulated DEGs that mapped to the B. rapa reference genome. Since only one anthocyanin pathway regulatory gene was identified, i.e., Bra037887 (bHLH), we mined unmapped reads, revealing 2031 de novo assembled unigenes, including c3563g1i2. Phylogenetic analysis suggested that c3563g1i2, which was transferred from the Brassica B genome of the donor parental line Brassica juncea, may represent an R2R3-MYB transcription factor that participates in the ternary transcriptional activation complex responsible for the anthocyanin overaccumulation phenotype of the B. rapa introgression line. We also identified genes involved in cold and light reaction pathways that were highly upregulated in the introgression line, as confirmed using quantitative real-time PCR analysis. The results of this study shed light on the mechanisms underlying the purple leaf trait in Brassica plants and may facilitate the use of introgressive hybridization for many traits of interest. PMID:27597857

  9. Anti-Inflammatory Effect of the Blueberry Anthocyanins Malvidin-3-Glucoside and Malvidin-3-Galactoside in Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Wu-Yang Huang

    2014-08-01

    Full Text Available Blueberry fruits have a wide range of health benefits because of their abundant anthocyanins, which are natural antioxidants. The purpose of this study was to investigate the inhibitory effect of blueberry’s two main anthocyanins (malvidin-3-glucoside and malvidin-3-galactoside on inflammatory response in endothelial cells. These two malvidin glycosides could inhibit tumor necrosis factor-alpha (TNF-α induced increases of monocyte chemotactic protein-1 (MCP-1, intercellular adhesion molecule-1 (ICAM-1, and vascular cell adhesion molecule-1 (VCAM-1 production both in the protein and mRNA levels in a concentration-dependent manner. Mv-3-glc at the concentration of 1 μM could inhibit 35.9% increased MCP-1, 54.4% ICAM-1, and 44.7% VCAM-1 protein in supernatant, as well as 9.88% MCP-1 and 48.6% ICAM-1 mRNA expression (p < 0.05. In addition, they could decrease IκBα degradation (Mv-3-glc, Mv-3-gal, and their mixture at the concentration of 50 μM had the inhibition rate of 84.8%, 75.3%, and 43.2%, respectively, p < 0.01 and block the nuclear translocation of p65, which suggested their anti-inflammation mechanism was mediated by the nuclear factor-kappa B (NF-κB pathway. In general malvidin-3-glucoside had better anti-inflammatory effect than malvidin-3-galactoside. These results indicated that blueberry is good resource of anti-inflammatory anthocyanins, which can be promising molecules for the development of nutraceuticals to prevent chronic inflammation in many diseases.

  10. Antioxidant and antiproliferative activities of anthocyanin/ellagitannin-enriched extracts from Syzygium cumini L. (Jamun, the Indian Blackberry).

    Science.gov (United States)

    Aqil, Farrukh; Gupta, Akash; Munagala, Radha; Jeyabalan, Jeyaprakash; Kausar, Hina; Sharma, Ram Jee; Singh, Inder Pal; Gupta, Ramesh C

    2012-04-01

    Colored fruits, particularly berries, are highly chemoprotective because of their antioxidant, antiproliferative, and antiinflammatory activities. We report the cancer chemoprotective potential of Syzygium cumini L., commonly known as jamun or Indian blackberry. Anthocyanins and other polyphenolics were extracted with acidic ethanol and enriched by amberlite XAD7/HP20 (1:1). The pulp powder was found to contain 0.54% anthocyanins, 0.17% ellagic acid/ellagitannins, and 1.15% total polyphenolics. Jamun seed contained no detectable anthocyanins but had higher amounts of ellagic acid/ellagitannins (0.5%) and total polyphenolics (2.7%) than the pulp powder. Upon acid hydrolysis, the pulp extract yielded 5 anthocyanidins by HPLC: malvidin (44.4%), petunidin (24.2%), delphinidin (20.3%), cyanidin (6.6%), and peonidin (2.2%). Extracts of both jamun pulp (1,445 ± 64 μmol of trolox equivalent (TE)/g) and seeds (3,379 ± 151 μM of TE/g) showed high oxygen radical absorbance capacity. Their high antioxidant potential was also reflected by 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid)- and 2,2-diphenyl-1-picrylhydrazyl-scavenging and ferrous ion-chelating activities. We also analyzed antiproliferative activity of jamun extracts against human lung cancer A549 cells. The hydrolyzed pulp and seed extracts showed significant antiproliferative activity. However, unhydrolyzed extracts showed much less activity. These data showed that in addition to 5 anthocyanidins, jamun contains appreciable amounts of ellagic acid/ellagitannins, with high antioxidant and antiproliferative activities. PMID:22420901

  11. The influences of purple sweet potato anthocyanin on the growth characteristics of human retinal pigment epithelial cells

    Directory of Open Access Journals (Sweden)

    Min Sun

    2015-06-01

    Full Text Available Background: Anthocyanins have been proven to be beneficial to the eyes. However, information is scarce about the effects of purple sweet potato (Ipomoea batatas, L. anthocyanin (PSPA, a class of anthocyanins derived from purple sweet potato roots, on visual health. Objective: The aim of this study was to investigate whether PSPA could have influences on the growth characteristics (cellular morphology, survival, and proliferation of human retinal pigment epithelial (RPE cells, which perform essential functions for the visual process. Methods: The RPE cell line D407 was used in the present study. The cytotoxicity of PSPA was assessed by MTT assay. Then, cellular morphology, viability, cell cycle, Ki67expression, and PI3K/MAPK activation of RPE cells treated with PSPA were determined. Results: PSPA exhibited dose-dependent promotion of RPE cell proliferation at concentrations ranging from 10 to 1,000 µg/ml. RPE cells treated with PSPA demonstrated a predominantly polygonal morphology in a mosaic arrangement, and colony-like cells displayed numerous short apical microvilli and typical ultrastructure. PSPA treatment also resulted in a better platform growing status, statistically higher viability, an increase in the S-phase, and more Ki67+ cells. However, neither pAkt nor pERK were detected in either group. Conclusions: We found that PSPA maintained high cell viability, boosted DNA synthesis, and preserved a high percentage of continuously cycling cells to promote cell survival and division without changing cell morphology. This paper lays the foundation for further research about the damage-protective activities of PSPA on RPE cells or human vision.

  12. PyMYB10 and PyMYB10.1 Interact with bHLH to Enhance Anthocyanin Accumulation in Pears

    Science.gov (United States)

    Feng, Shouqian; Sun, Shasha; Chen, Xiaoliu; Wu, Shujing; Wang, Deyun; Chen, Xuesen

    2015-01-01

    Color is an important agronomic trait of pears, and the anthocyanin content of fruit is immensely significant for pear coloring. In this study, an anthocyanin-activating R2R3-MYB transcription factor gene, PyMYB10.1, was isolated from fruits of red sand pear (Pyrus pyrifolia cv. Aoguan). Alignments of the nucleotide and amino acid sequences suggested that PyMYB10.1 was involved in anthocyanin regulation. Similar to PyMYB10, PyMYB10.1 was predominantly expressed in red tissues, including the skin, leaf and flower, but it was minimally expressed in non-red fruit flesh. The expression of this gene could be induced by light. Dual-luciferase assays indicated that both PyMYB10 and PyMYB10.1 activated the AtDFR promoter. The activation of AtDFR increased to a greater extent when combined with a bHLH co-factor, such as PybHLH, MrbHLH1, MrbHLH2, or AtbHLH2. However, the response of this activation depended on the protein complex formed. PyMYB10-AtbHLH2 activated the AtDFR promoter to a greater extent than other combinations of proteins. PyMYB10-AtbHLH2 also induced the highest anthocyanin accumulation in tobacco transient-expression assays. Moreover, PybHLH interacted with PyMYB10 and PyMYB10.1. These results suggest that both PyMYB10 and PyMYB10.1 are positive anthocyanin biosynthesis regulators in pears that act via the formation of a ternary complex with PybHLH. The functional characterization of PyMYB10 and PyMYB10.1 will aid further understanding of the anthocyanin regulation in pears. PMID:26536358

  13. Comparative transcriptome analysis of genes involved in anthocyanin biosynthesis in the red and yellow fruits of sweet cherry (Prunus avium L..

