WorldWideScience

Sample records for anterodorsal thalamic nucleus

  1. Oscillatory synchrony between head direction cells recorded bilaterally in the anterodorsal thalamic nuclei.

    Science.gov (United States)

    Butler, William N; Taube, Jeffrey Steven

    2017-03-01

    The head direction (HD) circuit is a complex, interconnected network of brain regions ranging from the brainstem to the cortex. Recent work found that HD cells co-recorded ipsilaterally in the anterodorsal nucleus (ADN) of the thalamus displayed coordinated firing patterns. A high frequency oscillation pattern (130-160 Hz) was visible in the cross-correlograms of these HD cell pairs. Spectral analysis further found that the power of this oscillation was greatest at 0 ms and decreased at greater lags, and demonstrated that there was greater synchrony between HD cells with similar tunings. Here, we demonstrate that the same high frequency synchrony exists in HD cell pairs recorded contralaterally from one another in the bilateral ADN. When we examined the cross-correlograms of HD cells that were co-recorded bilaterally we observed the same high frequency (~150-200 Hz) oscillatory relationship. The strength of this synchrony was similar to the synchrony seen in ipsilateral HD cell pairs, and the degree of synchrony in each cross-correlogram was dependent on the difference in tuning between the two cells. Additionally, the frequency rate of this oscillation appeared to be independent of the firing rates of the two cross-correlated cells. Taken together, these results imply that the left and right thalamic HD network are functionally related, despite an absence of direct anatomical projections. However, anatomical tracing has found that each of the lateral mammillary nuclei (LMN) project bilaterally to both of the ADN, suggesting the LMN may be responsible for the functional connectivity observed between the two ADN.

  2. A stereological study of the mediodorsal thalamic nucleus in Down syndrome

    DEFF Research Database (Denmark)

    Karlsen, A S; Korbo, S; Uylings, H B M

    2014-01-01

    The total number of neurons and glial cells in the mediodorsal thalamic (MDT) nucleus of four aged females with Down syndrome (DS; mean age 69years) was estimated and compared to six age- and sex-matched controls. The MDT nucleus was delineated on coronal sections, and cell numbers (large and small...

  3. Mediodorsal thalamic nucleus receives a direct retinal input in marmoset monkey (Callithrix jacchus): a subunit B cholera toxin study.

    Science.gov (United States)

    de Sousa, Twyla Barros; de Santana, Melquisedec Abiaré Dantas; Silva, Alane de Medeiros; Guzen, Fausto Pierdoná; Oliveira, Francisco Gilberto; Cavalcante, Judney Cley; Cavalcante, Jeferson de Souza; Costa, Miriam Stela Maris Oliveira; Nascimento, Expedito Silva do

    2013-01-01

    The mediodorsal thalamic nucleus is a prominent nucleus in the thalamus, positioned lateral to the midline nuclei and medial to the intralaminar thalamic complex in the dorsal thalamus. Several studies identify the mediodorsal thalamic nucleus as a key structure in learning and memory, as well as in emotional mechanisms and alertness due to reciprocal connections with the limbic system and prefrontal cortex. Fibers from the retina to the mediodorsal thalamic nucleus have recently been described for the first time in a crepuscular rodent, suggesting a possible regulation of the mediodorsal thalamic nucleus by visual activity. The present study shows retinal afferents in the mediodorsal thalamic nucleus of a new world primate, the marmoset (Callithrix jacchus), using B subunit of cholera toxin (CTb) as an anterograde tracer. A small population of labeled retinofugal axonal arborizations is consistently labeled in small domains of the medial and lateral periphery of the caudal half of the mediodorsal nucleus. Retinal projections in the mediodorsal thalamic nucleus are exclusively contralateral and the morphology of the afferent endings was examined. Although the functional significance of this projection remains unknown, this retina-mediodorsal thalamic nucleus pathway may be involved in a wide possibility of functional implications.

  4. A thalamic input to the nucleus accumbens mediates opiate dependence.

    Science.gov (United States)

    Zhu, Yingjie; Wienecke, Carl F R; Nachtrab, Gregory; Chen, Xiaoke

    2016-02-11

    Chronic opiate use induces opiate dependence, which is characterized by extremely unpleasant physical and emotional feelings after drug use is terminated. Both the rewarding effects of a drug and the desire to avoid withdrawal symptoms motivate continued drug use, and the nucleus accumbens is important for orchestrating both processes. While multiple inputs to the nucleus accumbens regulate reward, little is known about the nucleus accumbens circuitry underlying withdrawal. Here we identify the paraventricular nucleus of the thalamus as a prominent input to the nucleus accumbens mediating the expression of opiate-withdrawal-induced physical signs and aversive memory. Activity in the paraventricular nucleus of the thalamus to nucleus accumbens pathway is necessary and sufficient to mediate behavioural aversion. Selectively silencing this pathway abolishes aversive symptoms in two different mouse models of opiate withdrawal. Chronic morphine exposure selectively potentiates excitatory transmission between the paraventricular nucleus of the thalamus and D2-receptor-expressing medium spiny neurons via synaptic insertion of GluA2-lacking AMPA receptors. Notably, in vivo optogenetic depotentiation restores normal transmission at these synapses and robustly suppresses morphine withdrawal symptoms. This links morphine-evoked pathway- and cell-type-specific plasticity in the paraventricular nucleus of the thalamus to nucleus accumbens circuit to opiate dependence, and suggests that reprogramming this circuit holds promise for treating opiate addiction.

  5. Flexible Use of Predictive Cues beyond the Orbitofrontal Cortex: Role of the Submedius Thalamic Nucleus.

    Science.gov (United States)

    Alcaraz, Fabien; Marchand, Alain R; Vidal, Elisa; Guillou, Alexandre; Faugère, Angélique; Coutureau, Etienne; Wolff, Mathieu

    2015-09-23

    The orbitofrontal cortex (OFC) is known to play a crucial role in learning the consequences of specific events. However, the contribution of OFC thalamic inputs to these processes is largely unknown. Using a tract-tracing approach, we first demonstrated that the submedius nucleus (Sub) shares extensive reciprocal connections with the OFC. We then compared the effects of excitotoxic lesions of the Sub or the OFC on the ability of rats to use outcome identity to direct responding. We found that neither OFC nor Sub lesions interfered with the basic differential outcomes effect. However, more specific tests revealed that OFC rats, but not Sub rats, were disproportionally relying on the outcome, rather than on the discriminative stimulus, to guide behavior, which is consistent with the view that the OFC integrates information about predictive cues. In subsequent experiments using a Pavlovian contingency degradation procedure, we found that both OFC and Sub lesions produced a severe deficit in the ability to update Pavlovian associations. Altogether, the submedius therefore appears as a functionally relevant thalamic component in a circuit dedicated to the integration of predictive cues to guide behavior, previously conceived as essentially dependent on orbitofrontal functions. Significance statement: In the present study, we identify a largely unknown thalamic region, the submedius nucleus, as a new functionally relevant component in a circuit supporting the flexible use of predictive cues. Such abilities were previously conceived as largely dependent on the orbitofrontal cortex. Interestingly, this echoes recent findings in the field showing, in research involving an instrumental setup, an additional involvement of another thalamic nuclei, the parafascicular nucleus, when correct responding requires an element of flexibility (Bradfield et al., 2013a). Therefore, the present contribution supports the emerging view that limbic thalamic nuclei may contribute critically to

  6. Stereological analysis of the mediodorsal thalamic nucleus in schizophrenia: volume, neuron number, and cell types

    DEFF Research Database (Denmark)

    Dorph-Petersen, Karl-Anton; Pierri, Joseph N; Sun, Zhuoxin

    2004-01-01

    The mediodorsal thalamic nucleus (MD) is the principal relay nucleus for the prefrontal cortex, a brain region thought to be dysfunctional in schizophrenia. Several, but not all, postmortem studies of the MD in schizophrenia have reported decreased volume and total neuronal number. However......, it is not clear whether the findings are specific for schizophrenia nor is it known which subtypes of thalamic neurons are affected. We studied the left MD in 11 subjects with schizophrenia, 9 control subjects, and 12 subjects with mood disorders. Based on morphological criteria, we divided the neurons into two...... subclasses, presumably corresponding to projection neurons and local circuit neurons. We estimated MD volume and the neuron number of each subclass using methods based on modern unbiased stereological principles. We also estimated the somal volumes of each subclass using a robust, but biased, approach...

  7. The olfactory thalamus: unanswered questions about the role of the mediodorsal thalamic nucleus in olfaction

    Directory of Open Access Journals (Sweden)

    Emmanuelle eCourtiol

    2015-09-01

    Full Text Available The mediodorsal thalamic nucleus (MDT is a higher order thalamic nucleus and its role in cognition is increasingly well established. Interestingly, components of the MDT also have a somewhat unique sensory function as they link primary olfactory cortex to orbitofrontal associative cortex. In fact, anatomical evidence firmly demonstrates that the MDT receives direct input from primary olfactory areas including the piriform cortex and has dense reciprocal connections with the orbitofrontal cortex. The functions of this olfactory pathway have been poorly explored but lesion, imaging, and electrophysiological studies suggest that these connections may be involved in olfactory processing including odor perception, discrimination, learning, and attention. However, many important questions regarding the MDT and olfaction remain unanswered. Our goal here is not only to briefly review the existing literature but also to highlight some of the remaining questions that need to be answered to better define the role(s of the MDT in olfactory processing.

  8. The olfactory thalamus: unanswered questions about the role of the mediodorsal thalamic nucleus in olfaction.

    Science.gov (United States)

    Courtiol, Emmanuelle; Wilson, Donald A

    2015-01-01

    The mediodorsal thalamic nucleus (MDT) is a higher order thalamic nucleus and its role in cognition is increasingly well established. Interestingly, components of the MDT also have a somewhat unique sensory function as they link primary olfactory cortex to orbitofrontal associative cortex. In fact, anatomical evidence firmly demonstrates that the MDT receives direct input from primary olfactory areas including the piriform cortex and has dense reciprocal connections with the orbitofrontal cortex. The functions of this olfactory pathway have been poorly explored but lesion, imaging, and electrophysiological studies suggest that these connections may be involved in olfactory processing including odor perception, discrimination, learning, and attention. However, many important questions regarding the MDT and olfaction remain unanswered. Our goal here is not only to briefly review the existing literature but also to highlight some of the remaining questions that need to be answered to better define the role(s) of the MDT in olfactory processing.

  9. Volatile anesthetic action in a computational model of the thalamic reticular nucleus.

    Science.gov (United States)

    Gottschalk, Allan; Miotke, Sam A

    2009-05-01

    Although volatile anesthetics (VAs) modulate the activity of multiple ion channels, the process whereby one or more of these effects are integrated to produce components of the general anesthetic state remains enigmatic. Computer models offer the opportunity to examine systems level effects of VA action at one or more sites. Motivated by the role of the thalamus in consciousness and sensory processing, a computational model of the thalamic reticular nucleus was used to determine the collective impact on model behavior of VA action at multiple sites. A computational model of the thalamic reticular nucleus was modified to permit VA modulation of its ion channels. Isobolographic analysis was used to determine how multiple sites interact. VA modulation of either T-type Ca(2+) channels or gamma-aminobutyric acid type A receptors led to increased network synchrony. VA modulation of both further increased network synchronization. VA-induced decrements in Ca(2+) current permitted greater impact of inhibitory currents on membrane potential, but at higher VA concentrations the decrease in Ca(2+) current led to a decreased number of spikes in the burst generating the inhibitory signal. MAC-awake (the minimum alveolar concentration at which 50% of subjects will recover consciousness) concentrations of both isoflurane and halothane led to similar levels of network synchrony in the model. Relatively modest VA effects at both T-type Ca(2+) channels and gamma-aminobutyric acid type A receptors can substantially alter network behavior in a computational model of a thalamic nucleus. The similarity of network behavior at MAC-awake concentrations of different VAs is consistent with a contribution of the thalamus to VA-induced unconsciousness through action at these channels.

  10. Prolonged hyperpolarizing potentials precede spindle oscillations in the thalamic reticular nucleus

    Science.gov (United States)

    Fuentealba, Pablo; Timofeev, Igor; Steriade, Mircea

    2004-01-01

    The thalamic reticular (RE) nucleus is a key structure in the generation of spindles, a hallmark bioelectrical oscillation during early stages of sleep. Intracellular recordings of RE neurons in vivo revealed the presence of prolonged hyperpolarizing potentials preceding spindles in a subgroup (30%) of neurons. These hyperpolarizations (6-10 mV) lasted for 200-300 ms and were present just before the onset of spontaneously occurring spindle waves. Corticothalamic volleys also were effective in generating such hyperpolarizations followed by spindles in RE neurons. A drop of up to 40% in the apparent input resistance (Rin) was associated with these hyperpolarizing potentials, suggesting an active process rather than disfacilitation. Accordingly, the reversal potential was approximately -100 mV for both spontaneous and cortically elicited hyperpolarizations, consistent with the activation of slow K+ conductances. QX-314 in the recording pipettes decreased both the amplitude and incidence of prolonged hyperpolarizations, suggesting the participation of G protein-dependent K+ currents in the generation of hyperpolarizations. Simultaneous extracellular and intracellular recordings in the RE nucleus demonstrated that some RE neurons discharged during the hyperpolarizations and, thus, may be implicated in their generation. The prolonged hyperpolarizations preceding spindles may play a role in the transition from tonic to bursting firing of RE neurons within a range of membrane potential (-60 to -65 mV) at which they set favorable conditions for the generation of low-threshold spike bursts that initiate spindle sequences. These data are further arguments for the generation of spindles within the thalamic RE nucleus. PMID:15210981

  11. Dynamics of action potential initiation in the GABAergic thalamic reticular nucleus in vivo.

    Directory of Open Access Journals (Sweden)

    Fabián Muñoz

    Full Text Available Understanding the neural mechanisms of action potential generation is critical to establish the way neural circuits generate and coordinate activity. Accordingly, we investigated the dynamics of action potential initiation in the GABAergic thalamic reticular nucleus (TRN using in vivo intracellular recordings in cats in order to preserve anatomically-intact axo-dendritic distributions and naturally-occurring spatiotemporal patterns of synaptic activity in this structure that regulates the thalamic relay to neocortex. We found a wide operational range of voltage thresholds for action potentials, mostly due to intrinsic voltage-gated conductances and not synaptic activity driven by network oscillations. Varying levels of synchronous synaptic inputs produced fast rates of membrane potential depolarization preceding the action potential onset that were associated with lower thresholds and increased excitability, consistent with TRN neurons performing as coincidence detectors. On the other hand the presence of action potentials preceding any given spike was associated with more depolarized thresholds. The phase-plane trajectory of the action potential showed somato-dendritic propagation, but no obvious axon initial segment component, prominent in other neuronal classes and allegedly responsible for the high onset speed. Overall, our results suggest that TRN neurons could flexibly integrate synaptic inputs to discharge action potentials over wide voltage ranges, and perform as coincidence detectors and temporal integrators, supported by a dynamic action potential threshold.

  12. [Neuronal mechanisms of motor signal transmission in thalamic Voi nucleus in spasmodic torticollis patients].

    Science.gov (United States)

    Sedov, A S; Raeva, S N; Pavlenko, V B

    2014-01-01

    Neural mechanisms of motor signal transmission in ventrooral (Voi) nucleus of motor thalamus during the realization-of voluntary and involuntary abnormal (dystonic) movements in patients with spasmodic torticollis were investigated by means of microelectrode technique. The high reactivity of the cellular Voi elements to various functional (mainly motor) tests was proved. Analysis of neuronal activity showed: (1) the difference of neural mechanisms of motor signal transmission in the realization of voluntary movement with and without the involvement of the pathological axial neck muscles, as well as passive and abnormal involuntary dystonic movements; (2) significance of sensory component in the mechanisms of sensorimotor interactions during realization of voluntary and involuntary dystonic head and neck movements, causing the activation of the axial neck muscles; (3) important role of the rhythmic and synchronized neuronal activity in motor signal transmission during the realization of active and passive movements. Participation of Voi nucleus in pathological mechanisms of spasmodic torticollis was shown. The data obtained can be used for identificatiori of Voi thalamic nucleus during stereotactic neurosurgical operations in patients with spasmodic torticollis for selection the optimum destruction (stimulation) target and reduction of postoperative effects.

  13. Inhibitory effects of microinjection of morphine into thalamic nucleus submedius on ipsilateral paw bee venom-induced inflammatory pain in the rat

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Objective To examine whether microinjection of morphine into the rat thalamic nucleus submedius (Sm) could depress the bee venom (BV)-induced nociceptive behaviours. Methods In inflammatory pain model induced by BV subcutaneous injection into rat unilateral hind paw,the inhibitory effects of morphine microinjection into thalamic nucleus submedius (Sm) on the spontaneous nociceptive behavior,heat hyperalgesia and tactile allodynia,and the influence of naloxone on the morphine effects were observed in the rat...

  14. Neurons in the thalamic reticular nucleus are selective for diverse and complex visual features

    Directory of Open Access Journals (Sweden)

    Vishal eVaingankar

    2012-12-01

    Full Text Available All visual signals the cortex receives are influenced by the perigeniculate sector of the thalamic reticular nucleus, which receives input from relay cells in the lateral geniculate and provides feedback inhibition in return. Relay cells have been studied in quantitative depth; they behave in a roughly linear fashion and have receptive fields with a stereotyped centre-surround structure. We know far less about reticular neurons. Qualitative studies indicate they simply pool ascending input to generate nonselective gain control. Yet the perigeniculate is complicated; local cells are densely interconnected and fire lengthy bursts. Thus, we employed quantitative methods to explore the perigeniculate, using relay cells as controls. By adapting methods of spike-triggered averaging and covariance analysis for bursts, we identified both first and second order features that build reticular receptive fields. The shapes of these spatiotemporal subunits varied widely; no stereotyped pattern emerged. Companion experiments showed that the shape of the first but not second order features could be explained by the overlap of On and Off inputs to a given cell. Moreover, we assessed the predictive power of the receptive field and how much information each component subunit conveyed. Linear-nonlinear models including multiple subunits performed better than those made with just one; further each subunit encoded different visual information. Model performance for reticular cells was always lesser than for relay cells, however, indicating that reticular cells process inputs nonlinearly. All told, our results suggest that the perigeniculate encodes diverse visual features to selectively modulate activity transmitted downstream

  15. Gait balance disorder by thalamic infarction with the disorder of interstitial nucleus of cajal.

    Science.gov (United States)

    Kurosu, A; Hayashi, Y; Wada, K; Nagaoka, M

    2011-01-01

    The interstitial nucleus of Cajal (INC) is thought to play an important role in torsional/vertical eye position and head posture, and disorders of the INC induce abnormal ocular movements and head tilt. Our patients with ocular tilt reactions simultaneously also had disturbances in ambulatory balance, yet no reports address the loss of balance control induced by disorders of the INC. We examined the ambulatory disturbances induced by INC lesion. We experienced three patients with ocular movement disorders and abnormal head tilt due to thalamic infarction. We performed ophthalmic examinations on and checked the balance of them. With funduscopy, abnormal cycloduction was seen in the unaffected side and normal cycloduction was observed in the affected side. Nevertheless, Hess charts showed distortions in the visual image of both eyes. They all had disorders of balance control. We tried to treat them using the Bobath approach for improving their ambulatory balance. With subsequent improvements in balance control it was possible for them to take short walks, but it was difficult to make any improvements in their ocular movement. The INC is related to balance control of ambulation and disorders of the INC induce ambulatory disturbances. Cycloduction was only observed in the unaffected side, but Hess charts showed distortions of the visual image in both eyes. Ambulation was briefly improved, but diplopia persisted in these patients.

  16. Gait Balance Disorder by Thalamic Infarction with the Disorder of Interstitial Nucleus of Cajal

    Science.gov (United States)

    Kurosu, A.; Hayashi, Y.; Wada, K.; Nagaoka, M.

    2011-01-01

    The interstitial nucleus of Cajal (INC) is thought to play an important role in torsional/vertical eye position and head posture, and disorders of the INC induce abnormal ocular movements and head tilt. Our patients with ocular tilt reactions simultaneously also had disturbances in ambulatory balance, yet no reports address the loss of balance control induced by disorders of the INC. We examined the ambulatory disturbances induced by INC lesion. We experienced three patients with ocular movement disorders and abnormal head tilt due to thalamic infarction. We performed ophthalmic examinations on and checked the balance of them. With funduscopy, abnormal cycloduction was seen in the unaffected side and normal cycloduction was observed in the affected side. Nevertheless, Hess charts showed distortions in the visual image of both eyes. They all had disorders of balance control. We tried to treat them using the Bobath approach for improving their ambulatory balance. With subsequent improvements in balance control it was possible for them to take short walks, but it was difficult to make any improvements in their ocular movement. The INC is related to balance control of ambulation and disorders of the INC induce ambulatory disturbances. Cycloduction was only observed in the unaffected side, but Hess charts showed distortions of the visual image in both eyes. Ambulation was briefly improved, but diplopia persisted in these patients. PMID:21769260

  17. Holmes’ Tremor with Shoulder Pain Treated by Deep Brain Stimulation of Unilateral Ventral Intermediate Thalamic Nucleus and Globus Pallidus Internus

    Directory of Open Access Journals (Sweden)

    Sabri Aydın

    2017-05-01

    Full Text Available A 21-year-old male was admitted with severe right arm and hand tremors after a thalamic hemorrhage caused by a traffic accident. He was also suffering from agonizing pain in his right shoulder that manifested after the tremor. Neurologic examination revealed a disabling, severe, and irregular kinetic and postural tremor in the right arm during target-directed movements. There was also an irregular ipsilateral rest tremor and dystonic movements in the distal part of the right arm. The amplitude was moderate at rest and extremely high during kinetic and intentional movements. The patient underwent left globus pallidum internus and ventral intermediate thalamic nucleus deep brain stimulation. The patient improved by more than 80% as rated by the Fahn-Tolosa-Marin Tremor Rating Scale and Visual Analog Scale six months after surgery.

  18. Effects of Anterior Thalamic Nucleus Deep Brain Stimulation in Chronic Epileptic Rats

    Science.gov (United States)

    Amorim, Beatriz; Cavarsan, Clarissa; Miranda, Maisa Ferreira; Aarão, Mayra C.; Madureira, Ana Paula; Rodrigues, Antônio M.; Nobrega, José N.; Mello, Luiz E.; Hamani, Clement

    2014-01-01

    Deep brain stimulation (DBS) has been investigated for the treatment of epilepsy. In rodents, an increase in the latency for the development of seizures and status epilepticus (SE) has been reported in different animal models but the consequences of delivering stimulation to chronic epileptic animals have not been extensively addressed. We study the effects of anterior thalamic nucleus (AN) stimulation at different current intensities in rats rendered epileptic following pilocarpine (Pilo) administration. Four months after Pilo-induced SE, chronic epileptic rats were bilaterally implanted with AN electrodes or had sham-surgery. Stimulation was delivered for 6 h/day, 5 days/week at 130 Hz, 90 µsec. and either 100 µA or 500 µA. The frequency of spontaneous recurrent seizures in animals receiving stimulation was compared to that recorded in the preoperative period and in rats given sham treatment. To investigate the effects of DBS on hippocampal excitability, brain slices from animals receiving AN DBS or sham surgery were studied with electrophysiology. We found that rats treated with AN DBS at 100 µA had a 52% non-significant reduction in the frequency of seizures as compared to sham-treated controls and 61% less seizures than at baseline. Animals given DBS at 500 µA had 5.1 times more seizures than controls and a 2.8 fold increase in seizure rate as compared to preoperative values. In non-stimulated controls, the average frequency of seizures before and after surgery remained unaltered. In vitro recordings have shown that slices from animals previously given DBS at 100 µA had a longer latency for the development of epileptiform activity, shorter and smaller DC shifts, and a smaller spike amplitude compared to non-stimulated controls. In contrast, a higher spike amplitude was recorded in slices from animals given AN DBS at 500 µA. PMID:24892420

  19. The pacemaker role of thalamic reticular nucleus in controlling spike-wave discharges and spindles

    Science.gov (United States)

    Fan, Denggui; Liao, Fucheng; Wang, Qingyun

    2017-07-01

    Absence epilepsy, characterized by 2-4 Hz spike-wave discharges (SWDs), can be caused by pathological interactions within the thalamocortical system. Cortical spindling oscillations are also demonstrated to involve the oscillatory thalamocortical rhythms generated by the synaptic circuitry of the thalamus and cortex. This implies that SWDs and spindling oscillations can share the common thalamocortical mechanism. Additionally, the thalamic reticular nucleus (RE) is hypothesized to regulate the onsets and propagations of both the epileptic SWDs and sleep spindles. Based on the proposed single-compartment thalamocortical neural field model, we firstly investigate the stimulation effect of RE on the initiations, terminations, and transitions of SWDs. It is shown that the activations and deactivations of RE triggered by single-pulse stimuli can drive the cortical subsystem to behave as the experimentally observed onsets and self-abatements of SWDs, as well as the transitions from 2-spike and wave discharges (2-SWDs) to SWDs. In particular, with increasing inhibition from RE to the specific relay nucleus (TC), rich transition behaviors in cortex can be obtained through the upstream projection path, RE → TC → Cortex . Although some of the complex dynamical patterns can be expected from the earlier single compartment thalamocortical model, the effect of brain network topology on the emergence of SWDs and spindles, as well as the transitions between them, has not been fully investigated. We thereby develop a spatially extended 3-compartment coupled network model with open-/closed-end connective configurations, to investigate the spatiotemporal effect of RE on the SWDs and spindles. Results show that the degrees of activations of RE 1 can induce the rich spatiotemporal evolution properties including the propagations from SWDs to spindles within different compartments and the transitions between them, through the RE 1 → TC 1 → Cortex 1 and Cortex 1 → Cortex 2

  20. The facilitatory influence of anterior cingulate cortex on ON-OFF response of tactile neuron in thalamic ventrobasal nucleus

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The structures of limbic system have been found to modulate the auditory, visual and pain afferent signals in the related nuclei of thalamus. One of those structures is anterior cingulate cortex (ACC) that influences nocuous response of the pain-sensitive neurons in the ventropostero-lateral nucleus of thalamus. Thus, we inferred that ACC would also modulate tactile information at the thalamic level. To test this assumption, single units were recorded extracellularly from thalamic ventrobasal nucleus (VB). Tactile ON-OFF response and the relationship between different patterns of the responses and the parameters of tactile stimulation were examined. Furthermore, the influence of ACC on the tactile ON-OFF response was studied. ACC stimulation was found to produce a facilitatory effect on the OFF-response of ON-OFF neurons. It lowered the threshold of the off-response of that neuron, and therefore changed the response pattern or enhanced the firing rate of the OFF-response of the neuron. The study on receptive fields of ON-OFF neurons showed that the excitation of the ACC could change an ON-response on the verge of a receptive field into an ON-OFF response. The above results suggest that the ACC modulation sharpens the response of a VB neuron to a moving stimulus within its receptive field, indicating that the limbic system can modulate tactile ascending sensory information.

  1. The facilitatory influence of anterior cingulate cortex on ON-OFF response of tactile neuron in thalamic ventrobasal nucleus

    Institute of Scientific and Technical Information of China (English)

    曹晓华; 卢湘岳; 周绍慈

    2000-01-01

    The structures of limbic system have been found to modulate the auditory, visual and pain afferent signals in the related nuclei of thalamus. One of those structures is anterior cingulate cortex (ACC) that influences nocuous response of the pain-sensitive neurons in the ventropos-tero-lateral nucleus of thalamus. Thus, we inferred that ACC would also modulate tactile information at the thalamic level. To test this assumption, single units were recorded extracellularly from thalamic ventrobasal nucleus (VB). Tactile ON-OFF response and the relationship between different patterns of the responses and the parameters of tactile stimulation were examined. Furthermore, the influence of ACC on the tactile ON-OFF response was studied. ACC stimulation was found to produce a facilitatory effect on the OFF-response of ON-OFF neurons. It lowered the threshold of the off-response of that neuron, and therefore changed the response pattern or enhanced the firing rate of the OFF-response of the neuron. The study on rec

  2. Perinatal development of the mammillothalamic tract and innervation of the anterior thalamic nuclei.

    Science.gov (United States)

    Alpeeva, E V; Makarenko, I G

    2009-01-12

    Axonal projections originating from the mammillary bodies represent important pathways that are essential for spatial information processing. Mammillothalamic tract is one of the main efferent projection systems of the mammillary body belonging to the limbic "Papez circuit". This study was aimed to describe the schedule of the mammillothalamic tract development in the rat using carbocyanine dye tracing. It was shown for the first time that fibers of the mammillothalamic tract being the collaterals of the mammillotegmental tract axons start bifurcating from the mammillotegmental tract on E17. The axons of the mammillothalamic tract grow simultaneously and reach the ventral region of the anterior thalamus where they form first terminal arborizations on E20-E21. Ipsilateral projections from the medial mammillary nucleus to the anteromedial and anteroventral thalamic nuclei develop from E20 to P6. Bilateral projections from the lateral mammillary nucleus to the anterodorsal thalamic nuclei develop later, on P3-P6, after the formation of the thalamic decussation of the mammillary body axons. Unique spatial and temporal pattern of the perinatal development of ascending mammillary body projections to the anterior thalamic nuclei may reflect the importance of these connections within the limbic circuitry.

  3. Noradrenergic transmission in the central medial thalamic nucleus modulates the electroencephalographic activity and emergence from propofol anesthesia in rats.

    Science.gov (United States)

    Fu, Bao; Yu, Tian; Yuan, Jie; Gong, Xingrui; Zhang, Mazhong

    2017-03-01

    At present, the mechanisms by which general anesthetics causing loss of consciousness remain unclear. The central medial thalamic nucleus (CMT) is a rarely studied component of the midline thalamic complex, which is deemed to be a part of the nonspecific arousal system. Although the CMT participates in modulating arousal and receives excitatory noradrenergic projections from locus coeruleus, it remains unknown whether the noradrenergic pathway in the CMT takes part in modulating the arousal system. Therefore, we hypothesized that noradrenergic transmission in the CMT is involved in modulating induction and emergence of propofol anesthesia. First, we infused norepinephrine (NE) into the CMT to observe the role of CMT noradrenergic pathway in modulating the anesthetic state induced by propofol. The results showed that microinjection of NE into the CMT accelerated emergence from propofol anesthesia, but had no impact on the induction of or sensitivity to propofol anesthesia in rats. In addition, infusion of NE into the CMT caused electroencephalography changes in the prefrontal cortex and the anterior cingulate cortex. Finally, we used a whole-cell patch clamp to examine the effects of NE on neuronal excitability and GABAergic transmission in the CMT. In the CMT slices, propofol suppressed neuronal excitability and enhanced GABAergic transmission, while application of NE partly reversed these effects. These findings support the hypothesis that the CMT noradrenergic pathway plays an important role in modulating the emergence from general anesthesia. © 2017 International Society for Neurochemistry.

  4. Control of Somatosensory Cortical Processing by Thalamic Posterior Medial Nucleus: A New Role of Thalamus in Cortical Function.

    Directory of Open Access Journals (Sweden)

    Carlos Castejon

    Full Text Available Current knowledge of thalamocortical interaction comes mainly from studying lemniscal thalamic systems. Less is known about paralemniscal thalamic nuclei function. In the vibrissae system, the posterior medial nucleus (POm is the corresponding paralemniscal nucleus. POm neurons project to L1 and L5A of the primary somatosensory cortex (S1 in the rat brain. It is known that L1 modifies sensory-evoked responses through control of intracortical excitability suggesting that L1 exerts an influence on whisker responses. Therefore, thalamocortical pathways targeting L1 could modulate cortical firing. Here, using a combination of electrophysiology and pharmacology in vivo, we have sought to determine how POm influences cortical processing. In our experiments, single unit recordings performed in urethane-anesthetized rats showed that POm imposes precise control on the magnitude and duration of supra- and infragranular barrel cortex whisker responses. Our findings demonstrated that L1 inputs from POm imposed a time and intensity dependent regulation on cortical sensory processing. Moreover, we found that blocking L1 GABAergic inhibition or blocking P/Q-type Ca2+ channels in L1 prevents POm adjustment of whisker responses in the barrel cortex. Additionally, we found that POm was also controlling the sensory processing in S2 and this regulation was modulated by corticofugal activity from L5 in S1. Taken together, our data demonstrate the determinant role exerted by the POm in the adjustment of somatosensory cortical processing and in the regulation of cortical processing between S1 and S2. We propose that this adjustment could be a thalamocortical gain regulation mechanism also present in the processing of information between cortical areas.

  5. Control of Somatosensory Cortical Processing by Thalamic Posterior Medial Nucleus: A New Role of Thalamus in Cortical Function

    Science.gov (United States)

    Castejon, Carlos; Barros-Zulaica, Natali; Nuñez, Angel

    2016-01-01

    Current knowledge of thalamocortical interaction comes mainly from studying lemniscal thalamic systems. Less is known about paralemniscal thalamic nuclei function. In the vibrissae system, the posterior medial nucleus (POm) is the corresponding paralemniscal nucleus. POm neurons project to L1 and L5A of the primary somatosensory cortex (S1) in the rat brain. It is known that L1 modifies sensory-evoked responses through control of intracortical excitability suggesting that L1 exerts an influence on whisker responses. Therefore, thalamocortical pathways targeting L1 could modulate cortical firing. Here, using a combination of electrophysiology and pharmacology in vivo, we have sought to determine how POm influences cortical processing. In our experiments, single unit recordings performed in urethane-anesthetized rats showed that POm imposes precise control on the magnitude and duration of supra- and infragranular barrel cortex whisker responses. Our findings demonstrated that L1 inputs from POm imposed a time and intensity dependent regulation on cortical sensory processing. Moreover, we found that blocking L1 GABAergic inhibition or blocking P/Q-type Ca2+ channels in L1 prevents POm adjustment of whisker responses in the barrel cortex. Additionally, we found that POm was also controlling the sensory processing in S2 and this regulation was modulated by corticofugal activity from L5 in S1. Taken together, our data demonstrate the determinant role exerted by the POm in the adjustment of somatosensory cortical processing and in the regulation of cortical processing between S1 and S2. We propose that this adjustment could be a thalamocortical gain regulation mechanism also present in the processing of information between cortical areas. PMID:26820514

  6. Midline thalamic paraventricular nucleus neurons display diurnal variation in resting membrane potentials, conductances, and firing patterns in vitro

    Science.gov (United States)

    Kolaj, Miloslav; Zhang, Li; Rønnekleiv, Oline K.

    2012-01-01

    Neurons in the rodent midline thalamic paraventricular nucleus (PVT) receive inputs from brain stem and hypothalamic sites known to participate in sleep-wake and circadian rhythms. To evaluate possible diurnal changes in their excitability, we used patch-clamp techniques to record and examine the properties of neurons in anterior PVT (aPVT) in coronal rat brain slices prepared at zeitgeber time (ZT) 2–6 vs. ZT 14–18 and recorded at ZT 8.4 ± 0.2 (day) vs. ZT 21.2 ± 0.2 (night), the subjective quiet vs. aroused states, respectively. Compared with neurons recorded during the day, neurons from the night period were significantly more depolarized and exhibited a lower membrane conductance that in part reflected loss of a potassium-mediated conductance. Furthermore, these neurons were also significantly more active, with tonic and burst firing patterns. Neurons from each ZT period were assessed for amplitudes of two conductances known to contribute to bursting behavior, i.e., low-threshold-activated Ca2+ currents (IT) and hyperpolarization-activated cation currents (Ih). Data revealed that amplitudes of both IT and Ih were significantly larger during the night period. In addition, biopsy samples from the night period revealed a significant increase in mRNA for Cav3.1 and Cav3.3 low-threshold Ca2+ channel subtypes. Neurons recorded from the night period also displayed a comparative enhancement in spontaneous bursting at membrane potentials of approximately −60 mV and in burst firing consequent to hyperpolarization-induced low-threshold currents and depolarization-induced current pulses. These novel in vitro observations reveal that midline thalamic neurons undergo diurnal changes in their IT, Ih, and undefined potassium conductances. The underlying mechanisms remain to be characterized. PMID:22219029

  7. Expression of N-methyl-D-aspartic acid 2A-B and 2B receptors in anterior thalamic nucleus and subiculum complex of rats

    Institute of Scientific and Technical Information of China (English)

    Yuanshan Fu; Xiaokai Ma; Xiaoling Yue; Bin Wang

    2008-01-01

    BACKGROUND: Glutamate acid ionotropic receptor N-methyl-D-aspartic acid (NMDA) takes part in long-term potentiation, thereby influencing the process of learning and memory.OBJECTIVE: To verify expression of NMDA 2A/B and 2B receptors in the anterior thalamic nucleus and subieulum complex of rats.DESIGN, TIME AND SETTING: A single-sample observation was performed at Department of Anatomy in Dalian Mcdical University (Dalian, Liaoning, China) from April to September in 2007.MATERIALS: Ten adult Wistar rats were used for this study, as well as rabbit anti-NMDA 2A/B and 2Bantibodies.METHODS: The rats were anesthetized and perfused, followed by brain resection and coronal sectioning of the brain tissue. A 1:3 series was selected for immunohistochemistry, using antibodies specific to NMDA 2A/B and 2B receptors. Photos were taken using the Nikon image analysis system.MAIN OUTCOME MEASURES: Expression and distribution of immunohistochemistry staining of NMDA 2A/B and 2B receptor subunits.RESULTS: There were a large number of NMDA 2A/B and 2B receptor-positive neurons distributed throughout the anterior dorsal thalamic nucleus. In the anterior ventral thalamic nucleus, distribution of positive neurons was rare, staining intensity was lighter, and cell bodies were smaller compared with the anterior dorsal thalamic nucleus. In the subiculum complex, staining intensity of NMDA 2A/B and 2B-positive neurons was weakest in the molecular layer and stronger in the pyramidal layer, in particular the region with large cell bodies adjacent to the molecular layer. In the multiform layer, more positive neurons of various sizes were detected.CONCLUSION: NMDA 2A/B and 2B receptor subunits were richly distributed in the anterior thalamic nucleus, with a small difference existing between the anterior dorsal nucleus and anterior ventral nucleus.These neurons were also differentially distributed within the three layers of the subiculum complex.

  8. Dual projections of single orexin- or CART-immunoreactive, lateral hypothalamic neurons to the paraventricular thalamic nucleus and nucleus accumbens shell in the rat: Light microscopic study.

    Science.gov (United States)

    Lee, Eun Y; Lee, Hyun S

    2016-03-01

    The paraventricular thalamic nucleus (PVT) is a major relay station to the limbic forebrain areas such as the nucleus accumbens shell (AcbSh). Both PVT and AcbSh are known to receive feeding/arousal-related peptidergic fibers including orexin (ORX) and cocaine- and amphetamine-regulated transcript (CART) peptide. In the first series of experiments, we examined the peptidergic fiber distribution in the AcbSh; the density of ORX (or CART) fibers in the AcbSh was substantially lower than that in the PVT. At the light microscopic level, ORX (or CART) terminals formed close appositions to choline acetyltransferase (ChAT)-, glutamate decarboxylase (GAD)-, or enkephalin (Enk)-immunoreactive neuronal elements in the AcbSh. In the second series of experiments, we addressed the question of whether single ORX (or CART) cells in the hypothalamus provided divergent axon collaterals to the PVT and AcbSh. ORX neurons with dual projections were found in the medial, central, and lateral subdivisions of the lateral hypothalamus (LH), which amounted to an average of 1.6% of total ORX cells. CART neurons with divergent axon collaterals were observed in the LH, zona incerta, dorsal hypothalamic area, and retrochiasmatic nucleus, which represented a mean of 2.5% of total CART cells. None of arcuate CART cells sent dual projections. These data suggested that a portion of ORX (or CART) neurons in the hypothalamus, via divergent axon collaterals, might concurrently modulate the activity of PVT and AcbSh cells to affect feeding and drug-seeking behaviors.

  9. The Human Thalamic Somatic Sensory Nucleus [Ventral Caudal (Vc)] Shows Neuronal Mechanoreceptor-Like Responses to Optimal Stimuli for Peripheral Mechanoreceptors

    OpenAIRE

    Weiss, N; Ohara, S; Johnson, K. O.; Lenz, F.A.

    2008-01-01

    Although the response of human cutaneous mechanoreceptors to controlled stimuli is well studied, it is not clear how these peripheral signals may be reflected in neuronal activity of the human CNS. We now test the hypothesis that individual neurons in the human thalamic principal somatic sensory nucleus [ventral caudal (Vc)] respond selectively to the optimal stimulus for one of the four mechanoreceptors. The optimal stimuli for particular mechanoreceptors were defined as follows: Pacinian co...

  10. Gait Balance Disorder by Thalamic Infarction with the Disorder of Interstitial Nucleus of Cajal

    OpenAIRE

    Kurosu, A.; Y. Hayashi; K. Wada; Nagaoka, M

    2011-01-01

    The interstitial nucleus of Cajal (INC) is thought to play an important role in torsional/vertical eye position and head posture, and disorders of the INC induce abnormal ocular movements and head tilt. Our patients with ocular tilt reactions simultaneously also had disturbances in ambulatory balance, yet no reports address the loss of balance control induced by disorders of the INC. We examined the ambulatory disturbances induced by INC lesion. We experienced three patients with ocular movem...

  11. A novel turning behavior control method for rat-robot through the stimulation of ventral posteromedial thalamic nucleus.

    Science.gov (United States)

    Xu, Kedi; Zhang, Jiacheng; Zhou, Hong; Lee, Ji Chao Tristan; Zheng, Xiaoxiang

    2016-02-01

    The concept of a rat-robot was initially introduced in 2002, bringing to the field, a novel area of research using modern research into neuroscience and robotics. This paper brings to the table, a study into the method best used for navigation systems in a rat-robot. Current research is epitomized by the use of reward-based spatial navigation, combining the concept of an induced reward sensation as well as a 'virtual touch' sensation to control the movement of the rat-robot. However, such methods are plagued by limitations affecting the success rate as well as preparation procedures which may have varying effects on different rats, even under similar conditions. Hence, this paper studies the stimulation of two different portions of the brain to induce a turning motion within the rat, namely the Ventral Posteromedial (VPM) thalamic nucleus as well as the Barrel-Field (BF) cortex and demonstrates the preferential usage of VPM as the choice use of navigational control in a rat-robot.

  12. The human thalamic somatic sensory nucleus [ventral caudal (Vc)] shows neuronal mechanoreceptor-like responses to optimal stimuli for peripheral mechanoreceptors.

    Science.gov (United States)

    Weiss, N; Ohara, S; Johnson, K O; Lenz, F A

    2009-02-01

    Although the response of human cutaneous mechanoreceptors to controlled stimuli is well studied, it is not clear how these peripheral signals may be reflected in neuronal activity of the human CNS. We now test the hypothesis that individual neurons in the human thalamic principal somatic sensory nucleus [ventral caudal (Vc)] respond selectively to the optimal stimulus for one of the four mechanoreceptors. The optimal stimuli for particular mechanoreceptors were defined as follows: Pacinian corpuscles (PC), vibration at 128 Hz; rapidly adapting (RA), vibration at 32 or 64 Hz; slowly adapting type 1 (SA1), edge; slowly adapting type 2 (SA2), skin stretch. Nineteen neurons had a significant response to at least one optimal stimulus, and 17 had a significantly greater response to one stimulus than to the other three, including 7 PC-related, 7 RA-like, 3 SA1-like, and 2 SA2-like neurons. One of each of the SA1- and SA2-like thalamic neurons responded to vibration with firing rates that were lower than those to edge or stretch but not significantly. Except in the case of PC-related neurons, the receptive field (RF) sizes were larger for these thalamic neurons than for the corresponding mechanoreceptor. Von Frey thresholds were higher than those for the corresponding human RA and SA1 mechanoreceptors. These results suggest that there is a convergence of pathways transmitting input from multiple mechanoreceptors of one type on single thalamic neurons via the dorsal columns. They are also consistent with the presence of primate thalamic elements of modality and somatotopic isorepresentation.

  13. Therapeutic subthalamic nucleus deep brain stimulation reverses cortico-thalamic coupling during voluntary movements in Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Josh Kahan

    Full Text Available Deep brain stimulation of the subthalamic nucleus (STN DBS has become an accepted treatment for patients experiencing the motor complications of Parkinson's disease (PD. While its successes are becoming increasingly apparent, the mechanisms underlying its action remain unclear. Multiple studies using radiotracer-based imaging have investigated DBS-induced regional changes in neural activity. However, little is known about the effect of DBS on connectivity within neural networks; in other words, whether DBS impacts upon functional integration of specialized regions of cortex. In this work, we report the first findings of fMRI in 10 subjects with PD and fully implanted DBS hardware receiving efficacious stimulation. Despite the technical demands associated with the safe acquisition of fMRI data from patients with implanted hardware, robust activation changes were identified in the insula cortex and thalamus in response to therapeutic STN DBS. We then quantified the neuromodulatory effects of DBS and compared sixteen dynamic causal models of effective connectivity between the two identified nodes. Using Bayesian model comparison, we found unequivocal evidence for the modulation of extrinsic (between region, i.e. cortico-thalamic and thalamo-cortical connections. Using Bayesian model parameter averaging we found that during voluntary movements, DBS reversed the effective connectivity between regions of the cortex and thalamus. This casts the therapeutic effects of DBS in a fundamentally new light, emphasising a role in changing distributed cortico-subcortical interactions. We conclude that STN DBS does impact upon the effective connectivity between the cortex and thalamus by changing their sensitivities to extrinsic afferents. Furthermore, we confirm that fMRI is both feasible and is tolerated well by these patients provided strict safety measures are adhered to.

  14. Role of the thalamic nucleus reuniens in mediating interactions between the hippocampus and medial prefrontal cortex during spatial working memory

    Directory of Open Access Journals (Sweden)

    Amy L Griffin

    2015-03-01

    Full Text Available Despite decades of research, the neural mechanisms of spatial working memory remain poorly understood. Although the dorsal hippocampus is known to be critical for memory-guided behavior, experimental evidence suggests that spatial working memory depends not only on the hippocampus itself, but also on the circuit comprised of the hippocampus and the medial prefrontal cortex (mPFC. Disruption of hippocampal-mPFC interactions may result in failed transfer of spatial and contextual information processed by the hippocampus to the circuitry in mPFC responsible for decision making and goal-directed behavior. Oscillatory synchrony between the hippocampus and mPFC has been shown to increase in tasks with high spatial working memory demand. However, the mechanisms and circuitry supporting hippocampal-mPFC interactions during these tasks is unknown. The midline thalamic nucleus reuniens (RE is reciprocally connected to both the hippocampus and the mPFC and has been shown to be critical for a variety of working memory tasks. Therefore, it is likely that hippocampal-mPFC oscillatory synchrony is modulated by RE activity. This article will review the anatomical connections between the hippocampus, mPFC and RE along with the behavioral studies that have investigated the effects of RE disruption on working memory task performance. The article will conclude with suggestions for future directions aimed at identifying the specific role of the RE in regulating functional interactions between the hippocampus and the PFC and investigating the degree to which these interactions contribute to spatial working memory.

  15. Early Idiopathic Normal Pressure Hydrocephalus Patients With Neuropsychological Impairment Are Associated With Increased Fractional Anisotropy in the Anterior Thalamic Nucleus.

    Science.gov (United States)

    Chen, Yung-Chieh; Chiang, Shih-Wei; Chi, Chia-Hsing; Liou, Michelle; Kuo, Duen-Pang; Kao, Hung-Wen; Chung, Hsiao-Wen; Ma, Hsin I; Peng, Giia-Sheun; Wu, Yu-Te; Chen, Cheng-Yu

    2016-05-01

    In this study, we aimed to investigate the reactive changes in diffusion tensor imaging (DTI)-derived diffusion metrics of the anterior thalamic nucleus (AN), a relaying center for the Papez circuit, in early idiopathic normal pressure hydrocephalus (iNPH) patients with memory impairment, as well as its correlation with the patients' neuropsychological performances. In total, 28 probable iNPH patients with symptom onset within 1 year and 17 control subjects were prospectively recruited between 2010 and 2013 for this institutional review board-approved study. Imaging studies including DTI and a neuropsychological assessment battery were performed in all subjects. Diffusion metrics were measured from the region of the AN using tract-deterministic seeding method by reconstructing the mammillo-thalamo-cingulate connections within the Papez circuit. Differences in diffusion metrics and memory assessment scores between the patient and control group were examined via the Mann-Whitney U test. Spearman correlation analyses were performed to examine associations between diffusion metrics of AN and neuropsychological tests within the patient group. We discovered that early iNPH patients exhibited marked elevations in fractional anisotropy, pure diffusion anisotropy, and axial diffusivity (all P memory (all P metrics and neuropsychological test scores in the patient group, whereas ranked scatter plots clearly demonstrated a dichotic sample distribution between patient and control samples. In summary, our study highlighted the potential compensatory role of the AN by increasing thalamocortical connectivity within the Papez circuit because memory function declines in early iNPH when early shunt treatment may potentially reverse the memory deficits.

  16. Neurotensin in the posterior thalamic paraventricular nucleus: inhibitor of pharmacologically relevant ethanol drinking.

    Science.gov (United States)

    Pandey, Surya; Badve, Preeti S; Curtis, Genevieve R; Leibowitz, Sarah F; Barson, Jessica R

    2017-09-06

    Individuals prone to ethanol overconsumption may have preexisting neurochemical disturbances that contribute to their vulnerability. This study examined the paraventricular nucleus of the thalamus (PVT), a limbic structure recently shown to participate in ethanol intake. To identify individuals prone to ethanol overconsumption, we tested Long-Evans rats in behavioral paradigms and found high levels of vertical time (rearing behavior) in a novel activity chamber to be a consistent predictor of subsequent excessive 20 percent ethanol drinking under the intermittent access model. Examining neurochemicals in the PVT, we found before ethanol exposure that prone rats with high rearing, compared with non-prone rats, had significantly lower levels of neurotensin (NTS) mRNA and peptide in the posterior (pPVT) but not anterior (aPVT) subregion of the PVT. Our additional finding that ethanol intake has no significant impact on either rearing or NTS levels indicates that these measures, which are different in prone rats before ethanol consumption, remain stable after ethanol consumption. The possibility that NTS directly controls ethanol drinking is supported by our finding that NTS administration specifically suppresses ethanol drinking when injected into the pPVT but not aPVT, with this effect occurring exclusively in higher drinkers that presumably have lower endogenous levels of NTS. Further, an NTS antagonist in the pPVT augments intake in lower drinkers with presumably more endogenous NTS, while NTS in the pPVT inhibits novelty-induced rearing that predicts excessive drinking. Together, these results provide strong evidence that low endogenous levels of NTS in the pPVT contribute to an increased propensity toward excessive ethanol drinking. © 2017 Society for the Study of Addiction.

  17. Efficacy of unilateral deep brain stimulation of the thalamic ventralis intermedius nucleus in a patient with bipolar disorder associated with Klinefelter syndrome and essential tremor. Case report.

    Science.gov (United States)

    Telfeian, A E; Boockvar, J A; Simuni, T; Jaggi, J; Skolnick, B; Baltuch, G H

    2000-07-01

    Deep brain stimulation (DBS) of the ventralis intermedius nucleus (Vim) is a safe and effective treatment for essential tremor. Bipolar disorder and essential tremor had each been reported to occur in association with Klinefelter syndrome but the three diseases have been reported to occur together in only one patient. The genetic basis and natural history of these disorders are not completely understood and may be related rather than coincidental. The authors report on a 23-year-old man with Klinefelter syndrome (47,XXY) and bipolar disorder who was treated successfully with unilateral DBS of the thalamic Vim for essential tremor.

  18. Netrin-1 rescues neuron loss by attenuating secondary apoptosis in ipsilateral thalamic nucleus following focal cerebral infarction in hypertensive rats.

    Science.gov (United States)

    Liao, S-J; Gong, Q; Chen, X-R; Ye, L-X; Ding, Q; Zeng, J-S; Yu, J

    2013-02-12

    Neurological deficit following cerebral infarction correlates with not only primary injury, but also secondary neuronal apoptosis in remote loci connected to the infarction. Netrin-1 is crucial for axonal guidance by interacting with its receptors, deleted in colorectal cancer (DCC) and uncoordinated gene 5H (UNC5H). DCC and UNC5H are also dependence receptors inducing cell apoptosis when unbound by netrin-1. The present study is to investigate the role of netrin-1 and its receptors in ipsilateral ventroposterior thalamic nucleus (VPN) injury secondary to stroke in hypertensive rats. Renovascular hypertensive Sprague-Dawley rats underwent middle cerebral artery occlusion (MCAO). Continuous intracerebroventricular infusion of netrin-1 (600 ng/d for 7 days) or vehicle (IgG/Fc) was given 24h after MCAO. Neurological function was evaluated by postural reflex 8 and 14 days after MCAO. Then, immunoreactivity was determined in the ipsilateral VPN for NeuN, glial fibrillary acidic protein, netrin-1 and its receptors (DCC and UNC5H2), apoptosis was detected with Terminal deoxynucleotidyl transferase-mediated digoxigenin-dUTP-biotin nick-end labeling (TUNEL) assay, and the expressions of caspase-3, netrin-1, DCC, and UNC5H2 were quantified by western blot analysis. MCAO resulted in the impaired postural reflex after 8 and 14 days, with decreased NeuN marked neurons and increased TUNEL-positive cells, as well as an up-regulation in the levels of cleaved caspase-3 and UNC5H2 protein in the ipsilateral VPN, without significant change in DCC or netrin-1 expression. By exogenous netrin-1 infusion, the number of neurons was increased in the ipsilateral VPN, and both TUNEL-positive cell number and caspase-3 protein level were reduced, while UNC5H2 expression remained unaffected, simultaneously, the impairment of postural reflex was improved. Taken together, the present study indicates that exogenous netrin-1 could rescue neuron loss by attenuating secondary apoptosis in the

  19. Phase-dependent activity of neurons in the rostral part of the thalamic reticular nucleus with saccharin intake in a cue-guided lever-manipulation task.

    Science.gov (United States)

    Aoki, Ryuhei; Kato, Risako; Fujita, Satoshi; Shimada, Jun; Koshikawa, Noriaki; Kobayashi, Masayuki

    2017-03-01

    Neurons in the rostral part of the thalamic reticular nucleus (rTRN) receive somatosensory and motor information and regulate neural activities of the thalamic nuclei. Previous studies showed that when activity in visual TRN neurons is suppressed prior to the visual stimuli in a visual detection task, the performance of the task improves. However, little is known about such changes in the rTRN preceding certain events. In the present study, we performed unit recordings in the rTRN in alert rats during a cue-guided lever-manipulation task in which saccharin was provided as a reward. Changes in neural activity during saccharin intake were observed in 56% (51 of 91) of the recorded neurons; the firing rates increased in 21 neurons and decreased in 23 neurons. Seven neurons both increased and decreased their firing rates during saccharin intake. Changes in firing rates during the reward-waiting stage between task termination and saccharin intake were also observed in 73% (37 of 51) of the neurons that responded to saccharin intake. Increased activity during saccharin intake did not correlate with increased activity during lever-manipulation or activity during the reward-waiting stage. However, decreased activity during saccharin intake was correlated with activity during the reward-waiting stage. These results suggest that rTRN neurons have phase-dependent changes in their activity and regulate the thalamic activities. Furthermore, the decreased activity of rTRN neurons before reward may contribute to refine somatosensory and motor information processing in the thalamic nuclei depending on the status of mind such as expectation and attention. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Different cortical projections from three subdivisions of the rat lateral posterior thalamic nucleus: a single-neuron tracing study with viral vectors.

    Science.gov (United States)

    Nakamura, Hisashi; Hioki, Hiroyuki; Furuta, Takahiro; Kaneko, Takeshi

    2015-05-01

    The lateral posterior thalamic nucleus (LP) is one of the components of the extrageniculate pathway in the rat visual system, and is cytoarchitecturally divided into three subdivisions--lateral (LPl), rostromedial (LPrm), and caudomedial (LPcm) portions. To clarify the differences in the dendritic fields and axonal arborisations among the three subdivisions, we applied a single-neuron labeling technique with viral vectors to LP neurons. The proximal dendrites of LPl neurons were more numerous than those of LPrm and LPcm neurons, and LPrm neurons tended to have wider dendritic fields than LPl neurons. We then analysed the axonal arborisations of LP neurons by reconstructing the axon fibers in the cortex. The LPl, LPrm and LPcm were different from one another in terms of the projection targets--the main target cortical regions of LPl and LPrm neurons were the secondary and primary visual areas, whereas those of LPcm neurons were the postrhinal and temporal association areas. Furthermore, the principal target cortical layers of LPl neurons in the visual areas were middle layers, but that of LPrm neurons was layer 1. This indicates that LPl and LPrm neurons can be categorised into the core and matrix types of thalamic neurons, respectively, in the visual areas. In addition, LPl neurons formed multiple axonal clusters within the visual areas, whereas the fibers of LPrm neurons were widely and diffusely distributed. It is therefore presumed that these two types of neurons play different roles in visual information processing by dual thalamocortical innervation of the visual areas.

  1. The Emotional Gatekeeper: A Computational Model of Attentional Selection and Suppression through the Pathway from the Amygdala to the Inhibitory Thalamic Reticular Nucleus.

    Directory of Open Access Journals (Sweden)

    Yohan J John

    2016-02-01

    Full Text Available In a complex environment that contains both opportunities and threats, it is important for an organism to flexibly direct attention based on current events and prior plans. The amygdala, the hub of the brain's emotional system, is involved in forming and signaling affective associations between stimuli and their consequences. The inhibitory thalamic reticular nucleus (TRN is a hub of the attentional system that gates thalamo-cortical signaling. In the primate brain, a recently discovered pathway from the amygdala sends robust projections to TRN. Here we used computational modeling to demonstrate how the amygdala-TRN pathway, embedded in a wider neural circuit, can mediate selective attention guided by emotions. Our Emotional Gatekeeper model demonstrates how this circuit enables focused top-down, and flexible bottom-up, allocation of attention. The model suggests that the amygdala-TRN projection can serve as a unique mechanism for emotion-guided selection of signals sent to cortex for further processing. This inhibitory selection mechanism can mediate a powerful affective 'framing' effect that may lead to biased decision-making in highly charged emotional situations. The model also supports the idea that the amygdala can serve as a relevance detection system. Further, the model demonstrates how abnormal top-down drive and dysregulated local inhibition in the amygdala and in the cortex can contribute to the attentional symptoms that accompany several neuropsychiatric disorders.

  2. The Emotional Gatekeeper: A Computational Model of Attentional Selection and Suppression through the Pathway from the Amygdala to the Inhibitory Thalamic Reticular Nucleus.

    Science.gov (United States)

    John, Yohan J; Zikopoulos, Basilis; Bullock, Daniel; Barbas, Helen

    2016-02-01

    In a complex environment that contains both opportunities and threats, it is important for an organism to flexibly direct attention based on current events and prior plans. The amygdala, the hub of the brain's emotional system, is involved in forming and signaling affective associations between stimuli and their consequences. The inhibitory thalamic reticular nucleus (TRN) is a hub of the attentional system that gates thalamo-cortical signaling. In the primate brain, a recently discovered pathway from the amygdala sends robust projections to TRN. Here we used computational modeling to demonstrate how the amygdala-TRN pathway, embedded in a wider neural circuit, can mediate selective attention guided by emotions. Our Emotional Gatekeeper model demonstrates how this circuit enables focused top-down, and flexible bottom-up, allocation of attention. The model suggests that the amygdala-TRN projection can serve as a unique mechanism for emotion-guided selection of signals sent to cortex for further processing. This inhibitory selection mechanism can mediate a powerful affective 'framing' effect that may lead to biased decision-making in highly charged emotional situations. The model also supports the idea that the amygdala can serve as a relevance detection system. Further, the model demonstrates how abnormal top-down drive and dysregulated local inhibition in the amygdala and in the cortex can contribute to the attentional symptoms that accompany several neuropsychiatric disorders.

  3. Inhibitory effects of microinjection of morphine into thalamic nucleus submedius on ipsilateral paw bee venom-induced inflammatory pain in the rat

    Institute of Scientific and Technical Information of China (English)

    Jie Feng; Ning Jia; Jun-yang Wang; Xin-ai Song; Xiao-ying Li; Jing-shi Tang

    2009-01-01

    Objective To examine whether microinjectlon of morphine into the rat thaiamle nucleus submedlus (Sin) could depress the bee venom (BV)-induced nociceptive behaviours. Methods In inflammatory pain model induced by BV subcutaneous injection into rat unilateral hind paw, the inhibitory effects of morphine microinjection into thalamic nucleus suhmedius (Sin) on the spontaneous nociecptlve behavior, heat hyperalgesia and tactile ailodynia, and the influence of naioxone on the morphine effects were observed in the rat. Results A single dose of morphine (5.0 μg, 0. 5μL) applied into the Sm ipsilaterni to the BV injected paw significantly depressed the spontaneous paw flinching response. Morphine also significantly increased the heat paw withdrawal iateneies in the bilateral hind paw and the tactile paw withdrawal threshold in the ipsilnteral hind paw 2 hours after BV injection. All these depressive effects could be effectively antagonized by pre-treatment with the opiuld receptor antagonist naloxone (1.0μg, 0. 5μL) in the Sm 5rain prior to morphine administration. Naloxone alone injected to the Sm had no effect on the BV-induecd nociceptive behavior. Conclusion These results suggest that Sm is involved in opioid receptor-mediated antt-nociception in the rat with the BV-induced inflammatory pain. Together with results from previous studies, it is likely that this effect is produced by activation of the Sm-ventrolateral orbital cortex-periaqueductal gray pathway, leading to activation of the brainstem descending inhibitory system and depression of the nodceptive inputs at the spinal cord level.

  4. Functional interaction of medial mediodorsal thalamic nucleus but not nucleus accumbens with amygdala and orbital prefrontal cortex is essential for adaptive response selection after reinforcer devaluation.

    Science.gov (United States)

    Izquierdo, Alicia; Murray, Elisabeth A

    2010-01-13

    In nonhuman primates, reward-based decision making may be assessed through choices of objects overlying two different foods, one of which has been devalued by selective satiation. The most adaptive object choices yield the food of higher value. A large body of data identifies the amygdala and orbital prefrontal cortex (PFo) as neural mediators of adaptive responses to reinforcer devaluation. More recent work in nonhuman primates reveals the critical role of the medial, magnocellular portion of the mediodorsal nucleus of the thalamus (MDm) as well. Because both the nucleus accumbens (NA) and the MDm are anatomically related to the amygdala and PFo, and because both regions are implicated in reward processing, we tested whether either region necessarily interacts with the amygdala and PFo to mediate reinforcer devaluation effects. We used a crossed-disconnection design in which monkeys received amygdala and PFo lesions in one hemisphere combined with either NA or MDm lesions in the contralateral hemisphere. Monkeys that sustained NA disconnection, like controls, showed robust shifts in object choices in response to reinforcer devaluation. In contrast, monkeys that sustained MDm disconnection failed to adjust their object choices. Thus, MDm, but not NA, works together with the amygdala and PFo to support reward-based decision making.

  5. Role of the thalamic submedius nucleus histamine H1 and H 2 and opioid receptors in modulation of formalin-induced orofacial pain in rats.

    Science.gov (United States)

    Erfanparast, Amir; Tamaddonfard, Esmaeal; Taati, Mina; Dabaghi, Milad

    2015-10-01

    Histamine and opioid systems are involved in supraspinal modulation of pain. In this study, we investigated the effects of separate and combined microinjections of agonists and antagonists of histamine H1 and H2 and opioid receptors into the thalamic submedius (Sm) nucleus on the formalin-induced orofacial pain. Two guide cannulas were implanted into the right and left sides of the Sm in ketamine- and xylazine-anesthetized rats. Orofacial formalin pain was induced by subcutaneous injection of a diluted formalin solution (50 μl, 1.5%) into the vibrissa pad. Face rubbing durations were recorded at 3-min blocks for 45 min. Formalin produced a biphasic pain response (first phase: 0-3 min and second phase: 15-33 min). Separate and combined microinjections of histamine H1 and H2 receptor agonists, 2-pyridylethylamine (2-PEA) and dimaprit, respectively, and opioid receptor agonist, morphine, attenuated the second phase of pain. The analgesic effects induced by 2-PEA, dimaprit, and morphine were blocked by prior microinjections of fexofenadine (a histamine H1 receptor antagonist), famotidine (a histamine H2 receptor antagonist), and naloxone (an opioid receptor antagonist), respectively. Naloxone also prevented 2-PEA- and dimaprit-induced antinociception, and the analgesic effect induced by morphine was inhibited by fexofenadine and famotidine. These results showed the involvement of histamine H1 and H2 and opioid receptors in the Sm modulation of orofacial pain. Opioid receptor might be involved in analgesia induced by activation of histamine H1 and H2 receptors and vice versa.

  6. Ca2+-dependent and Na+-dependent K+ conductances contribute to a slow AHP in thalamic paraventricular nucleus neurons: a novel target for orexin receptors.

    Science.gov (United States)

    Zhang, Li; Kolaj, Miloslav; Renaud, Leo P

    2010-10-01

    Thalamic paraventricular nucleus (PVT) neurons exhibit a postburst apamin-resistant slow afterhyperpolarization (sAHP) that is unique to midline thalamus, displays activity dependence, and is abolished in tetrodotoxin. Analysis of the underlying sI(AHP) confirmed a requirement for Ca(2+) influx with contributions from P/Q-, N-, L-, and R subtype channels, a reversal potential near E(K)(+) and a significant reduction by UCL-2077, barium or TEA, consistent with a role for K(Ca) channels. sI(AHP) was significantly reduced by activation of either the cAMP or the protein kinase C (PKC) signaling pathway. Further analysis of the sAHP revealed an activity-dependent but Ca(2+)-independent component that was reduced in high [K(+)](o) and blockable after Na(+) substitution with Li(+) or in the presence of quinidine, suggesting a role for K(Na) channels. The Ca(2+)-independent sAHP component was selectively reduced by activation of the PKC signaling pathway. The sAHP contributed to spike frequency adaptation, which was sensitive to activation of either cAMP or PKC signaling pathways and, near the peak of membrane hyperpolarization, was sufficient to cause de-inactivation of low threshold T-Type Ca(2+) channels, thus promoting burst firing. PVT neurons are densely innervated by orexin-immunoreactive fibers, and depolarized by exogenously applied orexins. We now report that orexin A significantly reduced both Ca(2+)-dependent and -independent sI(AHP), and spike frequency adaptation. Furthermore orexin A-induced sI(AHP) inhibition was mediated through activation of PKC but not PKA. Collectively, these observations suggest that K(Ca) and K(Na) channels have a role in a sAHP that contributes to spike frequency adaptation and neuronal excitability in PVT neurons and that the sAHP is a novel target for modulation by the arousal- and feeding-promoting orexin neuropeptides.

  7. Parvalbumin interneurons and calretinin fibers arising from the thalamic nucleus reuniens degenerate in the subiculum after kainic acid-induced seizures.

    Science.gov (United States)

    Drexel, M; Preidt, A P; Kirchmair, E; Sperk, G

    2011-08-25

    The subiculum is the major output area of the hippocampus. It is closely interconnected with the entorhinal cortex and other parahippocampal areas. In animal models of temporal lobe epilepsy (TLE) and in TLE patients it exerts increased network excitability and may crucially contribute to the propagation of limbic seizures. Using immunohistochemistry and in situ-hybridization we now investigated neuropathological changes affecting parvalbumin and calretinin containing neurons in the subiculum and other parahippocampal areas after kainic acid-induced status epilepticus. We observed prominent losses in parvalbumin containing interneurons in the subiculum and entorhinal cortex, and in the principal cell layers of the pre- and parasubiculum. Degeneration of parvalbumin-positive neurons was associated with significant precipitation of parvalbumin-immunoreactive debris 24 h after kainic acid injection. In the subiculum the superficial portion of the pyramidal cell layer was more severely affected than its deep part. In the entorhinal cortex, the deep layers were more severely affected than the superficial ones. The decrease in number of parvalbumin-positive neurons in the subiculum and entorhinal cortex correlated with the number of spontaneous seizures subsequently experienced by the rats. The loss of parvalbumin neurons thus may contribute to the development of spontaneous seizures. On the other hand, surviving parvalbumin neurons revealed markedly increased expression of parvalbumin mRNA notably in the pyramidal cell layer of the subiculum and in all layers of the entorhinal cortex. This indicates increased activity of these neurons aiming to compensate for the partial loss of this functionally important neuron population. Furthermore, calretinin-positive fibers terminating in the molecular layer of the subiculum, in sector CA1 of the hippocampus proper and in the entorhinal cortex degenerated together with their presumed perikarya in the thalamic nucleus reuniens. In

  8. Language disturbances from mesencephalo-thalamic infarcts. Identification of thalamic nuclei by CT-reconstructions

    Energy Technology Data Exchange (ETDEWEB)

    Lazzarino, L.G.; Nicolai, A.; Valassi, F. (Ospedale Civile di Gorizia (Italy). Div. di Neurologia); Biasizzo, E. (Ospedale di Udine (Italy). Servizio di Neuroradiologia)

    1991-08-01

    The authors report the cases of two patients with CT-documented paramedian mesencephalo-thalamic infarcts, showing language disturbances. The first patient showed a non fluent, transcortical motor-like aphasia, the other had a fluent but severely paraphasic language disorder. The CT study disclosed that it was the dorso-median thalamic nucleus that was mostly involved in both cases. These findings agree with a few previous pathological studies suggesting that the paramedian thalamic nuclei, particlularly the dorso-median nucleus may play some role in language disturbances. However the anatomical basis for thalamic aphasia remains speculative, taking into account the importantce of cortical connections in the origin of subcortical neuropsychological disturbances. (orig.).

  9. Effect of scorpion venom analgesic active peptide extracted from Buthus martensii Karsch on evoked potential in the thalamic posterior nucleus group in rats

    Institute of Scientific and Technical Information of China (English)

    Qiuhong Lin; Xinxin Li

    2008-01-01

    BACKGROUND: Buthus martensii Karsch is a rare medicinal animal, and dried integral Buthus martensii Karsch is an important drug in traditional Chinese medicine. OBJECTIVE: To investigate the effects of scorpion venom analgesic active peptide (SAP) extracted from Buthus martensii Karsch on evoked unit discharge of the common peroneal nerve in the posterior nucleus group of the thalamus using a stereotaxic electrophysiological extracellular microelectrode recording. DESIGN, TIME AND SETTING: One-way designed study, performed in the Physiological Laboratory of Shenyang Medical College on September 15, 2006. MATERIALS: Fifty 3-4 months old Wistar rats (25 males and 25 females) were used. SAP was provided by Shenyang Pharmaceutical University. Morphine solution was made by the First Drug Manufactory, Northeastern Drug Manufacture Group (batch number: H20013351). Naloxone solution was made by Hunan Pharmaceutical Co., Ltd. (batch number: H43021669). Type ATAC-350 medical data processing equipment was made by the Photoelectricity Company, Japan.MAIN OUTCOME MEASURES: Evoked discharge in the posterior nucleus group of the thalamus and effects of SAP alone and SAP in combination with saline, morphine, or naloxone on discharges in the posterior nucleus group of the thalamus as measured by TQ-19 medical data processing equipment.RESULTS: SAP group: At 1-3 minutes after SAP injection, evoked discharges in the posterior nucleus group of the thalamus were inhibited, and the inhibitory time lasted for (45.0?.7) minutes. Saline group: Evoked discharges in the posterior nucleus group of the thalamus did not change after saline injection. Morphine group: At 1-3 minutes after morphine injection, evoked discharges in the posterior nucleus group of the thalamus were inhibited, and the inhibitory time lasted for (35.0?.8) minutes. Naloxone group: SAP had no effects on evoked potentials in the posterior nucleus group of the thalamus.

  10. Dopamine D4 receptor stimulation in GABAergic projections of the globus pallidus to the reticular thalamic nucleus and the substantia nigra reticulata of the rat decreases locomotor activity.

    Science.gov (United States)

    Erlij, David; Acosta-García, Jacqueline; Rojas-Márquez, Martín; González-Hernández, Brenda; Escartín-Perez, Erick; Aceves, Jorge; Florán, Benjamín

    2012-02-01

    Dopamine D4 receptors are localized in the GABAergic projections that globus pallidus (GP) neurons send to the reticular nucleus of the thalamus (RTN), the substantia nigra reticulata (SNr) and the subthalamic nucleus (STN). Deficient D4 function in this network could lead to hyperactivity and thus be important in generating some of the symptoms of ADHD (attention deficit hyperactivity disorder), a condition associated with polymorphisms of dopamine D4 receptors. It is then, unexpected that systemic injections of D4 ligands have no significant effects on the motor activity of normal rats. We further examined this issue by microinjecting D4 ligands and psychostimulant drugs in relevant structures. Interstitial dopamine overflow in the RTN was increased by reverse microdialysis of both methylphenidate and methamphetamine. Intranuclear injections in the RTN of methylphenidate, methamphetamine and the selective D4 agonist PD 168,077 reduced motor activity. Intraperitoneal injection of the D4 antagonist L 745,870 blocked the effects of these intranuclear injections. Similarly, intranuclear injections of PD 168,077 in the SNr inhibited motor activity, an effect that was also blocked by intraperitoneal L 745,870. In rats with 6-OHDA induced hemiparkinsonism, intraperitoneal PD 168,077 produced ipsilateral turning behavior that was blocked by L 745,870. Our results suggest that diminished D4 signaling in GP projections could lead to increased traffic through the relay nuclei of the thalamus and hyperactivity. Hence this basal-ganglia-thalamus network may be one of the targets of the beneficial effects that psychostimulant drugs have in disorders associated with D4 receptor abnormalities. This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'.

  11. Neurological manifestations and PET studies of the thalamic vascular lesions

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Shinji; Kawamura, Mitsuru; Hirayama, Keizo [Chiba Univ. (Japan). School of Medicine

    1995-02-01

    We divided 38 patients with cerebrovascular disease of the thalamus into 5 groups according to the site of the thalamic lesions as confirmed by X-ray CT and/or MRI. In 16 patients, we examined the cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO{sub 2}) by positron emission tomography (PET). In the anteromedial thalamic lesion group, patients displayed disturbances of spontaneity, memory, reading and writing. CBF and CMRO{sub 2} were decreased in the frontal, parietal and temporal lobes on the side of the lesion. In the dorsolateral thalamic lesion group, ataxic hemiparesis was a characteristic symptom. CBF and CMRO{sub 2} were decreased in frontoparietal lobes on the side of the lesion. In the group with lesions confined to the nucleus ventralis posterioris thalami, the main symptoms were sensory disturbance, with cheiro-oral sensory syndrome being particularly evident. CBF and CMRO{sub 2} were decreased in the parietal lobe on the side of the lesion. In the group with posterolateral thalamic lesions without pulvinar involvement, patients exhibited thalamic syndrome without thalamic pain. CBF and CMRO{sub 2} were decreased in the frontoparietal and temporal lobes on the side of the lesion. In contrast, in the group with posterolateral thalamic lesions with pulvinar involvement, all patients showed thalamic pain. The decrease in CBF and CMRO{sub 2} extended to the inferomedial region of the temporal lobe in addition to the area of decreased CBF and CMRO{sub 2} observed in the group with posterolateral thalamic lesions without pulvinar involvement. Based on these results, we speculate that the neurological manifestations of thalamic vascular disease are associated with a decrease in cortical CBF and CMRO{sub 2} secondary to the thalamic lesions. (author).

  12. Assessing the risk of central post-stroke pain of thalamic origin by lesion mapping.

    Science.gov (United States)

    Sprenger, Till; Seifert, Christian L; Valet, Michael; Andreou, Anna P; Foerschler, Annette; Zimmer, Claus; Collins, D Louis; Goadsby, Peter J; Tölle, Thomas R; Chakravarty, M Mallar

    2012-08-01

    Central post-stroke pain of thalamic origin is an extremely distressing and often refractory disorder. There are no well-established predictors for pain development after thalamic stroke, and the role of different thalamic nuclei is unclear. Here, we used structural magnetic resonance imaging to identify the thalamic nuclei, specifically implicated in the generation of central post-stroke pain of thalamic origin. Lesions of 10 patients with central post-stroke pain of thalamic origin and 10 control patients with thalamic strokes without pain were identified as volumes of interest on magnetic resonance imaging data. Non-linear deformations were estimated to match each image with a high-resolution template and were applied to each volume of interest. By using a digital atlas of the thalamus, we elucidated the involvement of different nuclei with respect to each lesion. Patient and control volumes of interest were summed separately to identify unique areas of involvement. Voxelwise odds ratio maps were calculated to localize the anatomical site where lesions put patients at risk of developing central post-stroke pain of thalamic origin. In the patients with pain, mainly lateral and posterior thalamic nuclei were affected, whereas a more anterior-medial lesion pattern was evident in the controls. The lesions of 9 of 10 pain patients overlapped at the border of the ventral posterior nucleus and the pulvinar, coinciding with the ventrocaudalis portae nucleus. The lesions of this area showed an odds ratio of 81 in favour of developing thalamic pain. The high odds ratio at the ventral posterior nucleus-pulvinar border zone indicates that this area is crucial in the pathogenesis of thalamic pain and demonstrates the feasibility of identifying patients at risk of developing central post-stroke pain of thalamic origin early after thalamic insults. This provides a basis for pre-emptive treatment studies.

  13. The paraventricular nucleus of the thalamus is recruited by both natural rewards and drugs of abuse: recent evidence of a pivotal role for orexin/hypocretin signaling in this thalamic nucleus in drug-seeking behavior

    Directory of Open Access Journals (Sweden)

    Alessandra eMatzeu

    2014-04-01

    Full Text Available A major challenge for the successful treatment of drug addiction is the long-lasting susceptibility to relapse and multiple processes that have been implicated in the compulsion to resume drug intake during abstinence. Recently, the orexin/hypocretin (Orx/Hcrt system has been shown to play a role in drug-seeking behavior. The Orx/Hcrt system regulates a wide range of physiological processes, including feeding, energy metabolism, and arousal. It has also been shown to be recruited by drugs of abuse. Orx/Hcrt neurons are predominantly located in the lateral hypothalamus that projects to the paraventricular nucleus of the thalamus (PVT, a region that has been identified as a way-station that processes information and then modulates the mesolimbic reward and extrahypothalamic stress systems. Although not thought to be part of the drug addiction circuitry, recent evidence indicates that the PVT is involved in the modulation of reward function in general and drug-directed behavior in particular. Evidence indicates a role for Orx/Hcrt transmission in the PVT in the modulation of reward function in general and drug-directed behavior in particular. One hypothesis is that following repeated drug exposure, the Orx/Hcrt system acquires a preferential role in mediating the effects of drugs vs. natural rewards. The present review discusses recent findings that suggest maladaptive recruitment of the PVT by drugs of abuse, specifically Orx/Hcrt-PVT neurotransmission.

