WorldWideScience

Sample records for anthocyanins rich extract-induced

  1. Hibiscus anthocyanins rich extract-induced apoptotic cell death in human promyelocytic leukemia cells

    International Nuclear Information System (INIS)

    Chang, Y.-C.; Huang, H.-P.; Hsu, J.-D.; Yang, S.-F.; Wang, C.-J.

    2005-01-01

    Hibiscus sabdariffa Linne (Malvaceae), an attractive plant believed to be native to Africa, is cultivated in the Sudan and Eastern Taiwan. Anthocyanins exist widely in many vegetables and fruits. Some reports demonstrated that anthocyanins extracted from H. sabdariffa L., Hibiscus anthocyanins (HAs) (which are a group of natural pigments existing in the dried calyx of H. sabdariffa L.) exhibited antioxidant activity and liver protection. Therefore, in this study, we explored the effect of HAs on human cancer cells. The result showed that HAs could cause cancer cell apoptosis, especially in HL-60 cells. Using flow cytometry, we found that HAs treatment (0-4 mg/ml) markedly induced apoptosis in HL-60 cells in a dose- and time-dependent manner. The result also revealed increased phosphorylation in p38 and c-Jun, cytochrome c release, and expression of tBid, Fas, and FasL in the HAs-treated HL-60 cells. We further used SB203580 (p38 inhibitor), PD98059 (MEK inhibitor), SP600125 (JNK inhibitor), and wortmannin (phosphatidylinositol 3-kinase; PI-3K inhibitor) to evaluate their effect on the HAs-induced HL-60 death. The data showed that only SB203580 had strong potential in inhibiting HL-60 cell apoptosis and related protein expression and phosphorylation. Therefore, we suggested that HAs mediated HL-60 apoptosis via the p38-FasL and Bid pathway. According to these results, HAs could be developed as chemopreventive agents. However, further investigations into the specificity and mechanism(s) of HAs are needed

  2. Structure-function relationships of anthocyanins from various anthocyanin-rich extracts on the inhibition of colon cancer cell growth.

    Science.gov (United States)

    Jing, Pu; Bomser, Joshua A; Schwartz, Steven J; He, Jian; Magnuson, Bernadene A; Giusti, M Mónica

    2008-10-22

    Anthocyanins are potent antioxidants and may be chemoprotective. However, the structure-function relationships are not well understood. The objectives of this study were to compare the chemoprotective properties of anthocyanin-rich extracts (AREs) with variable anthocyanin profiles to understand the relationship between anthocyanin chemical structure and chemoprotective activity, measured as inhibition of colon cancer cell proliferation. Additionally, the chemoprotective interaction of anthocyanins and other phenolics was investigated. AREs with different anthocyanin profiles from purple corn, chokeberry, bilberry, purple carrot, grape, radish, and elderberry were tested for growth inhibition (GI 50) using a human colorectal adenocarcinoma (HT29) cell line. All AREs suppressed HT29 cell growth to various degrees as follows: purple corn (GI 50 approximately 14 microg of cy-3-glu equiv/mL) > chokeberry and bilberry > purple carrot and grape > radish and elderberry (GI 50 > 100 microg of cy-3-glu equiv/mL). Anthocyanins played a major role in AREs' chemoprotection and exerted an additive interaction with the other phenolics present. Statistical analyses suggested that anthocyanin chemical structure affected chemoprotection, with nonacylated monoglycosylated anthocyanins having greater inhibitory effect on HT-29 cell proliferation, whereas anthocyanins with pelargonidin, triglycoside, and/or acylation with cinnamic acid exerted the least effect. These findings should be considered for crop selection and the development of anthocyanin-rich functional foods.

  3. Effects of anthocyanins and anthocyanin-rich extracts on the risk for cancers of the gastrointestinal tract.

    Science.gov (United States)

    Kocic, B; Filipovic, S; Nikolic, M; Petrovic, B

    2011-01-01

    Anthocyanins are the largest group of water-soluble pigments in the plant kingdom. Anthocyanins are responsible for most of the red, blue, and purple colors of fruits, vegetables, flowers, and other plant tissues or products. In recent years, numerous studies have shown that anthocyanins display a wide range of biological activities. This review summarises recent literature evidence on the association of anthocyanins and anthocyanin-rich extracts consumption with the risk for gastrointestinal tract cancer, concentrating on the results from in vivo animal model tumor systems, as well as data from human epidemiological studies. Potential cancer chemopreventive activities of anthocyanins were revealed from in vitro studies. In vivo animal model tumor systems showed that dietary anthocyanins inhibit cancers of the gastrointestinal tract. Some epidemiological studies have revealed protective effects of anthocyanins consumption on gastrointestinal cancer risk in humans. Pharmacokinetic data indicate that absorption of anthocyanins into the bloodstream of rodents and humans is minimal, suggesting that they may have little efficacy in tissues other than the gastrointestinal tract and skin. Future studies should be undertaken to determine if the anticancer effects of anthocyanins are due to the parent compounds and/or to their metabolites.

  4. Intermolecular binding of blueberry pectin-rich fractions and anthocyanin.

    Science.gov (United States)

    Lin, Z; Fischer, J; Wicker, L

    2016-03-01

    Pectin was extracted from blueberry powder into three fractions of water soluble (WSF), chelator soluble (CSF) and sodium carbonate soluble (NSF). The fractions were incubated with cyanidin-3-glucoside (C3G), a mixture of five anthocyanidins (cyanidin, pelargonidin, malvidin, petunidin and delphinidin) or blueberry juice at pH 2.0-4.5. Free anthocyanins and bound anthocyanin-pectin mixtures were separated by ultrafiltration. WSF bound the least amount of anthocyanin at all pH values. CSF had stronger anthocyanin binding ability at pH 2.0-3.6, while NSF had stronger anthocyanin binding ability at pH 3.6-4.5. The pectin and anthocyanin binding was lowest at pH 4.5 and higher at pH 2.0-3.6. Nearly doubling C3G pigment content increased bound anthocyanin percentage by 16-23% at pH 3.6, which favored anthocyanin aromatic stacking, compared to 3-9% increase at pH 2.0. Ionic interaction between anthocyanin flavylium cations and free pectic carboxyl groups, and anthocyanin stacking may be two major mechanisms for pectin and anthocyanin binding. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Antiproliferative and Antioxidant Properties of Anthocyanin Rich Extracts from Blueberry and Blackcurrant Juice

    Directory of Open Access Journals (Sweden)

    Zoriţa Diaconeasa

    2015-01-01

    Full Text Available The present study was aimed at evaluating the antiproliferative potential of anthocyanin-rich fractions (ARFs obtained from two commercially available juices (blueberry and blackcurrant juices on three tumor cell lines; B16F10 (murine melanoma, A2780 (ovarian cancer and HeLa (cervical cancer. Individual anthocyanin determination, identification and quantification were done using HPLC-MS. Antioxidant activity of the juices was determined through different mechanism methods such as DPPH and ORAC. For biological testing, the juices were purified through C18 cartridges in order to obtain fractions rich in anthocyanins. The major anthocyanins identified were glycosylated cyanidin derivatives. The antiproliferative activity of the fractions was tested using the MTT assay. The antiproliferative potential of ARF was found to be associated with those bioactive molecules, anthocyanins due to their antioxidant potential. The results obtained indicated that both blueberry and blackcurrants are rich sources of antioxidants including anthocyanins and therefore these fruits are highly recommended for daily consumption to prevent numerous degenerative diseases.

  6. Black bean anthocyanin-rich extracts as food colorants: Physicochemical stability and antidiabetes potential.

    Science.gov (United States)

    Mojica, Luis; Berhow, Mark; Gonzalez de Mejia, Elvira

    2017-08-15

    Black beans contain anthocyanins that could be used as colorants in foods with associated health benefits. The objective was to optimize anthocyanins extraction from black bean coats and evaluate their physicochemical stability and antidiabetes potential. Optimal extraction conditions were 24% ethanol, 1:40 solid-to-liquid ratio and 29°C (Panthocyanins were identified by MS ions, delphinidin-3-O-glucoside (465.1m/z), petunidin-3-O-glucoside (479.1m/z) and malvidin-3-O-glucoside (493.1m/z). A total of 32mg of anthocyanins were quantified per gram of dry extract. Bean anthocyanins were stable at pH 2.5 and low-temperature 4°C (89.6%), with an extrapolated half-life of 277days. Anthocyanin-rich extracts inhibited α-glucosidase (37.8%), α-amylase (35.6%), dipeptidyl peptidase-IV (34.4%), reactive oxygen species (81.6%), and decreased glucose uptake. Black bean coats are a good source of anthocyanins and other phenolics with the potential to be used as natural-source food colorants with exceptional antidiabetes potential. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Production of an anthocyanin-rich food colourant from Thymus moroderi and its application in foods.

    Science.gov (United States)

    Díaz-García, Miriam Cristina; Castellar, María Rosario; Obón, José María; Obón, Concepción; Alcaraz, Francisco; Rivera, Diego

    2015-04-01

    Anthocyanins and other polyphenols from flowers and bracts of Thymus sp. are studied. An anthocyanin-rich food colourant with interesting high antioxidant activity from Thymus moroderi has been obtained, and applied to colour foods. Anthocyanins and other polyphenols from T. moroderi and another five Thymus sp. were extracted in methanol/hydrochloric acid 0.1 mol L(-1) (50/50, v/v) 2 h stirring at 50 °C. They were identified and quantified by HPLC-PDA-MS and UHPLC-PDA-fluorescence, as total individual polyphenols. Total polyphenols were also determined. Flowers had higher anthocyanins and other polyphenols concentrations than bracts; for example, total polyphenols content of T. moroderi were 131.58 and 61.98 g GAE kg(-1) vegetal tissue, respectively. A liquid concentrated colourant was obtained from T. moroderi using water/citric acid as solvent. It was characterised and compared with other two commercial anthocyanin-rich food colourants from red grape skin and red carrot (colour strength of 1.7 and 3.6 AU, respectively). T. moroderi colourant had 1.2 AU colour strength, and high storage stability (>97.1% remaining colour after 110 days at 4 °C). It showed a higher polyphenols content than commercial colourants. Its antioxidant activity was 0.707 mmol Trolox eq. g(-1) plant dry weight, 69.5 times higher than red carrot. The three colourants were applied to colour yogurts, giving pinky tonalities. The colour did not change evidently (ΔE*(ab)  < 3) when stored under refrigeration during 1 month. T. moroderi can be a source of anthocyanin-rich food colourant (E-163) with both high polyphenols content and high antioxidant activity. This colourant gives a stable colour to a yogurt during 1 month. These results expand the use of natural colourants. © 2014 Society of Chemical Industry.

  8. Hibiscus sabdariffa anthocyanins-rich extract: Chemical stability, in vitro antioxidant and antiproliferative activities.

    Science.gov (United States)

    Maciel, Laércio Galvão; do Carmo, Mariana Araújo Vieira; Azevedo, Luciana; Daguer, Heitor; Molognoni, Luciano; de Almeida, Mereci Mendes; Granato, Daniel; Rosso, Neiva Deliberali

    2018-03-01

    Hibiscus sabdariffa calyx is a rich source of anthocyanins and other bioactive compounds but no study reported the effects of experimental conditions on the extraction of these chemical compounds. Therefore, the effects of time and extraction temperature on the bioactive compounds and antioxidant activity of Hibiscus sabdariffa calyx were evaluated. In addition, the effects of copigmentation and pH on the stability of anthocyanins were assessed and the cytotoxic effects (LC 50 , IC 50 , and GC 50 ) of the extracts were determined in relation to tumor cell lines - Caco-2, HepG-2, HCT8, and A549. The temperature significantly influenced the total anthocyanins and flavonoids contents. The interaction between time/temperature influenced the total phenolic content and ascorbic acid. The t 1/2 and the percentage of colour retention decreased markedly at temperatures above 80 °C. Variations in pH conserved the antioxidant activity of the anthocyanins, and the protonation-deprotonation process of the extract was reversible. The treatment of cells with purified anthocyanin extract or crude extracts at 5-800 μg mL -1 did not show significant cytotoxic effects on the cell lines, corroborating the chemical antioxidant effect of the extracts (DPPH assay). Cyanidin-3-glucoside, delphinidin-3-sambubioside, delphinidin-3-glucoside, and cyanidin-3-sambubioside were identified in the extracts by LC-ESI-MS. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Anthocyanin-Rich Juice Lowers Serum Cholesterol, Leptin, and Resistin and Improves Plasma Fatty Acid Composition in Fischer Rats.

    Directory of Open Access Journals (Sweden)

    Daniela Graf

    Full Text Available Obesity and obesity-associated diseases e.g. cardiovascular diseases and type 2 diabetes are spread worldwide. Anthocyanins are supposed to have health-promoting properties, although convincing evidence is lacking. The aim of the present study was to investigate the effect of anthocyanins on several risk factors for obesity-associated diseases. Therefore, Fischer rats were fed anthocyanin-rich grape-bilberry juice or an anthocyanin-depleted control juice for 10 weeks. Intervention with anthocyanin-rich grape-bilberry juice reduced serum cholesterol and tended to decrease serum triglycerides. No effects were seen for serum non-esterified fatty acids, glucose, and insulin. Anthocyanin-rich grape-bilberry juice intervention reduced serum leptin and resistin, but showed no influence on serum adiponectin and secretion of adipokines from mesenteric adipose tissue. Furthermore, anthocyanin-rich grape-bilberry juice increased the proportion of polyunsaturated fatty acids and decreased the amount of saturated fatty acids in plasma. These results indicate that anthocyanins possess a preventive potential for obesity-associated diseases.

  10. Disruption of Angiogenesis by Anthocyanin-Rich Extracts of Hibiscus sabdariffa

    Science.gov (United States)

    Joshua, Madu; Okere, Christiana; Sylvester, O’Donnell; Yahaya, Muhammad; Precious, Omale; Dluya, Thagriki; Um, Ji-Yeon; Neksumi, Musa; Boyd, Jessica; Vincent-Tyndall, Jennifer; Choo, Dong-Won; Gutsaeva, Diana R.; Jahng, Wan Jin

    2017-01-01

    Abnormal vessel formations contribute to the progression of specific angiogenic diseases including age-related macular degeneration. Adequate vessel growth and maintenance represent the coordinated process of endothelial cell proliferation, matrix remodeling, and differentiation. However, the molecular mechanism of the proper balance between angiogenic activators and inhibitors remains elusive. In addition, quantitative analysis of vessel formation has been challenging due to complex angiogenic morphology. We hypothesized that conjugated double bond containing-natural products, including anthocyanin extracts from Hibiscus sabdariffa, may control the proper angiogenesis. The current study was designed to determine whether natural molecules from African plant library modulate angiogenesis. Further, we questioned how the proper balance of anti- or pro-angiogenic signaling can be obtained in the vascular microenvironment by treating anthocyanin or fatty acids using chick chorioallantoic membrane angiogenesis model in ovo. The angiogenic morphology was analyzed systematically by measuring twenty one angiogenic indexes using Angiogenic Analyzer software. Chick chorioallantoic model demonstrated that anthocyanin-rich extracts inhibited angiogenesis in time- and concentration-dependent manner. Molecular modeling analysis proposed that hibiscetin as a component in Hibiscus may bind to the active site of vascular endothelial growth factor receptor 2 (VEGFR2) with ΔG= −8.42 kcal/mol of binding energy. Our results provided the evidence that anthocyanin is an angiogenic modulator that can be used to treat uncontrolled neovascular-related diseases, including age-related macular degeneration. PMID:28459020

  11. Disruption of Angiogenesis by Anthocyanin-Rich Extracts of Hibiscus sabdariffa.

    Science.gov (United States)

    Joshua, Madu; Okere, Christiana; Sylvester, O'Donnell; Yahaya, Muhammad; Precious, Omale; Dluya, Thagriki; Um, Ji-Yeon; Neksumi, Musa; Boyd, Jessica; Vincent-Tyndall, Jennifer; Choo, Dong-Won; Gutsaeva, Diana R; Jahng, Wan Jin

    2017-02-01

    Abnormal vessel formations contribute to the progression of specific angiogenic diseases including age-related macular degeneration. Adequate vessel growth and maintenance represent the coordinated process of endothelial cell proliferation, matrix remodeling, and differentiation. However, the molecular mechanism of the proper balance between angiogenic activators and inhibitors remains elusive. In addition, quantitative analysis of vessel formation has been challenging due to complex angiogenic morphology. We hypothesized that conjugated double bond containing-natural products, including anthocyanin extracts from Hibiscus sabdariffa , may control the proper angiogenesis. The current study was designed to determine whether natural molecules from African plant library modulate angiogenesis. Further, we questioned how the proper balance of anti- or pro-angiogenic signaling can be obtained in the vascular microenvironment by treating anthocyanin or fatty acids using chick chorioallantoic membrane angiogenesis model in ovo. The angiogenic morphology was analyzed systematically by measuring twenty one angiogenic indexes using Angiogenic Analyzer software. Chick chorioallantoic model demonstrated that anthocyanin-rich extracts inhibited angiogenesis in time- and concentration-dependent manner. Molecular modeling analysis proposed that hibiscetin as a component in Hibiscus may bind to the active site of vascular endothelial growth factor receptor 2 (VEGFR2) with ΔG= -8.42 kcal/mol of binding energy. Our results provided the evidence that anthocyanin is an angiogenic modulator that can be used to treat uncontrolled neovascular-related diseases, including age-related macular degeneration.

  12. Inhibition of pancreatic cancer cell migration by plasma anthocyanins isolated from healthy volunteers receiving an anthocyanin-rich berry juice.

    Science.gov (United States)

    Kuntz, Sabine; Kunz, Clemens; Rudloff, Silvia

    2017-02-01

    Pancreatic cancer is an aggressive cancer type, of which the most important characteristics are migration and metastasis. Anthocyanins (ACN) are discussed to be protective phytochemicals; however, up to now only scarce data are available regarding their effects on cancer prevention. In this study, we aimed to determine whether ACN and their metabolites from plasma (PAM), isolated from blood of healthy volunteers after ingestion of an ACN-rich juice, are effective in modulating cancer cell migration in vitro. PAM were isolated from blood of healthy volunteers (n = 10) after consumption of an ACN-rich berry juice. Before ingestion (PAM 0min ) and after 60 min (PAM 60min ), blood was taken and PAM were isolated from plasma by solid-phase extraction. Migration of pancreatic cancer cells PANC-1 and AsPC-1 was assayed in a Boyden chamber. The influence of PAM on cellular reactive oxygen species (ROS) or mitochondria-specific ROS was measured fluorimetrically. mRNA expression levels of matrix metalloproteinases (MMP-2 and MMP-9) and NF-κB mRNA were determined by real-time PCR. After application of PAM 60min to PANC-1, we observed a reduced cell migration, which was associated with reduced levels of endogenously generated ROS concomitant with reduced NF-κB as well as MMP-2 and MMP-9 mRNA expression levels. In AsPC-1 cells, however, migration was not affected by PAM 60min . It can be assumed that physiologically relevant ACN and their metabolites were able to inhibit pancreatic cancer cell migration in dependency of the phenotype of cells and may thus deserve further attention as potential bioactive phytochemicals in cancer prevention.

  13. Radical Scavenging and Anti-Inflammatory Activities of Representative Anthocyanin Groupings from Pigment-Rich Fruits and Vegetables

    Directory of Open Access Journals (Sweden)

    Federica Blando

    2018-01-01

    Full Text Available Anthocyanins, the naturally occurring pigments responsible for most red to blue colours of flowers, fruits and vegetables, have also attracted interest because of their potential health effects. With the aim of contributing to major insights into their structure–activity relationship (SAR, we have evaluated the radical scavenging and biological activities of selected purified anthocyanin samples (PASs from various anthocyanin-rich plant materials: two fruits (mahaleb cherry and blackcurrant and two vegetables (black carrot and “Sun Black” tomato, differing in anthocyanin content (ranging from 4.9 to 38.5 mg/g DW and molecular structure of the predominant anthocyanins. PASs from the abovementioned plant materials have been evaluated for their antioxidant capacity using Trolox Equivalent Antioxidant Capacity (TEAC and Oxygen Radical Absorbance Capacity (ORAC assays. In human endothelial cells, we analysed the anti-inflammatory activity of different PASs by measuring their effects on the expression of endothelial adhesion molecules VCAM-1 and ICAM-1. We demonstrated that all the different PASs showed biological activity. They exhibited antioxidant capacity of different magnitude, higher for samples containing non-acylated anthocyanins (typical for fruits compared to samples containing more complex anthocyanins acylated with cinnamic acid derivatives (typical for vegetables, even though this order was slightly reversed when ORAC assay values were expressed on a molar basis. Concordantly, PASs containing non-acylated anthocyanins reduced the expression of endothelial inflammatory antigens more than samples with aromatic acylated anthocyanins, suggesting the potential beneficial effect of structurally diverse anthocyanins in cardiovascular protection.

  14. Neuroprotective effects of anthocyanin- and proanthocyanidin-rich extracts in cellular models of Parkinson’s disease

    Science.gov (United States)

    Strathearn, Katherine E.; Yousef, Gad G.; Grace, Mary H.; Roy, Susan L.; Tambe, Mitali A.; Ferruzzi, Mario G.; Wu, Qing-Li; Simon, James E.; Lila, Mary Ann; Rochet, Jean-Christophe

    2014-01-01

    Neuropathological evidence indicates that dopaminergic cell death in Parkinson’s disease (PD) involves impairment of mitochondrial complex I, oxidative stress, microglial activation, and the formation of Lewy bodies. Epidemiological findings suggest that the consumption of berries rich in anthocyanins and proanthocyanidins may reduce PD risk. In this study, we investigated whether extracts rich in anthocyanins, proanthocyanidins, or other polyphenols suppress the neurotoxic effects of rotenone in a primary cell culture model of PD. Dopaminergic cell death elicited by rotenone was suppressed by extracts prepared from blueberries, grape seed, hibiscus, blackcurrant, and Chinese mulberry. Extracts rich in anthocyanins and proanthocyanidins exhibited greater neuroprotective activity than extracts rich in other polyphenols, and a number of individual anthocyanins interfered with rotenone neurotoxicity. The blueberry and grape seed extracts rescued rotenone-induced defects in mitochondrial respiration in a dopaminergic cell line, and a purple basal extract attenuated nitrite release from microglial cells stimulated by lipopolysaccharide. These findings suggest that anthocyanin- and proanthocyanidin-rich botanical extracts may alleviate neurodegeneration in PD via enhancement of mitochondrial function. PMID:24502982

  15. A study of glycaemic effects following acute anthocyanin-rich blueberry supplementation in healthy young adults.

    Science.gov (United States)

    Bell, L; Lamport, D J; Butler, L T; Williams, C M

    2017-09-20

    The postprandial response to ingested carbohydrate is recognised as a marker of metabolic health. Postprandial hyperglycaemia is observed in type 2 diabetes mellitus and is a significant risk factor for cardiovascular disease. Cognitive deficits are also associated with type 2 diabetes. Therefore interventions which moderate postprandial glucose profiles are desirable. Here we investigated the impact of anthocyanin-rich wild blueberries on postprandial glucose response. Seventeen healthy young adults consumed a range of doses of freeze-dried wild blueberry powder, in smoothie form, in both sugar-matched and no-added-sugar conditions. Plasma glucose was determined by a capillary sampling method at baseline and at regular intervals up to 2.5 hours postprandially. Blueberries were observed to significantly extend the postprandial glucose response beyond the period observed for a sugar-matched control, characteristic of a beneficial glycaemic response. Furthermore, blueberries were observed to reduce peak postprandial glucose levels, although statistical significance was not achieved. The findings suggest a tempering of the postprandial glucose response in the presence of anthocyanin-rich blueberry, and are discussed with reference to likely glucoregulatory mechanisms of action and their implications for cognitive and type 2 diabetes research.

  16. Anthocyanin-rich blueberry diets enhance protection of critical brain regions exposed to acute levels of 56Fe cosmic radiation

    Science.gov (United States)

    The protective effects of anthocyanin-rich blueberries on brain health are well documented and are particularly important under conditions of high oxidative stress which can lead to “accelerated aging”. One such scenario is exposure to space radiation, which consists of high-energy and -charge parti...

  17. Selective removal of the violet color produced by anthocyanins in procyanidin-rich unfermented cocoa extracts.

    Science.gov (United States)

    Wallace, Taylor C; Giusti, M Monica

    2011-09-01

    Cacao (Theobroma cacao L.) is rich in procyanidins, a large portion of which degrades during the natural fermentation process of producing cocoa powder. Recent advances in technology have enabled scientists to produce unfermented cocoa powder, preserving the original profile of procyanidins present in cocoa and allowing for the development of highly concentrated procyanidin-rich extracts. During this process, the anthocyanins naturally present in unfermented cocoa remain intact, producing a violet color in the final extract. The objective of this study was to selectively remove the violet color in procyanidin-rich extracts produced from unfermented cocoa powder, while maintaining the stability and composition of procyanidins present in the matrix. Several processing parameters, including pH fluctuations, enzymatic treatments, and the addition of potassium meta-bisulfite, were explored to influence the color of procyanidin-rich extracts throughout a 60-d shelf life study. The addition of potassium meta-bisulfite (500 ppm) was found to be the most effective means of removing the violet color present in the treated extracts (L*= 71.39, a*= 8.44, b*= 9.61, chroma = 12.79, and hue = 48.8˚) as compared to the control (L*= 52.84, a*= 11.08, b*= 2.24, chroma = 11.28, and hue = 11.4˚). The use of potassium meta-bisulfite at all treatment levels (200, 500, and 1000 ppm) did not show any significant detrimental effects on the stability, composition, or amount of procyanidins present in the extracts over the shelf life period as monitored by UV-Vis spectrophotometry and HPLC-MS. This research will enable the food industry to incorporate highly concentrated procyanidin-rich extracts in food products without influencing the color of the final product. © 2011 Institute of Food Technologists®

  18. Black bean anthocyanin-rich extracts as food colorants: Physicochemical stability and antidiabetes potential

    Science.gov (United States)

    Black beans contain anthocyanins that could be used as colorants in foods with associated health benefits. The objective was to optimize anthocyanins extraction from black bean coats and evaluate their physicochemical stability and antidiabetes potential. Optimal extraction conditions were 24% ethan...

  19. Obtaining anthocyanin-rich extracts from frozen açai (Euterpe oleracea Mart. pulp using pressurized liquid extraction

    Directory of Open Access Journals (Sweden)

    Sylvia Carolina ALCÁZAR-ALAY

    Full Text Available Abstract Açai is considered a functional food, and in addition to being a source of energy and fiber, it is a valuable source of bioactive compounds such as anthocyanins, minerals and fatty acids. In the present work, antioxidant-rich extracts from açai pulp were obtained using pressurized liquid extraction (PLE. The effects of the independent variables, including solvent type (pure ethanol and ethanol/water (50:50 v/v, citric acid (0 and 0.3%, w/w, pressure (20 and 80 bar and temperature (30 and 60 °C were evaluated using a full factorial design. The extraction was affected primarily by the solvent type and the citric acid percentage. The results indicate that the maximum overall yield (X0 was 64± 9 (%, d.b. when the process was performed using ethanol (99.5% and citric acid (0.3% w/w. The maximum total anthocyanin content and anthocyanin recovered from the raw material were 7 ± 1 (mg anthocyanin/g extract, d.b. and 11 ± 2 (%, d.b., respectively.

  20. Anthocyanin-Rich Extract from Red Chinese Cabbage Alleviates Vascular Inflammation in Endothelial Cells and Apo E−/− Mice

    Directory of Open Access Journals (Sweden)

    Hee Kyoung Joo

    2018-03-01

    Full Text Available Anthocyanins, the most prevalent flavonoids in red/purple fruits and vegetables, are known to improve immune responses and reduce chronic disease risks. In this study, the anti-inflammatory activities of an anthocyanin-rich extract from red Chinese cabbage (ArCC were shown based on its inhibitory effects in cultured endothelial cells and hyperlipidemic apolipoprotein E-deficient mice. ArCC treatment suppressed monocyte adhesion to tumor necrosis factor-α-stimulated endothelial cells. This was validated by ArCC’s ability to downregulate the expression and transcription of endothelial adhesion molecules, determined by immunoblot and luciferase promoter assays, respectively. The regulation of adhesion molecules was accompanied by transcriptional inhibition of nuclear factor-κB, which restricted cytoplasmic localization as shown by immunocytochemistry. Administration of ArCC (150 or 300 mg/kg/day inhibited aortic inflammation in hyperlipidemic apolipoprotein E-deficient mice, as shown by in vivo imaging. Immunohistochemistry and plasma analysis showed that the aortas from these mice exhibited markedly lower leukocyte infiltration, reduced plaque formation, and lower concentrations of blood inflammatory cytokines than those observed in the control mice. The results suggest that the consumption of anthocyanin-rich red Chinese cabbage is closely correlated with lowering the risk of vascular inflammatory diseases.

  1. Bread fortified with anthocyanin-rich extract from black rice as nutraceutical sources: Its quality attributes and in vitro digestibility.

    Science.gov (United States)

    Sui, Xiaonan; Zhang, Yan; Zhou, Weibiao

    2016-04-01

    Anthocyanin-rich black rice extract powder (ABREP) as a nutraceutical source was fortified into bread. The quality and digestibility behaviors of bread with ABREP were evaluated through instrumental and in vitro digestion studies. The quality of bread with 2% of ABREP was not significantly (p>0.05) different from the control bread; however, increasing the ABREP level to 4% caused less elasticity and higher density of bread. A mathematical model was further developed to systemically describe the trajectory of bread digestion. The digestion rates of bread with ABREP were found to be reduced by 12.8%, 14.1%, and 20.5% for bread with 1%, 2%, and 4% of ABREP, respectively. Results of the study suggest that the fortification of anthocyanins into bread could be an alternative way to produce functional bread with a lower digestion rate and extra health benefits. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Metabolic profile and hepatoprotective activity of the anthocyanin-rich extract of Hibiscus sabdariffa calyces.

    Science.gov (United States)

    Ezzat, Shahira M; Salama, Maha M; Seif El-Din, Sayed H; Saleh, Samira; El-Lakkany, Naglaa M; Hammam, Olfat A; Salem, Maha B; Botros, Sanaa S

    2016-12-01

    Hibiscus sabdariffa L. (Malvaceae) is a common traditional tea that has many biological activities. To evaluate the hepatoprotective effect and study the metabolic profile of the anthocyanin-rich extract of H. sabdariffa calyces (HSARE). The hepatoprotective activity of HSARE was assessed (100 mg/kg/d for 4 weeks) by examining the hepatic, inflammatory, oxidative stress markers and performing a histopathological examination in rats with thioacetamide (TAA)-induced hepatotoxicity. HSARE was analyzed using ultra-performance liquid chromatography-quadrupole-time-of-flight-photodiode array-mass spectrometry (UPLC-qTOF-PDA-MS). The UPLC-qTOF-PDA-MS analysis of HSARE enabled the identification of 25 compounds represented by delphinidin and its derivatives, cyanidin, kaempferol, quercetin, myricetin aglycones and glycosides, together with hibiscus lactone, hibiscus acid and caffeoylquinic acids. Compared to the TAA-intoxicated group, HSARE significantly reduced the serum levels of alanine aminotransferase, aspartate aminotransferase and hepatic malondialdehyde by 37.96, 42.74 and 45.31%, respectively. It also decreased hepatic inflammatory markers, including tumour necrosis factor alpha, interleukin-6 and interferon gamma (INF-γ), by 85.39, 14.96 and 70.87%, respectively. Moreover, it decreased the immunopositivity of nuclear factor kappa-B and CYP2E1 in liver tissue, with an increase in the effector apoptotic marker (caspase-3 positive cells), restoration of the altered hepatic architecture and increases in the activities of superoxide dismutase (SOD) and glutathione by 150.08 and 89.23%, respectively. HSARE revealed pronounced antioxidant and anti-inflammatory potential where SOD and INF-γ were significantly improved. HSARE possesses the added value of being more water-soluble and of natural origin with fewer side effects expected compared to silymarin.

  3. Anthocyanin-rich purple corn extract inhibit diabetes-associated glomerular angiogenesis.

    Directory of Open Access Journals (Sweden)

    Min-Kyung Kang

    Full Text Available Diabetic nephropathy (DN is one of the major diabetic complications and the leading cause of end-stage renal disease. Abnormal angiogenesis results in new vessels that are often immature and play a pathological role in DN, contributing to renal fibrosis and disrupting glomerular failure. Purple corn has been utilized as a daily food and exerts disease-preventive activities. This study was designed to investigate whether anthocyanin-rich purple corn extract (PCE prevented glomerular angiogenesis under hyperglycemic conditions. Human endothelial cells were cultured in conditioned media of mesangial cells exposed to 33 mM high glucose (HG-HRMC-CM. PCE decreased endothelial expression of vascular endothelial growth factor (VEGF and hypoxia inducible factor (HIF-1α induced by HG-HRMC-CM. Additionally, PCE attenuated the induction of the endothelial marker of platelet endothelial cell adhesion molecule (PECAM-1 and integrin β3 enhanced in HG-HRMC-CM. Endothelial tube formation promoted by HG-HRMC-CM was disrupted in the presence of PCE. In the in vivo study employing db/db mice treated with 10 mg/kg PCE for 8 weeks, PCE alleviated glomerular angiogenesis of diabetic kidneys by attenuating the induction of VEGF and HIF-1α. Oral administration of PCE retarded the endothelial proliferation in db/db mouse kidneys, evidenced by its inhibition of the induction of vascular endothelium-cadherin, PECAM-1 and Ki-67. PCE diminished the mesangial and endothelial induction of angiopoietin (Angpt proteins under hypeglycemic conditions. The induction and activation of VEGF receptor 2 (VEGFR2 were dampened by treating PCE to db/db mice. These results demonstrate that PCE antagonized glomerular angiogenesis due to chronic hyperglycemia and diabetes through disturbing the Angpt-Tie-2 ligand-receptor system linked to renal VEGFR2 signaling pathway. Therefore, PCE may be a potent therapeutic agent targeting abnormal angiogenesis in DN leading to kidney failure.

  4. Functional Anthocyanin-Rich Sausages Diminish Colorectal Cancer in an Animal Model and Reduce Pro-Inflammatory Bacteria in the Intestinal Microbiota

    OpenAIRE

    Javier Fernández; Lorena García; Joaquín Monte; Claudio J. Villar; Felipe Lombó

    2018-01-01

    Colorectal cancer is the fourth most common neoplasia in Europe, where it accounts for 28.2 new cases per 100,000 inhabitants. In an effort to decrease the incidence of this disease, various prevention measures are being studied, one of which are anthocyanin-rich foods. Anthocyanins are potent antioxidant flavonoids mainly found in flowers and colorful fruits and vegetables. These nutraceuticals have diverse biological functions once ingested, including immunomodulatory, anti-inflammatory and...

  5. Microencapsulation of anthocyanin-rich black soybean coat extract by spray drying using maltodextrin, gum Arabic and skimmed milk powder.

    Science.gov (United States)

    Kalušević, Ana; Lević, Steva; Čalija, Bojan; Pantić, Milena; Belović, Miona; Pavlović, Vladimir; Bugarski, Branko; Milić, Jela; Žilić, Slađana; Nedović, Viktor

    2017-08-01

    Black soybean coat is insufficiently valorised food production waste rich in anthocyanins. The goal of the study was to examine physicochemical properties of spray dried extract of black soybean coat in regard to carrier materials: maltodextrin, gum Arabic, and skimmed milk powder. Maltodextrin and gum Arabic-based microparticles were spherical and non-porous while skimmed milk powder-based were irregularly shaped. Low water activity of microparticles (0.31-0.33), good powders characteristics, high solubility (80.3-94.3%) and encapsulation yields (63.7-77.0%) were determined. All microparticles exhibited significant antioxidant capacity (243-386 μmolTE/g), good colour stability after three months of storage and antimicrobial activity. High content of total anthocyanins, with cyanidin-3-glucoside as predominant, were achieved. In vitro release of anthocyanins from microparticles was sustained, particularly from gum Arabic-based. These findings suggest that proposed simple eco-friendly extraction and microencapsulation procedures could serve as valuable tools for valorisation and conversion of black soybean coat into highly functional and stable food colourant.

  6. Expression Profiling of Regulatory and Biosynthetic Genes in Contrastingly Anthocyanin Rich Strawberry (Fragaria × ananassa Cultivars Reveals Key Genetic Determinants of Fruit Color

    Directory of Open Access Journals (Sweden)

    Mohammad Rashed Hossain

    2018-02-01

    Full Text Available Anthocyanins are the resultant end-point metabolites of phenylapropanoid/flavonoid (F/P pathway which is regulated at transcriptional level via a series of structural genes. Identifying the key genes and their potential interactions can provide us with the clue for novel points of intervention for improvement of the trait in strawberry. We profiled the expressions of putative regulatory and biosynthetic genes of cultivated strawberry in three developmental and characteristically colored stages of fruits of contrastingly anthocyanin rich cultivars: Tokun, Maehyang and Soelhyang. Besides FaMYB10, a well-characterized positive regulator, FaMYB5, FabHLH3 and FabHLH3-delta might also act as potential positive regulators, while FaMYB11, FaMYB9, FabHLH33 and FaWD44-1 as potential negative regulators of anthocyanin biosynthesis in these high-anthocyanin cultivars. Among the early BGs, Fa4CL7, FaF3H, FaCHI1, FaCHI3, and FaCHS, and among the late BGs, FaDFR4-3, FaLDOX, and FaUFGT2 showed significantly higher expression in ripe fruits of high anthocyanin cultivars Maehyang and Soelhyang. Multivariate analysis revealed the association of these genes with total anthocyanins. Increasingly higher expressions of the key genes along the pathway indicates the progressive intensification of pathway flux leading to final higher accumulation of anthocyanins. Identification of these key genetic determinants of anthocyanin regulation and biosynthesis in Korean cultivars will be helpful in designing crop improvement programs.

  7. Fine mapping and candidate gene analysis of an anthocyanin-rich gene, BnaA.PL1, conferring purple leaves in Brassica napus L.

    Science.gov (United States)

    Li, Haibo; Zhu, Lixia; Yuan, Gaigai; Heng, Shuangping; Yi, Bin; Ma, Chaozhi; Shen, Jinxiong; Tu, Jinxing; Fu, Tingdong; Wen, Jing

    2016-08-01

    Because of the advantages of anthocyanins, the genetics and breeding of crops rich in anthocyanins has become a hot research topic. However, due to the lack of anthocyanin-related mutants, no regulatory genes have been mapped in Brassica napus. In this study, we first report the characterization of a B. napus line with purple leaves and the fine mapping and candidate screening of the BnaA.PL1 gene. The amount of anthocyanins in the purple leaf line was six times higher than that in a green leaf line. A genetic analysis indicated that the purple character was controlled by an incomplete dominant gene. Through map-based cloning, we localized the BnaA.PL1 gene to a 99-kb region at the end of B. napus chromosome A03. Transcriptional analysis of 11 genes located in the target region revealed that the expression level of only the BnAPR2 gene in seedling leaves decreased from purple to reddish green to green individuals, a finding that was consistent with the measured anthocyanin accumulation levels. Molecular cloning and sequence analysis of BnAPR2 showed that the purple individual-derived allele contained 17 variants. Markers co-segregating with BnaA.PL1 were developed from the sequence of BnAPR2 and were validated in the BC4P2 population. These results suggested that BnAPR2, which encodes adenosine 5'-phosphosulfate reductase, is likely to be a valuable candidate gene. This work may lay the foundation for the marker-assisted selection of B. napus vegetables that are rich in anthocyanins and for an improved understanding of the molecular mechanisms controlling anthocyanin accumulation in Brassica.

  8. Consumption of anthocyanin-rich cherry juice for 12 weeks improves memory and cognition in older adults with mild-to-moderate dementia.

    Science.gov (United States)

    Kent, Katherine; Charlton, Karen; Roodenrys, Steven; Batterham, Marijka; Potter, Jan; Traynor, Victoria; Gilbert, Hayley; Morgan, Olivia; Richards, Rachelle

    2017-02-01

    Dietary flavonoids, including anthocyanins, may positively influence cognition and may be beneficial for the prevention and treatment of dementia. We aimed to assess whether daily consumption of anthocyanin-rich cherry juice changed cognitive function in older adults with dementia. Blood pressure and anti-inflammatory effects were examined as secondary outcomes. A 12-week randomised controlled trial assessed cognitive outcomes in older adults (+70 year) with mild-to-moderate dementia (n = 49) after consumption of 200 ml/day of either a cherry juice or a control juice with negligible anthocyanin content. Blood pressure and inflammatory markers (CRP and IL-6) were measured at 6 and 12 weeks. ANCOVA controlling for baseline and RMANOVA assessed change in cognition and blood pressure. Improvements in verbal fluency (p = 0.014), short-term memory (p = 0.014) and long-term memory (p ≤ 0.001) were found in the cherry juice group. A significant reduction in systolic (p = 0.038) blood pressure and a trend for diastolic (p = 0.160) blood pressure reduction was evident in the intervention group. Markers of inflammation (CRP and IL-6) were not altered. Inclusion of an anthocyanin-rich beverage may be a practical and feasible way to improve total anthocyanin consumption in older adults with mild-to-moderate dementia, with potential to improve specific cognitive outcomes.

  9. Anthocyanin-rich extract from Hibiscus sabdariffa calyx counteracts UVC-caused impairments in rats.

    Science.gov (United States)

    Ozkol, Hatice Uce; Koyuncu, Ismail; Tuluce, Yasin; Dilsiz, Nihat; Soral, Sinan; Ozkol, Halil

    2015-01-01

    Ultraviolet radiation (UV) was reported to cause oxidative stress. Hibiscus sabdariffa L. (Malvaceae) calyx is commonly used in traditional Asian and African medicines and possesses strong antioxidant capacity due to its anthocyanin (ANTH) content. This study researched the possible protective role of Hibiscus sabdariffa calyx extract (HSCE) in UVC exposure of rats. Levels of serum enzymes, renal function tests, and some oxidant/antioxidant biomarkers of skin, lens, and retina tissues were monitored. Rats were exposed to UVC 4 h daily for 40 d and simultaneously received HSCE containing 2.5, 5, and 10 mg doses of ANTH in drinking water. Significant (p < 0.05) increases in the levels of serum aminotransferases, lactate dehydrogenase, urea, creatinine, and uric acid were noted after UVC exposure. In skin, lens, and retina tissues, total oxidant status, oxidative stress index, lipid peroxidation, and protein oxidation escalated markedly (p < 0.05) whereas total antioxidant status, reduced glutathione, and superoxide dismutase decreased dramatically (p < 0.05) related to UVC. Co-administration of HSCE with each ANTH dose significantly (p < 0.05) reversed aforementioned parameters (except total oxidant status) almost in all tissues. The LD50 of HSCE in rats was determined to be above 5000 mg/kg. Our data revealed that HSCE has a remarkable potential to counteract UVC-caused impairments, probably through its antioxidant and free radical-defusing effects. Therefore, HSCE could be useful against some cutaneous and ocular diseases in which UV and oxidative stress have a role in the etiopathogenesis.

  10. An Anthocyanin-Rich Extract of Acai (Euterpe precatoria Mart.) Increases Stress Resistance and Retards Aging-Related Markers in Caenorhabditis elegans.

    Science.gov (United States)

    Peixoto, Herbenya; Roxo, Mariana; Krstin, Sonja; Röhrig, Teresa; Richling, Elke; Wink, Michael

    2016-02-17

    Acai fruits (Euterpe precatoria) are rich in antioxidant anthocyanins. Acai consumption is believed to have many health benefits; however, relevant detailed scientific investigations are limited. The current study aimed to investigate an anthocyanin-rich extract from E. precatoria fruits (AE) with regard to its antioxidant and antiaging properties using the model organism Caenorhabditis elegans. AE can protect the worms against oxidative stress and can ameliorate accumulation of reactive oxygen species in vivo. The expression of stress-response genes, such as sod-3::GFP, was upregulated while hsp-16::GFP was down-regulated after AE treatment. Studies with DAF-16/FOXO mutants indicated that some of the antioxidant effects are mediated by this transcription factor. AE can modulate the development of age-related markers, such as pharyngeal pumping. Despite the apparent antioxidant activity, no lifespan-prolonging effect was observed.

  11. Antioxidant and DNA damage protective properties of anthocyanin-rich extracts from Hibiscus and Ocimum: a comparative study.

    Science.gov (United States)

    Sarkar, Biswatrish; Kumar, Dhananjay; Sasmal, Dinakar; Mukhopadhyay, Kunal

    2014-01-01

    Anthocyanin extracts (AEs) from Ocimum tenuiflorum (leaf), Hibiscus rosa-sinensis (petal) and Hibiscus sabdariffa (calyx) were investigated and compared for in vitro antioxidant activity and DNA damage protective property. Total phenolic content (TPC) and total anthocyanin content (TAC) of the AEs were determined and the major anthocyanins were characterised. In vitro antioxidant activities were assessed by ferric-reducing antioxidant power (FRAP) assay, 2,2-diphenyl-1-picryl hydrazyl (DPPH) radical-scavenging activity, 2-deoxy-D-ribose degradation assay and lipid peroxidation assay. The protective property of the AEs was also examined against oxidative DNA damage by H2O2 and UV using pUC19 plasmid. All the AEs particularly those from O. tenuiflorum demonstrated efficient antioxidant activity and protected DNA from damage. Strong correlation between antioxidant capacity and TPC and TAC was observed. Significant correlation between antioxidant capacity and TPC and TAC ascertained that phenolics and anthocyanins were the major contributors of antioxidant activity.

  12. The colour degradation of anthocyanin-rich extract from butterfly pea (Clitoria ternatea L.) petal in various solvents at pH 7.

    Science.gov (United States)

    Marpaung, Abdullah Muzi; Andarwulan, Nuri; Hariyadi, Purwiyatno; Nur Faridah, Didah

    2017-10-01

    A spectroscopic study was conducted to evaluate the colour degradation mechanism of anthocyanin-rich extract from butterfly pea petal. The extract was diluted in four different solvent systems, which were buffer solution pH 7 (AQ7) and the mixture of organic solvent with buffer solution pH 7 (4:1 v/v). The organic cosolvent involved were methanol (ME7), ethanol (ET7) and acetone (AC7). The samples were stored in containers with 0% and 50% headspace, and their colour intensity, total anthocyanin and hypsochromic shift were evaluated periodically. The rank of colour and anthocyanin degradation from the biggest was AQ7 > ME7 > ET7 > AC7. The longest hypsochromic shift was AQ7 > ME7 > ET7, while in AC7 the shift was absent. There was evidence that the volume of package headspace provoked colour stability. The colour degradation in AC7 was proposed to occur through hydrophobic interaction unfolding, and in AQ7 was through the deacylation, while in ME7 and ET7 was due to both mechanisms.

  13. Functional Anthocyanin-Rich Sausages Diminish Colorectal Cancer in an Animal Model and Reduce Pro-Inflammatory Bacteria in the Intestinal Microbiota

    Directory of Open Access Journals (Sweden)

    Javier Fernández

    2018-03-01

    Full Text Available Colorectal cancer is the fourth most common neoplasia in Europe, where it accounts for 28.2 new cases per 100,000 inhabitants. In an effort to decrease the incidence of this disease, various prevention measures are being studied, one of which are anthocyanin-rich foods. Anthocyanins are potent antioxidant flavonoids mainly found in flowers and colorful fruits and vegetables. These nutraceuticals have diverse biological functions once ingested, including immunomodulatory, anti-inflammatory and antitumor functions. In order to test the preventive effect of these flavonoids against colorectal cancer, an animal model (Rattus norvegicus F344 was developed. In this model two doses of azoxymethane (10 mg/kg and two treatments with dextran sodium sulfate (DSS were administered to the animals. For 20 weeks they were fed either control rat feed, control sausages, or functional sausages containing 0.1% (w/w of anthocyanins from a mixture of dehydrated blackberries and strawberries. At the end of that period, the animals were sacrificed and their antioxidant plasma levels and digestive tract tissues were analyzed. The results revealed a statistically significant reduction in the number of colon tumors in the functional sausages cohort with respect to the control animals and an increase in the FRAP (ferric reducing ability of plasma total antioxidant activity in that same cohort. Colon microbiota differences were also examined via metagenomics 16S ribosomal RNA (rRNA sequencing, revealing a significant reduction in populations of the pro-inflammatory Bilophila wadsworthia. Therefore, the design of functional processed meat products, such as ones enriched with anthocyanins, may be an effective strategy for preventing inflammatory digestive diseases and colorectal cancer in human populations.

  14. An anthocyanin-rich extract from Hibiscus sabdariffa linnaeus inhibits N-nitrosomethylurea-induced leukemia in rats.

    Science.gov (United States)

    Tsai, Tsung-Chang; Huang, Hui-Pei; Chang, Yun-Ching; Wang, Chau-Jong

    2014-02-19

    A previous study reported that anthocyanins from roselle (Hibiscus sabdariffa L.) showed significant anticancer activity in human promyelocytic leukemia cells. To explore the antitumor effect of anthocyanin, a roselle bioactive polyphenol in a rat model of chemical-induced leukemia was assayed. Anthocyanin extract of roselle (Hibiscus anthocyanins, HAs) was supplemented in the diet (0.1 and 0.2%). This study was carried out to evaluate the protective effect of HAs on N-nitrosomethylurea (NMU)-induced leukemia of rats. The study employed male Sprague-Dawley rats (n = 48), and leukemia was induced by intravenous injection of 35 mg kg(-1) body weight of NMU dissolved in physiologic saline solution. The rats were divided into four groups (n = 12): control, NMU only, and HAs groups that received different doses of HAs (0.1 and 0.2%) daily, orally, after NMU injection. After 220 days, the animals were killed, and the following parameters were assessed: morphological observation, hematology examination, histopathological assessment, and biochemical assay. When compared with the NMU-only group, HAs significantly prevented loss of organ weight and ameliorated the impairment of morphology, hematology, and histopathology. Treatment with HAs caused reduction in the levels of AST, ALT, uric acid, and MPO. Also, the results showed that oral administration of HAs (0.2%) remarkably inhibited progression of NMU-induced leukemia by approximately 33.3% in rats. This is the first report to demonstrate that the sequential administration of HAs followed by NMU resulted in an antileukemic activity in vivo.

  15. Study and characterization of an ancient European flint white maize rich in anthocyanins: Millo Corvo from Galicia.

    Science.gov (United States)

    Lago, Chiara; Landoni, Michela; Cassani, Elena; Cantaluppi, Enrico; Doria, Enrico; Nielsen, Erik; Giorgi, Annamaria; Pilu, Roberto

    2015-01-01

    In the second half of the last century, the American dent hybrids began to be widely grown, leading to the disappearance or marginalization of the less productive traditional varieties. Nowadays the characterization of traditional landraces can help breeders to discover precious alleles that could be useful for modern genetic improvement and allow a correct conservation of these open pollinated varieties (opvs). In this work we characterized the ancient coloured cultivar "Millo Corvo" typical of the Spanish region of Galicia. We showed that this cultivar accumulates high amounts of anthocyanins (83.4 mg/100g flour), and by TLC (Thin Layer Chromatography) and HPLC (High Pressure Liquid Chromatography) analysis, we demonstrated that they mainly consisted of cyanidin. Mapping and sequencing data demonstrate that anthocyanin pigmentation is due to the presence of the red color1 gene(r1), a transcription factor driving the accumulation of this pigment in the aleurone layer. Further chemical analysis showed that the kernels are lacking in carotenoids, as confirmed by genetic study. Finally a DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging ability test showed that Millo Corvo, even though lacking carotenoids, has a high antioxidant ability, and could be considered as a functional food due to the presence of anthocyanins.

  16. Anthocyanin-rich açai (Euterpe oleracea Mart.) fruit pulp fractions attenuate inflammatory stress signaling in mouse brain BV-2 microglial cells.

    Science.gov (United States)

    Poulose, Shibu M; Fisher, Derek R; Larson, Jessica; Bielinski, Donna F; Rimando, Agnes M; Carey, Amanda N; Schauss, Alexander G; Shukitt-Hale, Barbara

    2012-02-01

    Age-related diseases of the brain compromise memory, learning, and movement and are directly linked with increases in oxidative stress and inflammation. Previous research has shown that supplementation with berries can modulate signaling in primary hippocampal neurons or BV-2 mouse microglial cells. Because of their high polyphenolic content, fruit pulp fractions of açai ( Euterpe oleracea Mart.) were explored for their protective effect on BV-2 mouse microglial cells. Freeze-dried açai pulp was fractionated using solvents with different polarities and analyzed using HPLC for major anthocyanins and other phenolics. Fractions extracted using methanol (MEOH) and ethanol (ETOH) were particularly rich in anthocyanins such as cyanidin, delphinidin, malvidin, pelargonidin, and peonidin, whereas the fraction extracted using acetone (ACE) was rich in other phenolics such as catechin, ferulic acid, quercetin, resveratrol, and synergic and vanillic acids. Studies were conducted to investigate the mitigating effects of açai pulp extracts on lipopolysaccharide (LPS, 100 ng/mL) induced oxidative stress and inflammation; treatment of BV-2 cells with acai fractions resulted in significant (p fractions. The protection of microglial cells by açai pulp extracts, particularly that of MEOH, ETOH, and ACE fractions, was also accompanied by a significant concentration-dependent reduction in cyclooxygenase-2 (COX-2), p38 mitogen-activated protein kinase (p38-MAPK), tumor necrosis factor-α (TNFα), and nuclear factor κB (NF-κB). The current study offers valuable insights into the protective effects of açai pulp fractions on brain cells, which could have implications for improved cognitive and motor functions.

  17. AnthocyaninRich Red Dye of Hibiscus Sabdariffa Calyx Modulates Cisplatin-induced Nephrotoxicity and Oxidative Stress in Rats

    Science.gov (United States)

    Ademiluyi, Adedayo O.; Oboh, Ganiyu; Agbebi, Oluwaseun J.; Akinyemi, Ayodele J.

    2013-01-01

    This study sought to investigate the protective effect of dietary inclusion of Hibiscus sabdariffa calyx red dye on cisplatin-induced nephrotoxicity and antioxidant status in rats. Adult male rats were randomly divided into four groups of six animals each. Groups I and II were fed basal diet while groups III and IV were fed diets containing 0.5% and 1% of the dye respectively for 20 days prior to cisplatin administration. Nephrotoxicity was induced by a single dose intraperitoneal administration of cisplatin (7 mg/kg b.w) and the experiment was terminated 3 days after. The kidney and plasma were studied for nephrotoxicity and oxidative stress indices. Cisplatin administration caused a significant (Psabdariffa dye could be attributed to its anthocyanin content. PMID:24711761

  18. Caffeoylquinic acid-rich purple sweet potato extract, with or without anthocyanin, imparts neuroprotection and contributes to the improvement of spatial learning and memory of SAMP8 mouse.

    Science.gov (United States)

    Sasaki, Kazunori; Han, Junkyu; Shimozono, Hidetoshi; Villareal, Myra O; Isoda, Hiroko

    2013-05-29

    The effects of caffeoylquinic acid (CQA)-rich purple sweet potato (PSP) extract, with (PSPEa) or without (PSPEb) anthocyanin, on the improvement of spatial learning and memory of senescence-accelerated prone mouse strain (SAMP) 8 was determined. SAMP8 was treated with 20 mg/kg/day of PSPEa or PSPEb for 30 days. The effect on spatial learning and memory and the molecular mechanism of this effect were determined in vivo (SAMP8) and in vitro (SH-SY5Y cells). PSPEa or PSPEb reduced the escape latency time of SAMP8 by 17.0 ± 8.0 and 14.2 ± 5.8 s (P overexpression of antioxidant-, energy metabolism-, and neuronal plasticity-related proteins in the brain of SAMP8. Additionally, PSPEa and PSPEb increased the cell viability by 141.6 and 133% as compared to Aβ1-42-treated cells. These findings suggest that PSP rich in CQA derivatives with or without anthocyanidine had a neuroprotective effect on mouse brain and can improve the spatial learning and memory of SAMP8.

  19. Comparison of anti-inflammatory activities of an anthocyanin-rich fraction from Portuguese blueberries (Vaccinium corymbosum L. and 5-aminosalicylic acid in a TNBS-induced colitis rat model.

    Directory of Open Access Journals (Sweden)

    Sónia R Pereira

    Full Text Available Despite the actual therapeutic approaches for inflammatory bowel disease (IBD, efficient and secure alternative options remain a research focus. In this context, anthocyanins seem promising natural anti-inflammatory agents, but their action mechanisms and efficacy as compared with established drugs still require more clarification. The main aim of this study was to compare the anti-inflammatory action of a chemically characterized anthocyanin-rich fraction (ARF, obtained from Portuguese blueberries (Vaccinium corymbosum L., with that of 5-aminosalicylic acid (5-ASA, a first-line drug in IBD, in a 2,4,6-trinitrobenzenesulfonic acid (TNBS-induced colitis rat model. Such fraction showed a high content and great molecular diversity of anthocyanins, with malvidin-3-galactoside and petunidin-3-arabinoside in the highest concentrations. After daily administration by intragastric infusion for 8 days, ARF, at a molar anthocyanin concentration about 30 times lower than 5-ASA, showed a higher effectiveness in counteracting the intestinal inflammation, as assessed by i body weight variation and colon damage score, ii reduction in leukocyte infiltration, iii increase in antioxidant defenses and iv by downregulation of inducible nitric oxide synthase (iNOS and cyclooxygenase-2 (COX-2 in colon tissue homogenates. The strong inhibition of COX-2 expression seems to be a crucial anti-inflammatory mechanism common to both ARF and 5-ASA, but the additional higher abilities of anthocyanins to downregulate iNOS and to decrease leukocytes infiltration and to increase antioxidant defenses in colon may account for the much higher anti-inflammatory action of anthocyanins. These data may contribute to the development of a promising natural approach in IBD management.

  20. Anthocyanin-Rich Grape Pomace Extract (Vitis vinifera L. from Wine Industry Affects Mitochondrial Bioenergetics and Glucose Metabolism in Human Hepatocarcinoma HepG2 Cells

    Directory of Open Access Journals (Sweden)

    Nathalia F. F. de Sales

    2018-03-01

    Full Text Available Cancer cells demand high ATP provisions to support proliferation, and targeting of energy metabolism is a good strategy to increase their sensitivity to treatments. In Brazil, wine manufacture is expanding, increasing the amount of pomace that is produced. We determined the phenolic composition and antioxidant properties of a dark skin Grape Pomace Extract and its effects on metabolism and redox state in human hepatocarcinoma HepG2 cells. The material and the methods used represented the industrial process since pomace derived from white wine production and the extract concentrated by pilot plant scale reverse osmosis. Grape pomace extract was rich in polyphenols, mainly anthocyanins, and presented high antioxidant capacity. Short-term metabolic effects, irrespective of any cytotoxicity, involved increased mitochondrial respiration and antioxidant capacity and decreased glycolytic metabolism. Long-term incubation was cytotoxic and cells died by necrosis and GPE was not toxic to non-cancer human fibroblasts. To the best of our knowledge, this is the first report to characterize pomace extract from white wine production from Brazilian winemaking regarding its effects on energy metabolism, suggesting its potential use for pharmaceutical and nutraceutical purposes.

  1. Anthocyanin-Rich Grape Pomace Extract (Vitis vinifera L.) from Wine Industry Affects Mitochondrial Bioenergetics and Glucose Metabolism in Human Hepatocarcinoma HepG2 Cells.

    Science.gov (United States)

    de Sales, Nathalia F F; Silva da Costa, Leandro; Carneiro, Talita I A; Minuzzo, Daniela A; Oliveira, Felipe L; Cabral, Lourdes M C; Torres, Alexandre G; El-Bacha, Tatiana

    2018-03-08

    Cancer cells demand high ATP provisions to support proliferation, and targeting of energy metabolism is a good strategy to increase their sensitivity to treatments. In Brazil, wine manufacture is expanding, increasing the amount of pomace that is produced. We determined the phenolic composition and antioxidant properties of a dark skin Grape Pomace Extract and its effects on metabolism and redox state in human hepatocarcinoma HepG2 cells. The material and the methods used represented the industrial process since pomace derived from white wine production and the extract concentrated by pilot plant scale reverse osmosis. Grape pomace extract was rich in polyphenols, mainly anthocyanins, and presented high antioxidant capacity. Short-term metabolic effects, irrespective of any cytotoxicity, involved increased mitochondrial respiration and antioxidant capacity and decreased glycolytic metabolism. Long-term incubation was cytotoxic and cells died by necrosis and GPE was not toxic to non-cancer human fibroblasts. To the best of our knowledge, this is the first report to characterize pomace extract from white wine production from Brazilian winemaking regarding its effects on energy metabolism, suggesting its potential use for pharmaceutical and nutraceutical purposes.

  2. Neurochemical differences in learning and memory paradigms among rats supplemented with anthocyanin-rich blueberry diets and exposed to acute doses of 56Fe particles

    Science.gov (United States)

    Poulose, Shibu M.; Rabin, Bernard M.; Bielinski, Donna F.; Kelly, Megan E.; Miller, Marshall G.; Thanthaeng, Nopporn; Shukitt-Hale, Barbara

    2017-02-01

    The protective effects of anthocyanin-rich blueberries (BB) on brain health are well documented and are particularly important under conditions of high oxidative stress, which can lead to "accelerated aging." One such scenario is exposure to space radiation, consisting of high-energy and -charge particles (HZE), which are known to cause cognitive dysfunction and deleterious neurochemical alterations. We recently tested the behavioral and neurochemical effects of acute exposure to HZE particles such as 56Fe, within 24-48 h after exposure, and found that radiation primarily affects memory and not learning. Importantly, we observed that specific brain regions failed to upregulate antioxidant and anti-inflammatory mechanisms in response to this insult. To further examine these endogenous response mechanisms, we have supplemented young rats with diets rich in BB, which are known to contain high amounts of antioxidant-phytochemicals, prior to irradiation. Exposure to 56Fe caused significant neurochemical changes in hippocampus and frontal cortex, the two critical regions of the brain involved in cognitive function. BB supplementation significantly attenuated protein carbonylation, which was significantly increased by exposure to 56Fe in the hippocampus and frontal cortex. Moreover, BB supplementation significantly reduced radiation-induced elevations in NADPH-oxidoreductase-2 (NOX2) and cyclooxygenase-2 (COX-2), and upregulated nuclear factor erythroid 2-related factor 2 (Nrf2) in the hippocampus and frontal cortex. Overall results indicate that 56Fe particles may induce their toxic effects on hippocampus and frontal cortex by reactive oxygen species (ROS) overload, which can cause alterations in the neuronal environment, eventually leading to hippocampal neuronal death and subsequent impairment of cognitive function. Blueberry supplementation provides an effective preventative measure to reduce the ROS load on the CNS in an event of acute HZE exposure.

  3. Anthocyanin-rich Phytochemicals from Aronia Fruits Inhibit Visceral Fat Accumulation and Hyperglycemia in High-fat Diet-induced Dietary Obese Rats.

    Science.gov (United States)

    Takahashi, Azusa; Shimizu, Hisae; Okazaki, Yukako; Sakaguchi, Hirohide; Taira, Toshio; Suzuki, Takashi; Chiji, Hideyuki

    2015-01-01

    Aronia fruits (chokeberry: Aronia melanocarpa E.) containing phenolic phytochemicals, such as cyanidin 3-glycosides and chlorogenic acid, have attracted considerable attention because of their potential human health benefits in humans including antioxidant activities and ability to improved vision. In the present study, the effects of anthocyanin-rich phytochemicals from aronia fruits (aronia phytochemicals) on visceral fat accumulation and fasting hyperglycemia were examined in rats fed a high-fat diet (Experiment 1). Total visceral fat mass was significantly lower in rats fed aronia phytochemicals than that in both the control group and bilberry phytochemicals-supplemented rats (p phytochemicals was significantly lower than that in both the control and bilberry phytochemicals group. Additionally, the mesenteric adipose tissue mass in aronia phytochemicals-fed rats was significantly low (p phytochemicals for 4 weeks compared to that in the control rats (p phytochemicals on postprandial hyperlipidemia after corn oil loading in rats, pancreatic lipase activity in vitro, and the plasma glycemic response after sucrose loading in order to elucidate the preventive factor of aronia phytochemical on visceral fat accumulation. In the oral corn oil tolerance tests (Experiment 2), aronia phytochemicals significantly inhibited the increases in plasma triglyceride levels, with a half-maximal inhibitory concentration (IC(50)) of 1.50 mg/mL. However, the inhibitory activity was similar to that of bilberry and tea catechins. In the sucrose tolerance tests (Experiment 3), aronia phytochemicals also significantly inhibited the increases in blood glucose levels that were observed in the control animals (p phytochemicals in aronia fruits suppress visceral fat accumulation and hyperglycemia by inhibiting pancreatic lipase activity and/or intestinal lipid absorption.

  4. Coordinated Regulation of Anthocyanin Biosynthesis Genes Confers Varied Phenotypic and Spatial-Temporal Anthocyanin Accumulation in Radish (Raphanus sativus L.)

    OpenAIRE

    Muleke, Everlyne M'mbone; Fan, Lianxue; Wang, Yan; Xu, Liang; Zhu, Xianwen; Zhang, Wei; Cao, Yang; Karanja, Benard K.; Liu, Liwang

    2017-01-01

    Anthocyanins are natural pigments that have important functions in plant growth and development. Radish taproots are rich in anthocyanins which confer different taproot colors and are potentially beneficial to human health. The crop differentially accumulates anthocyanin during various stages of growth, yet molecular mechanisms underlying this differential anthocyanin accumulation remains unknown. In the present study, transcriptome analysis was used to concisely identify putative genes invol...

  5. Comparison of the effect of chemical composition of anthocyanin-rich plant extracts on colon cancer cell proliferation and their potential mechanism of action using in vitro, in silico, and biochemical assays.

    Science.gov (United States)

    Mazewski, Candice; Liang, Katie; Gonzalez de Mejia, Elvira

    2018-03-01

    The objective was to compare the anti-proliferative effect of anthocyanin-rich plant extracts on human colon cancer cells and determine their mechanism of action. Eleven extracts were tested: red (RG) and purple grape, purple sweet potato, purple carrot, black and purple bean, black lentil (BL), black peanut, sorghum (SH), black rice, and blue wheat. HCT-116 and HT-29 inhibition correlated with total phenolics (r=0.87 and 0.77, respectively), delphinidin-3-O-glucoside concentration with HT-29 inhibition (r=0.69). The concentration inhibition fifty (IC 50 ) for BL, SH, RG on HT-29 and HCT-116 cell proliferation ranged 0.9-2.0mg/mL. Extracts decreased expression of anti-apoptotic proteins (survivin, cIAP-2, XIAP), induced apoptosis, and arrested cells in G1. Anthocyanins exhibited tyrosine kinase inhibitory potential in silico and biochemically; cyanidin-3-O-glucoside had one of the highest binding affinities with all kinases, especially ABL1 (-8.5kcal/mol). Cyanidin-3-O-glucoside and delphinidin-3-O-glucoside inhibited EGFR (IC 50 =0.10 and 2.37µM, respectively). Cyanidin-3-O-glucoside was the most potent anthocyanin on kinase inhibition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Mirtoselect, an anthocyanin-rich bilberry extract, attenuates non-alcoholic steatohepatitis and associated fibrosis in ApoE∗3Leiden mice

    NARCIS (Netherlands)

    Morrison, M.C.; Liang, W.; Mulder, P.; Verschuren, L.; Pieterman, E.; Toet, K.; Heeringa, P.; Wielinga, P.Y.; Kooistra, T.; Kleemann, R.

    2015-01-01

    Background & Aims Anthocyanins may have beneficial effects on lipid metabolism and inflammation and are demonstrated to have hepatoprotective properties in models of restraint-stress- and chemically-induced liver damage. However, their potential to protect against non-alcoholic steatohepatitis

  7. Mirtoselect, an anthocyanin-rich bilberry extract, attenuates non-alcoholic steatohepatitis and associated fibrosis in ApoE*3Leiden mice

    NARCIS (Netherlands)

    Morrison, Martine C.; Liang, Wen; Mulder, Petra; Verschuren, Lars; Pieterman, Elsbet; Toet, Karin; Heeringa, Peter; Wielinga, Peter Y.; Kooistra, Teake; Kleemann, Robert

    Background & Aims: Anthocyanins may have beneficial effects on lipid metabolism and inflammation and are demonstrated to have hepatoprotective properties in models of restraint-stressand chemically-induced liver damage. However, their potential to protect against non-alcoholic steatohepatitis (NASH)

  8. Contribution of Anthocyanin Composition to Total Antioxidant Capacity of Berries.

    Science.gov (United States)

    Lee, Sang Gil; Vance, Terrence M; Nam, Tae-Gyu; Kim, Dae-Ok; Koo, Sung I; Chun, Ock K

    2015-12-01

    The present study aimed to evaluate the contribution of anthocyanin composition to the total antioxidant capacity (TAC) of berries having different anthocyanin composition; blackberry, black currant, and blueberry. Blackberry demonstrated the highest TAC, while it had the lowest total anthocyanin content among the three berries in both of the phenolic extract and anthocyanin fractions. On the other hand, black currant had the highest total anthocyanin content, but the lowest TAC. Cyanidin-3-O-glucoside (cya-3-glc) accounted for 94% of blackberry anthocyanins, and as one of the strongest antioxidants present in these three berries, it substantially contributed to the TAC of blackberry anthocyanin fraction (96.0%). Delphinidin-3-O-rutinoside and cyanidin-3-O-rutinoside in black currant had lower antioxidant capacities compared with delphinin-3-O-glucoside and cya-3-glc, resulting in its lowest TAC among berry anthocyanin fractions examined. Malvidin derivatives, major anthocyanins of blueberry, had considerably lower antioxidant capacity than other anthocyanidin derivatives, such as cyanidin or delphinidin, resulting in lower TAC of blueberry compared with blackberry. Our findings indicate that anthocyanin composition as well as the antioxidant capacity of individual anthocyanins contributes to the TAC of berries rich in distinct anthocyanins.

  9. Anthocyanin Biosynthesis and Degradation Mechanisms in Solanaceous Vegetables: A Review

    Science.gov (United States)

    Liu, Ying; Tikunov, Yury; Schouten, Rob E.; Marcelis, Leo F. M.; Visser, Richard G. F.; Bovy, Arnaud

    2018-01-01

    Anthocyanins are a group of polyphenolic pigments that are ubiquitously found in the plant kingdom. In plants, anthocyanins play a role not only in reproduction, by attracting pollinators and seed dispersers, but also in protection against various abiotic and biotic stresses. There is accumulating evidence that anthocyanins have health-promoting properties, which makes anthocyanin metabolism an interesting target for breeders and researchers. In this review, the state of the art knowledge concerning anthocyanins in the Solanaceous vegetables, i.e., pepper, tomato, eggplant, and potato, is discussed, including biochemistry and biological function of anthocyanins, as well as their genetic and environmental regulation. Anthocyanin accumulation is determined by the balance between biosynthesis and degradation. Although the anthocyanin biosynthetic pathway has been well-studied in Solanaceous vegetables, more research is needed on the inhibition of biosynthesis and, in particular, the anthocyanin degradation mechanisms if we want to control anthocyanin content of Solanaceous vegetables. In addition, anthocyanin metabolism is distinctly affected by environmental conditions, but the molecular regulation of these effects is poorly understood. Existing knowledge is summarized and current gaps in our understanding are highlighted and discussed, to create opportunities for the development of anthocyanin-rich crops through breeding and environmental management. PMID:29594099

  10. Anthocyanin Biosynthesis and Degradation Mechanisms in Solanaceous Vegetables: A Review

    Directory of Open Access Journals (Sweden)

    Ying Liu

    2018-03-01

    Full Text Available Anthocyanins are a group of polyphenolic pigments that are ubiquitously found in the plant kingdom. In plants, anthocyanins play a role not only in reproduction, by attracting pollinators and seed dispersers, but also in protection against various abiotic and biotic stresses. There is accumulating evidence that anthocyanins have health-promoting properties, which makes anthocyanin metabolism an interesting target for breeders and researchers. In this review, the state of the art knowledge concerning anthocyanins in the Solanaceous vegetables, i.e., pepper, tomato, eggplant, and potato, is discussed, including biochemistry and biological function of anthocyanins, as well as their genetic and environmental regulation. Anthocyanin accumulation is determined by the balance between biosynthesis and degradation. Although the anthocyanin biosynthetic pathway has been well-studied in Solanaceous vegetables, more research is needed on the inhibition of biosynthesis and, in particular, the anthocyanin degradation mechanisms if we want to control anthocyanin content of Solanaceous vegetables. In addition, anthocyanin metabolism is distinctly affected by environmental conditions, but the molecular regulation of these effects is poorly understood. Existing knowledge is summarized and current gaps in our understanding are highlighted and discussed, to create opportunities for the development of anthocyanin-rich crops through breeding and environmental management.

  11. Phenotypic diversity of anthocyanins in sorghum accessions with various pericarp pigments

    Science.gov (United States)

    Anthocyanins, a sub-class of flavonoids, are natural pigments known to have functional health benefits. Sorghum is a rich source of various phytochemicals including anthocyanins. This study was to identify and quantify the profiles of anthocyanins by HPLC-DAD in the selected 25 sorghum accessions wi...

  12. Survey of Anthocyanin Composition and Concentration in Diverse Maize Germplasms.

    Science.gov (United States)

    Paulsmeyer, Michael; Chatham, Laura; Becker, Talon; West, Megan; West, Leslie; Juvik, John

    2017-05-31

    Increasing consumer demand for natural ingredients in foods and beverages justifies investigations into more economic sources of natural colorants. In this study, 398 genetically diverse pigmented accessions of maize were analyzed using HPLC to characterize the diversity of anthocyanin composition and concentration in maize germplasm. One hundred and sixty-seven accessions were identified that could produce anthocyanins in the kernel pericarp or aleurone and were classified into compositional categories. Anthocyanin content was highest in pericarp-pigmented accessions with flavanol-anthocyanin condensed forms, similar to the Andean Maı́z Morado landraces. A selected subset of accessions exhibited high broad-sense heritability estimates for anthocyanin production, indicating this trait can be manipulated through breeding. This study represents the most comprehensive screening of pigmented maize lines to date and will provide information to plant breeders looking to develop anthocyanin-rich maize hybrids as an economic source of natural colorants in foods and beverages.

  13. Anthocyanin accumulation and transcriptional regulation of anthocyanin biosynthesis in purple bok choy (Brassica rapa var. chinensis).

    Science.gov (United States)

    Zhang, Yanjie; Chen, Guoping; Dong, Tingting; Pan, Yu; Zhao, Zhiping; Tian, Shibing; Hu, Zongli

    2014-12-24

    Bok choy (Brassica rapa var. chinensis) is an important dietary vegetable cultivated and consumed worldwide for its edible leaves. The purple cultivars rich in health-promoting anthocyanins are usually more eye-catching and valuable. Fifteen kinds of anthocyanins were separated and identified from a purple bok choy cultivar (Zi He) by high-performance liquid chromatography-electrospray ionization tandem mass spectrometry. To investigate the molecular mechanisms underlying anthocyanin accumulation in bok choy, the expression profiles of anthocyanin biosynthetic and regulatory genes were analyzed in seedlings and leaves of the purple cultivar and the green cultivar (Su Zhouqing). Compared with the other tissues, BrTT8 and most of the anthocyanin biosynthetic genes were significantly up-regulated in the leaves and light-grown seedlings of Zi He. The results that heterologous expression of BrTT8 promotes the transcription of partial anthocyanin biosynthetic genes in regeneration shoots of tomato indicate that BrTT8 plays an important role in the regulation of anthocyanin biosynthesis.

  14. Anthocyanin Profiles in Flowers of Grape Hyacinth

    Directory of Open Access Journals (Sweden)

    Qian Lou

    2017-04-01

    Full Text Available Grape hyacinth (Muscari spp. is a popular ornamental bulbous perennial famous for its blue flowers. To understand the chemical basis of the rich blue colors in this plant, anthocyanin profiles of six blue flowering grape hyacinths as well as one pink and one white cultivar were determined using high-performance liquid chromatography and mass spectrometry. Along with two known compounds, eight putative anthocyanins were identified in the tepals of grape hyacinth for the first time. The accumulation and distribution of anthocyanins in the plant showed significant cultivar and flower development specificity. Violet-blue flowers mainly contained simple delphinidin-type anthocyanins bearing one or two methyl-groups but no acyl groups, whereas white and pink flowers synthesised more complex pelargonidin/cyanidin-derivatives with acyl-moieties but no methyl-groups. The results partially reveal why solid blue, orange or red flowers are rare in this plant in nature. In addition, pelargonidin-type anthocyanins were found for the first time in the genus, bringing more opportunities in terms of breeding of flower color in grape hyacinth.

  15. Anthocyanin Profiles in Flowers of Grape Hyacinth.

    Science.gov (United States)

    Lou, Qian; Wang, Lin; Liu, Hongli; Liu, Yali

    2017-04-26

    Grape hyacinth ( Muscari spp.) is a popular ornamental bulbous perennial famous for its blue flowers. To understand the chemical basis of the rich blue colors in this plant, anthocyanin profiles of six blue flowering grape hyacinths as well as one pink and one white cultivar were determined using high-performance liquid chromatography and mass spectrometry. Along with two known compounds, eight putative anthocyanins were identified in the tepals of grape hyacinth for the first time. The accumulation and distribution of anthocyanins in the plant showed significant cultivar and flower development specificity. Violet-blue flowers mainly contained simple delphinidin-type anthocyanins bearing one or two methyl-groups but no acyl groups, whereas white and pink flowers synthesised more complex pelargonidin/cyanidin-derivatives with acyl-moieties but no methyl-groups. The results partially reveal why solid blue, orange or red flowers are rare in this plant in nature. In addition, pelargonidin-type anthocyanins were found for the first time in the genus, bringing more opportunities in terms of breeding of flower color in grape hyacinth.

  16. Anthocyanins as components of functional food for cardiovascular risk prevention

    Directory of Open Access Journals (Sweden)

    Joanna Saluk-Juszczak

    2010-10-01

    Full Text Available Epidemiologic studies suggest that the regular consumption of polyphenols, secondary metabolites of plants, is correlated with a decrease of the risk of cardiovascular disease, diabetes, arthritis and cancer. The most abundant flavonoid constituents of plants are anthocyanins – water-soluble, glycosylated, nonacetylated pigments. The profitable effects of these compounds may be partly attributed to their antioxidative and anti-inflammatory activity. The supplementation of anthocyanins or an anthocyanin-rich diet has been reported to significantly increase serum antioxidant potential.

  17. Anti-Inflammatory Activity of Topical Anthocyanins by Complexation and Niosomal Encapsulation

    OpenAIRE

    Aroonsri Priprem; Sucharat Limsitthichaikoon; Suttasinee Thappasarapong

    2015-01-01

    Anthocyanins are natural pigments with effective UV protection but their topical use could be limited due to their physicochemical characteristics. An attempt to overcome such limitations by complexation of 2 major anthocyanin-rich sources, C. ternatea and Z. mays, has potentiated its use as topical antiinflammatory. Cell studies indicate no cytotoxicity of the anthocyanin complex (AC) up to 1 mg/ml tested in HaCaT and human fore head fibroblasts by MTT. Croton oil-induce...

  18. Anthocyanin Accumulation, Antioxidant Ability and Stability, and a Transcriptional Analysis of Anthocyanin Biosynthesis in Purple Heading Chinese Cabbage (Brassica rapa L. ssp. pekinensis).

    Science.gov (United States)

    He, Qiong; Zhang, Zhanfeng; Zhang, Lugang

    2016-01-13

    Heading Chinese cabbage (Brassica rapa L. ssp. pekinensis) is a significant dietary vegetable for its edible heading leaves in Asia countries. The new purple anthocyanin-rich pure line (11S91) was successfully bred, and the anthocyanins were mainly distributed in 2-3 cell layers beneath the leaf epidermis, whereas siliques and stems accumulated only a cell layer of anthocyanins. The anthocyanins of 11S91 were more stable at pHs below 3.0 and temperatures below 45 °C. The total antioxidant ability was highly positive correlated with the anthocyanin content in 11S91. Thirty-two anthocyanins were separated and identified, and 70% of them were glycosylated and acylated cyanidins. The four major anthocyanins present were cyanidin-3-sophoroside(p-coumaroyl)-5-glucoside(malonyl), cyanidin-3-sophoroside(ferulyl)-5-glucoside(malonyl), cyanidin-3-sophoroside(sinapyl-p-coumaroyl)-5-glucoside(malonyl), and cyanidin-3-sophoroside-(sinapyl-ferulyl)-5-glucoside(malonyl). According to the expression of biosynthetic genes and the component profile of anthocyanins in 11S91 and its parents, regulatory genes BrMYB2 and BrTT8 probably activate the anthocyanin biosynthesis but other factors may govern the primary anthocyanins and the distribution.