    Directory of Open Access Journals (Sweden)

    Hairong Wei

    Full Text Available Fruit color is one of the most important economic traits of the sweet cherry (Prunus avium L.. The red coloration of sweet cherry fruit is mainly attributed to anthocyanins. However, limited information is available regarding the molecular mechanisms underlying anthocyanin biosynthesis and its regulation in sweet cherry.In this study, a reference transcriptome of P. avium L. was sequenced and annotated to identify the transcriptional determinants of fruit color. Normalized cDNA libraries from red and yellow fruits were sequenced using the next-generation Illumina/Solexa sequencing platform and de novo assembly. Over 66 million high-quality reads were assembled into 43,128 unigenes using a combined assembly strategy. Then a total of 22,452 unigenes were compared to public databases using homology searches, and 20,095 of these unigenes were annotated in the Nr protein database. Furthermore, transcriptome differences between the four stages of fruit ripening were analyzed using Illumina digital gene expression (DGE profiling. Biological pathway analysis revealed that 72 unigenes were involved in anthocyanin biosynthesis. The expression patterns of unigenes encoding phenylalanine ammonia-lyase (PAL, 4-coumarate-CoA ligase (4CL, chalcone synthase (CHS, chalcone isomerase (CHI, flavanone 3-hydroxylase (F3H, flavanone 3'-hydroxylase (F3'H, dihydroflavonol 4-reductase (DFR, anthocyanidin synthase (ANS and UDP glucose: flavonol 3-O-glucosyltransferase (UFGT during fruit ripening differed between red and yellow fruit. In addition, we identified some transcription factor families (such as MYB, bHLH and WD40 that may control anthocyanin biosynthesis. We confirmed the altered expression levels of eighteen unigenes that encode anthocyanin biosynthetic enzymes and transcription factors using quantitative real-time PCR (qRT-PCR.The obtained sweet cherry transcriptome and DGE profiling data provide comprehensive gene expression information that lends insights

  14. 黑米花青素提取与纯化工艺研究%Study on Extraction and Purification Technology of Anthocyanin from Black Rice

    Institute of Scientific and Technical Information of China (English)

    张文佳; 张昊琛; 鲍康胜; 范广伟

    2011-01-01

    [目的]研究黑米花青素的提取及纯化工艺.[方法]以黑米为原料,采用水提法提取黑米花青素,通过单因素试验和正交试验,确定花青素的最佳提取工艺;并采用D101大孔吸附树脂对花青素进行纯化.[结果]花青素的最佳提取工艺为料液比1∶8,提取温度50℃,pH 3.2,提取时间120 min;用体积分数为95%的乙醇洗脱,花青素的纯度最高,达95.48%.[结论]该研究为黑米的深加工和花青素的规模化生产提供了依据.%[ Objective] The aim was to study the extraction and purification technology of anthocyanin from black rice. [ Method] Anthocya-nin was obtained from black rice by water extraction. The optimum extraction technology of anthocyanin was determined by single factor experiment and orthogonal experiment. And then the anthocyanin was purified by D101 macroporous adsorption resin. [Result] The results showed that the optimum extraction conditions were as follows; solid-liquid ratio 1: 8, extraction temperature 50 ℃, pH value 3.2, extraction time 120 min . The highest purity reached 95.48% when anthocyanin eluted by 95% ethanol. [Conclusion] The study provided a basis for deep processing of black rice and scale production of anthocyanin.

  15. AB-8大孔树脂对蓝莓花色苷的纯化研究%The purification study of blueberry anthocyanin on resin AB-8

    Institute of Scientific and Technical Information of China (English)

    黄月鹏; 黄翠贤

    2012-01-01

    花色苷是一种水溶性的安全的天然色素。本论文以蓝莓花色苷提取液为原料。使用AB-8树脂对蓝莓花色苷精制工艺进行了研究。结果表明:AB-8树脂吸附流速为10mL/min,用40%乙醇洗脱,解吸流速为5mL/min。AB-8树脂饱和吸附量1.25mg/mL,树脂量是蓝莓花色苷量的3BV。蓝莓花色苷的纯度为38.1%。%Anthocyanin was a water-soluble, safe and natural pigment. Extraction of blueberry anthocyanin was used as raw material in this paper.lt was studied that technology of purifing resin AB-8 to blueberry anthocyanin. The results showed that the absorption speed of resin AB-8 was 10ml/min,the anthocyanin from blueberry was eluted with 40% ethanol at the flow rate of 5mL/min.The absorption capacity of the resin AB-8 was determined to be 1.25mg/mL. It revealed that ratio of resinAB-8 to blueberry anthocyanin solvent were 3BV. The purification of blueberry anthocyanin was 38.1%.

  16. PyMYB10 and PyMYB10.1 Interact with bHLH to Enhance Anthocyanin Accumulation in Pears.

    Directory of Open Access Journals (Sweden)

    Shouqian Feng

    Full Text Available Color is an important agronomic trait of pears, and the anthocyanin content of fruit is immensely significant for pear coloring. In this study, an anthocyanin-activating R2R3-MYB transcription factor gene, PyMYB10.1, was isolated from fruits of red sand pear (Pyrus pyrifolia cv. Aoguan. Alignments of the nucleotide and amino acid sequences suggested that PyMYB10.1 was involved in anthocyanin regulation. Similar to PyMYB10, PyMYB10.1 was predominantly expressed in red tissues, including the skin, leaf and flower, but it was minimally expressed in non-red fruit flesh. The expression of this gene could be induced by light. Dual-luciferase assays indicated that both PyMYB10 and PyMYB10.1 activated the AtDFR promoter. The activation of AtDFR increased to a greater extent when combined with a bHLH co-factor, such as PybHLH, MrbHLH1, MrbHLH2, or AtbHLH2. However, the response of this activation depended on the protein complex formed. PyMYB10-AtbHLH2 activated the AtDFR promoter to a greater extent than other combinations of proteins. PyMYB10-AtbHLH2 also induced the highest anthocyanin accumulation in tobacco transient-expression assays. Moreover, PybHLH interacted with PyMYB10 and PyMYB10.1. These results suggest that both PyMYB10 and PyMYB10.1 are positive anthocyanin biosynthesis regulators in pears that act via the formation of a ternary complex with PybHLH. The functional characterization of PyMYB10 and PyMYB10.1 will aid further understanding of the anthocyanin regulation in pears.

  17. The effect of methyl jasmonate and phenolic acids on growth of seedlings and accumulation of anthocyanins in common buckwheat (Fagopyrum esculentum Moench

    Directory of Open Access Journals (Sweden)

    Marcin Horbowicz

    2012-12-01

    Full Text Available The effect of methyl jasmonate (JA-Me and phenolic acids: trans-cinnamic acid (t-CA, p-coumaric acid (p-CA, salicylic acid (SA as well as naringenine (NAR on growth of seedlings and accumulation of anthocyanins in common buckwheat (Fagopyrum esculentum Moench were studied. JA-Me and phenolics were applied to growth medium of 4-days etiolated buckwheat seedlings before their exposition to day/night (16h/8h conditions. The increase of primary roots and hypocotyls length were measured after 3 days of seedling growth in such conditions. At the end of experiment the total anthocyanins contents were measured as well. Methyl jasmonate (JA-Me and trans-cinnamic acid (t-CA inhibited growth of the primary root in young buckwheat seedlings, while naringenine (NAR had a stimulatory influence, and p-coumaric acid had no effect at all. None of investigated phenolics or JA-Me had an effect on the growth of buckwheat hypocotyls, except the mixture of JA-Me and p-coumarcic acid. JA-Me significantly decreased the anthocyanins level in buckwheat hypocototyls, but not in cotyledons. trans-Cinnamic acid, p-coumaric acid and naringenine had no significant influence on the anthocyanin level in hypocotyls and cotyledons of buckwheat seedlings. Simultaneous treatment of buckwheat seedlings with JA-Me and t-CA or p-CA did not change the inhibition of anthocyanins accumulation in buckwheat hypocotyls by JA-Me. In the hypocotyls of buckwheat treated with a mixture of JA-Me and NAR, or SA, a synergistic reduction of anthocyanins was observed.

  18. Structural identification and antioxidant properties of major anthocyanin extracted from Omija (Schizandra chinensis) fruit.

    Science.gov (United States)

    Kim, S-H; Joo, M H; Yoo, S-H

    2009-03-01

    Omija (Schizandra chinensis) is used as an ingredient in traditional medicine in East Asia. It is consumed as tea and wine and display pinkish-red color and beneficial physiological activity. However, the origin of Omija's unique color and bioactivity has not been studied extensively and its application is very limited. Thus, it was required to determine the chemical structure of major phenolic compounds of Omija fruit and evaluate their antioxidant activity. The colorants extracted from a domestic Omija cultivar were concentrated by a Sep-pak(R) Plus C(18) cartridge. A major high-performance liquid chromatography (HPLC) peak of anthocyan represented 94.1% of total absorbable compounds at 520 nm, which was further identified by LC-ESI-MS. The mass-to-charge ratio (m/z) of the major anthocyan was determined to be 727. Highly pure anthocyan fraction with a semipreparative HPLC was acid-hydrolyzed, and the sugar moieties linked to anthocyan (cyanidin) were characterized by thin layer chromatography (TLC) and high-performance anion exchange chromatography (HPAEC) analyses. The linkage patterns of sugars and core cyanidin structure were determined by (1)H- and (13)C-NMR analyses. Antioxidant activity of the extract and the purified anthocyanin was evaluated by 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) methods. As a result, the structure of the purified colorant was identified as Cya-3-O-xylrut. At the same molar level of the samples tested, the purified Cya-3-O-xylrut (31.2% and 39.2%) had substantially greater antioxidant activity than l-ascorbic acid (17.1% and 10.1%) from DPPH and ABTS methods, respectively. In this study, Omija colorant mostly consisted of Cya-3-O-xylrut explained 86% (DPPH) and 98% (ABTS) of total antioxidant activity derived from water extract from Omija. PMID:19323727

  19. Quorum quenching activity of Syzygium cumini (L.) Skeels and its anthocyanin malvidin against Klebsiella pneumoniae.

    Science.gov (United States)

    Gopu, Venkadesaperumal; Kothandapani, Sundar; Shetty, Prathapkumar Halady

    2015-02-01

    Many bacterial species use their intercellular signaling mechanism called quorum sensing (QS), which is found to be implicated in various factors including bacterial pathogenicity and food spoilage. Interrupting the bacterial communication is an attractive strategy to develop novel QS-based antibacterial drugs. Present study is aimed to investigate the quorum sensing inhibitory activity of Syzygium cumini and its anti-biofilm property against opportunistic pathogen using a biosensor strain Chromobacterium violaceum CV026. Ethanol extract of S. cumini was investigated for its anti-QS activity, and the possible active component was identified by docking with LasR receptor protein. Based on docking analysis, methanol extract was enriched for its total anthocyanin (STA) and its effect on QS regulated phenotypes was assessed. STA specifically inhibited the violacein production in C. violaceum; biofilm formation and EPS production in Klebsiella pneumoniae up to 82, 79.94 and 64.29% respectively. Synergistic activity of conventional antibiotics with STA enhanced the susceptibility of K. pneumoniae up to 58.45%. Molecular docking analysis of active components attributes the QSI activity of S. cumini to malvidin. Malvidin exhibited highest ligand binding with LasR receptor protein with docking score more than -7. Effect of malvidin to interrupt the QS regulated phenotypes was also assessed, and it was found to reduce the violacein production, biofilm formation and EPS production of K. pneumoniae in a concentration-dependent manner. These findings suggest that S. cumini can be used as novel QS-based antibacterial/anti-biofilm agent to manage food-borne pathogens and to increase food safety. PMID:25637095