  14. Hypersexuality and dysexecutive syndrome after a thalamic infarct.

    Science.gov (United States)

    Spinella, Marcello

    2004-12-01

    Hypersexuality can result from insults to several neuroanatomical structures that regulate sexual behavior. A case is presented of an adult male with a thalamic infarct resulting in a paramedian thalamic syndrome, consisting of hypersomnolence, confabulatory anterograde amnesia (including reduplicative paramnesia), vertical gaze deficits, and hypophonic speech. A dysexecutive syndrome also manifested, consisting of social disinhibition, apathy, witzelsucht, motor inhibition deficits, and environmental dependence. Hypersexuality uncharacteristic of his premorbid behavior was evident in instances of exhibitionism, public masturbation, and verbal sexual obscenities. In contrast to the few previous reports of hypersexuality following thalamic infarct, this case neither involved mania nor hemichorea. The relevance of the mediodorsal thalamic nucleus in limbic and prefrontal circuits is discussed.

  15. 丘脑前核在三叉神经电刺激减轻癫痫发作和海马神经元损伤中的作用%Role of anterior thalamic nucleus in trigeminal nerve electrostimulation-induced reduction of seizures and hippocampal damage

    Institute of Scientific and Technical Information of China (English)

    王先红; 田苗苗; 潘晴晴; 鲁亚楠; 王玉

    2014-01-01

    [ ABSTRACT] AIM: To investigate the role of anterior thalamic nucleus in trigeminal nerve electrostimulation ( TNS)-induced effects on seizures and hippocampal damage.METHODS: The rats were intraperitoneally injected with pilocarpine to induce chronic epilepsy, and then received sham treatment, TNS treatment and TNS treatment after stereotac-tic lesion to the anterior thalamic nucleus.The TNS treatment lasted for 1 month in each group.Another injection of pilo-carpine was conducted to induce seizures, and the severity and duration of seizures were quantitatively evaluated.TUNEL, Fluoro-Jade B ( FJB) and Nissl staining were applied to determine in situ apoptosis, neuronal degeneration and neuron loss in the hippocampal CA1 area respectively.RESULTS:Compared with TNS group, TNS treatment after stereotactic lesion to the anterior thalamic nucleus significantly increased the severity and duration of seizures (P<0.05), and the numbers of TUNEL positive cells, FJB positive cells and lost neurons in the hippocampal CA1 area (P<0.01).CONCLUSION:Anterior thalamic nucleus plays a role in TNS-induced reduction of seizures and hippocampal damage.The mechanisms might be due to the chronically activation of the cortex through anterior thalamic nucleus pathway induced by TNS, resulting in the down-regulation of neuronal excitatory susceptibility.%目的:探讨丘脑前核在三叉神经电刺激( TNS)减轻癫痫发作和海马神经元损伤中的作用。方法:大鼠经腹腔注射匹罗卡品建立慢性癫痫模型,模型大鼠分别给予假刺激、三叉神经电刺激和立体定向毁损丘脑前核预处理后三叉神经电刺激1月,再次诱导癫痫发作,观察大鼠的癫痫行为表现,并通过TUNEL、Fluoro-Jade B ( FJB)染色和Nissl染色观察大鼠海马CA1区神经元的凋亡、变性及脱失情况。结果:与未经毁损丘脑前核的TNS处理大鼠相比,毁损丘脑前核后的TNS处理大鼠癫痫发作的级别分数

  16. Thalamic semantic paralexia

    Directory of Open Access Journals (Sweden)

    Michael Hoffmann

    2012-03-01

    Full Text Available Alexia may be divided into different subtypes, with semantic paralexia being particularly rare. A 57 year old woman with a discreet left thalamic stroke and semantic paralexia is described. Language evalution with the Boston Diagnostic Aphasia Battery confirmed the semantic paralexia (deep alexia. Multimodality magnetic resonance imaging brain scanning excluded other cerebral lesions. A good recovery ensued.

  17. Thalamic semantic paralexia

    Science.gov (United States)

    Hoffmann, Michael

    2012-01-01

    Alexia may be divided into different subtypes, with semantic paralexia being particularly rare. A 57 year old woman with a discreet left thalamic stroke and semantic paralexia is described. Language evalution with the Boston Diagnostic Aphasia Battery confirmed the semantic paralexia (deep alexia). Multimodality magnetic resonance imaging brain scanning excluded other cerebral lesions. A good recovery ensued. PMID:22593810

  18. Thalamic alexia with agraphia

    Directory of Open Access Journals (Sweden)

    Fábio Henrique de Gobbi Porto

    2012-02-01

    Full Text Available Alexia with agraphia is defined as an acquired impairment affecting reading and writing ability. It can be associated with aphasia, but can also occur as an isolated entity. This impairment has classically been associated with a left angular gyrus lesion In the present study, we describe a case involving a patient who developed alexia with agraphia and other cognitive deficits after a thalamic hemorrhage. In addition, we discuss potential mechanisms of this cortical dysfunction syndrome caused by subcortical injury. We examined a patient who presented with alexia with agraphia and other cognitive deficits due to a hemorrhage in the left thalamus. Neuropsychological evaluation showed attention, executive function, arithmetic and memory impairments. In addition, language tests revealed severe alexia with agraphia in the absence of aphasia. Imaging studies disclosed an old thalamic hemorrhage involving the anterior, dorsomedial and pulvinar nuclei. Tractography revealed asymmetric thalamocortical radiations in the parietal region (left - right, and single photon emission computed tomography demonstrated hypoperfusion in the left thalamus that extended to the frontal and parietal cortices. Cortical cognitive deficits, including alexia with agraphia, may occur as the result of thalamic lesions. The probable mechanism is a diaschisis phenomenon involving thalamic tract disconnections.

  19. Thalamic alexia with agraphia.

    Science.gov (United States)

    de Gobbi Porto, Fábio Henrique; d'Ávila Freitas, Maria Isabel; de Oliveira, Maira Okada; Lucato, Leandro Tavares; Orsini, Marco; de Menezes, Sara Lúcia Silveira; Magaldi, Regina Miksian; Porto, Cláudia Sellitto; Dozzi Brucki, Sonia Maria; Nitrini, Ricardo

    2012-01-09

    Alexia with agraphia is defined as an acquired impairment affecting reading and writing ability. It can be associated with aphasia, but can also occur as an isolated entity. This impairment has classically been associated with a left angular gyrus lesion In the present study, we describe a case involving a patient who developed alexia with agraphia and other cognitive deficits after a thalamic hemorrhage. In addition, we discuss potential mechanisms of this cortical dysfunction syndrome caused by subcortical injury. We examined a patient who presented with alexia with agraphia and other cognitive deficits due to a hemorrhage in the left thalamus. Neuropsychological evaluation showed attention, executive function, arithmetic and memory impairments. In addition, language tests revealed severe alexia with agraphia in the absence of aphasia. Imaging studies disclosed an old thalamic hemorrhage involving the anterior, dorsomedial and pulvinar nuclei. Tractography revealed asymmetric thalamocortical radiations in the parietal region (left alexia with agraphia, may occur as the result of thalamic lesions. The probable mechanism is a diaschisis phenomenon involving thalamic tract disconnections.

  20. Thalamic alexia with agraphia

    Science.gov (United States)

    de Gobbi Porto, Fábio Henrique; d'Ávila Freitas, Maria Isabel; de Oliveira, Maira Okada; Lucato, Leandro Tavares; Orsini, Marco; de Menezes, Sara Lúcia Silveira; Magaldi, Regina Miksian; Porto, Cláudia Sellitto; Dozzi Brucki, Sonia Maria; Nitrini, Ricardo

    2012-01-01

    Alexia with agraphia is defined as an acquired impairment affecting reading and writing ability. It can be associated with aphasia, but can also occur as an isolated entity. This impairment has classically been associated with a left angular gyrus lesion In the present study, we describe a case involving a patient who developed alexia with agraphia and other cognitive deficits after a thalamic hemorrhage. In addition, we discuss potential mechanisms of this cortical dysfunction syndrome caused by subcortical injury. We examined a patient who presented with alexia with agraphia and other cognitive deficits due to a hemorrhage in the left thalamus. Neuropsychological evaluation showed attention, executive function, arithmetic and memory impairments. In addition, language tests revealed severe alexia with agraphia in the absence of aphasia. Imaging studies disclosed an old thalamic hemorrhage involving the anterior, dorsomedial and pulvinar nuclei. Tractography revealed asymmetric thalamocortical radiations in the parietal region (left alexia with agraphia, may occur as the result of thalamic lesions. The probable mechanism is a diaschisis phenomenon involving thalamic tract disconnections. PMID:22593808

  1. Effect of stimulation and lesion of the thalamic nucleus submedius on formalin-evoked nociceptive behavior in rats%电刺激和损毁丘脑中央下核对大鼠福尔马林诱发伤害性行为的影响

    Institute of Scientific and Technical Information of China (English)

    李杨; 袁斌; 唐敬师

    2007-01-01

    The aim of the present study was to examine whether the thalamic nucleus submedius(Sm) was involved in the modulation of persistent nociception.Using an automated movement detection system to measure nociceptive behavior(agitation) induced by subcutaneous injection of formalin into the hind paw pad,the effects of electrical stimulation or electrolytic lesion of the Sm on the agitation response were examined in conscious rats.Unilateral stimulation(100μA,5 min)of the Sm ipsilateral or contralateral to the formalin-injected paw produced a significant inhibition of agitation response in the second phase,while stimulation of thalamic structures more than 0.5 mm away from the Sm had no effect on agitation response.Bilaterally electrolytic lesion of the Sm did not significantly influence the number of agitation events induced by formalin injection in the first phase or the second phase.These results suggest that the Sm is not only involved in the modulation of phase nociception,as reported previously,but also of persistent nociception.The present study provides novel evidence for the participation of the Sm in descending modulation of pain.%本文旨在研究丘脑中央下核(thalamic nucleus submedius,Sm)是否参与持续伤害感受性调制.以自动运动检测系统记录大鼠一侧后爪皮下注射福尔马林诱发的伤害性行为(烦乱反应)为指标,观察电刺激和电解损毁Sm对烦乱反应的效应.结果显示,电刺激(100μA,5min)同侧或对侧Sm明显抑制福尔马林诱发的第二时相的烦乱反应,而刺激Sm外邻近结构(超过0.5mm)对烦乱反应无明显效应.电解损毁双侧Sm对第一或第二时相的烦乱反应均无影响.结果提示,Sm不仅参与急性时相性伤害感受性调制,也参与持续性伤害感受性调制.本研究为Sm参与下行痛调制提供了新的证据.

  2. Thalamic circuit mechanisms link sensory processing in sleep and attention

    Directory of Open Access Journals (Sweden)

    Zhe eChen

    2016-01-01

    Full Text Available The correlation between sleep integrity and attentional performance is normally interpreted as poor sleep causing impaired attention. Here, we provide an alternative explanation for this correlation: common thalamic circuits regulate sensory processing across sleep and attention, and their disruption may lead to correlated dysfunction. Using multi-electrode recordings in mice, we find that rate and rhythmicity of thalamic reticular nucleus (TRN neurons are predictive of their functional organization in sleep and suggestive of their participation in sensory processing across states. Surprisingly, TRN neurons associated with spindles in sleep are also associated with alpha oscillations during attention. As such, we propose that common thalamic circuit principles regulate sensory processing in a state-invariant manner and that in certain disorders, targeting these circuits may be a more viable therapeutic strategy than considering individual states in isolation.

  3. Thalamic Lesions: A Radiological Review

    Directory of Open Access Journals (Sweden)

    Dimitri Renard

    2014-01-01

    Full Text Available Background. Thalamic lesions are seen in a multitude of disorders including vascular diseases, metabolic disorders, inflammatory diseases, trauma, tumours, and infections. In some diseases, thalamic involvement is typical and sometimes isolated, while in other diseases thalamic lesions are observed only occasionally (often in the presence of other typical extrathalamic lesions. Summary. In this review, we will mainly discuss the MRI characteristics of thalamic lesions. Identification of the origin of the thalamic lesion depends on the exact localisation inside the thalamus, the presence of extrathalamic lesions, the signal changes on different MRI sequences, the evolution of the radiological abnormalities over time, the history and clinical state of the patient, and other radiological and nonradiological examinations.

  4. Prenatal thalamic waves regulate cortical area size prior to sensory processing

    Science.gov (United States)

    Moreno-Juan, Verónica; Filipchuk, Anton; Antón-Bolaños, Noelia; Mezzera, Cecilia; Gezelius, Henrik; Andrés, Belen; Rodríguez-Malmierca, Luis; Susín, Rafael; Schaad, Olivier; Iwasato, Takuji; Schüle, Roland; Rutlin, Michael; Nelson, Sacha; Ducret, Sebastien; Valdeolmillos, Miguel; Rijli, Filippo M.; López-Bendito, Guillermina

    2017-01-01

    The cerebral cortex is organized into specialized sensory areas, whose initial territory is determined by intracortical molecular determinants. Yet, sensory cortical area size appears to be fine tuned during development to respond to functional adaptations. Here we demonstrate the existence of a prenatal sub-cortical mechanism that regulates the cortical areas size in mice. This mechanism is mediated by spontaneous thalamic calcium waves that propagate among sensory-modality thalamic nuclei up to the cortex and that provide a means of communication among sensory systems. Wave pattern alterations in one nucleus lead to changes in the pattern of the remaining ones, triggering changes in thalamic gene expression and cortical area size. Thus, silencing calcium waves in the auditory thalamus induces Rorβ upregulation in a neighbouring somatosensory nucleus preluding the enlargement of the barrel-field. These findings reveal that embryonic thalamic calcium waves coordinate cortical sensory area patterning and plasticity prior to sensory information processing. PMID:28155854

  5. Fast cortical oscillation after thalamic degeneration: pivotal role of NMDA receptor.

    Science.gov (United States)

    Kyuhou, Shin-ichi; Gemba, Hisae

    2007-04-27

    We examined electrophysiological and molecular changes of the thalamocortical system after thalamic degeneration in Purkinje cell degeneration (pcd) mice. In pcd mice, neurons in specific thalamic nuclei including the ventral medial geniculate nucleus began to degenerate around postnatal day 50, whereas the visual thalamic nucleus and nonspecific thalamic nuclei remained almost intact. In association with the morphological changes, auditory evoked potentials in the primary auditory cortex (AC) began to decrease gradually. Fast Fourier transform analysis of spontaneous cortical field potentials revealed that fast oscillation (FO) around 25 Hz occurred in the AC but not in the visual cortex. Quantitative mRNA analysis demonstrated that expression of the N-methyl-D-aspartate (NMDA) receptor was up-regulated in the AC but not in the visual cortex. Systemic administration of an NMDA antagonist abolished the FO in the AC. These results indicate that increased NMDA activity may cause the FO in the AC of pcd mice.

  6. Thalamic activity and biochemical changes in individuals with neuropathic pain following spinal cord injury

    Science.gov (United States)

    Gustin, S.M.; Wrigley, P.J.; Youssef, A.M.; McIndoe, L.; Wilcox, S.L.; Rae, C.D.; Edden, R; Siddall, P.J.; Henderson, L.A.

    2015-01-01

    There is increasing evidence relating thalamic changes to the generation and/or maintenance of neuropathic pain. We have recently reported that neuropathic orofacial pain is associated with altered thalamic anatomy, biochemistry and activity, which may result in disturbed thalamocortical oscillatory circuits. Despite this evidence, it is possible that these thalamic changes are not responsible for the presence of pain per se, but result as a consequence of the injury. To clarify this subject, we compared brain activity and biochemistry in 12 people with below-level neuropathic pain after complete thoracic spinal cord injury to 11 people with similar injuries and no neuropathic pain and 21 age and gender matched healthy controls. Quantitative arterial spinal labelling was used to measure thalamic activity and magnetic resonance spectroscopy was used to determine changes in neuronal variability quantifying N-acetylaspartate and alterations in inhibitory function quantifying gamma amino butyric acid. This study revealed that the presence of neuropathic pain is associated with significant changes in thalamic biochemistry and neuronal activity. More specifically, the presence of neuropathic pain following spinal cord injury is associated with significant reductions in thalamic N-acetylaspartate, gamma amino butyric acid content and blood flow in the region of the thalamic reticular nucleus. Spinal cord injury on its own did not account for these changes. These findings support the hypothesis that neuropathic pain is associated with altered thalamic structure and function, which may disturb central processing and play a key role in the experience of neuropathic pain. PMID:24530612

  7. How do mammillary body inputs contribute to anterior thalamic function?

    Science.gov (United States)

    Dillingham, Christopher M.; Frizzati, Aura; Nelson, Andrew J.D.; Vann, Seralynne D.

    2015-01-01

    It has long been assumed that the main function of the mammillary bodies is to provide a relay for indirect hippocampal inputs to the anterior thalamic nuclei. Such models afford the mammillary bodies no independent role in memory and overlook the importance of their other, non-hippocampal, inputs. This review focuses on recent advances that herald a new understanding of the importance of the mammillary bodies, and their inputs from the limbic midbrain, for anterior thalamic function. It has become apparent that the mammillary bodies’ contribution to memory is not dependent on afferents from the subicular complex. Rather, the ventral tegmental nucleus of Gudden is a vital source of inputs that support memory processes within the medial mammillary bodies. In parallel, the lateral mammillary bodies, via their connections with the dorsal tegmental nucleus of Gudden, are critical for generating head-direction signals. These two parallel, but distinct, information streams converge on the anterior thalamic nuclei and support different aspects of spatial memory. PMID:25107491

  8. Dopamine, fronto-striato-thalamic circuits and risk for psychosis.

    Science.gov (United States)

    Dandash, Orwa; Pantelis, Christos; Fornito, Alex

    2017-02-01

    A series of parallel, integrated circuits link distinct regions of prefrontal cortex with specific nuclei of the striatum and thalamus. Dysfunction of these fronto-striato-thalamic systems is thought to play a major role in the pathogenesis of psychosis. In this review, we examine evidence from human and animal investigations that dysfunction of a specific dorsal fronto-striato-thalamic circuit, linking the dorsolateral prefrontal cortex, dorsal (associative) striatum, and mediodorsal nucleus of the thalamus, is apparent across different stages of psychosis, including prior to the onset of a first episode, suggesting that it represents a candidate risk biomarker. We consider how abnormalities at distinct points in the circuit may give rise to the pattern of findings seen in patient populations, and how these changes relate to disruptions in dopamine, glutamate and GABA signaling. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Thalamic activity and biochemical changes in individuals with neuropathic pain after spinal cord injury.

    Science.gov (United States)

    Gustin, S M; Wrigley, P J; Youssef, A M; McIndoe, L; Wilcox, S L; Rae, C D; Edden, R A E; Siddall, P J; Henderson, L A

    2014-05-01

    There is increasing evidence relating thalamic changes to the generation and/or maintenance of neuropathic pain. We have recently reported that neuropathic orofacial pain is associated with altered thalamic anatomy, biochemistry, and activity, which may result in disturbed thalamocortical oscillatory circuits. Despite this evidence, it is possible that these thalamic changes are not responsible for the presence of pain per se, but result as a consequence of the injury. To clarify this subject, we compared brain activity and biochemistry in 12 people with below-level neuropathic pain after complete thoracic spinal cord injury with 11 people with similar injuries and no neuropathic pain and 21 age- and gender-matched healthy control subjects. Quantitative arterial spinal labelling was used to measure thalamic activity, and magnetic resonance spectroscopy was used to determine changes in neuronal variability quantifying N-acetylaspartate and alterations in inhibitory function quantifying gamma amino butyric acid. This study revealed that the presence of neuropathic pain is associated with significant changes in thalamic biochemistry and neuronal activity. More specifically, the presence of neuropathic pain after spinal cord injury is associated with significant reductions in thalamic N-acetylaspartate, gamma amino butyric acid content, and blood flow in the region of the thalamic reticular nucleus. Spinal cord injury on its own did not account for these changes. These findings support the hypothesis that neuropathic pain is associated with altered thalamic structure and function, which may disturb central processing and play a key role in the experience of neuropathic pain. Copyright © 2014 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  10. Altered thalamic functional connectivity in multiple sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yaou; Liang, Peipeng; Duan, Yunyun; Huang, Jing; Ren, Zhuoqiong; Jia, Xiuqin [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Dong, Huiqing; Ye, Jing [Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Shi, Fu-Dong [Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052 (China); Butzkueven, Helmut [Department of Medicine, University of Melbourne, Parkville 3010 (Australia); Li, Kuncheng, E-mail: kunchengli55@gmail.com [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China)

    2015-04-15

    Highlights: •We demonstrated decreased connectivity between thalamus and cortical regions in MS. •Increased intra- and inter-thalamic connectivity was also observed in MS. •The increased functional connectivity is attenuated by increasing disease duration. -- Abstract: Objective: To compare thalamic functional connectivity (FC) in patients with multiple sclerosis (MS) and healthy controls (HC), and correlate these connectivity measures with other MRI and clinical variables. Methods: We employed resting-state functional MRI (fMRI) to examine changes in thalamic connectivity by comparing thirty-five patients with MS and 35 age- and sex-matched HC. Thalamic FC was investigated by correlating low frequency fMRI signal fluctuations in thalamic voxels with voxels in all other brain regions. Additionally thalamic volume fraction (TF), T2 lesion volume (T2LV), EDSS and disease duration were recorded and correlated with the FC changes. Results: MS patients were found to have a significantly lower TF than HC in bilateral thalami. Compared to HC, the MS group showed significantly decreased FC between thalamus and several brain regions including right middle frontal and parahippocampal gyri, and the left inferior parietal lobule. Increased intra- and inter-thalamic FC was observed in the MS group compared to HC. These FC alterations were not correlated with T2LV, thalamic volume or lesions. In the MS group, however, there was a negative correlation between disease duration and inter-thalamic connectivity (r = −0.59, p < 0.001). Conclusion: We demonstrated decreased FC between thalamus and several cortical regions, while increased intra- and inter-thalamic connectivity in MS patients. These complex functional changes reflect impairments and/or adaptations that are independent of T2LV, thalamic volume or presence of thalamic lesions. The negative correlation between disease duration and inter-thalamic connectivity could indicate an adaptive role of thalamus that is

  11. Estimulação cerebral contínua (DBS talâmica para controle do tremor Deep brain stimulation of VIM thalamic nucleus for tremor control

    Directory of Open Access Journals (Sweden)

    José Augusto Nasser

    2002-06-01

    Full Text Available OBJETIVO: Apresentamos resultados da estimulação contínua do núcleo ventral intermédio (VIM talâmico para o controle do tremor. MÉTODO: Quatro pacientes foram selecionados no período de outubro de 1999 a janeiro de 2001 com tremor incapacitante refratário à farmacoterapia. Dois pacientes apresentavam tremor essencial (TE bilateral e 2 pacientes tremor de repouso por doença de Parkinson (DP, um à direita e outro à esquerda. Após avaliação sistemática, foram submetidos ao implante de eletrodo talâmico, modelo DBS 3387(Medtronic, para estimulação cerebral profunda (ECP com alta frequência, sendo este bilateral nos casos de TE e unilateral nos casos com tremor por DP. RESULTADOS: Os pacientes tiveram seu seguimente clínico até o presente, com média de 12 meses, sendo observada a eficácia da estimulação do núcleo VIM no controle dos disparos das células do tremor. As complicações temporárias do tipo parestesias, disartrias e discreto aumento do tônus foram revertidas após o ajuste dos parâmetros de estimulação. CONCLUSÃO: Os resultados confirmam os achados da literatura, de que a estimulação talâmica é excelente opção terapêutica no tratamento do tremor, havendo possibilidade de estimulação talâmica bilateral simultânea com segurança.PURPOSE: We present our results in 4 patients with tremor, in whom electrodes (uni and bilateral for Deep Brain Stimulation (DBS were implanted in the ventral intermediate nucleus (VIM of the thalamus. METHOD: Four patients with disabling tremor, with drug-resistant spite of optimum therapeutic trials with poor response were referred to do surgery. Two patients had bilateral essential tremor. These patients were implanted with electrodes for DBS 3387 (Medtronic. Two patients had unilateral parkinsonian tremor and they received unilateral implantation of model 3387 DBS. RESULTS: All four patients showed relieve of the tremor symptoms with significant tremor control seen at

  12. Hypersexuality following bilateral thalamic infarction: case report.

    Science.gov (United States)

    Mutarelli, Eduardo G; Omuro, Antonio M P; Adoni, Tarso

    2006-03-01

    Hypersexuality is a rare but well recognized condition following brain injury. It has been described secondarily to dysfunction in the hypothalamus, the temporal and frontal lobes. We report a 63 year-old man that developed neuropsychological disturbances with hypersexuality as a prominent feature, disinhibition and moderate memory loss, hypersomnia and irritability after a bilateral paramedian thalamic infarction. A SPECT showed frontal hypoperfusion. We believe that these findings are expression of frontal-subcortical circuits dysfunction, particularly the orbitofrontal circuit, secondary to dorso medial thalamic infarction which probably plays a role in the determination of human sexual behavior. This case favors a thalamic modulation of frontal function.

  13. Preoperative shunts in thalamic tumours.

    Directory of Open Access Journals (Sweden)

    Goel A

    2000-10-01

    Full Text Available Thirty one patients with thalamic glioma underwent a pre-tumour resection shunt surgery. The procedure was uneventful in 23 patients with relief from symptoms of increased intracranial pressure. Eight patients worsened after the procedure. The level of sensorium worsened from excessively drowsy state to unconsciousness in seven patients. Three patients developed hemiparesis, 4 developed paresis of extra-ocular muscles and altered pupillary reflexes, and 1 developed incontinence of urine and persistent vomiting. Alteration in the delicately balanced intracranial pressure and movements in the tumour and vital adjacent brain areas could be the probable cause of the worsening in the neurological state in these 8 patients. On the basis of these observations and on review of literature, it is postulated that the ventricular dilatation following an obstruction in the path of the cerebrospinal fluid flow by a tumour could be a natural defense phenomenon of the brain.

  14. Validation of connectivity-based thalamic segmentation with direct electrophysiologic recordings from human sensory thalamus.

    Science.gov (United States)

    Elias, W Jeffrey; Zheng, Zhong A; Domer, Paul; Quigg, Mark; Pouratian, Nader

    2012-02-01

    Connectivity-based segmentation has been used to identify functional gray matter subregions that are not discernable on conventional magnetic resonance imaging. However, the accuracy and reliability of this technique has only been validated using indirect means. In order to provide direct electrophysiologic validation of connectivity-based thalamic segmentations within human subjects, we assess the correlation of atlas-based thalamic anatomy, connectivity-based thalamic maps, and somatosensory evoked thalamic potentials in two adults with medication-refractory epilepsy who were undergoing intracranial EEG monitoring with intrathalamic depth and subdural cortical strip electrodes. MRI with atlas-derived localization was used to delineate the anatomic boundaries of the ventral posterolateral (VPL) nucleus of the thalamus. Somatosensory evoked potentials with intrathalamic electrodes physiologically identified a discrete region of phase reversal in the ventrolateral thalamus. Finally, DTI was obtained so that probabilistic tractography and connectivity-based segmentation could be performed to correlate the region of thalamus linked to sensory areas of the cortex, namely the postcentral gyrus. We independently utilized these three different methods in a blinded fashion to localize the "sensory" thalamus, demonstrating a high-degree of reproducible correlation between electrophysiologic and connectivity-based maps of the thalamus. This study provides direct electrophysiologic validation of probabilistic tractography-based thalamic segmentation. Importantly, this study provides an electrophysiological basis for using connectivity-based segmentation to further study subcortical anatomy and physiology while also providing the clinical basis for targeting deep brain nuclei with therapeutic stimulation. Finally, these direct recordings from human thalamus confirm early inferences of a sensory thalamic component of the N18 waveform in somatosensory evoked potentials.

  15. Leading role of thalamic over cortical neurons during postinhibitory rebound excitation

    Science.gov (United States)

    Grenier, F.; Timofeev, I.; Steriade, M.

    1998-01-01

    The postinhibitory rebound excitation is an intrinsic property of thalamic and cortical neurons that is implicated in a variety of normal and abnormal operations of neuronal networks, such as slow or fast brain rhythms during different states of vigilance as well as seizures. We used dual simultaneous intracellular recordings of thalamocortical neurons from the ventrolateral nucleus and neurons from the motor cortex, together with thalamic and cortical field potentials, to investigate the temporal relations between thalamic and cortical events during the rebound excitation that follows prolonged periods of stimulus-induced inhibition. Invariably, the rebound spike-bursts in thalamocortical cells occurred before the rebound depolarization in cortical neurons and preceded the peak of the depth-negative, rebound field potential in cortical areas. Also, the inhibitory-rebound sequences were more pronounced and prolonged in cortical neurons when elicited by thalamic stimuli, compared with cortical stimuli. The role of thalamocortical loops in the rebound excitation of cortical neurons was shown further by the absence of rebound activity in isolated cortical slabs. However, whereas thalamocortical neurons remained hyperpolarized after rebound excitation, because of the prolonged spike-bursts in inhibitory thalamic reticular neurons, the rebound depolarization in cortical neurons was prolonged, suggesting the role of intracortical excitatory circuits in this sustained activity. The role of intrathalamic events in triggering rebound cortical activity should be taken into consideration when analyzing information processes at the cortical level; at each step, corticothalamic volleys can set into action thalamic inhibitory neurons, leading to rebound spike-bursts that are transferred back to the cortex, thus modifying cortical activities. PMID:9811903

  16. Disrupted thalamic resting-state functional connectivity in patients with minimal hepatic encephalopathy

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Rongfeng [Department of Medical Imaging, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002 (China); Zhang, Long Jiang, E-mail: kevinzhanglongjiang@yahoo.com.cn [Department of Medical Imaging, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002 (China); Zhong, Jianhui [Department of Biomedical Engineering, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Zhang, Zhiqiang; Ni, Ling; Zheng, Gang [Department of Medical Imaging, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002 (China); Lu, Guang Ming, E-mail: cjr.luguangming@vip.163.com [Department of Medical Imaging, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002 (China)

    2013-05-15

    Background and purpose: Little is known about the role of thalamus in the pathophysiology of minimal hepatic encephalopathy (MHE). The purpose of this study was to investigate whether the thalamic functional connectivity was disrupted in cirrhotic patients with MHE by using resting-state functional magnetic resonance imaging (rs-fMRI). Materials and Methods: Twenty seven MHE patients and twenty seven age- and gender- matched healthy controls participated in the rs-fMRI scans. The functional connectivity of 11 thalamic nuclei were characterized by using a standard seed-based whole-brain correlation method and compared between MHE patients and healthy controls. Pearson correlation analysis was performed between the thalamic functional connectivity and venous blood ammonia levels/neuropsychological tests scores of patients. Results: The ventral anterior nucleus (VAN) and the ventral posterior medial nucleus (VPMN) in each side of thalamus showed abnormal functional connectivities in MHE. Compared with healthy controls, MHE patients demonstrated significant decreased functional connectivity between the right/left VAN and the bilateral putamen/pallidum, inferior frontal gyri, insula, supplementary motor area, right middle frontal gyrus, medial frontal gyrus. In addition, MHE patients showed significantly decreased functional connectivity with the right/left VPMN in the bilateral middle temporal gyri (MTG), temporal lobe, and right superior temporal gyrus. The venous blood ammonia levels of MHE patients negatively correlated with the functional connectivity between the VAN and the insula. Number connecting test scores showed negative correlation with the functional connectivity between the VAN and the insula, and between the VPMN and the MTG. Conclusion: MHE patients had disrupted thalamic functional connectivity, which mainly located in the bilateral ventral anterior nuclei and ventral posterior medial nuclei. The decreased connectivity between thalamus and many

  17. Cataleptic postures in thalamic hemorrhage: case report

    Directory of Open Access Journals (Sweden)

    Saposnik Gustavo

    2001-01-01

    Full Text Available We report a case of catalepsy associated with thalamic hemorrhage. A 72 year-old hypertensive woman had acute onset of right-sided weakness and speech disturbances. She was on anticoagulants because of aortic valve replacement. When postures were imposed, the patient maintained the left upper limb raised for several minutes, even in uncomfortable or bizarre positions. A CT scan of the head revealed a left thalamic hemorrhage. Cataleptic postures have been reported in few cases with acute stroke.

  18. Hemiballismus That Develops upon Thalamic Hemorrhage: A Case Report

    Directory of Open Access Journals (Sweden)

    Aybala Neslihan Alagöz

    2016-04-01

    Full Text Available Hemichorea is characterized by sudden, spasmodic, irregular, short-term finger, hand, arm, face, tongue or head movements including one half of body. Ballismus concept defines the high-amplitude, violent, centrifugal or throwing motions. Hemichorea-hemiballismus are the most frequently reported movement disorders in patients with acute stroke. Even if it is believed to occur depending on the effect on contralateral subthalamic nucleus; it has been reported that in the following years there have been choreic and ballistic movements in various lesions intersecting the afferent and efferent subtalamopalidal paths of basal ganglion. In this article; hemiballismus, which has developed after thalamic hemorrhage, of an 63 year old female patient is presented.

  19. Thalamic cholinergic innervation is spared in Alzheimer disease compared to Parkinsonian disorders

    Science.gov (United States)

    Kotagal, Vikas; Müller, Martijn L.T.M.; Kaufer, Daniel I.; Koeppe, Robert A.; Bohnen, Nicolaas I.

    2012-01-01

    OBJECTIVE There are two major sources of cholinergic projections in the brain. The nucleus basalis of Meynert provides the principal cholinergic input of the cortical mantle and the pedunculopontine nucleus-laterodorsal tegmental complex (PPN-LDTC; hereafter referred to as PPN) provides the major cholinergic input to the thalamus. Cortical cholinergic denervation has previously been shown to be part of Alzheimer and parkinsonian dementia but there is less information about subcortical thalamic cholinergic denervation. We investigated thalamic cholinergic afferent integrity by measuring PPN-Thalamic (PPN-Thal) acetylcholinesterase (AChE) activity via PET imaging in Alzheimer (AD), Parkinson disease without dementia (PD), Parkinson disease with dementia (PDD) and dementia with Lewy bodies (DLB). METHODS AD (n=13; mean age 75.4±5.5), PD (n=11; age 71.4±6.4), PDD (n=6; age 70.8±4.7), DLB (n=6; age 68.0±8.6) and normal controls (NC; n=14; age 69.0±7.5) subjects underwent AChE [11C]-methyl-4-piperidinyl propionate (PMP) PET imaging. PPN-Thal PET data were analyzed using the Nagatsuka method. RESULTS There were no significant differences in mean age between the groups (F=1.86, p=0.134). Kruskal-Wallis testing demonstrated a significant group effect for PPN-Thal AChE hydrolysis rates (F=9.62, P<0.0001). Compared to NC, reduced thalamic k3 hydrolysis rate was noted in subjects with PDD (−19.8%; AChE k3 hydrolysis rates 0.1072±0.0143 min−1), DLB (−17.4%; 0.1103±0.0112 min−1) and PD (−12.8%; 0.1165±0.0114 min−1). Each of these 3 subgroups were statistically different from AD subjects (−0.7%; 0.1326±0.0095 min−1) who showed relatively spared thalamic k3 hydrolysis rates which were comparable to NC (0.1336±0.0142 min−1). CONCLUSIONS Thalamic cholinergic denervation is present in PD, PDD, and DLB but not in AD. Neurodegenerative involvement of thalamic cholinergic afferent projections may contribute to disease-specific motor and cognitive

  20. A thalamic reticular networking model of consciousness

    Directory of Open Access Journals (Sweden)

    Min Byoung-Kyong

    2010-03-01

    Full Text Available Abstract [Background] It is reasonable to consider the thalamus a primary candidate for the location of consciousness, given that the thalamus has been referred to as the gateway of nearly all sensory inputs to the corresponding cortical areas. Interestingly, in an early stage of brain development, communicative innervations between the dorsal thalamus and telencephalon must pass through the ventral thalamus, the major derivative of which is the thalamic reticular nucleus (TRN. The TRN occupies a striking control position in the brain, sending inhibitory axons back to the thalamus, roughly to the same region where they receive afferents. [Hypotheses] The present study hypothesizes that the TRN plays a pivotal role in dynamic attention by controlling thalamocortical synchronization. The TRN is thus viewed as a functional networking filter to regulate conscious perception, which is possibly embedded in thalamocortical networks. Based on the anatomical structures and connections, modality-specific sectors of the TRN and the thalamus appear to be responsible for modality-specific perceptual representation. Furthermore, the coarsely overlapped topographic maps of the TRN appear to be associated with cross-modal or unitary conscious awareness. Throughout the latticework structure of the TRN, conscious perception could be accomplished and elaborated through accumulating intercommunicative processing across the first-order input signal and the higher-order signals from its functionally associated cortices. As the higher-order relay signals run cumulatively through the relevant thalamocortical loops, conscious awareness becomes more refined and sophisticated. [Conclusions] I propose that the thalamocortical integrative communication across first- and higher-order information circuits and repeated feedback looping may account for our conscious awareness. This TRN-modulation hypothesis for conscious awareness provides a comprehensive rationale regarding

  1. Thalamic changes with mesial temporal sclerosis: MRI

    Energy Technology Data Exchange (ETDEWEB)

    Deasy, N.P.; Jarosz, J.M.; Cox, T.C.S. [Department of Neuroradiology, King' s College Hospital, London (United Kingdom); Elwes, R.C.D. [Department of Neurology, King' s College Hospital, London (United Kingdom); Polkey, C.E. [Department of Neurosurgery, King' s College and Maudsley Hospitals, London (United Kingdom)

    2000-05-01

    We reviewed the preoperative images of 28 patients with pathologically proven mesial temporal sclerosis, to assess thalamic asymmetry and signal change. A further 25 nonsurgical patients with temporal lobe epilepsy and unequivocal, unilateral changes of mesial temporal sclerosis, and 20 controls, were also reviewed. None of the control group had unequivocal asymmetry of the thalamus. There was an ipsilateral asymmetrically small thalamus in five (18 %) of the surgical group and in three (12 %) of the nonsurgical patients. In four cases there was thalamic signal change. In three patients with thalamic volume loss there was ipsilateral hemiatrophy. All patients with an asymmetrically small thalamus had an asymmetrically small fornix and all but one a small ipsilateral mamillary body. (orig.)

  2. Thalamic Bursts Down-regulate Cortical Theta and Nociceptive Behavior.

    Science.gov (United States)

    LeBlanc, Brian W; Cross, Brent; Smith, Kelsey A; Roach, Catherine; Xia, Jimmy; Chao, Yu-Chieh; Levitt, Joshua; Koyama, Suguru; Moore, Christopher I; Saab, Carl Y

    2017-05-30

    We tested the relation between pain behavior, theta (4-8 Hz) oscillations in somatosensory cortex and burst firing in thalamic neurons in vivo. Optically-induced thalamic bursts attenuated cortical theta and mechanical allodynia. It is proposed that thalamic bursts are an adaptive response to pain that de-synchronizes cortical theta and decreases sensory salience.

  3. Evolution of mammalian sensorimotor cortex: Thalamic projections to parietal cortical areas in Monodelphis domestica

    Directory of Open Access Journals (Sweden)

    James Clinton Dooley

    2015-01-01

    Full Text Available The current experiments build upon previous studies designed to reveal the network of parietal cortical areas present in the common mammalian ancestor. Understanding this ancestral network is essential for highlighting the basic somatosensory circuitry present in all mammals, and how this basic plan was modified to generate species specific behaviors. Our animal model, the short-tailed opossum (Monodelphis domestica, is a South American marsupial that has been proposed to have a similar ecological niche and morphology to the earliest common mammalian ancestor. In this investigation, we injected retrograde neuroanatomical tracers into the face and body representations of primary somatosensory cortex (S1, the rostral and caudal somatosensory fields (SR and SC, as well as a multimodal region (MM. Projections from different architectonically defined thalamic nuclei were then quantified. Our results provide further evidence to support the hypothesized basic mammalian plan of thalamic projections to S1, with the lateral and medial ventral posterior thalamic nuclei (VPl and VPm projecting to S1 body and S1 face, respectively. Additional strong projections are from the medial division of posterior nucleus (Pom. SR receives projections from several midline nuclei, including the medial dorsal, ventral medial nucleus, and Pom. SC and MM show similar patterns of connectivity, with projections from the ventral anterior and ventral lateral nuclei, VPm and VPl, and the entire posterior nucleus (medial and lateral. Notably, MM is distinguished from SC by relatively dense projections from the dorsal division of the lateral geniculate nucleus and pulvinar. We discuss the finding that S1 of the short-tailed opossum has a similar pattern of projections as other marsupials and mammals, but also some distinct projections not present in other mammals. Further we provide additional support for a primitive posterior parietal cortex which receives input from multiple

  4. Thalamic pain alleviated by stellate ganglion block

    Science.gov (United States)

    Liao, Chenlong; Yang, Min; Liu, Pengfei; Zhong, Wenxiang; Zhang, Wenchuan

    2017-01-01

    Abstract Rationale: Thalamic pain is a distressing and treatment-resistant type of central post-stroke pain. Although stellate ganglion block is an established intervention used in pain management, its use in the treatment of thalamic pain has never been reported. Patient concerns: A 66-year-old woman presented with a 3-year history of severe intermittent lancinating pain on the right side of the face and the right hand. The pain started from the ulnar side of the right forearm after a mild ischemic stroke in bilateral basal ganglia and left thalamus. Weeks later, the pain extended to the dorsum of the finger tips and the whole palmar surface, becoming more severe. Meanwhile, there was also pain with similar characteristics emerging on her right face, resembling atypical trigeminal neuralgia. Diagnoses: Thalamic pain was diagnosed. Interventions: After refusing the further invasive treatment, she was suggested to try stellate ganglion block. Outcomes: After a 3-day period of pain free (numerical rating scale: 0) postoperatively, she reported moderate to good pain relief with a numerical rating scale of about 3 to 4 lasting 1 month after the first injection. Pain as well as the quality of life was markedly improved with less dose of analgesic agents. Lessons: Stellate ganglion block may be an optional treatment for thalamic pain. PMID:28151918

  5. Morphological Abnormalities of Thalamic Subnuclei in Migraine

    DEFF Research Database (Denmark)

    Magon, Stefano; May, Arne; Stankewitz, Anne

    2015-01-01

    techniques in substantial patient populations are lacking. In the present study, we investigated changes of thalamic volume and shape in a large multicenter cohort of patients with migraine. High-resolution T1-weighted MRI data acquired at 3 tesla in 131 patients with migraine (38 with aura; 30.8 ± 9 years...

  6. Feasibility of diffusion tractography for the reconstruction of intra-thalamic and cerebello-thalamic targets for functional neurosurgery: a multi-vendor pilot study in four subjects

    Directory of Open Access Journals (Sweden)

    Andras Jakab

    2016-07-01

    Full Text Available Functional stereotactic neurosurgery by means of deep brain stimulation or ablation provides an effective treatment for movement disorders, but the outcome of surgical interventions depends on the accuracy by which the target structures are reached. The purpose of this pilot study was to evaluate the feasibility of diffusion tensor imaging (DTI based probabilistic tractography of deep brain structures that are commonly used for pre- and perioperative targeting for functional neurosurgery. Three targets were reconstructed based on their significance as intervention sites or as a no-go area to avoid adverse side effects: the connections propagating from the thalamus to (1 primary and supplementary motor areas, (2 to somatosensory areas and the cerebello-thalamic tract. We evaluated the overlap of the reconstructed connectivity based targets with corresponding atlas based data, and tested the inter-subject and inter-scanner variability by acquiring repeated DTI from four volunteers, and on three MRI scanners with similar sequence parameters.Compared to a 3D histological atlas of the human thalamus, moderate overlaps of 35-50% were measured between connectivity- and atlas based volumes, while the minimal distance between the centerpoints of atlas and connectivity targets was 2.5 mm. The variability caused by the MRI scanner was similar to the inter-subject variability, except for connections with the postcentral gyrus where it was higher. While cerebello-thalamic tractography resolved the anatomically correct trajectory of the tract individually, high volumetric variability was found across subjects and between scanners. DTI can be applied in the clinical, preoperative setting to reconstruct the cerebello-thalamic tract and to localize subdivisions within the lateral thalamus. In our pilot study, such subdivisions moderately matched the borders of the ventrolateral-posteroventral (VLpv nucleus and the ventral-posterolateral (VPL nucleus. Limitations

  7. Evidence for a composite anterior determinant in the hover fly Episyrphus balteatus (Syrphidae), a cyclorrhaphan fly with an anterodorsal serosa anlage.

    Science.gov (United States)

    Lemke, Steffen; Schmidt-Ott, Urs

    2009-01-01

    Most insect embryos develop from a monolayer of cells around the yolk, but only part of this blastoderm forms the embryonic rudiment. Another part forms extra-embryonic serosa. Size and position of the serosa anlage vary between species, and previous work raises the issue of whether such differences co-evolve with the mechanisms that establish anteroposterior (AP) polarity of the embryo. AP polarity of the Drosophila embryo depends on bicoid, which is necessary and sufficient to determine the anterior body plan. Orthologs of bicoid have been identified in various cyclorrhaphan flies and their occurrence seems to correlate with a mid-dorsal serosa or amnioserosa anlage. Here, we introduce with Episyrphus balteatus (Syrphidae) a cyclorrhaphan model for embryonic AP axis specification that features an anterodorsal serosa anlage. Current phylogenies place Episyrphus within the clade that uses bicoid mRNA as anterior determinant, but no bicoid-like sequence could be identified in this species. Using RNA interference (RNAi) and ectopic mRNA injection, we obtained evidence that pattern formation along the entire AP axis of the Episyrphus embryo relies heavily on the precise regulation of caudal, and that anterior pattern formation in particular depends on two localized factors rather than one. Early zygotic activation of orthodenticle is separated from anterior repression of caudal, two distinct functions which in Drosophila are performed jointly by bicoid, whereas hunchback appears to be regulated by both factors. Furthermore, we found that overexpression of orthodenticle is sufficient to confine the serosa anlage of Episyrphus to dorsal blastoderm. We discuss our findings in a phylogenetic context and propose that Episyrphus employs a primitive cyclorrhaphan mechanism of AP axis specification.

  8. Differences in response to serotonergic activation between first and higher order thalamic nuclei.

    Science.gov (United States)

    Varela, C; Sherman, S Murray

    2009-08-01

    Two types of thalamic nuclei have been recognized: first order, which relay information from subcortical sources, and higher order, which may relay information from one cortical area to another. We have recently shown that muscarinic agonists depolarize all first order and most higher order relay cells but hyperpolarize a significant proportion of higher order relay cells. We now extend this result to serotonergic agonists, using rat thalamic brain slices and whole-cell, current- and voltage-clamp recordings from relay cells in various first order (the lateral geniculate nucleus, the ventral posterior nucleus, and the ventral portion of the medial geniculate body) and higher order nuclei (the lateral posterior, the posterior medial nucleus, and the dorsal portion of the medial geniculate body). Similar to the effects of muscarinic agonists, we found that first and most higher order relay cells were depolarized by serotonergic agonists, but 15% of higher order relay cells responded with hyperpolarization. Thus different subsets of higher order relay cells are hyperpolarized by these modulatory systems, which could have implications for the transfer of information between cortical areas.

  9. Spikes and bursts in two types of thalamic projection neurons differentially shape sleep patterns and auditory responses in a songbird.

    Science.gov (United States)

    Hahnloser, Richard H R; Wang, Claude Z-H; Nager, Aymeric; Naie, Katja

    2008-05-07

    In mammals, the thalamus plays important roles for cortical processing, such as relay of sensory information and induction of rhythmical firing during sleep. In neurons of the avian cerebrum, in analogy with cortical up and down states, complex patterns of regular-spiking and dense-bursting modes are frequently observed during sleep. However, the roles of thalamic inputs for shaping these firing modes are largely unknown. A suspected key player is the avian thalamic nucleus uvaeformis (Uva). Uva is innervated by polysensory input, receives indirect cerebral feedback via the midbrain, and projects to the cerebrum via two distinct pathways. Using pharmacological manipulation, electrical stimulation, and extracellular recordings of Uva projection neurons, we study the involvement of Uva in zebra finches for the generation of spontaneous activity and auditory responses in premotor area HVC (used as a proper name) and the downstream robust nucleus of the arcopallium (RA). In awake and sleeping birds, we find that single Uva spikes suppress and spike bursts enhance spontaneous and auditory-evoked bursts in HVC and RA neurons. Strong burst suppression is mediated mainly via tonically firing HVC-projecting Uva neurons, whereas a fast burst drive is mediated indirectly via Uva neurons projecting to the nucleus interface of the nidopallium. Our results reveal that cerebral sleep-burst epochs and arousal-related burst suppression are both shaped by sophisticated polysynaptic thalamic mechanisms.

  10. Regional thalamic neuropathology in patients with hippocampal sclerosis and epilepsy: A postmortem study

    Science.gov (United States)

    Sinjab, Barah; Martinian, Lillian; Sisodiya, Sanjay M; Thom, Maria

    2013-01-01

    Purpose Clinical, experimental, and neuroimaging data all indicate that the thalamus is involved in the network of changes associated with temporal lobe epilepsy (TLE), particularly in association with hippocampal sclerosis (HS), with potential roles in seizure initiation and propagation. Pathologic changes in the thalamus may be a result of an initial insult, ongoing seizures, or retrograde degeneration through reciprocal connections between thalamic and limbic regions. Our aim was to carry out a neuropathologic analysis of the thalamus in a postmortem (PM) epilepsy series, to assess the distribution, severity, and nature of pathologic changes and its association with HS. Methods Twenty-four epilepsy PM cases (age range 25–87 years) and eight controls (age range 38–85 years) were studied. HS was classified as unilateral (UHS, 11 cases), bilateral (BHS, 4 cases) or absent (No-HS, 9 cases). Samples from the left and right sides of the thalamus were stained with cresyl violet (CV), and for glial firbillary acidic protein (GFAP) and synaptophysin. Using image analysis, neuronal densities (NDs) or field fraction staining values (GFAP, synaptophysin) were measured in four thalamic nuclei: anteroventral nucleus (AV), lateral dorsal nucleus (LD), mediodorsal nucleus (MD), and ventrolateral nucleus (VL). The results were compared within and between cases. Key Findings The severity, nature, and distribution of thalamic pathology varied between cases. A pattern that emerged was a preferential involvement of the MD in UHS cases with a reduction in mean ND ipsilateral to the side of HS (p = 0.05). In UHS cases, greater field fraction values for GFAP and lower values for synaptophysin and ND were seen in the majority of cases in the MD ipsilateral to the side of sclerosis compared to other thalamic nuclei. In addition, differences in the mean ND between classical HS, atypical HS, and No-HS cases were noted in the ipsilateral MD (p < 0.05), with lower values observed in

  11. The findings of Tc-99m ECD brain perfusion SPECT in the patients with left anterior thalamic infarction

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Y. A.; Kim, S. H.; Sohn, H. S.; Jeong, S. G. [The Catholic University of Korea, Seoul (Korea, Republic of)

    2005-07-01

    The thalamus has multiple connections with areas of the cerebral cortex involved in arousal and cognition. Thalamic damage has been reported to be associated with variable neuropsychological dysfunctions and dementia. This study evaluates the changes of regional cerebral blood flow (rCBF) by using SPM analysis of brain perfusion SPECT and examining the neuropsychological abnormalities of 4 patients with anterior thalamic infarctions. Four patients with left anterior thalamic infarctions and eleven normal controls were evaluated. K-MMSE and the Seoul Neuropsychological Screening Battery were performed within 2 days after stroke. The normalized SPECT data of 4 patients were compared to those of 11 controls for the detection of areas with decreased rCBF by SPM analysis. All 4 patients showed anterograde amnesia in their verbal memory, which was not improved by recognition. Dysexecutive features were occasionally present, such as decreased word fluency and impaired Stroop test results. SPM analysis revealed decreased rCBF in the left supra marginal gyrus, the superior temporal gyrus, the middle and inferior frontal gyrus, the medial dorsal and anterior nucleus of the left thalamus. The changes of rCBF in patients with left anterior thalamic infarctions may be due to the remote suppression on metabolism by the interruption of the cortico-subcortical circuit, which connects the anterior thalamic nucleus and various cortical areas. The executive dysfunction and dysnomia may be caused by the left dorsolateral frontal dysfunction of the thalamo-cortical circuit. Anterograde amnesia with storage deficit may be caused by the disruption of mamillothalamic tract.

  12. [Typical Patterns of Neuronal Activity in Relay and Nonspecific Thalamic Nuclei in Patients with Spasmodic Torticollis].

    Science.gov (United States)

    Devetiarov, D A; Semenova, U N; Butiaeva, L I; Sedov, A S

    2015-01-01

    Neuronal activity of 50 neurons in nonspecific (Rt, MD) and relay (Voi, Voa) thalamic nuclei was analyzed. Data were obtained by microelectrode technique during 14 stereotactic operations in patients with spasmodic torticollis. Application of Poincare maps and Gap-statistics allowed to reveal 3 main patterns of neuronal activity: irregular single spikes, low-threshold Ca(2+)-dependent rhythmic (3-5 Hz) bursts and combination of bursts and single spikes. In some cases, grouping (in Voi and Rt nuclei) and long burst (in Voa nucleus) patterns were observed. Grouping pattern consist of low-density groups of spikes with tendency to periodicity in range 1-1.5 Hz. Long burst pattern consist of long dense groups of spikes with random length and invariant interburst intervals. Main numerical estimations of 3 most spread patterns of neuronal activity were obtained by parametric analysis. In results, investigated thalamic nuclei significantly distinguished from each other by characteristics of burst activity but average firing rate of these nuclei hadn't significant differences. These data may be useful for functional identification of thalamic nuclei during stereotactic neurosurgery operation in patients with movement disorders.

  13. Thalamic network oscillations synchronize ontogenetic columns in the newborn rat barrel cortex.

    Science.gov (United States)

    Yang, Jenq-Wei; An, Shuming; Sun, Jyh-Jang; Reyes-Puerta, Vicente; Kindler, Jennifer; Berger, Thomas; Kilb, Werner; Luhmann, Heiko J

    2013-06-01

    Neocortical areas are organized in columns, which form the basic structural and functional modules of intracortical information processing. Using voltage-sensitive dye imaging and simultaneous multi-channel extracellular recordings in the barrel cortex of newborn rats in vivo, we found that spontaneously occurring and whisker stimulation-induced gamma bursts followed by longer lasting spindle bursts were topographically organized in functional cortical columns already at the day of birth. Gamma bursts synchronized a cortical network of 300-400 µm in diameter and were coherent with gamma activity recorded simultaneously in the thalamic ventral posterior medial (VPM) nucleus. Cortical gamma bursts could be elicited by focal electrical stimulation of the VPM. Whisker stimulation-induced spindle and gamma bursts and the majority of spontaneously occurring events were profoundly reduced by the local inactivation of the VPM, indicating that the thalamus is important to generate these activity patterns. Furthermore, inactivation of the barrel cortex with lidocaine reduced the gamma activity in the thalamus, suggesting that a cortico-thalamic feedback loop modulates this early thalamic network activity.

  14. Hypersexuality following bilateral thalamic infarction: case report

    OpenAIRE

    Mutarelli Eduardo G; Omuro Antonio M.P.; Adoni Tarso

    2006-01-01

    Hypersexuality is a rare but well recognized condition following brain injury. It has been described secondarily to dysfunction in the hypothalamus, the temporal and frontal lobes. We report a 63 year-old man that developed neuropsychological disturbances with hypersexuality as a prominent feature, disinhibition and moderate memory loss, hypersomnia and irritability after a bilateral paramedian thalamic infarction. A SPECT showed frontal hypoperfusion. We believe that these findings are expre...

  15. The deep cerebral stimulation of the under thalamic nucleus modifies the cerebral metabolism in {sup 18}FDG-Tep of obsessive compulsive patients; La stimulation cerebrale profonde du noyau sous thalamique modifie le metabolisme cerebral en 18FDG-TEP des patients obsessionnels compulsifs

    Energy Technology Data Exchange (ETDEWEB)

    Le Jeune, F.; Garin, E. [Service de medecine nucleaire, centre Eugene-Marquis, Rennes, (France); Verin, M.; Peron, J. [service de neurologie, CHU Pontchaillou, Rennes, (France); Mallet, L.; Yelnik, J. [Inserm, Avenir Team, Behavior, Emotion and Basal Ganglia, IFR 70, Pitie-Salpetriere, Paris, (France); Kreps, M.O. [Inserm U796, service de psychiatrie, hopital Sainte-Anne, Paris, (France); Drapier, D.; Millet, B. [service de psychiatrie adulte, centre hospitalier Guillaume-Regnier, Rennes, (France)

    2009-05-15

    The aim of this work was to find again this orbito-frontal hyper metabolism among the resistant obsessive compulsive disorder patients that are going to benefit of a deep cerebral stimulation of the under thalamus nucleus and to demonstrate that this new therapy approach leads a reduction of the metabolism in this area in correlation with the clinical improvement. It is about the first study realized in isotopic functional imaging on ten resistant compulsive disorder patients treated by bilateral deep cerebral stimulation of the under thalamus nucleus. It shows that the treatment efficiency is in relation with a reduction of the glucide metabolism in the right orbito-frontal cortex. It suggests equally that the under thalamus nucleus would be functionally linked to the orbito-frontal cortex. (N.C.)

  16. MM2-thalamic Creutzfeldt-Jakob disease: neuropathological, biochemical and transmission studies identify a distinctive prion strain.

    Science.gov (United States)

    Moda, Fabio; Suardi, Silvia; Di Fede, Giuseppe; Indaco, Antonio; Limido, Lucia; Vimercati, Chiara; Ruggerone, Margherita; Campagnani, Ilaria; Langeveld, Jan; Terruzzi, Alessandro; Brambilla, Antonio; Zerbi, Pietro; Fociani, Paolo; Bishop, Matthew T; Will, Robert G; Manson, Jean C; Giaccone, Giorgio; Tagliavini, Fabrizio

    2012-09-01

    In Creutzfeldt-Jakob disease (CJD), molecular typing based on the size of the protease resistant core of the disease-associated prion protein (PrP(Sc) ) and the M/V polymorphism at codon 129 of the PRNP gene correlates with the clinico-pathologic subtypes. Approximately 95% of the sporadic 129MM CJD patients are characterized by cerebral deposition of type 1 PrP(Sc) and correspond to the classic clinical CJD phenotype. The rare 129MM CJD patients with type 2 PrP(Sc) are further subdivided in a cortical and a thalamic form also indicated as sporadic fatal insomnia. We observed two young patients with MM2-thalamic CJD. Main neuropathological features were diffuse, synaptic PrP immunoreactivity in the cerebral cortex and severe neuronal loss and gliosis in the thalamus and olivary nucleus. Western blot analysis showed the presence of type 2A PrP(Sc) . Challenge of transgenic mice expressing 129MM human PrP showed that MM2-thalamic sporadic CJD (sCJD) was able to transmit the disease, at variance with MM2-cortical sCJD. The affected mice showed deposition of type 2A PrP(Sc) , a scenario that is unprecedented in this mouse line. These data indicate that MM2-thalamic sCJD is caused by a prion strain distinct from the other sCJD subtypes including the MM2-cortical form. © 2012 The Authors; Brain Pathology © 2012 International Society of Neuropathology.

  17. Projections to the anterodorsal thalamus and lateral mammillary nuclei arise from different cell populations within the postsubiculum: implications for the control of head direction cells.

    Science.gov (United States)

    Yoder, Ryan M; Taube, Jeffrey S

    2011-10-01

    The neural representation of directional heading is encoded by a population of cells located in a circuit that includes the postsubiculum (PoS), anterodorsal thalamus (ADN), and lateral mammillary nuclei (LMN). Throughout this circuit, many cells rely on both movement- and landmark-related information to discharge as a function of the animal's directional heading. The PoS projects to both the ADN and LMN, and these connections may convey critical spatial information about landmarks, because lesions of the PoS disrupt landmark control in head direction (HD) cells and hippocampal place cells [Goodridge and Taube (1997) J Neurosci 17:9315-9330; Calton et al. (2003) J Neurosci 23:9719-9731]. The PoS → ADN projection originates in the deep layers of PoS, but no studies have determined whether the PoS → LMN projection originates from the same cells that project to ADN. To address this issue, two distinct cholera toxin-subunit B (CTB) fluorophore conjugates (Alexa Fluor 488 and Alexa Fluor 594) were injected into the LMN and ADN of the same rats, and PoS sections were examined for cell bodies containing either or both CTB conjugates. Results indicated that the PoS → LMN projection originates exclusively from a thin layer of cells located superficial to the layer(s) of PoS → ADN projection cells, with no overlap. To verify the laminar distribution and morphological characteristics of PoS → LMN and PoS → ADN cells, biotinylated dextran amine was injected into LMN or ADN of different rats, and tissue sections were counterstained with thionin. Results indicated that the PoS → LMN projection arises from large pyramidal cells in layer IV, whereas the PoS → ADN projection arises from a heterogeneous cell population in layers V/VI. This study provides the first evidence that the PoS → ADN and PoS → LMN projections arise from distinct, nonoverlapping cell layers in PoS. Functionally, the PoS may provide landmark information to HD cells in LMN.

  18. Mediodorsal and Visual Thalamic Connectivity Differ in Schizophrenia and Bipolar Disorder With and Without Psychosis History

    Science.gov (United States)

    Anticevic, Alan; Yang, Genevieve; Savic, Aleksandar; Murray, John D.; Cole, Michael W.; Repovs, Grega; Pearlson, Godfrey D.; Glahn, David C.

    2014-01-01

    Empirical and theoretical studies implicate thalamocortical circuits in schizophrenia, supported by emerging resting-state functional connectivity studies (rs-fcMRI). Similar but attenuated alterations were found in bipolar disorder (BD). However, it remains unknown if segregated loops within thalamocortical systems show distinct rs-fcMRI alterations in schizophrenia. For instance, the mediodorsal (MD) nucleus, known to project to prefrontal networks, may be differently altered than the lateral geniculate nucleus (LGN), known to project to the occipital cortex. Also, it remains unknown if these circuits show different patterns of alterations in BD as a function of psychosis history, which may be associated with a more severe clinical course. We addressed these questions in 90 patients with chronic schizophrenia and 73 remitted BD patients (33 with psychosis history) matched to 146 healthy comparison subjects. We hypothesized that the MD vs LGN would show dissociations across diagnostic groups. We found that MD and LGN show more qualitative similarities than differences in their patterns of dysconnectivity in schizophrenia. In BD, patterns qualitatively diverged between thalamic nuclei although these effects were modest statistically. BD with psychosis history was associated with more severe dysconnectivity, particularly for the MD nucleus. Also, the MD nucleus showed connectivity reductions with the cerebellum in schizophrenia but not in BD. Results suggest dissociations for thalamic nuclei across diagnoses, albeit carefully controlling for medication is warranted in future studies. Collectively, these findings have implications for designing more precise neuroimaging-driven biomarkers that can identify common and divergent large-scale network perturbations across psychiatric diagnoses with shared symptoms. PMID:25031221

  19. Mediodorsal and visual thalamic connectivity differ in schizophrenia and bipolar disorder with and without psychosis history.

    Science.gov (United States)

    Anticevic, Alan; Yang, Genevieve; Savic, Aleksandar; Murray, John D; Cole, Michael W; Repovs, Grega; Pearlson, Godfrey D; Glahn, David C

    2014-11-01

    Empirical and theoretical studies implicate thalamocortical circuits in schizophrenia, supported by emerging resting-state functional connectivity studies (rs-fcMRI). Similar but attenuated alterations were found in bipolar disorder (BD). However, it remains unknown if segregated loops within thalamocortical systems show distinct rs-fcMRI alterations in schizophrenia. For instance, the mediodorsal (MD) nucleus, known to project to prefrontal networks, may be differently altered than the lateral geniculate nucleus (LGN), known to project to the occipital cortex. Also, it remains unknown if these circuits show different patterns of alterations in BD as a function of psychosis history, which may be associated with a more severe clinical course. We addressed these questions in 90 patients with chronic schizophrenia and 73 remitted BD patients (33 with psychosis history) matched to 146 healthy comparison subjects. We hypothesized that the MD vs LGN would show dissociations across diagnostic groups. We found that MD and LGN show more qualitative similarities than differences in their patterns of dysconnectivity in schizophrenia. In BD, patterns qualitatively diverged between thalamic nuclei although these effects were modest statistically. BD with psychosis history was associated with more severe dysconnectivity, particularly for the MD nucleus. Also, the MD nucleus showed connectivity reductions with the cerebellum in schizophrenia but not in BD. Results suggest dissociations for thalamic nuclei across diagnoses, albeit carefully controlling for medication is warranted in future studies. Collectively, these findings have implications for designing more precise neuroimaging-driven biomarkers that can identify common and divergent large-scale network perturbations across psychiatric diagnoses with shared symptoms. © The Author 2014. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please

  20. [Increased level of Gerstmann's syndrome secondary to thalamic hematoma].

    Science.gov (United States)

    Casado, J L; Jarrín, S; Madrid, A; Gil-Peralta, A

    1995-01-01

    A patient developed enlarged Gerstmann syndrome after left thalamic haematoma. Single photon emission computerised tomography (SPECT) showed left parietal-temporal cortical hypocapture. These findings would lead us to believe that the clinical picture of our patient was due to a thalamic-cortical diaschitic phenomenon.

  1. Dengue fever with unusual thalamic involvement.

    Science.gov (United States)

    Mallick, Asim Kumar; Purkait, Radheshyam; Sinhamahapatra, Tapan Kumar

    2012-01-01

    Dengue is the most important mosquito-borne viral disease in the world and is caused by four distinct viruses (type 1 to 4) that are closely related antigenically. Infection by dengue virus may be asymptomatic or may lead to undifferentiated fever, dengue fever or dengue haemorrhagic fever. Recent observations indicate that the clinical profile of dengue is changing and the neurological complications are being reported more frequently. The neurological features includeheadache, seizures, neck stiffness, depressed sensorium, behavioural disorders, delirium, paralysis and cranial nerve palsies. Such neurological symptoms in dengue fever wereattributed to cerebral oedema, haemorrhage, haemoconcentration due to increasing vascular permeability, coagulopathy and release of toxic substances. Cerebral oedema, encephalitis-like changes (oedema and scattered focal lesions), intracranial haemorrhages as well as selective involvement of bilateral hippocampus in dengue infection have been reported previously on selective neuro-imaging but thalamic involvement is rare. We here report a case of a typical presentation of encephalopathy with left sided complete hemiplegia due to thalamic involvement in dengue infection.

  2. High field fMRI reveals thalamocortical integration of segregated cognitive and emotional processing in mediodorsal and intralaminar thalamic nuclei

    Directory of Open Access Journals (Sweden)

    Coraline Danielle Metzger

    2010-11-01

    Full Text Available Thalamocortical loops, connecting functionally segregated, higher order cortical regions and basal ganglia, have been proposed not only for well described motor and sensory regions, but also for limbic and prefrontal areas relevant for affective and cognitive processes. These functions are, however, more specific to humans, rendering most invasive neuroanatomical approaches impossible and interspecies translations difficult. In contrast, non invasive imaging of functional neuroanatomy using fMRI allows for the development of elaborate task paradigms capable of testing the specific functionalities proposed for these circuits. Until recently, spatial resolution largely limited the anatomical definition of functional clusters at the level of distinct thalamic nuclei. Since their anatomical distinction seems crucial not only for the segregation of cognitive and limbic loops but also for the detection of their functional interaction during cognitive-emotional integration, we applied high resolution fMRI on 7 Tesla.Using an event related design, we could isolate thalamic effects for preceding attention as well as experience of erotic stimuli. We could demonstrate specific thalamic effects of general emotional arousal in mediodorsal nucleus and effects specific to preceding attention and expectancy in intralaminar centromedian/parafascicular complex (CM/PF. These thalamic effects were paralleled by specific coactivations in the head of caudate nucleus as well as segregated portions of rostral or caudal cingulate cortex and anterior insula supporting distinct thalamo-striato-cortical loops. In addition to predescribed effects of sexual arousal in hypothalamus and ventral striatum, high resolution fMRI could extent this network to paraventricular thalamus encompassing laterodorsal and parataenial nuclei. We could lend evidence to segregated subcortical loops which integrate cognitive and emotional aspects of basic human behaviour such as sexual

  3. High Field fMRI Reveals Thalamocortical Integration of Segregated Cognitive and Emotional Processing in Mediodorsal and Intralaminar Thalamic Nuclei

    Science.gov (United States)

    Metzger, C. D.; Eckert, U.; Steiner, J.; Sartorius, A.; Buchmann, J. E.; Stadler, J.; Tempelmann, C.; Speck, O.; Bogerts, B.; Abler, B.; Walter, M.

    2010-01-01

    Thalamocortical loops, connecting functionally segregated, higher order cortical regions, and basal ganglia, have been proposed not only for well described motor and sensory regions, but also for limbic and prefrontal areas relevant for affective and cognitive processes. These functions are, however, more specific to humans, rendering most invasive neuroanatomical approaches impossible and interspecies translations difficult. In contrast, non-invasive imaging of functional neuroanatomy using fMRI allows for the development of elaborate task paradigms capable of testing the specific functionalities proposed for these circuits. Until recently, spatial resolution largely limited the anatomical definition of functional clusters at the level of distinct thalamic nuclei. Since their anatomical distinction seems crucial not only for the segregation of cognitive and limbic loops but also for the detection of their functional interaction during cognitive–emotional integration, we applied high resolution fMRI on 7 Tesla. Using an event-related design, we could isolate thalamic effects for preceding attention as well as experience of erotic stimuli. We could demonstrate specific thalamic effects of general emotional arousal in mediodorsal nucleus and effects specific to preceding attention and expectancy in intralaminar centromedian/parafascicular complex. These thalamic effects were paralleled by specific coactivations in the head of caudate nucleus as well as segregated portions of rostral or caudal cingulate cortex and anterior insula supporting distinct thalamo–striato–cortical loops. In addition to predescribed effects of sexual arousal in hypothalamus and ventral striatum, high resolution fMRI could extent this network to paraventricular thalamus encompassing laterodorsal and parataenial nuclei. We could lend evidence to segregated subcortical loops which integrate cognitive and emotional aspects of basic human behavior such as sexual processing. PMID:21088699

  4. The endocannabinoid system within the dorsal lateral geniculate nucleus of the vervet monkey

    DEFF Research Database (Denmark)

    Javadi, P.; Bouskila, J.; Bouchard, J. -F.

    2015-01-01

    and monkey retinae. Here, we investigated the expression and localization of the eCB system beyond the retina, namely the first thalamic relay, the dorsal lateral geniculate nucleus (dLGN), of vervet monkeys using immunohistochemistry methods. Our results show that CB1R is expressed throughout the d...

  5. Membrane Bistability in Thalamic Reticular Neurons During Spindle Oscillations

    Science.gov (United States)

    Fuentealba, Pablo; Timofeev, Igor; Bazhenov, Maxim; Sejnowski, Terrence J.; Steriade, Mircea

    2010-01-01

    The thalamic reticular (RE) nucleus is a major source of inhibition in the thalamus. It plays a crucial role in regulating the excitability of thalamocortical networks and in generating some sleep rhythms. Current-clamp intracellular recordings of RE neurons in cats under barbiturate anesthesia revealed the presence of membrane bistability in ~20% of neurons. Bistability consisted of two alternate membrane potentials, separated by ~17–20 mV. While non-bistable (common) RE neurons fired rhythmic spike-bursts during spindles, bistable RE neurons fired tonically, with burst modulation, throughout spindle sequences. Bistability was strongly voltage dependent and only expressed under resting conditions (i.e. no current injection). The transition from the silent to the active state was a regenerative event that could be activated by brief depolarization, whereas brief hyperpolarizations could switch the membrane potential from the active to the silent state. These effects outlasted the current pulses. Corticothalamic stimulation could also switch the membrane potential from silent to active states. Addition of QX-314 in the recording micropipette either abolished or disrupted membrane bistability, suggesting INa(p) to be responsible for its generation. Thalamocortical cells presented various patterns of spindling that reflected the membrane bistability in RE neurons. Finally, experimental data and computer simulations predicted a role for RE neurons’ membrane bistability in inducing various patterns of spindling in target thalamocortical cells. We conclude that membrane bistability of RE neurons is an intrinsic property, likely generated by INa(p) and modulated by cortical influences, as well as a factor that determines different patterns of spindle rhythms in thalamocortical neurons. PMID:15331618

  6. Central Thalamic Deep-Brain Stimulation Alters Striatal-Thalamic Connectivity in Cognitive Neural Behavior.

    Science.gov (United States)

    Lin, Hui-Ching; Pan, Han-Chi; Lin, Sheng-Huang; Lo, Yu-Chun; Shen, Elise Ting-Hsin; Liao, Lun-De; Liao, Pei-Han; Chien, Yi-Wei; Liao, Kuei-Da; Jaw, Fu-Shan; Chu, Kai-Wen; Lai, Hsin-Yi; Chen, You-Yin

    2015-01-01

    Central thalamic deep brain stimulation (CT-DBS) has been proposed as an experimental therapeutic approach to produce consistent sustained regulation of forebrain arousal for several neurological diseases. We investigated local field potentials (LFPs) induced by CT-DBS from the thalamic central lateral nuclei (CL) and the striatum as potential biomarkers for the enhancement of lever-pressing skill learning. LFPs were simultaneously recorded from multiple sites in the CL, ventral striatum (Vstr), and dorsal striatum (Dstr). LFP oscillation power and functional connectivity were assessed and compared between the CT-DBS and sham control groups. The theta and alpha LFP oscillations were significantly increased in the CL and striatum in the CT-DBS group. Furthermore, interhemispheric coherences between bilateral CL and striatum were increased in the theta band. Additionally, enhancement of c-Fos activity, dopamine D2 receptor (Drd2), and α4-nicotinic acetylcholine receptor (α4-nAChR) occurred after CT-DBS treatment in the striatum and hippocampus. CT-DBS strengthened thalamic-striatal functional connectivity, which demonstrates that the inter-regional connectivity enhancement might contribute to synaptic plasticity in the striatum. Altered dopaminergic and cholinergic receptors resulted in modulation of striatal synaptic plasticity's ability to regulate downstream signaling cascades for higher brain functions of lever-pressing skill learning.

  7. Central Thalamic Deep-Brain Stimulation Alters Striatal–Thalamic Connectivity in Cognitive Neural Behavior

    Directory of Open Access Journals (Sweden)

    Hui-Ching eLin

    2016-01-01

    Full Text Available Central thalamic deep brain stimulation (CT-DBS has been proposed as an experimental therapeutic approach to produce consistent sustained regulation of forebrain arousal for several neurological diseases. We investigated local field potentials (LFPs induced by CT-DBS from the thalamic central lateral nuclei (CL and the striatum as potential biomarkers for the enhancement of lever-pressing skill learning. LFPs were simultaneously recorded from multiple sites in the CL, ventral striatum (Vstr, and dorsal striatum (Dstr. LFP oscillation power and functional connectivity were assessed and compared between the CT-DBS and sham control groups. The theta and alpha LFP oscillations were significantly increased in the CL and striatum in the CT-DBS group. Furthermore, interhemispheric coherences between bilateral CL and striatum were increased in the theta band. Additionally, enhancement of c-Fos activity, dopamine D2 receptor (Drd2 and 4-nicotinic acetylcholine receptor (4-nAChR occurred after CT-DBS treatment in the striatum and hippocampus. CT-DBS strengthened thalamic-striatal functional connectivity, which demonstrates that the inter-regional connectivity enhancement might contribute to synaptic plasticity in the striatum. Altered dopaminergic and cholinergic receptors resulted in modulation of striatal synaptic plasticity’s ability to regulate downstream signaling cascades for higher brain functions of lever-pressing skill learning.

  8. Isolated thalamic tuberculoma presenting as ataxic hemiparesis

    Science.gov (United States)

    Sahu, Ritesh; Patil, Tushar B; Kori, Prakash; Shukla, Rakesh

    2013-01-01

    Lacunar syndrome is a neurodeficit secondary to a deep cerebral lesion, usually because of microatheroma of small arteries. Ataxic hemiparesis (AH) is a lacunar syndrome with unilateral pyramidal weakness and ipsilateral ataxia. Thalamic tuberculoma, as a cause of AH, has not been previously described in the literature. We describe an elderly man who presented with left hemiparesis and ipsilateral ataxia. Clinical examination revealed upper motor neuron left facial paresis and left-sided hemiparesis. The patient had incoordination in left upper and lower limbs. Mantoux test was positive and erythrocyte sedimentation rate was elevated. MRI of brain showed a conglomerated hypointense lesion in the right thalamus with a peripheral hyperintensity on T1-weighted imaging and a hyperintense lesion in T2-weighted imaging with significant perilesional oedema, suggesting a tuberculoma. The patient was treated with antitubercular therapy and was symptomatically better at the 9 months follow-up. PMID:23580686

  9. Comparison of numbers of interneurons in three thalamic nuclei of normal and epileptic rats.

    Science.gov (United States)

    Cavdar, Safiye; Bay, Hüsniye Hacioğlu; Yildiz, Sercan D; Akakin, Dilek; Sirvanci, Serap; Onat, Filiz

    2014-06-01

    The inhibitory sources in the thalamic nuclei are local interneurons and neurons of the thalamic reticular nucleus. Studies of models of absence epilepsy have shown that the seizures are associated with an excess of inhibitory neurotransmission in the thalamus. In the present study, we used light-microscopic gamma-aminobutyric acid (GABA) immunocytochemistry to quantify the interneurons in the lateral geniculate (LGN), ventral posteromedial (VPM), and ventral posterolateral (VPL) thalamic nuclei, and compared the values from normal Wistar rats and genetic absence epilepsy rats from Strasbourg (GAERS). We found that in both Wistar rats and GAERS, the proportion of interneurons was significantly higher in the LGN than in the VPM and VPL. In the LGN of Wistar rats, 16.4% of the neurons were interneurons and in the GAERS, the value was 15.1%. In the VPM, the proportion of interneurons was 4.2% in Wistar and 14.9% in GAERS; in the VPL the values were 3.7% for Wistar and 11.1% for the GAERS. There was no significant difference between Wistar rats and the GAERS regarding the counts of interneurons in the LGN, whereas the VPM and VPL showed significantly higher counts in GAERS. Comparison of the mean areas of both relay cells and interneuronal profiles showed no significant differences between Wistar rats and GAERS. These findings show that in the VPL and the VPM there are relatively more GABAergic interneurons in GAERS than in Wistar rats. This may represent a compensatory response of the thalamocortical circuitry to the absence seizures or may be related to the production of absence seizures.