  19. Coordinated Regulation of Anthocyanin Biosynthesis Genes Confers Varied Phenotypic and Spatial-Temporal Anthocyanin Accumulation in Radish (Raphanus sativus L.).

    Science.gov (United States)

    Muleke, Everlyne M'mbone; Fan, Lianxue; Wang, Yan; Xu, Liang; Zhu, Xianwen; Zhang, Wei; Cao, Yang; Karanja, Benard K; Liu, Liwang

    2017-01-01

    Anthocyanins are natural pigments that have important functions in plant growth and development. Radish taproots are rich in anthocyanins which confer different taproot colors and are potentially beneficial to human health. The crop differentially accumulates anthocyanin during various stages of growth, yet molecular mechanisms underlying this differential anthocyanin accumulation remains unknown. In the present study, transcriptome analysis was used to concisely identify putative genes involved in anthocyanin biosynthesis in radish. Spatial-temporal transcript expressions were then profiled in four color variant radish cultivars. From the total transcript sequences obtained through illumina sequencing, 102 assembled unigenes, and 20 candidate genes were identified to be involved in anthocyanin biosynthesis. Fifteen genomic sequences were isolated and sequenced from radish taproot. The length of these sequences was between 900 and 1,579 bp, and the unigene coverage to all of the corresponding cloned sequences was more than 93%. Gene structure analysis revealed that RsF3 ' H is intronless and anthocyanin biosynthesis genes (ABGs) bear asymmetrical exons, except RsSAM . Anthocyanin accumulation showed a gradual increase in the leaf of the red radish and the taproot of colored cultivars during development, with a rapid increase at 30 days after sowing (DAS), and the highest content at maturity. Spatial-temporal transcriptional analysis of 14 genes revealed detectable expressions of 12 ABGs in various tissues at different growth levels. The investigation of anthocyanin accumulation and gene expression in four color variant radish cultivars, at different stages of development, indicated that total anthocyanin correlated with transcript levels of ABGs, particularly RsUFGT, RsF3H, RsANS, RsCHS3 and RsF3 ' H1 . Our results suggest that these candidate genes play key roles in phenotypic and spatial-temporal anthocyanin accumulation in radish through coordinated regulation

  20. Coordinated Regulation of Anthocyanin Biosynthesis Genes Confers Varied Phenotypic and Spatial-Temporal Anthocyanin Accumulation in Radish (Raphanus sativus L.

    Directory of Open Access Journals (Sweden)

    Everlyne M'mbone Muleke

    2017-07-01

    Full Text Available Anthocyanins are natural pigments that have important functions in plant growth and development. Radish taproots are rich in anthocyanins which confer different taproot colors and are potentially beneficial to human health. The crop differentially accumulates anthocyanin during various stages of growth, yet molecular mechanisms underlying this differential anthocyanin accumulation remains unknown. In the present study, transcriptome analysis was used to concisely identify putative genes involved in anthocyanin biosynthesis in radish. Spatial-temporal transcript expressions were then profiled in four color variant radish cultivars. From the total transcript sequences obtained through illumina sequencing, 102 assembled unigenes, and 20 candidate genes were identified to be involved in anthocyanin biosynthesis. Fifteen genomic sequences were isolated and sequenced from radish taproot. The length of these sequences was between 900 and 1,579 bp, and the unigene coverage to all of the corresponding cloned sequences was more than 93%. Gene structure analysis revealed that RsF3′H is intronless and anthocyanin biosynthesis genes (ABGs bear asymmetrical exons, except RsSAM. Anthocyanin accumulation showed a gradual increase in the leaf of the red radish and the taproot of colored cultivars during development, with a rapid increase at 30 days after sowing (DAS, and the highest content at maturity. Spatial-temporal transcriptional analysis of 14 genes revealed detectable expressions of 12 ABGs in various tissues at different growth levels. The investigation of anthocyanin accumulation and gene expression in four color variant radish cultivars, at different stages of development, indicated that total anthocyanin correlated with transcript levels of ABGs, particularly RsUFGT, RsF3H, RsANS, RsCHS3 and RsF3′H1. Our results suggest that these candidate genes play key roles in phenotypic and spatial-temporal anthocyanin accumulation in radish through

  1. Metabolic fate of blueberry anthocyanins after chronic supplementation in healthy older adults

    Science.gov (United States)

    Plant derived anthocyanin rich foods play a protective role against chronic diseases such as diabetes, obesity, cardiovascular, cancer and neurodegenerative diseases. Anthocyanins are absorbed in their intact form and can be metabolized to a wide array of phenolic metabolites/conjugates. Blueberries...

  2. Anthocyanin analyses of Vaccinium fruit dietary supplements

    Science.gov (United States)

    Vaccinium fruit ingredients within dietary supplements were identified by comparisons with anthocyanin analyses of known Vaccinium profiles (demonstration of anthocyanin fingerprinting). Available Vaccinium supplements were purchased and analyzed; their anthocyanin profiles (based on HPLC separation...

  3. Phenolic metabolites of anthocyanins following a dietary intervention study in post-menopausal women.

    Science.gov (United States)

    de Ferrars, Rachel M; Cassidy, Aedín; Curtis, Peter; Kay, Colin D

    2014-03-01

    Numerous studies feeding anthocyanin-rich foods report limited bioavailability of the parent anthocyanins. The present study explores the identity and concentration of the phenolic metabolites of anthocyanins in humans. Anthocyanin metabolites were quantified in samples collected from a previously conducted 12-wk elderberry intervention study in healthy post-menopausal women. Individual 1-, 2- and 3-h post-bolus urine samples and pooled plasma samples following acute (single bolus) and chronic (12-wk supplementation) anthocyanin consumption (500 mg/day) were analysed using HPLC-ESI-MS/MS. Twenty-eight anthocyanin metabolites were identified in urine and 21 in plasma (including sulfates of vanillic, protocatechuic and benzoic acid). Phenolic metabolites reached peak concentrations of 1237 nM in plasma, while anthocyanin conjugates only reached concentrations of 34 nM. Similarly, in urine, phenolic metabolites were detected at concentrations of 33,185 ± 2549 nM/mM creatinine, while anthocyanin conjugates reached concentrations of 548 ± 219 nM/mM creatinine. There was no evidence that chronic exposure had any impact on either the profile or quantity of metabolites recovered relative to acute exposure. An extensive range of phenolic metabolites of anthocyanin was identified following elderberry consumption in humans, including 11 novel metabolites, which were identified at much higher concentrations than their parent compounds. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Anthocyanins as Functional Food Colors

    Science.gov (United States)

    Motohashi, Noboru; Sakagami, Hiroshi

    Anthocyanins, a proanthocyanidin-type of flavonoid, contain an abundance of functional phytochemicals and occur in fruits such as cranberry, blueberry, orange, apple and in vegetables such as tomato, sweet pepper, spinach, and radishes. Functional and essential diets have been ingested in daily life since the primitive era of history. When anthocyanins are coupled with some water-soluble sugar molecules, their color becomes red, yellow, violet, or blue. It is very intriguing that anthocyanins provide the colorful variety of pigments for pansies, petunias, plums, and other diverse flowers. Chlorophyll in various fruits and vegetables is the main green phyto-component, while anthocyanins are probably the most important visible plant pigments in the natural kingdom having specific colors. Anthocyanins have been clinically used in many folklore medicines worldwide. Anthocyanins could provide health benefits for age-related diseases as well as other diseases. Anthocyanins have higher antioxidant capacity against oxidative stress induced by excess reactive oxygen species (ROS) such as superoxide radicals, hydrogen peroxide, and thus the human body might be protected from oxidative injury by anthocyanins. On the basis of these facts, we review the synthesis of plant flavonoids and their ability to scavenge oxidants, inhibit or activate enzymes, and the safety of proanthocyanidins and anthocyanidins present in common foods.

  5. Anthocyanins: biosynthesis, functions, and applications

    National Research Council Canada - National Science Library

    Gould, Kevin; Davies, Kevin M; Winefield, Chris

    2009-01-01

    ... that these compounds play within plants. Alongside these fundamental advances in understanding the functional attributes of anthocyanins in-planta we are now beginning to realise the potential of anthocyanins as compounds of industrial importance, both as pigments in their own right and also as pharmaceuticals. With this backdrop, the 4th International Wo...

  6. Isolation and Characterization of Anthocyanins from Hibiscus sabdariffa Flowers.

    Science.gov (United States)

    Grajeda-Iglesias, Claudia; Figueroa-Espinoza, Maria C; Barouh, Nathalie; Baréa, Bruno; Fernandes, Ana; de Freitas, Victor; Salas, Erika

    2016-07-22

    The intense red-colored Hibiscus sabdariffa flowers are an inexpensive source of anthocyanins with potential to be used as natural, innocuous, and health-beneficial colorants. An anthocyanin-rich extract from hibiscus flowers was obtained by ultrasound-assisted extraction. By a single-step process fractionation using a Sep-Pak C18 cartridge, the main hibiscus anthocyanins, delphinidin-3-O-sambubioside (Dp-samb) and cyanidin-3-O-sambubioside (Cy-samb), were separated and then characterized via NMR and HPLC-ESIMS data. Since Dp-samb was the most abundant anthocyanin identified in the extract, its colorant properties were studied by the pH jumps method, which allowed the calculation of the single acid-base equilibrium (pK'a 2.92), the acidity (pKa 3.70), and the hydration constants (pKh 3.02). Moreover, by using size-exclusion chromatography, new cyanidin-derived anthocyanins (with three or more sugar units) were successfully identified and reported for the first time in the hibiscus extract.

  7. A MYB transcription factor, DcMYB6, is involved in regulating anthocyanin biosynthesis in purple carrot taproots.

    Science.gov (United States)

    Xu, Zhi-Sheng; Feng, Kai; Que, Feng; Wang, Feng; Xiong, Ai-Sheng

    2017-03-27

    Carrots are widely grown and enjoyed around the world. Purple carrots accumulate rich anthocyanins in the taproots, while orange, yellow, and red carrots accumulate rich carotenoids in the taproots. Our previous studies indicated that variation in the activity of regulatory genes may be responsible for variations in anthocyanin production among various carrot cultivars. In this study, an R2R3-type MYB gene, designated as DcMYB6, was isolated from a purple carrot cultivar. In a phylogenetic analysis, DcMYB6 was grouped into an anthocyanin biosynthesis-related MYB clade. Sequence analyses revealed that DcMYB6 contained the conserved bHLH-interaction motif and two atypical motifs of anthocyanin regulators. The expression pattern of DcMYB6 was correlated with anthocyanin production. DcMYB6 transcripts were detected at high levels in three purple carrot cultivars but at much lower levels in six non-purple carrot cultivars. Overexpression of DcMYB6 in Arabidopsis led to enhanced anthocyanin accumulation in both vegetative and reproductive tissues and upregulated transcript levels of all seven tested anthocyanin-related structural genes. Together, these results show that DcMYB6 is involved in regulating anthocyanin biosynthesis in purple carrots. Our results provide new insights into the regulation of anthocyanin synthesis in purple carrot cultivars.

  8. Matrix Effects on the Stability and Antioxidant Activity of Red Cabbage Anthocyanins under Simulated Gastrointestinal Digestion

    Directory of Open Access Journals (Sweden)

    Anna Podsędek

    2014-01-01

    Full Text Available Red cabbage is, among different vegetables, one of the major sources of anthocyanins. In the present study an in vitro digestion method has been used to assay the influence of the physiological conditions in the stomach and small intestine, as well as faecal microflora on anthocyanins stability in red cabbage and anthocyanin-rich extract. The recovery of anthocyanins during in vitro gastrointestinal digestion was strongly influenced by food matrix. The results showed that other constituents present in cabbage enhanced the stability of anthocyanins during the digestion. The amount of anthocyanins (HPLC method and antioxidant capacity (ABTS and FRAP assays strongly decreased after pancreatic-bile digestion in both matrices but total phenolics content (Folin-Ciocalteu assay in these digestions was higher than in initial samples. Incubation with human faecal microflora caused further decline in anthocyanins content. The results obtained suggest that intact anthocyanins in gastric and products of their decomposition in small and large intestine may be mainly responsible for the antioxidant activity and other physiological effects after consumption of red cabbage.

  9. Anthocyanin degradation of blueberry-aronia nectar in glass compared with carton during storage.

    Science.gov (United States)

    Trost, K; Golc-Wondra, A; Prosek, M; Milivojevic, L

    2008-10-01

    Blueberry-aronia nectar is known as a rich source of anthocyanins, which are mostly destroyed during commercial storage of the product. The factors influencing the rate of degradation are connected to the oxygen protection offered by the packaging, as well as the type of anthocyanidin and the amount of glycosylated sugar. The current study was aimed to compare the stability of total anthocyanin between glass and carton packaging as well as to determine the stability of individual anthocyanin with respect to aglycone and glycosylated sugar. The degradation rate of total anthocyanin degradation rate was 22% higher in carton packaging than glass bottle. The ranking order of the stability of individual anthocyanin with respect to aglycone was as follows (from the most to least stable): cyanindin > peonidin > petunidin > malvidin = delphinidin. The ranking order of the stability of anthocyanins with respect to glycosylated sugars was as follows (from the most to least stable): glucose > galactose > arabinose. As individual anthocyanins have different degradation rates this study can be used to determine the most stable natural colorant and the most sensitive antioxidant among the anthocyanins tested.

  10. Matrix Effects on the Stability and Antioxidant Activity of Red Cabbage Anthocyanins under Simulated Gastrointestinal Digestion

    Science.gov (United States)

    Podsędek, Anna; Koziołkiewicz, Maria

    2014-01-01

    Red cabbage is, among different vegetables, one of the major sources of anthocyanins. In the present study an in vitro digestion method has been used to assay the influence of the physiological conditions in the stomach and small intestine, as well as faecal microflora on anthocyanins stability in red cabbage and anthocyanin-rich extract. The recovery of anthocyanins during in vitro gastrointestinal digestion was strongly influenced by food matrix. The results showed that other constituents present in cabbage enhanced the stability of anthocyanins during the digestion. The amount of anthocyanins (HPLC method) and antioxidant capacity (ABTS and FRAP assays) strongly decreased after pancreatic-bile digestion in both matrices but total phenolics content (Folin-Ciocalteu assay) in these digestions was higher than in initial samples. Incubation with human faecal microflora caused further decline in anthocyanins content. The results obtained suggest that intact anthocyanins in gastric and products of their decomposition in small and large intestine may be mainly responsible for the antioxidant activity and other physiological effects after consumption of red cabbage. PMID:24575407

  11. Effect of genuine non-anthocyanin phenolics and chlorogenic acid on color and stability of black carrot (Daucus carota ssp. sativus var. atrorubens Alef.) anthocyanins.

    Science.gov (United States)

    Gras, Claudia C; Bogner, Hanna; Carle, Reinhold; Schweiggert, Ralf M

    2016-07-01

    This work aimed at studying the color intensity and stability of black carrot anthocyanins as influenced by intermolecular co-pigmentation. For this purpose, purified anthocyanin solutions were supplemented with purified genuine black carrot phenolics, chlorogenic acid, and an aqueous phenolic-rich green coffee bean extract at various anthocyanin:co-pigment ratios (1:0-1:162; pH 3.6). The hyperchromic co-pigmentation effect depended on the concentration of added co-pigments, resulting in an absorbance increase of up to 22% at the absorption maximum. Anthocyanin stability during heating (90°C, 5h) was barely improved unless the concentrations of co-pigments exceeded those of their natural source. When adding co-pigments at ratios above 1:9.4, anthocyanin heat stability was significantly improved. As acylated anthocyanins were most stable, breeders might aim at increasing their content in the future, while breeding for high levels of colorless polyphenols may be unreachable. Nevertheless, we provided proof-of-concept for the successful color enhancement by the addition of a phenolic-rich green coffee bean extract, being useful for food-grade applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. A MYB transcription factor, DcMYB6, is involved in regulating anthocyanin biosynthesis in purple carrot taproots

    OpenAIRE

    Xu, Zhi-Sheng; Feng, Kai; Que, Feng; Wang, Feng; Xiong, Ai-Sheng

    2017-01-01

    Carrots are widely grown and enjoyed around the world. Purple carrots accumulate rich anthocyanins in the taproots, while orange, yellow, and red carrots accumulate rich carotenoids in the taproots. Our previous studies indicated that variation in the activity of regulatory genes may be responsible for variations in anthocyanin production among various carrot cultivars. In this study, an R2R3-type MYB gene, designated as DcMYB6, was isolated from a purple carrot cultivar. In a phylogenetic an...

  13. Anthocyanins facilitate tungsten accumulation in Brassica

    Energy Technology Data Exchange (ETDEWEB)

    Hale, K.L.

    2002-11-01

    Accumulation of molybdenum in Brassica was recently found to be correlated with anthocyanin content, involving the formation of a blue complex. Here the role of anthocyanins in tungsten sequestration was investigated using three species of Brassica: B. rapa (cv. Fast plants), B. juncea (Indian mustard) and B. oleracea (red cabbage). Seedlings of B. rapa and B. juncea turned blue when supplied with colourless tungstate. The blue compound co-localized with anthocyanins in the peripheral cell layers, and the degree of blueness was correlated with anthocyanin content. The direct involvement of anthocyanins in the blue coloration was evident when purified anthocyanins showed a colour change from pink to blue in vitro upon addition of tungstate, over a wide pH range. Anthocyanin production was upregulated 3-fold by W in B. juncea, possibly reflecting a function for anthocyanins in W tolerance or sequestration. The presence of anthocyanins facilitated W accumulation in B. rapa: anthocyanin-containing seedlings accumulated 3-fold more W than an anthocyaninless mutant. There was no correlation between anthocyanin content and W tolerance under these conditions. The nature of the interaction between anthocyanins and tungstate was investigated. X-ray absorption spectroscopy showed no change in the local chemical environment of Wupon uptake of tungstate by the plant; HPLC analysis of purified anthocyanin with or without tungstate showed no peak shift after metal treatment.

  14. UV-B-induced anthocyanin accumulation in hypocotyls of radish sprouts continues in the dark after irradiation.

    Science.gov (United States)

    Su, Nana; Lu, Yanwu; Wu, Qi; Liu, Yuanyuan; Xia, Yan; Xia, Kai; Cui, Jin

    2016-02-01

    Raphanus sativus L. cv. Yanghua sprouts are rich in health-promoting anthocyanins; thus hypocotyls show a red color under light. In this study, effects of UV-B irradiation at 5 W m(-2) on anthocyanin biosynthesis in the hypocotyls of radish sprouts were investigated. Anthocyanins began to accumulate rapidly from 24 h irradiation and increased continuously until 48 h, showing a similar pattern to phenylalanine ammonia lyase (PAL) activity, with a correlation coefficient of 0.804. The expression of DFR and ANS paralleled the upward trend in anthocyanin accumulation, while CHS, CHI and F3H were upregulated before accumulation. When sprouts were moved into the dark from UV-B, the anthocyanin accumulation did not stop immediately. By contrast, anthocyanin accumulated continuously for more than 12 h in the dark, which was further supported by the significantly higher PAL activity monitored at 24 h after irradiation. Similarly, the transcript levels of anthocyanin biosynthesis-related genes were much higher over 6 h after 12 h UV-B irradiation. UV-B-induced anthocyanin accumulation continues in the dark after irradiation, which was supported by unfading PAL activity and high levels of biosynthesis-related genes. This will provide evidence to produce high-quality sprouts with more anthocyanins but less energy wastage in practice. © 2015 Society of Chemical Industry.

  15. Unraveling Anthocyanin Bioavailability for Human Health.

    Science.gov (United States)

    Lila, Mary Ann; Burton-Freeman, Britt; Grace, Mary; Kalt, Wilhelmina

    2016-01-01

    This review considers the bioavailability of health-protective anthocyanin pigments from foods, in light of the multiple molecular structures and complicated traffic patterns taken by anthocyanins both as flavonoid metabolites and as phenolic acid metabolites within the body. Anthocyanins have generally been considered to have notoriously poor bioavailability, based on the very low levels typically detected in routine human blood draws after ingestion. Although some investigations have assessed anthocyanin bioavailability solely based on the measurement of parent anthocyanins or phenolic acid breakdown products, more recent research has increasingly revealed the presence, qualitative diversity, relatively high concentrations, and tenacity of molecular intermediates of anthocyanins that retain the unique flavonoid C6-C3-C6 backbone structure. We argue that the persistence of anthocyanin metabolites suggests enterohepatic recycling, leading to prolonged residence time, and supports the notion that anthocyanins are far more bioavailable than previously suggested.

  16. Optimisation of pulsed electric fields extraction of anthocyanin from Beibinghong Vitis Amurensis Rupr.

    Science.gov (United States)

    He, Yang; Wen, Liankui; Liu, Jingsheng; Li, Yueru; Zheng, Fei; Min, Weihong; Yue, Hao; Pan, Puqun

    2018-01-01

    Beibinghong Vitis amurensis Rupr has wide plantation area, high productivity and rich anthocyanin. Common hot-extraction has poor deficiency and destroys anthocyanin severely. For Beibinghong V. amurensis Rupr as materials, response surface-optimised electric fields were used, the structure of Beibinghong was observed by SEM, antioxidant activity was measured by DPPH, ABTS and reducing force, the component of anthocyanin was analyzed by HPLC-MS. We found the content of total anthocyanin extracted by pulsed electric fields was 166.65 ± 3.88 mg/100 g.FW. Total anthocyanin from Beibinghong had high antioxidant activity, also contained multiple steady anthocyanin of delphinidin 3-O-glucoside, cyanidin 3-O-glucoside, petunidin 3-O-glucoside, peonidin 3-O-glucoside, malvidin 3-O-glucoside, delphinidin-3-O-(6-O-acetyl) glucoside and delphinidin-3-O-(6-O-p-coumaroyl) glucoside et al. In conclusion, the optimised pulsed electric fields method can quickly and efficiently extract several kinds of anthocyanins from V. amurensis Rupr. This study promoted the intensive processing of V. amurensis Rupr and widened the practical application of pulsed electric field technology.

  17. An analytical pipeline to compare and characterise the anthocyanin antioxidant activities of purple sweet potato cultivars.

    Science.gov (United States)

    Hu, Yijie; Deng, Liqing; Chen, Jinwu; Zhou, Siyu; Liu, Shuang; Fu, Yufan; Yang, Chunxian; Liao, Zhihua; Chen, Min

    2016-03-01

    Purple sweet potato (Ipomoea batatas L.) is rich in anthocyanin pigments, which are valuable constituents of the human diet. Techniques to identify and quantify anthocyanins and their antioxidant potential are desirable for cultivar selection and breeding. In this study, we performed a quantitative and qualitative chemical analysis of 30 purple sweet potato (PSP) cultivars, using various assays to measure reducing power radical-scavenging activities, and linoleic acid autoxidation inhibition activity. Grey relational analysis (GRA) was applied to establish relationships between the antioxidant activities and the chemical fingerprints, in order to identify key bioactive compounds. The results indicated that four peonidin-based anthocyanins and three cyanidin-based anthocyanins make significant contributions to antioxidant activity. We conclude that the analytical pipeline described here represents an effective method to evaluate the antioxidant potential of, and the contributing compounds present in, PSP cultivars. This approach may be used to guide future breeding strategies. Copyright © 2015. Published by Elsevier Ltd.

  18. The effect of hormones on anthocyanin accumulation in cell cultures of Haplopappus gracilis.

    Science.gov (United States)

    Constabel, F; Shyluk, J P; Gamborg, O L

    1971-12-01

    Suspension cultures of Haplopappus gracilis accumulated anthocyanin when grown in defined media with 4.5×10(-6)M 2,4-D. Transfer of cells to media with 10(-5)M kinetin or benzyladenine and no auxin or 10(-7)M NAA for 6 days resulted in increased anthocyanin concentration of the cells but the total amount of pigment was unaffected due to differences in growth rates. The cultures yielded up to 35 mg pigment per gram dry weight.Cells grown in batch culture in media with 10(-5)M kinetin and with 10(-7) M NAA or 5×10(-5)M NAA sampled and analyzed daily grew at the same rate. The concentration of anthocyanin differed, being lower in cells at 5×10(-5)M NAA. After 6 days there was a rapid increase in pigment formation, and by 14 days the concentration of anthocyanin in cells in the two media were the same.When the cells were cultured in 3.5-1 phytostats and 600 ml culture was replaced daily with 600 ml medium, anthocyanins accumulated when the NAA concentration was 10(-7)M but not at 10(-6)M. At 10(-7)M NAA the cultures remained pigmented and anthocyanin accumulation could be restored after a temporary loss of pigmentation due to an earlier, higher auxin concentration. The changes in concentration of phenylalanine ammonia-lyase did not correspond to changes in the rate of anthocyanin accumulation. The enzyme showed a maximum 4-8 h after inoculation of cells to fresh media. Cells grown on agar plates and rich in anthocyanin were observed to divide without loss of pigmentation, demonstrating that cells differentiated with respect to anthocyanin production undergo mitosis.

  19. Anthocyanins increase low-density lipoprotein and plasma cholesterol and do not reduce atherosclerosis in Watanabe Heritable Hyperlipidemic rabbits

    DEFF Research Database (Denmark)

    Nielsen, I. L. F.; Rasmussen, S.E.; Mortensen, Alicja

    2005-01-01

    Anthocyanin-rich beverages have shown beneficial effects on coronary heart disease in epidemiological and intervention studies. In the present study, we investigated the effect of black currant anthocyanins on atherosclerosis. Watanabe Heritable Hyperlipidemic rabbits (n = 61) were fed either...... a purified anthocyanin fraction front black currants, a black currant juice, probucol or control diet for 16 weeks. Purified anthocyanins significantly increased plasma cholesterol and low-density lipoprotein (LDL) cholesterol. Intake of black currant juice had no effect on total plasma cholesterol......, but lowered very-low-density lipoprotein (VLDL) cholesterol significantly. There were no significant effects of either purified anthocyanins or black currant juice on aortic cholesterol or development of atherosclerosis after 16 weeks. Probucol had no effect on plasma cholesterol but significantly lowered...

  20. ANTHOCYANINS ALIPHATIC ALCOHOLS EXTRACTION FEATURES

    Directory of Open Access Journals (Sweden)

    P. N. Savvin

    2015-01-01

    Full Text Available Anthocyanins red pigments that give color a wide range of fruits, berries and flowers. In the food industry it is widely known as a dye a food additive E163. To extract from natural vegetable raw materials traditionally used ethanol or acidified water, but in same technologies it’s unacceptable. In order to expand the use of anthocyanins as colorants and antioxidants were explored extracting pigments alcohols with different structures of the carbon skeleton, and the position and number of hydroxyl groups. For the isolation anthocyanins raw materials were extracted sequentially twice with t = 60 C for 1.5 hours. The evaluation was performed using extracts of classical spectrophotometric methods and modern express chromaticity. Color black currant extracts depends on the length of the carbon skeleton and position of the hydroxyl group, with the alcohols of normal structure have higher alcohols compared to the isomeric structure of the optical density and index of the red color component. This is due to the different ability to form hydrogen bonds when allocating anthocyanins and other intermolecular interactions. During storage blackcurrant extracts are significant structural changes recoverable pigments, which leads to a significant change in color. In this variation, the stronger the higher the length of the carbon skeleton and branched molecules extractant. Extraction polyols (ethyleneglycol, glycerol are less effective than the corresponding monohydric alcohols. However these extracts saved significantly higher because of their reducing ability at interacting with polyphenolic compounds.

  1. Classification of fruits based on anthocyanin types and relevance to their health effects.

    Science.gov (United States)

    Fang, Jim

    2015-01-01

    Anthocyanins are a group of water-soluble pigments that confer the blue, purple, and red color to many fruits. Anthocyanin-rich fruits can be divided into three groups based on the types of aglycones of their anthocyanins: pelargonidin group, cyanidin/peonidin group, and multiple anthocyanidins group. Some fruits contain a major anthocyanin type and can serve as useful research tools. Cyanidin glycosides and peonidin glycosides can be metabolically converted to each other by methylation and demethylation. Both cyanidin and peonidin glycosides can be metabolized to protocatechuic acid and vanillic acid. Pelargonidin-3-glucoside is metabolized to 4-hydroxybenoic acid. On the other hand, phenolic acid metabolites of delphinidin, malvidin, and petunidin glycosides are unstable and can be further fragmented into smaller molecules. A literature review indicates berries with higher cyanidin content, such as black raspberries, chokeberries, and bilberries are more likely to produce an antiinflammatory effect. This observation seems to be consistent with the hypothesis that one or more stable phenolic acid metabolites contribute to the antiinflammatory effects of anthocyanin-rich fruits. More studies are needed before we can conclude that fruits rich in cyanidin, peonidin, or pelargonidin glycosides have better antiinflammatory effects. Additionally, fruit polyphenols other than anthocyanins could contribute to their antiinflammatory effects. Furthermore, blueberries could exert their health effects with other mechanisms such as improving intestinal microbiota composition. In summary, this classification system can facilitate our understanding of the absorption and metabolic processes of anthocyanins and the health effects of different fruits. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  2. Influence of different extracts addition on total phenols, anthocyanin content and antioxidant activity of blackberry juice during storage

    Directory of Open Access Journals (Sweden)

    Blanka Bilić

    2011-01-01

    Full Text Available The aim of this study was investigation of influence of different extracts addition on total phenols, anthocyanin content, antioxidant activity and percent of polymeric colour of blackberry juice during storage of 52 days at 4 °C. Anthocyanin content of control sample (blackberry juice without extracts addition was 149.91 mg/L. Samples with addition of extracts (olive leaf, pine bark PE 5:1, pine bark PE 95 %, green tea, red wine PE 30 %, red wine PE 4:1 and bioflavonoids had higher anthocyanin content (from 152.42 to 161.19 mg/L in comparison to control sample. Sample with addition of bioflavonoids had the highest anthocyanin content. Samples with addition of extracts had much higher total phenol content and antioxidant activity than control sample, what was expected since extracts are rich in phenols. During storage decrease of phenols, anthocyanins and antioxidant activity occurred in higher or lesser extent, depending on extract type addition. Anthocyanin content in control sample was 119.85 mg/L. Samples with addition of bioflavonoids, olive leaf, pine bark PE 5:1 and red wine PE 4:1 had lower (from 103.44 to 118.84 mg/L, while other samples had higher (from 131.99 to 135.57 mg/L anthocyanin content than control sample. After storage, decrease of anthocyanins was followed with increase of percent of polymeric colour, with exception of samples with addition of green tea.

  3. Tissue distribution of anthocyanins in rats fed a blackberry anthocyanin-enriched diet.

    Science.gov (United States)

    Felgines, Catherine; Texier, Odile; Garcin, Pauline; Besson, Catherine; Lamaison, Jean-Louis; Scalbert, Augustin

    2009-09-01

    Anthocyanins are natural dietary pigments that could be involved in various health effects. The aim of this study was to investigate the distribution of anthocyanins to various organs (bladder, prostate, testes, heart and adipose tissue) in rats fed with a blackberry anthocyanin-enriched diet for 12 days. Identification and quantification of anthocyanins were carried out by HPLC-DAD. The urinary excretion of total anthocyanins (native anthocyanins and their metabolites) was low (0.20 +/- 0.03%, n = 8). Proportions of anthocyanin derivatives (methylated anthocyanins and glucurono-conjugated derivatives) differed according to the organ considered. The bladder contained the highest levels of anthocyanins followed by the prostate. Prostate, testes and heart contained native cyanidin 3-glucoside and a small proportion of cyanidin monoglucuronide. Cyanidin 3-glucoside and methylated derivatives were present in adipose tissue. Thus, anthocyanin feeding in rats resulted in a wide distribution of anthocyanin derivatives to several organs. Identification of target tissues of anthocyanins may then help to understand the mechanisms of action of anthocyanins in vivo.

  4. Anthocyanins, antioxidative, and antimicrobial properties of American cranberry (Vaccinium macrocarpon Ait.) and their press cakes.

    Science.gov (United States)

    Viskelis, P; Rubinskiene, M; Jasutiene, I; Sarkinas, A; Daubaras, R; Cesoniene, L

    2009-03-01

    Amounts of total phenolics, anthocyanins, and ascorbic acid in 4 American cranberry varieties harvested at 4 stages of maturity were measured. The larger amount of phenolic compounds was found in berries of "Black Veil" cultivar (504 mg/100 g) at II stage of maturity. Significantly larger amounts of anthocyanins were determined in the overripe berries of the cultivars "Ben Lear" and "Black Veil." The amount of ascorbic acid in berries increased during ripening from I to III stage, and slightly decreased in the overripe berries. The biggest quantities of ascorbic acid were found in the ripe berries of "Ben Lear" cultivar (15.8 mg/100 g). The distribution of anthocyanins pigments was determined by HPLC-UV/MS in mature berries. The composition of individual anthocyanins in berries was quite similar in all the studied cranberry cultivars. While skins of cranberries are rich in anthocyanins and other phenolic compounds, the extracts of the by-products of cranberries juice-berry cakes, were analyzed and obtained results were compared with the properties of extracts made from whole berries. The anthocyanins and total phenolics content, radical scavenging activity, antimicrobial activity of the whole berries, and their press cakes extracts were measured. All investigated extracts from berries and their press cakes showed good radical scavenging activity and revealed antimicrobial properties. It was found that Bacillus cereus (ATCC 10876) and Micrococcus luteus (ATCC 9341) were the most sensitive among 10 tested Gram-negative and Gram-positive bacteria.

  5. Anthocyanin Management in Fruits by Fertilization.

    Science.gov (United States)

    Jezek, Mareike; Zörb, Christian; Merkt, Nikolaus; Geilfus, Christoph-Martin

    2018-01-31

    Anthocyanins are water-soluble vacuolar plant pigments that are mainly synthesized in epidermal layers and the flesh of fruits such as apples, cherries, grapes, and other berries. Because of their attractive red to purple coloration and their health-promoting potential, anthocyanins are significant determinants for the quality and market value of fruits and fruit-derived products. In crops, anthocyanin accumulation in leaves can be caused by nutrient deficiency which is usually ascribed to insufficient nitrogen or phosphorus fertilization. However, it is a little-known fact that the plant's nutrient status also impacts anthocyanin synthesis in fruits. Hence, strategic nutrient supply can be a powerful tool to modify the anthocyanin content and consequently the quality and market value of important agricultural commodities. Here we summarize the current knowledge of the influence of plant nutrients on anthocyanin synthesis in fruits of major global market value and discuss the underlying cellular processes that integrate nutrient signaling with fruit anthocyanin formation. It is highlighted that fertilization that is finely tuned in amount and timing has the potential to positively influence the fruit quality by regulating anthocyanin levels. We outline new approaches to enrich plant based foods with health-promoting anthocyanins.

  6. Processing and storage effects on monomeric anthocyanins, percent polymeric color, and antioxidant capacity of processed blackberry products.

    Science.gov (United States)

    Hager, Tiffany J; Howard, Luke R; Prior, Ronald L

    2008-02-13

    Blackberries are a rich source of polyphenolics, particularly anthocyanins, that may contribute to the reduced risk of chronic disease; however, as with most berries, the fresh fruit are only seasonally available. With most of the blackberries consumed as frozen or in thermally processed forms after long-term storage, the purpose of this study was to evaluate the effects of processing and 6 months of storage on the anthocyanins and antioxidant capacity of blackberries that were individually quick-frozen (IQF), canned-in-syrup, canned-in-water, pureed, and juiced (clarified and nonclarified). Monomeric anthocyanins, percent polymeric color, and antioxidant capacity by oxygen radical absorbance capacity (ORAC FL) and photochemiluminescence (PCL) were determined postprocessing (1 day) and after 1, 3, and 6 months of storage. Processing resulted in increases in polymeric color values (up to 7%) and losses in monomeric anthocyanins (up to 65%). For most products, processing also resulted in losses in antioxidant capacity (by ORAC FL and PCL). Storage at 25 degrees C of all processed products resulted in dramatic losses in monomeric anthocyanins with as much as 75% losses of anthocyanins throughout storage, which coincided with marked increases of percent polymeric color values of these products over 6 months of storage. There were no changes in ORAC FL or PCL for processed products throughout long-term storage. No significant changes in antioxidant capacity or anthocyanin content were observed in IQF fruit during long-term storage at -20 degrees C.

  7. Sucrose-induced anthocyanin accumulation in vegetative tissue of Petunia plants requires anthocyanin regulatory transcription factors.

    Science.gov (United States)

    Ai, Trinh Ngoc; Naing, Aung Htay; Arun, Muthukrishnan; Lim, Sun-Hyung; Kim, Chang Kil

    2016-11-01

    The effects of three different sucrose concentrations on plant growth and anthocyanin accumulation were examined in non-transgenic (NT) and transgenic (T 2 ) specimens of the Petunia hybrida cultivar 'Mirage rose' that carried the anthocyanin regulatory transcription factors B-Peru+mPAP1 or RsMYB1. Anthocyanin accumulation was not observed in NT plants in any treatments, whereas a range of anthocyanin accumulation was observed in transgenic plants. The anthocyanin content detected in transgenic plants expressing the anthocyanin regulatory transcription factors (B-Peru+mPAP1 or RsMYB1) was higher than that in NT plants. In addition, increasing sucrose concentration strongly enhanced anthocyanin content as shown by quantitative real-time polymerase chain reaction (qRT-PCR) analysis, wherein increased concentrations of sucrose enhanced transcript levels of the transcription factors that are responsible for the induction of biosynthetic genes involved in anthocyanin synthesis; this pattern was not observed in NT plants. In addition, sucrose affected plant growth, although the effects were different between NT and transgenic plants. Taken together, the application of sucrose could enhance anthocyanin production in vegetative tissue of transgenic Petunia carrying anthocyanin regulatory transcription factors, and this study provides insights about interactive effects of sucrose and transcription factors in anthocyanin biosynthesis in the transgenic plant. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Effects of a high fat meal matrix and protein complexation on the bioaccessibility of blueberry anthocyanins using the TNO gastrointestinal model (TIM-1).

    Science.gov (United States)

    Ribnicky, David M; Roopchand, Diana E; Oren, Andrew; Grace, Mary; Poulev, Alexander; Lila, Mary Ann; Havenaar, Robert; Raskin, Ilya

    2014-01-01

    The TNO intestinal model (TIM-1) of the human upper gastrointestinal tract was used to compare intestinal absorption/bioaccessibility of blueberry anthocyanins under different digestive conditions. Blueberry polyphenol-rich extract was delivered to TIM-1 in the absence or presence of a high-fat meal. HPLC analysis of seventeen anthocyanins showed that delphinidin-3-glucoside, delphinidin-3-galactoside, delphinidin-3-arabinoside and petunidin-3-arabinoside were twice as bioaccessible in fed state, whilst delphinidin-3-(6″-acetoyl)-glucoside and malvidin-3-arabinoside were twice as bioaccessible under fasted conditions, suggesting lipid-rich matrices selectively effect anthocyanin bioaccessibility. TIM-1 was fed blueberry juice (BBJ) or blueberry polyphenol-enriched defatted soybean flour (BB-DSF) containing equivalent amounts of free or DSF-sorbed anthocyanins, respectively. Anthocyanin bioaccessibility from BB-DSF (36.0±10.4) was numerically, but not significantly, greater than that from BBJ (26.3±10.3). Ileal efflux samples collected after digestion of BB-DSF contained 2.8-fold more anthocyanins than same from BBJ, suggesting that protein-rich DSF protects anthocyanins during transit through upper digestive tract for subsequent colonic delivery/metabolism. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Lipophilization and MS characterization of the main anthocyanins purified from hibiscus flowers.

    Science.gov (United States)

    Grajeda-Iglesias, Claudia; Salas, Erika; Barouh, Nathalie; Baréa, Bruno; Figueroa-Espinoza, Maria Cruz

    2017-09-01

    Hibiscus sabdariffa flowers represent an interesting source of anthocyanins, one of the most important plant pigments, which are responsible of the intense red color of the calyces, and have potential as natural colorants for food applications. Nevertheless, anthocyanins are highly hydrosoluble and unstable compounds. On this basis, the aim of this work was to increase the lipophilicity of the hibiscus anthocyanins by lipophilization, in order to obtain amphiphilic colorants, which could be easily incorporated in lipid-rich food matrices. Octanoyl derivatives of delphinidin-3-O-sambubioside and cyanidin-3-O-sambubioside were chemically obtained for the first time, and characterized by means of HPLC-ESI-MS data. Copyright © 2017. Published by Elsevier Ltd.

  10. The Immunomodulation Effect of Aronia Extract Lacks Association with Its Antioxidant Anthocyanins

    DEFF Research Database (Denmark)

    Mojsoska, Biljana; Xu, Jin

    2013-01-01

    was developed to obtain high-purity anthocyanins in the extract. The antioxidative activity of the extract, the anthocyanin-rich fraction (AF) was determined by 1,1-diphenyl-2-picrylhydrazyl radical and ferric-reducing ability of plasma along with resveratrol as a reference. The immunomodulation properties were......, whereas AF only had a slight effect in reducing IL-10. These results demonstrated that there was no major relationship between the antioxidative effect and immunomodulation capacities of AF and resveratrol. The immunomodulatory activity of the extract is associated with bioactive compounds in Aronia other......Polyphenols comprise a diverse group of molecules with antioxidative and anti-inflammatory activities. To compare the antioxidative and anti-inflammatory capacity of Aronia melanocarpa berries (chokeberries), recognized for their high content of anthocyanins, a noncytotoxic isolation method...

  11. Photoprotection and the photophysics of acylated anthocyanins.

    Science.gov (United States)

    da Silva, Palmira Ferreira; Paulo, Luísa; Barbafina, Adrianna; Eisei, Fausto; Quina, Frank H; Maçanita, António L

    2012-03-19

    The proposed role of anthocyanins in protecting plants against excess solar radiation is consistent with the occurrence of ultrafast (5-25 ps) excited-state proton transfer as the major de-excitation pathway of these molecules. However, because natural anthocyanins absorb mainly in the visible region of the spectra, with only a narrow absorption band in the UV-B region, this highly efficient deactivation mechanism would essentially only protect the plant from visible light. On the other hand, ground-state charge-transfer complexes of anthocyanins with naturally occurring electron-donor co-pigments, such as hydroxylated flavones, flavonoids, and hydroxycinnamic or benzoic acids, do exhibit high UV-B absorptivities that complement that of the anthocyanins. In this work, we report a comparative study of the photophysics of the naturally occurring anthocyanin cyanin, intermolecular cyanin-coumaric acid complexes, and an acylated anthocyanin, that is, cyanin with a pendant coumaric ester co-pigment. Both inter- and intramolecular anthocyanin-co-pigment complexes are shown to have ultrafast energy dissipation pathways comparable to those of model flavylium cation-co-pigment complexes. However, from the standpoint of photoprotection, the results indicate that the covalent attachment of co-pigment molecules to the anthocyanin represents a much more efficient strategy by providing the plant with significant UV-B absorption capacity and at the same time coupling this absorption to efficient energy dissipation pathways (ultrafast internal conversion of the complexed form and fast energy transfer from the excited co-pigment to the anthocyanin followed by adiabatic proton transfer) that avoid net photochemical damage. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Transcript profiling of structural genes involved in cyanidin-based anthocyanin biosynthesis between purple and non-purple carrot (Daucus carota L.) cultivars reveals distinct patterns.

    Science.gov (United States)

    Xu, Zhi-Sheng; Huang, Ying; Wang, Feng; Song, Xiong; Wang, Guang-Long; Xiong, Ai-Sheng

    2014-10-01

    Carrots (Daucus carota L.) are among the 10 most economically important vegetable crops grown worldwide. Purple carrot cultivars accumulate rich cyanidin-based anthocyanins in a light-independent manner in their taproots whereas other carrot color types do not. Anthocyanins are important secondary metabolites in plants, protecting them from damage caused by strong light, heavy metals, and pathogens. Furthermore, they are important nutrients for human health. Molecular mechanisms underlying anthocyanin accumulation in purple carrot cultivars and loss of anthocyanin production in non-purple carrot cultivars remain unknown. The taproots of the three purple carrot cultivars were rich in anthocyanin, and levels increased during development. Conversely, the six non-purple carrot cultivars failed to accumulate anthocyanins in the underground part of taproots. Six novel structural genes, CA4H1, CA4H2, 4CL1, 4CL2, CHI1, and F3'H1, were isolated from purple carrots. The expression profiles of these genes, together with other structural genes known to be involved in anthocyanin biosynthesis, were analyzed in three purple and six non-purple carrot cultivars at the 60-day-old stage. PAL3/PAL4, CA4H1, and 4CL1 expression levels were higher in purple than in non-purple carrot cultivars. Expression of CHS1, CHI1, F3H1, F3'H1, DFR1, and LDOX1/LDOX2 was highly correlated with the presence of anthocyanin as these genes were highly expressed in purple carrot taproots but not or scarcely expressed in non-purple carrot taproots. This study isolated six novel structural genes involved in anthocyanin biosynthesis in carrots. Among the 13 analyzed structural genes, PAL3/PAL4, CA4H1, 4CL1, CHS1, CHI1, F3H1, F3'H1, DFR1, and LDOX1/LDOX2 may participate in anthocyanin biosynthesis in the taproots of purple carrot cultivars. CHS1, CHI1, F3H1, F3'H1, DFR1, and LDOX1/LDOX2 may lead to loss of light-independent anthocyanin production in orange and yellow carrots. These results suggest that

  13. Anthocyanin determination in blueberry extracts from various cultivars and their antiproliferative and apoptotic properties in B16-F10 metastatic murine melanoma cells.

    Science.gov (United States)

    Bunea, Andrea; Rugină, Dumitriţa; Sconţa, Zoriţa; Pop, Raluca M; Pintea, Adela; Socaciu, Carmen; Tăbăran, Flaviu; Grootaert, Charlotte; Struijs, Karin; VanCamp, John

    2013-11-01

    Blueberry consumption is associated with health benefits contributing to a reduced risk for cardiovascular disease, diabetes and cancer. The aim of this study was to determine the anthocyanin profile of blueberry extracts and to evaluate their effects on B16-F10 metastatic melanoma murine cells. Seven blueberry cultivars cultivated in Romania were used. The blueberry extracts were purified over an Amberlite XAD-7 resin and a Sephadex LH-20 column, in order to obtain the anthocyanin rich fractions (ARF). The antioxidant activity of the ARF of all cultivars was evaluated by ABTS, CUPRAC and ORAC assays. High performance liquid chromatography followed by electrospray ionization mass spectrometry (HPLC-ESI-MS) was used to identify and quantify individual anthocyanins. The anthocyanin content of tested cultivars ranged from 101.88 to 195.01 mg malvidin-3-glucoside/100g fresh weight. The anthocyanin rich-fraction obtained from cultivar Torro (ARF-T) was shown to have the highest anthocyanin content and antioxidant activity, and inhibited B16-F10 melanoma murine cells proliferation at concentrations higher than 500 μg/ml. In addition, ARF-T stimulated apoptosis and increased total LDH activity in metastatic B16-F10 melanoma murine cells. These results indicate that the anthocyanins from blueberry cultivar could be used as a chemopreventive or adjuvant treatment for metastasis control. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Anthocyanins influence tannin-cell wall interactions.

    Science.gov (United States)

    Bautista-Ortín, Ana Belén; Martínez-Hernández, Alejandro; Ruiz-García, Yolanda; Gil-Muñoz, Rocío; Gómez-Plaza, Encarna

    2016-09-01

    The rate of tannin extraction was studied in a vinification of red grapes and the results compared with another vinification made with white grapes fermented as for typical red wine, in the presence of skins and seeds. Even though the grapes presented a quite similar skin and seed tannin content, the differences in tannin concentration between both vinifications was very large, despite the fact that the only apparent difference between the phenolic composition of both wines was the anthocyanin content. This suggests that anthocyanins play an important role in tannin extractability, perhaps because they affect the extent of the tannin-cell wall interaction, a factor that largely controls the resulting quantity of tannins in wines. To confirm this observation, the effect of anthocyanins on the tannin extractability from grape seeds and skin and on the interaction between tannins and grape cell walls suspended in model solutions were studied. The results indicated that anthocyanins favored skin and seed tannin extraction and that there is a competition for the adsorption sites between anthocyanins and tannins that increases the tannin content when anthocyanins are present. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Inheritance analysis and mapping of quantitative trait loci (QTL controlling individual anthocyanin compounds in purple barley (Hordeum vulgare L. grains.

    Directory of Open Access Journals (Sweden)

    Xiao-Wei Zhang

    Full Text Available Anthocyanin-rich barley can have great potential in promoting human health and in developing nutraceuticals and functional foods. As different anthocyanin compounds have different antioxidant activities, breeding cultivars with pre-designed anthocyanin compositions could be highly desirable. Working toward this possibility, we assessed and reported for the first time the genetic control of individual anthocyanin compounds in barley. Of the ten anthocyanins assessed, two, peonidin-3-glucoside (P3G and cyanidin-3-glucoside (C3G, were major components in the purple pericarp barley genotype RUSSIA68. Quantitative trait locus (QTL mapping showed that both anthocyanin compounds were the interactive products of two loci, one located on chromosome arm 2HL and the other on 7HS. However, the two different anthocyanin components seem to be controlled by different interactions between the two loci. The effects of the 7HS locus on P3G and C3G were difficult to detect without removing the effect of the 2HL locus. At least one copy of the 2HL alleles from the purple pericarp parent was required for the synthesis of P3G. This does not seem to be the case for the production of C3G which was produced in each of all the different allele combinations between the two loci. Typical maternal effect was also observed in the inheritance of purple pericarp grains in barley. The varied values of different compounds, coupled with their different genetic controls, highlight the need for targeting individual anthocyanins in crop breeding and food processing.

  16. Inheritance analysis and mapping of quantitative trait loci (QTL) controlling individual anthocyanin compounds in purple barley (Hordeum vulgare L.) grains.

    Science.gov (United States)

    Zhang, Xiao-Wei; Jiang, Qian-Tao; Wei, Yu-Ming; Liu, Chunji

    2017-01-01

    Anthocyanin-rich barley can have great potential in promoting human health and in developing nutraceuticals and functional foods. As different anthocyanin compounds have different antioxidant activities, breeding cultivars with pre-designed anthocyanin compositions could be highly desirable. Working toward this possibility, we assessed and reported for the first time the genetic control of individual anthocyanin compounds in barley. Of the ten anthocyanins assessed, two, peonidin-3-glucoside (P3G) and cyanidin-3-glucoside (C3G), were major components in the purple pericarp barley genotype RUSSIA68. Quantitative trait locus (QTL) mapping showed that both anthocyanin compounds were the interactive products of two loci, one located on chromosome arm 2HL and the other on 7HS. However, the two different anthocyanin components seem to be controlled by different interactions between the two loci. The effects of the 7HS locus on P3G and C3G were difficult to detect without removing the effect of the 2HL locus. At least one copy of the 2HL alleles from the purple pericarp parent was required for the synthesis of P3G. This does not seem to be the case for the production of C3G which was produced in each of all the different allele combinations between the two loci. Typical maternal effect was also observed in the inheritance of purple pericarp grains in barley. The varied values of different compounds, coupled with their different genetic controls, highlight the need for targeting individual anthocyanins in crop breeding and food processing.

  17. Anthocyanin accumulation and molecular analysis of anthocyanin biosynthesis-associated genes in eggplant (Solanum melongena L.).

    Science.gov (United States)

    Zhang, Yanjie; Hu, Zongli; Chu, Guihua; Huang, Cheng; Tian, Shibing; Zhao, Zhiping; Chen, Guoping

    2014-04-02

    Eggplant (Solanum melongena L.) is an edible fruit vegetable cultivated and consumed worldwide. The purple eggplant is more eye-catching and popular for the health-promoting anthocyanins contained in the fruit skin. Two kinds of anthocyanin were separated and identified from purple cultivar (Zi Chang) by high-performance liquid chromatography-electrospray ionization tandem mass spectrometry. To investigate the molecular mechanisms of anthocyanin accumulation in eggplant, the transcripts of anthocyanin biosynthetic and regulatory genes were analyzed in the fruit skin and the flesh of the purple cultivar and the white cultivar (Bai Xue). Compared with the other tissues, SmMYB1 and all anthocyanin biosynthetic genes except PAL were dramatically upregulated in the fruit skin of the purple cultivar. Overexpression of SmMYB1 activated abundant anthocyanin accumulation in the regenerating shoots of eggplant. These results prove that transcriptional activation of SmMYB1 accounts for constitutive upregulation of most anthocyanin biosynthetic genes and the onset of anthocyanin biosynthesis in the purple cultivar.

  18. Identification of Anthocyanin Composition and Functional Analysis of an Anthocyanin Activator in Solanum nigrum Fruits.

    Science.gov (United States)

    Wang, Shaoli; Chu, Zhaohui; Ren, Mingxing; Jia, Ru; Zhao, Changbao; Fei, Dan; Su, Hao; Fan, Xiaoqi; Zhang, Xiaotian; Li, Yang; Wang, Yingzi; Ding, Xinhua

    2017-05-25

    Solanum nigrum fruits have been conventionally used in beverages due to their nutritional substances such as minerals, vitamins, amino acids, proteins, sugars, polyphenols, and anthocyanins. The characterization of components and regulatory mechanism of anthocyanins in S. nigrum fruits have rarely been reported. In this study, we determined that the peel and flesh of S. nigrum fruits shared similar HPLC profiles but different contents and total antioxidant activities for anthocyanins. After an efficient purification method, mainly including extraction with pH 1.0 distilled water and then desorption with pH 1.0 95% ethanol after a DM-130 resin adsorption step to obtain more pure anthocyanin extracts, the purity of anthocyanins extracted from S. nigrum fruits reached 56.1%. Moreover, eight anthocyanins from S. nigrum fruit were identified with HPLC-MS/MS for the first time. A typical R2R3-MYB transcription factor gene, SnMYB , was also cloned for the first time by rapid amplification of cDNA ends (RACE)-PCR from S. nigrum. Moreover, the contents of anthocyanins were shown to correlate well ( r = 0.93) with the expression levels of SnMYB gene during the fruit's developmental stages. Most significantly, SnMYB gene successfully produced high anthocyanin content (1.03 mg/g) when SnMYB gene was transiently expressed in tobacco leaves. Taken together, S. nigrum fruits are a promising resource for anthocyanin extraction, and SnMYB gene is an activator that positively regulates anthocyanin biosynthesis in S. nigrum.

  19. Study of the mass spectrometric behaviors of anthocyanins in negative ionization mode and its applications for characterization of anthocyanins and non-anthocyanin polyphenols.

    Science.gov (United States)

    Sun, Jianghao; Lin, Long-ze; Chen, Pei

    2012-05-15

    Traditionally, anthocyanin analysis in mass spectrometry is carried out in the positive ionization mode only. A study of the mass spectrometric behaviors of anthocyanins in the negative ionization mode revealed interesting characteristics that was not previously reported. It can be used to differentiate anthocyanins from other non-anthocyanin polyphenols. An ultra-high-performance liquid chromatography with high-resolution mass spectrometry (U-HPLC/HRMS) method was developed. The method used multiple-stage mass fragmentation in both the negative and positive ion modes. The whole cycle time of the new method is 1.8 s for two full scans and six data-dependent scans. The new strategy found, in the negative ionization mode, a series of characteristic ions, e.g. [M-2H](-), [M-2H  +  H(2)O](-), formic acid adducts, and doubly charged ions were observed for the MS analysis of anthocyanins. The characteristic ions can be used for identification and differentiation of anthocyanins and non-anthocyanin phenolic compounds. Comprehensive studies were performed on the differentiation of anthocyanins and non-anthocyanin polyphenols in blueberry (Vaccinium cyanococcus), Hongcaitai (Brassica compestris L. var. purpurea Bailey), and red radish (Raphanus sativus var. longipinnatus 'Shinrimei'). The data generated from a single LC run enables rapid and reliable differentiation and identification of anthocyanins and non-anthocyanins in botanicals and foods. Published 2012. This article is a US Government work and is in the public domain in the USA.

  20. Stabilization of anthocyanins in blackberry juice by glutathione fortification.

    Science.gov (United States)

    Stebbins, Nathan B; Howard, Luke R; Prior, Ronald L; Brownmiller, Cindi; Mauromoustakos, Andy

    2017-10-18

    Blackberry anthocyanins provide attractive color and antioxidant activity. However, anthocyanins degrade during juice processing and storage, so maintaining high anthocyanin concentrations in berry juices may lead to greater antioxidant and health benefits for the consumer. This study evaluated potential additives to stabilize anthocyanins during blackberry juice storage. The anthocyanin stabilizing agents used were: glutathione, galacturonic acid, diethylenetriaminepentaacetic acid and tannic acid, which were added at a level of 500 mg L -1 . Juice anthocyanin, flavonol, and ellagitannin content and percent polymeric color were measured over five weeks of accelerated storage at 30 °C. Glutathione had the greatest protective effect on total anthocyanins and polymeric color. Therefore a second study was performed with glutathione in combination with lipoic and ascorbic acids in an effort to use antioxidant recycling to achieve a synergistic effect. However, the antioxidant recycling system had no protective effect relative to glutathione alone. Glutathione appears to be a promising blackberry juice additive to protect against anthocyanin degradation during storage.

  1. Stability-increasing effects of anthocyanin glycosyl acylation.

    Science.gov (United States)

    Zhao, Chang-Ling; Yu, Yu-Qi; Chen, Zhong-Jian; Wen, Guo-Song; Wei, Fu-Gang; Zheng, Quan; Wang, Chong-De; Xiao, Xing-Lei

    2017-01-01

    This review comprehensively summarizes the existing knowledge regarding the chemical implications of anthocyanin glycosyl acylation, the effects of acylation on the stability of acylated anthocyanins and the corresponding mechanisms. Anthocyanin glycosyl acylation commonly refers to the phenomenon in which the hydroxyl groups of anthocyanin glycosyls are esterified by aliphatic or aromatic acids, which is synthetically represented by the acylation sites as well as the types and numbers of acyl groups. Generally, glycosyl acylation increases the in vitro and in vivo chemical stability of acylated anthocyanins, and the mechanisms primarily involve physicochemical, stereochemical, photochemical, biochemical or environmental aspects under specific conditions. Additionally, the acylation sites as well as the types and numbers of acyl groups influence the stability of acylated anthocyanins to different degrees. This review could provide insight into the optimization of the stability of anthocyanins as well as the application of suitable anthocyanins in food, pharmaceutical and cosmetic industries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Regulation of anthocyanin biosynthesis in peach fruits.

    Science.gov (United States)

    Rahim, Md Abdur; Busatto, Nicola; Trainotti, Livio

    2014-11-01

    MYB10.1 and MYB10.3, with bHLH3, are the likely regulators of anthocyanin biosynthesis in peach fruit. MYB10.1/2/3 forms a cluster on the same genomic fragment where the Anther color ( Ag ) trait is located. Anthocyanins are bioactive compounds responsible for the pigmentation of many plant parts such as leaves, flowers, fruits and roots, and have potential benefits to human health. In peach [Prunus persica (L.) Batsch], peel color is a key determinant for fruit quality and is regulated by flavonoids including anthocyanins. The R2R3 MYB transcription factors (TFs) control the expression of anthocyanin biosynthetic genes with the help of co-activators belonging to the basic-helix-loop-helix (bHLH) and WD40 repeat families. In the peach genome six MYB10-like and three bHLH-like TFs were identified as candidates to be the regulators of the anthocyanin accumulation, which, in yellow flesh fruits, is highest in the peel, abundant in the part of the mesocarp surrounding the stone and lowest in the mesocarp. The expression of MYB10.1 and MYB10.3 correlates with anthocyanin levels of different peach parts. They also have positive correlation with the expression of key structural genes of the anthocyanin pathway, such as CHS, F3H, and UFGT. Functions of peach MYB10s were tested in tobacco and shown to activate key genes in the anthocyanin pathway when bHLHs were co-expressed as partners. Overexpression of MYB10.1/bHLH3 and MYB10.3/bHLH3 activated anthocyanin production by up-regulating NtCHS, NtDFR and NtUFGT while other combinations were not, or much less, effective. As three MYB10 genes are localized in a genomic region where the Ag trait, responsible for anther pigmentation, is localized, it is proposed they are key determinant to introduce new peach cultivars with higher antioxidant level and pigmented fruit.

  3. Microencapsulation optimization of natural anthocyanins with maltodextrin, gum Arabic and gelatin.

    Science.gov (United States)

    Akhavan Mahdavi, Sahar; Jafari, Seid Mahdi; Assadpoor, Elham; Dehnad, Danial

    2016-04-01

    The barberry (Berberis vulgaris) extract which is a rich source of anthocyanins was used for spray drying encapsulation with three different wall materials, i.e., combination of maltodextrin and gum Arabic (MD+GA), maltodextrin and gelatin (MD+GE), and maltodextrin (MD). Response Surface Methodology (RSM) was applied for optimization of microencapsulation efficiency and physical properties of encapsulated powders considering wall material type as well as different ratios of core to wall materials as independent variables. Physical characteristics of spray-dried powders were investigated by further analyses of moisture content, hygroscopicity, degree of caking, solubility, bulk and absolute density, porosity, flowability and microstructural evaluation of encapsulated powders. Our results indicated that samples produced with MD+GA as wall materials represented the highest process efficiency and best powder quality; the optimum conditions of microencapsulation process for barberry anthocyanins were found to be the wall material content and anthocyanin load of 24.54% and 13.82%, respectively. Under such conditions, the microencapsulation efficiency (ME) of anthocyanins could be as high as 92.83%. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. On the bioavailability of flavanols and anthocyanins: flavanol-anthocyanin dimers.

    Science.gov (United States)

    Fernandes, Iva; Nave, Frederico; Gonçalves, Rui; de Freitas, Victor; Mateus, Nuno

    2012-11-15

    The bioavailability of flavanols, anthocyanins and anthocyanin-derived pigments like flavanol-anthocyanin dimers already reported to occur in food products is a major unsolved issue. The absorption of the flavanol-anthocyanin dimer (+)-catechin-(4,8)-malvidin-3-O-glucoside (Cat-Mv3glc) through Caco-2 cells was assessed by performing transepithelial transport assays. The ability of Cat-Mv3glc to cross Caco-2 cells was compared with that of malvidin-3-glucoside (Mv3glc), (+)-catechin (Cat) and procyanidin B3 (Cat-Cat), in order to evaluate the influence of some structural features on the transport efficiency. The flavanol-anthocyanin dimer was absorbed in this intestinal model although with a lower efficiency than the monomers Cat and Mv3glc. On the other hand, Cat-Mv3glc was found to cross the intestinal barrier model more significantly than Cat-Cat. This feature may be related to the presence of the glucose moiety in its structure. Overall, this study brings more insights into the bioavailability of anthocyanins and flavanols and represents the first report on the bioavailability of flavanol-anthocyanins. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Anthocyanins and their variation in red wines. II. Anthocyanin derived pigments and their color evolution.

    Science.gov (United States)

    He, Fei; Liang, Na-Na; Mu, Lin; Pan, Qiu-Hong; Wang, Jun; Reeves, Malcolm J; Duan, Chang-Qing

    2012-02-07

    Originating in the grapes, anthocyanins and their derivatives are the crucial pigments responsible for the red wine color. During wine maturation and aging, the concentration of monomeric anthocyanins declines constantly, while numerous more complex and stable anthocyanin derived pigments are formed, mainly including pyranoanthocyanins, polymeric anthocyanins produced from condensation between anthocyanin and/or flavan-3-ols directly or mediated by aldehydes. Correspondingly, their structural modifications result in a characteristic variation of color, from purple-red color in young red wines to brick-red hue of the aged. Because of the extreme complexity of chemical compounds involved, many investigations have been made using model solutions of know composition rather than wine. Thus, there is a large amount of research still required to obtain an overall perspective of the anthocyanin composition and its change with time in red wines. Future findings may well greatly revise our current interpretation of the color in red wines. This paper summarizes the most recent advances in the studies of the anthocyanins derived pigments in red wines, as well as their color evolution.

  6. Effect of fermentation and sterilization on anthocyanins in blueberry.

    Science.gov (United States)

    Nie, Qixing; Feng, Lei; Hu, Jielun; Wang, Sunan; Chen, Haihong; Huang, Xiaojun; Nie, Shaoping; Xiong, Tao; Xie, Mingyong

    2017-03-01

    Blueberry products have various health benefits due to their high content of dietary anthocyanins. The aim of this study was to investigate the impact of fermentation and sterilization on total anthocyanin content, composition and some quality attributes of blueberry puree. The blueberry puree used here was fermented for 40 h at 37 °C by Lactobacillus after sterilization. The method of ultra-performance liquid chromatography-mass spectrometry was optimized for the rapid analysis of anthocyanins. Quality attributes including pH, color, total soluble solids and viscosity were measured. A total of 21 anthocyanins and five anthocyanidins were quantified by ultra-performance liquid chromatography. Fermented blueberry had reduced total anthocyanin content (29%) and levels of individual anthocyanins compared with fresh blueberry. Total anthocyanin content was decreased 46% by sterilization, and different degradation behavior of individual anthocyanin was appeared between fermented and sterilized-fermented blueberry puree. Fermentation and sterilization decreased the total soluble solids and pH and changed color parameters, while minimally influencing viscosity. The loss of total anthocyanin content by fermentation was related to the unstable structure of blueberry anthocyanins. Anthocyanins are sensitive to temperature (>80 °C), and degradation of anthocyanins by sterilization in blueberry should be considered in the fermentation procedure. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  7. Anthocyanin content of two Hibiscus sabdariffa cultivars grown in ...

    African Journals Online (AJOL)

    Anthocyanin content of Hibiscus sabdariffa calyces was determined to compare two cultivars from Senegal called Koor and Vimto. Results showed a significant difference in terms of total anthocyanin content (TA) and relative abundance (RA) of anthocyanin species. Values of TA for Vimto were 3-fold higher than Koor's.

  8. Identification and quantification of anthocyanins in transgenic purple tomato.

    Science.gov (United States)

    Su, Xiaoyu; Xu, Jianteng; Rhodes, Davina; Shen, Yanting; Song, Weixing; Katz, Benjamin; Tomich, John; Wang, Weiqun

    2016-07-01

    Anthocyanins are natural pigments derived from the phenylpropanoid pathway. Most tomatoes produce little anthocyanins, but the transgenic purple tomato biosynthesizes a high level of anthocyanins due to expression of two transcription factors (Del and Ros1). This study was to identify and quantify anthocyanins in this transgenic tomato line. Seven anthocyanins, including two new anthocyanins [malvidin-3-(p-coumaroyl)-rutinoside-5-glucoside and malvidin-3-(feruloyl)-rutinoside-5-glucoside], were identified by LC-MS/MS. Petunidin-3-(trans-coumaroyl)-rutinoside-5-glucoside and delphinidin-3-(trans-coumaroyl)-rutinoside-5-glucoside were the most abundant anthocyanins, making up 86% of the total anthocyanins. Compared to undetectable anthocyanins in the wild type, the contents of anthocyanins in the whole fruit, peel, and flesh of the Del/Ros1-transgenic tomato were 5.2±0.5, 5.1±0.5, and 5.8±0.3g/kg dry matter, respectively. Anthocyanins were undetectable in the seeds of both wide-type and transgenic tomato lines. Such novel and high levels of anthocyanins obtained in this transgenic tomato may provide unique functional products with potential health benefits. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Genetically controlled anthocyanin synthesis in cell cultures of Matthiola incana.

    Science.gov (United States)

    Leweke, B; Forkmann, G

    1982-04-01

    Callus cultures were derived from different parts of 8 anthocyanin producing and 2 white flowering lines of the crucifer Matthiola incana. The tissue cultures of the cyanic lines were shown to produce genotype specific anthocyanin patterns, whereas in the calli of the acyanic lines no anthocyanin synthesis occured.

  10. Anthocyanin content and UVB sensitivity in Brassica rapa

    Energy Technology Data Exchange (ETDEWEB)

    Klaper, R.; Frankel, S.; Berenbaum, M.R. [Illinois Univ., Urbana, IL (United States)

    1996-06-01

    Three genotypes of rapid-cycling Brassica rapa that differ in anthocyanin content were grown in the presence and absence of elevated levels of shortwave ultraviolet (UBV, 280-325 nm) radiation. After 41 days, UVB exposure reduced leaf length and plant height of all genotypes. Plants with low levels of anthocyanin experienced a reduction in flower number twice as great as in genotypes with normal or elevated levels of anthocyanins; however, the absence of differences in flower production by genotypes with normal and elevated levels of anthocyanins suggests that factors other than anthocyanin pigmentation contribute to UVB responses in this species. (UK).

  11. Anthocyanins and Their Variation in Red Wines I. Monomeric Anthocyanins and Their Color Expression

    Directory of Open Access Journals (Sweden)

    Chang-Qing Duan

    2012-02-01

    Full Text Available Originating in the grapes, monomeric anthocyanins in young red wines contribute the majority of color and the supposed beneficial health effects related to their consumption, and as such they are recognized as one of the most important groups of phenolic metabolites in red wines. In recent years, our increasing knowledge of the chemical complexity of the monomeric anthocyanins, their stability, together with the phenomena such as self-association and copigmentation that can stabilize and enhance their color has helped to explain their color representation in red wine making and aging. A series of new enological practices were developed to improve the anthocyanin extraction, as well as their color expression and maintenance. This paper summarizes the most recent advances in the studies of the monomeric anthocyanins in red wines, emphasizing their origin, occurrence, color enhancing effects, their degradation and the effect of various enological practices on them.

  12. Anthocyanins in the bracts of Curcuma species and relationship of the species based on anthocyanin composition.

    Science.gov (United States)

    Koshioka, Masaji; Umegaki, Naoko; Boontiang, Kriangsuk; Pornchuti, Witayaporn; Thammasiri, Kanchit; Yamaguchi, Satoshi; Tatsuzawa, Fumi; Nakayama, Masayoshi; Tateishi, Akira; Kubota, Satoshi

    2015-03-01

    Five anthocyanins, delphinidin 3-O-rutinoside, cyanidin 3-O-rutinoside, petunidin 3-O-rutinoside, malvidin 3-O-glucoside and malvidin 3-O-rutinoside, were identified. Three anthocyanins, delphinidin 3-O-glucoside, cyanidin 3-O-glucoside and pelargonidin 3-O-rutinoside, were putatively identified based on C18 HPLC retention time, absorption spectrum, including λmax, and comparisons with those of corresponding standard anthocyanins, as the compounds responsible for the pink to purple-red pigmentation of the bracts of Curcuma alismatifolia and five related species. Cluster analysis based on four major anthocyanins formed two clusters. One consisted of only one species, C. alismatifolia, and the other consisted of five. Each cluster further formed sub-clusters depending on either species or habitats.

  13. [Study on esterified modification of anthocyanins by FTIR].

    Science.gov (United States)

    Lu, Xiao-rui; Lu, Jin-li; Wu, Yan-wen; Ouyang, Jie; Sun, Su-qin

    2010-01-01

    Anthocyanins are relatively abundant in vegetables and fruits, which have potential positive health effects. The role of anthocyanins as food coloring agents becomes very important because they can provide attractive bright color of many food products. Nevertheless, the instability of natural anthocyanins was a big obstacle for its usage in food as colorants. The stability of the red radish anthocyanins is significantly improved by modified esterification of the colorant. Usually, the red radish anthocyanins was composed of several components of similar structures. The major methods for determining the structures of anthocyanin colorants involve chromatographic techniques such as TLC, HPLC and HPLC-MS, which are very useful in separation and identification of the components of anthocyanins However, compared to the spectroscopic method, the chromatographic methods are usually complicated and time-consuming during separation and analysis. In the present paper, the authors seek to establish a new, rapid and economic method for the analysis of structural change before and after esterified modification of anthcyanins in view of unique macro-fingerprint characteristics of infrared spectroscopy, which could reflect the whole change of complicated mixture system. The anthocyanins from red radish was esterification-modified by reacting with succinic anhydride, and the natural and modified anthocyanins were detected by FTIR The results showed that carbonyl of succinic anhydride was connected with the hydroxyl in glucosyl rings of anthocyanins to form new esterified anthocyanins, which are more stable than the natural one and present attractive bright color as usual.

  14. Arogenate Dehydratase Isoforms Differentially Regulate Anthocyanin Biosynthesis in Arabidopsis thaliana.

    Science.gov (United States)

    Chen, Qingbo; Man, Cong; Li, Danning; Tan, Huijuan; Xie, Ye; Huang, Jirong

    2016-12-05

    Anthocyanins, a group of L-phenylalanine (Phe)-derived flavonoids, have been demonstrated to play important roles in plant stress resistance and interactions between plants and insects. Although the anthocyanin biosynthetic pathway and its regulatory mechanisms have been extensively studied, it remains unclear whether the level of Phe supply affects anthocyanin biosynthesis. Here, we investigated the roles of arogenate dehydratases (ADTs), the key enzymes that catalyze the conversion of arogenate into Phe, in sucrose-induced anthocyanin biosynthesis in Arabidopsis. Genetic analysis showed that all six ADT isoforms function redundantly in anthocyanin biosynthesis but have differential contributions. ADT2 contributes the most to anthocyanin accumulation, followed by ADT1 and ADT3, and ADT4-ADT6. We found that anthocyanin content is positively correlated with the levels of Phe and sucrose-induced ADT transcripts in seedlings. Consistently, addition of Phe to the medium could dramatically increase anthocyanin content in the wild-type plants and rescue the phenotype of the adt1 adt3 double mutant regarding the anthocyanin accumulation. Moreover, transgenic plants overexpressing ADT4, which appears to be less sensitive to Phe than overexpression of ADT2, hyperaccumulate Phe and produce elevated level of anthocyanins. Taken together, our results suggest that the level of Phe is an important regulatory factor for sustaining anthocyanin biosynthesis. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  15. Microwave-assisted extraction of anthocyanin from Chinese bayberry and its effects on anthocyanin stability

    Directory of Open Access Journals (Sweden)

    Wenkai DUAN

    2015-09-01

    Full Text Available AbstractAnthocyanins are present in high concentrations in Chinese bayberry, Myrica rubra Sieb. & Zucc. Herein, a microwave-assisted extraction was used to extract the anthocyanins from Chinese bayberry. The HPLC chromatogram of the extracts showed that the anthocyanin components were slightly hydrolysed during the extraction process. Further experiments confirmed that microwave irradiation slightly hydrolysed cyanidin-3-O-glucoside to cyanidin, but did not significantly influence the antioxidant activity of the extracts. Optimized extraction conditions for total anthocyanin content were a solid-to-liquid ratio, extraction temperature, and extraction time of 1:50, 80 °C, and 15 min, respectively. Under these conditions, the anthocyanin content was 2.95 ± 0.08 mg·g−1, and the antioxidant activity yield was 279.96 ± 0.1 μmol.·g−1 Trolox equivalent on a dry weight basis. These results indicated that microwave-assisted extraction was a highly efficient extraction method with reduced processing time. However, under some extraction conditions it could damage the anthocyanins. These results provide an important guide for the application of microwave extraction.

  16. Cancer-preventive Properties of an Anthocyanin-enriched Sweet Potato in the APCMIN Mouse Model.

    Science.gov (United States)

    Asadi, Khalid; Ferguson, Lynnette R; Philpott, Martin; Karunasinghe, Nishi

    2017-09-01

    Anthocyanin-rich foods and preparations have been reported to reduce the risk of life-style related diseases, including cancer. The SL222 sweet potato, a purple-fleshed cultivar developed in New Zealand, accumulates high levels of anthocyanins in its storage root. We examined the chemopreventative properties of the SL222 sweet potato in the C57BL/6J-APC MIN/+ (APC MIN ) mouse, a genetic model of colorectal cancer. APC MIN and C57BL/6J wild-type mice (n=160) were divided into four feeding groups consuming diets containing 10% SL222 sweet potato flesh, 10% SL222 sweet potato skin, or 0.12% ARE (Anthocyanin rich-extract prepared from SL222 sweet potato at a concentration equivalent to the flesh-supplemented diet) or a control diet (AIN-76A) for 18 weeks. At 120 days of age, the mice were anaesthetised, and blood samples were collected before the mice were sacrificed. The intestines were used for adenoma enumeration. The SL222 sweet potato-supplemented diets reduced the adenoma number in the APC MIN mice. These data have significant implications for the use of this sweet potato variant in protection against colorectal cancer.

  17. Light exclusion influence on grape anthocyanin

    Science.gov (United States)

    This study contrasted the anthocyanins of investigational grape clusters that developed without light incidence (light-excluded), to those of control clusters that were shaded naturally beneath the vine canopy (control-shaded). Treatment grape clusters were light-excluded during ripening by opaque w...

  18. Grape anthocyanin altered by absolute sunlight exclusion

    Science.gov (United States)

    This research was conducted to clarify anthocyanin accumulation within ‘Merlot’ grapes in response to microclimate, specifically to light incidence, temperature, and humidity. Treatment grape clusters were light-excluded during ripening by opaque white polypropylene enclosures, during which light in...

  19. Probenazole treatment inhibits anthocyanins biosynthesis via ...

    African Journals Online (AJOL)

    It has been found that anthocyanins were accumulated in Arabidopsis under drought or salt stress. In this study, such accumulation was found to be inhibited by external applied probenazole (3-allyloxy-1, 2-benzisothiazole-1,1-dioxide, PBZ), which is the active ingredient in oryzemate used for the protection of rice from ...

  20. Probenazole treatment inhibits anthocyanins biosynthesis via ...

    African Journals Online (AJOL)

    ELO

    2012-01-05

    Jan 5, 2012 ... chemistry and genetics (Hughes et al., 2010; Romero et al., 2008). There exist many correlative evidences for a relationship between anthocyanins and osmotic stress. *Corresponding author. E-mail: bkkuai@fudan.edu.cn. Fax: +86. 21 65642648. Abbreviations: PBZ, Probenazole; SA, salicylic acid; GUS, ...

  1. Blackcurrant anthocyanins stimulated cholesterol transport via post-transcriptional induction of LDL receptor in Caco-2 cells.

    Science.gov (United States)

    Kim, Bohkyung; Bae, Minkyung; Park, Young-Ki; Ma, Hang; Yuan, Tao; Seeram, Navindra P; Lee, Ji-Young

    2018-02-01

    We previously showed that polyphenol-rich blackcurrant extract (BCE) showed a hypocholesterolemic effect in mice fed a high fat diet. As direct cholesterol removal from the body via the intestine has been recently appreciated, we investigated the effect of BCE on the modulation of genes involved in intestinal cholesterol transport using Caco-2 cells as an in vitro model. Caco-2 cells were treated with BCE to determine its effects on mRNA and protein expression of genes important for intestinal cholesterol transport, low-density lipoprotein (LDL) uptake, cellular cholesterol content, and cholesterol transport from basolateral to apical membrane of Caco-2 cell monolayers. Cells were also treated with anthocyanin-rich or -poor fraction of BCE to determine the role of anthocyanin on BCE effects. BCE significantly increased protein levels of LDL receptor (LDLR) without altering its mRNA, which consequently increased LDL uptake into Caco-2 cells. This post-transcriptional induction of LDLR by BCE was markedly attenuated in the presence of rapamycin, an inhibitor of mechanistic target of rapamycin complex 1 (mTORC1). In addition, BCE altered genes involved in cholesterol transport in the enterocytes, including apical and basolateral cholesterol transporters, in such a way that could enhance cholesterol flux from the basolateral to apical side of the enterocytes. Indeed, BCE significantly increased the flux of LDL-derived cholesterol from the basolateral to the apical chamber of Caco-2 monolayer. LDLR protein levels were markedly increased by anthocyanin-rich fraction, but not by anthocyanin-free fraction. mTORC1-dependent post-transcriptional induction of LDLR by BCE anthocyanins drove the transport of LDL-derived cholesterol to the apical side of the enterocytes. This may represent a potential mechanism for the hypocholesterolemic effect of BCE.