  20. LAS ANTOCIANINAS COMO COLORANTES NATURALES Y COMPUESTOS BIOACTIVOS: REVISIÓN Anthocyanins As Natural Colorants And Bioactive Compounds: A Review

    Directory of Open Access Journals (Sweden)

    GLORIA ASTRID GARZÓN

    Full Text Available En la actualidad existe una demanda considerable de colorantes naturales alternativos a los colorantes sintéticos, como el rojo No. 40, debido a su toxicidad en alimentos, cosméticos y productos farmacéuticos. Las antocianinas son pigmentos vegetales con gran potencial para el reemplazo competitivo de colorantes sintéticos; por tanto es de gran importancia conocer los aspectos bioquímicos que enmarcan estos pigmentos. El objetivo de esta revisión es ofrecer un esquema actualizado sobre el potencial de las antocianinas como colorantes de origen natural, y de sus propiedades químicas y bioactivas. Las antocianinas son pigmentos responsables de la gama de colores que abarcan desde el rojo hasta el azul de muchas frutas, vegetales y cereales. El interés en estos pigmentos se ha intensificado gracias a sus posibles efectos terapéuticos y benéficos, dentro de los cuales se encuentran la reducción de la enfermedad coronaria, los efectos anticancerígenos, antitumorales, antiinflamatorios y antidiabéticos; además del mejoramiento de la agudeza visual y del comportamiento cognitivo. Las propiedades bioactivas de las antocianinas abren una nueva perspectiva para la obtención de productos coloreados con valor agregado para el consumo humano.At present there is a considerable demand for natural colorants to replace synthetic ones such red No. 40 due to their toxicity when added to food products, pharmaceuticals or cosmetics. Anthocyanins are vegetable pigments with high potential for replacement of synthetic dyes. Consequently, it is important to know the biochemical aspects that characterize these pigments. The objective of this review is to offer an updated overview of the potential of anthocyanins as natural colorants and their chemical and bioactive properties. Anthocyanins are pigments responsible for colors varying between red and purple in many fruits, vegetables and cereals. Interest in these pigments has intensified due not only to

  1. Effects of Anthocyanin and Flavanol Compounds on Lipid Metabolism and Adipose Tissue Associated Systemic Inflammation in Diet-Induced Obesity

    OpenAIRE

    van der Heijden, Roel A; Morrison, Martine C.; Sheedfar, Fareeba; Mulder, Petra; Schreurs, Marijke; Hommelberg, Pascal P. H.; Hofker, Marten H; Schalkwijk, Casper; Kleemann, Robert; Uwe J F Tietge; Koonen, Debby P. Y.; Heeringa, Peter

    2016-01-01

    Background. Naturally occurring substances from the flavanol and anthocyanin family of polyphenols have been proposed to exert beneficial effects in the course of obesity. We hypothesized that their effects on attenuating obesity-induced dyslipidemia as well as the associated inflammatory sequelae especially have health-promoting potential. Methods. Male C57BL/6J mice (n=52) received a control low-fat diet (LFD; 10 kcal% fat) for 6 weeks followed by 24 weeks of either LFD (n=13) or high-fat d...

  2. Betalain production is possible in anthocyanin-producing plant species given the presence of DOPA-dioxygenase and L-DOPA

    Directory of Open Access Journals (Sweden)

    Harris Nilangani N

    2012-03-01

    Full Text Available Abstract Background Carotenoids and anthocyanins are the predominant non-chlorophyll pigments in plants. However, certain families within the order Caryophyllales produce another class of pigments, the betalains, instead of anthocyanins. The occurrence of betalains and anthocyanins is mutually exclusive. Betalains are divided into two classes, the betaxanthins and betacyanins, which produce yellow to orange or violet colours, respectively. In this article we show betalain production in species that normally produce anthocyanins, through a combination of genetic modification and substrate feeding. Results The biolistic introduction of DNA constructs for transient overexpression of two different dihydroxyphenylalanine (DOPA dioxygenases (DODs, and feeding of DOD substrate (L-DOPA, was sufficient to induce betalain production in cell cultures of Solanum tuberosum (potato and petals of Antirrhinum majus. HPLC analysis showed both betaxanthins and betacyanins were produced. Multi-cell foci with yellow, orange and/or red colours occurred, with either a fungal DOD (from Amanita muscaria or a plant DOD (from Portulaca grandiflora, and the yellow/orange foci showed green autofluorescence characteristic of betaxanthins. Stably transformed Arabidopsis thaliana (arabidopsis lines containing 35S: AmDOD produced yellow colouration in flowers and orange-red colouration in seedlings when fed L-DOPA. These tissues also showed green autofluorescence. HPLC analysis of the transgenic seedlings fed L-DOPA confirmed betaxanthin production. Conclusions The fact that the introduction of DOD along with a supply of its substrate (L-DOPA was sufficient to induce betacyanin production reveals the presence of a background enzyme, possibly a tyrosinase, that can convert L-DOPA to cyclo-DOPA (or dopaxanthin to betacyanin in at least some anthocyanin-producing plants. The plants also demonstrate that betalains can accumulate in anthocyanin-producing species. Thus, introduction

  3. Procedimentos analíticos para identificação de antocianinas presentes em extratos naturais Analytical procedures for identifying anthocyanins in natural extracts

    Directory of Open Access Journals (Sweden)

    Paulo Henrique Março

    2008-01-01

    Full Text Available Anthocyanins are among the most important plant pigments. Due to their potential benefits for human health, there is considerable interest in these natural pigments. Nonetheless, there is great difficulty in finding a technique that could provide the identification of structurally similar compounds and estimate the number and concentration of the species present. A lot of techniques have been tried to find the best methodology to extract information from these systems. In this paper, a review of the most important procedures is given, from the extraction to the identification of anthocyanins in natural extracts.

  4. Anthocyanins of the anthers as chemotaxonomic markers in the genus Populus L.. Differentiation between Populus nigra, Populus alba and Populus tremula.

    Science.gov (United States)

    Alcalde-Eon, Cristina; García-Estévez, Ignacio; Rivas-Gonzalo, Julián C; Rodríguez de la Cruz, David; Escribano-Bailón, María Teresa

    2016-08-01

    Three main species of Popululs L. (Salicaceae) have been reported to occur in the Iberian Peninsula: Populus nigra L., Populus alba L. and Populus tremula L. The degree of pilosity of the bracts of the male catkins is a key character for their differentiation. The anthers of these poplar species possess anthocyanins that provide them a red colouration. Since these poplars are wind-pollinated and, consequently, do not need to attract pollinators, anthocyanins in the anthers might be acting as photoprotectors, shielding pollen grains from excessive sunlight. In order to verify this hypothesis, the first objective of this study was to establish if there is any relationship between the degree of pilosity of the bracts (related to the physical shading of the pollen grains) and the levels and types of anthocyanins in the anthers of these three species. This study also aimed to check the usefulness of the anthocyanins of the anthers as chemotaxonomic markers, through the study of the differences in the anthocyanin composition between these poplar species. Anthocyanins were identified from the data supplied by HPLC-DAD-MS(n) analyses. Seventeen different compounds, including mono-, di- and triglycosides and anthocyanin-derived pigments (F-A(+) dimers) have been identified. Cyanidin 3-O-glucoside was the major compound in all the samples (>60% of the total content), which may be in accordance with the photoprotective role proposed for them. However, qualitative and quantitative differences were detected among samples. Cyanidin and delphinidin 3-O-sambubiosides have been detected only in the anthers of P. tremula as well as cyanidin 3-O-(2″-O-xyloxyl)rutinoside, making them valuable chemotaxonomic markers for this species. Hierarchical Cluster and Principal Components Analyses (HCA and PCA) carried out with the anthocyanin percent composition data have allowed a separation of the samples that is in accordance with the initial classification of the samples made from the

  5. 心里美萝卜花青素的提取及其抗氧化性%Extract and Inoxidizability of Anthocyanin from Xinlimei Radish

    Institute of Scientific and Technical Information of China (English)

    仉晓文; 孙向东; 王丽; 王琳; 王林嵩

    2013-01-01

    The anthocyanin was extracted and purified from radish by different extraction solvents and macroporous resin and the stability and inoxidizability of the extracted anthocyanin were determined. The results showed that 0.1% HC1 had the best extract ion effect on anthocyanin from radish and OD505 was 2. 60 + 0. 17, 2. 95 + 0. 21 and 3. 52 + 0. 24 at 2 h, 12 h and 24 h respectively. AB8 macroporous resin had better purification effect on anthocyanin. The anthocyanin stability in the buffer solution with pH 7. 0 was better than that in the buffer solution with pH 6. 0. Fe3+ could improve the anthocyanin stability to a certain degree and the anthocyanin residual quantity in the buffer solution with 0. 5 mM Fe3+ could reach about 90% in 10 min. Anthocyanin has a certain protection effect on growth of E . coli under oxygen stress.%为优化心里美萝卜花青素的浸提及纯化条件,弄清其花青素稳定性以及抗氧化性,用不同浸提液和大孔吸附树脂对心里美萝卜花青素进行了提取与分离纯化,并对提取花青素的稳定性和抗氧化性进行了初步试验.结果表明:0.1%的HCI浸提液对花青素提取效果最好,2h、12h和24 h时OD505分别为2.60±0.17、2.95±0.21和3.52±0.24;AB8大孔吸附树脂纯化花青素的效果较好,与pH6.0的缓冲液比较,花青素在pH7.0的缓冲液中较为稳定;Fe3-在一定程度上可提高花青素的稳定性,0.5 mM Fe3-时花青素最为稳定,10 min内花青素的残留量保持在90%左右;花青素对受到氧化损伤的大肠杆菌的生长有一定的保护作用.