  10. Thalamic gap junctions control local neuronal synchrony and influence macroscopic oscillation amplitude during EEG alpha rhythms

    Directory of Open Access Journals (Sweden)

    Stuart eHughes

    2011-08-01

    Full Text Available Although EEG alpha ( (8-13 Hz rhythms are often considered to reflect an ‘idling’ brain state, numerous studies indicate that they are also related to many aspects of perception. Recently, we outlined a potential cellular substrate by which such aspects of perception might be linked to basic  rhythm mechanisms. This scheme relies on a specialized subset of rhythmically bursting thalamocortical (TC neurons (high-threshold bursting cells in the lateral geniculate nucleus (LGN which are interconnected by gap junctions (GJs. By engaging GABAergic interneurons, that in turn inhibit conventional relay-mode TC neurons, these cells can lead to an effective temporal framing of thalamic relay-mode output. Although the role of GJs is pivotal in this scheme, evidence for their involvement in thalamic  rhythms has thus far mainly derived from experiments in in vitro slice preparations. In addition, direct anatomical evidence of neuronal GJs in the LGN is currently lacking. To address the first of these issues we tested the effects of the GJ inhibitors, carbenoxolone (CBX and 18-glycyrrhetinic acid (18-GA, given directly to the LGN via reverse microdialysis, on spontaneous LGN and EEG  rhythms in behaving cats. We also examined the effect of CBX on  rhythm-related LGN unit activity. Indicative of a role for thalamic GJs in these activities, 18-GA and CBX reversibly suppressed both LGN and EEG  rhythms, with CBX also decreasing neuronal synchrony. To address the second point, we used electron microscopy to obtain definitive ultrastructural evidence for the presence of GJs between neurons in the cat LGN. As interneurons show no phenotypic evidence of GJ coupling (i.e. dye-coupling and spikelets we conclude that these GJs must belong to TC neurons. The potential significance of these findings for relating macroscopic changes in  rhythms to basic cellular processes is discussed.

  11. Anterior Thalamic High Frequency Band Activity Is Coupled with Theta Oscillations at Rest

    Directory of Open Access Journals (Sweden)

    Catherine M. Sweeney-Reed

    2017-07-01

    Full Text Available Cross-frequency coupling (CFC between slow and fast brain rhythms, in the form of phase–amplitude coupling (PAC, is proposed to enable the coordination of neural oscillatory activity required for cognitive processing. PAC has been identified in the neocortex and mesial temporal regions, varying according to the cognitive task being performed and also at rest. PAC has also been observed in the anterior thalamic nucleus (ATN during memory processing. The thalamus is active during the resting state and has been proposed to be involved in switching between task-free cognitive states such as rest, in which attention is internally-focused, and externally-focused cognitive states, in which an individual engages with environmental stimuli. It is unknown whether PAC is an ongoing phenomenon during the resting state in the ATN, which is modulated during different cognitive states, or whether it only arises during the performance of specific tasks. We analyzed electrophysiological recordings of ATN activity during rest from seven patients who received thalamic electrodes implanted for treatment of pharmacoresistant focal epilepsy. PAC was identified between theta (4–6 Hz phase and high frequency band (80–150 Hz amplitude during rest in all seven patients, which diminished during engagement in tasks involving an external focus of attention. The findings are consistent with the proposal that theta–gamma coupling in the ATN is an ongoing phenomenon, which is modulated by task performance.

  12. Striatum and globus pallidus control the electrical activity of reticular thalamic nuclei.

    Science.gov (United States)

    Villalobos, Nelson; Oviedo-Chávez, Aldo; Alatorre, Alberto; Ríos, Alain; Barrientos, Rafael; Delgado, Alfonso; Querejeta, Enrique

    2016-08-01

    Through GABAergic fibers, globus pallidus (GP) coordinates basal ganglia global function. Electrical activity of GP neurons depends on their membrane properties and afferent fibers, including GABAergic fibers from striatum. In pathological conditions, abnormal electrical activity of GP neurons is associated with motor deficits. There is a GABAergic pathway from the GP to the reticular thalamic nucleus (RTn) whose contribution to RTn neurons electrical activity has received little attention. This fact called our attention because the RTn controls the overall information flow of thalamic nuclei to cerebral cortex. Here, we study the spontaneous electrical activity of RTn neurons recorded in vivo in anesthetized rats and under pharmacological activation or inhibition of the GP. We found that activation of GP predominantly diminishes the spontaneous RTn neurons firing rate and its inhibition increases their firing rate; however, both activation and inhibition of GP did not modified the burst index (BI) or the coefficient of variation (CV) of RTn neurons. Moreover, stimulation of striatum predominantly diminishes the spiking rate of GP cells and increases the spiking rate in RTn neurons without modifying the BI or CV in reticular neurons. Our data suggest a GP tight control over RTn spiking activity.

  13. Fronto-thalamic volumetry markers of somatic delusions and hallucinations in schizophrenia.

    Science.gov (United States)

    Spalletta, Gianfranco; Piras, Fabrizio; Alex Rubino, Ivo; Caltagirone, Carlo; Fagioli, Sabrina

    2013-04-30

    Although the psychotic phenomena of schizophrenia have been extensively investigated, somatic delusions and hallucinations have seldom been reported and their mechanisms are substantially unexplored. Here, we aimed to identify the brain structural correlates of somatic psychotic phenomena using combined volumetry and diffusivity structural neuroimaging techniques. Seventy-five individuals with a DSM-IV-TR diagnosis of schizophrenia and 75 healthy controls (HC) underwent a comprehensive clinical assessment, a high-resolution T1-weighted magnetic resonance imaging and a diffusion tensor imaging protocol using a 3T MRI scanner. Voxel-based volumetry and mean diffusivity (MD) of gray matter (GM) and fractional anisotropy (FA) of white matter (WM) of the whole brain were calculated for each subject. Reduced left fronto-insular GM volume was found in patients with somatic delusions compared with patients without somatic delusions and HC. Increased GM volume was found in the bilateral thalami, primarily in the right ventral-anterior thalamic nucleus projecting to the prefrontal-temporal cortices and the bilateral pars triangularis of the inferior frontal lobe, of patients with somatic hallucinations and HC compared with patients without somatic hallucinations. No differences emerged in GM MD and in WM FA between patients with and without psychotic somatic phenomena (i.e. delusions or hallucinations). These findings provide the first evidence that a frontal-thalamic structural perturbation mediates somatic psychotic phenomena in schizophrenia.

  14. Vivax malaria:a rare cause of thalamic bleed

    Institute of Scientific and Technical Information of China (English)

    Jaydeep Sarkar; Biku Naik; Atul Gawande; Atul Goel

    2012-01-01

    Most common cause of thalamic bleed is hypertension; other causes are arteriovenous malformation, aneurysm, bleeding diathesis, drugs, amyloid angiopathy, tumor etc.We present a case ofPlasmodium vivax (P. vivax) malaria with unusual site of bleeding i.e. left thalamus of brain.To the best of our knowledge, this is the first reported case of thalamic bleed caused by vivax malaria in absence of severe thrombocytopenia/disseminated intravascular coagulation (DIC).

  15. Cocaine dependence and thalamic functional connectivity: a multivariate pattern analysis

    Directory of Open Access Journals (Sweden)

    Sheng Zhang

    2016-01-01

    Full Text Available Cocaine dependence is associated with deficits in cognitive control. Previous studies demonstrated that chronic cocaine use affects the activity and functional connectivity of the thalamus, a subcortical structure critical for cognitive functioning. However, the thalamus contains nuclei heterogeneous in functions, and it is not known how thalamic subregions contribute to cognitive dysfunctions in cocaine dependence. To address this issue, we used multivariate pattern analysis (MVPA to examine how functional connectivity of the thalamus distinguishes 100 cocaine-dependent participants (CD from 100 demographically matched healthy control individuals (HC. We characterized six task-related networks with independent component analysis of fMRI data of a stop signal task and employed MVPA to distinguish CD from HC on the basis of voxel-wise thalamic connectivity to the six independent components. In an unbiased model of distinct training and testing data, the analysis correctly classified 72% of subjects with leave-one-out cross-validation (p < 0.001, superior to comparison brain regions with similar voxel counts (p < 0.004, two-sample t test. Thalamic voxels that form the basis of classification aggregate in distinct subclusters, suggesting that connectivities of thalamic subnuclei distinguish CD from HC. Further, linear regressions provided suggestive evidence for a correlation of the thalamic connectivities with clinical variables and performance measures on the stop signal task. Together, these findings support thalamic circuit dysfunction in cognitive control as an important neural marker of cocaine dependence.

  16. 丘脑性失语症的临床研究%Clinical research on thalamic aphasia

    Institute of Scientific and Technical Information of China (English)

    麦卫华; 寇丽; 刘汉伟; 韩蓉蓉

    2011-01-01

    目的 探讨丘脑血管病所致的丘脑性失语症的言语特点、解剖机制及预后.方法 选择2002年6月至2008年7月我科收治的13例丘脑性失语症患者,采用汉语失语症检查法进行失语检查,同时行神经系统检查、常规实验室检查,及头颅CT、MRI检查.所有患者按原发病治疗.结果 13例患者均有自发言语减少,音量减少;3例伴命名障碍;10例伴错语;11例伴理解障碍.3例头颅CT示优势半球侧丘脑出血;头颅CT正常的10例中,9例头部MRI示优势半球丘脑腹外侧核中上部处腔隙性梗死灶、1例示优势半球丘脑背内侧核腔隙性梗死灶.所有患者于5~12天丘脑性失语的临床表现肖失.结论 丘脑性失语症有其独特的言语特点,优势半球侧丘脑腹外侧核和丘脑背内侧核可能为责任病灶区.头颅MRI对丘脑出血及梗死均敏感,能明确丘脑性失语症的病灶.经积极治疗原发病,丘脑性失语症预后较好.%Objective To study the language characteristics, anatomical mechanism and prognosis of thalamic aphasia caused by cerebrovascular diseases of thalamus. Methods Thirteen patients with thalamic aphasia during June 2002 to July 2008 in our department were studied. Aphasia examination, physical examination of central nervous system, routine laboratory examinations, as well as CT and MRI scanning of brain were taken. All patients were treated according to thalamic infarction or hemorrhage. Results All patients presented as sparse verbal output and low tone, 3 cases accompanied with anomia, 10 cases with paraphasia, and 11 cases with disturbance of comprehension. Thalamic hemorrhage in dominant hemisphere was detected in three cases by CT scanning. Among the other ten patients with normal CT, lacunar infarction in ventrolateral nucleus of thalamas (VL) of dominant hemisphere was detected in nine cases, while lacunar infarction in dorsomedial nucleus of thalamas ( DM ) of dominant hemisphere was detected in one

  17. Thalamic contributions to anterograde, retrograde, and implicit memory: a case study.

    Science.gov (United States)

    Hampstead, Benjamin M; Koffler, Sandra P

    2009-09-01

    Learning and memory deficits are typically associated with damage or dysfunction of medial temporal lobe structures; however, diencephalic lesions are another common cause of severe and persistent memory deficits. We focus specifically on the thalamus and review the pathological and neuropsychological characteristics of two common causes of such damage: Korsakoff's syndrome and stroke. We then present a patient who had sustained bilateral medial thalamic infarctions that affected the medial dorsal nucleus and internal medullary lamina. This patient demonstrated the characteristic temporally graded retrograde amnesia and a profound anterograde memory (i.e., explicit memory) deficit within the context of relatively preserved implicit memory. Implications of this explicit-implicit discrepancy are discussed within the context of cognitive rehabilitation techniques that hold promise for more severely impaired patients.

  18. Modulation of sensitivity to alcohol by cortical and thalamic brain regions.

    Science.gov (United States)

    Jaramillo, Anel A; Randall, Patrick A; Frisbee, Suzanne; Besheer, Joyce

    2016-10-01

    The nucleus accumbens core (AcbC) is a key brain region known to regulate the discriminative stimulus/interoceptive effects of alcohol. As such, the goal of the present work was to identify AcbC projection regions that may also modulate sensitivity to alcohol. Accordingly, AcbC afferent projections were identified in behaviorally naïve rats using a retrograde tracer which led to the focus on the medial prefrontal cortex (mPFC), insular cortex (IC) and rhomboid thalamic nucleus (Rh). Next, to examine the possible role of these brain regions in modulating sensitivity to alcohol, neuronal response to alcohol in rats trained to discriminate alcohol (1 g/kg, intragastric [IG]) vs. water was examined using a two-lever drug discrimination task. As such, rats were administered water or alcohol (1 g/kg, IG) and brain tissue was processed for c-Fos immunoreactivity (IR), a marker of neuronal activity. Alcohol decreased c-Fos IR in the mPFC, IC, Rh and AcbC. Lastly, site-specific pharmacological inactivation with muscimol + baclofen (GABAA agonist + GABAB agonist) was used to determine the functional role of the mPFC, IC and Rh in modulating the interoceptive effects of alcohol in rats trained to discriminate alcohol (1 g/kg, IG) vs. water. mPFC inactivation resulted in full substitution for the alcohol training dose, and IC and Rh inactivation produced partial alcohol-like effects, demonstrating the importance of these regions, with known projections to the AcbC, in modulating sensitivity to alcohol. Together, these data demonstrate a site of action of alcohol and the recruitment of cortical/thalamic regions in modulating sensitivity to the interoceptive effects of alcohol.

  19. Thalamic mediation of hypoxic respiratory depression in lambs.

    Science.gov (United States)

    Koos, Brian J; Rajaee, Arezoo; Ibe, Basil; Guerra, Catalina; Kruger, Lawrence

    2016-04-01

    Immaturity of respiratory controllers in preterm infants dispose to recurrent apnea and oxygen deprivation. Accompanying reductions in brain oxygen tensions evoke respiratory depression, potentially exacerbating hypoxemia. Central respiratory depression during moderate hypoxia is revealed in the ventilatory decline following initial augmentation. This study determined whether the thalamic parafascicular nuclear (Pf) complex involved in adult nociception and sensorimotor regulation (Bentivoglio M, Balerecia G, Kruger L. Prog Brain Res 87: 53-80, 1991) also becomes a postnatal controller of hypoxic ventilatory decline. Respiratory responses to moderate isocapnic hypoxia were studied in conscious lambs. Hypoxic ventilatory decline was compared with peak augmentation. Pf and/or adjacent thalamic structures were destroyed by the neuron-specific toxin ibotenic acid (IB). IB lesions involving the thalamic Pf abolished hypoxic ventilatory decline. Lesions of adjacent thalamic nuclei that spared Pf and control injections of vehicle failed to blunt hypoxic respiratory depression. Our findings reveal that the thalamic Pf region is a critical controller of hypoxic ventilatory depression and thus a key target for exploring molecular concomitants of forebrain pathways regulating hypoxic ventilatory depression in early development.

  20. UP states protect ongoing cortical activity from thalamic inputs.

    Directory of Open Access Journals (Sweden)

    Brendon O Watson

    Full Text Available Cortical neurons in vitro and in vivo fluctuate spontaneously between two stable membrane potentials: a depolarized UP state and a hyperpolarized DOWN state. UP states temporally correspond with multineuronal firing sequences which may be important for information processing. To examine how thalamic inputs interact with ongoing cortical UP state activity, we used calcium imaging and targeted whole-cell recordings of activated neurons in thalamocortical slices of mouse somatosensory cortex. Whereas thalamic stimulation during DOWN states generated multineuronal, synchronized UP states, identical stimulation during UP states had no effect on the subthreshold membrane dynamics of the vast majority of cells or on ongoing multineuronal temporal patterns. Both thalamocortical and corticocortical PSPs were significantly reduced and neuronal input resistance was significantly decreased during cortical UP states -- mechanistically consistent with UP state insensitivity. Our results demonstrate that cortical dynamics during UP states are insensitive to thalamic inputs.

  1. Global suppression of electrocortical activity in unilateral perinatal thalamic stroke.

    LENUS (Irish Health Repository)

    Kharoshankaya, Liudmila

    2014-07-01

    We present an unusual case of persistent generalized electroencephalography (EEG) suppression and right-sided clonic seizures in a male infant born at 40(+2) weeks\\' gestation, birthweight 3240g, with an isolated unilateral thalamic stroke. The EEG at 13 hours after birth showed a generalized very low amplitude background pattern, which progressed to frequent electrographic seizures over the left hemisphere. The interictal background EEG pattern remained grossly abnormal over the next 48 hours, showing very low background amplitudes (<10μV). Magnetic resonance imaging revealed an isolated acute left-sided thalamic infarction. This is the first description of severe global EEG suppression caused by an isolated unilateral thalamic stroke and supports the role of the thalamus as the control centre for cortical electrical activity.

  2. File list: His.Neu.20.AllAg.Thalamic_Nuclei [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.20.AllAg.Thalamic_Nuclei hg19 Histone Neural Thalamic Nuclei SRX998288,SRX9...98287,SRX998286 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Neu.20.AllAg.Thalamic_Nuclei.bed ...

  3. File list: His.Neu.10.AllAg.Thalamic_Nuclei [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.10.AllAg.Thalamic_Nuclei hg19 Histone Neural Thalamic Nuclei SRX998288,SRX9...98287,SRX998286 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Neu.10.AllAg.Thalamic_Nuclei.bed ...

  4. File list: ALL.Neu.50.AllAg.Thalamic_Nuclei [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.50.AllAg.Thalamic_Nuclei hg19 All antigens Neural Thalamic Nuclei SRX998288...,SRX998287,SRX998286 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Neu.50.AllAg.Thalamic_Nuclei.bed ...

  5. File list: His.Neu.50.AllAg.Thalamic_Nuclei [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.50.AllAg.Thalamic_Nuclei hg19 Histone Neural Thalamic Nuclei SRX998288,SRX9...98287,SRX998286 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Neu.50.AllAg.Thalamic_Nuclei.bed ...

  6. File list: ALL.Neu.05.AllAg.Thalamic_Nuclei [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.05.AllAg.Thalamic_Nuclei hg19 All antigens Neural Thalamic Nuclei SRX998288...,SRX998287,SRX998286 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Neu.05.AllAg.Thalamic_Nuclei.bed ...

  7. File list: His.Neu.05.AllAg.Thalamic_Nuclei [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.05.AllAg.Thalamic_Nuclei hg19 Histone Neural Thalamic Nuclei SRX998288,SRX9...98287,SRX998286 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Neu.05.AllAg.Thalamic_Nuclei.bed ...

  8. File list: ALL.Neu.20.AllAg.Thalamic_Nuclei [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.20.AllAg.Thalamic_Nuclei hg19 All antigens Neural Thalamic Nuclei SRX998288...,SRX998287,SRX998286 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Neu.20.AllAg.Thalamic_Nuclei.bed ...

  9. File list: ALL.Neu.10.AllAg.Thalamic_Nuclei [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.10.AllAg.Thalamic_Nuclei hg19 All antigens Neural Thalamic Nuclei SRX998288...,SRX998287,SRX998286 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Neu.10.AllAg.Thalamic_Nuclei.bed ...

  10. Bilateral thalamic infarction with psychiatric symptoms: case report

    Directory of Open Access Journals (Sweden)

    Betül Tekin Güveli

    2016-04-01

    Full Text Available Introduction: Thalamus is a mass of gray matter, which plays a role in the transmission of sensory and motor information to the primary sensory and motor centers of the cerebral cortex, cerebellum and basal ganglia. Vascular lesions of thalamus may occur in different syndromes depending on the affected nuclei. In this report, a case with acute evolving personality and behavior changes and detected bilateral thalamic infarction will be presented. Case: A 40-year-old male patient was brought to the psychiatric ER with complaints of acute excessive sleep and behavioral changing. His neurological examination was normal except for limited cooperation and dysarthria. There was hyperintensity in bilateral paramedian thalamic regions in diffusion MRI and hypointensity in the right side in the ADC. During clinical observation the patient occasionally had visual hallucinations and attempted suicide. The psychiatrist diagnosed the patient with psychotic disorder due to his general medical condition and olanzapine 10 mg / day was prescribed. Etiological tests were normal. The patient was discharged after clinical improvement on the tenth day of hospitalization. Conclusion: Bilateral thalamic infarcts are very rare in all ischemic cerebrovascular diseases and typically result in changing of consciousness, gaze palsy and memory. The most common etiological cause of bilateral thalamic infarct is cardioembolism and the prognosis is generally good. Thalamic infarcts have a clinical spectrum varying according to the location of the lesion and may even just be present with psychiatric symptoms. In acute or subacute personality and behavior changes in a patient with no history of psychiatric disorders, thalamic lesions should be considered.

  11. Medial thalamic 18-FDG uptake following inescapable shock correlates with subsequent learned helpless behavior

    Energy Technology Data Exchange (ETDEWEB)

    Mirrione,M.M.; Mirrione, M.M.; Schulz, D.; Dewey, S.L.; Henn, F.A.

    2009-12-06

    correlations were found in additional regions analyzed including the nucleus accumbens, caudate putamen, substantia nigra, and amygdala. These data suggest that medial thalamic 18-FDG uptake during inescapable shock may contribute to subsequent escape deficits, and are not confounded by shock effects per se, since all animals received the same treatment prior to scanning. We have previously explored 18-FDG differences following the escape test session which also showed hyperactivity in the medial thalamus of learned helpless animals compared to non-learned helpless, and included additional cortical-limbic changes. Given the neuroanatomical connections between the medial thalamus (and habenula) with the prefrontal cortex and monoaminergic brain stem, one possible speculation is that abnormal neuronal activity in these areas during stress may set in motion circuitry changes that correlate with learned helpless behavior.

  12. Two classes of excitatory synaptic responses in rat thalamic reticular neurons.

    Science.gov (United States)

    Deleuze, Charlotte; Huguenard, John R

    2016-09-01

    The thalamic reticular nucleus (nRt), composed of GABAergic cells providing inhibition of relay neurons in the dorsal thalamus, receives excitation from the neocortex and thalamus. The two excitatory pathways promoting feedback or feedforward inhibition of thalamocortical neurons contribute to sensory processing and rhythm generation. While synaptic inhibition within the nRt has been carefully characterized, little is known regarding the biophysics of synaptic excitation. To characterize the functional properties of thalamocortical and corticothalamic connections to the nRt, we recorded minimal electrically evoked excitatory postsynaptic currents from nRt cells in vitro. A hierarchical clustering algorithm distinguished two types of events. Type 1 events had larger amplitudes and faster kinetics, largely mediated by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, whereas type 2 responses had more prominent N-methyl-d-aspartate (NMDA) receptor contribution. Type 1 responses showed subnormal axonal propagation and paired pulse depression, consistent with thalamocortical inputs. Furthermore, responses kinetically similar to type 1 events were evoked by glutamate-mediated activation of thalamic neurons. Type 2 responses, in contrast, likely arise from corticothalamic inputs, with larger NMDA conductance and weak Mg(2+)-dependent block, suggesting that NMDA receptors are critical for the cortical excitation of reticular neurons. The long-lasting action of NMDA receptors would promote reticular cell burst firing and produce powerful inhibitory output to relay neurons proposed to be important in triggering epilepsy. This work provides the first complete voltage-clamp analysis of the kinetics and voltage dependence of AMPA and NMDA responses of thalamocortical and corticothalamic synapses in the nRt and will be critical in optimizing biologically realistic neural network models of thalamocortical circuits relevant to sensory processing and

  13. [Complete recovery from transient coma in bilateral paramedian thalamic infarctions].

    Science.gov (United States)

    Casado, J L; Arenas, C; Serrano, V; Moreno Rojas, A; Gil-Néciga, E; Gil-Peralta, A

    1995-01-01

    Bilateral paramedian thalamic infarcts (BPTI) can begin clinically with transient coma, after which symptoms of fluctuating hypersomnolence, irrational behaviour, or amnesic states may be observed. We present two patients with BPTI who began with coma, recovering spontaneously in under eight hours, with no accompanying symptoms.

  14. Hypertensive thalamic hemorrhage. Clinical symptoms and outcomes in 40 cases

    Energy Technology Data Exchange (ETDEWEB)

    Munaka, Masahiro; Nishikawa, Michio; Hirai, Osamu; Kaneko, Takaaki; Watanabe, Syu; Fukuma, Jun; Handa, Hajime

    1988-12-01

    In the past six years, we have had experience with 40 patients with hypertensive thalamic hemorrhages, as verified by CT scan at our hospital within 24 hours. These patients were classified into the following three groups according to the location of the bleeding point and the size of the hematoma: (1) anteromedial (4 cases), (2) posterolateral (16 cases), and (3) massive (20 cases). The (1) and (2) hematomas were small (less than 3 cm in diameter), while those in (3) were large (more than 3 cm in diameter). Twenty cases (50% of all the thalamic hematomas) were small hematomas. The characteristic clinical symptoms of the anteromedial type were a mild disturbance of consciousness and thalamic dementia, while those of the posterolateral type were motor and sensory disturbance, and thalamic aphasia, respectively. Twenty cases (50%) were large hematomas. The clinical symptoms of these cases were mainly consciousness disturbance; 7 of them expired. Based on this experience, it may be considered that the patients whose hematoma size was larger than 3 cm had a poor prognosis and that the patients with the posterolateral type had a poor functional diagnosis.

  15. Impulse sequences of thalamic neurons — An attempted theoretical interpretation

    NARCIS (Netherlands)

    Hoopen, M. ten

    1966-01-01

    1. In the literature interval distributions of thalamic nerve cell activity have been reported, that sometimes showed a preponderance of brief intervals followed by one or more peaks at a longer interval. These results have been compared with those of a model. 2. The model assumes that impulses via

  16. Disrupted thalamic prefrontal pathways in patients with idiopathic dystonia

    NARCIS (Netherlands)

    Bonilha, Leonardo; de Vries, Paulien M.; Hurd, Mark W.; Rorden, Chris; Morgan, Paul S.; Besenski, Nada; Bergmann, Kenneth J.; Hinson, Vanessa K.

    2009-01-01

    There are quantifiable abnormalities in water diffusion properties of the white matter in thalamic and prefrontal areas in patients with idiopathic dystonia (ID). However, it is unclear which pathways are disrupted in these patients. Using probabilistic tractography of high resolution DTI, we recons

  17. Essential Thalamic Contribution to Slow Waves of Natural Sleep

    Science.gov (United States)

    David, François; Schmiedt, Joscha T.; Taylor, Hannah L.; Orban, Gergely; Di Giovanni, Giuseppe; Uebele, Victor N.; Renger, John J.; Lambert, Régis C.; Leresche, Nathalie

    2013-01-01

    Slow waves represent one of the prominent EEG signatures of non-rapid eye movement (non-REM) sleep and are thought to play an important role in the cellular and network plasticity that occurs during this behavioral state. These slow waves of natural sleep are currently considered to be exclusively generated by intrinsic and synaptic mechanisms within neocortical territories, although a role for the thalamus in this key physiological rhythm has been suggested but never demonstrated. Combining neuronal ensemble recordings, microdialysis, and optogenetics, here we show that the block of the thalamic output to the neocortex markedly (up to 50%) decreases the frequency of slow waves recorded during non-REM sleep in freely moving, naturally sleeping-waking rats. A smaller volume of thalamic inactivation than during sleep is required for observing similar effects on EEG slow waves recorded during anesthesia, a condition in which both bursts and single action potentials of thalamocortical neurons are almost exclusively dependent on T-type calcium channels. Thalamic inactivation more strongly reduces spindles than slow waves during both anesthesia and natural sleep. Moreover, selective excitation of thalamocortical neurons strongly entrains EEG slow waves in a narrow frequency band (0.75–1.5 Hz) only when thalamic T-type calcium channels are functionally active. These results demonstrate that the thalamus finely tunes the frequency of slow waves during non-REM sleep and anesthesia, and thus provide the first conclusive evidence that a dynamic interplay of the neocortical and thalamic oscillators of slow waves is required for the full expression of this key physiological EEG rhythm. PMID:24336724

  18. Whole-brain mapping of afferent projections to the bed nucleus of the stria terminalis in tree shrews.

    Science.gov (United States)

    Ni, Rong-Jun; Luo, Peng-Hao; Shu, Yu-Mian; Chen, Ju-Tao; Zhou, Jiang-Ning

    2016-10-01

    The bed nucleus of the stria terminalis (BST) plays an important role in integrating and relaying input information to other brain regions in response to stress. The cytoarchitecture of the BST in tree shrews (Tupaia belangeri chinensis) has been comprehensively described in our previous publications. However, the inputs to the BST have not been described in previous reports. The aim of the present study was to investigate the sources of afferent projections to the BST throughout the brain of tree shrews using the retrograde tracer Fluoro-Gold (FG). The present results provide the first detailed whole-brain mapping of BST-projecting neurons in the tree shrew brain. The BST was densely innervated by the prefrontal cortex, entorhinal cortex, ventral subiculum, amygdala, ventral tegmental area, and parabrachial nucleus. Moreover, moderate projections to the BST originated from the medial preoptic area, supramammillary nucleus, paraventricular thalamic nucleus, pedunculopontine tegmental nucleus, dorsal raphe nucleus, locus coeruleus, and nucleus of the solitary tract. Afferent projections to the BST are identified in the ventral pallidum, nucleus of the diagonal band, ventral posteromedial thalamic nucleus, posterior complex of the thalamus, interfascicular nucleus, retrorubral field, rhabdoid nucleus, intermediate reticular nucleus, and parvicellular reticular nucleus. In addition, the different densities of BST-projecting neurons in various regions were analyzed in the tree shrew brains. In summary, whole-brain mapping of direct inputs to the BST is delineated in tree shrews. These brain circuits are implicated in the regulation of numerous physiological and behavioral processes including stress, reward, food intake, and arousal.

  19. Convulsive Movements in Bilateral Paramedian Thalamic and Midbrain Infarction

    Directory of Open Access Journals (Sweden)

    Kazuo Yamashiro

    2011-11-01

    Full Text Available Although some previous reports have described convulsive movements in bilateral paramedian thalamic and midbrain infarction, little is known about their nature. A 71-year-old man presented with impaired consciousness and clonic movements of both arms. Each series of movements lasted 10 to 20 s and occurred at 2- to 3-min intervals, which disappeared after intravenous administration of diazepam and phenytoin. Magnetic resonance imaging showed acute bilateral paramedian thalamic and midbrain infarction. A review of the literature revealed that convulsive movements were observed mostly at the onset of infarction. Clonic movements appeared frequently in the limbs, particularly in both arms. Clinical observations and results of animal experiments suggest that these seizures might originate from the mesencephalic reticular formation. Physicians should recognize this condition, because not only seizure control but also early management of ischemic stroke is required.

  20. Clinical observations on treating thalamic hemorrhage into ventricle

    Institute of Scientific and Technical Information of China (English)

    Dong Aiqin; Lv Xiudong; Wang Huagang

    2000-01-01

    Objective To investigate the treatment of severe patients with thalamic hemorrhage into ventricles. Method 12 cases with thalamic hemorrhage into ventricular system were studied, 9 male, 3 femaie, with a mean age of 64 years. All patients were unconscious. The average size of hematoma was 65 ml. Besides general comprehensive care, they received ventricular puncture for ingertion of drainage tape into the cerebral ventricle, infusion with urokinase for clotlysis, lumbar puncture for letting out some cerebrospinal fluid and injection of dexemethasone. Result The patients' clinical symptoms and signs were obviously improved.. The CT scan also demonstrated that hematomas were removed faster. The effective rate was 83.3 per cent, with a murtality of 16.7 per cent. Cohclusion This kind of therapy can increase the clinical cure rate. decrease the disability rate and death rete.

  1. Differential diagnosis of bilateral thalamic lesions; Differenzialdiagnose bilateral Thalamuslaesionen

    Energy Technology Data Exchange (ETDEWEB)

    Linn, J.; Brueckmann, H. [Universitaetsklinikum Muenchen (Germany). Abt. fuer Neuroradiologie; Hoffmann, L.A. [Universitaetsklinikum Muenchen (Germany). Inst. fuer Klinische Neuroimmunologie; Danek, A. [Universitaetsklinikum Muenchen (Germany). Klinik und Poliklinik fuer Neurologie

    2007-03-15

    A multitude of different diseases can result in bilateral thalamic lesions. These include vascular pathologies requiring prompt therapeutic intervention, such as basilar thrombosis or thrombosis of the internal cerebral veins, as well as tumors, infectious or demyelinating diseases, and toxic-metabolic lesions. Therefore, detailed knowledge of the typical radiological findings for the various diseases is essential for determining the correct diagnosis. This review provides a synopsis of the radiological findings for the most important bithalamic lesions and an overview of the literature.

  2. Thalamic volume as a biomarker for disorders of consciousness

    Science.gov (United States)

    Rubeaux, Mathieu; Mahalingam, Jamuna Jayashri; Gomez, Francisco; Nelson, Marvin; Vanhaudenhuyse, Audrey; Bruno, Marie-Aurélie; Gosseries, Olivia; Laureys, Steven; Soddu, Andrea; Lepore, Natasha

    2015-01-01

    Disorders of consciousness (DOC) may be characterized by the degree at which consciousness is impaired, and include for example vegetative state (VS) and minimally conscious state (MCS) patients. Using a reliable marker as a measure of the level of consciousness in such patients is of utmost necessity and importance for their appropriate diagnosis and prognosis. Identification of VS and MCS states based on their behaviors sometimes leads to incorrect inferences due to the influence of a range of factors like motor impairment, fluctuating arousal levels and rapidly habituating responses to name a few.1 The extent of damage in the thalamus, a structure known for its role in arousal regulation, may provide an imaging biomarker to better differentiate between VS and MCS. In this study, we manually segmented the thalamus from T1-weighted brain MRI images in a large cohort of 19 VS and 23 MCS subjects that were examined using the French version of the Coma Recovery Scale Revised (CRS-R).2 This scale is the most trustworthy behavioural diagnosis tool3 for patients with DOC available. The aim was to determine whether a relationship between thalamus volume and consciousness level exists. Results show that total thalamic volume tends to decrease over time after a severe brain injury. Moreover, for subjects in chronic state, the thalamic volume seems to differ with respect to the degree of consciousness that was diagnosed. Finally, for these same chronic patients, the total thalamic volume is varying linearly as a function of the CRS-R score obtained, indicating that thalamic volume may be used as a biomarker to measure the level of consciousness.

  3. Reproducibility of thalamic segmentation based on probabilistic tractography.

    Science.gov (United States)

    Traynor, Catherine; Heckemann, Rolf A; Hammers, Alexander; O'Muircheartaigh, Jonathan; Crum, William R; Barker, Gareth J; Richardson, Mark P

    2010-08-01

    Reliable identification of thalamic nuclei is required to improve targeting of electrodes used in Deep Brain Stimulation (DBS), and for exploring the role of thalamus in health and disease. A previously described method using probabilistic tractography to segment the thalamus based on connections to cortical target regions was implemented. Both within- and between-subject reproducibility were quantitatively assessed by the overlap of the resulting segmentations; the effect of two different numbers of target regions (6 and 31) on reproducibility of the segmentation results was also investigated. Very high reproducibility was observed when a single dataset was processed multiple times using different starting conditions. Thalamic segmentation was also very reproducible when multiple datasets from the same subject were processed using six cortical target regions. Within-subject reproducibility was reduced when the number of target regions was increased, particularly in medial and posterior regions of the thalamus. A large degree of overlap in segmentation results from different subjects was obtained, particularly in thalamic regions classified as connecting to frontal, parietal, temporal and pre-central cortical target regions.

  4. BFKL Pomeron calculus: Nucleus-nucleus scattering

    Energy Technology Data Exchange (ETDEWEB)

    Contreras, Carlos, E-mail: carlos.contreras@usm.cl [Departamento de Fisica, Universidad Tecnica Federico Santa Maria, Avda. Espana 1680, and Centro Cientifico-Tecnologico de Valparaiso, Casilla 110-V, Valparaiso (Chile); Levin, Eugene, E-mail: leving@post.tau.ac.il [Departamento de Fisica, Universidad Tecnica Federico Santa Maria, Avda. Espana 1680, and Centro Cientifico-Tecnologico de Valparaiso, Casilla 110-V, Valparaiso (Chile); Department of Particle Physics, School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978 (Israel); Miller, Jeremy S., E-mail: jeremy.miller@ist.utl.pt [Department of Particle Physics, School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978 (Israel); CENTRA, Departamento de Fisica, Instituto Superior Tecnico (IST), Av. Rovisco Pais, 1049-001 Lisboa (Portugal)

    2012-04-15

    In this paper the action of the BFKL Pomeron calculus is rewritten in momentum representation, and the equations of motion for nucleus-nucleus collisions are derived, in this representation. We found the semiclassical solutions to these equations, outside of the saturation domain. Inside this domain these equations reduce to the set of delay differential equations, and their asymptotic solutions are derived.

  5. Thalamic reticular impairment underlies attention deficit in Ptchd1(Y/-) mice.

    Science.gov (United States)

    Wells, Michael F; Wimmer, Ralf D; Schmitt, L Ian; Feng, Guoping; Halassa, Michael M

    2016-04-07

    Developmental disabilities, including attention-deficit hyperactivity disorder (ADHD), intellectual disability (ID), and autism spectrum disorders (ASD), affect one in six children in the USA. Recently, gene mutations in patched domain containing 1 (PTCHD1) have been found in ~1% of patients with ID and ASD. Individuals with PTCHD1 deletion show symptoms of ADHD, sleep disruption, hypotonia, aggression, ASD, and ID. Although PTCHD1 is probably critical for normal development, the connection between its deletion and the ensuing behavioural defects is poorly understood. Here we report that during early post-natal development, mouse Ptchd1 is selectively expressed in the thalamic reticular nucleus (TRN), a group of GABAergic neurons that regulate thalamocortical transmission, sleep rhythms, and attention. Ptchd1 deletion attenuates TRN activity through mechanisms involving small conductance calcium-dependent potassium currents (SK). TRN-restricted deletion of Ptchd1 leads to attention deficits and hyperactivity, both of which are rescued by pharmacological augmentation of SK channel activity. Global Ptchd1 deletion recapitulates learning impairment, hyper-aggression, and motor defects, all of which are insensitive to SK pharmacological targeting and not found in the TRN-restricted deletion mouse. This study maps clinically relevant behavioural phenotypes onto TRN dysfunction in a human disease model, while also identifying molecular and circuit targets for intervention.

  6. Modulation of temporal precision in thalamic population responses to natural visual stimuli

    Directory of Open Access Journals (Sweden)

    Gaelle eDesbordes

    2010-11-01

    Full Text Available Natural visual stimuli have highly structured spatial and temporal properties which influence the way visual information is encoded in the visual pathway. In response to natural scene stimuli, neurons in the lateral geniculate nucleus (LGN are temporally precise—on a time scale of 10-25 ms—both within single cells and across cells within a population. This time scale, established by non stimulus-driven elements of neuronal firing, is significantly shorter than that of natural scenes, yet is critical for the neural representation of the spatial and temporal structure of the scene. Here, a generalized linear model (GLM that combines stimulus-driven elements with spike-history dependence associated with intrinsic cellular dynamics is shown to predict the fine timing precision of LGN responses to natural scene stimuli, the corresponding correlation structure across nearby neurons in the population, and the continuous modulation of spike timing precision and latency across neurons. A single model captured the experimentally observed neural response, across different levels of contrasts and different classes of visual stimuli, through interactions between the stimulus correlation structure and the nonlinearity in spike generation and spike history dependence. Given the sensitivity of the thalamocortical synapse to closely timed spikes and the importance of fine timing precision for the faithful representation of natural scenes, the modulation of thalamic population timing over these time scales is likely important for cortical representations of the dynamic natural visual environment.

  7. Characterization of Behaviour and Remote Degeneration Following Thalamic Stroke in the Rat

    Directory of Open Access Journals (Sweden)

    Nina Weishaupt

    2015-06-01

    Full Text Available Subcortical ischemic strokes are among the leading causes of cognitive impairment. Selective atrophy of remote brain regions connected to the infarct is thought to contribute to deterioration of cognitive functions. The mechanisms underlying this secondary degenerative process are incompletely understood, but are thought to include inflammation. We induce ischemia by unilateral injection of endothelin-I into the rat dorsomedial thalamic nucleus, which has defined reciprocal connections to the frontal cortex. We use a comprehensive test battery to probe for changes in behaviour, including executive functions. After a four-week recovery period, brain sections are stained with markers for degeneration, microglia, astrocytes and myelin. Degenerative processes are localized within the stroke core and along the full thalamocortical projection, which does not translate into measurable behavioural deficits. Significant microglia recruitment, astrogliosis or myelin loss along the axonal projection or within the frontal cortex cannot be detected. These findings indicate that critical effects of stroke-induced axonal degeneration may only be measurable beyond a threshold of stroke severity and/or follow a different time course. Further investigations are needed to clarify the impact of inflammation accompanying axonal degeneration on delayed remote atrophy after stroke.

  8. Distinct Thalamic Reticular Cell Types Differentially Modulate Normal and Pathological Cortical Rhythms

    Directory of Open Access Journals (Sweden)

    Alexandra Clemente-Perez

    2017-06-01

    Full Text Available Integrative brain functions depend on widely distributed, rhythmically coordinated computations. Through its long-ranging connections with cortex and most senses, the thalamus orchestrates the flow of cognitive and sensory information. Essential in this process, the nucleus reticularis thalami (nRT gates different information streams through its extensive inhibition onto other thalamic nuclei, however, we lack an understanding of how different inhibitory neuron subpopulations in nRT function as gatekeepers. We dissociated the connectivity, physiology, and circuit functions of neurons within rodent nRT, based on parvalbumin (PV and somatostatin (SOM expression, and validated the existence of such populations in human nRT. We found that PV, but not SOM, cells are rhythmogenic, and that PV and SOM neurons are connected to and modulate distinct thalamocortical circuits. Notably, PV, but not SOM, neurons modulate somatosensory behavior and disrupt seizures. These results provide a conceptual framework for how nRT may gate incoming information to modulate brain-wide rhythms.

  9. Influence of a serotonin receptor antagonist, 5-HTP-DP-hex, on spinal and thalamic nociceptive neurons in rats.

    Science.gov (United States)

    Emmers, R; Tamir, H; Wilchek, M

    1987-06-01

    The antinociceptive properties of a new synthetic dipeptide (N-hexanoyl-5-hydroxytryptophyl-5-hydroxytryptophan amide, or 5-HTP-DP-hex) were studied in rats by an electrophysiological method. After an i.p. injection of alpha-chloralose and urethane, the animals were prepared for stereotaxic approach to the nucleus ventralis posterolateralis of the thalamus. With tungsten microelectrodes, individual nociceptive neurons in the nucleus were identified by the sequence of spikes emitted in response to single-pulse stimulation of the sciatic nerve. In addition to the usual short-latency spikes, a nociceptive neuron fired late spikes at regular intervals within 500 ms following each stimulus. When the spikes were accumulated in poststimulus time histograms, the short-latency spikes compiled an intensity-related (I) peak. The late spikes formed modality-related (M) peaks with spacing characteristic of nociception. Intracarotid infusion of 5-HTP-DP-hex (1 mg/kg) elevated the delayed portion of the I peak and the first M peak. This effect was followed in 25 min by suppression of all M peaks. The control record could be reinstated at any time by 5-hydroxytryptophan (3.5 mg/kg), or by natural recovery in 2.5 h. Responses evoked from a thalamic nociceptive neuron by single-pulse stimulation of the spinothalamic tract were modified by 5-HTP-DP-hex in a similar manner, except that no elevation of the activity peaks was observed. As shown previously, elevation of the delayed I peak and M1 indicated an increased input of A-delta and C fibers, respectively. The increased input lowers the response threshold and may represent hyperalgesia. Suppression of the M peaks may result from altered function of the positive feedback loop in the nociceptive system at the thalamic level, and may represent analgesia. Naloxone, methysergide, as well as ketanserin had no significant effect on the response histograms. These findings suggested that 5-HTP-DP-hex, a known serotonin receptor antagonist

  10. The role of the thalamic nuclei in recognition memory accompanied by recall during encoding and retrieval: an fMRI study.

    Science.gov (United States)

    Pergola, Giulio; Ranft, Alexander; Mathias, Klaus; Suchan, Boris

    2013-07-01

    The present functional imaging study aimed at investigating the contribution of the mediodorsal nucleus and the anterior nuclei of the thalamus with their related cortical networks to recognition memory and recall. Eighteen subjects performed associative picture encoding followed by a single item recognition test during the functional magnetic resonance imaging session. After scanning, subjects performed a cued recall test using the formerly recognized pictures as cues. This post-scanning test served to classify recognition trials according to subsequent recall performance. In general, single item recognition accompanied by successful recall of the associations elicited stronger activation in the mediodorsal nucleus of the thalamus and in the prefrontal cortices both during encoding and retrieval compared to recognition without recall. In contrast, the anterior nuclei of the thalamus were selectively active during the retrieval phase of recognition followed by recall. A correlational analysis showed that activation of the anterior thalamus during retrieval as assessed by measuring the percent signal changes predicted lower rates of recognition without recall. These findings show that the thalamus is critical for recognition accompanied by recall, and provide the first evidence of a functional segregation of the thalamic nuclei with respect to the memory retrieval phase. In particular, the mediodorsal thalamic-prefrontal cortical network is activated during successful encoding and retrieval of associations, which suggests a role of this system in recall and recollection. The activity of the anterior thalamic-temporal network selectively during retrieval predicts better memory performances across subjects and this confirms the paramount role of this network in recall and recollection. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Onuf's nucleus X

    DEFF Research Database (Denmark)

    Schrøder, H D

    1981-01-01

    in the length of the nucleus was observed. Based on the cytoarchitecture the nucleus could be divided in three parts, a cranial, a dorsomedial and a ventrolateral. All parts of the nucleus consisted of chromatin-rich medium-sized neurons, and apparent direct appositions between different cells bodies as well......The first, second and third sacral segments of 59 human spinal cords were examined in order to localize and describe Onuf's nucleus X. The nucleus was found to be situated in the ventral horn of the segments S2 and S3; only in very few spinal cords did it extend into S1. A significant variation...... as between cell bodies and large dendrites were observed. Characteristic findings in the neuropil surrounding the nucleus were the sparsity of myelinated fibers and the presence of dendritic bundles. The present observations are compared to the descriptions of a morphologically similar nucleus...

  12. Altered thalamocortical and intra-thalamic functional connectivity during light sleep compared with wake.

    Science.gov (United States)

    Hale, Joanne R; White, Thomas P; Mayhew, Stephen D; Wilson, Rebecca S; Rollings, David T; Khalsa, Sakhvinder; Arvanitis, Theodoros N; Bagshaw, Andrew P

    2016-01-15

    The transition from wakefulness into sleep is accompanied by modified activity in the brain's thalamocortical network. Sleep-related decreases in thalamocortical functional connectivity (FC) have previously been reported, but the extent to which these changes differ between thalamocortical pathways, and patterns of intra-thalamic FC during sleep remain untested. To non-invasively investigate thalamocortical and intra-thalamic FC as a function of sleep stage we recorded simultaneous EEG-fMRI data in 13 healthy participants during their descent into light sleep. Visual scoring of EEG data permitted sleep staging. We derived a functional thalamic parcellation during wakefulness by computing seed-based FC, measured between thalamic voxels and a set of pre-defined cortical regions. Sleep differentially affected FC between these distinct thalamic subdivisions and their associated cortical projections, with significant increases in FC during sleep restricted to sensorimotor connections. In contrast, intra-thalamic FC, both within and between functional thalamic subdivisions, showed significant increases with advancement into sleep. This work demonstrates the complexity and state-specific nature of functional thalamic relationships--both with the cortex and internally--over the sleep/wake cycle, and further highlights the importance of a thalamocortical focus in the study of sleep mechanisms.

  13. Developmental Alterations of Frontal-Striatal-Thalamic Connectivity in Obsessive-Compulsive Disorder

    Science.gov (United States)

    Fitzgerald, Kate Dimond; Welsh, Robert C.; Stern, Emily R.; Angstadt, Mike; Hanna, Gregory L.; Abelson, James L.; Taylor, Stephan F.

    2011-01-01

    Objective: Pediatric obsessive-compulsive disorder is characterized by abnormalities of frontal-striatal-thalamic circuitry that appear near illness onset and persist over its course. Distinct frontal-striatal-thalamic loops through cortical centers for cognitive control (anterior cingulate cortex) and emotion processing (ventral medial frontal…

  14. Developmental Alterations of Frontal-Striatal-Thalamic Connectivity in Obsessive-Compulsive Disorder

    Science.gov (United States)

    Fitzgerald, Kate Dimond; Welsh, Robert C.; Stern, Emily R.; Angstadt, Mike; Hanna, Gregory L.; Abelson, James L.; Taylor, Stephan F.

    2011-01-01

    Objective: Pediatric obsessive-compulsive disorder is characterized by abnormalities of frontal-striatal-thalamic circuitry that appear near illness onset and persist over its course. Distinct frontal-striatal-thalamic loops through cortical centers for cognitive control (anterior cingulate cortex) and emotion processing (ventral medial frontal…

  15. Symmetrical infantile thalamic degeneration with focal cytoplasmic calcification.

    Science.gov (United States)

    Ambler, M; O'Neil, W

    1975-10-27

    Infantile thalamic degeneration is a rare clinico-pathological entity. Restricted location of the lesion and peculiar cytopathological changes serve to distinguish this disorder from other common encephalopathies. Optical and ultrastructural studies demonstrate cytoplasmic calcopherules in previously viable cells. According to current concepts of acute cellular reactions to injury and mechanism of intracellular calcification, the cytological changes cannot be attributed to either hypoxic ischemic cell change or dystrophic calcification. By analogy to other human and pathological material, the most likely basis for nondystrophic calcopherule formation is toxic or infectious injury with local synthesis, or autophagic or phagolysosomal degradation of cellular debris of specific chemical composition favoring calcium deposition.

  16. Alexia without agraphia following biopsy of a left thalamic tumor.

    Science.gov (United States)

    Tamhankar, Madhura A; Coslett, Harry B; Fisher, Michael J; Sutton, Leslie N; Liu, Grant T

    2004-02-01

    Alexia without agraphia is a rare disconnection syndrome characterized by the loss of reading ability with retention of writing and verbal comprehension. We report a patient who developed alexia without agraphia after undergoing a biopsy for a malignant glioma involving the left thalamus. A 15-year-old right-handed male presented with 3 days of severe headache, and vomiting, and 1 month of blurry vision in his right visual field. Magnetic resonance imaging of the brain disclosed a large exophytic mass originating in the left thalamus, with mass effect and hydrocephalus. The patient underwent biopsy of the left thalamic mass via a transcallosal approach. Postoperatively, the patient complained of inability to read or identify letters. Examination revealed alexia without agraphia. The syndrome of alexia without agraphia can be rarely caused after surgery. A transcallosal procedure through the splenium of the corpus callosum may disrupt the visual association fibers traveling from the right occipital cortex to the left angular gyrus. In our case the syndrome occurred because of a preexisting right homonymous hemianopia resulting from a left thalamic tumor.

  17. Thalamic, brainstem, and cerebellar glucose metabolism in the hemiplegic monkey

    Energy Technology Data Exchange (ETDEWEB)

    Shimoyama, I.; Dauth, G.W.; Gilman, S.; Frey, K.A.; Penney, J.B. Jr.

    1988-12-01

    Unilateral ablation of cerebral cortical areas 4 and 6 of Brodmann in the macaque monkey results in a contralateral hemiplegia that resolves partially with time. During the phase of dense hemiplegia, local cerebral metabolic rate for glucose (1CMRG1c) is decreased significantly in most of the thalamic nuclei ipsilateral to the ablation, and there are slight contralateral decreases. The lCMRGlc is reduced bilaterally in most of the brainstem nuclei and bilaterally in the deep cerebellar nuclei, but only in the contralateral cerebellar cortex. During the phase of partial motor recovery, lCMRGlc is incompletely restored in many of the thalamic nuclei ipsilateral to the ablation and completely restored in the contralateral nuclei. In the brainstem and deep cerebellar nuclei, poor to moderate recovery occurs bilaterally. Moderate recovery occurs in the contralateral cerebellar cortex. The findings demonstrate that a unilateral cerebral cortical lesion strongly affects lCMRGlc in the thalamus ipsilaterally and in the cerebellar cortex contralaterally, but in the brainstem bilaterally. Partial recovery of lCMRGlc accompanies the progressive motor recovery. The structures affected include those with direct, and also those with indirect, connections to the areas ablated.

  18. Thalamic shape abnormalities in antipsychotic naïve schizophrenia

    Directory of Open Access Journals (Sweden)

    Vijay Danivas

    2013-01-01

    Full Text Available Background: Neurodevelopmental hypothesis of schizophrenia states abnormal pruning as one of the pathogenetic mechanism in schizophrenia. Though thalamic volume abnormalities have been documented, the shape differences of thalamus in antipsychotic-free schizophrenia in comparison with age- and sex-matched healthy volunteers need validation. Materials and Methods: We examined antipsychotic naïve schizophrenia patients ( n=60 and age- and sex-matched healthy volunteers ( n=44. The thalamic shape abnormalities were analyzed from their coded structural magnetic resonance imaging (MRI data using three-dimensional automated image analysis software, FMRIB′s (Oxford Center for the functional MRI of the brain tools-FIRST (FMRIB′s Integrated Registration and Segmentation Tool by creating deformable mesh model. Correlation with the psychopathology scores was carried out using F-statistics. Results: Patients with schizophrenia showed significant inward deformations in the regions corresponding to anterior, ventromedial, mediodorsal, and pulvinar nuclei. There was a direct correlation between negative syndrome score and the deformation in the right mediodorsal and right pulvinar nuclei. Conclusion: The inward deformations of thalamus in antipsychotic naive schizophrenia patients correspond to those nuclei which have reciprocal connections with frontal, superior temporal, and anterior cingulate regions and support the neurodevelopmental hypothesis of schizophrenia.

  19. A case of thalamic hemorrhage-induced diaschisis

    Institute of Scientific and Technical Information of China (English)

    Gang Yao; Yuhong Man; Xijing Mao; Tingmin Yu

    2011-01-01

    Diaschisis refers to a disturbance (inhibition or facilitation) of function in an area remote from the site of a primary brain lesion. Previous studies have confirmed that regional cerebral blood flow and metabolism are noticeably decreased in an infarct region. Transient excessive perfusion appears in the ischemic penumbra, and diaschisis occurs in an area remote from the lesion site, showing decreased regional cerebral blood flow and metabolism. Mirror diaschisis refers to a decrease in oxygen metabolism and blood flow in the "mirror image area" to the infarct regions in the contralateral hemisphere. In this study, a patient with right thalamic hemorrhage was affected with right arm and leg numbness. At 4 months before onset, magnetic resonance imaging of the head demonstrated lacunar infarcts in the left thalamus; therefore the right arm and leg numbness was not associated with lacunar infarcts in the left thalamus. At 8 days following onset, magnetic resonance imaging reexamination did not reveal the focus that could induce right arm and leg numbness and weakness. Thus, it is suggested in this study that the onset of this disease can be explained by mirror diaschisis. That is, right thalamic hemorrhage leads to decreased blood flow and metabolic disturbance in the contralateral thalamus, resulting in right arm and leg numbness.

  20. Differential Modification of Cortical and Thalamic Projections to Cat Primary Auditory Cortex Following Early- and Late-Onset Deafness.

    Science.gov (United States)

    Chabot, Nicole; Butler, Blake E; Lomber, Stephen G

    2015-10-15

    Following sensory deprivation, primary somatosensory and visual cortices undergo crossmodal plasticity, which subserves the remaining modalities. However, controversy remains regarding the neuroplastic potential of primary auditory cortex (A1). To examine this, we identified cortical and thalamic projections to A1 in hearing cats and those with early- and late-onset deafness. Following early deafness, inputs from second auditory cortex (A2) are amplified, whereas the number originating in the dorsal zone (DZ) decreases. In addition, inputs from the dorsal medial geniculate nucleus (dMGN) increase, whereas those from the ventral division (vMGN) are reduced. In late-deaf cats, projections from the anterior auditory field (AAF) are amplified, whereas those from the DZ decrease. Additionally, in a subset of early- and late-deaf cats, area 17 and the lateral posterior nucleus (LP) of the visual thalamus project concurrently to A1. These results demonstrate that patterns of projections to A1 are modified following deafness, with statistically significant changes occurring within the auditory thalamus and some cortical areas. Moreover, we provide anatomical evidence for small-scale crossmodal changes in projections to A1 that differ between early- and late-onset deaf animals, suggesting that potential crossmodal activation of primary auditory cortex differs depending on the age of deafness onset.

  1. Experimental evidence and modeling studies support a synchronizing role for electrical coupling in the cat thalamic reticular neurons in vivo

    Science.gov (United States)

    Fuentealba, Pablo; Crochet, Sylvain; Timofeev, Igor; Bazhenov, Maxim; Sejnowski, Terrence J.; Steriade, Mircea

    2010-01-01

    Thalamic reticular (RE) neurons are crucially implicated in brain rhythms. Here, we report that RE neurons of adult cats, recorded and stained intracellularly in vivo, displayed spontaneously occurring spikelets, which are characteristic of central neurons that are coupled electrotonically via gap junctions. Spikelets occurred spontaneously during spindles, an oscillation in which RE neurons play a leading role, as well as during interspindle lulls. They were significantly different from excitatory postsynaptic potentials and also distinct from fast prepotentials that are presumably dendritic spikes generated synaptically. Spikelets were strongly reduced by halothane, a blocker of gap junctions. Multi-site extracellular recordings performed before, during and after administration of halothane demonstrated a role for electrical coupling in the synchronization of spindling activity within the RE nucleus. Finally, computational models of RE neurons predicted that gap junctions between these neurons could mediate the spread of low-frequency activity at great distances. These experimental and modeling data suggest that electrotonic coupling within the RE nucleus plays an important role in the generation and synchronization of low-frequency (spindling) activities in the thalamus. PMID:15245484

  2. Differential spike timing and phase dynamics of reticular thalamic and prefrontal cortical neuronal populations during sleep spindles.

    Science.gov (United States)

    Gardner, Richard J; Hughes, Stuart W; Jones, Matthew W

    2013-11-20

    The 8-15 Hz thalamocortical oscillations known as sleep spindles are a universal feature of mammalian non-REM sleep, during which they are presumed to shape activity-dependent plasticity in neocortical networks. The cortex is hypothesized to contribute to initiation and termination of spindles, but the mechanisms by which it implements these roles are unknown. We used dual-site local field potential and multiple single-unit recordings in the thalamic reticular nucleus (TRN) and medial prefrontal cortex (mPFC) of freely behaving rats at rest to investigate thalamocortical network dynamics during natural sleep spindles. During each spindle epoch, oscillatory activity in mPFC and TRN increased in frequency from onset to offset, accompanied by a consistent phase precession of TRN spike times relative to the cortical oscillation. In mPFC, the firing probability of putative pyramidal cells was highest at spindle initiation and termination times. We thus identified "early" and "late" cell subpopulations and found that they had distinct properties: early cells generally fired in synchrony with TRN spikes, whereas late cells fired in antiphase to TRN activity and also had higher firing rates than early cells. The accelerating and highly structured temporal pattern of thalamocortical network activity over the course of spindles therefore reflects the engagement of distinct subnetworks at specific times across spindle epochs. We propose that early cortical cells serve a synchronizing role in the initiation and propagation of spindle activity, whereas the subsequent recruitment of late cells actively antagonizes the thalamic spindle generator by providing asynchronous feedback.

  3. Effects of brain-stem and thalamic lesions on the corneal reflex: an electrophysiological and anatomical study.

    Science.gov (United States)

    Ongerboer de Visser, B W; Moffie, D

    1979-09-01

    In 9 patients with Wallenberg's lateral medullary syndrome, one patient with a midbrain lesion involving the right side of the tegmentum, and 2 patients with a thalamic lesion, corneal reflexes were investigated by a new electromyographic technique. The electrophysical results were compared with the results obtained by clinical observation. In the lateral medullary lesions the electrophysiologically obtained reflex responses showed four types of abnormality. Type A consisted of a bilateral delay and type B a bilateral absence of the corneal reflex response to stimulation on the affected side in combination with a normal reflex response on both sides when the cornea on the normal side was stimulated. Type C, which was present in one case, and type D which was seen in 3 cases, consisted of a bilateral absence of the corneal reflex upon stimulation on the affected side; stimulation on the unaffected side produced a normal reflex response on the intact side in combination with, respectively, a delay or absence of the corneal reflex response on the affected side. Comparison of the clinical observations with the electrophysiological findings revealed minor discrepancies in type A and B abnormalities. However, the electrophysiological type C and D abnormalities were not detected by clinical observation. These findings demonstrate that electrophysiological recording of the corneal reflex may reveal clinically undetectable abnormalities. From the electrophysiological findings it is concluded that the corneal reflex is conducted along medullary pathways running both ipsilaterally and contralaterally from the stimulated side before connecting, respectively, with the ipsilateral and contralateral facial nucleus. From the anatomical findings it is suggested that the ascending pathways from the spinal fifth nerve complex to the facial nuclei are located in the lateral reticular formation of the lower brain-stem. The normal corneal reflex responses in the presence of thalamic and

  4. Developmental synergy between thalamic structure and interhemispheric connectivity in the visual system of preterm infants

    Directory of Open Access Journals (Sweden)

    Rafael Ceschin

    2015-01-01

    Full Text Available Thalamic structural co-variation with cortical regions has been demonstrated in preterm infants, but its relationship to cortical function and severity of non-cystic white matter injury (non-cystic WMI is unclear. The relationship between thalamic morphology and both cortical network synchronization and cortical structural connectivity has not been established. We tested the hypothesis that in preterm neonates, thalamic volume would correlate with primary cortical visual function and microstructural integrity of cortico-cortical visual association pathways. A total of 80 term-equivalent preterm and 44 term-born infants underwent high-resolution structural imaging coupled with visual functional magnetic resonance imaging or diffusion tensor imaging. There was a strong correlation between thalamic volume and primary visual cortical activation in preterms with non-cystic WMI (r = 0.81, p-value = 0.001. Thalamic volume also correlated strongly with interhemispheric cortico-cortical connectivity (splenium in preterm neonates with a relatively higher severity of non-cystic WMI (p-value < 0.001. In contrast, there was lower correlation between thalamic volume and intrahemispheric cortico-cortical connectivity, including the inferior longitudinal fasciculus and inferior frontal orbital fasciculus. This study shows distinct temporal overlap in the disruption of thalamo-cortical and interhemispheric cortico-cortical connectivity in preterm infants suggesting developmental synergy between thalamic morphology and the emergence of cortical networks in the last trimester.

  5. Thalamic DBS with a constant-current device in essential tremor: A controlled clinical trial.

    Science.gov (United States)

    Wharen, Robert E; Okun, Michael S; Guthrie, Barton L; Uitti, Ryan J; Larson, Paul; Foote, Kelly; Walker, Harrison; Marshall, Frederick J; Schwalb, Jason; Ford, Blair; Jankovic, Joseph; Simpson, Richard; Dashtipour, Khashayar; Phibbs, Fenna; Neimat, Joseph S; Stewart, R Malcolm; Peichel, DeLea; Pahwa, Rajesh; Ostrem, Jill L

    2017-07-01

    This study of thalamic deep brain stimulation (DBS) investigated whether a novel constant-current device improves tremor and activities of daily living (ADL) in patients with essential tremor (ET). A prospective, controlled, multicenter study was conducted at 12 academic centers. We investigated the safety and efficacy of unilateral and bilateral constant-current DBS of the ventralis intermedius (VIM) nucleus of the thalamus in patients with essential tremor whose tremor was inadequately controlled by medications. The primary outcome measure was a rater-blinded assessment of the change in the target limb tremor score in the stimulation-on versus stimulation-off state six months following surgery. Multiple secondary outcomes were assessed at one-year follow-up, including motor, mood, and quality-of-life measures. 127 patients were implanted with VIM DBS. The blinded, primary outcome variable (n = 76) revealed a mean improvement of 1.25 ± 1.26 points in the target limb tremor rating scale (TRS) score in the arm contralateral to DBS (p < 0.001). Secondary outcome variables at one year revealed significant improvements (p ≤ 0.001) in quality of life, depression symptoms, and ADL scores. Forty-seven patients had a second contralateral VIM-DBS, and this group demonstrated reduction in second-sided tremor at 180 days (p < 0.001). Serious adverse events related to the surgery included infection (n = 3), intracranial hemorrhage (n = 3), and device explantation (n = 3). Unilateral and bilateral constant-current VIM DBS significantly improves upper extremity tremor, ADL, quality of life, and depression in patients with severe ET. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. An Analysis of the Characteristics of Aphasia Caused by The Thalamic Stroke

    Institute of Scientific and Technical Information of China (English)

    Lu Chongxia

    2000-01-01

    The aphasia of 21 patients with thalamic stroke was din ically classified and analysed with the method of standard Chinese aphasic test, and the possible relationship between the thalamic damage and aphasia was discussed. The results showed that the notable characteris tics of the aphasia caused by thalamic stroke was subcortical aphasia and the language dominance of thalamus mainly located at the left side, but the right side of thalamus was also involved with language. The data in dicated that the thalamus is a constituent part in nervous network of lan guage.

  7. Effects of donepezil on behavioural manifestations of thalamic infarction: a single case observation

    Directory of Open Access Journals (Sweden)

    Rodrigo eRiveros

    2011-03-01

    Full Text Available Objective: To examine the effect of donepezil for the treatment of cognitive and behavioural disorders associated with thalamic lesions in a 45 years old male who suffered an infarct in the left thalamus. Background: Recent studies suggest that donepezil may improve executive functions impairments due to subcortical ischemic lesionsMethod: The crossover effects of donepezil were analyzed in a single case of thalamic infarction with cognitive and behavioural alterations. Results: Significant behavioural modifications related to improved performances in executive functions were observed with the treatment. Conclusions: The results suggest that donepezil may have significant effect on executive functions that can alter behavioural outcomes after thalamic infarctions

  8. Positive Apraclonidine Test in Horner Syndrome Caused by Thalamic Hemorrhage.

    Science.gov (United States)

    Kauh, Courtney Y; Bursztyn, Lulu L C D

    2015-09-01

    Reversal of anisocoria following instillation of apraclonidine 0.5% has been reported in Horner syndrome caused by lesions of the central and peripheral nervous system. The shortest documented latency between symptom onset and a positive apraclonidine test is 36 hours, occurring in a patient with a pontomedullary infarct. We present the case of a 69-year-old man with Horner syndrome due to thalamic hemorrhage in whom apraclonidine testing demonstrated reversal of anisocoria 4 days after symptom onset. This is the first reported case of a positive apraclonidine test in a Horner syndrome caused by a lesion at this site. It suggests that apraclonidine testing is useful in confirming the diagnosis within days of onset even in a lesion located at the most proximal portion of the oculosympathetic pathway.

  9. Neuropsychological correlates of a right unilateral lacunar thalamic infarction

    Science.gov (United States)

    Werf, Y; Weerts, J; Jolles, J; Witter, M; Lindeboom, J; Scheltens, P.

    1999-01-01

    OBJECTIVES—To report on a patient with a lacunar infarction in the right intralaminar nuclei of the thalamus. The role of the thalamic intralaminar nuclei in cognitive function is as yet insufficiently known. The patient described has shown signs of apathy and loss of initiative, in combination with cognitive deficits, which have persisted essentially unaltered up to the present day since an abrupt onset 17 years ago.
METHODS—High resolution MRI was performed to show the extent of the lesion; a combination of published and experimental neuropsychological techniques was administered to show the nature of the cognitive defects; Single photon emission computed tomography (SPECT) was employed to obtain a measure of cortical perfusion.
RESULTS—Brain MRI disclosed an isolated lacunar infarction in the dorsal caudal intralaminar nuclei of the thalamus. Neuropsychological evaluation indicated problems with attention and concentration, executive disturbances, and memory deficits both in the visual and verbal domains. The memory deficits could not be attributed to problems in the early stages of information processing, and are hence regarded as resulting from a failure of retrieval rather than encoding or storage. Brain SPECT disclosed a hypoperfusion of the right frontal cortex.
CONCLUSION—The data indicate that the cognitive profile is the result of a dysfunction of executive functions. This is corroborated by the finding of decreased blood flow in the right frontal cortex, and by evidence from the neuroanatomical literature. Thus the dysexecutive symptoms are thought to be caused by disconnection of the prefrontal cortex from the brainstem activating nuclei through the strategic localisation of the right thalamic infarction.

 PMID:9886448

  10. Thalamic Volume Is Reduced in Cervical and Laryngeal Dystonias

    Science.gov (United States)

    Waugh, Jeff L.; Kuster, John K.; Levenstein, Jacob M.; Makris, Nikos; Multhaupt-Buell, Trisha J.; Sudarsky, Lewis R.; Breiter, Hans C.; Sharma, Nutan; Blood, Anne J.

    2016-01-01

    Background Dystonia, a debilitating movement disorder characterized by abnormal fixed positions and/or twisting postures, is associated with dysfunction of motor control networks. While gross brain lesions can produce secondary dystonias, advanced neuroimaging techniques have been required to identify network abnormalities in primary dystonias. Prior neuroimaging studies have provided valuable insights into the pathophysiology of dystonia, but few directly assessed the gross volume of motor control regions, and to our knowledge, none identified abnormalities common to multiple types of idiopathic focal dystonia. Methods We used two gross volumetric segmentation techniques and one voxelwise volumetric technique (voxel based morphometry, VBM) to compare regional volume between matched healthy controls and patients with idiopathic primary focal dystonia (cervical, n = 17, laryngeal, n = 7). We used (1) automated gross volume measures of eight motor control regions using the FreeSurfer analysis package; (2) blinded, anatomist-supervised manual segmentation of the whole thalamus (also gross volume); and (3) voxel based morphometry, which measures local T1-weighted signal intensity and estimates gray matter density or volume at the level of single voxels, for both whole-brain and thalamus. Results Using both automated and manual gross volumetry, we found a significant volume decrease only in the thalamus in two focal dystonias. Decreases in whole-thalamic volume were independent of head and brain size, laterality of symptoms, and duration. VBM measures did not differ between dystonia and control groups in any motor control region. Conclusions Reduced thalamic gross volume, detected in two independent analyses, suggests a common anatomical abnormality in cervical dystonia and spasmodic dysphonia. Defining the structural underpinnings of dystonia may require such complementary approaches. PMID:27171035

  11. Thalamic Volume Is Reduced in Cervical and Laryngeal Dystonias.

    Directory of Open Access Journals (Sweden)

    Jeff L Waugh

    Full Text Available Dystonia, a debilitating movement disorder characterized by abnormal fixed positions and/or twisting postures, is associated with dysfunction of motor control networks. While gross brain lesions can produce secondary dystonias, advanced neuroimaging techniques have been required to identify network abnormalities in primary dystonias. Prior neuroimaging studies have provided valuable insights into the pathophysiology of dystonia, but few directly assessed the gross volume of motor control regions, and to our knowledge, none identified abnormalities common to multiple types of idiopathic focal dystonia.We used two gross volumetric segmentation techniques and one voxelwise volumetric technique (voxel based morphometry, VBM to compare regional volume between matched healthy controls and patients with idiopathic primary focal dystonia (cervical, n = 17, laryngeal, n = 7. We used (1 automated gross volume measures of eight motor control regions using the FreeSurfer analysis package; (2 blinded, anatomist-supervised manual segmentation of the whole thalamus (also gross volume; and (3 voxel based morphometry, which measures local T1-weighted signal intensity and estimates gray matter density or volume at the level of single voxels, for both whole-brain and thalamus.Using both automated and manual gross volumetry, we found a significant volume decrease only in the thalamus in two focal dystonias. Decreases in whole-thalamic volume were independent of head and brain size, laterality of symptoms, and duration. VBM measures did not differ between dystonia and control groups in any motor control region.Reduced thalamic gross volume, detected in two independent analyses, suggests a common anatomical abnormality in cervical dystonia and spasmodic dysphonia. Defining the structural underpinnings of dystonia may require such complementary approaches.

  12. Thalamus parcellation using multi-modal feature classification and thalamic nuclei priors

    Science.gov (United States)

    Glaister, Jeffrey; Carass, Aaron; Stough, Joshua V.; Calabresi, Peter A.; Prince, Jerry L.

    2016-03-01

    Segmentation of the thalamus and thalamic nuclei is useful to quantify volumetric changes from neurodegenerative diseases. Most thalamus segmentation algorithms only use T1-weighted magnetic resonance images and current thalamic parcellation methods require manual interaction. Smaller nuclei, such as the lateral and medial geniculates, are challenging to locate due to their small size. We propose an automated segmentation algorithm using a set of features derived from diffusion tensor image (DTI) and thalamic nuclei location priors. After extracting features, a hierarchical random forest classifier is trained to locate the thalamus. A second random forest classifies thalamus voxels as belonging to one of six thalamic nuclei classes. The proposed algorithm was tested using a leave-one-out cross validation scheme and compared with state-of-the-art algorithms. The proposed algorithm has a higher Dice score compared to other methods for the whole thalamus and several nuclei.

  13. Multiple clusters of release sites formed by individual thalamic afferents onto cortical interneurons ensure reliable transmission.

    Science.gov (United States)

    Bagnall, Martha W; Hull, Court; Bushong, Eric A; Ellisman, Mark H; Scanziani, Massimo

    2011-07-14

    Thalamic afferents supply the cortex with sensory information by contacting both excitatory neurons and inhibitory interneurons. Interestingly, thalamic contacts with interneurons constitute such a powerful synapse that even one afferent can fire interneurons, thereby driving feedforward inhibition. However, the spatial representation of this potent synapse on interneuron dendrites is poorly understood. Using Ca imaging and electron microscopy we show that an individual thalamic afferent forms multiple contacts with the interneuronal proximal dendritic arbor, preferentially near branch points. More contacts are correlated with larger amplitude synaptic responses. Each contact, consisting of a single bouton, can release up to seven vesicles simultaneously, resulting in graded and reliable Ca transients. Computational modeling indicates that the release of multiple vesicles at each contact minimally reduces the efficiency of the thalamic afferent in exciting the interneuron. This strategy preserves the spatial representation of thalamocortical inputs across the dendritic arbor over a wide range of release conditions.

  14. Endoscopic considerations treating hydrocephalus caused by basal ganglia and large thalamic tumors

    Directory of Open Access Journals (Sweden)

    Jonathan Roth

    2015-01-01

    Conclusions: Endoscopic surgery may potentially play a significant role in the initial management of patients with large basal ganglia and large thalamic tumors causing obstructive hydrocephalus. Technical nuances and individualized goals are crucial for optimal outcomes.

  15. Usefulness of gamma knife pituitary surgery to control thalamic pain after treatment of thalamic malignant lymphoma and report of pathology of gamma knife lesions

    Directory of Open Access Journals (Sweden)

    Utsuki Satoshi

    2009-01-01

    Full Text Available Here, we describe the first reported autopsy findings following gamma knife surgery for thalamic pain. A 62-year-old man presented with thalamic pain after treatment for thalamic malignant lymphoma. He was treated with narcotic drugs, but his pain was uncontrollable. Treatment using gamma knife surgery on the pituitary gland using a maximum dose of 180 Gy, led to the control of his intractable pain with lower doses of drugs. His death was pain-free and was caused by a recurrence of the tumor, six months after gamma knife surgery. An autopsy was performed and necrosis was present in the area of the pituitary gland where it borders the pituitary stalk. Half of the adenohypophysis was not necrotic, and necrosis was not found in the pituitary stalk.

  16. Aphasia or neglect after thalamic stroke: the various ways they may be related to cortical hypoperfusion

    Directory of Open Access Journals (Sweden)

    Rajani eSebastian

    2014-11-01

    Full Text Available Although aphasia and hemispatial neglect are classically labeled as cortical deficits, language deficits or hemispatial neglect following lesions to subcortical regions have been reported in many studies. However, whether or not aphasia and hemispatial neglect can be caused by subcortical lesions alone has been a matter of controversy. It has been previously shown that most cases of aphasia or hemispatial neglect due to acute non-thalamic subcortical infarcts can be accounted for by concurrent cortical hypoperfusion due to arterial stenosis or occlusion, reversible by restoring blood flow to the cortex. In this study we evaluated whether aphasia or neglect occur after acute thalamic infarct without cortical hypoperfusion due to arterial stenosis or occlusion. Twenty patients with isolated acute thalamic infarcts (10 right and 10 left underwent MRI scanning and detailed cognitive testing. Results revealed that 5/10 patients with left thalamic infarcts had aphasia and only 1 had cortical hypoperfusion, whereas 2/10 patients with right thalamic infarcts had hemispatial neglect and both had cortical hypoperfusion. These findings indicate that aphasia was observed in some cases of isolated left thalamic infarcts without cortical hypoerfusion due to arterial stenosis or occlusion (measured with time to peak delays, but neglect occurred after isolated right thalamic infarcts only when there was cortical hypoperfusion due to arterial stenosis or occlusion. Therefore, neglect after acute right thalamic infarct should trigger evaluation for cortical hypoperfusion that might improve with restoration of blood flow. Further investigation in a larger group of patients and with other imaging modalities is warranted to confirm these findings.

  17. Aphasia or Neglect after Thalamic Stroke: The Various Ways They may be Related to Cortical Hypoperfusion.

    Science.gov (United States)

    Sebastian, Rajani; Schein, Mara G; Davis, Cameron; Gomez, Yessenia; Newhart, Melissa; Oishi, Kenichi; Hillis, Argye E

    2014-01-01

    Although aphasia and hemispatial neglect are classically labeled as cortical deficits, language deficits or hemispatial neglect following lesions to subcortical regions have been reported in many studies. However, whether or not aphasia and hemispatial neglect can be caused by subcortical lesions alone has been a matter of controversy. It has been previously shown that most cases of aphasia or hemispatial neglect due to acute non-thalamic subcortical infarcts can be accounted for by concurrent cortical hypoperfusion due to arterial stenosis or occlusion, reversible by restoring blood flow to the cortex. In this study, we evaluated whether aphasia or neglect occur after acute thalamic infarct without cortical hypoperfusion due to arterial stenosis or occlusion. Twenty patients with isolated acute thalamic infarcts (10 right and 10 left) underwent MRI scanning and detailed cognitive testing. Results revealed that 5/10 patients with left thalamic infarcts had aphasia and only 1 had cortical hypoperfusion, whereas 2/10 patients with right thalamic infarcts had hemispatial neglect and both had cortical hypoperfusion. These findings indicate that aphasia was observed in some cases of isolated left thalamic infarcts without cortical hypoerfusion due to arterial stenosis or occlusion (measured with time-to-peak delays), but neglect occurred after isolated right thalamic infarcts only when there was cortical hypoperfusion due to arterial stenosis or occlusion. Therefore, neglect after acute right thalamic infarct should trigger evaluation for cortical hypoperfusion that might improve with restoration of blood flow. Further investigation in a larger group of patients and with other imaging modalities is warranted to confirm these findings.

  18. Why do lesions in the rodent anterior thalamic nuclei cause such severe spatial deficits?

    Science.gov (United States)

    Aggleton, John P.; Nelson, Andrew J.D.