  2. A Root-Preferential DFR-Like Gene Encoding Dihydrokaempferol Reductase Involved in Anthocyanin Biosynthesis of Purple-Fleshed Sweet Potato

    Science.gov (United States)

    Liu, Xiaoqiang; Xiang, Min; Fan, Yufang; Yang, Chunxian; Zeng, Lingjiang; Zhang, Qitang; Chen, Min; Liao, Zhihua

    2017-01-01

    Purple-fleshed sweet potato is good for health due to rich anthocyanins in tubers. Although the anthocyanin biosynthetic pathway is well understood in up-ground organs of plants, the knowledge on anthocyanin biosynthesis in underground tubers is limited. In the present study, we isolated and functionally characterized a root-preferential gene encoding dihydrokaempferol reductase (IbDHKR) from purple-fleshed sweet potato. IbDHKR showed highly similarity with the reported dihydroflavonol reductases in other plant species at the sequence levels and the NADPH-binding motif and the substrate-binding domain were also found in IbDHKR. The tissue profile showed that IbDHKR was expressed in all the tested organs, but with much higher level in tuber roots. The expression level of IbDHKR was consistent with the anthocyanin content in sweet potato organs, suggesting that tuber roots were the main organs to synthesize anthocyanins. The recombinant 44 kD IbDHKR was purified and fed by three different dihydroflavonol substrates including dihydrokaempferol (DHK), dihydroquerctin, and dihydromyrecetin. The substrate feeding assay indicated that only DHK could be accepted as substrate by IbDHKR, which was reduced to leucopelargonidin confirmed by LC-MS. Finally, IbDHKR was overexpressed in transgenic tobacco. The IbDHKR-overexpression tobacco corolla was more highly pigmented and contained higher level of anthocyanins than the wild-type tobacco corolla. In summary, IbDHKR was a root-preferential gene involved in anthocyanin biosynthesis and its encoding protein, specifically catalyzing DHK reduction to yield leucopelargonidin, was a candidate gene for engineering anthocyanin biosynthetic pathway. PMID:28293252

  3. A Root-Preferential DFR-Like Gene Encoding Dihydrokaempferol Reductase Involved in Anthocyanin Biosynthesis of Purple-Fleshed Sweet Potato.

    Science.gov (United States)

    Liu, Xiaoqiang; Xiang, Min; Fan, Yufang; Yang, Chunxian; Zeng, Lingjiang; Zhang, Qitang; Chen, Min; Liao, Zhihua

    2017-01-01

    Purple-fleshed sweet potato is good for health due to rich anthocyanins in tubers. Although the anthocyanin biosynthetic pathway is well understood in up-ground organs of plants, the knowledge on anthocyanin biosynthesis in underground tubers is limited. In the present study, we isolated and functionally characterized a root-preferential gene encoding dihydrokaempferol reductase ( IbDHKR ) from purple-fleshed sweet potato. IbDHKR showed highly similarity with the reported dihydroflavonol reductases in other plant species at the sequence levels and the NADPH-binding motif and the substrate-binding domain were also found in IbDHKR. The tissue profile showed that IbDHKR was expressed in all the tested organs, but with much higher level in tuber roots. The expression level of IbDHKR was consistent with the anthocyanin content in sweet potato organs, suggesting that tuber roots were the main organs to synthesize anthocyanins. The recombinant 44 kD IbDHKR was purified and fed by three different dihydroflavonol substrates including dihydrokaempferol (DHK), dihydroquerctin, and dihydromyrecetin. The substrate feeding assay indicated that only DHK could be accepted as substrate by IbDHKR, which was reduced to leucopelargonidin confirmed by LC-MS. Finally, IbDHKR was overexpressed in transgenic tobacco. The IbDHKR-overexpression tobacco corolla was more highly pigmented and contained higher level of anthocyanins than the wild-type tobacco corolla. In summary, IbDHKR was a root-preferential gene involved in anthocyanin biosynthesis and its encoding protein, specifically catalyzing DHK reduction to yield leucopelargonidin, was a candidate gene for engineering anthocyanin biosynthetic pathway.

  4. Anthocyanins: naturally occuring fruit pigments with functional properties

    Directory of Open Access Journals (Sweden)

    Mihaela TURTURICĂ

    2015-08-01

    Full Text Available Anthocyanin is a water-soluble pigment existing in plants, and has various health benefits to humans. As far as that goes, the number and location of the hydroxyl groups of the parent nucleus have significant effects on the anthocyanin activities. This review summarizes anthocyanin content in fruits, the importance of anthocyanin in relation to human health, some aspects of anthocyanin biochemistry and their bioavailability, the distribution in some fruits, the biosynthetic pathway, different extraction, separation and purification methods, and also identification methods. Beneficial effects of anthocyanin pigments are reported in the scientific literature and these compounds are nowadays recognized as potentially therapeutic. The lack of antioxidant defense mechanisms in humans is associated with the cardiovascular and coronary artery diseases, cancer and diabetes, besides others.

  5. Quantification and Purification of Mulberry Anthocyanins with Macroporous Resins

    Directory of Open Access Journals (Sweden)

    Xueming Liu

    2004-01-01

    Full Text Available Total anthocyanins in different cultivars of mulberry were measured and a process for the industrial preparation of mulberry anthocyanins as a natural food colorant was studied. In 31 cultivars of mulberry, the total anthocyanins, calculated as cyanidin 3-glucoside, ranged from 147.68 to 2725.46 mg/L juice. Extracting and purifying with macroporous resins was found to be an efficient potential method for the industrial production of mulberry anthocyanins as a food colorant. Of six resins tested, X-5 demonstrated the best adsorbent capability for mulberry anthocyanins (91 mg/mL resin. The adsorption capacity of resins increased with the surface area and the pore radius. Residual mulberry fruit juice after extraction of pigment retained most of its nutrients, except for anthocyanins, and may provide a substrate for further processing.

  6. The structure of the major anthocyanin in Arabidopsis thaliana.

    Science.gov (United States)

    Bloor, Stephen J; Abrahams, Sharon

    2002-02-01

    The major anthocyanin in the leaves and stems of Arabidopsis thaliana has been isolated and shown to be cyanidin 3-O-[2-O(2-O-(sinapoyl)-beta-D-xylopyranosyl)-6-O-(4-O-(beta-D-glucopyranosyl)-p-coumaroyl-beta-D-glucopyranoside] 5-O-[6-O-(malonyl) beta-D-glucopyranoside]. This anthocyanin is a glucosylated version of one of the anthocyanins found in the flowers of the closely related Matthiola incana.

  7. Dietary Anthocyanins against Obesity and Inflammation

    Directory of Open Access Journals (Sweden)

    Yoon-Mi Lee

    2017-10-01

    Full Text Available Chronic low-grade inflammation plays a pivotal role in the pathogenesis of obesity, due to its associated chronic diseases such as type II diabetes, cardiovascular diseases, pulmonary diseases and cancer. Thus, targeting inflammation is an attractive strategy to counter the burden of obesity-induced health problems. Recently, food-derived bioactive compounds have been spotlighted as a regulator against various chronic diseases due to their low toxicity, as opposed to drugs that induce severe side effects. Here we describe the beneficial effects of dietary anthocyanins on obesity-induced metabolic disorders and inflammation. Red cabbage microgreen, blueberry, blackcurrant, mulberry, cherry, black elderberry, black soybean, chokeberry and jaboticaba peel contain a variety of anthocyanins including cyanidins, delphinidins, malvidins, pelargonidins, peonidins and petunidins, and have been reported to alter both metabolic markers and inflammatory markers in cells, animals, and humans. This review discusses the interplay between inflammation and obesity, and their subsequent regulation via the use of dietary anthocyanins, suggesting an alternative dietary strategy to ameliorate obesity and obesity associated chronic diseases.

  8. Storage effects on anthocyanins, phenolics and antioxidant activity of thermally processed conventional and organic blueberries.

    Science.gov (United States)

    Syamaladevi, Roopesh M; Andrews, Preston K; Davies, Neal M; Walters, Thomas; Sablani, Shyam S

    2012-03-15

    Consumer demand for products rich in phytochemicals is increasing as a result of greater awareness of their potential health benefits. However, processed products are stored for long-term and the phytochemicals are susceptible to degradation during storage. The objective of this study was to assess the storage effects on phytochemicals in thermally processed blueberries. Thermally processed canned berries and juice/puree were analysed for phytochemicals during their long-term storage. The phytochemical retention of thermally processed blueberries during storage was not influenced by production system (conventional versus organic). During 13 months of storage, total anthocyanins, total phenolics and total antioxidant activity in canned blueberry solids decreased by up to 86, 69 and 52% respectively. In canned blueberry syrup, total anthocyanins and total antioxidant activity decreased by up to 68 and 15% respectively, while total phenolic content increased by up to 117%. Similar trends in phytochemical content were observed in juice/puree stored for 4 months. The extent of changes in phytochemicals of thermally processed blueberries during storage was significantly influenced by blanching. Long-term storage of thermally processed blueberries had varying degrees of influence on degradation of total anthocyanins, total phenolics and total antioxidant activity. Blanching before thermal processing helped to preserve the phytochemicals during storage of blueberries. Copyright © 2011 Society of Chemical Industry.

  9. Caffeoylquinic Acids Generated In Vitro in a High-Anthocyanin-Accumulating Sweet potato Cell Line

    Directory of Open Access Journals (Sweden)

    Izabela Konczak

    2004-01-01

    Full Text Available Accumulation of phenolic compounds has been monitored in a suspension culture of anthocyanin-accumulating sweet potato cell line grown under the conditions of modified Murashige and Skoog high-anthocyanin production medium (APM over a period of 24 days. Tissue samples extracted with 15% acetic acid were analysed using HPLC at a detection wavelength of 326 nm. Among others, the following derivatives of caffeoylquinic acids were detected: 4,5-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid, 3,4-dicaffeoylquinic acid, and 3,4,5-tricaffeoylquinic acid. Their total amount reached a maximum of 110 mg/gFW between the 4th and the 15th day of culture growth on APM. The major compound of the phenolic mixture was 3,5-dicaffeoylquinic acid with maximum accumulation level of 80 mg/100 gFW. The potential effects of targeted phenolic compounds on the nutraceutical qualities of in vitro produced anthocyanin-rich extracts are discussed.

  10. Techno-functional properties of tomato puree fortified with anthocyanin pigments.

    Science.gov (United States)

    Gerardi, C; Albano, C; Calabriso, N; Carluccio, M A; Durante, M; Mita, G; Renna, M; Serio, F; Blando, F

    2018-02-01

    This study investigates the effects of tomato puree fortification with several anthocyanin-rich food colorants on bioactive compound content (phenolics, isoprenoids), antioxidant capacity, in vitro biological activities and consumer acceptance. Tomato puree (tp) was added with different anthocyanin extracts from black carrot (Anthocarrot), grape fruit skins (Enocolor), elderberry fruits (Elderberry) or mahaleb cherry fruits (Mahaleb), thus obtaining a 'functional tomato puree' (ftp). The consumer acceptance (colour, flavor, taste, visual appearance) was at high level, except for Mahaleb-added ftp. Compared to the control (tp), the addition of colouring extracts increased significantly the total phenolic content, before pasteurization, in addition to the expected anthocyanin content. However, after pasteurization, mostly Anthocarrot-ftp preserved an increased phenolic (+53%) content, as well as a higher antioxidant capacity (50%), more than the other added-extracts. Consistently, against tp, Anthocarrot-ftp exhibited an increased anti-inflammatory capacity as showed by the reduced expression of vascular cell adhesion molecule (VCAM)-1 in human cultured endothelial cells, under inflammatory conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. High anthocyanin intake is associated with a reduced risk of myocardial infarction in young and middle-aged women.

    Science.gov (United States)

    Cassidy, Aedín; Mukamal, Kenneth J; Liu, Lydia; Franz, Mary; Eliassen, A Heather; Rimm, Eric B

    2013-01-15

    Our current knowledge of modifiable risk factors to prevent myocardial infarction (MI) in young and middle-aged women is limited, and the impact of diet is largely unknown. Dietary flavonoids exert potential beneficial effects on endothelial function in short-term trials; however, the relationship between habitual intake and risk of MI in women is unknown. We followed up 93 600 women 25 to 42 years of age from the Nurses' Health Study (NHS) II who were healthy at baseline (1989) to examine the relationship between anthocyanins and other flavonoids and the risk of MI. Intake of flavonoid subclasses was calculated from validated food-frequency questionnaires collected every 4 years using an updated and extended US Department of Agriculture database. During 18 years of follow-up, 405 cases of MI were reported. An inverse association between higher intake of anthocyanins and risk of MI was observed (hazard ratio, 0.68; 95% confidence interval, 0.49-0.96; P=0.03, highest versus lowest quintiles) after multivariate adjustment. The addition of intermediate conditions, including history of hypertension, did not significantly attenuate the relationship (hazard ratio, 0.70; 95% confidence interval, 0.50-0.97; P=0.03). Combined intake of 2 anthocyanin-rich foods, blueberries and strawberries, tended to be associated with a decreased risk of MI (hazard ratio, 0.66; 95% confidence interval, 0.40-1.08) in a comparison of those consuming >3 servings a week and those with lower intake. Intakes of other flavonoid subclasses were not significantly associated with MI risk. A high intake of anthocyanins may reduce MI risk in predominantly young women. Intervention trials are needed to further examine the health impact of increasing intakes of commonly consumed anthocyanin-rich foods.

  12. Antinociceptive and Antibacterial Properties of Anthocyanins and Flavonols from Fruits of Black and Non-Black Mulberries

    Directory of Open Access Journals (Sweden)

    Hu Chen

    2017-12-01

    Full Text Available Anthocyanins and flavones are important pigments responsible for the coloration of fruits. Mulberry fruit is rich in anthocyanins and flavonols, which have multiple uses in traditional Chinese medicine. The antinociceptive and antibacterial activities of total flavonoids (TF from black mulberry (MnTF, TF of Morus nigra and non-black mulberry (MmTF, TF of Morus mongolica; and MazTF, TF of Morus alba ‘Zhenzhubai’ fruits were studied. MnTF was rich in anthocyanins (11.3 mg/g and flavonols (0.7 mg/g identified by ultra-performance liquid chromatography–tunable ultraviolet/mass single-quadrupole detection (UPLC–TUV/QDa. Comparatively, MmTF and MazTF had low flavonol contents and MazTF had no anthocyanins. MnTF showed significantly higher antinociceptive and antibacterial activities toward Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus than MmTF and MazTF. MnTF inhibited the expression of interleukin 6 (IL-6, inducible nitric oxide synthase (iNOS, phospho-p65 (p-p65 and phospho-IκBα (p-IκBα, and increased interleukin 10 (IL-10. Additionally, mice tests showed that cyanidin-3-O-glucoside (C3G, rutin (Ru and isoquercetin (IQ were the main active ingredients in the antinociceptive process. Stronger antinociceptive effect of MnTF was correlated with its high content of anthocyanins and flavonols and its inhibitory effects on proinflammatory cytokines, iNOS and nuclear factor-κB (NF-κB pathway-related proteins.

  13. Anthocyanins as antimicrobial agents of natural plant origin.

    Science.gov (United States)

    Cisowska, Agnieszka; Wojnicz, Dorota; Hendrich, Andrzej B

    2011-01-01

    Anthocyanins are particularly abundant in different fruits, especially in berries. The beneficial effects of these compounds for human health have been known from at least the 16th century. Despite the great number of papers devoted to the different biological effects exerted by anthocyanins only a limited number of studies is focused on the antimicrobial activity of these compounds. Anthocyanin content of berry fruits varies from 7.5 mg/100 mg fresh fruit in redcurrant (Ribes rubum) up to 460 mg/100 g fresh fruit in chokeberry (Aronia melanocarpa). After consumption, anthocyanins are intensively metabolized, mainly in the intestines and liver. Glucorination, methylation and sulfation are the most typical metabolic reactions. Antimicrobial activity of crude extracts of plant phenolic compounds against human pathogens has been intensively studied to characterize and develop new healthy food ingredients as well as medical and pharmaceutical products. However, there is very little information available about the antimicrobial activity of the pure anthocyanins. In the last part of this review we present the collection of papers describing the anthocyanin profiles of different fruits (mainly berries) and the antimicrobial properties of the identified compounds. Generally, anthocyanins are active against different microbes, however Gram-positive bacteria usually are more susceptible to the anthocyanin action than Gram-negative ones. Mechanisms underlying anthocyanin activity include both membrane and intracellular interactions of these compounds. Antimicrobial activity of berries and other anthocyanin-containing fruits is likely to be caused by multiple mechanisms and synergies because they contain various compounds including anthocyanins, weak organic acids, phenolic acids, and their mixtures of different chemical forms. Therefore, the antimicrobial effect of chemically complex compounds has to be critically analyzed.

  14. Antioxidant and drug detoxification potentials of Hibiscus sabdariffa anthocyanin extract.

    Science.gov (United States)

    Ajiboye, Taofeek O; Salawu, Nasir A; Yakubu, Musa T; Oladiji, Adenike T; Akanji, Musbau A; Okogun, Joseph I

    2011-04-01

    The antioxidant and drug metabolizing potentials of Hibiscus anthocyanin extract in CCl(4)- induced oxidative damage of rat liver was investigated. Hibiscus anthocyanin extract effectively scavenge α-diphenyl-β-picrylhydrazyl (DPPH) radical, superoxide ion, and hydrogen peroxide. It produced a 92% scavenging effect of DPPH radical at a concentration of 2.0 mg/mL. Hibiscus anthocyanin extract produced a 69 and 90% scavenging effect on superoxide ion and hydrogen peroxide, respectively, at 1.0 mg/mL, which compared favorably with the synthetic antioxidant (butylated hydroanisole and α-tocopherol). A reducing power of this anthocyanin was examined using K(3)Fe(CN)(6). Hibiscus anthocyanin extract has reducing power that is approximately 2-fold that of the synthetic antioxidant, butylated hydroanisole. Hibiscus anthocyanin extract produced a significantly increase and completely attenuated the CCl(4)-mediated decrease in antioxidant enzymes (e.g., catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase). However, the level of nonenzymic antioxidant molecules (i.e., vitamins C and E) were significant preserved by Hibiscus anthocyanin extract. There was an induction of phase II drug-detoxifying enzymes: glutathione S-transferase, NAD(H):quinone oxidoreductase, and uridyl diphosphoglucuronosyl transferase by 65, 45, and 57%, respectively. In view of these properties, Hibiscus sabdariffa anthocyanin extract can act as a prophylactic by intervening as a free radical scavenger both in vitro and in vivo as well as inducing the phase II drug detoxification enzymes.

  15. Studies on antioxidant capacity of anthocyanin extract from purple ...

    African Journals Online (AJOL)

    Yomi

    2012-04-03

    Apr 3, 2012 ... also displayed potent antioxidant effects against the DPPH radical and superoxide anions radical, showing the IC50 values of 6.94 and 3.68 µg/ml, respectively. Moreover, this anthocyanin extract also could significantly inhibit the formation of lipid peroxidation compound. Sixteen kinds of anthocyanins.

  16. Adsorption behavior of natural anthocyanin dye on mesoporous silica

    Science.gov (United States)

    Kohno, Yoshiumi; Haga, Eriko; Yoda, Keiko; Shibata, Masashi; Fukuhara, Choji; Tomita, Yasumasa; Maeda, Yasuhisa; Kobayashi, Kenkichiro

    2014-01-01

    Because of its non-toxicity, naturally occurring anthocyanin is potentially suitable as a colorant for foods and cosmetics. To the wider use of the anthocyanin, the immobilization on the inorganic host for an easy handling as well as the improvement of the stability is required. This study is focused on the adsorption of significant amount of the natural anthocyanin dye onto mesoporous silica, and on the stability enhancement of the anthocyanin by the complexation. The anthocyanin has successfully been adsorbed on the HMS type mesoporous silica containing small amount of aluminum. The amount of the adsorbed anthocyanin has been increased by modifying the pore wall with n-propyl group to make the silica surface hydrophobic. The light fastness of the adsorbed anthocyanin has been improved by making the composite with the HMS samples containing aluminum, although the degree of the improvement is not so large. It has been proposed that incorporation of the anthocyanin molecule deep inside the mesopore is required for the further enhancement of the stability.

  17. Anthocyanin biosynthesis in fruit tree crops: Genes and their regulation

    African Journals Online (AJOL)

    The anthocyanin biosynthesis pathway is a little complex with branches responsible for the synthesis of a variety of metabolites. In fruit tree crops, during the past decade, many structural genes encoding enzymes in the anthocyanin biosynthetic pathway and various regulatory genes encoding transcription factors that ...

  18. Hippeastrum hybridum anthocyanins as indicators of endpoint in ...

    African Journals Online (AJOL)

    Anthocyanins from Hippeastrum hybridum (Amaryllis) were investigated as indicators of endpoint in acid- base titrations. Extraction of the anthocyanins was done using distilled water, methanol and methanol containing 0.5% acetic acid. The extracts were used in determination of endpoint in titrations between strong ...

  19. Hippeastrum hybridum anthocyanins as indicators of endpoint in acid

    African Journals Online (AJOL)

    Anthocyanins from Hippeastrum hybridum (Amaryllis) were investigated as indicators of endpoint in acid- base titrations. Extraction of the anthocyanins was done using distilled water, methanol and methanol containing 0.5% acetic acid. The extracts were used in determination of endpoint in titrations between strong.

  20. Studies on antioxidant capacity of anthocyanin extract from purple ...

    African Journals Online (AJOL)

    The radical scavenging effects by α,α-diphenyl-β-picrylhydrazyl (DPPH) and superoxide anions of anthocyanin extract from purple sweet potato were investigated. The antioxidation experiments showed that the reducing power of the anthocyanin extract reduced 0.572 at 0.5 mg/ml, while those of Lascorbic acid (L-AA) and ...

  1. Biosynthesis of Anthocyanins and Their Regulation in Colored Grapes

    Directory of Open Access Journals (Sweden)

    Guo-Liang Yan

    2010-12-01

    Full Text Available Anthocyanins, synthesized via the flavonoid pathway, are a class of crucial phenolic compounds which are fundamentally responsible for the red color of grapes and wines. As the most important natural colorants in grapes and their products, anthocyanins are also widely studied for their numerous beneficial effects on human health. In recent years, the biosynthetic pathway of anthocyanins in grapes has been thoroughly investigated. Their intracellular transportation and accumulation have also been further clarified. Additionally, the genetic mechanism regulating their biosynthesis and the phytohormone influences on them are better understood. Furthermore, due to their importance in the quality of wine grapes, the effects of the environmental factors and viticulture practices on anthocyanin accumulation are being investigated increasingly. The present paper summarizes both the basic information and the most recent advances in the study of the anthocyanin biosynthesis in red grapes, emphasizing their gene structure, the transcriptional factors and the diverse exterior regulation factors.

  2. Anthocyanins: targeting of signaling networks in cancer cells.

    Science.gov (United States)

    Sehitoglu, Muserref Hilal; Farooqi, Ammad Ahmad; Qureshi, Muhammad Zahid; Butt, Ghazala; Aras, Aliye

    2014-01-01

    It is becoming progressively more understandable that phytochemicals derived from edible plants have shown potential in modelling their interactions with their target proteins. Rapidly accumulating in-vitro and in- vivo evidence indicates that anthocyanins have anticancer activity in rodent models of cancer. More intriguingly, evaluation of bilberry anthocyanins as chemopreventive agents in twenty-five colorectal cancer patients has opened new window of opportunity in translating the findings from laboratory to clinic. Confluence of information suggests that anthocyanins treated cancer cells reveal up-regulation of tumor suppressor genes. There is a successive increase in the research-work in nutrigenomics and evidence has started to shed light on intracellular-signaling cascades as common molecular targets for anthocyanins. In this review we bring to limelight how anthocyanins induced apoptosis in cancer cells via activation of extrinsic and intrinsic pathways.

  3. CHARACTERIZATION OF MALAYSIAN WILD BANANAS BASED ON ANTHOCYANINS

    Directory of Open Access Journals (Sweden)

    MUHAMMAD ASIF JAVED

    2001-01-01

    Full Text Available The male buds of 16 Musa species (Musaceae populations were investigated by HPLC for the occurrence of anthocyanins. The investigation was based on the presence of 6 anthocyanins. The 16 Musa samples could be classified into three distinct species i.e. Musa acuminata, Musa violascens and Musa balbisiana. Musa acuminata could be divided into two subspecies : malaccensis (lowland and tmncata (highland according to their constituents and content of major anthocyanins. No variation was observed in the composition of the anthocyanins of Kedah type ssp. siamea and Selangor types ssp. malaccensis. The classification of M. acuminata into two subspecies based on anthocyanin data further supported the current taxonomic grouping of the species.

  4. Stability and bioaccessibility of anthocyanins in bakery products enriched with anthocyanins.

    Science.gov (United States)

    Karakaya, Sibel; Simsek, Sebnem; Eker, Alper Tolga; Pineda-Vadillo, Carlos; Dupont, Didier; Perez, Beatriz; Viadel, Blanca; Sanz-Buenhombre, Marisa; Rodriguez, Alberto Guadarrama; Kertész, Zsófia; Hegyi, Adrienn; Bordoni, Alessandra; El, Sedef Nehir

    2016-08-10

    Anthocyanins, water soluble polyphenols, have been associated with several beneficial health effects. The aim of this study was to determine how the baking process and food matrix affect anthocyanin stability and bioaccessibility in bakery products in order to develop functional foods. Three well known regularly consumed bakery products (buns, breadsticks and biscuits) were enriched with anthocyanin (AC) isolated from grape skin alone or in combination with docosahexaenoic acid (AC + DHA) to reveal knowledge on AC as active ingredients in real food systems rather than pure compounds. Anthocyanin amounts added to the formulations of buns, breadsticks and biscuits were 34 mg per 100 g, 40 mg per 100 g and 37 mg per 100 g, respectively. The effect of processing, storage and the food matrix on AC stability and bioaccessibility was investigated. In addition, the sensory properties of bakery products were evaluated. Breadsticks enriched with AC and AC + DHA received the lowest scores in the pre-screening sensory test. Therefore breadsticks were excluded from further analysis. AC retentions, which were monitored by determination of malvidin 3-O-glucoside, in the bun and biscuit after baking were 95.9% (13.6 mg per 100 g) and 98.6% (15.2 mg per 100 g), respectively. Biscuits and buns enriched only with AC showed significantly higher anthocyanin bioaccessibilities (57.26% and 57.30%, respectively) than the same ones enriched with AC + DHA. AC stability in enriched products stored for 21 days was significantly lower than in products stored for 7 days (p < 0.05). However, this loss can be accepted as negligible since more than 70% of AC was retained in all the products.

  5. cDNA cloning and expression of anthocyanin biosynthetic genes in ...

    African Journals Online (AJOL)

    GRACE

    2006-05-16

    May 16, 2006 ... that influence anthocyanin pigments have been isolated from Solanaceae. A few genes of anthocyanin ... Long, 1955), and the purple anthocyanin pigments are primarily derived from the related compound ..... anthocyanin production in tuber skins. this result was similar with carrot (daucus carota l) cell ...

  6. Anthocyanin condensed forms do not affect color or chemical stability of purple corn pericarp extracts stored under different pHs.

    Science.gov (United States)

    Luna-Vital, Diego; Li, Qian; West, Leslie; West, Megan; Gonzalez de Mejia, Elvira

    2017-10-01

    Purple corn is rich in anthocyanins, some of which are condensed with flavanols. The aim was to determine the impact of anthocyanin condensed forms extracted from purple corn pericarp on color and chemical stability at different pHs compared with the complete extract, and an extract without condensed forms. Extracts were dissolved at pH values ranging from 2.0 to 6.0 and stored for 12weeks at 22°C. Color stability of anthocyanins decreased as the pH increased. Slight color differences were observed throughout time at pH 2 (ΔE from 0.2 to 3.6). After 12weeks, pH 6 caused substantial changes in color (ΔE=17.7 to 47.5); and reduced the predicted half-life of total anthocyanins (ranging from 1.8 to 3weeks), compared to pH 2 (44.6 to 60.7weeks). Condensed forms had degradation kinetics similar to monomeric anthocyanins. Purple corn pericarp pigments can be used in acid beverages with an acceptable shelf-life. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Functional Analysis of a Pomegranate (Punica granatumL.) MYB Transcription Factor Involved in the Regulation of Anthocyanin Biosynthesis.

    Science.gov (United States)

    Khaksar, Ghazale; Sayed Tabatabaei, Badraldin Ebrahim; Arzani, Ahmad; Ghobadi, Cyrus; Ebrahimie, Esmaeil

    2015-03-01

    Pomegranate fruit ( Punica granatum L.) is a rich source of anthocyanin pigments resulting in vibrant colours and anti-oxidant contents. Although the intensity and pattern of anthocyanin biosynthesis in fruit are strongly influenced by R2R3-MYB transcription factors, little is known about the regulation and role of MYB in anthocyanin pathway of pomegranate. The present study was conducted to elucidate the relationship between the expression of MYB transcription factor and the anthocyanin accumulation during the colour development phase of pomegranate fruits. In this work, R2R3-MYB transcription factor (PgMYB) was isolated and characterized from pomegranate skin through RACE-PCR. The expression of PgMYB gene was monitored in three distinct pomegranate accessions with distinctive skin colour and pattern by semi-quantitative RT-PCR. The results indicated a strong association between skin colour in mature pomegranate fruits with the PgMYB transcripts. The highest expression level of PgMYB gene was observed in Poost Siyah Yazd (dark purple skin) throughout the ripening process. Furthermore, comparison of PgMYB amino acid sequences with those of R2R3-MYB family in grapevine, eucalyptus, peach, cacao, populus and Arabidopsis demonstrated that this protein shares high similarity (75-85% amino acid identity) with their conserved MYB domain. Computational structure prediction of PgMYB showed that the three conserved amino acids (Asn, Lys and Lys) are present in the same position of the MYB domain. It is speculated that PgMYB gene influences the fruit colour and could be used to improve the accumula-tion of anthocyanin pigments in the pomegranate fruit.

  8. Carotenoids, carotenoid esters, and anthocyanins of yellow-, orange-, and red-peeled cashew apples (Anacardium occidentale L.).

    Science.gov (United States)

    Schweiggert, Ralf M; Vargas, Ester; Conrad, Jürgen; Hempel, Judith; Gras, Claudia C; Ziegler, Jochen U; Mayer, Angelika; Jiménez, Víctor; Esquivel, Patricia; Carle, Reinhold

    2016-06-01

    Pigment profiles of yellow-, orange-, and red-peeled cashew (Anacardium occidentale L.) apples were investigated. Among 15 identified carotenoids and carotenoid esters, β-carotene, and β-cryptoxanthin palmitate were the most abundant in peels and pulp of all samples. Total carotenoid concentrations in the pulp of yellow- and red-peeled cashew apples were low (0.69-0.73 mg/100g FW) compared to that of orange-peeled samples (2.2mg/100g FW). The color difference between the equally carotenoid-rich yellow and red colored samples indicated the presence of a further non-carotenoid pigment type in red peels. Among four detected anthocyanins, the major anthocyanin was unambiguously identified as 7-O-methylcyanidin 3-O-β-D-galactopyranoside by NMR spectroscopy. Red and yellow peel color was chiefly determined by the presence and absence of anthocyanins, respectively, while the orange appearance of the peel was mainly caused by increased carotenoid concentrations. Thus, orange-peeled fruits represent a rich source of provitamin A (ca. 124 μg retinol-activity-equivalents/100g pulp, FW). Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Iron deficiency stimulates anthocyanin accumulation in grapevine apical leaves.

    Science.gov (United States)

    Caramanico, Leila; Rustioni, Laura; De Lorenzis, Gabriella

    2017-10-01

    Iron chlorosis is a diffuse disorder affecting Mediterranean vineyards. Beside the commonly described symptom of chlorophyll decrease, an apex reddening was recently observed. Secondary metabolites, such as anthocyanins, are often synthetized to cope with stresses in plants. The present work aimed to evaluate grapevine responses to iron deficiency, in terms of anthocyanin metabolism (reflectance spectrum, total anthocyanin content, HPLC profile and gene expression) in apical leaves of Cabernet sauvignon and Sangiovese grown in hydroponic conditions. Iron supply interruption produced after one month an increasing of anthocyanin content associated to a more stable profile in both cultivars. In Cabernet sauvignon, the higher red pigment accumulation was associated to a lower intensity of chlorotic symptoms, while in Sangiovese, despite the activation of the metabolism, the lower anthocyanin accumulation was associated to a stronger decrease in chlorophyll concentration. Gene expression data showed a significant increase of anthocyanin biosynthesis. The effects on the expression of structural and transcription factor genes of phenylpropanoid pathway were cultivar dependent. F3H, F3'H, F3'5'H and LDOX genes, in Cabernet sauvignon, and AOMT1 and AOMT genes, in Sangiovese, were positively affected by the treatment in response to iron deficiency. All data support the hypothesis of an anthocyanin biosynthesis stimulation rather than a decreased degradation of them due to iron chlorosis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. Fruit Ripes and Anthocyanin Pigments in the Skin of Grapes (Vitis spp.)

    OpenAIRE

    白石, 眞一; 渡部, 由香; Shiraishi, Shin-ichi; Watanabe, Yuka

    1994-01-01

    In ‘Royal’, ‘Russki Concord’ and ‘Schuyler’ grapes, anthocyanin composition was slightly changed during ripening. However, the anthocyanin composition of ‘Queen’ showed evolution. Major anthocyanin, malvidin glucoside, was appeared in the early period of ripening. Because the end product as malvidin glucoside was appeared soon, the biosynthesis of anthocyanin was rapidly proceeded to last step at an early stage of fruit color development. The anthocyanin compositions of ‘Kaiji’, ‘Koshu’, ‘Sek...

  11. Effects of Growth Regulators on the Induction of Anthocyanin Synthesis in Carrot Suspension Cultures

    OpenAIRE

    Yoshihiro, Ozeki; Atsushi, Komamine; Department of Botany, Faculty of Science, The University of Tokyo:(Present)Department of Biology, College of Arts and Sciences, The University of Tokyo; Department of Botany, Faculty of Science, The University of Tokyo:(Present)Biological Institute, Faculty of Science, Tohoku University

    1986-01-01

    The effects of plant growth regulators were investigated on anthocyanin synthesis induced by removing auxin from carrot suspension cultures. Of the auxins tested, 2,4-D showed the strongest inhibiting effect on anthocyanin synthesis and had the strongest promoting effect on undifferentiated growth. When 2,4-D was added to anthocyanin synthesizing cells, in which cell division had ceased, anthocyanin synthesis was repressed immediately, accumulated anthocyanin disappeared and cell division res...

  12. Loading of anthocyanins on chitosan nanoparticles influences anthocyanin degradation in gastrointestinal fluids and stability in a beverage.

    Science.gov (United States)

    He, Bo; Ge, Jiao; Yue, Pengxiang; Yue, XueYang; Fu, Ruiyan; Liang, Jin; Gao, Xueling

    2017-04-15

    The optimal preparation parameters to create anthocyanin-loaded chitosan nanoparticles was predicted using response surface methodology (RSM). A Box-Behnken design was used to determine the preparation parameters that would achieve the preferred particle size and high encapsulation efficiency. The result suggested that the optimized conditions were 2.86mg/mL carboxymethyl chitosan (CMC), 0.98mg/mL chitosan hydrochloride (CHC) and 5.97mg anthocyanins. Using the predicted amounts, the experimentally prepared particles averaged 219.53nm with 63.15% encapsulation efficiency. The result was less than 5% different than the predicted result of 214.83nm particle size and 61.80% encapsulation efficiency. Compared with the free anthocyanin solution, the anthocyanin-loaded chitosan nanoparticles showed a slowed degradation in simulated gastrointestinal fluid. Compared with the free anthocyanin solutions in a model beverage system, the stability of the anthocyanins was increased in the anthocyanin-loaded chitosan nanoparticles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. A Grapevine Anthocyanin Acyltransferase, Transcriptionally Regulated by VvMYBA, Can Produce Most Acylated Anthocyanins Present in Grape Skins.

    Science.gov (United States)

    Rinaldo, Amy R; Cavallini, Erika; Jia, Yong; Moss, Sarah M A; McDavid, Debra A J; Hooper, Lauren C; Robinson, Simon P; Tornielli, Giovanni B; Zenoni, Sara; Ford, Christopher M; Boss, Paul K; Walker, Amanda R

    2015-11-01

    Anthocyanins are flavonoid compounds responsible for red/purple colors in the leaves, fruit, and flowers of many plant species. They are produced through a multistep pathway that is controlled by MYB transcription factors. VvMYBA1 and VvMYBA2 activate anthocyanin biosynthesis in grapevine (Vitis vinifera) and are nonfunctional in white grapevine cultivars. In this study, transgenic grapevines with altered VvMYBA gene expression were developed, and transcript analysis was carried out on berries using a microarray technique. The results showed that VvMYBA is a positive regulator of the later stages of anthocyanin synthesis, modification, and transport in cv Shiraz. One up-regulated gene, ANTHOCYANIN 3-O-GLUCOSIDE-6″-O-ACYLTRANSFERASE (Vv3AT), encodes a BAHD acyltransferase protein (named after the first letter of the first four characterized proteins: BEAT [for acetyl CoA:benzylalcohol acetyltransferase], AHCT [for anthocyanin O-hydroxycinnamoyltransferase], HCBT [for anthranilate N-hydroxycinnamoyl/benzoyltransferase], and DAT [for deacetylvindoline 4-O-acetyltransferase]), belonging to a clade separate from most anthocyanin acyltransferases. Functional studies (in planta and in vitro) show that Vv3AT has a broad anthocyanin substrate specificity and can also utilize both aliphatic and aromatic acyl donors, a novel activity for this enzyme family found in nature. In cv Pinot Noir, a red-berried grapevine mutant lacking acylated anthocyanins, Vv3AT contains a nonsense mutation encoding a truncated protein that lacks two motifs required for BAHD protein activity. Promoter activation assays confirm that Vv3AT transcription is activated by VvMYBA1, which adds to the current understanding of the regulation of the BAHD gene family. The flexibility of Vv3AT to use both classes of acyl donors will be useful in the engineering of anthocyanins in planta or in vitro. © 2015 American Society of Plant Biologists. All Rights Reserved.

  14. A Grapevine Anthocyanin Acyltransferase, Transcriptionally Regulated by VvMYBA, Can Produce Most Acylated Anthocyanins Present in Grape Skins1

    Science.gov (United States)

    Rinaldo, Amy R.; Cavallini, Erika; Jia, Yong; Moss, Sarah M.A.; McDavid, Debra A.J.; Hooper, Lauren C.; Robinson, Simon P.; Tornielli, Giovanni B.; Zenoni, Sara; Ford, Christopher M.; Boss, Paul K.; Walker, Amanda R.

    2015-01-01

    Anthocyanins are flavonoid compounds responsible for red/purple colors in the leaves, fruit, and flowers of many plant species. They are produced through a multistep pathway that is controlled by MYB transcription factors. VvMYBA1 and VvMYBA2 activate anthocyanin biosynthesis in grapevine (Vitis vinifera) and are nonfunctional in white grapevine cultivars. In this study, transgenic grapevines with altered VvMYBA gene expression were developed, and transcript analysis was carried out on berries using a microarray technique. The results showed that VvMYBA is a positive regulator of the later stages of anthocyanin synthesis, modification, and transport in cv Shiraz. One up-regulated gene, ANTHOCYANIN 3-O-GLUCOSIDE-6″-O-ACYLTRANSFERASE (Vv3AT), encodes a BAHD acyltransferase protein (named after the first letter of the first four characterized proteins: BEAT [for acetyl CoA:benzylalcohol acetyltransferase], AHCT [for anthocyanin O-hydroxycinnamoyltransferase], HCBT [for anthranilate N-hydroxycinnamoyl/benzoyltransferase], and DAT [for deacetylvindoline 4-O-acetyltransferase]), belonging to a clade separate from most anthocyanin acyltransferases. Functional studies (in planta and in vitro) show that Vv3AT has a broad anthocyanin substrate specificity and can also utilize both aliphatic and aromatic acyl donors, a novel activity for this enzyme family found in nature. In cv Pinot Noir, a red-berried grapevine mutant lacking acylated anthocyanins, Vv3AT contains a nonsense mutation encoding a truncated protein that lacks two motifs required for BAHD protein activity. Promoter activation assays confirm that Vv3AT transcription is activated by VvMYBA1, which adds to the current understanding of the regulation of the BAHD gene family. The flexibility of Vv3AT to use both classes of acyl donors will be useful in the engineering of anthocyanins in planta or in vitro. PMID:26395841

  15. The effects of enhanced methionine synthesis on amino acid and anthocyanin content of potato tubers

    Directory of Open Access Journals (Sweden)

    Bánfalvi Zsófia

    2008-06-01

    Full Text Available Abstract Background Potato is a staple food in the diet of the world's population and also being used as animal feed. Compared to other crops, however, potato tubers are relatively poor in the essential amino acid, methionine. Our aim was to increase the methionine content of tubers by co-expressing a gene involved in methionine synthesis with a gene encoding a methionine-rich storage protein in potato plants. Results In higher plants, cystathionine γ-synthase (CgS is the first enzyme specific to methionine biosynthesis. We attempted to increase the methionine content of tubers by expressing the deleted form of the Arabidopsis CgS (CgSΔ90, which is not regulated by methionine, in potato plants. To increase the incorporation of free methionine into a storage protein the CgSΔ90 was co-transformed with the methionine-rich 15-kD β-zein. Results demonstrated a 2- to 6-fold increase in the free methionine content and in the methionine content of the zein-containing protein fraction of the transgenic tubers. In addition, in line with higher methionine content, the amounts of soluble isoleucine and serine were also increased. However, all of the lines with high level of CgSΔ90 expression were phenotypically abnormal showing severe growth retardation, changes in leaf architecture and 40- to 60% reduction in tuber yield. Furthermore, the colour of the transgenic tubers was altered due to the reduced amounts of anthocyanin pigments. The mRNA levels of phenylalanine ammonia-lyase (PAL, the enzyme catalysing the first step of anthocyanin synthesis, were decreased. Conclusion Ectopic expression of CgSΔ90 increases the methionine content of tubers, however, results in phenotypic aberrations in potato. Co-expression of the 15-kD β-zein with CgSΔ90 results in elevation of protein-bound methionine content of tubers, but can not overcome the phenotypical changes caused by CgSΔ90 and can not significantly improve the nutritional value of tubers. The level

  16. Anthocyanins from maize (Zea mays) and reed canarygrass (Phalaris arundinacea).

    Science.gov (United States)

    Fossen, T; Slimestad, R; Andersen, O M

    2001-05-01

    Flowers of maize, Zea mays, and reed canarygrass, Phalaris arundinacea, contain the same anthocyanins: cyanidin 3-glucoside, cyanidin 3-(6' '-malonylglucoside), cyanidin 3-(3' ',6' '-dimalonylglucoside), peonidin 3-glucoside, peonidin 3-(6' '-malonylglucoside), and peonidin 3-(dimalonylglucoside). The latter pigment has previously not been reported to occur in plants. Structure elucidations were primarily based on homo- and heteronuclear two-dimensional NMR and electrospray MS. During the isolation procedure using various mixtures of H(2)O, CF(3)CO(2)H, and CH(3)OH, and during storage in NMR solvent (CF(3)CO(2)D/CD(3)OD; 1:19, v/v) methyl esterification of the free acid function of the malonyl units of the pigments occurs. The acylated anthocyanins constitute more than 80% and 40% of the anthocyanins in P. arundinacea and Z. mays, respectively. Flowers and leaves of maize, Zea mays, contain the same anthocyanins in nearly equal relative proportions.

  17. Transcription factor mediated control of anthocyanin biosynthesis in vegetative tissues

    NARCIS (Netherlands)

    Outchkourov, N.S.; Karlova, R.B.; Hölscher, Matthijs; Schrama, Xandra; Blilou, I.; Jongedijk, E.J.; Diez Simon, C.; Dijk, van A.D.J.; Bosch, H.J.; Hall, R.D.; Beekwilder, M.J.

    2018-01-01

    Plants accumulate secondary metabolites to adapt to environmental conditions. These compounds, here exemplified by the purple-colored anthocyanins, are accumulated upon high temperatures, UV-light, drought, and nutrient deficiencies, and may contribute to tolerance to these stresses. Producing

  18. Anthocyanins as a potential therapy for diabetic retinopathy.

    Science.gov (United States)

    Nabavi, S F; Habtemariam, S; Daglia, M; Shafighi, N; Barber, A J; Nabavi, S M

    2015-01-01

    Diabetic retinopathy is one of the most common complications of diabetes. A plethora of literature indicates that oxidative stress may play a central role in the pathogenesis of diabetic retinopathy. One could thus hypothesise that antioxidant therapies may be protective for diabetic retinopathy. Anthocyanins are important natural bioactive pigments responsible for red-blue colour of fruits, leaves, seeds, stems and flowers in a variety of plant species. Apart from their colours, anthocyanins are known to be health-promoting phytochemicals with potential properties useful to protect against oxidative stress in some degenerative diseases. They also have a variety of biological properties including anti-inflammatory, antibacterial, anticancer, and cardio-protective properties. Some reports further suggest a therapeutic role of anthocyanins to prevent and/or protect against ocular diseases but more studies are needed to examine their potential as alternative therapy to diabetic retinopathy. The present article reviews the available literature concerning the beneficial role of anthocyanins in diabetic retinopathy.

  19. Development of Process for Analyzing Anthocyanin Contents in Bilberries

    OpenAIRE

    Lieskoski, Sami

    2017-01-01

    This thesis was conducted as a part of the Industry Nordic project, which aims at increasing the use of non wood forest products (NWFP) and especially developing the Nordic berry business. The company Marja Bothnia Berries Oy Ltd. obtained a new UV Vis spectrophotometer for analysis of anthocyanin contents in the bilberries it sells, and wished to have a method developed for this. A method for analyzing anthocyanin contents was developed based on previous literature and on methods used by the...

  20. Bacaba (Oenocarpus bacaba phenolic extract induces apoptosis in the MCF-7 breast cancer cell line via the mitochondria-dependent pathway

    Directory of Open Access Journals (Sweden)

    Fernanda Dias Bartolomeu Abadio Finco

    2016-12-01

    Full Text Available Bacaba (Oenocarpus bacaba Mart. is an indigenous palm fruit from Amazon region rich in polyphenolics. MCF-7 breast cancer cells were incubated with different concentrations of bacaba phenolic extract and its effect on cell viability was assessed. Extracts from bacaba showed antiproliferative capacities. Further experiments showed that bacaba phenolic extracts induced apoptosis in MCF-7 breast cancer cells through the mitochondrial pathway. Caspases-6, -8 and -9 were activated when compared to the untreated control in a dose dependent manner (p < 0.05. Within these, caspase-9 showed the highest activation. Since MCF-7 cells do not express caspase-3 and based on additional investigations on PARP (poly(ADP-ribose polymerase – cleavage using a caspase-9 inhibitor, the experiments suggest that caspase-9 plays an important role in the observed apoptotic effect. Our results emphasize the potential healthy properties of traditional fruits from the Brazilian biodiversity with high antioxidant activities.

  1. Properties and stability of blueberry anthocyanin--bovine serum albumin nanoparticles.

    Science.gov (United States)

    Chen, Jian; Tao, Xiaoyun; Zhang, Meng; Sun, Aidong; Zhao, Liyi

    2014-07-01

    Since they would be easily decomposed under alkaline conditions, anthocyanins are likely to have poor oxidation stability. However, encapsulated with protein molecules, anthocyanins could be protected owing to the slowing down of the oxidation process. In this study, the characteristics of nanoparticles, formed by the interactions of anthocyanins with bovine serum albumin (BSA), and their impact on the oxidation stability of anthocyanins were investigated. Both BSA and anthocyanin-bound BSA could form self-assembled nanoparticles in phosphate buffer (pH 7.4), and the particle size of anthocyanin-bound BSA (20-25 nm) was smaller than that of BSA (35-40 nm). The ratio of BSA to anthocyanin was 1:10. The radical scavenging rates of BSA-bound anthocyanin were lower than those of the unbound anthocyanin. No significant difference was seen in the stability between the unbound and BSA-bound anthocyanin in the simulated gastric system, whereas a difference was seen in the simulated intestinal system. The amount of unbound anthocyanin decreased by 70% after 6 h, while BSA-bound anthocyanin was almost unchanged. BSA exhibited a remarkable effect on the oxidation stability of anthocyanins. BSA nanocarriers could improve the stability of anthocyanin under neutral conditions, which has great potential for applications. © 2013 Society of Chemical Industry.

  2. Anthocyanin Vacuolar Inclusions Form by a Microautophagy Mechanism

    Science.gov (United States)

    Chanoca, Alexandra; Ueda, Takashi; Grotewold, Erich

    2015-01-01

    Anthocyanins are flavonoid pigments synthesized in the cytoplasm and stored inside vacuoles. Many plant species accumulate densely packed, 3- to 10-μm diameter anthocyanin deposits called anthocyanin vacuolar inclusions (AVIs). Despite their conspicuousness and importance in organ coloration, the origin and nature of AVIs have remained controversial for decades. We analyzed AVI formation in cotyledons of different Arabidopsis thaliana genotypes grown under anthocyanin inductive conditions and in purple petals of lisianthus (Eustoma grandiorum). We found that cytoplasmic anthocyanin aggregates in close contact with the vacuolar surface are directly engulfed by the vacuolar membrane in a process reminiscent of microautophagy. The engulfed anthocyanin aggregates are surrounded by a single membrane derived from the tonoplast and eventually become free in the vacuolar lumen like an autophagic body. Neither endosomal/prevacuolar trafficking nor the autophagy ATG5 protein is involved in the formation of AVIs. In Arabidopsis, formation of AVIs is promoted by both an increase in cyanidin 3-O-glucoside derivatives and by depletion of the glutathione S-transferase TT19. We hypothesize that this novel microautophagy mechanism also mediates the transport of other flavonoid aggregates into the vacuole. PMID:26342015

  3. Accumulation of anthocyanins in tomato skin extends shelf life.

    Science.gov (United States)

    Bassolino, Laura; Zhang, Yang; Schoonbeek, Henk-Jan; Kiferle, Claudia; Perata, Pierdomenico; Martin, Cathie

    2013-11-01

    Shelf life is one of the most important traits for the tomato (Solanum lycopersicum) industry. Two key factors, post-harvest over-ripening and susceptibility to post-harvest pathogen infection, determine tomato shelf life. Anthocyanins accumulate in the skin of Aft/Aft atv/atv tomatoes, the result of introgressing alleles affecting anthocyanin biosynthesis in fruit from two wild relatives of tomato, which results in extended fruit shelf life. Compared with ordinary, anthocyanin-less tomatoes, the fruits of Aft/Aft atv/atv keep longer during storage and are less susceptible to Botrytis cinerea, a major tomato pathogen, post-harvest. Using genetically modified tomatoes over-producing anthocyanins, we confirmed that skin-specific accumulation of anthocyanins in tomato is sufficient to reduce the susceptibility of fruit to Botrytis cinerea. Our data indicate that accumulation of anthocyanins in tomato fruit, achieved either by traditional breeding or genetic engineering can be an effective way to extend tomato shelf life. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  4. Not all anthocyanins are born equal: distinct patterns induced by stress in Arabidopsis.

    Science.gov (United States)

    Kovinich, Nik; Kayanja, Gilbert; Chanoca, Alexandra; Riedl, Ken; Otegui, Marisa S; Grotewold, Erich

    2014-11-01

    Different abiotic stress conditions induce distinct sets of anthocyanins, indicating that anthocyanins have different biological functions, or that decoration patterns of each anthocyanin are used for unique purposes during stress. The induction of anthocyanin accumulation in vegetative tissues is often considered to be a response of plants to biotic or abiotic stress conditions. Arabidopsis thaliana (Arabidopsis) accumulates over 20 anthocyanins derived from the anthocyanidin cyanidin in an organ-specific manner during development, but the anthocyanin chemical diversity for their alleged stress protective functions remains unclear. We show here that, when grown in various abiotic stress conditions, Arabidopsis not only often accumulates significantly higher levels of total anthocyanins, but different stress conditions also favor the accumulation of different sets of anthocyanins. For example, the anthocyanin patterns of seedlings grown at pH 3.3 or in media lacking phosphate are very similar and characterized by relatively high levels of the anthocyanins A8 and A11. In contrast, anthocyanin inductive conditions (AIC) provided by high sucrose media are characterized by high accumulation of A9* and A5 relative to other stress conditions. The modifications present in each condition correlate reasonably well with the induction of the respective anthocyanin modification enzymes. Taken together, our results suggest that Arabidopsis anthocyanin profiles provide 'fingerprints' that reflect the stress status of the plants.

  5. Anthocyanins Function as Anti-Inflammatory Agents in a Drosophila Model for Adipose Tissue Macrophage Infiltration

    Directory of Open Access Journals (Sweden)

    Alice Valenza

    2018-01-01

    Full Text Available Epidemiological and preclinical studies have demonstrated that bioactive foods like flavonoids, polyphenolic compounds derived from fruits and vegetables, exert a protective action against obesity, cardiovascular disorders, and Adipocyte Tissue Macrophage infiltration (ATM. All these pathologies are characterized by increase in reactive oxygen species (ROS and in proinflammatory cytokines that have been shown to favor the migration of immune cells, particularly of macrophages, in metabolically active organs like the liver and adipose tissue, that in Drosophila are constituted by a unique organ: the fat body. This study, using a unique Drosophila model that mimics human ATM, reveals the beneficial effects of flavonoids to reduce tissue inflammation. Our data show that anthocyanin-rich food reduces the number of hemocytes, Drosophila macrophages, infiltrating the fat cells, a process that is associated with reduced production of ROS and reduced activation of the JNK/SAPK p46 stress kinase, suggesting a fundamental function for anthocyanins as antioxidants in chronic inflammation and in metabolic diseases.

  6. Characterization and hepatoprotective activity of anthocyanins from purple sweet potato (Ipomoea batatas L. cultivar Eshu No. 8

    Directory of Open Access Journals (Sweden)

    Lin Wang

    2017-07-01

    Full Text Available The hepatoprotective activity of anthocyanin-rich purple sweet potato extract (APSPE was demonstrated. Sixty mice were randomly divided into six groups: control group [without carbon tetrachloride (CCl4 or APSPE]; model group (with CCl4 only; positive control group (50 mg/kg body weight silymarin; low-dose group (100 mg/kg body weight APSPE; medium-dose group (200 mg/kg body weight APSPE; and high-dose group (400 mg/kg body weight APSPE. After 10 days intragastric administration of the respective supplements, the mice in all groups except control were injected intraperitoneally with CCl4 (0.15% in arachis oil, 10 mL/kg body weight, intravenous. Twelve hours after CCl4 injection, the mice were measured in terms of liver index, levels of aspartate aminotransferase and alanine aminotransferase in serum, as well as glutathione, superoxide dismutase, and malondialdehyde in liver homogenate. Additionally, the livers of mice were stained with hematoxylin and eosin and sectioned for observation. Nineteen purple sweet potato anthocyanins were identified from the purple sweet potato cultivar Eshu No. 8 and analyzed by liquid chromatography– electrospray ionization–tandem mass spectrometry. Peonidin 3-coumaryl-p-hydroxybenzoyl sophoroside-5-glucoside was first identified in purple sweet potato. The results showed that anthocyanins in Eshu No. 8 had good hepatoprotective activity.

  7. Characterization and hepatoprotective activity of anthocyanins from purple sweet potato (Ipomoea batatas L. cultivar Eshu No. 8).

    Science.gov (United States)

    Wang, Lin; Zhao, Ying; Zhou, Qing; Luo, Chun-Li; Deng, Ai-Ping; Zhang, Zi-Cheng; Zhang, Jiu-Liang

    2017-07-01

    The hepatoprotective activity of anthocyanin-rich purple sweet potato extract (APSPE) was demonstrated. Sixty mice were randomly divided into six groups: control group [without carbon tetrachloride (CCl 4 ) or APSPE]; model group (with CCl 4 only); positive control group (50 mg/kg body weight silymarin); low-dose group (100 mg/kg body weight APSPE); medium-dose group (200 mg/kg body weight APSPE); and high-dose group (400 mg/kg body weight APSPE). After 10 days intragastric administration of the respective supplements, the mice in all groups except control were injected intraperitoneally with CCl 4 (0.15% in arachis oil, 10 mL/kg body weight, intravenous). Twelve hours after CCl 4 injection, the mice were measured in terms of liver index, levels of aspartate aminotransferase and alanine aminotransferase in serum, as well as glutathione, superoxide dismutase, and malondialdehyde in liver homogenate. Additionally, the livers of mice were stained with hematoxylin and eosin and sectioned for observation. Nineteen purple sweet potato anthocyanins were identified from the purple sweet potato cultivar Eshu No. 8 and analyzed by liquid chromatography- electrospray ionization-tandem mass spectrometry. Peonidin 3-coumaryl-p-hydroxybenzoyl sophoroside-5-glucoside was first identified in purple sweet potato. The results showed that anthocyanins in Eshu No. 8 had good hepatoprotective activity. Copyright © 2016. Published by Elsevier B.V.

  8. ISOLATION ANTHOCYANIN FROM ROSELLE PETALS (Hibiscus sabdariffa L AND THE EFFECT OF LIGHT ON THE STABILITY

    Directory of Open Access Journals (Sweden)

    Siti Nuryanti

    2012-06-01

    Full Text Available This study was conducted to isolate anthocyanins from roselle petals and testing the stability toward light. Isolation of anthocyanin was accomplished by extracting roselle petals using eluents with different polarity levels. Nonpolar compounds was eliminated using n-hexane, then semipolar compounds extracted with ethyl acetate and isolated anthocyanin by solvent mixtures of methanol-HCl 0.5%. Color test to determine the presence of anthocyanin was performed with NH3 vapor, Pb-acetate 1% and Pb-nitrate 5%. The structure of anthocyanin in the roselle flower was determined using UV-Vis spectrophotometer, FT-IR and 1H-NMR. Anthocyanin stability test of the influence of light carried out in a room without light conditions (dark room and light 25 Watt at 31 °C. The results showed that the roselle petals contain anthocyanin cyanidin-3-glucoside. Light has been found to affect the stability of anthocyanin cyanidin-3-glucoside.

  9. Huaier Aqueous Extract Induces Hepatocellular Carcinoma Cells Arrest in S Phase via JNK Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Chengshuo Zhang

    2015-01-01

    Full Text Available Huaier aqueous extract, the main active constituent of Huaier proteoglycan, has antihepatocarcinoma activity in experimental and clinical settings. However, the potential and associated antihepatoma mechanisms of Huaier extract are not yet fully understood. Therefore, in this study, we aimed to elucidate the inhibitory proliferation effect of Huaier extract on apoptosis and cycle of HepG2 and Bel-7402 cells. Our data demonstrated that incubation with Huaier extract resulted in a marked decrease in cell viability dose-dependently. Flow cytometric analysis showed that a 48 h treatment of Huaier extract caused cell apoptosis. Typical apoptotic nucleus alterations were observed with fluorescence microscope after Hoechst staining. Immunoblot analysis further demonstrated that Huaier extract activated caspase 3 and PARP. Additionally, Huaier extract inhibited the activity of p-ERK, p-p38, and p-JNK in terms of MAPK. Furthermore, Huaier extract induced HCC cells arrest in S phase and decreased the cycle related protein expression of β-catenin and cyclin D1. Studies with JNK specific inhibitor, SP600125, showed that Huaier extract induced S phase arrest and decreased β-catenin and cyclin D1 expression via JNK signaling pathway. In conclusion, we verify that Huaier extract causes cell apoptosis and induces hepatocellular carcinoma cells arrest in S phase via JNK pathway, which advances our understanding on the molecular mechanisms of Huaier extract in hepatocarcinoma management.

  10. Rapid screening for anthocyanins in cane sugars using ESR spectroscopy.

    Science.gov (United States)

    Thamaphat, Kheamrutai; Goodman, Bernard A; Limsuwan, Pichet; Smith, Siwaporn Meejoo

    2015-03-15

    Anthocyanin, which is soluble in water and released into sugar steam during extraction, was investigated in this study. The anthocyanin content in refined sugar, plantation white sugar, soft brown sugar and raw sugar was determined using electron spin resonance (ESR) spectroscopy, which was operated at room temperature, and compared with spectra from standard anthocyanin. The ESR spectra of red and violet anthocyanins was predominantly g ≈ 2.0055, which corresponded to an unpaired electron located in the pyrylium ring. Signals for Fe(III) and Mn(II), which naturally occur in plants, were found in raw sugar, soft brown sugar and standard anthocyanin but were absent from refined sugar and plantation white sugar due to the refining process. In addition, the ESR results were correlated with the apparent colour of the sugar, which was determined using the method of the International Commission for Uniform Methods of Sugar Analysis and inductively coupled plasma optical emission spectroscopy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. The Stability and Antioxidant Activity of Anthocyanins from Blueberry

    Directory of Open Access Journals (Sweden)

    Rui He

    2010-01-01

    Full Text Available Anthocyanins from highbush blueberry (Vaccinium corymbosum L. have tremendous potential as natural colorants and functional food with pharmaceutical purposes in food applications. To exploit the potential for food applications, the stability and antioxidant activity of anthocyanins present in blueberries have been studied. The results indicate that anthocyanins from blueberry were stable against the low pH (≤5.0, NaCl (0.125–0.500 mol/L, sucrose (0.584–2.336 mol/L and preservative (sodium benzoate, 0.035–0.140 mol/L, but were sensitive to alkaline conditions (≥7.0, high temperature (≥80 °C, light (natural light, oxidizing agent (H2O2, 0.5–2.0 % and reducing agent (Na2SO3, 0.005–0.040 mol/L. At concentrations of 25 and 50 mg/mL, anthocyanins from blueberry could protect ECV-304 cells against oxidative damage induced by H2O2. These results suggest that anthocyanins from blueberry can be regarded as a potential colorant for some acidic (pH≤5.0 food products and could be used as health food to prevent diseases arising from oxidative processes.

  12. Oregon 'Pinot noir' grape anthocyanin enhancement by early leaf removal.

    Science.gov (United States)

    Lee, Jungmin; Skinkis, Patricia A

    2013-08-15

    Complete cluster zone leaf removal of 'Pinot noir' was initiated at three separate pre-véraison growth stages (bloom, grain-pea size, and bunch closure) and maintained leaf free until harvest, for four growing seasons (2008-2011). Fruit anthocyanin composition was examined at harvest for the last two vintages (2010 and 2011) and compared to a control-no cluster zone leaf removal. Experiments were conducted at two commercially operating Oregon vineyards (site A=420 rootstock/'Pinot noir' 115 scion and site B=3309C rootstock/'Pinot noir' 777 scion). All clusters contained the five anthocyanins typically found in 'Pinot noir'. Leaf removal at bloom and maintained until harvest produced maximum anthocyanin accumulation in 'Pinot noir' grapes (site A=85.24 mg/100 g and site B=125.06 mg/100 g), compared to no leaf removal (control; site A=57.91 mg/100 g and site B=97.56 mg/100 g). Even leaf removal at bunch closure (last leaf removal initiation period) increased grape anthocyanin (site A=73.22 mg/100 g and site B=118.93 mg/100 g) compared to control, but total anthocyanins were lower than grapes from bloom leaf removal (first time period). Results differed slightly by vineyard site and rootstock/scion combination. Published by Elsevier Ltd.

  13. Overexpression of snapdragon Delila (Del) gene in tobacco enhances anthocyanin accumulation and abiotic stress tolerance

    OpenAIRE

    Naing, Aung Htay; Park, Kyeung Il; Ai, Trinh Ngoc; Chung, Mi Young; Han, Jeung Sul; Kang, Young-Wha; Lim, Ki Byung; Kim, Chang Kil

    2017-01-01

    Background Rosea1 (Ros1) and Delila (Del) co-expression controls anthocyanin accumulation in snapdragon flowers, while their overexpression in tomato strongly induces anthocyanin accumulation. However, little data exist on how Del expression alone influences anthocyanin accumulation. Results In tobacco (Nicotiana tabacum ?Xanthi?), Del expression enhanced leaf and flower anthocyanin production through regulating NtCHS, NtCHI, NtF3H, NtDFR, and NtANS transcript levels. Transgenic lines display...

  14. Characterization of Genes Encoding Key Enzymes Involved in Anthocyanin Metabolism of Kiwifruit during Storage Period

    OpenAIRE

    Li, Boqiang; Xia, Yongxiu; Wang, Yuying; Qin, Guozheng; Tian, Shiping

    2017-01-01

    ‘Hongyang’ is a red fleshed kiwifruit with high anthocyanin content. In this study, we mainly investigated effects of different temperatures (25 and 0°C) on anthocyanin biosynthesis in harvested kiwifruit, and characterized the genes encoding key enzymes involved in anthocyanin metabolism, as well as evaluated the mode of the action, by which low temperature regulates anthocyanin accumulation in ‘Hongyang’ kiwifruit during storage period. The results showed that low temperature could effectiv...

  15. Differential expression of anthocyanin biosynthetic genes in relation to anthocyanin accumulation in the pericarp of Litchi chinensis Sonn.

    Directory of Open Access Journals (Sweden)

    Yong-Zan Wei

    Full Text Available Litchi has diverse fruit color phenotypes, yet no research reflects the biochemical background of this diversity. In this study, we evaluated 12 litchi cultivars for chromatic parameters and pigments, and investigated the effects of abscisic acid, forchlorofenron (CPPU, bagging and debagging treatments on fruit coloration in cv. Feizixiao, an unevenly red cultivar. Six genes encoding chalcone synthase (CHS, chalcone isomerase (CHI, flavanone 3-hydroxylase (F3H, dihydroflavonol 4-reductase (DFR, anthocyanidin synthase (ANS and UDP-glucose: flavonoid 3-O-glucosyltransferase (UFGT were isolated from the pericarp of the fully red litchi cv. Nuomici, and their expression was analyzed in different cultivars and under the above mentioned treatments. Pericarp anthocyanin concentration varied from none to 734 mg m(-2 among the 12 litchi cultivars, which were divided into three coloration types, i.e. non-red ('Kuixingqingpitian', 'Xingqiumili', 'Yamulong'and 'Yongxing No. 2', unevenly red ('Feizixiao' and 'Sanyuehong' and fully red ('Meiguili', 'Baila', Baitangying' 'Guiwei', 'Nuomici' and 'Guinuo'. The fully red type cultivars had different levels of anthocyanin but with the same composition. The expression of the six genes, especially LcF3H, LcDFR, LcANS and LcUFGT, in the pericarp of non-red cultivars was much weaker as compared to those red cultivars. Their expression, LcDFR and LcUFGT in particular, was positively correlated with anthocyanin concentrations in the pericarp. These results suggest the late genes in the anthocyanin biosynthetic pathway were coordinately expressed during red coloration of litchi fruits. Low expression of these genes resulted in absence or extremely low anthocyanin accumulation in non-red cultivars. Zero-red pericarp from either immature or CPPU treated fruits appeared to be lacking in anthocyanins due to the absence of UFGT expression. Among these six genes, only the expression of UFGT was found significantly correlated

  16. Differential Expression of Anthocyanin Biosynthetic Genes in Relation to Anthocyanin Accumulation in the Pericarp of Litchi Chinensis Sonn

    Science.gov (United States)

    Li, Xiao-Jing; Huang, Xu-Ming; Wang, Hui-Cong

    2011-01-01

    Litchi has diverse fruit color phenotypes, yet no research reflects the biochemical background of this diversity. In this study, we evaluated 12 litchi cultivars for chromatic parameters and pigments, and investigated the effects of abscisic acid, forchlorofenron (CPPU), bagging and debagging treatments on fruit coloration in cv. Feizixiao, an unevenly red cultivar. Six genes encoding chalcone synthase (CHS), chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), dihydroflavonol 4-reductase (DFR), anthocyanidin synthase (ANS) and UDP-glucose: flavonoid 3-O-glucosyltransferase (UFGT) were isolated from the pericarp of the fully red litchi cv. Nuomici, and their expression was analyzed in different cultivars and under the above mentioned treatments. Pericarp anthocyanin concentration varied from none to 734 mg m−2 among the 12 litchi cultivars, which were divided into three coloration types, i.e. non-red (‘Kuixingqingpitian’, ‘Xingqiumili’, ‘Yamulong’and ‘Yongxing No. 2′), unevenly red (‘Feizixiao’ and ‘Sanyuehong’) and fully red (‘Meiguili’, ‘Baila’, Baitangying’ ’Guiwei’, ‘Nuomici’ and ‘Guinuo’). The fully red type cultivars had different levels of anthocyanin but with the same composition. The expression of the six genes, especially LcF3H, LcDFR, LcANS and LcUFGT, in the pericarp of non-red cultivars was much weaker as compared to those red cultivars. Their expression, LcDFR and LcUFGT in particular, was positively correlated with anthocyanin concentrations in the pericarp. These results suggest the late genes in the anthocyanin biosynthetic pathway were coordinately expressed during red coloration of litchi fruits. Low expression of these genes resulted in absence or extremely low anthocyanin accumulation in non-red cultivars. Zero-red pericarp from either immature or CPPU treated fruits appeared to be lacking in anthocyanins due to the absence of UFGT expression. Among these six genes, only the expression of UFGT

  17. Influence of vine vigor on grape (Vitis vinifera L. Cv. Pinot Noir) anthocyanins. 2. Anthocyanins and pigmented polymers in wine.

    Science.gov (United States)

    Cortell, Jessica M; Halbleib, Michael; Gallagher, Andrew V; Righetti, Timothy L; Kennedy, James A

    2007-08-08

    The relationships between grapevine (Vitis vinifera) vigor variation and resulting wine anthocyanin concentration and composition and pigmented polymer formation were investigated. The study was conducted in a commercial vineyard consisting of the same clone, rootstock, age, and vineyard management practices. Vine vigor parameters were used to designate vigor zones within two vineyard sites (A and B) to produce research wines (2003 and 2004) and conduct a model extraction experiment (2004 only) to investigate the vine-fruit-wine continuum. Wines and model extracts were analyzed by HPLC and UV-vis spectrophotometry. For the model extractions, there were no differences between sites for pomace weight, whereas juice volume was higher for site A. This was not related to a larger berry size. Site A had a higher anthocyanin concentration (milligrams per liter) in the model extracts than site B specifically for the medium- and low-vigor zones. For anthocyanin composition in the model extraction, site B had a greater proportion of malvidin-3-O-glucoside and less of the remaining anthocyanin glucosides (delphinidin, cyanidin, petunidin, and peonidin) compared to site A. In the wines, there was a vintage effect, with the 2003 wines having a higher anthocyanin concentration (milligrams per liter) than the 2004 wines. This appears to have been primarily due to a greater accumulation of anthocyanins in the fruit. In general, the medium-vigor zone wines had higher anthocyanin concentrations than either the high- or low-vigor zone wines. There was also vintage variation related to anthocyanin composition, with the 2003 wines having a higher proportion of delphinidin and petunidin glucosides and lower malvidin-3-O-glucoside compared to 2004. In both years, there were higher proportions of delphinidin and petunidin glucosides in wines made from low-vigor-zone fruit. Wines made from low-vigor zones showed a greater propensity to form vitisin A as well as pigmented polymers. Low

  18. The Encapsulation of Anthocyanins from Berry-Type Fruits. Trends in Foods

    Directory of Open Access Journals (Sweden)

    Paz Robert

    2015-04-01

    Full Text Available During the last decade, many berry-type fruits have been recognised as good sources of anthocyanins. Nevertheless, the use of anthocyanins in the development of food colourants and healthy and/or functional ingredients has been limited because of their low stability under given environmental conditions and interaction with other compounds in the food matrix. This review compiles information about the encapsulation of anthocyanins from twelve different berry-type fruit species as a technology for improving the stability and/or bioavailability of anthocyanins. Encapsulation by spray drying has been the primary method used to encapsulate anthocyanins, and some studies attempt to keep anthocyanin microparticles stable during storage. Nevertheless, more studies are needed to determine the stability of anthocyanin microparticles in food matrices over the product shelf life in the development of food colourants. Studies about encapsulated anthocyanins in simulated gastrointestinal models have primarily been conducted on the release of anthocyanins from microparticles to evaluate their bioavailability. However, adding anthocyanin microparticles to a food vehicle must guarantee the health properties attributed to the specific anthocyanins present in berry-type fruits.

  19. Isolation, purification, and characterization of AgUCGalT1, a galactosyltransferase involved in anthocyanin galactosylation in purple celery (Apium graveolens L.).

    Science.gov (United States)

    Feng, Kai; Xu, Zhi-Sheng; Liu, Jie-Xia; Li, Jing-Wen; Wang, Feng; Xiong, Ai-Sheng

    2018-03-08

    This study showed that a galactosyltransferase, AgUCGalT1, is involved in anthocyanin galactosylation in purple celery. Celery is a well-known vegetable because of its rich nutrients, low calories, and medicinal values. Its petioles and leaf blades are the main organs acting as nutrient sources. UDP-galactose: cyanidin 3-O-galactosyltransferase can transfer the galactosyl moiety from UDP-galactose to the 3-O-position of cyanidin through glycosylation. This process enhances the stability and water solubility of anthocyanins. In the present study, LC-MS data indicated that abundant cyanidin-based anthocyanins accumulated in the petioles of purple celery ('Nanxuan liuhe purple celery'). A gene encoding UDP-galactose: cyanidin 3-O-galactosyltransferase, namely AgUCGalT1, was isolated from purple celery and expressed in Escherichia coli BL21 (DE3). Sequence alignments revealed that the AgUCGalT1 protein contained a highly conserved putative secondary plant glycosyltransferase (PSPG) motif. The glycosylation product catalyzed by AgUCGalT1 was detected using UPLC equipment. The recombinant AgUCGalT1 had an optimal enzyme activity at 35 °C and pH 8.0, and showed highest enzyme activity toward cyanidin among the enzyme activities involving other substances, namely, peonidin, quercetin, and kaempferol. The expression levels of AgUCGalT1 were positively correlated with the total anthocyanin contents in purple and non-purple celery varieties. Crude enzymes extracted from purple celery exhibited glycosylation ability, whereas crude enzymes obtained from non-purple celery did not have this ability. This work provided evidence as a basis for investigations on the function of AgUCGalT1 in anthocyanin glycosylation in purple celery.

  20. Degradation kinetics and antioxidant capacity of anthocyanins in air-impingement jet dried purple potato slices.

    Science.gov (United States)

    Qiu, Gan; Wang, Danfeng; Song, Xiaoyong; Deng, Yun; Zhao, Yanyun

    2018-03-01

    We investigated the types, degradation kinetics, and antioxidant capacities of anthocyanins in purple potato slices subjected to air-impingement jet drying (AIJD) at different drying temperatures (50, 65, and 80°C). Petunidin-3-p-coumaroylrutinoside-5-glucoside was the predominant anthocyanin in AIJD-treated purple potato and was positively correlated with antioxidant capacity. Anthocyanin concentration decreased with drying time, and anthocyanin degradation followed first-order reaction kinetics. At high drying temperatures, anthocyanin degradation had higher degradation rates and shorter half-life than at low drying temperatures. Thermodynamic results revealed that the degradation of anthocyanins is a non-spontaneous, endothermic reaction and that the transition state has lower structural freedom than the reactant. AIJD at 65°C contributed to the highest anthocyanin content and antioxidant capacity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Rosaceae products: Anthocyanin quality and comparisons between dietary supplements and foods

    Directory of Open Access Journals (Sweden)

    Jungmin Lee

    2016-10-01

    Full Text Available Rosaceae (strawberry, cherry, blackberry, red raspberry, and black raspberry dietary supplements and food products (total n = 74 were purchased and analyzed to determine their anthocyanin concentrations and profiles. Eight of the 33 dietary supplements had no detectable anthocyanins (five samples or were adulterated with anthocyanins from unlabeled sources (three samples. Five of 41 food products contained no detectable anthocyanins. In mg per serving, the dietary supplements tested contained 0.02–86.27 (average 10.00, and food products contained 0.48–39.66 (average 7.76. Anthocyanin levels between the dietary supplements and food products were not significantly different in mg per serving. Individual anthocyanin profiles can be used to evaluate quality of Rosaceae food products and dietary supplements. These findings show that increasing anthocyanin content and reducing adulteration could improve the quality of Rosaceae products available in the marketplace.

  2. Dietary anthocyanin intake and age-related decline in lung function: longitudinal findings from the VA Normative Aging Study123

    Science.gov (United States)

    Mehta, Amar J; Cassidy, Aedín; Litonjua, Augusto A; Sparrow, David; Vokonas, Pantel; Schwartz, Joel

    2016-01-01

    Background: It is unknown whether habitual intake of dietary flavonoids, known for their antioxidative and anti-inflammatory properties, affects longitudinal change in lung function. Objective: We investigated whether different flavonoid subclasses present in the habitual diet were associated with beneficial changes in lung function over time in the elderly. Design: This longitudinal analysis included 839 participants from the VA (Veterans Affairs) Normative Aging Study whose lung function [forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC)] was measured at 2 and up to 5 visits between 1992 and 2008 (n = 2623 measurements). Yearly average intake of major flavonoid subclasses (anthocyanins, flavanones, flavan-3-ols, flavonols, flavones, and polymers) was calculated from food-frequency questionnaires at each visit. We estimated adjusted differences in annual change in lung function associated with each flavonoid subclass, categorized into quartiles, in linear mixed-effects regression models after adjustment for lifestyle and dietary confounders. Results: Strong inverse associations were found between anthocyanin intake and age-related decline in lung function. Independent of dietary and nondietary risk factors, slower rates of FEV1 and FVC decline by 23.6 (95% CI: 16.6, 30.7) and 37.3 (95% CI: 27.8, 46.8) mL/y, respectively, were observed in participants in the fourth quartile of intake compared with participants in the first quartile (P-trend < 0.0001). The protective associations observed for anthocyanin intake were present in both current/former and never smokers. Compared with no or very low intakes, an intake of ≥2 servings of anthocyanin-rich blueberries/wk was associated with slower decline in FEV1 and FVC by 22.5 (95% CI: 10.8, 34.2) and 37.9 (95% CI: 22.1, 53.7) mL/y, respectively. To a lesser extent, higher flavan-3-ol intake was also associated with slower lung function decline. Conclusions: An attenuation of age-related lung function

  3. Heritability of polyphenols, anthocyanins and antioxidant capacity of ...

    African Journals Online (AJOL)

    ALL

    No maternal effect was detected in the transmission of polyphenol compounds suggesting a nuclear heritability. Key words: Theobroma cacao, cocoa beans, polyphenolic compounds, anthocyanins, heritability. INTRODUCTION. Cocoa beans are the fruit from the plant Theobroma cacao L., a plant tree originated in the rain ...

  4. Total phenols, flavonoids, anthocyanins, ascorbic acid contents and ...

    African Journals Online (AJOL)

    mmpa

    2014-03-05

    Mar 5, 2014 ... The antioxidant capability, total phenol, total flavonoid, anthocyanins, ascorbic acid contents, and reducing power contents of polar and non-polar extracts for flower and leaves in two stages of growth for Rhamnus kurdica Boiss in flowering were evaluated in this work. The polar extraction of flower of R.

  5. Anthocyanin content of two hibiscus sabdariffa cultivars grown

    African Journals Online (AJOL)

    Sukwattanasinit T., Burana-osot J., Sotanaphun. U. 2007. Spectrophotometric Method for. Quantitative Determination of Total. Anthocyanins and Quality Characteristics of Roselle (Hibiscus sabdariffa). Planta Med. 73 (14) : 1517 - 1522. Torres-Morán M.I., Escoto-Delgadillo M., Ron-Parra. J., Parra-Tovar G., Mena-Munguía ...

  6. Stability of Anthocyanin Sensitized TiO2 Photoelectrochemical (PEC ...

    African Journals Online (AJOL)

    Highly porous dye sensitized TiO2 thin film solar cells have been prepared by the sol gel process. Sensitization was achieved by use of anthocyanin pigment extracted from delphinidin purple and cyanidin 3-5 diglucose (C35D). Sensitization was also studied on ruthenium complex RuL* sensitization dye. Dye sensitized ...

  7. Metabolic Effects of Berries with Structurally Diverse Anthocyanins

    Directory of Open Access Journals (Sweden)

    John Overall

    2017-02-01

    Full Text Available Overconsumption of energy dense foods and sedentary lifestyle are considered as major causes of obesity-associated insulin resistance and abnormal glucose metabolism. Results from both cohort studies and randomized trials suggested that anthocyanins from berries may lower metabolic risks, however these reports are equivocal. The present study was designed to examine effects of six berries with structurally diverse anthocyanin profiles (normalized to 400 µg/g total anthocyanin content on development of metabolic risk factors in the C57BL/6 mouse model of polygenic obesity. Diets supplemented with blackberry (mono-glycosylated cyanidins, black raspberry (acylated mono-glycosylated cyanidins, blackcurrant (mono- and di-glycosylated cyanidins and delphinidins, maqui berry (di-glycosylated delphinidins, Concord grape (acylated mono-glycosylated delphinidins and petunidins, and blueberry (mono-glycosylated delphinidins, malvidins, and petunidins showed a prominent discrepancy between biological activities of delphinidin/malvidin-versus cyanidin-type anthocyanins that could be explained by differences in their structure and metabolism in the gut. Consumption of berries also resulted in a strong shift in the gastrointestinal bacterial communities towards obligate anaerobes that correlated with decrease in the gastrointestinal luminal oxygen and oxidative stress. Further work is needed to understand mechanisms that lead to nearly anoxic conditions in the gut lumens, including the relative contributions of host, diet and/or microbial oxidative activity, and their implication to human health.