  6. Anthocyanins of the anthers as chemotaxonomic markers in the genus Populus L.. Differentiation between Populus nigra, Populus alba and Populus tremula.

    Science.gov (United States)

    Alcalde-Eon, Cristina; García-Estévez, Ignacio; Rivas-Gonzalo, Julián C; Rodríguez de la Cruz, David; Escribano-Bailón, María Teresa

    2016-08-01

    Three main species of Popululs L. (Salicaceae) have been reported to occur in the Iberian Peninsula: Populus nigra L., Populus alba L. and Populus tremula L. The degree of pilosity of the bracts of the male catkins is a key character for their differentiation. The anthers of these poplar species possess anthocyanins that provide them a red colouration. Since these poplars are wind-pollinated and, consequently, do not need to attract pollinators, anthocyanins in the anthers might be acting as photoprotectors, shielding pollen grains from excessive sunlight. In order to verify this hypothesis, the first objective of this study was to establish if there is any relationship between the degree of pilosity of the bracts (related to the physical shading of the pollen grains) and the levels and types of anthocyanins in the anthers of these three species. This study also aimed to check the usefulness of the anthocyanins of the anthers as chemotaxonomic markers, through the study of the differences in the anthocyanin composition between these poplar species. Anthocyanins were identified from the data supplied by HPLC-DAD-MS(n) analyses. Seventeen different compounds, including mono-, di- and triglycosides and anthocyanin-derived pigments (F-A(+) dimers) have been identified. Cyanidin 3-O-glucoside was the major compound in all the samples (>60% of the total content), which may be in accordance with the photoprotective role proposed for them. However, qualitative and quantitative differences were detected among samples. Cyanidin and delphinidin 3-O-sambubiosides have been detected only in the anthers of P. tremula as well as cyanidin 3-O-(2″-O-xyloxyl)rutinoside, making them valuable chemotaxonomic markers for this species. Hierarchical Cluster and Principal Components Analyses (HCA and PCA) carried out with the anthocyanin percent composition data have allowed a separation of the samples that is in accordance with the initial classification of the samples made from the

  7. Stability of Anthocyanins from Red Grape Skins under Pressurized Liquid Extraction and Ultrasound-Assisted Extraction Conditions

    Directory of Open Access Journals (Sweden)

    Ali Liazid

    2014-12-01

    Full Text Available The stability of anthocyanins from grape skins after applying different extraction techniques has been determined. The following compounds, previously extracted from real samples, were assessed: delphinidin 3-glucoside, cyanidin 3-glucoside, petunidin 3-glucoside, peonidin 3-glucoside, malvidin 3-glucoside, peonidin 3-acetylglucoside, malvidin 3-acetylglucoside, malvidin 3-caffeoylglucoside, petunidin 3-p-coumaroylglucoside and malvidin 3-p-coumaroylglucoside (trans. The techniques used were ultrasound-assisted extraction and pressurized liquid extraction. In ultrasound-assisted extraction, temperatures up to 75 °C can be applied without degradation of the aforementioned compounds. In pressurized liquid extraction the anthocyanins were found to be stable up to 100 °C. The relative stabilities of both the glycosidic and acylated forms were evaluated. Acylated derivatives were more stable than non-acylated forms. The differences between the two groups of compounds became more marked on working at higher temperatures and on using extraction techniques with higher levels of oxygen in the extraction media.

  8. Anthocyanins in Strawberry Polyphenolic Extract Enhance the Beneficial Effects of Diets with Fructooligosaccharides in the Rat Cecal Environment.

    Directory of Open Access Journals (Sweden)

    Bartosz Fotschki

    Full Text Available The administration of fructooligosaccharides (FOS beneficially modulates gastrointestinal functions and may enhance the metabolism of polyphenols. However, different polyphenolic components in the diet may have different influences on the activities of the digestive enzymes and microbiota in the gastrointestinal tract. Therefore, a 4-week study of forty-eight male Wistar rats was conducted to investigate the physiological response of the rat cecal environment to diets without and with FOS that contained two different strawberry polyphenolic extracts, specifically EP (polyphenolic profile 60, 35, 5, and 0% ellagitannins, proanthocyanidins, flavonols, anthocyanins, respectively and EPA (polyphenolic profile: 50, 35, 6, and 9%, respectively. When combined with FOS, both extracts beneficially enhanced the acidification of the cecal digesta (P≤0.05 vs the groups without extracts, but the dietary combination of EPA and FOS elicited the greatest reduction in putrefactive short-chain fatty acid production and the lowest fecal β-glucuronidase activity in the cecum (P≤0.05 vs group EP. Moreover, the addition of dietary FOS elevated the metabolism of the examined strawberry extracts in the cecum and thereby increased the concentrations of the metabolites in the cecal digesta and urine (P≤0.05 vs the group with cellulose. Overall, both strawberry extracts modulated the effects of FOS in the gastrointestinal tract; however, the combination with EPA extract that contained anthocyanins exhibited greater beneficial effects in the lower gut environment than the EP extract.

  9. EPR study of free radicals in non- and gamma-irradiated nutritive supplements containing anthocyanins concentrate from lyophilized red wine

    International Nuclear Information System (INIS)

    Nutritive supplements Enoviton, Enoviton C and Enoviton CE containing standardized anthocyanins from lyophilized red wine, vitamins (some of them) and excipients were investigated by EPR spectrometry before and after gamma-irradiation. Non-irradiated samples exhibit one singlet line with g=2.0039±0.0002, most probably due to free radicals from anthocyanins. After irradiation with 10 kGy gamma-rays, tablets of Enoviton, Enoviton S and Enoviton SE, all exhibit complex EPR signals centered at a g-value of g=2.0034. The EPR spectrum of irradiated Enoviton is different from that of Enoviton S or Enoviton SE due to the overlap of the spectra of microcrystalline cellulose and the background singlet spectrum present in all tablets with the EPR resonance due to irradiated ascorbic acid (in Enoviton S and Enoviton SE). Gamma-induced free radicals exhibit long time stability-for a six months period the intensity of central peak decrease with 30-40%.

  10. Formation of Short-Chain Fatty Acids, Excretion of Anthocyanins, and Microbial Diversity in Rats Fed Blackcurrants, Blackberries, and Raspberries

    Directory of Open Access Journals (Sweden)

    Greta Jakobsdottir

    2013-01-01

    Full Text Available Introduction. Berries contain high amounts of dietary fibre and flavonoids and have been associated with improved metabolic health. The mechanisms are not clear but the formation of SCFAs, especially propionic and butyric acids, could be important. The potent antioxidant and antimicrobial properties of flavonoids could also be a factor, but little is known about their fate in the gastrointestinal tract. Aim. To compare how blackcurrants, blackberries, raspberries, and Lactobacillus plantarum HEAL19 affect formation of SCFAs, inflammatory status, caecal microbial diversity, and flavonoids. Results and Conclusions. Degradation of the dietary fibre, formation of SCFAs including propionic and butyric acids, the weight of the caecal content and tissue, and the faecal wet and dry weight were all higher in rats fed blackcurrants rather than blackberries or raspberries. However, the microbial diversity of the gut microbiota was higher in rats fed raspberries. The high content of soluble fibre in blackcurrants and the high proportion of mannose-containing polymers might explain these effects. Anthocyanins could only be detected in urine of rats fed blackcurrants, and the excretion was lower with HEAL19. No anthocyanins or anthocyanidins were detected in caecal content or blood. This may indicate uptake in the stomach or small intestine.