    2015-01-01

    Lesions of the rodent anterior thalamic nuclei cause severe deficits to multiple spatial learning tasks. Possible explanations for these effects are examined, with particular reference to T-maze alternation. Anterior thalamic lesions not only impair allocentric place learning but also disrupt other spatial processes, including direction learning, path integration, and relative length discriminations, as well as aspects of nonspatial learning, e.g., temporal discriminations. Working memory tasks, such as T-maze alternation, appear particularly sensitive as they combine an array of these spatial and nonspatial demands. This sensitivity partly reflects the different functions supported by individual anterior thalamic nuclei, though it is argued that anterior thalamic lesion effects also arise from covert pathology in sites distal to the thalamus, most critically in the retrosplenial cortex and hippocampus. This two-level account, involving both local and distal lesion effects, explains the range and severity of the spatial deficits following anterior thalamic lesions. These findings highlight how the anterior thalamic nuclei form a key component in a series of interdependent systems that support multiple spatial functions. PMID:25195980

  19. Changes in Activity of the Same Thalamic Neurons to Repeated Nociception in Behaving Mice.

    Science.gov (United States)

    Huh, Yeowool; Cho, Jeiwon

    2015-01-01

    The sensory thalamus has been reported to play a key role in central pain sensory modulation and processing, but its response to repeated nociception at thalamic level is not well known. Current study investigated thalamic response to repeated nociception by recording and comparing the activity of the same thalamic neuron during the 1st and 2nd formalin injection induced nociception, with a week interval between injections, in awake and behaving mice. Behaviorally, the 2nd injection induced greater nociceptive responses than the 1st. Thalamic activity mirrored these behavioral changes with greater firing rate during the 2nd injection. Analysis of tonic and burst firing, characteristic firing pattern of thalamic neurons, revealed that tonic firing activity was potentiated while burst firing activity was not significantly changed by the 2nd injection relative to the 1st. Likewise, burst firing property changes, which has been consistently associated with different phases of nociception, were not induced by the 2nd injection. Overall, data suggest that repeated nociception potentiated responsiveness of thalamic neurons and confirmed that tonic firing transmits nociceptive signals.

  20. Selective importance of the rat anterior thalamic nuclei for configural learning involving distal spatial cues.

    Science.gov (United States)

    Dumont, Julie R; Amin, Eman; Aggleton, John P

    2014-01-01

    To test potential parallels between hippocampal and anterior thalamic function, rats with anterior thalamic lesions were trained on a series of biconditional learning tasks. The anterior thalamic lesions did not disrupt learning two biconditional associations in operant chambers where a specific auditory stimulus (tone or click) had a differential outcome depending on whether it was paired with a particular visual context (spot or checkered wall-paper) or a particular thermal context (warm or cool). Likewise, rats with anterior thalamic lesions successfully learnt a biconditional task when they were reinforced for digging in one of two distinct cups (containing either beads or shredded paper), depending on the particular appearance of the local context on which the cup was placed (one of two textured floors). In contrast, the same rats were severely impaired at learning the biconditional rule to select a specific cup when in a particular location within the test room. Place learning was then tested with a series of go/no-go discriminations. Rats with anterior thalamic nuclei lesions could learn to discriminate between two locations when they were approached from a constant direction. They could not, however, use this acquired location information to solve a subsequent spatial biconditional task where those same places dictated the correct choice of digging cup. Anterior thalamic lesions produced a selective, but severe, biconditional learning deficit when the task incorporated distal spatial cues. This deficit mirrors that seen in rats with hippocampal lesions, so extending potential interdependencies between the two sites.

  1. Retention performance of a learned delayed-alternation task after chemical lesions of the cats mediodorsal nucleus.

    Science.gov (United States)

    Markowitsch, H J

    1982-03-01

    The mediodorsal nucleus of the thalamus was lesioned in cats, which had learned a spatial delayed-alternation task. Lesions were carried out with kainic acid or ibotenic acid. From altogether 29 cats, 9 cats with bilateral and 6 cats with unilateral lesions of the mediodorsal nucleus together with a control group of 4 cats, were included in the final data analysis. Lesions in the operated cats destroyed variable portions of the mediodorsal nucleus. Consistently, however, neither the midline nuclei, situated next to the damaged mediodorsal nucleus, nor fiber tracts traversing or by-passing the mediodorsal nucleus, were damaged. Furthermore, remote lesion effects were not detected either in the diazepam-pretreated cats with kainic acid-induced lesions or in the ibotenic acid-lesioned animals. Cats injected with ibotenic acid at a concentration 8-fold higher than the kainic acid solution, showed smaller thalamic lesions than kainic acid-injected cats. A direct correlation was found between the extent of neuronal damage within the mediodorsal nucleus and the degree of the behavioral impairment. Cats with complete or almost complete bilateral lesions of the mediodorsal nucleus manifested severe deficits in retention of the delayed-alternation task, while cats with small, bilateral lesions of the mediodorsal nucleus or with unilateral lesions were impaired less severely or even not at all.

  2. Prognostic factors influencing the outcome of thalamic glioma.

    Directory of Open Access Journals (Sweden)

    Pathy S

    2002-01-01

    Full Text Available Retrospective analysis of 27 patients of thalamic glioma including adults and children treated over a period of 7 years from 1991-1997 was done. The study group included 19 males and 8 females; 9 patients were less than 15 years and 18 patients more than 15 years of age at the time of diagnosis. The commonest symptoms were headache and vomiting. 12 patients underwent VP shunt as an initial procedure and 7 underwent total or partial surgical resection. Confirmed histopathological examination was possible in 16 patients; while 12 had low grade astrocytoma, 4 cases had high grade histology. All patients were treated with radiotherapy to a total dose of 50-60 Gy in 25-30 fractions. Median follow up was 9.63 months. The disease free survival in these patients was 28% at 2 years. Prognostic factors which included age, sex, duration of symptoms, surgical procedures, histology and radiotherapy dose were evaluated for significance. A subtotal resection conferred a better prognosis.

  3. Thalamic and parietal brain morphology predicts auditory category learning.

    Science.gov (United States)

    Scharinger, Mathias; Henry, Molly J; Erb, Julia; Meyer, Lars; Obleser, Jonas

    2014-01-01

    Auditory categorization is a vital skill involving the attribution of meaning to acoustic events, engaging domain-specific (i.e., auditory) as well as domain-general (e.g., executive) brain networks. A listener's ability to categorize novel acoustic stimuli should therefore depend on both, with the domain-general network being particularly relevant for adaptively changing listening strategies and directing attention to relevant acoustic cues. Here we assessed adaptive listening behavior, using complex acoustic stimuli with an initially salient (but later degraded) spectral cue and a secondary, duration cue that remained nondegraded. We employed voxel-based morphometry (VBM) to identify cortical and subcortical brain structures whose individual neuroanatomy predicted task performance and the ability to optimally switch to making use of temporal cues after spectral degradation. Behavioral listening strategies were assessed by logistic regression and revealed mainly strategy switches in the expected direction, with considerable individual differences. Gray-matter probability in the left inferior parietal lobule (BA 40) and left precentral gyrus was predictive of "optimal" strategy switch, while gray-matter probability in thalamic areas, comprising the medial geniculate body, co-varied with overall performance. Taken together, our findings suggest that successful auditory categorization relies on domain-specific neural circuits in the ascending auditory pathway, while adaptive listening behavior depends more on brain structure in parietal cortex, enabling the (re)direction of attention to salient stimulus properties.

  4. Reduced thalamic and pontine connectivity in Kleine-Levin syndrome

    Directory of Open Access Journals (Sweden)

    Maria eEngström

    2014-04-01

    Full Text Available The Kleine-Levin syndrome is a rare sleep disorder, characterized by exceptionally long sleep episodes. The neuropathology of the syndrome is unknown and treatment is often inadequate. The aim of the study was to improve understanding of the underlying neuropathology, related to cerebral networks, in Kleine-Levin syndrome during sleep episodes. One patient with Kleine-Levin syndrome and congenital nystagmus, was investigated by resting state functional Magnetic Resonance Imaging during both asymptomatic and hypersomnic periods. Fourteen healthy subjects were also investigated as control samples. Functional connectivity was assessed from seed regions of interest in the thalamus and the dorsal pons. Thalamic connectivity was normal in the asymptomatic patient whereas the connectivity between the brain stem, including dorsal pons, and the thalamus was diminished during hypersomnia. These results suggest that the patient’s nystagmus and hypersomnia might have their pathological origin in adjacent dorsal pontine regions. This finding provides additional knowledge of the cerebral networks involved in the neuropathology of this disabling disorder. Furthermore, these findings regarding a rare syndrome have broad implications and results could be of interest to researchers and clinicians in the whole field of sleep medicine.

  5. Centromedian thalamic nuclei deep brain stimulation in refractory status epilepticus.

    Science.gov (United States)

    Valentín, Antonio; Nguyen, Huy Q; Skupenova, Alena M; Agirre-Arrizubieta, Zaloa; Jewell, Sharon; Mullatti, Nandini; Moran, Nicholas F; Richardson, Mark P; Selway, Richard P; Alarcón, Gonzalo

    2012-10-01

    Refractory status epilepticus (RSE) is associated with high mortality. We report a potential treatment alternative. Deep brain stimulation (DBS) of the centromedian thalamic nuclei (CMN) can be effective in the treatment of RSE. Report of the evolution of RSE after DBS of the CMN in a 27-year-old man. In the course of an encephalopathy of unknown origin, and after a cardiac arrest, the patient developed RSE with myoclonic jerks and generalized tonic-clonic seizures. The EEG showed continuous generalized periodic epileptiform discharges (GPEDS). Five weeks after RSE onset, bilateral DBS of the CMN was started. This treatment was immediately followed by disappearance of tonic-clonic seizures and GPEDS, suggesting a resolution of RSE. The patient continued having multifocal myoclonic jerks, probably subcortical in origin, which resolved after 4 weeks. The patient remained clinically stable for 2 months in a persistent vegetative state. The remission of RSE, the abolition of GPEDS, and the patient survival suggest that DBS of the CMN may be efficacious in the treatment of refractory, generalized status epilepticus. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. The correlation of the thalamic lesions on MRI with cerebral cortical blood flow in patients with lacunar infarction

    Energy Technology Data Exchange (ETDEWEB)

    Nabatame, Hidehiko; Nakamura, Kazuo; Matsuda, Minoru; Fujimoto, Naoki [Shiga Medical Center, Moriyama (Japan); Fukuyama, Hidenao

    1995-07-01

    We performed MRI and measured cerebral blood flow (CBF) using {sup 123}I-IMP SPECT microsphere model in twenty three right-handed patients with lacunar infarction. Twelve of 23 patients showed chronic deterioration of dysarthria and gait disturbance. The mental function of the patients was evaluated by the Mini-Mental State (MMS) examination. The area of high intensity on T2-weighted images was quantitatively analyzed in the cerebral white matter (WM), lenticular nucleus (LN) and thalamus (THA). The score of MMS was positively correlated with the local CBF in the bilateral frontal, parietal, temporal and occipital cortices (p<0.05). Also, the area of high intensity in the left THA showed a significant negative correlation with local CBF of the bilateral frontal, parietal, temporal and occipital cortices (p<0.001). The high intensity areas of the bilateral LN, right WM and right THA had a significant but weaker negative correlation with local CBF of some cortices. These findings suggest that thalamic lesions on the dominant side play an important role in the reduction of cortical blood flow and the deterioration of mental functions in patients with lacunar infarction. (author).

  7. The ventromedial hypothalamic nucleus in the zebra finch (Taeniopygia guttata): Afferent and efferent projections in relation to the control of reproductive behavior.

    Science.gov (United States)

    Wild, J Martin

    2017-08-15

    Sex-specific mating behaviors occur in a variety of mammals, with the medial preoptic nucleus (POM) and the ventromedial hypothalamic nucleus (VMH) mediating control of male and female sexual behavior, respectively. In birds, likewise, POM is predominantly involved in the control of male reproductive behavior, but the degree to which VMH is involved in female reproductive behavior is unclear. Here, in male and female zebra finches, a combination of aromatase immunohistochemistry and conventional tract tracing facilitated the definition of two separate but adjacent nuclei in the basal hypothalamus: an oblique band of aromatase-positive (AR+) neurons, and ventromedial to this, an ovoid, aromatase-negative (AR-) nucleus. The AR- nucleus, but not the AR+ nucleus, was here shown to receive a projection from rostral parts of the thalamic auditory nucleus ovoidalis and from the nucleus of the tractus ovoidalis. The AR- nucleus also receives an overlapping, major projection from previously uncharted regions of the medial arcopallium and a minor projection from the caudomedial nidopallium. Both the AR- and the AR+ nuclei project to the intercollicular nucleus of the midbrain. No obvious sex differences in either the pattern of AR immunoreactivity or of the afferent projections to the AR- nucleus were observed. The significance of these results in terms of the acoustic control of avian reproductive behavior is discussed, and a comparison with the organization of VMH afferents in lizards suggests a homologous similarity of the caudal telencephalon in sauropsids. © 2017 Wiley Periodicals, Inc.

  8. Reduced thalamic volume in preterm infants is associated with abnormal white matter metabolism independent of injury

    Energy Technology Data Exchange (ETDEWEB)

    Wisnowski, Jessica L. [Children' s Hospital Los Angeles, Department of Radiology, Los Angeles, CA (United States); University of Pittsburgh, Department of Pediatric Radiology, Children' s Hospital of Pittsburgh of UPMC, Pittsburgh, PA (United States); University of Southern California, Brain and Creativity Institute, Los Angeles, CA (United States); Ceschin, Rafael C. [University of Pittsburgh, Department of Pediatric Radiology, Children' s Hospital of Pittsburgh of UPMC, Pittsburgh, PA (United States); University of Pittsburgh, Department of Biomedical Informatics, Pittsburgh, PA (United States); Choi, So Young [University of Southern California, Brain and Creativity Institute, Los Angeles, CA (United States); Schmithorst, Vincent J. [University of Pittsburgh, Department of Pediatric Radiology, Children' s Hospital of Pittsburgh of UPMC, Pittsburgh, PA (United States); Painter, Michael J. [University of Pittsburgh, Department of Pediatrics, Division of Neurology, Childrens Hospital of Pittsburgh of UPMC, Pittsburgh, PA (United States); Nelson, Marvin D. [Children' s Hospital Los Angeles, Department of Radiology, Los Angeles, CA (United States); Blueml, Stefan [Children' s Hospital Los Angeles, Department of Radiology, Los Angeles, CA (United States); Rudi Schulte Research Institute, Santa Barbara, CA (United States); Panigrahy, Ashok [Children' s Hospital Los Angeles, Department of Radiology, Los Angeles, CA (United States); University of Pittsburgh, Department of Pediatric Radiology, Children' s Hospital of Pittsburgh of UPMC, Pittsburgh, PA (United States)

    2015-05-01

    Altered thalamocortical development is hypothesized to be a key substrate underlying neurodevelopmental disabilities in preterm infants. However, the pathogenesis of this abnormality is not well-understood. We combined magnetic resonance spectroscopy of the parietal white matter and morphometric analyses of the thalamus to investigate the association between white matter metabolism and thalamic volume and tested the hypothesis that thalamic volume would be associated with diminished N-acetyl-aspartate (NAA), a measure of neuronal/axonal maturation, independent of white matter injury. Data from 106 preterm infants (mean gestational age at birth: 31.0 weeks ± 4.3; range 23-36 weeks) who underwent MR examinations under clinical indications were included in this study. Linear regression analyses demonstrated a significant association between parietal white matter NAA concentration and thalamic volume. This effect was above and beyond the effect of white matter injury and age at MRI and remained significant even when preterm infants with punctate white matter lesions (pWMLs) were excluded from the analysis. Furthermore, choline, and among the preterm infants without pWMLs, lactate concentrations were also associated with thalamic volume. Of note, the associations between NAA and choline concentration and thalamic volume remained significant even when the sample was restricted to neonates who were term-equivalent age or older. These observations provide convergent evidence of a neuroimaging phenotype characterized by widespread abnormal thalamocortical development and suggest that the pathogenesis may involve impaired axonal maturation. (orig.)

  9. Nucleus Driven Electronic Pulsation

    CERN Document Server

    Ludwig, H; Xue, S -S

    2014-01-01

    We derive and solve by the spectral method the equations for a neutral system of ultra-relativistic electrons that are compressed to the radius of the nucleus and subject to a driving force. This driving force can be thought of as originating from a nuclear breathing mode, a possibility we discuss in detail.

  10. Frontotemporal dementia with severe thalamic involvement : a clinical and neuropathological study

    Directory of Open Access Journals (Sweden)

    Radanovic Márcia

    2003-01-01

    Full Text Available Frontotemporal dementia (FTD is the third-leading cause of cortical dementia after Alzheimer's disease and Lewy body dementia, and is characterized by a dementia where behavioral disturbances are prominent and appear early in the course of the disease. We report the case of a 58 year-old man affected by dementia with behavioral disturbances, in addition to rigid-hypokinetic and a lower motor neuron syndrome that were present at later stages of the illness. Neuroimaging studies showed frontotemporal atrophy. Neuropathological studies revealed intense thalamic neuronal loss and astrocytic gliosis, as well as moderate frontotemporal neuronal loss, astrocytosis and spongiform degeneration. Thalamic degeneration has previously been described among the wide group of neuropathological features of FTD. The aim of the present study is to show the clinical and neuropathological aspects of thalamic degeneration in FTD, along with its role in behavioral disturbances, a common finding in this condition.

  11. Accelerated forgetting of contextual details due to focal medio-dorsal thalamic lesion

    Directory of Open Access Journals (Sweden)

    Sicong eTu

    2014-09-01

    Full Text Available Effects of thalamic nuclei damage and related white matter tracts on memory performance are still debated. This is particularly evident for the medio-dorsal thalamus which has been less clear in predicting amnesia than anterior thalamus changes. The current study addresses this issue by assessing 7 thalamic stroke patients with consistent unilateral lesions focal to the left medio-dorsal nuclei for immediate and delayed memory performance on standard visual and verbal tests of anterograde memory, and over the long-term (> 24 hrs on an object-location associative memory task. Thalamic patients showed selective impairment to delayed recall, but intact recognition memory. Patients also showed accelerated forgetting of contextual information after a 24 hour delay, compared to controls. Importantly, the mammillothalamic tract was intact in all patients, which suggests a role for the medio-dorsal nuclei in recall and early consolidation memory processes.

  12. Autobiogutobiographical amnesia and cognltive disorder resulgting from bilateral severe thalamic infarction Two cases reports

    Institute of Scientific and Technical Information of China (English)

    Ytt Kai; Yu Feng Qi; Lei Zheng Lin; Zhang Jun

    2000-01-01

    Objective To report two cases of patients with bilateral severe thalamic infarction.which showed autobiographical amnesia and cognitive disorders and to shed light on the mechanisms underlying thc retrograde amenesia. Method The two cases were studied clinically, CT and MRI were performed also, Language and neuropsychological tests were evaluated. Results Two patients with a chronic amnesia and cogntive disorders resulting from bilateral paramedian thalamic infarction showed a pattern of retrograde amnesia personally relevent autobiographical memory were prefoundly impaired .Whereas about the famous people and public events were relatively impaired. The patients almost had no thalamic aphasia.The events the one described showed spontaneously confabulated. Conclusion We think a probable explanation that the disorders at the thematic retrieval fiomwork ievel of memory and the information reconstruction due to a disconnetion of frontal and medial temperal memory systems.

  13. Impairments of thalamic resting-state functional connectivity in patients with chronic tinnitus

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jian [Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing (China); Chen, Yu-Chen [Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing (China); Center for Hearing and Deafness, University at Buffalo, State University of New York, Buffalo, NY (United States); Feng, Xu [Department of Otolaryngology, Zhongda Hospital, Medical School, Southeast University, Nanjing (China); Yang, Ming; Liu, Bin; Qian, Cheng [Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing (China); Wang, Jian [Department of Physiology, Southeast University, Nanjing (China); School of Human Communication Disorders, Dalhousie University, Halifax, NS (Canada); Salvi, Richard [Center for Hearing and Deafness, University at Buffalo, State University of New York, Buffalo, NY (United States); Teng, Gao-Jun, E-mail: gjteng@vip.sina.com [Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing (China)

    2015-07-15

    Highlights: • Tinnitus patients have aberrant thalamic connectivity to many brain regions. • Decreased thalamic connectivity is linked with tinnitus characteristics. • Thalamocortical connectivity disturbances can reflect tinnitus-related networks. - Abstract: Purpose: The phantom sound of tinnitus is believed to arise from abnormal functional coupling between the thalamus and cerebral cortex. To explore this hypothesis, we used resting-state functional magnetic resonance imaging (fMRI) to compare the degree of thalamocortical functional connectivity in chronic tinnitus patients and controls. Materials and methods: Resting-state fMRI scans were obtained from 31 chronic tinnitus patients and 33 well-matched healthy controls. Thalamocortical functional connectivity was characterized using a seed-based whole-brain correlation method. The resulting thalamic functional connectivity measures were correlated with other clinical data. Results: We found decreased functional connectivity between the seed region in left thalamus and right middle temporal gyrus (MTG), right middle orbitofrontal cortex, left middle frontal gyrus, right precentral gyrus, and bilateral calcarine cortex. Decreased functional connectivity was detected between the seed in the right thalamus and the left superior temporal gyrus (STG), left amygdala, right superior frontal gyrus, left precentral gyrus, and left middle occipital gyrus. Tinnitus distress correlated negatively with thalamic functional connectivity in right MTG; tinnitus duration correlated negatively with thalamic functional connectivity in left STG. Increased functional connectivity between the bilateral thalamus and a set of regions were also observed. Conclusions: Chronic tinnitus patients have disrupted thalamocortical functional connectivity to selected brain regions which is associated with specific tinnitus characteristics. Resting-state thalamic functional connectivity disturbances may play an important role in

  14. Lucid dreams, an atypical sleep disturbance in anterior and mediodorsal thalamic strokes.

    Science.gov (United States)

    Sagnier, S; Coulon, P; Chaufton, C; Poli, M; Debruxelles, S; Renou, P; Rouanet, F; Olindo, S; Sibon, I

    2015-11-01

    Cognitive, affective, and behavioural disturbances are commonly reported following thalamic strokes. Conversely, sleep disorders are rarely reported in this context. Herein, we report the cases of two young patients admitted for an ischemic stroke located in the territories of the left pre-mammillary and paramedian arteries. Together with aphasia, memory complaint, impaired attention and executive functions, they reported lucid dreams with catastrophic content or conflicting situations. Lucid dreams are an atypical presentation in thalamic strokes. These cases enlarge the clinical spectrum of sleep-wake disturbances potentially observed after an acute cerebrovascular event. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  15. Apathy, cognitive dysfunction and impaired social cognition in a patient with bilateral thalamic infarction.

    Science.gov (United States)

    Ioannidis, Anestis E; Kimiskidis, Vasilios K; Loukopoulou, Eleni; Geroukis, Triantafyllos; Vlaikidis, Nikolaos; Kosmidis, Mary H

    2013-01-01

    We describe the case of a patient with bilateral thalamic lesions due to brain infarcts in the paramedian thalamic artery territories. The patient demonstrated symptoms of apathy (e.g., loss of initiative and interest in others, poor motivation, flattened affect). Neuropsychological assessment 3 and 5 years post-infarct revealed severe deficits in verbal and non-verbal immediate and delayed memory, attention, and executive functioning, with minimal improvement over time. Also, he demonstrated difficulties in social cognition (i.e., perception of facial expressions of others and of sarcasm). These findings are discussed and interpreted in light of current theories regarding the neurobiological substrate of apathy.

  16. Neutrino nucleus cross sections

    CERN Document Server

    Athar, M Sajjad; Singh, S K; Vacas, M J Vicente

    2008-01-01

    We present the results of our calculation which has been performed to study the nuclear effects in the quasielastic, inelastic and deep inelastic scattering of neutrinos(antineutrinos) from nuclear targets. These calculations are done in the local density approximation. We take into account the effect of Pauli blocking, Fermi motion, Coulomb effect, renormalization of weak transition strengths in the nuclear medium in the case of the quasielastic reaction. The inelastic reaction leading to production of pions is calculated in a $\\Delta $- dominance model taking into account the renormalization of $\\Delta$ properties in the nuclear medium and the final state interaction effects of the outgoing pions with the residual nucleus. We discuss the nuclear effects in the $F_{3}^{A}(x)$ structure function in the deep inelastic neutrino(antineutrino) reaction using a relativistic framework to describe the nucleon spectral function in the nucleus.

  17. Heavy flavor in nucleus-nucleus and proton-nucleus: quenching, flow and correlations

    CERN Document Server

    Nardi, M; De Pace, A; Monteno, M; Prino, F

    2015-01-01

    We present recent results for heavy-flavor observables in nucleus-nucleus collisions at LHC energies, obtained with the POWLANG transport setup. The initial creation of c-cbar and b-bbar pairs is simulated with a perturbative QCD approach (POWHEG+PYTHIA); their propagation in the medium (created in the nucleus-nucleus or in proton-nucleus collision) is studied with the relativistic Langevin equation, here solved using weak-coupling transport coefficients. Successively, the heavy quarks hadronize in the medium. We compute the nuclear modification factor and the elliptic flow parameter of the final D mesons both in nucleus-nucleus and in (for the first time, in the POWLANG setup) proton-nucleus collisions and compare our results to experimental data.

  18. Elucidation of the Anatomy of a Satiety Network: Focus on Connectivity of the Parabrachial Nucleus in the Adult Rat

    Science.gov (United States)

    Zséli, Györgyi; Vida, Barbara; Martinez, Anais; Lechan, Ronald M.; Khan, Arshad M.; Fekete, Csaba

    2017-01-01

    We hypothesized that brain regions showing neuronal activation after refeeding comprise major nodes in a satiety network, and tested this hypothesis with two sets of experiments. Detailed c-Fos mapping comparing fasted and refed rats was performed to identify candidate nodes of the satiety network. In addition to well-known feeding-related brain regions such as the arcuate, dorsomedial and paraventricular hypothalamic nuclei, lateral hypothalamic area, parabrachial nucleus (PB), nucleus of solitary tract and central amygdalar nucleus; other refeeding activated regions were also identified, such as the parastrial and parasubthalamic nuclei. To begin understanding the connectivity of the satiety network, the interconnectivity of PB with other refeeding-activated neuronal groups was studied following administration of anterograde or retrograde tracers into the PB. After allowing for tracer transport time, the animals were fasted and then refed before sacrifice. Refeeding-activated neurons that project to the PB were found in the agranular insular area; bed nuclei of terminal stria; anterior hypothalamic area; arcuate, paraventricular and dorsomedial hypothalamic nuclei; lateral hypothalamic area; parasubthalamic nucleus; central amygdalar nucleus; area postrema; and nucleus of solitary tract. Axons originating from PB were observed to closely associate with refeeding-activated neurons in the agranular insular area; bed nuclei of terminal stria; anterior hypothalamus; paraventricular, arcuate and dorsomedial hypothalamic nuclei; lateral hypothalamic area; central amygdalar nucleus; parasubthalamic nucleus; ventral posterior thalamic nucleus; area postrema; and nucleus of solitary tract. These data indicate that the PB has bidirectional connections with most refeeding-activated neuronal groups, suggesting that short loop feedback circuits exist in this satiety network. PMID:26918800

  19. Complex neurological symptoms in bilateral thalamic stroke due to Percheron artery occlusion

    Science.gov (United States)

    Caruso, Paola; Manganotti, Paolo; Moretti, Rita

    2017-01-01

    The artery of Percheron is a rare anatomical variant where a single thalamic perforating artery arises from the proximal posterior cerebral artery (P1 segment) between the basilar artery and the posterior communicating artery and supplies the rostral mesencephalon and both paramedian territories of the thalami. Almost one-third of human brains present this variant. Occlusion of the artery of Percheron mostly results in a bilateral medial thalamic infarction, which usually manifests with altered consciousness (including coma), vertical gaze paresis, and cognitive disturbance. The presentation is similar to the “top of the basilar syndrome”, and early recognition should be prompted. We describe the case of a young female with this vessel variant who experienced a bilateral thalamic stroke. Magnetic resonance angiography demonstrated bilateral thalamic infarcts and a truncated artery of Percheron. Occlusion of the vessel was presumably due to embolism from a patent foramen ovale. Thrombolysis was performed, with incomplete symptom remission, cognitive impairment, and persistence of speech disorders. Early recognition and treatment of posterior circulation strokes is mandatory, and further investigation for underlying stroke etiologies is needed. PMID:28053539

  20. Anterior Thalamic Lesions Alter Both Hippocampal-Dependent Behavior and Hippocampal Acetylcholine Release in the Rat

    Science.gov (United States)

    Savage, Lisa M.; Hall, Joseph M.; Vetreno, Ryan P.

    2011-01-01

    The anterior thalamic nuclei (ATN) are important for learning and memory as damage to this region produces a persistent amnestic syndrome. Dense connections between the ATN and the hippocampus exist, and importantly, damage to the ATN can impair hippocampal functioning. Acetylcholine (ACh) is a key neurotransmitter in the hippocampus, and in vivo…

  1. Silent diabetes mellitus, periodontitis and a new case of thalamic abscess.

    Science.gov (United States)

    Karageorgiou, Ioannis; Chandler, Christopher; Whyte, Martin Brunel

    2014-07-21

    Brain abscess is an unusual complication of uncontrolled diabetes. A solitary thalamic abscess is an uncommon type of brain abscess. We report a case of thalamic abscess, whereupon diabetes mellitus and periodontitis were diagnosed. The diagnosis and management of thalamic abscess, and the interplay of type 2 diabetes and periodontitis are discussed. A 56-year-old, Caucasian, man with no medical or travel history, presented with 5-day symptoms of meningeal irritation. Body mass index 30.6 kg/m(2). CT demonstrated a solitary midline lesion with neoplasia as a differential diagnosis. It was biopsied and cultures grew Streptococcus milleri. He was treated by stereotactic puncture, external drainage and targeted intrathecal and systemic antibiotic therapy. HIV negative but glycated haemoglobin (HbA1c) 10.7% (93 mmol/mol). Dental examination revealed a small molar abscess. Radiological resolution of the thalamic abscess occurred within 2 months. Diabetes improved with 7 weeks of insulin, and maintained on metformin, HbA1c 6.9% (51 mmol/mol). There was no residual neurological disability. 2014 BMJ Publishing Group Ltd.

  2. Nucleus-nucleus potential with shell-correction contribution

    CERN Document Server

    Denisov, V Yu

    2015-01-01

    The full relaxed-density potential between spherical nuclei is considered as a sum of the macroscopic and shell-correction contributions. The macroscopic part of the potential is related to a nucleus-nucleus potential obtained in the framework of the extended Thomas-Fermi approach with the Skyrme and Coulomb forces and the relaxed-density ansatz for evaluation of proton and neutron densities of interacting nuclei. A simple prescription for the shell-correction part of the total potential is discussed. The parameters of the shell-correction and macroscopic parts of the relaxed-density potential are found by fitting the empirical barrier heights of the 89 nucleus-nucleus systems as well as macroscopic potentials evaluated for 1485 nucleus-nucleus systems at 12 distances around touching points.

  3. Neutrino-nucleus interactions

    Energy Technology Data Exchange (ETDEWEB)

    Gallagher, H.; /Tufts U.; Garvey, G.; /Los Alamos; Zeller, G.P.; /Fermilab

    2011-01-01

    The study of neutrino oscillations has necessitated a new generation of neutrino experiments that are exploring neutrino-nuclear scattering processes. We focus in particular on charged-current quasi-elastic scattering, a particularly important channel that has been extensively investigated both in the bubble-chamber era and by current experiments. Recent results have led to theoretical reexamination of this process. We review the standard picture of quasi-elastic scattering as developed in electron scattering, review and discuss experimental results, and discuss additional nuclear effects such as exchange currents and short-range correlations that may play a significant role in neutrino-nucleus scattering.

  4. Antineutron-nucleus annihilation

    CERN Document Server

    Botta, E

    2001-01-01

    The n-nucleus annihilation process has been studied by the OBELIX experiment at the CERN Low Energy Antiproton Ring (LEAR) in the (50-400) MeV/c projectile momentum range on C, Al, Cu, Ag, Sn, and Pb nuclear targets. A systematic survey of the annihilation cross- section, sigma /sub alpha /(A, p/sub n/), has been performed, obtaining information on its dependence on the target mass number and on the incoming n momentum. For the first time the mass number dependence of the (inclusive) final state composition of the process has been analyzed. Production of the rho vector meson has also been examined. (13 refs).

  5. Thalamic neuron models encode stimulus information by burst-size modulation

    Directory of Open Access Journals (Sweden)

    Daniel Henry Elijah

    2015-09-01

    Full Text Available Thalamic neurons have been long assumed to fire in tonic mode during perceptive states, and in burst mode during sleep and unconsciousness. However, recent evidence suggests that bursts may also be relevant in the encoding of sensory information. Here we explore the neural code of such thalamic bursts. In order to assess whether the burst code is generic or whether it depends on the detailed properties of each bursting neuron, we analyzed two neuron models incorporating different levels of biological detail. One of the models contained no information of the biophysical processes entailed in spike generation, and described neuron activity at a phenomenological level. The second model represented the evolution of the individual ionic conductances involved in spiking and bursting, and required a large number of parameters. We analyzed the models' input selectivity using reverse correlation methods and information theory. We found that n-spike bursts from both models transmit information by modulating their spike count in response to changes to instantaneous input features, such as slope, phase, amplitude, etc. The stimulus feature that is most efficiently encoded by bursts, however, need not coincide with one of such classical features. We therefore searched for the optimal feature among all those that could be expressed as a linear transformation of the time-dependent input current. We found that bursting neurons transmitted 6 times more information about such more general features. The relevant events in the stimulus were located in a time window spanning ~100 ms before and ~20 ms after burst onset. Most importantly, the neural code employed by the simple and the biologically realistic models was largely the same, implying that the simple thalamic neuron model contains the essential ingredients that account for the computational properties of the thalamic burst code. Thus, our results suggest the n-spike burst code is a general property of

  6. Thalamic neuron models encode stimulus information by burst-size modulation.

    Science.gov (United States)

    Elijah, Daniel H; Samengo, Inés; Montemurro, Marcelo A

    2015-01-01

    Thalamic neurons have been long assumed to fire in tonic mode during perceptive states, and in burst mode during sleep and unconsciousness. However, recent evidence suggests that bursts may also be relevant in the encoding of sensory information. Here, we explore the neural code of such thalamic bursts. In order to assess whether the burst code is generic or whether it depends on the detailed properties of each bursting neuron, we analyzed two neuron models incorporating different levels of biological detail. One of the models contained no information of the biophysical processes entailed in spike generation, and described neuron activity at a phenomenological level. The second model represented the evolution of the individual ionic conductances involved in spiking and bursting, and required a large number of parameters. We analyzed the models' input selectivity using reverse correlation methods and information theory. We found that n-spike bursts from both models transmit information by modulating their spike count in response to changes to instantaneous input features, such as slope, phase, amplitude, etc. The stimulus feature that is most efficiently encoded by bursts, however, need not coincide with one of such classical features. We therefore searched for the optimal feature among all those that could be expressed as a linear transformation of the time-dependent input current. We found that bursting neurons transmitted 6 times more information about such more general features. The relevant events in the stimulus were located in a time window spanning ~100 ms before and ~20 ms after burst onset. Most importantly, the neural code employed by the simple and the biologically realistic models was largely the same, implying that the simple thalamic neuron model contains the essential ingredients that account for the computational properties of the thalamic burst code. Thus, our results suggest the n-spike burst code is a general property of thalamic neurons.

  7. Higgs-Boson Production in Nucleus-Nucleus Collisions

    Science.gov (United States)

    Norbury, John W.

    1992-01-01

    Cross section calculations are presented for the production of intermediate-mass Higgs bosons produced in ultrarelativistic nucleus-nucleus collisions via two photon fusion. The calculations are performed in position space using Baur's method for folding together the Weizsacker-Williams virtual-photon spectra of the two colliding nuclei. It is found that two photon fusion in nucleus-nucleus collisions is a plausible way of finding intermediate-mass Higgs bosons at the Superconducting Super Collider or the CERN Large Hadron Collider.

  8. Consistent phosphenes generated by electrical microstimulation of the visual thalamus. An experimental approach for thalamic visual neuroprostheses

    Directory of Open Access Journals (Sweden)

    Fivos ePanetsos

    2011-07-01

    Full Text Available Most work on visual prostheses has centred on developing retinal or cortical devices. However, when retinal implants are not feasible, neuroprostheses could be implanted in the lateral geniculate nucleus of the thalamus (LGN, the intermediate relay station of visual information from the retina to the visual cortex (V1. The objective of the present study was to determine the types of artificial stimuli that when delivered to the visual thalamus can generate reliable responses of the cortical neurons similar to those obtained when the eye perceives a visual image. Visual stimuli {Si} were presented to one eye of an experimental animal and both, the thalamic {RThi} and cortical responses {RV1i} to such stimuli were recorded. Electrical patterns {RThi*} resembling {RThi} were then injected into the visual thalamus to obtain cortical responses {RV1i*} similar to {RV1i}. Visually- and electrically-generated V1 responses were compared.Results: During the course of this work we: (i characterised the response of V1 neurons to visual stimuli according to response magnitude, duration, spiking rate and the distribution of interspike intervals; (ii experimentally tested the dependence of V1 responses on stimulation parameters such as intensity, frequency, duration, etc. and determined the ranges of these parameters generating the desired cortical activity; (iii identified similarities between responses of V1 useful to compare the naturally and artificially generated neuronal activity of V1; and (iv by modifying the stimulation parameters, we generated artificial V1 responses similar to those elicited by visual stimuli.Generation of predictable and consistent phosphenes by means of artificial stimulation of the LGN is important for the feasibility of visual prostheses. Here we proved that electrical stimuli to the LGN can generate V1 neural responses that resemble those elicited by natural visual stimuli.

  9. Bilateral central pain sensitization in rats following a unilateral thalamic lesion may be treated with high doses of ketamine

    Science.gov (United States)

    2013-01-01

    Background Central post-stroke pain is a neuropathic pain condition caused by a vascular lesion, of either ischemic or hemorrhagic origin, in the central nervous system and more precisely involving the spinothalamocortical pathway responsible for the transmission of painful sensations. Few animal models have been developed to study this problem. The objectives of this study were to evaluate different modalities of pain in a central neuropathic pain rat model and to assess the effects of ketamine administered at different doses. Animals were evaluated on the rotarod, Hargreaves, Von Frey and acetone tests. A very small hemorrhage was created by injecting a collagenase solution in the right ventral posterolateral thalamic nucleus. Following the establishment of the neuropathy, ketamine was evaluated as a therapeutic drug for this condition. Results Histopathological observations showed a well localized lesion with neuronal necrosis and astrocytosis following the collagenase injection that was localized within the VPL. No significant change in motor coordination was observed following surgery in either the saline or collagensae groups. In the collagenase group, a significant decrease in mechanical allodynia threshold was observed. A sporadic and transient cold allodynia was also noted. No thermal hyperalgesia was seen following the collagenase injection. Ketamine was then tested as a potential therapeutic drug. A significant decrease in motor coordination was seen only following the administration of 25 mg/kg of ketamine in both groups. An alleviation of mechanical allodynia was achieved only with the high ketamine dose. The minimal effective ketamine serum concentration (150 ng/mL) was only achieved in animals that received 25 mg/kg. Conclusions An intrathalamic hemorrhage induced a bilateral mechanical allodynia in rats. Cold hyperalgesia was observed in 60% of these animals. Mechanical allodynia was alleviated with high doses of ketamine which corresponded

  10. Expression of 10 GABA(A) receptor subunit messenger RNAs in the motor-related thalamic nuclei and basal ganglia of Macaca mulatta studied with in situ hybridization histochemistry.

    Science.gov (United States)

    Kultas-Ilinsky, K; Leontiev, V; Whiting, P J

    1998-07-01

    In situ hybridization histochemistry technique with [35S]UTP-labelled riboprobes was used to study the expression pattern of 10 GABA(A) receptor subunit messenger RNAs in the basal ganglia and motor thalamic nuclei of rhesus monkey. Human transcripts were used for the synthesis of alpha2, alpha4, beta2, beta3, gamma1 and delta subunit messenger RNA probes. Rat complementary DNAs were used for generating alpha1, alpha3, beta1 and gamma2 subunit messenger RNA probes. Nigral, pallidal and cerebellar afferent territories in the ventral tier thalamic nuclei all expressed alpha1, alpha2, alpha3, alpha4, beta1, beta2, beta3, delta and gamma2 subunit messenger RNAs but at different levels. Each intralaminar nucleus displayed its own unique expression pattern. In the thalamus, gamma1 subunit messenger RNA was detected only in the parafascicular nucleus. Comparison of the expression patterns with the known organization of GABA(A) connections in thalamic nuclei suggests that (i) the composition of the receptor associated with reticulothalamic synapses, except for those in the intralaminar nuclei, may be alpha1alpha4beta2delta, (ii) receptors of various other subunit compositions may operate in the local GABAergic circuits, and (iii) the composition of receptors at nigro- and pallidothalamic synapses may differ, with those at nigrothalamic probably containing beta1 and gamma2 subunits. In the medial and lateral parts of the globus pallidus, the subthalamic nucleus and the substantia nigra pars reticularis, the alpha1, beta2 and gamma2 messenger RNAs were co-expressed at a high level suggesting that this subunit composition was associated with all GABAergic synapses in the direct and indirect striatal output pathways. Various other subunit messenger RNAs were also expressed but at a lower level. In the substantia nigra pars compacta the most highly expressed messenger RNAs were alpha3, alpha4 and beta3; all other subunit messenger RNAs studied, except for gamma1, alpha1 and

  11. Sub-threshold cross-modal sensory interaction in the thalamus: lemniscal auditory response in the medial geniculate nucleus is modulated by somatosensory stimulation.

    Science.gov (United States)

    Donishi, T; Kimura, A; Imbe, H; Yokoi, I; Kaneoke, Y

    2011-02-03

    Recent studies have highlighted cross-modal sensory modulations in the primary sensory areas in the cortex, suggesting that cross-modal sensory interactions occur at early stages in the hierarchy of sensory processing. Multi-modal sensory inputs from non-lemniscal thalamic nuclei and cortical inputs from the secondary sensory and association areas are considered responsible for the modulations. On the other hand, there is little evidence of cross-sensory modal sensitivities in lemniscal thalamic nuclei. In the present study, we were interested in a possibility that somatosensory stimulation may affect auditory response in the ventral division (MGV) of the medial geniculate nucleus (MG), a lemniscal thalamic nucleus that is considered to be dedicated to auditory uni-modal processing. Experiments were performed on anesthetized rats. Transcutaneous electrical stimulation of the hindpaw, which is thought to evoke nociception and seems unrelated to auditory processing, modulated unit discharges in response to auditory stimulation (noise bursts). The modulation was observed in the MGV and non-lemniscal auditory thalamic nuclei such as the dorsal and medial divisions of the MG. The major effect of somatosensory stimulation was suppression. The most robust suppression was induced by electrical stimuli given simultaneously with noise bursts or preceding noise bursts by 10 to 20 ms. The results indicate that the lemniscal (MGV) and non-lemniscal auditory nuclei are subject to somatosensory influence. In everyday experience intense somatosensory stimuli such as pain interrupt our ongoing hearing or interfere with clear recognition of sound. The modulation of lemniscal auditory response by somatosensory stimulation may underlie such cross-modal disturbance of auditory perception as a form of cross-modal switching of attention. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Source size determination in relativistic nucleus-nucleus collisions

    Energy Technology Data Exchange (ETDEWEB)

    Nagle, J.L.; Kumar, B.S.; Bennett, M.J.; Diebold, G.E.; Pope, J.K. (Yale University, A. W. Wright Nuclear Structure Laboratory, New Haven, Connecticut 06520-8124 (United States)); Sorge, H.; Sullivan, J.P. (Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States))

    1994-08-29

    We describe a technique whereby the freeze-out interaction volumes of nucleus-nucleus collisions are extracted from a cascade (plus coalescence) model, after comparison to measured abundances of light nuclei. We conclude that the interaction volume undergoes significant expansion before light nuclei are produced.

  13. The Galactic Nucleus

    Science.gov (United States)

    Melia, Fulvio

    Exciting new broadband observations of the galactic nucleus have placed the heart of the Milky Way under intense scrutiny in recent years. This has been due in part to the growing interest from theorists motivated to study the physics of black hole accretion, magnetized gas dynamics, and unusual star formation. The center of our Galaxy is now known to harbor the most compelling supermassive black hole candidate, weighing in at 3-4 million solar masses. Its nearby environment is comprised of a molecular dusty ring, clusters of evolved and young stars, diffuse hot gas, ionized gas streamers, and several supernova remnants. This chapter will focus on the physical makeup of this dynamic region and the feasibility of actually imaging the black hole's shadow in the coming decade with mm interferometry.

  14. Can chronic remote cortical hypoperfusion induced by thalamic infarction cause damage of tracts passing through those hypoperfused regions?

    Directory of Open Access Journals (Sweden)

    Eloi eMagnin

    2013-10-01

    Full Text Available We report the case of a woman presenting with changes on cerebral imaging a year and a half after a bi-thalamic (predominantly left-sided infarction including lateral and medial thalamic nuclei. Lateral geniculate body and pulvinar were not damaged. Hypoperfusion was observed in left cortical and basal structures. White matter FLAIR hyperintense lesions occurred in the left hemisphere and the occipital region one year and half after stroke. Medial and lateral thalamic nuclei are not highly connected to the occipital cortex. Therefore, in addition to Wallerian degeneration after thalamic stroke, we hypothesize that the chronic left temporal hypoperfusion induced by diaschisis can lead to a lateralized chronic hypoxic damage of the occipital fiber tract (optic radiation that passes through the temporal lobe.

  15. Dynamics of epileptic activity in a peculiar case of childhood absence epilepsy and correlation with thalamic levels of GABA

    Directory of Open Access Journals (Sweden)

    Alberto Leal

    2016-01-01

    Significance: In a clinical case of CAE with EEG and fMRI-BOLD manifestations restricted to one hemisphere, we found an associated increase in thalamic GABA concentration consistent with a role for this abnormality in human CAE.

  16. Recording Gamma Band Oscillations in Pedunculopontine Nucleus Neurons.

    Science.gov (United States)

    Urbano, Francisco J; Luster, Brennon R; D'Onofrio, Stasia; Mahaffey, Susan; Garcia-Rill, Edgar

    2016-09-14

    Synaptic efferents from the PPN are known to modulate the neuronal activity of several intralaminar thalamic regions (e.g., the centrolateral/parafascicular; Cl/Pf nucleus). The activation of either the PPN or Cl/Pf nuclei in vivo has been described to induce the arousal of the animal and an increment in gamma band activity in the cortical electroencephalogram (EEG). The cellular mechanisms for the generation of gamma band oscillations in Reticular Activating System (RAS) neurons are the same as those found to generate gamma band oscillations in other brains nuclei. During current-clamp recordings of PPN neurons (from parasagittal slices from 9 - 25 day-old rats), the use of depolarizing square steps rapidly activated voltage-dependent potassium channels that prevented PPN neurons from being depolarized beyond -25 mV. Injecting 1 - 2 sec long depolarizing current ramps gradually depolarized PPN membrane potential resting values towards 0 mV. However, injecting depolarizing square pulses generated gamma-band oscillations of membrane potential that showed to be smaller in amplitude compared to the oscillations generated by ramps. All experiments were performed in the presence of voltage-gated sodium channels and fast synaptic receptors blockers. It has been shown that the activation of high-threshold voltage-dependent calcium channels underlie gamma-band oscillatory activity in PPN neurons. Specific methodological and pharmacological interventions are described here, providing the necessary tools to induce and sustain PPN subthreshold gamma band oscillation in vitro.

  17. On Parallel Streams through the Mouse Dorsal Lateral Geniculate Nucleus

    Directory of Open Access Journals (Sweden)

    Daniel eDenman

    2016-03-01

    Full Text Available The mouse visual system is an emerging model for the study of cortical and thalamic circuit function. To maximize the usefulness of this model system, it is important to analyze the similarities and differences between the organization of all levels of the murid visual system with other, better studied systems (e.g., non-human primates and the domestic cat. While the understanding of mouse retina and cortex has expanded rapidly, less is known about mouse dorsal lateral geniculate nucleus (dLGN. Here, we study whether parallel processing streams exist in mouse dLGN. We use a battery of stimuli that have been previously shown to successfully distinguish parallel streams in other species: electrical stimulation of the optic chiasm, contrast-reversing stationary gratings at varying spatial phase, drifting sinusoidal gratings, dense noise for receptive field reconstruction, and frozen contrast-modulating noise. As in the optic nerves of domestic cats and non-human primates, we find evidence for multiple conduction velocity groups after optic chiasm stimulation. As in so-called ‘visual mammals’, we find a subpopulation of mouse dLGN cells showing non-linear spatial summation. However, differences in stimulus selectivity and sensitivity do not provide sufficient basis for identification of clearly distinct classes of relay cells. Nevertheless, consistent with presumptively homologous status of dLGNs of all mammals, there are substantial similarities between response properties of mouse dLGN neurons and those of cats and primates.

  18. Thalamic structures and associated cognitive functions: Relations with age and aging

    Science.gov (United States)

    Fama, Rosemary; Sullivan, Edith V.

    2015-01-01

    The thalamus, with its cortical, subcortical, and cerebellar connections, is a critical node in networks supporting cognitive functions known to decline in normal aging, including component processes of memory and executive functions of attention and information processing. The macrostructure, microstructure, and neural connectivity of the thalamus changes across the adult lifespan. Structural and functional magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) have demonstrated, regional thalamic volume shrinkage and microstructural degradation, with anterior regions generally more compromised than posterior regions. The integrity of selective thalamic nuclei and projections decline with advancing age, particularly those in thalamofrontal, thalamoparietal, and thalamolimbic networks. This review presents studies that assess the relations between age and aging and the structure, function, and connectivity of the thalamus and associated neural networks and focuses on their relations with processes of attention, speed of information processing, and working and episodic memory. PMID:25862940

  19. A change in thalamic function in patients of chronic pain. A functional brain study with SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Mitsuru; Doi, Nagafumi; Isse, Kunihiro [Tokyo Metropolitan Ebara General Hospital (Japan)] [and others

    1999-02-01

    The cerebral blood flow was measured by SPECT using {sup 99m}Tc-ECD as tracer in order to make chronic pain clear physiopathologically. Subjects were 7 cases of central pain (4 cases of thalamus and 3 cases of putamen) and 3 cases of postherpetic neuralgia, who were treated by ECT and had good response in the Tokyo Metropolitan Ebara General Hospital. Reduction of cerebral blood flow in the thalamus was recognized at opposite side of pain (the side with cerebrovascular diseases) in central pain; at both sides in postherpetic neuralgia. In both groups, pain and allodynia disappeared by ECT, and the thalamic cerebral blood flow at opposite side became to be normal. These results suggest that chronic pain was related to decrease thalamic activity at opposite side physiopathologically. (K.H.)

  20. Memory Profiles after Unilateral Paramedian Thalamic Stroke Infarction: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Antonio Carota

    2015-01-01

    Full Text Available We performed extensive neuropsychological assessment of two male patients (matched for age and educational level with similar (localization and size unilateral paramedian ischemic thalamic lesions (AB on the left and SD on the right. Both patients showed severe memory impairments as well as other cognitive deficits. In comparison to SD, AB showed severe impairment of executive functions and a more severe deficit of episodic/anterograde memory, especially in the verbal modality. The findings of this single case study suggest the possibility that the profile and severity of the executive dysfunction are determinant for the memory deficits and depend on from the side of the lesion. In addition to a material-side-specific (verbal versus visual deficit hypothesis, the differential diencephalo-prefrontal contributions in mnestic-processing, in case of paramedian thalamic stroke, might also be explained in terms of their stage-specificity (encoding versus retrieval.

  1. Hypofractionated Stereotactic Radiosurgery in a Large Bilateral Thalamic and Basal Ganglia Arteriovenous Malformation

    Directory of Open Access Journals (Sweden)

    Janet Lee

    2013-01-01

    Full Text Available Purpose. Arteriovenous malformations (AVMs in the basal ganglia and thalamus have a more aggressive natural history with a higher morbidity and mortality than AVMs in other locations. Optimal treatment—complete obliteration without new neurological deficits—is often challenging. We present a patient with a large bilateral basal ganglia and thalamic AVM successfully treated with hypofractionated stereotactic radiosurgery (HFSRS with intensity modulated radiotherapy (IMRT. Methods. The patient was treated with hypofractionated stereotactic radiosurgery to 30 Gy at margin in 5 fractions of 9 static fields with a minimultileaf collimator and intensity modulated radiotherapy. Results. At 10 months following treatment, digital subtraction angiography showed complete obliteration of the AVM. Conclusions. Large bilateral thalamic and basal ganglia AVMs can be successfully treated with complete obliteration by HFSRS with IMRT with relatively limited toxicity. Appropriate caution is recommended.

  2. Effect of Spinal Manipulation Thrust Magnitude on Trunk Mechanical Thresholds of Lateral Thalamic Neurons

    Science.gov (United States)

    Reed, William R.; Pickar, Joel G.; Sozio, Randall S.; Long, Cynthia R.

    2014-01-01

    Objectives High velocity low amplitude spinal manipulation (HVLA-SM), as performed by manual therapists (eg, doctors of chiropractic and osteopathy) results in mechanical hypoalgesia in clinical settings. This hypoalgesic effect has previously been attributed to alterations in peripheral and/or central pain processing. The objective of this study was to determine whether thrust magnitude of a simulated HVLA-SM alters mechanical trunk response thresholds in wide dynamic range (WDR) and/or nociceptive specific (NS) lateral thalamic neurons. Methods Extracellular recordings were carried out in the thalamus of 15 anesthetized Wistar rats. Lateral thalamic neurons having receptive fields which included the lumbar dorsal-lateral trunk were characterized as either WDR (n=22) or NS (n=25). Response thresholds to electronic von Frey (rigid tip) mechanical trunk stimuli were determined in three directions (dorsal-ventral, 45°caudalward, and 45°cranialward) prior to and immediately following the dorsal-ventral delivery of a 100ms HVLA-SM at three thrust magnitudes (control, 55%, 85% body weight; (BW)). Results There was a significant difference in mechanical threshold between 85% BW manipulation and control thrust magnitudes in the dorsal-ventral direction in NS neurons (p=.01). No changes were found in WDR neurons at either HVLA-SM thrust magnitude. Conclusions This study is the first to investigate the effect of HVLA-SM thrust magnitude on WDR and NS lateral thalamic mechanical response threshold. Our data suggest that at the single lateral thalamic neuron level, there may be a minimal spinal manipulative thrust magnitude required to elicit an increase in trunk mechanical response thresholds. PMID:24928636

  3. Effect of spinal manipulation thrust magnitude on trunk mechanical activation thresholds of lateral thalamic neurons.

    Science.gov (United States)

    Reed, William R; Pickar, Joel G; Sozio, Randall S; Long, Cynthia R

    2014-06-01

    High-velocity low-amplitude spinal manipulation (HVLA-SM), as performed by doctors who use manual therapy (eg, doctors of chiropractic and osteopathy), results in mechanical hypoalgesia in clinical settings. This hypoalgesic effect has previously been attributed to alterations in peripheral and/or central pain processing. The objective of this study was to determine whether thrust magnitude of a simulated HVLA-SM alters mechanical trunk response thresholds in wide dynamic range (WDR) and/or nociceptive specific (NS) lateral thalamic neurons. Extracellular recordings were carried out in the thalamus of 15 anesthetized Wistar rats. Lateral thalamic neurons having receptive fields, which included the lumbar dorsal-lateral trunk, were characterized as either WDR (n=22) or NS (n=25). Response thresholds to electronic von Frey (rigid tip) mechanical trunk stimuli were determined in 3 directions (dorsal-ventral, 45° caudalward, and 45° cranialward) before and immediately after the dorsal-ventral delivery of a 100-millisecond HVLA-SM at 3 thrust magnitudes (control, 55%, 85% body weight). There was a significant difference in mechanical threshold between 85% body weight manipulation and control thrust magnitudes in the dorsal-ventral direction in NS neurons (P=.01). No changes were found in WDR neurons at either HVLA-SM thrust magnitude. This study is the first to investigate the effect of HVLA-SM thrust magnitude on WDR and NS lateral thalamic mechanical response threshold. Our data suggest that, at the single lateral thalamic neuron level, there may be a minimal spinal manipulative thrust magnitude required to elicit an increase in trunk mechanical response thresholds. Copyright © 2014 National University of Health Sciences. Published by Mosby, Inc. All rights reserved.

  4. Differential effects of petit mal anticonvulsants and convulsants on thalamic neurones: GABA current blockade.

    OpenAIRE

    COULTER, D. A.; Huguenard, J. R.; PRINCE, D. A.

    1990-01-01

    1. Currents evoked by applications of gamma-aminobutyric acid (GABA) to acutely dissociated thalamic neurones were analysed by voltage-clamp techniques, and the effects of the anticonvulsant succinimides ethosuximide (ES) and alpha-methyl-alpha-phenylsuccinimide (MPS) and the convulsants tetramethylsuccinimide (TMS), picrotoxin, pentylenetetrazol (PTZ), and bicuculline methiodide were assessed. 2. TMS (1 microM-10 microM) reduced responses to iontophoretically applied GABA, as did picrotoxin ...

  5. Clinical Analysis of Thalamic Hemorrhage%丘脑出血的临床分析

    Institute of Scientific and Technical Information of China (English)

    张红莲

    2015-01-01

    Objective To investigate the clinical characteristics, prognosis and the relationship between thalamic hemor hage.Methods The clinical data of 20 patients with thalamic hemor hage and the results of CT examination were analyzed. Results Hypertension was the main cause of thalamic hemor hage;the amount of bleeding was less, and the prognosis was good, the bleeding volume was large and the complications occur ed early and the prognosis was worse. Conclusion The prognosis of thalamic hemor hage and blood pressure, bleeding volume, the complications of upper gastrointestinal bleeding within 24 hours, and whether or not to break into the ventricles of the brain.%目的:探讨丘脑出血的临床特点、预后及两者的关系。方法对20例丘脑出血患者的临床资料及头颅CT检查的结果进行分析。结果高血压是丘脑出血的主要原因;出血量少且局限的丘脑出血预后好、出血量大、并发症出现早且破入脑室的预后差。结论丘脑出血的预后与血压、出血量的多少、24h内出现上消化道出血的并发症及是否与破入脑室有关。

  6. Disrupted Auto-Activation, Dysexecutive and Confabulating Syndrome Following Bilateral Thalamic and Right Putaminal Stroke

    Directory of Open Access Journals (Sweden)

    Lieve De Witte

    2008-01-01

    Full Text Available Objective: Clinical, neuropsychological, structural and functional neuroimaging results are reported in a patient who developed a unique combination of symptoms after a bi-thalamic and right putaminal stroke. The symptoms consisted of dysexecutive disturbances associated with confabulating behavior and auto-activation deficits. Background: Basal ganglia and thalamic lesions may result in a variety of motor, sensory, neuropsychological and behavioral syndromes. However, the combination of a dysexecutive syndrome complicated at the behavioral level with an auto-activation and confabulatory syndrome has never been reported. Methods: Besides clinical and neuroradiological investigations, an extensive set of standardized neuropsychological tests was carried out. Results: In the post-acute phase of the stroke, a dysexecutive syndrome was found in association with confabulating behavior and auto-activation deficits. MRI showed focal destruction of both thalami and the right putamen. Quantified ECD SPECT revealed bilateral hypoperfusions in the basal ganglia and thalamus but no perfusion deficits were found at the cortical level. Conclusion: The combination of disrupted auto-activation, dysexecutive and confabulating syndrome in a single patient following isolated subcortical damage renders this case exceptional. Although these findings do not reveal a functional disruption of the striato-ventral pallidal-thalamic-frontomesial limbic circuitry, they add to the understanding of the functional role of the basal ganglia in cognitive and behavioral syndromes.

  7. Topography of thalamic projections requires attractive and repulsive functions of Netrin-1 in the ventral telencephalon.

    Directory of Open Access Journals (Sweden)

    Ashton W Powell

    2008-05-01

    Full Text Available Recent studies have demonstrated that the topography of thalamocortical (TC axon projections is initiated before they reach the cortex, in the ventral telencephalon (VTel. However, at this point, the molecular mechanisms patterning the topography of TC projections in the VTel remains poorly understood. Here, we show that a long-range, high-rostral to low-caudal gradient of Netrin-1 in the VTel is required in vivo for the topographic sorting of TC axons to distinct cortical domains. We demonstrate that Netrin-1 is a chemoattractant for rostral thalamic axons but functions as a chemorepulsive cue for caudal thalamic axons. In accordance with this model, DCC is expressed in a high-rostromedial to low-caudolateral gradient in the dorsal thalamus (DTh, whereas three Unc5 receptors (Unc5A-C show graded expression in the reverse orientation. Finally, we show that DCC is required for the attraction of rostromedial thalamic axons to the Netrin-1-rich, anterior part of the VTel, whereas DCC and Unc5A/C receptors are required for the repulsion of caudolateral TC axons from the same Netrin-1-rich region of the VTel. Our results demonstrate that a long-range gradient of Netrin-1 acts as a counteracting force from ephrin-A5 to control the topography of TC projections before they enter the cortex.

  8. Dissociable effects of anterior and mediodorsal thalamic lesions on spatial goal-directed behavior.

    Science.gov (United States)

    Alcaraz, Fabien; Naneix, Fabien; Desfosses, Emilie; Marchand, Alain R; Wolff, Mathieu; Coutureau, Etienne

    2016-01-01

    Goal-directed behaviors are thought to be supported by a neural circuit encompassing the prefrontal cortex, the dorsomedial striatum, the amygdala, and, as more recently suggested, the limbic thalamus. Since evidence indicates that the various thalamic nuclei contribute to dissociable functions, we directly compared the functional contribution of the mediodorsal thalamus (MD) and of the anterior thalamic nuclei (ATN) in a new task assessing spatial goal-directed behavior in a cross-maze. Rats sustaining lesions of the mediodorsal or the anterior thalamus were trained to associate each of the two goal arms with a distinctive food reward. Unlike control rats, both lesioned groups failed to express a bias for the goal arm corresponding to the non-devalued outcome following devaluation by sensory-specific satiety. In addition, MD rats were slower than the other groups to complete the trials. When tested for spatial working memory using a standard non-matching-to-place procedure in the same apparatus, ATN rats were severely impaired but MD rats performed as well as controls, even when spatial or temporal challenges were introduced. Finally, all groups displayed comparable breaking points in a progressive ratio test, indicating that the slower choice performance of MD rats did not result from motivational factors. Thus, a spatial task requiring the integration of instrumental and Pavlovian contingencies reveals a fundamental deficit of MD rats in adapting their choice according to goal value. By contrast, the deficit associated with anterior thalamic lesions appears to simply reflect the inability to process spatial information.

  9. OCCLUSION OF ARTERY OF PERCHERON: A RARE AETIOLOGY OF BILATERAL THALAMIC INFARCT

    Directory of Open Access Journals (Sweden)

    Mane Makarand, Mane Priyanka, Mohite Rajsinh , Bhattad Prashant, Bangar Kushal, Mahajani Anup

    2015-10-01

    Full Text Available The Artery of Percheron, a rare anatomical variant of brain vascularisation, arises from the posterior cerebral artery. Occlusion of this artery leads to bilateral paramedian thalamic infarct leads to dysfunction of central nervous system. Incidence of bilateral thalamic infarct secondary to occlusion of artery of Percheron is unknown because of its rarity. Here we report a case of 35 year old female presented with altered state of consciousness and the underlying cause was occlusion of Artery of Percheron which leads to bilateral thalamic infarct detected on MRI scanning. It showed hyperintensities on T2W1 and FLAIR, and hypointensity on T1W1, restricted to bilateral ventromedial thalami showing corresponding area of high signal intensity on diffusion weighted images and hypointensity on apparent diffusion coefficient images indicating diffusion restriction, suggestive of infarct. On further investigation magnetic resonance arteriogram (MRA of the brain demonstrated a single common artery arising from the left P1 segment which divided into two branches distally supplying bilateral thalami. Patient became alright after 2 weeks of medical line of treatment.

  10. Mechanics of the Nucleus

    Science.gov (United States)

    Lammerding, Jan

    2015-01-01

    The nucleus is the distinguishing feature of eukaryotic cells. Until recently, it was often considered simply as a unique compartment containing the genetic information of the cell and associated machinery, without much attention to its structure and mechanical properties. This article provides compelling examples that illustrate how specific nuclear structures are associated with important cellular functions, and how defects in nuclear mechanics can cause a multitude of human diseases. During differentiation, embryonic stem cells modify their nuclear envelope composition and chromatin structure, resulting in stiffer nuclei that reflect decreased transcriptional plasticity. In contrast, neutrophils have evolved characteristic lobulated nuclei that increase their physical plasticity, enabling passage through narrow tissue spaces in their response to inflammation. Research on diverse cell types further demonstrates how induced nuclear deformations during cellular compression or stretch can modulate cellular function. Pathological examples of disturbed nuclear mechanics include the many diseases caused by mutations in the nuclear envelope proteins lamin A/C and associated proteins, as well as cancer cells that are often characterized by abnormal nuclear morphology. In this article, we will focus on determining the functional relationship between nuclear mechanics and cellular (dys-)function, describing the molecular changes associated with physiological and pathological examples, the resulting defects in nuclear mechanics, and the effects on cellular function. New insights into the close relationship between nuclear mechanics and cellular organization and function will yield a better understanding of normal biology and will offer new clues into therapeutic approaches to the various diseases associated with defective nuclear mechanics. PMID:23737203

  11. Neurons of human nucleus accumbens

    Directory of Open Access Journals (Sweden)

    Sazdanović Maja

    2011-01-01

    Full Text Available Background/Aim. Nucleus accumbens is a part of the ventral striatum also known as a drug active brain region, especially related with drug addiction. The aim of the study was to investigate the Golgi morphology of the nucleus accumbens neurons. Methods. The study was performed on the frontal and sagittal sections of 15 human brains by the Golgi Kopsch method. We classified neurons in the human nucleus accumbens according to their morphology and size into four types: type I - fusiform neurons; type II - fusiform neurons with lateral dendrite, arising from a part of the cell body; type III - pyramidal-like neuron; type IV - multipolar neuron. The medium spiny neurons, which are mostly noted regarding to the drug addictive conditions of the brain, correspond to the type IV - multipolar neurons. Results. Two regions of human nucleus accumbens could be clearly recognized on Nissl and Golgi preparations each containing different predominant neuronal types. Central part of nucleus accumbens, core region, has a low density of impregnated neurons with predominant type III, pyramidal-like neurons, with spines on secondary branches and rare type IV, multipolar neurons. Contrary to the core, peripheral region, shell of nucleus, has a high density of impregnated neurons predominantly contained of type I and type IV - multipolar neurons, which all are rich in spines on secondary and tertiary dendritic branches. Conclusion. Our results indicate great morphological variability of human nucleus accumbens neurons. This requires further investigations and clarifying clinical significance of this important brain region.

  12. Persistent Thalamic Sound Processing Despite Profound Cochlear Denervation

    Science.gov (United States)

    Chambers, Anna R.; Salazar, Juan J.; Polley, Daniel B.

    2016-01-01

    Neurons at higher stages of sensory processing can partially compensate for a sudden drop in peripheral input through a homeostatic plasticity process that increases the gain on weak afferent inputs. Even after a profound unilateral auditory neuropathy where >95% of afferent synapses between auditory nerve fibers and inner hair cells have been eliminated with ouabain, central gain can restore cortical processing and perceptual detection of basic sounds delivered to the denervated ear. In this model of profound auditory neuropathy, auditory cortex (ACtx) processing and perception recover despite the absence of an auditory brainstem response (ABR) or brainstem acoustic reflexes, and only a partial recovery of sound processing at the level of the inferior colliculus (IC), an auditory midbrain nucleus. In this study, we induced a profound cochlear neuropathy with ouabain and asked whether central gain enabled a compensatory plasticity in the auditory thalamus comparable to the full recovery of function previously observed in the ACtx, the partial recovery observed in the IC, or something different entirely. Unilateral ouabain treatment in adult mice effectively eliminated the ABR, yet robust sound-evoked activity persisted in a minority of units recorded from the contralateral medial geniculate body (MGB) of awake mice. Sound driven MGB units could decode moderate and high-intensity sounds with accuracies comparable to sham-treated control mice, but low-intensity classification was near chance. Pure tone receptive fields and synchronization to broadband pulse trains also persisted, albeit with significantly reduced quality and precision, respectively. MGB decoding of temporally modulated pulse trains and speech tokens were both greatly impaired in ouabain-treated mice. Taken together, the absence of an ABR belied a persistent auditory processing at the level of the MGB that was likely enabled through increased central gain. Compensatory plasticity at the level of the

  13. Persistent Thalamic Sound Processing Despite Profound Cochlear Denervation

    Directory of Open Access Journals (Sweden)

    Anna R. Chambers

    2016-08-01

    Full Text Available Neurons at higher stages of sensory processing can partially compensate for a sudden drop in input from the periphery through a homeostatic plasticity process that increases the gain on weak afferent inputs. Even after a profound unilateral auditory neuropathy where > 95% of synapses between auditory nerve fibers and inner hair cells have been eliminated with ouabain, central gain can restore the cortical processing and perceptual detection of basic sounds delivered to the denervated ear. In this model of profound auditory neuropathy, cortical processing and perception recover despite the absence of an auditory brainstem response (ABR or brainstem acoustic reflexes, and only a partial recovery of sound processing at the level of the inferior colliculus (IC, an auditory midbrain nucleus. In this study, we induced a profound cochlear neuropathy with ouabain and asked whether central gain enabled a compensatory plasticity in the auditory thalamus comparable to the full recovery of function previously observed in the auditory cortex (ACtx, the partial recovery observed in the IC, or something different entirely. Unilateral ouabain treatment in adult mice effectively eliminated the ABR, yet robust sound-evoked activity persisted in a minority of units recorded from the contralateral medial geniculate body (MGB of awake mice. Sound-driven MGB units could decode moderate and high-intensity sounds with accuracies comparable to sham-treated control mice, but low-intensity classification was near chance. Pure tone receptive fields and synchronization to broadband pulse trains also persisted, albeit with significantly reduced quality and precision, respectively. MGB decoding of temporally modulated pulse trains and speech tokens were both greatly impaired in ouabain-treated mice. Taken together, the absence of an ABR belied a persistent auditory processing at the level of the MGB that was likely enabled through increased central gain. Compensatory

  14. Thalamic haemorrhage vs internal capsule-basal ganglia haemorrhage: clinical profile and predictors of in-hospital mortality

    Directory of Open Access Journals (Sweden)

    García-Eroles Luis

    2007-10-01

    Full Text Available Abstract Background There is a paucity of clinical studies focused specifically on intracerebral haemorrhages of subcortical topography, a subject matter of interest to clinicians involved in stroke management. This single centre, retrospective study was conducted with the following objectives: a to describe the aetiological, clinical and prognostic characteristics of patients with thalamic haemorrhage as compared with that of patients with internal capsule-basal ganglia haemorrhage, and b to identify predictors of in-hospital mortality in patients with thalamic haemorrhage. Methods Forty-seven patients with thalamic haemorrhage were included in the "Sagrat Cor Hospital of Barcelona Stroke Registry" during a period of 17 years. Data from stroke patients are entered in the stroke registry following a standardized protocol with 161 items regarding demographics, risk factors, clinical features, laboratory and neuroimaging data, complications and outcome. The region of the intracranial haemorrhage was identified on computerized tomographic (CT scans and/or magnetic resonance imaging (MRI of the brain. Results Thalamic haemorrhage accounted for 1.4% of all cases of stroke (n = 3420 and 13% of intracerebral haemorrhage (n = 364. Hypertension (53.2%, vascular malformations (6.4%, haematological conditions (4.3% and anticoagulation (2.1% were the main causes of thalamic haemorrhage. In-hospital mortality was 19% (n = 9. Sensory deficit, speech disturbances and lacunar syndrome were significantly associated with thalamic haemorrhage, whereas altered consciousness (odds ratio [OR] = 39.56, intraventricular involvement (OR = 24.74 and age (OR = 1.23, were independent predictors of in-hospital mortality. Conclusion One in 8 patients with acute intracerebral haemorrhage had a thalamic hematoma. Altered consciousness, intraventricular extension of the hematoma and advanced age were determinants of a poor early outcome.

  15. Cortically-controlled population stochastic facilitation as a plausible substrate for guiding sensory transfer across the thalamic gateway.

    Directory of Open Access Journals (Sweden)

    Sébastien Béhuret

    Full Text Available The thalamus is the primary gateway that relays sensory information to the cerebral cortex. While a single recipient cortical cell receives the convergence of many principal relay cells of the thalamus, each thalamic cell in turn integrates a dense and distributed synaptic feedback from the cortex. During sensory processing, the influence of this functional loop remains largely ignored. Using dynamic-clamp techniques in thalamic slices in vitro, we combined theoretical and experimental approaches to implement a realistic hybrid retino-thalamo-cortical pathway mixing biological cells and simulated circuits. The synaptic bombardment of cortical origin was mimicked through the injection of a stochastic mixture of excitatory and inhibitory conductances, resulting in a gradable correlation level of afferent activity shared by thalamic cells. The study of the impact of the simulated cortical input on the global retinocortical signal transfer efficiency revealed a novel control mechanism resulting from the collective resonance of all thalamic relay neurons. We show here that the transfer efficiency of sensory input transmission depends on three key features: i the number of thalamocortical cells involved in the many-to-one convergence from thalamus to cortex, ii the statistics of the corticothalamic synaptic bombardment and iii the level of correlation imposed between converging thalamic relay cells. In particular, our results demonstrate counterintuitively that the retinocortical signal transfer efficiency increases when the level of correlation across thalamic cells decreases. This suggests that the transfer efficiency of relay cells could be selectively amplified when they become simultaneously desynchronized by the cortical feedback. When applied to the intact brain, this network regulation mechanism could direct an attentional focus to specific thalamic subassemblies and select the appropriate input lines to the cortex according to the descending

  16. Cortically-Controlled Population Stochastic Facilitation as a Plausible Substrate for Guiding Sensory Transfer across the Thalamic Gateway

    Science.gov (United States)

    Béhuret, Sébastien; Deleuze, Charlotte; Gomez, Leonel; Frégnac, Yves; Bal, Thierry

    2013-01-01

    The thalamus is the primary gateway that relays sensory information to the cerebral cortex. While a single recipient cortical cell receives the convergence of many principal relay cells of the thalamus, each thalamic cell in turn integrates a dense and distributed synaptic feedback from the cortex. During sensory processing, the influence of this functional loop remains largely ignored. Using dynamic-clamp techniques in thalamic slices in vitro, we combined theoretical and experimental approaches to implement a realistic hybrid retino-thalamo-cortical pathway mixing biological cells and simulated circuits. The synaptic bombardment of cortical origin was mimicked through the injection of a stochastic mixture of excitatory and inhibitory conductances, resulting in a gradable correlation level of afferent activity shared by thalamic cells. The study of the impact of the simulated cortical input on the global retinocortical signal transfer efficiency revealed a novel control mechanism resulting from the collective resonance of all thalamic relay neurons. We show here that the transfer efficiency of sensory input transmission depends on three key features: i) the number of thalamocortical cells involved in the many-to-one convergence from thalamus to cortex, ii) the statistics of the corticothalamic synaptic bombardment and iii) the level of correlation imposed between converging thalamic relay cells. In particular, our results demonstrate counterintuitively that the retinocortical signal transfer efficiency increases when the level of correlation across thalamic cells decreases. This suggests that the transfer efficiency of relay cells could be selectively amplified when they become simultaneously desynchronized by the cortical feedback. When applied to the intact brain, this network regulation mechanism could direct an attentional focus to specific thalamic subassemblies and select the appropriate input lines to the cortex according to the descending influence of

  17. Heavy flavors in nucleus-nucleus and proton-nucleus collisions

    Directory of Open Access Journals (Sweden)

    Nardi Marzia

    2016-01-01

    Full Text Available A multi-step setup for heavy-flavor studies in high-energy nucleus-nucleus (AA and proton-nucleus (pA collisions is presented. The propagation of the heavy quarks in the medium is described in a framework provided by the relativistic Langevin equation, here solved using weak-coupling transport coefficients. Successively, the heavy quarks hadronize in the medium. We compute the nuclear modification factor and the elliptic flow parameter of the final Dmesons both in AA and in pA collisions and compare our results to experimental data.

  18. Heavy flavors in nucleus-nucleus and proton-nucleus collisions

    Science.gov (United States)

    Nardi, Marzia

    2016-11-01

    A multi-step setup for heavy-flavor studies in high-energy nucleus-nucleus (AA) and proton-nucleus (pA) collisions is presented. The propagation of the heavy quarks in the medium is described in a framework provided by the relativistic Langevin equation, here solved using weak-coupling transport coefficients. Successively, the heavy quarks hadronize in the medium. We compute the nuclear modification factor and the elliptic flow parameter of the final Dmesons both in AA and in pA collisions and compare our results to experimental data.

  19. A scaling relation between proton-nucleus and nucleus-nucleus collisions

    OpenAIRE

    Basar, Gokce; Teaney, Derek

    2014-01-01

    It is recently discovered that at high multiplicy, the proton-nucleus ($pA$) collisions give rise to two particle correlations that are strikingly similar to those of nucleus-nucleus ($AA$) collisions at the same multiplicity, although the system size is smaller in $pA$. Using an independent cluster model and a simple conformal scaling argument, where the ratio of the mean free path to the system size stays constant at fixed multiplicity, we argue that flow in $pA$ emerges as a collective res...

  20. Automatic Measurement of Thalamic Diameter in 2-D Fetal Ultrasound Brain Images Using Shape Prior Constrained Regularized Level Sets.

    Science.gov (United States)

    Sridar, Pradeeba; Kumar, Ashnil; Li, Changyang; Woo, Joyce; Quinton, Ann; Benzie, Ron; Peek, Michael J; Feng, Dagan; Kumar, R Krishna; Nanan, Ralph; Kim, Jinman

    2017-07-01

    We derived an automated algorithm for accurately measuring the thalamic diameter from 2-D fetal ultrasound (US) brain images. The algorithm overcomes the inherent limitations of the US image modality: nonuniform density; missing boundaries; and strong speckle noise. We introduced a "guitar" structure that represents the negative space surrounding the thalamic regions. The guitar acts as a landmark for deriving the widest points of the thalamus even when its boundaries are not identifiable. We augmented a generalized level-set framework with a shape prior and constraints derived from statistical shape models of the guitars; this framework was used to segment US images and measure the thalamic diameter. Our segmentation method achieved a higher mean Dice similarity coefficient, Hausdorff distance, specificity, and reduced contour leakage when compared to other well-established methods. The automatic thalamic diameter measurement had an interobserver variability of -0.56 ± 2.29 mm compared to manual measurement by an expert sonographer. Our method was capable of automatically estimating the thalamic diameter, with the measurement accuracy on par with clinical assessment. Our method can be used as part of computer-assisted screening tools that automatically measure the biometrics of the fetal thalamus; these biometrics are linked to neurodevelopmental outcomes.

  1. Charged pion anisotropy in relativistic nucleus-nucleus collisions

    Energy Technology Data Exchange (ETDEWEB)

    Poitou, J.; L' Hote, D.; Cavata, C.; Babinet, R.; Demoulins, M.; Fanet, H.; Gosset, J.; Lemaire, M.C.; Le Merdy, A.; Lucas, B.; Terrien, Y.; Valette, O. (CEN Saclay, 91 - Gif-sur-Yvette (France)); Alard, J.P.; Augerat, J.; Bastid, N.; Charmensat, P.; Dupieux, P.; Fraysse, L.; Marroncle, J.; Montarou, G.; Parizet, M.J.; Rahmani, A. (LPC Clermont-Ferrand, 63 - Aubiere (France)); Brochard, F.; Gorodetzky, P.; Racca, C. (CRN, 67 - Strasbourg (France))

    1992-01-27

    The momentum distributions with respect to the reaction plane for charged pions emitted in Ne-nucleus and Ar-nucleus collisions have been measured with the 4{pi} detector Diogene at the Saturne synchrotron. The reaction plane is estimated from the baryon momenta, using a standard technique for flow analysis. The pions exhibit a non-zero flow. For asymmetric systems, there is a preferential emission in the direction of the lighter (projectile) nucleus. Such a behaviour contradicts the predictions of INC calculations and is underestimated by QMD calculations which include mean field effects. It can be interpreted with a simple geometrical model in terms of absorption by the spectator nuclear matter. (orig.).