  8. Interaction of wine mannoproteins and arabinogalactans with anthocyanins.

    Science.gov (United States)

    Gonçalves, Fernando J; Fernandes, Pedro A R; Wessel, Dulcineia F; Cardoso, Susana M; Rocha, Silvia M; Coimbra, Manuel A

    2018-03-15

    Wine polymeric material (WPM), which includes polysaccharides, proteins, and polyphenolic compounds, interacts with anthocyanins. To determine the contribution of polysaccharides in these interactions, the diffusion performance of anthocyanins along a dialysis membrane was determined in the presence and absence of isolated mannoproteins (MP) and arabinogalactans (AG) from WPM. Furthermore, to estimate the extent of the interaction between WPM and polyphenolic compounds, the activation energy (E a ) required for their diffusion in the presence of WPM was determined. AG, generally more abundant than MP in wine, interact in a greater extent with anthocyanins, showing their relevant contribution for WPM/anthocyanins interactions. The E a for the diffusion of polyphenolic compounds in presence of WPM indicated the occurrence of interactions with relative weak to strong intensities (2.6-50.8kJ/mol). As not all polyphenolic compounds were able to be released from WPM, stronger interactions, possibly by covalent linkages, are involved, providing new insights on WPM/polyphenolic compounds relationships. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. potency of partially purified anthocyanin from leaf extract of guiera ...

    African Journals Online (AJOL)

    DR. AMINU

    The modified method of Takeda et al. (1994) was used for the extraction and purification of the anthocyanin. Fifty grammes (50g) of the ethanolic leaf extract of a. Guiera senegalensis was dissolved in 170cm3 of a mixture of formic acid, ethanol and distilled water. (1:10:9). The mixture was transferred into a separating funnel ...

  10. Use of anthocyanin extracted from natural plant materials to develop ...

    African Journals Online (AJOL)

    The aim of this work was to study the optimal conditions for anthocyanin extraction from natural plant materials in order to develop a pH test kit. The plant materials used were butterfly pea flower (BPF), roselle red flower (RRF) and dragon fruit peel (DFP). The solvents used in this study were distilled water, 1% HCl/95% ...

  11. Extraction and characterization of anthocyanin colorants from plant sources

    Directory of Open Access Journals (Sweden)

    S. Dyankova

    2016-03-01

    Full Text Available Abstract. Natural pigments (and especially those of anthocyanins are a valuable source of bioactive compounds and may be used in the production of new functional food ingredients. Furthermore, their applications in the treatment and prevention of chronic disorders are becoming more and more widespread. In the last few years consumers have focused their attention on the natural biologically active compounds as functional food ingredients, and therefore, it may be assumed that natural colorants are an alternative source of synthetic additives. The aim of the study was to determine the quantitative content of monomeric anthocyanin pigments in extracts obtained from eight plants. The total content of monomeric anthocyanin pigments was measured by a pH-differential method. The TLC analysis of the pigment extracts from the different plants showed intensive rose, red and violet stripes corresponding to the anthocyanin content. The extracts from chicory and lavender petals were unstable and their color decreased in intensity in 1 month. The analysis of the experimental data shows that the yield of pigment substances depends on a few factors: the type of plant, the preliminary treatment of the plant and the solvent that is used. The largest quantity of extracted substances in the studied plants were isolated from chokeberry (2 195.9 cyd eq mg/l, followed by blackberry (1 466.2 and one variety of the grapes (1 199.3 . In the case of chokeberry, the pigment content included a large number of anthocyanins and the combination of these components was the reason for the deep red/violet color of the extract. Fresh or frozen materials are the most suitable for extraction of anthocyanin pigments. On the whole, fruit pulp yielded a larger quantity of pigments than juice. Anthocyanins are water-soluble compounds and for that reason their isolation requires water and other polar solvents. Better stabilization of color is obtained by a slight acidification of the

  12. A red orange extract modulates the vascular response to a recreational dive: a pilot study on the effect of anthocyanins on the physiological consequences of scuba diving.

    Science.gov (United States)

    Balestra, C; Cimino, F; Theunissen, S; Snoeck, T; Provyn, S; Canali, R; Bonina, A; Virgili, F

    2016-09-01

    Nutritional antioxidants have been proposed as an expedient strategy to counter the potentially deleterious effects of scuba diving on endothelial function, flow-mediated dilation (FMD) and heart function. Sixteen volunteers performing a single standard dive (20 min at 33 m) according to US Navy diving procedures were randomly assigned to two groups: one was administered with two doses of 200 mg of an anthocyanins (AC)-rich extract from red oranges, 12 and 4 h before diving. Anthocyanins supplementation significantly modulated the effects of diving on haematocrit, body water distribution and FMD. AC administration significantly reduces the potentially harmful endothelial effects of a recreational single dive. The lack of any significant effect on the most common markers of plasma antioxidant capacity suggests that the mechanism underlying this protective activity is independent of the putative antioxidant effect of AC and possibly involves cellular signalling modulation of the response to high oxygen.

  13. Influence of vine vigor on grape (Vitis vinifera L. Cv. Pinot Noir) anthocyanins. 1. Anthocyanin concentration and composition in fruit.

    Science.gov (United States)

    Cortell, Jessica M; Halbleib, Michael; Gallagher, Andrew V; Righetti, Timothy L; Kennedy, James A

    2007-08-08

    The relationships between grapevine (Vitis vinifera) vigor variation and resulting fruit anthocyanin accumulation and composition were investigated. The study was conducted in a commercial vineyard consisting of the same clone, rootstock, age, and vineyard management practices. The experimental design involved assigning vigor zones in two vineyard sites based upon differences in vine growth. Fruits and wines were analyzed by HPLC from designated vigor zones in 2003 and 2004. Average berry weight (grams), average dry skin weight (milligrams), degrees Brix, and pH were higher and titratable acidity (grams per liter) was lower in 2003 compared to 2004. In 2003, only the highest and lowest vigor zones had differences in berry weight, whereas there were no differences in 2004. In both years, high vigor zones had lower degrees Brix and higher titratable acidity (milligrams per liter). Accumulation of anthocyanins (milligrams per berry) was greater in 2003 compared to 2004. There was a trend for lower anthocyanin concentration (milligrams per berry) in high vigor zones in both years. In 2004 compared to 2003, there was a higher proportion of malvidin-3-O-glucoside and lower proportions of the other four anthocyanins (delphinidin-, cyanidin-, petunidin-, and peonidin-3-O-glucosides) found in Pinot Noir. In both years, site A had proportionally higher peonidin-3-O-glucoside and lower malvidin-3-O-glucoside than site B. Some of these differences may be related to the higher exposure and temperatures found in site B compared to site A and also in the low vigor zones.

  14. Pharmacokinetics of table and Port red wine anthocyanins: a crossover trial in healthy men.

    Science.gov (United States)

    Fernandes, I; Marques, C; Évora, A; Cruz, L; de Freitas, V; Calhau, C; Faria, A; Mateus, N

    2017-05-24

    This study was designed to evaluate the pharmacokinetics of Port and table red wine anthocyanins in healthy men. Volunteers were recruited to drink 250 mL of a table red wine (221 mg of anthocyanins) and 150 mL of young Port red wine (49 mg of anthocyanins). Venous blood was collected from participants at 0, 15, 30, 60 and 120 min after wine ingestion. Urine samples were collected at baseline and at 120 min. Anthocyanins and anthocyanin metabolites in plasma and urine samples were quantified by HPLC-DAD and tentatively identified by LC-MS. Red wine anthocyanins were detected in their intact forms in both plasma and urine samples, but the glucuronylated metabolites of peonidin and malvidin (PnGlucr and MvGlucr) were the two main derivatives detected after both red wine consumptions. For the first time, and supported by the synthesis of Mv3Glucr, the main pathway followed by Mv3glc after absorption was described and involves anthocyanidin conjugation with glucuronic acid after glucose removal. Despite the lower total content of anthocyanins ingested when volunteers drank Port wine, no differences were observed in the plasma C max of MvGlucr and PnGlucr after table and Port red wine consumption. The relative bioavailability of anthocyanins in Port wine was 96.58 ± 5.74%, compared to the anthocyanins present in red wine. In conclusion, both Port and table red wines are good sources of bioavailable anthocyanins.

  15. Antioxidant effects of anthocyanins-rich extract from black sticky rice ...

    African Journals Online (AJOL)

    hope&shola

    2010-11-29

    Nov 29, 2010 ... methanol in water. This crude extract was refluxed at 75 - 78°C for. 3 h, shaken in ultrasonic bath for 30 min, cooled, stored in the dark at 4 - 8°C for 7 days and removed the sediment by centrifugation at. 1006 × g for 15 .... glass slides were made and air dried, they were counted for RBCs with Heinz body ...

  16. Andrographis paniculata extract induced apoptosis of adenocarcinoma mammae in C3H mice

    Directory of Open Access Journals (Sweden)

    Nugrahaningsih

    2013-08-01

    Full Text Available BACKGROUND Apoptosis plays an important role in tumorigenesis. Induction of apoptosis is a strategy for developing cancer therapy. In vitro study found that andrographolide isolated from Andrographis paniculata has anticancer activity by an apoptotic mechanism in cancer cell lines. The aim of the present study was to prove the effect of Andrographis paniculata extract administered orally on apoptosis of mammary adenocarcinoma in C3H mice. METHODS This study was of post test randomized control group design. Twenty four C3H mice with transplanted mammary adenocarcinomas were divided into four groups. To three groups Andrographis paniculata extract was administered orally for 14 days, at doses of 5, 10 and 15 mg/day, respectively, whereas to the control group no Andrographis paniculata extract was administered. On day 15 the mice were terminated. The mammary adenocarcinomas were examined by the terminal deoxynucleotide transferase dUTP nick end labeling (TUNEL method. The values of the apoptotic index were expressed as mean±SD and analyzed using Anova and Pearson’s correlation test. RESULTS The mean apoptotic index values differed significantly among the experimental groups (p=0.001. The highest value was found in the group receiving Andrographis paniculata extract 15 mg/day, while the lowest was in the control group, the values being significantly correlated (r=0.974. CONCLUSIONS Oral administration of Andrographis paniculata extract induced apoptosis in C3H mice with mammary adenocarcinoma

  17. Green tea extract-induced lethal toxicity in fasted but not in nonfasted dogs.

    Science.gov (United States)

    Wu, Kuei-Meng; Yao, Jiaqin; Boring, Daniel

    2011-02-01

    Recent chronic toxicity studies performed on green tea extracts in fasted dogs have revealed some unique dose-limiting lethal liver, gastrointestinal, and renal toxicities. Key findings included necrosis of hepatic cells, gastrointestinal epithelia and renal tubules, atrophy of reproductive organs, atrophy and necrosis of hematopoietic tissues, and associated hematological changes. The polyphenol cachetins (a mixture of primarily epigallocatechin gallate [≥55%]; plus up to 10% each of epigallocatechin, epicatechin, and epigallocatechin gallate) appeared to be the causative agents for the observed toxicities because they are the active ingredients of green tea extract studied. Conduct of the study in nonfasted dogs under the same testing conditions and dose levels showed unremarkable results. Assuming both studies were valid, at the identified no observed adverse effect levels (NOAEL) of each study, systemic exposures (based on area under the curve [AUC]) were actually lower in fasted than nonfasted dogs, suggesting that fasting may have rendered the target organ systems potentially more vulnerable to the effects of green tea extract. The toxicity mechanisms that produced lethality are not known, but the results are scientifically intriguing. Because tea drinking has become more popular in the United States and abroad, the mode of action and site of action of green tea extract-induced lethal toxicities during fasting and the role of other phytochemical components of Folia Camellia sinensis (including nonpolyphenol fractions, which are often consumed when whole-leaf products are presented) warrant further investigation.

  18. Cytosolic extract induces Tir translocation and pedestals in EPEC-infected red blood cells.

    Directory of Open Access Journals (Sweden)

    Alyson I Swimm

    2008-01-01

    Full Text Available Enteropathogenic Escherichia coli (EPEC are deadly contaminants in water and food, and induce protrusion of actin-filled membranous pedestals beneath themselves upon attachment to intestinal epithelia. Pedestal formation requires clustering of Tir and subsequent recruitment of cellular tyrosine kinases including Abl, Arg, and Etk as well as signaling molecules Nck, N-WASP, and Arp2/3 complex. We have developed a cytosolic extract-based cellular system that recapitulates actin pedestal formation in permeabilized red blood cells (RBC infected with EPEC. RBC support attachment of EPEC and translocation of virulence factors, but not pedestal formation. We show here that extract induces a rapid Ca++-dependent release of Tir from the EPEC Type III secretion system, and that cytoplasmic factor(s present in the extract facilitate translocation of Tir into the RBC plasma membrane. We show that Abl and related kinases in the extract phosphorylate Tir and that actin polymerization can be reconstituted in infected RBC following addition of cytosolic extract. Reconstitution requires the bacterial virulence factors Tir and intimin, and phosphorylation of Tir on tyrosine residue 474 results in the recruitment of Nck, N-WASP, and Arp2/3 complex beneath attached bacteria at sites of actin polymerization. Together these data describe a biochemical system for dissection of host components that mediate Type III secretion and the mechanisms by which complexes of proteins are recruited to discrete sites within the plasma membrane to initiate localized actin polymerization and morphological changes.

  19. Anthocyanin-Loaded PEG-Gold Nanoparticles Enhanced the Neuroprotection of Anthocyanins in an Aβ1-42Mouse Model of Alzheimer's Disease.

    Science.gov (United States)

    Ali, Tahir; Kim, Min Ju; Rehman, Shafiq Ur; Ahmad, Ashfaq; Kim, Myeong Ok

    2017-10-01

    Nanomedicine is an emerging research area. In this study, we investigated the neuroprotective efficacy of anthocyanin-loaded polyethylene glycol-gold nanoparticles (PEG-AuNPs) for enhancing the neuroprotective efficacy of anthocyanins in an amyloid beta (Aβ) 1-42 mouse model of Alzheimer's disease. We observed that both anthocyanin-loaded PEG-AuNPs and anthocyanins treatment (12 μg/g/day for 14 days) ameliorated memory impairments in the Aβ 1-42 -injected mice. However, the anthocyanin-loaded PEG-AuNPs were more effective than free anthocyanins. Anthocyanin-loaded PEG-AuNPs protected pre- and post-synaptic proteins from Aβ 1-42 -induced synaptic dysfunction. Interestingly, the anthocyanin-loaded PEG-AuNPs also regulated the p-PI3K/p-Akt/p-GSK3β pathway and, as a result, prevented the hyperphosphorylation of tau protein at serines 413 and 404 in the Aβ 1-42 -injected mice. Western blot results of cytochrome c, Bax/Bcl2, caspases and poly (ADP-ribose) polymerase-1 expression levels, and immunohistochemical Nissl and Fluoro-Jade B staining also indicated that the anthocyanin-loaded PEG-AuNPs inhibited apoptosis and neurodegeneration in the Aβ 1-42 -injected mice. Our results suggest that the conjugation of dietary polyphenolic compounds with gold nanoparticles, such as anthocyanin-loaded PEG-AuNPs, is a novel approach that may represent an important and promising nanomedicine strategy to prevent age-associated neurodegenerative diseases.

  20. Calmodulin-binding protein CBP60g functions as a negative regulator in Arabidopsis anthocyanin accumulation

    Science.gov (United States)

    Zou, Bo; Wan, Dongli; Li, Ruili; Han, Xiaomin; Li, Guojing; Wang, Ruigang

    2017-01-01

    Anthocyanins, a kind of flavonoid, normally accumulate in the flowers and fruits and make them colorful. Anthocyanin accumulation is regulated via the different temporal and spatial expression of anthocyanin regulatory and biosynthetic genes. CBP60g, a calmodulin binding protein, has previously been shown to have a role in pathogen resistance, drought tolerance and ABA sensitivity. In this study, we found that CBP60g repressed anthocyanin accumulation induced by drought, sucrose and kinetin. The expression pattern of CBP60g was in accordance with the anthocyanin accumulation tissues. Real-time qPCR analysis revealed that the anthocyanin biosynthetic genes CHS, CHI and DFR, as well as two members of MBW complex, PAP1, a MYB transcription factor, and TT8, a bHLH transcription factor, were down regulated by CBP60g. PMID:28253311

  1. A role for anthocyanin in determining wine tannin concentration in Shiraz.

    Science.gov (United States)

    Kilmister, Rachel L; Mazza, Marica; Baker, Nardia K; Faulkner, Peta; Downey, Mark O

    2014-01-01

    Four wines were made to investigate the effect of different anthocyanin and tannin fruit concentrations on wine phenolics and colour. Wines that were made from fruit with high anthocyanin concentration had high tannin concentrations regardless of the concentration of tannin in fruit, while wines made from fruit with low anthocyanin also had low tannin concentration. It was found that fruit anthocyanin concentration correlated with wine tannin concentration, wine colour and polymeric pigment formation. Anthocyanin concentration might be a key component for increasing tannin solubility and extraction into wine and the formation of polymeric pigments. Industry implications include managing tannin and anthocyanin fruit concentration for targeting tannin extraction and polymeric pigment formation in wine. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  2. Role of structural barriers in the in vitro bioaccessibility of anthocyanins in comparison with carotenoids.

    Science.gov (United States)

    Carrillo, Celia; Buvé, Carolien; Panozzo, Agnese; Grauwet, Tara; Hendrickx, Marc

    2017-07-15

    Although natural structural barriers are factors limiting nutrient bioaccessibility, their specific role in anthocyanin bioaccessibility is still unknown. To better understand how natural barriers govern bioactive compound bioaccessibility, an experimental approach comparing anthocyanins and carotenoids was designed, using a single plant matrix. Initial results revealed increased anthocyanin bioaccessibility in masticated black carrot. To explain this observation, samples with increasing levels of bioencapsulation (free-compound, homogenized-puree, puree) were examined. While carotenoid bioaccessibility was inversely proportional to the level of bioencapsulation, barrier disruption did not increase anthocyanin bioaccessibility. This means that mechanical processing is of particular importance in the case of carotenoid bioaccessibility. While micelle incorporation is the limiting factor for carotenoid bioaccessibility, anthocyanin degradation under alkaline conditions in the gastrointestinal tract dominates. In the absence of structural barriers, anthocyanin bioaccessibility is greater than that of carotenoids. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Anthocyanin extracts with antioxidant and radical scavenging effect

    Energy Technology Data Exchange (ETDEWEB)

    Gabrielska, J.; Langner, M. [Technical Univ. Wroclaw (Poland). Dept. of Physics and Biophysics; Oszmianski, J. [Technical Univ. Wroclaw (Poland). Dept. of Fruit and Vegetable Technology; Komorowska, M. [Politechnika Wroclawska, Wroclaw (Poland). Inst. Fizyki

    1999-06-01

    The antioxidative activity of three anthocyanin pigments, extracted from the fruits of chokeberry, honeysuckle and sloe, were studied. Lipid oxidation in the liposome membrane, induced by UV radiation, was evaluated with a thiobarbituric acid-reactive substances assay. The antioxidant efficiency of the studied compounds follows this sequence: chokeberry>sloe>honeysuckle. The extract concentrations at which a 50% reduction of phosphatidylcholine oxidation was observed, were respectively: 48, 54 and 60 mg/l. The end products of lipid membrane oxidation were evaluated using HPLC. It was found that the antioxidative potency of anthocyanin extracts is concentration-dependent. As shown by EPR technique the efficiency of the extracts to eliminate free radicals from the solution follows the order of the antioxidant activity. (orig.)

  4. Anthocyanin-dependent anoxygenic photosynthesis in coloured flower petals?

    Science.gov (United States)

    Lysenko, Vladimir; Varduny, Tatyana

    2013-11-01

    Chlorophylless flower petals are known to be composed of non-photosynthetic tissues. Here, we show that the light energy storage that can be photoacoustically measured in flower petals of Petunia hybrida is approximately 10-12%. We found that the supposed chlorophylless photosynthesis is an anoxygenic, anthocyanin-dependent process occurring in blue flower petals (ADAPFP), accompanied by non-respiratory light-dependent oxygen uptake and a 1.5-fold photoinduced increase in ATP levels. Using a simple, adhesive tape stripping technique, we have obtained a backside image of an intact flower petal epidermis, revealing sword-shaped ingrowths connecting the cell wall and vacuole, which is of interest for the further study of possible vacuole-related photosynthesis. Approaches to the interpretations of ADAPFP are discussed, and we conclude that these results are not impossible in terms of the known photochemistry of anthocyanins.

  5. CRISPRi-mediated metabolic engineering of E. coli for O-methylated anthocyanin production

    OpenAIRE

    Cress, Brady F.; Leitz, Quentin D.; Kim, Daniel C.; Amore, Teresita D.; Suzuki, Jon Y.; Linhardt, Robert J.; Koffas, Mattheos A. G.

    2017-01-01

    Background Anthocyanins are a class of brightly colored, glycosylated flavonoid pigments that imbue their flower and fruit host tissues with hues of predominantly red, orange, purple, and blue. Although all anthocyanins exhibit pH-responsive photochemical changes, distinct structural decorations on the core anthocyanin skeleton also cause dramatic color shifts, in addition to improved stabilities and unique pharmacological properties. In this work, we report for the first time the extension o...

  6. Profiling of anthocyanins in transgenic purple-fleshed sweet potatoes by HPLC-MS/MS.

    Science.gov (United States)

    Ge, Jingqiu; Hu, Yijie; Wang, Hongxia; Huang, Yuanshe; Zhang, Peng; Liao, Zhihua; Chen, Min

    2017-11-01

    Anthocyanins in purple-fleshed sweet potato (PSP) are beneficial to human health. The leaf color (Lc) gene is a transcription factor involved in regulating anthocyanin biosynthesis. The anthocyanin profiles of wild-type PSP of Ayamurasaki and its three Lc-transgenic lines were investigated by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). In vitro antioxidant activities of wild-type and Lc-transgenic lines, including reducing power activity, DPPH radical scavenging activity, hydroxyl radical scavenging activity, linoleic acid autoxidation inhibition activity, ABTS free radical scavenging activity and oxygen radical absorbance capacity activity, were measured. The results showed that the total anthocyanin contents increased 1.5-1.9 times in three transgenic lines compared with that in wild-type PSP. Seventeen anthocyanins were found in wild-type PSP, while 19 in Lc-transgenic lines including cyanidin-based, peonidin-based and pelargonidin-based anthocyanins. Three pelargonidin-based anthocyanins were detected in three Lc-transgenic lines. Among them, the relative contents of cyanidin-based and pelargonidin-based anthocyanins increased 1.9-2.0 and 3.4-4.5 times respectively, while peonidin-based anthocyanins decreased 1.8-1.9 times in Lc-transgenic lines, compared with wild-type PSP. PSP from wild-type Ayamurasaki and three Lc-transgenic lines exhibited potent antioxidant activities, whereas there was no distinct difference among them. The transgene Lc significantly increased the content of total anthocyanins and remarkably changed the anthocyanin profiles in Ayamurasaki. Such novel and high content of anthocyanins obtained in the Lc-transgenic lines with potent antioxidant activities may provide unique functional products with potential helpful for human health. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  7. Effect of calcium on strawberry fruit flavonoid pathway gene expression and anthocyanin accumulation.

    Science.gov (United States)

    Xu, Wenping; Peng, Hui; Yang, Tianbao; Whitaker, Bruce; Huang, Luhong; Sun, Jianghao; Chen, Pei

    2014-09-01

    Two diploid woodland strawberry (Fragaria vesca) inbred lines, Ruegen F7-4 (red fruit-bearing) and YW5AF7 (yellow fruit-bearing) were used to study the regulation of anthocyanin biosynthesis in fruit. Ruegen F7-4 fruit had similar total phenolics and anthocyanin contents to commercial octoploid (F. × ananassa) cultivar Seascape, while YW5AF7 exhibited relatively low total phenolics content and no anthocyanin accumulation. Foliar spray of CaCl2 boosted fruit total phenolics content, especially anthocyanins, by more than 20% in both Seascape and RF7-4. Expression levels of almost all the flavonoid pathway genes were comparable in Ruegen F7-4 and YW5AF7 green-stage fruit. However, at the turning and ripe stages, key anthocyanin structural genes, including flavanone 3-hydroxylase (F3H1), dihydroflavonol 4-reductase (DFR2), anthocyanidin synthase (ANS1), and UDP-glucosyltransferase (UGT1), were highly expressed in Ruegen F7-4 compared with YW5AF7 fruit. Calcium treatment further stimulated the expression of those genes in Ruegen F7-4 fruit. Anthocyanins isolated from petioles of YW5AF7 and Ruegen F-7 had the same HPLC-DAD profile, which differed from that of Ruegen F-7 fruit anthocyanins. All the anthocyanin structural genes except FvUGT1 were detected in petioles of YW5AF7 and Ruegen F-7. Taken together, these results indicate that the "yellow" gene in YW5AF7 is a fruit specific regulatory gene(s) for anthocyanin biosynthesis. Calcium can enhance accumulation of anthocyanins and total phenolics in fruit possibly via upregulation of anthocyanin structural genes. Our results also suggest that the anthocyanin biosynthesis machinery in petioles is different from that in fruit. Published by Elsevier Masson SAS.

  8. Stability of Anthocyanins from Rubus glaucus and Solanum betaceum as affected by Temperature and Water Activity

    OpenAIRE

    Clara Marcela Olaya; Maria Paola Castaño; Gloria Astrid Garzon Monroy

    2009-01-01

    The stability of sprayed-dried microencapsulated anthocyanins from Andes berry (Rubus glaucus) and Tamarillo (Solanum betaceum), as affected by storage time, water activity (Aw) and temperature was compared. The fruits were osmotically dehydrated with ethanol and the anthocyanin extract was microencapsulated with maltodextrin DE 20 by spray drying. Half life of the anthocyanins; changes in color, total phenolics, and antioxidant activity of the powders, were analyzed during storage at two dif...

  9. Characterisation of Vranec, Cabernet sauvignon and Merlot wines based on their chromatic and anthocyanin profiles

    OpenAIRE

    Dimitrovska Maja; Tomovska Elena; Bocevska Mirjana

    2013-01-01

    Wines of three different grape varieties, Vranec, Cabernet Sauvignon and Merlot were examined for their characterisation in terms of anthocyanin and chromatic profiles, total polyphenols and antioxidant potential. Total, monomeric, polymeric and copigmented anthocyanins were determined by spectrophotometry and the individual anthocyanin compounds were quantified using HPLC-DAD. Chromatic profile was evaluated according to colour density, hue, % red, % blue, % yellow and brilliance (% dA...

  10. Anthocyanins profile of grape berries of Vitis amurensis, its hybrids and their wines.

    Science.gov (United States)

    Zhao, Quan; Duan, Chang-Qing; Wang, Jun

    2010-05-21

    Anthocyanins are responsible for the color of grapes and wine, an important attribute of their quality. Many authors have used anthocyanins profile to classify the grape cultivars and wine authenticity. The anthocyanin profiles of grape berries of Vitis amurensis, its hybrids and their wines were analyzed by HPLC-ESI-MS/MS. The results identified 17 anthocyanins in these grape cultivars, including 11 anthocyanin monoglucosides (five pyranoanthocyanin monoglucosides and one acylated pyranoanthocyanin monoglucoside) and six anthocyanin diglucosides. Likewise, 15 kinds of anthocyanins were detected in wines, including six diglucosides and nine monoglucosides of anthocyanidins, in which four pyranoanthocyanin monoglucosides (Petunidin-3-O-glucoside-4-acetaldehyde, Malvidin-3-O-glucoside-4-pyruvic acid, Malvidin-3-O-glucoside-acetaldehyde and Peonidin-3-O-glucoside-4-pyruvic acid) were detected. In addition, a total of 14 kinds of anthocyanins including six diglucosides and eight monoglucosides of anthocyanidins were identified in skins, in which two pyranoanthocyanin monoglucosides (Peonidin-3-O-glucoside-4-pyruvic acid, Malvidin-3-O-glucoside-4-vinylphenol) and one acylated pyranoanthocyanin monoglucoside (Malvidin-3-O-(6-O-acetyl)-glucoside-4-vinylphenol) were detected. The anthocyanins profile of grape skin of V. amurensis and its hybrids consist of the anthocyanin monoglucosides, diglucosides and pyranoanthocyanins. The wines produced resulted in a slightly different anthocyanin distribution. Pelargonidin-3,5-diglucosides was first found in the skins and wines, however, no acetyl was detected in wines. The principal component analysis results suggest that the anthocyanin profiles were helpful to classify these cultivars of V. amurensis.

  11. Enhanced anthocyanin synthesis in foliage plant Caladium bicolor.

    Science.gov (United States)

    Li, S J; Deng, X M; Mao, H Z; Hong, Y

    2005-03-01

    A protocol was developed for Agrobacterium-mediated genetic transformation of monocotyledon foliage plant Caladium bicolor cv. Jackie Suthers using leaf disc and petiole as the explants. The explants were inoculated with Agrobacterium strain LBA4404 harboring a binary vector with the maize anthocyanin regulatory gene Lc under the control of the cauliflower mosaic virus promoter. Callus formation was induced in MS medium supplemented with 0.5 mg/l 6-benzylaminopurine (6-BA), 0.1 mg/1 2,4-dichlorophenoxyacetic acid (2,4-D), 30 g/l sucrose and kanamycin 50 mg/l for selection. Resistant calli were induced for shoot generation in MS medium with 2 mg/l 6-BA and 0.2 mg/l alpha-naphthaleneacetic acid. As much as 10% of the explants gave rise to kanamycin-resistant shoots with our procedure. Transformed plants had enhanced anthocyanin accumulation in the roots, leaves and stems (epidermis and vascular bundles). Integration of the transgene into the host genome was confirmed by genomic Southern blot hybridization, and RNA blot hybridization analysis indicated that the expression of the transgene correlated with anthocyanin accumulation. This investigation illustrates the utility of anthocyanin regulatory genes in the genetic manipulation of the color of foliage plants. It also supports the premise that the Lc gene can be used as a powerful non-destructive cell autonomous visual marker in a wide variety of plants, as exemplified by the perfect symmetrical half-green/half-red plant presumably derived from the symmetrical division of one transgenic and one non-transgenic precursor meristematic cell.

  12. Engineering the anthocyanin regulatory complex of strawberry (Fragaria vesca

    Directory of Open Access Journals (Sweden)

    Kui eLin-Wang

    2014-11-01

    Full Text Available The woodland strawberry, Fragaria vesca is a model fruit for a number of rosaceous crops. We have engineered altered concentrations of anthocyanin in F. vesca, to determine the impact on plant growth and fruit quality. Anthocyanin concentrations were significantly increased by over-expression or decreased by knock-down of the R2R3 MYB activator, MYB10. In contrast, a potential bHLH partner for MYB10 (bHLH33 did not affect the anthocyanin pathway when knocked down using RNAi constructs. Metabolic analysis of fruits revealed that, of all the polyphenolics surveyed, only cyanidin and pelargonidin glucoside, and coumaryl hexose were significantly affected by over-expression and knock down of MYB10. Using the F. vesca genome sequence, members of the MYB, bHLH and WD40 families were examined. Global analysis of gene expression and targeted qPCR analysis of biosynthetic genes and regulators confirmed the effects of altering MYB10 expression, as well as the knock-down of bHLH33. Other members of the MYB transcription factor family were affected by the transgenes. Transient expression of strawberry genes in Nicotiana benthamiana revealed that MYB10 can auto-regulate itself, and potential repressors of MYB10. In tobacco, MYB10’s activation of biosynthetic steps is inhibited by the strawberry repressor MYB1.

  13. Film with anthocyanins as an indicator of chilled pork deterioration

    Directory of Open Access Journals (Sweden)

    Luana Baptista Golasz

    2013-02-01

    Full Text Available An indicator can be defined as a substance which indicates the presence or absence of another substance or the degree of a certain reaction through characteristic changes, especially color. Therefore, the aim of this work is to evaluate the performance of a bio-based film with anthocyanin as an indicator of chilled pork deterioration. A film made of cassava starch, glycerol, and grape anthocyanins was prepared using the casting technique. Pork loin samples were put in Petri dishes containing an anthocyanin film on the bottom and stored at 4 ºC. Psychrotrophic microorganism count and the pH of the pork loin samples were analyzed for a 14 day- period. At the same time, the films were subjected to colorimetric analysis using D65 illuminant and the CIELAB system. Chroma and hue angle data for these films were evaluated by Anova and Dunnett's test. An increase in the microbial population and in the pH was observed over the storage period as result of pork deterioration. Color changes were also identified in the film. However, only at the beginning of the storage period was it possible to establish a correlation between film color and pork deterioration. The shelf life end-point could not be clearly detected by the film.

  14. Regulation of Anthocyanin Biosynthesis in Purple Leaves of Zijuan Tea (Camellia sinensis var. kitamura

    Directory of Open Access Journals (Sweden)

    Lingxia Wang

    2017-04-01

    Full Text Available Plant anthocyanin biosynthesis is well understood, but the regulatory mechanism in purple foliage tea remains unclear. Using isobaric tag for relative and absolute quantification (iTRAQ, 815 differential proteins were identified in the leaves of Zijuan tea, among which 20 were associated with the regulation of anthocyanin metabolism. We found that the abundances of anthocyanin synthesis-related enzymes such as chalcone synthase, chalcone isomerase, dihydroflavonol 4-reductase and anthocyanin synthetase, as well as anthocyanin accumulation-related UDP-glucosyl transferase and ATP-binding cassette (ABC transporters in the purple leaves were all significantly higher than those in the green leaves. The abundances of the transcription factors bHLH and HY5, regulating anthocyanin biosynthesis at transcriptional level were also obviously higher in purple leaves than those in green leaves. In addition, bifunctional 3-dehydroquinate dehydratase and chorismate mutase in purple leaves were distinctly higher in abundance compared to green leaves, which provided sufficient phenylalanine substrate for anthocyanin synthesis. Furthermore, lignin synthesis was found to be reduced due to the lower abundances of cinnamoyl-CoA reductase 1, peroxidase 15 and laccase-6, which resulted in increase of intermediates flow into anthocyanin synthesis pathway. The physiological data were consistent with proteomic results. These four aspects of biosynthetic regulation contribute to anthocyanin accumulation in purple leaves of Zijuan tea.

  15. MYB75 phosphorylation by MPK4 is required for light-induced anthocyanin accumulation in arabidopsis

    DEFF Research Database (Denmark)

    Li, Shengnan; Wang, Wenyi; Gao, Jinlan

    2016-01-01

    anthocyanin pigments is light dependent, and the R2R3 MYB transcription factor MYB75/PAP1 regulates anthocyanin accumulation. Here, we report that MYB75 interacts with and is phosphorylated by MAP KINASE4 (MPK4). Their interaction is dependent on MPK4 kinase activity and is required for full function of MYB75....... MPK4 can be activated in response to light and is involved in the light-induced accumulation of anthocyanins. We show that MPK4 phosphorylation of MYB75 increases its stability and is essential for light-induced anthocyanin accumulation. Our findings reveal an important role for a MAPK pathway...

  16. Post-harvest UVC irradiation effect on anthocyanin profile of grape berries

    International Nuclear Information System (INIS)

    Rosas, I. de; Ponce, M.; Gargantini, R.; Martinez, L.

    2010-01-01

    Anthocyanins are a class of phenolic compounds that contribute to the color of red grapes and have shown nutraceutical properties for human health. UVC light irradiation has been proved to increase phenolic compounds such as stilbenes, but its effect on anthocyanins has not been reported. The aim of this work was to identify the best treatment conditions of UVC light irradiation on post-harvest berries of Malbec (M), Cabernet Sauvignon (CS) and Tempranillo (T) for anthocyanin increments. Grape berries were irradiated with 240 W at 20 and 40 cm from the light source, for 30, 60 and 120 seconds. Both, irradiated and control grapes were stored on darkness at 20 C degree until anthocyanin extraction with methanol/ClH. HPLC analysis were performed and nine anthocyanins were quantified. UVC light irradiation modified the anthocyanin profile of the three cultivars. All the glucoside anthocyanins derivates and peonidin-acetyl-glucoside, as well as total anthocyanins were increased when CS berries were exposed to UVC for 120 s at 40 cm. This suggests that UVC stimulated the entire biosynthetic pathway. The anthocyanin content of the control berries was always higher than the treatments with UVC on M and T, making necessary to evaluate less rigorous conditions for these varieties. (authors)

  17. Anthocyanins from Black Chokeberry (Aroniamelanocarpa Elliot) Delayed Aging-Related Degenerative Changes of Brain.

    Science.gov (United States)

    Wei, Jie; Zhang, Guokun; Zhang, Xiao; Xu, Dexin; Gao, Jun; Fan, Jungang; Zhou, Zhiquan

    2017-07-26

    Aging is the greatest risk factor for most neurodegenerative diseases, which is associated with decreasing cognitive function and significantly affecting life quality in the elderly. Computational analysis suggested that 4 anthocyanins from chokeberry fruit increased Klotho (aging-suppressor) structural stability, so we hypothesized that chokeberry anthocyanins could antiaging. To explore the effects of anthocyanins treatment on brain aging, mice treated with 15 or 30 mg/kg anthocyanins by gavage and injected D-galactose accelerated aging per day. After 8 weeks, cognitive and noncognitive components of behavior were determined. Our studies showed that anthocyanins blocked age-associated cognitive decline and response capacity in senescence accelerated mice. Furthermore, mice treated with anthocyanins-supplemented showed better balance of redox systems (SOD, GSH-PX, and MDA) in all age tests. Three major monoamines were norepinephrine, dopamine, and 5-hydroxytryptamine, and their levels were significantly increased; the levels of inflammatory cytokines (COX2, TGF-β1, and IL-1) transcription and DNA damage were decreased significantly in brains of anthocyanins treated mice compared to aged models. The DNA damage signaling pathway was also regulated with anthocyanins. Our results suggested that anthocyanins was a potential approach for maintaining thinking and memory in aging mice, possibly by regulating the balance of redox system and reducing inflammation accumulation, and the most important factor was inhibiting DNA damage.

  18. Phototropin 2 is involved in blue light-induced anthocyanin accumulation in Fragaria x ananassa fruits.

    Science.gov (United States)

    Kadomura-Ishikawa, Yasuko; Miyawaki, Katsuyuki; Noji, Sumihare; Takahashi, Akira

    2013-11-01

    Anthocyanins are widespread, essential secondary metabolites in higher plants during color development in certain flowers and fruits. In strawberries, anthocyanins are also key contributors to fruit antioxidant capacity and nutritional value. However, the effects of different light qualities on anthocyanin accumulation in strawberry (Fragaria x ananassa, cv. Sachinoka) fruits remain elusive. In the present study, we showed the most efficient increase in anthocyanin content occurred by blue light irradiation. Light sensing at the molecular level was investigated by isolation of two phototropin (FaPHOT1 and FaPHOT2), two cryptochrome (FaCRY1 and FaCRY2), and two phytochrome (FaPHYA and FaPHYB) homologs. Expression analysis revealed only FaPHOT2 transcripts markedly increased depending on fruit developmental stage, and a corresponding increase in anthocyanin content was detected. FaPHOT2 knockdown resulted in decreased anthocyanin content; however, overexpression increased anthocyanin content. These findings suggested blue light induced anthocyanin accumulation, and FaPHOT2 may play a role in sensing blue light, and mediating anthocyanin biosynthesis in strawberry fruits. This is the first report to find a relationship between visible light sensing, and color development in strawberry fruits.

  19. Characterization of Genes Encoding Key Enzymes Involved in Anthocyanin Metabolism of Kiwifruit during Storage Period.

    Science.gov (United States)

    Li, Boqiang; Xia, Yongxiu; Wang, Yuying; Qin, Guozheng; Tian, Shiping

    2017-01-01

    'Hongyang' is a red fleshed kiwifruit with high anthocyanin content. In this study, we mainly investigated effects of different temperatures (25 and 0°C) on anthocyanin biosynthesis in harvested kiwifruit, and characterized the genes encoding key enzymes involved in anthocyanin metabolism, as well as evaluated the mode of the action, by which low temperature regulates anthocyanin accumulation in 'Hongyang' kiwifruit during storage period. The results showed that low temperature could effectively enhance the anthocyanin accumulation of kiwifruit in the end of storage period (90 days), which related to the increase in mRNA levels of ANS1, ANS2, DRF1, DRF2 , and UGFT2 . Moreover, the transcript abundance of MYBA1-1 and MYB5-1 , the genes encoding an important component of MYB-bHLH-WD40 (MBW) complex, was up-regulated, possibly contributing to the induction of specific anthocyanin biosynthesis genes under the low temperature. To further investigate the roles of AcMYB5-1/5-2/A1-1 in regulation of anthocyanin biosynthesis, genes encoding the three transcription factors were transiently transformed in Nicotiana benthamiana leaves. Overexpression of AcMYB5-1/5-2/A1-1 activated the gene expression of NtANS and NtDFR in tobacco. Our results suggested that low temperature storage could stimulate the anthocyanin accumulation in harvested kiwifruit via regulating several structural and regulatory genes involved in anthocyanin biosynthesis.

  20. Anthocyanin Composition and Content in Rye Plants with Different Grain Color.

    Science.gov (United States)

    Zykin, Pavel A; Andreeva, Elena A; Lykholay, Anna N; Tsvetkova, Natalia V; Voylokov, Anatoly V

    2018-04-19

    The color of grain in cereals is determined mainly by anthocyanin pigments. A large level of genetic diversity for anthocyanin content and composition in the grain of different species was observed. In rye, recessive mutations in six genes (vi1...vi6) lead to the absence of anthocyanins in all parts of the plant. Moreover, dominant genes of anthocyanin synthesis in aleurone (gene C) and pericarp (gene Vs) also affect the color of the grain. Reverse phase high-performance liquid chromatography and mass spectrometry were used to study anthocyanins in 24 rye samples. A lack of anthocyanins in the lines with yellow and brown grain was determined. Delphinidin rutinoside and cyanidin rutinoside were found in the green-seeded lines. Six samples with violet grains significantly varied in terms of anthocyanin composition and content. However, the main aglycone was cyanidin or peonidin in all of them. Monosaccharide glucose and disaccharide rutinose served as the glycoside units. Violet-seeded accession forms differ in the ratio of the main anthocyanins and the range of their acylated derivatives. The acyl groups were presented mainly by radicals of malonic and sinapic acids. For the colored forms, a profile of the revealed anthocyanins with the indication of their contents was given. The obtained results are discussed in connection to similar data in rice, barley, and wheat, which will provide a perspective for future investigations.

  1. Anthocyanin Composition and Content in Rye Plants with Different Grain Color

    Directory of Open Access Journals (Sweden)

    Pavel A. Zykin

    2018-04-01

    Full Text Available The color of grain in cereals is determined mainly by anthocyanin pigments. A large level of genetic diversity for anthocyanin content and composition in the grain of different species was observed. In rye, recessive mutations in six genes (vi1...vi6 lead to the absence of anthocyanins in all parts of the plant. Moreover, dominant genes of anthocyanin synthesis in aleurone (gene C and pericarp (gene Vs also affect the color of the grain. Reverse phase high-performance liquid chromatography and mass spectrometry were used to study anthocyanins in 24 rye samples. A lack of anthocyanins in the lines with yellow and brown grain was determined. Delphinidin rutinoside and cyanidin rutinoside were found in the green-seeded lines. Six samples with violet grains significantly varied in terms of anthocyanin composition and content. However, the main aglycone was cyanidin or peonidin in all of them. Monosaccharide glucose and disaccharide rutinose served as the glycoside units. Violet-seeded accession forms differ in the ratio of the main anthocyanins and the range of their acylated derivatives. The acyl groups were presented mainly by radicals of malonic and sinapic acids. For the colored forms, a profile of the revealed anthocyanins with the indication of their contents was given. The obtained results are discussed in connection to similar data in rice, barley, and wheat, which will provide a perspective for future investigations.

  2. Mechanistic evaluation of Ginkgo biloba leaf extract-induced genotoxicity in L5178Y cells.

    Science.gov (United States)

    Lin, Haixia; Guo, Xiaoqing; Zhang, Suhui; Dial, Stacey L; Guo, Lei; Manjanatha, Mugimane G; Moore, Martha M; Mei, Nan

    2014-06-01

    Ginkgo biloba has been used for many thousand years as a traditional herbal remedy and its extract has been consumed for many decades as a dietary supplement. Ginkgo biloba leaf extract is a complex mixture with many constituents, including flavonol glycosides and terpene lactones. The National Toxicology Program 2-year cancer bioassay found that G. biloba leaf extract targets the liver, thyroid gland, and nose of rodents; however, the mechanism of G. biloba leaf extract-associated carcinogenicity remains unclear. In the current study, the in vitro genotoxicity of G. biloba leaf extract and its eight constituents was evaluated using the mouse lymphoma assay (MLA) and Comet assay. The underlying mechanisms of G. biloba leaf extract-associated genotoxicity were explored. Ginkgo biloba leaf extract, quercetin, and kaempferol resulted in a dose-dependent increase in the mutant frequency and DNA double-strand breaks (DSBs). Western blot analysis confirmed that G. biloba leaf extract, quercetin, and kaempferol activated the DNA damage signaling pathway with increased expression of γ-H2AX and phosphorylated Chk2 and Chk1. In addition, G. biloba leaf extract produced reactive oxygen species and decreased glutathione levels in L5178Y cells. Loss of heterozygosity analysis of mutants indicated that G. biloba leaf extract, quercetin, and kaempferol treatments resulted in extensive chromosomal damage. These results indicate that G. biloba leaf extract and its two constituents, quercetin and kaempferol, are mutagenic to the mouse L5178Y cells and induce DSBs. Quercetin and kaempferol likely are major contributors to G. biloba leaf extract-induced genotoxicity.

  3. Antimycotics suppress the Malassezia extract-induced production of CXC chemokine ligand 10 in human keratinocytes.

    Science.gov (United States)

    Hau, Carren S; Kanda, Naoko; Makimura, Koichi; Watanabe, Shinichi

    2014-02-01

    Malassezia, a lipophilic yeast, exacerbates atopic dermatitis. Malassezia products can penetrate the disintegrated stratum corneum and encounter subcorneal keratinocytes in the skin of atopic dermatitis patients. Type 1 helper T (Th1) cells infiltrate chronic lesions with atopic dermatitis, and antimycotic agents improve its symptoms. We aimed to identify Malassezia-induced chemokines in keratinocytes and examine whether antimycotics suppressed this induction. Normal human keratinocytes were incubated with a Malassezia restricta extract and antimycotics. Chemokine expression was analyzed by enzyme-linked immunosorbent assays and real-time polymerase chain reaction. Signal transducer and activator of transcription (STAT)1 activity was examined by luciferase assays. The tyrosine-phosphorylation of STAT1 was analyzed by western blotting. The M. restricta extract increased the mRNA and protein expression of Th1-attracting CXC chemokine ligand (CXCL)10 and STAT1 activity and phosphorylation in keratinocytes, which was suppressed by a Janus kinase inhibitor. The antimycotics itraconazole, ketoconazole, luliconazole, terbinafine, butenafine and amorolfine suppressed M. restricta extract-induced CXCL10 mRNA and protein expression and STAT1 activity and phosphorylation. These effects were similarly induced by 15-deoxy-Δ-(12,14) -prostaglandin J2 (15d-PGJ2 ), a prostaglandin D2 metabolite. Antimycotics increased the release of 15d-PGJ2 from keratinocytes. The antimycotic-induced suppression of CXCL10 production and STAT1 activity was counteracted by a lipocalin-type prostaglandin D synthase inhibitor. The antimycotics itraconazole, ketoconazole, luliconazole, terbinafine, butenafine and amorolfine may suppress the M. restricta-induced production of CXCL10 by inhibiting STAT1 through an increase in 15d-PGJ2 production in keratinocytes. These antimycotics may block the Th1-mediated inflammation triggered by Malassezia in the chronic phase of atopic dermatitis. © 2014

  4. Mucosal exposure to cockroach extract induces allergic sensitization and allergic airway inflammation

    Directory of Open Access Journals (Sweden)

    Arizmendi Narcy G

    2011-12-01

    Full Text Available Abstract Background Allergic sensitization to aeroallergens develops in response to mucosal exposure to these allergens. Allergic sensitization may lead to the development of asthma, which is characterized by chronic airway inflammation. The objective of this study is to describe in detail a model of mucosal exposure to cockroach allergens in the absence of an exogenous adjuvant. Methods Cockroach extract (CE was administered to mice intranasally (i.n. daily for 5 days, and 5 days later mice were challenged with CE for 4 consecutive days. A second group received CE i.n. for 3 weeks. Airway hyperresponsiveness (AHR was assessed 24 h after the last allergen exposure. Allergic airway inflammation was assessed by BAL and lung histology 48 h after the last allergen exposure. Antigen-specific antibodies were assessed in serum. Lungs were excised from mice from measurement of cytokines and chemokines in whole lung lysate. Results Mucosal exposure of Balb/c mice to cockroach extract induced airway eosinophilic inflammation, AHR and cockroach-specific IgG1; however, AHR to methacholine was absent in the long term group. Lung histology showed patchy, multicentric damage with inflammatory infiltrates at the airways in both groups. Lungs from mice from the short term group showed increased IL-4, CCL11, CXCL1 and CCL2 protein levels. IL4 and CXCL1 were also increased in the BAL of cockroach-sensitized mice in the short-term protocol. Conclusions Mucosal exposure to cockroach extract in the absence of adjuvant induces allergic airway sensitization characterized by AHR, the presence of Th2 cytokines in the lung and eosinophils in the airways.

  5. The dominant allele Aft induces a shift from flavonol to anthocyanin production in response to UV-B radiation in tomato fruit.

    Science.gov (United States)

    Catola, Stefano; Castagna, Antonella; Santin, Marco; Calvenzani, Valentina; Petroni, Katia; Mazzucato, Andrea; Ranieri, Annamaria

    2017-08-01

    The introgression of the A ft allele into domesticated tomato induced a shift from flavonol to anthocyanin production in response to UV-B radiation, while the hp - 1 allele negatively influenced the response of flavonoid biosynthesis to UV-B. Introgression of the dominant allele Anthocyanin fruit (Aft) from Solanum chilense induces anthocyanin accumulation in the peel of tomato (Solanum lycopersicum L.) fruit. UV-B radiation can influence plant secondary metabolism regulating the expression of several genes, among which those involved in flavonoid biosynthesis. Here, we investigated whether post-harvest UV-B treatment could up-regulate flavonoid production in tomato fruits and whether the Aft allele could affect flavonoid biosynthesis under UV-B radiation. Mature green fruits of an anthocyanin-rich tomato mutant line (SA206) and of its wild-type reference, cv. Roma, were daily subjected to post-harvest UV-B treatment until full ripening. Up-regulation of CHS and CHI transcription by UV-B treatment induced flavonoid accumulation in the peel of cv. Roma. Conversely, UV-B decreased the total flavonoid content and CHS transcript levels in the SA206 peel. SA206 being a double mutant containing also hp-1 allele, we investigated also the behavior of hp-1 fruit. The decreased peel flavonoid accumulation and gene transcription in response to UV-B suggest that hp-1 allele is involved in the marked down-regulation of the flavonoid biosynthesis observed in SA206 fruit. Interestingly, in SA206, UV-B radiation promoted the synthesis of delphinidin, petunidin, and malvidin by increasing F3'5'H and DFR transcription, but it decreased rutin production, suggesting a switch from flavonols to anthocyanins. Finally, although UV-B radiation does not reach the inner fruit tissues, it down-regulated flavonoid biosynthesis in the flesh of both genotypes. This study provides, for the first time, evidence that the presence of the functional Aft allele, under UV-B radiation, redirects

  6. Screening of the anthocyanin profile and in vitro pancreatic lipase inhibition by anthocyanin-containing extracts of fruits, vegetables, legumes and cereals.

    Science.gov (United States)

    Fabroni, Simona; Ballistreri, Gabriele; Amenta, Margherita; Romeo, Flora V; Rapisarda, Paolo

    2016-11-01

    The phytotherapic treatment of overweight and/or moderate obesity is growing widely, thus there is a great interest towards the phenolic compounds of fruits and vegetables which may inhibit pancreatic lipase enzyme. In this study, we report the chemical composition and in vitro pancreatic lipase inhibitory activity of 13 freeze-dried anthocyanin-containing extracts of different Mediterranean plants: fruits (blood orange, pomegranate, blackberry, mulberry and sumac), citrus by-products (blood orange peel), citrus vegetative tissues (young lemon shoots); vegetables (red cabbage and violet cauliflower), legume seeds (black bean), cereals (black rice), and cereal processing by-products (black rice hull). Total phenols and anthocyanins were determined. Individual anthocyanins were identified by UHPLC-PDA-ESI/MS n . Results revealed a wide variation in the distribution of anthocyanin compounds. Blood orange and pomegranate juice extracts had the highest total anthocyanin content and exhibited the strongest inhibition of pancreatic lipase in vitro. Inhibitory activity was positively correlated with anthocyanin content. In appropriate formulations, anthocyanin-containing extracts could find a use as anti-obesity agents. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  7. The influence of ascorbate on anthocyanin accumulation during high light acclimation in Arabidopsis thaliana: further evidence for redox control of anthocyanin synthesis.

    Science.gov (United States)

    Page, Mike; Sultana, Nighat; Paszkiewicz, Konrad; Florance, Hannah; Smirnoff, Nicholas

    2012-02-01

    Ascorbate and anthocyanins act as photoprotectants during exposure to high light (HL). They accumulate in Arabidopsis leaves in response to HL on a similar timescale, suggesting a potential relationship between them. Flavonoids and related metabolites were identified and profiled by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The ascorbate-deficient mutants vtc1, vtc2 and vtc3 accumulated less anthocyanin than wild-type (WT) during HL acclimation. In contrast, kaempferol glycoside accumulation was less affected by light and not decreased by ascorbate deficiency, while sinapoyl malate levels decreased during HL acclimation. Comparison of six Arabidopsis ecotypes showed a positive correlation between ascorbate and anthocyanin accumulation in HL. mRNA-Seq analysis showed that all flavonoid biosynthesis transcripts were increased by HL acclimation in WT. RT-PCR analysis showed that vtc1 and vtc2 were impaired in HL induction of transcripts of anthocyanin biosynthesis enzymes, and the transcription factors PAP1, GL3 and EGL3 that activate the pathway. Abscisic acid (ABA) and jasmonic acid (JA), hormones that could affect anthocyanin accumulation, were unaffected in vtc mutants. It is concluded that HL induction of anthocyanin synthesis involves a redox-sensitive process upstream of the known transcription factors. Because anthocyanins accumulate in preference to kaempferol glycosides and sinapoyl malate in HL, they might have specific properties that make them useful in HL acclimation. © 2011 Blackwell Publishing Ltd.

  8. Identification, content and distribution of anthocyanins and low molecular weight anthocyanin-derived pigments in Spanish commercial red wines.

    Science.gov (United States)

    Blanco-Vega, Dora; Gómez-Alonso, Sergio; Hermosín-Gutiérrez, Isidro

    2014-09-01

    The content and distribution of low molecular weight red wine pigments (anthocyanins, flavanol-anthocyanins adducts and pyranoanthocyanins) has been analysed in 283 wine samples. A total of 90 red wine pigments were identified and up to 68 of them quantified in most of the wine samples. The content of the different pigments classes accounted for wide ranges of values, because of the diversity of the commercial wines regarding grape cultivar and age. Garnacha young wines were prone to contain higher hydroxyphenyl-pyranoanthocyanin concentrations. The aging had an effect of making uniform the concentrations and molar percentages of every type of pigments, and only slight differences among wine groups were found for B-type vitisins (highest values for Syrah wines) and 10-hydroxyphenyl-pyranoanthocyanins (highest values for Merlot wines). Among Tempranillo wines, the ethylidene-bridged flavanol-anthocyanin adducts were the most affected by disappearance during aging, whereas hydroxyphenyl-pyranoanthocyanins increased their contribution in most of those aged wines. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Transcriptomic profiling of two Pak Choi varieties with contrasting anthocyanin contents provides an insight into structural and regulatory genes in anthocyanin biosynthetic pathway.

    Science.gov (United States)

    Zhang, Lu; Xu, Bin; Wu, Tao; Yang, Yanfang; Fan, Lianxue; Wen, Muxuan; Sui, Jiaxin

    2017-04-11

    The accumulation of anthocyanin in horticultural crops not only improves their stress tolerances but also their nutritional values. Many key regulatory and structural genes in anthocyanin biosynthesis have been identified in model plants, but limited information is available for non-model plant species featured with colored leaves. In this study, two Pak Choi varieties with green or purple leaves were selected to analyze the anthocyanin biosynthesis through RNA-Seq. A total of 2475 unigenes were differentially expressed between these tested varieties, including 1303 down-regulated and 1172 up-regulated genes in the purple-leafed one. The reliability of the RNA-Seq was further confirmed by using real-time quantitative PCR. Kyoto Encyclopedia of Genes and Genomes enrichment analysis of the differentially expressed genes revealed 'flavonoid biosynthesis' was the only enriched pathway in the purple-leafed variety: In the pathway of phenylpropanoid metabolism, Bra017210, Bra039777, and Bra021637 were expressed at higher levels in the purple-leafed variety; among the early anthocyanin biosynthetic genes, Bra037747 transcripts were only detected in the purple-leafed variety but not in the green-leafed one; among the late anthocyanin biosynthetic genes, Bra027457, Bra013652, Bra019350, Bra003021, Bra035004, and Bra038445 were all up-regulated in purple-leafed variety; and genes encoding anthocyanin-related transcription factors, such as Bra016164, and genes encoding anthocyanin transportation, such as GST F12, were also identified as up-regulated ones in the purple-leafed variety. The current result provided a valuable insight into the anthocyanin accumulation in the purple-leafed variety of Pak Choi and a bioinformatic resource for further functional identification of key allelic genes determining the difference of anthocyanin content between Pak Choi varieties.

  10. The Storage Stability of Anthocyanins in Mao (Antidesma thwaitesianum Müll. Arg. Juice and Concentrate

    Directory of Open Access Journals (Sweden)

    Prommakool Arunya

    2016-01-01

    Full Text Available Mao or Makmao (Antidesma thwaitesianum Müll. Arg. is a wild plant found in the northeast of Thailand. Mao is one of fruits which are source of anthocyanins. Mao fruits are used for juice and concentrate which are consumed for healthy drinks. Determination of the kinetic parameters is essential to predict the quality changes and stability of anthocyanins in Mao juice and concentrate that occur during storage. The purpose of this research was to study the degradation of anthocyanins in Mao juice and concentrate during storage at 5, 30 and 37°C for 15 days. The storage stability of Mao anthocyanins was studied in 15°Brix juice and 45°Brix concentrate. The degradation kinetic (k, half-life (t1/2, activation energy (Ea and Q10 values for Mao anthocyanins degradation were determined. The results indicated that analysis of kinetic data for the degradation of anthocyanins followed a first-order reaction. An increase storage temperature from 5 to 30 and 37°C increased k value of anthocyanins in Mao juice and concentrate. Increasing storage temperature decreased t1/2 value of anthocyanins in both concentrations. At 5, 30 and 37°C, the t1/2 of anthocyanins decreased from 35 to 13 and 5 days for Mao juice and 32 to 25 and 21 days for Mao concentrate. The Ea value of the anthocyanins degradation in Mao juice and concentrate were 38.03 and 8.42 kJ/mol, respectively. Q10 values of both Mao juice and concentrate at 30-37°C were higher than those were storaged at 5-30°C. Thus higher stability of anthocyanins was achieved by using concentration and storage at lower temperature.

  11. Anthocyanin indexes, quercetin, kaempferol, and myricetin concentration in leaves and fruit of Abutilon theophrasti Medik. genetic resources

    Science.gov (United States)

    Anthocyanin indexes, quercetin, kaempferol, and myricetin may provide industry with potential new medicines or nutraceuticals. Velvetleaf (Abutilon theophrasti Medik) leaves from 42 accessions were analyzed for anthocyanin indexes while both leaves and fruit were used for quercetin, kaempferol, and ...

  12. Anthocyanins and phenolic acids from a wild blueberry (Vaccinium angustifolium) powder counteract lipid accumulation in THP-1-derived macrophages

    DEFF Research Database (Denmark)

    Del Bo', Cristian; Cao, Yi; Roursgaard, Martin

    2016-01-01

    PURPOSE: Blueberries are a rich source of anthocyanins (ACNs) and phenolic acids (PA), which are hypothesized to protect against development of atherosclerosis. The present study examined the effect of an ACN- and PA-rich fractions, obtained from a wild blueberry powder, on the capacity...... to counteract lipid accumulation in macrophages derived from monocytic THP-1 cells. In addition, we tested the capacity of pure ACNs and their metabolites to alter lipid accumulation. METHODS: THP-1-derived macrophages were incubated with fatty acids (500 μM oleic/palmitic acid, 2:1 ratio) and different...... concentrations (from 0.05 to 10 μg mL(-1)) of ACN- and PA-rich fractions, pure ACN standards (malvidin, delphinidin and cyanidin 3-glucoside), and metabolites (syringic, gallic and protocatechuic acids). Lipid accumulation was quantified with the fluorescent dye Nile red. RESULTS: Lipid accumulation was reduced...

  13. The Arabidopsis Transcription Factor ANAC032 Represses Anthocyanin Biosynthesis in Response to High Sucrose and Oxidative and Abiotic Stresses

    OpenAIRE

    Mahmood, Kashif; Xu, Zhenhua; El-Kereamy, Ashraf; Casaretto, Jos? A.; Rothstein, Steven J.

    2016-01-01

    Production of anthocyanins is one of the adaptive responses employed by plants during stress conditions. During stress, anthocyanin biosynthesis is mainly regulated at the transcriptional level via a complex interplay between activators and repressors of anthocyanin biosynthesis genes. In this study, we investigated the role of a NAC transcription factor, ANAC032, in the regulation of anthocyanin biosynthesis during stress conditions. ANAC032 expression was found to be induced by exogenous su...

  14. An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae (on linr)

    OpenAIRE

    Wang, Kui-Lin; Bolitho, Karen; Grafton, Karryn; Kortstee, A.J.; Karunairetnam, Sakuntala; McGhie, T.K.; Espley, R.V.; Hellens, R.P.; Allan, A.C.

    2010-01-01

    Background - The control of plant anthocyanin accumulation is via transcriptional regulation of the genes encoding the biosynthetic enzymes. A key activator appears to be an R2R3 MYB transcription factor. In apple fruit, skin anthocyanin levels are controlled by a gene called MYBA or MYB1, while the gene determining fruit flesh and foliage anthocyanin has been termed MYB10. In order to further understand tissue-specific anthocyanin regulation we have isolated orthologous MYB genes from all th...

  15. Sucrose-specific induction of anthocyanin biosynthesis in Arabidopsis requires the MYB75/PAP1 gene.

    NARCIS (Netherlands)

    Teng, S.; Keurentjes, J.J.B.; Bentsink, L.; Koornneef, M.; Smeekens, S.

    2005-01-01

    Sugar-induced anthocyanin accumulation has been observed in many plant species. We observed that sucrose (Suc) is the most effective inducer of anthocyanin biosynthesis in Arabidopsis (Arabidopsis thaliana) seedlings. Other sugars and osmotic controls are either less effective or ineffective.

  16. The Effect of pH and Color Stability of Anthocyanin on Food Colorant

    Science.gov (United States)

    Wahyuningsih, S.; Wulandari, L.; Wartono, M. W.; Munawaroh, H.; Ramelan, A. H.

    2017-04-01

    Anthocyanins are naturally occurring pigments of red and purple. Red anthocyanin pigments provide a strong and sharp and widely applied in various industries such as food coloring or drink. Anthocyanins isolated by maceration, extraction and thin layer chromatography (TLC). The extract has been obtained from the initial stages of maceration then separated into several fractions by chromatography to isolate fractions colored dark red. Identification of chemical compounds with TLC (Thin Layer Chromatography) is able to distinguish the fraction of anthocyanin produced. FTIR (Fourier Transform Infrared Spectroscopy) used to identification of the functional group of a compound. The UV-Vis absorption spectra have to produce maximum absorbance values that describe the intensity of anthocyanin spectra in different colors for different pH. Anthocyanins are more stable at low pH (acidic conditions) which gives a red pigment. Meanwhile, the higher the pH value of anthocyanin will provide color fading of the color blue. So as a food colorant, anthocyanin with a low pH or height pH has a significant effect on the food colorant.

  17. Using gamma irradiation for the recovery of anthocyanins from grape pomace

    Energy Technology Data Exchange (ETDEWEB)

    Ayed, N.; Yu, H.-L.; Lacroix, M. E-mail: Monique_Lacroix@iaf.uquebec.ca

    2000-03-01

    This research investigated the effect of gamma irradiation from 0 to 9 kGy, packaging in air or under vacuum, or in combination with other treatments for enhancing anthocyanin extraction from grape pomace. Results indicate that the irradiation at 6 kGy and packaging in the presence of a low concentration of sodium metabisulfite yielded the highest value of anthocyanin extraction. (author)

  18. Purified anthocyanin supplementation reduces dyslipidemia, enhances antioxidant capacity, and prevents insulin resistance in diabetic patients.

    Science.gov (United States)

    Li, Dan; Zhang, Yuhua; Liu, Yan; Sun, Ruifang; Xia, Min

    2015-04-01

    Oxidative stress plays an essential role in the pathogenesis of type 2 diabetes. Anthocyanin, a natural antioxidant, has been reported to reduce oxidative stress and to attenuate insulin resistance and diabetes in animal models; however, the translation of these observations to humans has not been fully tested. This study was designed to investigate the effects of purified anthocyanins on dyslipidemia, oxidative status, and insulin sensitivity in patients with type 2 diabetes. A total of 58 diabetic patients were given 160 mg of anthocyanins twice daily or placebo (n = 29/group) for 24 wk in a randomized, placebo-controlled, double-blind trial. Participants and investigators were masked to treatment allocation. Anthocyanin supplementation significantly decreased serum LDL cholesterol (by 7.9%; P anthocyanin group showed higher total radical-trapping antioxidant parameter and ferric ion reducing antioxidant power values than did patients in the placebo group (both P anthocyanin group were significantly less than in patients in the placebo group (23.4%, 25.8%; P anthocyanin lowered fasting plasma glucose (by 8.5%; P anthocyanin supplementation exerts beneficial metabolic effects in subjects with type 2 diabetes by improving dyslipidemia, enhancing antioxidant capacity, and preventing insulin resistance. This trial was registered at www.clinicaltrials.gov as NCT02317211. © 2015 American Society for Nutrition.

  19. Effects of Growth Temperature and Postharvest Cooling on Anthocyanin Profiles in Juvenile and Mature Brassica oleracea.

    Science.gov (United States)

    Socquet-Juglard, Didier; Bennett, Alexandra A; Manns, David C; Mansfield, Anna Katharine; Robbins, Rebecca J; Collins, Thomas M; Griffiths, Phillip D

    2016-02-24

    The effects of growth temperatures on anthocyanin content and profile were tested on juvenile cabbage and kale plants. The effects of cold storage time were evaluated on both juvenile and mature plants. The anthocyanin content in juvenile plants ranged from 3.82 mg of cyanidin-3,5-diglucoside equivalent (Cy equiv)/g of dry matter (dm) at 25 °C to 10.00 mg of Cy equiv/g of dm at 16 °C, with up to 76% diacylated anthocyanins. Cold storage of juvenile plants decreased the total amount of anthocyanins but increased the diacylated anthocyanin content by 3-5%. In mature plants, cold storage reduced the total anthocyanin content from 22 to 12.23 mg/g after 5 weeks of storage in red cabbage, while the total anthocyanin content increased after 2 weeks of storage from 2.34 to 3.66 mg of Cy equiv/g of dm in kale without having any effect on acylation in either morphotype. The results obtained in this study will be useful for optimizing anthocyanin production.

  20. Issues with fruit dietary supplements in the US - authentication by anthocyanin

    Science.gov (United States)

    Current fruit-based dietary supplements in the US marketplace have no obligation to meet any fruit-component concentration requirement. For example, berry supplements might be promoted for their high anthocyanin content, but they actually have no standard or minimum anthocyanin threshold for legal s...

  1. Rosaceae products: Anthocyanin quality and comparisons between dietary supplements and foods

    Science.gov (United States)

    Rosaceae (strawberry, cherry, blackberry, red raspberry, and black raspberry) dietary supplements and food products (total n=74) were purchased and analyzed to determine their anthocyanin concentrations and profiles. Eight of the 33 dietary supplements had no detectable anthocyanins (five samples) o...

  2. Is solar radiation a key to good red wine grape anthocyanin?

    Science.gov (United States)

    Despite a century of research, we still lack a concrete, mechanistic understanding of solar radiation and temperature effects on anthocyanin accumulation and composition, crucial for red wine grapes. Our aim was to elucidate the mechanistic response to microclimate of anthocyanin metabolism in Viti...

  3. Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors

    NARCIS (Netherlands)

    Butelli, E.; Titta, L.; Giorgio, M.; Mock, H.P.; Matros, A.; Peterek, S.; Schijlen, E.G.W.M.; Hall, R.D.; Bovy, A.G.; Luo, J.; Martin, C.

    2008-01-01

    Dietary consumption of anthocyanins, a class of pigments produced by higher plants, has been associated with protection against a broad range of human diseases. However, anthocyanin levels in the most commonly eaten fruits and vegetables may be inadequate to confer optimal benefits. When we

  4. Genetic analyses of anthocyanin concentrations and the intensity of red color in onion

    Science.gov (United States)

    Higher concentrations of anthocyanins in vegetables are important for attractive appearance and may offer health benefits for consumers. The red color of onion bulbs is due primarily to the accumulation of anthocyanins. Segregating haploid plants from the cross of yellow and red inbreds were asexual...

  5. Microencapsulation of Natural Anthocyanin from Purple Rosella Calyces by Freeze Drying

    Science.gov (United States)

    Nafiunisa, A.; Aryanti, N.; Wardhani, D. H.; Kumoro, A. C.

    2017-11-01

    Anthocyanin extract in powder form will improve its use since the powder is easier to store and more applicable. Microencapsulation method is introduced as an efficient way for protecting pigment such as anthocyanin. This research was aimed to characterise anthocyanin encapsulated products prepared from purple Roselle calyces by freeze drying. The liquid anthocyanin extracts from ultrasound-assisted extraction were freeze-dried with and without the addition of 10% w/w maltodextrins as a carrier and coating agents. The quality attributes of the powders were characterised by their colour intensity, water content, and solubility. Analysis of encapsulated material was performed for the powder added by maltodextrin. The stability of the microencapsulated pigment in solution form was determined for 11 days. Total anthocyanin content was observed through pH differential method. The results of the colour intensity analysis confirm that the product with maltodextrin addition has more intense colour with L* value of 29.69 a* value of 54.29 and b* value of 8.39. The result with the addition of maltodextrin has less moisture content and more soluble in water. It is verified that better results were obtained for powder with maltodextrin addition. Anthocyanin in the powder form with maltodextrin addition exhibits higher stability even after 11 days. In conclusion, the microencapsulation of anthocyanin with maltodextrin as a carrier and coating agent presented a potential method to produce anthocyanin powder from purple Roselle.

  6. CCoAOMT down-regulation activates anthocyanin biosynthesis in petunia

    NARCIS (Netherlands)

    Shaipulah, N.F.M.; Muhlemann, J.K.; Woodworth, B.D.; Van Moerkercke, A.; Verdonk, J.C.; Ramirez, A.M.; Haring, M.A.; Dudareva, N.; Schuurink, R.C.

    2016-01-01

    Anthocyanins and volatile phenylpropenes (isoeugenol and eugenol) in petunia flowers have the precursor 4-coumaryl CoA in common. These phenolics are produced at different stages during flower development. Anthocyanins are synthesized during early stages of flower development and sequestered in

  7. CCoAOMT down-regulation activates anthocyanin biosynthesis in petunia

    NARCIS (Netherlands)

    Shaipulah, N.F.M.; Muhlemann, Joëlle K.; Woodworth, Benjamin D.; Moerkercke, Van Alex; Verdonk, J.C.; Ramirez, A.A.; Haring, Michel A.; Dudareva, Natalia; Schuurink, Robert C.

    2016-01-01

    Anthocyanins and volatile phenylpropenes (isoeugenol and eugenol) in petunia (Petunia hybrida) flowers have the precursor 4-coumaryl coenzyme A (CoA) in common. These phenolics are produced at different stages during flower development. Anthocyanins are synthesized during early stages of flower

  8. Overexpression of snapdragon Delila (Del) gene in tobacco enhances anthocyanin accumulation and abiotic stress tolerance.

    Science.gov (United States)

    Naing, Aung Htay; Park, Kyeung Il; Ai, Trinh Ngoc; Chung, Mi Young; Han, Jeung Sul; Kang, Young-Wha; Lim, Ki Byung; Kim, Chang Kil

    2017-03-23

    Rosea1 (Ros1) and Delila (Del) co-expression controls anthocyanin accumulation in snapdragon flowers, while their overexpression in tomato strongly induces anthocyanin accumulation. However, little data exist on how Del expression alone influences anthocyanin accumulation. In tobacco (Nicotiana tabacum 'Xanthi'), Del expression enhanced leaf and flower anthocyanin production through regulating NtCHS, NtCHI, NtF3H, NtDFR, and NtANS transcript levels. Transgenic lines displayed different anthocyanin colors (e.g., pale red: T 0 -P, red: T 0 -R, and strong red: T 0 -S), resulting from varying levels of biosynthetic gene transcripts. Under salt stress, the T 2 generation had higher total polyphenol content, radical (DPPH, ABTS) scavenging activities, antioxidant-related gene expression, as well as overall greater salt and drought tolerance than wild type (WT). We propose that Del overexpression elevates transcript levels of anthocyanin biosynthetic and antioxidant-related genes, leading to enhanced anthocyanin production and antioxidant activity. The resultant increase of anthocyanin and antioxidant activity improves abiotic stress tolerance.

  9. Different localization patterns of anthocyanin species in the pericarp of black rice revealed by imaging mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Yukihiro Yoshimura

    Full Text Available Black rice (Oryza sativa L. Japonica contains high levels of anthocyanins in the pericarp and is considered an effective health-promoting food. Several studies have identified the molecular species of anthocyanins in black rice, but information about the localization of each anthocyanin species is limited because methodologies for investigating the localization such as determining specific antibodies to anthocyanin, have not yet been developed Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS is a suitable tool for investigating the localization of metabolites. In this study, we identified 7 species of anthocyanin monoglycosides and 2 species of anthocyanin diglycosides in crude extracts from black rice by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS analysis. We also analyzed black rice sections by MALDI-IMS and found 2 additional species of anthocyanin pentosides and revealed different localization patterns of anthocyanin species composed of different sugar moieties. Anthocyanin species composed of a pentose moiety (cyanidin-3-O-pentoside and petunidin-3-O-pentoside were localized in the entire pericarp, whereas anthocyanin species composed of a hexose moiety (cyanidin-3-O-hexoside and peonidin-3-O-hexoside were focally localized in the dorsal pericarp. These results indicate that anthocyanin species composed of different sugar moieties exhibit different localization patterns in the pericarp of black rice. This is the first detailed investigation into the localization of molecular species of anthocyanins by MALDI-IMS.

  10. Efficiency enhancement of dye-sensitized solar cells (DSSC) by addition of synthetic dye into natural dye (anthocyanin)

    Science.gov (United States)

    Pratiwi, D. D.; Nurosyid, F.; Supriyanto, A.; Suryana, R.

    2017-02-01

    This article reported combination of anthocyanin and synthetic dyes in dye-sensitized solar cells (DSSC) applications. This study aims was to improve the performance of DSSC by addition of synthetic dye into anthocyanin dye. Anthocyanin dye was extracted from red cabbage and synthetic dye was obtained from N719. We prepared anthocyanin and synthetic dyes at 2 different volume, anthocyanin dye at volume of 10 ml and combination dyes with anthocyanin and synthetic dyes at volume of 8 mL : 2 mL. The DSSCs were designed into sandwich structure on the fluorine-doped tin oxide (FTO) substrates using TiO2 electrode, carbon electrode, anthocyanin and synthetic dyes, and redox electrolyte. The absorption wavelength of anthocyanin dye of red cabbage was 450 nm - 580 nm, the combination of anthocyanin and synthetic dyes can increase the absorbance peak only. The IPCE characteristic with anthocyanin dye of red cabbage and combination dyes resulted quantum efficiency of 0.081% and 0.092% at wavelength maximum about 430 nm. The DSSC by anthocyanin dye of red cabbage achieved a conversion efficiency of 0.024%, while the DSSC by combination dyes achieved a conversion efficiency of 0.054%, combination dyes by addition synthetic dye into anthocyanin dye enhanced the conversion efficiency up to 125%.

  11. Calf thymus DNA-binding ability study of anthocyanins from purple sweet potatoes ( Ipomoea batatas L.).

    Science.gov (United States)

    Wang, Dan; Wang, Xirui; Zhang, Chao; Ma, Yue; Zhao, Xiaoyan

    2011-07-13

    A total of 10 anthocyanin compounds were identified from five purple sweet potato ( Ipomoea batatas L.) varieties, Qunzi, Zishu038, Ji18, Jingshu6, and Ziluolan, by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) to assess their calf thymus DNA-binding ability in vitro. The interaction between anthocyanins and calf thymus DNA in Tris-HCl buffer solution (pH 6.9) was evaluated by fluorescence spectroscopy. Using ethidium bromide (EB) as a fluorescence probe, fluorescence quenching of the emission peak was seen in the DNA-EB system when anthocyanins were added, indicating that the anthocyanins bound with DNA. The acylated groups influenced the ability of the interaction with DNA. Anthocyanins from purple sweet potato with more acylated groups in sorphorose have a stronger binding ability with DNA.

  12. Absorption and excretion of black currant anthocyanins in human and Watanabe Heritable Hyperlipidemic rabbits

    DEFF Research Database (Denmark)

    Nielsen, I. L.. F.; Ravn-Haren, Gitte; Dragsted, L. O.

    2003-01-01

    Anthocyanins are thought to protect against cardiovascular diseases. Watanabe heritable hyperlipidemic (WHHL) rabbits are hypercholesterolemic and used as a model of the development of atherosclerosis. To compare the uptake and excretion of anthocyanins in humans and WHHL rabbits, single-dose black......). The excretion and absorption of anthocyanins from black currant juice were found to be within the same order of magnitude in the two species regarding urinary excretion within the first 4 h (rabbits, 0.035%; humans, 0.072%) and t(ma)x (rabbits, similar to30 min; humans, similar to45 min). A food matrix effect...... was detected in rabbits, resulting in the absorption of a higher proportion of the anthocyanins from black currant juice than from an aqueous citric acid matrix. In humans the absorption and urinary excretion of anthocyanins from black currant juice were found to be proportional with dose and not influenced...

  13. Optimized extraction of anthocyanins from Reid Fruits' Prunus avium 'Lapins' cherries.

    Science.gov (United States)

    Blackhall, Melanie L; Berry, Rachael; Davies, Noel W; Walls, Justin T

    2018-08-01

    The influence of process parameters on the extraction of anthocyanins from the edible portion of fresh, sweet cherry were investigated. The optimal extraction time and temperature were determined as 90 min and 37 °C, respectively. A solvent/solid ratio of 10 mL/g using 100% acidified solvent resulted in the greatest anthocyanin yield. No significant difference was observed between the use of methanol or ethanol as the extraction solvent. Ultra Performance Liquid Chromatography-MS analysis of the extract identified four anthocyanins, with cyanidin-3-rutinoside and peonidin-3-rutinoside accounting for over 95% of the anthocyanin content, while cyanidin-3-glucoside and pelargonidin-3-rutinoside accounted for the remaining 5%. 244 mg/100 g fresh weight total anthocyanins were determined in the fresh cherries using the optimal extraction conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Precursors and genetic control of anthocyanin synthesis in Matthiola incana R. Br.