  11. The Growth of SGC-7901 Tumor Xenografts Was Suppressed by Chinese Bayberry Anthocyanin Extract through Upregulating KLF6 Gene Expression

    Science.gov (United States)

    Wang, Yue; Zhang, Xia-nan; Xie, Wen-hua; Zheng, Yi-xiong; Cao, Jin-ping; Cao, Pei-rang; Chen, Qing-jun; Li, Xian; Sun, Chong-de

    2016-01-01

    To investigate the antitumor effect of anthocyanins extracted from Chinese bayberry fruit (Myrica rubra Sieb. et Zucc.), a nude mouse tumor xenograft model was established. Treatments with C3G (cyanidin-3-glucoside, an anthocyanin) significantly suppressed the growth of SGC-7901 tumor xenografts in a dose-dependent manner. Immunohistochemical staining showed a significant increase in p21 expression, indicating that the cell cycle of tumor xenografts was inhibited. qPCR screening showed that C3G treatment up-regulated the expression of the KLF6 gene, which is an important tumor suppressor gene inactivated in many human cancers. Western blot showed that C3G treatments markedly increased KLF6 and p21 protein levels, inhibited CDK4 and Cyclin D1 expression, but did not notably change the expression of p53. These results indicated that KLF6 up-regulates p21 in a p53-independent manner and significantly reduces tumor proliferation. This study provides important information for the possible mechanism of C3G-induced antitumor activity against gastric adenocarcinoma in vivo. PMID:27690088

  12. Anthocyanin Incorporated Dental Copolymer: Bacterial Growth Inhibition, Mechanical Properties, and Compound Release Rates and Stability by 1H NMR

    Directory of Open Access Journals (Sweden)

    Halyna Hrynash

    2014-01-01

    Full Text Available Objective. To evaluate bacterial growth inhibition, mechanical properties, and compound release rate and stability of copolymers incorporated with anthocyanin (ACY; Vaccinium macrocarpon. Methods. Resin samples were prepared (Bis-GMA/TEGDMA at 70/30 mol% and incorporated with 2 w/w% of either ACY or chlorhexidine (CHX, except for the control group. Samples were individually immersed in a bacterial culture (Streptococcus mutans for 24 h. Cell viability (n=3 was assessed by counting the number of colony forming units on replica agar plates. Flexural strength (FS and elastic modulus (E were tested on a universal testing machine (n=8. Compound release and chemical stability were evaluated by UV spectrophotometry and 1H NMR (n=3. Data were analyzed by one-way ANOVA and Tukey’s test (α = 0.05. Results. Both compounds inhibited S. mutans growth, with CHX being most effective (P<0.05. Control resin had the lowest FS and E values, followed by ACY and CHX, with statistical difference between control and CHX groups for both mechanical properties (P<0.05. The 24 h compound release rates were ACY: 1.33 μg/mL and CHX: 1.92 μg/mL. 1H NMR spectra suggests that both compounds remained stable after being released in water. Conclusion. The present findings indicate that anthocyanins might be used as a natural antibacterial agent in resin based materials.

  13. A bHLH transcription factor, DvIVS, is involved in regulation of anthocyanin synthesis in dahlia (Dahlia variabilis).

    Science.gov (United States)

    Ohno, Sho; Hosokawa, Munetaka; Hoshino, Atsushi; Kitamura, Yoshikuni; Morita, Yasumasa; Park, Kyeung-Ii; Nakashima, Akiko; Deguchi, Ayumi; Tatsuzawa, Fumi; Doi, Motoaki; Iida, Shigeru; Yazawa, Susumu

    2011-10-01

    Dahlias (Dahlia variabilis) exhibit a wide range of flower colours because of accumulation of anthocyanin and other flavonoids in their ray florets. Two lateral mutants were used that spontaneously occurred in 'Michael J' (MJW) which has yellow ray florets with orange variegation. MJOr, a bud mutant producing completely orange ray florets, accumulates anthocyanins, flavones, and butein, and MJY, another mutant producing completely yellow ray florets, accumulates flavones and butein. Reverse transcription-PCR analysis showed that expression of chalcone synthase 1 (DvCHS1), flavanone 3-hydroxylase (DvF3H), dihydroflavonol 4-reductase (DvDFR), anthocyanidin synthase (DvANS), and DvIVS encoding a basic helix-loop-helix transcription factor were suppressed, whereas that of chalcone isomerase (DvCHI) and DvCHS2, another CHS with 69% nucleotide identity with DvCHS1, was not suppressed in the yellow ray florets of MJY. A 5.4 kb CACTA superfamily transposable element, transposable element of Dahlia variabilis 1 (Tdv1), was found in the fourth intron of the DvIVS gene of MJW and MJY, and footprints of Tdv1 were detected in the variegated flowers of MJW. It is shown that only one type of DvIVS gene was expressed in MJOr, whereas these plants are likely to have three types of the DvIVS gene. On the basis of these results, the mechanism regulating the formation of orange and yellow ray florets in dahlia is discussed. PMID:21765172

  14. Optimization of Ultrasound-Assisted Extraction of phenolic compounds and anthocyanins from blueberry (Vaccinium ashei) wine pomace.

    Science.gov (United States)

    He, Bo; Zhang, Ling-Li; Yue, Xue-Yang; Liang, Jin; Jiang, Jun; Gao, Xue-Ling; Yue, Peng-Xiang

    2016-08-01

    Ultrasound-Assisted Extraction (UAE) of total anthocyanins (TA) and phenolics (TP) from Blueberry Wine Pomace (BWP) was optimized using Response Surface Methodology (RSM). A Box-Behnken design was used to predict that the optimized conditions were an extraction temperature of 61.03°C, a liquid-solid ratio of 21.70mL/g and a sonication time of 23.67min. Using the modeled optimized conditions, the predicted and experimental yields of TA and TP were within a 2% difference. The yields of TA and TP obtained through the optimized UAE method were higher than those using a Conventional Solvent Extraction (CSE) method. Seven anthocyanins, namely delphinidin-3-O-glucoside, delphindin-3-O-arabinoside, petunidin-3-O-glucoside, cyanidin-3-O-arabinoside, cyanidin-3-O-glucoside, malvidin-3-O-glucoside and malvidin-3-O-arabinoside, were found in the BWP extract from both the UAE and CSE methods. PMID:26988477

  15. Obtaining Ready-to-Eat Blue Corn Expanded Snacks with Anthocyanins Using an Extrusion Process and Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Anayansi Escalante-Aburto

    2014-12-01

    Full Text Available Extrusion is an alternative technology for the production of nixtamalized products. The aim of this study was to obtain an expanded nixtamalized snack with whole blue corn and using the extrusion process, to preserve the highest possible total anthocyanin content, intense blue/purple coloration (color b and the highest expansion index. A central composite experimental design was used. The extrusion process factors were: feed moisture (FM, 15%–23%, calcium hydroxide concentration (CHC, 0%–0.25% and final extruder temperature (T, 110–150 °C. The chemical and physical properties evaluated in the extrudates were moisture content (MC, %, total anthocyanins (TA, mg·kg−1, pH, color (L, a, b and expansion index (EI. ANOVA and surface response methodology were applied to evaluate the effects of the extrusion factors. FM and T significantly affected the response variables. An optimization step was performed by overlaying three contour plots to predict the best combination region. The extrudates were obtained under the following optimum factors: FM (% = 16.94, CHC (% = 0.095 and T (°C = 141.89. The predicted extrusion processing factors were highly accurate, yielding an expanded nixtamalized snack with 158.87 mg·kg−1 TA (estimated: 160 mg·kg−1, an EI of 3.19 (estimated: 2.66, and color parameter b of −0.44 (estimated: 0.10.

  16. Berry anthocyanins reduce proliferation of human colorectal carcinoma cells by inducing caspase-3 activation and p21 upregulation.

    Science.gov (United States)

    Anwar, Sirajudheen; Fratantonio, Deborah; Ferrari, Daniela; Saija, Antonella; Cimino, Francesco; Speciale, Antonio

    2016-08-01

    Colorectal cancer is the fourth most common type of cancer worldwide, and adenocarcinoma cells that form the majority of colorectal tumors are markedly resistant to antineoplastic agents. Epidemiological studies have demonstrated that consumption of fruits and vegetables that are rich in polyphenols, is linked to reduced risk of colorectal cancer. In the present study, the effect of a standardized anthocyanin (ACN)‑rich extract on proliferation, apoptosis and cell cycle in the Caco-2 human colorectal cancer cell line was evaluated by trypan blue and clonogenic assays and western blot analysis of cleaved caspase‑3 and p21Waf/Cif1. The results of the current study demonstrated that the ACN extract markedly decreased Caco‑2 cell proliferation, induced apoptosis by activating caspase‑3 cleavage, and upregulated cyclin‑dependent kinase inhibitor 1 (p21Waf/Cif1) expression in a dose dependent manner. Furthermore, ACN extract was able to produce a dose‑dependent increase of intracellular reactive oxygen species (ROS) in Caco‑2 cells, together with a light increase of the cell total antioxidant status. In conclusion, the present study demonstrated that a standardized berry anthocyanin rich extract inhibited proliferation of Caco‑2 cells by promoting ROS accumulation, inducing caspase‑3 activation, and upregulating the expression of p21Waf/Cif1. PMID:27314273

  17. EPR study of free radicals in non- and gamma-irradiated nutritive supplements containing anthocyanins concentrate from lyophilized red wine

    Energy Technology Data Exchange (ETDEWEB)

    Mladenova, Ralitsa B., E-mail: ralitsa@ic.bas.b [Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria); Firzov, Cyril [Institute of Cryobiology and Food Technology, 1162 Sofia (Bulgaria); Yordanov, Nicola D. [Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria)

    2010-09-15

    Nutritive supplements Enoviton, Enoviton C and Enoviton CE containing standardized anthocyanins from lyophilized red wine, vitamins (some of them) and excipients were investigated by EPR spectrometry before and after gamma-irradiation. Non-irradiated samples exhibit one singlet line with g=2.0039{+-}0.0002, most probably due to free radicals from anthocyanins. After irradiation with 10 kGy gamma-rays, tablets of Enoviton, Enoviton S and Enoviton SE, all exhibit complex EPR signals centered at a g-value of g=2.0034. The EPR spectrum of irradiated Enoviton is different from that of Enoviton S or Enoviton SE due to the overlap of the spectra of microcrystalline cellulose and the background singlet spectrum present in all tablets with the EPR resonance due to irradiated ascorbic acid (in Enoviton S and Enoviton SE). Gamma-induced free radicals exhibit long time stability-for a six months period the intensity of central peak decrease with 30-40%.