  2. Practical CT classification for thalamic hemorrhage. Relationship between localization of hematoma and prognosis

    Energy Technology Data Exchange (ETDEWEB)

    Kurita, Hiroki; Furuya, Kazuhide; Segawa, Hiromu; Taniguchi, Tamiki; Sano, Keiji (Fuji Brain Inst. and Hospital, Shizuoka (Japan)); Shiokawa, Yoshiaki

    1994-06-01

    The study was designed to establish CT classification for predicting prognosis of thalamic hemorrhage. A retrospective analysis was made on CT scans from 100 patients with hypertensive thalamic hemorrhage less than 4 cm. Four lines were drawn on axial CT scans at the level of the pineal body: (A) line between the lateral edge of the anterior horn and the midpoint of the third ventricle; (B) vertebral line to the sagittal line from the midpoint of the third ventricle; (C) line between the lateral edge of the trigone and the midpoint of the third ventricle; and (D) line between the lateral edge of the anterior horn and the lateral edge of the trigone. According to the lateral extension, the location of hematoma fell into three types: anterior type in which the center of hematoma was located between lines A and B (type A); posterior type in which the center of hematoma was located between lines B and C and external margin of hematoma was localized medial to line D (type P); postero-lateral type in which the center of hematoma was located between lines B and C and showed lateral extension beyond line D (type PL). Severe hemiparesis was observed in 15.3% for type A, 21.8% for type P, and 59.3% for type PL. Good prognosis was seen in 84.7% for type A, 70.9% for type P, and 12.5% for type PL. Acute disturbance of consciousness was significantly observed in patients with medial extension of hematoma (86.4%) as compared with those without it (21.4%). These results indicated that CT classification is a simple means for predicting functional outcome of motor paresis and consciousness disturbance in patients with thalamic hemorrhage. (N.K.).

  3. Thalamic metabolic alterations with cognitive dysfunction in idiopathic trigeminal neuralgia: a multivoxel spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuan; Bao, Faxiu; Ma, Shaohui; Guo, Chenguang; Jin, Chenwang; Zhang, Ming [First Affiliated Hospital of Xi' an Jiaotong University, Department of Medical Imaging, Xi' an, Shaanxi (China); Li, Dan [First Affiliated Hospital of Xi' an Jiaotong University, Department of Respiratory and Critical Care Medicine, Xi' an, Shaanxi (China)

    2014-08-15

    Although abnormalities in metabolite compositions in the thalamus are well described in patients with idiopathic trigeminal neuralgia (ITN), differences in distinct thalamic subregions have not been measured with proton magnetic resonance spectroscopy ({sup 1}H-MRS), and whether there are correlations between thalamic metabolites and cognitive function still remain unknown. Multivoxel MRS was recorded to investigate the metabolic alterations in the thalamic subregions of patients with ITN. The regions of interest were localized in the anterior thalamus (A-Th), intralaminar portion of the thalamus (IL-Th), posterior lateral thalamus (PL-Th), posterior medial thalamus (PM-Th), and medial and lateral pulvinar of the thalamus (PuM-Th and PuL-Th). The N-acetylaspartate to creatine (NAA/Cr) and choline to creatine (Cho/Cr) ratios were measured in the ITN and control groups. Scores of the visual analogue scale (VAS) and the Montreal Cognitive Assessment (MoCA) were analyzed to correlate with the neuroradiological findings. The NAA/Cr ratio in the affected side of PM-Th and PL-Th in ITN patients was statistically lower than that in the corresponding regions of the thalamus in controls. The NAA/Cr ratio in the affected PM-Th was negatively associated with VAS and disease duration. Furthermore, decreases of NAA/Cr and Cho/Cr were detected in the affected side of IL-Th, and lower Cho/Cr was positively correlated with MoCA values in the ITN group. Our result of low level of NAA/Cr in the affected PM-Th probably serves as a marker of the pain-rating index, and decreased Cho/Cr in IL-Th may be an indicator of cognitive disorder in patients with ITN. (orig.)

  4. The importance of combinatorial gene expression in early mammalian thalamic patterning and thalamocortical axonal guidance

    Directory of Open Access Journals (Sweden)

    David J Price

    2012-03-01

    Full Text Available The thalamus is essential for sensory perception. In mammals, work on the mouse has taught us most of what we know about how it develops and connects to the cortex. The mature thalamus of all mammalian species comprises numerous anatomically distinct collections of neurons called nuclei that differ in function, connectivity and molecular constitution. At the time of its initial appearance as a distinct structure following neural tube closure, the thalamus is already patterned by the regional expression of numerous regulatory genes. This patterning, which lays down the blueprint for later development of thalamic nuclei, predates the development of thalamocortical projections. In this review we apply novel analytical methods to gene expression data available in the Allen Developing Mouse Brain Atlas to highlight the complex organized molecular heterogeneity already present among cells in the thalamus from the earliest stages at which it contains differentiating neurons. This early patterning is likely to invest in axons growing from different parts of the thalamus the ability to navigate in an ordered way to their appropriate area in the cerebral cortex. We review the mechanisms and cues that thalamic axons use, encounter and interpret to attain the cortex. Mechanisms include guidance by previously-generated guidepost cells, such as those in the subpallium that maintain thalamic axonal order and direction, and axons such as those of reciprocal projections from intermediate structures or from the cortex itself back towards the thalamus. We show how thalamocortical pathfinding involves numerous guidance cues operating at a series of steps along their route. We stress the importance of the combinatorial actions of multiple genes for the development of the numerous specific identities and functions of cells in this exquisitely complex system and their orderly innervation of the cortex.

  5. Thalamic lesion and epilepsy with generalized seizures, ESES and spike-wave paroxysms--report of three cases.

    Science.gov (United States)

    Kelemen, Anna; Barsi, Péter; Gyorsok, Zsuzsanna; Sarac, Judit; Szucs, Anna; Halász, Péter

    2006-09-01

    We report three patients, who have thalamic lesion and secondary generalized epilepsy with generalized spike wave pattern. The first two patients have unilateral perinatal lesion, one with generalized tonic-clonic seizures on awakening the other with Landau-Kleffner-like syndrome. During the course of the disease both children developed electrical status epilepticus in slow wave sleep (ESES). The third patient has a dominantly unilateral thalamic tumor and epilepsy that mimics juvenile myoclonic epilepsy. All the patients have a lesion located in the inferior-medial-posterior part of the thalamus. The role of some thalamic and subthalamic nuclei in the generalized spike-wave electrical pattern patophysiology is discussed, with emphasis on the possible role of the inhibitory system from the zona incerta.

  6. Multimodal quantitative magnetic resonance imaging of thalamic development and aging across the human lifespan: implications to neurodegeneration in multiple sclerosis.

    Science.gov (United States)

    Hasan, Khader M; Walimuni, Indika S; Abid, Humaira; Frye, Richard E; Ewing-Cobbs, Linda; Wolinsky, Jerry S; Narayana, Ponnada A

    2011-11-16

    The human brain thalami play essential roles in integrating cognitive, sensory, and motor functions. In multiple sclerosis (MS), quantitative magnetic resonance imaging (qMRI) measurements of the thalami provide important biomarkers of disease progression, but late development and aging confound the interpretation of data collected from patients over a wide age range. Thalamic tissue volume loss due to natural aging and its interplay with lesion-driven pathology has not been investigated previously. In this work, we used standardized thalamic volumetry combined with diffusion tensor imaging, T2 relaxometry, and lesion mapping on large cohorts of controls (N = 255, age range = 6.2-69.1 years) and MS patients (N = 109, age range = 20.8-68.5 years) to demonstrate early age- and lesion-independent thalamic neurodegeneration.

  7. Thalamic GABA levels and occupational manganese neurotoxicity: Association with exposure levels and brain MRI.

    Science.gov (United States)

    Ma, Ruoyun E; Ward, Eric J; Yeh, Chien-Lin; Snyder, Sandy; Long, Zaiyang; Gokalp Yavuz, Fulya; Zauber, S Elizabeth; Dydak, Ulrike

    2017-09-02

    Excessive occupational exposure to Manganese (Mn) has been associated with clinical symptoms resembling idiopathic Parkinson's disease (IPD), impairing cognitive and motor functions. Several studies point towards an involvement of the brain neurotransmitter system in Mn intoxication, which is hypothesized to be disturbed prior to onset of symptoms. Edited Magnetic Resonance Spectroscopy (MRS) offers the unique possibility to measure γ-amminobutyric acid (GABA) and other neurometabolites in vivo non-invasively in workers exposed to Mn. In addition, the property of Mn as Magnetic Resonance Imaging (MRI) contrast agent may be used to study Mn deposition in the human brain. In this study, using MRI, MRS, personal air sampling at the working place, work history questionnaires, and neurological assessment (UPDRS-III), the effects of chronic Mn exposure on the thalamic GABAergic system was studied in a group of welders (N=39) with exposure to Mn fumes in a typical occupational setting. Two subgroups of welders with different exposure levels (Low: N=26; mean air Mn=0.13±0.1mg/m(3); High: N=13; mean air Mn=0.23±0.18mg/m(3)), as well as unexposed control workers (N=22, mean air Mn=0.002±0.001mg/m(3)) were recruited. The group of welders with higher exposure showed a significant increase of thalamic GABA levels by 45% (p<0.01, F(1,33)=9.55), as well as significantly worse performance in general motor function (p<0.01, F(1,33)=11.35). However, welders with lower exposure did not differ from the controls in GABA levels or motor performance. Further, in welders the thalamic GABA levels were best predicted by past-12-months exposure levels and were influenced by the Mn deposition in the substantia nigra and globus pallidus. Importantly, both thalamic GABA levels and motor function displayed a non-linear pattern of response to Mn exposure, suggesting a threshold effect. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Thalamic hemorrhage in a 4-year-old child induced by nephro-vascular hypertension

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, E.; Savasta, S.; Torcetta, F.; Solmi, M.; Beluffi, G.; Gajno, T.M.

    1989-08-01

    A child affected by cardiomyopathy from the age of 12 months suddenly manifested right hemiparesis and dysarthria at the age of 48/12 years. Emergency brain CT showed a hemorrhage in progress in the left thalamic area. A serve from of hypertension was concomitant and resisted all pharmacological treatment. Retrograde transfemural aortography pointed out an atrophy of the right renal artery. This finding, together with the high renin and aldosterone values, indicated a nephrogenic hypertension causing both the cardiomyopathy found at 12 months of age and the endocranial hermorrhage. Right nephrectomy led to the normalization of blood pressure. (orig.).

  9. Quasielastic K-nucleus scattering

    CERN Document Server

    Pace, A D; Oset, E

    1997-01-01

    Quasielastic K^+ - nucleus scattering data at q=290, 390 and 480 MeV/c are analyzed in a finite nucleus continuum random phase approximation framework, using a density-dependent particle-hole interaction. The reaction mechanism is consistently treated according to Glauber theory, keeping up to two-step inelastic processes. A good description of the data is achieved, also providing a useful constraint on the strength of the effective particle-hole interaction in the scalar-isoscalar channel at intermediate momentum transfers. We find no evidence for the increase in the effective number of nucleons participating in the reaction which has been reported in the literature.

  10. Thalamic nuclear abnormalities as a contributory factor in sudden cardiac deaths among patients with schizophrenia

    Directory of Open Access Journals (Sweden)

    Fulvio A. Scorza

    2010-01-01

    Full Text Available Patients with schizophrenia have a two- to three-fold increased risk of premature death as compared to patients without this disease. It has been established that patients with schizophrenia are at a high risk of developing cardiovascular disease. Moreover, an important issue that has not yet been explored is a possible existence of a "cerebral" focus that could trigger sudden cardiac death in patients with schizophrenia. Along these lines, several structural and functional alterations in the thalamic complex are evident in patients with schizophrenia and have been correlated with the symptoms manifested by these patients. With regard to abnormalities on the cellular and molecular level, previous studies have shown that schizophrenic patients have fewer neuronal projections from the thalamus to the prefrontal cortex as well as a reduced number of neurons, a reduced volume of either the entire thalamus or its subnuclei, and abnormal glutamate signaling. According to the glutamate hypothesis of schizophrenia, hypofunctional corticostriatal and striatothalamic projections are directly involved in the pathophysiology of the disease. Animal and post-mortem studies have provided a large amount of evidence that links the sudden unexpected death in epilepsy (SUDEP that occurs in patients with schizophrenia and epilepsy to thalamic changes. Based on the results of these prior studies, it is clear that further research regarding the relationship between the thalamus and sudden cardiac death is of vital importance.

  11. Thalamic mechanisms underlying alpha-delta sleep with implications for fibromyalgia.

    Science.gov (United States)

    Vijayan, Sujith; Klerman, Elizabeth B; Adler, Gail K; Kopell, Nancy J

    2015-09-01

    Alpha-delta sleep is the abnormal intrusion of alpha activity (8- to 13-Hz oscillations) into the delta activity (1- to 4-Hz oscillations) that defines slow-wave sleep. Alpha-delta sleep is especially prevalent in fibromyalgia patients, and there is evidence suggesting that the irregularities in the sleep of these patients may cause the muscle and tissue pain that characterizes the disorder. We constructed a biophysically realistic mathematical model of alpha-delta sleep. Imaging studies in fibromyalgia patients suggesting altered levels of activity in the thalamus motivated a thalamic model as the source of alpha activity. Since sodium oxybate helps to alleviate the symptoms of fibromyalgia and reduces the amount of alpha-delta sleep in fibromyalgia patients, we examined how changes in the molecular targets of sodium oxybate affected alpha-delta activity in our circuit. Our model shows how alterations in GABAB currents and two thalamic currents, Ih (a hyperpolarization-activated current) and a potassium leak current, transform a circuit that normally produces delta oscillations into one that produces alpha-delta activity. Our findings suggest that drugs that reduce Ih conductances and/or increase potassium conductances, without necessarily increasing GABAB conductances, might be sufficient to restore delta sleep. Furthermore, they suggest that delta sleep might be restored by drugs that preferentially target these currents in the thalamus; such drugs might have fewer side effects than drugs that act systemically.

  12. Thalamic input to distal apical dendrites in neocortical layer 1 is massive and highly convergent.

    Science.gov (United States)

    Rubio-Garrido, Pablo; Pérez-de-Manzo, Flor; Porrero, César; Galazo, Maria J; Clascá, Francisco

    2009-10-01

    Input to apical dendritic tufts is now deemed crucial for associative learning, attention, and similar "feedback" interactions in the cerebral cortex. Excitatory input to apical tufts in neocortical layer 1 has been traditionally assumed to be predominantly cortical, as thalamic pathways directed to this layer were regarded relatively scant and diffuse. However, the sensitive tracing methods used in the present study show that, throughout the rat neocortex, large numbers (mean approximately 4500/mm(2)) of thalamocortical neurons converge in layer 1 and that this convergence gives rise to a very high local density of thalamic terminals. Moreover, we show that the layer 1-projecting neurons are present in large numbers in most, but not all, motor, association, limbic, and sensory nuclei of the rodent thalamus. Some layer 1-projecting axons branch to innervate large swaths of the cerebral hemisphere, whereas others arborize within only a single cortical area. Present data imply that realistic modeling of cortical circuitry should factor in a dense axonal canopy carrying highly convergent thalamocortical input to pyramidal cell apical tufts. In addition, they are consistent with the notion that layer 1-projecting axons may be a robust anatomical substrate for extensive "feedback" interactions between cortical areas via the thalamus.

  13. T-type calcium channels consolidate tonic action potential output of thalamic neurons to neocortex.

    Science.gov (United States)

    Deleuze, Charlotte; David, François; Béhuret, Sébastien; Sadoc, Gérard; Shin, Hee-Sup; Uebele, Victor N; Renger, John J; Lambert, Régis C; Leresche, Nathalie; Bal, Thierry

    2012-08-29

    The thalamic output during different behavioral states is strictly controlled by the firing modes of thalamocortical neurons. During sleep, their hyperpolarized membrane potential allows activation of the T-type calcium channels, promoting rhythmic high-frequency burst firing that reduces sensory information transfer. In contrast, in the waking state thalamic neurons mostly exhibit action potentials at low frequency (i.e., tonic firing), enabling the reliable transfer of incoming sensory inputs to cortex. Because of their nearly complete inactivation at the depolarized potentials that are experienced during the wake state, T-channels are not believed to modulate tonic action potential discharges. Here, we demonstrate using mice brain slices that activation of T-channels in thalamocortical neurons maintained in the depolarized/wake-like state is critical for the reliable expression of tonic firing, securing their excitability over changes in membrane potential that occur in the depolarized state. Our results establish a novel mechanism for the integration of sensory information by thalamocortical neurons and point to an unexpected role for T-channels in the early stage of information processing.

  14. Thalamic Atrophy Contributes to Low Slow Wave Sleep in Neuromyelitis Optica Spectrum Disorder

    Science.gov (United States)

    Su, Lei; Han, Yujuan; Xue, Rong; Wood, Kristofer; Shi, Fu-Dong; Liu, Yaou; Fu, Ying

    2016-01-01

    Slow wave sleep abnormality has been reported in neuromyelitis optica spectrum disorder (NMOSD), but mechanism for such abnormality is unknown. To determine the structural defects in the brain that account for the decrease of slow wave sleep in NMOSD patients. Thirty-three NMOSD patients and 18 matched healthy controls (HC) were enrolled. Polysomnography was used to monitor slow wave sleep and three-dimensional T1-weighted MRIs were obtained to assess the alterations of grey matter volume. The percentage of deep slow wave sleep decreased in 93% NMOSD patients. Compared to HC, a reduction of grey matter volume was found in the bilateral thalamus of patients with a lower percentage of slow wave sleep (FWE corrected at cluster-level, p 400 voxels). Furthermore, the right thalamic fraction was positively correlated with the decrease in the percentage of slow wave sleep in NMOSD patients (p 200 voxels). Our study identified that thalamic atrophy is associated with the decrease of slow wave sleep in NMOSD patients. Further studies should evaluate whether neurotransmitters or hormones which stem from thalamus are involved in the decrease of slow wave sleep. PMID:28053819

  15. Case of herpes simplex encephalitis(HSE) with a thalamic lesion

    Energy Technology Data Exchange (ETDEWEB)

    Fujimori, K.; Koike, R.; Yuasa, T.; Miyatake, T.; Ito, J.

    1987-02-01

    A case of herpes simplex encephalitis (HSE) with thalamic involvement was reported. The patient, a 27-year-old man, was admitted because of abnormal behavior and fever. He exhibited a disturbance of consciousness, meningial signs, and hyperreflexia. A CT scan of the head revealed diffuse brain edema. Acute encephalitis, especially HSE, was suspected, and so the intravenous administration of acyclovir and steroid therapy were started. The titer of herpes simplex Type 1 virus, as measured by CF and ELISA, was found to have increased amounts of serum and cerebrospinal fluid. 5 days after the onset, his consciousness worsened. He could not tell his name and scarely opened his eyes upon pain stimulation. A CT scan at this time showed low-density lesions in the left thalamus, cingulate gyrus, and the posterior portion of the putamen. About 5 days later, his consciousness level was increased, but he was mute. This symptom was thought to be thalamic aphasia, which might be correlative with the low-density lesions shown in the left thalamus by the CT scan. About 30 days after the onset of the disease, his speech became normal, and a CT scan at 51 hospital days showed no abnormality. The etiology of low-density lesions of the left thalamus in the CT scan is speculated to be as follows: firstly, vascular damage of circulation disturbance, and secondly a special affinity of herpes simplex Type 1 virus to the thalamus.

  16. Persistence of disturbed thalamic glucose metabolism in a case of Wernicke-Korsakoff syndrome.

    Science.gov (United States)

    Fellgiebel, Andreas; Scheurich, Armin; Siessmeier, Thomas; Schmidt, Lutz G; Bartenstein, Peter

    2003-10-30

    We report the case of a 40-year-old alcoholic male patient, hospitalized with an acute ataxia of stance and gait, ocular muscle weakness with nystagmus and a global apathetic-confusional state. After admission, an amnestic syndrome with confabulation was also observed and diagnosis of Wernicke-Korsakoff syndrome was made. Under treatment with intravenous thiamine, the patient recovered completely from gaze weakness and ataxia, whereas a severe amnestic syndrome persisted. Fluorodeoxyglucose (FDG) positron emission tomography (PET) showed bilateral thalamic and severe bilateral temporal-parietal hypometabolism resembling a pattern typical for Alzheimer's disease. Longitudinal assessment of the alcohol-abstinent and thiamine-substituted patient revealed improvements of clinical state and neuropsychological performance that were paralleled by recovered cerebral glucose metabolism. In contrast to metabolic rates that increased between 7.1% (anterior cingulate, left) and 23.5% (parietal, left) in cortical areas during a 9-month remission period, thalamic glucose metabolism remained severely disturbed over time (change: left +0.2%, right +0.3%).

  17. Dural arteriovenous fistula-induced thalamic dementia: report of 4 cases.

    Science.gov (United States)

    Holekamp, Terrence F; Mollman, Matthew E; Murphy, Rory K J; Kolar, Grant R; Kramer, Neha M; Derdeyn, Colin P; Moran, Christopher J; Perrin, Richard J; Rich, Keith M; Lanzino, Giuseppe; Zipfel, Gregory J

    2016-06-01

    Nonhemorrhagic neurological deficits are underrecognized symptoms of intracranial dural arteriovenous fistulas (dAVFs) having cortical venous drainage. These symptoms are the consequence of cortical venous hypertension and portend a clinical course with increased risk of neurological morbidity and mortality. One rarely documented and easily misinterpreted type of nonhemorrhagic neurological deficit is progressive dementia, which can result from venous hypertension in the cortex or in bilateral thalami. The latter, which is due to dAVF drainage into the deep venous system, is the less common of these 2 dementia syndromes. Herein, the authors report 4 cases of dAVF with venous drainage into the vein of Galen causing bithalamic edema and rapidly progressive dementia. Two patients were treated successfully with endovascular embolization, and the other 2 patients were treated successfully with endovascular embolization followed by surgery. The radiographic abnormalities and presenting symptoms rapidly resolved after dAVF obliteration in all 4 cases. Detailed descriptions of these 4 cases are presented along with a critical review of 15 previously reported cases. In our analysis of these 19 published cases, the following were emphasized: 1) the clinical and radiographic differences between dAVF-induced thalamic versus cortical dementia syndromes; 2) the differential diagnosis and necessary radiographic workup for patients presenting with a rapidly progressive thalamic dementia syndrome; 3) the frequency at which delays in diagnosis occurred and potentially dangerous and avoidable diagnostic procedures were used; and 4) the rapidity and completeness of symptom resolution following dAVF treatment.

  18. Thalamic Atrophy Contributes to Low Slow Wave Sleep in Neuromyelitis Optica Spectrum Disorder.

    Science.gov (United States)

    Su, Lei; Han, Yujuan; Xue, Rong; Wood, Kristofer; Shi, Fu-Dong; Liu, Yaou; Fu, Ying

    2016-12-01

    Slow wave sleep abnormality has been reported in neuromyelitis optica spectrum disorder (NMOSD), but mechanism for such abnormality is unknown. To determine the structural defects in the brain that account for the decrease of slow wave sleep in NMOSD patients. Thirty-three NMOSD patients and 18 matched healthy controls (HC) were enrolled. Polysomnography was used to monitor slow wave sleep and three-dimensional T1-weighted MRIs were obtained to assess the alterations of grey matter volume. The percentage of deep slow wave sleep decreased in 93% NMOSD patients. Compared to HC, a reduction of grey matter volume was found in the bilateral thalamus of patients with a lower percentage of slow wave sleep (FWE corrected at cluster-level, p 400 voxels). Furthermore, the right thalamic fraction was positively correlated with the decrease in the percentage of slow wave sleep in NMOSD patients (p 200 voxels). Our study identified that thalamic atrophy is associated with the decrease of slow wave sleep in NMOSD patients. Further studies should evaluate whether neurotransmitters or hormones which stem from thalamus are involved in the decrease of slow wave sleep.

  19. Central thalamic deep brain stimulation for support of forebrain arousal regulation in the minimally conscious state.

    Science.gov (United States)

    Schiff, Nicholas D

    2013-01-01

    This chapter considers the use of central thalamic deep brain stimulation (CT/DBS) to support arousal regulation mechanisms in the minimally conscious state (MCS). CT/DBS for selected patients in a MCS is first placed in the historical context of prior efforts to use thalamic electrical brain stimulation to treat the unconscious clinical conditions of coma and vegetative state. These previous studies and a proof of concept result from a single-subject study of a patient in a MCS are reviewed against the background of new population data providing benchmarks of the natural history of vegetative and MCSs. The conceptual foundations for CT/DBS in selected patients in a MCS are then presented with consideration of both circuit and cellular mechanisms underlying recovery of consciousness identified from empirical studies. Directions for developing future generalizable criteria for CT/DBS that focus on the integrity of necessary brain systems and behavioral profiles in patients in a MCS that may optimally response to support of arousal regulation mechanisms are proposed.

  20. Heavy-ion nucleus scattering

    CERN Document Server

    Rahman, M A; Haque, S

    2003-01-01

    Heavy ion-nucleus scattering is an excellent laboratory to probe high spin phenomena, exotic nuclei and for the analysis of various exit channels. The Strong Absorption Model or the generalized diffraction models, which are semi-classical in nature, have been employed in the description of various heavy ion-nucleus scattering phenomena with reasonable success. But one needs to treat the deflection function (scattering angles) quantum mechanically in the Wave Mechanical picture for the appropriate description of the heavy-ion nucleus scattering phenomena. We have brought the mathematics for the cross-section of the heavy-ion nucleus scattering to an analytic expression taking account of the deflection function (scattering angles) quantum mechanically. sup 9 Be, sup 1 sup 6 O, sup 2 sup 0 Ne and sup 3 sup 2 S heavy-ion beams elastic scattering from sup 2 sup 8 Si, sup 2 sup 4 Mg and sup 4 sup 0 Ca target nuclei at various projectile energies over the range 20-151 MeV have been analysed in terms of the 2-paramet...

  1. Dimuon enhancement in nucleus-nucleus ultrarelativistic interactions

    Energy Technology Data Exchange (ETDEWEB)

    Bordalo, Paula; Abreu, M.C.; Alessandro, B.; Alexa, C.; Arnaldi, R.; Astruc, J.; Atayan, M.; Baglin, C.; Baldit, A.; Bedjidian, M.; Bellaiche, F.; Beole, S.; Bohrani, A.; Boldea, V.; Bussiere, A.; Capelli, L.; Caponi, V.; Casagrande, L.; Castor, J.; Chambon, T.; Chaurand, B.; Chevrot, I.; Cheynis, B.; Chiavassa, E.; Cicalo, C.; Comets, M.P.; Constans, N.; Constantinescu, S.; Contardo, D.; Cruz, J.; De Falco, A.; De Marco, N.; Dellacasa, G.; Devaux, A.; Dita, S.; Drapier, O.; Ducroux, L.; Espagnon, B.; Fargeix, J.; Ferreira, R.; Filippov, S.N.; Fleuret, F.; Force, P.; Gallio, M.; Gavrilov, Y.K.; Gerschel, C.; Giubellino, P.; Golubeva, M.B.; Gonin, M.; Gorodetzky, P.; Grigorian, A.A.; Grossiord, J.Y.; Guber, F.F.; Guichard, A.; Gulkanyan, H.; Hakobyan, R.; Haroutunian, R.; Idzik, M.; Jouan, D.; Karavitcheva, T.L.; Kluberg, L.; Kossakowski, R.; Kurepin, A.B.; Landau, G.; Le Bornec, Y.; Lourenco, C.; Luquin, L.; Macciotta, P.; Mac Cormick, M.; Mandry, R.; Marzari-Chiesa, A.; Masera, M.; Masoni, A.; Mehrabyan, S.; Monteno, M.; Mourgues, S.; Musso, A.; Ohlsson-Malek, F.; Petiau, P.; Piccotti, A.; Pizzi, J.R.; Prado da Silva, W.L.; Puddu, G.; Quintans, C.; Racca, C.; Ramello, L.; Ramos, S.; Rato-Mendes, P.; Riccati, L.; Romana, A.; Ropotar, I.; Saturnini, P.; Scomparin, E.; Serci, S.; Shahoyan, R.; Silva, S.; Sitta, M.; Soave, C.; Sonderegger, P.; Tarrago, X.; Topilskaya, N.S.; Usai, G.L.; Varela, J.; Vercellin, E.; Villatte, L

    1999-12-27

    The study of muon pairs in the mass region 1.5 < M{sub {mu}}{sub {mu}} < 2.5 GeV/c{sup 2} in 450 GeV/c p-A, 200 GeV/nucleon S-U and 158 GeV/nucleon Pb-Pb collisions is presented. In p-A interactions, the dimuon signal mass spectra are well described by a superposition of Drell-Yan and charmed meson semi-leptonic decay contributions, in agreement with previous experiments when considering a linear A dependence. In nucleus-nucleus reactions, taking only into account these two physical ingredients, a dimuon enhancement both with increasing A{center_dot}B and centrality is observed.

  2. Azimuthal correlation and collective behavior in nucleus-nucleus collisions

    Energy Technology Data Exchange (ETDEWEB)

    Mali, P.; Mukhopadhyay, A., E-mail: amitabha-62@rediffmail.com; Sarkar, S. [University of North Bengal, Department of Physics (India); Singh, G. [SUNY at Fredonia, Department of Computer and Information Science (United States)

    2015-03-15

    Various flow effects of nuclear and hadronic origin are investigated in nucleus-nucleus collisions. Nuclear emulsion data collected from {sup 84}Kr + Ag/Br interaction at an incident energy of 1.52 GeV per nucleon and from {sup 28}Si + Ag/Br interaction at an incident energy of 14.5 GeV per nucleon are used in the investigation. The transverse momentum distribution and the flow angle analysis show that collective behavior, like a bounce-off effect of the projectile spectators and a sidesplash effect of the target spectators, are present in our event samples. From an azimuthal angle analysis of the data we also see a direct flow of the projectile fragments and of the produced charged particles. On the other hand, for both data samples the target fragments exhibit a reverse flow, while the projectile fragments exhibit an elliptic flow. Relevant flow parameters are measured.

  3. Transverse Energy in nucleus-nucleus collisions: A review

    Energy Technology Data Exchange (ETDEWEB)

    Tincknell, M.

    1988-11-15

    The status of Transverse Energy (E/sub T/) in relativistic nucleus-nucleus collisions at the Brookhaven AGS and the CERN SPS is reviewed. The definition of E/sub T/ and its physical significance are discussed. The basic techniques and limitations of the experimental measurements are presented. The acceptances of the major experiments to be discussed are shown, along with remarks about their idiosyncrasies. The data demonstrate that the nuclear geometry of colliding spheres primarily determines the shapes of the observed spectra. Careful account of the acceptances is crucial to comparing and interpreting results. It is concluded that nuclear stopping power is high, and that the amount of energy deposited into the interaction volume is increasing with beam energy even at SPS energies. The energy densities believed to be obtained at the SPS are close to the critical values predicted for the onset of a quark-gluon plasma. 25 refs., 8 figs.

  4. Effect of spinal manipulation thrust duration on trunk mechanical activation thresholds of nociceptive-specific lateral thalamic neurons.

    Science.gov (United States)

    Reed, William R; Sozio, Randall; Pickar, Joel G; Onifer, Stephen M

    2014-10-01

    The objective of this preliminary study was to determine if high-velocity, low-amplitude spinal manipulation (HVLA-SM) thrust duration alters mechanical trunk activation thresholds of nociceptive-specific (NS) lateral thalamic neurons. Extracellular recordings were obtained from 18 NS neurons located in 2 lateral thalamic nuclei (ventrolateral [n = 12] and posterior [n = 6]) in normal anesthetized Wistar rats. Response thresholds to electronic von Frey anesthesiometer (rigid tip) mechanical trunk stimuli applied in 3 lumbar directions (dorsal-ventral, 45° caudal, and 45° cranial) were determined before and immediately after the delivery of 3 HVLA-SM thrust durations (time control 0, 100, and 400 milliseconds). Mean changes in mechanical trunk activation thresholds were compared using a mixed model analysis of variance. High-velocity, low-amplitude spinal manipulation duration did not significantly alter NS lateral thalamic neurons' mechanical trunk responses to any of the 3 directions tested with the anesthesiometer. This study is the first to examine the effect of HVLA-SM thrust duration on NS lateral thalamic mechanical response thresholds. High-velocity, low-amplitude spinal manipulation thrust duration did not affect mechanical trunk thresholds. Copyright © 2014 National University of Health Sciences. Published by Elsevier Inc. All rights reserved.

  5. Functional characterization and expression of thalamic GABA(B) receptors in a rodent model of Parkinson's disease

    NARCIS (Netherlands)

    de Groote, C; Wullner, U; Loschmann, PA; Luiten, PGM; Klockgether, T

    1999-01-01

    Increased GABAergic neurotransmission of the basal ganglia output nuclei projecting to the motor thalamus is thought to contribute to the pathophysiology of Parkinson's disease. We investigated the functional role of thalamic GABA(B) receptors in a rodent model of Parkinson's disease. First, we exam

  6. Crossed cerebellar diaschisis in acute isolated thalamic infarction detected by dynamic susceptibility contrast perfusion MRI.

    Directory of Open Access Journals (Sweden)

    Alex Förster

    Full Text Available PURPOSE: Crossed cerebellar diaschisis (CCD is a state of neural depression caused by loss of connections to injured neural structures remote from the cerebellum usually evaluated by positron emission tomography. Recently it has been shown that dynamic susceptibility contrast perfusion weighted MRI (PWI may also be feasible to detect the phenomenon. In this study we aimed to assess the frequency of CCD on PWI in patients with acute thalamic infarction. METHODS: From a MRI report database we identified patients with acute isolated thalamic infarction. Contralateral cerebellar hypoperfusion was identified by inspection of time to peak (TTP maps and evaluated quantitatively on TTP, mean transit time (MTT, cerebral blood flow and volume (CBF, CBV maps. A competing cerebellar pathology or an underlying vascular pathology were excluded. RESULTS: A total of 39 patients was included. Common symptoms were hemiparesis (53.8%, hemihypaesthesia (38.5%, dysarthria (30.8%, aphasia (17.9%, and ataxia (15.4%. In 9 patients (23.1% PWI showed hypoperfusion in the contralateral cerebellar hemisphere. All of these had lesions in the territory of the tuberothalamic, paramedian, or inferolateral arteries. Dysarthria was observed more frequently in patients with CCD (6/9 vs. 6/30; OR 8.00; 95%CI 1.54-41.64, p = 0.01. In patients with CCD, the median ischemic lesion volume on DWI (0.91 cm³, IQR 0.49-1.54 cm³ was larger compared to patients with unremarkable PWI (0.51 cm³, IQR 0.32-0.74, p = 0.05. The most pronounced changes were found in CBF (0.94±0.11 and MTT (1.06±0.13 signal ratios, followed by TTP (1.05±0.02. CONCLUSIONS: Multimodal MRI demonstrates CCD in about 20% of acute isolated thalamic infarction patients. Lesion size seems to be a relevant factor in its pathophysiology.

  7. Altered cortico-striatal-thalamic connectivity in relation to spatial working memory capacity in children with ADHD

    Directory of Open Access Journals (Sweden)

    Kathryn L. Mills

    2012-01-01

    Full Text Available Introduction: Attention deficit hyperactivity disorder (ADHD captures a heterogeneous group of children, who are characterized by a range of cognitive and behavioral symptoms. Previous resting state functional connectivity (rs-fcMRI studies have sought to understand the neural correlates of ADHD by comparing connectivity measurements between those with and without the disorder, focusing primarily on cortical-striatal circuits mediated by the thalamus. To integrate the multiple phenotypic features associated with ADHD and help resolve its heterogeneity, it is helpful to determine how specific circuits relate to unique cognitive domains of the ADHD syndrome. Spatial working memory has been proposed as a key mechanism in the pathophysiology of ADHD.Methods: We correlated the rs-fcMRI of five thalamic regions of interest with spatial span working memory scores in a sample of 67 children aged 7-11 years (ADHD and typically developing children; TDC. In an independent dataset, we then examined group differences in thalamo-striatal functional connectivity between 70 ADHD and 89 TDC (7-11 years from the ADHD-200 dataset. Thalamic regions of interest were created based on previous methods that utilize known thalamo-cortical loops and rs-fcMRI to identify functional boundaries in the thalamus.Results/Conclusions: Using these thalamic regions, we found atypical rs-fcMRI between specific thalamic groupings with the basal ganglia. To identify the thalamic connections that relate to spatial working memory in ADHD, only connections identified in both the correlational and comparative analyses were considered. Multiple connections between the thalamus and basal ganglia, particularly between medial and anterior dorsal thalamus and the putamen, were related to spatial working memory and also altered in ADHD. These thalamo-striatal disruptions may be one of multiple atypical neural and cognitive mechanisms that relate to the ADHD clinical phenotype.

  8. Excitatory amino acid transporter 2 downregulation correlates with thalamic neuronal death following kainic acid-induced status epilepticus in rat.

    Science.gov (United States)

    Sakurai, Masashi; Kurokawa, Haruna; Shimada, Akinori; Nakamura, Kazuhiro; Miyata, Hajime; Morita, Takehito

    2015-02-01

    Recurrent seizures without interictal resumption (status epilepticus) have been reported to induce neuronal death in the midline thalamic region that has functional roles in memory and decision-making; however, the pathogenesis underlying status epilepticus-induced thalamic neuronal death is yet to be determined. We performed histological and immunohistochemical studies as well as cerebral blood flow measurement using 4.7 tesla magnetic resonance imaging spectrometer on midline thalamic region in Sprague-Dawley rats (n = 75, male, 7 weeks after birth, body weight 250-300 g) treated with intraperitoneal injection of kainic acid (10 mg/kg) to induce status epilepticus (n = 55) or normal saline solution (n = 20). Histological study using paraffin-embedded specimens revealed neuronal death showing ischemic-like changes and Fluoro-Jade C positivity with calcium deposition in the midline thalamic region of epileptic rats. The distribution of neuronal death was associated with focal loss of immunoreactivity for excitatory amino acid transporter 2 (EAAT2), stronger immunoreaction for glutamate and increase in number of Iba-1-positive microglial cells showing swollen cytoplasm and long processes. Double immunofluorescence study demonstrated co-expression of interleukin-1 beta (IL-1β) and inducible nitric oxide synthase (iNOS) within microglial cells, and loss of EAAT2 immunoreactivity in reactive astrocytes. These microglial alterations and astrocytic EAAT2 downregulation were also observed in tissue without obvious neuronal death in kainic acid-treated rats. These results suggest the possible role of glutamate excitotoxicity in neuronal death in the midline thalamic region following kainic acid-induced status epilepticus due to astrocytic EAAT2 downregulation following microglial activation showing upregulation of IL-1β and iNOS.

  9. Individual mediodorsal thalamic neurons project to multiple areas of the rat prefrontal cortex: A single neuron-tracing study using virus vectors.

    Science.gov (United States)

    Kuramoto, Eriko; Pan, Shixiu; Furuta, Takahiro; Tanaka, Yasuhiro R; Iwai, Haruki; Yamanaka, Atsushi; Ohno, Sachi; Kaneko, Takeshi; Goto, Tetsuya; Hioki, Hiroyuki

    2017-01-01

    The prefrontal cortex has an important role in a variety of cognitive and executive processes, and is generally defined by its reciprocal connections with the mediodorsal thalamic nucleus (MD). The rat MD is mainly subdivided into three segments, the medial (MDm), central (MDc), and lateral (MDl) divisions, on the basis of the cytoarchitecture and chemoarchitecture. The MD segments are known to topographically project to multiple prefrontal areas at the population level: the MDm mainly to the prelimbic, infralimbic, and agranular insular areas; the MDc to the orbital and agranular insular areas; and the MDl to the prelimbic and anterior cingulate areas. However, it is unknown whether individual MD neurons project to single or multiple prefrontal cortical areas. In the present study, we visualized individual MD neurons with Sindbis virus vectors, and reconstructed whole structures of MD neurons. While the main cortical projection targets of MDm, MDc, and MDl neurons were generally consistent with those of previous results, it was found that individual MD neurons sent their axon fibers to multiple prefrontal areas, and displayed various projection patterns in the target areas. Furthermore, the axons of single MD neurons were not homogeneously spread, but were rather distributed to form patchy axon arbors approximately 1 mm in diameter. The multiple-area projections and patchy axon arbors of single MD neurons might be able to coactivate cortical neuron groups in distant prefrontal areas simultaneously. Furthermore, considerable heterogeneity of the projection patterns is likely, to recruit the different sets of cortical neurons, and thus contributes to a variety of prefrontal functions. J. Comp. Neurol. 525:166-185, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Atom as a "Dressed" Nucleus

    CERN Document Server

    Kalitvianski, V

    2008-01-01

    It is shown that electrostatic potential of atomic nucleus seen by a fast charged projectile at short distances is quite smeared due to nucleus motion around the atomic center of inertia. For example, the size of positive charge cloud in the Hydrogen ground state is much larger than the proper proton size. It is even bigger for the target atom in an excited state. Therefore the elastic scattering at large angles is generally weaker than the Rutherford one. In other words, the resulting elastic interaction with an atom at short distances is softer than the Colombian one due to a natural cutoff. In addition, the large angle scattering leads to the target atom excitations due to hitting the nucleus (inelastic processes). It is also shown that the Rutherford cross section is in fact the inclusive rather than the elastic one. These results are analogous to the QED ones. The difference and the value of the presented below non relativistic atomic calculations is in non perturbatively (exact) dressing that immediatel...

  11. Acquired aphasia in children after surgical resection of left-thalamic tumors.

    Science.gov (United States)

    Nass, R; Boyce, L; Leventhal, F; Levine, B; Allen, J; Maxfield, C; Salsberg, D; Sarno, M; George, A

    2000-09-01

    Five children (three males, two females; four right-, one left-handed; age range 6 to 14 years) who developed aphasia after gross-total excision of left predominantly thalamic tumors are reported. Three patients had Broca aphasia, one had mixed transcortical aphasia, and one patient had conduction aphasia. In the months after surgery, three children improved while receiving radiation and/or chemotherapy, although none recovered completely. Two patients with malignant tumors developed worsening aphasia when the tumor recurred, and later died. Two of three patients tested had visuospatial difficulties in addition to language deficits. Attention and executive functioning were affected in three of three patients tested. Memory, verbal and/or visual functioning, were affected in four of four patients tested. Both patients who were tested showed transient right hemineglect. Two of two patients tested were probably apraxic. The wide range of deficits in these children highlights the importance of the thalamus and other subcortical structures in developing cognition.

  12. EFFECTS OF METHAMPHETAMINE ON LOCOMOTOR ACTIVITY AND THALAMIC GENE EXPRESSION IN LEPTIN-DEFICIENT OBESE MICE

    Science.gov (United States)

    González, Betina; González, Candela; Bisagno, Verónica; Urbano, Francisco J.

    2017-01-01

    Leptin is an adipose-derived hormone that regulates energy balance. Leptin receptors are expressed in extrahypothalamic sites and several reports showed that leptin can influence feeding and locomotor behavior via direct actions on dopaminergic neurons. The leptin deficient mouse (ob/ob) has been used as an animal model of blunted leptin action, and presents with obesity and mild type 2 diabetes. We used ob/ob mice to study the effect of repeated 7-day methamphetamine (METH) administration analyzing locomotion, behavioral sensitization, and somatosensory thalamic mRNA expression of voltage-gated calcium channels and glutamatergic receptors using RT-PCR. We observed reduced METH-mediated responses in ob/ob mice associated with enhanced in mRNA expression of key voltage-gated and glutamate receptors in the somatosensory thalamus. Results described here are important for understanding the control of locomotion and thalamocortical excitability by leptin.

  13. Bilateral symmetrical basal ganglia and thalamic lesions in children: an update (2015)

    Energy Technology Data Exchange (ETDEWEB)

    Zuccoli, Giulio [Children' s Hospital of Pittsburgh of UPMC, Section of Neuroradiology, Pittsburgh, PA (United States); Yannes, Michael Paul [University of Pittsburgh School of Medicine, Department of Radiology, Pittsburgh, PA (United States); Nardone, Raffaele [Paracelsus Medical University, Department of Neurology, Christian Doppler Klinik, Salzburg (Austria); Bailey, Ariel [West Virginia University, Department of Radiology, Morgantown, WV (United States); Goldstein, Amy [Children' s Hospital of Pittsburgh of UPMC, Department of Neurology, Section of Metabolic Disorders and Neurogenetics, Pittsburgh, PA (United States)

    2015-10-15

    In children, many inherited or acquired neurological disorders may cause bilateral symmetrical signal intensity alterations in the basal ganglia and thalami. A literature review was aimed at assisting neuroradiologists, neurologists, infectious diseases specialists, and pediatricians to provide further understanding into the clinical and neuroimaging features in pediatric patients presenting with bilateral symmetrical basal ganglia and thalamic lesions on magnetic resonance imaging (MRI). We discuss hypoxic-ischemic, toxic, infectious, immune-mediated, mitochondrial, metabolic, and neurodegenerative disorders affecting the basal ganglia and thalami. Recognition and correct evaluation of basal ganglia abnormalities, together with a proper neurological examination and laboratory findings, may enable the identification of each of these clinical entities and lead to earlier diagnosis. (orig.)

  14. [Persistent psychotic disorder following bilateral mesencephalo-thalamic ischaemia: case report].

    Science.gov (United States)

    Predescu, A; Damsa, C; Riegert, M; Bumb, A; Pull, C

    2004-01-01

    A 38-year old male patient with no history of psychiatric illness developed a progressive psychotic disorder after bilateral (predominantly left) mesencephalo-thalamic cerebral ischaemia. The reason of the emergency hospitalization was the sudden onset of a confusional state, culminating in a fluctuating comatose status. The neurological examination found mild right hemiparesia, praxic disorders and reactive left mydriasis with paresia of the downward vertical stare, leading to the hospitalisation in the neurology department for suspicion of a cerebral vascular ischaemic accident. The psychiatric symptoms started with acoustic-verbal hallucinations, poorly structured paranoid delusions, progressively developed over two weeks, followed by behavioural disorders with psychomotor agitation and heteroaggressivity. The patient was transferred to the psychiatric department, because of the heteroaggressive risk and lack of morbid consciousness, in spite of recovering from the confusional status. An intensive psychiatric management was proposed, combining a psychotherapeutic approach with 4 mg of risperidone and adjustable doses of benzodiazepine according to the psychomotor agitation. During the next days, there was a net recovery of the behavioural disorders, in spite of the persistence of the ideas of persecution. All the neurological symptoms also decreased. An anomaly of the polygon of Willis was found on a cerebral arteriography (the posterior cerebral arteries had a foetal origin, dependent on carotidal axes and not on the vertebro-basilar system). The main emboligen risk factor was the presence of a permeable foramen ovale, discovered during a transoesophageal echography. The patient underwent a surgical correction of the permeable foramen ovale. The psychiatric hospitalization for three months was continued by ambulatory follow-up. The initial positive symptoms (delusions, acoustic-verbal hallucinations) progressively diminished while negative symptoms became

  15. Decreased regional cerebral blood flow in the bilateral thalami and medulla oblongata determined by an easy Z-score (eZIS) analysis of (99m)Tc-ECD-SPECT images in a case of MM2-thalamic-type sporadic Creutzfeldt-Jakob disease.

    Science.gov (United States)

    Hayashi, Yuichi; Iwasaki, Yasushi; Yoshikura, Nobuaki; Asano, Takahiko; Hatano, Taku; Tatsumi, Shinsui; Satoh, Katsuya; Kimura, Akio; Kitamoto, Tetsuyuki; Yoshida, Mari; Inuzuka, Takashi

    2015-11-15

    We report a case of autopsy-verified MM2-thalamic-type sporadic Creutzfeldt-Jakob disease (sCJD) in a 46-year-old patient with a 16-month history of abnormal behavior, progressive dementia, insomnia, and speech disturbances without family history. Neurological examination revealed progressive dementia, frontal signs, insomnia, speech disturbance, gait disturbance and bilaterally exaggerated tendon reflexes. Both brain MRI and cerebrospinal fluid examinations, including 14-3-3 protein, yielded normal results. An easy Z-score (eZIS) analysis for (99m)Tc-ethyl cysteinate dimer-single photon emission computed tomography ((99m)Tc-ECD-SPECT) revealed decreased regional cerebral blood flow in the bilateral thalami and medulla oblongata. PRNP gene analysis revealed methionine homozygosity at codon 129 without mutation. Neuropathological examinations revealed severe neuronal loss, gliosis, and hypertrophic astrocytosis in the medial thalamus and inferior olivary nucleus. A slight depletion of Purkinje cells was observed. PrP immunostaining showed no obvious PrP deposits in the basal ganglia, thalamus, cerebellum, or brainstem; however, mild synaptic-type PrP deposits with some smaller plaque-like structures were only partially observed in the localized region of the frontal lobe with the spongiform change. Western blot analyses of protease-resistant PrP showed a type 2 pattern. In conclusion, eZIS analysis of (99m)Tc-ECD-SPECT images is useful for detecting both thalamic and medullary lesions. This is the first case of medullary lesions detected in a live patient with MM2-thalamic-type sCJD using SPECT.

  16. Strategic lesions in the anterior thalamic radiation and apathy in early Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Mario Torso

    Full Text Available Behavioural disorders and psychological symptoms of Dementia (BPSD are commonly observed in Alzheimer's disease (AD, and strongly contribute to increasing patients' disability. Using voxel-lesion-symptom mapping (VLSM, we investigated the impact of white matter lesions (WMLs on the severity of BPSD in patients with amnestic mild cognitive impairment (a-MCI.Thirty-one a-MCI patients (with a conversion rate to AD of 32% at 2 year follow-up and 26 healthy controls underwent magnetic resonance imaging (MRI examination at 3T, including T2-weighted and fluid-attenuated-inversion-recovery images, and T1-weighted volumes. In the patient group, BPSD was assessed using the Neuropsychiatric Inventory-12. After quantitative definition of WMLs, their distribution was investigated, without an a priori anatomical hypothesis, against patients' behavioural symptoms. Unbiased regional grey matter volumetrics was also used to assess the contribution of grey matter atrophy to BPSD.Apathy, irritability, depression/dysphoria, anxiety and agitation were shown to be the most common symptoms in the patient sample. Despite a more widespread anatomical distribution, a-MCI patients did not differ from controls in WML volumes. VLSM revealed a strict association between the presence of lesions in the anterior thalamic radiations (ATRs and the severity of apathy. Regional grey matter atrophy did not account for any BPSD.This study indicates that damage to the ATRs is strategic for the occurrence of apathy in patients with a-MCI. Disconnection between the prefrontal cortex and the mediodorsal and anterior thalamic nuclei might represent the pathophysiological substrate for apathy, which is one of the most common psychopathological symptoms observed in dementia.

  17. Thalamic metabolic abnormalities in patients with Huntington's disease measured by magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Casseb, R.F.; Castellano, G., E-mail: gabriela@ifi.unicamp.br [Cooperacao Interinstitucional de Apoio a Pesquisas sobre o Cerebro (Programa CInAPCe), Sao Paulo, SP (Brazil); Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Instituto de Fisica Gleb Wataghin. Dept. de Raios Cosmicos e Cronologia; D' Abreu, A.; Cendes, F. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Dept. de Neurologia. Lab. de Neuroimagem; Cooperacao Interinstitucional de Apoio a Pesquisas sobre o Cerebro (Programa CInAPCe), Sao Paulo, SP (Brazil); Ruocco, H.H. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Fac. de Ciencias Medicas. Dept. de Neurologia. Lab. de Neuroimagem; Lopes-Cendes, I., E-mail: seixas.fk@gmail.com [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Fac. de Ciencias Medicas. Dept. de Genetica Medica; Cooperacao Interinstitucional de Apoio a Pesquisas sobre o Cerebro (Programa CInAPCe), Sao Paulo, SP (Brazil)

    2013-08-15

    Huntington's disease (HD) is a neurologic disorder that is not completely understood; its fundamental physiological mechanisms and chemical effects remain somewhat unclear. Among these uncertainties, we can highlight information about the concentrations of brain metabolites, which have been widely discussed. Concentration differences in affected, compared to healthy, individuals could lead to the development of useful tools for evaluating the progression of disease, or to the advance of investigations of different/alternative treatments. The aim of this study was to compare the thalamic concentration of metabolites in HD patients and healthy individuals using magnetic resonance spectroscopy. We used a 2.0-Tesla magnetic field, repetition time of 1500 ms, and echo time of 135 ms. Spectra from 40 adult HD patients and 26 control subjects were compared. Quantitative analysis was performed using the LCModel method. There were statistically significant differences between HD patients and controls in the concentrations of N-acetylaspartate+N-acetylaspartylglutamate (NAA+NAAG; t-test, P,0.001), and glycerophosphocholine+phosphocholine (GPC+PCh; t-test, P=0.001) relative to creatine+phosphocreatine (Cr+PCr). The NAA+NAAG/Cr+PCr ratio was decreased by 9% and GPC+PCh/Cr+PCr increased by 17% in patients compared with controls. There were no correlations between the concentration ratios and clinical features. Although these results could be caused by T1 and T2 changes, rather than variations in metabolite concentrations given the short repetition time and long echo time values used, our findings point to thalamic dysfunction, corroborating prior evidence. (author)

  18. CT classification of small thalamic hemorrhages. Topographic localization and clinical manifestation

    Energy Technology Data Exchange (ETDEWEB)

    Kawahara, Nobutaka; Kaneko, Mitsuo; Tanaka, Keisei; Muraki, Masaaki; Sato, Kengo (Hamamatsu Medical Center Hospital, Shizuoka (Japan))

    1984-06-01

    The thalamus is located deep in the cerebral hemispheres, and most of its nuclei have reciprocal fiber connections with specific areas over the cerebral cortex. Localized lesions in the thalamus, therefore, can cause specific neurological deficits, depending on their locations. From this point of view, we reviewed 110 cases, admitted over the past 7 years, with thalamic hemorrhages 37 (34%) of which were small hematomas less than 2 cm in diameter. These small hematomas could be divided into 4 types depending on their locations as follows: antero-lateral type, postero-lateral type, medial type, and dorsal type. Each type had the peculiar clinical features described below: 1) Postero-lateral Type (PL type, 28 cases, 76%): The original symptom was a sudden onset of moderate to severe sensori-motor deficits in most cases. The patients were mostly alert or only slightly confused. 2) Antero-lateral Type (AL type, 4 cases, 11%): The patients of this type first presented with sensori-motor disturbance and prefrontal signs. Both were generally mild and often disappeared early. 3) Medial Type (M type, 3 cases, 8%): The main symptom at onset was either a disturbance of consciousness or dementia. 4) Dorsal Type (D type, 2 cases, 5%): One patient with a right thalamic hematoma of this type showed geographical agnosia and visuo-constructive apraxia. The other patient, with a left-sided hematoma, exhibited transient clumsiness of the right hand and mild dysphasia. In our experience, the above classification of small hematomas clearly delineated the clinical symptoms and neurological signs of the different types; therefore, the symptoms and signs in larger hematoma could be explained by a combination of those of each type.

  19. [The thalamic syndrome of Déjérine-Roussy. Prolegomenon].

    Science.gov (United States)

    De Smet, Y

    1986-01-01

    Predicted by Dejerine and Long in 1898 and formally described by Dejerine and Roussy in 1906, the "thalamic syndrome" corrected the wrong hypothesis of a capsular "sensory cross roads" suggested by Charcot after 1873 and supported in France during 25 years. Both established the "persistent frank organic hemianesthesia" (sensory-sensitive for Charcot, pure sensitive for Dejerine), namely that a sensory deficit, still severe after regression of the early hemiplegia, could be due to focal brain damage. At that time such a clinical concept was hardly acceptable because it opposed the classic greek philosophical idea that sensation and movement should not be separated. Moreover, intelligence was at that time looked as a four-stage process including sensation, imagination, intellect and memory. The very first step began with the "sensus communis", an anteroom-like where all the sensations simultaneously perceived were coordinated to ensure mind unity. This "sensus communis" was given many subcortical seats during the following centuries, such as the trigone (Herophilus), the ventricles (Founders of the Church, Soemmering), the pineal body (Descartes), the striate bodies (Willis) and, finally, the thalamus (Todd and Carpenter's "English theory"). The description by Meynert in 1871 of a transcapsular direct "sensory bundle" and the cases reported by Türck in 1859 of a sensory-sensitive hemianesthesia after a posterior capsular lesion (in fact, thalamo-capsulostriate) led Charcot to develop his theory after 1873. Owing to the new staining methods of Weigert and Marchi introduced around 1885, Dejerine showed in 1895 the route of the medial lemniscus and his arrival in the thalamus, which led him to postulate in 1898 a "thalamic syndrome" and later to demonstrate it.

  20. Classifiers for centrality determination in proton-nucleus and nucleus-nucleus collisions

    CERN Document Server

    Altsybeev, Igor

    2016-01-01

    Centrality, as a geometrical property of the collision, is crucial for the physical interpretation of nucleus-nucleus and proton-nucleus experimental data. However, it cannot be directly accessed in event-by-event data analysis. Common methods for centrality estimation in A-A and p-A collisions usually rely on a single detector (either on the signal in zero-degree calorimeters or on the multiplicity in some semi-central rapidity range). In the present work, we made an attempt to develop an approach for centrality determination that is based on machine-learning techniques and utilizes information from several detector subsystems simultaneously. Different event classifiers are suggested and evaluated for their selectivity power in terms of the number of nucleons-participants and the impact parameter of the collision. Finer centrality resolution may allow to reduce impact from so-called volume fluctuations on physical observables being studied in heavy-ion experiments like ALICE at the LHC and fixed target exper...

  1. The NPY intergeniculate leaflet projections to the suprachiasmatic nucleus transmit metabolic conditions.

    Science.gov (United States)

    Saderi, N; Cazarez-Márquez, F; Buijs, F N; Salgado-Delgado, R C; Guzman-Ruiz, M A; del Carmen Basualdo, M; Escobar, C; Buijs, R M

    2013-08-29

    The intergeniculate leaflet (IGL) is classically known as the area of the Thalamic Lateral Geniculate Complex providing the suprachiasmatic nucleus (SCN) non-photic information. In the present study we investigated whether this information might be related to the metabolic state of the animal. The following groups of male Wistar rats were used for analysis of neuropeptide Y (NPY) and c-Fos in the IGL and SCN. (1) Fed ad libitum. (2) Fasted for 48 h. (3) Fasted for 48 h followed by refeeding for 3 h. (4) Monosodium glutamate-lesioned and 48 h fasted. (5) Electrolytic lesion in the IGL and 48 h fasted. The results were quantified by optical densitometry. Neuronal tracers were injected in two brain areas that receive metabolic information from the periphery, the arcuate nucleus (ARC) and Nucleus of the Tractus Solitarius to investigate whether there is an anatomical relationship with the IGL. Lesion studies showed the IGL, and not the ARC, as origin of most NPY projections to the SCN. Fasting induced important changes in the NPY expression in the IGL, coinciding with similar changes of NPY/glutamate decarboxylase projections of the IGL to the SCN. These changes revealed that the IGL is involved in the transmission of metabolic information to the SCN. In fasted animals IGL lesion resulted in a significant increase of c-Fos in the SCN as compared to intact fasted animals demonstrating the inhibitory influence of the IGL to the SCN in fasting conditions. When the animal after fasting was refed, an increase of c-Fos in the SCN indicated a removal of this inhibitory input. Together these observations show that in addition to increased inhibitory IGL input during fasting, the negative metabolic condition also results in increased excitatory input to the SCN via other pathways. Consequently the present observations show that at least part of the non-photic input to the SCN, arising from the IGL contains information about metabolic conditions.

  2. Pion production and absorption in relativistic nucleus-nucleus collisions

    Energy Technology Data Exchange (ETDEWEB)

    Senger, P. [GSI Planckstr.1, Darmstadt (Germany)

    1993-12-31

    In a relativistic nucleus-nucleus collision the projectile kinetic energy is not only converted into thermal and compressional energy of the nucleonic system, but also into internal excitation energy of the nucleons. At bombarding energies around 1 GeV/nucleon a substantial amount of baryonic resonances is produced which decay predominantly into pions. Thus the pion multiplicity, momentum and angular distributions provide information on the space time dynamics of the nuclear reaction system. In this paper the authors report on experiments which try to measure the `primordial` delta or pion abundancy. The idea is to compare the pion yields measured in a heavy and a light system: in the first case pion final-state interactions should happen much more frequently than in the second case. Both inclusive pion cross sections and pion multiplicities per participant nucleon are measured. In addition the authors study the pion emission pattern with respect to the reaction plane to sort out pions which are less affected by absorption and rescattering even in a heavy collision system.

  3. Relativistic nucleus-nucleus collisions and the QCD phase diagram

    CERN Document Server

    Stock, Reinhard

    2005-01-01

    A steep maximum occurs in the Wroblewski ratio between strange and non-strange quarks created in central nucleus-nucleus collisions, of about A=200, at the lower SPS energy square root s approximately= 7 GeV. By analyzing hadronic multiplicities within the grand canonical statistical hadronization model this maximum is shown to occur at a baryochemical potential of about 450 MeV. In comparison, recent QCD lattice calculations at finite baryochemical potential suggest a steep maximum of the light quark susceptibility, to occur at similar mu /sub B/, indicative of "critical fluctuation" expected to occur at or near the QCD critical endpoint. This endpoint had not been firmly pinned down but should occur in the 300 MeV < mu /sub B//sup c/ < 700 MeV interval. It is argued that central collisions within the low SPS energy range should exhibit a turning point between compression /heating, and expansion/cooling at energy density, temperature and mu /sub B/ close to the suspected critical point. Whereas from to...

  4. Resonances in -light nucleus systems

    Indian Academy of Sciences (India)

    K P Khemchandani; N G Kelkar; M Nowakowski; B K Jain

    2006-04-01

    We locate resonances in -light nucleus elastic scattering using the time delay method. We solve few-body equations within the finite rank approximation in order to calculate the -matrices and hence the time delay for the - 3He and - 4He systems. We find a resonance very close to the threshold in - 3 He elastic scattering, at about 0.5 MeV above threshold with a width of ∼ 2 MeV. The calculations also hint at the presence of sub-threshold states in both the cases.

  5. Turbulent mixing condensation nucleus counter

    Science.gov (United States)

    Mavliev, Rashid

    The construction and operating principles of the Turbulent Mixing Condensation Nucleus Counter (TM CNC) are described. Estimations based on the semiempirical theory of turbulent jets and the classical theory of nucleation and growth show the possibility of detecting particles as small as 2.5 nm without the interference of homogeneous nucleation. This conclusion was confirmed experimentally during the International Workshop on Intercomparison of Condensation Nuclei and Aerosol Particle Counters (Vienna, Austria). Number concentration, measured by the Turbulent Mixing CNC and other participating instruments, is found to be essentially equal.

  6. Amnesia syndrome following left anterior thalamic infarction; with intrahemispheric and crossed cerebro-cerebellar diaschisis on brain SPECT.

    Science.gov (United States)

    Kim, M. H.; Hong, S. B.; Roh, J. K.

    1994-01-01

    We report a 61-year-old right-handed man developing disturbance of memory after a discrete thalamic infarction. Neuropsychological assessment revealed deficits in memory with retrograde and anterograde components, especially for verbal material. Brain MRI showed a left anterior thalamic infarction with normal angiographic findings. Despite the small lesion in the thalamus, he showed prolonged memory disturbance and a Brain SPECT image revealed decreased uptake in the ipsilateral fronto-temporo-parietal cortex and contralateral cerebellum. This diaschisis, a phenomenon caused by disconnection of the neural pathway helped us to evaluate the functional state of the patient and this imaging technique was valuable for obtaining to get more information for the evaluation of the neurological state and neuronal connections. In conclusion our findings correspond well with the understanding of amnesia as a disconnection syndrome because of the evidence of diaschisis on the Brain SPECT image. PMID:7702792

  7. Determination of Coil Inductances Cylindrical Iron Nucleus

    Directory of Open Access Journals (Sweden)

    Azeddine Mazouz

    2014-03-01

    Full Text Available The paper describes the investigation and development of a structure and performance characteristics of a coil iron nucleus cylindrical (C.I.N.C. The coil iron nucleus cylindrical is a nonlinear electro radio in which the moving of the nucleus in a sense or in other causes change in inductance and can reach extreme values at the superposition of nucleus and coil centers. The variation of the inductance and the degree of freedom of movement of the nucleus can lead to a device with electromechanical conversion The aim of this paper is the determination and visualization of self inductance and mutual of the (C.I.N.C based on geometric dimensions and the displacement of the nucleus.  

  8. Thalamic superoxide and peroxide handling capacity (SPHC): An experimental study with aluminum, ethanol and tocopherol in rats.

    Science.gov (United States)

    Nayak, Prasunpriya; Sharma, S B; Chowdary, N V S

    2015-09-01

    Superoxide and peroxide handling capacity (SPHC) is an important determinant of oxidative stress. Neurotoxic impacts of aluminum are associated with oxidant imbalance. Here, we studied the influence of aluminum on oxidative stress parameters, antioxidative enzymes and SPHC of thalamic area on pro-oxidant (ethanol) and antioxidant (α-tocopherol) exposure. Two sets of male Wistar rats were divided into 8 groups (6 each) and exposed to aluminum (10 mg/Kg body wt.), ethanol (0.6 g/Kg body wt.) and α-tocopherol (5 IU/day) for 4 wk, each having respective control group. Levels of reduced glutathione (GSH), lipid peroxidation (TBARS) along with activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR) of thalamic area were estimated for each group. Glutathione-independent superoxide peroxide handling capacity (GI-SPHC) and glutathione-dependent superoxide peroxide handling capacity (GD-SPHC) were calculated from the GPx, CAT and SOD values. Concomitant exposure to aluminum and ethanol demonstrated significant increase in SOD activity and significant decrease in GPx activity compared to the control group, while lone aluminum-exposed rats showed raised GR activity, without alterations in GPx and SOD activities. However, significant reduction of both GI- and GD- SPHC were found in ethanol-exposed groups. α-Tocopherol supplementation could resist most of the alterations. In addition, current antioxidant exposure reduced the inherent GD-SPHC, and thus, made thalamic area more vulnerable to oxidant threat. The present study corroborates the thalamic susceptibility to aluminum-augmented oxidant imbalance and suggests cautious use of antioxidant supplementation against neurodegenerative disorders.

  9. Striatal and thalamic GABA level concentrations play differential roles for the modulation of response selection processes by proprioceptive information.

    Science.gov (United States)

    Dharmadhikari, Shalmali; Ma, Ruoyun; Yeh, Chien-Lin; Stock, Ann-Kathrin; Snyder, Sandy; Zauber, S Elizabeth; Dydak, Ulrike; Beste, Christian

    2015-10-15

    The selection of appropriate responses is a complex endeavor requiring the integration of many different sources of information in fronto-striatal-thalamic circuits. An often neglected but relevant piece of information is provided by proprioceptive inputs about the current position of our limbs. This study examines the importance of striatal and thalamic GABA levels in these processes using GABA-edited magnetic resonance spectroscopy (GABA-MRS) and a Simon task featuring proprioception-induced interference in healthy subjects. As a possible model of deficits in the processing of proprioceptive information, we also included Parkinson's disease (PD) patients in this study. The results show that proprioceptive information about unusual postures complicates response selection processes in controls, but not in PD patients. The well-known deficits of PD patients in processing proprioceptive information can turn into a benefit when altered proprioceptive information would normally complicate response selection processes. Striatal and thalamic GABA levels play dissociable roles in the modulation of response selection processes by proprioceptive information: Striatal GABA levels seem to be important for the general speed of responding, most likely because striatal GABA promotes response selection. In contrast, the modulation of response conflict by proprioceptive information is closely related to thalamic GABA concentrations with higher concentration being related to a smaller response conflict effect. The most likely explanation for this finding is that the thalamus is involved in the integration of sensorimotor, attentional, and cognitive information for the purpose of response formation. Yet, this effect in the thalamus vanishes when controls and PD patients were analyzed separately.

  10. Thalamic nuclei segmentation in clinical 3T T1-weighted Images using high-resolution 7T shape models

    Science.gov (United States)

    Liu, Yuan; D'Haese, Pierre-François; Newton, Allen T.; Dawant, Benoit M.

    2015-03-01

    Accurate and reliable identification of thalamic nuclei is important for surgical interventions and neuroanatomical studies. This is a challenging task due to their small sizes and low intra-thalamic contrast in standard T1-weighted or T2- weighted images. Previously proposed techniques rely on diffusion imaging or functional imaging. These require additional scanning and suffer from the low resolution and signal-to-noise ratio in these images. In this paper, we aim to directly segment the thalamic nuclei in standard 3T T1-weighted images using shape models. We manually delineate the structures in high-field MR images and build high resolution shape models from a group of subjects. We then investigate if the nuclei locations can be inferred from the whole thalamus. To do this, we hierarchically fit joint models. We start from the entire thalamus and fit a model that captures the relation between the thalamus and large nuclei groups. This allows us to infer the boundaries of these nuclei groups and we repeat the process until all nuclei are segmented. We validate our method in a leave-one-out fashion with seven subjects by comparing the shape-based segmentations on 3T images to the manual contours. Results we have obtained for major nuclei (dice coefficients ranging from 0.57 to 0.88 and mean surface errors from 0.29mm to 0.72mm) suggest the feasibility of using such joint shape models for localization. This may have a direct impact on surgeries such as Deep Brain Stimulation procedures that require the implantation of stimulating electrodes in specific thalamic nuclei.

  11. Thalamic pathology and memory loss in early Alzheimer's disease: moving the focus from the medial temporal lobe to Papez circuit.

    Science.gov (United States)

    Aggleton, John P; Pralus, Agathe; Nelson, Andrew J D; Hornberger, Michael

    2016-07-01

    It is widely assumed that incipient protein pathology in the medial temporal lobe instigates the loss of episodic memory in Alzheimer's disease, one of the earliest cognitive deficits in this type of dementia. Within this region, the hippocampus is seen as the most vital for episodic memory. Consequently, research into the causes of memory loss in Alzheimer's disease continues to centre on hippocampal dysfunction and how disease-modifying therapies in this region can potentially alleviate memory symptomology. The present review questions this entrenched notion by bringing together findings from post-mortem studies, non-invasive imaging (including studies of presymptomatic, at-risk cases) and genetically modified animal models. The combined evidence indicates that the loss of episodic memory in early Alzheimer's disease reflects much wider neurodegeneration in an extended mnemonic system (Papez circuit), which critically involves the limbic thalamus. Within this system, the anterior thalamic nuclei are prominent, both for their vital contributions to episodic memory and for how these same nuclei appear vulnerable in prodromal Alzheimer's disease. As thalamic abnormalities occur in some of the earliest stages of the disease, the idea that such changes are merely secondary to medial temporal lobe dysfunctions is challenged. This alternate view is further strengthened by the interdependent relationship between the anterior thalamic nuclei and retrosplenial cortex, given how dysfunctions in the latter cortical area provide some of the earliest in vivo imaging evidence of prodromal Alzheimer's disease. Appreciating the importance of the anterior thalamic nuclei for memory and attention provides a more balanced understanding of Alzheimer's disease. Furthermore, this refocus on the limbic thalamus, as well as the rest of Papez circuit, would have significant implications for the diagnostics, modelling, and experimental treatment of cognitive symptoms in Alzheimer's disease.

  12. Newly observed thalamic involvement and mutations of the HEXA gene in a Korean patient with juvenile GM2 gangliosidosis.

    Science.gov (United States)

    Lee, Soon Min; Lee, Min Jung; Lee, Joon Soo; Kim, Heung Dong; Lee, Jin Sung; Kim, Jinna; Lee, Seung Koo; Lee, Young Mock

    2008-09-01

    Neuroimaging studies of patients with GM2 gangliosidosis are rare. The thalamus and basal ganglia are principally involved in patients affected by the infantile form of GM2 gangliosidosis. Unlike in the infantile form, in juvenile or adult type GM2 gangliosidosis, progressive cortical and cerebellar atrophy is the main abnormality seen on conventional magnetic resonance imaging (MRI); no basal ganglial or thalamic impairment were observed. This report is of a Korean girl with subacute onset, severe deficiency of hexosaminidase A activity and mutations (Arg137Term, Ala246Thr) of the HEXA gene. A 3.5-year-old girl who was previously in good health was evaluated for hypotonia and ataxia 3 months ago and showed progressive developmental deterioration, including cognitive decline. Serial brain MRI showed progressive overall volume decrease of the entire brain and thalamic atrophy. Fluorine-18 FDG PET scan showed severe decreased uptake in bilateral thalamus and diffuse cerebral cortex. We suggest, through our experience, that the thalamic involvement in MR imaging and FDG-PET can be observed in the juvenile form of GM2 gangliosidosis, and we suspect the association of mutations in the HEXA gene.

  13. Decreased spontaneous activity and altered evoked nociceptive response of rat thalamic submedius neurons to lumbar vertebra thrust.

    Science.gov (United States)

    Reed, William R; Cranston, Jamie T; Onifer, Stephen M; Little, Joshua W; Sozio, Randall S

    2017-07-07

    The thalamus is a central structure important to modulating and processing all mechanoreceptor input destined for the cortex. A large number of diverse mechanoreceptor endings are stimulated when a high velocity low amplitude thrust is delivered to the lumbar spine during spinal manipulation. The objective of this study was to determine if a lumbar thrust alters spontaneous and/or evoked nociceptive activity in medial thalamic submedius (Sm) neurons. Extracellular recordings were obtained from 94 thalamic Sm neurons in 54 urethane-anesthetized adult Wistar rats. Spontaneous activity was recorded 5 min before and after an L5 control (no thrust) and thrust (85% rat body weight; 100 ms) procedure. In a subset of responsive nociceptive-specific neurons, mean changes in noxious-evoked response (10-s pinch with clip; 795 g) at three sites (tail, contra- and ipsilateral hindpaw) were determined following an L5 thrust. Mean changes in Sm spontaneous activity (60 s bins) and evoked noxious response were compared using a mixed model repeated measures ANOVA with Bonferroni post hoc t tests and paired t tests, respectively. Compared to control, spontaneous Sm activity decreased 180-240 s following the lumbar thrust (p thrust compared to control (p thrust suggest that thalamic submedius neurons may play a role in central pain modulation related to manual therapy intervention.

  14. Childhood maltreatment is associated with larger left thalamic gray matter volume in adolescents with generalized anxiety disorder.

    Science.gov (United States)

    Liao, Mei; Yang, Fan; Zhang, Yan; He, Zhong; Song, Ming; Jiang, Tianzi; Li, Zexuan; Lu, Shaojia; Wu, Weiwei; Su, Linyan; Li, Lingjiang

    2013-01-01

    Generalized anxiety disorder (GAD) is a common anxiety disorder that usually begins in adolescence. Childhood maltreatment is highly prevalent and increases the possibility for developing a variety of mental disorders including anxiety disorders. An earlier age at onset of GAD is significantly related to maltreatment in childhood. Exploring the underpinnings of the relationship between childhood maltreatment and adolescent onset GAD would be helpful in identifying the potential risk markers of this condition. Twenty-six adolescents with GAD and 25 healthy controls participated in this study. A childhood trauma questionnaire (CTQ) was introduced to assess childhood maltreatment. All subjects underwent high-resolution structural magnetic resonance scans. Voxel-based morphometry (VBM) was used to investigate gray matter alterations. Significantly larger gray matter volumes of the right putamen were observed in GAD patients compared to healthy controls. In addition, a significant diagnosis-by-maltreatment interaction effect for the left thalamic gray matter volume was revealed, as shown by larger volumes of the left thalamic gray matter in GAD patients with childhood maltreatment compared with GAD patients without childhood maltreatment as well as with healthy controls with/without childhood maltreatment. A significant positive association between childhood maltreatment and left thalamic gray matter volume was only seen in GAD patients. These findings revealed an increased volume in the subcortical regions in adolescent GAD, and the alterations in the left thalamus might be involved in the association between childhood maltreatment and the occurrence of GAD.

  15. Projections from the central amygdaloid nucleus to the precuneiform nucleus in the mouse.

    Science.gov (United States)

    Liang, Huazheng; Watson, Charles; Paxinos, George

    2015-01-01

    The mouse precuneiform nucleus has been proposed as the midbrain locomotion center, a function ascribed to its caudal neighbor, cuneiform nucleus, in the rat, cat and other species. The present study investigated the projections from the central amygdaloid nucleus to the precuneiform nucleus in the mouse using retrograde tracer injections (fluoro-gold) into the precuneiform nucleus and anterograde tracer injections (biotinylated dextran amine) into the central amygdaloid nucleus. The entire central amygdaloid nucleus except the rostral pole had retrogradely labeled neurons, especially in the middle portion where labeled neurons were densely packed. Anterogradely labeled amygdaloid fibers approached the precuneiform nucleus from the area ventrolateral to it and terminated in the entire precuneiform nucleus. Labeled fibers were also found in laminae 5 and 6 in the upper cervical cord on the ipsilateral side. The present study is the first demonstration of projections from the central amygdaloid nucleus to the precuneiform nucleus. This projection may underpin the role of the precuneiform nucleus in the modulation of the cardiovascular activity.

  16. Thalamic shape and connectivity abnormalities in children with attention-deficit/hyperactivity disorder.

    Science.gov (United States)

    Xia, Shugao; Li, Xiaobo; Kimball, Ariane E; Kelly, Mary S; Lesser, Iris; Branch, Craig

    2012-11-30

    Attention-deficit/hyperactivity disorder (ADHD) is characterized by widespread structural and functional abnormalities in the cortico-striato-thalmo-cortical (CSTC) loops that subserve attention and executive functions. In this study, we analyzed thalamic shape and its white matter connections using structural magnetic resonance imaging and diffusion (DTI) data acquired from children with ADHD (n=19) and controls (n=19). Shape morphology of the thalamus was assessed using shape-based analysis, while connectivity between the thalamus and other brain regions was determined using probabilistic diffusion tractography. Shape-based analysis indicated significant regional atrophy in the left thalamus in children with ADHD compared to controls. Group analyses of white matter connectivity measures showed significantly decreased mean fractional anisotropy (FA) and volume of the tracts between thalamus and striatum, hippocampus, and prefrontal lobe in children with ADHD compared to controls. The structural abnormalities within the thalamus and the reduced integrity of the white matter tracks between the thalamus and other brain regions, as shown from the results of this study, may be the anatomical bases of the impaired cognitive performances in the attention and executive function domains in ADHD.