    Science.gov (United States)

    Forkmann, G

    1977-01-01

    After application of dihydroflavonols, naringenin, or suitable substituted chalcones, anthocyanins were synthesized in three genetically defined acyanic lines of Matthiola incana, indicating that the corresponding genetic block concerns the synthesis of the chalcone-flavanone intermediate. Independent of the precursors used, only cyanidin derivatives were produced. This supports the hypothesis that the oxygenation pattern of the B ring in anthocyanin formation is determined at a stage of a C15 intermediate. In addition to the gene responsible for the oxygenation of the 3' position, the genes responsible for the glycosylation in the 3 and 5 positions of the anthocyanin molecule, and those responsible for the acylation with various hydroxycinnamic acids can still exert their influence. Two further genetically defined lines containing flavonol glycosides were not able to synthesize anthocyanins with any of the precursors tested. Their genetic blocks are assumed to be localized after dihydroflavonol synthesis but before anthocyanin formation.

  15. Metabolic Interaction between Anthocyanin and Lignin Biosynthesis Is Associated with Peroxidase FaPRX27 in Strawberry Fruit1[W

    Science.gov (United States)

    Ring, Ludwig; Yeh, Su-Ying; Hücherig, Stephanie; Hoffmann, Thomas; Blanco-Portales, Rosario; Fouche, Mathieu; Villatoro, Carmen; Denoyes, Béatrice; Monfort, Amparo; Caballero, José Luis; Muñoz-Blanco, Juan; Gershenson, Jonathan; Schwab, Wilfried

    2013-01-01

    Plant phenolics have drawn increasing attention due to their potential nutritional benefits. Although the basic reactions of the phenolics biosynthetic pathways in plants have been intensively analyzed, the regulation of their accumulation and flux through the pathway is not that well established. The aim of this study was to use a strawberry (Fragaria × ananassa) microarray to investigate gene expression patterns associated with the accumulation of phenylpropanoids, flavonoids, and anthocyanins in strawberry fruit. An examination of the transcriptome, coupled with metabolite profiling data from different commercial varieties, was undertaken to identify genes whose expression correlated with altered phenolics composition. Seventeen comparative microarray analyses revealed 15 genes that were differentially (more than 200-fold) expressed in phenolics-rich versus phenolics-poor varieties. The results were validated by heterologous expression of the peroxidase FaPRX27 gene, which showed the highest altered expression level (more than 900-fold). The encoded protein was functionally characterized and is assumed to be involved in lignin formation during strawberry fruit ripening. Quantitative trait locus analysis indicated that the genomic region of FaPRX27 is associated with the fruit color trait. Down-regulation of the CHALCONE SYNTHASE gene and concomitant induction of FaPRX27 expression diverted the flux from anthocyanins to lignin. The results highlight the competition of the different phenolics pathways for their common precursors. The list of the 15 candidates provides new genes that are likely to impact polyphenol accumulation in strawberry fruit and could be used to develop molecular markers to select phenolics-rich germplasm. PMID:23835409

  16. Loss of anthocyanins and modification of the anthocyanin profiles in grape berries of Malbec and Bonarda grown under high temperature conditions.

    Science.gov (United States)

    de Rosas, Inés; Ponce, María Teresa; Malovini, Emiliano; Deis, Leonor; Cavagnaro, Bruno; Cavagnaro, Pablo

    2017-05-01

    Malbec and Bonarda are the two most widely cultivated grape varieties in Argentina, and their derived red wines are recognized worldwide, being their intense color a major quality trait. The temperature during fruit ripening conditions berries color intensity. In the main viticulture region of Malbec and Bonarda a 2-3°C increase in temperature has been predicted for the upcoming years as consequence of the global climate change. In the present study, this predicted temperature raise was simulated under field-crop conditions, and its effect on anthocyanin pigmentation in berries of Malbec and Bonarda was monitored by HPLC analysis throughout the ripening process, in two growing seasons. Additionally, expression levels of regulatory (MYBA1 and MYB4) and structural (UFGT and Vv3AT) anthocyanin genes were monitored in Malbec berry skins. Although cultivar-dependent time-course variation was observed for total anthocyanin content, in general, the berries of both cultivars grown under high temperature (HT) conditions had significantly lower total anthocyanins (∼28-41% reduction), and a higher proportion of acylated anthocyanins, than their respective controls. Expression of MYBA1 and UFGT, but not MYB4, was correlated with anthocyanin pigmentation at half ripening and harvest, whereas overexpression of the acyltransferase gene Vv3AT was associated with higher anthocyanin acylation in HT berries. These results suggest that color development and pigment modifications in Malbec berries under HT are regulated at transcriptional level by MYBA1, UFGT, and Vv3AT genes. These data contribute to the general understanding on the effect of high temperatures on anthocyanin biochemistry and genetic regulation, and may have direct implications in the production of high-quality wines from Malbec and Bonarda. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Effects of Anthocyanin and Flavanol Compounds on Lipid Metabolism and Adipose Tissue Associated Systemic Inflammation in Diet-Induced Obesity

    Directory of Open Access Journals (Sweden)

    Roel A. van der Heijden

    2016-01-01

    Full Text Available Background. Naturally occurring substances from the flavanol and anthocyanin family of polyphenols have been proposed to exert beneficial effects in the course of obesity. We hypothesized that their effects on attenuating obesity-induced dyslipidemia as well as the associated inflammatory sequelae especially have health-promoting potential. Methods. Male C57BL/6J mice (n=52 received a control low-fat diet (LFD; 10 kcal% fat for 6 weeks followed by 24 weeks of either LFD (n=13 or high-fat diet (HFD; 45 kcal% fat; n=13 or HFD supplemented with 0.1% w/w of the flavanol compound epicatechin (HFD+E; n=13 or an anthocyanin-rich bilberry extract (HFD+B; n=13. Energy substrate utilization was determined by indirect calorimetry in a subset of mice following the dietary switch and at the end of the experiment. Blood samples were collected at baseline and at 3 days and 4, 12, and 20 weeks after dietary switch and analyzed for systemic lipids and proinflammatory cytokines. Adipose tissue (AT histopathology and inflammatory gene expression as well as hepatic lipid content were analyzed after sacrifice. Results. The switch from a LFD to a HFD lowered the respiratory exchange ratio and increased plasma cholesterol and hepatic lipid content. These changes were not attenuated by HFD+E or HFD+B. Furthermore, the polyphenol compounds could not prevent HFD-induced systemic rise of TNF-α levels. Interestingly, a significant reduction in Tnf gene expression in HFD+B mice was observed in the AT. Furthermore, HFD+B, but not HFD+E, significantly prevented the early upregulation of circulating neutrophil chemoattractant mKC. However, no differences in AT histopathology were observed between the HFD types. Conclusion. Supplementation of HFD with an anthocyanin-rich bilberry extract but not with the flavanol epicatechin may exert beneficial effects on the systemic early inflammatory response associated with diet-induced obesity. These systemic effects were transient

  18. Functional conservation analysis and expression modes of grape anthocyanin synthesis genes responsive to low temperature stress.

    Science.gov (United States)

    Zhang, Cheng; Jia, Haifeng; Wu, Weimin; Wang, Xicheng; Fang, Jinggui; Wang, Chen

    2015-12-10

    In grape cultivation, low temperature generally increases the expression of genes involved in synthesis of anthocyanin. In this study, multi-type structural analysis of the proteins encoded by five anthocyanin biosynthesis genes VvF3H, VvPAL, VvCHS3, VvCHS2 and VvLDOX, in addition to nine of their homologous genes revealed that proteins in grapevine shared a high similarity with that in kiwi, red orange and some other species in which the biosynthesis of anthocyanin significantly influenced by low temperature as proved by previous studies. Low temperature regulatory elements were also found in the promoter region of the grapevine genes VvCHS2, VvPAL and VvF3H. These findings indicate that the functions of anthocyanin biosynthesis genes in grapevine are conservative and might be sensitive to low temperature. In order to identify the specific expression patterns of the five anthocyanin biosynthesis genes and the changes of polyphenols, anthocyanins and flavonoids under low temperature stress. The transcription analysis of the five genes and the content of polyphenols, anthocyanins and flavonoids in grape skins were examined, by using Vitis vinifera L. cv. 'Yongyou 1' and 'Juxing' berries as experimental material and treated at 4°C and 25°C for 24h, 48 h, 72 h and 96 h. The results showed that low temperature greatly enhanced the expression of the five anthocyanin biosynthesis genes. Low temperature greatly slowed down the decomposition of polyphenol, anthocyanin, and flavonoid in grape skins. Our study also found that cv. 'Juxing' responded more sensitively to low temperature than cv. 'Yongyou 1'. All the findings would provide a basis for further study on the mechanism of anthocyanin biosynthesis under environmental stress. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Accelerated, microwave-assisted, and conventional solvent extraction methods affect anthocyanin composition from colored grains.

    Science.gov (United States)

    Abdel-Aal, El-Sayed M; Akhtar, Humayoun; Rabalski, Iwona; Bryan, Michael

    2014-02-01

    Anthocyanins are important dietary components with diverse positive functions in human health. This study investigates effects of accelerated solvent extraction (ASE) and microwave-assisted extraction (MAE) on anthocyanin composition and extraction efficiency from blue wheat, purple corn, and black rice in comparison with the commonly used solvent extraction (CSE). Factorial experimental design was employed to study effects of ASE and MAE variables, and anthocyanin extracts were analyzed by spectrophotometry, high-performance liquid chromatography-diode array detector (DAD), and liquid chromatography-mass spectrometry chromatography. The extraction efficiency of ASE and MAE was comparable with CSE at the optimal conditions. The greatest extraction by ASE was achieved at 50 °C, 2500 psi, 10 min using 5 cycles, and 100% flush. For MAE, a combination of 70 °C, 300 W, and 10 min in MAE was the most effective in extracting anthocyanins from blue wheat and purple corn compared with 50 °C, 1200 W, and 20 min for black rice. The anthocyanin composition of grain extracts was influenced by the extraction method. The ASE extraction method seems to be more appropriate in extracting anthocyanins from the colored grains as being comparable with the CSE method based on changes in anthocyanin composition. The method caused lower structural changes in anthocaynins compared with the MAE method. Changes in blue wheat anthocyanins were lower in comparison with purple corn or black rice perhaps due to the absence of acylated anthocyanin compounds in blue wheat. The results show significant differences in anthocyanins among the 3 extraction methods, which indicate a need to standardize a method for valid comparisons among studies and for quality assurance purposes. © 2014 Her Majesty the Queen in Right of Canada Journal of Food Science © 2014 Institute of Food Technologists® Reproduced with the permission of the Minister of Agriculture and Agri-Food Canada.

  20. The blue light signal transduction pathway is involved in anthocyanin accumulation in 'Red Zaosu' pear.

    Science.gov (United States)

    Tao, Ruiyan; Bai, Songling; Ni, Junbei; Yang, Qinsong; Zhao, Yuan; Teng, Yuanwen

    2018-03-15

    A conserved blue light sensing and transduction pathway contributes to blue light-induced anthocyanin accumulation in the peel of red pear. Peel color is an economically important characteristic that influences the appearance quality of red pear, whose red color is due to anthocyanin accumulation. The process of coloration in the fruit peel is strongly influenced by light. However, how light quality influences color development remains unclear. In this study, we analyzed the effects of different light qualities on color development in the red pear 'Red Zaosu', a mutant of the hybrid cultivar 'Zaosu' of Pyrus pyrifolia and P. communis. The results showed that blue light increased anthocyanin accumulation after 72 h of light treatment, while red light had almost no effect. The expression of anthocyanin biosynthesis-related genes showed a similar trend to the anthocyanin accumulation. To clarify the mechanism of blue-light induced coloration, PpCRYs, PpCOP1 and PpHY5 genes were cloned. Gene expression analysis showed that their transcript abundance did not correlate with the expression of anthocyanin-related genes or anthocyanin content, but the yeast two-hybrid system revealed conserved physical interactions among these proteins. In addition, PpHY5 directly bound to the promoters of the anthocyanin biosynthesis genes PpCHS, PpDFR, PpANS and PpMYB10, and activated the transcription of PpCHS in a Nicotiana benthamiana-based dual-luciferase assay. In summary, our results preliminarily revealed that the conserved blue light signal transduction module CRY-COP1-HY5 contributed to the anthocyanin biosynthesis induced by blue light in red pear. However, our results did not provide evidence for why red light had no effect on anthocyanin accumulation, which needs further study.

  1. [Action spectra of anthocyanin synthesis in tissue cultures and seedlings of Haplopappus gracilis].

    Science.gov (United States)

    Lackmann, I

    1971-09-01

    The biosynthesis of anthocyanin in tissue cultures and intact seedlings of Haplopappus gracilis is a light-dependent reaction which can be induced by blue light only. Anthocyanin appeared in all organs of the seedling.Wounding of the plant led to an increase in the content of anthocyanin due to increased anthocyanin synthesis in the cotyledons.The action spectra of anthocyanin formation in tissue cultures and intact seedlings have two peaks, one at 438 nm and the other at 372 nm. The limit of activity in the direction of longer wavelengths lies between 474 and 493 nm. Red light of short and long wavelength is ineffective in the induction of pigment synthesis. The photoreceptor of the light reaction is supposed to be a yellow pigment (flavoprotein or carotinoid). In contrast to the intact plants, isolated cotyledons and wounded seedlings are able to form anthocyanin not only in the blue region but also during irradiation with red light of high intensity. The action spectrum of anthocyanin synthesis in the isolated cotyledons has a marked maximum at about 440 nm and a second one at about 660 nm. A little activity can be observed throughout the visible spectrum. The pigment synthesis induced by red light can be completely suppressed by DCMU, an inhibitor of photosynthesis. This indicates that in the case of the activity in the red light caused by wounding chlorophyll serves as photoreceptor.The anthocyanin synthesis in tissue cultures and seedlings could not be influenced by low energy radiation in the red or in the far red region, even after induction of anthocyanin synthesis by blue light of high intensity. Therefore it seems that the phytochrome system is not involved in anthocyanin synthesis in Haplopappus gracilis.

  2. Anthocyanins in Wheat Seed – A Mini Review

    Directory of Open Access Journals (Sweden)

    Havrlentová Michaela

    2014-06-01

    Full Text Available Improving the micronutrients in food has become an important field of the Second Green Revolution. In recent years, minor bioactive compounds such as polyphenols, pigments and carotenoids, have attracted more and more interest from both researchers and food manufactures as health-promoting and disease-preventing effects in both in vitro and in vivo studies. One of plant pigments, wheat anthocyanins as plant phenolics are increasingly attractive as natural compounds positively affecting consumer´s health and condition moreover wheat is staple food source consumed usually daily. For a purple, blue, or red colour of wheat seed are responsible glycosylated cyanidins, delphinidins, malvinidins, pelargonidins, petunidins, and peonidins located in aleurone layer or pericarp, respectively. Other than white seed colour is not natural for common hexaploid wheat but this trait can be introduced from donors by aimed breeding programs. The way of wheat anthocyanins to provide positive effects for consumer´s physiology is limited due to their specific occurrence in seed parts usually removed during grain milling practice and lower stability during processing to foods

  3. Mineral analysis, anthocyanins and phenolic compounds in wine residues flour

    Directory of Open Access Journals (Sweden)

    Bennemann Gabriela Datsch

    2016-01-01

    Full Text Available This study analyzed the mineral content (N, P, K, S, Ca, Fe, Mg, Mn, Fe and Zn, anthocyanins and phenolic compounds in flours produced from residues of different grape cultivars from the wineries in the Southern region of Brazil. Mineral analysis showed a significant difference for all grape cultivar, with the exception for phosphorus content. Residues from cv. Seibel showed higher levels of N, Cu and Mg. The cultivars Ancelotta, Tanat and Bordô present higher contents of K, Zn, Mn, Fe and Ca. For the concentration of anthocyanins, cultivars Cabernet Sauvignon (114.7 mg / 100g, Tannat (88.5 mg / 100 g and Ancelotta (33.8 mg/100 g had the highest concentrations. The cultivars Pinot Noir (7.0 g AGE / 100 g, Tannat (4.3 g AGE / 100 g, and Ancelotta (3.9 g AGE / 100 g had the highest content of phenolic compounds. Considering these results, it became evident the potential of using the residue of winemaking to produce flour for human consumption, highlighting the grapes ‘Tannat' and ‘Ancellotta'.

  4. Polyphenol-rich Avicennia marina leaf extracts induce apoptosis in human breast and liver cancer cells and in a nude mouse xenograft model.

    Science.gov (United States)

    Huang, Cheng; Lu, Chung-Kuang; Tu, Ming-Chin; Chang, Jia-Hua; Chen, Yen-Ju; Tu, Yu-Hsuan; Huang, Hsiu-Chen

    2016-06-14

    Avicennia marina is the most abundant and common mangrove species and has been used as a traditional medicine for skin diseases, rheumatism, ulcers, and smallpox. However, its anticancer activities and polyphenol contents remain poorly characterized. Thus, here we investigated anticancer activities of secondary A. marina metabolites that were purified by sequential soxhlet extraction in water, ethanol, methanol, and ethyl acetate (EtOAc). Experiments were performed in three human breast cancer cell lines (AU565, MDA-MB-231, and BT483), two human liver cancer cell lines (HepG2 and Huh7), and one normal cell line (NIH3T3). The chemotherapeutic potential of A. marina extracts was evaluated in a xenograft mouse model. The present data show that EtOAc extracts of A. marina leaves have the highest phenolic and flavonoid contents and anticancer activities and, following column chromatography, the EtOAc fractions F2-5, F3-2-9, and F3-2-10 showed higher cytotoxic effects than the other fractions. 1H-NMR and 13C-NMR profiles indicated that the F3-2-10 fraction contained avicennones D and E. EtOAc extracts of A. marina leaves also suppressed xenograft MDA-MB-231 tumor growth in nude mice, suggesting that EtOAc extracts of A. marina leaves may provide a useful treatment for breast cancer.

  5. [Study on antitumor effect and its toxicity of Ipomoea Batatas Poir Cv anthocyanins].

    Science.gov (United States)

    Liu, Ning; Wang, Hongbing; Wang, Chunbo

    2008-07-01

    To investigate the antitumor effect and estimate the toxicity of Ipomoea Batatas Poir Cv anthocyanins. Mice sarcinoma S180 and mice liver cancer H22 were administered with positive Ftorafur and different dose of Ipomoea Batatas Poir Cv anthocyanins by pouring into the stomach. The antitumor effects of Ipomoea Batatas Poir Cv anthocyanins were observed by calculating the inhibition rate. Subchronic toxicity tests and micronucleus test of bone marrow cell in mice and Ames test were carried out to evaluate the toxicity. At the doses of 150 mg and 75 mg Ipomoea Batatas Poir Cv anthocyanins, the rates of sarcinoma 180 inhibition were 45.04% and 36.64% respectively. The rate of liver cancer H22 inhibition at the dose of 150mg Batatas Poir Cv anthocyanins was 33.33% . The result of subchronic toxicity tests showed that Ipomoea Batatas Poir Cv anthocyanins had no obvious toxicity to rats. The results of the Ames test and micronucleus test were negative. Ipomoea Batatas Poir Cv anthocyanins could have inhibitory effect on transplantation tumor of mice, and have no toxicity and no mutation.

  6. Effect of Light on Anthocyanin Levels in Submerged, Harvested Cranberry Fruit

    Directory of Open Access Journals (Sweden)

    Yu Zhou

    2004-01-01

    Full Text Available Anthocyanins are a group of plant antioxidants known for their therapeutic use. The effects of natural light, red light, and far-red light on individual as well as total anthocyanin content in cranberry fruit (Vaccinium macrocarpon Ait were examined in an experimental setting designed to mimic water-harvesting conditions. The reversed-phase high performance liquid chromatography (HPLC method was used to separate and analyze the anthocyanins. In contrast to the case of the control sample that was kept in the dark, natural light increased the total anthocyanin level by 75.3% and 87.2% after 24 and 48 hours water immersion, respectively. Red light and far-red light increased the total anthocyanin level by 41.5% and 34.7%, respectively. The amount of each individual anthocyanin increased differently under natural light, red light, and far-red light, suggesting that expressions of enzymes that catalyze the anthocyanin biosynthesis are regulated differently by environments.

  7. Anthocyanin Absorption and Metabolism by Human Intestinal Caco-2 Cells—A Review

    Science.gov (United States)

    Kamiloglu, Senem; Capanoglu, Esra; Grootaert, Charlotte; Van Camp, John

    2015-01-01

    Anthocyanins from different plant sources have been shown to possess health beneficial effects against a number of chronic diseases. To obtain any influence in a specific tissue or organ, these bioactive compounds must be bioavailable, i.e., effectively absorbed from the gut into the circulation and transferred to the appropriate location within the body while still maintaining their bioactivity. One of the key factors affecting the bioavailability of anthocyanins is their transport through the gut epithelium. The Caco-2 cell line, a human intestinal epithelial cell model derived from a colon carcinoma, has been proven to be a good alternative to animal studies for predicting intestinal absorption of anthocyanins. Studies investigating anthocyanin absorption by Caco-2 cells report very low absorption of these compounds. However, the bioavailability of anthocyanins may be underestimated since the metabolites formed in the course of digestion could be responsible for the health benefits associated with anthocyanins. In this review, we critically discuss recent findings reported on the anthocyanin absorption and metabolism by human intestinal Caco-2 cells. PMID:26370977

  8. Identification and analysis of anthocyanin components in fruit color variation in Schisandra chinensis.

    Science.gov (United States)

    Liao, Jingjing; Zang, Jian; Yuan, Fei; Liu, Shuang; Zhang, Yibo; Li, Haiyan; Piao, Zhongyun; Li, Hongbo

    2016-07-01

    Fruit color is an important index and parameter for measuring fruit quality. As an important pigment, anthocyanin is a determinant which appears in all sorts of colors of fruits in nature. Color parameters were measured using a spectrometer and used as a basis to divide the materials into three groups: reddish-orange, orange and yellow. A validated high-performance liquid chromatographic-electrospray ionization-mass spectrometric method was used for the analysis of anthocyanin in Schisandra chinensis and for determining major anthocyanin components in S. chinensis fruits, i.e. cyanidin xylosyl-glucoside (CyXylGlu), cyanidin glucosyl-rutinoside (CyGluRutin), cyanidin rutinoside (CyRutin) and cyanidin xylosyl-rutinoside (CyXylRutin). The anthocyanin contents vary obviously in different colored fruits in S. chinensis. The impact of anthocyanin on coloration of fruits was investigated by multiple regression analysis between color parameters and anthocyanin components, which indicated that CyRutin is the primary cause of fruit color variation in S. chinensis. The content and type of anthocyanin determine fruit coloration in S. chinensis, laying the early foundations for systematically interpreting the mechanism of fruit coloration in S. chinensis. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  9. Fast and Simple Discriminative Analysis of Anthocyanins-Containing Berries Using LC/MS Spectral Data.

    Science.gov (United States)

    Yang, Heejung; Kim, Hyun Woo; Kwon, Yong Soo; Kim, Ho Kyong; Sung, Sang Hyun

    2017-09-01

    Anthocyanins are potent antioxidant agents that protect against many degenerative diseases; however, they are unstable because they are vulnerable to external stimuli including temperature, pH and light. This vulnerability hinders the quality control of anthocyanin-containing berries using classical high-performance liquid chromatography (HPLC) analytical methodologies based on UV or MS chromatograms. To develop an alternative approach for the quality assessment and discrimination of anthocyanin-containing berries, we used MS spectral data acquired in a short analytical time rather than UV or MS chromatograms. Mixtures of anthocyanins were separated from other components in a short gradient time (5 min) due to their higher polarity, and the representative MS spectrum was acquired from the MS chromatogram corresponding to the mixture of anthocyanins. The chemometric data from the representative MS spectra contained reliable information for the identification and relative quantification of anthocyanins in berries with good precision and accuracy. This fast and simple methodology, which consists of a simple sample preparation method and short gradient analysis, could be applied to reliably discriminate the species and geographical origins of different anthocyanin-containing berries. These features make the technique useful for the food industry. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  10. Chlorophyll, Carotenoid and Anthocyanin Accumulation in Mung Bean Seedling Under Clinorotation

    Science.gov (United States)

    Nakajima, Shusaku; Shiraga, Keiichiro; Suzuki, Tetsuhito; Kondo, Naoshi; Ogawa, Yuichi

    2017-12-01

    The accumulation of plant pigments in mung bean ( Vigna radiata L.) seedlings was measured after clinorotation (2 rpm for 2-4 days), and compared to a stationary control. The pigments measured included chlorophyll and carotenoid in primary leaves, and the anthocyanin in seedlings. While significant changes in chlorophyll and carotenoid accumulation were not observed during the initial 2 to 4 days of cultivation, by day 4 the seedlings grown on the clinostat had lower levels of anthocyanin, compared to those in the control seedlings. To further detail the cause for the observed reduction in anthocyanin accumulation under altered gravity conditions, seedlings were grown in the presence of silver nitrate, a known ethylene inhibitor, for 4 days, since it is known ethylene has a negative impact on anthocyanin accumulation. Silver nitrate promoted anthocyanin accumulation in the clinostat seedlings, and as a result there was no significant difference between the control and clinostat seedlings in anthocyanin accumulation. The results suggest that slow clinorotation negatively impacts anthocyanin pigmentation in mung bean seedlings, with endogenous ethylene suspected to be involved in this.

  11. The Arabidopsis AN3-YDA Gene Cascade Induces Anthocyanin Accumulation by Regulating Sucrose Levels

    Directory of Open Access Journals (Sweden)

    Lai-Sheng Meng

    2016-11-01

    Full Text Available Anthocyanin accumulation specifically depends on sucrose (Suc signalling/levels. However, the gene cascades specifically involved in the Suc signalling/level-mediated anthocyanin biosynthetic pathway are still unknown. Arabidopsis ANGUSTIFOLIA3 (AN3, a transcription coactivator, is involved in the regulation of leaf shape and drought tolerance. Recently, an AN3-CONSTITUTIVE PHOTOMORPHOGENIC 1 gene cascade has been reported to regulate the light signalling-mediated anthocyanin accumulation. Target gene analysis indicates that AN3 is associated with the YODA (YDA promoter, a mitogen-activated protein kinase kinase kinase, in vivo for inducing anthocyanin accumulation. Indeed, loss-of-function mutants of YDA showed significantly increased anthocyanin accumulation. YDA mutation can also suppress the decrease in an3-4 anthocyanin accumulation. Further analysis indicates that the mutations of AN3 and YDA disrupt the normal Suc levels because of the changes of invertase activity in mutants of an3 or yda, which in turn induces the alterations of anthocyanin accumulation in mutants of an3 or yda via unknown regulatory mechanisms.

  12. Anthocyanin Absorption and Metabolism by Human Intestinal Caco-2 Cells--A Review.

    Science.gov (United States)

    Kamiloglu, Senem; Capanoglu, Esra; Grootaert, Charlotte; Van Camp, John

    2015-09-08

    Anthocyanins from different plant sources have been shown to possess health beneficial effects against a number of chronic diseases. To obtain any influence in a specific tissue or organ, these bioactive compounds must be bioavailable, i.e., effectively absorbed from the gut into the circulation and transferred to the appropriate location within the body while still maintaining their bioactivity. One of the key factors affecting the bioavailability of anthocyanins is their transport through the gut epithelium. The Caco-2 cell line, a human intestinal epithelial cell model derived from a colon carcinoma, has been proven to be a good alternative to animal studies for predicting intestinal absorption of anthocyanins. Studies investigating anthocyanin absorption by Caco-2 cells report very low absorption of these compounds. However, the bioavailability of anthocyanins may be underestimated since the metabolites formed in the course of digestion could be responsible for the health benefits associated with anthocyanins. In this review, we critically discuss recent findings reported on the anthocyanin absorption and metabolism by human intestinal Caco-2 cells.

  13. Anthocyanin Absorption and Metabolism by Human Intestinal Caco-2 Cells—A Review

    Directory of Open Access Journals (Sweden)

    Senem Kamiloglu

    2015-09-01

    Full Text Available Anthocyanins from different plant sources have been shown to possess health beneficial effects against a number of chronic diseases. To obtain any influence in a specific tissue or organ, these bioactive compounds must be bioavailable, i.e., effectively absorbed from the gut into the circulation and transferred to the appropriate location within the body while still maintaining their bioactivity. One of the key factors affecting the bioavailability of anthocyanins is their transport through the gut epithelium. The Caco-2 cell line, a human intestinal epithelial cell model derived from a colon carcinoma, has been proven to be a good alternative to animal studies for predicting intestinal absorption of anthocyanins. Studies investigating anthocyanin absorption by Caco-2 cells report very low absorption of these compounds. However, the bioavailability of anthocyanins may be underestimated since the metabolites formed in the course of digestion could be responsible for the health benefits associated with anthocyanins. In this review, we critically discuss recent findings reported on the anthocyanin absorption and metabolism by human intestinal Caco-2 cells.

  14. Anthocyanin biosynthesis is differentially regulated by light in the skin and flesh of white-fleshed and teinturier grape berries.

    Science.gov (United States)

    Guan, Le; Dai, Zhanwu; Wu, Ben-Hong; Wu, Jing; Merlin, Isabelle; Hilbert, Ghislaine; Renaud, Christel; Gomès, Eric; Edwards, Everard; Li, Shao-Hua; Delrot, Serge

    2016-01-01

    Light exclusion reduces the concentration and modifies the composition of grape anthocyanins, by altering the expression of genes involved in anthocyanin biosynthesis and transport, in a cultivar- and tissue-specific manner. Unlike most grapes, teinturier grapes accumulate anthocyanins both in skin and flesh. However, the concentration and composition of anthocyanins in both tissues differ, providing a valuable system to study tissue-specific regulation of anthocyanin synthesis. Furthermore, little is known about the mechanisms controlling the sensitivity of anthocyanin accumulation to light. Here, light was excluded from Gamay (white-fleshed) and Gamay Fréaux (teinturier mutant) berries throughout berry development. Under light-exposed conditions, the skin of Gamay Fréaux accumulated the highest level of anthocyanins, followed by the skin of Gamay, while the pulp of Gamay Fréaux had much lower anthocyanins than the skins. Network analysis revealed the same order on the number of significant correlations among metabolites and transcripts in the three colored tissues, indicating a higher connectivity that reflects a higher efficiency of the anthocyanin pathway. Compared to light conditions, light exclusion reduced the total amount of anthocyanins, most severely in the skin of Gamay and to a lesser extent in the flesh and skin of Gamay Fréaux. Coordinated decrease in the transcript abundance of structural, regulatory and transporter genes by light exclusion correlated with the reduced anthocyanin concentration in a cultivar- and tissue-specific manner. Moreover, light exclusion increased the ratio of dihydroxylated to trihydroxylated anthocyanins, in parallel with F3'H and F3'5'H transcript amounts. Sugars and ABA only play a limited role in the control of anthocyanin synthesis in the berries, in contrast with what has been described in cell suspensions. This study provides novel insights into the regulation of anthocyanin in wild type and teinturier cultivars.

  15. High concentrations of aromatic acylated anthocyanins found in cauline hairs in Plectranthus ciliatus.

    Science.gov (United States)

    Jordheim, Monica; Calcott, Kate; Gould, Kevin S; Davies, Kevin M; Schwinn, Kathy E; Andersen, Øyvind M

    2016-08-01

    Vegetative shoots of a naturalized population of purple-leaved plectranthus (Plectranthus ciliatus, Lamiaceae) were found to contain four main anthocyanins: peonidin 3-(6″-caffeoyl-β-glucopyranoside)-5-β-glucopyranoside, peonidin 3-(6″-caffeoyl-β-glucopyranoside)-5-(6‴-malonyl-β-glucopyranoside), peonidin 3-(6″-E-p-coumaroyl-β-glucopyranoside)-5-(6‴-malonyl-β-glucopyranoside), and peonidin 3-(6″-E-p-coumaroyl-β-glucopyranoside)-5-β-glucopyranoside. The first three of these pigments have not been reported previously from any plant. They all follow the typical anthocyanin pattern of Lamiaceae, with universal occurrence of anthocyanidin 3,5-diglucosides and aromatic acylation with p-coumaric and sometimes caffeic acids; however, they differ by being based on peonidin. The four anthocyanins were present in the leaves (22.2 mg g(-1) DW), and in the xylem and interfascicular parenchyma of the stem. They were exceptionally abundant, among the highest reported for any plant organ, in epidermal hairs on some of the stem internodes (101 mg g(-1) DW). Anthocyanin content in these hairs increased more than three-fold from the youngest to the fourth-youngest internodes. In situ absorbances (λmax ≈ 545 nm) were bathochromic in comparison to absorbances of the isolated anthocyanins in their flavylium form in acidified aqueous solutions (λmax = 525 nm), suggesting that the anthocyanins occur both in quinoidal and flavylium forms in constant proportions in the anthocyanic hair cells. The most distinctive observation with respect to relative proportions of individual anthocyanins was found in de-haired internodes, for which anthocyanin caffeoyl-derivatives decreased, and anthocyanin coumaroyl-derivatives increased, from the youngest to the fourth-youngest internode. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Unraveling the Mechanism Underlying the Glycosylation and Methylation of Anthocyanins in Peach1[C][W

    Science.gov (United States)

    Cheng, Jun; Wei, Guochao; Zhou, Hui; Gu, Chao; Vimolmangkang, Sornkanok; Liao, Liao; Han, Yuepeng

    2014-01-01

    Modification of anthocyanin plays an important role in increasing its stability in plants. Here, six anthocyanins were identified in peach (Prunus persica), and their structural diversity is attributed to glycosylation and methylation. Interestingly, peach is quite similar to the wild species Prunus ferganensis but differs from both Prunus davidiana and Prunus kansueasis in terms of anthocyanin composition in flowers. This indicates that peach is probably domesticated from P. ferganensis. Subsequently, genes responsible for both methylation and glycosylation of anthocyanins were identified, and their spatiotemporal expression results in different patterns of anthocyanin accumulation in flowers, leaves, and fruits. Two tandem-duplicated genes encoding flavonoid 3-O-glycosyltransferase (F3GT) in peach, PpUGT78A1 and PpUGT78A2, showed different activity toward anthocyanin, providing an example of divergent evolution of F3GT genes in plants. Two genes encoding anthocyanin O-methyltransferase (AOMT), PpAOMT1 and PpAOMT2, are expressed in leaves and flowers, but only PpAOMT2 is responsible for the O-methylation of anthocyanins at the 3′ position in peach. In addition, our study reveals a novel branch of UGT78 genes in plants that lack the highly conserved intron 2 of the UGT gene family, with a great variation of the amino acid residue at position 22 of the plant secondary product glycosyltransferase box. Our results not only provide insights into the mechanisms underlying anthocyanin glycosylation and methylation in peach but will also aid in future attempts to manipulate flavonoid biosynthesis in peach as well as in other plants. PMID:25106821

  17. GA-DELLA pathway is involved in regulation of nitrogen deficiency-induced anthocyanin accumulation.

    Science.gov (United States)

    Zhang, Yongqiang; Liu, Zhongjuan; Liu, Jianping; Lin, Sheng; Wang, Jianfeng; Lin, Wenxiong; Xu, Weifeng

    2017-04-01

    DELLA proteins positively regulate nitrogen deficiency-induced anthocyanin accumulation through directly interaction with PAP1 to enhance its transcriptional activity on anthocyanin biosynthetic gene expressions. Plants can survive a limiting nitrogen supply by undergoing adaptive responses, including induction of anthocyanin production. However, the detailed mechanism is still unclear. In this study, we found that this process was impaired and enhanced, respectively, by exogenous GA 3 (an active form of GAs) and paclobutrazol (PAC, a specific GA biosynthesis inhibitor) in Arabidopsis seedlings. Consistently, the nitrogen deficiency-induced transcript levels of several key genes involved in anthocyanin biosynthesis, including F3'H, DFR, LDOX, and UF3GT, were decreased and enhanced by exogenous GA 3 and PAC, respectively. Moreover, the nitrogen deficiency-induced anthocyanin accumulation and biosynthesis gene expressions were impaired in the loss-of-function mutant gai-t6/rga-t2/rgl1-1/rgl2-1/rgl3-1 (della) but enhanced in the GA-insensitive mutant gai, suggesting that DELLA proteins, known as repressors of GA signaling, are necessary for fully induction of nitrogen deficiency-driven anthocyanin biosynthesis. Using yeast two-hybrid (Y2H) assay, pull-down assay, and luciferase complementation assay, it was found that RGA, a DELLA of Arabidopsis, could strongly interact with PAP1, a known regulatory transcription factor positively involved in anthocyanin biosynthesis. Furthermore, transient expression assays indicated that RGA and GAI could enhance the transcriptional activities of PAP1 on its downstream genes, including F3'H and DFR. Taken together, this study suggests that DELLAs are necessary regulators for nitrogen deficiency-induced anthocyanin accumulation through interaction with PAP1 and enhancement of PAP1's transcriptional activity on its target genes. GA-DELLA-involved anthocyanin accumulation is important for plant adaptation to nitrogen deficiency.

  18. Regulation of anthocyanin biosynthesis in Arabidopsis thaliana red pap1-D cells metabolically programmed by auxins.

    Science.gov (United States)

    Liu, Zhong; Shi, Ming-Zhu; Xie, De-Yu

    2014-04-01

    Red pap1-D cells of Arabidopsis thaliana have been cloned from production of anthocyanin pigmentation 1-Dominant (pap1-D) plants. The red cells are metabolically programmed to produce high levels of anthocyanins by a WD40-bHLH-MYB complex that is composed of the TTG1, TT8/GL3 and PAP1 transcription factors. Here, we report that indole 3-acetic acid (IAA), naphthaleneacetic acid (NAA) and 2,4-dichlorophenoxyacetic acid (2,4-D) regulate anthocyanin biosynthesis in these red cells. Seven concentrations (0, 0.2, 0.4, 2.2, 9, 18 and 27 μM) were tested for the three auxins. IAA and 2,4-D at 2.2-27 μM reduced anthocyanin levels. NAA at 0-0.2 μM or above 9 μM also decreased anthocyanin levels, but from 0.4 to 9 μM, it increased them. HPLC-ESI-MS analysis identified seven cyanin molecules that were produced in red pap1-D cells, and their levels were affected by auxins. The expression levels of ten genes, including six transcription factors (TTG1, EGL3, MYBL2, TT8, GL3 and PAP1) and four pathway genes (PAL1, CHS, DFR and ANS) involved in anthocyanin biosynthesis were analyzed upon various auxin treatments. The resulting data showed that 2,4-D, NAA and IAA control anthocyanin biosynthesis by regulating the expression of TT8, GL3 and PAP1 as well as genes in the anthocyanin biosynthetic pathway, such as DFR and ANS. In addition, the expression of MYBL2, PAL1 and CHS in red pap1-D and wild-type cells differentially respond to the three auxins. Our data demonstrate that the three auxins regulate anthocyanin biosynthesis in metabolically programmed red cells via altering the expression of transcription factor genes and pathway genes.

  19. ANTHOCYANIN PIGMENTATION IN TRITICUM AESTIVUM L.: GENETIC BASIS AND ROLE UNDER ABIOTIC STRESS CONDITIONS

    Directory of Open Access Journals (Sweden)

    Tereshchenko O.Yu.

    2012-08-01

    Full Text Available Anthocyanins are secondary metabolites of plants. They have a wide range of biological activity such as antioxidant, photoprotection, osmoregulation, heavy metal ions chelation, antimicrobial and antifungal activities, which help plants to survive under different stress conditions. Bread wheat (T. aestivum L. can have purple pigmentation provided by anthocyanin compounds in different organs, such as grain pericarp, coleoptile, culm, leaf blades, leaf sheaths, glumes and anthers. However, the genetic mechanisms underlying formation of these traits as well as contribution of the pigmentation to stress tolerance have not been widely studied in wheat. The aim of the current study was to investigate molecular-genetic mechanisms underlying anthocyanin pigmentation in different wheat organs and to estimate the role of the pigmentation under different abiotic stress conditions in wheat seedlings. In the current study, near-isogenic lines (NILs: cv. ‘Saratovskaya 29’ (‘S29’ and lines i:S29Pp1Pp2PF and i:S29Pp1Pp3P developed on the ‘S29’ background but having grain pericarp coloration (genes Pp and more intense coleoptile (Rc, culm (Pc, leaf blade (Plb, leaf sheath (Pls pigmentation in comparison with ‘S29’, were used. Comparative transcriptional analysis of the five structural genes Chs, Chi, F3h, Dfr, Ans, encoding enzymes participating in the anthocyanin biosynthesis, was performed in different organs of NILs. It was shown that the presence of the Rc, Pc, Plb, Pls and Pp alleles conferring strong anthocyanin pigmentation induced more intense transcription of the structural genes, suggesting the genes Rc, Pc, Plb, Pls and Pp to play a regulatory role in anthocyanin biosynthesis network. To evaluate the role of anthocyanins in stress response at the seedling stage, growth ability of the NILs and anthocyanin content in their coleoptiles were assessed after treatments with NaCl (100 and 200 mM, CdCl2 (25 and 50 μM and 15% PEG 6000

  20. LC/PDA/ESI-MS Profiling and Radical Scavenging Activity of Anthocyanins in Various Berries

    Directory of Open Access Journals (Sweden)

    Jun-ichiro Nakajima

    2004-01-01

    Full Text Available Anthocyanin extracts of two blueberries, Vaccinium myrtillus (bilberry and Vaccinium ashei (rabbiteye blueberry, and of three other berries, Ribes nigrum (black currant, Aronia melanocarpa (chokeberry, and Sambucus nigra (elderberry, were analyzed by high-performance liquid chromatography coupled with photodiode array detection and electrospray ionization - mass spectrometry (LC/PDA/ESI-MS. Both bilberry and rabbiteye blueberry contained 15 identical anthocyanins with different distribution patterns. Black currant, chokeberry, and elderberry contained 6, 4, and 4 kinds of anthocyanins, respectively. The radical scavenging activities of these berry extracts were analyzed by using 2,2-diphenyl-1-picrylhydrazyl (DPPH. All these extracts showed potent antiradical activities.

  1. Two LcbHLH transcription factors interacting with LcMYB1 in regulating late structural genes of anthocyanin biosynthesis in Nicotiana and Litchi chinensis during anthocyanin accumulation

    Directory of Open Access Journals (Sweden)

    Biao eLai

    2016-02-01

    Full Text Available Anthocyanin biosynthesis requires the MYB-bHLH-WD40 protein complex to activate the late biosynthetic genes. LcMYB1 was thought to act as key regulator in anthocyanin biosynthesis of litchi. However, basic helix-loop-helix proteins (bHLHs as partners have not been identified yet. The present study describes the functional characterization of three litchi bHLH candidate anthocyanin regulators, LcbHLH1, LcbHLH2 and LcbHLH3. Although these three litchi bHLHs phylogenetically clustered with bHLH proteins involved in anthcoyanin biosynthesis in other plant, only LcbHLH1 and LcbHLH3 were found to localize in the nucleus and physically interact with LcMYB1. The transcription levels of all these bHLHs were not coordinated with anthocyanin accumulation in different tissues and during development. However, when co-infiltrated with LcMYB1, both LcbHLH1 and LcbHLH3 enhanced anthocyanin accumulation in tobacco leaves with LcbHLH3 being the best inducer. Significant accumulation of anthocyanins in leaves transformed with the combination of LcMYB1 and LcbHLH3 were noticed, And this was associated with the up-regulation of two tobacco endogenous bHLH regulators, NtAn1a and NtAn1b, and late structural genes, like NtDFR and NtANS. Significant activity of the ANS promoter was observed in transient expression assays either with LcMYB1-LcbHLH1 or LcMYB1-LcbHLH3, while only minute activity was detected after transformation with only LcMYB1. In contrast, no activity was measured after induction with the combination of LcbHLH2 and LcMYB1. Higher DFR expression was also oberseved in paralleling with higher anthocyanins in co-transformed lines. LcbHLH1 and LcbHLH3 are essential partner of LcMYB1 in regulating the anthocyanin production in tobacco and probably also in litchi. The LcMYB1-LcbHLH complex enhanced anthocyanin accumulation may associate with activating the transcription of DFR and ANS.

  2. Evaluation of Polyphenol Anthocyanin-Enriched Extracts of Blackberry, Black Raspberry, Blueberry, Cranberry, Red Raspberry, and Strawberry for Free Radical Scavenging, Reactive Carbonyl Species Trapping, Anti-Glycation, Anti-β-Amyloid Aggregation, and Microglial Neuroprotective Effects

    Directory of Open Access Journals (Sweden)

    Hang Ma

    2018-02-01

    Full Text Available Glycation is associated with several neurodegenerative disorders, including Alzheimer’s disease (AD, where it potentiates the aggregation and toxicity of proteins such as β-amyloid (Aβ. Published studies support the anti-glycation and neuroprotective effects of several polyphenol-rich fruits, including berries, which are rich in anthocyanins. Herein, blackberry, black raspberry, blueberry, cranberry, red raspberry, and strawberry extracts were evaluated for: (1 total phenolic and anthocyanins contents, (2 free radical (DPPH scavenging and reactive carbonyl species (methylglyoxal; MGO trapping, (3 anti-glycation (using BSA-fructose and BSA-MGO models, (4 anti-Aβ aggregation (using thermal- and MGO-induced fibrillation models, and, (5 murine microglia (BV-2 neuroprotective properties. Berry crude extracts (CE were fractionated to yield anthocyanins-free (ACF and anthocyanins-enriched (ACE extracts. The berry ACEs (at 100 μg/mL showed superior free radical scavenging, reactive carbonyl species trapping, and anti-glycation effects compared to their respective ACFs. The berry ACEs (at 100 μg/mL inhibited both thermal- and MGO-induced Aβ fibrillation. In addition, the berry ACEs (at 20 μg/mL reduced H2O2-induced reactive oxygen species production, and lipopolysaccharide-induced nitric oxide species in BV-2 microglia as well as decreased H2O2-induced cytotoxicity and caspase-3/7 activity in BV-2 microglia. The free radical scavenging, reactive carbonyl trapping, anti-glycation, anti-Aβ fibrillation, and microglial neuroprotective effects of these berry extracts warrant further in vivo studies to evaluate their potential neuroprotective effects against AD.

  3. Stability of Anthocyanins and Their Degradation Products from Cabernet Sauvignon Red Wine under Gastrointestinal pH and Temperature Conditions.

    Science.gov (United States)

    Yang, Ping; Yuan, Chunlong; Wang, Hua; Han, Fuliang; Liu, Yangjie; Wang, Lin; Liu, Yang

    2018-02-07

    This study investigated the stability of wine anthocyanins under simulated gastrointestinal pH and temperature conditions, and further studied the evolution of anthocyanin degradation products through simulated digestive conditions. The aim of this study was to investigate the relation between anthocyanins' structure and their digestive stability. Results showed that a total of 22 anthocyanins were identified in wine and most of these anthocyanins remained stable under simulated gastric digestion process. However, a dramatic concentration decrease happened to these anthocyanins during simulated intestinal digestion. The stability of anthocyanins in digestive process appeared to be related to their structure. The methoxy group in the B-ring enhanced the stability of anthocyanins, whereas hydroxyl group resulted in a reduction of their stability. Acylation decreased the stability of malvidin 3- O -glucoside. Pyruvic acid conjugation enhanced the structural stability of pyranoanthocyanins, whereas acetaldehyde attachment weakened their stability. A commercial malvidin 3- O -glucoside standard was used to investigate anthocyanin degradation products under simulated digestion process, and syringic acid, protocatechuic acid and vanillic acid were confirmed to be the degradation products via anthocyanin chalcone conversion path. Gallic acid, protocatechuic acid, vanillic acid, syringic acid, and p -coumaric acid in wine experienced a significant concentration decrease during digestion process. However, wine model solution revealed that phenolic acids remained stable under gastrointestinal conditions, except gallic acid.

  4. The effect of sugars in relation to methyl jasmonate on anthocyanin formation in the roots of Kalanchoe blossfeldiana (Poelln.

    Directory of Open Access Journals (Sweden)

    Justyna Góraj-Koniarska

    2015-07-01

    Full Text Available This study investigated the effects of different sugars (sucrose, fructose, glucose and sugar alcohols (mannitol, sorbitol applied alone and in solution with methyl jasmonate (JA-Me on the anthocyanin content in the roots of Kalanchoe blossfeldiana. None of the sugars used individually in the experiment affected anthocyanin accumulation in the roots of intact plants. The anthocyanin level was similar to that in the control. Sucrose at concentrations of 0.5% and 3.0%, and glucose at a concentration of 3.0% inhibited anthocyanin accumulation induced by JA-Me. Only fructose at a concentration of 3.0% stimulated anthocyanin accumulation induced by JA-Me. The sugar alcohols, mannitol at a concentration of 3.0% and sorbitol at 0.5% and 3.0%, inhibited anthocyanin accumulation in the roots of intact K. blossfeldiana plants induced by JA-Me. In excised roots, both sugars and JA-Me used individually did not affect the formation of anthocyanins. Also, the sugar alcohols (mannitol and sorbitol applied simultaneously with JA-Me had no effect on the accumulation of anthocyanins. However, roots treated with sugars (sucrose, fructose, glucose in solution with JA-Me promoted the induction of anthocyanins in the apical parts of the roots.  The results suggest that anthocyanin elicitation in the roots of K. blossfeldiana by methyl jasmonate may be dependent on the interaction of JA-Me with sugars transported from the stems (leaves to the roots.

  5. Hibiscus sabdariffa leaf polyphenolic extract induces human melanoma cell death, apoptosis, and autophagy.

    Science.gov (United States)

    Chiu, Chun-Tang; Hsuan, Shu-Wen; Lin, Hui-Hsuan; Hsu, Cheng-Chin; Chou, Fen-Pi; Chen, Jing-Hsien

    2015-03-01

    Melanoma is the least common but most fatal form of skin cancer. Previous studies have indicated that an aqueous extract of Hibiscus sabdariffa leaves possess hypoglycemic, hypolipidemic, and antioxidant effects. In this study, we want to investigate the anticancer activity of Hibiscus leaf polyphenolic (HLP) extract in melanoma cells. First, HLP was exhibited to be rich in epicatechin gallate (ECG) and other polyphenols. Apoptotic and autophagic activities of HLP and ECG were further evaluated by DAPI stain, cell-cycle analysis, and acidic vascular organelle (AVO) stain. Our results revealed that both HLP and ECG induced the caspases cleavages, Bcl-2 family proteins regulation, and Fas/FasL activation in A375 cells. In addition, we also revealed that the cells presented AVO-positive after HLP treatments. HLP could increase the expressions of autophagy-related proteins autophagy-related gene 5 (ATG5), Beclin1, and light chain 3-II (LC3-II), and induce autophagic cell death in A375 cells. These data indicated that the anticancer effect of HLP, partly contributed by ECG, in A375 cells. HLP potentially could be developed as an antimelanoma agent. © 2015 Institute of Food Technologists®

  6. In vitro production of anthocyanins - A literature review

    International Nuclear Information System (INIS)

    Gomez Zeledon, Javier; Jimenez, Victor M

    2011-01-01

    The production of secondary metabolites in plant cell cultures may be of interest for obtaining compounds that are difficult to synthesize or isolate from other sources, which is usually associated with high economic value of the substances, but may also be useful to help elucidating the metabolic pathways involved in the synthesis of such compounds. This paper presents a general description of anthocyanins, a group of pigments of great importance to the industry, complemented by referring the scientific papers that have been recently published on their in vitro production. Regarding the latter, a description of the effect of changes in growing conditions, of the addition of precursors, of the use of growth regulators, and of the utilization of elicitors and stressors on the production of these compounds, is done. Finally, this review mentions the use of hairy roots obtained by the use of agrobacterium rhizogenes for the production of these compounds.

  7. Overexpression of maize anthocyanin regulatory gene Lc affects rice fertility.

    Science.gov (United States)

    Li, Yuan; Zhang, Tao; Shen, Zhong-Wei; Xu, Yu; Li, Jian-Yue

    2013-01-01

    Seventeen independent transgenic rice plants with the maize anthocyanin regulatory gene Lc under control of the CaMV 35S promoter were obtained and verified by molecular identification. Ten plants showed red spikelets during early development of florets, and the degenerate florets were still red after heading. Additionally, these plants exhibited intense pigmentation on the surface of the anther and the bottom of the ovary. They were unable to properly bloom and were completely sterile. Following pollination with normal pollen, these plants yielded red caryopses but did not mature normally. QRT-PCR analysis indicated that mRNA accumulation of the CHS-like gene encoding a chalcone synthase-related protein was increased significantly in the sterile plant. This is the first report to suggest that upregulation of the CHS gene expression may result in rice sterility and affect the normal development of rice seeds.

  8. Anthocyanins Protect SK-N-SH Cells Against Acrolein-Induced Toxicity by Preserving the Cellular Redox State.

    Science.gov (United States)

    Belkacemi, Abdenour; Ramassamy, Charles

    2016-01-01

    In Alzheimer's disease (AD) and in mild cognitive impairment (MCI) patients, by-products of lipid peroxidation such as acrolein accumulated in vulnerable regions of the brain. We have previously shown that acrolein is a highly reactive and neurotoxic aldehyde and its toxicity involves the alteration of several redox-sensitive pathways. Recently, protein-conjugated acrolein in cerebrospinal fluid has been proposed as a biomarker to distinguish between MCI and AD. With growing evidence of the early involvement of oxidative stress in AD etiology, one would expect that a successful therapy should prevent brain oxidative damage. In this regard, several studies have demonstrated that polyphenol-rich extracts exert beneficial effect on cognitive impairment and oxidative stress. We have recently demonstrated the efficacy of an anthocyanin formulation (MAF14001) against amyloid-β-induced oxidative stress. The aim of this study is to investigate the neuroprotective effect of MAF14001 as a mixture of anthocyanins, a particular class of polyphenols, against acrolein-induced oxidative damage in SK-N-SH neuronal cells. Our results demonstrated that MAF14001, from 5μM, was able to efficiently protect SK-N-SH cells against acrolein-induced cell death. MAF14001 was able to lower reactive oxygen species and protein carbonyl levels induced by acrolein. Moreover, MAF1401 prevented glutathione depletion and positively modulated, in the presence of acrolein, some oxidative stress-sensitive pathways including the transcription factors NF-κB and Nrf2, the proteins γ-GCS and GSK3β, and the protein adaptator p66Shc. Along with its proven protective effect against amyloid-β toxicity, these results demonstrate that MAF14001 could target multiple mechanisms and could be a promising agent for AD prevention.

  9. The CAPRICE RICH detector

    International Nuclear Information System (INIS)

    Basini, G.; De Pascale, M.P.; Golden, R.L.; Barbiellini, G.; Boezio, M.

    1995-01-01

    A compact RICH detector has been developed and used for particle identification in a balloon borne spectrometer to measure the flux of antimatter in the cosmic radiation. This is the first RICH detector ever used in space experiments that is capable of detecting unit charged particles, such as antiprotons. The RICH and all other detectors performed well during the 27 hours long flight

  10. The CAPRICE RICH detector

    Energy Technology Data Exchange (ETDEWEB)

    Basini, G. [INFN, Laboratori Nazionali di Frascati, Rome (Italy); Codino, A.; Grimani, C. [Perugia Univ. (Italy)]|[INFN, Perugia (Italy); De Pascale, M.P. [Rome Univ. `Tor Vergata` (Italy). Dip. di Fisica]|[INFN, Sezione Univ. `Tor Vergata` Rome (Italy); Cafagna, F. [Bari Univ. (Italy)]|[INFN, Bari (Italy); Golden, R.L. [New Mexico State Univ., Las Cruces, NM (United States). Particle Astrophysics Lab.; Brancaccio, F.; Bocciolini, M. [Florence Univ. (Italy)]|[INFN, Florence (Italy); Barbiellini, G.; Boezio, M. [Trieste Univ. (Italy)]|[INFN, Trieste (Italy)

    1995-09-01

    A compact RICH detector has been developed and used for particle identification in a balloon borne spectrometer to measure the flux of antimatter in the cosmic radiation. This is the first RICH detector ever used in space experiments that is capable of detecting unit charged particles, such as antiprotons. The RICH and all other detectors performed well during the 27 hours long flight.

  11. Complete Biosynthesis of Anthocyanins Using E. coli Polycultures.

    Science.gov (United States)

    Jones, J Andrew; Vernacchio, Victoria R; Collins, Shannon M; Shirke, Abhijit N; Xiu, Yu; Englaender, Jacob A; Cress, Brady F; McCutcheon, Catherine C; Linhardt, Robert J; Gross, Richard A; Koffas, Mattheos A G

    2017-06-06

    Fermentation-based chemical production strategies provide a feasible route for the rapid, safe, and sustainable production of a wide variety of important chemical products, ranging from fuels to pharmaceuticals. These strategies have yet to find wide industrial utilization due to their inability to economically compete with traditional extraction and chemical production methods. Here, we engineer for the first time the complex microbial biosynthesis of an anthocyanin plant natural product, starting from sugar. This was accomplished through the development of a synthetic, 4-strain Escherichia coli polyculture collectively expressing 15 exogenous or modified pathway enzymes from diverse plants and other microbes. This synthetic consortium-based approach enables the functional expression and connection of lengthy pathways while effectively managing the accompanying metabolic burden. The de novo production of specific anthocyanin molecules, such as calistephin, has been an elusive metabolic engineering target for over a decade. The utilization of our polyculture strategy affords milligram-per-liter production titers. This study also lays the groundwork for significant advances in strain and process design toward the development of cost-competitive biochemical production hosts through nontraditional methodologies. IMPORTANCE To efficiently express active extensive recombinant pathways with high flux in microbial hosts requires careful balance and allocation of metabolic resources such as ATP, reducing equivalents, and malonyl coenzyme A (malonyl-CoA), as well as various other pathway-dependent cofactors and precursors. To address this issue, we report the design, characterization, and implementation of the first synthetic 4-strain polyculture. Division of the overexpression of 15 enzymes and transcription factors over 4 independent strain modules allowed for the division of metabolic burden and for independent strain optimization for module-specific metabolite needs

  12. Interactive effects of gallic/ferulic/caffeic acids and anthocyanins on pigment thermal stabilities.

    Science.gov (United States)

    Qian, Bing-Jun; Liu, Jian-Hua; Zhao, Shu-Juan; Cai, Jian-Xiong; Jing, Pu

    2017-06-01

    The data presented in this article are related to the research article entitled "The effects of gallic/ferulic/caffeic acids on colour intensification and anthocyanin stability" (Qian et al., 2017) [1]. This paper described preparation and isolation of anthocyanins from purple sweet potatoes (PSP) and the time-course of anthocyanin profiles treated with gallic, ferulic, or caffeic acids at 95 °C. The color appearance of PSPanthocyanins alone, or with gallic, ferulic, or caffeic acids was described after the 15 h of thermal treatment. The high resolution mass spectrographs of PSP anthocyanins were determined using UPLC-ESI-HRMS. The spatial interaction of peonidin 3-O-(2-O-β-D-glucopyranocyl-β-D-glucopyranoide)-5-O-β-D-glucopyranoside and gallic/ferulic/caffeic acids was illustrated by molecular dynamic simulation.

  13. Processing method and corn cultivar affected anthocyanin concentration from dried distillers grains with solubles.

    Science.gov (United States)

    Dia, Vermont P; Wang, Zhaoqin; West, Megan; Singh, Vijay; West, Leslie; de Mejia, Elvira Gonzalez

    2015-04-01

    Anthocyanins are water-soluble pigments with health benefits and potential use as food colorants. The objectives of this work were to (1) determine optimum parameters for the extraction of anthocyanins from dried distillers grain with solubles (DDGS), (2) develop a method of anthocyanin extraction from DDGS, (3) quantify and identify the extracted anthocyanins, and (4) determine the effect of processing methods and corn cultivars on anthocyanin concentration. DDGS samples were prepared from purple (PC) and dark (DC) corn and processed using conventional enzymes (C) and granular starch hydrolyzing enzymes (GC). Three independent variables (ethanol concentration (0, 12.5, and 25%); liquid-to-solid ratio (30:1, 40:1, 50:1 mL/g); and extraction temperature (4, 22, and 40 °C)) and two dependent variables (anthocyanin concentration and a-value (redness)) were used. Results showed that dark corn DDGS gave anthocyanin concentration higher than that of purple corn. The GC process showed total anthocyanin concentration higher than that of the conventional method of DDGS production. The maximum anthocyanin concentration was obtained at 12.5% ethanol, 40:1 liquid-to-solid ratio, and 22 °C for C-PC [321.0 ± 37.3 μg cyanidin-3 glucoside (C3G) equivalent/g DDGS]. For GC-PC, 25% ethanol, 30:1 liquid-to-solid ratio, and 22 °C gave 741.4 ± 12.8 μg C3G equivalent/g DDGS. For GC-DC, 12.5% ethanol, 40:1 liquid-to-solid ratio, and 40 °C extraction gave 1573.4 ± 84.0 μg C3G equivalent/g DDGS. LC/MS-MS analysis showed that the major anthocyanins were cyanidin-3-glucoside, cyanidin-3-(6″-malonyl) glucoside, and peonidin-3-(6″malonyl) glucoside. In conclusion, anthocyanin extraction from colored corn DDGS can be optimized using 12.5% ethanol, 40:1 mL/g ratio, and 22 °C.

  14. Relationships between anthocyanins and other compounds and sensory acceptability of Hibiscus drinks.

    Science.gov (United States)

    Bechoff, Aurélie; Cissé, Mady; Fliedel, Geneviève; Declemy, Anne-Laure; Ayessou, Nicolas; Akissoe, Noel; Touré, Cheikh; Bennett, Ben; Pintado, Manuela; Pallet, Dominique; Tomlins, Keith I

    2014-04-01

    Chemical composition of Hibiscus drinks (Koor and Vimto varieties, commercial and traditional, infusions and syrups) (n=8) was related to sensory evaluation and acceptance. Significant correlations between chemical composition and sensory perception of drinks were found (i.e. anthocyanin content and Hibiscus taste) (pHibiscus drink and anthocyanin content. The study showed that the distinctions between the acceptability groups are very clear with respect to the chemical composition and rating of sensory attributes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Anthocyanins and antioxidant activity of fruits certain representatives of genus Rubus

    OpenAIRE

    Kolbas, N.Y.; Silva, M.A.; Reshetnikov, V.N.; Teissèdre, Pierre Louis

    2012-01-01

    In the conditions of the Republic of Belarus there was realized identification of anthocyanins, estimation of their total content in blackberry (Rubus fruticosus L., Rubus caesius L. and Rubus nessensis W. Hall.) and raspberry \\{Rubus idaeus L.) as well as the evaluation of fruit antioxidant activity. A total of 17 anthocyanins were detected and identified by HPLC-MS analysis. The aglvcon forms were represented by five anthocyanidins: cyanidin, delphinidin, pelargonidin, petunidin and malvidi...

  16. Stability of Anthocyanins from Rubus glaucus and Solanum betaceum as affected by Temperature and Water Activity

    OpenAIRE

    Garzon Monroy Gloria Astrid; Castaño Maria Paola; Olaya Clara Marcela

    2009-01-01

    The stability of sprayed-dried microencapsulated anthocyanins from Andes berry (Rubus glaucus) and Tamarillo (Solanum betaceum), as affected by storage time, water activity (Aw) and temperature was compared. The fruits were osmotically dehydrated with ethanol and the anthocyanin extract was microencapsulated with maltodextrin DE 20 by spray drying. Half life o...

  17. Photosynthetic costs and benefits of abaxial versus adaxial anthocyanins in Colocasia esculenta 'Mojito'.

    Science.gov (United States)

    Hughes, Nicole M; Carpenter, Kaylyn L; Keidel, Timothy S; Miller, Charlene N; Waters, Matthew N; Smith, William K

    2014-11-01

    Anthocyanins in upper (adaxial) leaf tissues provide greater photoprotection than in lower (abaxial) tissues, but also predispose tissues to increased shade acclimation and, consequently, reduced photosynthetic capacity. Abaxial anthocyanins may be a compromise between these costs/benefits. Plants adapted to shaded understory environments often exhibit red/purple anthocyanin pigmentation in lower (abaxial) leaf surfaces, but rarely in upper (adaxial) surfaces. The functional significance of this color pattern in leaves is poorly understood. Here, we test the hypothesis that abaxial anthocyanins protect leaves of understory plants from photo-oxidative stress via light attenuation during periodic exposure to high incident sunlight in the forest understory, without interfering with sunlight capture and photosynthesis during shade conditions. We utilize a cultivar of Colocasia esculenta exhibiting adaxial and abaxial anthocyanin variegation within individual leaves to compare tissues with the following color patterns: green adaxial, green abaxial (GG), green adaxial, red abaxial (GR), red adaxial, green abaxial (RG), and red adaxial, red abaxial (RR). Consistent with a photoprotective function of anthocyanins, tissues exhibited symptoms of increasing photoinhibition in the order (from least to greatest): RR, RG, GR, GG. Anthocyanic tissues also showed symptoms of shade acclimation (higher total chl, lower chl a/b) in the same relative order. Inconsistent with our hypothesis, we did not observe any differences in photosynthetic CO2 uptake under shade conditions between the tissue types. However, GG and GR had significantly (39 %) higher photosynthesis at saturating irradiance (A sat) than RG and RR. Because tissue types did not differ in nitrogen content, these patterns likely reflect differences in resource allocation at the tissue level, with greater nitrogen allocated toward energy processing in GG and GR, and energy capture in RG and RR (consistent with relative

  18. Copigmentation effect of phenolic compounds on red currant juice anthocyanins during storage

    Directory of Open Access Journals (Sweden)

    Mirela Kopjar

    2009-01-01

    Full Text Available Copigmentation has been suggested as a main colour stabilising mechanism in plants protecting the coloured flavylium cation from the nucleophilic attack by the water molecule. In this study influence of phenolic compounds addition (catechol, 4-methyl catechol, (+-catechin and gallic acid on stability of red currant juice anthocyanins (copigment:pigment molar ratio 50:1 and 100:1 during 30 days of storage at 4 °C was investigated. Stability of anthocyanins was evaluated through determination of anthocyanins, total colour difference (ΔE*, kinetic parameters and anthocyanin retention. The initial anthocyanin content of red currant juice was 44.34 mg/100 g. During storage degradation of anthocyanins occurred. After storage anthocyanin content of red currant juice was 38.87 mg/100 mL. However, in samples with addition of phenolic compounds degradation was less pronounced due to formation of pigment-copigment complex (i.e. copigmentation. Anthocyanin content in samples with addition of phenolic compounds ranged from 39.2 to 43.83 mg/100 mL, depending on phenolic compound, its concentration and storage time. The lowest degradation was observed when gallic acid was added. Monitoring only λmax of absorption spectrum of juices, one can get incomplete picture of colour stability of red currant juice. It was important to monitor total colour change (ΔE* with CIELAB colour system since all parameters are taken into account. The lowest ΔE*, after 30 days of storage, had samples with addition of catechol and (+-catechin (0.83 and 0.86, respectively, while the highest values had samples with addition of gallic acid (1.26.

  19. A candidate-gene association study for berry colour and anthocyanin content in Vitis vinifera L.

    Directory of Open Access Journals (Sweden)

    Silvana Cardoso

    Full Text Available Anthocyanin content is a trait of major interest in Vitis vinifera L. These compounds affect grape and wine quality, and have beneficial effects on human health. A candidate-gene approach was used to identify genetic variants associated with anthocyanin content in grape berries. A total of 445 polymorphisms were identified in 5 genes encoding transcription factors and 10 genes involved in either the biosynthetic pathway or transport of anthocyanins. A total of 124 SNPs were selected to examine association with a wide range of phenotypes based on RP-HPLC analysis and visual characterization. The phenotypes were total skin anthocyanin (TSA concentration but also specific types of anthocyanins and relative abundance. The visual assessment was based on OIV (Organisation Internationale de la Vigne et du Vin descriptors for berry and skin colour. The genes encoding the transcription factors MYB11, MYBCC and MYC(B were significantly associated with TSA concentration. UFGT and MRP were associated with several different types of anthocyanins. Skin and pulp colour were associated with nine genes (MYB11, MYBCC, MYC(B, UFGT, MRP, DFR, LDOX, CHI and GST. Pulp colour was associated with a similar group of 11 genes (MYB11, MYBCC, MYC(B, MYC(A, UFGT, MRP, GST, DFR, LDOX, CHI and CHS(A. Statistical interactions were observed between SNPs within the transcription factors MYB11, MYBCC and MYC(B. SNPs within LDOX interacted with MYB11 and MYC(B, while SNPs within CHI interacted with MYB11 only. Together, these findings suggest the involvement of these genes in anthocyanin content and on the regulation of anthocyanin biosynthesis. This work forms a benchmark for replication and functional studies.

  20. Functional Characterization of Dihydroflavonol-4-Reductase in Anthocyanin Biosynthesis of Purple Sweet Potato Underlies the Direct Evidence of Anthocyanins Function against Abiotic Stresses

    Science.gov (United States)

    Wang, Hongxia; Fan, Weijuan; Li, Hong; Yang, Jun; Huang, Jirong; Zhang, Peng

    2013-01-01

    Dihydroflavonol-4-reductase (DFR) is a key enzyme in the catalysis of the stereospecific reduction of dihydroflavonols to leucoanthocyanidins in anthocyanin biosynthesis. In the purple sweet potato (Ipomoea batatas Lam.) cv. Ayamurasaki, expression of the IbDFR gene was strongly associated with anthocyanin accumulation in leaves, stems and roots. Overexpression of the IbDFR in Arabidopsis tt3 mutants fully complemented the pigmentation phenotype of the seed coat, cotyledon and hypocotyl. Downregulation of IbDFR expression in transgenic sweet potato (DFRi) using an RNAi approach dramatically reduced anthocyanin accumulation in young leaves, stems and storage roots. In contrast, the increase of flavonols quercetin-3-O-hexose-hexoside and quercetin-3-O-glucoside in the leaves and roots of DFRi plants is significant. Therefore, the metabolic pathway channeled greater flavonol influx in the DFRi plants when their anthocyanin and proanthocyanidin accumulation were decreased. These plants also displayed reduced antioxidant capacity compared to the wild type. After 24 h of cold treatment and 2 h recovery, the wild-type plants were almost fully restored to the initial phenotype compared to the slower recovery of DFRi plants, in which the levels of electrolyte leakage and hydrogen peroxide accumulation were dramatically increased. These results provide direct evidence of anthocyanins function in the protection against oxidative stress in the sweet potato. The molecular characterization of the IbDFR gene in the sweet potato not only confirms its important roles in flavonoid metabolism but also supports the protective function of anthocyanins of enhanced scavenging of reactive oxygen radicals in plants under stressful conditions. PMID:24223813

  1. Functional characterization of Dihydroflavonol-4-reductase in anthocyanin biosynthesis of purple sweet potato underlies the direct evidence of anthocyanins function against abiotic stresses.

    Science.gov (United States)

    Wang, Hongxia; Fan, Weijuan; Li, Hong; Yang, Jun; Huang, Jirong; Zhang, Peng

    2013-01-01

    Dihydroflavonol-4-reductase (DFR) is a key enzyme in the catalysis of the stereospecific reduction of dihydroflavonols to leucoanthocyanidins in anthocyanin biosynthesis. In the purple sweet potato (Ipomoea batatas Lam.) cv. Ayamurasaki, expression of the IbDFR gene was strongly associated with anthocyanin accumulation in leaves, stems and roots. Overexpression of the IbDFR in Arabidopsis tt3 mutants fully complemented the pigmentation phenotype of the seed coat, cotyledon and hypocotyl. Downregulation of IbDFR expression in transgenic sweet potato (DFRi) using an RNAi approach dramatically reduced anthocyanin accumulation in young leaves, stems and storage roots. In contrast, the increase of flavonols quercetin-3-O-hexose-hexoside and quercetin-3-O-glucoside in the leaves and roots of DFRi plants is significant. Therefore, the metabolic pathway channeled greater flavonol influx in the DFRi plants when their anthocyanin and proanthocyanidin accumulation were decreased. These plants also displayed reduced antioxidant capacity compared to the wild type. After 24 h of cold treatment and 2 h recovery, the wild-type plants were almost fully restored to the initial phenotype compared to the slower recovery of DFRi plants, in which the levels of electrolyte leakage and hydrogen peroxide accumulation were dramatically increased. These results provide direct evidence of anthocyanins function in the protection against oxidative stress in the sweet potato. The molecular characterization of the IbDFR gene in the sweet potato not only confirms its important roles in flavonoid metabolism but also supports the protective function of anthocyanins of enhanced scavenging of reactive oxygen radicals in plants under stressful conditions.

  2. Functional characterization of Dihydroflavonol-4-reductase in anthocyanin biosynthesis of purple sweet potato underlies the direct evidence of anthocyanins function against abiotic stresses.

    Directory of Open Access Journals (Sweden)

    Hongxia Wang

    Full Text Available Dihydroflavonol-4-reductase (DFR is a key enzyme in the catalysis of the stereospecific reduction of dihydroflavonols to leucoanthocyanidins in anthocyanin biosynthesis. In the purple sweet potato (Ipomoea batatas Lam. cv. Ayamurasaki, expression of the IbDFR gene was strongly associated with anthocyanin accumulation in leaves, stems and roots. Overexpression of the IbDFR in Arabidopsis tt3 mutants fully complemented the pigmentation phenotype of the seed coat, cotyledon and hypocotyl. Downregulation of IbDFR expression in transgenic sweet potato (DFRi using an RNAi approach dramatically reduced anthocyanin accumulation in young leaves, stems and storage roots. In contrast, the increase of flavonols quercetin-3-O-hexose-hexoside and quercetin-3-O-glucoside in the leaves and roots of DFRi plants is significant. Therefore, the metabolic pathway channeled greater flavonol influx in the DFRi plants when their anthocyanin and proanthocyanidin accumulation were decreased. These plants also displayed reduced antioxidant capacity compared to the wild type. After 24 h of cold treatment and 2 h recovery, the wild-type plants were almost fully restored to the initial phenotype compared to the slower recovery of DFRi plants, in which the levels of electrolyte leakage and hydrogen peroxide accumulation were dramatically increased. These results provide direct evidence of anthocyanins function in the protection against oxidative stress in the sweet potato. The molecular characterization of the IbDFR gene in the sweet potato not only confirms its important roles in flavonoid metabolism but also supports the protective function of anthocyanins of enhanced scavenging of reactive oxygen radicals in plants under stressful conditions.

  3. Thermal degradation of anthocyanins and its impact on color and in vitro antioxidant capacity.

    Science.gov (United States)

    Sadilova, Eva; Carle, Reinhold; Stintzing, Florian C

    2007-12-01

    The aim of the current study was to thoroughly investigate the structural changes of anthocyanins at pH 3.5 in purified fractions from black carrot, elderberry and strawberry heated over 6 h at 95 degrees C. Degradation products were monitored by HPLC-DAD-MS(3 )to elucidate the prevailing degradation pathways. In addition, alterations of color and antioxidant properties observed upon heating were scrutinized. Most interestingly, the degradation pathways at pH 3.5 were found to differ from those at pH 1. Among others, chalcone glycosides were detected at 320 nm in heat-treated elderberry and strawberry pigment isolates, and opening of the pyrylium ring initiated anthocyanin degradation. In the case of acylated anthocyanins, acyl-glycoside moieties were split off from the flavylium backbone, first. Finally, for all pigment isolates, phenolic acids and phloroglucinaldehyde were the terminal degradation products as remainders of the B- and A-ring, respectively. Maximum and minimum antioxidant stabilizing capacities were found in black carrot and strawberry, respectively, which was explained by the high degree of acylation in the former. After heating, decline of trolox equivalent antioxidant capacity (TEAC) was observed in all samples, which was attributed to both anthocyanins and their colorless degradation products following thermal exposure. As deduced from the ratio of TEAC value and anthocyanin content, the loss of anthocyanin bioactivity could not be compensated by the antioxidant capacity of newly formed colorless phenolics upon heating.

  4. Synthesis of Zinc Oxide Nanoparticles using Anthocyanin as a Capping Agent

    Science.gov (United States)

    Septiani, N. L. W.; Yuliarto, B.; Iqbal, M.; Nugraha

    2017-05-01

    Zinc Oxide nanoparticles have been successfully synthesized by utilizing anthocyanin as a capping agent by thermal decomposition of precursor route. The influence of the high and low concentrations of the anthocyanin to the shape and size of ZnO was investigated in this work. The anthocyanin was obtained from Indonesia black rice extract with methanol as a solvent. The crystallinity and morphology properties were characterized by X-Ray Diffractometer (XRD), and Scanning Electron Microscope (SEM), respectively. XRD result showed that ZnO was formed with good crystallinity without any second phase and had a hexagonal wurtzite crystal structure. SEM result revealed that ZnO with a low concentration of anthocyanin has a spherical shape with a uniform size of about 16 nm while ZnO with a high concentration of anthocyanin has a rod-like shape. The size of spherical ZnO in this work is smaller than ZnO from the same method of synthesis without anthocyanin (~30 nm).

  5. Stabilization of natural colors and nutraceuticals: Inhibition of anthocyanin degradation in model beverages using polyphenols.

    Science.gov (United States)

    Chung, Cheryl; Rojanasasithara, Thananunt; Mutilangi, William; McClements, David Julian

    2016-12-01

    Anthocyanins are widely used as natural colorants in foods, but they are highly susceptible to chemical degradation during storage leading to color fading. This study examined the potential of natural quillaja saponin and polyphenols (vanillin, epigallocatechin gallate, green tea extract, and protocatechualdehyde) at inhibiting color fading of anthocyanins in model beverages. The purple carrot anthocyanin (0.025%) in model beverages (citric acid, pH 3.0) containing l-ascorbic acid (0.050%) degraded with a first-order reaction rate during storage (40°C/7days in light). The addition of polyphenols (0.2%) delayed color fading, with the most notable improvement observed with green tea extract addition. The half-life for anthocyanin color fading increased from 2.9 to 6.7days with green tea extract. Fluorescence quenching measurements showed that the green tea extract contained components that interacted with anthocyanins probably through hydrophobic interactions. Overall, this study provides valuable information about enhancing the stability of anthocyanins in beverage systems using polyphenols. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Methylation mediated by an anthocyanin, O-methyltransferase, is involved in purple flower coloration in Paeonia

    Science.gov (United States)

    Du, Hui; Wu, Jie; Ji, Kui-Xian; Zeng, Qing-Yin; Bhuiya, Mohammad-Wadud; Su, Shang; Shu, Qing-Yan; Ren, Hong-Xu; Liu, Zheng-An; Wang, Liang-Sheng

    2015-01-01

    Anthocyanins are major pigments in plants. Methylation plays a role in the diversity and stability of anthocyanins. However, the contribution of anthocyanin methylation to flower coloration is still unclear. We identified two homologous anthocyanin O-methyltransferase (AOMT) genes from purple-flowered (PsAOMT) and red-flowered (PtAOMT) Paeonia plants, and we performed functional analyses of the two genes in vitro and in vivo. The critical amino acids for AOMT catalytic activity were studied by site-directed mutagenesis. We showed that the recombinant proteins, PsAOMT and PtAOMT, had identical substrate preferences towards anthocyanins. The methylation activity of PsAOMT was 60 times higher than that of PtAOMT in vitro. Interestingly, this vast difference in catalytic activity appeared to result from a single amino acid residue substitution at position 87 (arginine to leucine). There were significant differences between the 35S::PsAOMT transgenic tobacco and control flowers in relation to their chromatic parameters, which further confirmed the function of PsAOMT in vivo. The expression levels of the two homologous AOMT genes were consistent with anthocyanin accumulation in petals. We conclude that AOMTs are responsible for the methylation of cyanidin glycosides in Paeonia plants and play an important role in purple coloration in Paeonia spp. PMID:26208646

  7. Protective Effect of Anthocyanins from Lingonberry on Radiation-induced Damages

    Directory of Open Access Journals (Sweden)

    Shuang-Qi Tian

    2012-12-01

    Full Text Available There is a growing concern about the serious harm of radioactive materials, which are widely used in energy production, scientific research, medicine, industry and other areas. In recent years, owing to the great side effects of anti-radiation drugs, research on the radiation protectants has gradually expanded from the previous chemicals to the use of natural anti-radiation drugs and functional foods. Some reports have confirmed that anthocyanins are good antioxidants, which can effectively eliminate free radicals, but studies on the immunoregulatory and anti-radiation effects of anthocyanins from lingonberry (ALB are less reported. In this experiment, mice were given orally once daily for 14 consecutive days before exposure to 6 Gy of gamma-radiation and were sacrificed on the 7th day post-irradiation. The results showed that the selected dose of extract did not lead to acute toxicity in mice; while groups given anthocyanins orally were significantly better than radiation control group according to blood analysis; pretreatment of anthocyanins significantly (p < 0.05 enhanced the thymus and spleen indices and spleen cell survival compared to the irradiation control group. Pretreatment with anthocyanins before irradiation significantly reduced the numbers of micronuclei (MN in bone marrow polychromatic erythrocytes (PCEs. These findings indicate that anthocyanins have immunostimulatory potential against immunosuppression induced by the radiation.