  18. Interaction mode and nanoparticle formation of bovine serum albumin and anthocyanin in three buffer solutions

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Rui; Dong, Xueyan; Song, Lanlan; Jing, Hao, E-mail: hao.haojing@gmail.com

    2014-11-15

    Investigation of interaction mode of bovine serum albumin (BSA) and anthocyanin (ACN) in different solutions will help us understand the interaction mechanism and functional change of bioactive small molecule and biomacromolecule. This study investigated the binding mode, including binding constant, number of binding sites, binding force of BSA and ACN interaction in three buffer solutions of phosphate (PBS), sodium chloride (NaCl), and PBS-NaCl, using fluorescence spectroscopy and synchronous fluorescence spectroscopy. Formation and characteristics of BSA–ACN complex were also investigated using dynamic light scattering (DLS) and transmission electron microscopy (TEM). The results showed that ACN could interact with BSA at both tyrosine (Tyr) and tryptophan (Trp) residues through both hydrogen bonds and van der Waals force, and the same binding mode was seen in dH{sub 2}O and three buffer solutions. The value of binding constant K was decreased as the temperature increased from 298 K to 308 K, and the decreasing degree was in the order of dH{sub 2}O (9.0×10{sup 4})>NaCl (2.64×10{sup 4})/PBS (2.37×10{sup 4})>PBS-NaCl (0.88×10{sup 4}), which was inversely correlated with the ionic strength of the buffer solutions of PBS-NaCl>NaCl>PBS. It indicated that stability of BSA–ACN complex was affected most in dH{sub 2}O than in three buffer solutions. The BSA and ACN interaction led to formation of BSA–ACN nanoparticles. The sizes of BSA–ACN nanoparticles in dH{sub 2}O were smaller than that in three buffer solutions, which correlated with stronger binding force between BSA and ACN in dH{sub 2}O than in three buffer solutions at room temperature (25 °C, 298 K). - Highlights: • We report the influences of four solutions on the BSA–ACN interaction. • We report the relationship between BSA–ACN interaction and particle size of complex. • The stability of BSA–ACN complex was affected most in dH{sub 2}O than in buffer solutions.

  19. Interaction mode and nanoparticle formation of bovine serum albumin and anthocyanin in three buffer solutions

    International Nuclear Information System (INIS)

    Investigation of interaction mode of bovine serum albumin (BSA) and anthocyanin (ACN) in different solutions will help us understand the interaction mechanism and functional change of bioactive small molecule and biomacromolecule. This study investigated the binding mode, including binding constant, number of binding sites, binding force of BSA and ACN interaction in three buffer solutions of phosphate (PBS), sodium chloride (NaCl), and PBS-NaCl, using fluorescence spectroscopy and synchronous fluorescence spectroscopy. Formation and characteristics of BSA–ACN complex were also investigated using dynamic light scattering (DLS) and transmission electron microscopy (TEM). The results showed that ACN could interact with BSA at both tyrosine (Tyr) and tryptophan (Trp) residues through both hydrogen bonds and van der Waals force, and the same binding mode was seen in dH2O and three buffer solutions. The value of binding constant K was decreased as the temperature increased from 298 K to 308 K, and the decreasing degree was in the order of dH2O (9.0×104)>NaCl (2.64×104)/PBS (2.37×104)>PBS-NaCl (0.88×104), which was inversely correlated with the ionic strength of the buffer solutions of PBS-NaCl>NaCl>PBS. It indicated that stability of BSA–ACN complex was affected most in dH2O than in three buffer solutions. The BSA and ACN interaction led to formation of BSA–ACN nanoparticles. The sizes of BSA–ACN nanoparticles in dH2O were smaller than that in three buffer solutions, which correlated with stronger binding force between BSA and ACN in dH2O than in three buffer solutions at room temperature (25 °C, 298 K). - Highlights: • We report the influences of four solutions on the BSA–ACN interaction. • We report the relationship between BSA–ACN interaction and particle size of complex. • The stability of BSA–ACN complex was affected most in dH2O than in buffer solutions

  20. Paper chromatography of anthocyanins in two species of Aconitum from the Tatry .Mts.: A. variegatum (L. Rchb., and A. napellus ssp. skerisorae (Gayer Seitz.

    Directory of Open Access Journals (Sweden)

    M. Krzakowa

    2015-05-01

    Full Text Available The results of studies on phenolic compounds occurence and variation in the two Aconitum species were reported in our previous paper (Szweykowski, Krzakowa, 1977a and b. A modified extraction method allowed us to get additional data on anthocyanin variation in flowers of the same species. In addition one albino plant of A. variegatum was also investigated in this respect.

  1. Study of pomegranate (Punica granatum L. peel extract containing anthocyanins on fatty streak formation in the renal arteries in hypercholesterolemic rabbits

    Directory of Open Access Journals (Sweden)

    Fatemeh Sharifiyan

    2016-01-01

    Conclusion: The results of this study indicate that consumption of pomegranate peel extract containing anthocyanins (polyphenol content 1 g/kg diet despite of a significant increase in serum antioxidant capacity cannot protect the kidneys from hypercholesterolemia-induced damages during the treatment period.

  2. Preservation of anthocyanins in solid lipid nanoparticles: Optimization of a microemulsion dilution method using the Placket-Burman and Box-Behnken designs.

    Science.gov (United States)

    Ravanfar, Raheleh; Tamaddon, Ali Mohammad; Niakousari, Mehrdad; Moein, Mahmoud Reza

    2016-05-15

    Anthocyanins are the main polyphenol components from red cabbage (Brassica oleracea L. Var. Capitata f. Rubra) extracts that have inherent antioxidant activities. Anthocyanins are effectively stable in acidic gastric digestion conditions, with nearly 100% phenol content recovery. However, the total phenol content recovery after simulated pancreatic digestion was approximately 25%. To protect anthocyanins against harsh environmental conditions (e.g., pH and temperature), solid lipid nanoparticles were prepared by the dilution of water in oil (w/o) microemulsions containing anthocyanins in aqueous media. The formulations were characterized for particle size and encapsulation efficiency. The formulation parameters (e.g., volume of the internal aqueous phase, homogenization time and the percentages of total lipid, total surfactant or stabilizer) were optimized using the Placket-Burman and Box-Behnken experimental designs. Entrapment efficiency (89.2 ± 0.3%) was calculated when the mean particle size was 455 ± 2 nm. A scanning electron microscopy study revealed the spherical morphology of the particles. PMID:26776010

  3. Complexation of bovine β-lactoglobulin with malvidin-3-O-glucoside and its effect on the stability of grape skin anthocyanin extracts.

    Science.gov (United States)

    He, Zhiyong; Zhu, Haidong; Xu, Mingzhu; Zeng, Maomao; Qin, Fang; Chen, Jie

    2016-10-15

    The binding interaction between bovine β-lactoglobulin and malvidin-3-O-glucoside (MG), the major anthocyanin in grape skin anthocyanin extracts (GSAE), was studied at pH 6.3 using fluorescence, Fourier transform infrared and circular dichroism spectroscopy. The binding constant (KS), binding force and effect of the interaction on the β-lactoglobulin conformation and GSAE stability were investigated. The results indicated that β-lactoglobulin complexed with MG mainly via hydrophobic interaction with KS of 0.67×10(3)M(-)(1) at 297K. The secondary structure of β-lactoglobulin was changed by MG binding, with a decrease in α-helix, turn and random coil and an increase in β-sheet. Bovine whey protein effectively prevented the color fading and degradation of anthocyanin in the GSAE solution during the thermal treatment (80°C/2h), H2O2 oxidation (0.005% H2O2/1h) and photo illumination (5000lx/5d). The whey protein-anthocyanin complexation appeared to have a positive effect on the thermal, oxidation and photo stability of GSAE. PMID:27173557

  4. Quantification of anthocyanins in commercial black currant juices by simple high-performance liquid chromatography. Investigation of their pH stability and antioxidative potency

    DEFF Research Database (Denmark)

    Nielsen, Inge Lise F.; Ravn-Haren, Gitte; Magnussen, Eva Loftin;

    2003-01-01

    Quantitative determinations of the four black currant anthocyanins, cyanidin 3-O-beta-glucoside, cyanidin 3-O-beta-rutinoside, delphinidin 3-O-beta-glucoside, and delphinidin 3-O-beta-rutinoside, were achieved in black currant juices by a rapid and sensitive high-performance liquid chromatographic...

  5. ESTABILIDAD DE ANTOCIANINAS EN JUGO Y CONCENTRADO DE AGRAZ (VACCINIUM MERIDIONALE SW. STABILITY OF ANTHOCYANINS IN JUICE AND CONCENTRATE OF AGRAZ(VACCINIUM MERIDIONALE SW.

    Directory of Open Access Journals (Sweden)

    José Jobanny Martínez Zambrano

    2011-06-01

    Full Text Available Se estudió la cinética de la estabilidad térmica y de almacenamiento de las antocianinas en jugo y concentrado de agraz (Vaccinium meridionale Sw. siguiendo una cinética de primer orden. La degradación de las antocianinas con la temperatura fue modelada adecuadamente con la ecuación de Arrhenius. El efecto del pH en la estabilidad térmica de las antocianinas en los concentrados de agraz se estudió a seis diferentes valores (3,0 - 8,0 en buffer citrato-fosfato. La degradación de las antocianinas fue mayor para el jugo que para el concentrado. Una disminución significante en la estabilidad de las antocianinas del concentrado se observó a pH cercano a 5,0.The kinetics of thermal and storage stabilities of anthocyanins in agraz (Vaccinium meridionale Sw. juice and concentrate were studied with first-order reaction kinetics. The temperature-dependent degradation was adequately modeled on the Arrhenius equation. The effect of pH on thermal stability of anthocyanins in concentrate of agraz was studied at six different pHs (3.0 - 8.0 in citrate-phosphate buffer solutions. The results indicated that anthocyanins degradation was higher in juice than concentrate. A significant decrease in anthocyanin stability was observed at pHs above 5.0.