  17. Comorbid Asperger and Tourette syndromes with localized mesencephalic, infrathalamic, thalamic, and striatal damage.

    Science.gov (United States)

    Berthier, Marcelo L; Kulisevsky, Jaime; Asenjo, Beatriz; Aparicio, Jesús; Lara, Diego

    2003-03-01

    We describe the coexistence of Asperger and Tourette syndromes (AS and TS) caused by discrete hypoxic-ischaemic necrosis of the midbrain, infrathalamic and thalamic nuclei, and striatum in an adolescent male with positive family history for tics and obsessive-compulsive disorder. Behavioural ratings, cognitive tests, and volumetric measurements of the basal ganglia were performed in the patient and five other individuals with AS-TS unassociated with MRI lesions. Cognitive deficits in attentional, executive, and visual-spatial domains were found both in the patient and control AS-TS group, though deficits were more severe in the former. MRI showed reduction of the left basal ganglia volume compared with the right in the patient, whereas the control group showed reduction of right basal ganglia volume compared with the left. It is suggested that individuals with a genetic predisposition to TS may develop AS and TS after involvement of midbrain and related components of basal ganglia-thalamocortical circuits normally implicated in the integration of emotional, cognitive, and motor functions.

  18. Impaired spatial working memory after anterior thalamic lesions: recovery with cerebrolysin and enrichment.

    Science.gov (United States)

    Loukavenko, Elena A; Wolff, Mathieu; Poirier, Guillaume L; Dalrymple-Alford, John C

    2016-05-01

    Lesions to the anterior thalamic nuclei (ATN) in rats produce robust spatial memory deficits that reflect their influence as part of an extended hippocampal system. Recovery of spatial working memory after ATN lesions was examined using a 30-day administration of the neurotrophin cerebrolysin and/or an enriched housing environment. As expected, ATN lesions in standard-housed rats given saline produced severely impaired reinforced spatial alternation when compared to standard-housed rats with sham lesions. Both cerebrolysin and enrichment substantially improved this working memory deficit, including accuracy on trials that required attention to distal cues for successful performance. The combination of cerebrolysin and enrichment was more effective than either treatment alone when the delay between successive runs in a trial was increased to 40 s. Compared to the intact rats, ATN lesions in standard-housed groups produced substantial reduction in c-Fos expression in the retrosplenial cortex, which remained low after cerebrolysin and enrichment treatments. Evidence that multiple treatment strategies restore some memory functions in the current lesion model reinforces the prospect for treatments in human diencephalic amnesia.

  19. Corticothalamic Synaptic Noise as a Mechanism for Selective Attention in Thalamic Neurons

    Directory of Open Access Journals (Sweden)

    Sébastien eBéhuret

    2015-12-01

    Full Text Available A reason why the thalamus is more than a passive gateway for sensory signals is that two-third of the synapses of thalamocortical neurons are directly or indirectly related to the activity of corticothalamic axons. While the responses of thalamocortical neurons evoked by sensory stimuli are well characterized, with ON- and OFF-center receptive field structures, the prevalence of synaptic noise resulting from neocortical feedback in intracellularly recorded thalamocortical neurons in vivo has attracted little attention. However, in vitro and modeling experiments point to its critical role for the integration of sensory signals. Here we combine our recent findings in a unified framework suggesting the hypothesis that corticothalamic synaptic activity is adapted to modulate the transfer efficiency of thalamocortical neurons during selective attention at three different levels: First, on ionic channels by interacting with intrinsic membrane properties, second at the neuron level by impacting on the input-output gain, and third even more effectively at the cell assembly level by boosting the information transfer of sensory features encoded in thalamic subnetworks. This top-down population control is achieved by tuning the correlations in subthreshold membrane potential fluctuations and is adapted to modulate the transfer of sensory features encoded by assemblies of thalamocortical relay neurons. We thus propose that cortically-controlled (de-correlation of subthreshold noise is an efficient and swift dynamic mechanism for selective attention in the thalamus.

  20. Corticothalamic Synaptic Noise as a Mechanism for Selective Attention in Thalamic Neurons.

    Science.gov (United States)

    Béhuret, Sébastien; Deleuze, Charlotte; Bal, Thierry

    2015-01-01

    A reason why the thalamus is more than a passive gateway for sensory signals is that two-third of the synapses of thalamocortical neurons are directly or indirectly related to the activity of corticothalamic axons. While the responses of thalamocortical neurons evoked by sensory stimuli are well characterized, with ON- and OFF-center receptive field structures, the prevalence of synaptic noise resulting from neocortical feedback in intracellularly recorded thalamocortical neurons in vivo has attracted little attention. However, in vitro and modeling experiments point to its critical role for the integration of sensory signals. Here we combine our recent findings in a unified framework suggesting the hypothesis that corticothalamic synaptic activity is adapted to modulate the transfer efficiency of thalamocortical neurons during selective attention at three different levels: First, on ionic channels by interacting with intrinsic membrane properties, second at the neuron level by impacting on the input-output gain, and third even more effectively at the cell assembly level by boosting the information transfer of sensory features encoded in thalamic subnetworks. This top-down population control is achieved by tuning the correlations in subthreshold membrane potential fluctuations and is adapted to modulate the transfer of sensory features encoded by assemblies of thalamocortical relay neurons. We thus propose that cortically-controlled (de-)correlation of subthreshold noise is an efficient and swift dynamic mechanism for selective attention in the thalamus.

  1. The slow oscillation in cortical and thalamic networks: mechanisms and functions

    Directory of Open Access Journals (Sweden)

    Garrett T. Neske

    2016-01-01

    Full Text Available During even the most quiescent behavioral periods, the cortex and thalamus express rich spontaneous activity in the form of slow (<1 Hz, synchronous network state transitions. Throughout this so-called slow oscillation, cortical and thalamic neurons fluctuate between periods of intense synaptic activity (Up states and almost complete silence (Down states. The two decades since the original characterization of the slow oscillation in the cortex and thalamus have seen considerable advances in deciphering the cellular and network mechanisms associated with this pervasive phenomenon. There are, nevertheless, many questions regarding the slow oscillation that await more thorough illumination, particularly the mechanisms by which Up states initiate and terminate, the functional role of the rhythmic activity cycles in unconscious or minimally conscious states, and the precise relation between Up states and the activated states associated with waking behavior. Given the substantial advances in multineuronal recording and imaging methods in both in vivo and in vitro preparations, the time is ripe to take stock of our current understanding of the slow oscillation and pave the way for future investigations of its mechanisms and functions. My aim in this Review is to provide a comprehensive account of the mechanisms and functions of the slow oscillation, and to suggest avenues for further exploration.

  2. Abnormal EEG Complexity and Functional Connectivity of Brain in Patients with Acute Thalamic Ischemic Stroke

    Science.gov (United States)

    Liu, Shuang; Guo, Jie; Meng, Jiayuan; Wang, Zhijun; Yao, Yang; Yang, Jiajia; Qi, Hongzhi; Ming, Dong

    2016-01-01

    Ischemic thalamus stroke has become a serious cardiovascular and cerebral disease in recent years. To date the existing researches mostly concentrated on the power spectral density (PSD) in several frequency bands. In this paper, we investigated the nonlinear features of EEG and brain functional connectivity in patients with acute thalamic ischemic stroke and healthy subjects. Electroencephalography (EEG) in resting condition with eyes closed was recorded for 12 stroke patients and 11 healthy subjects as control group. Lempel-Ziv complexity (LZC), Sample Entropy (SampEn), and brain network using partial directed coherence (PDC) were calculated for feature extraction. Results showed that patients had increased mean LZC and SampEn than the controls, which implied the stroke group has higher EEG complexity. For the brain network, the stroke group displayed a trend of weaker cortical connectivity, which suggests a functional impairment of information transmission in cortical connections in stroke patients. These findings suggest that nonlinear analysis and brain network could provide essential information for better understanding the brain dysfunction in the stroke and assisting monitoring or prognostication of stroke evolution. PMID:27403202

  3. Simple cortical and thalamic neuron models for digital arithmetic circuit implementation

    Directory of Open Access Journals (Sweden)

    Takuya eNanami

    2016-05-01

    Full Text Available Trade-off between reproducibility of neuronal activities and computational efficiency is one ofcrucial subjects in computational neuroscience and neuromorphic engineering. A wide variety ofneuronal models have been studied from different viewpoints. The digital spiking silicon neuron(DSSN model is a qualitative model that focuses on efficient implementation by digital arithmeticcircuits. We expanded the DSSN model and found appropriate parameter sets with which itreproduces the dynamical behaviors of the ionic-conductance models of four classes of corticaland thalamic neurons. We first developed a 4-variable model by reducing the number of variablesin the ionic-conductance models and elucidated its mathematical structures using bifurcationanalysis. Then, expanded DSSN models were constructed that reproduce these mathematicalstructures and capture the characteristic behavior of each neuron class. We confirmed thatstatistics of the neuronal spike sequences are similar in the DSSN and the ionic-conductancemodels. Computational cost of the DSSN model is larger than that of the recent sophisticatedIntegrate-and-Fire-based models, but smaller than the ionic-conductance models. This modelis intended to provide another meeting point for above trade-off that satisfies the demand forlarge-scale neuronal network simulation with closer-to-biology models.

  4. Amygdalar, hippocampal, and thalamic volumes in youth at high risk for development of bipolar disorder

    Science.gov (United States)

    Karchemskiy, Asya; Garrett, Amy; Howe, Meghan; Adleman, Nancy; Simeonova, Diana I.; Alegria, Dylan; Reiss, Allan; Chang, Kiki

    2011-01-01

    Children of parents with bipolar disorder (BD), especially those with attention deficit hyperactivity disorder (ADHD) and symptoms of depression or mania, are significantly at high-risk for developing BD. As we have previously shown amygdalar reductions in pediatric BD, the current study examined amygdalar volumes in offspring of parents with (BD offspring) who have not yet developed a full manic episode. Youth participating in the study included 22 BD offspring and 22 healthy controls of comparable age, gender, handedness, and IQ. Subjects had no history of a manic episode, but met criteria for ADHD and moderate mood symptoms. MRI was performed on a 3T GE scanner, using a 3D volumetric spoiled gradient echo series. Amygdalae were manually traced using BrainImage Java software on positionally normalized brain stacks. Bipolar offspring had similar amygdalar volumes compared to the control group. Exploratory analyses yielded no differences in hippocampal or thalamic volumes. Bipolar offspring do not show decreased amygdala volume, possibly because these abnormalities occur after more prolonged illness rather than as a preexisting risk factor. Longitudinal studies are needed to determine whether amygdalar volumes change during and after the development of BD. PMID:22041532

  5. Successful Treatment of Refractory Status Epilepticus Using Anterior Thalamic Nuclei Deep Brain Stimulation.

    Science.gov (United States)

    Lee, Ching-Yi; Lim, Siew-Na; Wu, Tony; Lee, Shih-Tseng

    2017-03-01

    Refractory status epilepticus (RSE) is considered a medical emergency in neurology and is related to high mortality. We report a successfully treated case of RSE using deep brain stimulation (DBS) at the anterior thalamic nuclei (ATN) in a 17-year-old woman. This patient developed RSE as a result of progressive seizure activity. RSE with generalized tonic-clonic seizures was noted 2 weeks before admission. Video electroencephalography monitoring showed continuous 3-Hz generalized spike-and-wave complexes with higher amplitude over bilateral frontal. Four weeks after RSE onset, bilateral DBS of the ATN was started. This treatment was immediately followed by the disappearance of tonic-clonic seizures and spike-and-wave complexes, suggesting resolution of the RSE. Significant clinical improvement was noted 1 week after DBS implantation. DBS at the ATN significantly improved both the electroencephalography and clinical presentation in the patient with RSE. DBS at the ATN should be considered as a possible treatment choice once a patient develops RSE. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Ophthalmoplegic migraine with reversible thalamic ischemia by Tc-99m ethylcysteinate dimer brain SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Ho; Shin, Dong Jin; Kang, Sung Soo [Gachon Medical School, Gil Medical Center, Inchon (Korea, Republic of)

    1999-07-01

    Two patients presented with ophthalmoplegic migraine (OM) underwent EEG, Brain-MRI, cerebral angiography, and Tc-99m ECD SPECT during an attack. Follow-up SPECT was performed after neurologic symptoms resolved. In both cases, SPECT during an attack of ophthalmoplegia and headache demonstrated a significantly decreased regional cerebral blood flow in the thalamus to the side of ophthalmoplegia, which was normalized on the follow-up SPECT during a symptom free recovery phase (Lesion to Non-lesion thalamic ratio=1.19 to 0.96 and 1.16 to 0.98, respectively). The other roentgenographic and laboratory findings were normal. These findings are suggestive the ischemia in the perforators of PCA results in third nerve palsy because the portion of oculomotor nerve behind the cavernous sinus derives its blood supply from small perforating branches of the basilar and PCA. Matched ictal hypoperfusion of the thalamus to the site of ophthalmoplegic migraine is suggestive of the ischemic neuropathy as an etiology of OM.

  7. Entrainment of slow oscillations of auditory thalamic neurons by repetitive sound stimuli.

    Science.gov (United States)

    Gao, Lixia; Meng, Xiankai; Ye, Changquan; Zhang, Haitian; Liu, Chunhua; Dan, Yang; Poo, Mu-Ming; He, Jufang; Zhang, Xiaohui

    2009-05-06

    Slow oscillations at frequencies potential. Although up and down states are known to differentially affect sensory-evoked responses, whether and how they are modulated by sensory stimuli are not well understood. In the present study, intracellular recording in anesthetized guinea pigs showed that membrane potentials of nonlemniscal auditory thalamic neurons exhibited spontaneous up/down transitions at random intervals in the range of 2-30 s, which could be entrained to a regular interval by repetitive sound stimuli. After termination of the entraining stimulation (ES), regular up/down transitions persisted for several cycles at the ES interval. Furthermore, the efficacy of weak sound stimuli in triggering the up-to-down transition was potentiated specifically at the ES interval for at least 10 min. Extracellular recordings in the auditory thalamus of unanesthetized guinea pigs also showed entrainment of slow oscillations by rhythmic sound stimuli during slow wave sleep. These results demonstrate a novel form of network plasticity, which could help to retain the information of stimulus interval on the order of seconds.

  8. Corticothalamic Synaptic Noise as a Mechanism for Selective Attention in Thalamic Neurons

    Science.gov (United States)

    Béhuret, Sébastien; Deleuze, Charlotte; Bal, Thierry

    2015-01-01

    A reason why the thalamus is more than a passive gateway for sensory signals is that two-third of the synapses of thalamocortical neurons are directly or indirectly related to the activity of corticothalamic axons. While the responses of thalamocortical neurons evoked by sensory stimuli are well characterized, with ON- and OFF-center receptive field structures, the prevalence of synaptic noise resulting from neocortical feedback in intracellularly recorded thalamocortical neurons in vivo has attracted little attention. However, in vitro and modeling experiments point to its critical role for the integration of sensory signals. Here we combine our recent findings in a unified framework suggesting the hypothesis that corticothalamic synaptic activity is adapted to modulate the transfer efficiency of thalamocortical neurons during selective attention at three different levels: First, on ionic channels by interacting with intrinsic membrane properties, second at the neuron level by impacting on the input-output gain, and third even more effectively at the cell assembly level by boosting the information transfer of sensory features encoded in thalamic subnetworks. This top-down population control is achieved by tuning the correlations in subthreshold membrane potential fluctuations and is adapted to modulate the transfer of sensory features encoded by assemblies of thalamocortical relay neurons. We thus propose that cortically-controlled (de-)correlation of subthreshold noise is an efficient and swift dynamic mechanism for selective attention in the thalamus. PMID:26733818

  9. Crossing axons in the third nerve nucleus.

    Science.gov (United States)

    Bienfang, D C

    1975-12-01

    The research presented in this paper studied the pathway taken by the crossed fibers of the third nerve nucleus in an animal whose nucleus has been well mapped and found to correlate well with higher mammals and man. Autoradiography using tritiated amino acid labeled the cell bodies an axons of the left side of the oculomotor nucleus of the cat. Axons so labeled could be seen emerging from the ventral portion of the left nucleus through the median longitudinal fasciculus (mlf) to join the left oculomotor nerve. Labeled axons were also seen to emerge from the medial border of the caudal left nucleus, cross the midline, and pass through the right nucleus and the right mlf to join the right oculomotor nerve. These latter axons must be the crossed axons of the superior rectus and levator palpebrae subnuclei. Since the path of these crossed axons is through the caudal portion of the nucleus of the opposite side, the destruction of one lateral half of the oculomotor nucleus would result in a bilateral palsy of the crossed subnuclei. Bilateral palsy of the superior rectus and bilateral assymetrical palsy of the levator palpebrae muscles would result.

  10. A time-dependent role of midline thalamic nuclei in the retrieval of fear memory

    Science.gov (United States)

    Padilla-Coreano, Nancy; Do-Monte, Fabricio H.; Quirk, Gregory J.

    2011-01-01

    Increasing evidence indicates that the medial prefrontal cortex (mPFC) and the amygdala mediate expression and extinction of conditioned fear, but few studies have examined the inputs to these structures. The dorsal part of the midline thalamus (dMT) contains structures such as the mediodorsal nucleus, paraventricular nucleus, and paratenial nucleus that project prominently to mPFC, as well as to basal (BA) and central (Ce) nuclei of the amygdala. Using temporary inactivation with GABA agonist muscimol, we found that dMT was necessary for retrieving auditory fear memory that was 24 h old, but not 2-8 h old. However, pre-training infusions did not impair fear acquisition or extinction. To determine the possible targets of dMT that might modulate fear retrieval, we combined dMT inactivation with Fos immunohistochemistry. Rats with inactivation-induced impairment showed increased Fos in the lateral division of Ce (CeL), and decreased Fos in the medial division of Ce. No differences in Fos expression were observed in the mPFC or BA. We suggest that the projections from the paraventricular nucleus to CeL are involved in retrieval of well consolidated fear memories. Paré PMID:21903111

  11. Shaker-Related Potassium Channels in the Central Medial Nucleus of the Thalamus Are Important Molecular Targets for Arousal Suppression by Volatile General Anesthetics

    Science.gov (United States)

    Birch, Alexandra M.; Tanaka, Brian S.; Sokolov, Yuri; Goldin, Alan L.; Chandy, K. George; Hall, James E.; Alkire, Michael T.

    2013-01-01

    The molecular targets and neural circuits that underlie general anesthesia are not fully elucidated. Here, we directly demonstrate that Kv1-family (Shaker-related) delayed rectifier K+ channels in the central medial thalamic nucleus (CMT) are important targets for volatile anesthetics. The modulation of Kv1 channels by volatiles is network specific as microinfusion of ShK, a potent inhibitor of Kv1.1, Kv1.3, and Kv1.6 channels, into the CMT awakened sevoflurane-anesthetized rodents. In heterologous expression systems, sevoflurane, isoflurane, and desflurane at subsurgical concentrations potentiated delayed rectifier Kv1 channels at low depolarizing potentials. In mouse thalamic brain slices, sevoflurane inhibited firing frequency and delayed the onset of action potentials in CMT neurons, and ShK-186, a Kv1.3-selective inhibitor, prevented these effects. Our findings demonstrate the exquisite sensitivity of delayed rectifier Kv1 channels to modulation by volatile anesthetics and highlight an arousal suppressing role of Kv1 channels in CMT neurons during the process of anesthesia. PMID:24107962

  12. Synaptic Contributions to Receptive Field Structure and Response Properties in the Rodent Lateral Geniculate Nucleus of the Thalamus.

    Science.gov (United States)

    Suresh, Vandana; Çiftçioğlu, Ulaş M; Wang, Xin; Lala, Brittany M; Ding, Kimberly R; Smith, William A; Sommer, Friedrich T; Hirsch, Judith A

    2016-10-26

    Comparative physiological and anatomical studies have greatly advanced our understanding of sensory systems. Many lines of evidence show that the murine lateral geniculate nucleus (LGN) has unique attributes, compared with other species such as cat and monkey. For example, in rodent, thalamic receptive field structure is markedly diverse, and many cells are sensitive to stimulus orientation and direction. To explore shared and different strategies of synaptic integration across species, we made whole-cell recordings in vivo from the murine LGN during the presentation of visual stimuli, analyzed the results with different computational approaches, and compared our findings with those from cat. As for carnivores, murine cells with classical center-surround receptive fields had a "push-pull" structure of excitation and inhibition within a given On or Off subregion. These cells compose the largest single population in the murine LGN (∼40%), indicating that push-pull is key in the form vision pathway across species. For two cell types with overlapping On and Off responses, which recalled either W3 or suppressed-by-contrast ganglion cells in murine retina, inhibition took a different form and was most pronounced for spatially extensive stimuli. Other On-Off cells were selective for stimulus orientation and direction. In these cases, retinal inputs were tuned and, for oriented cells, the second-order subunit of the receptive field predicted the preferred angle. By contrast, suppression was not tuned and appeared to sharpen stimulus selectivity. Together, our results provide new perspectives on the role of excitation and inhibition in retinothalamic processing. We explored the murine lateral geniculate nucleus from a comparative physiological perspective. In cat, most retinal cells have center-surround receptive fields and push-pull excitation and inhibition, including neurons with the smallest (highest acuity) receptive fields. The same is true for thalamic relay cells

  13. Synaptic Contributions to Receptive Field Structure and Response Properties in the Rodent Lateral Geniculate Nucleus of the Thalamus

    Science.gov (United States)

    Suresh, Vandana; Çiftçioğlu, Ulaş M.; Wang, Xin; Lala, Brittany M.; Ding, Kimberly R.; Smith, William A.; Sommer, Friedrich T.

    2016-01-01

    Comparative physiological and anatomical studies have greatly advanced our understanding of sensory systems. Many lines of evidence show that the murine lateral geniculate nucleus (LGN) has unique attributes, compared with other species such as cat and monkey. For example, in rodent, thalamic receptive field structure is markedly diverse, and many cells are sensitive to stimulus orientation and direction. To explore shared and different strategies of synaptic integration across species, we made whole-cell recordings in vivo from the murine LGN during the presentation of visual stimuli, analyzed the results with different computational approaches, and compared our findings with those from cat. As for carnivores, murine cells with classical center-surround receptive fields had a “push-pull” structure of excitation and inhibition within a given On or Off subregion. These cells compose the largest single population in the murine LGN (∼40%), indicating that push-pull is key in the form vision pathway across species. For two cell types with overlapping On and Off responses, which recalled either W3 or suppressed-by-contrast ganglion cells in murine retina, inhibition took a different form and was most pronounced for spatially extensive stimuli. Other On-Off cells were selective for stimulus orientation and direction. In these cases, retinal inputs were tuned and, for oriented cells, the second-order subunit of the receptive field predicted the preferred angle. By contrast, suppression was not tuned and appeared to sharpen stimulus selectivity. Together, our results provide new perspectives on the role of excitation and inhibition in retinothalamic processing. SIGNIFICANCE STATEMENT We explored the murine lateral geniculate nucleus from a comparative physiological perspective. In cat, most retinal cells have center-surround receptive fields and push-pull excitation and inhibition, including neurons with the smallest (highest acuity) receptive fields. The same is

  14. Associative Plasticity in the Medial Auditory Thalamus and Cerebellar Interpositus Nucleus During Eyeblink Conditioning

    Science.gov (United States)

    Halverson, Hunter E.; Lee, Inah; Freeman, John H.

    2010-01-01

    Eyeblink conditioning, a type of associative motor learning, requires the cerebellum. The medial auditory thalamus is a necessary source of stimulus input to the cerebellum during auditory eyeblink conditioning. Nothing is currently known about interactions between the thalamus and cerebellum during associative learning. In the current study, neuronal activity was recorded in the cerebellar interpositus nucleus and medial auditory thalamus simultaneously from multiple tetrodes during auditory eyeblink conditioning to examine the relative timing of learning-related plasticity within these interconnected areas. Learning-related changes in neuronal activity correlated with the eyeblink conditioned response were evident in the cerebellum before the medial auditory thalamus over the course of training and within conditioning trials, suggesting that thalamic plasticity may be driven by cerebellar feedback. Short-latency plasticity developed in the thalamus during the first conditioning session and may reflect attention to the conditioned stimulus. Extinction training resulted in a decrease in learning-related activity in both structures and an increase in inhibition within the cerebellum. A feedback projection from the cerebellar nuclei to the medial auditory thalamus was identified, which may play a role in learning by facilitating stimulus input to the cerebellum via the thalamo-pontine projection. PMID:20592200

  15. Retrograde analyses of spinothalamic projections in the macaque monkey: input to the ventral lateral nucleus.

    Science.gov (United States)

    Craig, A D Bud

    2008-05-10

    The distribution of retrogradely labeled spinothalamic tract (STT) neurons was analyzed in monkeys following variously sized injections of cholera toxin subunit B (CTb) in order to determine whether different STT termination sites receive input from different sets of STT cells. This report focuses on STT input to the ventral lateral nucleus (VL), where prior anterograde tracing studies identified dense or moderately dense STT terminations. Large and very large injections in VL produced large numbers of labeled cells predominantly in laminae V and VII (more than half as many as from massive injections in the entire thalamus). Medium-sized and small injections in VL labeled STT cells almost exclusively in laminae V and VII, in segments consistent with the coarse mediolateral VL topography; few or no cells were labeled in lamina I. All injections labeled the deep cerebellar nuclei (see accompanying article: Evrard and Craig, 2008). Notably, even the most anterior injection in VL that produced dense pallidal labeling still labeled both STT and deep cerebellar cells. These observations indicate that VL receives STT input originating from laminae V and VII neurons that may be coextensive with its cerebellothalamic input. These findings support the role of laminae V and VII STT cells in sensorimotor integration and suggest a significant ongoing influence on both motor and premotor thalamocortical function. Together with the preceding observations of selective STT projections to other thalamic regions, these results provide compelling evidence that the primate STT consists of anatomically and functionally differentiable components. (c) 2008 Wiley-Liss, Inc.

  16. Neurokinin-1 Receptor-Immunopositive Neurons in the Medullary Dorsal Horn Provide Collateral Axons to both the Thalamus and Parabrachial Nucleus in Rats.

    Science.gov (United States)

    Li, Xu; Ge, Shun-Nan; Li, Yang; Wang, Han-Tao

    2017-01-17

    It has been suggested that the trigemino-thalamic and trigemino-parabrachial projection neurons in the medullary dorsal horn (MDH) are highly implicated in the sensory-discriminative and emotional/affective aspects of orofacial pain, respectively. In previous studies, some neurons were reported to send projections to both the thalamus and parabrachial nucleus by way of collaterals in the MDH. However, little is known about the chemoarchitecture of this group of neurons. Thus, in the present study, we determined whether the neurokinin-1 (NK-1) receptor, which is crucial for primary orofacial pain signaling, was expressed in MDH neurons co-innervating the thalamus and parabrachial nucleus. Vesicular glutamate transporter 2 (VGLUT2) mRNA, a biomarker for the subgroup of glutamatergic neurons closely related to pain sensation, was assessed in trigemino-parabrachial projection neurons in the MDH. After stereotactic injection of fluorogold (FG) and cholera toxin subunit B (CTB) into the ventral posteromedial thalamic nucleus (VPM) and parabrachial nucleus (PBN), respectively, triple labeling with fluorescence dyes for FG, CTB and NK-1 receptor (NK-1R) revealed that approximately 76 % of the total FG/CTB dually labeled neurons were detected as NK-1R-immunopositive, and more than 94 % of the triple-labeled neurons were distributed in lamina I. In addition, by FG retrograde tract-tracing combined with fluorescence in situ hybridization (FISH) for VGLUT2 mRNA, 54, 48 and 70 % of FG-labeled neurons in laminae I, II and III, respectively, of the MDH co-expressed FG and VGLUT2 mRNA. Thus, most of the MDH neurons co-innervating the thalamus and PBN were glutamatergic. Most MDH neurons providing the collateral axons to both the thalamus and parabrachial nucleus in rats were NK-1R-immunopositive and expressed VGLUT2 mRNA. NK-1R and VGLUT2 in MDH neurons may be involved in both sensory-discriminative and emotional/affective aspects of orofacial pain processing.

  17. Bilateral thalamic stroke due to occlusion of the artery of Percheron in a patient with patent foramen ovale: a case report

    Directory of Open Access Journals (Sweden)

    López-Serna Raúl

    2009-09-01

    Full Text Available Abstract Introduction Bilateral thalamic infarcts are rare presentations of stroke. They are the result of a complex combination of risk factors and a predisposing vessel distribution. The artery of Percheron, characterized by a single arterial trunk that irrigates both paramedian thalamic regions, can be occluded as a result of embolic diseases leading to bilateral paramedian thalamic infarcts. Clinical and image findings of this uncommon form of posterior circulation infarct are presented along with their anatomic and pathophysiologic correlates. Case presentation A 27-year-old Mexican man with no relevant medical history was admitted to hospital after he was found deeply stuporous. On admission, an urgent neuroimaging protocol for stroke, including magnetic resonance imaging and magnetic resonance imaging angiography, was performed. The scans revealed symmetric bilateral hyperintense paramedian thalamic lesions consistent with acute ischemic events. The posterior circulation was patent including the tip of the basilar artery and both posterior cerebral arteries, making the case compatible with occlusion of the artery of Percheron. Further evaluation with an aim to define the etiology revealed a patent foramen ovale as the cause of embolism. Conclusion Bilateral thalamic infarcts are unusual presentations of posterior circulation stroke; once they are diagnosed by an adequate neuroimaging protocol, a further evaluation to define the cause is necessary. Cardioembolism should always be considered in relatively young patients. A complete evaluation should be conducted by an interdisciplinary team including neurologists, cardiologists and neurosurgeons.

  18. Neurochemical pathways that converge on thalamic trigeminovascular neurons: potential substrate for modulation of migraine by sleep, food intake, stress and anxiety.

    Directory of Open Access Journals (Sweden)

    Rodrigo Noseda

    Full Text Available Dynamic thalamic regulation of sensory signals allows the cortex to adjust better to rapidly changing behavioral, physiological and environmental demands. To fulfill this role, thalamic neurons must themselves be subjected to constantly changing modulatory inputs that originate in multiple neurochemical pathways involved in autonomic, affective and cognitive functions. Our overall goal is to define an anatomical framework for conceptualizing how a 'decision' is made on whether a trigeminovascular thalamic neuron fires, for how long, and at what frequency. To begin answering this question, we determine which neuropeptides/neurotransmitters are in a position to modulate thalamic trigeminovascular neurons. Using a combination of in-vivo single-unit recording, juxtacellular labeling with tetramethylrhodamine dextran (TMR and in-vitro immunohistochemistry, we found that thalamic trigeminovascular neurons were surrounded by high density of axons containing biomarkers of glutamate, GABA, dopamine and serotonin; moderate density of axons containing noradrenaline and histamine; low density of axons containing orexin and melanin concentrating hormone (MCH; but not axons containing CGRP, serotonin 1D receptor, oxytocin or vasopressin. In the context of migraine, the findings suggest that the transmission of headache-related nociceptive signals from the thalamus to the cortex may be modulated by opposing forces (i.e., facilitatory, inhibitory that are governed by continuous adjustments needed to keep physiological, behavioral, cognitive and emotional homeostasis.

  19. Music and the nucleus accumbens.

    Science.gov (United States)

    Mavridis, Ioannis N

    2015-03-01

    Music is a universal feature of human societies over time, mainly because it allows expression and regulation of strong emotions, thus influencing moods and evoking pleasure. The nucleus accumbens (NA), the most important pleasure center of the human brain (dominates the reward system), is the 'king of neurosciences' and dopamine (DA) can be rightfully considered as its 'crown' due to the fundamental role that this neurotransmitter plays in the brain's reward system. Purpose of this article was to review the existing literature regarding the relation between music and the NA. Studies have shown that reward value for music can be coded by activity levels in the NA, whose functional connectivity with auditory and frontal areas increases as a function of increasing musical reward. Listening to music strongly modulates activity in a network of mesolimbic structures involved in reward processing including the NA. The functional connectivity between brain regions mediating reward, autonomic and cognitive processing provides insight into understanding why listening to music is one of the most rewarding and pleasurable human experiences. Musical stimuli can significantly increase extracellular DA levels in the NA. NA DA and serotonin were found significantly higher in animals exposed to music. Finally, passive listening to unfamiliar although liked music showed activations in the NA.

  20. Thalamic microinfusion of antibody to a voltage-gated potassium channel restores consciousness during anesthesia.

    Science.gov (United States)

    Alkire, Michael T; Asher, Christopher D; Franciscus, Amanda M; Hahn, Emily L

    2009-04-01

    The Drosophila Shaker mutant fruit-fly, with its malfunctioning voltage-gated potassium channel, exhibits anesthetic requirements that are more than twice normal. Shaker mutants with an abnormal Kv1.2 channel also demonstrate significantly reduced sleep. Given the important role the thalamus plays in both sleep and arousal, the authors investigated whether localized central medial thalamic (CMT) microinfusion of an antibody designed to block the pore of the Kv1.2 channel might awaken anesthetized rats. Male Sprague-Dawley rats were implanted with a cannula aimed at the CMT or lateral thalamus. One week later, unconsciousness was induced with either desflurane (3.6 +/- 0.2%; n = 55) or sevoflurane (1.2 +/- 0.1%; n = 51). Arousal effects of a single 0.5-microl infusion of Kv1.2 potassium channel blocking antibody (0.1- 0.2 mg/ml) or a control infusion of Arc-protein antibody (0.2 mg/ml) were then determined. The Kv1.2 antibody, but not the control antibody, temporarily restored consciousness in 17% of all animals and in 75% of those animals where infusions occurred within the CMT (P Consciousness returned on average (+/- SD) 170 +/- 99 s after infusion and lasted a median time of 398 s (interquartile range: 279-510 s). Temporary seizures, without apparent consciousness, predominated in 33% of all animals. These findings support the idea that the CMT plays a role in modulating levels of arousal during anesthesia and further suggest that voltage-gated potassium channels in the CMT may contribute to regulating arousal or may even be relevant targets of anesthetic action.

  1. Specific circular organization of the neurons of human interthalamic adhesion and of periventricular thalamic region.

    Science.gov (United States)

    Laslo, Puskas; Slobodan, Malobabić; Nela, Puskas; Milos, Malis; Rade, Popović; Tatjana, Ille

    2005-05-01

    Interthalamic adhesion between the medial surfaces of the left and right thalamus is a variable structure and contains the midline thalamic nuclei, which are not much developed in humans. The research has been done on 6 human brains obtained during routine autopsy (age 45 to 65; 4 male and 2 female). Every tenth 10 microm thick frontal section was stained according to Klüver-Barrera method. In all cases the authors found a specific organization of certain groups of neurons within the interthalamic adhesion (IA) in form of circles on frontal sections. These circular groups were present on all sections but only 1-2 in each. The larger mean diameter of these circular arrangements was R = 229.4 microm, and smaller was r = 203.1 microm. These circular groups within the human IA were formed in average by 7.29 neurons. In periventricular region (PVR) of thalamus similar circular groups of neurons also were present in all cases as in IA. These neuronal groups in PVR were of smaller size than in the IA, with larger mean diameter R = 201.4, smaller mean diameter r = 181.2 microm and they contained fewer neurons, 6.69 on average. All three values (both diameters of circular arrangements, and number of neurons forming them) were significantly smaller in PVR (p < .01). Morphological types and sizes of neurons in both investigated structures (IA and PV) were not different. The circular neuronal groups in IA were formed in 61% of fusiform neurons and in PVR in 48% of fusiform neurons. According to their subependymal localization, size and form, these circular groups can represent in vivo correlates of neurospheres.

  2. Cell type-specific thalamic innervation in a column of rat vibrissal cortex.

    Science.gov (United States)

    Meyer, Hanno S; Wimmer, Verena C; Hemberger, Mike; Bruno, Randy M; de Kock, Christiaan P J; Frick, Andreas; Sakmann, Bert; Helmstaedter, Moritz

    2010-10-01

    This is the concluding article in a series of 3 studies that investigate the anatomical determinants of thalamocortical (TC) input to excitatory neurons in a cortical column of rat primary somatosensory cortex (S1). We used viral synaptophysin-enhanced green fluorescent protein expression in thalamic neurons and reconstructions of biocytin-labeled cortical neurons in TC slices to quantify the number and distribution of boutons from the ventral posterior medial (VPM) and posteromedial (POm) nuclei potentially innervating dendritic arbors of excitatory neurons located in layers (L)2-6 of a cortical column in rat somatosensory cortex. We found that 1) all types of excitatory neurons potentially receive substantial TC input (90-580 boutons per neuron); 2) pyramidal neurons in L3-L6 receive dual TC input from both VPM and POm that is potentially of equal magnitude for thick-tufted L5 pyramidal neurons (ca. 300 boutons each from VPM and POm); 3) L3, L4, and L5 pyramidal neurons have multiple (2-4) subcellular TC innervation domains that match the dendritic compartments of pyramidal cells; and 4) a subtype of thick-tufted L5 pyramidal neurons has an additional VPM innervation domain in L4. The multiple subcellular TC innervation domains of L5 pyramidal neurons may partly explain their specific action potential patterns observed in vivo. We conclude that the substantial potential TC innervation of all excitatory neuron types in a cortical column constitutes an anatomical basis for the initial near-simultaneous representation of a sensory stimulus in different neuron types.

  3. Synaptic responsiveness of cortical and thalamic neurones during various phases of slow sleep oscillation in cat.

    Science.gov (United States)

    Timofeev, I; Contreras, D; Steriade, M

    1996-01-01

    1. The fluctuations during various phases of the slow sleep oscillation (< 1 Hz) in synaptic responsiveness of motor cortical (Cx), thalamic reticular (RE) and thalamocortical (TC) neurones were investigated intracellularly in cats under ketamine-xylazine anaesthesia. Orthodromic responses to stimuli applied to brachium conjunctivum (BC) axons and corticothalamic pathways were studied. The phases of slow oscillation consist of a long-hyperpolarized, followed by a sharp depth-negative EEG deflection and a series of faster waves that are associated with the depolarization of Cx and RE neurones, while TC cells display a sequence of IPSPs within the spindle frequency. 2. BC-evoked bisynaptic excitatory postsynaptic potentials (EPSPs) in Cx and RE neurones were drastically reduced in amplitude during the long-lasting hyperpolarization and the early part of the depolarizing phase. By contrast, the BC-evoked monosynaptic EPSPs of TC cells were not diminished during the depth-positive EEG wave, but the hyperpolarization during this phase of the slow oscillation prevented TC neurones transferring prethalamic signals to the cortex. 3. At variance with the diminished bisynaptic EPSPs evoked in response to BC stimuli during the long-lasting hyperpolarization, Cx-evoked monosynaptic EPSPs in Cx cells increased linearly with hyperpolarization during this phase of the slow oscillation. Similarly, the amplitudes of Cx-evoked EPSPs in RE and TC cells were not diminished during the long-lasting hyperpolarization. 4. The diminished responsiveness of Cx and RE neurones to prethalamic volleys during the long-lasting hyperpolarization is attributed to gating processes at the level of TC cells that, because of their hyperpolarization, do not transfer prethalamic information to further relays. PMID:8814620

  4. Decreased striatal and enhanced thalamic dopaminergic responsivity in detoxified cocaine abusers

    Energy Technology Data Exchange (ETDEWEB)

    Volkow, N.D.; Wang, G.J.; Fowler, J.S. [Brookhaven National Lab., Stony Brook, NY (United States)] [and others

    1997-05-01

    It has been hypothesized that cocaine addiction could result from decreased brain dopamine (DA) function. However, little is known about changes in (DA) neurotransmission in human cocaine addiction. We used PET and [C-11]raclopride, a DA D2 receptor ligand sensitive to competition with endogenous DA, to measure relative changes in extracellular DA induced by methylphenidate (MP) in 20 cocaine abusers (3-6 weeks after cocaine discontinuation) and 23 controls. MP did not affect the transport of [C-11]raclopride from blood to brain (K1); however it induced a significant reduction in DA D2 receptor availability (Bmax/Kd) in striatum. The magnitude of ND-induced changes in striatal [C-11]raclopride binding were significantly larger in controls (21 + 13% change from baseline) than in cocaine abusers (9 {+-} 13 %) (ANOVA p < 0.005). In cocaine abusers, but not in controls, MP also decreased Bmax/Kd values in thalamus (29 {+-} 35 %) (ANOVA p < 0.005). There were no differences in plasma MP concentration between the groups. In striatum MP-induced changes in Bmax/Kd were significantly correlated with MP-induced changes in self reports of restlessness (r = 0.49, df 42, p < 0.002). In thalamus MP-induced changes in Bmax/Kd were significantly correlated with ND-induced changes in self reports of cocaine craving (r = 0.57, df 42, p < 0.0001). These results are compatible with a decrease in striatal DA brain function in cocaine abusers. They also suggest a participation of thalamic DA pathways in cocaine addiction.

  5. Prognosis of thalamic hemorrhage with special reference to the level of consciousness and CT findings on admission

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Toshimasa; Tanahashi, Norio; Nara, Masaharu; Takenaka, Nobuo (Ashikaga Red Cross Hospital, Tochigi (Japan))

    1991-04-01

    The prognosis of thalamic hemorrhage was studied on the basis of neurological gradings on admission, mode of extension and hematoma size on brain CT. The subjects were 126 patients with thalamic hemorrhage who were admitted to Ashikaga Red Cross Hospital during the past ten years. Among the subjects, 120 patients (ages 64{+-}10 yr; mean {+-}SD) were treated with conservative therapy, and 6 patients (ages 59{+-}10 yr) with surgical therapy (ventricular drainage). Brain CT scans were done within 48 hours after onset in all patients. Neurological gradings, brain CT classification and prognosis were investigated according to the criteria of the Japanese Conference on Surgery for Cerebral Stroke. The results of conservative therapy were as follows: (1) In the grade I group on the neurological gradings, 29 of the 39 patients (74%) recovered to full work or an independent life, and none of them died. In the grade IV and V groups, mortality rate was 86%. (2) The prognosis was more unfavorable in type III than in types I and II on the CT classification. Twenty-six of the 36 patients (73%) with type I-a recovered to full work or an independent life. Twenty-five of the 34 patients (74%) with the type III-b died. (3) Only 4 of the 75 patients (5%) with less than 10 ml of hematoma volume died. In contrast, all 14 patients with more than 25 ml of hematoma volume died. (4) The mortality rate among patients with ventricular rupture (47%) was significantly higher than that among patients without ventricular rupture (2%) (p<0.001). (5) The mortality rate of patients with acute hydrocephalus (83%) was significantly higher than that of patients without acute hydrocephalus (20%) (p<0.001). From the above results, it is suggested that neurological grading, brain CT classification, hematoma volume, ventricular rupture and acute hydrocephalus are important prognostic factors for thalamic hemorrhage. (author).

  6. Modulation by extracellular pH of low- and high-voltage-activated calcium currents of rat thalamic relay neurons.

    Science.gov (United States)

    Shah, M J; Meis, S; Munsch, T; Pape, H C

    2001-03-01

    The effects of changes in the extracellular pH (pH(o)) on low-voltage- (LVA) and high-voltage- (HVA) activated calcium currents of acutely isolated relay neurons of the ventrobasal thalamic complex (VB) were examined using the whole cell patch-clamp technique. Modest extracellular alkalinization (pH 7.3 to 7.7) reversibly enlarged LVA calcium currents by 18.6 +/- 3.2% (mean +/- SE, n = 6), whereas extracellular acidification (pH 7.3 to 6.9) decreased the current by 24.8 +/- 3.1% (n = 9). Normalized current amplitudes (I/I(7.3)) fitted as a function of pH(o) revealed an apparent pK(a) of 6.9. Both, half-maximal activation voltage and steady-state inactivation were significantly shifted to more negative voltages by 2-4 mV on extracellular alkalinization and to more positive voltages by 2-3 mV on extracellular acidification, respectively. Recovery from inactivation of LVA calcium currents was not significantly affected by changes in pH(o). In contrast, HVA calcium currents were less sensitive to changes in pH(o). Although extracellular alkalinization increased maximal HVA current by 6.0 +/- 2.0% (n = 7) and extracellular acidification decreased it by 11.9 +/- 0.02% (n = 11), both activation and steady-state inactivation were only marginally affected by the moderate changes in pH(o) used in the present study. The results show that calcium currents of thalamic relay neurons exhibit different pH(o) sensitivity. Therefore activity-related extracellular pH transients might selectively modulate certain aspects of the electrogenic behavior of thalamic relay neurons.

  7. Connectivity-based parcellation of the thalamus explains specific cognitive and behavioural symptoms in patients with bilateral thalamic infarct.

    Directory of Open Access Journals (Sweden)

    Laura Serra

    Full Text Available A novel approach based on diffusion tractography was used here to characterise the cortico-thalamic connectivity in two patients, both presenting with an isolated bilateral infarct in the thalamus, but exhibiting partially different cognitive and behavioural profiles. Both patients (G.P. and R.F. had a pervasive deficit in episodic memory, but only one of them (R.F. suffered also from a dysexecutive syndrome. Both patients had an MRI scan at 3T, including a T1-weighted volume. Their lesions were manually segmented. T1-volumes were normalised to standard space, and the same transformations were applied to the lesion masks. Nineteen healthy controls underwent a diffusion-tensor imaging (DTI scan. Their DTI data were normalised to standard space and averaged. An atlas of Brodmann areas was used to parcellate the prefrontal cortex. Probabilistic tractography was used to assess the probability of connection between each voxel of the thalamus and a set of prefrontal areas. The resulting map of corticothalamic connections was superimposed onto the patients' lesion masks, to assess whether the location of the thalamic lesions in R.F. (but not in G. P. implied connections with prefrontal areas involved in dysexecutive syndromes. In G.P., the lesion fell within areas of the thalamus poorly connected with prefrontal areas, showing only a modest probability of connection with the anterior cingulate cortex (ACC. Conversely, R.F.'s lesion fell within thalamic areas extensively connected with the ACC bilaterally, with the right dorsolateral prefrontal cortex, and with the left supplementary motor area. Despite a similar, bilateral involvement of the thalamus, the use of connectivity-based segmentation clarified that R.F.'s lesions only were located within nuclei highly connected with the prefrontal cortical areas, thus explaining the patient's frontal syndrome. This study confirms that DTI tractography is a useful tool to examine in vivo the effect of focal

  8. Differential changes in thalamic and cortical excitatory synapses onto striatal spiny projection neurons in a Huntington disease mouse model.

    Science.gov (United States)

    Kolodziejczyk, Karolina; Raymond, Lynn A

    2016-02-01

    Huntington disease (HD), a neurodegenerative disorder caused by CAG repeat expansion in the gene encoding huntingtin, predominantly affects the striatum, especially the spiny projection neurons (SPN). The striatum receives excitatory input from cortex and thalamus, and the role of the former has been well-studied in HD. Here, we report that mutated huntingtin alters function of thalamostriatal connections. We used a novel thalamostriatal (T-S) coculture and an established corticostriatal (C-S) coculture, generated from YAC128 HD and WT (FVB/NJ background strain) mice, to investigate excitatory neurotransmission onto striatal SPN. SPN in T-S coculture from WT mice showed similar mini-excitatory postsynaptic current (mEPSC) frequency and amplitude as in C-S coculture; however, both the frequency and amplitude were significantly reduced in YAC128 T-S coculture. Further investigation in T-S coculture showed similar excitatory synapse density in WT and YAC128 SPN dendrites by immunostaining, suggesting changes in total dendritic length or probability of release as possible explanations for mEPSC frequency changes. Synaptic N-methyl-D-aspartate receptor (NMDAR) current was similar, but extrasynaptic current, associated with cell death signaling, was enhanced in YAC128 SPN in T-S coculture. Employing optical stimulation of cortical versus thalamic afferents and recording from striatal SPN in brain slice, we found increased glutamate release probability and reduced AMPAR/NMDAR current ratios in thalamostriatal synapses, most prominently in YAC128. Enhanced extrasynaptic NMDAR current in YAC128 SPN was apparent with both cortical and thalamic stimulation. We conclude that thalamic afferents to the striatum are affected early, prior to an overt HD phenotype; however, changes in NMDAR localization in SPN are independent of the source of glutamatergic input.

  9. Reduced thalamic volume in men with antisocial personality disorder or schizophrenia and a history of serious violence and childhood abuse.

    Science.gov (United States)

    Kumari, V; Gudjonsson, G H; Raghuvanshi, S; Barkataki, I; Taylor, P; Sumich, A; Das, K; Kuipers, E; Ffytche, D H; Das, M

    2013-05-01

    Violent behaviour has been associated with presence of certain mental disorders, most notably antisocial personality disorder (ASPD) and schizophrenia, childhood abuse, and multiple brain abnormalities. This study examined for the first time, to the authors' knowledge, the role of psychosocial deprivation (PSD), including childhood physical and sexual abuse, in structural brain volumes of violent individuals with ASPD or schizophrenia. Fifty-six men (26 with ASPD or schizophrenia and a history of serious violence, 30 non-violent) underwent magnetic resonance imaging and were assessed on PSD. Stereological volumetric brain ratings were examined for group differences and their association with PSD ratings. PSD-brain associations were examined further using voxel-based-morphometry. The findings revealed: reduced thalamic volume in psychosocially-deprived violent individuals, relative to non-deprived violent individuals and healthy controls; negative association between thalamic volume and abuse ratings (physical and sexual) in violent individuals; and trend-level negative associations between PSD and hippocampal and prefrontal volumes in non-violent individuals. The voxel-based-morphometry analysis detected a negative association between PSD and localised grey matter volumes in the left inferior frontal region across all individuals, and additionally in the left middle frontal and precentral gyri in non-violent individuals. Violent mentally-disordered individuals with PSD, relative to those with no or minimal PSD, suffer from an additional brain deficit, i.e., reduced thalamic volume; this may affect sensory information processing, and have implications for management, of these individuals. PSD may have a stronger relationship with volumetric loss of stress-linked regions, namely the frontal cortex, in non-violent individuals. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  10. Study of Hadron Production in Hadron-Nucleus and Nucleus-Nucleus Collisions at the CERN SPS

    CERN Multimedia

    Selyuzhenkov, I; Klochkov, V; Kowalski, S; Kaptur, E A; Kowalik, K L; Dominik, W M; Krasnoperov, A; Feofilov, G; Vinogradov, L; Kovalenko, V; Johnson, S R; Mills, G B; Planeta, R J; Rubbia, A; Marton, K; Messerly, B A; Puzovic, J; Bogomilov, M V; Bravar, A; Sgalaberna, D; Renfordt, R A E; Deveaux, M; Engel, R R; Grzeszczuk, A; Davis, N; Kuich, M; Lyubushkin, V; Kondratev, V; Kadija, K; Diakonos, F; Slodkowski, M A; Rauch, W H; Pistillo, C; Laszlo, A; Nakadaira, T; Hasegawa, T; Sadovskiy, A; Morozov, S; Petukhov, O; Szuba, M K; Mathes, H; Herve, A E; Roehrich, D; Marino, A D; Grebieszkow, K; Wlodarczyk, Z; Rybczynski, M A; Wojtaszek-szwarc, A; Nirkko, M C; Sakashita, K; Golubeva, M; Kurepin, A; Manic, D; Kolev, D I; Kisiel, J E; Rondio, E; Larsen, D T; Czopowicz, T R; Seyboth, P; Turko, L; Guber, F; Marin, V; Busygina, O; Taranenko, A; Cirkovic, M; Gazdzicki, M; Roth, M A; Pulawski, S M; Aduszkiewicz, A M; Bunyatov, S; Vechernin, V; Nagai, Y; Anticic, T; Dynowski, K M; Mackowiak-pawlowska, M K; Stefanek, G; Pavin, M; Fodor, Z P; Nishikawa, K; Tada, M; Kobayashi, T; Blondel, A P P; Damyanova, A; Stroebele, H W; Posiadala, M Z; Kolesnikov, V; Andronov, E; Zimmerman, E D; Antoniou, N; Majka, Z; Di luise, S; Veberic, D; Dumarchez, J; Naskret, M; Ivashkin, A; Tsenov, R V; Koziel, M G; Schmidt, K J; Melkumov, G; Popov, B; Panagiotou, A; Richter-was, E M; Ereditato, A; Paolone, V; Unger, M T; Wilczek, A G; Stepaniak, J M; Matulewicz, T N; Seryakov, A; Susa, T; Staszel, P P; Brzychczyk, J; Maksiak, B; Tefelski, D B; Kucewicz, W; Dorosz, P A

    2007-01-01

    The NA61/SHINE (SHINE = SPS Heavy Ion and Neutrino Experiment) experiment is a large acceptance hadron spectrometer at the CERN SPS for the study of the hadronic final states produced in interactions of various beam particles (pions, protons, C, S and In) with a variety of fixed targets at the SPS energies. The main components of the current detector were constructed and used by the NA49 experiment. The physics program of NA61/SHINE consists of three main subjects. In the first stage of data taking (2007-2009) measurements of hadron production in hadron-nucleus interactions needed for neutrino (T2K) and cosmic-ray (Pierre Auger and KASCADE) experiments will be performed. In the second stage (2009-2011) hadron production in proton-proton and proton-nucleus interactions needed as reference data for a better understanding of nucleus-nucleus reactions will be studied. In the third stage (2009-2013) energy dependence of hadron production properties will be measured in nucleus-nucleus collisions as well as in p+p a...

  11. Unilateral asterixis, thalamic astasia and vertical one and half syndrome in a unilateral posterior thalamo-subthalamic paramedian infarct: An interesting case report

    Directory of Open Access Journals (Sweden)

    Subasree Ramakrishnan

    2013-01-01

    Full Text Available A 42-year-old young lady presented with acute onset of dizziness, drooping of left eye with binocular diplopia and inability to walk unassisted. She had past history of uncontrolled diabetes mellitus and hypertension. On examination, she had left fascicular type of third nerve palsy, vertical one and half syndrome (VOHS, left internuclear ophthalmoplegia and skew deviation with ipsilesional hypertropia. She also had thalamic astasia and right unilateral asterixis. Her MRI revealed T2 and Flair hyper intense signal changes with restricted diffusion in the left thalamus, subthalamus and left midbrain. MR Angiography was normal. Thalamic-subthalamic paramedian territory infarct is relatively uncommon. It can present with oculomotor abnormalities including vertical one and half syndrome, skew deviation, thalamic astasia and asterixis. This case is reported for the rarity of the presenting clinical findings in unilateral thalamo-mesencephalic infarcts.

  12. Steroid-responsive thalamic lesions accompanying microbleeds in a case of Hashimoto's encephalopathy with autoantibodies against α-enolase.

    Science.gov (United States)

    Yamaguchi, Yoshitaka; Wada, Manabu; Tanji, Haruko; Kurokawa, Katsuro; Kawanami, Toru; Tanji, Kazuyo; Yoneda, Makoto; Kato, Takeo

    2013-01-01

    A 67-year-old man receiving antithrombotic therapy developed rapidly progressive amnesia. T2-weighted images of brain MRI revealed hyperintense lesions in the bilateral thalami accompanied by microbleeds. Antithyroglobulin antibodies and autoantibodies against the N-terminal of α-enolase (NAE) were identified in the patient's serum; therefore, Hashimoto's encephalopathy (HE) was suspected. Although the patient's radiological findings improved following steroid therapy, his symptoms did not improve, possibly due to increased thalamic microbleeds. Because anti-NAE antibodies are possibly associated with vasculitis, HE accompanied by anti-NAE antibodies may be exacerbated by microbleeds in patients receiving antithrombotic therapy.

  13. Large philipsite crystal as ferromanganese nodule nucleus

    Digital Repository Service at National Institute of Oceanography (India)

    Ghosh, A.K.; Mukhopadhyay, R.

    We report here the occurrence of, to date, the largest (21 x 10 x 8 mm) phillipsite crystal forming the nucleus of a diagenetically formed ferromanganese nodule from the Central Indian Ocean Basin (CIOB). Assuming an average rate of ferromanganese...

  14. Tc-99m ECD brain SPECT in patients with traumatic brain injury: evaluating distribution of hypoperfusion and assessment of cognitive and behavioral impairment in relation to thalamic hypoperfusion

    Energy Technology Data Exchange (ETDEWEB)

    Park, Soon Ah; Lim, Seok Tae; Sohn, Myung Hee [College of Medicine, Chonbuk National Univ., Chonju (Korea, Republic of)

    2000-12-01

    We evaluated the distribution of hypoperfusion in patients with traumatic brain injury (TBI) and the relationship of thalamic hypoperfusion to severity of cognitive and behavioral sequelae. Tc-99m ECD SPECT and MRI were performed in 103 patients (M/F=81/22, mean age 34.7{+-} 15.4 yrs) from 0.5 to 55 months (mean 10.3 months) after TBI. The patients were divided into three groups showing no abnormalities (G1), focal (G2) and diffuse injury (G3) on MRI. Psychometric tests assessed 11 cognitive or behavioral items. In all patients, we evaluated the distribution of hypoperfused areas in SPECT, and in 57/103 patients, neuropsychological (NP) abnormalities in patients with thalamic hypoperfusion were compared with those of patients without thalamic hypoperfusion. The perfusion dificits were most frequently located in the frontal lobe (G1, 42.3%: G2 34.5%: G3 33.3%), temporal lobe (24{approx}26%) thalami (21{approx}22.4%), parietal and occipital lobe ({<=}10%). Numbers of NP abnormalities in the cases of cortical hypoperfusion with or without concomitant thalamic hypoperfusion were following: the former 4.7{+-}1.5 and the latter 3.2{+-}1.4 in G1, 5.0{+-}1.1 and 4.8{+-}1.2 in G2, 6.8{+-}1.8 and 6.3{+-}1.1 in G3, respectively. This difference according to thalamic hypoperfusion was significant in G1 (p=0.002), but was not significant in G2 or G3. SPECT in patients with TBI had demonstrated hypoperfusion mostly involving the frontal, temporal and thalami. In normal group on MRI, frontal hypoperfusion was more prominent than that of any other group, Furthermore in this group, SPECT could predict severity of NP outcome by concomitant thalamic hypoperfusion with cerebral cortical abnormalities.

  15. Medium effect in high density region probed by nucleus-nucleus elastic scattering

    CERN Document Server

    Furumoto, T; Yamamoto, Y

    2014-01-01

    We investigate the sensitivity of the medium effect in the high density region on the nucleus-nucleus elastic scattering in the framework of the double-folding (DF) model with the complex $G$-matrix interaction. First, the evaluating position of the local density, which is an ambiguity of the DF model, is investigated. However, the effect has a minor role to the nucleus-nucleus system. Next, the medium effect including three-body-force (TBF) effect is investigated with two methods. In the both methods, the medium effect is clearly seen on the potential and the elastic cross section, but not on the total reaction cross section. Finally, we make clear the crucial role of the TBF effect up to $k_F =$ 1.6 fm$^{-1}$ in the nucleus-nucleus elastic scattering.

  16. Transport calculations of antiproton-nucleus interactions

    CERN Document Server

    Larionov, A B; Pshenichnov, I A; Satarov, L M; Greiner, W

    2010-01-01

    The Giessen Boltzmann-Uehling-Uhlenbeck transport model is extended and applied to the antiproton-nucleus interactions in a wide beam momentum range. The model calculations are compared with the experimental data on $\\bar p$-absorption cross sections on nuclei with an emphasis on extraction of the real part of an antiproton optical potential. The possibility of the cold compression of a nucleus by an antiproton in-flight is also considered.

  17. The deep stimulation of the sub-thalamus nucleus affects the limbic and associative circuits: a study in {sup 18}F-F.D.G. -PET in the Parkinson disease;La stimulation profonde du noyau sous thalamique affecte les circuits limbique et associatif: une etude en 18FDG-TEP dans la maladie de Parkinson

    Energy Technology Data Exchange (ETDEWEB)

    Le Jeune, F.; Garin, E. [Centre Eugene-Marquis, Servive de medecine nucleaire, 35 - Rennes (France); Le Jeune, F.; Peron, J.; Grandjean, D.; Drapier, S.; Haegelen, C.; Garin, E.; Millet, B.; Verin, M. [Universite de Rennes-1, URU comportement et noyaux gris centraux, 35 - Rennes (France); Peron, J.; Drapier, S.; Haegelen, C.; Verin, M. [CHU Pontchaillou, service de neurologie, 35 - Rennes (France); Grandjean, D. [University of Genova, Swiss Center for Affective Sciences, Geneve (Switzerland); Millet, B. [Centre hospitalier Guillaume-Regnier, service de psychiatrie adulte, 35 - Rennes (France)

    2010-05-15

    The purpose of this study is to highlight the changes in brain metabolism in {sup 18}F.D.G.-PET to improve understanding of the non-motor functional role .This study confirms the non-motor functional role of the sub thalamic nucleus (S.T.N.) in limbic and associative circuits in humans.These results provide working hypotheses to study the correlations between neuropsychological alterations clinically diagnosed and cerebral metabolism in order to identify the neural circuits involved. (N.C.)

  18. Commissural axons of the mouse cochlear nucleus.

    Science.gov (United States)

    Brown, M Christian; Drottar, Marie; Benson, Thane E; Darrow, Keith

    2013-05-01

    The axons of commissural neurons that project from one cochlear nucleus to the other were studied after labeling with anterograde tracer. Injections were made into the dorsal subdivision of the cochlear nucleus in order to restrict labeling only to the group of commissural neurons that gave off collaterals to, or were located in, this subdivision. The number of labeled commissural axons in each injection was correlated with the number of labeled radiate multipolar neurons, suggesting radiate neurons as the predominant origin of the axons. The radiate commissural axons are thick and myelinated, and they exit the dorsal acoustic stria of the injected cochlear nucleus to cross the brainstem in the dorsal half, near the crossing position of the olivocochlear bundle. They enter the opposite cochlear nucleus via the dorsal and ventral acoustic stria and at its medial border. Reconstructions of single axons demonstrate that terminations are mostly in the core and typically within a single subdivision of the cochlear nucleus. Extents of termination range from narrow to broad along both the dorsoventral (i.e., tonotopic) and the rostrocaudal dimensions. In the electron microscope, labeled swellings form synapses that are symmetric (in that there is little postsynaptic density), a characteristic of inhibitory synapses. Our labeled axons do not appear to include excitatory commissural axons that end in edge regions of the nucleus. Radiate commissural axons could mediate the broadband inhibition observed in responses to contralateral sound, and they may balance input from the two ears with a quick time course.

  19. A Comparison of Visual Response Properties in the Lateral Geniculate Nucleus and Primary Visual Cortex of Awake and Anesthetized Mice.

    Science.gov (United States)

    Durand, Séverine; Iyer, Ramakrishnan; Mizuseki, Kenji; de Vries, Saskia; Mihalas, Stefan; Reid, R Clay

    2016-11-30

    The cerebral cortex of the mouse has become one of the most important systems for studying information processing and the neural correlates of behavior. Multiple studies have examined the first stages of visual cortical processing: primary visual cortex (V1) and its thalamic inputs from the dorsal lateral geniculate nucleus (dLGN), but more rarely in the lateral posterior nucleus (LP) in mice. Multiple single-unit surveys of dLGN and V1, both with electrophysiology and two-photon calcium imaging, have described receptive fields in anesthetized animals. Increasingly, awake animals are being used in physiological studies, so it is important to compare neuronal responses between awake and anesthetized state. We have performed a comprehensive survey of spatial and temporal response properties in V1, dLGN, and lateral posterior nucleus of both anesthetized and awake animals, using a common set of stimuli: drifting sine-wave gratings spanning a broad range of spatial and temporal parameters, and sparse noise stimuli consisting of flashed light and dark squares. Most qualitative receptive field parameters were found to be unchanged between the two states, such as most aspects of spatial processing, but there were significant differences in several parameters, most notably in temporal processing. Compared with anesthetized animals, the temporal frequency that evoked the peak response was shifted toward higher values in the dLGN of awake mice and responses were more sustained. Further, the peak response to a flashed stimulus was earlier in all three areas. Overall, however, receptive field properties in the anesthetized animal remain a good model for those in the awake animal.

  20. BFKL Pomeron calculus: solution to equations for nucleus-nucleus scattering in the saturation domain

    CERN Document Server

    Contreras, Carlos; Meneses, Rodrigo

    2013-01-01

    In this paper we solve the equation for nucleus-nucleus scattering in the BFKL Pomeron calculus, suggested by Braun. We find these solutions analytically at high energies as well as numerically in the entire region of energies inside the saturation region. The semi-classical approximation is used to select out the infinite set of the parasite solutions. The nucleus-nucleus cross sections at high energy are estimated and compared with the Glauber-Gribov approach. It turns out that the exact formula gives the estimates that are very close to the ones based on Glauber-Gribov formula which is important for the practical applications

  1. Impaired visual short-term memory capacity is distinctively associated with structural connectivity of the posterior thalamic radiation and the splenium of the corpus callosum in preterm-born adults.

    Science.gov (United States)

    Menegaux, Aurore; Meng, Chun; Neitzel, Julia; Bäuml, Josef G; Müller, Hermann J; Bartmann, Peter; Wolke, Dieter; Wohlschläger, Afra M; Finke, Kathrin; Sorg, Christian

    2017-04-15

    Preterm birth is associated with an increased risk for lasting changes in both the cortico-thalamic system and attention; however, the link between cortico-thalamic and attention changes is as yet little understood. In preterm newborns, cortico-cortical and cortico-thalamic structural connectivity are distinctively altered, with increased local clustering for cortico-cortical and decreased integrity for cortico-thalamic connectivity. In preterm-born adults, among the various attention functions, visual short-term memory (vSTM) capacity is selectively impaired. We hypothesized distinct associations between vSTM capacity and the structural integrity of cortico-thalamic and cortico-cortical connections, respectively, in preterm-born adults. A whole-report paradigm of briefly presented letter arrays based on the computationally formalized Theory of Visual Attention (TVA) was used to quantify parameter vSTM capacity in 26 preterm- and 21 full-term-born adults. Fractional anisotropy (FA) of posterior thalamic radiations and the splenium of the corpus callosum obtained by diffusion tensor imaging were analyzed by tract-based spatial statistics and used as proxies for cortico-thalamic and cortico-cortical structural connectivity. The relationship between vSTM capacity and cortico-thalamic and cortico-cortical connectivity, respectively, was significantly modified by prematurity. In full-term-born adults, the higher FA in the right posterior thalamic radiation the higher vSTM capacity; in preterm-born adults this FA-vSTM-relationship was inversed. In the splenium, higher FA was correlated with higher vSTM capacity in preterm-born adults, whereas no significant relationship was evident in full-term-born adults. These results indicate distinct associations between cortico-thalamic and cortico-cortical integrity and vSTM capacity in preterm-and full-term-born adults. Data suggest compensatory cortico-cortical fiber re-organization for attention deficits after preterm delivery

  2. Subcortical volume analysis in traumatic brain injury: the importance of the fronto-striato-thalamic circuit in task switching.

    Science.gov (United States)

    Leunissen, Inge; Coxon, James P; Caeyenberghs, Karen; Michiels, Karla; Sunaert, Stefan; Swinnen, Stephan P

    2014-02-01

    Traumatic brain injury (TBI) is associated with neuronal loss, diffuse axonal injury and executive dysfunction. Whereas executive dysfunction has traditionally been associated with prefrontal lesions, ample evidence suggests that those functions requiring behavioral flexibility critically depend on the interaction between frontal cortex, basal ganglia and thalamus. To test whether structural integrity of this fronto-striato-thalamic circuit can account for executive impairments in TBI we automatically segmented the thalamus, putamen and caudate of 25 patients and 21 healthy controls and obtained diffusion weighted images. We assessed components of executive function using the local-global task, which requires inhibition, updating and switching between actions. Shape analysis revealed localized atrophy of the limbic, executive and rostral-motor zones of the basal ganglia, whereas atrophy of the thalami was more global in TBI. This subcortical atrophy was related to white matter microstructural organization in TBI, suggesting that axonal injuries possibly contribute to subcortical volume loss. Global volume of the nuclei showed no clear relationship with task performance. However, the shape analysis revealed that participants with smaller volume of those subregions that have connections with the prefrontal cortex and rostral motor areas showed higher switch costs and mixing costs, and made more errors while switching. These results support the idea that flexible cognitive control over action depends on interactions within the fronto-striato-thalamic circuit.

  3. Discontinuous Galerkin finite element method for solving population density functions of cortical pyramidal and thalamic neuronal populations.

    Science.gov (United States)

    Huang, Chih-Hsu; Lin, Chou-Ching K; Ju, Ming-Shaung

    2015-02-01

    Compared with the Monte Carlo method, the population density method is efficient for modeling collective dynamics of neuronal populations in human brain. In this method, a population density function describes the probabilistic distribution of states of all neurons in the population and it is governed by a hyperbolic partial differential equation. In the past, the problem was mainly solved by using the finite difference method. In a previous study, a continuous Galerkin finite element method was found better than the finite difference method for solving the hyperbolic partial differential equation; however, the population density function often has discontinuity and both methods suffer from a numerical stability problem. The goal of this study is to improve the numerical stability of the solution using discontinuous Galerkin finite element method. To test the performance of the new approach, interaction of a population of cortical pyramidal neurons and a population of thalamic neurons was simulated. The numerical results showed good agreement between results of discontinuous Galerkin finite element and Monte Carlo methods. The convergence and accuracy of the solutions are excellent. The numerical stability problem could be resolved using the discontinuous Galerkin finite element method which has total-variation-diminishing property. The efficient approach will be employed to simulate the electroencephalogram or dynamics of thalamocortical network which involves three populations, namely, thalamic reticular neurons, thalamocortical neurons and cortical pyramidal neurons.

  4. Resting-State Cortico-Thalamic-Striatal Connectivity Predicts Response to Dorsomedial Prefrontal rTMS in Major Depressive Disorder

    Science.gov (United States)

    Salomons, Tim V; Dunlop, Katharine; Kennedy, Sidney H; Flint, Alastair; Geraci, Joseph; Giacobbe, Peter; Downar, Jonathan

    2014-01-01

    Despite its high toll on society, there has been little recent improvement in treatment efficacy for major depressive disorder (MDD). The identification of biological markers of successful treatment response may allow for more personalized and effective treatment. Here we investigate whether resting-state functional connectivity predicted response to treatment with repetitive transcranial magnetic stimulation (rTMS) to dorsomedial prefrontal cortex (dmPFC). Twenty-five individuals with treatment-refractory MDD underwent a 4-week course of dmPFC-rTMS. Before and after treatment, subjects received resting-state functional MRI scans and assessments of depressive symptoms using the Hamilton Depresssion Rating Scale (HAMD17). We found that higher baseline cortico-cortical connectivity (dmPFC-subgenual cingulate and subgenual cingulate to dorsolateral PFC) and lower cortico-thalamic, cortico-striatal, and cortico-limbic connectivity were associated with better treatment outcomes. We also investigated how changes in connectivity over the course of treatment related to improvements in HAMD17 scores. We found that successful treatment was associated with increased dmPFC-thalamic connectivity and decreased subgenual cingulate cortex-caudate connectivity, Our findings provide insight into which individuals might respond to rTMS treatment and the mechanisms through which these treatments work. PMID:24150516

  5. Engineering a thalamo-cortico-thalamic circuit on SpiNNaker: a preliminary study towards modelling sleep and wakefulness

    Directory of Open Access Journals (Sweden)

    Basabdatta Sen Bhattacharya

    2014-05-01

    Full Text Available We present a preliminary study of a thalamo-cortico-thalamic (TCT implementation on SpiNNaker (Spiking Neural Network architecture, a brain inspired hardware platform designed to incorporate the inherent biological properties of parallelism, fault tolerance and energy efficiency. These attributes make SpiNNaker an ideal platform for simulating biologically plausible computational models. Our focus in this work is to design a TCT framework that can be simulated on SpiNNaker to mimic dynamical behaviour similar to Electroencephalogram (EEG time and power-spectra signatures in sleep-wake transition. The scale of the model is minimised for simplicity in this proof-of-concept study; thus the total number of spiking neurons is approximately 1000 and represents a `mini-column' of the thalamocortical tissue. All data on model structure, synaptic layout and parameters is inspired from previous studies and abstracted at a level that is appropriate to the aims of the current study as well as computationally suitable for model simulation on a small 4-chip SpiNNaker system. The initial results from selective deletion of synaptic connectivity parameters in the model show similarity with EEG time series characteristics of sleep and wakefulness. These observations provide a positive perspective and a basis for future implementation of a very large scale biologically plausible model of thalamo-cortico-thalamic interactivity---the essential brain circuit that regulates the biological sleep-wake cycle and associated EEG rhythms.

  6. The contribution of the lateral posterior and anteroventral thalamic nuclei on spontaneous recurrent seizures in the pilocarpine model of epilepsy

    Directory of Open Access Journals (Sweden)

    Scorza Fulvio Alexandre

    2002-01-01

    Full Text Available The pilocarpine model of epilepsy in rats is characterised by the occurrence of spontaneous seizures (SRSs during the chronic period that recur 2-3 times per week during the whole animal life. In a previous study on brain metabolism during the chronic period of the pilocarpine model it was possible to observe that, among several brain structures, the lateral posterior thalamic nuclei (LP showed a strikingly increased metabolism. Some evidences suggest that the LP can participate in an inhibitory control system involved in the propagation of the seizures. The aim of the present study was to verify the role of LP in the expression and frequency of spontaneous seizures observed in the pilocarpine model. Ten adult male rats presenting SRSs were monitored for behavioural events by video system one month before and one month after LP ibotenic acid lesion. Another group of chronic epileptic rats (n=10 had the anteroventral thalamic nuclei (AV lesioned by ibotenic acid. After the surgical procedure, the animals were sacrified and the brains were processed for histological analysis by the Nissl method. The LP group seizure frequency was 3.1±1.9 before ibotenic acid injection and showed an increase (16.3±7.2 per week after LP lesion. No changes in SRSs frequency were observed in the AV group after ibotenic lesion in these nuclei. These results seem to suggest that LP play a role in the seizure circuitry inhibiting the expression of spontaneous seizures in the pilocarpine model.

  7. In vivo optogenetic control of striatal and thalamic neurons in non-human primates.

    Directory of Open Access Journals (Sweden)

    Adriana Galvan

    Full Text Available Electrical and pharmacological stimulation methods are commonly used to study neuronal brain circuits in vivo, but are problematic, because electrical stimulation has limited specificity, while pharmacological activation has low temporal resolution. A recently developed alternative to these methods is the use of optogenetic techniques, based on the expression of light sensitive channel proteins in neurons. While optogenetics have been applied in in vitro preparations and in in vivo studies in rodents, their use to study brain function in nonhuman primates has been limited to the cerebral cortex. Here, we characterize the effects of channelrhodopsin-2 (ChR2 transfection in subcortical areas, i.e., the putamen, the external globus pallidus (GPe and the ventrolateral thalamus (VL of rhesus monkeys. Lentiviral vectors containing the ChR2 sequence under control of the elongation factor 1α promoter (pLenti-EF1α -hChR2(H134R-eYFP-WPRE, titer 10⁹ particles/ml were deposited in GPe, putamen and VL. Four weeks later, a probe combining a conventional electrode and an optic fiber was introduced in the previously injected brain areas. We found light-evoked responses in 31.5% and 32.7% of all recorded neurons in the striatum and thalamus, respectively, but only in 2.5% of recorded GPe neurons. As expected, most responses were time-locked increases in firing, but decreases or mixed responses were also seen, presumably via ChR2-mediated activation of local inhibitory connections. Light and electron microscopic analyses revealed robust expression of ChR2 on the plasma membrane of cell somas, dendrites, spines and terminals in the striatum and VL. This study demonstrates that optogenetic experiments targeting the striatum and basal ganglia-related thalamic nuclei can be successfully achieved in monkeys. Our results indicate important differences of the type and magnitude of responses in each structure. Experimental conditions such as the vector used, the

  8. Thalamic Deep Brain Stimulation for Neuropathic Pain: Efficacy at Three Years' Follow-Up.

    Science.gov (United States)

    Abreu, Vasco; Vaz, Rui; Rebelo, Virgínia; Rosas, Maria José; Chamadoira, Clara; Gillies, Martin J; Aziz, Tipu Z; Pereira, Erlick A C

    2017-07-01

    Chronic neuropathic pain is estimated to affect 3-4.5% of the worldwide population, posing a serious burden to society. Deep Brain Stimulation (DBS) is already established for movement disorders and also used to treat some "off-label" conditions. However, DBS for the treatment of chronic, drug refractory, neuropathic pain, has shown variable outcomes with few studies performed in the last decade. Thus, this procedure has consensus approval in parts of Europe but not the USA. This study prospectively evaluated the efficacy at three years of DBS for neuropathic pain. Sixteen consecutive patients received 36 months post-surgical follow-up in a single-center. Six had phantom limb pain after amputation and ten deafferentation pain after brachial plexus injury, all due to traumas. To evaluate the efficacy of DBS, patient-reported outcome measures were collated before and after surgery, using a visual analog scale (VAS) score, University of Washington Neuropathic Pain Score (UWNPS), Brief Pain Inventory (BPI), and 36-Item Short-Form Health Survey (SF-36). Contralateral, ventroposterolateral sensory thalamic DBS was performed in sixteen patients with chronic neuropathic pain over 29 months. A postoperative trial of externalized DBS failed in one patient with brachial plexus injury. Fifteen patients proceeded to implantation but one patient with phantom limb pain after amputation was lost for follow-up after 12 months. No surgical complications or stimulation side effects were noted. After 36 months, mean pain relief was sustained, and the median (and interquartile range) of the improvement of VAS score was 52.8% (45.4%) (p = 0.00021), UWNPS was 30.7% (49.2%) (p = 0.0590), BPI was 55.0% (32.0%) (p = 0.00737), and SF-36 was 16.3% (30.3%) (p = 0.4754). DBS demonstrated efficacy at three years for chronic neuropathic pain after traumatic amputation and brachial plexus injury, with benefits sustained across all pain outcomes measures and slightly greater

  9. Social cognitive and neurocognitive deficits in inpatients with unilateral thalamic lesions — pilot study

    Directory of Open Access Journals (Sweden)

    Wilkos E

    2015-04-01

    Full Text Available Ewelina Wilkos,2 Timothy JB Brown,3 Ksenia Slawinska,1 Katarzyna A Kucharska2,3 1Department of Neurology, 2Department of Neuroses, Personality and Eating Disorders Institute of Psychiatry and Neurology, Warsaw, Poland; 3Department of Medical Education, Hull York Medical School, Hull, UK Background: The essential role of the thalamus in neurocognitive processes has been well documented. In contrast, relatively little is known about its involvement in social cognitive processes such as recognition of emotion, mentalizing, or empathy. The aim of the study: This study was designed to compare the performance of eight patients (five males, three females, mean age ± SD: 63.7±7.9 years at early stage of unilateral thalamic lesions and eleven healthy controls (six males, five females, 49.6±12.2 years in neurocognitive tests (CogState Battery: Groton Maze Learning Test, GML; Groton Maze Learning Test-Delayed Recall, GML-DR; Detection Task, DT; Identification Task, IT; One Card Learning Task, OCLT; One Back Task, OBT; Two Back Task, TBT; Set-Shifting Task, S-ST and other well-known tests (Benton Visual Retention Test, BVRT; California Verbal Learning Test, CVLT; The Rey-Osterrieth Complex Figure Test, ROCF; Trail Making Test, TMT part A and B; Color – Word Stroop Task, CWST; Verbal Fluency Test, VFT, and social cognitive tasks (The Penn Emotion Recognition Test, ER40; Penn Emotion Discrimination Task, EmoDiff40; The Penn Emotional Acuity Test, PEAT40; Reading the Mind in the Eyes Test, revised version II; Toronto Alexithymia Scale, TAS-20. Methods: Thalamic-damaged subjects were included if they experienced a single-episode ischemic stroke localized in right or left thalamus. The patients were examined at 3 weeks after the stroke onset. All were right handed. In addition, the following clinical scales were used: the Mini-Mental State Examination (MMSE, Spielberger State-Trait Anxiety Inventory (STAI, Beck Depression Inventory (BDI II. An inclusion

  10. Dynamics of intrinsic dendritic calcium signaling during tonic firing of thalamic reticular neurons.

    Directory of Open Access Journals (Sweden)

    Patrick Chausson

    Full Text Available The GABAergic neurons of the nucleus reticularis thalami that control the communication between thalamus and cortex are interconnected not only through axo-dendritic synapses but also through gap junctions and dendro-dendritic synapses. It is still unknown whether these dendritic communication processes may be triggered both by the tonic and the T-type Ca(2+ channel-dependent high frequency burst firing of action potentials displayed by nucleus reticularis neurons during wakefulness and sleep, respectively. Indeed, while it is known that activation of T-type Ca(2+ channels actively propagates throughout the dendritic tree, it is still unclear whether tonic action potential firing can also invade the dendritic arborization. Here, using two-photon microscopy, we demonstrated that dendritic Ca(2+ responses following somatically evoked action potentials that mimic wake-related tonic firing are detected throughout the dendritic arborization. Calcium influx temporally summates to produce dendritic Ca(2+ accumulations that are linearly related to the duration of the action potential trains. Increasing the firing frequency facilitates Ca(2+ influx in the proximal but not in the distal dendritic compartments suggesting that the dendritic arborization acts as a low-pass filter in respect to the back-propagating action potentials. In the more distal compartment of the dendritic tree, T-type Ca(2+ channels play a crucial role in the action potential triggered Ca(2+ influx suggesting that this Ca(2+ influx may be controlled by slight changes in the local dendritic membrane potential that determine the T-type channels' availability. We conclude that by mediating Ca(2+ dynamic in the whole dendritic arborization, both tonic and burst firing of the nucleus reticularis thalami neurons might control their dendro-dendritic and electrical communications.