  8. Stability of Anthocyanins from Rubus glaucus and Solanum betaceum as affected by Temperature and Water Activity

    Directory of Open Access Journals (Sweden)

    Clara Marcela Olaya

    2009-09-01

    Full Text Available The stability of sprayed-dried microencapsulated anthocyanins from Andes berry (Rubus glaucus and Tamarillo (Solanum betaceum, as affected by storage time, water activity (Aw and temperature was compared. The fruits were osmotically dehydrated with ethanol and the anthocyanin extract was microencapsulated with maltodextrin DE 20 by spray drying. Half life of the anthocyanins; changes in color, total phenolics, and antioxidant activity of the powders, were analyzed during storage at two different temperatures (25 °C and 40 °C and two Aw levels (0.20 and 0.35. A decrease in monomeric anthocyanin was observed in both samples. The half life of the Andes berry pigments ranged between 11 and 32 days while the half life of the tamarillo pigments ranged between 9 and 21 days. A darkening effect occurred in both samples as a result of storage time.  The antioxidant activity decreased while the phenolic content increased with time. Antioxidant activity of Andes berry samples was highly correlated with anthocyanin content and total phenolic content while the antioxidant activity of tamarillo samples was highly correlated with total phenolic content. These results would be useful in developing applications for spray-dried anthocyanin as powdered food-grade colorants.

  9. Characterisation of Vranec, Cabernet sauvignon and Merlot wines based on their chromatic and anthocyanin profiles

    Directory of Open Access Journals (Sweden)

    Dimitrovska Maja

    2013-01-01

    Full Text Available Wines of three different grape varieties, Vranec, Cabernet Sauvignon and Merlot were examined for their characterisation in terms of anthocyanin and chromatic profiles, total polyphenols and antioxidant potential. Total, monomeric, polymeric and copigmented anthocyanins were determined by spectrophotometry and the individual anthocyanin compounds were quantified using HPLC-DAD. Chromatic profile was evaluated according to colour density, hue, % red, % blue, % yellow and brilliance (% dA. The established data were submitted to analysis of variance and principle component analysis in order to evaluate their potential for differentiation of wines according to variety and vintage. Vranec wines have shown distinctive characteristics, with the highest content of anthocyanins and values of colour intensity, % red and % dA, compared to the other two studied varieties. The content of petunidin-3-glucoside, peonindin-3-glucoside and anthocyanin acetates were established as possible markers for differentiation of Vranec wines from Cabernet Sauvignon and Merlot wines. However, none of the assayed parameters could be used for differentiation of Cabernet Sauvignon from Merlot wines. It was observed that wine age limits successful classification of the wines by variety according to anthocyanins. The chromatic parameters allowed distinguishing of young (aged up to 1 year from old Vranec wines.

  10. The Change of Total Anthocyanins in Blueberries and Their Antioxidant Effect After Drying and Freezing

    Directory of Open Access Journals (Sweden)

    Virachnee Lohachoompol

    2004-01-01

    Full Text Available This study examined the effects of freezing, storage, and cabinet drying on the anthocyanin content and antioxidant activity of blueberries (Vaccinium corymbosum L. Fresh samples were stored for two weeks at 5∘C while frozen samples were kept for up to three months at −20∘C. There were two drying treatments, one including osmotic pretreatment followed by cabinet drying and the other involving only cabinet drying. Total anthocyanins found in fresh blueberries were 7.2±0.5 mg/g dry matter, expressed as cyanidin 3-rutinoside equivalents. In comparison with fresh samples, total anthocyanins in untreated and pretreated dried blueberries were significantly reduced to 4.3±0.1 mg/g solid content, 41% loss, and 3.7±0.2 mg/g solid content, 49% loss, respectively. Osmotic treatment followed by a thermal treatment had a greater effect on anthocyanin loss than the thermal treatment alone. In contrast, the frozen samples did not show any significant decrease in anthocyanin level during three months of storage. Measurement of the antioxidant activity of anthocyanin extracts from blueberries showed there was no significant difference between fresh, dried, and frozen blueberries.

  11. Effects of salinity stress on carotenoids, anthocyanins, and color of diverse tomato genotypes.

    Science.gov (United States)

    Borghesi, Eva; González-Miret, M Lourdes; Escudero-Gilete, M Luisa; Malorgio, Fernando; Heredia, Francisco J; Meléndez-Martínez, Antonio J

    2011-11-09

    One nonanthocyanin-accumulating (Ailsa Craig) and three anthocyanin-accumulating tomato genotypes (Anthocyanin fruit type, Atroviolaceum, and Sun Black) were analyzed to assess differences in their carotenoid and anthocyanin levels and color and to evaluate the effects of nutrient solutions with different salt concentrations on these parameters. The carotenoid content of control Atroviolaceum tomatoes was ca. 2-2.5-fold higher relative to the other two types, and the color of its puree could be visually distinguished from those of other genotypes. Salinity stress led in some cases to a 2-3-fold increase in the lycopene content. Saline treatment increased the accumulation of total anthocyanins in fruits of Sun Black (2-fold increase), while it reduced it in fruits of Anthocyanin (10-fold decrease). In general, the treatment increased the differences in color of different purees. These results indicate that salinity stress can lead to similar or higher increases in tomato carotenoids than those achieved by genetic engineering. In addition, these changes were accompanied by visually discernible color differences in tomato products. Our findings show the considerable potential of exploiting saline soils to obtain tomatoes with higher levels of secondary metabolites like carotenoids and anthocyanins.

  12. The effect of growth conditions on flavonols and anthocyanins accumulation in green and red lettuce

    Directory of Open Access Journals (Sweden)

    Klaudia BRÜCKOVÁ

    2016-12-01

    Full Text Available The aim of the study was to investigate the effect of different growth conditions on anthocyanins and flavonols accumulation in leaves of green and red loose leaf lettuce (Lactuca sativa var. crispa. Lettuce plants were grown in three types of conditions, in greenhouse (I. variant, behind clear glass in field (II. variant and in open field conditions (III. variant. Estimation of anthocyanins and flavonols content was done by non-destructive measurements with optical fluorescence sensor Multiplex® 3 (Force-A, France. It was estimated that green lettuce varieties had a greater flavonols content compared to red lettuce varieties in all experimental variants. The highest level of flavonols was detected in leaves of green variety Zoltán (1.218 RU and in red lettuce had the highest amount of flavonols in variety Carmesi (1.095 RU. At the same time red lettuce varieties were characterized by higher anthocyanins content. Parameter anthocyanin index is correlated with visible red coloration of leaves. The highest content of anthocyanins was detected in variety Oakly (0.867 RU. Under the open field conditions was found statistically significant higher (P < 0.05 flavonols and anthocyanins level in both green and red lettuce leaves compared to greenhouse conditions. It may be connected with intensification of flavonoids biosynthesis and accumulation which normally stimulated by sun irradiation, especially UV-B radiation.

  13. Cis–Trans Configuration of Coumaric Acid Acylation Affects the Spectral and Colorimetric Properties of Anthocyanins

    Directory of Open Access Journals (Sweden)

    Gregory T. Sigurdson

    2018-03-01

    Full Text Available The color expression of anthocyanins can be affected by a variety of environmental factors and structural characteristics. Anthocyanin acylation (type and number of acids is known to be key, but the influence of acyl isomers (with unique stereochemistries remains to be explored. The objective of this study was to investigate the effects of cis–trans configuration of the acylating group on the spectral and colorimetric properties of anthocyanins. Petunidin-3-rutinoside-5-glucoside (Pt-3-rut-5-glu and Delphinidin-3-rutinoside-5-glucoside (Dp-3-rut-5-glu and their cis and trans coumaroylated derivatives were isolated from black goji and eggplant, diluted in pH 1–9 buffers, and analyzed spectrophotometrically (380–700 nm and colorimetrically (CIELAB during 72 h of storage (25 °C, dark. The stereochemistry of the acylating group strongly impacted the spectra, color, and stability of the Dp and Pt anthocyanins. Cis acylated pigments exhibited the greatest λmax in all pH, as much as 66 nm greater than their trans counterparts, showing bluer hues. Cis acylation seemed to reduce hydration across pH, increasing color intensity, while trans acylation generally improved color retention over time. Dp-3-cis-p-cou-rut-5-glu exhibited blue hues even in pH 5 (C*ab = 10, hab = 256° where anthocyanins are typically colorless. Cis or trans double bond configurations of the acylating group affected anthocyanin spectral and stability properties.

  14. The effects of gallic/ferulic/caffeic acids on colour intensification and anthocyanin stability.

    Science.gov (United States)

    Qian, Bing-Jun; Liu, Jian-Hua; Zhao, Shu-Juan; Cai, Jian-Xiong; Jing, Pu

    2017-08-01

    The mechanism by which copigments stabilize colour, by protecting anthocyanin chromophores from nucleophilic attack, seems well accepted. This study was to determine effects of gallic/ferulic/caffeic acids on colour intensification and anthocyanin stability. Molecular dynamics simulations were applied to explore molecular interactions. Phenolic acids intensified the colour by 19%∼27%. Colour fading during heating followed first-order reactions with half-lives of 3.66, 9.64, 3.50, and 3.39h, whereas anthocyanin degradation, determined by the pH differential method (or HPLC-PDA), followed second-order reactions with half-lives of 3.29 (3.40), 3.43 (3.39), 2.29 (0.39), and 2.72 (0.32)h alone or with gallic/ferulic/caffeic acids, respectively, suggesting that anthocyanin degradation was faster than the colour fading. The strongest protection of gallic acids might be attributed to the shortest distance (4.37Å) of its aromatic ring to the anthocyanin (AC) panel. Hyperchromic effects induced by phenolic acids were pronounced and they obscured the accelerated anthocyanin degradation due to self-association interruption. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Increased Sucrose in the Hypocotyls of Radish Sprouts Contributes to Nitrogen Deficiency-Induced Anthocyanin Accumulation.

    Science.gov (United States)

    Su, Nana; Wu, Qi; Cui, Jin

    2016-01-01

    Effects of nitrogen (N) deficiency and sucrose (Suc) addition on regulation of anthocyanin biosynthesis and their relationship were investigated in this study. Radish sprouts subjected to N deficiency had 50% higher anthocyanin accumulation than when grown in Hoagland solution (a nutrient medium with all macronutrients). The contents of endogenous soluble sugars (Suc, fructose, and glucose) in the hypocotyls were also markedly increased by N limitation, with Suc showing the highest increase. Inhibition of carbohydrate biosynthesis by addition of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) also eliminated N deficiency-induced anthocyanin accumulation. The latter was further supported by the expression of anthocyanin biosynthesis related genes and decreased activities of nitrate reductase in the presence of Suc. Together our results indicate that N deficiency-induced anthocyanin accumulation was, at least partly, dependent on the increase of the soluble sugar, especially Suc. This work is the first comprehensive study on relationship between N deficiency and sugar content on anthocyanin accumulation in the hypocotyls of radish sprouts.

  16. Anthocyanin prevents CD40-activated proinflammatory signaling in endothelial cells by regulating cholesterol distribution.

    Science.gov (United States)

    Xia, Min; Ling, Wenhua; Zhu, Huilian; Wang, Qing; Ma, Jing; Hou, Mengjun; Tang, Zhihong; Li, Lan; Ye, Qinyuan

    2007-03-01

    Intracellular tumor necrosis factor receptor-associated factors (TRAFs) translocation to lipid rafts is a key element in CD40-induced signaling. The purpose of this study was to investigate the influence of anthocyanin on CD40-mediated proinflammatory events in human endothelial cells and the underlying possible molecular mechanism. Treatment of endothelial cells with anthocyanin prevented from CD40-induced proinflammatory status, measured by production of IL-6, IL-8, and monocyte chemoattractant protein-1 through inhibiting CD40-induced nuclear factor-kappaB (NF-kappaB) activation. TRAF-2 played pivotal role in CD40-NF-kappaB pathway as TRAF-2 small interference RNA (siRNA) diminished CD40-induced NF-kappaB activation and inflammation. TRAF-2 overexpression increased CD40-mediated NF-kappaB activation. Moreover, TRAF-2 almost totally recruited to lipid rafts after stimulation by CD40 ligand and depletion of cholesterol diminished CD40-mediated NF-kappaB activation. Exposure to anthocyanin not only interrupted TRAF-2 recruitment to lipid rafts but also decreased cholesterol content in Triton X-100 insoluble lipid rafts. However, anthocyanin did not influence the interaction between CD40 ligand and CD40 receptor. Our findings suggest that anthocyanin protects from CD40-induced proinflammatory signaling by preventing TRAF-2 translocation to lipid rafts through regulation of cholesterol distribution, which thereby may represent a mechanism that would explain the anti-inflammatory response of anthocyanin.

  17. The Arabidopsis Transcription Factor MYB112 Promotes Anthocyanin Formation during Salinity and under High Light Stress.

    Science.gov (United States)

    Lotkowska, Magda E; Tohge, Takayuki; Fernie, Alisdair R; Xue, Gang-Ping; Balazadeh, Salma; Mueller-Roeber, Bernd

    2015-11-01

    MYB transcription factors (TFs) are important regulators of flavonoid biosynthesis in plants. Here, we report MYB112 as a formerly unknown regulator of anthocyanin accumulation in Arabidopsis (Arabidopsis thaliana). Expression profiling after chemically induced overexpression of MYB112 identified 28 up- and 28 down-regulated genes 5 h after inducer treatment, including MYB7 and MYB32, which are both induced. In addition, upon extended induction, MYB112 also positively affects the expression of PRODUCTION OF ANTHOCYANIN PIGMENT1, a key TF of anthocyanin biosynthesis, but acts negatively toward MYB12 and MYB111, which both control flavonol biosynthesis. MYB112 binds to an 8-bp DNA fragment containing the core sequence (A/T/G)(A/C)CC(A/T)(A/G/T)(A/C)(T/C). By electrophoretic mobility shift assay and chromatin immunoprecipitation coupled to quantitative polymerase chain reaction, we show that MYB112 binds in vitro and in vivo to MYB7 and MYB32 promoters, revealing them as direct downstream target genes. We further show that MYB112 expression is up-regulated by salinity and high light stress, environmental parameters that both require the MYB112 TF for anthocyanin accumulation under these stresses. In contrast to several other MYB TFs affecting anthocyanin biosynthesis, MYB112 expression is not controlled by nitrogen limitation or an excess of carbon. Thus, MYB112 constitutes a regulator that promotes anthocyanin accumulation under abiotic stress conditions. © 2015 American Society of Plant Biologists. All Rights Reserved.

  18. Improved stability of chokeberry juice anthocyanins by β-cyclodextrin addition and refrigeration.

    Science.gov (United States)

    Howard, Luke R; Brownmiller, Cindi; Prior, Ronald L; Mauromoustakos, Andy

    2013-01-23

    Chokeberry anthocyanins are susceptible to degradation during processing and storage of processed products. This study determined the effects of three pH levels (2.8, 3.2, and 3.6) and four β-cyclodextrin (BCD) concentrations (0, 0.5, 1, and 3%) alone and in combination on the stability of chokeberry juice anthocyanins before and after pasteurization and over 8 months of storage at 4 and 25 °C. Lowering the pH from 3.6 to 2.8 in the absence of BCD provided marginal protection against anthocyanin losses during processing and storage. Addition of 3% BCD at the natural chokeberry pH of 3.6 resulted in excellent protection of anthocyanins, with 81 and 95% retentions after 8 months of storage at 25 and 4 °C, respectively. The protective effect of BCD was lessened with concentrations <3% and reduction in pH, indicating changes in anthocyanin structure play an important role in BCD stabilization of anthocyanins.

  19. Chemoprevention of esophageal cancer with black raspberries, their component anthocyanins, and a major anthocyanin metabolite, protocatechuic acid.

    Science.gov (United States)

    Peiffer, Daniel S; Zimmerman, Noah P; Wang, Li-Shu; Ransom, Benjamin W S; Carmella, Steven G; Kuo, Chieh-Ti; Siddiqui, Jibran; Chen, Jo-Hsin; Oshima, Kiyoko; Huang, Yi-Wen; Hecht, Stephen S; Stoner, Gary D

    2014-06-01

    Diets containing either freeze-dried black raspberries (BRBs) or their polyphenolic anthocyanins (ACs) have been shown to inhibit the development of N-nitrosomethylbenzylamine (NMBA)-induced esophageal cancer in rats. The present study was conducted to determine whether PCA, a major microbial metabolite of black raspberry (BRB) ACs, also prevents NMBA-induced esophageal cancer in rats. F344 rats were injected with NMBA three times a week for 5 weeks and then fed control or experimental diets containing 6.1% BRBs, an anthocyanin (AC)-enriched fraction derived from BRBs, or protocatechuic acid (PCA). Animals were exsanguinated at weeks 15, 25, and 35 to quantify the development of preneoplastic lesions and tumors in the esophagus, and to relate this to the expression of inflammatory biomarkers. At weeks 15 and 25, all experimental diets were equally effective in reducing NMBA-induced esophageal tumorigenesis, as well as in reducing the expression of pentraxin-3 (PTX3), a cytokine produced by peripheral blood mononuclear cells in response to interleukin (IL)-1β and TNF-α. All experimental diets were also active at reducing tumorigenesis at week 35; however, the BRB diet was significantly more effective than the AC and PCA diets. Furthermore, all experimental diets inhibited inflammation in the esophagus via reducing biomarker (COX-2, iNOS, p-NF-κB, and sEH) and cytokine (PTX3) expression. Overall, our data suggest that BRBs, their component ACs, and PCA inhibit NMBA-induced esophageal tumorigenesis, at least in part, by their inhibitory effects on genes associated with inflammation. ©2014 American Association for Cancer Research.

  20. Varietal blends as a way of optimizing and preserving the anthocyanin content of pomegranate (Punica granatum L.) juices.

    Science.gov (United States)

    Mena, Pedro; Martí, Nuria; García-Viguera, Cristina

    2014-07-23

    Anthocyanins are unstable compounds prone to degradation during storage of pomegranates juices, leading to disadvantageous color changes. Blending varietal pomegranate juices could be useful not only to preserve the genuine characteristics of fresh juices but also to study different factors affecting anthocyanin stability while maintaining to the utmost the matrix studied. The effects of critical factors such as anthocyanin concentration, pH, and endogenous ascorbic acid on pigment integrity were assessed through the study of the degradation kinetics of pomegranate phytochemicals in blended juices made from two distinct cultivars ('Wonderful' and 'Mollar de Elche'). Pigment concentration and pH were the factors affecting anthocyanin stability, whereas ascorbic acid did not alter the degradation of anthocyanins. These results contributed to the definition of the so-called "cultivar effect" and to preserving to a great extent the anthocyanin load and color characteristics of fresh varietal juices, avoiding phytochemical degradation and browning development during storage.

  1. Foliar-applied ethephon enhances the content of anthocyanin of black carrot roots (Daucus carota ssp. sativus var. atrorubens Alef.)

    DEFF Research Database (Denmark)

    Barba Espin, Gregorio; Glied, Stephan; Crocoll, Christoph

    2017-01-01

    BACKGROUND: Black carrots (Daucus carota ssp. sativus var. atrorubens Alef.) constitute a valuable source of anthocyanins, which are used as natural red, blue and purple food colourants. Anthocyanins and phenolic compounds are specialised metabolites, accumulation of which often requires elicitors......, which act as molecular signals in plant stress responses. In the present study, ethephon, an ethylene-generating compound was explored as enhancer of anthocyanin and phenolic contents during growth of 'Deep Purple' black carrots. The effects of ethephon on several parameters were investigated......, and the expression of biosynthetic anthocyanin genes was studied during growth and anthocyanin accumulation. RESULTS: Roots of ethephon-treated carrot plants exhibited an increase in anthocyanin content of approximately 25%, with values ranging from 2.25 to 3.10 mg g(-1) fresh weight, compared with values ranging...

  2. Overexpressing CAPRICE and GLABRA3 did not change the anthocyanin content of tomato (Solanum lycopersicum) fruit peel.

    Science.gov (United States)

    Wada, Takuji; Onishi, Mio; Kunihiro, Asuka; Tominaga-Wada, Rumi

    2015-01-01

    In Arabidopsis thaliana, the R3-type MYB transcription factor CAPRICE (CPC) and bHLH transcription factor GLABRA3 (GL3) cooperatively regulate epidermal cell differentiation. CPC and GL3 are involved in root-hair differentiation, trichome initiation and anthocyanin biosynthesis in Arabidopsis epidermal cells. Previously, we showed that CPC and GL3 also influence anthocyanin accumulation in tomato. Introduction of 35S::CPC into tomato significantly inhibits anthocyanin accumulation in cotyledons, leaves and stems. In contrast, introduction of GL3::GL3 strongly enhances anthocyanin accumulation in cotyledons, leaves and stems of tomato. In this study, we investigated the effect of CPC and GL3 on anthocyanin accumulation in the epidermis of tomato fruit. Unlike the results with vegetative tissues, overexpression of CPC and GL3 did not influence anthocyanin biosynthesis in tomato fruit peel.

  3. The effect of sugars in relation to methyl jasmonate on anthocyanin formation in the roots of Kalanchoe blossfeldiana (Poelln.)

    OpenAIRE

    Justyna Góraj-Koniarska; Marian Saniewski

    2015-01-01

    This study investigated the effects of different sugars (sucrose, fructose, glucose) and sugar alcohols (mannitol, sorbitol) applied alone and in solution with methyl jasmonate (JA-Me) on the anthocyanin content in the roots of Kalanchoe blossfeldiana. None of the sugars used individually in the experiment affected anthocyanin accumulation in the roots of intact plants. The anthocyanin level was similar to that in the control. Sucrose at concentrations of 0.5% and 3.0%, and glucose at a conce...

  4. Overexpressing CAPRICE and GLABRA3 did not change the anthocyanin content of tomato (solanum lycopersicum) fruit peel

    OpenAIRE

    Wada, Takuji; Onishi, Mio; Kunihiro, Asuka; Tominaga-Wada, Rumi

    2015-01-01

    In Arabidopsis thaliana, the R3-type MYB transcription factor CAPRICE (CPC) and bHLH transcription factor GLABRA3 (GL3) cooperatively regulate epidermal cell differentiation. CPC and GL3 are involved in root-hair differentiation, trichome initiation and anthocyanin biosynthesis in Arabidopsis epidermal cells. Previously, we showed that CPC and GL3 also influence anthocyanin accumulation in tomato. Introduction of 35S::CPC into tomato significantly inhibits anthocyanin accumulation in cotyledo...

  5. CRISPRi-mediated metabolic engineering of E. coli for O-methylated anthocyanin production.

    Science.gov (United States)

    Cress, Brady F; Leitz, Quentin D; Kim, Daniel C; Amore, Teresita D; Suzuki, Jon Y; Linhardt, Robert J; Koffas, Mattheos A G

    2017-01-17

    Anthocyanins are a class of brightly colored, glycosylated flavonoid pigments that imbue their flower and fruit host tissues with hues of predominantly red, orange, purple, and blue. Although all anthocyanins exhibit pH-responsive photochemical changes, distinct structural decorations on the core anthocyanin skeleton also cause dramatic color shifts, in addition to improved stabilities and unique pharmacological properties. In this work, we report for the first time the extension of the reconstituted plant anthocyanin pathway from (+)-catechin to O-methylated anthocyanins in a microbial production system, an effort which requires simultaneous co-option of the endogenous metabolites UDP-glucose and S-adenosyl-L-methionine (SAM or AdoMet). Anthocyanin O-methyltransferase (AOMT) orthologs from various plant sources were co-expressed in Escherichia coli with Petunia hybrida anthocyanidin synthase (PhANS) and Arabidopsis thaliana anthocyanidin 3-O-glucosyltransferase (At3GT). Vitis vinifera AOMT (VvAOMT1) and fragrant cyclamen 'Kaori-no-mai' AOMT (CkmOMT2) were found to be the most effective AOMTs for production of the 3'-O-methylated product peonidin 3-O-glucoside (P3G), attaining the highest titers at 2.4 and 2.7 mg/L, respectively. Following modulation of plasmid copy number and optimization of VvAOMT1 and CkmOMT2 expression conditions, production was further improved to 23 mg/L using VvAOMT1. Finally, CRISPRi was utilized to silence the transcriptional repressor MetJ in order to deregulate the methionine biosynthetic pathway and improve SAM availability for O-methylation of cyanidin 3-O-glucoside (C3G), the biosynthetic precursor to P3G. MetJ repression led to a final titer of 51 mg/L (56 mg/L upon scale-up to shake flask), representing a twofold improvement over the non-targeting CRISPRi control strain and 21-fold improvement overall. An E. coli strain was engineered for production of the specialty anthocyanin P3G using the abundant and comparatively

  6. Effect of cultivar on phenolic levels, anthocyanin composition, and antioxidant properties in purple basil (Ocimum basilicum L.).

    Science.gov (United States)

    Flanigan, Patrick M; Niemeyer, Emily D

    2014-12-01

    In this study, we determined the effect of cultivar on total and individual anthocyanin concentrations and phenolic acid levels in eight purple basil varieties and examined the relationship between anthocyanin content, phenolic acid composition, and antioxidant properties. Cultivar had a significant influence on total anthocyanin concentrations as well as individual anthocyanin composition. The four major basil anthocyanins (labelled A-D) were quantified and cultivar had a statistically significant effect on anthocyanins B (p<0.01), C (p<0.01), and D (p<0.01), but not on anthocyanin A (p=0.94). Cultivar did not have a significant effect on total phenolic levels, although it did influence the concentration of some individual phenolic acids, including caftaric (p=0.03) and chicoric (p=0.04) acids. Although total phenolic and anthocyanin levels correlated with measured FRAP antioxidant capacities, for some cultivars the individual phenolic acid and anthocyanin composition was also an important factor affecting the antioxidant properties. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Genistein: a novel anthocyanin synthesis promoter that directly regulates biosynthetic genes in red cabbage in a light-dependent way

    Directory of Open Access Journals (Sweden)

    Na Zhang

    2016-12-01

    Full Text Available Genistein (GNT, an isoflavone, is used in the clinical treatment of various health disorders. GNT is found in primary food source plants and some medical plants. However, studies on the functions of GNT in plants are rarely reported. In this study, we demonstrated that GNT plays an important role in promoting anthocyanin accumulation in red cabbage. GNT solutions (10, 20, 30, 40, and 50 mg/L as foliar fertilizers were applied to red cabbage. Consequently, anthocyanin accumulation in red cabbage increased in a light-dependent manner. GNT solution at 30 mg/L exhibited the optimal effect on anthocyanin accumulation, which was twice that of the control. Quantitative real-time PCR analysis indicated that GNT application upregulated the expression of all structural genes, contributing to anthocyanin biosynthesis under light conditions. Under dark conditions, GNT exerted no significant promotive effect on anthocyanin accumulation; only early biosynthetic genes of anthocyanin biosynthesis responded to GNT. The promotive effect of GNT on anthocyanin biosynthesis is directly attributable to the regulation of structural gene expression. Transcription factors exhibited no response to GNT. The levels of anthocyanin in red cabbage positively correlated with the enzyme activities of antioxidant systems. This finding correlation suggested that the promotive effect of GNT on anthocyanin levels was correlated with improved antioxidant activity in the red cabbage.

  8. The effect of solvents on the stabilities (color and Fe) of anthocyanin isolated from the red-color-melinjo peels

    Science.gov (United States)

    Tarmizi, Ermiziar; Lalasari, Latifa Hanum; Saragih, Raskita

    2015-12-01

    Anthocyanin from the red-color-melinjo peels could be isolated using a polar solvent (ethanol) [ermiziar, 2010]. The amount of hydrocarbons in the structure of anthocyanin might cause that anthocyanin could be isolated using a non polar solvent. The purpose of research is to isolate anthocyanin using non polar solvents (hexane and petroleum ether) with maceration steps for 24 hours and separate solvents using rotary evaporator equipment. The stability of anthocyanin could be observed every week (1,2,3 and 4 weeks) in various environmental conditions (with or without light in refrigerator and open or closed storage). The characterization of anthocyanin was analyzed with visual (physic photo) and or using equipments such as Fourier Transform Infrared Spectroscopy (FTIR) for determining functional groups, Ultraviolet-Visible Spectroscopy (UV/Vis) with 500-550 nm wavelengths for deciding absorption of anthocyanin and atomic absorption spectroscopy (AAS) for analyzing Fe element. The result showed that anthocyanin isolation with hexane solvent has yield higher than petroleum eter solvent. From the results of physic observation for 4 weeks looked that there are changing colors of samples significant after 3 and 4 weeks in cooler with or without light. The stability of anthocyanin color was the best on the storage time until 2 weeks using hexane solvent in refrigerator and closed condition that it has absorption of 0.6740 with 500 nm wavelengths and Fe concentration 6.29 ppm.

  9. The effect of solvents on the stabilities (color and Fe) of anthocyanin isolated from the red-color-melinjo peels

    Energy Technology Data Exchange (ETDEWEB)

    Tarmizi, Ermiziar, E-mail: uph-ermi@yahoo.com, E-mail: ermitarmizi@gmail.com; Saragih, Raskita, E-mail: raskitasaragih@yahoo.com [Indonesia Institute of Technology (ITI), Raya PuspiptekSerpong, Tangerang Banten 15320 (Indonesia); Lalasari, Latifa Hanum, E-mail: ifa-sari@yahoo.com, E-mail: lati003@lipi.go.id [Research Centre for Metallurgy and Material, Indonesian Institute of Sciences (LIPI), KawasanPuspiptekSerpong, Tangerang Selatan 15314 (Indonesia)

    2015-12-29

    Anthocyanin from the red-color-melinjo peels could be isolated using a polar solvent (ethanol) [ermiziar, 2010]. The amount of hydrocarbons in the structure of anthocyanin might cause that anthocyanin could be isolated using a non polar solvent. The purpose of research is to isolate anthocyanin using non polar solvents (hexane and petroleum ether) with maceration steps for 24 hours and separate solvents using rotary evaporator equipment. The stability of anthocyanin could be observed every week (1,2,3 and 4 weeks) in various environmental conditions (with or without light in refrigerator and open or closed storage). The characterization of anthocyanin was analyzed with visual (physic photo) and or using equipments such as Fourier Transform Infrared Spectroscopy (FTIR) for determining functional groups, Ultraviolet–Visible Spectroscopy (UV/Vis) with 500-550 nm wavelengths for deciding absorption of anthocyanin and atomic absorption spectroscopy (AAS) for analyzing Fe element. The result showed that anthocyanin isolation with hexane solvent has yield higher than petroleum eter solvent. From the results of physic observation for 4 weeks looked that there are changing colors of samples significant after 3 and 4 weeks in cooler with or without light. The stability of anthocyanin color was the best on the storage time until 2 weeks using hexane solvent in refrigerator and closed condition that it has absorption of 0.6740 with 500 nm wavelengths and Fe concentration 6.29 ppm.

  10. Stability of Anthocyanins and Their Degradation Products from Cabernet Sauvignon Red Wine under Gastrointestinal pH and Temperature Conditions

    Directory of Open Access Journals (Sweden)

    Ping Yang

    2018-02-01

    Full Text Available This study investigated the stability of wine anthocyanins under simulated gastrointestinal pH and temperature conditions, and further studied the evolution of anthocyanin degradation products through simulated digestive conditions. The aim of this study was to investigate the relation between anthocyanins’ structure and their digestive stability. Results showed that a total of 22 anthocyanins were identified in wine and most of these anthocyanins remained stable under simulated gastric digestion process. However, a dramatic concentration decrease happened to these anthocyanins during simulated intestinal digestion. The stability of anthocyanins in digestive process appeared to be related to their structure. The methoxy group in the B-ring enhanced the stability of anthocyanins, whereas hydroxyl group resulted in a reduction of their stability. Acylation decreased the stability of malvidin 3-O-glucoside. Pyruvic acid conjugation enhanced the structural stability of pyranoanthocyanins, whereas acetaldehyde attachment weakened their stability. A commercial malvidin 3-O-glucoside standard was used to investigate anthocyanin degradation products under simulated digestion process, and syringic acid, protocatechuic acid and vanillic acid were confirmed to be the degradation products via anthocyanin chalcone conversion path. Gallic acid, protocatechuic acid, vanillic acid, syringic acid, and p-coumaric acid in wine experienced a significant concentration decrease during digestion process. However, wine model solution revealed that phenolic acids remained stable under gastrointestinal conditions, except gallic acid.

  11. The effect of solvents on the stabilities (color and Fe) of anthocyanin isolated from the red-color-melinjo peels

    International Nuclear Information System (INIS)

    Tarmizi, Ermiziar; Saragih, Raskita; Lalasari, Latifa Hanum

    2015-01-01

    Anthocyanin from the red-color-melinjo peels could be isolated using a polar solvent (ethanol) [ermiziar, 2010]. The amount of hydrocarbons in the structure of anthocyanin might cause that anthocyanin could be isolated using a non polar solvent. The purpose of research is to isolate anthocyanin using non polar solvents (hexane and petroleum ether) with maceration steps for 24 hours and separate solvents using rotary evaporator equipment. The stability of anthocyanin could be observed every week (1,2,3 and 4 weeks) in various environmental conditions (with or without light in refrigerator and open or closed storage). The characterization of anthocyanin was analyzed with visual (physic photo) and or using equipments such as Fourier Transform Infrared Spectroscopy (FTIR) for determining functional groups, Ultraviolet–Visible Spectroscopy (UV/Vis) with 500-550 nm wavelengths for deciding absorption of anthocyanin and atomic absorption spectroscopy (AAS) for analyzing Fe element. The result showed that anthocyanin isolation with hexane solvent has yield higher than petroleum eter solvent. From the results of physic observation for 4 weeks looked that there are changing colors of samples significant after 3 and 4 weeks in cooler with or without light. The stability of anthocyanin color was the best on the storage time until 2 weeks using hexane solvent in refrigerator and closed condition that it has absorption of 0.6740 with 500 nm wavelengths and Fe concentration 6.29 ppm

  12. Protection of color and chemical degradation of anthocyanin from purple corn (Zea mays L.) by zinc ions and alginate through chemical interaction in a beverage model.

    Science.gov (United States)

    Luna-Vital, Diego; Cortez, Regina; Ongkowijoyo, Paulina; Gonzalez de Mejia, Elvira

    2018-03-01

    Anthocyanin-rich purple corn pericarp water extract (PCW) has the potential to be used as a natural pigment in beverages. However, it has a limited shelf-life in aqueous solutions. The aim was to evaluate the effect of zinc ion (Zn 2+ ) and alginate on color and chemical stability of anthocyanins from colored corn (PCW) in a beverage model for 12weeks. PCW was incorporated to Kool-Aid® Invisible™ along with ZnCl 2 and/or alginate. Individual ANC were quantified through HPLC, and color stability was evaluated through the CIE-L*a*b* color system. Complexation between PCW and Zn/alginate was evaluated with fluorescence spectroscopy. The combination of Zn and alginate was the most effective treatment improving the half-life of total ANC concentration (10.4weeks), cyanidin-3-O-glucoside (7.5weeks) and chroma (18.4weeks), compared to only PCW (6.6, 4.5 and 12.7weeks, respectively). Zn and alginate had bimolecular quenching constants (Zn k q : 3.4×10 11 M -1 S -1 and AA k q : 1.0×10 12 M -1 S -1 ) suggesting that fluorescence quenching was binding rather than collisional. Results suggested that Zn/alginate interacted with ANC from purple corn slowing its chemical degradation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Beyond Punnett Squares: Student Word Association and Explanations of Phenotypic Variation through an Integrative Quantitative Genetics Unit Investigating Anthocyanin Inheritance and Expression in Brassica rapa Fast Plants

    Science.gov (United States)

    Smith, Amber R.; Williams, Paul H.; McGee, Seth A.; Dósa, Katalin; Pfammatter, Jesse

    2014-01-01

    Genetics instruction in introductory biology is often confined to Mendelian genetics and avoids the complexities of variation in quantitative traits. Given the driving question “What determines variation in phenotype (Pv)? (Pv=Genotypic variation Gv + environmental variation Ev),” we developed a 4-wk unit for an inquiry-based laboratory course focused on the inheritance and expression of a quantitative trait in varying environments. We utilized Brassica rapa Fast Plants as a model organism to study variation in the phenotype anthocyanin pigment intensity. As an initial curriculum assessment, we used free word association to examine students’ cognitive structures before and after the unit and explanations in students’ final research posters with particular focus on variation (Pv = Gv + Ev). Comparison of pre- and postunit word frequency revealed a shift in words and a pattern of co-occurring concepts indicative of change in cognitive structure, with particular focus on “variation” as a proposed threshold concept and primary goal for students’ explanations. Given review of 53 posters, we found ∼50% of students capable of intermediate to high-level explanations combining both Gv and Ev influence on expression of anthocyanin intensity (Pv). While far from “plug and play,” this conceptually rich, inquiry-based unit holds promise for effective integration of quantitative and Mendelian genetics. PMID:25185225

  14. Effects of climatic conditions and soil properties on Cabernet Sauvignon berry growth and anthocyanin profiles.

    Science.gov (United States)

    Cheng, Guo; He, Yan-Nan; Yue, Tai-Xin; Wang, Jun; Zhang, Zhen-Wen

    2014-09-02

    Climatic conditions and soil type have significant influence on grape ripening and wine quality. The reported study was conducted in two "Cabernet Sauvignon (Vitis vinifera L.V)" vineyards located in Xinjiang, a semiarid wine-producing region of China during two vintages (2011 and 2012). The results indicate that soil and climate affected berry growth and anthocyanin profiles. These two localities were within a distance of 5 km from each other and had soils of different physical and chemical composition. For each vineyard, the differences of anthocyanin concentrations, and parameters concerning berry growth and composition between the two years could be explained by different climatic conditions. Soil effect was studied by investigation of differences in berry composition and anthocyanin profiles between the two vineyards in the same year, which could be explained mainly by the different soil properties, vine water and nitrogen status. Specifically, the soils with less water and organic matter produced looser clusters, heavier berry skins and higher TSS, which contributed to the excellent performance of grapes. Compared with 2011, the increases in anthocyanin concentrations for each vineyard in 2012 could be attributed to smaller number of extreme temperature (>35 °C) days and rainfall, lower vine water status and N level. The explanation for higher anthocyanin concentrations in grape skins from the soils with less water and organic matter could be the vine status differences, lighter berry weight and heavier skin weight at harvest. In particular, grapes from the soils with less water and organic matter had higher levels of 3'5'-substituded, O-methylated and acylated anthocyanins, which represented a positive characteristic conferring more stable pigmentation to the corresponding wine in the future. The present work clarifies the effects of climate and soil on berry growth and anthocyanin profiles, thus providing guidance for production of high-quality wine grapes

  15. Effects of Climatic Conditions and Soil Properties on Cabernet Sauvignon Berry Growth and Anthocyanin Profiles

    Directory of Open Access Journals (Sweden)

    Guo Cheng

    2014-09-01

    Full Text Available Climatic conditions and soil type have significant influence on grape ripening and wine quality. The reported study was conducted in two “Cabernet Sauvignon (Vitis vinifera L.V” vineyards located in Xinjiang, a semiarid wine-producing region of China during two vintages (2011 and 2012. The results indicate that soil and climate affected berry growth and anthocyanin profiles. These two localities were within a distance of 5 km from each other and had soils of different physical and chemical composition. For each vineyard, the differences of anthocyanin concentrations, and parameters concerning berry growth and composition between the two years could be explained by different climatic conditions. Soil effect was studied by investigation of differences in berry composition and anthocyanin profiles between the two vineyards in the same year, which could be explained mainly by the different soil properties, vine water and nitrogen status. Specifically, the soils with less water and organic matter produced looser clusters, heavier berry skins and higher TSS, which contributed to the excellent performance of grapes. Compared with 2011, the increases in anthocyanin concentrations for each vineyard in 2012 could be attributed to smaller number of extreme temperature (>35 °C days and rainfall, lower vine water status and N level. The explanation for higher anthocyanin concentrations in grape skins from the soils with less water and organic matter could be the vine status differences, lighter berry weight and heavier skin weight at harvest. In particular, grapes from the soils with less water and organic matter had higher levels of 3′5′-substituded, O-methylated and acylated anthocyanins, which represented a positive characteristic conferring more stable pigmentation to the corresponding wine in the future. The present work clarifies the effects of climate and soil on berry growth and anthocyanin profiles, thus providing guidance for production of

  16. Protective Effect of Anthocyanins Extract from Blueberry on TNBS-Induced IBD Model of Mice

    Directory of Open Access Journals (Sweden)

    Lin-Hua Wu

    2011-01-01

    Full Text Available This study was carried out to evaluate the protective effect of anthocyanins extract of blueberry on trinitrobenzene sulfonic acid (TNBS-induced inflammatory bowel disease (IBD model of mice. The study employed female C57BL/6 mice (n = 50, and colitis was induced by intracolonic injection of 0.5 mg of TNBS dissolved in 50% ethanol–phosphate buffered solution. The mice were divided into five groups (n = 10: vehicle, TNBS control and anthocyanins groups that received different doses of anthocyanins extract (10, 20 and 40 mg kg-1 daily for 6 days. Both increase in body weight and diarrhea symptoms were monitored each day. After 6 days, the animals were killed, and the following parameters were assessed: colon length, morphological score, histological score and biochemical assay (NO, myeloperoxidase (MPO, interleukin (IL-12, IL-10, tumor necrosis factor (TNF-α and interferon (IFN-γ. The results showed that the anthocyanins extract of blueberry rendered strong protection against TNBS-induced colonic damage at a dosage of 40 mg kg-1. When compared with the control, anthocyanins extract significantly prevented loss of body weight and ameliorated the scores of diarrhea, morphology and histology. Treatment with anthocyanins extract restored IL-10 excretion, as well as caused reduction in the levels of NO, MPO, IL-12, TNF-α and IFN-γ. Our research revealed the protective effect of anthocyanins extract from blueberry on TNBS-induced experimental colitis in mice, as well as examined whether high levels of dietary blueberries would lower the risk or have protective effects on human IBD, which may require further investigation.

  17. Estimating contribution of anthocyanin pigments to osmotic adjustment during winter leaf reddening.

    Science.gov (United States)

    Hughes, Nicole M; Carpenter, Kaylyn L; Cannon, Jonathan G

    2013-01-15

    The association between plant water stress and synthesis of red, anthocyanin pigments in leaves has led some plant biologists to propose an osmotic function of leaf reddening. According to this hypothesis, anthocyanins function as a solute in osmotic adjustment (OA), contributing to depression of osmotic potential (Ψ(π)) and maintenance of turgor pressure during drought-stressed conditions. Here we calculate the percent contribution of anthocyanin to leaf Ψ(π) during OA in two angiosperm evergreen species, Galax urceolata and Gaultheria procumbens. Both species exhibit dramatic leaf reddening under high light during winter, concomitant with declines in leaf water potential and accumulation of solutes. Data previously published by the authors on osmotic potential at full turgor (Ψ(π,100)) of G. urceolata and G. procumbens leaves before and after leaf reddening were used to estimate OA. In vivo molar concentrations of anthocyanin, glucose, fructose, and sucrose measured from the same individuals were converted to pressure equivalents using the Ideal Gas Law, and percent contribution to OA was estimated. Estimated mean OA during winter was -0.7MPa for G. urceolata and -0.8MPa for G. procumbens. In vivo concentrations of anthocyanin (3-10mM) were estimated to account for ∼2% of OA during winter, and comprised <0.7% of Ψ(π,100) in both species. Glucose, fructose, and sucrose combined accounted for roughly 50 and 80% of OA for G. urceolata and G. procumbens, respectively, and comprised ∼20% of Ψ(π,100). We observed that a co-occurring, acyanic species (Vinca minor) achieved similar OA without synthesizing anthocyanin. We conclude that anthocyanins represent a measurable, albeit meager, component of OA in red-leafed evergreen species during winter. However, due to their low concentrations, metabolic costliness relative to other osmolytes, and striking red color (unnecessary for an osmotic function), it is unlikely that they are synthesized solely for an

  18. Stabilisation of strawberry (Fragaria x ananassa Duch.) anthocyanins by different pectins.

    Science.gov (United States)

    Buchweitz, M; Speth, M; Kammerer, D R; Carle, R

    2013-12-01

    The objective of the present study was to evaluate the effects of different pectins on strawberry anthocyanins in viscous model solutions at pH 3.0. For this purpose, low esterified amidated, low and high methyl esterified citrus and apple pectins, and a sugar beet pectin (SBP), respectively, were added to strawberry extracts. The latter were predominantly composed of pelargonidin-glycosides, containing either reduced (E-1) or original amounts of non-anthocyanin phenolics (E-2). Model systems were stored for 18 weeks at 20±0.5 °C protected from light, and anthocyanins were quantitated in regular intervals by HPLC-DAD analyses. Half-life (t1/2) and destruction (D) values were calculated based on first-order kinetics. Generally, significant differences in pigment retention could be ascribed to differing pectin sources, while variation in the degree of esterification and amidation, respectively, had negligible effects. Compared to systems without added pectin, apple pectins and SPB enhanced anthocyanin stability moderately, while stabilising effects of citrus pectins were poor or even imperceptible. Generally, the amount of non-anthocyanin phenolics and the addition of citrate did not markedly affect anthocyanin stability. However, pectins had no influence on total phenolic contents (Folin-Ciocalteu assay) and antioxidant capacities (FRAP and TEAC assay) of strawberry phenolics over time. For pelargonidin-3-glucoside and -rutinoside largely consistent stabilities were found in all model systems. In contrast, pelargonidin-3-malonylglucoside was less stable in the blank, and stabilisation by pectins was always negligible. The findings of the present study are contrary to results reported previously for the stabilisation of cyanidin- and delphinidin-glycosides in similar model systems prepared with black currant extracts, indicating a high impact of the number of hydroxyl groups in the anthocyanin B-ring. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Overexpression of CsANR increased flavan-3-ols and decreased anthocyanins in transgenic tobacco.

    Science.gov (United States)

    Kumar, Vinay; Yadav, Sudesh Kumar

    2013-06-01

    Anthocyanins and flavan-3-ols are distributed widely in plants and synthesized by a common biosynthetic pathway. Anthocyanin reductase (ANR) represents branching-point enzyme of this pathway converting anthocyanidins to flavan-3-ols. Since tea contains highest amount of flavonoids, a cDNA encoding anthocyanin reductase from tea (CsANR) was overexpressed in transgenic tobacco to check the influence on anthocyanin and flavan-3-ols. The transgenic tobacco was confirmed by genomic PCR and expression of transgene was analyzed through semiquantitative PCR. Interestingly flowers of transgenic tobacco were light pink/white in color instead of dark pink in wild tobacco, documenting the decrease in anthocyanins content. Upon measurement, flower anthocyanin content was found to be lesser. While flavan-3-ols (epicatechin and epigallocatechin) contents were increased in leaf tissue of transgenic lines. The expressions of other endogenous flavonoid biosynthetic pathway genes in different floral parts (sepal, petal, stamen, and carpel) of CsANR overexpressing tobacco as well as wild tobacco were analyzed. The transcript levels of PAL and CHI genes were downregulated, while transcript levels of F3H, FLS, CHS, ANR1, and ANR2 genes were upregulated in all floral parts of CsANR transgenic plants compared to wild tobacco. The expressions of DFR and ANS genes were also spatially modulated in different floral parts due to overexpression of CsANR. Thus, CsANR overexpression increased flavan-3-ols and decreased anthocyanin content by modulating the expressions of various flavonoid biosynthetic pathway genes in flower of tobacco. These changes might be responsible for the observed pollen tube in the pollens of CsANR overexpressing transgenic tobacco when they were still in the anther before pollination.

  20. Cloning and characterization of a potato StAN11 gene involved in anthocyanin biosynthesis regulation.

    Science.gov (United States)

    Li, Wang; Wang, Bing; Wang, Man; Chen, Min; Yin, Jing-Ming; Kaleri, Ghullam Murtaza; Zhang, Rui-Jie; Zuo, Tie-Niu; You, Xiong; Yang, Qing

    2014-04-01

    Anthocyanins are a class of products of plant secondary metabolism and are responsible for tubers color in potato. The biosynthesis of anthocyanins is a complex biological process, in which multiple genes are involved including structural genes and regulatory genes. In this study, StAN11, a WD40-repeat gene, was cloned from potato cultivar Chieftain (Solanum tuberosum L.). StAN11 (HQ599506) contained no intron and its open reading frame (ORF) was 1,029 bp long, encoding a putative protein of 342 amino acids. In order to verify its role in anthocyanin biosynthesis, StAN11 was inserted behind the CaMV-35S promoter of pCMBIA1304 and the recombination vector was introduced into the potato cultivar Désirée plants by Agrobacterium-mediated transformation. The color of transgenic tuber skin was significantly deepened, compared to the wild-type control, which was highly consistent with the accumulation of anthocyanin and expression of StAN11 in transgenic lines tuber skin. Further analysis on the expression of Flavonone-3-hydroxylase (F3H), Dihydroflavonol reductase (DFR), Anthocyanidin synthase (ANS), and Flavonoid 3-O-glucosyl transferase (3GT) in transgenic plants revealed that only DFR was upregulated. This result suggested that StAN11 regulated anthocyanin biosynthesis in potato by controlling DFR expression and accumulation of anthocyanin could be increased through overexpression of StAN11 in the tubers with the genetic background of anthocyanin biosynthesis. © 2013 Institute of Botany, Chinese Academy of Sciences.

  1. Dietary Anthocyanins as Nutritional Therapy for Nonalcoholic Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    Luca Valenti

    2013-01-01

    Full Text Available Nonalcoholic fatty liver disease (NAFLD, defined by excessive lipid accumulation in the liver, is the hepatic manifestation of insulin resistance and the metabolic syndrome. Due to the epidemics of obesity, NAFLD is rapidly becoming the leading cause of altered liver enzymes in Western countries. NAFLD encompasses a wide spectrum of liver disease ranging from simple uncomplicated steatosis, to steatohepatitis, cirrhosis, and hepatocellular carcinoma. Diet may affect the development of NAFLD either by increasing risk or by providing protective factors. Therefore, it is important to investigate the role of foods and/or food bioactives on the metabolic processes involved in steatohepatitis for preventive strategies. It has been reported that anthocyanins (ACNs decrease hepatic lipid accumulation and may counteract oxidative stress and hepatic inflammation, but their impact on NAFLD has yet to be fully determined. ACNs are water-soluble bioactive compounds of the polyphenol class present in many vegetable products. Here, we summarize the evidence evaluating the mechanisms of action of ACNs on hepatic lipid metabolism in different experimental setting: in vitro, in vivo, and in human trials. Finally, a working model depicting the possible mechanisms underpinning the beneficial effects of ACNs in NAFLD is proposed, based on the available literature.

  2. Foliar-applied ethephon enhances the content of anthocyanin of black carrot roots (Daucus carota ssp. sativus var. atrorubens Alef.).

    Science.gov (United States)

    Barba-Espín, Gregorio; Glied, Stephan; Crocoll, Christoph; Dzhanfezova, Tsaneta; Joernsgaard, Bjarne; Okkels, Finn; Lütken, Henrik; Müller, Renate

    2017-04-04

    Black carrots (Daucus carota ssp. sativus var. atrorubens Alef.) constitute a valuable source of anthocyanins, which are used as natural red, blue and purple food colourants. Anthocyanins and phenolic compounds are specialised metabolites, accumulation of which often requires elicitors, which act as molecular signals in plant stress responses. In the present study, ethephon, an ethylene-generating compound was explored as enhancer of anthocyanin and phenolic contents during growth of 'Deep Purple' black carrots. The effects of ethephon on several parameters were investigated, and the expression of biosynthetic anthocyanin genes was studied during growth and anthocyanin accumulation. Roots of ethephon-treated carrot plants exhibited an increase in anthocyanin content of approximately 25%, with values ranging from 2.25 to 3.10 mg g -1 fresh weight, compared with values ranging from 1.50 to 1.90 mg g -1 fresh weight in untreated roots. The most rapid accumulation rate for anthocyanins, phenolic compounds, soluble solids and dry matter was observed between 10 and 13 weeks after sowing in both untreated and ethephon-treated carrots. The differences in anthocyanin contents between untreated and treated carrots increased for several weeks after the ethephon treatment was terminated. Five cyanidin-based anthocyanin forms were identified, with variable relative abundance values detected during root growth. Overall, the expression of the anthocyanin biosynthetic genes analysed (PAL1, PAL3, F3H1, DFR1, LDOX2) increased in response to ethephon treatment, as did the expression of the MYB1 transcription factor, which is associated with activation of the phenylpropanoid pathway under stress conditions. In addition, a correlation was proposed between ethylene and sugar contents and the induction of anthocyanin synthesis. This study presents a novel method for enhancing anthocyanin content in black carrots. This finding is of economic importance as increased pigment

  3. Developments on RICH detectors

    International Nuclear Information System (INIS)

    Besson, P.; Bourgeois, P.

    1996-01-01

    The RICH (ring imaging Cherenkov) detector which is dedicated to Cherenkov radiation detection is described. An improvement made by replacing photo sensible vapor with solid photocathode is studied. A RICH detector prototype with a CsI photocathode has been built in Saclay and used with Saturne. The first results are presented. (A.C.)

  4. Kings Today, Rich Tomorrow

    DEFF Research Database (Denmark)

    Fattoum, Asma

    2013-01-01

    This study investigates the King vs. Rich dilemma that founder-CEOs face at IPO. When undertaking IPO, founders face two options. They can either get rich, but then run the risk of losing the control over their firms; or they can remain kings by introducing defensive mechanisms, but this is likel...

  5. The Arabidopsis transcription factor ANAC032 represses anthocyanin biosynthesis in response to high sucrose and oxidative and abiotic stresses

    Directory of Open Access Journals (Sweden)

    Kashif Mahmood

    2016-10-01

    Full Text Available Production of anthocyanins is one of the adaptive responses employed by plants during stress conditions. During stress, anthocyanin biosynthesis is mainly regulated at the transcriptional level via a complex interplay between activators and repressors of anthocyanin biosynthesis genes. In this study, we investigated the role of a NAC transcription factor, ANAC032, in the regulation of anthocyanin biosynthesis during stress conditions. ANAC032 expression was found to be induced by exogenous sucrose as well as high light stress. Using biochemical, molecular and transgenic approaches, we show that ANAC032 represses anthocyanin biosynthesis in response to sucrose treatment, high light and oxidative stress. ANAC032 was found to negatively affect anthocyanin accumulation and the expression of anthocyanin biosynthesis (DFR, ANS/LDOX and positive regulatory (TT8 genes as demonstrated in overexpression line (35S:ANAC032 compared to wild-type under high light stress. The chimeric repressor line (35S:ANAC032-SRDX exhibited the opposite expression patterns for these genes. The negative impact of ANAC032 on the expression of DFR, ANS/LDOX and TT8 was found to be correlated with the altered expression of negative regulators of anthocyanin biosynthesis, AtMYBL2 and SPL9. In addition to this, ANAC032 also repressed the MeJA- and ABA-induced anthocyanin biosynthesis. As a result, transgenic lines overexpressing ANAC032 (35S:ANAC032 produced drastically reduced levels of anthocyanin pigment compared to wild-type when challenged with salinity stress. However, transgenic chimeric repressor lines (35S:ANAC032-SRDX exhibited the opposite phenotype. Our results suggest that ANAC032 functions as a negative regulator of anthocyanin biosynthesis in Arabidopsis thaliana during stress conditions.

  6. The Arabidopsis Transcription Factor ANAC032 Represses Anthocyanin Biosynthesis in Response to High Sucrose and Oxidative and Abiotic Stresses.

    Science.gov (United States)

    Mahmood, Kashif; Xu, Zhenhua; El-Kereamy, Ashraf; Casaretto, José A; Rothstein, Steven J

    2016-01-01

    Production of anthocyanins is one of the adaptive responses employed by plants during stress conditions. During stress, anthocyanin biosynthesis is mainly regulated at the transcriptional level via a complex interplay between activators and repressors of anthocyanin biosynthesis genes. In this study, we investigated the role of a NAC transcription factor, ANAC032, in the regulation of anthocyanin biosynthesis during stress conditions. ANAC032 expression was found to be induced by exogenous sucrose as well as high light (HL) stress. Using biochemical, molecular and transgenic approaches, we show that ANAC032 represses anthocyanin biosynthesis in response to sucrose treatment, HL and oxidative stress. ANAC032 was found to negatively affect anthocyanin accumulation and the expression of anthocyanin biosynthesis ( DFR, ANS/LDOX) and positive regulatory ( TT8) genes as demonstrated in overexpression line (35S:ANAC032) compared to wild-type under HL stress. The chimeric repressor line (35S:ANAC032-SRDX) exhibited the opposite expression patterns for these genes. The negative impact of ANAC032 on the expression of DFR, ANS/LDOX and TT8 was found to be correlated with the altered expression of negative regulators of anthocyanin biosynthesis, AtMYBL2 and SPL9 . In addition to this, ANAC032 also repressed the MeJA- and ABA-induced anthocyanin biosynthesis. As a result, transgenic lines overexpressing ANAC032 (35S:ANAC032) produced drastically reduced levels of anthocyanin pigment compared to wild-type when challenged with salinity stress. However, transgenic chimeric repressor lines (35S:ANAC032-SRDX) exhibited the opposite phenotype. Our results suggest that ANAC032 functions as a negative regulator of anthocyanin biosynthesis in Arabidopsis thaliana during stress conditions.

  7. Transcriptomic analyses reveal species-specific light-induced anthocyanin biosynthesis in chrysanthemum.

    Science.gov (United States)

    Hong, Yan; Tang, Xingjiao; Huang, He; Zhang, Yuan; Dai, Silan

    2015-03-17

    The flower colour of agricultural products is very important for their commercial value, which is mainly attributed to the accumulation of anthocyanins. Light is one of the key environmental factors that affect the anthocyanin biosynthesis. However, the deep molecular mechanism remains elusive, and many problems regarding the phenotypic change and the corresponding gene regulation are still unclear. In the present study, Chrysanthemum × morifolium 'Purple Reagan', a light-responding pigmentation cultivar, was selected to investigate the mechanism of light-induced anthocyanin biosynthesis using transcriptomic analyses. Only cyanidin derivatives were identified based on the analyses of the pigmentation in ray florets. Shading experiments revealed that the capitulum was the key organ and that its bud stage was the key phase responding to light. These results were used to design five libraries for transcriptomic analyses, including three capitulum developmental stages and two light conditions. RNA sequences were de novo assembled into 103,517 unigenes, of which 60,712 were annotated against four public protein databases. As many as 2,135 unigenes were differentially expressed between the light and dark libraries with 923 up-regulated and 1,212 down-regulated unigenes in response to shading. Next, interactive pathway analysis showed that the anthocyanin biosynthetic pathway was the only complete metabolic pathway both modulated in response to light and related to capitulum development. Following the shading treatment, nearly all structural genes involved in the anthocyanin biosynthetic pathway were down-regulated. Moreover, three CmMYB genes and one CmbHLH gene were identified as key transcription factors that might participate in the regulation of anthocyanin biosynthesis under light conditions based on clustering analysis and validation by RT-qPCR. Finally, a light-induced anthocyanin biosynthesis pathway in chrysanthemums was inferred. The pigmentation of the ray

  8. Thermal degradation of anthocyanins from purple potato (cv. Purple Majesty) and impact on antioxidant capacity.

    Science.gov (United States)

    Nayak, Balunkeswar; Berrios, Jose De J; Powers, Joseph R; Tang, Juming

    2011-10-26

    Degradation parameters of purified anthocyanins from purple-fleshed potato (cv. Purple Majesty) heated at high temperatures (100-150 °C) were determined. Purified anthocyanins, prepared by removing salts, sugars, and colorless nonanthocyanin phenolics from the crude extract, were monitored and quantified using HPLC and spectrophotometry for heat-induced degradation products. Separation of colorless phenolics from the anthocyanins was confirmed using HPLC at two wavelengths, 280 and 520 nm. The degradation kinetics of purified anthocyanins followed a first-order reaction with reaction rate constants (k values) of 0.0262-0.2855 min(-1), an activation energy of 72.89 kJ/mol, thermal death times (D values) of 8.06-8789 min, and a z value of 47.84 °C over the temperature range of 100-150 °C. The enthalpy and entropy of activation were 59.97 kJ/mol and -116.46 J/mol·K, respectively. The antioxidant capacity in the purified anthocyanins, measured by DPPH and ABTS assays, was increased after the thermal treatment, indicating antioxidant activities of degradation products in the samples.

  9. Encapsulating anthocyanins from Hibiscus sabdariffa L. calyces by ionic gelation: Pigment stability during storage of microparticles.

    Science.gov (United States)

    de Moura, Sílvia C S R; Berling, Carolina L; Germer, Sílvia P M; Alvim, Izabela D; Hubinger, Míriam D

    2018-02-15

    Hibiscus extract (HE) has a strong antioxidant activity and high anthocyanin content; it can be used as a natural pigment, also adding potential health benefits. The objective of this work was the microencapsulation of HE anthocyanin by ionic gelation (IG) using two techniques: dripping-extrusion and atomization, both by means of a double emulsion (HE/rapseed oil/pectin) and a cross-linked solution (CaCl 2 ). Particles (77-83% moisture content) were conditioned in acidified solution at 5, 15 and 25°C, absence of light, and evaluated for anthocyanins and color for 50-days. The median diameter (D 50 ) of the particles ranged from 78 to 1100μm and encapsulation efficiency ranged from 67.9 to 93.9%. The encapsulation caused higher temperature stability compared with the free extract. The half-life (t 1/2 ) values of the particles ranged from 7 (25°C) to 180days (5°C) for anthocyanins and from 25 (25°C) to 462days (5°C) for Chroma value. The IG increased the stability of HE anthocyanin. Both the dripping-extrusion and the atomization have shown to be feasible techniques. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Anthocyanins degradation during storage of Hibiscus sabdariffa extract and evolution of its degradation products.

    Science.gov (United States)

    Sinela, André; Rawat, Nadirah; Mertz, Christian; Achir, Nawel; Fulcrand, Hélène; Dornier, Manuel

    2017-01-01

    Degradation parameters of two main anthocyanins from roselle extract (Hibiscus sabdariffa L.) stored at different temperatures (4-37°C) over 60days were determined. Anthocyanins and some of their degradation products were monitored and quantified using HPLC-MS and DAD. Degradation of anthocyanins followed first-order kinetics and reaction rate constants (k values), which were obtained by non-linear regression, showed that the degradation rate of delphinidin 3-O-sambubioside was higher than that of cyanidin 3-O-sambubioside with k values of 9.2·10(-7)s(-1) and 8.4·10(-7)s(-1) at 37°C respectively. The temperature dependence of the rate of anthocyanin degradation was modeled by the Arrhenius equation. Degradation of delphinidin 3-O-sambubioside (Ea=90kJmol(-1)) tended to be significantly more sensitive to an increase in temperature than cyanidin 3-O-sambubioside (Ea=80kJmol(-1)). Degradation of these anthocyanins formed scission products (gallic and protocatechuic acids respectively) and was accompanied by an increase in polymeric color index. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Investigation of optical properties of anthocyanin doped into sol-gel based matrix

    Science.gov (United States)

    Hashim, Hasrina; Abdul Aziz, Nik Mohd Azmi Nik; Isnin, Aishah

    2012-06-01

    Anthocyanin dye was extracted from petal of Hibiscus rosasinensis (Bunga Raya) and doped into sol-gel based matrix to investigate an effect of pH change on its optical properties. Sol-gel matrix based on Vinyl triethoxysilene (VTES) as a precursor was prepared through Sol-gel process at pH 7. The sol was doped with 0.1% of Anthocyanin and the same amount of dye was also dissolved in ethanol as a comparative sample. Hydrochloric Acid, HCl and Tetramethylammonium Hydroxide, TMAH were used to change the pH value by adding them at various concentrations into each sample. The emission spectra and chemical structures of the samples were measured by Spectrofluorometer and Fourier Transform Infrared (FTIR) respectively. When excited at 410 nm, two emission peaks at about 492 and 574 nm were observed for Anthocyanin in acidic environment both in ethanol and VTES sol. In base environment however, only Anthocyanin dissolved in ethanol produced emission peak with a single peak at about 539 nm. The sensitivity of Anthocyanin dye toward pH changes in VTES open a possibility to use it as sensing element in which sol-gel based matrix are known to have higher mechanical strength and thermal stability.

  12. The effect of shade on chlorophyll and anthocyanin content of upland red rice

    Science.gov (United States)

    Muhidin; Syam’un, E.; Kaimuddin; Musa, Y.; Sadimantara, G. R.; Usman; Leomo, S.; Rakian, T. C.

    2018-02-01

    Upland red rice (Oryza sativa) is a staple food and contains anthocyanin, which can act as antioxidants, plays an important role both for the plant itself and for human health. Levels of antioxidants in rice can be affected by the availability of light. The results showed that the difference of shade, cultivar, and interaction both significantly affect the content of chlorophyll a, chlorophyll b and total chlorophyll. The results also showed that shade could increase chlorophyll in all cultivars tested. The highest levels of chlorophyll a were present in the moderate shade level (n2), then decreased at the shelter level (n3) and increased again at high levels (n4). While on chlorophyll content b, it appears that shade increased chlorophyll b in all cultivars tested and this increase was linear to the increase of shade. The shade treatment may increase the anthocyanin content and the increase depending on the type of cultivar. Increased levels of anthocyanin highest due to shade occurred on Jangkobembe cultivar. The original level of anthocyanin on Jangkobembe cultivar averaged 0.096 mg g-1 increased to 2.487 mg g-1 or increased 26 fold. It is concluded that the shade had a significant effect on the chlorophyll and anthocyanin content.

  13. Phytoestrogenic Activity of Blackcurrant Anthocyanins Is Partially Mediated through Estrogen Receptor Beta

    Directory of Open Access Journals (Sweden)

    Naoki Nanashima

    2017-12-01

    Full Text Available Phytoestrogens are plant compounds with estrogenic effects found in many foods. We have previously reported phytoestrogen activity of blackcurrant anthocyanins (cyanidin-3-glucoside, cyanidin-3-rutinoside, delphinidin-3-glucoside, and delphinidin-3-rutinoside via the estrogen receptor (ERα. In this study, we investigated the participation of ERβ in the phytoestrogen activity of these anthocyanins. Blackcurrant anthocyanin induced ERβ-mediated transcriptional activity, and the IC50 of ERβ was lower than that of ERα, indicating that blackcurrant anthocyanins have a higher binding affinity to ERβ. In silico docking analysis of cyanidin and delphinidin, the core portions of the compound that fits within the ligand-binding pocket of ERβ, showed that similarly to 17β-estradiol, hydrogen bonds formed with the ERβ residues Glu305, Arg346, and His475. No fitting placement of glucoside or rutinoside sugar chains within the ligand-binding pocket of ERβ-estradiol complex was detected. However, as the conformation of helices 3 and 12 in ERβ varies depending on the ligand, we suggest that the surrounding structure, including these helices, adopts a conformation capable of accommodating glucoside or rutinoside. Comparison of ERα and ERβ docking structures revealed that the selectivity for ERβ is higher than that for ERα, similar to genistein. These results show that blackcurrant anthocyanins exert phytoestrogen activity via ERβ.

  14. Mulberry anthocyanins improves thyroid cancer progression mainly by inducing apoptosis and autophagy cell death

    Directory of Open Access Journals (Sweden)

    Hou-Long Long

    2018-05-01

    Full Text Available Dietary anthocyanin compounds have multiple biological effects, including antioxidant, anti-inflammatory, and anti-atherosclerotic characteristics. The present study evaluated the anti-tumor capacity of mulberry anthocyanins (MA in thyroid cancer cells. Our data showed that MA suppressed SW1736 and HTh-7 cell proliferation in a time- and dose-dependent manner. Meanwhile, flow cytometry results indicated that MA significantly increased SW1736 and HTh-7 cell apoptosis. We additionally observed that SW1736 and HTh-7 cell autophagy was markedly enhanced after MA treatment. Importantly, anthocyanin-induced cell death was largely abolished by 3-methyladenine (3-MA or chloroquine diphosphate salt (CQ treatment, suggesting that MA-induced SW1736 and HTh-7 cell death was partially dependent on autophagy. In addition, activation of protein kinase B (Akt, mammalian target of rapamycin (mTOR, and ribosomal protein S6 (S6 were significantly suppressed by anthocyanin exposure. In summary, MA may serve as an adjunctive therapy for thyroid cancer patients through induction of apoptosis and autophagy-dependent cell death. Keywords: Mulberry anthocyanins, Thyroid cancer, Apoptosis, Autophagic death

  15. Bioavailability and Biokinetics of Anthocyanins From Red Grape Juice and Red Wine

    Directory of Open Access Journals (Sweden)

    Roland Bitsch

    2004-01-01

    Full Text Available In a comparative study, 9 healthy volunteers ingested a single oral dose of 400 mL red grape juice or red wine with dose-adjusted anthocyanin content (283.5 mg or 279.6 mg, resp. in crossover. The content of anthocyanin glucosides was detected in plasma and urinary excretion. Additionally, the plasmatic antioxidant activity was assessed after intake. Based on the plasma content, biokinetic criteria of the single anthocyanins were calculated, such as AUC, cmax, tmax, and the elimination rate t1/2. The urinary excretion of total anthocyanins differed significantly and amounted to 0.18% (red wine and 0.23% (red grape juice of the administered dose. Additionally, the plasmatic antioxidant activity increased to higher levels after juice ingestion compared to wine. The intestinal absorption of the anthocyanins of red grape juice seemed to be improved compared to red wine, suggesting a possible synergistic effect of the glucose content of the juice. The improved absorption resulted in an enhanced plasmatic bioactivity.

  16. Free Radical Scavenging Activity and Anthocyanin Profile of Cabernet Sauvignon Wines from the Balkan Region

    Directory of Open Access Journals (Sweden)

    Blaga Radovanović

    2010-06-01

    Full Text Available The present study is focused on anthocyanin derivatives characterizing the antioxidant activity of Cabernet Sauvignon wines produced from different vineyard regions in the Balkans. These bioactive compounds were quantified with a high performance liquid chromatography (HPLC-diode array detection (DAD method. The antiradical activity was estimated by the ability of the wine to scavenge the stable 2,2`-diphenyl-1-picrylhydrazyl free radical (DPPH·. The results show that the total anthocyanin content varied from 205.88 to 1940.28 mg/L, depending on agroclimatic factors and the enological practices of the corresponding vineyard region. The most prominent antocyanin in all investigated Cabernet Sauvignon wines was malvidin-3-O-monoglucoside, which accounted for 50.57% of total content, followed by its acetyl derivatives, 15.45%, and p-coumaryl derivatives 5.66%. The relationship between the anthocyanin derivatives and free radical scavenging activity is discussed. A high correlation between total anthocyanin content and DPPH· scavenging ability of tested wines was confirmed (r2 = 0.9619. The significant correlations were obtained between antiradical activity and the sum of 3-monoglucoside (r2 = 0.95594, the sum of 3-acetyl-3-glucoside (r2 = 0.9728 and the sum of p-coumaryl-3-glucoside (r2 = 0.8873 of wine samples. It can be concluded that, the anthocyanin composition can be used as biochemical marker for the authenticity of red grape cultivar and their corresponding single-cultivar wine.

  17. Characterization of anthocyanins and pyranoanthocyanins from blood orange [Citrus sinensis (L.) Osbeck] juice.

    Science.gov (United States)

    Hillebrand, Silke; Schwarz, Michael; Winterhalter, Peter

    2004-12-01

    Anthocyanins from blood orange [Citrus sinensis (L.) Osbeck] juices were isolated and purified by means of high-speed countercurrent chromatography and preparative high-performance liquid chromatography. Structures of the pigments were then elucidated by electrospray ionization multiple mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy. The major anthocyanins of the juice were characterized as cyanidin 3-glucoside and cyanidin 3-(6"-malonylglucoside). Furthermore, six minor anthocyanins were detected and identified as cyanidin 3,5-diglucoside, delphinidin 3-glucoside, cyanidin 3-sophoroside, delphinidin 3-(6"-malonylglucoside), peonidin 3-(6"-malonylglucoside), and cyanidin 3-(6"-dioxalylglucoside). The occurrence of the latter compound in blood oranges is reported here for the first time, together with full NMR spectroscopic data. Further investigations revealed the presence of four anthocyanin-derived pigments, which are formed through a direct reaction between anthocyanins and hydroxycinnamic acids during prolonged storage of the juice. These novel pyranoanthocyanins were identified as the 4-vinylphenol, 4-vinylcatechol, 4-vinylguaiacol, and 4-vinylsyringol adducts of cyanidin 3-glucoside through comparison of their mass spectrometric and chromatographic properties with those of synthesized reference compounds.

  18. Arabidopsis CAPRICE (MYB and GLABRA3 (bHLH control tomato (Solanum lycopersicum anthocyanin biosynthesis.

    Directory of Open Access Journals (Sweden)

    Takuji Wada

    Full Text Available In Arabidopsis thaliana the MYB transcription factor CAPRICE (CPC and the bHLH transcription factor GLABRA3 (GL3 are central regulators of root-hair differentiation and trichome initiation. By transforming the orthologous tomato genes SlTRY (CPC and SlGL3 (GL3 into Arabidopsis, we demonstrated that these genes influence epidermal cell differentiation in Arabidopsis, suggesting that tomato and Arabidopsis partially use similar transcription factors for epidermal cell differentiation. CPC and GL3 are also known to be involved in anthocyanin biosynthesis. After transformation into tomato, 35S::CPC inhibited anthocyanin accumulation, whereas GL3::GL3 enhanced anthocyanin accumulation. Real-time reverse transcription PCR analyses showed that the expression of anthocyanin biosynthetic genes including Phe-ammonia lyase (PAL, the flavonoid pathway genes chalcone synthase (CHS, dihydroflavonol reductase (DFR, and anthocyanidin synthase (ANS were repressed in 35S::CPC tomato. In contrast, the expression levels of PAL, CHS, DFR, and ANS were significantly higher in GL3::GL3 tomato compared with control plants. These results suggest that CPC and GL3 also influence anthocyanin pigment synthesis in tomato.

  19. Biotransformation of anthocyanins from two purple-fleshed sweet potato accessions in a dynamic gastrointestinal system.

    Science.gov (United States)

    Kubow, Stan; Iskandar, Michèle M; Sabally, Kebba; Azadi, Behnam; Sadeghi Ekbatan, Shima; Kumarathasan, Premkumari; Das, Dharani Dhar; Prakash, Satya; Burgos, Gabriela; Zum Felde, Thomas

    2016-02-01

    Cooked, milled purple-fleshed sweet potato (PFSP) accessions, PM09.812 and PM09.960, underwent digestion in a dynamic human gastrointestinal (GI) model that simulates gut digestive conditions to study the bioaccessibility and biotransformation of anthocyanins. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry showed accession-dependent variations in anthocyanin release and degradation. After 24h, more anthocyanin species were detected in the small intestinal vessel relative to other vessels for accession PM09.960 whereas more species appeared in the ascending colonic vessel for accession PM09.812. The ferric reducing antioxidant power was increased in the small intestinal vessel for PM09.960 and in the ascending colonic vessel for accession PM09.812, corresponding to the appearance of a majority of anthocyanins for each accession. These results show that intestinal and colonic microbial digestion of PFSP leads to an accession-dependent pattern for anthocyanin bioaccessibility and degradation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Generation of blue chrysanthemums by anthocyanin B-ring hydroxylation and glucosylation and its coloration mechanism.

    Science.gov (United States)

    Noda, Naonobu; Yoshioka, Satoshi; Kishimoto, Sanae; Nakayama, Masayoshi; Douzono, Mitsuru; Tanaka, Yoshikazu; Aida, Ryutaro

    2017-07-01

    Various colored cultivars of ornamental flowers have been bred by hybridization and mutation breeding; however, the generation of blue flowers for major cut flower plants, such as roses, chrysanthemums, and carnations, has not been achieved by conventional breeding or genetic engineering. Most blue-hued flowers contain delphinidin-based anthocyanins; therefore, delphinidin-producing carnation, rose, and chrysanthemum flowers have been generated by overexpression of the gene encoding flavonoid 3',5'-hydroxylase (F3'5'H), the key enzyme for delphinidin biosynthesis. Even so, the flowers are purple/violet rather than blue. To generate true blue flowers, blue pigments, such as polyacylated anthocyanins and metal complexes, must be introduced by metabolic engineering; however, introducing and controlling multiple transgenes in plants are complicated processes. We succeeded in generating blue chrysanthemum flowers by introduction of butterfly pea UDP (uridine diphosphate)-glucose:anthocyanin 3',5'- O -glucosyltransferase gene, in addition to the expression of the Canterbury bells F3'5'H . Newly synthesized 3',5'-diglucosylated delphinidin-based anthocyanins exhibited a violet color under the weakly acidic pH conditions of flower petal juice and showed a blue color only through intermolecular association, termed "copigmentation," with flavone glucosides in planta. Thus, we achieved the development of blue color by a two-step modification of the anthocyanin structure. This simple method is a promising approach to generate blue flowers in various ornamental plants by metabolic engineering.

  1. AgFNS overexpression increase apigenin and decrease anthocyanins in petioles of transgenic celery.

    Science.gov (United States)

    Tan, Guo-Fei; Ma, Jing; Zhang, Xin-Yue; Xu, Zhi-Sheng; Xiong, Ai-Sheng

    2017-10-01

    Apigenin and anthocyanin biosyntheses share common precursors in plants. Flavone synthase (FNS) converts naringenin into apigenin in higher plants. Celery is an important edible and medical vegetable crop that contains apigenin in its tissues. However, the effect of high AgFNS gene expression on the apigenin and anthocyanins contents of purple celery remains to be elucidated. In this study, the AgFNS gene was cloned from purple celery ('Nanxuan liuhe purple celery') and overexpressed in this purple celery to determine its influence on anthocyanins and apigenin contents. Results showed that the AgFNS gene was 1068bp, which encodes 355 amino acid residues. Evolution analysis showed that the AgFNS protein belongs to the FSN I type. In AgFNS transgenic celery, the anthocyanins content in petioles was lower than that wild-type celery plants. Apigenin content increased in the petioles of AgFNS transgenic celery. The transcript levels of the AgPAL, AgC4H, AgCHS, and AgCHI genes were up-regulated, whereas those of the AgF3H, AgF3'H, AgDFR, AgANS, and Ag3GT genes were down-regulated in the petioles of AgFNS transgenic plants compared with wild-type celery plants. This work provides basic knowledge about the function of the AgFNS gene in the anthocyanin and apigenin biosyntheses of celery. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. McMYB12 Transcription Factors Co-regulate Proanthocyanidin and Anthocyanin Biosynthesis in Malus Crabapple.

    Science.gov (United States)

    Tian, Ji; Zhang, Jie; Han, Zhen-Yun; Song, Ting-Ting; Li, Jin-Yan; Wang, Ya-Ru; Yao, Yun-Cong

    2017-03-03

    The flavonoid compounds, proanthocyanidins (PAs), protect plants from biotic stresses, contribute to the taste of many fruits, and are beneficial to human health in the form of dietary antioxidants. In this study, we functionally characterized two Malus crabapple R2R3-MYB transcription factors, McMYB12a and McMYB12b, which co-regulate PAs and anthocyanin biosynthesis. McMYB12a was shown to be mainly responsible for upregulating the expression of anthocyanin biosynthetic genes by binding to their promoters, but to be only partially responsible for regulating PAs biosynthetic genes. In contrast, McMYB12b showed preferential binding to the promoters of PAs biosynthetic genes. Overexpression of McMYB12a and McMYB12b in tobacco (Nicotiana tabacum) altered the expression of flavonoid biosynthetic genes and promoted the accumulation of PAs and anthocyanins in tobacco petals. Conversely, transient silencing their expression in crabapple plants, using a conserved gene region, resulted in reduced PAs and anthocyanin production a green leaf phenotype. Meanwhile, transient overexpression of the two genes and silenced McMYB12s in apple (Malus domestica) fruit had a similar effect as overexpression in tobacco and silenced in crabapple. This study reveals a new mechanism for the coordinated regulation of PAs and anthocyanin accumulation in crabapple leaves, which depends on an auto-regulatory balance involving McMYB12a and McMYB12b expression.