  6. Free and bound total phenolics, procyanidin and anthocyanin profiles and their antioxidant capacities in whole grain rice (Oryza sativa L.) of different bran colors

    Science.gov (United States)

    To study the polyphenols in whole grain rice varying in bran color, total phenolics, flavonoids and antioxidant capacities of the solvent-extractable (Free) and cell-wall bound (Bound) fractions and the profiles of procyanidins and anthocyanins were determined. Red and purple bran rices had signific...

  7. Colored light-quality selective plastic films affect anthocyanin content, enzyme activities, and the expression of flavonoid genes in strawberry (Fragaria × ananassa) fruit.

    Science.gov (United States)

    Miao, Lixiang; Zhang, Yuchao; Yang, Xiaofang; Xiao, Jinping; Zhang, Huiqin; Zhang, Zuofa; Wang, Yuezhi; Jiang, Guihua

    2016-09-15

    The influence of colored light-quality selective plastic films (red, yellow, green, blue, and white) on the content of anthocyanin, the activities of the related enzymes and the transcripts of the flavonoid gene was studied in developing strawberry fruit. The results indicated that colored films had highly significant effects on the total anthocyanin content (TAC) and proportions of individual anthocyanins. Compared with the white control film, the red and yellow films led to the significant increase of TAC, while the green and blue films caused a decrease of TAC. Colored film treatments also significantly affected the related enzyme activity and the expression of structural genes and transcription factor genes, which suggested that the enhancement of TAC by the red and yellow films might have resulted from the activation of related enzymes and transcription factor genes in the flavonoid pathway. Treatment with red and yellow light-quality selective plastic films might be useful as a supplemental cultivation practice for enhancing the anthocyanin content in developing strawberry fruit. PMID:27080884

  8. Review of traditional and non-traditional medicinal genetic resources in the USDA, ARS, PGRCU collection evaluated for flavonoid concentrations and anthocyanin indexes

    Science.gov (United States)

    Non-traditional medicinal species include velvetleaf (Abutilon theophrasti Medik.), Desmodium species, Termanus labialis (L.f.) Spreng. and the traditional species consists of roselle (Hibiscus sabdariffa L.). There is a need to identify plant sources of flavonoids and anthocyanins since they have s...

  9. Genetical and biochemical evidence that the hydroxylation pattern of the anthocyanin B-ring in Silene dioica is determined at the p-coumaroyl-coenzyme a stage

    NARCIS (Netherlands)

    Kamsteeg, J.; Brederode, J. van; Nigtevecht, G. van

    1980-01-01

    In petals of Silene dioica, gene P controls the 3′-hydroxylation of the anthocyanin B-ring and the hydroxylation pattern of the hydroxycinnamoyl acyl group bound to the 4″'-hydroxyl group of rhamnose of anthocyanidin 3-rhamnosyl(1→6)glucoside-5-glucoside. In this paper, experiments are presented whi

  10. Different effects of anthocyanins and phenolic acids from wild blueberry (Vaccinium angustifolium) on monocytes adhesion to endothelial cells in a TNF-α stimulated proinflammatory environment

    DEFF Research Database (Denmark)

    Del Bo', Cristian; Roursgaard, Martin; Porrini, Marisa;

    2016-01-01

    Scope: Monocyte adhesion to the vascular endothelium is a crucial step in the early stages of atherogenesis. This study aims to investigate the capacity of an anthocyanin (ACN) and phenolic acid (PA) rich fraction (RF) of a wild blueberry, single ACNs (cyanidin, malvidin, delphinidin) and related...

  11. Effects of α-aminooxyacetic acid on the level of polyamines, anthocyanins and photosynthetic pigments in seedlings of common buckwheat (Fagopyrum esculentum Moench

    Directory of Open Access Journals (Sweden)

    Marcin Horbowicz

    2011-07-01

    Full Text Available The present paper discusses the effects of α-aminooxyacetic acid (AOA on contents of polyamines, anthocyanins, photosynthetic pigments and phenylalanine ammonia-lyase activity in seedlings of common buckwheat (Fagopyrum esculentum Moench. AOA clearly decreased light-induced formation of anthocyanins and inhibited PAL activity in buckwheat hypocotyls, although a slight stimulatory effect on anthocyanins content in buckwheat cotyledons was observed. AOA declined the contents of chlorophylls a and b and total carotenoids in buckwheat cotyledons. The results show that AOA inhibits phenylpropanoids biosynthesis in buckwheat hypocotyls, and suppress photosynthesis in cotyledons. Moreover, the experiments show that AOA enhances the level of free putrescine in hypocotyls and the level of spermidine in buckwheat cotyledons. AOA also diminished the content of putrescine in cotyledons, but did not affect its level in buckwheat hypocotyls. AOA also substantially declined the level of cadaverine in buckwheat cotyledons, and did not affect its content in hypocotyls. Differences in effect of AOA on anthocyanins and polyamines accumulation indicate various physiological roles of the compounds in buckwheat hypocotyls and cotyledons.

  12. Application of natural deep eutectic solvents to the extraction of anthocyanins from Catharanthus roseus with high extractability and stability replacing conventional organic solvents.

    Science.gov (United States)

    Dai, Yuntao; Rozema, Evelien; Verpoorte, Robert; Choi, Young Hae

    2016-02-19

    Natural deep eutectic solvents (NADES) have attracted a great deal of attention in recent times as promising green media. They are generally composed of neutral, acidic or basic compounds that form liquids of high viscosity when mixed in certain molar ratio. Despite their potential, viscosity and acid or basic nature of some ingredients may affect the extraction capacity and stabilizing ability of the target compounds. To investigate these effects, extraction with a series of NADES was employed for the analysis of anthocyanins in flower petals of Catharanthus roseus in combination with HPLC-DAD-based metabolic profiling. Along with the extraction yields of anthocyanins their stability in NADES was also studied. Multivariate data analysis indicates that the lactic acid-glucose (LGH), and 1,2-propanediol-choline chloride (PCH) NADES present a similar extraction power for anthocyanins as conventional organic solvents. Furthermore, among the NADES employed, LGH exhibits an at least three times higher stabilizing capacity for cyanidins than acidified ethanol, which facilitates their extraction and analysis process. Comparing NADES to the conventional organic solvents, in addition to their reduced environmental impact, they proved to provide higher stability for anthocyanins, and therefore have a great potential as possible alternatives to those organic solvents in health related areas such as food, pharmaceuticals and cosmetics. PMID:26822320

  13. Investigating the Transport Dynamics of Anthocyanins from Unprocessed Fruit and Processed Fruit Juice from Sour Cherry (Prunus cerasus L.) across Intestinal Epithelial Cells

    NARCIS (Netherlands)

    Toydemir, G.; Boyacioglu, D.; Capanoglu, E.; Meer, van der I.M.; Tomassen, M.M.M.; Hall, R.D.; Mes, J.J.; Beekwilder, J.

    2013-01-01

    Anthocyanins can contribute to human health through preventing a variety of diseases. The uptake of these compounds from food and the parameters determining uptake efficiency within the human body are still poorly understood. Here we have employed a Caco-2 cell based system to investigate the transp

  14. Effects of bagging and storage temperature on anthocyanin content and phenylalanine ammonialyase (PAL activity in mangosteen (Garcinia mangostana L. fruit pericarp during maturation

    Directory of Open Access Journals (Sweden)

    Kobkiat Saengnil

    2005-07-01

    Full Text Available The purpose of this research is to investigate the effect of bagging and storage temperature on anthocyanin content and phenylalanine ammonia-lyase (PAL activity of mangosteen fruit pericarp. Six maturity stages (stage 1 to stage 6, defined by the extension of red or purple colouration on the pericarp of attached mangosteen fruits with bagged and unbagging were compared. It was found that sunlight had no significant effect on both anthocyanin content and PAL activity. The effect of storage temperature onanthocyanin content and PAL activity were also studied. Fruits at stage 1 (indicated by scattered of pink spot on pericarp were harvested and allowed to develop red colour to stage 6 at different storage temperatures: 15º, 25º, 30º (room temperature and 35ºC. It was found that temperature had no effect on anthocyanin content in any stage of fruit development. At all temperature levels, the anthocyanin content was increased accordingly and had the highest level at stage 6. Temperature affected on PAL activity at different stages. Levels of PAL activity decreased at the early stages and increased at the final stage of maturity except for fruits held at 25ºC, PAL activity remained at a low level through stage 6, while fruit at 35ºC had the highest level of PAL at stage 5.

  15. Study on the Stability of Natural Edible Pigment Anthocyanin from Purple Sweet Potato%天然食用色素紫甘薯花青素的稳定性研究

    Institute of Scientific and Technical Information of China (English)

    谢程程; 王勇; 宫立晶

    2012-01-01

    采用乙醇浸提法提取紫甘薯花青素,考察了紫甘薯花青素的稳定性。紫甘薯花青素是水溶性色素,具有较强的耐热性,避光保存花青素的稳定性最好。食品防腐剂对紫甘薯花青素的稳定性无明显影响;葡萄糖、蔗糖对花青素有一定的护色作用;VC对紫甘薯花青素影响较明显;H2O2,Cu2+和Fe2+对紫甘薯花青素的稳定性影响较大,其中Cu2+,Fe2+会使花青素溶液变浑浊。%The purple sweet potato anthocyanin was extracted by ethanol extraction.The stability of purple sweet potato anthocyanin was investigated.The purple sweet potato anthocyanin was water-soluble pigment,it had a strong resistance of heat and the best stability of anthocyanin was kept from light.Food preservatives had no effect on the stability of purple sweet potato anthocyanins;glucose and sucrose had a certain color-protecting effect on purple sweet potato anthocyanin;VC had effects on purple sweet potato anthocyanin obviously;H2O2,Cu2+,Fe2+ had a greater impact on the stability of purple sweet potato anthocyanin.The solution of anthocyanin would become turbid with the effect of Cu2+ and Fe2+.