  11. Onset of Deconfinement in Nucleus-Nucleus Collisions - Past, Present and Future -

    CERN Document Server

    Gazdzicki, Marek

    2007-01-01

    In 2007 Mark I. Gorenstein celebrated his 60th birthday. This report is dedicated to Mark and it sketches the results obtained during the past ten years of our collaboration and friendship. They concern search for and study of the onset of deconfinement in high energy nucleus-nucleus collisions.

  12. High density QCD and nucleus-nucleus scattering deeply in the saturation region

    Science.gov (United States)

    Kormilitzin, Andrey; Levin, Eugene; Miller, Jeremy S.

    2011-06-01

    In this paper we solve the equations that describe nucleus-nucleus scattering, in high density QCD, in the framework of the BFKL Pomeron Calculus. We found that (i) the contribution of short distances to the opacity for nucleus-nucleus scattering dies at high energies, (ii) the opacity tends to unity at high energy, and (iii) the main contribution that survives comes from soft (long distance) processes for large values of the impact parameter. The corrections to the opacity Ω(Y,b)=1 were calculated and it turns out that they have a completely different form, namely ( 1-Ω→exp(-Const √{Y} )) than the opacity that stems from the Balitsky-Kovchegov equation, which is ( 1-Ω→exp(-Const Y)). We reproduce the formula for the nucleus-nucleus cross section that is commonly used in the description of nucleus-nucleus scattering, and there is no reason why it should be correct in the Glauber-Gribov approach.

  13. Control of nucleus positioning in mouse oocytes.

    Science.gov (United States)

    Almonacid, Maria; Terret, Marie-Emilie; Verlhac, Marie-Hélène

    2017-08-12

    The position of the nucleus in a cell can instruct morphogenesis in some cases, conveying spatial and temporal information and abnormal nuclear positioning can lead to disease. In oocytes from worm, sea urchin, frog and some fish, nucleus position regulates embryo development, it marks the animal pole and in Drosophila it defines the future dorso-ventral axis of the embryo and of the adult body plan. However, in mammals, the oocyte nucleus is centrally located and does not instruct any future embryo axis. Yet an off-center nucleus correlates with poor outcome for mouse and human oocyte development. This is surprising since oocytes further undergo two extremely asymmetric divisions in terms of the size of the daughter cells (enabling polar body extrusion), requiring an off-centering of their chromosomes. In this review we address not only the bio-physical mechanism controlling nucleus positioning via an actin-mediated pressure gradient, but we also speculate on potential biological relevance of nuclear positioning in mammalian oocytes and early embryos. Copyright © 2017. Published by Elsevier Ltd.

  14. Bursting thalamic responses in awake monkey contribute to visual detection and are modulated by corticofugal feedback.

    Science.gov (United States)

    Ortuño, Tania; Grieve, Kenneth L; Cao, Ricardo; Cudeiro, Javier; Rivadulla, Casto

    2014-01-01

    The lateral geniculate nucleus is the gateway for visual information en route to the visual cortex. Neural activity is characterized by the existence of two firing modes: burst and tonic. Originally associated with sleep, bursts have now been postulated to be a part of the normal visual response, structured to increase the probability of cortical activation, able to act as a "wake-up" call to the cortex. We investigated a potential role for burst in the detection of novel stimuli by recording neuronal activity in the lateral geniculate nucleus (LGN) of behaving monkeys during a visual detection task. Our results show that bursts are often the neuron's first response, and are more numerous in the response to attended target stimuli than to unattended distractor stimuli. Bursts are indicators of the task novelty, as repetition decreased bursting. Because the primary visual cortex is the major modulatory input to the LGN, we compared the results obtained in control conditions with those observed when cortical activity was reduced by TMS. This cortical deactivation reduced visual response related bursting by 90%. These results highlight a novel role for the thalamus, able to code higher order image attributes as important as novelty early in the thalamo-cortical conversation.

  15. Organisation of the human dorsomedial hypothalamic nucleus.

    Science.gov (United States)

    Koutcherov, Yuri; Mai, Juergen K; Ashwell, Ken W; Paxinos, George

    2004-01-19

    This study used acetylcholinesterase (AChE) histochemistry to reveal the organization of the dorsomedial hypothalamic nucleus (DM) in the human. Topographically, the human DM is similar to DM in the monkey and rat. It is wedged between the paraventricular nucleus, dorsally, and the ventromedial nucleus, ventrally. Laterally, DM borders the lateral hypothalamic area while medially it approaches the 3rd ventricle. The AChE staining distinguished two subcompartments of the human DM: the larger diffuse and the smaller compact DM. The subcompartmental organization of the human DM appears homologous to that found in the monkey and less complex than that reported in rats. Understanding of the organization of DM creates meaningful anatomical reference for physiological and pharmacological studies in the human hypothalamus.

  16. The nucleus: a black box being opened.

    Science.gov (United States)

    van Driel, R; Humbel, B; de Jong, L

    1991-12-01

    Until recently our knowledge about the structural and functional organization of the cell nucleus was very limited. Recent technical developments in the field of ultrastructural analysis, combined with ongoing research on the properties of the nuclear matrix, give new insight into how the nucleus is structured. Two types of observations shape our ideas about nuclear organization. First, most nuclear functions (replication, transcription, RNA processing, and RNA transport) are highly localized within the nucleus, rather than diffusely distributed. Moreover, they are associated with the nuclear matrix. Second, chromatin is organized in discrete loops, bordered by nuclear matrix attachment sequences (MARs). Each loop may contain one or several genes. The arrangement of chromatin in loops has profound consequences for the regulation of gene expression.

  17. Dirac Phenomenology and Hyperon-Nucleus Interactions

    OpenAIRE

    J., MARES; B. K., JENNINGS; E. D., COOPER; Triumf, 4004 Wesbrook Mall; Department of Physics, University College of the Fraser Valley

    1995-01-01

    We discuss various aspects of hyperon-nucleus interactions in the relativistic mean field theory. First, characteristics of Λ, Σ and Ξ hypernuclei, as well as multi-strange baryonic objects, are investigated. The spin-orbit splittings and magnetic moments are shown to be very sensitive to the value of the tensor coupling f_. Second, optical potentials for Λ and Σ scattering off nuclei are developed based on a global nucleon-nucleus Dirac optical potential and SU(3) symmetry. The tensor coupli...

  18. UNCOVERING THE NUCLEUS CANDIDATE FOR NGC 253

    Energy Technology Data Exchange (ETDEWEB)

    Günthardt, G. I.; Camperi, J. A. [Observatorio Astronómico, Universidad Nacional de Córdoba (Argentina); Agüero, M. P. [Observatorio Astronómico, Universidad Nacional de Córdoba, and CONICET (Argentina); Díaz, R. J.; Gomez, P. L.; Schirmer, M. [Gemini Observatory, AURA (United States); Bosch, G., E-mail: gunth@oac.uncor.edu, E-mail: camperi@oac.uncor.edu, E-mail: mpaguero@oac.uncor.edu, E-mail: rdiaz@gemini.edu, E-mail: pgomez@gemini.edu, E-mail: mschirmer@gemini.edu, E-mail: guille@fcaglp.unlp.edu.ar [Instituto de Astrofísica de La Plata (CONICET-UNLP) (Argentina)

    2015-11-15

    NGC 253 is the nearest spiral galaxy with a nuclear starburst that becomes the best candidate for studying the relationship between starburst and active galactic nucleus activity. However, this central region is veiled by large amounts of dust, and it has been so far unclear which is the true dynamical nucleus to the point that there is no strong evidence that the galaxy harbors a supermassive black hole co-evolving with the starburst as was supposed earlier. Near-infrared (NIR) spectroscopy, especially NIR emission line analysis, could be advantageous in shedding light on the true nucleus identity. Using Flamingos-2 at Gemini South we have taken deep K-band spectra along the major axis of the central structure and through the brightest infrared source. In this work, we present evidence showing that the brightest NIR and mid-infrared source in the central region, already known as radio source TH7 and so far considered just a large stellar supercluster, in fact presents various symptoms of a genuine galactic nucleus. Therefore, it should be considered a valid nucleus candidate. Mentioning some distinctive aspects, it is the most massive compact infrared object in the central region, located at 2.″0 of the symmetry center of the galactic bar, as measured in the K-band emission. Moreover, our data indicate that this object is surrounded by a large circumnuclear stellar disk and it is also located at the rotation center of the large molecular gas disk of NGC 253. Furthermore, a kinematic residual appears in the H{sub 2} rotation curve with a sinusoidal shape consistent with an outflow centered in the candidate nucleus position. The maximum outflow velocity is located about 14 pc from TH7, which is consistent with the radius of a shell detected around the nucleus candidate, observed at 18.3 μm (Qa) and 12.8 μm ([Ne ii]) with T-ReCS. Also, the Brγ emission line profile shows a pronounced blueshift and this emission line also has the highest equivalent width at this

  19. Thalamic alterations in preterm neonates and their relation to ventral striatum disturbances revealed by a combined shape and pose analysis.

    Science.gov (United States)

    Lao, Yi; Wang, Yalin; Shi, Jie; Ceschin, Rafael; Nelson, Marvin D; Panigrahy, Ashok; Leporé, Natasha

    2016-01-01

    Finding the neuroanatomical correlates of prematurity is vital to understanding which structures are affected, and to designing efficient prevention and treatment strategies. Converging results reveal that thalamic abnormalities are important indicators of prematurity. However, little is known about the localization of the abnormalities within the subnuclei of the thalamus, or on the association of altered thalamic development with other deep gray matter disturbances. Here, we aim to investigate the effect of prematurity on the thalamus and the putamen in the neonatal brain, and further investigate the associated abnormalities between these two structures. Using brain structural magnetic resonance imaging, we perform a novel combined shape and pose analysis of the thalamus and putamen between 17 preterm (41.12 ± 5.08 weeks) and 19 term-born (45.51 ± 5.40 weeks) neonates at term equivalent age. We also perform a set of correlation analyses between the thalamus and the putamen, based on the surface and pose results. We locate significant alterations on specific surface regions such as the anterior and ventral anterior (VA) thalamic nuclei, and significant relative pose changes of the left thalamus and the right putamen. In addition, we detect significant association between the thalamus and the putamen for both surface and pose parameters. The regions that are significantly associated include the VA, and the anterior and inferior putamen. We detect statistically significant surface deformations and pose changes on the thalamus and putamen, and for the first time, demonstrate the feasibility of using relative pose parameters as indicators for prematurity in neonates. Our methods show that regional abnormalities of the thalamus are associated with alterations of the putamen, possibly due to disturbed development of shared pre-frontal connectivity. More specifically, the significantly correlated regions in these two structures point to frontal

  20. Disruption in proprioception from long-term thalamic deep brain stimulation: A pilot study

    Directory of Open Access Journals (Sweden)

    Jennifer A Semrau

    2015-05-01

    Full Text Available Deep brain stimulation (DBS is an excellent treatment for tremor and is generally thought to be reversible by turning off stimulation. For tremor, DBS is implanted in the ventrointermedius (Vim nucleus of the thalamus, a region that relays proprioceptive information for movement sensation (kinaesthesia. Gait disturbances have been observed with bilateral Vim DBS, but the long-term effects on proprioceptive processing are unknown. We aimed to determine whether Vim DBS surgical implantation or stimulation leads to proprioceptive deficits in the upper limb. We assessed two groups of tremor subjects on measures of proprioception (kinaesthesia, position sense and motor function using a robotic exoskeleton. In the first group (Surgery, we tested patients before and after implantation of Vim DBS, but before DBS was turned on to determine if proprioceptive deficits were inherent to tremor or caused by DBS implantation. In the second group (Stim, we tested subjects with chronically implanted Vim DBS ON and OFF stimulation. Compared to controls, there were no proprioceptive deficits before or after DBS implantation in the Surgery group. Surprisingly, those that received chronic long-term stimulation (LT-stim, 3-10 years displayed significant proprioceptive deficits ON and OFF stimulation not present in subjects with chronic short-term stimulation (ST-stim, 0.5-2 years. LT-stim had significantly larger variability and reduced workspace area during the position sense assessment. During the kinesthetic assessment, LT-stim made significantly larger directional errors and consistently underestimated the speed of the robot, despite generating normal movement speeds during motor assessment. Chronic long-term Vim DBS may potentially disrupt proprioceptive processing, possibly inducing irreversible plasticity in the Vim nucleus and/or its network connections. Our findings in the upper limb may help explain some of the gait disturbances seen by others following Vim

  1. Disruption in proprioception from long-term thalamic deep brain stimulation: a pilot study.

    Science.gov (United States)

    Semrau, Jennifer A; Herter, Troy M; Kiss, Zelma H; Dukelow, Sean P

    2015-01-01

    Deep brain stimulation (DBS) is an excellent treatment for tremor and is generally thought to be reversible by turning off stimulation. For tremor, DBS is implanted in the ventrointermedius (Vim) nucleus of the thalamus, a region that relays proprioceptive information for movement sensation (kinaesthesia). Gait disturbances have been observed with bilateral Vim DBS, but the long-term effects on proprioceptive processing are unknown. We aimed to determine whether Vim DBS surgical implantation or stimulation leads to proprioceptive deficits in the upper limb. We assessed two groups of tremor subjects on measures of proprioception (kinaesthesia, position sense) and motor function using a robotic exoskeleton. In the first group (Surgery), we tested patients before and after implantation of Vim DBS, but before DBS was turned on to determine if proprioceptive deficits were inherent to tremor or caused by DBS implantation. In the second group (Stim), we tested subjects with chronically implanted Vim DBS ON and OFF stimulation. Compared to controls, there were no proprioceptive deficits before or after DBS implantation in the Surgery group. Surprisingly, those that received chronic long-term stimulation (LT-stim, 3-10 years) displayed significant proprioceptive deficits ON and OFF stimulation not present in subjects with chronic short-term stimulation (ST-stim, 0.5-2 years). LT-stim had significantly larger variability and reduced workspace area during the position sense assessment. During the kinesthetic assessment, LT-stim made significantly larger directional errors and consistently underestimated the speed of the robot, despite generating normal movement speeds during motor assessment. Chronic long-term Vim DBS may potentially disrupt proprioceptive processing, possibly inducing irreversible plasticity in the Vim nucleus and/or its network connections. Our findings in the upper limb may help explain some of the gait disturbances seen by others following Vim DBS.

  2. Nucleus-Nucleus Potential at Near-Barrier Energies from Self Consistent Calculations

    CERN Document Server

    Skalski, J

    2003-01-01

    We determine the static nucleus-nucleus potential from Hartree-Fock (HF) calculations with the Skyrme interaction. To this aim, HF equations are solved on a spatial mesh, with the initial configuration consisting of target and projectile positioned at various relative distances. For a number of reaction partners, the calculated barrier heights reasonably well compare with those extracted from the measured fusion and capture cross sections. At smaller target-projectile distances, our results show the intrinsic barriers to heavy compound nucleus formation. We speculate on their possible connection with the fusion hindrance observed for large Z sub T Z sub P.

  3. Inner Structure of Boiling Nucleus and Interfacial Energy Between Nucleus and Bulk Liquid

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-Dong; TIAN Yong; PENG Xiao-Feng; WANG Bu-Xuan

    2004-01-01

    @@ A model of two-region structure of a nucleus is proposed to describe nucleus evolution. The interfacial tension between bulk liquid phase and nucleus is dependent on the density gradient in the transition region and varies with the structure change of the transition region. With the interfacial tension calculated using this model, the predicted nucleation rate is very close to the experimental measurement. Furthermore, this model and associated analysis provide solid theoretical evidence to clarify the definition of nucleation rate and understand the nucleation phenomenon with insight into the physical nature.

  4. On the genesis of spike-wave oscillations in a mean-field model of human thalamic and corticothalamic dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Serafim [Department of Mathematical Sciences, Loughborough University, Leicestershire, LE11 3TU (United Kingdom); Terry, John R. [Department of Mathematical Sciences, Loughborough University, Leicestershire, LE11 3TU (United Kingdom)]. E-mail: j.r.terry@lboro.ac.uk; Breakspear, Michael [Black Dog Institute, Randwick, NSW 2031 (Australia); School of Psychiatry, UNSW, NSW 2030 (Australia)

    2006-07-10

    In this Letter, the genesis of spike-wave activity-a hallmark of many generalized epileptic seizures-is investigated in a reduced mean-field model of human neural activity. Drawing upon brain modelling and dynamical systems theory, we demonstrate that the thalamic circuitry of the system is crucial for the generation of these abnormal rhythms, observing that the combination of inhibition from reticular nuclei and excitation from the cortical signal, interplay to generate the spike-wave oscillation. The mechanism revealed provides an explanation of why approaches based on linear stability and Heaviside approximations to the activation function have failed to explain the phenomena of spike-wave behaviour in mean-field models. A mathematical understanding of this transition is a crucial step towards relating spiking network models and mean-field approaches to human brain modelling.

  5. Nucleus-associated actin in Amoeba proteus.

    Science.gov (United States)

    Berdieva, Mariia; Bogolyubov, Dmitry; Podlipaeva, Yuliya; Goodkov, Andrew

    2016-10-01

    The presence, spatial distribution and forms of intranuclear and nucleus-associated cytoplasmic actin were studied in Amoeba proteus with immunocytochemical approaches. Labeling with different anti-actin antibodies and staining with TRITC-phalloidin and fluorescent deoxyribonuclease I were used. We showed that actin is abundant within the nucleus as well as in the cytoplasm of A. proteus cells. According to DNase I experiments, the predominant form of intranuclear actin is G-actin which is associated with chromatin strands. Besides, unpolymerized actin was shown to participate in organization of a prominent actin layer adjacent to the outer surface of nuclear envelope. No significant amount of F-actin was found in the nucleus. At the same time, the amoeba nucleus is enclosed in a basket-like structure formed by circumnuclear actin filaments and bundles connected with global cytoplasmic actin cytoskeleton. A supposed architectural function of actin filaments was studied by treatment with actin-depolymerizing agent latrunculin A. It disassembled the circumnuclear actin system, but did not affect the intranuclear chromatin structure. The results obtained for amoeba cells support the modern concept that actin is involved in fundamental nuclear processes that have evolved in the cells of multicellular organisms.

  6. An organism arises from every nucleus.

    Directory of Open Access Journals (Sweden)

    Nurullah Keklikoglu

    2009-12-01

    Full Text Available The fact that, cloning using somatic cell nuclear transfer (SCNT method has been performed, opened new horizons for cloning, and changed the way of our understanding and approach to cell and nucleus. The progress in cloning technology, brought the anticipation of the ability to clone an organism from each somatic cell nucleus. Therefore, the 'Cell Theory' is about to take the additional statement as "An organism arises from every nucleus". The development of gene targeting procedures which can be applied with SCNT, showed us that it may be possible to obtain different versions of the original genetic constitution of a cell. Because of this opportunity which is provided by SCNT, in reproductive cloning, it would be possible to clone enhanced organisms which can adapt to different environmental conditions and survive. Furthermore, regaining the genetic characteristics of ancestors or reverse herediter variations would be possible. On the other hand, in therapeutic cloning, more precise and easily obtainable alternatives for cell replacement therapy could be presented. However, while producing healthier or different organisms from a nucleus, it is hard to foresee the side effects influencing natural processes in long term is rather difficult.

  7. Uncovering the nucleus candidate for NGC 253

    CERN Document Server

    Günthardt, G I; Camperi, J A; Díaz, R J; Gomez, P L; Bosch, G; Schirmer, M

    2015-01-01

    NGC253 is the nearest spiral galaxy with a nuclear starburst which becomes the best candidate to study the relationship between starburst and AGN activity. However, this central region is veiled by large amounts of dust, and it has been so far unclear which is the true dynamical nucleus. The near infrared spectroscopy could be advantageous in order to shed light on the true nucleus identity. Using Flamingos-2 at Gemini South we have taken deep K-band spectra along the major axis and through the brightest infrared source. We present evidence showing that the brightest near infrared and mid infrared source in the central region, already known as radio source TH7 and so far considered just a stellar supercluster, in fact, presents various symptoms of a genuine galactic nucleus. Therefore, it should be considered a valid nucleus candidate. It is the most massive compact infrared object in the central region, located at 2.0" of the symmetry center of the galactic bar. Moreover, our data indicate that this object i...

  8. Neuroprotective changes of thalamic degeneration-related gene expression by acupuncture in an MPTP mouse model of parkinsonism: microarray analysis.

    Science.gov (United States)

    Yeo, Sujung; Choi, Yeong-Gon; Hong, Yeon-Mi; Lim, Sabina

    2013-02-25

    Acupuncture stimulations at GB34 and LR3 inhibit the reduction of tyrosine hydroxylase in the nigrostriatal dopaminergic neurons in the parkinsonism animal models. Especially, behavioral tests showed that acupuncture stimulations improved the motor dysfunction in a previous study by almost 87.7%. The thalamus is a crucial area for the motor circuit and has been identified as one of the most markedly damaged areas in Parkinson's disease (PD), so acupuncture stimulations might also have an effect on the thalamic damage. In this study, gene expression changes following acupuncture at the acupoints were investigated in the thalamus of a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism model using a whole transcript array. It was confirmed that acupuncture at these acupoints could inhibit the decrease of tyrosine hydroxylase in the thalamic regions of the MPTP model, while acupuncture at the non-acupoints could not suppress this decrease by its level shown in the acupoints. GeneChip gene array analysis showed that 18 (5 annotated genes: Dnase1l2, Dusp4, Mafg, Ndph and Pgm5) of the probes down-regulated in MPTP, as compared to the control, were exclusively up-regulated by acupuncture at the acupoints, but not at the non-acupoints. In addition, 14 (3 annotated genes; Serinc2, Sp2 and Ucp2) of the probes up-regulated in MPTP, as compared to the control, were exclusively down-regulated by acupuncture at the acupoints, but not at the non-acupoints. The expression levels of the representative genes in the microarray were validated by real-time RT-PCR. These results suggest that the 32 probes (8 annotated genes) which are affected by MPTP and acupuncture may be responsible for exerting the inhibitory effect of acupuncture in the thalamus which can be damaged by MPTP intoxication.

  9. Assessing Quantitative Changes in Intrinsic Thalamic Networks in Blast and Nonblast Mild Traumatic Brain Injury: Implications for Mechanisms of Injury.

    Science.gov (United States)

    Nathan, Dominic E; Bellgowan, Julie F; Oakes, Terrence R; French, Louis M; Nadar, Sreenivasan R; Sham, Elyssa B; Liu, Wei; Riedy, Gerard

    2016-06-01

    In the global war on terror, the increased use of improvised explosive devices has resulted in increased incidence of blast-related mild traumatic brain injury (mTBI). Diagnosing mTBI is both challenging and controversial due to heterogeneity of injury location, trauma intensity, transient symptoms, and absence of focal biomarkers on standard clinical imaging modalities. The goal of this study is to identify a brain biomarker that is sensitive to mTBI injury. Research suggests the thalamus may be sensitive to changes induced by mTBI. A significant number of connections to and from various brain regions converge at the thalamus. In addition, the thalamus is involved in information processing, integration, and regulation of specific behaviors and mood. In this study, changes in task-free thalamic networks as quantified by graph theory measures in mTBI blast (N = 186), mTBI nonblast (N = 80), and controls (N = 21) were compared. Results show that the blast mTBI group had significant hyper-connectivity compared with the controls and nonblast mTBI group. However, after controlling for post-traumatic stress symptoms (PTSS), the blast mTBI group was not different from the controls, but the nonblast mTBI group showed significant hypo-connectivity. The results suggest that there are differences in the mechanisms of injury related to mTBI as reflected in the architecture of the thalamic networks. However, the effect of PTSS and its relationship to mTBI is difficult to distinguish and warrants more research.

  10. An autopsied case of MM1 + MM2-cortical with thalamic-type sporadic Creutzfeldt-Jakob disease presenting with hyperintensities on diffusion-weighted MRI before clinical onset.

    Science.gov (United States)

    Iwasaki, Yasushi; Mori, Keiko; Ito, Masumi; Mimuro, Maya; Kitamoto, Tetsuyuki; Yoshida, Mari

    2017-02-01

    A 78-year-old Japanese man presented with rapidly progressive dementia and gait disturbances. Eight months before the onset of clinical symptoms, diffusion-weighted magnetic resonance imaging (DWI) demonstrated hyperintensities in the right temporal, right parietal and left medial occipital cortices. Two weeks after symptom onset, DWI showed extensive hyperintensity in the bilateral cerebral cortex, with regions of higher brightness that existed prior to symptom onset still present. Four weeks after clinical onset, periodic sharp wave complexes were identified on an electroencephalogram. Myoclonus was observed 8 weeks after clinical onset. The patient reached an akinetic mutism state and died 5 months after onset. Neuropathological examination showed widespread cerebral neocortical involvement of fine vacuole-type spongiform changes with large confluent vacuole-type spongiform changes. Spongiform degeneration with neuron loss and hypertrophic astrocytosis was also observed in the striatum and medial thalamus. The inferior olivary nucleus showed severe neuron loss with hypertrophic astrocytosis. Prion protein (PrP) immunostaining showed widespread synaptic-type PrP deposition with perivacuolar-type PrP deposition in the cerebral neocortex. Mild to moderate PrP deposition was also observed extensively in the basal ganglia, thalamus, cerebellum and brainstem, but it was not apparent in the inferior olivary nucleus. PrP gene analysis showed no mutations, and polymorphic codon 129 showed methionine homozygosity. Western blot analysis of protease-resistant PrP showed both type 1 scrapie type PrP (PrP(Sc) ) and type 2 PrP(Sc) . Based on the relationship between the neuroimaging and pathological findings, we speculated that cerebral cortical lesions with large confluent vacuoles and type 2 PrP(Sc) would show higher brightness and continuous hyperintensity on DWI than those with fine vacuoles and type 1 PrP(Sc) . We believe the present patient had a combined form of MM1

  11. Nonequilibrium distribution functions of nucleons in relativistic nucleus-nucleus collisions

    CERN Document Server

    Anchishkin, D; Cleymans, J; 10.5488/CMP.16.13201

    2013-01-01

    The collision smearing of the nucleon momenta about their initial values during relativistic nucleus-nucleus collisions is investigated. To a certain degree, our model belongs to the transport type, and we investigate the evolution of the nucleon system created at a nucleus-nucleus collision. However, we parameterize this development by the number of collisions of every particle during evolution rather than by the time variable. It is assumed that the group of nucleons which leave the system after the same number of collisions can be joined in a particular statistical ensemble. The nucleon nonequilibrium distribution functions, which depend on a certain number of collisions of a nucleon before freeze-out, are derived.

  12. Common Features of Neural Activity during Singing and Sleep Periods in a Basal Ganglia Nucleus Critical for Vocal Learning in a Juvenile Songbird

    Science.gov (United States)

    Yanagihara, Shin; Hessler, Neal A.

    2011-01-01

    Reactivations of waking experiences during sleep have been considered fundamental neural processes for memory consolidation. In songbirds, evidence suggests the importance of sleep-related neuronal activity in song system motor pathway nuclei for both juvenile vocal learning and maintenance of adult song. Like those in singing motor nuclei, neurons in the basal ganglia nucleus Area X, part of the basal ganglia-thalamocortical circuit essential for vocal plasticity, exhibit singing-related activity. It is unclear, however, whether Area X neurons show any distinctive spiking activity during sleep similar to that during singing. Here we demonstrate that, during sleep, Area X pallidal neurons exhibit phasic spiking activity, which shares some firing properties with activity during singing. Shorter interspike intervals that almost exclusively occurred during singing in awake periods were also observed during sleep. The level of firing variability was consistently higher during singing and sleep than during awake non-singing states. Moreover, deceleration of firing rate, which is considered to be an important firing property for transmitting signals from Area X to the thalamic nucleus DLM, was observed mainly during sleep as well as during singing. These results suggest that songbird basal ganglia circuitry may be involved in the off-line processing potentially critical for vocal learning during sensorimotor learning phase. PMID:21991379

  13. Common features of neural activity during singing and sleep periods in a basal ganglia nucleus critical for vocal learning in a juvenile songbird.

    Directory of Open Access Journals (Sweden)

    Shin Yanagihara

    Full Text Available Reactivations of waking experiences during sleep have been considered fundamental neural processes for memory consolidation. In songbirds, evidence suggests the importance of sleep-related neuronal activity in song system motor pathway nuclei for both juvenile vocal learning and maintenance of adult song. Like those in singing motor nuclei, neurons in the basal ganglia nucleus Area X, part of the basal ganglia-thalamocortical circuit essential for vocal plasticity, exhibit singing-related activity. It is unclear, however, whether Area X neurons show any distinctive spiking activity during sleep similar to that during singing. Here we demonstrate that, during sleep, Area X pallidal neurons exhibit phasic spiking activity, which shares some firing properties with activity during singing. Shorter interspike intervals that almost exclusively occurred during singing in awake periods were also observed during sleep. The level of firing variability was consistently higher during singing and sleep than during awake non-singing states. Moreover, deceleration of firing rate, which is considered to be an important firing property for transmitting signals from Area X to the thalamic nucleus DLM, was observed mainly during sleep as well as during singing. These results suggest that songbird basal ganglia circuitry may be involved in the off-line processing potentially critical for vocal learning during sensorimotor learning phase.

  14. Study of -nucleus interaction through the formation of -nucleus bound state

    Indian Academy of Sciences (India)

    V Jha; B J Roy; A Chatterjee; H Machner

    2006-05-01

    The question of possible existence of -mesic nuclei is quite intriguing. Answer to this question will deeply enrich our understanding of -nucleus interaction which is not so well-understood. We review the experimental efforts for the search of -mesic nuclei and describe the physics motivation behind it. We present the description of an experiment for the search of -nucleus bound state using the GeV proton beam, currently being performed at COSY.

  15. Centrality Dependence of Flow in High-Energy Nucleus-Nucleus Collisions

    Institute of Scientific and Technical Information of China (English)

    杨红艳; 周代翠; 杨纯斌; 蔡勖

    2002-01-01

    Directed flow and elliptic flow of final state particles in high-energy nucleus-nucleus collisions in the EMU01 experiment have been studied. The dependences of directed flow and elliptic flow on incident energy and impact centrality of outgoing particles are presented. The results exhibit strong dependence of flow on centrality and energy. We also suggest a more reliable way to determine the event plane resolution here.

  16. Distinct Contributions of Median Raphe Nucleus to Contextual Fear Conditioning and Fear-Potentiated Startle

    Science.gov (United States)

    Silva, R. C. B.; Cruz, A. P. M.; Avanzi, V.; Landeira-Fernandez, J.; Brandão, M. L.

    2002-01-01

    Ascending 5-HT projections from the median raphe nucleus (MRN), probably to the hippocampus, are implicated in the acquisition of contextual fear (background stimuli), as assessed by freezing behavior. Foreground cues like light, used as a conditioned stimulus (CS) in classical fear conditioning, also cause freezing through thalamic transmission to the amygdala. As the MRN projects to the hippocampus and amygdala, the role of this raphe nucleus in fear conditioning to explicit cues remains to be explained. Here we analyzed the behavior of rats with MRN electrolytic lesions in a contextual conditioning situation and in a fear-potentiated startle procedure. The animals received MRN electrolytic lesions either before or on the day after two consecutive training sessions in which they were submitted to 10 conditioning trials, each in an experimental chamber (same context) where they. received foot-shocks (0.6 mA, 1 sec) paired to a 4-sec light CS. Seven to ten days later, the animals were submitted to testing sessions for assessing conditioned fear when they were placed for five shocks, and the duration of contextual freezing was recorded. The animals were then submitted to a fear-potentiated startle in response to a 4-sec light-CS, followed by white noise (100 dB, 50 ms). Control rats (sham) tested in the same context showed more freezing than did rats with pre- or post-training MRN lesions. Startle was clearly potentiated in the presence of light CS in the sham-lesioned animals. Whereas pretraining lesions reduced both freezing and fear-potentiated startle, the post-training lesions reduced only freezing to context, without changing the fear-potentiated startle. In a second experiment, neurotoxic lesions of the MRN with local injections of N-methyl-D-aspartate or the activation of 5-HT1A somatodendritic auto-receptors of the MRN by microinjections of the 5-HT1A receptor agonist 8-hydroxy- 2-(di-n-propylamino)tetralin (8-OH-DPAT) before the training sessions also

  17. Why do we have a caudate nucleus?

    Science.gov (United States)

    Villablanca, Jaime R

    2010-01-01

    In order to understand the physiological role of the caudate nucleus, we combine here our laboratory data on cats with reports of patients with selective damage to this nucleus. Cats with bilateral removal of the caudate nuclei showed a stereotyped behavior consisting of persistently approaching and then following a person, another cat, or any object, and attempting to contact the target. Simultaneously, the animals exhibited a friendly disposition and persistent docility together with purring and forelimbs treading/kneading. The magnitude and duration of this behavior was proportional to the extent of the removal reaching a maximum after ablations of 65% or more of the caudate tissue. These cats were hyperactive but they had lost the feline elegance of movements. Additional features of acaudate cats were: (1) postural and accuracy deficits (plus perseveration) in paw usage tasks including bar pressing for food reward; (2) cognitive and perceptual impairments on a T-maze battery of tasks and on the bar pressing tasks; (3) blockage or blunting of the species-specific behavioral response to a single injection of morphine; Unilateral caudate nucleus removal did not produce global behavioral effects, but only deficit in the contralateral paw contact placing reaction and paw usage/bar pressing. Moreover and surprisingly, we found hypertrophy of the ipsilateral caudate nucleus following prenatal focal neocortical removal. The findings in human were also behavioral (not neurological) and also occurred with unilateral caudate damage. The main manifestations consisted of loss of drive (apathy), obsessive-compulsive behavior, cognitive deficits, stimulus-bound perseverative behavior, and hyperactivity. Based on all of the above data we propose that the specific function of the caudate nucleus is to control approach-attachment behavior, ranging from plain approach to a target, to romantic love. This putative function would account well for the caudate involvement in the

  18. Transverse momentum spectra in high-energy nucleus-nucleus, proton-nucleus and proton-proton collisions

    Institute of Scientific and Technical Information of China (English)

    XIE Wen-Jie

    2011-01-01

    The transverse momentum distributions of final-state particles produced in nucleus-nucleus (AA),proton-nucleus (pA),and proton-proton (pp) collisions at high energies are investigated using a multisource ideal gas model.Our calculated results show that the contribution of hard emission can be neglected in the study of transverse momentum spectra of charged pions and kaons produced in Cu-Cu collisions at (√SNN)=22.5 GeV.And if we consider the contribution of hard emission,the transverse momentum spectra of p and (P) produced in Cu-Cu collisions at (√SNN)=22.5 GeV,KsO produced in Pb-Pb collisions at 158 A GeV,J/ψ particles produced in p-Pb collisions at 400 GeV and π+,K+,p produced in proton-proton collisions at (√S)=200 GeV,can be described by the model,especially in the tail part of spectra.

  19. Bursting thalamic responses in awake monkey contribute to visual detection and are modulated by corticofugal feedback

    Directory of Open Access Journals (Sweden)

    Tania eOrtuno

    2014-05-01

    Full Text Available The lateral geniculate nucleus is the gateway for visual information en route to the visual cortex. Neural activity is characterized by the existence of 2 firing modes: burst and tonic. Originally associated with sleep, bursts have now been postulated to be a part of the normal visual response, structured to increase the probability of cortical activation, able to act as a wake-up call to the cortex. We investigated a potential role for burst in the detection of novel stimuli by recording neuronal activity in the LGN of behaving monkeys during a visual detection task. Our results show that bursts are often the neuron’s first response, and are more numerous in the response to attended target stimuli than to unattended distractor stimuli. Bursts are indicators of the task novelty, as repetition decreased bursting. Because the primary visual cortex is the major modulatory input to the LGN, we compared the results obtained in control conditions with those observed when cortical activity was reduced by TMS. This cortical deactivation reduced visual response related bursting by 90%. These results highlight a novel role for the thalamus, able to code higher order image attributes as important as novelty early in the thalamo-cortical conversation.

  20. Rutherford, Radioactivity, and the Atomic Nucleus

    CERN Document Server

    Kragh, Helge

    2012-01-01

    Modern atomic and nuclear physics took its start in the early part of the twentieth century, to a large extent based upon experimental investigations of radioactive phenomena. Foremost among the pioneers of the new kind of physics was Ernest Rutherford, who made fundamental contributions to the structure of matter for more than three decades and, in addition, founded important research schools in Manchester and Cambridge. This paper reviews the most important aspects of Rutherford's scientific work in the period from about 1900 to 1920, and it also refers to some of his last experiments of the 1930s. The emphasis is on his theory of radioactive disintegration (1902), the discovery of the atomic nucleus (1911), and the first artificially produced element transformation (1919). Following the transmutation experiments, Rutherford developed elaborate models of the atomic nucleus, but these turned out to be unsuccessful. Other subjects could be included, but the three mentioned are undoubtedly those of the greates...

  1. Correlations in neutrino-nucleus scattering

    CERN Document Server

    Van Cuyck, Tom; Jachowicz, Natalie; González-Jiménez, Raul; Martini, Marco; Ryckebusch, Jan; Van Dessel, Nils

    2016-01-01

    We present a detailed study of charged-current quasielastic neutrino-nucleus scattering and of the influence of correlations on one- and two-nucleon knockout processes. The quasielastic neutrino-nucleus scattering cross sections, including the influence of long-range correlations, are evaluated within a continuum random phase approximation approach. The short-range correlation formalism is implemented in the impulse approximation by shifting the complexity induced by the correlations from the wave functions to the operators. The model is validated by confronting $(e,e^\\prime)$ cross-section predictions with electron scattering data in the kinematic region where the quasielastic channel is expected to dominate. Further, the $^{12}$C$(\

  2. Single pion production in neutrino nucleus scattering

    CERN Document Server

    Hernández, E; Vacas, M J Vicente

    2013-01-01

    We study one pion production in both charged and neutral current neutrino nucleus scattering for neutrino energies below 2 GeV. We use a theoretical model for one pion production at the nucleon level that we correct for medium effects. The results are incorporated into a cascade program that apart from production also includes the pion final state interaction inside the nucleus. Besides, in some specific channels coherent pion production is also possible and we evaluate its contribution as well. Our results for total and differential cross sections are compared with recent data from the MiniBooNE Collaboration. The model provides an overall acceptable description of data, better for NC than for CC channels, although theory is systematically below data. Differential cross sections, folded with the full neutrino flux, show that most of the missing pions lie on the forward direction and at high energies.

  3. Coherency in Neutrino-Nucleus Elastic Scattering

    CERN Document Server

    Kerman, S; Deniz, M; Wong, H T; Chen, J -W; Li, H B; Lin, S T; Liu, C -P; Yue, Q

    2016-01-01

    Neutrino-nucleus elastic scattering provides a unique laboratory to study the quantum mechanical coherency effects in electroweak interactions, towards which several experimental programs are being actively pursued. We report results of our quantitative studies on the transitions towards decoherency. A parameter ($\\alpha$) is identified to describe the degree of coherency, and its variations with incoming neutrino energy, detector threshold and target nucleus are studied. The ranges of $\\alpha$ which can be probed with realistic neutrino experiments are derived, indicating complementarity between projects with different sources and targets. Uncertainties in nuclear physics and in $\\alpha$ would constrain sensitivities in probing physics beyond the standard model. The maximum neutrino energies corresponding to $\\alpha$>0.95 are derived.

  4. Protein quality control in the nucleus

    DEFF Research Database (Denmark)

    Nielsen, Sofie V.; Poulsen, Esben Guldahl; Rebula, Caio A.

    2014-01-01

    to aggregate, cells have evolved several elaborate quality control systems to deal with these potentially toxic proteins. First, various molecular chaperones will seize the misfolded protein and either attempt to refold the protein or target it for degradation via the ubiquitin-proteasome system...... to be particularly active in protein quality control. Thus, specific ubiquitin-protein ligases located in the nucleus, target not only misfolded nuclear proteins, but also various misfolded cytosolic proteins which are transported to the nucleus prior to their degradation. In comparison, much less is known about...... these mechanisms in mammalian cells. Here we highlight recent advances in our understanding of nuclear protein quality control, in particular regarding substrate recognition and proteasomal degradation....

  5. Neutrino-nucleus reactions in supernovae

    Science.gov (United States)

    Dzhioev, Alan A.; Vdovin, A. I.

    2016-01-01

    We study thermal effects on neutrino-nucleus reactions occurring under supernova conditions. The approach we use is based on the QRPA extended to finite temperature by the thermofield dynamics formalism. For the relevant supernova conditions we calculate inelastic neutrino scattering and neutrino absorption cross sections for two sample nuclei, 56Fe and 82Ge. In addition, we apply the approach to examine the rate of neutrino-antineutrino pair emission by hot nuclei.

  6. Neutrino-nucleus reactions in supernovae

    Directory of Open Access Journals (Sweden)

    Dzhioev Alan A.

    2016-01-01

    Full Text Available We study thermal effects on neutrino-nucleus reactions occurring under supernova conditions. The approach we use is based on the QRPA extended to finite temperature by the thermofield dynamics formalism. For the relevant supernova conditions we calculate inelastic neutrino scattering and neutrino absorption cross sections for two sample nuclei, 56Fe and 82Ge. In addition, we apply the approach to examine the rate of neutrino-antineutrino pair emission by hot nuclei.

  7. Theoretical highlights of neutrino-nucleus interactions

    CERN Document Server

    Alvarez-Ruso, Luis

    2009-01-01

    The recent theoretical developments in the field of neutrino-nucleus interactions in the few-GeV region are reviewed based on the presentations made at the NuInt09 Workshop. The topics of electron scattering and its connections with neutrino interactions, neutrino induced quasielastic scattering and pion production (coherent and incoherent) are covered, with special emphasis on the challenges that arise in the comparison with new experimental data.

  8. Neutrino-nucleus CCQE-like scattering

    CERN Document Server

    Nieves, J; Simo, I Ruiz; Sanchez, F; Vacas, M J Vicente

    2014-01-01

    RPA correlations, spectral function and 2p2h (multi-nucleon) effects on charged-current neutrino-nucleus reactions without emitted pions are discussed. We pay attention to the influence of RPA and multi-nucleon mechanisms on the MiniBooNE and MINERvA flux folded differential cross sections, the MiniBooNE flux unfolded total cross section and the neutrino energy reconstruction.

  9. Development of a Mobile Ice Nucleus Counter

    Energy Technology Data Exchange (ETDEWEB)

    Kok, Gregory [Droplet Measurement Technologies, Boulder, CO (United States); Kulkarni, Gourihar [Droplet Measurement Technologies, Boulder, CO (United States)

    2014-07-10

    An ice nucleus counter has been constructed. The instrument uses built-in refrigeration systems for wall cooling. A cascade refrigeration system will allow the cold wall to operate as low as -70°C, and a single stage system can operate the warm wall at -45C. A unique optical particle counter has been constructed using polarization detection of the scattered light. This allows differentiation of the particles exiting the chamber to determine if they are ice or liquid.

  10. Development of a Mobile Ice Nucleus Counter

    Energy Technology Data Exchange (ETDEWEB)

    Kok, Gregory; Kulkarni, Gourihar

    2014-07-10

    An ice nucleus counter has been constructed. The instrument uses built-in refrigeration systems for wall cooling. A cascade refrigeration system will allow the cold wall to operate as low as -70 deg C, and a single stage system can operate the warm wall at -45 deg C. A unique optical particle counter has been constructed using polarization detection of the scattered light. This allows differentiation of the particles exiting the chamber to determine if they are ice or liquid.

  11. Comet nucleus and asteroid sample return missions

    Science.gov (United States)

    1992-01-01

    Three Advanced Design Projects have been completed this academic year at Penn State. At the beginning of the fall semester the students were organized into eight groups and given their choice of either a comet nucleus or an asteroid sample return mission. Once a mission had been chosen, the students developed conceptual designs. These were evaluated at the end of the fall semester and combined into three separate mission plans, including a comet nucleus same return (CNSR), a single asteroid sample return (SASR), and a multiple asteroid sample return (MASR). To facilitate the work required for each mission, the class was reorganized in the spring semester by combining groups to form three mission teams. An integration team consisting of two members from each group was formed for each mission so that communication and information exchange would be easier among the groups. The types of projects designed by the students evolved from numerous discussions with Penn State faculty and mission planners at the Johnson Space Center Human/Robotic Spacecraft Office. Robotic sample return missions are widely considered valuable precursors to manned missions in that they can provide details about a site's environment and scientific value. For example, a sample return from an asteroid might reveal valuable resources that, once mined, could be utilized for propulsion. These missions are also more adaptable when considering the risk to humans visiting unknown and potentially dangerous locations, such as a comet nucleus.

  12. CACNA1H missense mutations associated with amyotrophic lateral sclerosis alter Cav3.2 T-type calcium channel activity and reticular thalamic neuron firing.

    Science.gov (United States)

    Rzhepetskyy, Yuriy; Lazniewska, Joanna; Blesneac, Iulia; Pamphlett, Roger; Weiss, Norbert

    2016-11-01

    Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that affects nerve cells in the brain and the spinal cord. In a recent study by Steinberg and colleagues, 2 recessive missense mutations were identified in the Cav3.2 T-type calcium channel gene (CACNA1H), in a family with an affected proband (early onset, long duration ALS) and 2 unaffected parents. We have introduced and functionally characterized these mutations using transiently expressed human Cav3.2 channels in tsA-201 cells. Both of these mutations produced mild but significant changes on T-type channel activity that are consistent with a loss of channel function. Computer modeling in thalamic reticular neurons suggested that these mutations result in decreased neuronal excitability of thalamic structures. Taken together, these findings implicate CACNA1H as a susceptibility gene in amyotrophic lateral sclerosis.

  13. Impaired Prefronto-Thalamic Functional Connectivity as a Key Feature of Treatment-Resistant Depression: A Combined MEG, PET and rTMS Study

    Science.gov (United States)

    Li, Cheng-Ta; Chen, Li-Fen; Tu, Pei-Chi; Wang, Shyh-Jen; Chen, Mu-Hong; Su, Tung-Ping; Hsieh, Jen-Chuen

    2013-01-01

    Prefrontal left-right functional imbalance and disrupted prefronto-thalamic circuitry are plausible mechanisms for treatment-resistant depression (TRD). Add-on repetitive transcranial magnetic stimulation (rTMS), effective in treating antidepressant-refractory TRD, was administered to verify the core mechanisms underlying the refractoriness to antidepressants. Thirty TRD patients received a 2-week course of 10-Hz rTMS to the left dorsolateral prefrontal cortex (DLPFC). Depression scores were evaluated at baseline (W0), and the ends of weeks 1, 2, and 14 (W14). Responders were defined as those who showed an objective improvement in depression scores ≥50% after rTMS. Left-right frontal alpha asymmetry (FAA) was measured by magnetoencephalography at each time point as a proxy for left-right functional imbalance. Prefronto-thalamic connections at W0 and W14 were assessed by studying couplings between prefrontal alpha waves and thalamic glucose metabolism (PWTMC, reflecting intact thalamo-prefrontal connectivity). A group of healthy control subjects received magnetoencephalography at W0 (N = 50) to study whether FAA could have a diagnostic value for TRD, or received both magnetoencephalography and positron-emission-tomography at W0 (N = 10) to confirm the existence of PWTMC in the depression-free state. We found that FAA changes cannot differentiate between TRD and healthy subjects or between responders and non-responders. No PWTMC were found in the TRD group at W0, whereas restitution of the PWTMC was demonstrated only in the sustained responders at W14 and euthymic healthy controls. In conclusion, we affirmed impaired prefronto-thalamic functional connections, but not frontal functional imbalance, as a core deficit in TRD. PMID:23936378

  14. Parallel streams for the relay of vibrissal information through thalamic barreloids.

    Science.gov (United States)

    Pierret, T; Lavallée, P; Deschênes, M

    2000-10-01

    This study investigated the organization of a vibrissal pathway that arises from the interpolar division of the spinal trigeminal complex (SP5i), transits through the ventral posterior medial nucleus (VPM), and innervates the somatosensory cortical areas in the rat. Using Fluoro-Gold and biotinylated dextran amine, respectively, as retrograde and anterograde tracers, the following organization plan was disclosed. The SP5i projection arises from a population of small-sized neurons that selectively innervate the ventral lateral part of VPM. In cytochrome oxidase-stained material, this region does not display any barreloid arrangement, but Fluoro-Gold injections in single barrel columns labeled rods of cells that extend caudally into the ventral lateral division of VPM. Thus, on the basis of retrograde labeling, barreloids were divided into core and tail compartments, which correspond to the rod segments running across the dorsal and ventral lateral parts of VPM, respectively. Double-labeling experiments revealed that SP5i afferents innervate the tail of barreloids. The anterograde labeling of thalamocortical axons show that most "core cells" project to a single barrel column, whereas some "tail cells" give rise to branching axons that innervate the second somatosensory area and the dysgranular zone of the barrel field. Injections that straddled the transition zone between the core and tail regions disclosed cells projecting to a single barrel column and to the surrounding dysgranular zone. These results suggest that the projection of "barreloids cells" to the granular and/or dysgranular zones relates to the class of prethalamic input(s) they receive.

  15. Synaptic properties of thalamic and intracortical inputs to layer 4 of the first- and higher-order cortical areas in the auditory and somatosensory systems.

    Science.gov (United States)

    Lee, Charles C; Sherman, S Murray

    2008-07-01

    The thalamus is an essential structure in the mammalian forebrain conveying information topographically from the sensory periphery to primary neocortical areas. Beyond this initial processing stage, "higher-order" thalamocortical connections have been presumed to serve only a modulatory role, or are otherwise functionally disregarded. Here we demonstrate that these "higher-order" thalamic nuclei share similar synaptic properties with the "first-order" thalamic nuclei. Using whole cell recordings from layer 4 neurons in thalamocortical slice preparations in the mouse somatosensory and auditory systems, we found that electrical stimulation in all thalamic nuclei elicited large, glutamatergic excitatory postsynaptic potentials (EPSPs) that depress in response to repetitive stimulation and that fail to activate a metabotropic glutamate response. In contrast, the intracortical inputs from layer 6 to layer 4 exhibit facilitating EPSPs. These data suggest that higher-order thalamocortical projections may serve a functional role similar to the first-order nuclei, whereas both are physiologically distinct from the intracortical layer 6 inputs. These results suggest an alternate route for information transfer between cortical areas via a corticothalamocortical pathway.

  16. Overexpression of GAP-43 in thalamic projection neurons of transgenic mice does not enable them to regenerate axons through peripheral nerve grafts.

    Science.gov (United States)

    Mason, M R; Campbell, G; Caroni, P; Anderson, P N; Lieberman, A R

    2000-09-01

    It is well established that some populations of neurons of the adult rat central nervous system (CNS) will regenerate axons into a peripheral nerve implant, but others, including most thalamocortical projection neurons, will not. The ability to regenerate axons may depend on whether neurons can express growth-related genes such as GAP-43, whose expression correlates with axon growth during development and with competence to regenerate. Thalamic projection neurons which fail to regenerate into a graft also fail to upregulate GAP-43. We have tested the hypothesis that the absence of strong GAP-43 expression by the thalamic projection neurons prevents them from regenerating their axons, using transgenic mice which overexpress GAP-43. Transgene expression was mapped by in situ hybridization with a digoxigenin-labeled RNA probe and by immunohistochemistry with a monoclonal antibody against the GAP-43 protein produced by the transgene. Many CNS neurons were found to express the mRNA and protein, including neurons of the mediodorsal and ventromedial thalamic nuclei, which rarely regenerate axons into peripheral nerve grafts. Grafts were implanted into the region of these nuclei in the brains of transgenic animals. Although these neurons strongly expressed the transgene mRNA and protein and transported the protein to their axon terminals, they did not regenerate axons into the graft, suggesting that lack of GAP-43 expression is not the only factor preventing thalamocortical neurons regenerating their axons. Copyright 2000 Academic Press.

  17. Cortico-Striatal-Thalamic Loop Circuits of the Salience Network: A Central Pathway in Psychiatric Disease and Treatment

    Science.gov (United States)

    Peters, Sarah K.; Dunlop, Katharine; Downar, Jonathan

    2016-01-01

    The salience network (SN) plays a central role in cognitive control by integrating sensory input to guide attention, attend to motivationally salient stimuli and recruit appropriate functional brain-behavior networks to modulate behavior. Mounting evidence suggests that disturbances in SN function underlie abnormalities in cognitive control and may be a common etiology underlying many psychiatric disorders. Such functional and anatomical abnormalities have been recently apparent in studies and meta-analyses of psychiatric illness using functional magnetic resonance imaging (fMRI) and voxel-based morphometry (VBM). Of particular importance, abnormal structure and function in major cortical nodes of the SN, the dorsal anterior cingulate cortex (dACC) and anterior insula (AI), have been observed as a common neurobiological substrate across a broad spectrum of psychiatric disorders. In addition to cortical nodes of the SN, the network’s associated subcortical structures, including the dorsal striatum, mediodorsal thalamus and dopaminergic brainstem nuclei, comprise a discrete regulatory loop circuit. The SN’s cortico-striato-thalamo-cortical loop increasingly appears to be central to mechanisms of cognitive control, as well as to a broad spectrum of psychiatric illnesses and their available treatments. Functional imbalances within the SN loop appear to impair cognitive control, and specifically may impair self-regulation of cognition, behavior and emotion, thereby leading to symptoms of psychiatric illness. Furthermore, treating such psychiatric illnesses using invasive or non-invasive brain stimulation techniques appears to modulate SN cortical-subcortical loop integrity, and these effects may be central to the therapeutic mechanisms of brain stimulation treatments in many psychiatric illnesses. Here, we review clinical and experimental evidence for abnormalities in SN cortico-striatal-thalamic loop circuits in major depression, substance use disorders (SUD

  18. Oscillations of moments in high-energy nucleus-nucleus collisions

    Institute of Scientific and Technical Information of China (English)

    杨红艳; 周代翠; 钱琬燕; 王晓荣

    2001-01-01

    The definitions of density function and moment of multiplicity distribution are introduced,and the method of moment analysis in e+ e- and proton-proton (pp) interactions is extended into nu-cleus-nucleus (AA) interactions. We analyze the data for relativistic nucleus-nucleus collisions and cal-culate the values of Hq for charged particle multiplicity distributions, by which we study systematically the dependences of Hq on incident energy, mass of colliding system, pseudorapidity interval, centrality and truncation of multiplicity. We compare the oscillation structures induced by e + e-, pp and AA inter-actions, and the comparison and analysis are carried out between experimental data and QCD predic-tion. The latest results are given in this paper.

  19. Transverse energy distributions in nucleus-nucleus collisions at 200 GeV/nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Baglin, C.; Baldisseri, A.; Bussiere, A.; Guillaud, J.P.; Kossakowski, R.; Liaud, P.; Staley, F. (Institut National de Physique Nucleaire et de Physique des Particules, 74 - Annecy-le-Vieux (France). Lab. de Physique des Particules); Baldit, A.; Castor, J.; Chambon, T.; Devaux, A.; Fargeix, J.; Felgeyrolles, X.; Force, P.; Fredj, L.; Landaud, G.; Vazeille, F. (Institut National de Physique Nucleaire et de Physique des Particules, 63 - Clermont-Ferrand (France). Lab. de Physique Corpusculaire Clermont-Ferrand-2 Univ., 63 - Aubiere (France)); Sonderegger, P. (European Organization for Nuclear Research, Geneva (Switzerland)); Abreu, M.C.; Bordalo, P.; Ferreira, R.; Gago, J.M.; Lourenco, C.; Peralta, L.; Pimenta, M.; Ramos, S.; Silva, S.; Varela, J. (LIP, Lisbon (Portugal)); Gerschel, C.; Jouan, D.; Papillon, S.; Tarrago, X. (Institut National de Physique Nucleaire et de Physique des Particules, 91 - Orsay (France). Inst. de Physique Nucleaire Paris-11 Univ., 91 - Orsay (France)); Bus; NA38 Collaboration

    1990-11-22

    The transverse energy E{sub T} distributions of nucleus-nucleus collisions are studied in the framework of a simple geometrical model. The distributions for inclusive production of J/{psi} and muon pairs in the mass continuum are analyzed. The shape of the E{sub T} distribution of the continuum agrees with the model. The previously observed decrease of the ratio (J/{psi})/continuum with increasing E{sub T} is due to the behavior of the J/{psi}. (orig.).

  20. Aspects of Coulomb dissociation and interference in peripheral nucleus-nucleus collisions

    Energy Technology Data Exchange (ETDEWEB)

    Nystrand, Joakim; Baltz, Anthony; Klein, Spencer R.

    2001-10-21

    Coherent vector meson production in peripheral nucleus-nucleus collisions is discussed. These interactions may occur for impact parameters much larger than the sum of the nuclear radii. Since the vector meson production is always localized to one of the nuclei, the system acts as a two-source interferometer in the transverse plane. By tagging the outgoing nuclei for Coulomb dissociation it is possible to obtain a measure of the impact parameter and thus the source separation in the interferometer. This is of particular interest since the life-time of the vector mesons are generally much shorter than the impact parameters of the collisions.

  1. Jet tomography of high-energy nucleus-nucleus collisions at next-to-leading order

    Energy Technology Data Exchange (ETDEWEB)

    Vitev, Ivan [Los Alamos National Laboratory; Zhang, Ben - Wei [Los Alamos National Laboratory

    2009-01-01

    We demonstrate that jet observables are highly sensitive to the characteristics of the vacuum and the in-medium QCD parton showers and propose techniques that exploit this sensitivity to constrain the mechanism of quark and gluon energy loss in strongly-interacting plasmas. As a first example, we calculate the inclusive jet cross section in high-energy nucleus-nucleus collisions to {Omicron}({alpha}{sub s}{sup 3}). Theoretical predictions for the medium-induced jet broadening and the suppression of the jet production rate due to cold and hot nuclear matter effects in Au+Au and Cu+Cu reactions at RHIC are presented.

  2. Azimuthal correlations of hadrons and fragments in nucleus-nucleus collisions

    Institute of Scientific and Technical Information of China (English)

    LI Hui-Ling

    2011-01-01

    Two-particle (two-fragment) azimuthal correlation functions are studied by using a simple formula which describes uniformly azimuthal distributions of final-state charged particles and nuclear fragments.This formula is obtained in the framework of a multi-source thermal model (or multi-source ideal gas model).The calculated results are compared and found to be in agreement with the experimental data of charged hadrons and nuclear fragments in nucleus-nucleus collisions at intermediate and high energies.

  3. The effect of the relative nuclear size on the nucleus-nucleus interactions

    Science.gov (United States)

    Erofeeva, I. N.; Murzin, V. S.; Sivoklokov, S. Y.; Smirnova, L. N.

    1985-01-01

    The experimental data on the interactions of light nuclei (d, He(4), C(12)) at the momentum 4.2 GeV/cA with the carbon nuclei were taken in the 2-m propane bubble chamber. The distributions in the number of interacting nucleons, the spectra of protons, the mean energies of secondary pions and protons, the mean fractions of energy transferred to the pion and nucleon components are presented. The results of the investigation of the mechanism of nucleus-nucleus interactions can be used to calculate the nuclear cascades in the atmosphere.

  4. Electromagnetic processes in nucleus-nucleus collisions relating to space radiation research

    Science.gov (United States)

    Norbury, John W.

    1992-01-01

    Most of the papers within this report deal with electromagnetic processes in nucleus-nucleus collisions which are of concern in the space radiation program. In particular, the removal of one and two nucleons via both electromagnetic and strong interaction processes has been extensively investigated. The theory of relativistic Coulomb fission has also been developed. Several papers on quark models also appear. Finally, note that the theoretical methods developed in this work have been directly applied to the task of radiation protection of astronauts. This has been done by parameterizing the theoretical formalism in such a fashion that it can be used in cosmic ray transport codes.

  5. Experiment list: SRX643467 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available mic nuclei (contains nucleus medialis dorsalis fasciculosis, commissural nucleus, paraventricular thalamic n...s) || chip antibody=input || tissue=Female Brain: central medial thalamic nuclei (contains nucleus medialis dorsalis

  6. Recent results on (anti)nucleus and (anti)hyperon production in nucleus-nucleus collisions at CERN SPS energies

    CERN Document Server

    Melkumov, G L; Anticic, T; Baatar, B; Barna, D; Bartke, J; Betev, L; Bialkowska, H; Blume, C; Boimska, B; Botje, M; Bracinik, J; Bramm, R; Buncic, P; Cerny, V; Christakoglou, P; Chung, P; Chvala, O; Cramer, J G; Csató, P; Dinkelaker, P; Eckardt, V; Flierl, D; Fodor, Z; Foka, P; Friese, V; Gál, J; Gazdzicki, M; Genchev, V; Georgopoulos, G; Grebieszkow, K; Hegyi, S; Höhne, C; Kadija, K; Karev, A; Kikola, D; Gladysz-Dziadus, E; Kliemant, M; Kniege, S; Kolesnikov, V I; Kornas, E; Korus, R; Kowalski, M; Kraus, I; Kreps, M; Laszlo, A; Lacey, R; Van Leeuwen, M; Lvai, P; Litov, L; Lungwitz, B; Makariev, M; Malakhov, A I; Mateev, M; Melkumov, G L; Mischke, A; Mitrovski, M; Molnár, J; Mrówczynski, S; Nicolic, V; Pálla, G; Panagiotou, A D; Panayotov, D; Petridis, A; Peryt, W; Pikna, M; Pluta, J; Prindle, D; Pühlhofer, F; Renfordt, R; Roland, C; Roland5, G; Rybczynski, M; Rybicki, A; Sandoval, A; Schmitz, N; Schuster, T; Siklér, F; Sitár, B; Skrzypczak, E; Slodkowski, M; Stefanek, G; Stock, R; Seyboth, P; Strabel, C; Ströbele, H; Susa, T; Szentpetery, I; Sziklai, J; Szuba, M; Szymanski, P; Trubnikov, V; Varga, D; Vassiliou, M; Veres, G I; Vesztergombi, G; Vranic, D; Wlodarczyk, Z; Wojtaszek11, A; Yoo, I K; Zimnyi, J; Wetzler, A

    2007-01-01

    The NA49 experiment has collected comprehensive data on particle production in nucleus-nucleus collisions over the whole SPS beam energies range, the critical energy domain where the expected phase transition to a deconfined phase is expected to occur. The latest results from Pb+Pb collisions between 20$A$ GeV and 158$A$ GeV on baryon stopping and light nuclei production as well as those for strange hyperons are presented. The measured data on $p$, $\\bar{p}$, $\\Lambda$, $\\bar{\\Lambda}$, $\\Xi^-$ and $\\bar{\\Xi}^+$ production were used to evaluate the rapidity distributions of net-baryons at SPS energies and to compare with the results from the AGS and the RHIC for central Pb+Pb (Au+Au) collisions. The dependence of the yield ratios and the inverse slope parameter of the $m_t$ spectra on the collision energy and centrality, and the mass number of the produced nuclei $^3He$, $t$, $d$ and $\\bar{d}$ are discussed within coalescence and statistical approaches. Analysis of the total multiplicity exhibits remarkable a...

  7. Contemporary models of the atomic nucleus

    CERN Document Server

    Nemirovskii, P E

    2013-01-01

    Contemporary Models of the Atomic Nucleus discusses nuclear structure and properties, expounding contemporary theoretical concepts of the low-energy nuclear processes underlying in nuclear models. This book focuses on subjects such as the optical nuclear model, unified or collective model, and deuteron stripping reaction. Other topics discussed include the basic nuclear properties; shell model; theoretical analysis of the shell model; and radiative transitions and alpha-decay. The deuteron theory and the liquid drop nuclear model with its application to fission theory are also mentioned, but o

  8. Crossed Aphasia and Visuo-Spatial Neglect Following a Right Thalamic Stroke: A Case Study and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Lieve De Witte

    2008-01-01

    Full Text Available Crossed aphasia in dextrals (CAD following pure subcortical lesions is rare. This study describes a right-handed patient with an ischemic lesion in the right thalamus. In the post-acute phase of the stroke, a unique combination of ‘crossed thalamic aphasia’ was found with left visuo-spatial neglect and constructional apraxia. On the basis of the criteria used in Mariën et al. [67], this case-report is the first reliable representative of vascular CAD following an isolated lesion in the right thalamus. Furthermore, this paper presents a detailed analysis of linguistic and cognitive impairments of ‘possible’ and 'reliable' subcortical CAD-cases published since 1975. Out of 25 patients with a pure subcortical lesion, nine cases were considered as ‘possibly reliable or reliable’. A review of these cases reveals that: (1 demographic data are consistent with the general findings for the entire group of vascular CAD, (2 the neurolinguistic findings do not support the data in the general CAD-population with regard to (a the high prevalence of transcortical aphasia and (b the tendency towards a copresence of an oral versus written language dissociation and a ‘mirror-image’ lesion-aphasia profile, (3 subcortical CAD is not a transient phenomenon, (4 the lesion-aphasia correlations are not congruent with the high incidence of anomalous cases in the general CAD-population, (5 neuropsychological impairments may accompany subcortical CAD.

  9. The role of cutaneous afferents from the distal hindlimb in the regulation of the step cycle of thalamic cats.

    Science.gov (United States)

    Duysens, J; Pearson, K G

    1976-01-26

    The pad and the plantar surface of the foot were stimulated electrically in thalamic cats. Weak stimulation evoked an extensor reflex in the animal at rest. The same stimuli in a spontaneously walking animal applied during the stance phase produced an increase both in amplitude and duration of the ongoing extensor activity. When given during the swing phase, the stimuli either prolonged the ongoing flexor activity and/or shortened the following extensor burst. These changes in flexor and extensor burst duration were reflected in changes in the step cycle duration. Similar results were seen with direct stimulation of the sural nerve. For the latter experiments the ipsilateral hindlimb was fixed and denervated except for the ankle extensors and flexors, which showed rhythmic contractions correlated normally with the walking movements of the three remaining limbs. At rest, threshold stimulation of the sural nerve evoked a reflex contraction in the triceps surae of the fixed leg. The same stimuli applied during the contraction phase of the fixed triceps surae during walking resulted in a larger and longer extensor contraction and a delay of the following flexion. Stimulation during the relaxation phase of the fixed triceps surae reduced the duration of the following contraction phase. The findings are discussed in relation to the possible role of cutaneous input during locomotion.

  10. System identification of the nonlinear dynamics in the thalamocortical circuit in response to patterned thalamic microstimulation in-vivo

    Science.gov (United States)

    Millard, Daniel C; Wang, Qi; Gollnick, Clare A; Stanley, Garrett B

    2013-01-01

    Objective Nonlinear system identification approaches were used to develop a dynamical model of the network level response to patterns of microstimulation in-vivo. Approach The thalamocortical circuit of the rodent vibrissa pathway was the model system, with voltage sensitive dye imaging capturing the cortical response to patterns of stimulation delivered from a single electrode in the ventral posteromedial thalamus. The results of simple paired stimulus experiments formed the basis for the development of a phenomenological model explicitly containing nonlinear elements observed experimentally. The phenomenological model was fit using datasets obtained with impulse train inputs, Poisson-distributed in time and uniformly varying in amplitude. Main Results The phenomenological model explained 58% of the variance in the cortical response to out of sample patterns of thalamic microstimulation. Furthermore, while fit on trial averaged data, the phenomenological model reproduced single trial response properties when simulated with noise added into the system during stimulus presentation. The simulations indicate that the single trial response properties were dependent on the relative sensitivity of the static nonlinearities in the two stages of the model, and ultimately suggest that electrical stimulation activates local circuitry through linear recruitment, but that this activity propagates in a highly nonlinear fashion to downstream targets. Significance The development of nonlinear dynamical models of neural circuitry will guide information delivery for sensory prosthesis applications, and more generally reveal properties of population coding within neural circuits. PMID:24162186

  11. System identification of the nonlinear dynamics in the thalamocortical circuit in response to patterned thalamic microstimulation in vivo

    Science.gov (United States)

    Millard, Daniel C.; Wang, Qi; Gollnick, Clare A.; Stanley, Garrett B.

    2013-12-01

    Objective. Nonlinear system identification approaches were used to develop a dynamical model of the network level response to patterns of microstimulation in vivo. Approach. The thalamocortical circuit of the rodent vibrissa pathway was the model system, with voltage sensitive dye imaging capturing the cortical response to patterns of stimulation delivered from a single electrode in the ventral posteromedial thalamus. The results of simple paired stimulus experiments formed the basis for the development of a phenomenological model explicitly containing nonlinear elements observed experimentally. The phenomenological model was fit using datasets obtained with impulse train inputs, Poisson-distributed in time and uniformly varying in amplitude. Main results. The phenomenological model explained 58% of the variance in the cortical response to out of sample patterns of thalamic microstimulation. Furthermore, while fit on trial-averaged data, the phenomenological model reproduced single trial response properties when simulated with noise added into the system during stimulus presentation. The simulations indicate that the single trial response properties were dependent on the relative sensitivity of the static nonlinearities in the two stages of the model, and ultimately suggest that electrical stimulation activates local circuitry through linear recruitment, but that this activity propagates in a highly nonlinear fashion to downstream targets. Significance. The development of nonlinear dynamical models of neural circuitry will guide information delivery for sensory prosthesis applications, and more generally reveal properties of population coding within neural circuits.

  12. rKv1.2 overexpression in the central medial thalamic area decreases caffeine-induced arousal.

    Science.gov (United States)

    Cazzin, C; Piccoli, L; Massagrande, M; Garbati, N; Michielin, F; Knaus, H-G; Ring, C J A; Morrison, A D; Merlo-Pich, E; Rovo, Z; Astori, S; Lüthi, A; Corti, C; Corsi, M

    2011-11-01

    The voltage-gated potassium channel Kv1.2 belongs to the shaker-related family and has recently been implicated in the control of sleep profile on the basis of clinical and experimental evidence in rodents. To further investigate whether increasing Kv1.2 activity would promote sleep occurrence in rats, we developed an adeno-associated viral vector that induces overexpression of rat Kv1.2 protein. The viral vector was first evaluated in vitro for its ability to overexpress rat Kv1.2 protein and to produce functional currents in infected U2OS cells. Next, the adeno-associated Kv1.2 vector was injected stereotaxically into the central medial thalamic area of rats and overexpression of Kv1.2 was showed by in situ hybridization, ex vivo electrophysiology and immunohistochemistry. Finally, the functional effect of Kv1.2 overexpression on sleep facilitation was investigated using telemetry system under normal conditions and following administration of the arousing agent caffeine, during the light phase. While no differences in sleep profile were observed between the control and the treated animals under normal conditions, a decrease in the pro-arousal effect of caffeine was seen only in the animals injected with the adeno-associated virus-Kv1.2 vector. Overall, our data further support a role of the Kv1.2 channel in the control of sleep profile, particularly under conditions of sleep disturbance.

  13. Syndrome-Specific Deficits of Performance and Effects of Practice on Arm Movements with Deafferentation due to Posterior Thalamic Lesion

    Directory of Open Access Journals (Sweden)

    Thomas Platz

    1997-01-01

    Full Text Available Aiming and tapping movements were analysed repeatedly over a three-week period in a patient who was hemideafferented due to an ischaemic posterior thalamic lesion. Contrasting behaviour observed in six healthy subjects, nine hemiparetic patients and one patient with hemianopic stroke, allowed the determination of behavioural deficits related to deafferentation. Finger tapping was not impaired specifically and did not improve with practice in the deafferented patient. When aiming movements were investigated, accuracy of the first, largely preprogrammed, phase of movement and timing of the late homing-in phase were impaired specifically in the deafferented patient. Practice led to a step-like change in preprogramming amplitude of the ballistic movement component, a gradual improvement of temporal efficiency of the early movement phase and a more marked improvement of the homing-in phase. Qualitatively comparable but quantitatively less marked effects of practice were documented for hemiparetic patients. These results demonstrated that deafferentation affects preprogrammed aspects of movement and those influenced by current control and that motor learning is possible with central deafferentation, even for aspects of performance that are impaired specifically. It is postulated that motor learning was mediated by changes in strategy (motor programming and improved efficiency of intact motor control processes (visuomotor control.

  14. Efficacy of T2*-Weighted Gradient-Echo MRI in Early Diagnosis of Cerebral Venous Thrombosis with Unilateral Thalamic Lesion

    Directory of Open Access Journals (Sweden)

    Shingo Mitaki

    2013-01-01

    Full Text Available Cerebral venous thrombosis (CVT is an uncommon cause of stroke with diverse etiologies and varied clinical presentations. Because of variability in clinical presentation and neuroimaging, CVT remains a diagnostic challenge. Recently, some studies have highlighted the value of T2*-weighted gradient-echo MRI (T2*WI in the diagnosis of CVT. We report the case of a 79-year-old woman with CVT due to a hypercoagulable state associated with cancer. On the initial T2-weighted image (T2WI, there was a diffuse high-intensity lesion in the right thalamus, extending into the posterior limb of the internal capsule and midbrain. T2*WI showed diminished signal and enlargement of the right basilar vein and the vein of Galen. Even though there is a wide range of differential diagnoses in unilateral thalamic lesions, and a single thalamus lesion is a rare entity of CVT, based on T2*WI findings we could make an early diagnosis and perform treatment. Our case report suggests that T2*WI could detect thrombosed veins and be a useful method of early diagnosis in CVT.

  15. Deriving theoretical phase locking values of a coupled cortico-thalamic neural mass model using center manifold reduction.

    Science.gov (United States)

    Ogawa, Yutaro; Yamaguchi, Ikuhiro; Kotani, Kiyoshi; Jimbo, Yasuhiko

    2017-02-24

    Cognitive functions such as sensory processing and memory processes lead to phase synchronization in the electroencephalogram or local field potential between different brain regions. There are a lot of computational researches deriving phase locking values (PLVs), which are an index of phase synchronization intensity, from neural models. However, these researches derive PLVs numerically. To the best of our knowledge, there have been no reports on the derivation of a theoretical PLV. In this study, we propose an analytical method for deriving theoretical PLVs from a cortico-thalamic neural mass model described by a delay differential equation. First, the model for generating neural signals is transformed into a normal form of the Hopf bifurcation using center manifold reduction. Second, the normal form is transformed into a phase model that is suitable for analyzing synchronization phenomena. Third, the Fokker-Planck equation of the phase model is derived and the phase difference distribution is obtained. Finally, the PLVs are calculated from the stationary distribution of the phase difference. The validity of the proposed method is confirmed via numerical simulations. Furthermore, we apply the proposed method to a working memory process, and discuss the neurophysiological basis behind the phase synchronization phenomenon. The results demonstrate the importance of decreasing the intensity of independent noise during the working memory process. The proposed method will be of great use in various experimental studies and simulations relevant to phase synchronization, because it enables the effect of neurophysiological changes on PLVs to be analyzed from a mathematical perspective.

  16. Repeated head trauma is associated with smaller thalamic volumes and slower processing speed: the Professional Fighters' Brain Health Study.

    Science.gov (United States)

    Bernick, Charles; Banks, Sarah J; Shin, Wanyong; Obuchowski, Nancy; Butler, Sam; Noback, Michael; Phillips, Michael; Lowe, Mark; Jones, Stephen; Modic, Michael

    2015-08-01

    Cumulative head trauma may alter brain structure and function. We explored the relationship between exposure variables, cognition and MRI brain structural measures in a cohort of professional combatants. 224 fighters (131 mixed martial arts fighters and 93 boxers) participating in the Professional Fighters Brain Health Study, a longitudinal cohort study of licensed professional combatants, were recruited, as were 22 controls. Each participant underwent computerised cognitive testing and volumetric brain MRI. Fighting history including years of fighting and fights per year was obtained from self-report and published records. Statistical analyses of the baseline evaluations were applied cross-sectionally to determine the relationship between fight exposure variables and volumes of the hippocampus, amygdala, thalamus, caudate, putamen. Moreover, the relationship between exposure and brain volumes with cognitive function was assessed. Increasing exposure to repetitive head trauma measured by number of professional fights, years of fighting, or a Fight Exposure Score (FES) was associated with lower brain volumes, particularly the thalamus and caudate. In addition, speed of processing decreased with decreased thalamic volumes and with increasing fight exposure. Higher scores on a FES used to reflect exposure to repetitive head trauma were associated with greater likelihood of having cognitive impairment. Greater exposure to repetitive head trauma is associated with lower brain volumes and lower processing speed in active professional fighters. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  17. Ventromedial arcuate nucleus communicates peripheral metabolic information to the suprachiasmatic nucleus.

    NARCIS (Netherlands)

    Yi, C.-X.; Vliet, J. van der; Dai, J.; Yin, G.; Ru, L.; Buijs, R.M.