  3. Principal components of phenolics to characterize red Vinho Verde grapes: anthocyanins or non-coloured compounds?

    Science.gov (United States)

    Dopico-García, M S; Fique, A; Guerra, L; Afonso, J M; Pereira, O; Valentão, P; Andrade, P B; Seabra, R M

    2008-06-15

    Phenolic profile of 10 different varieties of red "Vinho Verde" grapes (Azal Tinto, Borraçal, Brancelho, Doçal, Espadeiro, Padeiro de Basto, Pedral, Rabo de ovelha, Verdelho and Vinhão), from Minho (Portugal) were studied. Nine Flavonols, four phenolic acids, three flavan-3-ols, one stilben and eight anthocyanins were determined. Malvidin-3-O-glucoside was the most abundant anthocyanin while the main non-coloured compound was much more heterogeneous: catechin, epicatechin, myricetin-3-O-glucoside, quercetin-3-O-glucoside or syringetin-3-O-glucoside. Anthocyanin contents ranged from 42 to 97%. Principal component analysis (PCA) was applied to analyse the date and study the relations between the samples and their phenolic profiles. Anthocyanin profile proved to be a good marker to characterize the varieties even considering different origin and harvest. "Vinhão" grapes showed anthocyanins levels until twenty four times higher than the rest of the samples, with 97% of these compounds.

  4. Analytical standards production for the analysis of pomegranate anthocyanins by HPLC

    Directory of Open Access Journals (Sweden)

    Manuela Cristina Pessanha de Araújo Santiago

    2014-03-01

    Full Text Available Pomegranate (Punica granatum L. is a fruit with a long medicinal history, especially due to its phenolic compounds content, such as the anthocyanins, which are reported as one of the most important natural antioxidants. The analysis of the anthocyanins by high performance liquid chromatography (HPLC can be considered as an important tool to evaluate the quality of pomegranate juice. For research laboratories the major challenge in using HPLC for quantitative analyses is the acquisition of high purity analytical standards, since these are expensive and in some cases not even commercially available. The aim of this study was to obtain analytical standards for the qualitative and quantitative analysis of the anthocyanins from pomegranate. Five vegetable matrices (pomegranate flower, jambolan, jabuticaba, blackberry and strawberry fruits were used to isolate each of the six anthocyanins present in pomegranate fruit, using an analytical HPLC scale with non-destructive detection, it being possible to subsequently use them as analytical standards. Furthermore, their identities were confirmed by high resolution mass spectrometry. The proposed procedure showed that it is possible to obtain analytical standards of anthocyanins with a high purity grade (98.0 to 99.9% from natural sources, which was proved to be an economic strategy for the production of standards by laboratories according to their research requirements.

  5. LcMYB1 Is a Key Determinant of Differential Anthocyanin Accumulation among Genotypes, Tissues, Developmental Phases and ABA and Light Stimuli in Litchi chinensis

    OpenAIRE

    Lai, Biao; Li, Xiao-Jing; Hu, Bing; Qin, Yong-Hua; Huang, Xu-Ming; Wang, Hui-Cong; Hu, Gui-Bing

    2014-01-01

    The red coloration of litchi fruit depends on the accumulation of anthocyanins. The anthocyanins level in litchi fruit varies widely among cultivars, developmental stages and environmental stimuli. Previous studies on various plant species demonstrate that anthocyanin biosynthesis is controlled at the transcriptional level. Here, we describe a litchi R2R3-MYB transcription factor gene, LcMYB1, which demonstrates a similar sequence as other known anthocyanin regulators. The transcription level...

  6. Effects of polyphenol-rich chokeberry juice on antioxidant/pro-oxidant status in healthy subjects.

    Science.gov (United States)

    Kardum, Nevena; Konić-Ristić, Aleksandra; Savikin, Katarina; Spasić, Slavica; Stefanović, Aleksandra; Ivanišević, Jasmina; Miljković, Milica

    2014-08-01

    Berry fruits are a rich source of polyphenols, especially anthocyanins: well-known potent anti-oxidant phytochemicals. The purpose of this study was to evaluate beneficial effects of long-term consumption of polyphenol-rich organic chokeberry juice on different markers of antioxidant/pro-oxidant status in healthy female volunteers. Twenty-nine women, aged 25-49, were included in the study. Serological markers of oxidative stress and antioxidant defence, blood pressure, routine biochemical, and anthropometric parameters were analyzed at baseline and after twelve weeks of regular chokeberry juice consumption. Significant decrease in thiobarbituric acid-reactive substances level (TBARS; Ppro-oxidant-antioxidant balance (PAB; Ppro-oxidant status biomarkers observed in healthy subjects indicates putative prophylactic effects of polyphenol-rich chokeberry juice and supports its importance as part of an optimal diet.

  7. Determination of the activity signature of key carbohydrate metabolism enzymes in phenolic-rich grapevine tissues

    DEFF Research Database (Denmark)

    Covington, Elizabeth Dunn; Roitsch, Thomas Georg; Dermastia, Marina

    2016-01-01

    . As a case study we applied the protocol to grapevine leaf samples infected with plant pathogenic bacteria 'Candidatus Phytoplasma solani', known to alter carbohydrate metabolism in grapevine. The described adaptations may be useful for determination of metabolic fingerprints for physiological phenotyping...... assays for enzymes of primary carbohydrate metabolism, while based on our recently published one for quantitative measurement of activities using coupled spectrophotometric assays in a 96-well format, is tailored to the complexities of phenolic- and anthocyanin-rich extracts from grapevine leaf...

  8. Possible regulatory role of phenylalanine ammonia-lyase in the production of anthocyanins in asparagus (Asparagus officinalis L)

    NARCIS (Netherlands)

    Flores, F.B.; Oosterhaven, J.; Martinez-Madrid, M.C.; Romojaro, F.

    2005-01-01

    The regulatory role of phenylalanine ammonia-lyase (PAL) in the light-induced accumulation of anthocyanins in the epidermis of asparagus spears has been analysed. A correlation between the stimulation of PAL activity and the rise in total anthocyanin content has been observed. Light radiation

  9. Development of "Purple Endosperm Rice" by Engineering Anthocyanin Biosynthesis in the Endosperm with a High-Efficiency Transgene Stacking System.

    Science.gov (United States)

    Zhu, Qinlong; Yu, Suize; Zeng, Dongchang; Liu, Hongmei; Wang, Huicong; Yang, Zhongfang; Xie, Xianrong; Shen, Rongxin; Tan, Jiantao; Li, Heying; Zhao, Xiucai; Zhang, Qunyu; Chen, Yuanling; Guo, Jingxing; Chen, Letian; Liu, Yao-Guang

    2017-07-05

    Anthocyanins have high antioxidant activities, and engineering of anthocyanin biosynthesis in staple crops, such as rice (Oryza sativa L.), could provide health-promoting foods for improving human health. However, engineering metabolic pathways for biofortification remains difficult, and previous attempts to engineer anthocyanin production in rice endosperm failed because of the sophisticated genetic regulatory network of its biosynthetic pathway. In this study, we developed a high-efficiency vector system for transgene stacking and used it to engineer anthocyanin biosynthesis in rice endosperm. We made a construct containing eight anthocyanin-related genes (two regulatory genes from maize and six structural genes from Coleus) driven by the endosperm-specific promoters,plus a selectable marker and a gene for marker excision. Transformation of rice with this construct generated a novel biofortified germplasm "Purple Endosperm Rice" (called "Zijingmi" in Chinese), which has high anthocyanin contents and antioxidant activity in the endosperm. This anthocyanin production results from expression of the transgenes and the resulting activation (or enhancement) of expression of 13 endogenous anthocyanin biosynthesis genes that are silenced or expressed at low levels in wild-type rice endosperm. This study provides an efficient, versatile toolkit for transgene stacking and demonstrates its use for successful engineering of a sophisticated biological pathway, suggesting the potential utility of this toolkit for synthetic biology and improvement of agronomic traits in plants. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  10. Changes in the color, chemical stability and antioxidant capacity of thermally treated anthocyanin aqueous solution over storage.

    Science.gov (United States)

    Sui, Xiaonan; Bary, Solène; Zhou, Weibiao

    2016-02-01

    Many anthocyanin-containing foods are thermally processed to ensure their safety, and stored for some time before being consumed. However, the combination of thermal processing and subsequent storage has a significant impact on anthocyanins. This study aimed to investigate the color, chemical stability, and antioxidant capacity of thermally treated anthocyanin aqueous solutions during storage at 4, 25, 45, and 65 °C, respectively. Anthocyanin aqueous solutions were thermally treated before storage. Results showed that the degradation rate of anthocyanins in aqueous solutions was much faster than those in real food. The color of the anthocyanin aqueous solutions changed dramatically during storage. The anthocyanin aqueous solutions stored at 4 °C showed the best chemical stability. Interestingly, the antioxidant capacity of the anthocyanin aqueous solutions stored at lower temperatures remained the same; however, the antioxidant capacity of those thermally treated at 120 or 140 °C and stored at 45 or 65 °C significantly decreased. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Identification of Light-Independent Anthocyanin Biosynthesis Mutants Induced by Ethyl Methane Sulfonate in Turnip "Tsuda" (Brassica rapa).

    Science.gov (United States)

    Yang, Jian-Fei; Chen, Yun-Zhu; Kawabata, Saneyuki; Li, Yu-Hua; Wang, Yu

    2017-06-22

    The epidermis of swollen storage roots in purple cultivars of turnip "Tsuda" ( Brassica rapa ) accumulates anthocyanin in a light-dependent manner, especially in response to UV-A light, of which the mechanism is unclear. In this study, we mutagenized 15,000 seeds by 0.5% ( v / v ) ethyl methane sulfonate (EMS) and obtained 14 mutants with abnormal anthocyanin production in their epidermis of swollen storage roots. These mutants were classified into two groups: the red mutants with constitutive anthocyanin accumulation in their epidermis of storage roots even in underground parts in darkness and the white mutants without anthocyanin accumulation in the epidermis of storage roots in aboveground parts exposed to sunlight. Test cross analysis demonstrated that w9 , w68 , w204 , r15 , r21 , r30 and r57 contained different mutations responsible for their phenotypic variations. Further genetic analysis of four target mutants ( w9 , w68 , w204 and r15 ) indicated that each of them was controlled by a different recessive gene. Intriguingly, the expression profiles of anthocyanin biosynthesis genes, including structural and regulatory genes, coincided with their anthocyanin levels in the epidermis of storage roots in the four target mutants. We proposed that potential genes responsible for the mutations should be upstream factors of the anthocyanin biosynthesis pathway in turnips, which provided resources to further investigate the mechanisms of light-induced anthocyanin accumulation.

  12. LcGST4 is an anthocyanin-related glutathione S-transferase gene in Litchi chinensis Sonn.

    Science.gov (United States)

    Hu, Bing; Zhao, Jietang; Lai, Biao; Qin, Yonghua; Wang, Huicong; Hu, Guibing

    2016-04-01

    A novel LcGST4 was identified and characterized from Litchi chinensis . Expression and functional analysis demonstrated that it might function in anthocyanin accumulation in litchi. Glutathione S-transferases (GSTs) have been defined as detoxification enzymes for their ability to recognize reactive electrophilic xenobiotic molecules as well as endogenous secondary metabolites. Anthocyanins are among the few endogenous substrates of GSTs for vacuolar accumulation. The gene encoding a GST protein that is involved in anthocyanin sequestration from Litchi chinensis Sonn. has not been reported. Here, LcGST4, an anthocyanin-related GST, was identified and characterized. Phylogenetic analysis showed that LcGST4 was clustered with other known anthocyanin-related GSTs in the same clade. Expression analysis revealed that the expression pattern of LcGST4 was strongly correlated with anthocyanin accumulation in litchi. ABA- and light-responsive elements were found in the LcGST4 promoter, which is in agreement with the result that the expression of LcGST4 was induced by both ABA and debagging treatment. A GST activity assay in vitro verified that the LcGST4 protein shared universal activity with the GST family. Functional complementation of an Arabidopsis mutant tt19 demonstrated that LcGST4 might function in anthocyanin accumulation in litchi. Dual luciferase assay revealed that the expression of LcGST4 was activated by LcMYB1, a key R2R3-MYB transcription factor that regulates anthocyanin biosynthesis in litchi.

  13. An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae (on linr)

    NARCIS (Netherlands)

    Wang, Kui-Lin; Bolitho, Karen; Grafton, Karryn; Kortstee, A.J.; Karunairetnam, Sakuntala; McGhie, T.K.; Espley, R.V.; Hellens, R.P.; Allan, A.C.

    2010-01-01

    Background - The control of plant anthocyanin accumulation is via transcriptional regulation of the genes encoding the biosynthetic enzymes. A key activator appears to be an R2R3 MYB transcription factor. In apple fruit, skin anthocyanin levels are controlled by a gene called MYBA or MYB1, while the

  14. Experimental branch cooling increases foliar sugar and anthocyanin concentrations in sugar maple at the end of the growing season

    Science.gov (United States)

    Paul G. Schaberg; Paula F. Murakami; John R. Butnor; Gary J. Hawley

    2017-01-01

    Autumnal leaf anthocyanin expression is enhanced following exposure to a variety of environmental stresses and may represent an adaptive benefit of protecting leaves from those stresses, thereby allowing for prolonged sugar and nutrient resorption. Past work has shown that experimentally induced sugar accumulations following branch girdling triggers anthocyanin...

  15. Principal Component Regression Analysis of the Relation Between CIELAB Color and Monomeric Anthocyanins in Young Cabernet Sauvignon Wines

    Directory of Open Access Journals (Sweden)

    Chang-Qing Duan

    2008-11-01

    Full Text Available Color is one of the key characteristics used to evaluate the sensory quality of red wine, and anthocyanins are the main contributors to color. Monomeric anthocyanins and CIELAB color values were investigated by HPLC-MS and spectrophotometry during fermentation of Cabernet Sauvignon red wine, and principal component regression (PCR, a statistical tool, was used to establish a linkage between the detected anthocyanins and wine coloring. The results showed that 14 monomeric anthocyanins could be identified in wine samples, and all of these anthocyanins were negatively correlated with the L*, b* and H*ab values, but positively correlated with a* and C*ab values. On an equal concentration basis for each detected anthocyanin, cyanidin-3-O-glucoside (Cy3-glu had the most influence on CIELAB color value, while malvidin 3-O-glucoside (Mv3-glu had the least. The color values of various monomeric anthocyanins were influenced by their structures, substituents on the B-ring, acyl groups on the glucoside and the molecular steric structure. This work develops a statistical method for evaluating correlation between wine color and monomeric anthocyanins, and also provides a basis for elucidating the effect of intramolecular copigmentation on wine coloring.

  16. Glucose Sensor MdHXK1 Phosphorylates and Stabilizes MdbHLH3 to Promote Anthocyanin Biosynthesis in Apple

    Science.gov (United States)

    Hu, Da-Gang; Zhang, Quan-Yan; An, Jian-Ping; You, Chun-Xiang; Hao, Yu-Jin

    2016-01-01

    Glucose induces anthocyanin accumulation in many plant species; however, the molecular mechanism involved in this process remains largely unknown. Here, we found that apple hexokinase MdHXK1, a glucose sensor, was involved in sensing exogenous glucose and regulating anthocyanin biosynthesis. In vitro and in vivo assays suggested that MdHXK1 interacted directly with and phosphorylated an anthocyanin-associated bHLH transcription factor (TF) MdbHLH3 at its Ser361 site in response to glucose. Furthermore, both the hexokinase_2 domain and signal peptide are crucial for the MdHXK1-mediated phosphorylation of MdbHLH3. Moreover, phosphorylation modification stabilized MdbHLH3 protein and enhanced its transcription of the anthocyanin biosynthesis genes, thereby increasing anthocyanin biosynthesis. Finally, a series of transgenic analyses in apple calli and fruits demonstrated that MdHXK1 controlled glucose-induced anthocyanin accumulation at least partially, if not completely, via regulating MdbHLH3. Overall, our findings provide new insights into the mechanism of the glucose sensor HXK1 modulation of anthocyanin accumulation, which occur by directly regulating the anthocyanin-related bHLH TFs in response to a glucose signal in plants. PMID:27560976

  17. Effects of light intensity on the distribution of anthocyanins in Kalanchoe brasiliensis Camb. and Kalanchoe pinnata (Lamk.) Pers.

    Science.gov (United States)

    Cruz, Bruna P; Chedier, Luciana M; Peixoto, Paulo H P; Fabri, Rodrigo L; Pimenta, Daniel S

    2012-03-01

    This paper compares two medicinal species of Kalanchoe, which are often used interchangeably by the population, regarding the distribution of anthocyanins under the influence of four luminosity levels for 6 months. For the morphoanatomical analysis, the 6th stem node of each plant was sectioned. Usual histochemical tests revealed the presence of anthocyanins by cross sections of the stems, petioles and leaf blades. The petioles and leaf blades were submitted to the extraction with acidified methanol, and the anthocyanins were quantified by spectrophotometric readings. At the macroscopic level, it was noticed for both species a higher presence of anthocyanins in stems and petioles of plants under full sunlight. The microscopy of K. brasiliensis stems evidenced the deposition of anthocyanins in the subjacent tissue to the epidermis and cortex, which increased with light intensity. In K. pinnata a subepidermal collenchyma was observed, which interfered in the visualization of anthocyanins. In petioles and leaf blades of K. brasiliensis the deposition of anthocyanins was peripheral, and in K. pinnata it was also throughout the cortex. The quantification of anthocyanins in petioles showed in 70% of light higher averages than in 25%, but in leaf blades there were no significant results. This study contributes to the pharmacognosy of Kalanchoe and it is sustained by the description of flavonoids as biological markers of the genus.

  18. Glucose Sensor MdHXK1 Phosphorylates and Stabilizes MdbHLH3 to Promote Anthocyanin Biosynthesis in Apple.

    Directory of Open Access Journals (Sweden)

    Da-Gang Hu

    2016-08-01

    Full Text Available Glucose induces anthocyanin accumulation in many plant species; however, the molecular mechanism involved in this process remains largely unknown. Here, we found that apple hexokinase MdHXK1, a glucose sensor, was involved in sensing exogenous glucose and regulating anthocyanin biosynthesis. In vitro and in vivo assays suggested that MdHXK1 interacted directly with and phosphorylated an anthocyanin-associated bHLH transcription factor (TF MdbHLH3 at its Ser361 site in response to glucose. Furthermore, both the hexokinase_2 domain and signal peptide are crucial for the MdHXK1-mediated phosphorylation of MdbHLH3. Moreover, phosphorylation modification stabilized MdbHLH3 protein and enhanced its transcription of the anthocyanin biosynthesis genes, thereby increasing anthocyanin biosynthesis. Finally, a series of transgenic analyses in apple calli and fruits demonstrated that MdHXK1 controlled glucose-induced anthocyanin accumulation at least partially, if not completely, via regulating MdbHLH3. Overall, our findings provide new insights into the mechanism of the glucose sensor HXK1 modulation of anthocyanin accumulation, which occur by directly regulating the anthocyanin-related bHLH TFs in response to a glucose signal in plants.

  19. Genetic analyses of anthocyanin concentrations and intensity of red bulb color among segregating haploid progenies of onion

    Science.gov (United States)

    Higher concentrations of anthocyanins in vegetables are important for attractive appearance and may offer health benefits for consumers. The red color of onion bulbs is due primarily to the accumulation of anthocyanins. The goals of this study were to identify chromosome regions that condition yello...

  20. Paper Chromatography and UV-Vis Spectroscopy to Characterize Anthocyanins and Investigate Antioxidant Properties in the Organic Teaching Laboratory

    Science.gov (United States)

    Galloway, Kelli R.; Bretz, Stacey Lowery; Novak, Michael

    2015-01-01

    A variety of fruits and vegetables, including raspberries, blueberries, Concord grapes, blackberries, strawberries, peaches, eggplant, red cabbage, and red onions, contain flavonoid compounds known as anthocyanins that are responsible for the blue-red color and the astringent taste associated with such foods. In addition, anthocyanins exhibit a…

  1. CPC, a single-repeat R3 MYB, is a negative regulator of anthocyanin biosynthesis in Arabidopsis.

    Science.gov (United States)

    Zhu, Hui-Fen; Fitzsimmons, Karen; Khandelwal, Abha; Kranz, Robert G

    2009-07-01

    Single-repeat R3 MYB transcription factors like CPC (CAPRICE) are known to play roles in developmental processes such as root hair differentiation and trichome initiation. However, none of the six Arabidopsis single-repeat R3 MYB members has been reported to regulate flavonoid biosynthesis. We show here that CPC is a negative regulator of anthocyanin biosynthesis. In the process of using CPC to test GAL4-dependent driver lines, we observed a repression of anthocyanin synthesis upon GAL4-mediated CPC overexpression. We demonstrated that this is not due to an increase in nutrient uptake because of more root hairs. Rather, CPC expression level tightly controls anthocyanin accumulation. Microarray analysis on the whole genome showed that, of 37 000 features tested, 85 genes are repressed greater than three-fold by CPC overexpression. Of these 85, seven are late anthocyanin biosynthesis genes. Also, anthocyanin synthesis genes were shown to be down-regulated in 35S::CPC overexpression plants. Transient expression results suggest that CPC competes with the R2R3-MYB transcription factor PAP1/2, which is an activator of anthocyanin biosynthesis genes. This report adds anthocyanin biosynthesis to the set of programs that are under CPC control, indicating that this regulator is not only for developmental programs (e.g. root hairs, trichomes), but can influence anthocyanin pigment synthesis.

  2. The co-pigmentation of anthocyanin isolated from mangosteen pericarp (Garcinia Mangostana L.) as Natural Dye for Dye- Sensitized Solar Cells (DSSC)

    Science.gov (United States)

    Munawaroh, H.; adillah, G. F.; Saputri, L. N. M. Z.; Hanif, Q. A.; Hidayat, R.; Wahyuningsih, S.

    2016-02-01

    Study of color stability of anthocyanin from extract mangosteen pericarp (Garcinia mangostana L.) with co-pigmentation method has been conducted. Malic acid and ascorbic acid used as a co-pigment to stabilize the anthocyanin structure through formation of new binding between anthocyanin. Anthocyanin from mangosteen pericarp were isolated by several steps, including maceration, extraction, and Thin Layer Chromatography (TLC). The anthocyanin separation was conducted by TLC, while the identification of functional groups of those compound, were used FTIR (Fourier Transform Infrared Spectroscopy) for spectra analysis. Ultraviolet- visible absorption spectra have represented differences absorbance and color intensity in various pH. Copigmentation with malic acid and ascorbic acid in many composition and temperature were also well described. Meanwhile, anthocyanin-malic acid and anthocyanin-ascorbic acid have color retention higher than that of pure anthocyanin. Maximum color retention has been achieved at a ratio of 1:3 and 1:5 for ascorbic acid and malic acid, respectively. Therefore, the addition of ascorbic acid and malic acid as a copigment shows the ability to protect color retention of anthocyanin (mangosteen pericarp) from degradation process. The better efficiency of DSSC (η) have been achieved, whereas n of controlled anthocyanin, anthocyanin-ascorbic acid, and anthocyanin-malic acid were 0,1996%, 0,2922%, 0,3029%, respectively.

  3. Observations on the relationship between above- and below-ground anthocyanin production in Galax urceolata (Poir.) Brummitt growing in sun-exposed and shaded locations

    Science.gov (United States)

    Howard S. Neufeld; Derick B Poindexter; Paula F. Murakami; Paul G. Schaberg

    2011-01-01

    Galax urceolata (Diapensiaceae) is a common evergreen herb of southern Appalachian forests. During the fall and winter, leaves of plants in high light produce substantial amounts of anthocyanins. Oddly, rhizomes in these plants also accumulate anthocyanins. The purpose of this observational study was to identify seasonal trends in anthocyanin...

  4. Effects of anthocyanins from purple sweet potato (Ipomoea batatas L. cultivar Eshu No. 8) on the serum uric acid level and xanthine oxidase activity in hyperuricemic mice.

    Science.gov (United States)

    Zhang, Zi-Cheng; Su, Guan-Hua; Luo, Chun-Li; Pang, Ya-Lu; Wang, Lin; Li, Xing; Wen, Jia-Hao; Zhang, Jiu-Liang

    2015-09-01

    This study was aimed at evaluating the hypouricemic effect of the anthocyanin-rich purple sweet potato extract (APSPE). In vitro, APSPE has been proved to significantly inhibit XO activity in a dose-dependent manner. In vivo, APSPE could not only inhibit the XO activity in mouse liver, but also reduce the serum uric acid level in hyperuricemic mice and affect the expression of mRNA levels of related renal transporters, such as mURAT1, mGLUT9, mOAT1 and mOCTN2. Moreover, APSPE could effectively regulate BUN and Cr levels to normal and decrease the inflammatory cellular influx in the tubule of the hyperuricemic mice. This study indicates the potential clinical utility of APSPE as a safe and effective anti-hyperuricemia bioactive agent or functional food.

  5. Different effects of anthocyanins and phenolic acids from wild blueberry (Vaccinium angustifolium) on monocytes adhesion to endothelial cells in a TNF-α stimulated proinflammatory environment

    DEFF Research Database (Denmark)

    Del Bo', Cristian; Roursgaard, Martin; Porrini, Marisa

    2016-01-01

    Scope: Monocyte adhesion to the vascular endothelium is a crucial step in the early stagesof atherogenesis. This study aims to investigate the capacity of an anthocyanin (ACN) andphenolic acid (PA) rich fraction (RF) of a wild blueberry, single ACNs (cyanidin, malvidin,delphinidin) and related...... µg/mL) of the compounds for 24 h. Labeled monocytic THP-1 cells were added to HUVECsand their adhesion was induced by TNF-␣ (100 ng/mL). ACN-RF reduced THP-1 adhesionto HUVECs with a maximum effect at 10 µg/mL (−33%). PA-RF counteracted THP-1 adhe-sion at 0.01, 0.1, and 1 µg/mL (−45, −48.7, and −27...... that ACNs/PA-RF may prevent atherogenesis while theeffects of the single ACNs and metabolites are controversial and merit further exploration....

  6. Production of anthocyanins in metabolically engineered microorganisms: Current status and perspectives.

    Science.gov (United States)

    Zha, Jian; Koffas, Mattheos A G

    2017-12-01

    Microbial production of plant-derived natural products by engineered microorganisms has achieved great success thanks to large extend to metabolic engineering and synthetic biology. Anthocyanins, the water-soluble colored pigments found in terrestrial plants that are responsible for the red, blue and purple coloration of many flowers and fruits, are extensively used in food and cosmetics industry; however, their current supply heavily relies on complex extraction from plant-based materials. A promising alternative is their sustainable production in metabolically engineered microbes. Here, we review the recent progress on anthocyanin biosynthesis in engineered bacteria, with a special focus on the systematic engineering modifications such as selection and engineering of biosynthetic enzymes, engineering of transportation, regulation of UDP-glucose supply, as well as process optimization. These promising engineering strategies will facilitate successful microbial production of anthocyanins in industry in the near future.

  7. [Expansion of the range of anthocyanin food colorants from unconventional vegetal primary products].

    Science.gov (United States)

    Vetrov, M Yu; Akishin, D V; Akimov, M Yu; Vinnitskaya, V F

    2016-01-01

    The purpose of work to study the content of anthocyanins and other biologically active substances in residues of fruits of Sanberri from receivingjuice and mash. It is established that residues contained over 70% solids, more than 60% of dietary fiber, to 55.4 mg/% of ascorbic acid and up to 90.0 mg/% of anthocyanins. Furthermore, they possessed high antioxidant activity (156.8-399.4 mg/% dihydroquercetin equivalent) that allowed to recommend them as raw materials for receiving natural food colorants. The concentrated food dye from Sanberri's residue (50-51% soluble solids) had intensive color varying from dark-violet (at acidity of 1.0%) to claret-red (at acidity of 3.0%), possessed high antioxidant activity (1308.2-2223.5 mg/%) and contained a large amount of anthocyanins (666-976 mg/%).

  8. Production of anthocyanins in metabolically engineered microorganisms: Current status and perspectives

    Directory of Open Access Journals (Sweden)

    Jian Zha

    2017-12-01

    Full Text Available Microbial production of plant-derived natural products by engineered microorganisms has achieved great success thanks to large extend to metabolic engineering and synthetic biology. Anthocyanins, the water-soluble colored pigments found in terrestrial plants that are responsible for the red, blue and purple coloration of many flowers and fruits, are extensively used in food and cosmetics industry; however, their current supply heavily relies on complex extraction from plant-based materials. A promising alternative is their sustainable production in metabolically engineered microbes. Here, we review the recent progress on anthocyanin biosynthesis in engineered bacteria, with a special focus on the systematic engineering modifications such as selection and engineering of biosynthetic enzymes, engineering of transportation, regulation of UDP-glucose supply, as well as process optimization. These promising engineering strategies will facilitate successful microbial production of anthocyanins in industry in the near future.

  9. OPTIMIZATION OF HIBISCUS SABDARIFFA L. (ROSELLE ANTHOCYANIN AQUEOUS-ETHANOL EXTRACTION PARAMETERS USING RESPONSE SURFACE METHODOLOGY

    Directory of Open Access Journals (Sweden)

    ANILÚ MIRANDA-MEDINA

    2018-03-01

    Full Text Available Anthocyanins along with protocatechuic acid and quercetin have been recognized as bioactive compounds in Hibiscus sabdariffa L. aqueous extracts. Characteristic anthocyanin absorption in the visible region makes their quantification possible without the interference of the other two compounds, and also can favor its potential application as an alternative to organic-based dye sensitized solar cell, in various forms. In order to optimize measurable factors linked to the extraction of these flavonoids, an optimization was performed using a Box-Behnken experimental design and response surface methodology (RSM. Three levels of ethanol concentration, temperature and solid-solvent ratio (SSR were investigated. The optimization model showed that with 96 % EtOH, 65 °C, and 1:50 SSR, the highest anthocyanin concentration of 150 mg/100 g was obtained.

  10. Anthocyanins increase low-density lipoprotein and plasma cholesterol and do not reduce atherosclerosis in Watanabe Heritable Hyperlipidemic rabbits

    DEFF Research Database (Denmark)

    Nielsen, I. L. F.; Rasmussen, S.E.; Mortensen, Alicja

    2005-01-01

    a purified anthocyanin fraction front black currants, a black currant juice, probucol or control diet for 16 weeks. Purified anthocyanins significantly increased plasma cholesterol and low-density lipoprotein (LDL) cholesterol. Intake of black currant juice had no effect on total plasma cholesterol......, but lowered very-low-density lipoprotein (VLDL) cholesterol significantly. There were no significant effects of either purified anthocyanins or black currant juice on aortic cholesterol or development of atherosclerosis after 16 weeks. Probucol had no effect on plasma cholesterol but significantly lowered......, antioxidant enzymes, protein and lipid oxidation were not affected by any of the anthocyanin treatments. Adverse effects of purified anthocyanins were observed on plasma- and LDL-cholesterol. These effects were not observed with black currant juice, suggesting that black currants may contain components...

  11. Effects of Anthocyanin on Serum Lipids in Dyslipidemia Patients: A Systematic Review and Meta-Analysis.

    Directory of Open Access Journals (Sweden)

    Changfeng Liu

    Full Text Available Dyslipidemia was present in most of the patients with coronary heart disease. Epidemiological evidence suggests that anthocyanin has some effects on the serum lipid. However, these results are controversial. This study aimed at collecting current clinical evidence and evaluating the effects of anthocyanin supplementation on total cholesterol (TC, triglyceride (TG, low-density lipoprotein cholesterol (LDL-C, and high-density lipoprotein cholesterol (HDL-C in dialysis patients.The search included PubMed, Web of Science, MEDLINE, Cochrane Library, China National Knowledge Infrastructure, Wanfang Database (up to July 2015 to identify randomized controlled trials (RCTs on the association between anthocyanin and serum lipids. RevMan (version 5.2 was used for Meta-analysis. Meta-regression analysis, sensitivity analysis and Egger's weighted regression tests were performed by using STATA software (version 12.0; StatCorp, College Station, TX, USA.Six studies (seven arms involving 586 subjects were included in this meta-analysis. The results showed that anthocyanin supplementation has significant effects on TC [MD = -24.06, 95% CI(-45.58 to -2.64 mg/dL, I2 = 93%], TG [MD = -26.14, 95%CI(-40.20 to -3.08 mg/dL, I2 = 66%1], LDL-C [MD = -22.10, 95% CI (-34.36 to -9.85 mg/dL, I2 = 61%], and HDL-C(MD = 5.58, 95% CI (1.02 to 10.14 mg/dL;I2 = 90%.Anthocyanin supplementation significantly reduces serum TC, TG, and LDL-C levels in patients with dyslipidemia, and increases HDL-C. Further rigorously designed RCTs with larger sample sizes are needed to confirm the effectiveness of anthocyanin supplementation for dyslipidemia, especially hypo high density lipoprotein cholesterolemia.

  12. Transcriptome analysis and anthocyanin-related genes in red leaf lettuce.

    Science.gov (United States)

    Zhang, Y Z; Xu, S Z; Cheng, Y W; Ya, H Y; Han, J M

    2016-01-29

    This study aimed to analyze the transcriptome profile of red lettuce and identify the genes involved in anthocyanin accumulation. Red leaf lettuce is a popular vegetable and popular due to its high anthocyanin content. However, there is limited information available about the genes involved in anthocyanin biosynthesis in this species. In this study, transcriptomes of 15-day-old seedlings and 40-day-old red lettuce leaves were analyzed using an Illuminia HiseqTM 2500 platform. A total of 10.6 GB clean data were obtained and de novo assembled into 83,333 unigenes with an N50 of 1067. After annotation against public databases, 51,850 unigene sequences were identified, among which 46,087 were annotated in the NCBI non-redundant protein database, and 41,752 were annotated in the Swiss-Prot database. A total of 9125 unigenes were mapped into 163 pathways using the Kyoto Encyclopedia of Genes and Genomes database. Thirty-four structural genes were found to cover the main steps of the anthocyanin pathway, including chalcone synthase, chalcone isomerase, flavanone 3-hydroxylase, flavonoid 3'-hydroxylase, flavonoid 3',5'-hydroxylase, dihydroflavonol 4-reductase, and anthocyanidin synthase. Seven MYB, three bHLH, and two WD40 genes, considered anthocyanin regulatory genes, were also identified. In addition, 3607 simple sequence repeat (SSR) markers were identified from 2916 unigenes. This research uncovered the transcriptomic characteristics of red leaf lettuce seedlings and mature plants. The identified candidate genes related to anthocyanin biosynthesis and the detected SSRs provide useful tools for future molecular breeding studies.

  13. CCoAOMT Down-Regulation Activates Anthocyanin Biosynthesis in Petunia.

    Science.gov (United States)

    Shaipulah, Nur Fariza M; Muhlemann, Joëlle K; Woodworth, Benjamin D; Van Moerkercke, Alex; Verdonk, Julian C; Ramirez, Aldana A; Haring, Michel A; Dudareva, Natalia; Schuurink, Robert C

    2016-02-01

    Anthocyanins and volatile phenylpropenes (isoeugenol and eugenol) in petunia (Petunia hybrida) flowers have the precursor 4-coumaryl coenzyme A (CoA) in common. These phenolics are produced at different stages during flower development. Anthocyanins are synthesized during early stages of flower development and sequestered in vacuoles during the lifespan of the flowers. The production of isoeugenol and eugenol starts when flowers open and peaks after anthesis. To elucidate additional biochemical steps toward (iso)eugenol production, we cloned and characterized a caffeoyl-coenzyme A O-methyltransferase (PhCCoAOMT1) from the petals of the fragrant petunia 'Mitchell'. Recombinant PhCCoAOMT1 indeed catalyzed the methylation of caffeoyl-CoA to produce feruloyl CoA. Silencing of PhCCoAOMT1 resulted in a reduction of eugenol production but not of isoeugenol. Unexpectedly, the transgenic plants had purple-colored leaves and pink flowers, despite the fact that cv Mitchell lacks the functional R2R3-MYB master regulator ANTHOCYANIN2 and has normally white flowers. Our results indicate that down-regulation of PhCCoAOMT1 activated the anthocyanin pathway through the R2R3-MYBs PURPLE HAZE (PHZ) and DEEP PURPLE, with predominantly petunidin accumulating. Feeding cv Mitchell flowers with caffeic acid induced PHZ expression, suggesting that the metabolic perturbation of the phenylpropanoid pathway underlies the activation of the anthocyanin pathway. Our results demonstrate a role for PhCCoAOMT1 in phenylpropene production and reveal a link between PhCCoAOMT1 and anthocyanin production. © 2016 American Society of Plant Biologists. All Rights Reserved.

  14. Coordinated regulation of anthocyanin biosynthesis in Chinese bayberry (Myrica rubra) fruit by a R2R3 MYB transcription factor.

    Science.gov (United States)

    Niu, Shan-Shan; Xu, Chang-Jie; Zhang, Wang-Shu; Zhang, Bo; Li, Xian; Lin-Wang, Kui; Ferguson, Ian B; Allan, Andrew C; Chen, Kun-Song

    2010-03-01

    Chinese bayberry (Myrica rubra) is a fruit crop with cultivars producing fruit ranging from white (Shuijing, SJ) to red (Dongkui, DK) and dark red-purple (Biqi, BQ), as a result of different levels of anthocyanin accumulation. Genes encoding the anthocyanin biosynthesis enzymes chalcone synthase, chalcone isomerase, flavanone 3-hydroxylase (F3H), flavonoid 3'-hydroxylase (F3'H), dihydroflavonol 4-reductase (DFR), anthocyanidin synthase (ANS) and UDPglucose: flavonoid 3-O-glucosyltransferase (UFGT), as well as MrMYB1, a R2R3 MYB transcription factor homologous to known activators of anthocyanin biosynthesis, were isolated from ripe fruit of BQ. Differences in mRNA abundance of MrF3H, MrF3'H, MrDFR1, MrANS and MrUFGT were highly correlated with differential accumulation of anthocyanins between cultivars, suggesting coordinated regulation by transcription factors. The transcript level of MrMYB1 was strongly associated with the anthocyanin content in ripe fruit of the three cultivars, as well as different anthocyanin containing tissues of BQ fruit. Fruit bagging strongly inhibited anthocyanin accumulation in fruit as well as the expression of all anthocyanin biosynthetic genes and MrMYB1. Overexpression of MrMYB1 stimulated both anthocyanin accumulation and activated an Arabidopsis-DFR promoter in tobacco (Nicotiana tabacum). MrMYB1d, an allele with a 1 bp deletion at nucleotide 30 of coding sequence, was observed in SJ and DK fruit, suggesting that a nonsense mutation of the MYB1 protein may be responsible for no or low expression of MYB1 in the white and red fruit. These results show that coordinated expression of multiple biosynthetic genes is involved in anthocyanin accumulation in Chinese bayberry fruit, and this is regulated by MrMYB1.

  15. Anthocyanin Characterization of Pilot Plant Water Extracts of Delonix regia Flowers

    Directory of Open Access Journals (Sweden)

    Emile M. Gaydou

    2008-06-01

    Full Text Available Following the development of new applications of pilot plant scale extraction and formulation processes for natural active bioproducts obtained from various underutilized tropical plants and herbs, we have manufactured water-extracts from Delonix regia flowers, grown in Ivory Coast. These extracts, which contain polyphenols, are traditionally home made and used as healthy bioproducts. They are reddish-coloured due to the presence of anthocyanins. The three major anthocyanins in these extracts have been characterized. The molecular structures were confirmed by LC-SM analysis. Amongst them, two are described for the first time in Delonix regia.

  16. Extraction of anthocyanins from purple corn cobs of Zea mays L.

    OpenAIRE

    Gorriti G., Arilmí; Quispe J., Fredy; Arroyo A., Jorge L.; Córdova R., Augusta; Jurado T., Bertha; Santiago A., Ilario; Taype E., Evelyng

    2014-01-01

    At the present investigation the good conditions for the extraction of anthocyanins from purple corn cobs were investigated, by means of the employment of a complete design at random with factorial arrangement 2A3B4C4D. The factors studied were pH, solvent, time and temperature. The results showed anthocyanins between 8,404 and 47,984 mg/g of cob according to the method of differential pH. Analysis of four factors were presented. En el presente trabajo se investigaron las condiciones óptim...

  17. Stability of the anthocyanins extracted from residues of the wine industry

    OpenAIRE

    Clemente, Edmar; Galli, Dirseu

    2011-01-01

    Anthocyanins are highly important due to their antioxidant capacity. They are the most important among the phenolic compounds and one of the main natural dyes used in the food industry. In this research, residue of processed grapes was used to investigate the presence of anthocyanins, the possibility of their extraction from the residue, and their stability. The extraction solution consisted of 70 mL of ethanol 70% and 30 mL of HCl 0.1% at pH 2.0. The results found for the processed grapes re...

  18. McMYB12 Transcription Factors Co-regulate Proanthocyanidin and Anthocyanin Biosynthesis in Malus Crabapple

    OpenAIRE

    Tian, Ji; Zhang, Jie; Han, Zhen-yun; Song, Ting-ting; Li, Jin-yan; Wang, Ya-ru; Yao, Yun-cong

    2017-01-01

    The flavonoid compounds, proanthocyanidins (PAs), protect plants from biotic stresses, contribute to the taste of many fruits, and are beneficial to human health in the form of dietary antioxidants. In this study, we functionally characterized two Malus crabapple R2R3-MYB transcription factors, McMYB12a and McMYB12b, which co-regulate PAs and anthocyanin biosynthesis. McMYB12a was shown to be mainly responsible for upregulating the expression of anthocyanin biosynthetic genes by binding to th...

  19. LcMYB1 Is a Key Determinant of Differential Anthocyanin Accumulation among Genotypes, Tissues, Developmental Phases and ABA and Light Stimuli in Litchi chinensis

    Science.gov (United States)

    Lai, Biao; Li, Xiao-Jing; Hu, Bing; Qin, Yong-Hua; Huang, Xu-Ming; Wang, Hui-Cong; Hu, Gui-Bing

    2014-01-01

    The red coloration of litchi fruit depends on the accumulation of anthocyanins. The anthocyanins level in litchi fruit varies widely among cultivars, developmental stages and environmental stimuli. Previous studies on various plant species demonstrate that anthocyanin biosynthesis is controlled at the transcriptional level. Here, we describe a litchi R2R3-MYB transcription factor gene, LcMYB1, which demonstrates a similar sequence as other known anthocyanin regulators. The transcription levels of the LcMYB1 and anthocyanin biosynthetic genes were investigated in samples with different anthocyanin levels. The expression of LcMYB1 was strongly associated with tissue anthocyanin content. LcMYB1 transcripts were only detected in anthocyanin-accumulating tissues and were positively correlated with anthocyanin accumulation in the pericarps of 12 genotypes. ABA and sunlight exposure promoted, whereas CPPU and bagging inhibited the expression of LcMYB1 and anthocyanin accumulation in the pericarp. Cis-elements associated with light responsiveness and abscisic acid responsiveness were identified in the promoter region of LcMYB1. Among the 6 structural genes tested, only LcUFGT was highly correlated with LcMYB1. These results suggest that LcMYB1 controls anthocyanin biosynthesis in litchi and LcUFGT might be the structural gene that is targeted and regulated by LcMYB1. Furthermore, the overexpression of LcMYB1 induced anthocyanin accumulation in all tissues in tobacco, confirming the function of LcMYB1 in the regulation of anthocyanin biosynthesis. The upregulation of NtAn1b in response to LcMYB1 overexpression seems to be essential for anthocyanin accumulation in the leaf and pedicel. In the reproductive tissues of transgenic tobacco, however, increased anthocyanin accumulation is independent of tobacco's endogenous MYB and bHLH transcriptional factors, but associated with the upregulation of specific structural genes. PMID:24466010

  20. LcMYB1 is a key determinant of differential anthocyanin accumulation among genotypes, tissues, developmental phases and ABA and light stimuli in Litchi chinensis.

    Directory of Open Access Journals (Sweden)

    Biao Lai

    Full Text Available The red coloration of litchi fruit depends on the accumulation of anthocyanins. The anthocyanins level in litchi fruit varies widely among cultivars, developmental stages and environmental stimuli. Previous studies on various plant species demonstrate that anthocyanin biosynthesis is controlled at the transcriptional level. Here, we describe a litchi R2R3-MYB transcription factor gene, LcMYB1, which demonstrates a similar sequence as other known anthocyanin regulators. The transcription levels of the LcMYB1 and anthocyanin biosynthetic genes were investigated in samples with different anthocyanin levels. The expression of LcMYB1 was strongly associated with tissue anthocyanin content. LcMYB1 transcripts were only detected in anthocyanin-accumulating tissues and were positively correlated with anthocyanin accumulation in the pericarps of 12 genotypes. ABA and sunlight exposure promoted, whereas CPPU and bagging inhibited the expression of LcMYB1 and anthocyanin accumulation in the pericarp. Cis-elements associated with light responsiveness and abscisic acid responsiveness were identified in the promoter region of LcMYB1. Among the 6 structural genes tested, only LcUFGT was highly correlated with LcMYB1. These results suggest that LcMYB1 controls anthocyanin biosynthesis in litchi and LcUFGT might be the structural gene that is targeted and regulated by LcMYB1. Furthermore, the overexpression of LcMYB1 induced anthocyanin accumulation in all tissues in tobacco, confirming the function of LcMYB1 in the regulation of anthocyanin biosynthesis. The upregulation of NtAn1b in response to LcMYB1 overexpression seems to be essential for anthocyanin accumulation in the leaf and pedicel. In the reproductive tissues of transgenic tobacco, however, increased anthocyanin accumulation is independent of tobacco's endogenous MYB and bHLH transcriptional factors, but associated with the upregulation of specific structural genes.

  1. LcMYB1 is a key determinant of differential anthocyanin accumulation among genotypes, tissues, developmental phases and ABA and light stimuli in Litchi chinensis.

    Science.gov (United States)

    Lai, Biao; Li, Xiao-Jing; Hu, Bing; Qin, Yong-Hua; Huang, Xu-Ming; Wang, Hui-Cong; Hu, Gui-Bing

    2014-01-01

    The red coloration of litchi fruit depends on the accumulation of anthocyanins. The anthocyanins level in litchi fruit varies widely among cultivars, developmental stages and environmental stimuli. Previous studies on various plant species demonstrate that anthocyanin biosynthesis is controlled at the transcriptional level. Here, we describe a litchi R2R3-MYB transcription factor gene, LcMYB1, which demonstrates a similar sequence as other known anthocyanin regulators. The transcription levels of the LcMYB1 and anthocyanin biosynthetic genes were investigated in samples with different anthocyanin levels. The expression of LcMYB1 was strongly associated with tissue anthocyanin content. LcMYB1 transcripts were only detected in anthocyanin-accumulating tissues and were positively correlated with anthocyanin accumulation in the pericarps of 12 genotypes. ABA and sunlight exposure promoted, whereas CPPU and bagging inhibited the expression of LcMYB1 and anthocyanin accumulation in the pericarp. Cis-elements associated with light responsiveness and abscisic acid responsiveness were identified in the promoter region of LcMYB1. Among the 6 structural genes tested, only LcUFGT was highly correlated with LcMYB1. These results suggest that LcMYB1 controls anthocyanin biosynthesis in litchi and LcUFGT might be the structural gene that is targeted and regulated by LcMYB1. Furthermore, the overexpression of LcMYB1 induced anthocyanin accumulation in all tissues in tobacco, confirming the function of LcMYB1 in the regulation of anthocyanin biosynthesis. The upregulation of NtAn1b in response to LcMYB1 overexpression seems to be essential for anthocyanin accumulation in the leaf and pedicel. In the reproductive tissues of transgenic tobacco, however, increased anthocyanin accumulation is independent of tobacco's endogenous MYB and bHLH transcriptional factors, but associated with the upregulation of specific structural genes.

  2. Screening of Anthocyanins and Anthocyanin-Derived Pigments in Red Wine Grape Pomace Using LC-DAD/MS and MALDI-TOF Techniques.

    Science.gov (United States)

    Oliveira, Joana; Alhinho da Silva, Mara; Teixeira, Natércia; De Freitas, Victor; Salas, Erika

    2015-09-09

    Two phenolic extracts were made from a red wine grape pomace (GP) and fractionated first by sequential liquid-liquid extraction with organic solvents. The aqueous fraction was fractionated by low-pressure chromatography on Toyopearl HW-40 gel and on C18. Different fractions were obtained by sequential elution with aqueous/organic solvents, and then analyzed by liquid chromatography and mass spectrometry (LC-DAD/MS and MALDI-TOF). Over 50 anthocyanin-based pigments were detected by LC-DAD/MS in GP, mainly pyranoanthocyanins including A- and B-type vitisins and methylpyranoanthocyanins. The presence of oligomeric malvidin-3-O-coumaroylglucoside-based anthocyanins was also detected in GP using both LC-DAD/MS and MALDI-TOF.

  3. Rich Design Research Space

    Directory of Open Access Journals (Sweden)

    Birger Sevaldson

    2008-10-01

    Full Text Available This paper introduces and discusses a Rich Research Space as an inclusive methodological framework and scaffold for research-by-design. The Rich Research Space especially addresses the issue of richness in design processes and design-led research. There is a general trend towards increased complexity in design processes, caused on one hand by the increasing depth and width in the use of design media and methods, and on the other hand by the increasing complexity and interdependency of society due to globalisation. These issues confront the designer-researcher with new challenges. This paper formulates a research strategy for research-by-design in fields that have a high degree of richness in the use of media, the amount of information, and the methods involved. The Rich Research Space concept proposed takes into account the physical, social, and cultural spaces, and the virtual and visual media spaces in which the research-by-design takes place. The concept takes the form of a specific integral approach to design, and a holistic theoretical mindset. It embraces many types of investigation, from analytical to intuitive. The Rich Research Space provides a flexible framework within which the complexity of research-by-design can be interrelated, discussed, and reflected upon. Potentially, it can create a more involved role for the designer-researcher, a role that allows contributions towards the resolution of ever more pressing issues in our society. This approach is currently one of a limited number of possible frameworks that the design professions can utilize in order to make a difference in a world of at times overwhelming complexity. The concept of the Rich Research Space is discussed with reference to an art installation called Barely.Keywords: Research by design, collaborative design, complexity, creativity, research methods.

  4. Transcriptome analysis of genes involved in anthocyanins biosynthesis and transport in berries of black and white spine grapes (Vitis davidii).

    Science.gov (United States)

    Sun, Lei; Fan, Xiucai; Zhang, Ying; Jiang, Jianfu; Sun, Haisheng; Liu, Chonghuai

    2016-01-01

    The color of berry skin is an important economic trait for grape and is essentially determined by the components and content of anthocyanins. The fruit color of Chinese wild grapes is generally black, and the profile of anthocyanins in Chinese wild grapes is significantly different from that of Vitis vinifera . However, V. davidii is the only species that possesses white berry varieties among Chinese wild grape species. Thus, we performed a transcriptomic analysis to compare the difference of transcriptional level in black and white V. davidii , in order to find some key genes that are related to anthocyanins accumulation in V. davidii . The results of anthocyanins detection revealed that 3,5- O -diglucoside anthocyanins is the predominant anthocyanins in V. davidii . It showed obvious differences from V. vinifera in the profile of the composition of anthocyanins. The transcriptome sequencing by Illumina mRNA-Seq technology generated an average of 57 million 100-base pair clean reads from each sample. Differential gene expression analysis revealed thousands of differential expression genes (DEGs) in the pairwise comparison of different fruit developmental stages between and within black and white V. davidii . After the analysis of functional category enrichment and differential expression patterns of DEGs, 46 genes were selected as the candidate genes. Some genes have been reported as being related to anthocyanins accumulation, and some genes were newly found in our study as probably being related to anthocyanins accumulation. We inferred that 3AT (VIT_03s0017g00870) played an important role in anthocyanin acylation, GST4 (VIT_04s0079g00690) and AM2 (VIT_16s0050g00910) played important roles in anthocyanins transport in V. davidii . The expression of some selected DEGs was further confirmed by quantitative real-time PCR (qRT-PCR). The present study investigated the transcriptomic profiles of berry skin from black and white spine grapes at three fruit developmental

  5. Time, Concentration, and pH-Dependent Transport and Uptake of Anthocyanins in a Human Gastric Epithelial (NCI-N87) Cell Line.

    Science.gov (United States)

    Atnip, Allison A; Sigurdson, Gregory T; Bomser, Joshua; Giusti, M Mónica

    2017-02-18

    Anthocyanins are the largest class of water soluble plant pigments and a common part of the human diet. They may have many potential health benefits, including antioxidant, anti-inflammatory, anti-cancer, and cardioprotective activities. However, anthocyanin metabolism is not well understood. Studies suggest that anthocyanins absorption may occur in the stomach, in which the acidic pH favors anthocyanin stability. A gastric epithelial cell line (NCI-N87) has been used to study the behavior of anthocyanins at a pH range of 3.0-7.4. This work examines the effects of time (0-3 h), concentration (50-1500 µM), and pH (3.0, 5.0, 7.4) on the transport and uptake of anthocyanins using NCI-N87 cells. Anthocyanins were transported from the apical to basolateral side of NCI-N87 cells in time and dose dependent manners. Over the treatment time of 3 h the rate of transport increased, especially with higher anthocyanin concentrations. The non-linear rate of transport may suggest an active mechanism for the transport of anthocyanins across the NCI-N87 monolayer. At apical pH 3.0, higher anthocyanin transport was observed compared to pH 5.0 and 7.4. Reduced transport of anthocyanins was found to occur at apical pH 5.0.

  6. Evaluation of the influence of white grape seed extracts as copigment sources on the anthocyanin extraction from grape skins previously classified by near infrared hyperspectral tools.

    Science.gov (United States)

    Nogales-Bueno, Julio; Baca-Bocanegra, Berta; Jara-Palacios, María José; Hernández-Hierro, José Miguel; Heredia, Francisco José

    2017-04-15

    Hyperspectral imaging has been used to classify red grapes (Vitis vinifera L.) according to their predicted extractable total anthocyanin content (i.e. extractable total anthocyanin content determined by a hyperspectral method). Low, medium and high levels of predicted extractable total anthocyanin content were established. Then, grape skins were split into three parts and each part was macerated into a different model wine solution for a three-day period. Wine model solutions were made up with different concentration of copigments coming from white grape seeds. Aqueous supernatants were analyzed by HPLC-DAD and extractable anthocyanin contents were obtained. Principal component analyses and analyses of variance were carried out with the aim of studying trends related to the extractable anthocyanin contents. Significant differences were found among grapes with different levels of predicted extractable anthocyanin contents. Moreover, no significant differences were found on the extractable anthocyanin contents using different copigment concentrations in grape skin macerations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Antioxidant and prebiotic activity of five peonidin-based anthocyanins extracted from purple sweet potato (Ipomoea batatas (L.) Lam.).

    Science.gov (United States)

    Sun, Hanju; Zhang, Pingping; Zhu, Yongsheng; Lou, Qiuyan; He, Shudong

    2018-03-22

    Twelve kinds of anthocyanins from the Chinese purple sweet potato cultivar (Ipomoea batatas (L.) Lam.) were extracted and identified using LC-MS/MS, which had a high content of peonidin-based anthocyanins. Five peonidin-based anthocyanin monomers (P1, P2, P3, P4 and P5) were isolated by preparative liquid chromatography with structural analyses using an Impact II Q-TOF MS/MS. Then, the functional properties of the anthocyanin monomers, such as the antioxidant activities, proliferative effects on probiotics, and their inhibition on harmful bacteria in vitro, were investigated. The peonidin-based components in purple sweet potato anthocyanins (PSPAs) showed good properties regarding scavenging 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals and superoxide anions, and had good potential in reducing the total power activity and Fe 2+ chelating ability. While the order of the antioxidant abilities was as follows: P4 > P5 > P3 > P2 > P1 > PSPAs. Microbial cultivations showed that P1, P2, P3, P4, P5 and PSPAs could induce the proliferation of Bifidobacterium bifidum, Bifidobacterium adolescentis, Bifidobacterium infantis and Lactobacillus acidophilus, and they inhibited the growth of Staphylococcus aureus and Salmonella typhimurium, suggesting the anthocyanins might have prebiotic-like activity through the modulation of the intestinal microbiota. Our results indicate that peonidin-based anthocyanins could be further utilized in health foods and pharmaceutical developments.

  8. Stability improvement of natural food colors: Impact of amino acid and peptide addition on anthocyanin stability in model beverages.

    Science.gov (United States)

    Chung, Cheryl; Rojanasasithara, Thananunt; Mutilangi, William; McClements, David Julian

    2017-03-01

    Anthocyanins are prone to chemical degradation and color fading in the presence of vitamin C. The potential of three amino acids (l-phenylalanine, l-tyrosine, l-tryptophan) and a polypeptide (ε-poly-l-lysine) in prolonging the color stability of purple carrot anthocyanins (0.025%) in model beverages (0.05% l-ascorbic acid, citric acid, pH 3.0) stored at elevated temperature (40°C/7 days) was examined. In the absence of amino acids or peptides, anthocyanin degraded at first-order reaction rate. Addition of amino acids or peptide (0.1%) increased the color stability of anthocyanins, with the most significant improvement observed for l-tryptophan. The average half-life of anthocyanin color increased from 2 days to 6 days with l-tryptophan addition. Fluorescence quenching measurements revealed that the l-tryptophan interacted with anthocyanins mainly through hydrogen bonding, although some hydrophobic interaction may also have been involved. Overall, this study suggests that amino acid or peptide addition may prolong the color stability of anthocyanin in beverage products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. [The influence and mechanisms of purple sweet potato anthocyanins on the growth of bladder cancer BIU87 cell].

    Science.gov (United States)

    Li, W L; Ji, G H; Zhang, X Z; Yu, H Y

    2018-02-06

    Objective: To observe the effect of purple sweet potato anthocyanins on the proliferation of bladder cancer cell line BIU87 and to investigate the molecular mechanisms. Methods: Bladder cancer BIU87 cells were cultured and exposed to anthocyanins at the different concentrations of 100, 200, 400, and 800 μg/ml respectively. The growth inhibition of anthocyanins on BIU87 cells were evaluated by morphometry and cell counting kit-8 (CCK-8) assay, and the cell apoptosis rate was detected by Flow cytometry (FCM). Results: Morphometry showed that the number of BIU87 cells decreased, the volume shrank, the intercellular space enlarged, the ability of cell adherence weakened, and the cell shape changed when the concentration of anthocyanins increased. CCK-8 assay showed that when 100, 200, 400, 800 μg/ml anthocyanins treated BIU87 cells for 48 h, the absorbance was 24 ± 0.07, 1.15 ± 0.11, 0.90 ± 0.08, 0.56 ± 0.09, respectively. Compared with the control group, anthocyanins-treated groups significantly inhibited the proliferation of BIU87 cells ( P sweet potato anthocyanins can inhibit the growth of bladder cancer BIU87 cells through inducing cell apoptosis in a dose-dependent manner.

  10. Iron Supply Affects Anthocyanin Content and Related Gene Expression in Berries of Vitis vinifera cv. Cabernet Sauvignon.

    Science.gov (United States)

    Shi, Pengbao; Li, Bing; Chen, Haiju; Song, Changzheng; Meng, Jiangfei; Xi, Zhumei; Zhang, Zhenwen

    2017-02-14

    Anthocyanins are important compounds for red grape and red wine quality, and can be influenced by supply of nutrients such as nitrogen, phosphorus, potassium, zinc, and iron. The present work aims to gain a better understanding of the effect of iron supply on anthocyanins concentration in grape berries. To this end, own-rooted four-year-old Cabernet Sauvignon grapevines ( Vitis vinifera ) were fertigated every three days with 0, 23, 46, 92, and 184 μM iron (Fe) from ferric ethylenediamine di ( o -hydroxyphenylacetic) acid (Fe-EDDHA) in a complete nutrient solution. Fe deficiency or excess generally led to higher concentrations of titratable acidity and skin/berry ratio, and to lower reducing sugar content, sugar/acid ratio, pH, berry weight, and concentration of anthocyanins. Most of the individual anthocyanins detected in this study, except cyanidin-3- O -glucoside, delphinidin-3- O -glucoside, and cyanidin-3- O -(6- O -coumaryl)-glucoside, in moderate Fe treatment (46 μM) grapes were significantly higher than those of other treatments. Genes encoding chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), leucoanthocyanidin dioxygenase (LDOX), and anthocyanin O -methyltransferase (AOMT) exhibited higher transcript levels in berries from plants cultivated with 46 μM Fe compared to the ones cultivated with other Fe concentrations. We suggest that grape sugar content, anthocyanins content, and transcriptions of genes involved in anthocyanin biosynthesis were correlated with Fe supply concentrations.

  11. Iron Supply Affects Anthocyanin Content and Related Gene Expression in Berries of Vitis vinifera cv. Cabernet Sauvignon

    Directory of Open Access Journals (Sweden)

    Pengbao Shi

    2017-02-01

    Full Text Available Anthocyanins are important compounds for red grape and red wine quality, and can be influenced by supply of nutrients such as nitrogen, phosphorus, potassium, zinc, and iron. The present work aims to gain a better understanding of the effect of iron supply on anthocyanins concentration in grape berries. To this end, own-rooted four-year-old Cabernet Sauvignon grapevines (Vitis vinifera were fertigated every three days with 0, 23, 46, 92, and 184 μM iron (Fe from ferric ethylenediamine di (o-hydroxyphenylacetic acid (Fe-EDDHA in a complete nutrient solution. Fe deficiency or excess generally led to higher concentrations of titratable acidity and skin/berry ratio, and to lower reducing sugar content, sugar/acid ratio, pH, berry weight, and concentration of anthocyanins. Most of the individual anthocyanins detected in this study, except cyanidin-3-O-glucoside, delphinidin-3-O-glucoside, and cyanidin-3-O-(6-O-coumaryl-glucoside, in moderate Fe treatment (46 μM grapes were significantly higher than those of other treatments. Genes encoding chalcone isomerase (CHI, flavanone 3-hydroxylase (F3H, leucoanthocyanidin dioxygenase (LDOX, and anthocyanin O-methyltransferase (AOMT exhibited higher transcript levels in berries from plants cultivated with 46 μM Fe compared to the ones cultivated with other Fe concentrations. We suggest that grape sugar content, anthocyanins content, and transcriptions of genes involved in anthocyanin biosynthesis were correlated with Fe supply concentrations.

  12. Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor.

    Science.gov (United States)

    Gou, Jin-Ying; Felippes, Felipe F; Liu, Chang-Jun; Weigel, Detlef; Wang, Jia-Wei

    2011-04-01

    Flavonoids are synthesized through an important metabolic pathway that leads to the production of diverse secondary metabolites, including anthocyanins, flavonols, flavones, and proanthocyanidins. Anthocyanins and flavonols are derived from Phe and share common precursors, dihydroflavonols, which are substrates for both flavonol synthase and dihydroflavonol 4-reductase. In the stems of Arabidopsis thaliana, anthocyanins accumulate in an acropetal manner, with the highest level at the junction between rosette and stem. We show here that this accumulation pattern is under the regulation of miR156-targeted SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes, which are deeply conserved and known to have important roles in regulating phase change and flowering. Increased miR156 activity promotes accumulation of anthocyanins, whereas reduced miR156 activity results in high levels of flavonols. We further provide evidence that at least one of the miR156 targets, SPL9, negatively regulates anthocyanin accumulation by directly preventing expression of anthocyanin biosynthetic genes through destabilization of a MYB-bHLH-WD40 transcriptional activation complex. Our results reveal a direct link between the transition to flowering and secondary metabolism and provide a potential target for manipulation of anthocyanin and flavonol content in plants.

  13. Negative Regulation of Anthocyanin Biosynthesis in Arabidopsis by a miR156-Targeted SPL Transcription Factor[W][OA

    Science.gov (United States)

    Gou, Jin-Ying; Felippes, Felipe F.; Liu, Chang-Jun; Weigel, Detlef; Wang, Jia-Wei

    2011-01-01

    Flavonoids are synthesized through an important metabolic pathway that leads to the production of diverse secondary metabolites, including anthocyanins, flavonols, flavones, and proanthocyanidins. Anthocyanins and flavonols are derived from Phe and share common precursors, dihydroflavonols, which are substrates for both flavonol synthase and dihydroflavonol 4-reductase. In the stems of Arabidopsis thaliana, anthocyanins accumulate in an acropetal manner, with the highest level at the junction between rosette and stem. We show here that this accumulation pattern is under the regulation of miR156-targeted SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes, which are deeply conserved and known to have important roles in regulating phase change and flowering. Increased miR156 activity promotes accumulation of anthocyanins, whereas reduced miR156 activity results in high levels of flavonols. We further provide evidence that at least one of the miR156 targets, SPL9, negatively regulates anthocyanin accumulation by directly preventing expression of anthocyanin biosynthetic genes through destabilization of a MYB-bHLH-WD40 transcriptional activation complex. Our results reveal a direct link between the transition to flowering and secondary metabolism and provide a potential target for manipulation of anthocyanin and flavonol content in plants. PMID:21487097

  14. Optimization of Extraction Parameters by Using Response Surface Methodology, Purification, and Identification of Anthocyanin Pigments in Melastoma malabathricum Fruit

    Science.gov (United States)

    Anuar, Nordiyanah; Mohd Adnan, Ahmad Faris; Saat, Naziz; Aziz, Norkasmani; Mat Taha, Rosna

    2013-01-01

    Anthocyanins not just have various benefits in food industry but also have been used as natural colourants in cosmetic, coating products and as potential natural photosensitizers in solar cell. Thus, the main purpose of this study was to obtain information on the maximum yield of anthocyanin that can be recovered from Melastoma malabathricum fruit. Factors such as extraction temperature, extraction time, and solid to liquid ratio were identified to be significantly affecting anthocyanin extraction efficiency. By using three-level three-factor Box-Behnken design, the optimized conditions for anthocyanin extraction by acidified methanol (R 2 = 0.972) were temperature of 60°C, time of 86.82 min, and 0.5 : 35 (g/mL) solid to liquid ratio while the optimum extraction conditions by acidified ethanol (R 2 = 0.954) were temperature of 60°C, time of 120 min, and 0.5 : 23.06 (g/mL) solid to liquid ratio. The crude anthocyanin extract was further purified by using Amberlite XAD-7 and Sephadex LH-20 column chromatography. Identification of anthocyanins revealed the presence of cyanidin dihexoside, cyanidin hexoside, and delphinidin hexoside as the main anthocyanins in M. malabathricum fruit. PMID:24174918

  15. Members of the LBD family of transcription factors repress anthocyanin synthesis and affect additional nitrogen responses in Arabidopsis.

    Science.gov (United States)

    Rubin, Grit; Tohge, Takayuki; Matsuda, Fumio; Saito, Kazuki; Scheible, Wolf-Rüdiger

    2009-11-01

    Nitrogen (N) and nitrate (NO(3)(-)) per se regulate many aspects of plant metabolism, growth, and development. N/NO(3)(-) also suppresses parts of secondary metabolism, including anthocyanin synthesis. Molecular components for this repression are unknown. We report that three N/NO(3)(-)-induced members of the LATERAL ORGAN BOUNDARY DOMAIN (LBD) gene family of transcription factors (LBD37, LBD38, and LBD39) act as negative regulators of anthocyanin biosynthesis in Arabidopsis thaliana. Overexpression of each of the three genes in the absence of N/NO(3)(-) strongly suppresses the key regulators of anthocyanin synthesis PAP1 and PAP2, genes in the anthocyanin-specific part of flavonoid synthesis, as well as cyanidin- but not quercetin- or kaempferol-glycoside production. Conversely, lbd37, lbd38, or lbd39 mutants accumulate anthocyanins when grown in N/NO(3)(-)-sufficient conditions and show constitutive expression of anthocyanin biosynthetic genes. The LBD genes also repress many other known N-responsive genes, including key genes required for NO(3)(-) uptake and assimilation, resulting in altered NO(3)(-) content, nitrate reductase activity/activation, protein, amino acid, and starch levels, and N-related growth phenotypes. The results identify LBD37 and its two close homologs as novel repressors of anthocyanin biosynthesis and N availability signals in general. They also show that, besides being developmental regulators, LBD genes fulfill roles in metabolic regulation.

  16. New challenges for the design of high value plant products: stabilization of anthocyanins in plant vacuoles

    Directory of Open Access Journals (Sweden)

    Valentina ePasseri

    2016-02-01

    Full Text Available In the last decade plant biotechnologists and breeders have made several attempt to improve the antioxidant content of plant-derived food. Most efforts concentrated on increasing the synthesis of antioxidants, in particular anthocyanins, by inducing the transcription of genes encoding the synthesizing enzymes. We present here an overview of economically interesting plant species, both food crops and ornamentals, in which anthocyanin content was improved by traditional breeding or transgenesis. Old genetic studies in petunia and more recent biochemical work in brunfelsia, have shown that after synthesis and compartmentalization in the vacuole, anthocyanins need to be stabilized to preserve the color of the plant tissue over time. The final yield of antioxidant molecules is the result of the balance between synthesis and degradation. Therefore the understanding of the mechanism that determine molecule stabilization in the vacuolar lumen is the next step that needs to be taken to further improve the anthocyanin content in food.In several species a phenomenon known as fading is responsible for the disappearance of pigmentation which in some case can be nearly complete. We discuss the present knowledge about the genetic and biochemical factors involved in pigment preservation/destabilization in plant cells.The improvement of our understanding of the fading process will supply new tools for both biotechnological approaches and marker-assisted breeding.

  17. Combining ability of sweetpotato germplasm for yield, dry matter content, and anthocyanin production

    Science.gov (United States)

    Interest in the potential of sweetpotato (Ipomoea batatas) for the production of industrial products is increasing. As part of an effort to evaluate the potential of sweetpotatoes for starch and anthocyanin production in the southeastern United States, a 5 x 5 North Carolina mating design II (NCII m...

  18. Anthocyanin biosynthesis for cold and freezing stress tolerance and desirable color in Brassica rapa.

    Science.gov (United States)

    Ahmed, Nasar Uddin; Park, Jong-In; Jung, Hee-Jeong; Hur, Yoonkang; Nou, Ill-Sup

    2015-07-01

    Flavonoids are divided into several structural classes, including anthocyanins, which provide flower and leaf colors and other derivatives that play diverse roles in plant development and interactions with the environment. This study characterized four anthocyanidin synthase (ANS) genes of Brassica rapa, a structural gene of the anthocyanin biosynthetic pathway, and investigated their association with pigment formation, cold and freezing tolerance in B. rapa. Sequences of these genes were analyzed and compared with similar gene sequences from other species, and a high degree of homology with their respective functions was found. Organ-specific expression analysis revealed that these genes were only expressed in the colored portion of leaves of different lines of B. rapa. Conversely, B. rapa anthocyanidin synthase (BrANS) genes also showed responses to cold and freezing stress treatment in B. rapa. BrANSs were also shown to be regulated by two transcription factors, BrMYB2-2 and BrTT8, contrasting with anthocyanin accumulation and cold stress. Thus, the above results suggest the association of these genes with anthocyanin biosynthesis and cold and freezing stress tolerance and might be useful resources for development of cold-resistant Brassica crops with desirable colors as well.

  19. Anthocyanin Retention of Cranberry (Vaccinium macrocarpon Juice Subjected to Different Nanofiltration Conditions

    Directory of Open Access Journals (Sweden)

    Kong Ah-Hen

    2017-01-01

    Full Text Available The aim of this work was to evaluate the retention of anthocyanin during a nanofiltration process of cranberry juice. Nanofiltration membranes, HC-50P DDS with an effective area of 0.36 m2 in a plate/frame nanofilter system, DDS Lab Module, were used for the experiments. Juice feed flow rate varied from 1.0 to 12.0 L min−1 at transmembrane pressures between 20 and 40 bar (2026 and 4052 kPa. Permeate flux reached a maximum value of 41.3 L h−1 m−2 at a pressure of 40 bar and a feed rate of 12 L min−1, showing a direct dependency on these two parameters. Retention coefficients of anthocyanin of 0.94 to 0.99 corresponding to percentage recovery between 93 and 99% were obtained. Total anthocyanin content increased to values between 237 and 287 mg L−1 from original concentration of 82 to 97 mg L−1 in feed solution. Total soluble solids were also retained on the nanofilter. Both anthocyanin retentate and permeate obtained by nanofiltration could be potential functional ingredients for the food and nutraceutical industry.

  20. A secreted Ustilago maydis effector promotes virulence by targeting anthocyanin biosynthesis in maize

    Science.gov (United States)

    Tanaka, Shigeyuki; Brefort, Thomas; Neidig, Nina; Djamei, Armin; Kahnt, Jörg; Vermerris, Wilfred; Koenig, Stefanie; Feussner, Kirstin; Feussner, Ivo; Kahmann, Regine

    2014-01-01

    The biotrophic fungus Ustilago maydis causes smut disease in maize with characteristic tumor formation and anthocyanin induction. Here, we show that anthocyanin biosynthesis is induced by the virulence promoting secreted effector protein Tin2. Tin2 protein functions inside plant cells where it interacts with maize protein kinase ZmTTK1. Tin2 masks a ubiquitin–proteasome degradation motif in ZmTTK1, thus stabilizing the active kinase. Active ZmTTK1 controls activation of genes in the anthocyanin biosynthesis pathway. Without Tin2, enhanced lignin biosynthesis is observed in infected tissue and vascular bundles show strong lignification. This is presumably limiting access of fungal hyphae to nutrients needed for massive proliferation. Consistent with this assertion, we observe that maize brown midrib mutants affected in lignin biosynthesis are hypersensitive to U. maydis infection. We speculate that Tin2 rewires metabolites into the anthocyanin pathway to lower their availability for other defense responses. DOI: http://dx.doi.org/10.7554/eLife.01355.001 PMID:24473076

  1. Chromaticity and color saturation of ultraviolet irradiated poly(vinyl alcohol)-anthocyanin coatings

    Science.gov (United States)

    Mat Nor, N. A.; Aziz, N.; Mohd-Adnan, A. F.; Taha, R. M.; Arof, A. K.

    2016-06-01

    The purpose of this paper is to evaluate the chromaticity and color saturation of anthocyanin extraction from fruit pericarps of Ixora siamensis in a poly(vinyl alcohol) (PVA) matrix. The colored PVA matrix was exposed to UV-B irradiation for 93 days at UV intensity of 17.55 lux. Anthocyanin colorant has been extracted using methanol acidified with 0.5% trifluoroacetic acid (TFA). Different concentrations of ferulic acid (FA) (0, 1, 2, 3, 4 and 5 wt.%) have been added to the anthocyanin extractions before mixing with PVA to form a coating system. The PVA-anthocyanin-FA mixtures have been coated on glass slides and kept overnight in the dark for curing before exposure to UV-B irradiation. The FA-free sample undergoes more color degradation compared to samples containing FA. The coating with 2% FA has the most stable color with chromaticity of 41% and color saturation of 0.88 compared to other FA containing coats. The FA-free coat exhibits 29% chromaticity and color saturation of 0.38 at the end of the experiment.

  2. Anthocyanin production as a potential visual selection marker during plant transformation

    NARCIS (Netherlands)

    Kortstee, A.J.; Khan, S.A.; Helderman, C.M.; Trindade, L.M.; Wu, Y.; Visser, R.G.F.; Brendolise, C.; Allan, A.C.; Schouten, H.J.; Jacobsen, E.

    2011-01-01

    A mutant allele of the transcription factor gene MYB10 from apple induces anthocyanin production throughout the plant. This gene, including its upstream promoter, gene coding region and terminator sequence, was introduced into apple, strawberry and potato plants to determine whether it could be used

  3. Effect of Hibiscus sabdariffa and its anthocyanins on some reproductive aspects in rats.

    Science.gov (United States)

    Ali, Badreldin H; Al-Lawati, Intisar; Beegam, Sumyia; Ziada, Amal; Al Salam, Suhail; Nemmar, Abderrahim; Blunden, Gerald

    2012-01-01

    An aqueous extract of Hibiscus sabdariffa L. is a common beverage in many parts of the world. Reports on its effect on reproduction are conflicting, with anecdotal evidence that the plant is an aphrodisiac, while others report that it is estrogenic, and adversely affects spermatogenesis in rats. We have studied the effect of different concentrations of aqueous extracts of H. sabdariffa calyces (10%, 15% and 20%) used as drinking water for 10 consecutive weeks, and its anthocyanins (50, 100, 200 mg/kg for 5 days, orally) on the weight and histology of the testis, and on some biochemical constituents in testicular homogenates, in addition to the plasma concentrations of testosterone, luteinizing hormone and estradiol. The possible presence of an estrogenic effect of the extract and anthocyanins on the uteri of immature female rats was also tested. Neither the H. sabdariffa extract nor the anthocyanins significantly altered either testicular weight and histology, or uterus weight. Plasma concentrations of the three hormones studied, the testicular concentrations of protein, reduced glutathione and total cholesterol, and superoxide dismutase activity were all insignificantly affected by either the extract or the anthocyanins, except for a slight, but statistically significant, decrease in testicular protein concentration caused by the 15% aqueous extract when compared with controls. These results suggest that H. sabdariffa exerts no adverse effect on the male reproductive system. Consumption of H. sabdariffa aqueous extract inhibited the growth of the rats compared with the controls.

  4. Red Chicory (Cichorium intybus L. cultivar as a Potential Source of Antioxidant Anthocyanins for Intestinal Health

    Directory of Open Access Journals (Sweden)

    Laura D'evoli

    2013-01-01

    Full Text Available Fruit- and vegetable-derived foods have become a very significant source of nutraceutical phytochemicals. Among vegetables, red chicory (Cichorium Intybus L. cultivar has gained attention for its content of phenolic compounds, such as the anthocyanins. In this study, we evaluated the nutraceutical effects, in terms of antioxidant, cytoprotective, and antiproliferative activities, of extracts of the whole leaf or only the red part of the leaf of Treviso red chicory (a typical Italian red leafy plant in various intestinal models, such as Caco-2 cells, differentiated in normal intestinal epithelia and undifferentiated Caco-2 cells. The results show that the whole leaf of red chicory can represent a good source of phytochemicals in terms of total phenolics and anthocyanins as well as the ability of these phytochemicals to exert antioxidant and cytoprotective effects in differentiated Caco-2 cells and antiproliferative effects in undifferentiated Caco-2 cells. Interestingly, compared to red chicory whole leaf extracts, the red part of leaf extracts had a significantly higher content of both total phenolics and anthocyanins. The same extracts effectively corresponded to an increase of antioxidant, cytoprotective, and antiproliferative activities. Taken together, these findings suggest that the red part of the leaf of Treviso red chicory with a high content of antioxidant anthocyanins could be interesting for development of new food supplements to improve intestinal health.

  5. Viscous Food Matrix Influences Absorption and Excretion but Not Metabolism of Blackcurrant Anthocyanins in Rats

    NARCIS (Netherlands)

    Walton, M.C.; Hendriks, W.H.; Broomfield, A.M.; McGhie, T.K.

    2009-01-01

    The aim of the present study was to investigate the effect of a simultaneous intake of food and anthocyanins (ACNs) on ACN absorption, metabolism, and excretion. Blackcurrant ACNs (BcACNs) were dissolved in water with or without the addition of oatmeal and orally administered to rats, providing

  6. Stem girdling manipulates leaf sugar concentrations and anthocyanin expression in sugar maples trees during autumn

    Science.gov (United States)

    P.F. Murakami; P.G. Schaberg; J.B. Shane

    2008-01-01

    To better understand the effects of sugar accumulation on red color development of foliage during autumn, we compared carbohydrate concentration, anthocyanin expression and xylem pressure potential of foliage on girdled versus non-girdled (control) branches of 12 mature, open-grown sugar maple (Acer saccharum Marsh.) trees. Half of the study trees...

  7. The Arabidopsis histone chaperone FACT is required for stress-induced expression of anthocyanin biosynthetic genes.

    Science.gov (United States)

    Pfab, Alexander; Breindl, Matthias; Grasser, Klaus D

    2018-03-01

    The histone chaperone FACT is involved in the expression of genes encoding anthocyanin biosynthetic enzymes also upon induction by moderate high-light and therefore contributes to the stress-induced plant pigmentation. The histone chaperone FACT consists of the SSRP1 and SPT16 proteins and associates with transcribing RNAPII (RNAPII) along the transcribed region of genes. FACT can promote transcriptional elongation by destabilising nucleosomes in the path of RNA polymerase II, thereby facilitating efficient transcription of chromatin templates. Transcript profiling of Arabidopsis plants depleted in SSRP1 or SPT16 demonstrates that only a small subset of genes is differentially expressed relative to wild type. The majority of these genes is either up- or down-regulated in both the ssrp1 and spt16 plants. Among the down-regulated genes, those encoding enzymes of the biosynthetic pathway of the plant secondary metabolites termed anthocyanins (but not regulators of the pathway) are overrepresented. Upon exposure to moderate high-light stress several of these genes are up-regulated to a lesser extent in ssrp1/spt16 compared to wild type plants, and accordingly the mutant plants accumulate lower amounts of anthocyanin pigments. Moreover, the expression of SSRP1 and SPT16 is induced under these conditions. Therefore, our findings indicate that FACT is a novel factor required for the accumulation of anthocyanins in response to light-induction.