  16. Study on the stability of anthocyanin in purple sweet potato beverage%紫甘薯饮料中花青素的稳定性研究

    Institute of Scientific and Technical Information of China (English)

    孙鹏尧; 周芳宁; 李喜层; 曹燕华; 袁素辉; 牟德华

    2014-01-01

    The spectrum characteristics of anthocyanins in purple sweet potato beverage with different pH was analyzed, besides, the effect of pH, temperature, Vc, sugar, and light on the stability of anthocyanin from purple sweet potato beverage were studied. The results showed that the anthocyanins had better stability at the pH of 2.2, 3.0, 4.0. The stability gradually decreased along with the pH increased. High temperature had obvious effect on the stability of purple sweet potato antho-cyanins and the higher the temperature was, the lower retention of anthocyanin had. Vc could accelerate the degradation of anthocyanins. Glucose and lactose had no effect on the stability of anthocyanins. Clathrate which formed of Fe3+and antho-cyan might reduce the stability of anthocyanins, however, other metal ions had no influence almost. The stability of antho-cyanins decreased under the light. Natural light had no obvious impact in a short period of time. Incandescent light and ul-traviolet lamp could speed up decomposition of anthocyanin.%研究了不同pH值紫甘薯饮料中花青素的色泽光谱特性以及pH值、温度、抗坏血酸、糖、光照等因素对紫甘薯饮料中花青素稳定性的影响。结果表明, pH值为2.2、3.0、4.0时花青素较稳定,随着pH值的升高,稳定性逐渐降低;高温处理对紫甘薯花青素的稳定性的影响较显著,温度越高,花青素的保留率越低;抗坏血酸的加入会加速花色苷的降解;葡萄糖和乳糖的加入对花色苷的稳定性无影响; Fe3+与花青素类物质形成络合物,降低了花青素的稳定性,其他的金属离子对花色苷的稳定性影响不大;光照使花青素稳定性降低,自然光在短时间内影响较小,花色苷在白炽灯和紫外灯照射下降解速度加快。

  17. Identification of Candidate Anthocyanin-Related Genes by Transcriptomic Analysis of ‘Furongli’ Plum (Prunus salicina Lindl.) during Fruit Ripening Using RNA-Seq

    Science.gov (United States)

    Fang, Zhi-Zhen; Zhou, Dan-Rong; Ye, Xin-Fu; Jiang, Cui-Cui; Pan, Shao-Lin

    2016-01-01

    Anthocyanins are important pigments and are responsible for red coloration in plums. However, little is known about the molecular mechanisms underlying anthocyanin accumulation in plum fruits. In this study, the RNA-seq technique was used to analyze the transcriptomic changes during fruit ripening in the red-fleshed plum (Prunus salicina Lindl.) cultivar ‘Furongli’. Over 161 million high-quality reads were assembled into 52,093 unigenes and 49.4% of these were annotated using public databases. Of these, 25,681 unigenes had significant hits to the sequences in the NCBI Nr database, 17,203 unigenes showed significant similarity to known proteins in the Swiss-Prot database and 5816 and 8585 unigenes had significant similarity to existing sequences in the Kyoto Encyclopedia of Genes and Genomes and the Cluster of Orthologous Groups databases, respectively. A total of 3548 unigenes were differentially expressed during fruit ripening and 119 of these were annotated as involved in “biosynthesis of other secondary metabolites.” Biological pathway analysis and gene ontology term enrichment analysis revealed that 13 differentially expressed genes are involved in anthocyanin biosynthesis. Furthermore, transcription factors such as MYB and bHLH, which may control anthocyanin biosynthesis, were identified through coexpression analysis of transcription factors, and structural genes. Real-time qPCR analysis of candidate genes showed good correlation with the transcriptome data. These results contribute to our understanding of the molecular mechanisms underlying anthocyanin biosynthesis in plum flesh. The transcriptomic data generated in this study provide a basis for further studies of fruit ripening in plum. PMID:27630660

  18. Identification of Candidate Anthocyanin-Related Genes by Transcriptomic Analysis of 'Furongli' Plum (Prunus salicina Lindl.) during Fruit Ripening Using RNA-Seq.

    Science.gov (United States)

    Fang, Zhi-Zhen; Zhou, Dan-Rong; Ye, Xin-Fu; Jiang, Cui-Cui; Pan, Shao-Lin

    2016-01-01

    Anthocyanins are important pigments and are responsible for red coloration in plums. However, little is known about the molecular mechanisms underlying anthocyanin accumulation in plum fruits. In this study, the RNA-seq technique was used to analyze the transcriptomic changes during fruit ripening in the red-fleshed plum (Prunus salicina Lindl.) cultivar 'Furongli'. Over 161 million high-quality reads were assembled into 52,093 unigenes and 49.4% of these were annotated using public databases. Of these, 25,681 unigenes had significant hits to the sequences in the NCBI Nr database, 17,203 unigenes showed significant similarity to known proteins in the Swiss-Prot database and 5816 and 8585 unigenes had significant similarity to existing sequences in the Kyoto Encyclopedia of Genes and Genomes and the Cluster of Orthologous Groups databases, respectively. A total of 3548 unigenes were differentially expressed during fruit ripening and 119 of these were annotated as involved in "biosynthesis of other secondary metabolites." Biological pathway analysis and gene ontology term enrichment analysis revealed that 13 differentially expressed genes are involved in anthocyanin biosynthesis. Furthermore, transcription factors such as MYB and bHLH, which may control anthocyanin biosynthesis, were identified through coexpression analysis of transcription factors, and structural genes. Real-time qPCR analysis of candidate genes showed good correlation with the transcriptome data. These results contribute to our understanding of the molecular mechanisms underlying anthocyanin biosynthesis in plum flesh. The transcriptomic data generated in this study provide a basis for further studies of fruit ripening in plum. PMID:27630660

  19. Reduction in Activity/Gene Expression of Anthocyanin Degradation Enzymes in Lychee Pericarp is Responsible for the Color Protection of the Fruit by Heat and Acid Treatment

    Institute of Scientific and Technical Information of China (English)

    FANG Fang; ZHANG Zhao-qi; ZHANG Xue-lian; WU Zhen-xian; YIN Hui-fang; PANG Xue-qun

    2013-01-01

    Heat and acid treatments were reported to be a promising substitute for SO2 fumigation in color protection of postharvest lychee (Litchi chinensis Sonn.) fruits, but the mechanism was not clear. In the present study, hot water (70°C) dipping followed by immersion in 2%HCl (heat-acid) substantially protected the red color of the fruit during storage at 25°C and inhibited anthocyanin degradation while hot water dipping alone (heat) led to rapidly browning and about 90%loss in anthocyanin content. The pH values in the pericarp of the heat-acid treated fruit dropped to 3.2, while the values maintained around 5.0 in the heat-treated and control fruit. No significantly different pH values were detected among the arils of heat-acid, heat treated and control fruit. Heat-acid treatment dramatically reduced the activities of anthocyanin degradation enzyme (ADE), peroxidase (POD) and polyphenol oxidase in the pericarp. A marked reduction in LcPOD gene expression was also detected in heat-acid treated fruit, in contrast, induction was found in heat treated fruit. The pericarp of heat-acid treated fruit exhibited significantly lower respiration rate but faster water loss than that of the untreated or heat treated fruit. Taken together, heat treatment triggered quick browning and anthocyanin loss in lychee fruit, while heat-acid treatment protected the fruit color by a great reduction in the activities/gene expression of anthocyanin degradation enzymes and acidification of lychee pericarp.

  20. Structure of the acyl-glucose-dependent anthocyanin 5-O-glucosyltransferase gene in carnations and its disruption by transposable elements in some varieties.

    Science.gov (United States)

    Nishizaki, Yuzo; Matsuba, Yuki; Okamoto, Emi; Okamura, Masachika; Ozeki, Yoshihiro; Sasaki, Nobuhiro

    2011-12-01

    The pink, red and crimson petal colors of carnations (Dianthus caryophyllus) are produced by anthocyanins. The anthocyanins, pelargonidin and cyanidin can be modified by two glucoses at the 3 and 5 positions, and by a single malic acid. Petal color variation can result from failure of such modification, for example, the lack of a glucose at the 5 position is responsible for the color variants of some commercial varieties. With respect to this variation, modification by 5-O-glucosyltransferase plays the most important role in glucosylation at the 5 position. Recently, we identified a novel acyl-glucose-dependent anthocyanin 5-O-glucosyltransferase (AA5GT), that uses acyl-glucoses, but not UDP-glucose, as the glucose donor. Although we showed that loss of AA5GT expression was responsible for loss of glucosylation at the 5 position of anthocyanin in some varieties, the cause of this repression of AA5GT expression could not be determined. Here, we have succeeded in isolating the AA5GT gene and found that it consists of 12 exons and 11 introns. In carnation varieties lacking a glucose at the 5 position, we identified the insertion of two different retrotransposons, Ty1dic1 and Retdic1, into AA5GT. Ty1dic1, which belongs to the class I long terminal repeat (LTR)-retrotransposons of Ty1/copia families, was inserted into exon 10. Retdic1, which includes a long interspersed nuclear element (LINE)-like sequence, was inserted into intron 5. Thus, insertion of either Ty1dic1 or Retdic1 can disrupt AA5GT and result in the lack of glucosylation at the 5 position in anthocyanins.