    2006-01-01

    The arcuate nucleus (ARC) is crucial for the maintenance of energy homeostasis as an integrator of long- and short-term hunger and satiety signals. The expression of receptors for metabolic hormones, such as insulin, leptin, and ghrelin, allows ARC to sense information from the periphery and signal

  18. Experimental study of collective flow phenomena in high-energy nucleus-nucleus collisions

    CERN Document Server

    Chkhaidze, L V; Kharkhelauri, L L

    2002-01-01

    The results of the experimental study of collective flow phenomena, such as the sideward and elliptic flow of nuclear matter, discovered during the last 10-15 years in high-energy nucleus-nucleus collisions are presented in this review. Sideward (often termed directed) and elliptic flows have been observed for protons, antiprotons, light nuclei, pions, kaons, and lambdas emitted in nucleus-nucleus collisions at 0.1-1.8 GeV/nucleon of LBL Bevalac and GSI/SIS by Plastic-Ball, Streamer Chamber, EOS-NPC, FOPI, LAND, TAPS, and KAOS collaborations; at 2-4 GeV/nucleon of Dubna JINR by SKM-200-GIBS, Propane Buble Chamber, and Emulsion Chamber collaborations; at 2-14 GeV/nucleon of BNL AGS, by the E877, E895, and E917 collaborations; and at 60 and 200 GeV/nucleon of CERN SPS, by the WA98 and NA49 collaborations and more recently by the STAR at RHIC BNL. In the review, the results of the SKM-200-GIBS collaboration of JINR are presented and compared with the results of different experiments by Bevalac, GSI/SIS, BNL, and...

  19. Muscarinic receptor binding increases in anterior thalamus and cingulate cortex during discriminative avoidance learning

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, B.A.; Gabriel, M.; Vogt, L.J.; Poremba, A.; Jensen, E.L.; Kubota, Y.; Kang, E. (Department of Physiology and Pharmacology, Bowman Gray School of Medicine, Wake Forest University, Winston-Salem, North Carolina (USA))

    1991-06-01

    Training-induced neuronal activity develops in the mammalian limbic system during discriminative avoidance conditioning. This study explores behaviorally relevant changes in muscarinic ACh receptor binding in 52 rabbits that were trained to one of five stages of conditioned response acquisition. Sixteen naive and 10 animals yoked to criterion performance served as control cases. Upon reaching a particular stage of training, the brains were removed and autoradiographically assayed for 3H-oxotremorine-M binding with 50 nM pirenzepine (OxO-M/PZ) or for 3H-pirenzepine binding in nine limbic thalamic nuclei and cingulate cortex. Specific OxO-M/PZ binding increased in the parvocellular division of the anterodorsal nucleus early in training when the animals were first exposed to pairing of the conditional and unconditional stimuli. Elevated binding in this nucleus was maintained throughout subsequent training. In the parvocellular division of the anteroventral nucleus (AVp), OxO-M/PZ binding progressively increased throughout training, reached a peak at the criterion stage of performance, and returned to control values during extinction sessions. Peak OxO-M/PZ binding in AVp was significantly elevated over that for cases yoked to criterion performance. In the magnocellular division of the anteroventral nucleus (AVm), OxO-M/PZ binding was elevated only during criterion performance of the task, and it was unaltered in any other limbic thalamic nuclei. Specific OxO-M/PZ binding was also elevated in most layers in rostral area 29c when subjects first performed a significant behavioral discrimination. Training-induced alterations in OxO-M/PZ binding in AVp and layer Ia of area 29c were similar and highly correlated.

  20. 5-hydroxytryptamine-mediated apnea caused by the habenular nucleus

    Institute of Scientific and Technical Information of China (English)

    Min Wang; Weihong Lin; Jinghua Wang; Min Huang; Chunyong Wang; Mingxian Li; Shao Wang

    2011-01-01

    5-hydroxytryptamine contributes to the control of activities of the dilator muscle in the upper respiratory tract, and is derived from the raphe nuclei, in which the habenular nucleus exerts a sustained inhibitory effect. In the present study, respiratory motion curve of the genioglossus muscle and peripheral 5-hydroxytryptamine changes were observed following L-glutamate stimulation of the habenular nucleus of adult Wistar rats. Results showed that the rats had apnea and decreased plasma 5-hydroxytryptamine content after the neurons in habenular nucleus were excited. Genioglossus muscle electromyogram amplitude and integral were significantly reduced. The genioglossus myoelectric activity and respiratory motion curve were similar to obstructive sleep apnea syndrome, thus confirming that the habenular nucleus is the key nucleus involved in the pathogenesis of obstructive sleep apnea syndrome, and is the primary regulated center in the raphe nuclei. Stimulation of the habenular nucleus may suppress 5-hydroxytryptamine release and result in apnea, which is similar to obstructive sleep apnea syndrome.

  1. Caudal topographic nucleus isthmi and the rostral nontopographic nucleus isthmi in the turtle, Pseudemys scripta.

    Science.gov (United States)

    Sereno, M I; Ulinski, P S

    1987-07-15

    Isthmotectal projections in turtles were examined by making serial section reconstructions of axonal and dendritic arborizations that were anterogradely or retrogradely filled with HRP. Two prominent tectal-recipient isthmic nuclei--the caudal magnocellular nucleus isthmi (Imc) and the rostral magnocellular nucleus isthmi (Imr)--exhibited strikingly different patterns of organization. Imc cells have flattened, bipolar dendritic fields that cover a few percent of the area of the cell plate constituting the nucleus and they project topographically to the ipsilateral tectum without local axon branches. The topography was examined explicitly at the single-cell level by using cases with two injections at widely separated tectal loci. Each Imc axon terminates as a compact swarm of several thousand boutons placed mainly in the upper central gray and superficial gray layers. One Imc terminal spans less that 1% of the tectal surface. Imr cells, by contrast, have large, sparsely branched dendritic fields overlapped by local axon collaterals while distally, their axons nontopographically innervate not only the deeper layers of the ipsilateral tectum but also ipsilateral Imc. Imr receives a nontopographic tectal input that contrasts with the topographic tectal input to Imc. Previous work on nucleus isthmi emphasized the role of the contralateral isthmotectal projection (which originates from a third isthmic nucleus in turtles) in mediating binocular interactions in the tectum. The present results on the two different but overlapping ipsilateral tecto-isthmo-tectal circuits set up by Imc and Imr are discussed in the light of physiological evidence for selective attention effects and local-global interactions in the tectum.

  2. Nucleus properties of P/Schwassmann-Wachmann 1

    Science.gov (United States)

    Meech, Karen J.; Belton, Michael J. S.; Mueller, Beatrice E. A.; Dicksion, Matthew W.; Li, Heide R.

    1993-01-01

    Time series photometric measurements are presented of Comet P/Schwassmann-Wachmann 1 at a heliocentric distance of 5.886 AU when the comet possessed an extensive coma. The light curve shows a modulation caused by the rotation of the nucleus. The rotation period is considerably shorter than the 5 day period found by Whipple (1980), and we find substantial evidence that the nucleus may be in a complex spin state characterized by two periods 14.0 and 32.3 hr. Models of the rate at which the rotational light curve range decreases as a function of the amount of coma in the aperture have determined that the projected maximum to minimum axis ratio of the comet is 2.6 and that the product of the albedo times the rotationally averaged nucleus radius size is 9.54 +/- 0.3 sq km. Assuming a minimum geometric albedo of pR = 0.04, the maximum projected average nucleus radius is 15.44 +/-0.2 km, which is only 44 percent of the size estimated by Roemer (1966). However, using the albedo determined by Cruikshank & Brown (1983) of p = 0.13, the nucleus radius is only RN = 8.6 +/-0.l km. Because of the unknown nucleus orientation, these will be upper limits to the nucleus size. It appears that the nucleus of P/Schwassmann-Wachmann 1 is not the large nucleus that it has been believed to be for nearly 40 yr.

  3. Delta-nucleus dynamics: proceedings of symposium

    Energy Technology Data Exchange (ETDEWEB)

    Lee, T.S.H.; Geesaman, D.F.; Schiffer, J.P. (eds.)

    1983-10-01

    The appreciation of the role in nuclear physics of the first excited state of the nucleon, the delta ..delta..(1232), has grown rapidly in the past decade. The delta resonance dominates nuclear reactions induced by intermediate energy pions, nucleons, and electromagnetic probes. It is also the most important non-nucleonic degree of freedom needed to resolve many fundamental problems encountered in the study of low-energy nuclear phenomena. Clearly, a new phase of nuclear physics has emerged and conventional thinking must be extended to account for this new dimension of nuclear dynamics. The most challenging problem we are facing is how a unified theory can be developed to describe ..delta..-nucleus dynamics at all energies. In exploring this new direction, it is important to have direct discussions among researchers with different viewpoints. Separate entries were prepared for the 49 papers presented. (WHK)

  4. Analysis of Returned Comet Nucleus Samples

    Science.gov (United States)

    Chang, Sherwood

    1997-12-01

    This volume contains abstracts that have been accepted by the Program Committee for presentation at the Workshop on Analysis of Returned Comet Nucleus Samples, held in Milpitas, California, January 16-18, 1989. Conveners are Sherwood Chang (NASA Ames Research Center) and Larry Nyquist (NASA Johnson Space Center). Program Committee members are Thomas Ahrens (ex-officio; California Institute of Technology), Lou Allamandola (NASA Ames Research Center), David Blake (NASA Ames Research Center), Donald Brownlee (University of Washington, Seattle), Theodore E. Bunch (NASA Ames Research Center), Humberto Campins (Planetary Science Institute), Jeff Cuzzi (NASA Ames Research Center), Eberhard Griin (Max-Plank-Institut fiir Kemphysik), Martha Hanner (Jet Propulsion Laboratory), Alan Harris (Jet Propulsion Laboratory), John Kerrid-e (University of Califomia, Los Angeles), Yves Langevin (University of Paris), Gerhard Schwehm (ESTEC), and Paul Weissman (Jet Propulsion Laboratory). Logistics and administrative support for the workshop were provided by the Lunar and Planetary Institute Projects Office.

  5. Thalamic volume deficit contributes to procedural and explicit memory impairment in HIV infection with primary alcoholism comorbidity.

    Science.gov (United States)

    Fama, Rosemary; Rosenbloom, Margaret J; Sassoon, Stephanie A; Rohlfing, Torsten; Pfefferbaum, Adolf; Sullivan, Edith V

    2014-12-01

    Component cognitive and motor processes contributing to diminished visuomotor procedural learning in HIV infection with comorbid chronic alcoholism (HIV+ALC) include problems with attention and explicit memory processes. The neural correlates associated with this constellation of cognitive and motor processes in HIV infection and alcoholism have yet to be delineated. Frontostriatal regions are affected in HIV infection, frontothalamocerebellar regions are affected in chronic alcoholism, and frontolimbic regions are likely affected in both; all three of these systems have the potential of contributing to both visuomotor procedural learning and explicit memory processes. Here, we examined the neural correlates of implicit memory, explicit memory, attention, and motor tests in 26 HIV+ALC (5 with comorbidity for nonalcohol drug abuse/dependence) and 19 age-range matched healthy control men. Parcellated brain volumes, including cortical, subcortical, and allocortical regions, as well as cortical sulci and ventricles, were derived using the SRI24 brain atlas. Results indicated that smaller thalamic volumes were associated with poorer performance on tests of explicit (immediate and delayed) and implicit (visuomotor procedural) memory in HIV+ALC. By contrast, smaller hippocampal volumes were associated with lower scores on explicit, but not implicit memory. Multiple regression analyses revealed that volumes of both the thalamus and the hippocampus were each unique independent predictors of explicit memory scores. This study provides evidence of a dissociation between implicit and explicit memory tasks in HIV+ALC, with selective relationships observed between hippocampal volume and explicit but not implicit memory, and highlights the relevance of the thalamus to mnemonic processes.

  6. Post-training Inactivation of the Anterior Thalamic Nuclei Impairs Spatial Performance on the Radial Arm Maze

    Science.gov (United States)

    Harvey, Ryan E.; Thompson, Shannon M.; Sanchez, Lilliana M.; Yoder, Ryan M.; Clark, Benjamin J.

    2017-01-01

    The limbic thalamus, specifically the anterior thalamic nuclei (ATN), contains brain signals including that of head direction cells, which fire as a function of an animal's directional orientation in an environment. Recent work has suggested that this directional orientation information stemming from the ATN contributes to the generation of hippocampal and parahippocampal spatial representations, and may contribute to the establishment of unique spatial representations in radially oriented tasks such as the radial arm maze. While previous studies have shown that ATN lesions can impair spatial working memory performance in the radial maze, little work has been done to investigate spatial reference memory in a discrimination task variant. Further, while previous studies have shown that ATN lesions can impair performance in the radial maze, these studies produced the ATN lesions prior to training. It is therefore unclear whether the ATN lesions disrupted acquisition or retention of radial maze performance. Here, we tested the role of ATN signaling in a previously learned spatial discrimination task on a radial arm maze. Rats were first trained to asymptotic levels in a task in which two maze arms were consistently baited across training. After 24 h, animals received muscimol inactivation of the ATN before a 4 trial probe test. We report impairments in post-inactivation trials, suggesting that signals from the ATN modulate the use of a previously acquired spatial discrimination in the radial-arm maze. The results are discussed in relation to the thalamo-cortical limbic circuits involved in spatial information processing, with an emphasis on the head direction signal. PMID:28321178

  7. A Thalamic-Fronto-Parietal Structural Covariance Network Emerging in the Course of Recovery from Hand Paresis after Ischemic Stroke.

    Science.gov (United States)

    Abela, Eugenio; Missimer, John H; Federspiel, Andrea; Seiler, Andrea; Hess, Christian Walter; Sturzenegger, Matthias; Wiest, Roland; Weder, Bruno J

    2015-01-01

    To describe structural covariance networks of gray matter volume (GMV) change in 28 patients with first-ever stroke to the primary sensorimotor cortices, and to investigate their relationship to hand function recovery and local GMV change. Tensor-based morphometry maps derived from high-resolution structural images were subject to principal component analyses to identify the networks. We calculated correlations between network expression and local GMV change, sensorimotor hand function and lesion volume. To verify which of the structural covariance networks of GMV change have a significant relationship to hand function, we performed an additional multivariate regression approach. Expression of the second network, explaining 9.1% of variance, correlated with GMV increase in the medio-dorsal (md) thalamus and hand motor skill. Patients with positive expression coefficients were distinguished by significantly higher GMV increase of this structure during stroke recovery. Significant nodes of this network were located in md thalamus, dorsolateral prefrontal cortex, and higher order sensorimotor cortices. Parameter of hand function had a unique relationship to the network and depended on an interaction between network expression and lesion volume. Inversely, network expression is limited in patients with large lesion volumes. Chronic phase of sensorimotor cortical stroke has been characterized by a large scale co-varying structural network in the ipsilesional hemisphere associated specifically with sensorimotor hand skill. Its expression is related to GMV increase of md thalamus, one constituent of the network, and correlated with the cortico-striato-thalamic loop involved in control of motor execution and higher order sensorimotor cortices. A close relation between expression of this network with degree of recovery might indicate reduced compensatory resources in the impaired subgroup.

  8. A thalamic-fronto-parietal structural covariance network emerging in the course of recovery from hand paresis after ischemic stroke

    Directory of Open Access Journals (Sweden)

    Eugenio eAbela

    2015-10-01

    Full Text Available Aim: To describe structural covariance networks of grey matter volume (GMV change in 28 patients with first-ever stroke to the primary sensorimotor cortices, and to investigate their relationship to hand function recovery and local GMV change.Methods: Tensor based morphometry maps derived from high resolution structural images were subject to principal component analyses to identify the networks. We calculated correlations between network expression and local GMV change, sensorimotor hand function and lesion volume. To verify which of the structural covariance networks of GMV change have a significant relationship to hand function we performed an additional multivariate regression approach.Results: Expression of the second network, explaining 9.1% of variance, correlated with GMV increase in the medio-dorsal (md thalamus and hand motor skill. Patients with positive expression coefficients were distinguished by significantly higher GMV-increase of this structure during stroke recovery. Significant nodes of this network were located in md thalamus, dorsolateral prefrontal cortex and higher order sensorimotor cortices. Parameter of hand function had a unique relationship to the network and depended on an interaction between network expression and lesion volume. Inversely network expression is limited in patients with large lesion volumes.Conclusions: Chronic phase of sensorimotor cortical stroke has been characterized by a large scale covarying structural network in the ipsilesional hemisphere associated specifically with sensorimotor hand skill. Its expression is related to GMV-increase of md thalamus, one constituent of the network, and correlated with the cortico-striato-thalamic loop involved in control of motor execution and higher order sensorimotor cortices. A close relation between expression of this network with degree of recovery might indicate reduced compensatory resources in the impaired subgroup.

  9. A Spiking Neural Network Model of the Lateral Geniculate Nucleus on the SpiNNaker Machine

    Directory of Open Access Journals (Sweden)

    Basabdatta Sen-Bhattacharya

    2017-08-01

    Full Text Available We present a spiking neural network model of the thalamic Lateral Geniculate Nucleus (LGN developed on SpiNNaker, which is a state-of-the-art digital neuromorphic hardware built with very-low-power ARM processors. The parallel, event-based data processing in SpiNNaker makes it viable for building massively parallel neuro-computational frameworks. The LGN model has 140 neurons representing a “basic building block” for larger modular architectures. The motivation of this work is to simulate biologically plausible LGN dynamics on SpiNNaker. Synaptic layout of the model is consistent with biology. The model response is validated with existing literature reporting entrainment in steady state visually evoked potentials (SSVEP—brain oscillations corresponding to periodic visual stimuli recorded via electroencephalography (EEG. Periodic stimulus to the model is provided by: a synthetic spike-train with inter-spike-intervals in the range 10–50 Hz at a resolution of 1 Hz; and spike-train output from a state-of-the-art electronic retina subjected to a light emitting diode flashing at 10, 20, and 40 Hz, simulating real-world visual stimulus to the model. The resolution of simulation is 0.1 ms to ensure solution accuracy for the underlying differential equations defining Izhikevichs neuron model. Under this constraint, 1 s of model simulation time is executed in 10 s real time on SpiNNaker; this is because simulations on SpiNNaker work in real time for time-steps dt ⩾ 1 ms. The model output shows entrainment with both sets of input and contains harmonic components of the fundamental frequency. However, suppressing the feed-forward inhibition in the circuit produces subharmonics within the gamma band (>30 Hz implying a reduced information transmission fidelity. These model predictions agree with recent lumped-parameter computational model-based predictions, using conventional computers. Scalability of the framework is demonstrated by a multi

  10. Thalamic deep brain stimulation for the treatment of tremor due to multiple sclerosis: a prospective study of tremor and quality of life.

    Science.gov (United States)

    Berk, Caglar; Carr, Jason; Sinden, Marci; Martzke, Jeff; Honey, Christopher R

    2002-10-01

    In several studies a significant reduction in tremor after thalamic deep brain stimulation (DBS) has been reported among patients with multiple sclerosis (MS). It has not been determined if this results in an improved quality of life. In this study the authors prospectively evaluated the effects of thalamic DBS on tremor and quality of life. Videotapes of the patients' tremor were made preoperatively and 2 and 12 months postoperatively, and tremor was scored by a neurologist blinded to the treatment. Patients were tested pre- and postoperatively to measure any changes in their reported ability to perform selected activities of daily living and in their health-related quality of life. Patients were asked to complete a questionnaire about their satisfaction with the surgery. Postoperative changes were examined using paired t-tests. There were significant reductions in postural, action, and overall tremor at 2 and 12 months postoperatively. The patients' reported ability to feed themselves was significantly improved 2 months after surgery (p = 0.01). There were short-term trends toward improvement in reported dressing ability, personal hygiene, and writing. There were no significant changes in the SF-36 subscales or total score. In this cohort of patients with MS who suffered from tremor, thalamic DBS significantly improved their tremor and ability to feed themselves. Patient satisfaction with the procedure, however, was variable. Preoperative patient education about what functions might (and might not) be improved is crucial to avoid unrealistic expectations. Our results indicate that younger patients with MS tremor who had a shorter disease duration and no superimposed ataxia benefited most from this surgery.

  11. Hypersexuality following bilateral thalamic infarction: case report Hiperssexualidade após infarto talâmico bilateral: relato de caso

    Directory of Open Access Journals (Sweden)

    Eduardo G. Mutarelli

    2006-03-01

    Full Text Available Hypersexuality is a rare but well recognized condition following brain injury. It has been described secondarily to dysfunction in the hypothalamus, the temporal and frontal lobes. We report a 63 year-old man that developed neuropsychological disturbances with hypersexuality as a prominent feature, disinhibition and moderate memory loss, hypersomnia and irritability after a bilateral paramedian thalamic infarction. A SPECT showed frontal hypoperfusion. We believe that these findings are expression of frontal-subcortical circuits dysfunction, particularly the orbitofrontal circuit, secondary to dorso medial thalamic infarction which probably plays a role in the determination of human sexual behavior. This case favors a thalamic modulation of frontal function.Hiperssexualidade é uma condição rara mas bem reconhecida após lesão do sistema nervoso central. A literatura medica registra casos secundários a disfunção do hipotálamo, do lobo temporal e do lobo frontal. Relatamos o caso de um homem de 63 anos de idade que desenvolveu alterações neuropsicológicas com hiperssexualidade como característica mais proeminente, desinibição, moderada perda de memória, hipersonia e irritabilidade após infarto talâmico paramediano bilateral. O SPECT evidenciou hipoperfusão frontal. Nós acreditamos que esses achados sejam expressão da disfunção de circuitos córtico-subcorticais frontais, particularmente do circuito órbito-frontal, secundária ao infarto dorsomedial do tálamo, que provavelmente desempenha papel relevante na determinação do comportamento sexual humano. Este caso favorece uma possível função moduladora do tálamo sobre os circuitos córtico-subcorticais frontais.

  12. Jet energy loss and bulk parton collectivity in nucleus-nucleus collisions at RHIC

    Institute of Scientific and Technical Information of China (English)

    HUANG Huan-Zhong

    2009-01-01

    Nucleus-nucleus collisions at RHIC produce high temperature and high energy density matter which exhibits paxtonic degrees of freedom. We will discuss measurements of nuclear modification factors for light hadrons and non-photonic electrons from heavy quark decays, which reflect the flavor dependence of energy loss of high momentum partons traversing the dense QCD medium. The dense QCD medium responds to energy loss of high momentum patrons in a pattern consistent with that expected from a hydrodynamic fluid. The hadronization of bulk partonic matter exhibits collectivity with effective partonic degrees of freedom. Nuclear collisions at RHIC provide an intriguing environment, where many constituent quark ingredients are readily available for possible formation of exotic particles through quark coalescence or recombinations.

  13. Study of Strange and Multistrange Particles in Ultrarelativistic Nucleus-Nucleus Collisions

    CERN Multimedia

    Vande vyvre, P; Feofilov, G; Snoeys, W; Hetland, K F; Campbell, M; Klempt, W

    2002-01-01

    % NA57\\\\ \\\\ The goal of the experiment is to study the production of strange and multi-strange particles in nucleus-nucleus collisions. This study was initiated at the OMEGA spectrometer, where three ion experiments have been performed: WA85 (S-W and p-W collisions at 200 A GeV/c), WA94 (S-S and p-S collisions at 200 A GeV/c) and WA97 (Pb-Pb, p-Pb and p-Be collisions at 160 A GeV/c).\\\\ \\\\ The experiment aims at extending the scope of WA97 by:\\\\ \\\\ - investigating the beam energy dependence of the enhancements of multi-strange particle production reported by the previous experiments, and by\\\\ \\\\\\\\ \\\\- measuring the yields of strange and multi-strange particles over an extended centrality range compared with the previous experiments.\\\\ \\\\ The apparatus consists mainly of silicon pixel detector planes.

  14. Heavy flavors in nucleus-nucleus collisions at RHIC and LHC

    Directory of Open Access Journals (Sweden)

    Nardi Marzia

    2014-04-01

    Full Text Available A multi-step setup for heavy-flavor studies in high-energy nucleus-nucleus (AA collisions — addressing within a comprehensive framework the initial QQ¯$Q\\overline Q $ production, the propagation in the hot medium until decoupling and the final hadronization and decays — is presented. The propagation of the heavy quarks in the medium is described in a framework provided by the relativistic Langevin equation and the corresponding numerical results are compared to experimental data from RHIC and the LHC. In particular, outcomes for the nuclear modification factor RAA and for the elliptic flow υ2 of D/B mesons, heavy-flavor electrons and non-prompt J/ψ’s are displayed.

  15. CASTOR: Centauro and strange object research in nucleus-nucleus collisions at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Angelis, A.L.S.; Bartke, J.; Bogolyubsky, M.Yu.; Gadysz-Dziadus, E.; Kharlov, Yu.V.; Kurepin, A.B.; Maevskaya, A.I.; Mavromanolakis, G.; Panagiotou, A.D.; Sadovsky, S.A.; Stefanski, P.; Wodarczyk, Z

    2001-04-01

    We present a phenomenological model which describes the formation of a Centauro fireball in the baryon-rich projectile fragmentation region in nucleus-nucleus interactions in the upper atmosphere and at the LHC, and its decay to non-strange baryons and Strangelets. Strangelets are assimilated to the 'strongly penetrating component' frequently observed accompanying hadron-rich cosmic ray events. We describe the CASTOR subdetector for the ALICE experiment at the LHC. CASTOR will probe, in an event-by-event mode, the very forward, baryon-rich phase space 5.6 {<=} {eta} {<=} 7.2 in 5.5 x A TeV central Pb + Pb collisions. It will look for events with pronounced imbalance between hadronic and photonic content and for deeply penetrating objects. We present results of simulations for the response of the CASTOR calorimeter to the passage of Strangelets.

  16. CASTOR Centauro and Strange Object Research in nucleus-nucleus collisions at LHC

    CERN Document Server

    Angelis, Aris L S; Bartke, Jerzy; Chileev, K; Gladysz-Dziadus, E; Golubeva, M B; Guber, F F; Karavitcheva, T L; Kharlov, Yu V; Kurepin, A B; Mavromanolakis, G; Panagiotou, A D; Sadovsky, S A; Tiflov, V V; Wlodarczyk, Z

    2002-01-01

    We describe the CASTOR detector designed to probe the very forward, baryon-rich rapidity region in nucleus-nucleus collisions at the LHC. We present a phenomenological model describing the formation of a QGP fireball in a high baryochemical potential environment, and its subsequent decay into baryons and strangelets. The model explains Centauros and the long-penetrating component and makes predictions for the LHC. Simulations of Centauro-type events were done. To study the response of the apparatus to new effects different exotic species (DCC, Centauros, strangelets etc.) were passed through the deep calorimeter. The energy deposition pattern in the calorimeter appears to be a new clear signature of the QGP.

  17. CASTOR Centauro And STrange Object Research in nucleus-nucleus collisions at the LHC

    CERN Document Server

    Angelis, Aris L S; Bogolyubsky, M Yu; Gladysz-Dziadus, E; Kharlov, Yu V; Kurepin, A B; Maevskaya, A I; Mavromanolakis, G; Panagiotou, A D; Sadovsky, S A; Stefanski, P; Wiodarczyk, Z

    2001-01-01

    We present a phenomenological model which describes the formation of a Centauro fireball in the baryon-rich projectile fragmentation region in nucleus-nucleus interactions in the upper atmosphere and at the LHC, and its decay to non-strange baryons and Strangelets. Strangelets are assimilated to the "strongly penetrating component" frequently observed accompanying hadron-rich cosmic ray events. We describe the CASTOR subdetector for the ALICE experiment at the LHC. CASTOR will probe, in an event-by-event mode, the very forward, baryon-rich phase space 5.6< eta <7.2 in 5.5*A TeV central Pb+Pb collisions. It will look for events with pronounced imbalance between hadronic and photonic content and for deeply penetrating objects. We present results of simulations for the response of the CASTOR calorimeter to the passage of Strangelets. (15 refs).

  18. Experimental and phenomenological investigations of QCD matter in high-energy nucleus-nucleus collisions

    Energy Technology Data Exchange (ETDEWEB)

    Andronic, Anton

    2014-07-15

    This thesis is heterogeneous, comprising experimental papers at low energies (SIS-18 at GSI) and at the LHC, papers on phenomenology of high-energy nucleus-nucleus collisions, and papers on detectors. The overview covers the experimental papers and those on phenomenology. I have chosen to write it in a general manner, intended to be accessible to non-experts. It emphasizes recent measurements and their understanding at the LHC. The detector papers, which address many principle aspects of gaseous detectors, are summarized and placed in context in the review I co-wrote and which closes the stack. The detector papers included here are the outcome of an R and D program for the Transition Radiation Detector of ALICE.

  19. The Confined Hydrogen Atom with a Moving Nucleus

    Science.gov (United States)

    Fernandez, Francisco M.

    2010-01-01

    We study the hydrogen atom confined to a spherical box with impenetrable walls but, unlike earlier pedagogical articles on the subject, we assume that the nucleus also moves. We obtain the ground-state energy approximately by means of first-order perturbation theory and show that it is greater than that for the case in which the nucleus is clamped…

  20. A Frame Nucleus on a Two-side Prequantale

    Institute of Scientific and Technical Information of China (English)

    XUShao-xian; WANGShun-qin; MAFei-fei

    2004-01-01

    In this paper, a Frame nucleus and prime elements in a Prequantale are defined. The concrete structure of a Frame prequantic quotient is considered, and the relation between the half-prime element and the Frame nucleus in a two-side Prequantale are obtained.

  1. The subthalamic nucleus : Part I: Development, cytology, topography and connections

    NARCIS (Netherlands)

    Marani, Enrico; Heida, Tjitske; Lakke, Egbert A.J.F.; Usunoff, Kamen G.

    2008-01-01

    This monograph on the subthalamic nucleus accentuates in Part I the gap between experimental animal and human information concerning subthalamic development, cytology, topography and connections. The light and electron microscopical cytology concerns the open nucleus concept and the neuronal types p

  2. The Confined Hydrogen Atom with a Moving Nucleus

    Science.gov (United States)

    Fernandez, Francisco M.

    2010-01-01

    We study the hydrogen atom confined to a spherical box with impenetrable walls but, unlike earlier pedagogical articles on the subject, we assume that the nucleus also moves. We obtain the ground-state energy approximately by means of first-order perturbation theory and show that it is greater than that for the case in which the nucleus is clamped…

  3. Nucleus retroambiguus projections to the periaqueductal gray in the cat

    NARCIS (Netherlands)

    Klop, EM; Mouton, LJ; Holstege, G

    2002-01-01

    The nucleus retroambiguus (NRA) of the caudal medulla is a relay nucleus by which neurons of the mesencephalic periaqueductal gray (PAG) reach motoneurons of pharynx, larynx, soft palate, intercostal and abdominal muscles, and several muscles of the hindlimbs. These PAG-NRA-motoneuronal projections

  4. The Neuronal Transition Probability (NTP) Model for the Dynamic Progression of Non-REM Sleep EEG: The Role of the Suprachiasmatic Nucleus

    CERN Document Server

    Merica, H

    2011-01-01

    Little attention has gone into linking to its neuronal substrates the dynamic structure of non-rapid-eye-movement (NREM) sleep, defined as the pattern of time-course power in all frequency bands across an entire episode. Using the spectral power time-courses in the sleep electroencephalogram (EEG), we showed in the typical first episode, several moves towards-and-away from deep sleep, each having an identical pattern linking the major frequency bands beta, sigma and delta. The neuronal transition probability model (NTP) - in fitting the data well - successfully explained the pattern as resulting from stochastic transitions of the firing-rates of the thalamically-projecting brainstem-activating neurons, alternating between two steady dynamic-states (towards-and-away from deep sleep) each initiated by a so-far unidentified flip-flop. The aims here are to identify this flip-flop and to demonstrate that the model fits well all NREM episodes, not just the first. Using published data on suprachiasmatic nucleus (SCN...

  5. Glycine immunoreactivity of multipolar neurons in the ventral cochlear nucleus which project to the dorsal cochlear nucleus.

    Science.gov (United States)

    Doucet, J R; Ross, A T; Gillespie, M B; Ryugo, D K

    1999-06-14

    Certain distinct populations of neurons in the dorsal cochlear nucleus are inhibited by a neural source that is responsive to a wide range of acoustic frequencies. In this study, we examined the glycine immunoreactivity of two types of ventral cochlear nucleus neurons (planar and radiate) in the rat which project to the dorsal cochlear nucleus (DCN) and thus, might be responsible for this inhibition. Previously, we proposed that planar neurons provided a tonotopic and narrowly tuned input to the DCN, whereas radiate neurons provided a broadly tuned input and thus, were strong candidates as the source of broadband inhibition (Doucet and Ryugo [1997] J. Comp. Neurol. 385:245-264). We tested this idea by combining retrograde labeling and glycine immunohistochemical protocols. Planar and radiate neurons were first retrogradely labeled by injecting biotinylated dextran amine into a restricted region of the dorsal cochlear nucleus. The labeled cells were visualized using streptavidin conjugated to indocarbocyanine (Cy3), a fluorescent marker. Sections that contained planar or radiate neurons were then processed for glycine immunocytochemistry using diaminobenzidine as the chromogen. Immunostaining of planar neurons was light, comparable to that of excitatory neurons (pyramidal neurons in the DCN), whereas immunostaining of radiate neurons was dark, comparable to that of glycinergic neurons (cartwheel cells in the dorsal cochlear nucleus and principal cells in the medial nucleus of the trapezoid body). These results are consistent with the hypothesis that radiate neurons in the ventral cochlear nucleus subserve the wideband inhibition observed in the dorsal cochlear nucleus.

  6. Functional network inference of the suprachiasmatic nucleus.

    Science.gov (United States)

    Abel, John H; Meeker, Kirsten; Granados-Fuentes, Daniel; St John, Peter C; Wang, Thomas J; Bales, Benjamin B; Doyle, Francis J; Herzog, Erik D; Petzold, Linda R

    2016-04-19

    In the mammalian suprachiasmatic nucleus (SCN), noisy cellular oscillators communicate within a neuronal network to generate precise system-wide circadian rhythms. Although the intracellular genetic oscillator and intercellular biochemical coupling mechanisms have been examined previously, the network topology driving synchronization of the SCN has not been elucidated. This network has been particularly challenging to probe, due to its oscillatory components and slow coupling timescale. In this work, we investigated the SCN network at a single-cell resolution through a chemically induced desynchronization. We then inferred functional connections in the SCN by applying the maximal information coefficient statistic to bioluminescence reporter data from individual neurons while they resynchronized their circadian cycling. Our results demonstrate that the functional network of circadian cells associated with resynchronization has small-world characteristics, with a node degree distribution that is exponential. We show that hubs of this small-world network are preferentially located in the central SCN, with sparsely connected shells surrounding these cores. Finally, we used two computational models of circadian neurons to validate our predictions of network structure.

  7. Spontaneous fission of superheavy nucleus $^{286}$Fl

    CERN Document Server

    Poenaru, Dorin N

    2016-01-01

    The decimal logarithm of spontaneous fission half-life of the superheavy nucleus $^{286}$Fl experimentally determined is $\\log_{10} T_f^{exp} (s) = -0.632$. We present a method to calculate the half-life based on the cranking inertia and the deformation energy, functions of two independent surface coordinates, using the best asymmetric two center shell model. In the first stage we study the statics. At a given mass asymmetry up to about $\\eta=0.5$ the potential barrier has a two hump shape, but for larger $\\eta$ it has only one hump. The touching point deformation energy versus mass asymmetry shows the three minima, produced by shell effects, corresponding to three decay modes: spontaneous fission, cluster decay and $\\alpha$~decay. The least action trajectory is determined in the plane $(R,\\eta)$ where $R$ is the separation distance of the fission fragments and $\\eta$ is the mass asymmetry. We may find a sequence of several trajectories one of which gives the least action. The parametrization with two deforma...

  8. Inside a plant nucleus: discovering the proteins.

    Science.gov (United States)

    Petrovská, Beáta; Šebela, Marek; Doležel, Jaroslav

    2015-03-01

    Nuclear proteins are a vital component of eukaryotic cell nuclei and have a profound effect on the way in which genetic information is stored, expressed, replicated, repaired, and transmitted to daughter cells and progeny. Because of the plethora of functions, nuclear proteins represent the most abundant components of cell nuclei in all eukaryotes. However, while the plant genome is well understood at the DNA level, information on plant nuclear proteins remains scarce, perhaps with the exception of histones and a few other proteins. This lack of knowledge hampers efforts to understand how the plant genome is organized in the nucleus and how it functions. This review focuses on the current state of the art of the analysis of the plant nuclear proteome. Previous proteome studies have generally been designed to search for proteins involved in plant response to various forms of stress or to identify rather a modest number of proteins. Thus, there is a need for more comprehensive and systematic studies of proteins in the nuclei obtained at individual phases of the cell cycle, or isolated from various tissue types and stages of cell and tissue differentiation. All this in combination with protein structure, predicted function, and physical localization in 3D nuclear space could provide much needed progress in our understanding of the plant nuclear proteome and its role in plant genome organization and function.

  9. Observation of the antimatter helium-4 nucleus.

    Science.gov (United States)

    2011-05-19

    High-energy nuclear collisions create an energy density similar to that of the Universe microseconds after the Big Bang; in both cases, matter and antimatter are formed with comparable abundance. However, the relatively short-lived expansion in nuclear collisions allows antimatter to decouple quickly from matter, and avoid annihilation. Thus, a high-energy accelerator of heavy nuclei provides an efficient means of producing and studying antimatter. The antimatter helium-4 nucleus (4He), also known as the anti-α (α), consists of two antiprotons and two antineutrons (baryon number B = -4). It has not been observed previously, although the α-particle was identified a century ago by Rutherford and is present in cosmic radiation at the ten per cent level. Antimatter nuclei with B Collider (RHIC; ref. 6) in 10(9) recorded gold-on-gold (Au+Au) collisions at centre-of-mass energies of 200 GeV and 62 GeV per nucleon-nucleon pair. The yield is consistent with expectations from thermodynamic and coalescent nucleosynthesis models, providing an indication of the production rate of even heavier antimatter nuclei and a benchmark for possible future observations of 4He in cosmic radiation.

  10. Functional network inference of the suprachiasmatic nucleus

    Energy Technology Data Exchange (ETDEWEB)

    Abel, John H.; Meeker, Kirsten; Granados-Fuentes, Daniel; St. John, Peter C.; Wang, Thomas J.; Bales, Benjamin B.; Doyle, Francis J.; Herzog, Erik D.; Petzold, Linda R.

    2016-04-04

    In the mammalian suprachiasmatic nucleus (SCN), noisy cellular oscillators communicate within a neuronal network to generate precise system-wide circadian rhythms. Although the intracellular genetic oscillator and intercellular biochemical coupling mechanisms have been examined previously, the network topology driving synchronization of the SCN has not been elucidated. This network has been particularly challenging to probe, due to its oscillatory components and slow coupling timescale. In this work, we investigated the SCN network at a single-cell resolution through a chemically induced desynchronization. We then inferred functional connections in the SCN by applying the maximal information coefficient statistic to bioluminescence reporter data from individual neurons while they resynchronized their circadian cycling. Our results demonstrate that the functional network of circadian cells associated with resynchronization has small-world characteristics, with a node degree distribution that is exponential. We show that hubs of this small-world network are preferentially located in the central SCN, with sparsely connected shells surrounding these cores. Finally, we used two computational models of circadian neurons to validate our predictions of network structure.

  11. mu-Opioid receptor-independent fashion of the suppression of sodium currents by mu-opioid analgesics in thalamic neurons.

    Science.gov (United States)

    Hashimoto, Keisuke; Amano, Taku; Kasakura, Akiko; Uhl, George R; Sora, Ichiro; Sakai, Norio; Kuzumaki, Naoko; Suzuki, Tsutomu; Narita, Minoru

    2009-03-27

    Most reports in the literature have shown that the effects of opioid analgesics are primarily mediated by mu-opioid receptor (MOR), whereas other potential targets of opioid analgesics have not been thoroughly characterized. In this study, we found that extracellular application of morphine, fentanyl or oxycodone, which are all considered to be MOR agonists, at relatively high concentrations, but not endogenous mu-opioid peptides, produced a concentration-dependent suppression of sodium currents in cultured thalamic neurons. These effects of opioids were not affected by either a MOR antagonist naloxone or a deletion of MOR gene. Among these opioids, fentanyl strongly suppressed sodium currents to the same degree as lidocaine, and both morphine and oxycodone slightly but significantly reduced sodium currents when they were present extracellularly. In contrast, the intracellular application of morphine, but not oxycodone, fentanyl or lidocaine, reduced sodium currents. These results suggest that morphine, fentanyl and oxycodone each produce the MOR-independent suppression of sodium currents by distinct mechanisms in thalamic neurons.

  12. Thinking outside a less intact box: thalamic dopamine D2 receptor densities are negatively related to psychometric creativity in healthy individuals.

    Directory of Open Access Journals (Sweden)

    Orjan de Manzano

    Full Text Available Several lines of evidence support that dopaminergic neurotransmission plays a role in creative thought and behavior. Here, we investigated the relationship between creative ability and dopamine D2 receptor expression in healthy individuals, with a focus on regions where aberrations in dopaminergic function have previously been associated with psychotic symptoms and a genetic liability to schizophrenia. Scores on divergent thinking tests (Inventiveness battery, Berliner Intelligenz Struktur Test were correlated with regional D2 receptor densities, as measured by Positron Emission Tomography, and the radioligands [(11C]raclopride and [(11C]FLB 457. The results show a negative correlation between divergent thinking scores and D2 density in the thalamus, also when controlling for age and general cognitive ability. Hence, the results demonstrate that the D2 receptor system, and specifically thalamic function, is important for creative performance, and may be one crucial link between creativity and psychopathology. We suggest that decreased D2 receptor densities in the thalamus lower thalamic gating thresholds, thus increasing thalamocortical information flow. In healthy individuals, who do not suffer from the detrimental effects of psychiatric disease, this may increase performance on divergent thinking tests. In combination with the cognitive functions of higher order cortical networks, this could constitute a basis for the generative and selective processes that underlie real life creativity.

  13. Thinking outside a less intact box: thalamic dopamine D2 receptor densities are negatively related to psychometric creativity in healthy individuals.

    Science.gov (United States)

    de Manzano, Orjan; Cervenka, Simon; Karabanov, Anke; Farde, Lars; Ullén, Fredrik

    2010-05-17

    Several lines of evidence support that dopaminergic neurotransmission plays a role in creative thought and behavior. Here, we investigated the relationship between creative ability and dopamine D2 receptor expression in healthy individuals, with a focus on regions where aberrations in dopaminergic function have previously been associated with psychotic symptoms and a genetic liability to schizophrenia. Scores on divergent thinking tests (Inventiveness battery, Berliner Intelligenz Struktur Test) were correlated with regional D2 receptor densities, as measured by Positron Emission Tomography, and the radioligands [(11)C]raclopride and [(11)C]FLB 457. The results show a negative correlation between divergent thinking scores and D2 density in the thalamus, also when controlling for age and general cognitive ability. Hence, the results demonstrate that the D2 receptor system, and specifically thalamic function, is important for creative performance, and may be one crucial link between creativity and psychopathology. We suggest that decreased D2 receptor densities in the thalamus lower thalamic gating thresholds, thus increasing thalamocortical information flow. In healthy individuals, who do not suffer from the detrimental effects of psychiatric disease, this may increase performance on divergent thinking tests. In combination with the cognitive functions of higher order cortical networks, this could constitute a basis for the generative and selective processes that underlie real life creativity.

  14. Combination Treatment of Low-Frequency Repetitive Transcranial Magnetic Stimulation and Intensive Occupational Therapy for Ataxic Hemiparesis due to Thalamic Hemorrhage

    Directory of Open Access Journals (Sweden)

    Naoki Urushidani

    2017-07-01

    Full Text Available Background: Both low-frequency repetitive transcranial magnetic stimulation (LF-rTMS and intensive occupational therapy (OT are clinically beneficial for post-stroke patients with upper-limb hemiparesis. However, the usefulness of LF-rTMS and intensive OT for ataxic hemiparesis (AH is unknown. Methods: The study subjects included 7 patients with AH. All patients had ataxia and mild hemiparesis without a sensory disturbance that was due to thalamic hemorrhage. Each patient was scheduled to receive 20-min rTMS at 1 Hz at the contralesional cerebral hemisphere followed by 120-min intensive OT, daily for 21 sessions. The primary outcome was the motor function of the affected upper limb that was evaluated by using the Fugl-Meyer Assessment (FMA. In addition, the International Cooperative Ataxia Rating Scale (ICARS score was determined to assess the severity of ataxia. Results: All patients completed the protocol without any adverse effects. The FMA score significantly increased after treatment. Notably, the ICARS score also significantly decreased. Conclusions: Our proposed combination treatment is a safe and feasible neurorehabilitative intervention for patients with AH due to thalamic hemorrhage. Our results demonstrate the possibility that rTMS in combination with intensive OT could improve motor function and alleviated ataxia in patients with AH.

  15. Development of the human dorsal nucleus of the vagus.

    Science.gov (United States)

    Cheng, Gang; Zhu, Hua; Zhou, Xiangtian; Qu, Jia; Ashwell, K W S; Paxinos, G

    2008-01-01

    The dorsal nucleus of the vagus nerve plays an integral part in the control of visceral function. The aim of the present study was to correlate structural and chemical changes in the developing nucleus with available data concerning functional maturation of human viscera and reflexes. The fetal development (ages 9 to 26 weeks) of the human dorsal nucleus of the vagus nerve has been examined with the aid of Nissl staining and immunocytochemistry for calbindin and tyrosine hydroxylase. By 13 weeks, the dorsal vagal nucleus emerges as a distinct structure with at least two subnuclei visible in Nissl stained preparations. By 15 weeks, three subnuclei (dorsal intermediate, centrointermediate and ventrointermediate) were clearly discernible at the open medulla level with caudal and caudointermediate subnuclei visible at the level of the area postrema. All subnuclei known to exist in the adult were visible by 21 weeks and cytoarchitectonic differentiation of the nucleus was largely completed by 25 weeks. The adult distribution pattern of calbindin and tyrosine hydroxylase immunoreactive neurons was also largely completed by 21 weeks, although morphological differentiation of labeled neurons continued until the last age examined (26 weeks). The structural development of the dorsal nucleus of the vagus nerve appears to occur in parallel with functional maturation of the cardiovascular and gastric movements, which the nucleus controls.

  16. Nonthermal Fluctuations and Mechanics of the Active Cell Nucleus

    CERN Document Server

    Smith, K; Byrd, H; MacKintosh, F C; Kilfoil, M L

    2013-01-01

    We present direct measurements of fluctuations in the nucleus of yeast cells. While prior work has shown these fluctuations to be active and non-thermal in character, their origin and time dependence are not understood. We show that nuclear fluctuations can be quantitatively understood by uncorrelated, active force fluctuations driving a nuclear medium that is dominated by an uncondensed DNA solution, for which we perform rheological measurements on an in vitro model system under similar conditions to what is expected in the nucleus. We conclude that the eukaryotic nucleus of living cells is a nonequilibrium soft material whose fluctuations are actively driven, and are far from thermal in their time dependence.

  17. Quarkonium-nucleus bound states from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Beane, S.  R. [Univ. of Washington, Seattle, WA (United States); Chang, E. [Univ. of Washington, Seattle, WA (United States); Cohen, S.  D. [Univ. of Washington, Seattle, WA (United States); Detmold, W. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Lin, H. -W. [Univ. of Washington, Seattle, WA (United States); Orginos, K. [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Parreño, A. [Univ., de Barcelona, Marti Franques (Spain); Savage, M.  J. [Univ. of Washington, Seattle, WA (United States)

    2015-06-11

    Quarkonium-nucleus systems are composed of two interacting hadronic states without common valence quarks, which interact primarily through multi-gluon exchanges, realizing a color van der Waals force. We present lattice QCD calculations of the interactions of strange and charm quarkonia with light nuclei. Both the strangeonium-nucleus and charmonium-nucleus systems are found to be relatively deeply bound when the masses of the three light quarks are set equal to that of the physical strange quark. Extrapolation of these results to the physical light-quark masses suggests that the binding energy of charmonium to nuclear matter is B < 40 MeV.

  18. Nucleas (hadron) nucleus elastic scattering and geometrical picture

    Energy Technology Data Exchange (ETDEWEB)

    Aleem F.; Ali, S.; Saleem, M. [Univ. of the Punjab, Lahore (Pakistan)

    1995-08-01

    A comprehensive explanation of nucleus-nucleus and hadron-nucleus elastic scattering is elusive ever since the measurements of these reactions were made. By proposing energy dependent hadronic form factors for deuteron and alpha, in analogy to that of the proton as suggested by Chou and Yang recently, the authors have fitted all the available data for alpha-alpha and deuteron-deuteron elastic scattering. In order to further verify the validity of the proposed form factor, they have also fitted the data for proton-alpha and proton-deuteron elastic scattering. It is concluded that the hadronic matter is expanding with an increase in energy. 30 refs., 11 figs.

  19. The Acasta Gneiss - a Hadean cratonic nucleus

    Science.gov (United States)

    Sprung, P.; Scherer, E. E.; Maltese, A.; Bast, R.; Bleeker, W.; Mezger, K.

    2016-12-01

    The known terrestrial rock record lacks undisputed, chemically intact Hadean crust. Direct evidence from this eon has been restricted to zircon grains within younger rocks [1]. The Acasta Gneiss Complex (AGC; NT, CA) has yielded zircon with Hadean domains [e.g., 2,3], but the time at which AGC rocks became closed chemical systems is unclear [4,5]. Determining this `time of last disturbance' (tld) would provide a minimum protolith age, and is crucial for using radiogenic isotope compositions of bulk rocks to trace crust-mantle evolution. Recent studies mostly focused on the `low-strain' eastern AGC [e.g., 6, 7], which records an evolving, early-mid Archean cratonic nucleus [7]. We also studied the `high-strain' banded gneiss in the western AGC, which hosts >4 Ga zircon domains [2,3], too. Our focusing lay on adjoining, lithologically distinct bands [8] of two distinct chemical groups: A) Mafic, chondrite-normalized LaN/YbN ≦20, slightly HFSE- depleted, and B) TTG-like, LaN/YbN up to 145, markedly HFSE-depleted. Six adjacent bands yield a well-defined 4 Ga Sm-Nd isochron with a ɛNd4Ga of +2 and ɛHf4Ga values from +1 to +6. Within-band Sm-Nd and Lu-Hf systematics imply younger mineral re-equilibration [9]. We interpret the 4 Ga Sm-Nd isochron to date the physical juxtaposition of bands in the gneiss unit and to define tld among bands for elements less mobile and diffusive than Sm and Nd. Contrasting Sm-Nd results from the same unit [10] likely are due to sampling at too fine a scale. Digestion of metamict pre-tld zircon likely caused the scatter in Lu-Hf. Both decay systems hint at the existence of a possibly local, strongly depleted Hadean mantle domain. The TTG-like bands are 0.4 Gyr older than similar rocks in the `low-strain' eastern AGC [7]. The AGC was thus an evolved cratonic nucleus already at 4 Ga, possibly with a depleted lithospheric keel. [1] Cavosie et al. (2004) Prec. Res. 135, 251-279 [2] Bowring & Williams (1999) CMP 134, 3-16 [3] Iizuka et al

  20. Structural Description of Polyaromatic Nucleus in Residue

    Institute of Scientific and Technical Information of China (English)

    Zhang Huicheng; Yan Yongjie; Sun Wanfu; Wang Jifeng

    2007-01-01

    The proton nuclear magnetic resonance spectroscopy(1H-NMR),the synchronous fluorescence spectrometry(SFS)and the rutheniam ions catalyzed oxidation(RICO)method wen used to determine the chemical structure of polyaromatic nucleus in Oman residue fractions.The results of1H-NMR analyses showed that the average numbers of aromatic rings in the aromatics,resins and asphaltenes units were 3.2,5.6 and 8.2.respectively.SFS was used to investigate the distribution of aromatic tings in residue fractions,the main distribution range of aromatic rings in aromatics,resins and asphaltenes were 3-4 rings,3-5 rings and more than 5 tings,respectively.The aromatic network in residue fractions was oxidized to produce numerous carboxylic acids.The types and content of benzenepolycarboxylic acids,such as phthalic acid,benzenetricarboxylic acids,benzenetetracarbOxylic acids,benzenepentacarboxylic acid and benzenehexacarboxylic acid disclosed the condensed types of aromatic nuclei in the core.The biphenyl fraction(BIPH),the cata-condensed fraction(CATA),the peri-condensed fraction(PERI)and the condensed index(BCI)were calculated based on the benzenepolycarboxylic acids formed.The results implied that there was less biphenyl type structures in all residue fractions.The aromatics fraction was almost composed of the cata-condensed type system,and the asphaltenes fraction was wholly composed of the peri-condensed type system,while in the resins fraction co-existed the two types,herein the peri-condensed type Was predominant over the cata-condensed type.Based on the analytical results obtained in the study,the components-aromatics,resins and asphaltenes-were given the likely structural models.

  1. Nuclear mean field and double-folding model of the nucleus-nucleus optical potential

    CERN Document Server

    Khoa, Dao T; Loan, Doan Thi; Loc, Bui Minh

    2016-01-01

    Realistic density dependent CDM3Yn versions of the M3Y interaction have been used in an extended Hartree-Fock (HF) calculation of nuclear matter (NM), with the nucleon single-particle potential determined from the total NM energy based on the Hugenholtz-van Hove theorem that gives rise naturally to a rearrangement term (RT). Using the RT of the single-nucleon potential obtained exactly at different NM densities, the density- and energy dependence of the CDM3Yn interactions was modified to account properly for both the RT and observed energy dependence of the nucleon optical potential. Based on a local density approximation, the double-folding model of the nucleus-nucleus optical potential has been extended to take into account consistently the rearrangement effect and energy dependence of the nuclear mean-field potential, using the modified CDM3Yn interactions. The extended double-folding model was applied to study the elastic $^{12}$C+$^{12}$C and $^{16}$O+$^{12}$C scattering at the refractive energies, wher...

  2. Statistical Model of the Early Stage of nucleus-nucleus collisions with exact strangeness conservation

    CERN Document Server

    Poberezhnyuk, R V; Gorenstein, M I

    2015-01-01

    The Statistical Model of the Early Stage, SMES, describes a transition between confined and deconfined phases of strongly interacting matter created in nucleus-nucleus collisions. The model was formulated in the late 1990s for central Pb+Pb collisions at the CERN SPS energies. It predicted several signals of the transition (onset of deconfinement) which were later observed by the NA49 experiment. The grand canonical ensemble was used to calculate entropy and strangeness production. This approximation is valid for reactions with mean multiplicities of particles carrying conserved charges being significantly larger than one. Recent results of NA61/SHINE on hadron production in inelastic p+p interactions suggest that the deconfinement may also take place in these reactions. However, in this case mean multiplicity of particles with non-zero strange charge is smaller than one. Thus for the modeling of p+p interactions the exact strangeness conservation has to be implemented in the SMES. This extension of the SMES ...

  3. Heavy-flavor dynamics in nucleus-nucleus collisions: from RHIC to LHC

    CERN Document Server

    Monteno, M; Beraudo, A; De Pace, A; Molinari, A; Nardi, M; Prino, F

    2011-01-01

    The stochastic dynamics of c and b quarks in the fireball created in nucleus-nucleus collisions at RHIC and LHC is studied employing a relativistic Langevin equation, based on a picture of multiple uncorrelated random collisions with the medium. Heavy-quark transport coefficients are evaluated within a pQCD approach, with a proper HTL resummation of medium effects for soft scatterings. The Langevin equation is embedded in a multi-step setup developed to study heavy-flavor observables in pp and AA collisions, starting from a NLO pQCD calculation of initial heavy-quark yields, complemented in the nuclear case by shadowing corrections, k_T-broadening and nuclear geometry effects. Then, only for AA collisions, the Langevin equation is solved numerically in a background medium described by relativistic hydrodynamics. Finally, the propagated heavy quarks are made hadronize and decay into electrons. Results for the nuclear modification factor R_AA of heavy-flavor hadrons and electrons from their semi-leptonic decays...

  4. EOS: A time projection chamber for the study of nucleus-nucleus collisions at the Bevalac

    Energy Technology Data Exchange (ETDEWEB)

    Pugh, H.G.; Odyniec, G.; Rai, G.; Seidl, P.

    1986-12-01

    The conceptual design is presented for a detector to identify and measure (..delta..p/p approx. = 1%) most of the 200 or so mid-rapidity charged particles (p, d, t, /sup 3/He, /sup 4/He, ..pi../sup + -/, K/sup + -/) produced in each central nucleus-nucleus collision (Au + Au) at Bevalac energies, as well as K/sub 3//sup 0/ and ..lambda../sup 0/. The beam particles and heavy spectator fragments are excluded from the detection volume by means of a central vacuum pipe. Particle identification is achieved by a combination of dE/dx measurements in the TPC, and of time-of-flight measurements in a scintillator array. The TPC is single-ended and its end cap is entirely covered with cathode pads (about 25,000 pads and about 1000 anode wires). A non-uniform pad distribution is proposed to accommodate the high multiplicity of particles emitted at forward angles. The performance of the detector is assessed with regard to multihit capability, tracking, momentum resolution, particle identification, ..lambda../sup 0/ reconstruction, space charge effects, field non-uniformity, dynamic range, data acquisition rate, and data analysis rate. 72 refs., 48 figs., 11 tabs.

  5. Charm quarks as a probe of matter produced in relativistic nucleus-nucleus collisions

    Directory of Open Access Journals (Sweden)

    Ali Yasir

    2014-04-01

    Full Text Available Direct measurement of hadrons containing charm quark carries important information about the initial stage of the nucleus-nucleus collision at relativistic energies. The study of open charm in Pb-Pb collisions at SPS energies will be a powerful tool to investigate the production of heavy flavours and their interaction with the medium produced in such collisions. A feasibility study was initiated for the measurement of the D0 mesons (open charm by its two-body decay into pion and kaon in central Pb-Pb collision at SPS energies in NA61/SHINE experiment. To generate the physical input we used AMPT (A Multi Phase Transport Model event generator and employed GEANT4 application to describe particle transport through the NA61/SHINE experimental setup supplemented by a future vertex detector (VD that will allow for precise vertex reconstruction close to the primary interaction point. The results of the simulation shows that this measurement is feasible with a dedicated VD which allows the precise tracking close to the target.

  6. Formation and identification of Centauro and Strangelets in nucleus- nucleus collisions at the LHC

    CERN Document Server

    Angelis, Aris L S; Bogolyubsky, M Yu; Filippov, S N; Gladysz-Dziadus, E; Kharlov, Yu V; Kurepin, A B; Maevskaya, A I; Mavromanolakis, G; Panagiotou, A D; Sadovsky, S A; Stefanski, P; Wlodarczyk, Z

    1999-01-01

    We present a phenomenological model for the formation and decay of a cosmic ray Centauro fireball in the baryon-rich projectile fragmentation rapidity region in nucleus-nucleus interactions. Our model naturally incorporates the $9 possibility of strangelet formation, Strangelets being conjectured to be the "strongly penetrating component" observed in hadron-rich cosmic ray events. Based on this model we have performed Monte-Carlo simulations to study the $9 Centauro and strangelet dynamic and kinematic characteristics in central Pb+Pb collisions at LHC energies, as well as their identification by the detector system CASTOR. CASTOR is being developed for the ALICE heavy ion experiment at $9 the LHC and will probe the very forward pseudorapidity region 5.6

  7. Formation and identification of Centauro and strangelets in nucleus-nucleus collisions at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Angelis, A.L.S.; Bartke, J.; Bogolyubsky, M.Yu.; Filippov, S.N.; Gladysz-Dziadus, E.; Kharlov, Yu.V.; Kurepin, A.B.; Maevskaya, A.I.; Mavromanolakis, G.; Panagiotou, A.D.; Sadovsky, S.A.; Stefanski, P.; Wlodarczyk, Z

    1999-03-01

    We present a phenomenological model for the formation and decay of a cosmic ray Centauro fireball in the baryon-rich projectile fragmentation rapidity region in nucleus-nucleus interactions. Our model naturally incorporates the possibility of Strangelet formation, Strangelets being conjectured to be the 'strongly penetrating component' observed in hadron-rich cosmic ray events. Based on this model we have performed Monte-Carlo simulations to study the Centauro and Strangelet dynamic and kinematic characteristics in central Pb + Pb collisions at LHC energies, as well as their identification by the detector system CASTOR. CASTOR is being developed for the ALICE heavy ion experiment at the LHC and will probe the very forward pseudorapidity region 5.6 {<=} {eta} {<=} 7.2, characterized by very high baryon density. CASTOR is optimised to search for Centauro signatures and long penetrating objects. Simulations show that CASTOR is well able to distinguish events with abnormal values of E{sub em}/E{sub had} or N{sub {gamma}}/N{sub ch}. In addition simulations of the transition curves of Strangelets traversing the CASTOR calorimeter show long penetration and many-maxima structure such as observed in cosmic ray events.

  8. Quantitative analysis of the fusion cross sections using different microscopic nucleus-nucleus interactions

    Science.gov (United States)

    Adel, A.; Alharbi, T.

    2017-01-01

    The fusion cross sections for reactions involving medium and heavy nucleus-nucleus systems are investigated near and above the Coulomb barrier using the one-dimensional barrier penetration model. The microscopic nuclear interaction potential is computed by four methods, namely: the double-folding model based on a realistic density-dependent M3Y NN interaction with a finite-range exchange part, the Skyrme energy density functional in the semiclassical extended Thomas-Fermi approximation, the generalized Proximity potential, and the Akyüz-Winther interaction. The comparison between the calculated and the measured values of the fusion excitation functions indicates that the calculations of the DFM give quite satisfactory agreement with the experimental data, being much better than the other methods. New parameterized forms for the fusion barrier heights and positions are presented. Furthermore, the effects of deformation and orientation degrees of freedom on the distribution of the Coulomb barrier characteristics as well as the fusion cross sections are studied for the reactions 16 O + 70 Ge and 28 Si + 100 Mo. The calculated values of the total fusion cross sections are compared with coupled channel calculations using the code CCFULL and compared with the experimental data. Our results reveal that the inclusion of deformations and orientation degrees of freedom improves the comparison with the experimental data.

  9. Constraining in-medium nucleon-nucleon interactions via nucleus-nucleus reactions

    Science.gov (United States)

    Sammarruca, Francesca; White, Larz

    2010-11-01

    The nuclear equation of state is a broadly useful tool. Besides being the main input of stellar structure calculations, it allows a direct connection to the physics of nuclei. For instance, an energy functional (such as a mass formula), together with the energy/particle in nuclear matter, can be used to predict nuclear energies and radii [1]. The single-particle properties are also a key point to link infinite nuclear matter and actual nuclei. The parameters of the single-particle potential, in particular the effective mass, enter the calculations of, for instance, in-medium effective cross sections. From the well-known Glauber reaction theory, the total nucleus-nucleus reaction cross section is expressed in terms of the nuclear transparency, which, in turn, depends on the overlap of the nuclear density distributions and the elementary nucleon-nucleon (NN) cross sections. We explore the sensitivity of the reaction calculation to medium modifications of the NN cross sections to estimate the likelihood of constraining the latter through nuclear reactions. Ultimately, we wish to incorporate isospin asymmetry in the reaction model, having in mind connections with rare isotopes. [1] F. Sammarruca, arXiv:1002.00146 [nucl-th]; International Journal of Modern Physics, in press.

  10. Suprachiasmatic Nucleus Interaction with the Arcuate Nucleus; Essential for Organizing Physiological Rhythms

    Science.gov (United States)

    Guzmán-Ruiz, Mara

    2017-01-01

    Abstract The suprachiasmatic nucleus (SCN) is generally considered the master clock, independently driving all circadian rhythms. We recently demonstrated the SCN receives metabolic and cardiovascular feedback adeptly altering its neuronal activity. In the present study, we show that microcuts effectively removing SCN-arcuate nucleus (ARC) interconnectivity in Wistar rats result in a loss of rhythmicity in locomotor activity, corticosterone levels, and body temperature in constant dark (DD) conditions. Elimination of these reciprocal connections did not affect SCN clock gene rhythmicity but did cause the ARC to desynchronize. Moreover, unilateral SCN lesions with contralateral retrochiasmatic microcuts resulted in identical arrhythmicity, proving that for the expression of physiological rhythms this reciprocal SCN-ARC interaction is essential. The unaltered SCN c-Fos expression following glucose administration in disconnected animals as compared to a significant decrease in controls demonstrates the importance of the ARC as metabolic modulator of SCN neuronal activity. Together, these results indicate that the SCN is more than an autonomous clock, and forms an essential component of a larger network controlling homeostasis. The present novel findings illustrate how an imbalance between SCN and ARC communication through circadian disruption could be involved in the etiology of metabolic disorders. PMID:28374011

  11. Isotope Dependence of Superheavy Nucleus Formation Cross Section

    Institute of Scientific and Technical Information of China (English)

    LIU Zu-Hua; BAG Jing-Dong

    2006-01-01

    The dynamical process in the superheavy nucleus synthesis is studied on the basis of the two-dimensional Smolu-chowski equation. Special attention is paid to the isotope dependence of the cross section for the superheavy nucleus formation by means of making a comparison among the reaction systems of 54Fe + 204Pb, 56Fe + 206Pb, and 58Fe + 208Pb. It is found by this comparison that the formation cross section is very sensitive to the conditional saddle-point height and the neutron separation energy of the compound nucleus. Reaction systems with lower height of conditional saddle-point and smaller neutron separation energy are more favourable for the synthesis of the superheavy nucleus.

  12. Cytotoxicity of nucleus-targeting fluorescent gold nanoclusters

    Science.gov (United States)

    Zhao, Jing-Ya; Cui, Ran; Zhang, Zhi-Ling; Zhang, Mingxi; Xie, Zhi-Xiong; Pang, Dai-Wen

    2014-10-01

    Gold nanoclusters (AuNCs) with ultra small sizes and unique fluorescence properties have shown promising potential for imaging the nuclei of living cells. However, little is known regarding the potential cytotoxicity of AuNCs after they enter the cell nucleus. The aim of this study is to investigate whether and how nucleus-targeting AuNCs affect the normal functioning of cells. Highly stable, water-soluble and bright fluorescent Au25NCs (the core of each nanocluster is composed of 25 gold atoms) were synthesized. Specific targeting of Au25NCs to the cell nucleus was achieved by conjugating the TAT peptide to the Au25NCs. Cell viability, cell morphology, cell apoptosis/necrosis, reactive oxygen species (ROS) level and mitochondrial membrane potential examinations were performed on different cell lines exposed to the nucleus-targeting Au25NCs. We found that the nucleus-targeting Au25NCs caused cell apoptosis in a dose-dependent manner. A possible mechanism for the cytotoxicity of the nucleus-targeting Au25NCs was proposed as follows: the nucleus-targeting Au25NCs induce the production of ROS, resulting in the oxidative degradation of mitochondrial components, in turn leading to apoptosis via a mitochondrial damage pathway. This work facilitates a better understanding of the toxicity of AuNCs, especially nucleus-targeting AuNCs.Gold nanoclusters (AuNCs) with ultra small sizes and unique fluorescence properties have shown promising potential for imaging the nuclei of living cells. However, little is known regarding the potential cytotoxicity of AuNCs after they enter the cell nucleus. The aim of this study is to investigate whether and how nucleus-targeting AuNCs affect the normal functioning of cells. Highly stable, water-soluble and bright fluorescent Au25NCs (the core of each nanocluster is composed of 25 gold atoms) were synthesized. Specific targeting of Au25NCs to the cell nucleus was achieved by conjugating the TAT peptide to the Au25NCs. Cell viability, cell

  13. Nucleus management in manual small incision cataract surgery by phacosection

    Directory of Open Access Journals (Sweden)

    Ravindra M

    2009-01-01

    Full Text Available Nucleus management is critical in manual small incision cataract surgery (MSICS, as the integrity of the tunnel, endothelium and posterior capsule needs to be respected. Several techniques of nucleus management are in vogue, depending upon the specific technique of MSICS. Nucleus can be removed in toto or bisected or trisected into smaller segments. The pressure in the eye can be maintained at the desired level with the use of an anterior chamber maintainer or kept at atmospheric levels. In MSICS, unlike phacoemulsification, there is no need to limit the size of the tunnel or restrain the size of capsulorrhexis. Large well-structured tunnels and larger capsulorrhexis provide better control on the surgical maneuvers. Safety and simplicity of MSICS has made it extremely popular. The purpose of this article is to describe nucleus management by phacosection in MSICS.

  14. Low-energy antinucleon-nucleus interaction revisited

    Science.gov (United States)

    Friedman, E.

    2015-08-01

    Annihilation cross sections of antiprotons and antineutrons on the proton between 50 and 400 MeV/c show Coulomb focusing below 200 MeV/c and almost no charge-dependence above 200 MeV/c. Similar comparisons for heavier targets are not possible for lack of overlap between nuclear targets studied with and beams. Interpolating between -nucleus annihilation cross sections with the help of an optical potential to compare with -nucleus annihilation cross sections reveal unexpected features of Coulomb interactions in the latter. Direct comparisons between -nucleus and -nucleus annihilations at very low energies could be possible if cross sections are measured on the same targets and at the same energies as the available cross sections for . Such measurements may be feasible in the foreseeable future.

  15. The integrative role of the pedunculopontine nucleus in human gait.

    Science.gov (United States)

    Lau, Brian; Welter, Marie-Laure; Belaid, Hayat; Fernandez Vidal, Sara; Bardinet, Eric; Grabli, David; Karachi, Carine

    2015-05-01

    The brainstem pedunculopontine nucleus has a likely, although unclear, role in gait control, and is a potential deep brain stimulation target for treating resistant gait disorders. These disorders are a major therapeutic challenge for the ageing population, especially in Parkinson's disease where gait and balance disorders can become resistant to both dopaminergic medication and subthalamic nucleus stimulation. Here, we present electrophysiological evidence that the pedunculopontine and subthalamic nuclei are involved in distinct aspects of gait using a locomotor imagery task in 14 patients with Parkinson's disease undergoing surgery for the implantation of pedunculopontine or subthalamic nuclei deep brain stimulation electrodes. We performed electrophysiological recordings in two phases, once during surgery, and again several days after surgery in a subset of patients. The majority of pedunculopontine nucleus neurons (57%) recorded intrasurgically exhibited changes in activity related to different task components, with 29% modulated during visual stimulation, 41% modulated during voluntary hand movement, and 49% modulated during imaginary gait. Pedunculopontine nucleus local field potentials recorded post-surgically were modulated in the beta and gamma bands during visual and motor events, and we observed alpha and beta band synchronization that was sustained for the duration of imaginary gait and spatially localized within the pedunculopontine nucleus. In contrast, significantly fewer subthalamic nucleus neurons (27%) recorded intrasurgically were modulated during the locomotor imagery, with most increasing or decreasing activity phasically during the hand movement that initiated or terminated imaginary gait. Our data support the hypothesis that the pedunculopontine nucleus influences gait control in manners extending beyond simply driving pattern generation. In contrast, the subthalamic nucleus seems to control movement execution that is not likely to be gait

  16. Shell Correction at the Saddle Point for Superheavy Nucleus

    Institute of Scientific and Technical Information of China (English)

    张炜; 张时声; 张双全; 孟杰

    2003-01-01

    The potential energy surface for superheavy nucleus has been studied within the framework of the constrained relativistic mean field theory, and the shell correction energy as a function of deformation has been extracted by the Strutinsky shell correction procedure. Contrary to the usual expectation, the shell correction energy at the saddle point is too important to be neglected, and it has essential contribution to the fission barrier in superheavy nucleus.

  17. Colour, albedo and nucleus size of Halley's comet

    Science.gov (United States)

    Cruikshank, D. P.; Tholen, D. J.; Hartmann, W. K.

    1985-01-01

    Photometry of Halley's comet in the B, J, V, and K broadband filters during a time when the coma was very weak and presumed to contribute negligibly to the broadband photometry is reported. The V-J and J-K colors suggest that the color of the nucleus of Halley's comet is similar to that of the D-type asteroids, which in turn suggests that the surface of the nucleus has an albedo less than 0.1.

  18. Truncal ataxia from infarction involving the inferior olivary nucleus.

    Science.gov (United States)

    Park, Jae Hyun; Ryoo, Sookyung; Moon, So Young; Seo, Sand Won; Na, Duk L

    2012-08-01

    Truncal ataxia in medullary infarction may be caused by involvement of the lateral part of the medulla; however, truncal ataxia in infarction involving the inferior olivary nucleus (ION) has received comparatively little attention. We report a patient with truncal ataxia due to medial medullary infarction located in the ION. A lesion in the ION could produce a contralateral truncal ataxia due to increased inhibitory input to the contralesional vestibular nucleus from the contralesional flocculus.

  19. A FIBER APPARATUS IN THE NUCLEUS OF THE YEAST CELL

    Science.gov (United States)

    Robinow, C. F.; Marak, J.

    1966-01-01

    The structure and mode of division of the nucleus of budding yeast cells have been studied by phase-contrast microscopy during life and by ordinary microscopy after Helly fixation. The components of the nucleus were differentially stained by the Feulgen procedure, with Giemsa solution after hydrolysis, and with iron alum haematoxylin. New information was obtained in cells fixed in Helly's by directly staining them with 0.005% acid fuchsin in 1% acetic acid in water. Electron micrographs have been made of sections of cells that were first fixed with 3% glutaraldehyde, then divested of their walls with snail juice, and postfixed with osmium tetroxide. Light and electron microscopy have given concordant information about the organization of the yeast nucleus. A peripheral segment of the nucleus is occupied by relatively dense matter (the "peripheral cluster" of Mundkur) which is Feulgen negative. The greater part of the nucleus is filled with fine-grained Feulgen-positive matter of low density in which chromosomes could not be identified. Chromosomes become visible in this region under the light microscope at meiosis. In the chromatin lies a short fiber with strong affinity for acid fuchsin. The nucleus divides by elongation and constriction, and during this process the fiber becomes long and thin. Electron microscopy has resolved it into a bundle of dark-edged 150 to 180 A filaments which extends between "centriolar plaques" that are attached to the nuclear envelope. PMID:5331666

  20. An autopsy-verified case of FTLD-TDP type A with upper motor neuron-predominant motor neuron disease mimicking MM2-thalamic-type sporadic Creutzfeldt-Jakob disease.

    Science.gov (United States)

    Hayashi, Yuichi; Iwasaki, Yasushi; Takekoshi, Akira; Yoshikura, Nobuaki; Asano, Takahiko; Mimuro, Maya; Kimura, Akio; Satoh, Katsuya; Kitamoto, Tetsuyuki; Yoshida, Mari; Inuzuka, Takashi

    2016-11-01

    Here we report an autopsy-verified case of frontotemporal lobar degeneration (FTLD)-transactivation responsive region (TAR) DNA binding protein (TDP) type A with upper motor neuron-predominant motor neuron disease mimicking MM2-thalamic-type sporadic Creutzfeldt-Jakob disease (sCJD). A 69-year-old woman presented with an 11-month history of progressive dementia, irritability, insomnia, and gait disturbance without a family history of dementia or prion disease. Neurological examination revealed severe dementia, frontal signs, and exaggerated bilateral tendon reflexes. Periodic sharp-wave complexes were not observed on the electroencephalogram. Brain diffusion MRI did not reveal abnormal changes. An easy Z score (eZIS) analysis for (99m)Tc-ECD-single photon emission computed tomography ((99m)Tc-ECD-SPECT) revealed a bilateral decrease in thalamic regional cerebral blood flow (rCBF). PRNP gene analysis demonstrated methionine homozygosity at codon 129 without mutation. Cerebrospinal fluid (CSF) analysis showed normal levels of both 14-3-3 and total tau proteins. Conversely, prion protein was slowly amplified in the CSF by a real-time quaking-induced conversion assay. Her symptoms deteriorated to a state of akinetic mutism, and she died of sudden cardiac arrest, one year after symptom onset.  Despite the SPECT results supporting a clinical diagnosis of MM2-thalamic-type sCJD, a postmortem assessment revealed that this was a case of FTLD-TDP type A, and excluded prion disease. Thus, this case indicates that whereas a bilateral decreasing thalamic rCBF detected by (99m)Tc-ECD-SPECT can be useful for diagnosing MM2-thalamic-type sCJD, it is not sufficiently specific. Postmortem diagnosis remains the gold standard for the diagnosis of this condition.

  1. Stopping powers and cross sections due to two-photon processes in relativistic nucleus-nucleus collisions

    Science.gov (United States)

    Cheung, Wang K.; Norbury, John W.

    1994-01-01

    The effects of electromagnetic-production processes due to two-photon exchange in nucleus-nucleus collisions are discussed. Feynman diagrams for two-photon exchange are evaluated using quantum electrodynamics. The total cross section and stopping power for projectile and target nuclei of identical charge are found to be significant for heavy nuclei above a few GeV per nucleon-incident energy.

  2. Coherent production of the long-lived pionium nP states in relativistic nucleus-nucleus collisions

    CERN Document Server

    Gevokyan, S

    2015-01-01

    The coherent production of the $nP$ states of the $\\pi^+\\pi^-$ atoms ($A_{2\\pi}$) in relativistic nucleus-nucleus collisions is considered as a possible source of the $A_{2\\pi}(nP)$ beam for the pionium Lamb-shift measurement. A general expression for estimation of the $A_{2\\pi}(nP)$ yields is derived in the framework of the equivalent photon approximation.

  3. The interfascicular trigeminal nucleus: a precerebellar nucleus in the mouse defined by retrograde neuronal tracing and genetic fate mapping.

    Science.gov (United States)

    Fu, Yuhong; Tvrdik, Petr; Makki, Nadja; Machold, Robert; Paxinos, George; Watson, Charles

    2013-02-15

    We have found a previously unreported precerebellar nucleus located among the emerging fibers of the motor root of the trigeminal nerve in the mouse, which we have called the interfascicular trigeminal nucleus (IF5). This nucleus had previously been named the tensor tympani part of the motor trigeminal nucleus (5TT) in rodent brain atlases, because it was thought to be a subset of small motor neurons of the motor trigeminal nucleus innervating the tensor tympani muscle. However, following injection of retrograde tracer in the cerebellum, the labeled neurons in IF5 were found to be choline acetyltransferase (ChAT) negative, indicating that they are not motor neurons. The cells of IF5 are strongly labeled in mice from Wnt1Cre and Atoh1 CreER lineage fate mapping, in common with the major precerebellar nuclei that arise from the rhombic lip and that issue mossy fibers. Analysis of sections from mouse Hoxa3, Hoxb1, and Egr2 Cre labeled lineages shows that the neurons of IF5 arise from rhombomeres caudal to rhombomere 4, most likely from rhombomeres 6-8. We conclude that IF5 is a significant precerebellar nucleus in the mouse that shares developmental gene expression characteristics with mossy fiber precerebellar nuclei that arise from the caudal rhombic lip.

  4. Cortical and thalamic contributions to response dynamics across layers of the primary somatosensory cortex during tactile discrimination.<