  8. New Challenges for the Design of High Value Plant Products: Stabilization of Anthocyanins in Plant Vacuoles.

    Science.gov (United States)

    Passeri, Valentina; Koes, Ronald; Quattrocchio, Francesca M

    2016-01-01

    In the last decade plant biotechnologists and breeders have made several attempt to improve the antioxidant content of plant-derived food. Most efforts concentrated on increasing the synthesis of antioxidants, in particular anthocyanins, by inducing the transcription of genes encoding the synthesizing enzymes. We present here an overview of economically interesting plant species, both food crops and ornamentals, in which anthocyanin content was improved by traditional breeding or transgenesis. Old genetic studies in petunia and more recent biochemical work in brunfelsia, have shown that after synthesis and compartmentalization in the vacuole, anthocyanins need to be stabilized to preserve the color of the plant tissue over time. The final yield of antioxidant molecules is the result of the balance between synthesis and degradation. Therefore the understanding of the mechanism that determine molecule stabilization in the vacuolar lumen is the next step that needs to be taken to further improve the anthocyanin content in food. In several species a phenomenon known as fading is responsible for the disappearance of pigmentation which in some case can be nearly complete. We discuss the present knowledge about the genetic and biochemical factors involved in pigment preservation/destabilization in plant cells. The improvement of our understanding of the fading process will supply new tools for both biotechnological approaches and marker-assisted breeding.

  9. New Challenges for the Design of High Value Plant Products : Stabilization of Anthocyanins in Plant Vacuoles

    NARCIS (Netherlands)

    Passeri, V.; Koes, R.; Quattrocchio, F.M.

    2016-01-01

    In the last decade plant biotechnologists and breeders have made several attempt to improve the antioxidant content of plant-derived food. Most efforts concentrated on increasing the synthesis of antioxidants, in particular anthocyanins, by inducing the transcription of genes encoding the

  10. Solid-phase extraction of berries’ anthocyanins and evaluation of their antioxidative properties

    Czech Academy of Sciences Publication Activity Database

    Denev, P.; Číž, Milan; Ambrožová, Gabriela; Lojek, Antonín; Yanakieva, I.; Kratchanova, M.

    2010-01-01

    Roč. 123, č. 4 (2010), s. 1055-1061 ISSN 0308-8146 R&D Projects: GA MŠk(CZ) OC08058 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : anthocyanins * solid-phase extraction * berry extracts Subject RIV: BO - Biophysics Impact factor: 3.458, year: 2010

  11. Predicting the anthocyanin content of wine grapes by NIR hyperspectral imaging.

    Science.gov (United States)

    Chen, Shanshan; Zhang, Fangfang; Ning, Jifeng; Liu, Xu; Zhang, Zhenwen; Yang, Shuqin

    2015-04-01

    The aim of this study was to demonstrate the capability of hyperspectral imaging in predicting anthocyanin content changes in wine grapes during ripening. One hundred twenty groups of Cabernet Sauvignon grapes were collected periodically after veraison. The hyperspectral images were recorded by a hyperspectral imaging system with a spectral range from 900 to 1700 nm. The anthocyanin content was measured by the pH differential method. A quantitative model was developed using partial least squares regression (PLSR) or support vector regression (SVR) for calculating the anthocyanin content. The best model was obtained using SVR, yielding a coefficient of validation (P-R(2)) of 0.9414 and a root mean square error of prediction (RMSEP) of 0.0046, higher than the PLSR model, which had a P-R(2) of 0.8407 and a RMSEP of 0.0129. Therefore, hyperspectral imaging can be a fast and non-destructive method for predicting the anthocyanin content of wine grapes during ripening. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Anthocyanin Characterization, Total Phenolic Quantification and Antioxidant Features of Some Chilean Edible Berry Extracts

    Directory of Open Access Journals (Sweden)

    Anghel Brito

    2014-07-01

    Full Text Available The anthocyanin composition and HPLC fingerprints of six small berries endemic of the VIII region of Chile were investigated using high resolution mass analysis for the first time (HR-ToF-ESI-MS. The antioxidant features of the six endemic species were compared, including a variety of blueberries which is one of the most commercially significant berry crops in Chile. The anthocyanin fingerprints obtained for the fruits were compared and correlated with the antioxidant features measured by the bleaching of the DPPH radical, the ferric reducing antioxidant power (FRAP, the superoxide anion scavenging activity assay (SA, and total content of phenolics, flavonoids and anthocyanins measured by spectroscopic methods. Thirty one anthocyanins were identified, and the major ones were quantified by HPLC-DAD, mostly branched 3-O-glycosides of delphinidin, cyanidin, petunidin, peonidin and malvidin. Three phenolic acids (feruloylquinic acid, chlorogenic acid, and neochlorogenic acid and five flavonols (hyperoside, isoquercitrin, quercetin, rutin, myricetin and isorhamnetin were also identified. Calafate fruits showed the highest antioxidant activity (2.33 ± 0.21 μg/mL in the DPPH assay, followed by blueberry (3.32 ± 0.18 μg/mL, and arrayán (5.88 ± 0.21, respectively.

  13. Premature and ectopic anthocyanin formation by silencing of anthocyanidin reductase in strawberry (Fragaria × ananassa).

    Science.gov (United States)

    Fischer, Thilo C; Mirbeth, Beate; Rentsch, Judith; Sutter, Corina; Ring, Ludwig; Flachowsky, Henryk; Habegger, Ruth; Hoffmann, Thomas; Hanke, Magda-Viola; Schwab, Wilfried

    2014-01-01

    Strawberry (Fragaria × ananassa) is a fruit crop with a distinct biphasic flavonoid biosynthesis. Whereas, in the immature receptacle, high levels of proanthocyanidins accumulate, which are associated with herbivore deterrence and pathogen defense, the prominent color-giving anthocyanins are primarily produced in ripe 'fruits' helping to attract herbivores for seed dispersal. Here, constitutive experimental down-regulation of one branch of proanthocyanidin biosynthesis was performed. As a result, the proportion of epicatechin monomeric units within the proanthocyanidin polymer chains was reduced, but this was not the case for the epicatechin starter unit. Shortened chain lengths of proanthocyanidins were also observed. All enzymatic activities for the production of color-giving anthocyanins were already present in unripe fruits at levels allowing a striking red anthocyanin phenotype in unripe fruits of the RNAi silencing lines. An immediately recognizable phenotype was also observed for the stigmata of flowers, which is another epicatechin-forming tissue. Thus, the down-regulation of anthocyanidin reductase (ANR) induced a redirection of the proanthocyanidin pathway, leading to premature and ectopic anthocyanin biosynthesis via enzymatic glycosylation as the alternative pathway. This redirection is also seen in flavonol biosynthesis, which is paralleled by higher pollen viability in silencing lines. ANRi transgenic lines of strawberry provide a versatile tool for the study of the biological functions of proanthocyanidins. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  14. A Genomic Approach to Study Anthocyanin Synthesis and Flower Pigmentation in Passionflowers

    Directory of Open Access Journals (Sweden)

    Lilian Cristina Baldon Aizza

    2011-01-01

    Full Text Available Most of the plant pigments ranging from red to purple colors belong to the anthocyanin group of flavonoids. The flowers of plants belonging to the genus Passiflora (passionflowers show a wide range of floral adaptations to diverse pollinating agents, including variation in the pigmentation of floral parts ranging from white to red and purple colors. Exploring a database of expressed sequence tags obtained from flower buds of two divergent Passiflora species, we obtained assembled sequences potentially corresponding to 15 different genes of the anthocyanin biosynthesis pathway in these species. The obtained sequences code for putative enzymes are involved in the production of flavonoid precursors, as well as those involved in the formation of particular (“decorated” anthocyanin molecules. We also obtained sequences encoding regulatory factors that control the expression of structural genes and regulate the spatial and temporal accumulation of pigments. The identification of some of the putative Passiflora anthocyanin biosynthesis pathway genes provides novel resources for research on secondary metabolism in passionflowers, especially on the elucidation of the processes involved in floral pigmentation, which will allow future studies on the role of pigmentation in pollinator preferences in a molecular level.

  15. Dyeing of Silk with Anthocyanins Dyes Extract from Liriope platyphylla Fruits

    Directory of Open Access Journals (Sweden)

    Huayin Wang

    2014-01-01

    Full Text Available A new source of natural anthocyanins dyes, from Liriope platyphylla fruit, is proposed. This paper analyzes the dye extracts, the primary color components of the extracts, the color features of the extracts under different pH conditions, and their application in silk dyeing. The research shows that, nine anthocyanins are found in  L. platyphylla fruits by analyzing the results of the HPLC/DAD, MS, and MS/MS spectra. The five major anthocyanins related to delphinidin, petunidin, and malvidin derivatives take up 91.72% of total anthocyanin contents. The color of the solution is red under acidic condition (pH < 3.0 and stays in yellow under alkaline condition with pH values above 7.0. The dye extracts applied to silk fabric with mordant free dyeing show different color under different pH conditions, changing between purple, blue, green, and yellow. However, the dyed colors is light and the dyeing rate is low. Metal mordant such as Sn in chelation enhances the dye depth and improves the fastness of the dyed silk fabrics, especially in silk fabrics dyed by premordanting and metamordanting.

  16. Sour Cherry (Prunus cerasus L.) Anthocyanins: effects of juice processing on phenolic compounds and bioavailability

    NARCIS (Netherlands)

    Toydemir, G.; Boyacioglu, D.; Beekwilder, M.J.; Vos, de R.C.H.; Hall, R.D.; Capanoglu, E.

    2014-01-01

    Sour cherry (Prunus cerasus L.), has gained growing interest in recent years due to the envisaged health benefits associated with a regular intake of anthocyanins and related polyphenolic compounds. Turkish sour cherries are widely consumed as processed products and are renowned for their high juice

  17. Gene and protein profiling of the effects of tart cherry anthocyanins in on preadipocytes

    Science.gov (United States)

    Several dietary bioactive compounds possess anti-inflammatory and anti-obesity properties and could potentially reduce obesity-associated cardiovascular diseases, diabetes and other metabolic inflammatory diseases. We are specifically interested in tart cherry (TC) anthocyanins (ACY) and in understa...

  18. Evolution of Sangiovese Wines with Varied Tannin and Anthocyanin Ratios during Oxidative Aging

    Science.gov (United States)

    Gambuti, Angelita; Picariello, Luigi; Rinaldi, Alessandra; Moio, Luigi

    2018-03-01

    Changes in phenolic compounds, chromatic characteristics, acetaldehyde, and protein-reactive tannins associated with oxidative aging were studied in Sangiovese wines with varied tannin T/anthocyanin A ratios. For this purpose, three Sangiovese vineyards located in Tuscany were considered in the 2016 vintage. To obtain wines with different T/A ratios, two red wines were produced from each vinification batch: a free run juice with a lower T/A ratio and a marc pressed wine with a higher T/A ratio. An overall of 6 wines with T/A ratios ranging between 5 and 23 were produced. An oxidation treatment (four saturation cycles) was applied to each wine. Average and initial oxygen consumption rates (OCR) were positively correlated to VRF/mA (vanilline reactive flavans/monomeric anthocyanins) and T/A ratios while OCRs were negatively related to the wine content in monomeric and total anthocyanins. The higher the A content was, the greater the loss of total and free anthocyanins. A significant lower production of polymeric pigments was detected in all pressed wines with respect to the correspondant free run one. A gradual decrease of tannin reactivity towards saliva proteins after the application of oxygen saturation cycles was detected. The results obtained in this experiment indicate that VRF/mA and T/A ratios are among the fundamental parameters to evaluate before choosing the antioxidant protection to be used and the right oxidation level to apply for a longer shelf-life of red wine.

  19. Stability of the anthocyanins extracted from residues of the wine industry

    Directory of Open Access Journals (Sweden)

    Edmar Clemente

    2011-09-01

    Full Text Available Anthocyanins are highly important due to their antioxidant capacity. They are the most important among the phenolic compounds and one of the main natural dyes used in the food industry. In this research, residue of processed grapes was used to investigate the presence of anthocyanins, the possibility of their extraction from the residue, and their stability. The extraction solution consisted of 70 mL of ethanol 70% and 30 mL of HCl 0.1% at pH 2.0. The results found for the processed grapes residue was 26.20 mg.100 g-1. In order to evaluate stability, caffeic acid was added at 0.5:1 w/v; 0.8:1 w/v; and 1:1 w/v concentrations. Anthocyanins extract reached the greatest stability at 0.5:1 w/v concentration, with 82.47% color retention and a half-life period of 15 days. Therefore, the use of this organic acid as a stabilizer for anthocyanins is feasible.

  20. The strawberry FaMYB1 transcription factor suppresses anthocyanin and flavonol accumulation in transgenic tobacco.

    Science.gov (United States)

    Aharoni, A; De Vos, C H; Wein, M; Sun, Z; Greco, R; Kroon, A; Mol, J N; O'Connell, A P

    2001-11-01

    Fruit ripening is characterized by dramatic changes in gene expression, enzymatic activities and metabolism. Although the process of ripening has been studied extensively, we still lack valuable information on how the numerous metabolic pathways are regulated and co-ordinated. In this paper we describe the characterization of FaMYB1, a ripening regulated strawberry gene member of the MYB family of transcription factors. Flowers of transgenic tobacco lines overexpressing FaMYB1 showed a severe reduction in pigmentation. A reduction in the level of cyanidin 3-rutinoside (an anthocyanin) and of quercetin-glycosides (flavonols) was observed. Expression of late flavonoid biosynthesis genes and their enzyme activities were adversely affected by FaMYB1 overexpression. Two-hybrid assays in yeast showed that FaMYB1 could interact with other known anthocyanin regulators, but it does not act as a transcriptional activator. Interestingly, the C-terminus of FaMYB1 contains the motif pdLNL(D)/(E)Lxi(G)/S. This motif is contained in a region recently proposed to be involved in the repression of transcription by AtMYB4, an Arabidopsis MYB protein. Our results suggest that FaMYB1 may play a key role in regulating the biosynthesis of anthocyanins and flavonols in strawberry. It may act to repress transcription in order to balance the levels of anthocyanin pigments produced at the latter stages of strawberry fruit maturation, and/or to regulate metabolite levels in various branches of the flavonoid biosynthetic pathway.

  1. Genetic engineering of novel bluer-colored chrysanthemums produced by accumulation of delphinidin-based anthocyanins.

    Science.gov (United States)

    Noda, Naonobu; Aida, Ryutaro; Kishimoto, Sanae; Ishiguro, Kanako; Fukuchi-Mizutani, Masako; Tanaka, Yoshikazu; Ohmiya, Akemi

    2013-10-01

    Chrysanthemums (Chrysanthemum morifolium Ramat.) have no purple-, violet- or blue-flowered cultivars because they lack delphinidin-based anthocyanins. This deficiency is due to the absence of the flavonoid 3',5'-hydroxylase gene (F3'5'H), which encodes the key enzyme for delphinidin biosynthesis. In F3'5'H-transformed chrysanthemums, unpredictable and unstable expression levels have hampered successful production of delphinidin and reduced desired changes in flower color. With the aim of achieving delphinidin production in chrysanthemum petals, we found that anthocyanin biosynthetic gene promoters combined with a translational enhancer increased expression of some F3'5'H genes and accompanying delphinidin-based anthocyanin accumulation in transgenic chrysanthemums. Dramatic accumulation of delphinidin (up to 95%) was achieved by simple overexpression of Campanula F3'5'H controlled by a petal-specific flavanone 3-hydroxylase promoter from chrysanthemum combined with the 5'-untranslated region of the alcohol dehydrogenase gene as a translational enhancer. The flower colors of transgenic lines producing delphinidin-based anthocyanins changed from a red-purple to a purple-violet hue in the Royal Horticultural Society Colour Charts. This result represents a promising step toward molecular breeding of blue chrysanthemums.

  2. Natural variation in petal color in Lycoris longituba revealed by anthocyanin components.

    Directory of Open Access Journals (Sweden)

    Qiuling He

    Full Text Available Lycoris longituba is one of the species belonging to the Amaryllidaceae family. Despite its limited distribution, endemic to central eastern China, this species displays an exceptionally wide diversity of flower colors from purple, red, orange, to yellow, in nature. We study the natural variation of floral color in L. longituba by testing the components of water-soluble vacuolar pigments--anthocyanins--in its petals using high-performance liquid chromatography coupled with photodiode array detection and electrospray ionization mass spectrometry. Four anthocyanins were identified, cyanidin-3-sophoroside (Cy3So, cyanidin-3-xylosylglucoside (Cy3XyGlc, cyanidin-3-sambubioside (Cy3Sa, and pelargonidin-3-xylosylglucoside (Pg3XyGlc, which occur at various amounts in L. longituba petals of different colors. A multivariate analysis was used to explore the relationship between pigments and flower color. Anthocyanins have been thought to play a major role in acting as a UV screen that protects the plant's DNA from sunlight damage and attracting insects for the purpose of pollination. Thus, knowledge about the content and type of anthocyanins determining the petal coloration of Lycoris longituba will help to study the adaptive evolution of flowers and provide useful information for the ornamental breeding of this species.

  3. GWA Mapping of Anthocyanin Accumulation Reveals Balancing Selection of MYB90 in Arabidopsis thaliana

    NARCIS (Netherlands)

    Bac-Molenaar, J.A.; Dijk-Fradin, van E.F.; Rienstra, J.A.; Vreugdenhil, D.; Keurentjes, J.J.B.

    2015-01-01

    Induction of anthocyanin accumulation by osmotic stress was assessed in 360 accessions of Arabidopsis thaliana. A wide range of natural variation, with phenotypes ranging from green to completely red/purple rosettes, was observed. A genome wide association (GWA) mapping approach revealed that

  4. Ethanol drinking, brain mitochondrial DNA, polyunsaturated fatty acids and effects of dietary anthocyanins

    Directory of Open Access Journals (Sweden)

    Christine Demeilliers

    2017-04-01

    Conclusion: These data demonstrate that moderate ethanol drinking reduces certain brain n-6 and results in mtDNA injury. The antioxidant anthocyanins protect brain mtDNA but do not restore normal n-6 levels. Further studies are required to investigate the consequences of a decrease in n-6 levels in brain.

  5. Anthocyanin biosynthesis in pears is regulated by a R2R3-MYB transcription factor PyMYB10.

    Science.gov (United States)

    Feng, Shouqian; Wang, Yanling; Yang, Song; Xu, Yuting; Chen, Xuesen

    2010-06-01

    Skin color is an important factor in pear breeding programs. The degree of red coloration is determined by the content and composition of anthocyanins. In plants, many MYB transcriptional factors are involved in regulating anthocyanin biosynthesis. In this study, a R2R3-MYB transcription factor gene, PyMYB10, was isolated from Asian pear (Pyrus pyrifolia) cv. 'Aoguan'. Sequence analysis suggested that the PyMYB10 gene was an ortholog of MdMYB10 gene, which regulates anthocyanin biosynthesis in red fleshed apple (Malus x domestica) cv. 'Red Field'. PyMYB10 was identified at the genomic level and had three exons, with its upstream sequence containing core sequences of cis-acting regulatory elements involved in light responsiveness. Fruit bagging showed that light could induce expression of PyMYB10 and anthocyanin biosynthesis. Quantitative real-time PCR revealed that PyMYB10 was predominantly expressed in pear skins, buds, and young leaves, and the level of transcription in buds was higher than in skin and young leaves. In ripening fruits, the transcription of PyMYB10 in the skin was positively correlated with genes in the anthocyanin pathway and with anthocyanin biosynthesis. In addition, the transcription of PyMYB10 and genes of anthocyanin biosynthesis were more abundant in red-skinned pear cultivars compared to blushed cultivars. Transgenic Arabidopsis plants overexpressing PyMYB10 exhibited ectopic pigmentation in immature seeds. The study suggested that PyMYB10 plays a role in regulating anthocyanin biosynthesis and the overexpression of PyMYB10 was sufficient to induce anthocyanin accumulation.

  6. Anthocyanins protect against LPS-induced oxidative stress-mediated neuroinflammation and neurodegeneration in the adult mouse cortex.

    Science.gov (United States)

    Khan, Muhammad Sohail; Ali, Tahir; Kim, Min Woo; Jo, Myeung Hoon; Jo, Min Gi; Badshah, Haroon; Kim, Myeong Ok

    2016-11-01

    Several studies provide evidence that reactive oxygen species (ROS) are key mediators of various neurological disorders. Anthocyanins are polyphenolic compounds and are well known for their anti-oxidant and neuroprotective effects. In this study, we investigated the neuroprotective effects of anthocyanins (extracted from black soybean) against lipopolysaccharide (LPS)-induced ROS-mediated neuroinflammation and neurodegeneration in the adult mouse cortex. Intraperitoneal injection of LPS (250 μg/kg) for 7 days triggers elevated ROS and oxidative stress, which induces neuroinflammation and neurodegeneration in the adult mouse cortex. Treatment with 24 mg/kg/day of anthocyanins for 14 days in LPS-injected mice (7 days before and 7 days co-treated with LPS) attenuated elevated ROS and oxidative stress compared to mice that received LPS-injection alone. The immunoblotting results showed that anthocyanins reduced the level of the oxidative stress kinase phospho-c-Jun N-terminal Kinase 1 (p-JNK). The immunoblotting and morphological results showed that anthocyanins treatment significantly reduced LPS-induced-ROS-mediated neuroinflammation through inhibition of various inflammatory mediators, such as IL-1β, TNF-α and the transcription factor NF- k B. Anthocyanins treatment also reduced activated astrocytes and microglia in the cortex of LPS-injected mice, as indicated by reductions in GFAP and Iba-1, respectively. Anthocyanins also prevent overexpression of various apoptotic markers, i.e., Bax, cytosolic cytochrome C, cleaved caspase-3 and PARP-1. Immunohistochemical fluoro-jade B (FJB) and Nissl staining indicated that anthocyanins prevent LPS-induced neurodegeneration in the mouse cortex. Our results suggest that dietary flavonoids, such as anthocyanins, have antioxidant and neuroprotective activities that could be beneficial to various neurological disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Proteomic approach reveals that starch degradation contributes to anthocyanin accumulation in tuberous root of purple sweet potato.

    Science.gov (United States)

    Wang, Shaoqing; Pan, Dezhuo; Lv, Xiaojie; Song, Xiaomin; Qiu, Zhimin; Huang, Chunmei; Huang, Ronghui; Chen, Wei

    2016-06-30

    A comparative proteomic approach was carried out to investigate anthocyanin biosynthesis in the tuberous roots of yellow sweet potato (YSP) and purple sweet potato (PSP) cultivars. More than 800 proteins were reproducibly detected through two-dimensional electrophoresis (2-DE), of which 50 proteins with 39 more and 11 less accumulated in PSP were identified through matrix-assisted laser desorption ionization-time of flight/time of flight mass spectrometry (MALDI-TOF/TOF-MS). Most of the analyzed proteins are annotated to be involved in starch metabolism and glycolysis. The more abundant starch phosphorylase (SP) and phosphoglucomutase (PGM) in PSP promoted the synthesis of precursors for anthocyanin synthesis. The results implied that starch degradation provided abundant substrates for anthocyanin biosynthesis in tuberous roots of PSP. 24kDa vacuolar protein (VP24) is related to anthocyanin transport and accumulation in vacuoles. Vacuole-associated annexin protein, VCaB42, is correlated with tonoplast biogenesis. Synergistic action of the two proteins is probably involved in the microautophagy and the intravacuolar trapping of anthocyanins. Interestingly, both VCaB42 and VP24 were more accumulated in PSP, suggesting that anthocyanins generated in the cytosol were transported into and became stored in the vacuoles of PSP. The present study provides new insights into the mechanism of tuberous root-specific anthocyanin accumulation in PSP. Sweet potato ranks as the seventh most important crop worldwide. Purple sweet potato, a special sweet potato cultivar, has been extensively investigated because large amounts of anthocyanin accumulate in its tuberous roots. Anthocyanin is well known for its free radical-scavenging activity and beneficial effects on human health. Its biosynthetic pathway has been well characterized in model plants. Although large-scale systematic studies have been performed to identify the proteins present in sweet potato, information on the

  8. ACIDIC SOAKING AND STEAM BLANCHING RETAIN ANTHOCYANINS AND POLYPHENOLS IN PURPLE Dioscorea alata FLOUR

    Directory of Open Access Journals (Sweden)

    Nelis Imanningsih*

    2013-12-01

    Full Text Available Purple Dioscorea alata (DA tuber has health benefits due to its bioactive anthocyanins, which belong to polyphenolic group. Tuber is commonly made into flour to optimize its uses, however, the anthocyanins undergo significant degradation during processing because of the endogenous polyphenol oxidase activities. This research investigated factors that retain anthocyanins and polyphenols in the purple DA flour as well as its antioxidant capacity. The types of treatments during milling process should be taken into account; for instance, soaking in citric acid and blanching in order to preserve the bioactive compounds. To examine the inhibitory effects of acidic soaking and steam blanching on polyphenol oxidase activities, these experiments used four levels of citric acid (0, 0.25, 0.5, and 1% and two levels of steam blanching time course (5 and 10 minutes. It was found that steam blanching for 5 or 10 minutes could reduce the activity of polyphenol oxidase, and consequently, retard the oxidation process and retain the polyphenolic compounds. Soaking the purple DA slices into a 1% citric acid solution followed by steam blanching for 10 min resulted in the highest total anthocyanins (104.36 mg/100 g, polyphenols (198.52 mg equivalent gallic acid/100 g, with an antioxidant capacity of 1.300 mg trolox equivalent/100 g. This study showed that the retention of bioactive compounds of DA tuber through soaking the tuber slices in solution containing inexpensive chemicals like citric acid at low concentrations, combined with 10 minutes of steam blanching resulted in flour containing total anthocyanins and phenolic as high as 44.51 and 62.58% of fresh tuber, respectively.

  9. The Onion (Allium cepa L.) R2R3-MYB Gene MYB1 Regulates Anthocyanin Biosynthesis

    Science.gov (United States)

    Schwinn, Kathy E.; Ngo, Hanh; Kenel, Fernand; Brummell, David A.; Albert, Nick W.; McCallum, John A.; Pither-Joyce, Meeghan; Crowhurst, Ross N.; Eady, Colin; Davies, Kevin M.

    2016-01-01

    Bulb color is an important consumer trait for onion (Allium cepa L., Allioideae, Asparagales). The bulbs accumulate a range of flavonoid compounds, including anthocyanins (red), flavonols (pale yellow), and chalcones (bright yellow). Flavonoid regulation is poorly characterized in onion and in other plants belonging to the Asparagales, despite being a major plant order containing many important crop and ornamental species. R2R3-MYB transcription factors associated with the regulation of distinct branches of the flavonoid pathway were isolated from onion. These belonged to sub-groups (SGs) that commonly activate anthocyanin (SG6, MYB1) or flavonol (SG7, MYB29) production, or repress phenylpropanoid/flavonoid synthesis (SG4, MYB4, MYB5). MYB1 was demonstrated to be a positive regulator of anthocyanin biosynthesis by the induction of anthocyanin production in onion tissue when transiently overexpressed and by reduction of pigmentation when transiently repressed via RNAi. Furthermore, ectopic red pigmentation was observed in garlic (Allium sativum L.) plants stably transformed with a construct for co-overexpression of MYB1 and a bHLH partner. MYB1 also was able to complement the acyanic petal phenotype of a defined R2R3-MYB anthocyanin mutant in Antirrhinum majus of the asterid clade of eudicots. The availability of sequence information for flavonoid-related MYBs from onion enabled phylogenetic groupings to be determined across monocotyledonous and dicotyledonous species, including the identification of characteristic amino acid motifs. This analysis suggests that divergent evolution of the R2R3-MYB family has occurred between Poaceae/Orchidaceae and Allioideae species. The DNA sequences identified will be valuable for future analysis of classical flavonoid genetic loci in Allium crops and will assist the breeding of these important crop species. PMID:28018399

  10. Anthocyanin increases adiponectin secretion and protects against diabetes-related endothelial dysfunction.

    Science.gov (United States)

    Liu, Yan; Li, Dan; Zhang, Yuhua; Sun, Ruifang; Xia, Min

    2014-04-15

    Adiponectin is an adipose tissue-secreted adipokine with beneficial effects on the cardiovascular system. In this study, we evaluated a potential role for adiponectin in the protective effects of anthocyanin on diabetes-related endothelial dysfunction. We treated db/db mice on a normal diet with anthocyanin cyanidin-3-O-β-glucoside (C3G; 2 g/kg diet) for 8 wk. Endothelium-dependent and -independent relaxations of the aorta were then evaluated. Adiponectin expression and secretion were also measured. C3G treatment restores endothelium-dependent relaxation of the aorta in db/db mice, whereas diabetic mice treated with an anti-adiponectin antibody do not respond. C3G treatment induces adiponectin expression and secretion in cultured 3T3 adipocytes through transcription factor forkhead box O1 (Foxo1). Silencing Foxo1 expression prevented C3G-stimulated induction of adiponectin expression. In contrast, overexpression of Foxo1-ADA promoted adiponectin expression in adipocytes. C3G activates Foxo1 by increasing its deacetylation via silent mating type information regulation 2 homolog 1 (Sirt1). Furthermore, purified anthocyanin supplementation significantly improved flow-mediated dilation (FMD) and increased serum adiponectin concentrations in patients with type 2 diabetes. Changes in adiponectin concentrations positively correlated with FMD in the anthocyanin group. Mechanistically, adiponectin activates cAMP-PKA-eNOS signaling pathways in human aortic endothelial cells, increasing endothelial nitric oxide bioavailability. These results demonstrate that adipocyte-derived adiponectin is required for anthocyanin C3G-mediated improvement of endothelial function in diabetes.

  11. The onion (Allium cepa L. R2R3-MYB gene MYB1 regulates anthocyanin biosynthesis

    Directory of Open Access Journals (Sweden)

    Kathy Schwinn

    2016-12-01

    Full Text Available Bulb colour is an important consumer trait for onion (Allium cepa L., Allioideae, Asparagales. The bulbs accumulate a range of flavonoid compounds, including anthocyanins (red, flavonols (pale yellow and chalcones (bright yellow. Flavonoid regulation is poorly characterised in onion and in other plants belonging to the Asparagales, despite being a major plant order containing many important crop and ornamental species. R2R3-MYB transcription factors associated with the regulation of distinct branches of the flavonoid pathway were isolated from onion. These belonged to sub-groups (SGs that commonly activate anthocyanin (SG6, MYB1 or flavonol (SG7, MYB29 production, or repress phenylpropanoid/flavonoid synthesis (SG4, MYB4, MYB5. MYB1 was demonstrated to be a positive regulator of anthocyanin biosynthesis by the induction of anthocyanin production in onion tissue when transiently overexpressd and by reduction of pigmentation when transiently repressed via RNAi. Furthermore, ectopic red pigmentation was observed in garlic (A. sativum L. plants stably transformed with a construct for co-overexpression of MYB1 and a bHLH partner. MYB1 also was able to complement the acyanic petal phenotype of a defined R2R3-MYB anthocyanin mutant in Antirrhinum majus of the asterid clade of eudicots. The availability of sequence information for flavonoid-related MYBs from onion enabled phylogenetic groupings to be determined across monocotyledonous and dicotyledonous species, including the identification of characteristic amino acid motifs. This analysis suggests that divergent evolution of the R2R3-MYB family has occurred between Poaceae/Orchidaceae and Allioideae species. The DNA sequences identified will be valuable for future analysis of classical flavonoid genetic loci in Allium crops and will assist the breeding of these important crop species.

  12. The Onion (Allium cepa L.) R2R3-MYB Gene MYB1 Regulates Anthocyanin Biosynthesis.

    Science.gov (United States)

    Schwinn, Kathy E; Ngo, Hanh; Kenel, Fernand; Brummell, David A; Albert, Nick W; McCallum, John A; Pither-Joyce, Meeghan; Crowhurst, Ross N; Eady, Colin; Davies, Kevin M

    2016-01-01

    Bulb color is an important consumer trait for onion ( Allium cepa L., Allioideae, Asparagales). The bulbs accumulate a range of flavonoid compounds, including anthocyanins (red), flavonols (pale yellow), and chalcones (bright yellow). Flavonoid regulation is poorly characterized in onion and in other plants belonging to the Asparagales, despite being a major plant order containing many important crop and ornamental species. R2R3-MYB transcription factors associated with the regulation of distinct branches of the flavonoid pathway were isolated from onion. These belonged to sub-groups (SGs) that commonly activate anthocyanin (SG6, MYB1) or flavonol (SG7, MYB29) production, or repress phenylpropanoid/flavonoid synthesis (SG4, MYB4, MYB5). MYB1 was demonstrated to be a positive regulator of anthocyanin biosynthesis by the induction of anthocyanin production in onion tissue when transiently overexpressed and by reduction of pigmentation when transiently repressed via RNAi. Furthermore, ectopic red pigmentation was observed in garlic ( Allium sativum L.) plants stably transformed with a construct for co-overexpression of MYB1 and a bHLH partner. MYB1 also was able to complement the acyanic petal phenotype of a defined R2R3-MYB anthocyanin mutant in Antirrhinum maju s of the asterid clade of eudicots. The availability of sequence information for flavonoid-related MYBs from onion enabled phylogenetic groupings to be determined across monocotyledonous and dicotyledonous species, including the identification of characteristic amino acid motifs. This analysis suggests that divergent evolution of the R2R3-MYB family has occurred between Poaceae/Orchidaceae and Allioideae species. The DNA sequences identified will be valuable for future analysis of classical flavonoid genetic loci in Allium crops and will assist the breeding of these important crop species.

  13. Neutron rich nuclei

    International Nuclear Information System (INIS)

    Foucher, R.

    1979-01-01

    If some β - emitters are particularly interesting to study in light, medium, and heavy nuclei, another (and also) difficult problem is to know systematically the properties of these neutron rich nuclei far from the stability line. A review of some of their characteristics is presented. How far is it possible to be objective in the interpretation of data is questioned and implications are discussed

  14. Arabidopsis pab1, a mutant with reduced anthocyanins in immature seeds from banyuls, harbors a mutation in the MATE transporter FFT.

    Science.gov (United States)

    Kitamura, Satoshi; Oono, Yutaka; Narumi, Issay

    2016-01-01

    Forward genetics approaches have helped elucidate the anthocyanin biosynthetic pathway in plants. Here, we used the Arabidopsis banyuls (ban) mutant, which accumulates anthocyanins, instead of colorless proanthocyanidin precursors, in immature seeds. In contrast to standard screens for mutants lacking anthocyanins in leaves/stems, we mutagenized ban plants and screened for mutants showing differences in pigmentation of immature seeds. The pale banyuls1 (pab1) mutation caused reduced anthocyanin pigmentation in immature seeds compared with ban. Immature pab1 ban seeds contained less anthocyanins and flavonols than ban, but showed normal expression of anthocyanin biosynthetic genes. In contrast to pab1, introduction of a flavonol-less mutation into ban did not produce paler immature seeds. Map-based cloning showed that two independent pab1 alleles disrupted the MATE-type transporter gene FFT/DTX35. Complementation of pab1 with FFT confirmed that mutation in FFT causes the pab1 phenotype. During development, FFT promoter activity was detected in the seed-coat layers that accumulate flavonoids. Anthocyanins accumulate in the vacuole and FFT fused to GFP mainly localized in the vacuolar membrane. Heterologous expression of grapevine MATE-type anthocyanin transporter gene partially complemented the pab1 phenotype. These results suggest that FFT acts at the vacuolar membrane in anthocyanin accumulation in the Arabidopsis seed coat, and that our screening strategy can reveal anthocyanin-related genes that have not been found by standard screening.

  15. MYB75 Phosphorylation by MPK4 Is Required for Light-Induced Anthocyanin Accumulation in Arabidopsis[OPEN

    Science.gov (United States)

    Li, Shengnan; Wang, Wenyi; Gao, Jinlan; Yin, Kangquan; Wang, Rui; Wang, Chengcheng; Mundy, John

    2016-01-01

    Light is a major environmental cue affecting various physiological and metabolic processes in plants. Although plant photoreceptors are well characterized, the mechanisms by which light regulates downstream responses are less clear. In Arabidopsis thaliana, the accumulation of photoprotective anthocyanin pigments is light dependent, and the R2R3 MYB transcription factor MYB75/PAP1 regulates anthocyanin accumulation. Here, we report that MYB75 interacts with and is phosphorylated by MAP KINASE4 (MPK4). Their interaction is dependent on MPK4 kinase activity and is required for full function of MYB75. MPK4 can be activated in response to light and is involved in the light-induced accumulation of anthocyanins. We show that MPK4 phosphorylation of MYB75 increases its stability and is essential for light-induced anthocyanin accumulation. Our findings reveal an important role for a MAPK pathway in light signal transduction. PMID:27811015

  16. Performance improvement of dye-sensitized solar cells (DSSC) by using dyes mixture from chlorophyll and anthocyanin

    Science.gov (United States)

    Pratiwi, D. D.; Nurosyid, F.; Kusumandari; Supriyanto, A.; Suryana, R.

    2017-11-01

    This article showed the effect of single and mixture natural dyes on the DSSC performance. The single dyes extracted from moss chlorophyll and mangosteen peels anthocyanin. The dyes mixture was prepared by mixing from both chlorophyll and anthocyanin. The absorbance of dyes solution and the adsorption of the dye onto the working electrode were analyzed using UV-Vis spectroscopy. The photocurrent-photovoltage of DSSCs were measured using I-V meter. The dyes mixture has an increased absorption at visible spectrum range as compared to single dye. The adsorption of the dyes mixture onto the TiO2 electrode has higher absorbance than single dye. The DSSC with single dye from moss chlorophyll and mangosteen peels anthocyanin resulted the conversion efficiency of 0.049% and 0.042% respectively. The dyes mixture of chlorophyll and anthocyanin improved the conversion efficiency of 0.154%.

  17. AOAC SMPR 2014.007: Authentication of selected Vaccinium species (Anthocyanins) in dietary ingredients and dietary supplements

    Science.gov (United States)

    This AOAC Standard Method Performance Requirements (SMPR) is for authentication of selected Vaccinium species in dietary ingredients and dietary supplements containing a single Vaccinium species using anthocyanin profiles. SMPRs describe the minimum recommended performance characteristics to be used...

  18. LC-MS/MS and UPLC-UV evaluation of anthocyanins and anthocyanidins during rabbiteye blueberry juice processing

    Science.gov (United States)

    Blueberry juice processing includes multiple steps and each affect the chemical composition of the berries, including thermal degradation of anthocyanins. Not from concentrate juice was made by heating and enzyme processing blueberries before pressing followed by ultrafiltration and pasteurization. ...

  19. Protective Effects of Blueberry Anthocyanins against H2O2-Induced Oxidative Injuries in Human Retinal Pigment Epithelial Cells.

    Science.gov (United States)

    Huang, Wu-Yang; Wu, Han; Li, Da-Jing; Song, Jiang-Feng; Xiao, Ya-Dong; Liu, Chun-Quan; Zhou, Jian-Zhong; Sui, Zhong-Quan

    2018-02-21

    Blueberry anthocyanins are considered protective of eye health because of their recognized antioxidant properties. In this study, blueberry anthocyanin extract (BAE), malvidin (Mv), malvidin-3-glucoside (Mv-3-glc), and malvidin-3-galactoside (Mv-3-gal) all reduced H 2 O 2 -induced oxidative stress by decreasing the levels of reactive oxygen species and malondialdehyde and increasing the levels of superoxide dismutase, catalase, and glutathione peroxidase in human retinal pigment epithelial cells. BAE and the anthocyanin standards enhanced cell viability from 63.69 ± 3.36 to 86.57 ± 6.92% (BAE), 115.72 ± 23.41% (Mv), 98.15 ± 9.39% (Mv-3-glc), and 127.97 ± 20.09% (Mv-3-gal) and significantly inhibited cell apoptosis (P blueberry anthocyanins could inhibit the induction and progression of age-related macular degeneration (AMD) through antioxidant mechanisms.

  20. Kings Today, Rich Tomorrow

    DEFF Research Database (Denmark)

    Fattoum, Asma

    2013-01-01

    This study investigates the King vs. Rich dilemma that founder-CEOs face at IPO. When undertaking IPO, founders face two options. They can either get rich, but then run the risk of losing the control over their firms; or they can remain kings by introducing defensive mechanisms, but this is likely...... to lead to lower IPO valuation. Using psychological ownership theory, we argue founder-CEOs to be more likely to choose the King option. This option forces them to leave money on the table at the IPO. However, their stewardship behavior allows them to recover that money on the long-run post IPO. We...... provide support for all hypotheses using a unique hand-collected dataset covering the full population of 467 IPOs undertaken in France between 1992 and 2011....

  1. Metabolite profiling of red and blue potatoes revealed cultivar and tissue specific patterns for anthocyanins and other polyphenols.

    Science.gov (United States)

    Oertel, Anne; Matros, Andrea; Hartmann, Anja; Arapitsas, Panagiotis; Dehmer, Klaus J; Martens, Stefan; Mock, Hans-Peter

    2017-08-01

    Metabolite profiling of tuber flesh and peel for selected colored potato varieties revealed cultivar and tissue specific profiles of anthocyanins and other polyphenols with variations in composition and concentration. Starchy tubers of Solanum tuberosum are a staple crop and food in many countries. Among cultivated potato varieties a huge biodiversity exists, including an increasing number of red and purple colored cultivars. This coloration relates to the accumulation of anthocyanins and is supposed to offer nutritional benefits possibly associated with the antioxidative capacity of anthocyanins. However, the anthocyanin composition and its relation to the overall polyphenol constitution in colored potato tubers have not been investigated closely. This study focuses on the phytochemical characterization of the phenolic composition of a variety of colored potato tubers, both for peel and flesh tissues. First, liquid chromatography (LC) separation coupled to UV and mass spectrometry (MS) detection of polyphenolic compounds of potato tubers from 57 cultivars was used to assign groups of potato cultivars differing in their anthocyanin and polyphenol profiles. Tissues from 19 selected cultivars were then analyzed by LC separation coupled to multiple reaction monitoring (MRM) to detect quantitative differences in anthocyanin and polyphenol composition. The measured intensities of 21 anthocyanins present in the analyzed potato cultivars and tissues could be correlated with the specific tuber coloration. Besides secondary metabolites well-known for potato tubers, the metabolic profiling led to the detection of two anthocyanins not described for potato tuber previously, which we tentatively annotated as pelargonidin feruloyl-xylosyl-glucosyl-galactoside and cyanidin 3-p-coumaroylrutinoside-5-glucoside. We detected significant correlations between some of the measured metabolites, as for example the negative correlation between the main anthocyanins of red and blue potato

  2. Exogenous application of pectin-derived oligosaccharides to grape berries modifies anthocyanin accumulation, composition and gene expression.

    Science.gov (United States)

    Villegas, Daniel; Handford, Michael; Alcalde, José Antonio; Perez-Donoso, Alonso

    2016-07-01

    Anthocyanins are secondary metabolites synthesized in grape berry skins via the phenylpropanoid pathway, with functions ranging from skin coloration to protection against pathogens or UV light. Accumulation of these compounds is highly variable depending on genetics, environmental factors and viticultural practices. Besides their biological functions, anthocyanins improve wine quality, as a high anthocyanin content in berries has a positive impact on the color, total phenolic concentration and, ultimately, the price of wine. The present work studies the effect of the pre-veraison application of pectin derived oligosaccharides (PDO) on the synthesis and accumulation of these compounds, and associates the changes observed with the expression of key genes in the phenylpropanoid pathways. To this end, pre-veraison Cabernet Sauvignon bunches were treated with PDO to subsequently determine total anthocyanin content, the anthocyanin profile (by HPLC-DAD) and gene expression (by qRT-PCR), using Ethrel and water treatments for comparison. The results show that PDO were as efficient as Ethrel in generating a significant rise in total anthocyanin content at 30 days after treatment (dat), compared with water treatments (1.32, 1.48 and 1.02 mg e.Mv-3G/g FW respectively) without any undesirable effect on berry size, soluble solids, tartaric acid concentration or pH. In addition, a significant alteration in the anthocyanin profile was observed. Specifically, a significant increase in the relative concentration of malvidin was observed for both PDO and Ethrel treatments, compared with water controls (52.8; 55.0 and 48.3%, respectively), with a significant rise in tri-hydroxylated forms and a fall in di-hydroxylated anthocyanins. The results of gene expression analyses suggest that the increment in total anthocyanin content is related to a short term increase in phenylalanine ammonia-lyase (PAL) expression, mediated by a decrease in MYB4A expression. A longer term increase in UDP

  3. An Intracellular Laccase Is Responsible for Epicatechin-Mediated Anthocyanin Degradation in Litchi Fruit Pericarp1[OPEN

    Science.gov (United States)

    Fang, Fang; Zhang, Xue-lian; Gong, Yi-hui; Li, Wen-jun; Shi, Zhao-wan; He, Quan; Wu, Qing; Li, Lu; Jiang, Lin-lin; Cai, Zhi-gao; Oren-Shamir, Michal; Zhang, Zhao-qi

    2015-01-01

    In contrast to the detailed molecular knowledge available on anthocyanin synthesis, little is known about its catabolism in plants. Litchi (Litchi chinensis) fruit lose their attractive red color soon after harvest. The mechanism leading to quick degradation of anthocyanins in the pericarp is not well understood. An anthocyanin degradation enzyme (ADE) was purified to homogeneity by sequential column chromatography, using partially purified anthocyanins from litchi pericarp as a substrate. The purified ADE, of 116 kD by urea SDS-PAGE, was identified as a laccase (ADE/LAC). The full-length complementary DNA encoding ADE/LAC was obtained, and a polyclonal antibody raised against a deduced peptide of the gene recognized the ADE protein. The anthocyanin degradation function of the gene was confirmed by its transient expression in tobacco (Nicotiana benthamiana) leaves. The highest ADE/LAC transcript abundance was in the pericarp in comparison with other tissues, and was about 1,000-fold higher than the polyphenol oxidase gene in the pericarp. Epicatechin was found to be the favorable substrate for the ADE/LAC. The dependence of anthocyanin degradation by the enzyme on the presence of epicatechin suggests an ADE/LAC epicatechin-coupled oxidation model. This model was supported by a dramatic decrease in epicatechin content in the pericarp parallel to anthocyanin degradation. Immunogold labeling transmission electron microscopy suggested that ADE/LAC is located mainly in the vacuole, with essential phenolic substances. ADE/LAC vacuolar localization, high expression levels in the pericarp, and high epicatechin-dependent anthocyanin degradation support its central role in pigment breakdown during pericarp browning. PMID:26514808

  4. Comparative analyses of light-induced anthocyanin accumulation and gene expression between the ray florets and leaves in chrysanthemum.

    Science.gov (United States)

    Hong, Yan; Yang, Li-Wen; Li, Meng-Ling; Dai, Si-Lan

    2016-06-01

    Light is one of the key environmental factors that affect anthocyanin biosynthesis. However, the underlying molecular mechanism remains unclear, and many problems regarding phenotypic change and corresponding gene regulation have not been solved. In the present study, comparative analyses of light-induced anthocyanin accumulation and gene expression between the ray florets and leaves were performed in Chrysanthemum × morifolium 'Purple Reagan'. After contrasting the variations in the flower color phenotype and relative pigment content, as well as expression patterns of structural and regulator genes responsible for anthocyanin biosynthesis and photoreceptor between different plant organs under light and dark conditions, we concluded that (1) both the capitulum and foliage are key organs responding to light for chrysanthemum coloration; (2) compared with flavones, shading makes a greater decrease on the anthocyanins accumulation; (3) most of the structural and regulatory genes in the light-induced anthocyanin pathway specifically express in the ray florets; and (4) CmCHS, CmF3H, CmF3'H, CmANS, CmDFR, Cm3GT, CmMYB5-1, CmMYB6, CmMYB7-1, CmbHLH24, CmCOP1 and CmHY5 are key genes for light-induced anthocyanin biosynthesis in chrysanthemum ray florets, while on the transcriptional level, the expressions of CmPHYA, CmPHYB, CmCRY1a, CmCRY1b and CmCRY2 are insignificantly changed. Moreover, the inferred comprehensive effect of multiple signals on the accumulation of anthocyanins and transmission channel of light signal that exist between the leaves and ray florets were further discussed. These results further our understanding of the relationship between the gene expression and light-induced anthocyanin biosynthesis, and lay foundations for the promotion of the molecular breeding of novel flower colors in chrysanthemums. Copyright © 2016. Published by Elsevier Masson SAS.

  5. Combined transcriptomic and proteomic analysis constructs a new model for light-induced anthocyanin biosynthesis in eggplant (Solanum melongena L.).

    Science.gov (United States)

    Li, Jing; Ren, Li; Gao, Zhen; Jiang, Mingmin; Liu, Yang; Zhou, Lu; He, Yongjun; Chen, Huoying

    2017-12-01

    Light is a key environmental factor affecting anthocyanin biosynthesis. Our previous study demonstrated that "Lanshan Hexian" is a light-sensitive eggplant cultivar, but its regulatory mechanism is unknown. Here, delphinidin-3-[4-(cis-p-coumaroyl)-rhamnosyl-glucopyranoside]-5-glucopyranoside and delphinidin-3-[4-(trans-p-coumaroyl)-rhamnosyl-glucopyranoside]-5-glucopyranoside were identified as the main anthocyanin components in Lanshan Hexian by ultra-performance liquid chromatography-tandem mass spectrometry. Three time points of anthocyanin accumulation, including the start point (0 day), fastest point (5 days), and highest point (12 day), were investigated by using ribonucleic acid sequencing and iTRAQ technology. The corresponding correlation coefficients of differentially expressed genes, and differentially expressed proteins were 0.6936, 0.2332, and 0.6672. Anthocyanin biosynthesis was a significantly enriched pathway, and CHI, F3H, 3GT, 5GT, and HY5 were regulated at both transcriptional and translational levels. Moreover, some transcription factors and photoreceptors may participate in light-induced anthocyanin biosynthesis like the known transcription factors MYB113 and TT8. The transient expression assay indicated that SmMYB35, SmMYB44, and a SmMYB86 isoform might involve in the light-induced anthocyanin biosynthesis pathway. Finally, a regulatory model for light-induced anthocyanin biosynthesis in eggplant was constructed. Our work provides a new direction for the study of the molecular mechanisms of light-induced anthocyanin biosynthesis in eggplant. © 2017 John Wiley & Sons Ltd.

  6. Anthocyanin biosynthesis regulation of DhMYB2 and DhbHLH1 in Dendrobium hybrids petals.

    Science.gov (United States)

    Li, Chonghui; Qiu, Jian; Ding, Ling; Huang, Mingzhong; Huang, Surong; Yang, Guangsui; Yin, Junmei

    2017-03-01

    Dendrobium hybrids orchid are popular throughout the world. They have various floral color and pigmentation patterns that are mainly caused by anthocyanins. It is well established that anthocyanin biosynthesis is regulated by the interplay between MYB and bHLH transcription factors (TF) in most plants. In this study, we identified one R2R3-MYB gene, DhMYB2, and one bHLH gene, DhbHLH1, from a Dendrobium hybrid. Their expression profiles were related to anthocyanin pigmentation in Dendrobium petals. Transient over-expression of these two TF genes showed that both DhMYB2 and DhbHLH1 resulted in anthocyanin production in white petals. The interaction between the two TFs was observed in vitro. In different Dendrobium hybrids petals with various pigmentations, DhMYB2 and DhbHLH1 were co-expressed with DhDFR and DhANS, which are regarded as potential regulatory targets of the two TFs. In flowers with distinct purple lips but white or yellow petals/sepals, the expression of DhbHLH1 was only related to anthocyanin accumulation in the lips. Taken together, DhMYB2 interacted with DhbHLH1 to regulate anthocyanin production in Dendrobium hybrid petals. DhbHLH1 was also responsible for the distinct anthocyanin pigmentation in lip tissues. The functional characterization of DhMYB2 and DhbHLH1 will improve understanding of anthocyanin biosynthesis modulation in Dendrobium orchids. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae

    Directory of Open Access Journals (Sweden)

    McGhie Tony K

    2010-03-01

    Full Text Available Abstract Background The control of plant anthocyanin accumulation is via transcriptional regulation of the genes encoding the biosynthetic enzymes. A key activator appears to be an R2R3 MYB transcription factor. In apple fruit, skin anthocyanin levels are controlled by a gene called MYBA or MYB1, while the gene determining fruit flesh and foliage anthocyanin has been termed MYB10. In order to further understand tissue-specific anthocyanin regulation we have isolated orthologous MYB genes from all the commercially important rosaceous species. Results We use gene specific primers to show that the three MYB activators of apple anthocyanin (MYB10/MYB1/MYBA are likely alleles of each other. MYB transcription factors, with high sequence identity to the apple gene were isolated from across the rosaceous family (e.g. apples, pears, plums, cherries, peaches, raspberries, rose, strawberry. Key identifying amino acid residues were found in both the DNA-binding and C-terminal domains of these MYBs. The expression of these MYB10 genes correlates with fruit and flower anthocyanin levels. Their function was tested in tobacco and strawberry. In tobacco, these MYBs were shown to induce the anthocyanin pathway when co-expressed with bHLHs, while over-expression of strawberry and apple genes in the crop of origin elevates anthocyanins. Conclusions This family-wide study of rosaceous R2R3 MYBs provides insight into the evolution of this plant trait. It has implications for the development of new coloured fruit and flowers, as well as aiding the understanding of temporal-spatial colour change.

  8. An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae.

    Science.gov (United States)

    Lin-Wang, Kui; Bolitho, Karen; Grafton, Karryn; Kortstee, Anne; Karunairetnam, Sakuntala; McGhie, Tony K; Espley, Richard V; Hellens, Roger P; Allan, Andrew C

    2010-03-21

    The control of plant anthocyanin accumulation is via transcriptional regulation of the genes encoding the biosynthetic enzymes. A key activator appears to be an R2R3 MYB transcription factor. In apple fruit, skin anthocyanin levels are controlled by a gene called MYBA or MYB1, while the gene determining fruit flesh and foliage anthocyanin has been termed MYB10. In order to further understand tissue-specific anthocyanin regulation we have isolated orthologous MYB genes from all the commercially important rosaceous species. We use gene specific primers to show that the three MYB activators of apple anthocyanin (MYB10/MYB1/MYBA) are likely alleles of each other. MYB transcription factors, with high sequence identity to the apple gene were isolated from across the rosaceous family (e.g. apples, pears, plums, cherries, peaches, raspberries, rose, strawberry). Key identifying amino acid residues were found in both the DNA-binding and C-terminal domains of these MYBs. The expression of these MYB10 genes correlates with fruit and flower anthocyanin levels. Their function was tested in tobacco and strawberry. In tobacco, these MYBs were shown to induce the anthocyanin pathway when co-expressed with bHLHs, while over-expression of strawberry and apple genes in the crop of origin elevates anthocyanins. This family-wide study of rosaceous R2R3 MYBs provides insight into the evolution of this plant trait. It has implications for the development of new coloured fruit and flowers, as well as aiding the understanding of temporal-spatial colour change.

  9. Extraction of anthocyanins from black corn cultivated in Tunshi-Chimborazo subjected to different heat treatments for scalding

    OpenAIRE

    Carmen Díaz; Marcia Pesántez; Lidia Castro

    2016-01-01

    In order to avoid the loss of anthocyanins during the preparation of black corn (Zea mays L.) as food, and for the extraction of these metabolites for industrial purposes, it is necessary to determine the effect of several factors that influence its final content. The objective of this work was to extract anthocyanins from black corn cultivated in Tunshi-Chimborazo, Ecuador subjected to different heat treatments for scalding. Black corn seeds were used and planted manually. The corn cobs harv...

  10. The Arabidopsis thaliana mutant air1 implicates SOS3 in the regulation of anthocyanins under salt stress

    KAUST Repository

    Van Oosten, Michael James

    2013-08-08

    The accumulation of anthocyanins in plants exposed to salt stress has been largely documented. However, the functional link and regulatory components underlying the biosynthesis of these molecules during exposure to stress are largely unknown. In a screen of second site suppressors of the salt overly sensitive3-1 (sos3-1) mutant, we isolated the anthocyanin-impaired-response-1 (air1) mutant. air1 is unable to accumulate anthocyanins under salt stress, a key phenotype of sos3-1 under high NaCl levels (120 mM). The air1 mutant showed a defect in anthocyanin production in response to salt stress but not to other stresses such as high light, low phosphorous, high temperature or drought stress. This specificity indicated that air1 mutation did not affect anthocyanin biosynthesis but rather its regulation in response to salt stress. Analysis of this mutant revealed a T-DNA insertion at the first exon of an Arabidopsis thaliana gene encoding for a basic region-leucine zipper transcription factor. air1 mutants displayed higher survival rates compared to wild-type in oxidative stress conditions, and presented an altered expression of anthocyanin biosynthetic genes such as F3H, F3′H and LDOX in salt stress conditions. The results presented here indicate that AIR1 is involved in the regulation of various steps of the flavonoid and anthocyanin accumulation pathways and is itself regulated by the salt-stress response signalling machinery. The discovery and characterization of AIR1 opens avenues to dissect the connections between abiotic stress and accumulation of antioxidants in the form of flavonoids and anthocyanins. © 2013 Springer Science+Business Media Dordrecht.

  11. Regulation of anthocyanin and proanthocyanidin biosynthesis by Medicago truncatula bHLH transcription factor MtTT8.

    Science.gov (United States)

    Li, Penghui; Chen, Beibei; Zhang, Gaoyang; Chen, Longxiang; Dong, Qiang; Wen, Jiangqi; Mysore, Kirankumar S; Zhao, Jian

    2016-05-01

    The MYB- basic helix-loop-helix (bHLH)-WD40 complexes regulating anthocyanin and proanthocyanidin (PA) biosynthesis in plants are not fully understood. Here Medicago truncatula bHLH MtTT8 was characterized as a central component of these ternary complexes that control anthocyanin and PA biosynthesis. Mttt8 mutant seeds have a transparent testa phenotype with reduced PAs and anthocyanins. MtTT8 restores PA and anthocyanin productions in Arabidopsis tt8 mutant. Ectopic expression of MtTT8 restores anthocyanins and PAs in mttt8 plant and hairy roots and further enhances both productions in wild-type hairy roots. Transcriptomic analyses and metabolite profiling of mttt8 mutant seeds and M. truncatula hairy roots (mttt8 mutant, mttt8 mutant complemented with MtTT8, or MtTT8 overexpression lines) indicate that MtTT8 regulates a subset of genes involved in PA and anthocyanin biosynthesis. MtTT8 is genetically regulated by MtLAP1, MtPAR and MtWD40-1. Combinations of MtPAR, MtLAP1, MtTT8 and MtWD40-1 activate MtTT8 promoter in yeast assay. MtTT8 interacts with these transcription factors to form regulatory complexes. MtTT8, MtWD40-1 and an MYB factor, MtPAR or MtLAP1, interacted and activated promoters of anthocyanidin reductase and anthocyanidin synthase to regulate PA and anthocyanin biosynthesis, respectively. Our results provide new insights into the complex regulation of PA and anthocyanin biosynthesis in M. truncatula. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  12. Members of the LBD Family of Transcription Factors Repress Anthocyanin Synthesis and Affect Additional Nitrogen Responses in Arabidopsis

    OpenAIRE

    Rubin, G.; Tohge, T.; Matsuda, F.; Saito, K.; Scheible, W.

    2009-01-01

    Nitrogen (N) and nitrate (NO3-) per se regulate many aspects of plant metabolism, growth, and development. N/NO3- also suppresses parts of secondary metabolism, including anthocyanin synthesis. Molecular components for this repression are unknown. We report that three N/NO3--induced members of the LATERAL ORGAN BOUNDARY DOMAIN (LBD) gene family of transcription factors (LBD37, LBD38, and LBD39) act as negative regulators of anthocyanin biosynthesis in Arabidopsis thaliana. Overexpression of e...

  13. Heterologous expression of gentian MYB1R transcription factors suppresses anthocyanin pigmentation in tobacco flowers.

    Science.gov (United States)

    Nakatsuka, Takashi; Yamada, Eri; Saito, Misa; Fujita, Kohei; Nishihara, Masahiro

    2013-12-01

    Single-repeat MYB transcription factors, GtMYB1R1 and GtMYB1R9 , were isolated from gentian. Overexpression of these genes reduced anthocyanin accumulation in tobacco flowers, demonstrating their applicability to modification of flower color. RNA interference (RNAi) has recently been used to successfully modify flower color intensity in several plant species. In most floricultural plants, this technique requires prior isolation of target flavonoid biosynthetic genes from the same or closely related species. To overcome this limitation, we developed a simple and efficient method for reducing floral anthocyanin accumulation based on genetic engineering using novel transcription factor genes isolated from Japanese gentians. We identified two single-repeat MYB genes--GtMYB1R and GtMYB1R9--predominantly expressed in gentian petals. Transgenic tobacco plants expressing these genes were produced, and their flowers were analyzed for flavonoid components and expression of flavonoid biosynthetic genes. Transgenic tobacco plants expressing GtMYB1R1 or GtMYB1R9 exhibited significant reductions in floral anthocyanin accumulation, resulting in white-flowered phenotypes. Expression levels of chalcone isomerase (CHI), dihydroflavonol 4-reductase (DFR), and anthocyanidin synthase (ANS) genes were preferentially suppressed in these transgenic tobacco flowers. A yeast two-hybrid assay demonstrated that both GtMYB1R1 and GtMYB1R9 proteins interacted with the GtbHLH1 protein, previously identified as an anthocyanin biosynthesis regulator in gentian flowers. In addition, a transient expression assay indicated that activation of the gentian GtDFR promoter by the GtMYB3-GtbHLH1 complex was partly canceled by addition of GtMYB1R1 or GtMYB1R9. These results suggest that GtMYB1R1 and GtMYB1R9 act as antagonistic transcription factors of anthocyanin biosynthesis in gentian flowers. These genes should consequently be useful for manipulating anthocyanin accumulation via genetic engineering in

  14. Anthocyanin and Carotenoid Contents in Different Cultivars of Chrysanthemum (Dendranthema grandiflorum Ramat. Flower

    Directory of Open Access Journals (Sweden)

    Chang Ha Park

    2015-06-01

    Full Text Available The flowers of twenty-three cultivars of Dendranthema grandiflorum Ramat. were investigated to determine anthocyanin and carotenoid levels and to confirm the effects of the pigments on the flower colors using high-performance liquid chromatography (HPLC and electrospray ionization-mass spectrometry (ESI-MS. The cultivars contained the anthocyanins cyanidin 3-glucoside (C3g and cyanidin 3-(3ʺ-malonoyl glucoside (C3mg and the following carotenoids: lutein, zeaxanthin, β-cryptoxanthin, 13-cis-β-carotene, α-carotene, trans-β-carotene, and 9-cis-β-carotene. The cultivar “Magic” showed the greatest accumulation of total and individual anthocyanins, including C3g and C3gm. On the other hand, the highest level of lutein and zeaxanthin was noted in the cultivar “Il Weol”. The cultivar “Anastasia” contained the highest amount of carotenoids such as trans-β-carotene, 9-cis-β-carotene, and 13-cis-β-carotene. The highest accumulation of β-cryptoxanthin and α-carotene was noted in the cultivar “Anastasia” and “Il Weol”. Our results suggested that ‘Magic”, “Angel” and “Relance’ had high amounts of anthocyanins and showed a wide range of red and purple colors in their petals, whereas “Il Weol’, “Popcorn Ball’ and “Anastasia” produced higher carotenoid contents and displayed yellow or green petal colors. Interestingly, “Green Pang Pang”, which contained a high level of anthocyanins and a medium level of carotenoids, showed the deep green colored petals. “Kastelli”, had high level of carotenoids as well as a medium level of anthocyanins and showed orange and red colored petals. It was concluded that each pigment is responsible for the petal’s colors and the compositions of the pigments affect their flower colors and that the cultivars could be a good source for pharmaceutical, floriculture, and pigment industries.

  15. Differential expression of anthocyanin biosynthetic genes and transcription factor PcMYB10 in pears (Pyrus communis L..

    Directory of Open Access Journals (Sweden)

    Li Li

    Full Text Available Anthocyanin biosynthesis in various plants is affected by environmental conditions and controlled by the transcription level of the corresponding genes. In pears (Pyrus communis cv. 'Wujiuxiang', anthocyanin biosynthesis is significantly induced during low temperature storage compared with that at room temperature. We further examined the transcriptional levels of anthocyanin biosynthetic genes in 'Wujiuxiang' pears during developmental ripening and temperature-induced storage. The expression of genes that encode flavanone 3-hydroxylase, dihydroflavonol 4-reductase, anthocyanidin synthase, UDP-glucose: flavonoid 3-O-glucosyltransferase, and R2R3 MYB transcription factor (PcMYB10 was strongly positively correlated with anthocyanin accumulation in 'Wujiuxiang' pears in response to both developmental and cold-temperature induction. Hierarchical clustering analysis revealed the expression patterns of the set of target genes, of which PcMYB10 and most anthocyanin biosynthetic genes were related to the same cluster. The present work may help explore the molecular mechanism that regulates anthocyanin biosynthesis and its response to abiotic stress at the transcriptional level in plants.

  16. The Arabidopsis Transcription Factor MYB112 Promotes Anthocyanin Formation during Salinity and under High Light Stress1[OPEN

    Science.gov (United States)

    Lotkowska, Magda E.; Tohge, Takayuki; Fernie, Alisdair R.; Xue, Gang-Ping; Balazadeh, Salma; Mueller-Roeber, Bernd

    2015-01-01

    MYB transcription factors (TFs) are important regulators of flavonoid biosynthesis in plants. Here, we report MYB112 as a formerly unknown regulator of anthocyanin accumulation in Arabidopsis (Arabidopsis thaliana). Expression profiling after chemically induced overexpression of MYB112 identified 28 up- and 28 down-regulated genes 5 h after inducer treatment, including MYB7 and MYB32, which are both induced. In addition, upon extended induction, MYB112 also positively affects the expression of PRODUCTION OF ANTHOCYANIN PIGMENT1, a key TF of anthocyanin biosynthesis, but acts negatively toward MYB12 and MYB111, which both control flavonol biosynthesis. MYB112 binds to an 8-bp DNA fragment containing the core sequence (A/T/G)(A/C)CC(A/T)(A/G/T)(A/C)(T/C). By electrophoretic mobility shift assay and chromatin immunoprecipitation coupled to quantitative polymerase chain reaction, we show that MYB112 binds in vitro and in vivo to MYB7 and MYB32 promoters, revealing them as direct downstream target genes. We further show that MYB112 expression is up-regulated by salinity and high light stress, environmental parameters that both require the MYB112 TF for anthocyanin accumulation under these stresses. In contrast to several other MYB TFs affecting anthocyanin biosynthesis, MYB112 expression is not controlled by nitrogen limitation or an excess of carbon. Thus, MYB112 constitutes a regulator that promotes anthocyanin accumulation under abiotic stress conditions. PMID:26378103

  17. Exogenous 24-Epibrassinolide Interacts with Light to Regulate Anthocyanin and Proanthocyanidin Biosynthesis in Cabernet Sauvignon (Vitis vinifera L.).

    Science.gov (United States)

    Zhou, Yali; Yuan, Chunlong; Ruan, Shicheng; Zhang, Zhenwen; Meng, Jiangfei; Xi, Zhumei

    2018-01-09

    Anthocyanins and proanthocyanidins (PAs) are crucial factors that affect the quality of grapes and the making of wine, which were stimulated by various stimuli and environment factors (sugar, hormones, light, and temperature). The aim of the study was to investigate the influence of exogenous 24-Epibrassinolide (EBR) and light on the mechanism of anthocyanins and PAs accumulation in grape berries. Grape clusters were sprayed with EBR (0.4 mg/L) under light and darkness conditions (EBR + L, EBR + D), or sprayed with deionized water under light and darkness conditions as controls (L, D), at the onset of veraison. A large amount of anthocyanins accumulated in the grape skins and was measured under EBR + L and L treatments, whereas EBR + D and D treatments severely suppressed anthocyanin accumulation. This indicated that EBR treatment could produce overlay effects under light, in comparison to that in dark. Real-time quantitative PCR analysis indicated that EBR application up-regulated the expression of genes ( VvCHI1 , VvCHS2 , VvCHS3 , VvDFR , VvLDOX , VvMYBA1 ) under light conditions. Under darkness conditions, only early biosynthetic genes of anthocyanin biosynthesis responded to EBR. Furthermore, we also analyzed the expression levels of the BR-regulated transcription factor VvBZR1 (Brassinazole-resistant 1) and light-regulated transcription factor VvHY5 (Elongated hypocotyl 5). Our results suggested that EBR and light had synergistic effects on the expression of genes in the anthocyanin biosynthesis pathway.

  18. Processing and storage effects on monomeric anthocyanins, percent polymeric color, and antioxidant capacity of processed black raspberry products.

    Science.gov (United States)

    Hager, A; Howard, L R; Prior, R L; Brownmiller, C

    2008-08-01

    This study evaluated the effects of processing and 6 mo of storage on total monomeric anthocyanins, percent polymeric color, and antioxidant capacity of black raspberries that were individually quick-frozen (IQF), canned-in-syrup, canned-in-water, pureed, and juiced (clarified and nonclarified). Total monomeric anthocyanins, percent polymeric color, and ORAC(FL) were determined 1 d postprocessing and after 1, 3, and 6 mo of storage. Thermal processing resulted in marked losses in total anthocyanins ranging from 37% in puree to 69% to 73% in nonclarified and clarified juices, respectively, but only the juices showed substantial losses (38% to 41%) in ORAC(FL). Storage at 25 degrees C of all thermally processed products resulted in dramatic losses in total anthocyanins ranging from 49% in canned-in-syrup to 75% in clarified juices. This coincided with marked increases in percent polymeric color values of these products over the 6-mo storage. ORAC(FL) values showed little change during storage, indicating that the formation of polymers compensated for the loss of antioxidant capacity due to anthocyanin degradation. Total anthocyanins and ORACFL of IQF berries were well retained during long-term storage at -20 degrees C.

  19. Expression and Anthocyanin Biosynthesis-Modulating Potential of Sweet Cherry (Prunus avium L.) MYB10 and bHLH Genes.

    Science.gov (United States)

    Starkevič, Pavel; Paukštytė, Jurgita; Kazanavičiūtė, Vaiva; Denkovskienė, Erna; Stanys, Vidmantas; Bendokas, Vidmantas; Šikšnianas, Tadeušas; Ražanskienė, Aušra; Ražanskas, Raimundas

    2015-01-01

    Anthocyanins are essential contributors to fruit coloration, an important quality feature and a breed determining trait of a sweet cherry fruit. It is well established that the biosynthesis of anthocyanins is regulated by an interplay of specific transcription factors belonging to MYB and bHLH families accompanied by a WD40 protein. In this study, we isolated and analyzed PaWD40, PabHLH3, PabHLH33, and several closely related MYB10 gene variants from different cultivars of sweet cherry, analyzed their expression in fruits with different anthocyanin levels at several developmental stages, and determined their capabilities to modulate anthocyanin synthesis in leaves of two Nicotiana species. Our results indicate that transcription level of variant PaMYB10.1-1 correlates with fruit coloration, but anthocyanin synthesis in Nicotiana was induced by another variant, PaMYB10.1-3, which is moderately expressed in fruits. The analysis of two fruit-expressed bHLH genes revealed that PabHLH3 enhances MYB-induced anthocyanin synthesis, whereas PabHLH33 has strong inhibitory properties.

  20. Phytochrome-interacting factors PIF4 and PIF5 negatively regulate anthocyanin biosynthesis under red light in Arabidopsis seedlings.

    Science.gov (United States)

    Liu, Zhongjuan; Zhang, Yongqiang; Wang, Jianfeng; Li, Ping; Zhao, Chengzhou; Chen, Yadi; Bi, Yurong

    2015-09-01

    Light is an important environmental factor inducing anthocyanin accumulation in plants. Phytochrome-interacting factors (PIFs) have been shown to be a family of bHLH transcription factors involved in light signaling in Arabidopsis. Red light effectively increased anthocyanin accumulation in wild-type Col-0, whereas the effects were enhanced in pif4 and pif5 mutants but impaired in overexpression lines PIF4OX and PIF5OX, indicating that PIF4 and PIF5 are both negative regulators for red light-induced anthocyanin accumulation. Consistently, transcript levels of several genes involved in anthocyanin biosynthesis and regulatory pathway, including CHS, F3'H, DFR, LDOX, PAP1 and TT8, were significantly enhanced in mutants pif4 and pif5 but decreased in PIF4OX and PIF5OX compared to in Col-0, indicating that PIF4 and PIF5 are transcriptional repressor of these gene. Transient expression assays revealed that PIF4 and PIF5 could repress red light-induced promoter activities of F3'H and DFR in Arabidopsis protoplasts. Furthermore, chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR) test and electrophoretic mobility shift assay (EMSA) showed that PIF5 could directly bind to G-box motifs present in the promoter of DFR. Taken together, these results suggest that PIF4 and PIF5 negatively regulate red light-induced anthocyanin accumulation through transcriptional repression of the anthocyanin biosynthetic genes in Arabidopsis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. The Transcriptional Repressor MYB2 Regulates Both Spatial and Temporal Patterns of Proanthocyandin and Anthocyanin Pigmentation in Medicago truncatula.

    Science.gov (United States)

    Jun, Ji Hyung; Liu, Chenggang; Xiao, Xirong; Dixon, Richard A

    2015-10-01

    Accumulation of anthocyanins and proanthocyanidins (PAs) is limited to specific cell types and developmental stages, but little is known about how antagonistically acting transcriptional regulators work together to determine temporal and spatial patterning of pigmentation at the cellular level, especially for PAs. Here, we characterize MYB2, a transcriptional repressor regulating both anthocyanin and PA biosynthesis in the model legume Medicago truncatula. MYB2 was strongly upregulated by MYB5, a major regulator of PA biosynthesis in M. truncatula and a component of MYB-basic helix loop helix-WD40 (MBW) activator complexes. Overexpression of MYB2 abolished anthocyanin and PA accumulation in M. truncatula hairy roots and Arabidopsis thaliana seeds, respectively. Anthocyanin deposition was expanded in myb2 mutant seedlings and flowers accompanied by increased anthocyanin content. PA mainly accumulated in the epidermal layer derived from the outer integument in the M. truncatula seed coat, starting from the hilum area. The area of PA accumulation and ANTHOCYANIDIN REDUCTASE expression was expanded into the seed body at the early stage of seed development in the myb2 mutant. Genetic, biochemical, and cell biological evidence suggests that MYB2 functions as part of a multidimensional regulatory network to define the temporal and spatial pattern of anthocyanin and PA accumulation linked to developmental processes. © 2015 American Society of Plant Biologists. All rights reserved.

  2. Flower color changes in three Japanese hibiscus species: further quantitative variation of anthocyanin and flavonols.

    Science.gov (United States)

    Shimokawa, Satoshi; Iwashina, Tsukasa; Murakami, Noriaki

    2015-03-01

    One anthocyanin and four flavonols were detected from the petals of Hibiscus hamabo, H. tiliaceus and H. glaber. They were identified as cyanidin 3-0- sambubioside, gossypetin 3-O-glucuronide-8-O-glucoside, quercetin 7-O-rutinoside, gossypetin 3-O-glucoside and gossypetin 8-O-glucuronide by UV spectra, LC-MS, acid hydrolysis and HPLC. The flavonoid composition was essentially the same among the petals ofH. hamabo, H. tiliaceus and H. glaber, and there was little quantitative variation, except for cyanidin 3-O-sambubioside, the content of which in the petals ofH. tiliaceus and H. glaber was much higher than in that of H. hamabo. Flower colors of H. tiliaceus and H. glaber change from yellow to red, and that of H. hamabo changes from yellow to orange. These changes were caused by contents of anthocyanin and flavonols, which increased after flowering of H. hamabo, H. tiliaceus and H. glaber.

  3. Dye-Sensitized Solar Cells (DSSCs) reengineering using TiO2 with natural dye (anthocyanin)

    Science.gov (United States)

    Subodro, Rohmat; Kristiawan, Budi; Ramelan, Ari Handono; Wahyuningsih, Sayekti; Munawaroh, Hanik; Hanif, Qonita Awliya; Saputri, Liya Nikmatul Maula Zulfa

    2017-01-01

    This research on Dye-Sensitized Solar Cells (DSSCs) reengineering was carried out using TiO2 with natural dye (anthocyanin). The fabrication of active carbon layer/TiO2 DSSC solar cell was based on natural dye containing anthocyanins such as mangosteen peel, red rose flower, black glutinous rice, and purple eggplant peel. DSSC was prepared with TiO2 thin layer doped with active carbon; Natural dye was analyzed using UV-Vis and TiO2 was analyzed using X-ray diffractometer (XRD), meanwhile scanning electron microscope (SEM) was used to obtain the size of the crystal. Keithley instrument test was carried out to find out I-V characteristics indicating that the highest efficiency occurred in DSSCs solar cell with 24-hour soaking with mangosteen peel 0.00047%.

  4. Identification and some properties of anthocyanin isolated from Zuiki, stalk of Colocasia esculenta.

    Science.gov (United States)

    Terasawa, Naoko; Saotome, Ayako; Tachimura, Yuki; Mochizuki, Ayumi; Ono, Hiroshi; Takenaka, Makiko; Murata, Masatsune

    2007-05-16

    Zuiki, a stalk of taro (Colocasia esculenta), is a traditional vegetable in Japan. Raw zuiki is often boiled and vinegared to eat. The surface color of zuiki is reddish. Here, we isolated a red pigment from zuiki and identified it as cyanidin 3-rutinoside using instrumental analyses. The color of zuiki disappeared by boiling, but the zuiki turned red again in an acetic acid solution. It seems that the cyanidin 3-rutinoside that exists on the surface of zuiki elutes in boiling water and then, the pigment that seeps out from the inside of the zuiki is exposed to an acid solution, and its surface turns red again. The radical scavenging activity of purified zuiki anthocyanin was 114 mg equivalent to BHT/g. About half of the anthocyanin in fresh zuiki was washed out by boiling, and the radical scavenging activity of zuiki was definitely reduced.

  5. Anthocyanines as light harvesters in the dye-sensitized TiO2 solar cell

    International Nuclear Information System (INIS)

    Sokolsky, M.; Kaiser, M.; Cirak, J.; Kusko, M.

    2011-01-01

    In this paper anthocyanine extracted from blackberry was used instead of widely used dyes based on Ru and N3 complexes such as N3, N719 or 'black dye', on which one of the highest efficiencies where measured (10.0 % to 11 %). DSSC were successfully fabricated using anthocyanine dye extracted from blackberries. The open circuit voltage of 419.0 mV, short circuit current of 380.40 μA, fill factor of 41.2 % and efficiency of 0.0164 % were evaluated. The cell shows degradation in performance over time of the exponential type with a drop in the open circuit voltage to 406 mV in 15 minutes. (authors)

  6. The Effect of High Pressure Techniques on the Stability of Anthocyanins in Fruit and Vegetables

    Directory of Open Access Journals (Sweden)

    Krystian Marszałek

    2017-01-01

    Full Text Available Anthocyanins are a group of phenolic compounds responsible for red, blue and violet colouration of many fruits, vegetables and flowers. The high content of these pigments is important as it influences directly their health promoting properties as well as the sensory quality of the product; however they are prone to degradation by, inter alia, elevated temperature and tissue enzymes. The traditional thermal methods of food preservation cause significant losses of these pigments. Thus, novel non-thermal techniques such as high pressure processing, high pressure carbon dioxide and high pressure homogenization are under consideration. In this review, the authors attempted to summarize the current knowledge of the impact of high pressure techniques on the stability of anthocyanins during processing and storage of fruit and vegetable products. Furthermore, the effect of the activity of enzymes involved in the degradation of these compounds has been described. The conclusions including comparisons of pressure-based methods with high temperature preservation techniques were presented.